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1.1 Contexte et motivations 
 
Les biofilms bactériens sont des communautés collaboratives, protégés par une matrice 

extracellulaire et formés par la plupart des espèces bactériennes [1], [2]. C’est une forme de vie 

préférée par les espèces bactériennes qui est impliquée dans la tolérance aux antibiotiques, 

l’acquisition de résistances par des processus de transfert horizontal de gènes et le 

développement de maladies chroniques [2]–[4]. Les biofilms représentent un problème de santé 

majeur dans les hôpitaux et dans l’industrie agroalimentaire. Les bactéries vivant en 

communautés dans les biofilms sont protégées par une matrice extracellulaire qui est constituée 

majoritairement d’eau et d’EPS (Extracellular Polymeric Substances, soit polymères 

extracellulaires) [1], [2], [5]. Les EPS sont principalement composés d’acides nucléiques, de 

lipides, de protéines et de polysaccharides [1]. Parmi ces polysaccharides se trouve la cellulose, 

composant majeur de la matrice extracellulaire chez de multiples souches commensales ainsi 

que pathogènes [6], [7]. De par sa résistance mécanique, la cellulose confère aux bactéries une 

protection contre les environnements hostiles. Dans les biofilms bactériens, la sécrétion de 

cellulose par les bactéries à Gram-négatif nécessite la co-expression de gènes multiples dont 

les différentes sous-unités qui en résultent s’assemblent pour former un complexe de sécrétion 

traversant l’intégralité de la paroi bactérienne [8], [9]. Ce complexe stable possède une partie 

périplasmique, une partie que réside dans la membrane interne et une partie cytoplasmique. La 

structure de ce mégacomplexe a été caractérisée en microscopie électronique grâce à la 

technique dite de particule isolée en coloration négative par le Dr. P. Krasteva et ses 

collaborateurs [9]. Malgré l’apport important de cette structure, la faible résolution du complexe 

n’a pas permis la distinction des différents composants protéiques. De plus, plusieurs travaux 

intéressés par l’étude de la sécrétion de la cellulose se sont focalisés sur les deux sous unités 

catalytiques, négligeant les sous unités cytoplasmiques régulatrices qui sont ainsi longtemps 

restées énigmatiques [10]–[12]. 

 

1.2 État de l’art  
 
La sécrétion de cellulose chez les bactéries à Gram-négatif nécessite la co-expression de gènes 

multiples qui sont conservés et répandus chez de multiples bactéries commensales et 

pathogènes [8]. Le système de gènes bactériens est typiquement organisé en un ou deux opérons 

appelés bcs (bacterial cellulose synthesis) [8]. Les protéines codées par les gènes bcs 

comprennent des protéines catalytiques comme BcsA et BcsB, qui mènent la polymérisation et 

l’export de la cellulose à travers la membrane interne ; des protéines pour la modification 
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enzymatique dans le périplasme et l’export à l’extérieur de la cellule comme BcsG, BcsZ et 

BcsC ; et plusieurs protéines régulatrices dont le mécanisme exact reste inconnu comme BcsR, 

BcsQ, BcsE et BcsF [8]–[12]. 

 

1.2.1 Les sous unités catalytiques  
 

1.2.1.1 BcsA et BcsB  
 
Le gène bcsA et le gène bcsB sont répandus dans presque tous les opérons de Bcs et se trouvent 

généralement en tandem [8]. Les structures des sous unités-catalytiques BcsAB ont été étudiées 

en détail chez R. sphaeroides [10]–[12]. BcsA est une protéine d'environ 100 kDa qui 

correspond à la cellulose synthase du système Bcs et qui est formée par une région 

transmembranaire N-terminale, sous laquelle se trouve un domaine cytoplasmique de glycosyl 

transférase suivie d'un domaine pilZ qui se lie au c-di-GMP (di-guanosine monophosphate 

cyclique) [10], [13]. La région transmembranaire est un domaine d'export de la cellulose formé 

de huit hélices transmembranaires (TM1-8)  [10]–[13]. Quatre de ces hélices TM sont N-

terminales et les quatre autres sont C-terminales. BcsB quant à elle est considérée comme le 

partenaire catalytique de BcsA. En effet, des études ont montré que l’hélice transmembranaire 

de BcsB liée à BcsA, est essentielle à la polymérisation et au passage de la cellulose à travers 

la membrane interne des bactéries. BcsB est formée par un module périplasmique contenant 

deux domaines de liaison aux glucides et deux autres domaines adoptants le repliement jelly 

roll et insérée dans la membrane interne via une hélice transmembranaire qui vient compléter 

les huit hélices TM1-8 de BcsA [10]–[13]. 

 
1.2.2 Les sous unités régulatrices  

 
1.2.2.1 BcsR et BcsQ 

 
BcsR et BcsQ sont des sous-unités cytoplasmiques essentielles à la sécrétion de cellulose in 

vivo. Il a notamment été montré par nos collaborateurs qu’au niveau des pôles de la bactérie où 

BcsQ a été localisée, l'adhésion intercellulaire y est initiée par la production de cellulose [14]. 

 

1.2.2.2 BcsE 
 
BcsE est une protéine cytoplasmique nécessaire à la sécrétion maximale de cellulose et qui 

possède un domaine de liaison au c-di-GMP – une molécule clé pour la signalisation 

intracellulaire [9], [14]. La protéine BcsE se lie au c-di-GMP via le motif RxxD du domaine 
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GIL (GGDEF I-site-Like), situé à son extrémité C terminale [15]. Ce motif similaire au site I 

des domaines GGDEF des diguanylate cyclases, les enzymes qui produisent le c-di-GMP à 

partir de GTP, est crucial à la fonction de BcsE. Des études de notre groupe et en collaboration 

ont aussi montré que la présence de BcsE dans le complexe est nécessaire pour la stabilité de la 

sous-unité catalytique BcsA et que les deux protéines interagissent directement à travers leurs 

modules de liaison au c-di-GMP (domaine GIL de BcsE et domaine PilZ de BcsA) [9]. Ces 

résultats nous ont alors montré l’importance d’étudier cette protéine en détail afin de déterminer 

son rôle et sa contribution dans l’assemblage et la formation du complexe Bcs. 

 

1.2.3 Le second messager c-di-GMP contrôle la formation des biofilms  
 
Dans la plupart des organismes bactériens, le changement entre l'état motile et l'état stationnaire 

sous forme de biofilm est exercé par le c-di-GMP, un second messager intracellulaire qui a des 

effets multiples permettant d’inhiber, directement ou indirectement, la motilité flagellaire et de 

stimuler la sécrétion des composants de la matrice extracellulaire tels que les 

exopolysaccharides [1], [16], [17]. La présence intracellulaire du c-di-GMP est contrôlée par 

deux activités enzymatiques opposées :  les diguanylate cyclases avec leur domaine GGDEF le 

synthétisent et des phosphodiestérases possédant un domaine EAL ou HD-GYP le dégradent 

[18]–[20]. 

 

1.2.4 Objectifs de la thèse  
 
Dans ce contexte, j’ai combiné études structurales et fonctionnelles afin d’étudier la sécrétion 

de la cellulose et son rôle dans la persistance des biofilms bactériens.  Pour ceci, j’ai entrepris 

d’étudier trois sous-unités clés pour l’assemblage et la fonction du système de sécrétion de 

cellulose chez la bactérie modèle E. coli. Dans un premier temps l’objectif était de déterminer 

les structures à haute résolution des protéines cytoplasmiques BcsR, BcsQ et BcsE, vu les rôles 

importants qu’elles pourraient jouer. D’une autre part, afin de déterminer la structure du 

complexe de Bcs avec une meilleure résolution, j’ai utilisé la cryo-EM (cryo-microscopie 

électronique) par la technique dite de « particules isolées ».  
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1.3 Résultats et discussion  
 

1.3.1 Étude de la structure cristallographique de BcsRQ  
 
L’un des premiers travaux que j’ai pu entamer dans le contexte de mes recherches était l’étude 

de l’interaction de BcsR et de BcsQ. Une fois le protocole de coexpression/copurification mis 

au point, j’ai procédé à l’optimisation des conditions de cristallisation des deux protéines. Dans 

ce cadre j’ai pu obtenir des cristaux qui diffractent et qui nous ont permis de résoudre la 

structure du complexe à haute résolution. Ces résultats sont importants non seulement parce 

que la structure du complexe BcsRQ a été résolue pour la première fois, mais aussi parce qu’ils 

représentent un outil indispensable pour l’étude des interactions possibles entre BcsRQ et leur 

partennaire BcsE. La structure de BcsRQ a montré une dimérisation du complexec’est-à-dire 

un dimère de deux hétérodimères BcsRQ avec une surface assez importante d’interaction. 

Comme la protéine BcsQ est prédite à fonctionner comme une ATPase (Adénosine 

TriPhosphatase), notre objectif était de collecter différents états conformationnels de la protéine 

qui pourraient exister.  Pour cela une analyse de trois types de cristaux a été effectuée. La 

protéine BcsRQ sans nucléotides et la protéine purifiée et cristalisée en présence d’ADP 

(Adénosine DiPhosphate) et/ou d’AppCp (analogue non hydrolysable de l’ATP). A partir de la 

collecte de jeux complets de données de diffraction sur les différents cristaux, nous avons 

constaté qu’il n’existait qu’un seul état conformationnel, celui avec la protéine en complexe 

avec l’ATP et cela malgré l’ajout d’EDTA (Éthylènediaminetétraacétique).  

 

1.3.2 Étude de la structure cristallographique de BcsRQ avec deux domaine C-
terminaux de BcsE  
 

Quand j’ai commencé le travail sur les sous unités cytoplasmiques, l’interaction entre BcsE et 

BcsRQ n’avait pas été démontré. Comme pour BcsRQ, le but dans un premier temps était de 

mettre au point un protocole pour la coexpression/copurification de BcsRQE. Ceci nous a 

permis de confirmer nos attentes que BcsE interagit avec BcsRQ en se liant à la partie C-

terminale de BcsQ. D’autant plus, nos résultats confirment que BcsR et BcsQ sont localisées 

dans le cytoplasme car elles sont récupérées dans la fraction soluble. Toutefois quand BcsR, 

BcsQ et BcsE interagissent, leur extraction nécessite un protocole d’extraction semblable à un 

protocole d’extraction d’une protéine membranaire contrairement à BcsRQ seuls. En effet, pour 

extraire et purifier le complexe BcsRQE, nous sommes amenés à utiliser des détergents. Ceci 

rendait non seulement la procédure de cristallisation difficile voire impossible, mais en plus le 

complexe protéique BcsRQE n’était pas produit en quantité suffisante. Pour surmonter le 
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problème, j’ai généré des constructions de BcsE en gardant soit la partie C-terminale soit la 

partie N-terminale en se basant sur les prédictions de structures secondaires. Les résultats 

obtenus révèlent deux constructions qui sont copurifiés avec BcsRQ, à savoir BcsE349-523 et 

BcsE217-523. La seconde étape était alors l’étude de la structure et du mécanisme d’intéraction 

de BcsRQE, pour ceci j’ai opté pour la technique de cristallographie aux rayons X et j’ai pu 

obtenir des cristaux qui diffractent d’abord de BcsRQE349-523 et de BcsRQ R156EE217-523. Les 

structures cristallographiques ont montré que BcsE se lie effectivement à la partie C-terminale 

de BcsQ. En plus de révéler les déterminants structuraux d’interaction avec BcsQ, les deux 

structures de BcsRQE ont fourni des informations inattendues quant à l’interaction avec le 

second messager c-di-GMP. Dans la structure BcsRQE349-523 le c-di-GMP se trouve lié en tant 

que dimère intercalé à chaque domaine GGDEF. Cependant, dans le complexe BcsRQ R156EE217-

523, BcsE subit un changement conformationnel par rapport à la structure de BcsE217-523 seul 

(résolue par Samira Zouhir), contribuant ainsi à la découverte d’un motif d’interaction avec le 

c-di-GMP jamais identifié jusque-là.   

 

1.3.3 Étude de la structure du complexe de sécrétion par cryo-EM  
 
Dans l’optique d’étudier l’architecture et l’assemblage du système de sécrétion dans son 

intégralité, j’ai utilisé la technique d’analyse de particules isolées par cryo-EM. Ceci a permis 

non seulement de confirmer l’architecture non-canonique atypique de ce système de sécrétion 

mais aussi de déterminer la structure de la protéine BcsB. Nous avons montré que cette dernière 

fait partie du cœur catalytique et cette structure nous a également permis de comprendre 

l’architecture asymétrique particulière du système de sécrétion, dû à une polymérisation de sa 

partie périplasmique. Bien que la structure d’une protéine homologue eût déjà été résolue, nos 

travaux ont montré pour la première fois la propriété d’auto-assemblage du macrocomplexe de 

cette caractéristique particulière de ce système de sécrétion de cellulose. 

