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II. Résumé 
 

Les forêts tropicales, représentant 6.4% de la surface terrestre, abritent la plus grande biodiversité 
des écosystèmes terrestres et jouent un rôle fondamental dans le cycle du carbone à l'échelle mondiale. 
La durabilité de l'exploitation des forêts tropicales est un enjeu fondamental tant du point de vue de la 
conservation de la biodiversité que de la réduction des émissions liées à la déforestation et à la 
dégradation des forêts (REDD +). L'Office National des Forêts (ONF) est chargé de la conservation et de 
la gestion de 6 millions d'hectares de forêts du domaine privé de l’Etat en Guyane française.  

La donnée d‘inventaire spatialisé à l'échelle du paysage contribuerait à faire progresser les 
connaissances fondamentales sur ce biome complexe et menacé et aiderait à sa gestion durable. Les 
cartes de distribution d’espèces peuvent en effet être croisées avec les facteurs environnementaux et 
fournir ainsi des clés d’interprétation des schémas d’organisation des peuplements forestiers. Du point 

de vue de la gestion, les cartes de distribution des espèces permettent une rationalisation de 
l'exploitation forestière. La cartographie des espèces commerciales pourrait ainsi favoriser des pratiques 
forestières minimisant l'impact environnemental de l'exploitation. L'identification des espèces 
permettrait de prioriser les zones particulièrement riches en espèces commerciales, tout en évitant 
d'ouvrir des pistes d'exploitation dans les zones à faible niveau de ressources exploitables. La 
télédétection offre également la possibilité de surveiller l’extension des espèces proliférantes, telles que 
les lianes. 

La possibilité de cartographier les espèces dans la canopée par télédétection est donc d'un intérêt 
évident, tant d’un point de vue de la gestion que de la connaissance scientifique.  

Des capteurs hyperspectraux et LiDAR ont été utilisés à bord d’un avion pour identifier les espèces 

dans les forêts tropicales guyanaises. Une large gamme spectrale issue des capteurs hyperspectraux 
(400–2500 nm) est mesurée permettant d'avoir de nombreux descripteurs. Le LiDAR embarqué offre 
une description fine de la structure du couvert, facilitant la segmentation des houppiers. La fusion de 
ces deux informations améliore la caractérisation de la ressource. 

Afin de tirer le meilleur parti des données hyperspectrales, différents prétraitements 
radiométriques ont été évalués. Le lissage spatial et le filtrage des ombres sont les principaux facteurs 
qui améliorent la discrimination des espèces. L'utilisation de la gamme spectrale complète est également 
bénéfique. Ces résultats de classification ont été obtenus sur un groupe 20 espèces abondantes. 
L’identification de ces mêmes espèces en mélange au sein d’un peuplement hyperdivers a constitué la 

deuxième étape de ce travail. 
Nous avons évalué le niveau d'information nécessaire et le degré de confusion tolérable dans les 

données d’apprentissage afin de retrouver une espèce cible dans une canopée hyperdiverse. Une 

méthode de classification spécifique a été mise en œuvre pour être insensible à la contamination entre 

classes focales/non focales. Même dans le cas où la classe non focale contient jusqu’à 5% de pixels de la 

classe focale (espèce à identifier), les classifieurs se sont révélés efficaces. 
La troisième étape aborde le problème de la transposabilité des classifieurs d’une acquisition à une 

autre. La caractérisation des conditions d’acquisition et la prise en compte de leurs effets sont nécessaires 

pour convertir les données de radiance en réflectance de surface. Cependant cette opération de 
standardisation reste une étape extrêmement délicate au vue des nombreuses sources de variabilité : 
état de l’atmosphère, géométrie soleil-capteur et conditions d'éclairement. Nous évaluons en comparant 
des vols répétés sur le même site, la contribution des diverses caractéristiques d’acquisition à la 
divergence spectrale entre dates. Ce travail vise à proposer des pistes pour développer des méthodes de 
reconnaissance d'espèces qui soient plus robustes aux variations des caractéristiques d'acquisition.  
 
 

Mots clés : Biodiversité, Forêt tropicale, Gestion forestière, Hyperspectral, LiDAR, Segmentation et 
identification des arbres, Apprentissage automatique, Prétraitement, Correction atmosphérique, 
Variations spectrales. 
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III. Abstract 
Tropical forests, representing 6.4% of the Earth's surface, host the greatest biodiversity of any 

terrestrial ecosystem and play a fundamental role in the carbon cycle on a worldwide scale. The 
sustainable use of tropical forests is a fundamental issue from both the point of view of biodiversity 
conservation and the reduction of emissions from deforestation and forest degradation (REDD+). The 
Office National des Forêts is responsible for the conservation and management of 6 million hectares of 
forests in French Guiana. The possibility of mapping species in the canopy by remote sensing is of 
obvious interest. For both applied and scientific purposes, the use of airborne observation 
measurements can enable local field information that is difficult to collect over large areas of tropical 
forest to be extrapolated. 

The specific spatialized inventories at the landscape scale would contribute to advancing 
fundamental knowledge of this complex and threatened biome and assist in its sustainable 
management. Maps of species distribution can in fact be cross-referenced with maps of environmental 
factors and thus provide keys for interpreting the organization patterns of forest stands. From a 
management point of view, species distribution maps are an help to the rationalization of forestry 
operations. The mapping of commercial species could promote forestry practices that minimize the 
environmental impact of logging. The identification of species would in particular enable priority to be 
given to areas that are particularly rich in commercial species, while avoiding the opening up of 
exploitation tracks in areas with low levels of exploitable resources. Remote sensing also offers the 
possibility of monitoring the spread of pervasive species, such as lianas. 

Hyperspectral imagers and LiDAR sensor have been used on board an aircraft to identify species 
in the Guyanese tropical forests. A wide spectral range from hyperspectral sensors (400-2500 nm) is 
measured allowing to have many descriptors. LiDAR provides a detailed description of canopy 
structure and facilitates the segmentation of canopies. The fusion of these two types of information 
improve the characterization of the resource. 

In order to make the most of the hyperspectral data, different radiometric preprocessing has been 
evaluated. Spatial smoothing and shadow filtering are the main factors that improve species 
discrimination. The full spectral range rather than only the visible-near-infrared region (400-1000nm) is 
also beneficial. These classification results were obtained on a group of 20 abundant species. The 
identification of these same species in a mixture within a hyperdiverse stand was the second step of this 
work. 

We thus assessed the level of spectral information required and the degree of confusion tolerable 
in the learning data when the task is to find a target species in a hyperdiverse canopy. A special 
classification method was implemented in order not to be sensitive to contamination between focal/non-
focal classes for training. Even in the case where the non-focal class contains up to 5% of pixels of the 
focal class (species to be identified), the classifiers developed proved to be efficient. 

The third step deals with the problem of transposability of the classifiers from one acquisition to 
another. The characterization of the acquisition conditions and the consideration of their effects are 
necessary to convert the radiance data into surface reflectance. However, this standardization operation 
remains an extremely delicate step given the many variability sources to be considered: state of the 
atmosphere, sun-sensor geometry and illumination conditions. By comparing repeated flights on the 
same site, we evaluate the contribution of the various acquisition characteristics to the spectral 
divergence between dates. This work aims to propose ways to develop species recognition methods that 
are more robust to variations in acquisition characteristics.  

 
Keywords: Biodiversity, Tropical Forest, Forest Management, Hyperspectral, LiDAR, Tree 

Segmentation and Identification, Machine Learning, Preprocessing, Atmospheric Correction, Spectral 
Variations. 
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V. Introduction générale (Version française) 
Les forêts tropicales abritent des écosystèmes complexes qui ne sont que partiellement explorés. 

Elles abritent une grande diversité de formes de vie et contribuent au bien-être humain à l'échelle 
mondiale grâce à la régulation du climat (Lewis et al., 2015) et aux cycles biogéochimiques (Powers and 
Marín-Spiotta, 2017). Par conséquent, leurs fonctions fournissent de multiples services écosystémiques 
tels que définis par (Alcamo, Bennett, et Millennium Ecosystem Assessment (Program) 2003). 
Cependant, l'étendue de la forêt tropicale mature est de plus en plus réduite en raison de la pression 
humaine (Barlow et al., 2018; Wright, 2010), quel que soit le continent considéré. Entre 1980 et 2000, 28 
% des nouvelles terres agricoles ont été conquises sur des forêts matures (Gibbs et al., 2010). Entre 2000 
et 2005, environ 1,4 % des forêts tropicales humides ont subi une déforestation pour l'extraction de 
ressources en bois et/ou pour l'agriculture (Foley et al., 2005). Cependant, (Song et al., 2018) ont montré 
qu'entre 1982 et 2006, la superficie forestière mondiale a augmenté de 7,1 %. La perte dans les tropiques 
a été largement compensée par le gain dans les zones extratropicales, telles que les systèmes de 
montagne, comme l'a indiqué (Piao et al., 2015). La situation des forêts dans le monde (2020) fait état 
d'un bilan mitigé. Une augmentation des zones forestières a été signalée en Asie, en Océanie et en 
Europe entre 2010 et 2020. Le continent américain (nord, centre et sud) et le continent africain ont 
observé une tendance inverse, avec une perte significative, en particulier pour le continent africain qui 
a subi à une perte croissante entre 1990 et 2020. Dans la forêt tropicale guyanaise, la perte de surface 
forestière a été estimée à 0,28 % entre 2011 et 2014 (Pickering et al., 2019). Selon (FAO, 2020), à plus 
grande échelle, entre 1990 et 2020, la forêt tropicale guyanaise a perdu environ 1,51 % de sa superficie. 

D'une part, plus de 60 millions de personnes dépendent entièrement des forêts (Dieterle, 2009) et 
1,2 milliard de personnes tirent leur subsistance des produits forestiers (Vantomme, 2011). En 2012, 
INTERPOLE a estimé que le commerce illégal du bois représentait entre 50 et 150 milliards de dollars 
par an, soit environ 30 % du commerce total du bois, avec une demande mondiale croissante de 
ressources en bois et une capacité insuffisante pour contrôler ce commerce illégal. D'autre part, 
l'importance de la conservation des écosystèmes est clairement identifiée. La dégradation des forêts 
tropicales entraîne des modifications dans divers domaines, notamment : l'hydrologie (Eshleman, 2004; 
Giambelluca, 2002; Likens et al., 1978; Whitehead and Robinson, 1993) (modification des cours d'eau, 
du ruissellement et des réservoirs d'eau naturels, augmentation / diminution des épisodes de pluie, 
érosion et lessivage des sols), la climatologie (Wang et al., 2009) (régime des précipitations, échanges 
thermiques), les flux biogéochimiques (Kremen et al., 1999; F. E. Putz et al., 2008) (stockage du carbone, 
augmentation des micronutriments dans les sols), la santé humaine (McMichael et al., 2006; Patz et al., 
2005; Patz and Norris, 2004) (vecteurs de maladies liés aux changements d'habitat, qualité de l'air) et la 
biodiversité (F. E. Putz et al., 2008; Steege et al., 1996; Turner, 1996; Watson et al., 2018) (perte et 
fragmentation de l'habitat, altération de la chaîne de prédation, réduction des espèces végétales et 
animales). 

 Pour réduire l'exploitation non durable des bois tropicaux, des systèmes de certification du bois 
tels que le Forest Stewardship Council (FSC) ou le Programme de reconnaissance des certifications 
forestières (PEFC) ont été mis en place. Les entreprises forestières se voient délivrer des certificats 
garantissant l'origine légale du bois ainsi que le maintien des fonctions écologiques des forêts exploitées. 
En contrepartie, elle améliore l'accès au marché et donne accès à des primes (Rametsteiner and Simula, 
2003), pour préserver les zones de prédation et pour conserver la faune locale (Polisar et al., 2017) ainsi 
que pour préserver les droits des populations indigènes. Cette certification peut être encore plus 
engagée. Les plantations de nouvelle génération (PNG), ont une approche plus impliquée en identifiant, 
gérant et restaurant des zones de conservation sensibles (Silva et al., 2019). Une analyse détaillée, 
prenant en compte des variables environnementales, économiques et sociales a été réalisée par 
(Burivalova et al., 2017), comparant les méthodes de gestion des forêts tropicales. Ils ont montré que la 
certification du bois est souvent moins rentable, mais que les populations locales et la biodiversité sont 
bien mieux loties. 