 
1.4 Conclusion et perspectives  

 
Les dernières années représentent une révolution dans l’étude de la cellulose. Les études 

antérieures se sont intéressées aux sous-unités catalytiques des systèmes bactériens de 

biogenèse de la cellulose, pendant que les sous-unités régulatrices sont longtemps restées 

énigmatiques. Notre groupe de recherche a largement marqué cette révolution de par 

l’identification des rôles mécanistiques de sous-unité accessoires et essentielles, exprimées par 

les bactéries dans les biofilms bactériens. Ces travaux de recherche ont concerné différents 
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niveaux, à savoir l’expression, l’assemblage et la régulation du système de sécrétion de la 

cellulose. De plus, ces travaux sont un élément clé pour mieux comprendre le comportement 

des bactéries dans les biofilms, ainsi que les liens mécanistiques aboutissant à l’acquisition du 

phénomène de résistance aux antibiotiques. Le système bactérien de sécrétion de la cellulose 

fait partie d’un ensemble de systèmes conservés chez les Eucaryotes et les Procaryotes. Les 

différents résultats de recherches cités ci-dessus peuvent ainsi contribuer à long terme au 

développement de thérapies de nouvelle génération, sans risques associés de forte pression 

évolutive et de développement de résistances.  

Nos travaux présentent également un intérêt majeur dans un tout autre domaine. En effet, la 

cellulose possède un fort intérêt biotechnologique, en tant que nano-matériel inoffensif, 

biocompatible et à coût réduit. 
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Bacteria can adopt two main modes of growth in nature, the first being the free-swimming 

planktonic lifestyle, while the second is the formation of sessile biofilms [1], [2]. Biofilms are 

bacterial cells living in a community and embedded in a self-produced matrix, usually attached 

to a biotic or abiotic surface [1], [2]. The biofilm matrix provides the embedded bacteria with 

tolerance, fitness and protection against the external world, among other privileges [1], [3], [4]. 

Thereby from an evolutionary point of view, the bacteria have more survival reasons to 

optimize mechanisms for the secretion of a biofilm matrix. Biofilms can be seen as an empire 

where bacterial cells live in a community surrounded by a fortress, the stronger the fortress 

walls, the more protected are the individual cells. Although the biofilm lifestyle is a common 

trait, the secreted biopolymers in the extracellular matrix, also known as the Extracellular 

Polymeric Substances (EPS), differ between the species by the type of matrix components, the 

underlying secretion machineries,  as well as the external cues that orchestrate the mechanisms 

engaged in the EPS secretion [1], [2], [5]. The EPS typically includes polysaccharides, proteins, 

nucleic acids and lipids (Table 1) [2]. One thing is for sure, the key signaling molecule c-di-

GMP (Bis-(3′-5′)-cyclic dimeric guanosine monophosphate), promotes the synthesis of many 

of the EPS components in biofilms [6], [21]–[23]. Usually through a c-di-GMP-guided 

pathway, as a key example, many bacteria produce cellulose as a major component of their 

extracellular matrix. The polymer has a large number of advantages, such as excellent 

mechanical resistance and water retention and, together with curli, builds up the biofilms of 

important enterobacterial species such as Salmonella enterica Serovar Typhimurium (S. 

Typhimurium) and Escherichia coli (E. coli), [6], [7].  

 

In the present work, I decipher key components and mechanisms that drive cellulose 

secretion in the biofilm matrix. In this introduction part, I will provide the necessary background 

for better appreciation of our findings uncovering the mechanisms of bacterial cellulose 

secretion. I will provide an overview of cellulose as one of the major polysaccharides secreted 

by bacteria in the extracellular biofilm matrix. I will also discuss the conservation of cellulose 

secretion systems, as well as the components involved in this secretory mechanism with the 

second messenger c-di-GMP in the center of this sophisticated process. As unraveling all the 

Bcs (bacterial cellulose synthesis) systems is beyond the aim of this project, I rather spot an 

emphasis on cellulose secretion in Gram-negative bacteria and more precisely on the type II 

Bcs secretion system also known as the E. coli-like Bcs system.   
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2.1 The matrix of biofilms 
 

2.1.1 Key steps for biofilm formation 
 
The process of biofilm formation is cyclic and, although it can feature various degrees of 

complexity depending on external cues and the specific bacterial species, it can be summarized 

in three major steps (Figure 1). The overall process is typically under the control of intracellular 

c-di-GMP-dependent signaling events and comprises the attachment of planktonic cells to a 

surface, the multiplication and maturation into a multicellular three-dimensional structure and 

finally the dispersion of bacterial cells that can then colonize new surfaces [1], [16], [24]. 

Biofilms are truly collaborative multicellular communities, where the extracellular matrix 

provides not only mechanical protection but also a medium for exchange of nutrients, horizontal 

gene transfer (including genes for antibiotics resistance) and immune system escape, when in a 

eukaryotic host.  

 

Regarding biofilm dispersion, on one hand it allows the bacteria to disseminate, on the other, 

the bacterial cells that leave the biofilm become exposed and unprotected. The dispersion takes 

place when remaining in the biofilm displays more drawbacks than advantages, for example 

upon development of oxygen or waste product gradients that can lead to cell lysis [25]. To 

tackle such toxicity and survive, many signals can trigger the activation of phosphodiesterases 

(PDE) that degrade the c-di-GMP second messenger and thereby inhibit EPS secretion and 

increase the cells’ motility [17]. 

 
Figure 1. Key steps of the biofilm formation 
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Bacteria can reversibly attach to surfaces subsequently to the loss of motility and synthesis of extracellular 
adhesive substances providing strong anchors. Mature biofilms are then developed and are characterized by colony 
variance, complex architecture, and collaborative group behavior between functionally differentiated members. 
Finally, the dispersion leads to the release of highly motile planktonic cells, capable to colonize new surfaces [4], 
[25]. 
 
 

2.1.2 Cellulose, a major constituent of the bacterial biofilm maze, and more 
 
The biofilm matrix is a hydrated mass that apart from intact cells contains a matrix of 

polysaccharides, proteins, nucleic acids and lipids [2]. The different secreted components play 

a plethora of functions that are relevant to the biofilm growth, some of which are summarized 

in Table 1.  

 

Table 1. Examples of EPS and their functions in bacterial biofilms 

EPS component Function in biofilms 

Polysaccharides Adherence to biotic or abiotic surfaces 

Formation of the three-dimensional biofilm architecture 

Retention of water to keep the microenvironment hydrated 

Mechanical stability of biofilms 

Proteins Formation and stabilization of the polysaccharide matrix network 

Link the bacterial surface to the other EPS 

Electron donor or acceptor to ensure a redox activity in the biofilm matrix 

DNA Intercellular connection 

Bacterial cells adhesion 

Facilitate the exchange of genetic information in the biofilm matrix 

Enzymes Create pores to improve nutrients access 

Disrupt the biofilm matrix for dissemination 
   Adapted from [2] 
 
 

Although it has been generally difficult to analyze the extracellular matrix components, 

technological developments have allowed for the characterization of many of them. One of 

these components is cellulose, which is the second major component of S. Typhimurium and E. 

coli biofilms. Together with curli proteins that upon secretion assemble into amyloid fibers, 

cellulose was discovered to provide agar-grown biofilms with the ability to form sophisticated 
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three-dimensional structures, such as the “rdar” (for red, dry, and rough)  morphotype shown 

in figure 2 [7].  

 

 

 
 

Figure 2. Rdar morphotypes of E. coli and Salmonella strains  

Rdar morphotypes of Salmonella and E. coli strains grown on Congo red plates. Figure from [7] 
 

 

Looking at a larger picture, cellulose has well-known reputation as the major constituent of the 

plants cell walls, making it the most abundant biopolymer on the planet Earth [8].  In addition 

to plants, however, cellulose is also produced by protists, fungi, animals, viruses, and of course 

bacteria, with Cyanobacteria being the first cellulose producers and the last common ancestor 

of cellulose biosynthesis genes [26], [27].  

 

So, why do bacteria secrete cellulose? Simply put, for its exceptional water retention capacity, 

porosity, mechanical resistance and chemical simplicity, combined with its low antigenicity 

and ability to interact with additional components from the bacteria or their hosts [8]. 

 

In the present project, I will spot the light on the enterobacterial cellulose secretion system, as 

a widespread nanomachine for bacterial biofilm formation.  
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2.2 Structure and forms of bacterial cellulose 
 
Cellulose is an unbranched homopolysaccharide of D-glucose molecules connected via acetal 

linkages joining the C1 and C4 carbons of the glucopyranose rings in a ß-configuration [28] 

(Figure 3A). The added glucose is rotated by approximatively 180° compared to its neighbor, 

as a result the repeating unit is the disaccharide cellobiose [29] (Figure 3A-B).  Along the linear 

polysaccharide, each glucose moiety forms two hydrogen bonds with each of its neighbors. The 

C3 hydroxyl of a given glucose unit engages in a hydrogen bond with the ring oxygen of the 

glucose neighbor attached at the C4 carbon, while the C6 donates a hydrogen bond to the C2 

hydroxyl of the same neighboring moiety (Figure 3A). On the other hand, the ring oxygen and 

the C2 hydroxyl accept a hydrogen bond from the C3 and C6 hydroxyls of preceding glucose 

unit, respectively, i.e. the glucose unit attached to the C1 carbon [28] (Figure 3A-B). These 

connections not only stabilize a coplanar conformation of the glucopyranose rings, moreover, 

the hydroxyl groups point away from the face of the pyranose rings resulting in a facility of 

engaging in different interactions with other cellulose polymers (Figure 3A). Even more, 

chemical modifications can occur on the building glucose units, such as the attachment 

phophoethanolamine (pEtN residues at the C6 position of the cellulose polymer produced by 

E. coli and Salmonella)  [30] (Figure 3C).  The chemical properties of the cellulose polymer all 

together bring the existence of different forms of bacterial cellulose. In bacteria, the cellulose 

is synthesized and extruded through the Bcs system and once at the cell surface, a subsequent 

assembly of the glucan chain can follow forming either a structured architecture also known as 

crystalline cellulose or more disordered structure known as amorphous cellulose.  
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Figure 3. Cellulose structure 

A. The structure of cellulose is shown in stick representation, carbon atoms are shown in gray, oxygen in red. The 
individual glucose units are connected via glycosidic ß-bonds between C1 and C4. Cellulose is elongated at its 
nonreducing end of the acceptor glucose and each glucose unit is rotated 180° compared to its neighbor. B. The 
cellobiose repeating unit is shown in Fischer projection. C. Structure of phosphoethanolamine. 
 

2.2.1 Crystalline cellulose 
 
Crystalline cellulose, has drawn the attention over the past decades due to its architecture 

reminding that of the plant cell walls. The different cellulose strands pack against each other 

forming hydrogen bonds between the equatorial hydroxyl groups and van der Waals forces 

between the glucopyranose rings (Figure 4A-B-C). Early studies using negative-stain, freeze-

fracture electron microscopy revealed that in crystalline cellulose-secreting Gluconacetobacter 

xylinus, the cellulose synthase terminal complexes (TCs) form a line along the long axis of the 

cell surface which corresponds to the export sites of the elementary cellulose fibrils [31]–[33]. 

Once secreted in the extracellular environment, the elementary fibrils pack to form the cellulose 

ribbon, one per cell [31]–[33]. The cellulose biosynthesis involves a machinery encompassing 

the cell envelope, where a catalytic core composed of the BcsAB tandem is involved in the 

polymerization of the glucan chain using UDP (uridine diphosphate)-glucose as a substrate 

(Figure 6). In most systems of Gram-negative species, including crystalline cellulose secreting 

bacteria, the export of the nascent chain through the outer membrane (OM) involves an OM 

porin called BcsC. The structure of the latter subunit from pEtN-cellulose secreting E. coli has 

been solved recently and revealed that the protein adopts a ß-barrel fold at its C-terminus, 

however the pore diameter would be compatible with the extrusion of only a single-stranded 

cellulose chain [34]. Therefore, crystalline microfibril and ribbon formation must occur in the 

external environment, parallel to the longitudinal cell axis, however, it would be predetermined 

by the longitudinal TC microarray formation in the cell. Other factors, such as accessory 

subunits BcsHD thought to form individual cellulose chain conduits in the periplasm and a 

recently identified cytoskeletal element thought to stabilize the longitudinal TC array have also 

been shown to play key roles in cellulose crystallinity [35]–[37]. Nevertheless, the molecular 

mechanisms behind crystalline cellulose formation remain a missing piece in the puzzle and 

need to be better unraveled for the production of the bacterial cellulose for biotechnological 

applications. 
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2.2.2 Amorphous cellulose 
 
Amorphous cellulose is disordered and non-structured cellulose that does not follow a pattern 

of regularly packed fibrils or layers (Figure 4B, bottom) and is generally believed to be easier 

to unravel when compared to the crystalline type. Interestingly, amorphous cellulose can also 

be commonly found in biofilms with high crystalline cellulose I content, marking the borders 

between large crystalline domains.  

 

 

Figure 4. Bacterial cellulose structure 

A. Structure of the crystalline cellulose formed through extensive inter and intramolecular hydrogen bonds and 
Van der Waals forces. Image by Luca Laghi, reproduced under license CC BY-SA 3.0 (https://creativecommons. 
org/licenses/by-sa/3.0/legalcode). B. Cryo-electron micrographs of secreted bacterial cellulose. Figures from [37] 
Above micrograph: a biofilm-embedded Gluconacetobacter hansenii cell surrounded by crystalline cellulose 
ribbons. Below micrograph: amorphous pEtN-cellulose, marked by an asterisk, secreted by the commensal E. coli 
1094 strain. C. Crystalline cellulose secreted by Gluconacetobacter xylinus-containing medium. The cellulose 
pellicle formed at the water-air interface is shown by a green arrow.  
 
 
2.3 Types of bacterial cellulose secreting systems 
 

The mechanisms governing the secretion of bacterial cellulose have sparked intense interest 

since the polymer’s discovery in bacteria at the end of the 19th century [38]. Many studies have 

since aimed at the elucidation of cellulose biosynthesis mechanism and the subunits involved 

in the process. Consequently, many nomenclatures have been attributed to the different 

subunits, so in 2015 Römling and Galperin revisited the classification of bcs operons and 

proposed a novel unified nomenclature for bcs proteins and their encoding genes [8]. The same 
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study highlighted the diversity among the different coding operons among bacterial species and 

clades and divided the majority of bcs loci into three major types [8] (Figure 5A-B) (see below 

for more details).  The common point to all three systems is the catalytic subunit BcsA with its 

partner BcsB (Figures 5A-B-6). BcsA is the inner membrane protein composed of multiple 

transmembrane helices that stand above two cytosolic domains, a glycosyltransferase domain 

that catalyzes the polymerization of UDP-glucose into the β-1,4-linked glucan and a C-terminal 

c-di-GMP-sensing PilZ domain [10], [11], [39]. The majority of BcsB’s amino acid sequence 

occupies a large periplasmic donut-shaped module, comprising two flavodoxin-like domains 

and two carbohydrate-binding domains, the latter of which are proposed guide the nascent 

polysaccharide to the outer membrane [10], [11], [40] (Figure 6). In addition, BcsB is anchored 

in the inner membrane by its C-terminal tail, composed of an amphipathic extracytosolic helix 

and a transmembrane anchor helix. Previous in vitro studies have demonstrated that, in both E. 

coli and Rhodobacter sphaeroides (R. sphaeroides), this C-terminal tail is indispensable for 

cellulose polymerization, thereby, BcsB is characterized as the co-catalytic subunit, or co-

polymerase. In several cases, BcsA and BcsB genes are fused and likely post-translationally 

divided into two proteins [41]. In addition to these core catalytic subunits, most bcs operons in 

Gram-negative bacteria encode a periplasmic hydrolase BcsZ and an outer membrane (OM) 

secretory subunit BcsC composed of an N-terminal tetratricopeptide repeat (TPR)-rich 

periplasmic domain and a C-terminal OM porin domain. 

Most cellulose secretion systems feature multiple additional Bcs subunits, many of 

which are indispensable for cellulose secretion. In addition, certain subunits typically co-occur 

with others, which prompted the recent classification of cellulose secretion systems  based on 

the accessory to the catalytic BcsAB tandem subunits [8].  

 

2.3.1 Type I cellulose secretion system 
 
The type I cellulose secretion system is found in α, ß and γ subdivisions of proteobacteria. This 

type includes the core components genes bcsABZC, as well as the hallmark of this type of 

secretion system gene bcsD (Figure 5A-B). In G. xylinus, the encoded protein BcsD is proposed 

to localize to the periplasm and to contribute to the packing of the glucan chains into ordered 

cellulose ribbons also known as type I crystalline cellulose [8], [42]. Added to that, upstream 

of the bcsD gene is found bcsH (also known as “ccpAx” or “ORF2”) whose protein product 

interacts with BcsD and is also suggested to play a role in crystalline fibril assembly [35]. 

Nevertheless, whereas the BcsH subunit seems limited to the Komagataeibacter lineage, many 
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types I bcs operons are found in non-crystalline cellulose-secreting bacteria, suggesting broader 

roles for the hallmark BcsD subunit. Additional Bcs components can also be found in these 

Type I systems, such as the BcsO, BcsP, and BcsQ subunits but their functions have not been 

characterized yet [8]. 

 

2.3.2 Type II cellulose secretion system 
 
The type II cellulose secretion systems are widespread among ß- and g-Proteobacteria and 

especially enterobacterial pathogens [8]. In Salmonella and E. coli, the bcs locus is divided into 

two divergently arranged operons, bcsEFG and bcsRQABZC [8] (Figure 5A-B). The 

discriminating components of this type are the cytosolic c-di-GMP-sensing subunit BcsE and 

the  periplasmic membrane-anchored BcsG responsible for installing the pEtN modification in 

the secreted amorphous cellulose [30]. In addition, the BcsR, BcsQ and BcsF subunits, whose 

functions are discussed below in more details, are also encoded by the respective bcs operons.  

 

2.3.3 Type III cellulose secretion system 
 
The type III secretion systems are limited to some cyano- and α-Proteobacterial species [8]. 

They lack the three subunits BcsD, BcsE and BcsG, whereas BcsC subunit is replaced by 

another outer membrane TPR-rich  subunit, BcsK, which lacks the C-terminal porin module [8] 

(Figure 5A-B).   

 

2.3.4 Other types of cellulose secretion 
 
There are additional types of cellulose secretion systems that don’t fit into the standard picture 

of any of the types above or in some cases can feature a hybrid architecture. Examples include 

systems where the type I hallmark bcsD gene, can be encoded with the type II bcsE(F)G cluster. 

In other examples, such as in the cellulose-producing cyanobacterium Thermosynechococcus 

vulcanus, both bcsB and bcsC genes are missing and the BcsA-mediated cellulose 

polymerization and extrusion are assisted by an efflux pump-like tandem composed of an inner-

membrane HlyD-like subunit and an outer membrane TolC-like exporter [43]. Further 

‘outsiders’ involve Pseudomonas fluorescens SBW25, which is known to secrete acetylated 

cellulose and exhibits a hybrid wss operon, combining BcsQ- and BcsABZC-like components, 

together with an acetylation complex homologous to the alginate secretion system. In 

accordance with the omnipresence of cellulose secretion machineries among many diverse 
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organisms, some Gram-positive bacteria are also found to secrete cellulose. Studies on 

Streptomyces coelicor have shown that this actinomycete secretes cellulose in order to adapt to 

osmotic responses or growth of the hyphal tips [44], [45] and uses a yet different cellulose 

secretion system, some components of which appear to have a fungal origin.  

 

Covering all the so far described systems of cellulose secretion is beyond this work, however 

this part highlights both the diversity and the complexity of the cellulose secreting systems. 

Moreover, with the ever-growing abundance of genomics data, the arborescence of Bcs 

secretion systems keeps growing and embraces now many Gram-positive bacteria, for whom 

many questions remain unanswered, especially concerning exopolysaccharide secretion 

through the thick peptidoglycan layer or the Gram-positive cell envelope devoid of an outer 

membrane [46].  
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Figure 5. Prevalent types of Bcs systems  

The three major types of the Bcs systems and their corresponding operons organizations as classified in [8], [47]. 
A. Examples of bcs operon organization and mosaicity for the three major types of cellulose secretion systems. B. 
Thumbnail representation of the topology of Bcs subunits relative to the bacterial envelope for the three types of 
Bcs systems. Color-coding as in A; the main conserved functional modules are annotated at the bottom. IM: inner 
membrane; PG: peptidoglycan; OM: outer membrane.  
 

 

 

 

Abidi et al. 3

Figure 1. Bacterial cellulose secretion. (A) Prevalent types of bacterial cellulose secretion systems and associated metabolic processes. UDPGP: UDP-glucose pyrophos-
phorylase, also called UTP–glucose-1-phosphate uridylyl transferase or GalU; UDP: uridine diphosphate; ATP: adenosine triphosphate; PP: pentose-phosphate path-
way; DHAP: dihydroxyacetone phosphate; TCA cycle: tricarboxylic acid cycle; c-di-GMP: cyclic diguanosine monophosphate; PDE: phosphodiesterase; DGC: diguanylate
cyclase. (B) Inter- and intrastrand hydrogen bonding in crystalline cellulose I. Image by Luca Laghi, reproduced under license CC BY-SA 3.0 (https://creativecommon
s.org/licenses/by-sa/3.0/legalcode). (C) Cryo-electron micrographs of secreted bacterial and plant cellulose. Data: courtesy of William J. Nicolas, partially reported in
(Nicolas et al. 2021) and reproduced under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/legalcode). Left: a bio!lm-embedded Gluconacetobacter
hansenii cell surrounded by crystalline cellulose ribbons (marked by white arrowheads); middle: amorphous phosphoethanolamine (pEtN)-cellulose (marked by an
asterisk), secreted by the commensal Escherichia coli 1094 strain; right: plant cellulose micro!brils observed as electron-dense !laments in onion cell wall in situ. Scale
bars: 100 nm.
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2.4 Mechanism for cellulose biosynthesis 
 
Across the various organisms that secrete cellulose, a shared mechanism of cellulose 

polymerization is determined by an enzyme belonging to the glycosyl transferase family 2 [10], 

[48], [49]. The latter catalyzes the reaction of cellulose synthesis by the addition of one glucose 

at a time to the nascent polysaccharide using a preactivated nucleotide sugar substrate, UDP-

glucose. UDP-glucose is made available by a dedicated enzyme, UDP-glucose 

pyrophosphorylase or UDPGP, which is essential for cellulose secretion [50]. Upon 

incorporation of the glucose moiety from the substrate into the nascent polysaccharide, the UDP 

product is then released back in the cytosol for its recycling. The formerly attached glucose 

through an α-configuration to the UDP, is inverted to be consequently attached to the glycosidic 

chain in a ß-configuration [10], [51]. The catalytic reaction is basically a SN2-like substitution 

reaction, in which the nucleophile C4-hydroxyl group (acceptor), attacks the C1 carbon of the 

donor glucose (Figure 3A). This reaction is facilitated by both a deprotonation of the 

nucleophile and  a stabilization of the substrate’s pyrophosphate group via a divalent metal 

cation, usually Mg2+ or Mn2+ [10], [48], [52]. Once the glycosidic transfer is completed at the 

non-reducing end in the cytosol, the glucan chain exits the bacterial cell with the reducing end 

pointing first to the periplasm and subsequently the extracellular milieu [10], [13].  

 
2.5 Subunits for bacterial cellulose secretion 
 

2.5.1 Polymerization and transport across the bacterial envelope  
 
2.5.1.1 BcsAB tandem 
 
The bcsA and bcsB genes are widespread in almost all cellulose synthase operons, and are 

usually found adjacently in a tandem [8] (Figure 5A). The structures of the catalytic BcsAB 

have been thoroughly studied in R. sphaeroides, whose Bcs system belongs to the type III 

cellulose secretion systems and secreted an amorphous polymer [8].  The BcsA subunit, or 

cellulose synthase protein, is roughly a 100 kDa-sized subunit formed by a non-continuous 

transmembrane region, a glycosyl transferase cytosolic domain and a C-terminal pilZ domain 

that binds the synthase-activating second messenger dinucleotide c-di-GMP (the mechanism 

underlying the c-di-GMP signaling is described in more details below) [9], [10]. The 

transmembrane region is an α-helical transmembrane cellulose export domain (TMD), which 

in R. sphaeroides is formed by eight transmembrane helices (TM1-8), four of which are N-

terminal and the other four are C-terminal to the central GT domain.  In addition, a single TM 
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helix of the partner BcsB protein completes the export domain and is indispensable for the 

catalytic mechanism [10] (Figure 6). Whereas BcsA’s conserved glycosyl transferase (GT) 

domain is inserted between TM4 and TM5 [53], its active site is capped by a so-called ‘gating 

loop’ inserted between TM7 and and TM8 of the export domain and requires c-di-GMP binding 

to the protein to allow for substrate entry. The c-di-GMP sensing is carried out by a C-terminal 

cytosolic PilZ domain adopting a ß-barrel fold [10] (Figure 6). The GT domain interacts with 

the inner leaflet of the cytosolic membrane via three amphipathic interface helices (IF1-3). To 

date, all structures of the duo BcsAB co-crystallized with a translocating polysaccharide, which 

was apparently copurified with BcsAB as the polysaccharide was not added during the 

purification steps [10]–[12]. The structural studies revealed that BcsA’s glycosyl transferase 

domain is able to accommodate 10 glucose units of the nascent polysaccharide, whose 

glucopyranose rings  form van der Waals interactions with residues Met300, Phe301, Phe316 , 