La ressource en bois utilisée dans le monde provient en grande partie de la forêt tropicale (Hari 
Poudyal et al., 2018). Il y a une pression croissante pour que l'exploitation des forêts, et plus 
particulièrement des forêts tropicales, soit réalisée en utilisant des techniques d'exploitation à faible 



11 
Laybros A. - Doctoral thesis 

impact environnemental (RIL ou Reduced Impact Logging). Bien que non rentable pour le premier cycle 
d'exploitation (Boltz et al., 2003), le RIL est considéré comme le critère minimum pour une bonne gestion 
forestière. Ces contraintes d'exploitation forestière semblent bénéfiques pour la réduction des 
perturbations et des émissions de carbone (E. A. Ellis et al., 2019; P. W. Ellis et al., 2019; Griscom et al., 
2019). Cependant, la minimisation des dommages ne peut être maintenue lorsque l'intensité 
d'exploitation est trop élevée. (Francis E Putz et al., 2008). Les dommages résiduels de l'exploitation 
forestière persistent, comme la construction de routes, de sentiers, le stockage et l'empiètement des 
machines minières (Jackson et al., 2002; Matangaran et al., 2019; Pereira et al., 2002; Sist and Ferreira, 
2007). L'impact de l'exploitation forestière sur la diversité des espèces (en termes de richesse et 
d'abondance) et la conservation de la biodiversité est sujet à débat. (Xu et al., 2015) ont observé un 
rétablissement rapide du nombre d'espèces après une coupe à blanc. Sur un autre site, (Clark and Covey, 
2012) ont observé une réduction significative du nombre d'espèces d'arbres. (Carreño-Rocabado et al., 

2012) ont montré que les différents traitements des perturbations n'ont pas affecté les espèces et la 
diversité fonctionnelle. En plus d'avoir un effet sur la richesse des espèces, certains auteurs ont constaté 
un effet sur la composition des espèces (de Avila et al., 2015; Hari Poudyal et al., 2018; Hu et al., 2018; 
Xu et al., 2015). Dans des écosystèmes très spécifiques, tels que la forêt tropicale humide de Madagascar, 
la perte de la richesse en espèces était irréversible après l'exploitation, malgré un temps de récupération 
de 150 ans (Brown and Gurevitch, 2004). Il convient donc de mieux comprendre la régénération des 
espèces d'arbres dans les forêts tropicales. 

La population de la Guyane française n'a cessé d'augmenter, passant de 157 000 habitants en 1999 
à 268 700 habitants en 2017 et devrait doubler d'ici 2030. Cette croissance démographique s'est 
accompagnée d'une augmentation du taux de chômage, qui semble se poursuivre (Marie and Rallu, 
n.d.). La forêt, qui couvre 96% du territoire, pourrait contribuer au développement économique de ce 
territoire : les bois durs trouvent un intérêt pour la construction, tandis que les déchets de bois et les 
bois plus tendres sont utilisés comme biomasse pour la production d'énergie électrique. L'augmentation 
de la quantité de bois extrait, dans le cadre d'une gestion durable de la ressource, et sa valorisation à 
travers différentes étapes seraient bénéfiques pour le territoire. Cependant, 40% de la forêt guyanaise a 
été attribuée au parc amazonien de Guyane en février 2007, limitant fortement l'exploitation économique 
de la forêt. 

L'ONF a décidé de mener un projet visant à évaluer le potentiel des techniques de télédétection 
pour l'identification des espèces sur de grandes surfaces dans les forêts tropicales. L'objectif général de 
ce projet de l'ONF était d'explorer la capacité des méthodes de télédétection à cartographier les 
ressources en bois (en termes de volume marchand par classe de bois commercial). 

A. Introduction 

1. Contexte de l’étude et problématisation  

Nos yeux nous permettent de percevoir les différentes couleurs d'un paysage résultant des 
interactions entre le rayonnement solaire et les éléments de ce paysage, de la surface terrestre à 
l'atmosphère. Les yeux humains sont sensibles à la lumière entre 400 nm et 650 nm, qui définit le 
domaine visible, grâce à un ensemble de cellules photoréceptrices répondant à la lumière de différentes 
longueurs d'onde. Toutefois, le soleil émet des rayonnements électromagnétiques dans un spectre 
beaucoup plus large. Le principe de l'imagerie hyperspectrale consiste à capturer une gamme de 
longueurs d'onde bien supérieure à nos capacités sensorielles (400 nm à 2500 nm). Une autre 
caractéristique de l'imagerie hyperspectrale est le nombre de bandes spectrales échantillonnées. En 
général, une image est qualifiée d'"hyperspectrale" lorsque le nombre de fréquences électromagnétiques 
mesurées est supérieur à cent, continue et étroite (Goetz et al., 1985).  

La télédétection utilisant l'imagerie hyperspectrale continue d'évoluer, à la fois en termes de mode 
d'exploitation de ces informations et de technologie elle-même (Liu et al., 2017; Wang et al., 2010). De 
nombreux programmes spatiaux transportant des capteurs hyperspectraux voient le jour, tout comme 
la création de petits capteurs hyperspectraux transportables par drone (Adão et al., 2017). La technologie 
hyperspectrale a déjà démontré, par de multiples études, son potentiel pour caractériser les surfaces 
terrestres ou même martiennes (Bernard-Michel et al., 2009). La réflexion du spectre électromagnétique 
sur les surfaces est en effet riche. Elle permet de connaître la teneur en différents minéraux d'un sol 
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(Asner, 2008), la qualité de l'eau, de caractériser les types de surfaces urbanisées (Alonzo et al., 2014), de 
connaître les caractéristiques biophysiques des plantes (Feret et al., 2008a) et même d'identifier des 
espèces végétales (Clark et al., 2005). Cette technologie offre un grand potentiel pour la caractérisation 
des forêts tropicales. 

L'identification de différentes espèces de forêts tropicales à l'aide de l'imagerie hyperspectrale a 
déjà été réalisée auparavant. Dans un article fondateur (Clark et al., 2005), ils ont étudié l'utilité des 
données hyperspectrales à haute résolution spectrale et à différentes résolutions spatiales pour 
l'identification de sept espèces d'arbres dans les forêts tropicales. Ils ont évalué la contribution de 
différentes plages spectrales pour la discrimination d'espèces spécifiques à l'aide de méthodes de 
classification, à l'échelle des feuilles et de la couronne des arbres. Ils ont constaté que la sélection de la 
bande optimale diffère selon l'échelle. À l'échelle de la couronne, ils ont montré une contribution 
particulièrement importante du domaine visible (437 - 700 nm) et du domaine infrarouge court (1994 - 
2435 nm) pour la discrimination des espèces. En travaillant à l'échelle du pixel et de l'objet, la précision 
était respectivement de 100% et 92% en utilisant l'analyse discriminante linéaire (LDA) comme méthode 
de classification. Ils ont été suivis par différents auteurs qui ont réussi à identifier des espèces d'arbres 
dans les forêts tropicales en utilisant l'imagerie hyperspectrale (Baldeck and Asner, 2014; Ballanti et al., 
2016; Feret and Asner, 2013; Ferreira et al., 2016a). Ces études menées sur différents sites d'étude ont 
confirmé les capacités de cette technologie pour l'identification spécifique des espèces. Cependant, 
l’imagerie spectroscopique nécessite une étape de prétraitement, comme les corrections 
atmosphériques. Les études citées ci-dessus utilisent des données qui ont subi un traitement lié à la 
composition atmosphérique ou un traitement statistique. Cependant, la contribution de chacun des 
prétraitements dans un processus d'identification des espèces n’a pas été clairement identifiée. 

Une autre technologie de télédétection également utilisée dans le présent travail est le LiDAR (Light 
Detection and Ranging) à faible encombrement. Le principe du LiDAR est relativement simple. Des 
impulsions de lumière sont émises à très haute fréquence. Lorsqu'une impulsion de lumière rencontre 
un obstacle sur son chemin, le signal rebondit et retourne à la source émettrice. En connaissant les 
propriétés de la propagation d'une onde lumineuse dans un milieu défini, il est possible d'estimer la 
distance entre la source émettrice et l'obstacle. Combinée à un positionnement (Differential Global 
Positioning System) et une orientation (Inertial Measurement Unit) précis du capteur, cette technologie 
permet de créer un nuage de points, dont chacun des points est positionné dans l'espace en coordonnées 
cartésiennes. Le LiDAR permet de connaître la topographie de la surface étudiée et est déterminant pour 
la cartographie de la biomasse à grande échelle (Réjou-Méchain et al., 2015; Rocha de Souza Pereira et 
al., 2018), l'estimation des stocks de carbone (Bazezew et al., 2018), la hauteur des arbres (Dalponte and 
Coomes, 2016; St-Onge et al., 2015) et la structure des forêts (Ferraz et al., 2020, 2016a; Hamraz et al., 
2017; Vincent et al., 2012; Williams et al., 2020). L'ONF mobilise cette technologie depuis des années 
pour mieux évaluer la ressource en bois et optimiser la gestion de la forêt dont il a la charge. Pour 
l'identification des espèces dans les forêts tropicales, la caractérisation de la couronne de l'arbre améliore 
l'identification des arbres. Au sein de l'objet caractérisé (couronne de l'arbre), un vote majoritaire de 
pixels est calculé pour augmenter la fiabilité des prédictions du classificateur (Clark et al., 2005). 
Cependant, la délimitation précise des couronnes d'arbres sur l'imagerie hyperspectrale n'est pas une 
tâche simple (Aubry-Kientz et al., 2019). 

Les botanistes déterminent le genre et l'espèce des arbres, en se basant sur la morphologie (forme 
et couleur) des fleurs, des feuilles, des troncs, de l'écorce et des fruits. L'article de synthèse de (ter Steege 
et al., 2013) estime que la forêt amazonienne est dominée par 227 espèces d'arbres, alors que le nombre 
total d'espèces d'arbres serait d'environ 16 000. À titre de comparaison, les forêts tempérées européennes 
abritent environ 124 espèces indigènes (Slik et al., 2015). Cette hyper-diversité augmente la difficulté 
d'identification par télédétection. Identifier un élément parmi un nombre restreint de propositions est 
plus facile que d'identifier ce même élément parmi un très grand nombre. De plus, les variations 
hyperspectrales intra-spécifiques et intra-couronnes peuvent compliquer encore plus la discrimination 
des espèces (Zhang et al., 2006). 

En outre, notre connaissance des écosystèmes tropicaux repose en grande partie sur des sites 
expérimentaux, qui représentent une petite proportion de la superficie totale de la forêt tropicale. 
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Depuis 1950, la forêt tropicale amazonienne a été inventoriée à l'aide de 413 parcelles réparties dans 9 
pays et couvrant 404,6 hectares avec des périodes de revisite incertaines (Mitchard et al., 2014; Saatchi 
et al., 2015). (de Lima et al., 2015) rapportent que 0,01% des vestiges de la forêt atlantique brésilienne 
ont été inventoriés en 70 ans. Ces deux exemples illustrent la difficulté d'inventorier la forêt tropicale en 
raison de leur étendue - souvent importante -, de leur grande diversité floristique et de leur accès 
généralement difficile.  

À cela s'ajoute un élément perturbateur dans la couronne des arbres. Les lianes, bien qu'elles soient 
une composante importante de la biodiversité tropicale (Schnitzer and Bongers, 2011), sont des sources 
de perturbation de la signature spectrale. Les lianes sont en concurrence avec leurs hôtes pour capter les 
ressources en eau et en lumière (Y.-J. Chen et al., 2015; Martínez-Izquierdo et al., 2016). Bien qu'une 
différence spectrale ait été démontrée entre un petit échantillon de lianes et d'arbres (Castro-Esau, 2004), 
il est d'abord nécessaire d'identifier la présence de ces derniers au sein des couronnes. Cette évaluation 
à très haute résolution spatiale s'avère délicate et fastidieuse (Waite et al., 2019), d'autant plus que le 
taux de présence de lianes dans les couronnes n'est pas directement lié à la présence de tiges de lianes 
au sol 
(Cox et al., 2019). 