Trp383 of IF2, Phe419, Phe426, Tyr433, Phe441,Val551, Val555, Trp558 [10]. The equatorial 

hydroxyl groups of the glucose units form hydrogen bonds with Tyr80, Asn118, His276, 

Asn412, Arg423, Glu439, Tyr455, Ser476, Glu477 [10]. While the van der Waals interactions 

of the translocation glucan chain encompass IF1, IF2, TM5, 5/6 loops, and TM8, the hydrogen 

bonds are made with TM3, TM4, GT, TM5, 5/6 loops, TM6, and IF3 [10]. The structure of 

BcsA’s GT domain harbors a conserved motif formed by three non-sequential aspartic acids, 

as well as a Glutamine-Glutamine/Arginine-a random residue-Arginine-Tryptophan motif (or 

D, D, D, Q(Q/R)xRW) [10]. The latter signature is also characteristic in other ß-

glycosyltransferases [10]–[12]. In R. sphaeroides, the first two Aspartic Acids (Asp179, 

Asp246) of the “D,D,D,Q(Q/R)xRW” are involved in UDP coordination, while the third 

aspartic acid (Asp 343) likely constitutes the catalytic base. This third astaptate is part of a 

strictly conserved TED (Threonine-Glutamate-Aspartate) motif of the so-called ‘finger helix’, 

which is also involved in gating loop relaxation and polysaccharide translocation [10]. It is 

conventional now that the polysaccharide extrusion through BcsA transmembrane channel is 

assisted by its membrane-anchored partner BcsB [10]. A study demonstrated that cellulose 

synthesis in vitro requires both BcsA and BcsB, and in particular BcsB’s C-terminal tail of an 

amphipatic and a transmembrane helices [48]. This interdependence is further supported by the 

fact that in some species, bcsB gene is fused with bcsA [42]. The latter observation has also 

long supported the hypothesis of an equimolar assembly of BcsAB across the bacterial domain 

of life, however we will show here that such an assumption is over-simplistic and that at least 

in the E. coli-like Bcs biosynthetic platform, the BcsAB tandem can feature a markedly different 

stoichiometry allowing for additional functionalities within the secretion system.  
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Figure 6. BcsAB cellulose synthase complex. 

Crystal structure of the complex showing a 1:1 BcsAB assembly in cartoon representation and a co-purified 
cellulose polymer in sticks (from protein data bank entry 4p00) [10].  
 

2.5.1.2 BcsC, the ß-barrel porin 
 
BcsC is a ~130 kDa outer membrane protein whose amino acid sequence starts by a signal 

peptide. The mature protein, afterwards the signal peptide cleavage, adopts ~19-

tetratricopeptide (TPR) repeats that most likely localize in the periplasm, guide the nascent 

polysaccharide and/or interact with the peptidoglycan, while the C-terminal ~400 residues 

adopt a ß-barrel conformation and function as an outer membrane porin for cellulose export 

(Figure 7A). Thus, BcsC is the second checkpoint export protein after the IM (Inner Membrane) 

BcsA synthase. More generally, the scheme of the porin-like domain preceded by periplasmic 

TPR-rich modules is a recurrent theme across exopolysaccharide secretion systems. In the 

alginate biosynthetic system, the secretion of alginate requires the AlgK-AlgE duo, where AlgK 

provides the periplasmic TPR scaffold, and AlgE functions as the outer membrane porin. In 
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addition, the PelE-PelB complex from the Pel system exhibits the same pattern with periplasmic 

TPR modules from (both PelE and PelB) and a porin domain (from PelB), as well as the PgaA 

protein from the PNAG (poly-N-acetylglucosamine) secretion machinery, which similarly to 

BcsC incorporates both TPR modules and a porin domain in the same polypeptide chain [54]. 

The crystal structure of a truncated versions of BcsC have been reported recently. One of these 

structures encompasses the last TPR motif and the C-terminal ß-barrel from the E. coli 

homolog. The porin is formed by 16 ß-strands whose connecting loops are longer on the 

extracellular side and form a dome-shaped structure on the cell surface [34]. The lumen of the 

~15 Å-wide channel is highly electronegative and is suggested to facilitate the insertion of the 

hydrated zwitterionic pEtN-cellulose [34] (Figure 7B). The channel permeability is controlled 

by the extracellular loop connecting 8 ß-barrel strands 15 and 16 (also called the ‘gating loop’) 

and is stabilized by two conserved Tyrosines (Tyr1025 and Tyr1124) belonging to extracellular 

loop 6 and the  gating loop, respectively  [34]. Furthermore, both aromatic and hydrophilic 

residues line the lumen of the channel suggesting that facilitated cellulose diffusion relies on 

both aromatic stacking and hydrogen bonding with the polysaccharide [34]. Interestingly, the 

C-terminal 15 residues were found inserted as an elongated loop into the lumen of the porin 

domain, where it is stabilized by a number of interactions, most important of which is the 

stabilization of the conserved Y1157 residue midway across the channel [34].  Another recent 

study used SEC-SAXS (Size-exclusion chromatography-coupled, small angle X-ray scattering) 

on a construct covering most of the TPR repeats from another BcsC homolog and revealed an 

overall extended solenoid architecture typical to the TPR rich periplasmic scaffolds that can 

span most of the intermembrane width of the periplasm [55]. The same study also reported a 

crystal structure of five sequential TPR repeats from the N-terminus of the respective BcsC 

homolog. Interestingly, the five protomers in the asymmetric unit adopted three different 

conformations suggesting an overall flexible BcsC conformation that can adapt to variability in 

the intermembrane periplasmic distance [46], [55] (Figure 7A). 
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Figure 7. Architecture of the outer membrane pore BcsC 

A-B. Crystal structure of E. coli BcsC707-1157 (from protein data bank entry 6tzk) encompassing TPR19, a 
connecting linker region and the outer membrane porin domain [34]. The protein is shown in cartoon, the 
extracellular loops and luminal C-terminal tail are also shown as transparent surface. The lumen constriction 
proximal to the extracellular surface is seen in B, the gating π-stacking residues Y1025 and Y1124 from extracellular 
loops EL6 and EL8 are shown as sticks. 
 

2.5.2 Accessory subunits 
 
2.5.2.1 BcsG and the phosphoethanolamine modification 
 
Together with BcsE and BcsF, BcsG is specific to the type II E. coli-like secretion systems. In 

E. coli it is associated with the bcsEFG operon, that is localized next to the bcsRQABZC  [8]. 

BcsG is roughly 60 kDa and its large C-terminal domain had been first predicted to lie in the  

periplasm and belong to the phosphatase alkaline family [56]. The role of this subunit had 

remained elusive until recent studies showed that BcsG is responsible for adding 

phosphoethanolamine (pEtN) groups to the nascent polysaccharide, in both Salmonella and E. 

coli [30], [57] (Figure 3C). The pEtN groups are likely added from the 

phostphatidylethanolamine (PE) lipids of the inner membrane. Solid-state nuclear magnetic 

resonance spectroscopy analysis revealed that a pEtN group attach to the C6 of the glucose 

building blocks and initial quantification analyses estimated that up to half of the residues can 

carry the pEtN modification in the secreted polysaccharide [30]. The pEtN transferase activity 
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is indeed carried out by the periplasmic C-terminal domain whereas the N-terminal part for the 

protein in embedded in the inner membrane. In line with biofilm formation, by interacting with 

curli fibers, pEtN cellulose was also shown to play a key role in promoting the adhesion of 

uropathogenic E. coli cells to bladder cell in vitro [57]. The adhesion of cells to a surface is a 

crucial step of biofilm formation [2]. While curli are required for cell adhesion, pEtN cellulose 

strengthens the adhesion of curli to the host cell surface [57]. By consequence, pEtN cellulose 

together with curli was proposed to enhance Urinary Tract Infectious (UTI) E. coli pathogenesis 

[57]. Lately, high resolution BcsG structures of the C-terminal domain from Salmonella 

enterica and E. coli have been reported [58], [59]. The crystallographic snapshots from both 

studies were in a full accordance, and both C-terminal domains adopt a typical phosphatase 

alkaline fold, with 7 stranded ß-sheets sandwiched between α-helices (Figure 8). Both structures 

exhibit almost identical folds (0.4Å R.M.S.D) and contain a Zn2+ ion interacting with different 

moieties of amino acid Cys243, Ser278, Glu442, and His443, altogether form the active site 

(Figure 8) [58], [59]. The function of BcsG is not fully understood yet, as a BcsG deletion in 

Salmonella typhimurium severely decreased not only the efficiency of cellulose secretion, but 

also affected BcsA insertion and/or stability in the membrane [58]. This observation stands in 

line with previous works where two-hybrid assay showed that BcsG interacts with its operon 

neighbors BcsF and BcsE, as well as with the synthase BcsA likely having structural and not 

only enzymatic roles in secretion system assembly and cellulose biogenesis [9], [30].  

 

 
Figure 8. Crystal structure of the BcsG periplasmic domain 

The overall fold of the catalytic module is shown in cartoon representation. The Zn++ coordination in the active 
with the key residues involved in cation coordination and/or essential for the pEtN modification are shown as 
sticks (Figure generated in PyMoL, Schrodinger LLC). 
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2.5.2.2 BcsZ 
 
BcsZ is ubiquitous among Bcs systems and part of the conserved 3-4 component core, which 

also includes the catalytic BcsAB tandem and, in Gram-negative species, the OM pore BcsC 

[8]. This peculiar subunit has been shown to exhibit an endo-β-1,4-glucanase activity, meaning 

that it can hydrolyze the nascent polysaccharide. This feature of having a polysaccharide-

degrading enzyme as part of the cognate secretion system is not unique to cellulose secretion, 

as other EPS secreting systems such as the PNAG, Pel and alginate machineries encode 

similarly an EPS-digesting enzyme within the same gene clusters as the other core components 

[54]. Similarly to the endocellulase BcsZ, PgaB and PelA exhibit both a hydrolase activity while 

AlgL displays a lyase function [54]. Moreover, this feature is also preserved in higher 

kingdoms, as higher plants include an endoglucanase named Korrigan (KOR) required for the 

correct assembly of the elongating cell walls [60].  

 

Although this pattern is frequently observed in other systems, the biological relevance to have 

a glucanase around the nascent glucan chain has sparked many questions that remain to be 

answered. Hydrolases such as BcsZ in S. typhimurium has been shown to promote virulence, 

while in vitro experiments have showed that  PslA and PelG disrupt the biofilm formed by P. 

aeruginosa [61], [62]. Furthermore, BcsZ could play a role in the packing of the cellulose 

microfibrils in G. xylinus. In fact, the deletion of bcsZ gene in G. xylinus resulted in irregular 

and twisted packing of the de novo synthesized fibrils suggesting that BcsZ could play a crucial 

role in cleaving the entanglements that can occur between secreted cellulose fibrils and thus 

BcsZ ensures the formation of a well-structured crystallized cellulose [63]. The latter 

observation opens the door to another question regarding amorphous cellulose where wild-type 

levels of BcsZ are also required for optimal cellulose secretion.  

 

BcsZ structures from both E. coli and G. xylinus adopt a (α/α)6-barrel fold forming a single 

domain, in which six pairs of antiparallel α -helices are found to form an inner and outer ring 

[64], [65] (Figure 9A-B). Structural analysis on the E. coli homolog revealed that the connecting 

loops extend on one side of the barrel forming antiparallel ß-sheets, as a result the structure 

adopts a deep “sickle shaped” groove on one side where the two catalytic residues D243 and 

E55 are embedded deep down the groove [65]. Both BcsZ structures from E. coli and G. xylinus 

fit completely in the GH-8 family of enzymes and adopt an overall similar architecture, with a 

slight difference regarding the substrate polysaccharide [64], [65]. BcsZ from G. xylinus needs 
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cellopentaose or longer polysaccharide for its activity, as opposingly to its homolog BcsZ from 

E. coli, which requires at least an hexasaccharide [65], [66]. Thus, a catalytically inactive E.coli 

BcsZ mutant solved in complex with cellopentaose is suggested to be in the post-hydrolysis 

state in which the protein contacts glucan chain at the non-reducing end as the reducing end has 

already left the catalytic center [65]. The common part between the BcsZ structures and other 

homologs from GH-8 family enzymes revealed that the interactions with the glucan chain are 

basically hydrogen bonds and stacking interactions with conserved aromatic residues. 

Nevertheless, all studies on enterobacterial BcsZ were carried out before the discovery of the 

pEtN modification, so substrate specificity for the modified cellulose remains to be 

characterized.  