Cette tâche difficile d'identification des arbres est rendue plus compliquée par la variabilité 
spécifique à chaque site. La distribution spatiale des arbres montre des distributions disparates entre les 
sites d'étude (Condit et al. 2002 ; Friis et al. 2005 ; Legendre, Borcard, et Peres-Neto 2005). La composition 
floristique (liste des espèces et abondance relative) est très variable entre les sites parmi les arbres 
émergeant dans la canopée (Lugo and Helmer, 2004). La distribution des espèces est multi factorielle. 
L'histoire liée à l'utilisation passée des terres, la dispersion des graines liée à l'activité animale (Trolliet 
et al., 2017), la géomorphologie (Koponen et al., 2004), la climatologie (Miles et al., 2004) et le 
comportement spécifique à l'espèce (Traissac and Pascal, 2014) sont quelques déterminants de la 
distribution des espèces d'arbres. Ainsi, des sources d'information auxiliaires (en dehors des données 
hyperspectrales et LiDAR) pourraient être utilisées pour l'identification des espèces, mais leur utilité est 
jusqu'à présent limitée par l'absence d'inventaires à grande échelle. 
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VI. General introduction (English version) 
 

Tropical forests are home to complex ecosystems which are only partially explored. They harbor a 
great diversity of life forms, and contribute to human well-being at global scale through climate 
regulation (Lewis et al., 2015) and biogeochemical cycles (Powers and Marín-Spiotta, 2017). Therefore, 
their functions provide multiple ecosystem services as defined by (Alcamo, Bennett, and Millennium 
Ecosystem Assessment (Program) 2003). However, the extent of mature tropical forest is increasingly 
reduced due to human pressure (Barlow et al., 2018; Wright, 2010), regardless of the continent 
considered. Between 1980 and 2000, 28% of new agricultural land was conquered over mature forest 
(Gibbs et al., 2010). Between 2000 and 2005, about 1.4% of tropical rainforests underwent deforestation 
for the extraction of timber resources and / or for farming (Foley et al., 2005). However, (Song et al., 
2018) showed that between 1982 and 2006, the global forest area increased by 7.1%. The loss in the tropics 
was largely offset by the gain in extra-tropical areas, such as mountain systems, as reported by (Piao et 
al., 2015). The State of the World's Forests (2020) highlights a mixed record. Increased forested areas 
were reported in Asia, Oceania, and Europe between 2010 and 2020. The American continent (North, 
Center and South) and the African continent observed a reverse trend, with a significant loss, in 
particular for the African continent which has been sugjected to increasing loss since 1990 and 2020. In 
the Guyanese rainforest, the loss of Forest area was estimated at 0.28% between 2011 and 2014 (Pickering 
et al., 2019). According to (FAO, 2020), on a larger timescale, between 1990 and 2020, the Guyanese 
rainforest experienced an area loss of about 1.51%. 

On the one hand, over 60 million people are completely dependent on forests (Dieterle, 2009) and 
1.2 billion people derive their livelihoods from forest products (Vantomme, 2011). In 2012, INTERPOLE 
estimated illegal timber trade to be worth between US$50 billion and US$150 billion annually, 
accounting for around 30% of the total timber trade, with increasing global demand for timber resource 
and insufficient capacity to control this illegal trade. On the other hand, the importance of ecosystem 
conservation is clearly identified. The degradation of tropical forests leads to modifications in various 
fields, including : hydrology (Eshleman, 2004; Giambelluca, 2002; Likens et al., 1978; Whitehead and 
Robinson, 1993) (modification of watercourses, runoff and natural water reservoirs, increase / decrease 
in rainfall episodes, soil erosion and leaching), climatology (Wang et al., 2009) (the rainfall regime, 
thermal exchanges), bio-geo-chemical flows (Kremen et al., 1999; F. E. Putz et al., 2008) (carbon storage, 
increased micronutrients in soils), human health (McMichael et al., 2006; Patz et al., 2005; Patz and 
Norris, 2004) (habitat change disease vectors, air quality) and biodiversity (F. E. Putz et al., 2008; Steege 
et al., 1996; Turner, 1996; Watson et al., 2018) (habitat loss and fragmentation, altered predation chain, 
reduction of plant species and animals). 

To reduce unsustainable logging of tropical timber, timber certifications schemes such as Forest 
Stewardship Council (FSC) or the Program for the Endorsement of Forest Certification (PEFC) have been 
put in place. Forestry companies are issued certificates guaranteeing the legal origin of the wood as well 
as the maintenance of the ecological functions of the exploited forests. In return, it improves access to 
the market and gives access to bonuses (Rametsteiner and Simula, 2003), to preserve areas of predation 
and to conserve local fauna (Polisar et al., 2017) as well as to preserve the rights of indigenous 
populations. This certification can be even more committed. New Generation Plantations (NGP), have 
a more involved approach by identifying, managing and restoring sensitive conservation areas (Silva et 
al., 2019). A detailed analysis, taking into account environmental, economic and social variables was 
carried out by (Burivalova et al., 2017), comparing the management methods of tropical forests. They 
showed that wood certification is often less profitable, but that local populations and biodiversity are 
much better off. 

The wood resource used in the world comes largely from tropical forest (Hari Poudyal et al., 2018). 
There is a growing pressure for the exploitation of forests, and more particularly tropical forests, to be 
carried out using low environmental impact exploitation techniques (RIL or Reduced-Impact Logging). 
Although not profitable for the first cycle of logging (Boltz et al., 2003), RIL is considered the minimum 
criterion for good forest management. These logging constraints seem beneficial for the reduction of 
disturbance and carbon emissions (E. A. Ellis et al., 2019; P. W. Ellis et al., 2019; Griscom et al., 2019). 
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However, damage minimization cannot be maintained when the operating intensity is too high. (Francis 
E Putz et al., 2008). Residual damages from logging persist, such as road construction, pathways, storage 
and encroachment of mining machinery (Jackson et al., 2002; Matangaran et al., 2019; Pereira et al., 2002; 
Sist and Ferreira, 2007). Impact of forest exploitation on species diversity (in terms of richness and 
abundance) and conservation of biodiversity is open to debate. (Xu et al., 2015) observed a rapid 
recovery in the number of species after a clear cut. On another site, (Clark and Covey, 2012) observed a 
significant reduction in the number of tree species. (Carreño-Rocabado et al., 2012) showed that the 
different disturbance treatments did not affect species and functional diversity. In addition to having an 
effect on species richness, some authors found an effect on species composition (de Avila et al., 2015; 
Hari Poudyal et al., 2018; Hu et al., 2018; Xu et al., 2015). In very specific ecosystems, such as the tropical 
rainforest of Madagascar, the loss of species richness was irreversible after exploitation, despite 150 
years recovery time (Brown and Gurevitch, 2004). Understanding the regeneration of tree species in 
tropical forests is therefore to be improved. 

The population of French Guiana has been steadily increasing, from 157,000 inhabitants in 1999, to 
268,700 inhabitants in 2017 and is projected to double by 2030. This population growth was accompanied 
by an increase in unemployment rate, which seems to continue (Marie and Rallu, n.d.). The forest, which 
covers 96% of the territory, could contribute to the economic development of this territory: hardwoods 
find an outlet for construction, while wood waste and softer woods are used as biomass for the 
production of electrical energy. The increase in the quantity of wood extracted, as part of a sustainable 
management of the resource, and its valuation through different stages would be beneficial to the 
territory. However, 40% of the Guyanese forest was assigned to the Guyana Amazonian Park in 
February 2007, strictly limiting economic exploitation of the forest. 

ONF decided to carry out a project to assess the potential of remote sensing techniques for species 
identification over large areas in tropical forests. The wider objective of this ONF project was to explore 
capability of remote sensing methods to map wood resource (in terms of merchantable volume per 
commercial timber class). 

 

A. Introduction 

1. Context of the study and problematization  

Our eyes allow us to perceive the different colors of a landscape resulting from the interactions 
between solar radiation and the elements of this landscape, from Earth surface to atmosphere. Human 
eyes are sensitive to light between 400 nm and 650 nm, which defines the visible domain, thanks to a set 
of photoreceptor cells responding to light of different wavelengths. However, the sun emits 
electromagnetic radiation in a much wider spectrum. The principle of hyperspectral imaging is to 
capture a range of wavelengths much greater than our sensory capacities (400 nm to 2500 nm). Another 
characteristic of hyperspectral imagery is the number of spectral bands sampled. Generally, an image is 
characterized as "hyperspectral" when the number of electromagnetic frequencies measured is greater 
than a hundred, continuous and narrow (Goetz et al., 1985).  

Remote sensing using hyperspectral imagery continues to evolve, both in terms of how this 
information is exploited and in the technology itself (Liu et al., 2017; Wang et al., 2010). Numerous space 
programs carrying hyperspectral sensors are emerging, as is the creation of small hyperspectral sensor 
transportable by drone (Adão et al., 2017). Hyperspectral technology has already demonstrated through 
multiple studies its potential to characterize terrestrial or even Martian surfaces (Bernard-Michel et al., 

2009). The reflection of the electromagnetic spectrum on surfaces is indeed rich. It allows to know the 
content of different minerals in a soil (Asner, 2008), the quality of the water, to characterize the types of 
urbanized surfaces (Alonzo et al., 2014), to know the biophysical characteristics of plants (Feret et al., 
2008a) and even identify plant species (Clark et al., 2005). This technology offers great potential for the 
characterization of tropical forests. 

The identification of different tropical forest species using hyperspectral imagery has been carried 
out before. In a seminal paper (Clark et al., 2005) investigated the utility of hyperspectral data with high 
spectral resolution and different spatial resolutions for the identification of seven tree species in tropical 
forests. They assessed the contribution of different spectral ranges for the discrimination of specific 
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species using classification methods, at both leaf and tree crown scale. They found that the optimal band 
selection differs depending on the scale. At crown scale, they showed particularly important 
contribution from the visible domain (437 - 700 nm) and the short infrared domain (1994 - 2435 nm) for 
species discrimination. Working at pixel scale and object scale the accuracy was respectively 100% and 
92% using Linear Discriminant analysis (LDA) as classification method. They were followed by various 
authors who succeeded in identifying tree species in tropical forests using hyperspectral imagery 
(Baldeck and Asner, 2014; Ballanti et al., 2016; Feret and Asner, 2013; Ferreira et al., 2016a). These studies 
carried out at different study sites confirmed the capabilities of this technology for species-specific 
identification. However, imaging spectroscopy requires preprocessing step, such as atmospheric 
corrections. The studies cited above use data that have undergone processing related to atmospheric 
composition or statistical processing. However, the contribution of each of the pretreatments in a species 
identification process was not clearly identified. 

Another remote sensing technology also used in the present work is small footprint LiDAR (Light 
Detection and Ranging). The principle of LiDAR is relatively simple. Pulses of collimated light are 
emitted at very high frequency. When a pulse of light encounters an obstacle on its path, the signal 
bounces back and goes back to the emitting source. Knowing the properties of the propagation of a light 
wave in a defined medium, it is possible to estimate the distance between the emitting source and the 
obstacle. Combined with a precise positioning (Differential Global Positioning System) and orientation 
(Inertial Measurement Unit) of the sensor, this technology makes it possible to create a point cloud, each 
of the points of which are spatially positioned in Cartesian coordinates. LiDAR makes it possible to 
know the topography of the surface studied and is decisive for biomass mapping at large scales (Réjou-
Méchain et al., 2015; Rocha de Souza Pereira et al., 2018), carbon stock estimation (Bazezew et al., 2018), 
tree height (Dalponte and Coomes, 2016; St-Onge et al., 2015) and forest structure (Ferraz et al., 2020, 
2016a; Hamraz et al., 2017; Vincent et al., 2012; Williams et al., 2020). ONF has been mobilizing this 
technology for years to better assess the wood resource and optimize the management of the forest for 
which it is responsible. For the identification of species in tropical forests, the characterization of the 
crown of the tree improves the identification of trees. Within the characterized object (crown of the tree), 
a predicted majority vote of pixels is calculated to increase the reliability of classifier predictions (Clark 
et al., 2005). However, accurately delineating tree crowns on hyperspectral imagery is not a simple task 
(Aubry-Kientz et al., 2019). 

Botanists determine trees Genus and Species, based on the morphology (shape and color) of 
flowers, leaves, trunks, bark and fruits. The review article by (ter Steege et al., 2013) estimates that the 
Amazon rainforest is dominated by 227 tree species, while the total number of tree species would be 
about 16,000. By way of comparison, European temperate forests host around 124 native species (Slik et 
al., 2015). This hyper-diversity increases the difficulty of identification by remote sensing. Identifying 
an element among a restricted number of propositions is an easier task compared to identifying this 
same element among a very large number. In addition, intra-specific and intra crown hyperspectral 
variations may further complicate species discrimination (Zhang et al., 2006). 

In addition, our knowledge of tropical ecosystems relies largely on experimental sites, which 
represent a small proportion of the total area of tropical forest. Since 1950, the Amazon rainforest has 
been inventoried using 413 plots spread over 9 countries covering 404.6 hectares with uncertain revisit 
times (Mitchard et al., 2014; Saatchi et al., 2015). (de Lima et al., 2015) report that 0.01% of the Brazilian 
Atlantic forest relicts have been inventoried in 70 years. These two examples illustrate the difficulty of 
inventorying the tropical forest due to their – often - large extent, their high floristic diversity and their 
usually difficult access. 