 

BcsZ is not limited to Gram-negative bacteria, as a recent study identified the CcsZ 

(Clostridium cellulose synthase Z) protein and functional BcsZ homologs have been described 

even in the atypical efflux-type cellulose secretion systems of cyanobacteria [43], [67]. It is true 

that there is no direct sequence homology between BcsZ and CcsZ and added to that CcsZ is a 

membrane tethered endo-β-1,4-glucanase that belongs to the GH-5 family instead of the GH-8 

family of enzymes. Nevertheless, CcsZ has specificity for cellulosic materials and is believed 

to act in a similar manner in its cognate secretion systems [67]. The discoveries around BcsZ 

together point toward a putative role in limited hydrolytic action on the cellulose chains in the 

periplasm or at the cell surface thus preventing aggregative microfibrils formation before the 

exopolysaccharide reaches the extracellular environment. Interestingly, whereas in most studies 

BcsZ is positioned in the periplasmic compartment, other studies have suggested  fully 

extracellular role for the subunit [64], [68]. Indeed, more studies are necessary to better 

characterize the fine functional balance exerted by BcsZ homologs as they can be suitable 

targets to prevent biofilm formation or, alternatively, play a role in biotechnological 

applications to increase cellulose production.  
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Figure 9. BcsZ homologs in E. coli and G. xylinus 

A. Crystal structure of a cellopentaose-bound catalytically inactive mutant of E. coli BcsZ [65]. The 
oligosaccharide and catalytic dyad are shown as sticks. B. Crystal structure of the G. xylinus BcsZ homolog [64]. 
 

 
 
2.5.2.3 BcsQ and BcsR 
 
The type II cellulose secretion system of E. coli is characterized by two additional genes bcsR 

(formerly yhjR) and bcsQ (formerly yhjQ) leading the operon that contains the four core 

secretory componens BcsA, BcsB, BcsZ and BcsC (Figure 5A) [8]. Whereas BcsR is a short 

~7 kDa peptide without reliable structural models until our work, BcsQ belongs to the SIMIBI 

(Single-recognition particle, MinD and BioD) ATPases family conserved in both prokaryotes 

and Eukaryotes. Members of the latter family comprise MinD, responsible for the positioning 

the divisome in bacterial cells, FlhG/FlhF involved in bacterial flagellum assembly and SRP54-

SR and Get3 NTPases responsible for membrane protein sorting [69], [70]. Regarding cellulose 

secretion, the closest homologs to BcsQ are WssA/WssJ proteins that are part of the acetylated 

cellulose secretion machinery in P. fluorescens SBW25 [14], [71]. BcsR and BcsQ share 

predicted cytosolic localization and partake in interactions with several Bcs components [9]. 

Interestingly, BcsQ localizes at the cell pole, which corresponds to the site of cellulose 

secretion, as well as initial cell-cell-adhesion in E. coli [14]. Remarkably, both BcsR and BcsQ 

are essential for cellulose secretion in E. coli but are absent in many Type I and Type III 

cellulose secretion systems suggesting different regulatory inputs for the enterobacterial Bcs 
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machinery [9]. These secretion system-specific effects and the essentiality of the two subunits 

for pEtN cellulose biogenesis motivated us to decipher the roles of both BcsR and BcsQ and 

many mechanistic insights regarding the structures and functions of both components can be 

found in the Results chapter. 

 

2.5.2.4 BcsE, the c-di-GMP sensor 
 
Before the identification of BcsE as a c-di-GMP receptor in the Bcs system, the PilZ domain-

containing BcsA was the first described to require the interaction with c-di-GMP to perform its 

glycosyltransferase activity [10], [72], [73]. Later BcsE joined the group of c-di-GMP receptors 

upon the characterization of a conserved C-terminal domain containing a c-di-GMP-binging 

RxxD motif, which – when found on c-di-GMP-producing GGDEF domain-containing 

diguanylate cyclases – can serve as an autoinhibitory, or I-, site for allosteric regulation. 

Conversely, BcsE was dubbed as a GGDEF I-site Like, or GIL-, domain protein by Fang and 

coworkers [15]. Although BcsE is not absolutely essential for cellulose secretion it plays a 

crucial role in maintaining the stability of the Bcs complex and contributes to optimal 

polysaccharide production [9], [15]. The bcsE gene leads the operon bcsEFG, which is hallmark 

for E. coli-like Type II cellulose secretion systems. The pEtN-cellulose modifications by BcsG 

on one hand, and the proximity of the bcsEFG  genes to the bcsABZC cluster on the other, 

suggests that this second Bcs cluster not simply contributes to secretion and chemical 

modifications of the cellulose but rather plays key roles in the macroscopic architecture of the 

mature bacterial biofilms  [9], [30].  

 
2.5.2.5 BcsF 
 
BcsF is a small subunit anchored to the inner membrane by a single transmembrane helix. The 

bcsF gene is not common to all proteobacteria, and where annotated is usually a downstream 

operon neighbor of the bcsE gene (Figure 5A) [8]. It has been shown that BcsF, interacts with 

BcsA, BcsE and BcsG in vivo, however the mechnisms by which the interactions occur and the 

exact role of BcsF in cellulose secretion, needed to be decrypted. Here we examined further the 

role of this subunit and demonstrate that it is key to Bcs macrocomplex assembly integrity via 

membrane recruitment of the regulatory BcsRQE components (see Results section)  [9], [30].  
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2.6 C-di-GMP, a versatile second messenger 
 

Cyclic diguanylate or c-di-GMP is a monocyclic RNA dinucleotide second messenger that is 

almost ubiquitous in the prokaryotic world and has also been observed in eukaryotic social 

amoeba from the  Dictyostelium clade [74]. The discovery of c-di-GMP goes back to almost 

half a century now, when Benziman and coworkers first described that the in vitro cellulose 

synthase activity of G. xylinus was promoted by GTP and an unknown GTP-converting protein 

factor [75]. The latter hypothesis was supported in a successive study, where digitonin 

solubilization showed that the GTP-converting protein associates with the membrane-bound 

enzyme and is promoted by Ca2+ ions [76]. Shortly after, the GTP-converting enzyme was 

isolated using agarose-conjugated GTP as an affinity matrix and its synthase-activating product 

identified as bis(3′ ,5′ )-cyclic diguanylic acid, or c-di-GMP [72]. Almost two decades later 

with the revolution of DNA (Deoxyribonucleic acid) sequencing methods and ever-growing 

data on genome assemblies, c-di-GMP has revealed itself as a universal second messenger in 

the center of a plethora of mechanisms in the bacterial world [22], [54], [77]. Often through 

direct control, c-di-GMP orchestrates many biological processes including motility, virulence 

gene expression and secretion of extracellular polysaccharides [22], [54], [77]. Many studies 

thoroughly reviewed the different roles of this small molecule and highlighted the layers of 

physiological responses controlled by c-di-GMP covering the transcriptional, translational and 

posttranslational levels [21], [22], [54], [77]. Moreover, in order to adapt to the large spectrum 

of mechanisms, c-di-GMP is able to adopt variable stable conformations when bound to 

proteins which makes it difficult to predict its new targets [23] (Figure 10). In this part of the 

present study, I will discuss targets and regulation of the near-ubiquitous second-messenger c-

di-GMP. I also contribute to the understanding of c-di-GMP signaling in relation with cellulose 

secretion by the discovery of new dinucleotide-sensing mechanisms specific to the E. coli-like 

type II cellulose secretions in the Results chapter. 
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Figure 10. Examples highlighting the conformational adaptability of c-di-GMP 

 
Based on the structural studies, c-di-GMP can adopt a variety of conformations when bound to proteins in order 
to adapt and confer specificity to the different targets.  
 

2.6.1 Synthesis and degradation of c-di-GMP 
 
C-di-GMP is synthesized from 2 molecules of GTP by diguanylate cyclases (DGCs) and 

degraded by phosphodiesterases (PDEs) (Figure 11). Multiple-sequence analyses across 

bacterial genomes have led to the characterization of the domains that confer the activity of the 

c-di-GMP-metabolizing enzymes, either the diguanylate cyclase activity or the 

phosphodiesterase. DGCs contain GGDEF domains, while PDEs are characterized by EAL or 

HD-GYP domains, where the domain names come from conserved amino acid motifs  [18]–

[20]. Interestingly, many proteins feature both GGDEF and EAL domains, for that reason it is 

difficult to assign a specific function to such hybrid proteins from domain architecture and 

sequence conservation alone. The first structurally characterized protein featuring a GGDEF 

domain, PleDC. crescentus, not only allowed for the experimental confirmation of the diguanylate 

cyclase function, but also revealed an allosteric binding site, called I-site (from Inhibitory site) 

which is represented by an RxxD motif (i.e. an arginine and an aspartate spaced by two amino 

acids) and is involved in a negative feedback control [18]. The degradation of c-di-GMP, on 

the other hand, can be achieved in two steps, with first phosphodiester cleavage leading to a 

linear pGpG product and a subsequent hydrolytic event producing 2 moieties of GMP.  While 

HD-GYP domains typically break the c-di-GMP fully to GMP, some EAL domains can lead to 

the accumulation of pGpG (Figure 11). In Gram-negative bacteria, the HD-GYP proteins, are 

less common, whereas GGDEF and/or EAL domain-containing proteins are widespread among 

Gram-negative bacteria and a bit less in Gram-positive bacteria. Many bacteria feature multiple 
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proteins containing c-di-GMP-metabolizing domains and oftentimes these modules can be 

‘degenerate’, or catalytically inactive, yet important in c-di-GMP-mediated signal transduction. 

For example, the E. coli  K-12 genome encodes 29 proteins containing both GGDEF and/or 

EAL domains, and 4 of those exhibit degenerate domains [78]. Among the studies of ever-

increasing number of GGDEF/EAL proteins, different nomenclatures have been used, and a 

recent consensus nomenclature was proposed to name genes encoding catalytically active 

GGDEF and EAL domains as dgc and pde, respectively [78]. Surprisingly, c-di-GMP-

metabolizing proteins are generally not redundant and despite the presence of multiple such 

actors in the cell, their function appears to be restricted to specific signaling pathways and 

physiological effects. For example, among the identified DGCs in cellulose-secreting E. coli 

K12 strains mostly DgcC is responsible for activating pEtN cellulose secretion, whereas in the 

E. coli 1094 strain studied in this work this role is taken by DgcQ enzyme [79], [80]. Bacterial 

two-hybrid assays have showed that cellulose-promoting DgcC interacts with the 

phosphodiesterase PdeK, and both enzymes interact with the co-catalytic partner BcsB [79]. To 

coordinate cellulose biogenesis, a model is thus proposed where interactions between the co-

polymerase BcsB, the c-di-GMP “source” DgcC and the c-di-GMP “sink” PdeK secure physical 

proximity to fine-tune cellulose biogenesis [79].  The idea of having a source and sink in 

physical proximity is consistent with a mathematical model from the same study where c-di-

GMP molecules produced locally by the DgcC enzyme can dramatically increase the 

probability of c-di-GMP capture by the Bcs secretion machinery, and thus lead to cellulose 

secretion activation in vivo, where – as we show in the Results section – activating dinucleotide 

retention will be further secured by the multi-site c-di-GMP complexation by the cytosolic 

BcsERQ vestibule-forming complex and the PilZ module of the synthase BcsA [79], [81]. 

Finally, the co-localization of PdeK with the secretion machinery can be seen as a security valve 

that controls the flow of the intracellular c-di-GMP and consequently adapts the cellulose 

biogenesis to the cadence of the external stimuli and cellular metabolism.  
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Figure 11. Biochemistry of c-di-GMP 
 

The three-dimensional structure of c-di-GMP is formed by two GMP moieties that are linked via 5’-3’ macrocyclic 
ring. The synthesis of c-di-GMP is catalyzed by diguanylate cyclases containing GGDEF domains. c-di-GMP is 
degraded by proteins containing either EAL or HD-GYP domains. yielding pGpG or 2GMP molecules. The three-
dimensional structure of c-di-GMP is shown in the middle of the reaction in stick representation, carbon atoms are 
shown in gray, oxygen in red, nitrogen in blue and phosphorus in orange (from protein data bank entry 3hv8). 
Upon binding to effector molecules, c-di-GMP regulates diverse cellular processes generally leading to loss of 
motility, cell adhesion and persistence of biofilm forming communities [17]–[20].  
 

2.6.2 Multileveled signaling of c-di-GMP in Bcs system 

 

In order to orchestrate cellulose biogenesis in E. coli, c-di-GMP typically employs multilevel 

signal transduction mechanisms, which culminate with BcsA activation upon the binding of the 

c-di-GMP to the PilZ domain [10] (more details are in the section below). In pEtN-cellulose 

secreting E. coli 1094 and Salmonella, the signaling cascade starts with expression of the 

stationary phase sigma factor RpoS, or σS, in response to external stimuli [80] (Figure 12). 