Added to this is a disruptive element within the crowns of trees. Lianas, although they are an 
important component in tropical biodiversity (Schnitzer and Bongers, 2011), are sources of disturbance 
of the spectral signature. Lianas compete with their hosts in order to capture water and light resources 
(Y.-J. Chen et al., 2015; Martínez-Izquierdo et al., 2016). Although a spectral difference has been shown 
between a small sample of lianas and trees(Castro-Esau, 2004), it is first necessary to identify the 
presence of the latter within the crowns. This very high spatial resolution assessment turns out to be 
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delicate and tedious (Waite et al., 2019), especially since the rate of presence of lianas in the crowns is 
not directly related to the presence of lianas stems (Cox et al., 2019) 

 This difficult task of identifying trees is made more complicated by site-specific variability. The 
spatial distribution of trees shows disparate distributions between the studies sites (Condit et al. 2002; 
Friis et al. 2005; Legendre, Borcard, and Peres-Neto 2005). The floristic composition (list of species and 
relative abundance) is very variable between the sites among trees emerging in canopy (Lugo and 
Helmer, 2004). The distribution of species is multi factorial. History linked to past land use, seed 
dispersal linked to animal activity (Trolliet et al., 2017), geomorphology (Koponen et al., 2004), 
climatology (Miles et al., 2004) and the behavior specific to the species (Traissac and Pascal, 2014) are 
some determinants of tree species distribution. So ancillary sources of information (apart from 
hyperspectral and LiDAR data) could be used for species identification but there usefulness is so far 
limited by the lack of large scale inventories. 

2. Objective and hypotheses 

The main objective of this thesis is to propose operational methods for the fine mapping of the 
wood resource by fusion of LiDAR and hyperspectral data. The specific hypotheses we shall be testing 
along the way are the following 1) the electromagnetic spectrum reflected by the canopy is sufficiently 
rich to discriminate between species in tropical rainforest 2) The fusion of hyperspectral imagery with 
LiDAR derived structural information can be achieved accurately and consistently 3) The surface 
reflectance data is robust to the acquisition conditions. 

 
The specific objectives of this thesis are as follows: 

1. Evaluate the capacity of hyperspectral measurements for the identification of trees in Guyanese 
tropical forests, 

2. Propose an operational method for the identification of the wood resource from the fusion of 
hyperspectral and LiDAR data, 

3. Evaluate the conditions of transferability of hyperspectral data for large-scale applications. 
 

3. Manuscript organization 

The first chapter explores which steps in the data processing workflow are critical for 
discriminating the 20 most abundant species in the database which was set-up in view of this project 
(Baltzer, 2015; Dutrieux, 2018). We focus on the Paracou experimental site and consider only the VNIR 
spectral range in this study. We evaluate the contribution of various atmospheric corrections and 
various (spectral and spatial) filtering procedures to the improvement of species classification accuracy. 

The second chapter evaluates the additional information brought by the inclusion of the SWIR 
region. The task considered here differs from the previsous chapter as we move from a task involving 
discriminating a few species against one another to a task involving the retrieval of those species from 
within a hyperdiverse canopy. We illustrate the results of this section by applying the binary classifiers 
developed to produce a map of timber resource of the Paracou experimental site (115 ha). 

The third chapter is a first attempt to understand the causes of spectral divergence observed in 
repeat overflights. Most of the analysis builds on the Nouragues site that was imaged twice on 
successive afternoons with a different flight plan. This created large variations in illumination 
conditions which have impacted spectral consistency. We evaluate how much of the spectral divergence 
can be attributed to different factors (atmosphere disturbance, solar position, solar-sensor geometry) in 
interaction with topography [in progress]. 
 

B. National Forestry Office 
 

The ONF (Office National des Forêts) is a public industrial and commercial establishment in charge 
of the management of public forests, under the supervision of the Ministry of Agriculture, Agri-Food 
and Forestry and the Ministry of 'Ecology, Sustainable Development and Energy. Its missions are 
numerous: to manage, protect and develop French forests. The ONF aims to be a major player in 
ecological transition and sustainable development with the ambition of "making forests and natural 
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spaces an essential lever for regional development and contributing to the local economic growth". This 
establishment is in charge of more than 11 million hectares of forests. 4.6 million hectares concern 
mainland France and comprise 1.7 million hectares of state forests and 2.9 million hectares of communal 
forests. The overseas territories represent 6.4 million hectares, of which 85% are located in French 
Guiana. 

 

C. Tropical forest 

1. Study sites description 

French Guiana is an overseas department and region of France. It is located on the northern Atlantic 
coast of South America in the Guiana shield. It borders Brazil and Suriname. The climate is equatorial 
with a seasonal regime under the influence of intertropical convergence zones which oscillates along 
the north-south. Four periods can be distinguished: the period of light rains (December to January), the 
short dry season or summer from February to March, the period of long rains from April to June and 
the dry season from July to November. Precipitations can reach 400 mm/month during the rainy season 
and 100 mm/month during dry seasons. 

The maximum annual precipitation is recorded near the Atlantic coast and can reach 4000 mm. The 
precipitation gradient is strong, and varies from 2000 mm / year in the southwest to more than 3500 mm 
/ year in the northeast. The average temperature is 26 ° C with very little variations during the year 
(temperature amplitude ~ 1° C). 

French Guyana belongs to the Guyana Shield, which is a vast geological complex limited to the 
North by the Atlantic Ocean and to the South by the Amazon Basin. It stretches 900 km wide from north 
to south and 1800 km from east to west. The oldest rocks were formed 2.2 billion years ago, linked to 
the opening of an ocean, separating the Archean shields of the Amazon and West Africa. Supergene 
weathering phenomena (very specific to tropical climates) shape the Guyanese landscapes mainly in the 
peneplain. 

The sites studied in this thesis are Paracou, Montagne-Tortue and Nouragues. On these three sites 
forest permanent plots are managed by public institutes in order to study ecological processes occurring 
in tropical forests. 

 
Paracou site: 
The Paracou site is located in the north of French Guiana, south of the town of Sinnamary and 15 

km from the nearest coastline (5 ° 15′N, 52 ° 55’W). This site is easily accessible via the national 1. The 

average temperature is 26 ° C with a variation of + -1 ° C. Rainfall is highest in May and lowest in 
September, typical of a tropical climate. The rainfall is around 3000 + - 700 mm per year. The Paracou 
site is located in the northernmost part of the hilly area, on a formation called the “Armina series”, 

characterized by shales and sandstones and locally crossed by veins of pegmatite, aplite and quartz. The 
hydrographic system is generally oriented SW - NE. The relief of the site consists of small elliptical hills 
separated by narrow sandy water beds (<5 m wide). The elevation varies from 5 m to about 45 m above 
sea level. 

The Paracou plot network covering 118.75 ha is the largest in French Guiana. It was setp in 1982 to 
acquire scientific data for forest management in order to find the best compromise between forest 
productivity and the maintenance of ecosystem services in tropical forests. CIRAD is a research centre 
in charge of this experimental setup. 
 

Montagne-Tortue site : 
The Montagne-Tortue site is located a few kilometers west of Regina, on the edge of the Bélizon 

track (4 ° 19'N, 52 ° 14'W). The average temperature is similar at the Paracou site, averaging 26 ° C. 
Grande Montagne Tortue covers an area of 4373 ha with an altitude varying between 114 m and 438 m. 

The Montagne Tortue site is located on a set of tabular massifs, culminating at 483 m, called Grande 
Montagne Tortue. Its peculiarities make the Grande Montagne Tortue a geomorphological and 
ecological unit attached to a group consisting mainly of the Cocoa Mountain, Kaw Mountain, Maripa 
Mountain and Observatory Mountains. This is the Septentrional Range, a vast set of volcano-
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sedimentary rocks, one of the three major geomorphological regions of the highlands of Guyana. The 
tabular form of the site testifies to the existence of a lateritic cuirass covering its summit. The topography 
and geology have made this place a refuge area  for fauna and flora, recognized as ancient centers of 
speciation, having developed a remarkable rate of endemism and biodiversity. For example, Guatteria 

elegans (Annonaceae), Licaria rufotomentosa (Lauraceae), Coussarea granvillei (Rubiaceae) are rare trees 
endemic to this site. Passiflora trialata (Passifloraceae) is a liana only known worldwide from this locality. 

Permanent plots (including logged over plots) cover 16 ha and are managed by ONF. 
 
Nouragues site:  
The Nouragues site is located in the Center-East of French Guiana, in the south-west and 50 km 

from Regina, the nearest town and 100 km from the coast (4 ° 05'N, 52 ° 40'W). The site is only accessible 
by helicopter or canoe. Its remoteness results in minimum anthropogenic disturbance. The average 
temperature is similar to the Paracou site with a high average relative humidity ranging between 80 and 
90% all year long. The average rainfall is 2990 mm / year. The relief is made up of hills and plateaus. The 
elevation of the site varies from 60 m to 420 m at the top of the inselberg. The Nouragues site is located 
on a geological substrate belonging to the “Lower Paramaca” formation, comprising volcanic and 

sedimentary rocks, crossed by “Guyanese” granites. 
The Nouragues experimental site was set up in 1986 with the aim to study the functioning of 

tropical forest and its biodiversity. This research station is managed by the CNRS. It has three large 
permanent plots. The two main plots to the north of the site (Camp Inselberg) are made up to the west 
of 12 1ha-plots (Petit plateau) and to the east (Grand plateau) of 10 1ha plots. The third area to the south 
of the site (Saut Pararé) includes six 1ha plots.  

 

2. Floristic composition  

Tropical forests covered about 17% of the earth's surface in 1983 (Olson et al., 1983) and represent 
a large reservoir of carbon stock. In 1993, (Solomon et al., 1993) estimated that 28% of terrestrial carbon 
was conserved in tropical forests and woody areas. The Guyanese forests are mainly composed of a 
dense primary forest and humid tropical plains (Sabatier and PRÉVOST, 1990).  

The census of species in French Guiana began in 1775 by Jean Baptiste Christian Fusée-Aublet. 
Since then, this enumeration has been constantly increasing. On three plots of 1 hectare each, 
inventorying trees with a dbh greater than 20 cm (Black and Pavan 1950) identified 79 species for 230 
individuals (terra firma near Téfé – Brazil), 41 species for 134 individuals (flooded forest, near Guama 
River – Brazil) and 62 species for 195 individuals (terra firma, near Belém – Brazil). At the tree study 
sites, located in Brazil, some species were found in one, two or three sites. (Sabatier and PRÉVOST, 1990) 
counted 68 families and more than 1050 species with a DBH greater than 30 cm and nearly 350 species 
with a DBH greater than 60 cm, identified into French Guyana. Currently, thanks to the establishment 
of several experimental site, it is possible to identify and better understand the new species. Recently, 
(ter Steege et al., 2013) recorded over half a million trees across 1170 plots through international 
inventory efforts and information sharing. They estimated about 16,000 tree species for lowlands of the 
Amazon, 1.4% (227) of which being considered as "hyperdominant". To date, 1769 tree species have been 
identified and identified across French Guiana (Molino et al., In prep.) and about 230 tree species have 
not been assigned to any taxon. 

 
From the censuses conducted in 2016 of tree with a diameter at breast height (DBH) greater than 10 cm 
the following table was produced: 
 
Table 1 : Quantification of the species present at each of the study sites. The average DBH and the associated standard 

deviation are given. 

Site stem number 
Genus 

number 

Species 

number 

stem not 

determined 

to species 

DBH (cm) 

Paracou 75251 253 743 5934 67.5 (38.8) 
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Montagne 
Tortue 

7600 183 273 442 69.0 (46.5) 

Nouragues 14680 283 510 4604 72.0 (50.0) 

 

3. Forest management 

 
The tropical forest of French Guiana is an extremely rich ecosystem in terms of fauna and flora. 

This forest has great potential for both French Guiana and France, but also for the global scientific 
community. Through the various experimental study sites, the tropical forest is a fertile ground for the 
exploration of forest management methods. Currently, the following 4 points can define the 
management carried out by the ONF: 

· To economically and sustainably develop forests, while preserving its natural functioning 
to meet the folloing objectives : supply of the wood sector, ecotourism development, use of 
forest products by the populations 

· Preserving ecological roles: with a strict conservation network sampling the different 
ecosystems and natural habitats over large areas, 

· Unite Guyanese society around the forest: involve the population and elected officials for 
a better guarantee of sustainable management, 

· Continue the effort to acquire basic knowledge about this biome that is still so poorly 
known. 
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VII. Chapitre 1 : Capacity of hyperspectral data for species 

characterization  

A. Introduction 
This first chapter aims to establish the feasability of discrimination of common tree species using 

hyperspectral data. The assessment of hyperspectral abilities for tree species discrimination is a topic of 
interest for scientific community, due to the evolution and comparison of classification algorithms as 
well as the evolution of hyperspectral technology. So far, few studies had compared performances for 
species discrimination obtained with sensor radiance with those obtained when using bottom of 
atmosphere reflectance computed after application of atmospheric corrections on radiance data. 
Radiance is influenced by multiple factors, including solar illumination, atmospheric properties and 
ground properties. The objective of the correction of atmospheric disturbances is to remove distorsions 
due to the atmospheric composition in order to convert the radiance measurements into reflectance 
values. Although the studies for the identification of trees in tropical forests generally used data 
corrected for atmospheric effects, we wanted to estimate the contribution of atmospheric corrections 
using these same data without corrections. We were particularly interested in assessing the gain in 
robustness atmospheric corrections might bring whenapplying classifiers across dates.  