Under physiological conditions, the actual c-di-GMP levels in the cytosol are quite low, mainly 

due to efficient degradation of the dinucleotide by the phosphodiesterase PdeH [82]. Stationary 

phase RpoS leads to the expression of a specific diguanylate cyclase DgcE, which counteract 
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the effects of the phosphodiesterase PdeH and releases the diguanylate cyclase DgcM from 

inhibitory interactions with the phosphodiesterase PdeR. DgcM thus can engage in an 

interaction with the MlrA transcription activator and activate the transcription of CsgD [82]–

[84]. CsgD in in turn activates the expression of the rest of the csg genes involved in curli 

secretion and the diguanylate cyclase DgcC which ultimately produces the cellulose synthase-

activating c-di-GMP [85], [86]. 

 

Adding to the complexity of c-di-GMP signaling, studies on a collection of E. coli isolates 

showed that CsgD-/DgcC-dependent cellulose secretion is not the only mechanism for c-di-

GMP control of the BcsA cellulose synthase [80]. For example, in the commensal E. coli 1094 

strain used as a model organism in this work, cellulose secretion is specifically activated by a 

different diguanylate cyclase – the enzyme DgcQ – and appears to circumvent the CsgD-

dependent signaling cascade [80] (Figure 12). Both signaling pathways, CsgD-/DgcC-

dependent or independent, share in common the RpoS-dependent initiation, however it is 

unclear what the signaling mediators are for the downstream DgcQ activation [80].  
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Figure 12. Cellulose biosynthesis regulation in E. coli 

 
The figure illustrates the two pathways regulating the pEtN-cellulose production in enterobacteria. On the left is 
the CsgD-/DgcC-dependent pathway, on the right is the CsgD-independent/DgcQ-dependent pathway. In both 
cases, the production of c-di-GMP is required for the cellulose biosynthesis. In particular, cellulose 
polymerization and extrusion requires the binding of the dinucleotide to the PilZ module of the synthase BcsA, 
which in turn is facilitated by the multi-site c-di-GMP complexation of the cytosolic regulatory complex 
BcsERQ (see Results section) [81], [87]. Diguanylate cyclases (DGC) are shown in green, phosphodiesterases 
(PDE) are shown in pink [17], [80].  
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2.6.3 C-di-GMP and the cellulose synthase BcsA  
 

In most Bcs systems, cellulose secretion is initiated upon the activation of the synthase BcsA 

by the second messenger c-di-GMP. BcsA harbors the three modules, namely the 

transmembrane export domain, the family-2 glycosyltransferase responsible for the catalytic 

reaction, and the well-studied c-di-GMP-binding C-terminal PilZ domain [10]. Different 

crystallographic snapshots of the BcsAR. sphaeroides with its co-catalytic partner BcsB, have been 

studied in great details. Comparisons between the different states reveal that cyclic dinucleotide 

binding induces several important conformational changes. First, in the c-di-GMP bound state, 

the PilZ ß-barrel rotates by approximatively 20° around a so-called ‘hinge’ helix, which is 

sandwiched at the interface between the β-barrel and the glycosyltransferase domain [10], [12]. 

An additional conformational change that characterizes the c-di-GMP-bound state involves 

Arg580 situated from the conserved R580xxxR motif that precedes the PilZ β-barrel and 

partakes in c-di-GMP complexation [10]. In the c-di-GMP-free state the synthase is in an auto-

inhibitory state, where the so-called ‘gating loop’ caps the active site entry in a resting-state 

conformation stabilized by a salt bridge interaction between the Arg580 and an equally 

conserved Glu371 from the gating loop [11]. Upon c-di-GMP binding, Arg580 rotates by 

approximatively 180° and is involved in a new interaction with the dinucleotide, which frees 

the gating loop and creates a large 22.5 x 12.4 Å opening to the active site, wide enough to 

allow for entry of the substrate UDP-glucose. Further increase in c-di-GMP concentrations do 

not increase the affinity of BcsA for UDP-glucose in vitro [48] consistent with c-di-GMP-based 

control of active site entry as evidenced by the crystal structures.  

 

Nevertheless, control of active site accessibility is not the only function of the BcsA’s gating 

loop. Some of the resolved c-di-GMP-bound crystal structures contain either a homolog of the 

substrate UDP-glucose, or the product UDP. In fact, in both latter states, the gating loop inserts 

deeply into the catalytic pocket, where many of the loop’s residues and especially the conserved 

FxVTxK motif coordinate the uracil base and the pyrophosphate of the UDP moiety [11] 

(Figure 13). Moreover, a crystallographic snapshot of a c-di-GMP-bound state in the pre-

translocation conformation features a largely disordered gating loop with an overall trajectory 

reminding that of the UDP-bound but c-di-GMP-free resting state [10], [12]. Therefore, it is 

conceivable that both the release of c-di-GMP or of the product UDP can initiate gating loop 

relaxation. Furthermore, different studies have reported markedly different binding affinities 

between BcsA and c-di-GMP, more consistently in the micromolar range, which in a 
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physiological context would suggest a more dynamic sampling rather than strong complexation 

[48], [88], [89]. One may thus think that the c-di-GMP binding to the PilZ domain is highly 

dynamic, and that release of c-di-GMP in-between catalytic cycles can be even required to 

allow for efficient gating loop relaxation, product release and polysaccharide translocation, 

before c-di-GMP re-complexation causing the initiation of a new cycle. Substrate entry and 

insertion of the gating loop would allow the initiation of the catalysis, and upon the glycosyl 

transfer the gating loop would relax, retracting from the catalytic pocket to allow for the 

recycling of UDP to UDP-glucose in a mechanism depending simultaneously on the local 

concentrations of c-di-GMP, UDP-glucose, and UDP (Figure 13). As we show in this work, 

such dynamic process of activating dinucleotide recycling is likely greatly facilitated in the E. 

coli-like Bcs system by the formation of a synthase-proximal c-di-GMP pool by multi-site 

complexation to the regulator BcsERQ vestibule surrounding the PilZ module of the synthase 

(see Results section).   

 
Figure 13. Zoom-in of the active site of synthase BcsA 
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The different catalytic states are captured in the crystal structures of the R. sphaeroides BcsAB tandem from 
crystals grown or soaked with different ligands. Protein data bank accession numbers are indicated in each panel; 
presence of substrate homologs, products, c-di-GMP, translocation state of the polymer and gating loop 
conformation are indicated for each state [10]–[12]. Green arrows indicate putative conformation transition 
pathways integrating all captured conformational states. Alternative pathways would depend on local variations 
of c-di-GMP, product and substrate molecules, as well as finger helix-mediated or spontaneous translocation. The 
cellulosic polymer, substrate homolog, UDP product, c-di-GMP and key residues from the gating loop, c-di-GMP 
coordinating PilZ-proximal linker, finger helix and conserved QRGRW motif are shown as sticks. 
 
 

2.6.4 Cellulose synthase core within kingdoms  
 
Plants are more famous for the processive synthesis of cellulose as a primary building material 

of their cell walls, thus making cellulose the most abundant biopolymer on the planet Earth. 

However, the identification of plant cellulose synthases relied on gene homology to their 

bacterial bcsA homologs. Later, it became evident that the genes for cellulose synthesis in plants 

have likely evolved from cyanobacteria via lateral gene transfers during multiple ancient 

endosymbiotic events [26], [27]. Plants build cellulose through CesA variants, which belong to 

the glycosyl transferase 2 family like their bacterial counterparts BcsA [26]. Globally, both 

cellulose synthases catalyze the glucose transfer from the UDP-glucose to the C4 hydroxyl of 

the nascent cellulose polymer through a process coupling the polymerization of the cellulose 

polymer and its extrusion through the plasma membrane (Figure 3A). Nevertheless, in plants 

the synthase complexes enrolled in polysaccharide secretion have been typically shown to form 

hexameric macroassemblies called ‘rosettes’ or CSCs (cellulose synthase complexes). Recent 

studies revealed that the rosettes likely accommodate six CesA trimers, or 18 CesA protomers, 

that play a major role in securing the packing of the secreted glucan chains into fundamental 

microfibrils composed of 18 glucan chains in a mechanism similar to the crystalline cellulose 

ribbon secretion in G. xylinus [90] (Figure 5A). A recent study using in situ cryo-electron 

tomography, revealed another similarity between cellulose synthesis in crystalline cellulose-

secreting bacteria and plants by identifying a novel cytoplasmic structure in G. xylinus and G. 

hansenii dubbed “the cortical belt”, which spatially correlates with the extracellular cellulose 

ribbon and is proposed to tether the synthase terminal complexes in a manner similar to cortical 

microtubule tethering of plant CSCs [37] (Figure 5B-C).  
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Figure 14. The similarity between cellulose synthesis in plants and bacteria 

A. Proposed structure of a CesA rosette complexes based on [90], where multiple CesA protomers will secure 
crystalline microfibril bundling upon exit of the nascent cellulose strains from the cell reproduced under the CC 
BY 4.0 license (https://creativecommons.org/licenses/by/4.0/legalcode) B. Cryo-electron tomography 
visualization of the cellulose ribbon and the underlying cortical belt proposed to organize the linear assembly of 
Bcs terminal complexes for crystalline cellulose secretion in the Komagataeibacter lineage. Data from [37] CB, 
cortical belt; IM, inner membrane; PG, peptidoglycan; OM, outer membrane; CR, crystalline cellulose ribbon. C. 
Schematic representation of the G. xylinus / G. hansenii type I cellulose secretion system.  
 
 
2.7 Applications of bacterial cellulose 
 

Since its discovery, bacterial cellulose is increasingly stealing the spotlight from plant cellulose, 

especially the crystalline product secreted by bacteria from the Komagataeibacter lineage. 

Although both plant and bacterial celluloses share similarities in their overall structure, the 

bacterial nanocellulose is much purer due to the lack of co-produced hemicelluloses and lignin. 

Purity is only one of the many outstanding properties of bacterial cellulose, such as its excellent 

water retention capacity, high crystallinity, transparency, biodegradability and low antigenicity. 

Moreover, nanocellulose exhibits tremendous thermal and chemical stability allowing efficient 

non-denaturing sterilization, as well as valuable mechanical properties, such as tensile strength 

and elasticity. The almost endless list of desirable properties from a materials science 

perspective, makes bacterial cellulose an iconic biopolymer in the center of many applications 

in diverse fields such as the food, cosmetics and medical industry (See table 2 for examples of 

 applications). To date, the major limiting factor for use of bacterial cellulose at the industrial 

scale, is perceptibly its cost. To tackle this economic problem, we need to decode and optimize 

the molecular mechanisms governing cellulose biogenesis by the Bcs nanomachineries in 

nature.    
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Table 2. Examples of bacterial cellulose applications  

 
Field Application 

Food Food thickening [91] 

Emulsification [92] 

Water-binding [92] 

Immobilization of probiotics [93] 

Active food packaging [94] 

Paper Higher quality papers [95] 

Flame retardation material [96] 

Electronics Flexible displays [97] 

Electronic paper displays [98] 

Organic light emitting diodes [99] 

Cosmetics Texturing agent [100] 

Emulsion stabilizer [101] 

Carrier of skin active substances [101] 

Medicine Suture biomaterials [102] 

Wound dressing [103], [104] 

Drug delivery [105] 

Tissue engineering [106] 

Artificial cornea [107] 

Retinal pigment epithelium [108] 

Blood vessels [109] 
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3 Objectives of the thesis 
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This PhD aims to provide mechanistic insights into the cellulose secretion machinery involved 

in bacterial biofilm formation. We know now that bacterial cellulose can be produced by three 

major types of secretion systems sharing as a common feature the catalytic core BcsAB [8]. 

This conserved assembly formed by the accessory BcsB co-polymerase and the glycosyl 

transferase, c-di-GMP-sensing PilZ and inner membrane export module of BcsA has been 

studied in great details [2–4]. Added to the catalytic subunits BcsAB, additional Bcs 

components as well as the chemical properties of the secreted exopolysaccharide delineate the 

separate types of cellulose secretion [8], [13]. Several works spot the light on some of these 

additional subunits, such as the structural characterization of the OM membrane porin domain 

of BcsC and its role in the delivery of the polysaccharide to the extracellular compartment [34]; 

the structural characterization of the BcsG subunit and its role in the modification of the 

polysaccharide by the addition of pEtN groups [30], [58]; or the ever-increasing evidence of 

the crucial roles of c-di-GMP in the regulation of cellulose secretion and biofilm formation 

[22], [54], [77]. What is missing in the big picture, are the structures and functions of the 

multiple additional Bcs subunits, some of which are indispensable for cellulose secretion, as 

well as the mechanism of assembly and signaling within the system in its integrity.  

 

The E. coli-like cellulose secretion system is encoded by at least two operons, one of which 

encodes a second c-di-GMP sensing protein, BcsE, which is important for maximal cellulose 

secretion, yet little more was known about this regulator subunit [8]. In addition, this operon 

encodes two more proteins whose disruption drastically affects cellulose production [9] the 

BcsG subunit, whose role as a pEtN transferases was only recently uncovered, as well as a short 

transmembrane peptide of unknown mechanism of function, BcsF. On the other side, the second 

operon starts with genes encoding the essential for cellulose secretion BcsR and BcsQ, followed 

by those for the core components BcsABZC.  