We also wanted to evaluate the effect of various statistical treatments applied before or after 
atmospheric corrections on species classification accuracy. Indeed, before developing classifiers, it 
seemed preferable, to enhance the spectral information available in the data. The role of illumination 
quality (intensity and homogeneity characteristics) was examined. Indeed the spectral signature of an 
object masked by a shadow (due to solar geometry) will be very different from an unshaded one. In 
addition, the normalization of the spectral signature by the mean spectral value (radiance or reflectance) 
suppresses variations in spectra due only to intensity. 
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Abstract: Imaging spectroscopy is a promising tool for airborne tree species recognition in hyper-

diverse tropical canopies. However, its widespread application is limited by the signal sensitivity to 

acquisition parameters, which may require new training data in every new area of application. This 

study explores how various pre-processing steps may improve species discrimination and species 

recognition under different operational settings. In the first experiment, a classifier was trained and

applied on imaging spectroscopy data acquired on a single date, while in a second experiment, the 

classifier was trained on data from one date and applied to species identification on data from a 

different date. A radiative transfer model based on atmospheric compensation was applied with 

special focus on the automatic retrieval of aerosol amounts. The impact of spatial or spectral filtering 

and normalisation was explored as an alternative to atmospheric correction. A pixel-wise

classification was performed with a linear discriminant analysis trained on individual tree crowns 

identified at the species level. Tree species were then identified at the crown scale based on a majority 

vote rule. Atmospheric corrections did not outperform simple statistical processing (i.e., filtering and 

normalisation) when training and testing sets were taken from the same flight date. However, 

atmospheric corrections became necessary for reliable species recognition when different dates were

considered. Shadow masking improved species classification results in all cases. Single date 

classification rate was 83.9% for 1297 crowns of 20 tropical species. The loss of mean accuracy 

observed when using training data from one date to identify species at another date in the same area 

was limited to 10% when atmospheric correction wasapplied.

Keywords: tropical forest; atmospheric correction; hyperspectral; linear discriminant analysis

1. Introduction

The Amazon forest, the largest tropical forest basin on earth, covers an area of 5.5 million km2 and 

harbours an estimated 16,000 tree species [1]. It plays a major role in global climate regulation, 

particularly through the cycling and storage of carbon [2] and it constitutes an extraordinary terrestrial 

reservoir of biodiversity [1]. However, the Amazon faces degradation threats [3] from unsustainable 

logging [4], climate change [5], land use change [6], agricultural [7] and other human activities [8]. 

While the threats are increasing, our knowledge about tropical forest composition and its ecological 

functioning progresses at a slow pace. The total above ground carbon in the Amazon may still be poorly 

estimated [9]. Similarly, the mere number of tree species in the Amazon is a matter of debate [10].
Remote Sens. 2019, 11, 789; doi:10.3390/rs11070789 www.mdpi.com/journal/remotesensing
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Large-scale tree species inventory capability would be instrumental in advancing fundamental 

knowledge on this complex and threatened biome and in helping with its sustainable management. 

Mapping species distribution at large scale in relation to environmental constraints is likely to provide 

novel insights to the long-standing question of why tropical forests are so species rich. From a 

management point of view, high-throughput airborne species mapping would help rationalizing 

logging. In particular, being able to map targeted commercial species could foster environmentally 

benign forestry practices. It would help prioritize areas that are rich in economically valuable species, 

while avoiding opening logging tracks in areas with low resources. It also has potential for monitoring 

invasive species [11]. 

Imaging spectroscopy holds great promise to map canopy species by air, as has already been 

proven by a series of seminal studies [12–15]. However, to date only few case studies have been 

published, and to our knowledge there is no clear evidence that airborne imaging spectroscopy is 

sufficiently reliable and transferable to achieve operational tree species mapping in the absence of a 

large ground sampling effort to build a training data set for every new site to be mapped. Practical 

solutions for enhanced reliability and operationality of airborne tree species mapping include the 

collection of spectral libraries focusing on hyperspectral signatures from different tree species, which 

could be stored and organized in shared spectral databases like the Specchio database [16,17]. A 

prerequisite would then be to capture the representative spectral features independently of the 

particular acquisition settings (i.e., time and date, atmospheric composition, solar irradiance angles, 

topographic conditions, observation angle, and sensor characteristics). 

A large number of pre-processing options have been identified through state-of-the-art techniques, 

aiming at improving the capabilities of hyperspectral data for tree species identification. The main goal 

is to reduce possible sourcesof signal variation that are extrinsic to vegetation, including sensor noise, 

illumination conditions and atmospheric composition. The first pre-processing step commonly used in 

order to reduce the noise is spatial filtering [18,19]. It consists in an homogenization of spectral 

information of each pixel based on the averaging of its reflectance and its neighbor’s reflectance. The 

second pre-processing step deals with the illumination variation. Clarck and Roberts [20] suggested that 

illumination variation is not a relevant factor for species discrimination. They showed that excluding 

shadowed pixels leads to improved classification accuracy. The masking of shadowed pixel [14,15] or 

their correction by different methods [21] should be considered, especially at very high spatial 

resolution [22]. Finally, atmospheric composition affects scattering and absorption of sunlight and 

thereby affects the reflected signal recorded by the sensor. Atmospheric correction then appears as an 

important step towards standardisation of spectral signature and applicability of classifiers from one 

image to another acquired at a different time. This atmospheric correction aims at converting at-sensor 

radiance into surface reflectance. The high spectral resolution offered by imaging spectroscopy is a 

particular advantage for achieving physically-based fine atmospheric corrections as the signal 

measured at particular wavelengths or combination of wavelengths may inform about atmospheric 

characteristics [23,24]. 

In this study, we evaluate the impact of various levels of image pre-processing steps on the 
classification accuracy of 20 tree species of tropical forest using Linear Discriminant analysis (LDA). 

We evaluate two different settings: the first setting focuses on single date imagery while the second 

setting uses training data from one date and testing data from a second flight date to appraise 

transferability of the classifier across dates. 

2. Materials and Methods 
 

1.1. Study Site 

The study was conducted at Paracou (51◦8JN, 52◦53JW), an experimental site in the North of 

French Guiana set-up by CIRAD (Centre de coopération Internationale en Recherche Agronomique 

pour le Développement) in 1982. The local topography is gently rolling. The site is covered with 
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lowland terra firme rain forests. Mean annual rainfall was 2875 ± 510 mm over the 1986–2005 period 

with a 3-month dry season from mid-August to mid-November [25]. All stems above 10 cm diameter 

at breast height have been censured every 1–2 years for more than 35 years. Nine of the plots were 

selectively logged in 1986. More than 750 tree species have been inventoried on the site, dominated by 

Leguminosae-Caesalpinioidae, Lecythidaceae, Chrysobalanaceae, and Sapotaceae. A detailed description of 

the site and experimental design can be found in [26]. 

For the purpose of this study, a field survey was conducted to build a large ground truth dataset. 

Easily discernible crowns were first delineated manually on the Canopy Height Model derived from 

LiDAR (Light Detection And Ranging) data with the help of a high resolution (10 cm) RGB (Red, Green, 

Blue) mosaic. The correct delineation of these Individual Tree Crowns (ITC) was then validated in the 

field and the corresponding species ascertained. The 20 most represented species i.e., those with at 

least 24 individuals tagged, were selected for the purpose of the present study, totalling 1297 trees 

(Table 1, Figure 1). On the first flight date, all crowns were imaged twice (once each of two neighbouring 

flight lines) and the cumulated crown area considered for the single date analysis was 112,313 m2. On 

the second flight date, only a subset of the crowns was imaged (Table 1). 

 
Table 1. List of species used and their associated crown and pixel numbers. The entire site was covered on date 1 and a 

subset was imaged again on date 2. 
 

Species 
Crown

 
Date 1 

Area 
 

Mean 
 

Crown 
Date 2 

Area 
 

Mean 
Proportion of 
Area Covered 

 Image Covered Crown Image Covered Crown on Date 2 

 Segments (m2) Area (m2) (SD) Segments (m2) Area (m2) (SD) Set (%) 

Bocoa prouacensis 24 1319 54.9 (35.8) 8 448 66.9 (40.2) 34.0 
Couratari multiflora 49 2701 55.1 (33.8) 11 386 29.7 (14.7) 14.3 
Dicorynia guianensis 108 11090 102.7 (66.8) 36 3746 109.7 (68.2) 33.8 
Eperua falcata 106 7599 71.7 (41.3) 48 3193 70.4 (38.0) 42.0 
Eperua grandiflora 74 6457 87.3 (46.2) 13 958 88.2 (45.4) 14.8 
Eschweilera sagotiana 139 6824 49.1 (29.0) 65 2818 46.6 (25.9) 41.3 
Goupia glabra 25 3343 133.7 (77.3) 3 214 117.5 (72.8) 6.4 
Inga alba 26 2113 81.3 (58.7) 0 0 - - 
Jacaranda copaia 24 970 40.4 (22.7) 8 292 33.0 (13.1) 30.1 
Licania alba 46 2161 47.0 (18.4) 10 443 49.5 (27.2) 20.5 
Licania heteromorpha 27 1087 40.3 (21.7) 9 296 34.5 (18.5) 27.2 
Moronobea coccinea 27 1858 68.8 (36.7) 19 1067 60.0 (29.6) 57.4 
Pradosia cochlearia 164 23330 142.3 (122.5) 40 4640 128.8 (101.5) 19.9 
Qualea rosea 206 22548 109.5 (59.4) 10 821 95.0 (34.6) 3.6 
Recordoxylon speciosum 69 4802 69.6 (26.2) 28 1947 71.8 (25.9) 40.5 
Sextonia rubra 32 3791 118.5 (99.3) 10 682 75.7 (38.2) 18.2 
Symphonia sp1 34 1708 50.2 (20.1) 16 735 46.8 (21.1) 43.0 
Tachigali melinonii 51 5415 106.2 (67.1) 23 985 86.6 (27.7) 18.2 
Tapura capitulifera 32 975 30.5 (12.2) 19 668 36.0 (27.7) 68.5 

Vouacapoua americana 34 2222 65.4 (34.0) 8 400 43.03 (22.8) 18.0 

 
1.2. Hyperspectral Data 

Imaging spectroscopy was acquired with a Hyspex VNIR-1600 (Hyspex NEO, Skedsmokorset, 

Norway) sensor mounted alongside a Riegl LMSQ780 laser scanner (See Appendix D). The 160 spectral 

bands cover the range from 414 nm to 994 nm (i.e., visible to near infrared) with a spectral sampling 

distance of 3.64 nm. The entire spectral range was used in this study (no spectral masking). The King 

Air B200 airplane flew at an average altitude of 920 m. The two flights took place on cloudless days on 

the 19th (from 15:00 to 17:00, solar time) and the 20th (from 16:00 to 17:00, solar time) September 2016. 

The second flight covered approximately one third of the area imaged on the first date. Images were 

orthorectified and georeferenced (level L1b see below) at 1 m spatial resolution with the PARGE software 

[27] using the canopy DSM (Digital Surface Model) produced from the LiDAR point cloud. The DSM 

was created from the point cloud by selecting point of maximum height on a 1-m resolution grid. 
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Figure 1. Hyperspectral image (false colour, R: 775 nm, G: 637 nm, B: 426 nm) at sensor radiance, captured on 19 

September. Black segments feature the tree crowns used in this study. The grid pattern in black represents the area 

imaged on 20 September. In the zoomed map (green box), crown segments are delineated in black too. Projection used 

is WGS 84 UTM 22N (EPSG: 32622). 
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1.3. Statistically Based Spectral Data Pre-Processing 

In this section, we present the various statistical data pre-processing steps that were tested as part 

of the different processing pathways evaluated (Figure 2, Table 2). 

 

 

 

Figure 2. Pathways of the processing workflows presented in this paper. Green, red and orange correspond to 

georeferenced (at sensor radiance), basic atmospheric correction and enhanced atmospheric correction using SHAOT 

data, respectively. 

Table 2. Nomenclatures for each processing. 
 

 

Nomenclature Processing 

L1b At sensor radiance geo-referenced L1cAtmospheric 
correction 

Spa.F A spatial mean filter is applied 
SHAOT Variable AOT is considered for atmospheric correction and 

aerosols are not considered as constant. 
Sha.R Shadow pixels are removed 
Norm. Division by spectrum mean 

 

Python programming language was used to compute mean filtering and spectrum normalisation 

using “Numpy” package. 

1.3.1. Mean Filtering 

In addition to atmosphere composition and illumination conditions, hyperspectral images may 

be affected by instrumental noise. Spatial filtering decreases the local noise on each pixel and may 

improve the separability of objects in hyperspectral data [28]. In several of the workflows explored in 

this study, a spatial filter (mean of a 3 × 3 moving window) was applied (Figure 2). 

1.3.2. Spectrum Normalisation 

A radiance/reflectance spectrum normalization was applied aside from atmospheric corrections. 

It was previously noted [29] that a simple normalization could significantly improve segmentation 

from imaging spectroscopy, even more so than complex atmospheric corrections. The normalization 

consisted in dividing the spectrum of a pixel by its mean (Figure 2). 



Remote Sens. 2019, 11, 789  

26 
Laybros A. - Doctoral thesis 

∑ S 

 

Sλinorm 

Sλi
 

n=160 
λi,i=1 λi 

 
(1) 

Sλi stands for the spectral signal value (radiance or reflectance) at wavelength λi. n = 160, is the 

number of spectral bands. 
 

1.4. Physically Based Spectral Data Pre-Processing 

In this section, we present the physically based pre-processing steps which were combined to 

statistical pre-processing into different pathways (Figure 2). 

1.4.1. Atmospheric Corrections 

Flight lines were clipped to 1 km long strips. For each strip, the mean sensor altitude was retrieved 

(ranging between approximatively 840 m and 940 m). Clouds contribution was negligible over the area 

of interest (Figure 1) and no cloud shadow correction or cloud masking nor haze removal were applied. 

Contribution of oxygen and nitrogen, the major contributors to molecular scattering, 

to atmospheric optical thickness were inferred from atmospheric pressure. Water vapour was retrieved 

using the APDA (Atmospheric Precorrected Differential Absorption) algorithm implemented in 

ATCOR-4 [30]. The APDA algorithm is based on the depth of the absorption features derived from three 

specific spectral bands: one spectral band is centred at 820 nm and the other reference spectral bands 

correspond to neighboring spectral bands (just before and just after 820 nm), which are less affected by 

water vapour. The depth of the absorption feature at 820 nm is then directly related to the water vapour 

column under consideration of the aerosol path scattering effect. The AOT (Aerosol Optical Thickness) 

was either considered constant or allowed to vary spatially. AOT represents the amount of aerosols in 

the entire column of the atmosphere. We used the shadow-based AOT retrieval method (SHAOT) 

proposed in [31] to map the spatial variability of this parameter. This method builds on an idea 

proposed in [32] to use shadows in urban areas. It was optimized for all kinds of shadows and refined 

for hyperspectral images with a spatial resolution less than or equal to 5 m [31,33]. The method for 

detecting the effects of aerosol scattering relies on the comparison between well illuminated vegetation 

and shaded vegetation based on the identification of the shadows. The method is based on two main 

hypotheses: (i) diffuse irradiance, as the main contributor to the illumination of shaded areas, depends 

on aerosol distribution and multiple scattering effects, and (ii) the average adjacent shaded and directly 

illuminated pixels have the same reflectance level. First, only the four spectral bands (450, 530, 670, 

and 780 nm) not impacted by water vapour absorption are used to compute shadows maps. The aerosol 

amount is tuned using an iterative procedure to adjust the diffuse irradiance onto the cast shadow 

areas until the areas have reached the same reflectance characteristics as the well-illuminated area 

(0.05% difference in average reflectance). A moving window smoothing is applied to derive the AOT 

distribution. Then, in the process of atmospheric correction, the atmospheric compensation model uses 

AOT value for each pixel. This approach produces a map of AOT distribution. 

1.4.2. Shadow Removal 

Shadow-induced illumination variations among tree crowns affect spectral information. Several 

studies reported improved tree classification accuracy when selecting sunlit pixels only [14,15,34]. 

Consequently, before training the classifier, the dark pixels were removed to evaluate the ensuing gain 

in classification accuracy. For this step, we used the shadow detection method described in [33] to 

compute the illumination ratio and the pixels with a scaled shadow fraction value lower than 0.6 were 

removed. The number of pixels used in the classification was reduced by 20% after this step. 

= 
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1.4.3. Bidirectional Reflectance Distribution Function 

Bidirectional Reflectance Distribution Function (BRDF) correction can be applied to reduce 

spectrum variation caused by acquisition conditions. The moderate change in sun-sensor angles 

(variation in scan angle ±6.5 deg.; variation in sun zenith angles: 6.5–10.0 deg.; variation in sun 

azimuth angle 285.9–267.7 deg.) in the present settings suggested that BRDF effects were of moderate 

intensity. Therefore, no BRDF correction was applied. First order BRDF effects were considered to stem 

from tree-tree shadowing. Little or no projected shadows are visible when sun and view directions are 

aligned and maximum shadows are apparent when sun and view directions are opposite. Such BRDF 

effects were minimized by shadow masking. 

1.4.4. Impact of Flight Line Overlap 

Individual flight lines were not mosaicked prior to crown extraction. In this way the full spectral 

variability of the crowns species in the images was preserved (and notably variability among flight 

lines induced by changes in the atmospheric properties and solar angle). Hence, due to a 50% overlap 

between flight lines on date 1, most of the crowns were extracted from two neighbouring flight lines. 

On date 2, only about 40% of the crowns were imaged twice. The effect of this lower redundancy on 

date 2 imagery is later considered. 

We specifically evaluated the effect of prior mosaicking for an arbitrarily selected processing 

pathway (L1c Spa.F, SHAOT). To this end, we mosaicked the strips using center cropped method in 

the PARGE software. Hence, mosaicking was done by selecting the most central pixel of any two 

overlapping flight lines and not by averaging reflectance values of co-occuring pixels. 

1.5. Data Analysis 

 

1.5.1. Variance Analysis 

For each wavelength, one-way analyse of variance (ANOVA) with species identity as the unique 

factor was run to assess how much variance in the reflectance at a particular wavelength could be 

ascribed to species. We compared effectiveness of various pre-processing steps by analyzing the R2 

averaged across the spectral domain. We interpret an increase in R2 as an enhancement of species-

specific spectral discrimination [35]. 

1.5.2. Classification 

We used a LDA classification algorithm that is well adapted to classification problems in high 

dimension feature spaces provided that the number of observation is larger than the number of feature 

in the least abundant class [36]. LDA also has the advantage of not being affected by the possible 

inconsistent relative abundance of classes in training set and test set, provided prior probabilities of 

class membership are set to 1 for all classes as done in the present case. This method maximizes the 

ratio of between-class variance to the within-class variance. The “Mass” package version 7.3-50 [37] of R 

language [38] was used to compute LDA method. Good performance of LDA has been reported for 

tropical tree species classification from hyperspectral data in various studies [14,15,20]. In the first 

approach, the LDA classifier was trained using a random selection of 70% of the tree crowns (Table 1) 

using hyperspectral data from the 19 September for all processing levels. For every tree included in 

the training set both image segments (from neighbouring flight lines) were selected if available. The 

remaining 30% of crown segments were used to evaluate the performance of the classifier. This 

procedure was repeated 20 times to limit the impact of the random draw of the crowns used in training 

and testing sets. Classification accuracy was evaluated for all image-processing pathways using the 

same random sampling. The choice of using LDA can be questioned, as many alternative machine 

learning algorithms can be used as well. These state of the art classification algorithms include Random 

Forest (RF) [39], Support Vector Machine (SVM) [40] or neural network. The goal of our study was not 

to compare of the performances of the different algorithms available for 
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tree species discrimination, or to identify the most suitable as proposed by [15,20,41]. We compared 

the performances of LDA with a “state of the art” machine learning algorithm, RF. The RF classification 

algorithm was applied, following the exact same training and validation scheme as defined for LDA. 

The RandomForest R package [42] was used for this task, and 1000 trees were defined in the forest 

during the training stage. The results obtained with the RF algorithm are described in Appendix C 

Table A2. 

In a second approach (cross date validation), the classifier was trained using hyperspectral data 

from 19 September, excluding any crown imaged on 20 September and the prediction was applied to 

crowns imaged on 19 September (single date case) and on 20 September (multidate case). 

1.5.3. Classification Strategy 

Numerous studies concluded on the gain in performances obtained when using object oriented 

approaches based on ITCs, combining pixel-wise classification with a majority vote rule to decide on 

the species to be assigned to individual tree crowns [20,41,43]. For each processing level, we compared 

classification accuracy at pixel level and crown level. Table 1 summarizes the crowns and pixels 

available for classification. The column named “proportion of area covered on date 2” corresponds to 

proportion of crown area viewed on date 2 which was viewed on date 1 (double counting any pixel 

viewed twice on a given date). 

1.5.4. Spectral Stability Analysis 

We computed various measures of spectral stability based on spectral correlation matrices in order 

to explore the sensitivity of the various processing pathways to changes in acquisition parameters 

induced by the multi date classification scenario. 

For every species, we computed indices of species spectral signature stability over time, based on 

crowns viewed on both dates. Firstly, we computed the Pearson correlation between spectral correlation 

matrices at different dates. Secondly, we computed species specific F-measures for single date and 

multiple date cases. 

 

F measure = 
2 × precision × recall 

precision + recall 

Precision =
  ∑ True positive  

∑ Predicted condition positive 

Recall =
  ∑ True positive  

∑ Condition positive 

(2) 

 
(3) 

 
(4) 

 

Thirdly, we computed a “between dates spectrum distortion rate” by taking for each spectral band the 

difference between date 1 and date 2 of normalized values of signal divided by values at date 1. Then, 

the average (over all spectral bands) of the absolute value of that difference was computed per species. 

Both indices were computed for radiance spectrum (i.e., prior to atmospheric correction) and 

reflectance spectrum (post atmospheric correction). 

 

 

Distorsion rate = ! |"#$%&'(),*+-"#$%&'(),*.|#$%&'(),*+
/012345,501  

 
 

      (5) 

T1 and T2 represent the first and the second date respectively. 

The contribution of each wavelength to the LDA was evaluated by summing absolute scaling 

values (coefficient of each wavelength to each linear discriminant function) after centring and reducing 

the data. 
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3. Results 
 

1.6. Variance Analysis 

We report the effect of various pre-processing steps on species specific signal noise ratio (SNR) as 

captured by the R2 of the ANOVA of the different wavelengths. 

Spatial filtering significantly increased the spectral variance part explained by species for radiance 

and reflectance values (from 12.1% to 14.2% for L1b and 12.3% to 16.1% for L1c, see Table 3). An even 

more significant surge in R2 followed from normalisation of spectra (14.2% to 32.3% for L1b and 16.1 

to 29% for L1c, see Table 3). This was not expected to be the case for L1c reflectance data, since it was 

implemented primarily to correct illumination variation affecting the whole spectrum. 
 

 
Figure 3. Proportion of variance explained by tree species identity (20 species) for each wavelength (data acquired on 

19 September). L1b (GEO in green solid line) is plotted on each graphic as a reference. 

(A) After atmospheric corrections only. (B) After spatial filtering (either alone or in addition to atmospheric 

corrections). (C) After normalisation applied to spatially filtered data. (D) After additional shadow removal. 
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Overall, ANOVA following spectral normalization of spatially filtered radiance data achieved the 

highest R2 (32.3%). ANOVA following atmospheric correction, spatial filtering, SHAOT and shadow 

exclusion also had a high R2 (29.5%). Removal of shadowed pixels (“Sha.R”) had a slightly positive 

impact on L1c data only. 

The atmospheric correction taking into account the spatial variation of AOT led to a reduction of 

R2 in the spectral domain from 400 nm to 550 nm when compared to the standard correction (Figure 3), 

resulting in a slight overall decrease in R2 (Table 3). Shadow removal mostly increased R2 between 500 

nm and 1000 nm. Spectral normalisation decreased R2 both for L1b and L1c spectral data in the region 

from 902 nm to 956 nm due to very low signal and low SNR in the raw data. Not surprisingly, R2 

increase was found to have some similarities with the SNR evolution along the spectral variation 

following the different processing pathways (see Appendix B, Figure A1). Atmospheric correction 

alone (L1c with SHAOT or L1c without SHAOT) barely increased R2 compared to radiance (L1b) 

values (Table 3). 

Table 3. Mean proportion of variance explained by the tree species identity (mean R2 over the entire spectrum) for 

each processing level (data acquired on the 19 September). The treatments are listed in order of application. 