 

A study by Krasteva and colleagues has demonstrated recently that in E. coli most of the inner 

membrane and cytosolic Bcs subunits assemble to form a stable, megadalton-sized secretory 

nanomachine with unique asymmetric architecture  (BcsRQABEF or Bcs macrocomplex here-

in) [9]. Additionally, the latter study unveiled the functions of many of the accessory subunits, 

and in particular the in vivo contributions of each Bcs component to cellulose secretion, as well 

as protein partners that partake in binary protein-protein interactions [9]. Yet, the structural 

reconstruction of the Bcs macrocomplex, based on low resolution electron microscopy data on 

a sample embedded in negative-stain, did not allow for further mechanistic insights. In this 
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context, the goal of the thesis was to study the structure of key components and multiprotein 

subcomplexes of the E. coli Bcs secretion system in higher resolution. To this aim, we resorted 

to cryo-EM to study the structure of the assembled Bcs macrocomplex, studies performed 

primarily by my colleague Samira Zouhir. Personally, I focused on studies started by a short-

term intern in the group, Meryem Caleechurn, aimed at deciphering the structure and function 

of the BcsRQ and BcsERQ regulatory complexes by X-ray crystallography. My work involved 

significant protein engineering efforts, screening and optimization of expression construct, 

purification protocols and crystallization conditions, and, following successful crystallization 

and structure solving, the design and execution of multidisciplinary functional studies in 

validating structure-derived hypotheses on the subunits’ function. On the other hand, I also 

provided key evidence on the self-polymerization mechanisms driving Bcs macrocomplex 

assembly in the inner membrane by solving the cryo-EM structure of isolated BcsB multimers, 

consistent with the assymetric Bcs macrocomplex assembly and non-canonical BcsA:BcsB 

stoichiometry.  
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4 Results 
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4.1 Article 1 
 

4.1.1 Introduction to article 1 
 
In many gram-negative bacteria, biofilm formation goes in hand with cellulose secretion. As 

discussed above, the latter usually requires the co-expression of a c-di-GMP-activatable inner 

membrane BcsAB tandem, an outer membrane porin BcsC and multiple accessory subunits 

which allow for the classification of Bcs systems [8], [47]. The Type II E. coli-like cellulose 

secretion system is distinguished by two separate operons, namely bcsEFG and bcsRQABZC, 

where bcsEFG operon is the hallmark of this type of secretion system [8]. Previous studies 

demonstrated that BcsR and BcsQ are essential for cellulose secretion, while BcsE is required 

for maximal cellulose production and has been shown to also bind cyclic-di-GMP [14]. 

Interestingly, the latter cytosolic subunits, together with the additional partner BcsF were 

suggested to interact in different combinations as evidenced by cell-based bacterial two-hybrid 

complementation assays [9]. The aim of the study described in the article 1 was to further 

explore the interactions between the different cytosolic subunits, identify stable protein-protein 

interactions, design stable protein expression constructs, overexpress and purify the target 

proteins and multisubunit assemblies and study the structural and functional determinants of 

these subunits both in vitro and in cellulo.  

 

To this end, we performed multiple recombinant (co-)expression/(co-)purification experiments 

on the BcsR, BcsQ and BcsE components, alone and in different combitions. We established 

point mutants and truncated variants that were instrumental for the stabilization of the protein 

complexes or subunits and their subsequent crystallization and structure determination. We 

reported the structure of the c-di-GMP-binding module of BcsE and showed that the previously 

postulated GIL domain is in fact a tandem of degenerate receiver (REC*) and diguanylate 

cyclase (GDDEF*) domains that are incompetent for phosphotransfer or c-di-GMP biogenesis, 

respectively. We further showed that BcsE senses both BcsQ and c-di-GMP through non-

overlapping interfaces on the degenerate GGDEF* module and that the remaining N-terminal 

domain is likely a degenerated P-loop ATPase module, which is responsible for membrane 

targeting of the BcsERQ regulatory complex via interactions with inner-membrane BcsF. 

Furthermore, the expression and purification of BcsE and this N-terminal module, led to the 

identification of a new high-affinity binding partner, which was identified with the help of 

mass-spectrometry analysis on as the S10 or NusE protein, a key component of the conserved 

cellular transcription antitermination complex (TAC) [110]. We validated the latter discovery 
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by in cellulo two-hybrid functional complementation assays and protein co-purification 

experiments and revealed that BcsE competes with a second TAC component, NusB, for S10 

complexation. Although the exact role of these interactions with the TAC machinery remain to 

be further investigated, the in silico detection of putative intrinsic terminators in the bcsR and 

bcsQ loci leading the second Bcs operon, led us to speculate that BcsE might not only contribute 

to c-di-GMP complexation and recruitment of the essential BcsRQ complex to the inner 

membrane but also be potentially targeted to the site of BcsRQ expression via the TAC 

machinery for efficient co-translational BcsERQ complex assembly.  
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4.2 Article 2 
4.2.1 Introduction to article 2 

 
The article 2 is a continuation to article 1 in further deciphering the structure and assembly of 

the assembled Bcs macrocomplex. Moreover, we solved multiple crystallographic snapshots of 

the regulatory Bcs subcomplexes. Combining structural and functional investigations, we 

uncover the mechanism of asymmetric Bcs secretion system assembly and periplasmic crown 

polymerization and reveal unexpected subunit stoichiometry, multisite c-di-GMP recognition, 

and ATP-dependent regulation. 

The work was a close collaboration with Dr. Samira Zouhir, who focused on the cryo-EM 

studies of the assembled Bcs macrocomplex and the final stages of structural model 

refinements, whereas I concentrated on the stabilization and crystallization of the BcsRQ and 

BcsE*RQ multicomponent complexes, the characterization of newly discovered c-di-GMP 

binding motifs in the BcsE regulator, as well as the validation by cryo-EM of the mechanism 

of periplasmic crown polymerization via intersubunit structural complementation between 

neighboring BcsB subunits. Together with Dr. Petya Krasteva, we also conducted all functional 

assays of cellulose secretion, ligand complexation, ATP-ase activity, and biochemical detection 

of Bcs subunit expression. This work also benefited from contributions and useful discussions 

with former colleagues Stéphane Roche and Meryem Caleechurn. 
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5 General discussion 
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Carbohydrates are arguably the most important energy carrier and the most abundant biological 

components in all kingdoms of life. Evolutionary speaking, many bacteria dedicate a part of 

their metabolism to produce a plethora of carbohydrates, depending on both the disposable 

building blocks and the surrounding environment. Gram-negative and Gram-positive bacteria 

use their cell factories to secrete various classes of biopolymers and polysaccharides are 

oftentimes the main class of secreted extracellular substances [1], [2], [6], [7]. The 

polysaccharides either remain linked to the cell surface a capsular coat or are freely secreted 

into the extracellular milieu to contribute to the scaffolding of the biofilm matrix. Along the 

previous chapters, I spot the light on the cellulose as a main biofilm polysaccharide secreted by 

many bacteria, due to its unique characteristics that contribute to maintain the cell-cell and cell-

surface adhesion and establish a highly protective and biocompatible environment for the 

multicellular communities. Through the present studies, I focused on the multicomponent 

cellulose secretion machinery in Gram-negative bacteria, particularly the E. coli-like Type II 

cellulose secretion system, which comprises a total of nine subunits (BcsRQABZCEFG) that 

span from the cytosol to the extracellular space. Along the results chapter, we marked a 

milestone in the mechanistic understandings for cellulose secretion system assembly and 

nucleotide-dependent regulation. Before our discoveries, several studies had shown that 

processive glucose polymerization is performed by the glycosyl transferase domain of BcsA, 

whose active site is made accessible by binding of dimeric c-di-GMP to an adjacent PilZ 

domain. The transport through the IM is coupled to the polymerization and is energized by the 

high-energy phosphoanhydride bonds of the preactivated synthase substrate, UDP-glucose. The 

nascent polysaccharide chain is subsequently extruded, one molecule at a time, through the IM 

transport domain of BcsA assisted by the C-terminal tail-anchor of BcsB. The latter partner 

adopts a donut-shaped periplasmic architecture and is proposed to guide the polysaccharide on 

its way to the outer membrane secretory component BcsC. Additional studies revealed that the 

cellulose secreted by E. coli-like systems is covalently decorated by pEtN residues in a post 

synthetic way by the periplasmic subunit BcsG. Another component is the presumably 

periplasmic endonuclease BcsZ, which is suggested to be required for degradation of cellulose 

in case it remains accumulated in the periplasm, for cleavage and restructuring of nascent 

glucan chains to allow microfibril formation to take place outside the cell, or for release of the 

polysaccharide from the cell surface. On the intracellular side of the bacterial membrane, the 

regulatory subunits BcsR, BcsQ and BcsE remained enigmatic. When we started our 

investigations, we had little information available about these components. We knew that E. 

coli–like cellulose secretion in vivo is absolutely dependent on the presence of the two small 
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cytosolic proteins BcsR and BcsQ, and is boosted the third cytosolic protein BcsE, as well as 

by the short membrane-embedded polypeptide BcsF. A study by Krasteva and colleagues 

revealed that most of the IM and cytosolic Bcs components (BcsRQABEF) form a megadalton-

sized secretory macrocomplex with a multimeric, layered, and asymmetric architecture. 

However, the structures, localization, and functional roles of the individual subunits remained 

largely unresolved. Through our two related studies (article 1 and article 2), we provided 

structural and functional insights into the individual subunits, together with the integral 

complex assembly. Based on crystallographic and functional data, we showed that BcsE 

actually features a tripartite architecture. In it, an N-terminal catalytically incompetent ATPase-

like domain aids BcsE dimerization, participates in BcsF-mediated membrane recruitment of 

the essential BcsR and BcsQ subunits and interacts with conserved TAC (transcription 

antitermination complex) components suggesting additional regulatory roles at the gene 

expression level. Moreover, we showed that the previously hypothesized GIL domain providing 

a second c-di-GMP sensor to the system is in fact a degenerate receiver–GGDEF domain tande, 

(BcsEREC*-GGDEF*), where the divergent diguanylate cyclase module binds both c-di-GMP and 

BcsQ through mutually independent interfaces. Contrasting degrees of sequence conservation 

between the N-terminal module and the REC-GGDEF tandem, as well as the identification of 

organisms where the corresponding BcsE parts are encoded by separate genes, point toward 

multidomain BcsE evolution and function integration via separate gene fusion events. The c-

di-GMP–bound BcsEREC*-GGDEF*–BcsRQR156E complex brought up more surprises, as the BcsE 

variant in the multicomponent complex adopts a strikingly different conformation from the 

structure of c-di-GMP–bound BcsEREC*-GGDEF*. While the canonical I-site RXXD motif on the 

catalytically incompetent diguanylate cyclase module coordinates a c-di-GMP moiety, the 

degenerate receiver domain and a so-called ‘interstitial helix’, linking it to the GGDEF module, 

undergo a 144° rotation and 45Å displacement to contribute a distinct conserved RXXD motif 

(R306ATD) and coordinate a second intercalated dinucleotide molecule via virtually identical 

arginine/aspartate-dependent interactions. We further revealed the importance of the REC 

domain I-site bound to the complexed c-di-GMP, using solution-based isothermal titration 

calorimetry experiments, where truncated (BcsEGGDEF*) or point-mutated BcsE (BcsEREC*-

GGDEF*•A306ATA) exhibited drastically altered thermodynamic profiles of the ligand binding 

reactions. Finally, the crystal structure of the BcsEGGDEF*–BcsRQ complex showed an 

additional, crystallographic c-di-GMP–binding interface involving multiple π-stacking and 

polar interactions with conserved residues from BcsE (Arg503His504), BcsR (Arg51Trp52) and 

BcsQ (Arg219). Even though the biological relevance of this third dinucleotide binding site 
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remains unverified, it is possible that it contributes additional weak interactions within the 

assembled cellulose secretion machinery, where the BcsERQ complex forms a swaddle-like 

vestibule around the BcsA PilZ domain and through multi-site c-di-GMP complexation can 

provide a synthase-proximal pool of circulating dinucleotide for enzyme activation. Regarding 

the assembled cellulose secretion machinery, we provided nearly atomic resolution data 

showing that BcsB polymerizes via a ß-sheet complementation mechanism among neighboring 

subunits and propose that polymerization would be simultaneously limited by the 

polymerization-induced membrane curvature due to BcsB’s superhelicity and C-terminal 

anchors, the intrinsic membrane surface tension and the protein-protein interactions with the 

rest of the secretion system components. The integral assembled Bcs secretion macrocomplex 

thus contains a periplasmic crown of up to six BcsB copies, a single BcsA synthase, a likely 

dimer of BcsF inner membrane peptides and the BcsR2Q2E2 cytosolic regulatory complex, 

which supports the synthase through BcsRQ-BcsAPilZ interactions on one side and is anchored 

to the inner membrane through BcsENTD-BcsF interactions on the other. Placing the cellulose 

machinery in a wider picture, the Bcs system belongs to the larger family of synthase-dependent 

exopolysaccharide secretion systems. Members of the latter include the alginate, the PNAG 

(poly-N-acetylglucosamine) and the Pel exopolysaccharide biosynthesis systems, many of 

which are found in both Gram-positive and Gram-negative bacteria. The common trait among 

the synthase-dependent family is the processive coupling of the polymerization with the export 

of the glycan chain. Opposingly to the Bcs system, the glycosyl-transferase and inner membrane 

translocation can be performed by separate components, as for example the PelF and PelG 

subunits of the Pel systems. In line with the Bcs system, in which the glycosyl transfer and the 

extrusion through the IM are carried out by the single subunit BcsA, alginate and PNAG 

systems employ Alg8 and PgaC respectively (Figure 15). Another common feature imposes 

itself among the members of the synthase-dependent exopolysaccharide family is the c-di-GMP 

dependent activation engaging one or more dinucleotide-sensing protein modules such as 

Alg44PilZ, PelDGGDEF domains and a composite binding site at the PgaC-PgaD interface for the 

alginate, Pel and PNAG systems, respectively. Additionally, AlgK, PelE, PelB and PgaA, on 

one hand, and AlgL, PelA, PgaB on the other, substitute the TPR-rich BcsC modules and the 

hydrolase BcsZ, respectively. Within the last years, numerous studies uncovered the structures 

of different modules of the latter synthase-dependent exopolysaccharides systems, whereas 

genomic studies allowed to establish comparisons-based parallels in a wide range of bacteria. 