Treatments Mean R² (%)  

over Wavelength 

L1b 12.1 
L1b, Spa.F 14.2 
L1b, Spa.F, norm. 32.3 
L1b, Spa.F, norm., Sha.R 31.9 
L1c 13.0 
L1c SHAOT 12.3 
L1c, Spa.F, SHAOT 16.1 
L1c SHAOT, Sha.R 19.0 
L1c, Spa.F, SHAOT, norm. 29.0 
L1c, Spa.F, SHAOT, Sha.R 21.8 
L1c, Spa.F, SHAOT, norm.,Sha.R 29.5 

 

1.7. Discriminant Analysis 

Results are given for a subset of pre-processing pathways at pixel and crown level. 

1.7.1. First Setting (Single Date) 

Analysis of the impact of atmospheric correction was evaluated on all processing levels for a 

single data set to check the consistency of the methods. Standard deviation of accuracy at pixel level 

computed for the 20 runs was typically around 1–1.5% giving a standard deviation of the reported 

mean accuracy of 0.2–0.3%. 

The pre-processing pathways that yielded the most accurate classifications (both at pixel and 

pixel-majority level) were L1b Spa.F, norm., Sha.R followed by L1c Spa.F, SHAOT, norm.,Sha.R (Table 4). 

Figure 4 shows a scatter plot of R2 from the analysis of variance against the LDA accuracy. A slight 

positive correlation can be observed. 
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Table 4. Summary of mean accuracies and kappa results from data acquired on 19 September using the 20 most 

abundant species. The highest scores are highlighted in bold. 

Treatments Accuracy (%) Kappa (%) Pixel 

Pixel Object Pixel Object 
L1b 64.2 75.5 48.4 70.6 
L1b Spa.F 73.8 81.7 66.5 78.9 
L1b Spa.F, norm. 75.6 83.0 69.4 80.5 
L1b Spa.F, norm., Sha.R 76.9 83.3 71.2 80.9 
L1c without SHAOT 63.1 74.3 46.1 68.9 
L1c with SHAOT 63.6 75.3 47.2 70.3 
L1c SHAOT, Spa.F 73.4 81.9 65.9 79.1 
L1c Spa.F, SHAOT 73.4 82.0 65.9 79.3 
L1c SHAOT, Sha.R 66.9 76.5 54.1 71.9 
L1c Spa.F, SHAOT, norm. 75.1 82.7 68.5 80.1 
L1c Spa.F, SHAOT, Sha.R 74.7 82.6 68.1 80.0 
L1c Spa.F, SHAOT, norm.,Sha.R 76.5 83.2 70.7 80.8 

 

Figure 4. Treatments performance ranking by the mean R2 (%) from the analysis of variance and LDA (%) accuracy of 

the object based on spectrum. Error bars represent ± standard error of the mean of 20 replicate runs. The legends 

and the colors refer to Figure 2. 
 

The majority vote approach systematically outperformed the pixel classification. The majority 

vote was more efficient to retrieve species identity than a classifier based on a mean crown spectrum 

(see Appendix A, Table A1). Moreover, the standard deviation of accuracy using the mean crown 

spectrum computed for the 20 runs was around 4% which is higher than through majority vote 

procedure. The spatial filtering improved classification, especially at pixel level (from 64.2% to 73.8% 

for L1b and from 63.6% to 73.4% for L1c). 

The confusion matrix (Table 5) indicated that not all species were recognized with equal accuracy. Qualea 
rosea was the best-identified species followed by Tachigali melinonii. While some species were poorly 
represented like Tapura capitulifera, their F-measure was still higher than 80.0%. By contrast, Licania 
heteromorpha was poorly identified and was mixed with an extremely abundant species Eschweilera 
sagotiana. 
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Table 5. Confusion matrix from L1b Spa.F, norm. at the crowns scale for the twenty most abundant species. 
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B. prouacensis 
  

60 2 0 0 0 6 0 0 0 0 4 0 0 0 0 0 0 2 0 8 
73.2 42.9 54.1 

C. multiflora 0 203 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 7 94.9 67.7 79.0 
D. guianensis 15 36 565 25 0 34 0 6 0 3 13 0 10 7 13 0 22 3 11 5 73.6 88.3 80.3 
E. falcata 35 3 14 504 5 6 7 0 4 24 0 11 7 0 19 0 15 0 18 15 73.4 78.8 76.0 
E. grandiflora 0 15 5 15 420 15 0 0 15 8 7 0 2 0 0 0 0 0 4 7 81.9 95.5 88.1 
E. sagotiana 19 0 2 11 0 739 0 0 0 9 76 5 0 0 0 7 2 0 0 15 83.5 88.0 85.7 
G. glabra 0 2 3 9 0 8 133 0 55 6 0 0 0 0 0 7 0 0 0 0 59.6 95.0 73.3 
I. alba 0 6 0 0 0 0 0 118 4 0 0 0 0 0 0 0 0 0 0 0 92.2 73.8 82.0 
J. copaia 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 0 100 31.4 47.8 
L. alba 1 0 0 0 6 6 0 0 0 173 0 0 4 0 2 0 4 6 0 0 85.6 62.7 72.4 
L. heteromorpha 0 2 0 0 0 2 0 0 0 0 34 0 1 0 0 0 0 0 0 0 87.2 21.3 34.2 
M. coccinea 0 0 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 100 53.1 69.4 
P. cochlearia 0 18 40 20 9 9 0 0 6 37 6 26 954 1 14 0 8 4 15 3 81.5 97.4 88.7 
Q. rosea 0 1 0 27 0 5 0 0 12 15 16 4 0 1232 0 13 10 0 0 10 91.6 99.4 95.3 
R. speciosum 0 0 0 0 0 0 0 2 0 0 0 0 0 0 369 0 0 0 0 0 99.5 87.9 93.3 
S. rubra 1 12 8 8 0 0 0 0 0 0 0 4 2 0 2 173 0 0 0 4 80.8 86.5 83.6 
S. sp.1 0 0 1 1 0 6 0 0 0 1 4 19 0 0 0 0 127 0 8 0 76.1 63.5 69.2 
T. melinonii 0 0 2 7 0 0 0 34 0 0 0 1 0 0 0 0 6 285 0 0 85.1 95.0 89.8 
T. capitulifera 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 0 98.6 72.0 83.2 
V. americana 
  

9 0 0 11 0 4 0 0 0 0 0 1 0 0 1 0 6 0 0 126 79.8 63.0 70.4 

 

Additionally, an extra set of processing options not detailed here was tested. Spectrum derivation 

following spectral smoothing were applied and spectrum derivative used instead of raw spectrum. 

Excluding the noisy region between 900 and 950 nm prior to applying the LDA was also tested. Finally, 

we tested whether including the pixel spectral mean as an additional feature to the standardized 

spectrum would make a significant difference. None of those variants yielded a significant 

improvement of the best classification results (improvement <1%). 

1.7.2. Second Setting (Cross Date Training and Validation) 

In this operational situation training is done on a well-known scene at first and the training results 

are transferred to the second date of data acquisition. 

One species was absent from the area covered on the second date. The 19 species left were trained 

on date 1 imagery and predicted on date 2 imagery (multidate case). For comparison purposes, we report 

the performance of the LDA classifier trained and predicted on date 1 (single date case) using the same 

subset of crowns in both training and testing sets as used in cross date validation. The same 

combination of processing steps was considered in this setting and their effectiveness is compared in 

Table 6. 

Regardless of the processing pathway considered, the transition from a single date to a multiple 

date case induced a marked decrease in the accuracy of the classification especially at object level. 

Nonetheless, the pathway including atmospheric correction (L1c, Spa.F, SHAOT, norm.) clearly 

outperformed (by more than 8 percentage points at object level) any filtering/normalizing strategy 

when training and testing data came from different dates. The best pathway is the L1c, Spa.F, SHAOT, 

norm., Sha.R (pixel illumination was considered) which uses 20% less data. 

Remarkably the gain in accuracy at crown level (as compared to pixel level) was not significant 

in the multidate scenario for most processing pathways whereas it typically improved accuracy by c. 

10% in the single date scenario. 
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Table 6. Summary of the results from the comparison between two dates using 19 species with respect of each 

treatment. 

Treatments 

Accuracy (%) Kappa (%) 

Pixel Object Pixel Object 

Single date case     

L1b 55.0 65.4 48.5 61.4 
L1b, Spa.F 65.5 73.6 60.8 70.9 
L1b, Spa.F, norm. 67.5 76.4 63.3 73.9 
L1b, Spa.F, norm., Sha.R 69.4 76.6 65.3 74.2 
L1c SHAOT 54.3 65.4 47.6 61.5 
L1c, Spa.F, SHAOT 64.6 72.4 59.5 69.4 
L1c, Spa.F, SHAOT, norm. 67.8 76.6 63.5 73.9 

L1c, Spa.F, SHAOT, norm., Sha.R 69.7 78.2 65.5 75.9 

Multidate case     

L1b 39.7 39.20 32.0 34.6 
L1b, Spa.F 53.0 53.3 46.2 48.7 
L1b, Spa.F, norm. 54.7 54.9 49.0 50.8 
L1b, Spa.F, norm., Sha.R 61.2 60.3 55.0 56.6 
L1c SHAOT 46.5 50.2 39.4 45.6 
L1c, Spa.F, SHAOT 58.6 61.5 52.8 57.7 
L1c, Spa.F, SHAOT, norm. 60.2 66.1 55.2 62.9 

L1c, Spa.F, SHAOT, norm., Sha.R 67.0 68.6 61.7 65.6 

 
 

Table 7 presents classification accuracy (at pixel and crown level) for one particular processing 

pathway L1c, Spa.F, SHAOT when either training or prediction applies to mosaicked data or raw flight 

lines. 

Table 7. Summary of the results comparing learning and prediction when multi-flight lines or mosaicked data were 

applied in the classification process. Standard error of the mean (SEM) is given at pixel and object level. Pixel and 

object express the accuracy rate. ∗ 60% of the data is not viewed twice. 

 Learning Data Mosaicked Multi Flight Lines 

Predict Data Pixel (%) (SEM) Pixel-Majority (%) (SEM) Pixel (%) (SEM) Pixel-Majority (%) (SEM) 

First setting 
Mosaicked

 71.9 ± 0.4 77.8 ± 0.4 72. ± 0.3 78.1 ± 0.2 

Multi flight lines - - 73.4 ± 0.4 82.0 ± 0.2 
Second setting 

with single date 

case 

Mosaicked
 63.7 64.8 64.4 69.1 

Multi flight lines - - 64.6 72.4 

Second setting 

Mosaicked
 51.4 50.3 57.1 58.9 with multidate 

case ∗ 
 Multi flight lines - - 58.6 61.5 

 
 

Pixel accuracy was higher when training and prediction sets used multiple flight lines. The gain 

in accuracy ensuing a majority vote (i.e., going from pixel to pixel-majority level accuracy) is larger in 

the single date settings and also larger when multiple flight lines are used (both for training and 

testing) instead of mosaic. Mosaicked imagery is not only on average slightly less effective but it is also 

more variable at crown level. 

1.8. Comparing ANOVA and LDA Results 

Figure 3 indicates that while normalization improved ANOVA R2 very significantly (10–18 

percentage points) it had only a modest effect on LDA pixel classification accuracy (1–2 percentage 

points). Conversely, spatial filtering brought significant improvement to LDA accuracy (6–10 percentage 

points) irrespective of the processing level considered and also improved R2 albeit less significantly (2–

3 percentage points). Spatial filtering reduced noise and increased both separability and signal to noise 

ratio in each band as expected [44]. Normalisation mostly affected ANOVA results by smoothing out 

effects of variable illumination between pixels, which was confirmed by a slight increase using L1c 

Spa.F, SHAOT and norm., Sha.R data. LDA benefitted less from normalisation 
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probably because it is sensitive to covariation between wavelengths, which may not be as sensitive to 

illumination level. 

Although we focused on mean R2 in ANOVA analysis, the improvement was not homogeneous 

across wavelengths. In some extreme cases processing increased R2 overall while decreasing it in some 

particular spectral window (e.g., Figure 3, normalisation method from 900 nm to 950 nm). This may 

further blur the relationship between mean R2 from single band ANOVA analysis and LDA since the 

net effect of a global increase in R2 associated with a decrease in a particular spectral window may 

affect LDA classification accuracy either way. 

1.9. Spectral Stability Analysis 

Species were differently affected by the date transfer. The most impacted species were Qualea Rosea, 

Licania heteromorpha, Vouacapoua americana and Eperua grandiflora, with a loss in F-measure of 41%, 31%, 

27% and 20% respectively (Table 8). Removal of shadow pixels increased classification accuracy at pixel level 

more than at crown level. 

 
Table 8. Person’s correlation between spectral correlation matrices at each date for two processing pathways, 

corresponding classification F-measure * and spectrum distortion rates (multiple date scenario, see text). L1b and L1c 

refer to L1b Spa.F, norm., Sha.R and to L1c Spa.F, norm., Sha.R data respectively. 