Nevertheless, the intricate mechanisms for secretion systems assembly and biofilm matrix 
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secretion require further investigations, especially considering a rising biotechnological interest 

and many already enabled applications of these intriguing biological polymers.  

 
 
 

 

 

 

Figure 15. Examples of bacterial exopolysaccharide secretion systems 

Examples of three synthase dependent systems. Left, Pel system; middle PNAG (poly-N-acetylglucosamine) 
system; right, Alginate system. Shown are the subunits and their proposed topologies in Gram-negative bacteria 
[47].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abidi et al. 3

Figure 1. Bacterial cellulose secretion. (A) Prevalent types of bacterial cellulose secretion systems and associated metabolic processes. UDPGP: UDP-glucose pyrophos-
phorylase, also called UTP–glucose-1-phosphate uridylyl transferase or GalU; UDP: uridine diphosphate; ATP: adenosine triphosphate; PP: pentose-phosphate path-
way; DHAP: dihydroxyacetone phosphate; TCA cycle: tricarboxylic acid cycle; c-di-GMP: cyclic diguanosine monophosphate; PDE: phosphodiesterase; DGC: diguanylate
cyclase. (B) Inter- and intrastrand hydrogen bonding in crystalline cellulose I. Image by Luca Laghi, reproduced under license CC BY-SA 3.0 (https://creativecommon
s.org/licenses/by-sa/3.0/legalcode). (C) Cryo-electron micrographs of secreted bacterial and plant cellulose. Data: courtesy of William J. Nicolas, partially reported in
(Nicolas et al. 2021) and reproduced under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/legalcode). Left: a bio!lm-embedded Gluconacetobacter
hansenii cell surrounded by crystalline cellulose ribbons (marked by white arrowheads); middle: amorphous phosphoethanolamine (pEtN)-cellulose (marked by an
asterisk), secreted by the commensal Escherichia coli 1094 strain; right: plant cellulose micro!brils observed as electron-dense !laments in onion cell wall in situ. Scale
bars: 100 nm.
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6 Final conclusion and perspectives 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

118 

My dissertation work is focused on the study of the bacterial cellulose secretion machineries, 

with a special attention to the E. coli-like Type II Bcs system for pEtN-cellulose secretion. I 

dedicated my work on bacterial cellulose for two major reasons. The first reason is the 

contribution of cellulose and exopolysaccharides in general to biofilm formation in many and 

diverse bacterial species including clinically important infectious agents. Indeed, bacterial 

biofilms are usually linked to pathogen persistence and antibiotics resistance development in 

chronic diseases, as in nosocomial infections or in patients with cystic fibrosis, urinary tract 

infections or medical implants. Indeed, bacterial cellulose secretion provides an excellent model 

for deciphering the roles of c-di-GMP signaling and synthase-dependent polysaccharide 

production, which are also the basis for biofilm formation via alternative secretion systems in 

many medically and economically important human or plant pathogens. The second reason is 

the real economic and ecological need for the use of the bacterial cellulose in a variety of 

biomedical, materials science and agricultural biocontrol applications [47]. 

 

We know that even though there had been a tremendous amount of work in deciphering 

bacterial cellulose biosynthesis spanning multiple decades, relevant pieces were still missing 

from big picture of this important biosynthetic process. Through the present work, I 

significantly contributed to the understanding of the complex mechanisms governing cellulose 

secretion. Following a strategy where I combined structural and functional studies, I solved the 

structures of multiple complexes of the so-far enigmatic regulatory subunits BcsR, BcsQ and 

BcsE. These revealed an unexpected role for ATP, via sandwiched complexation the essential 

for secretion BcsRQ complex. Viewed from an energetic perspective, use of UDP-complexed 

sugars should be sufficient for powering polymerization and nascent cellulose extrusion. 

Nevertheless, our work demonstrated that both ATP binding and hydrolysis after recruitment 

to the membrane are necessary for secretion likely through effects on BcsA stability or 

membrane sorting. Additionally, together with my colleagues I showed that the BcsRQ complex 

interacts with the second c-di-GMP sensor BcsE to form a heterohexameric complex. I captured 

multiple crystallized states of the BcsERQ regulatory complex that support multi-site 

mechanism of c-di-GMP sensing. Put in the context of the assembled Bcs secretion system, 

where the BcsERQ subunits form a BcsA-surrounding cytosolic vestibule, this c-di-GMP 

complexation can provide a synthase-proximal pool for processive enzyme activation.  

Additionally, I showed that the intriguing stoichiometry of the so-called periplasmic crown of 

the Bcs system is formed via self-driven BcsB polymerization secured by intersubunit ß-sheet 

complementation and in contrast to a previously existing dogma for equimolar BcsA:BcsB 
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stoichiometries, we demonstrated a non-canonical BcsA1BcsB6 complexation likely optimized 

forBcsA sorting, c-di-GMP vestibule assembly and recruitment of regulatory components such 

as the pEtN transferase BcsG and the c-di-GMP-metabolizing DgcC/DgcQ and PdeK. 

  

Nevertheless, multiple functional aspects remain to be further investigated. These include the 

likely activation of ATP hydrolysis at the membrane level, as well as its roles in secretion 

system stability or assembly; the role of the uncovered by us BcsE interactions with the NusB 

and NusE factors from the conserved transcription antitermination machinery; the recruitment 

of the periplasmic cellulose-modifying enzymes BcsZ and BcsG or the functional interactions 

with c-di-GMP-metabolizing enzymes providing the on/off switch for the system; the 

mechanisms of polysaccharide crossing through the peptidoglycan layer and recruitment of the 

outer-membrane secretory component BcsC, as well as the tethering or release of secreted 

cellulose to or from the cell surface. This said, I hope my work will help guide future studies 

into this complex and widespread bacterial biosynthetic process. 
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Titre : Études structurales et fonctionnelles de sécrétion de cellulose bactérienne 
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Résumé : La cellulose, le composé le plus abondant sur la planète Terre, est un composant important des parois cellulaires 

des plantes. La biogenèse de la cellulose, cependant, n'est pas limitée aux règnes supérieurs, car les bactéries sécrètent 

également de la cellulose en tant que composant extracellulaire de leur matrice de biofilm. Alors que la découverte de la 

cellulose bactérienne remonte au 19ème siècle, ce n'est qu'un siècle plus tard qu'une succession de travaux structuraux a 

fourni des détails sur la glucosyltransférase BcsA (Bacterial cellulose synthesis A) largement conservée et activée par le 

second messager intracellulaire c-di-GMP (di-guanosine monophosphate cyclique). La sous-unité catalytique BcsA avec 

son partenaire BcsB, permet la polymérisation et le passage du polysaccharide à travers la membrane interne des bactéries. 

Néanmoins, d’autres sous-unités accessoires contribuent ou sont essentielles à l'assemblage et à la stabilité du complexe, 

ainsi qu'aux modifications post-synthétiques et à la sécrétion de la cellulose naissante à travers l'enveloppe cellulaire 

bactérienne complexe. La machinerie de sécrétion de cellulose d'E. coli (Escherichia coli) par exemple, est caractérisée 

par neuf sous-unités (BcsRQABZCEFG) qui s'étendent du cytosol à l'espace extracellulaire. Une étude récente a révélé 

que la plupart des sous-unités Bcs chez E. coli interagissent pour former une nanomachine sécrétoire. Cependant, sa 

reconstruction initiale à basse résolution n'a pas permis de distinguer les sous-unités régulatrices ni leurs mécanismes 

fonctionnels exacts. Dans ce contexte, j'ai étudié le système Bcs de type E. coli, structurellement et biochimiquement. J'ai 

montré que les sous-unités cytoplasmiques BcsR, BcsQ et BcsE interagissent pour former des sous-complexes régulateurs. 

J'ai également fourni plusieurs structures cristallographiques de ces sous-complexes régulateurs, qui ont révélé une 

stœchiométrie inattendue de ces sous unités, une interaction à différents motifs du c-di-GMP et une régulation dépendante 

de l'ATP (adénosine triphosphate). Pour obtenir plus de détails mécanistiques du macrocomplexe dans son intégralité, j'ai 

eu recours à la cryo-EM (cryo-microscopie électronique) par la technique dite de « particules isolées ». L'étude structurale 

du macrocomplexe a révélé un macrocomplexe asymétrique d'environ 1 MDa (Megadalton). Je montre en outre que 

l'asymétrie du macrocomplexe Bcs est due à l'auto-oligomérisation de BcsB par complémentation des feuillets ß dans le 

périplasme. Ces découvertes permettent de placer les pièces clés de l'assemblage et du fonctionnement du système de 

sécrétion de cellulose dans un plus large contexte de signalisation bactérienne et de formation de biofilm. 
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Abstract: Cellulose, the most abundant compound on the planet Earth, is an important component of plants' cell walls. 

The cellulose biosynthesis, however, is not limited to higher kingdoms, as bacteria also secrete cellulose as an extracellular 

component of their biofilm matrix. While the discovery of bacterial cellulose goes back to the 19th century, it is only a 

century later that a succession of structural works provided details of the widely conserved glucosyltransferase BcsA 

(Bacterial cellulose synthesis A), which is allosterically activated by the intracellular second messenger c-di-GMP (Bis-

(3′-5′)-cyclic dimeric guanosine monophosphate). The catalytic subunit BcsA together with its co-synthetic partner BcsB, 

permits the polymerization and extrusion of the polysaccharide through the inner bacterial membrane. Nevertheless, 

various accessory subunits contribute to or are essential for synthase complex assembly and stability, as well as post-

synthetic modifications and secretion of the nascent cellulose through the complex bacterial cell envelope. The E. coli 

(Escherichia coli) cellulose secretion machinery for instance, is characterized by nine subunits (BcsRQABZCEFG) that 

span from the cytosol to the extracellular space. A recent study provided mechanistic understanding of the cellulose 

secretion system assembly in E. coli and revealed that most of the Bcs subunits interact to form a secretory nanomachine. 

However, its initial low-resolution reconstruction didn’t allow to distinguish the regulatory subunits or their exact 

functional mechanisms, even though the interest in bacterial cellulose in the biotechnological and other fields continues 

to spark. To address these inadequacies, I studied the conserved E. coli-like Bcs system, structurally and biochemically. 

I showed that the cytosolic subunits BcsR, BcsQ, and BcsE interact to form regulatory subcomplexes. I also provided 

multiple crystallographic snapshots of these accessory subcomplexes, which revealed unexpected subunit stoichiometry, 

multisite c-di-GMP recognition, and an unexpected ATP (adenosine triphosphate)-dependent regulation. To gain further 

mechanistic and structural details on the assembled macrocomplex, I resorted to single particle cryo-EM (cryo-Electron 

Microscopy). The structural study of the macrocomplex revealed a roughly 1 MDa (Megadalton)-sized asymmetric 

secretory assembly. I further show that the asymmetry of the Bcs macrocomplex is due to self-driven and membrane-

curvature-dependent BcsB homo-oligomerization through ß-sheet complementation in the periplasm. These findings 

allow to place key pieces of the puzzle of cellulose secretion system assembly and function into the bigger picture of 

bacterial signaling and biofilm formation. 
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