Species 

Person’s 

correlation 

Species Classification F-Measure (%) Distortion 

Segment 
Number 

Single 
Date 

Multi Date Delta Rate (%) 

L1b L1c L1b L1c L1b L1c L1b L1c L1b L1c 

B.prouacensis 0.79* 0.98 90.9 75.0 0 75.0 −90.9 0 4.5 4.2 8 

C.multiflora 0.98 0.97 20.0 36.4 50.0 36.5 30 0.1 5.2 3.7 11 

D.guianensis 0.71* 0.97 78.9 72.7 60.2 68.2 −18.7 −4.5 2.2 1.4 36 

E.falcata 0.99 0.98 82.6 85.4 4.5 65.7 −78.1 −19.7 3.9 2.1 48 

E.grandiflora 0.99 0.93 61.1 66.7 72.7 72.0 11.6 5.3 6.1 2.1 13 

E.sagotiana 0.99 0.92 86.2 85.2 71.0 73.3 −15.2 −11.9 5.6 2.4 65 

G.glabra 0.97 0.96 100 57.1 21.1 40.0 −78.9 −17.1 8.7 9.5 3 

J.copaia 0.90 0.90 57.1 57.1 57.1 57.1 0 0 4.7 3.5 8 

L.alba 0.99 0.93 55.6 62.5 62.5 66.7 6.9 4.2 2.5 1.1 10 

L.heteromorpha 0.99 0.98 16.7 30.8 30.8 0 14.1 -30.8 3.3 1.9 9 

M.coccinea 0.90 0.95 45.5 45.5 30.0 45.5 −15.5 0 5.6 3.4 19 

P.cochlearia 0.99 0.99 78.8 76.5 60.9 74.3 −17.9 −2.2 3.6 1.1 40 

Q.rosea 0.95 0.97 77.8 70.0 46.7 29.2 −31.1 −40.8 5.4 3.1 10 

R.speciosum 0.66* 0.98 91.7 91.7 84.4 91.7 −7.3 0 2.2 1.4 28 

S.rubra 0.99 0.98 94.1 94.1 66.7 77.8 −27.4 −16.3 4.7 3.8 10 

S.sp.1 0.99 0.99 64.3 71.4 45.5 60.9 −18.8 −10.5 4.1 1.8 16 

T.melinonii 0.77* 0.94 90.0 90.0 90.0 90.0 0 0 5.6 3.1 12 

T.capitulifera 0.98 0.92 75.9 80.0 50.0 66.7 −25.9 −13.3 6.3 7.8 19 

V.americana 0.92 0.91 44.4 72.7 20.0 46.2 −24.4 −26.5 6.0 5.4 8 

Global 0.84 0.97     −20.4 −9.7 4.8 3.3  

LDA scaling values (applied to reduced and centered data from date 1) are plotted in Figure 5. 

Figure 5 reveals a close correlation between scaling values with and without atmospheric 

correction. However, the contribution of the 800–1000-nm region is much lower in atmospherically 

corrected (L1c Spa.F, norm., Sha.R) data, especially relative to the visible range. 

Species-specific distortion rates between dates are reported in Table 8. Those rates were higher for 

normalized radiance values than for normalized reflectance (i.e., corrected for atmospheric effects) in 

17 out of 19 species. Remarkably, the distortion rate was contrasted across species (ranging from 1% to 

9.3%). There was a systematic and almost complete reduction of distortion in the 700–900 nm region 

following atmospheric correction, as illustrated for three arbitrarily chosen species in Figure 6. 

Table 8 shows how species signature and discrimination rate (F-measure) were affected by change 

in dates between training and testing data sets for the two best pre-processing pathways. The 

correlation between spectral correlation matrices of date 1 and date 2 are also reported. 
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Figure 5. Sum of absolute scaling values over the spectrum from linear combinations. Blue and red lines represent L1b 

Spa.F, norm., Sha.R and L1c Spa.F, norm., Sha.R data respectively. 

 
Figure 6. Mean normalized radiance (first column) and mean normalized reflectance (second column) for 3 arbitrarily 

selected species. Solid line stands for date 1, dotted line for date 2. Third column represents normalized difference of 

average spectrum using the two acquisition dates. Blue line is for L1b filtered and normalized spectrum and red line for 

L1c SHAOT, filtered and normalized spectrum. The mean distortion rate (over all wavelengths) is given in the upper 

right corner for each curve. 
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The global correlation between spectral correlation matrices at date 1 and date 2 is lower for L1b 

Spa.F, norm., Sha.R data than to L1c Spa.F, norm., Sha.R. For a majority of species, the correlation 

between dates is similar in both processing pathways. For four species this correlation is more than 10 

percentage points lower (marked with an asterisk in Table 8). Species classification F-measure are 

globally more affected using L1b Spa.F, norm., Sha.R data than to L1c Spa.F, norm., Sha.R, and spectrum 

distortion rates are larger. Large differences across species in distortion rates and change in distortion 

rates from L1b to L1c are striking. 

Correlation coefficients, distortion rates and change in F-measure are not strongly related. 

However, in some extreme cases the indicators do appear to vary consistently. For instance Bocoa 

prouacensis, has a much lower correlation coefficient across dates for L1b data than L1c data, it also 

suffers from a stronger reduction in F-measure and a higher distortion rate. 

4. Discussion 
 

1.10. LDA Classification Accuracy 

The impact of different preprocessing pathways on species separability was evaluated both at 

pixel and crown scale. Classification accuracies tend to decrease with the number of classes [45]. The 

classification of 20 tree species is a task of slightly higher complexity than what had been previously 

attempted in studies concerning tree species classification in tropical forests. References [14,20] 

classified seven species and achieved an accuracy of 86% and 87.4% respectively with a lower spatial 

resolution (1.6 m) using HYDICE (HYperspectral Digital Imagery Collection Experiment) airborne 

sensor, which measures radiance between 400 nm and 2500 nm in 210 discrete bands. Ferreira et al. [41] 

classified eight tropical tree species using the full spectrum (400–2400 nm) using airborne AisaEAGLE 

and AisaHAWK instruments, achieving 84.9% overall accuracy of crowns. Feret et al. [15] classified 17 

pure species with SVM (Support Vector Machine) algorithm using RBF (Radial Basic function) kernel 

reaching an overall accuracy around 72%. A pure species was determined by similarity measure based 

on the difference in amplitude and spectral angle, which is a specific approach taking into account 

seasonal and environmental factors. In the above-mentioned studies, there are no species in common 

with those studied here. In our case (Table 4), the accuracy of crown scale classification was 83.3% via 

L1b Spa.F, norm., Sha.R data, and 83.2% for L1c Spa.F, SHAOT, norm., Sha.R, comparable to the results 

of the above-mentioned studies. 

On date 1 crowns were imaged twice and all views were used in the classification thereby 

preserving a greater variability. This proved beneficial for the identification of trees at the crown scale 

compared to the use of a mosaic image (77.8% vs. 82.0%, tested on L1c Spa.F, SHAOT at crown level cf 

Table 7). Moreover, once the classifier is trained on a low variability (mosaicked data) and used for 

prediction on multi flight lines data, the results are similar (77.8% and 78.1% on the object scale). 

Increasing the variability in the learning step improved the performance of the classifier. The gain was 

mostly achieved at crown level after application of the majority filter. Therefore, we found that 

increasing the size of the training set increases the classifier’s performance even if the variability in the 

validation data set increases in parallel. Increasing the size (and variability) of the training set data 

more than compensated for the correlative increase in the size of the data set to be classified. 

Despite the admittedly small sample of species examined, it is worth noting that confusion 

between phylogenetically close species was not systematically higher than between more distant 

species. In particular, species from the same genus (L. heteromorpha and L. alba on one side and 

E. grandiflora and E. falcata on the other) were well separated. 
Regarding the wavelength contributing most to the LDA (Figure 5), we found similarities with the 

results of [46] who used a partial least squares discriminant analysis (PLS-DA) for the identification of 

tree species on a site in South Africa (KwaZulu-Natal). Große-Stoltenberg et al. [47] also report a major 

contribution of the visible range (400–700 nm) to the discrimination of vegetation sampled with hand 
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held spectrometer within a Mediterranean dune ecosystem. They also found a large contribution of 

SWIR range (not included in this study). 

1.11. Simple Methods 

Although physical approaches have a role to play in identifying trees in the canopy through 

atmospheric corrections, other methods that are easier to implement have previously been shown to 

perform well. Shahriari et al. [48] explored Gaussian filtering applied to raw spectrum prior to 

atmospheric correction. Classification accuracy was not systematically improved by filtering. Results 

depended on the smoothing window size and the atmospheric corrections made (either using FLAASH 

or ATCOR). Nevalainen et al. [49] tested normalization (division by the sum of all bands) which 

improved slightly the classification accuracy. In the present study, a spatial filter improved the 

classification in all cases (single date and multi date) as opposed to atmospheric correction alone. The 

average filtering reduced the spatial noise and homogenized the spectral signature of trees. The results 

suggest that noise in the signal remained after atmospheric correction which was later reduced using 

a simple spatial filtering. 

Another part of our study focused on the improvement brought by the removal of shadow (low 

illumination pixels). Lopatin et al. and De Sa et al. [22,50] used an UAV (unmanned aerial vehicles) for 

the classification of invasive species, and reported that shadows have a high negative effect on 

classification. Lopatin et al. [22] identify shadows by histogram thresholding, as also proposed by [51,52] 

at a higher spatial resolution. In the present study, removal of shadowed pixels increased the 

separability both at the pixel and object-crown level. Crown level separability was less significantly 

improved than pixel level suggesting that majority filter contributed to sieve out many shadowed pixel 

in the first place. However, this filtering decreased the number of pixels by c. 20% in the present case. 

Nagendra, H. [53] shows that a classification can be more efficient by smoothing shadowed and well 

illuminated pixels. This may partly explain the accuracy increase when the data is filtered by mean 

filtering, reducing intra-class variability. De-shadowing would allow preserving shadowed pixels but 

may be more difficult to achieve in a consistent way. As high radiometric sensitivity is required to 

analyse shaded pixels radiometrically, such approaches require careful further analysis. 

1.12. Operational Setting 

In an operational perspective, the comparison made between dates is more relevant to consider, 

as this setting is a standard use case. Selecting one part of the imaged area to predict the other (both at 

the same date) yielded a decrease in tree identification rate of about 5% compared to random selection 

of training and testing of individuals (compare Table 4 and Table 6). This was probably due to the 

unbalanced training versus testing set. The split between training and testing sets of the crowns was 

imposed by the actual spatial distribution of the species and resulted in a sub-optimal design (Table 1, 

last column). 

Training on one date and predicting on another date (in a same area) yielded a further decrease in 

tree identification rate of c. 10% point (Table 6). The benefits of atmospheric correction data became 

obvious as full atmospheric correction outperformed simple statistical procedures by 8% (Table 6). 

Hence, despite very similar conditions (single site, same flight time, same cloudiness, and only 24 h 

delay between successive flights) neglecting atmospheric corrections degraded classification accuracy 

very significantly. In a multiple site context, simple standardization that does not consider atmospheric 

variations may not allow effective species identification using a classifier trained on a single site. 

Normalisation of hyperspectral signal through atmospheric correction seems to be required to 

effectively transfer a classifier from one site to another. It should be stressed that other parameters 

affect transferability and should be taken into account. These include phenological changes and notably 

seasonality (transferring from one date to another), degree of similarity of the species communities 

(transferring from one site to another), technical specifications of imager and acquisition parameters (all 

cases) [54]. 
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In addition, the use of multiple flight lines should be preferred over the use of a mosaic image, 

both for the learning and prediction steps (Table 7). The lower accuracy observed in date 2 prediction is 

partly due to the lower redundancy in training data with only 40% of the crowns being viewed twice. 

Intriguingly, species were not equally affected by change in date, and their sensitivity depended 

both on the processing pathway considered and the wavelength considered (Figure 6). 

In our case, the use of ATCOR-4 was primarily motivated by its ability to derive spatially explicit 

AOT estimates (SHAOT method). The SHAOT method for AOT recovery had not been previously 

tested for tree species classification purposes. SHAOT correction did not increase ANOVA R2 and 

notably reduced the variance explained by species identity in the 400–550 nm range (Figure 3, red and 

orange lines). However, the SHAOT method included in the atmospheric correction slightly improved 

tree species discrimination achieved by the LDA, at pixel (0.5%) and crown level (1.0%). 

Overall, the results of this study are very encouraging as a number of improvements are foreseen 

for the near future. First, improved matching of tree crowns (mostly delineated on the LiDAR derived 

canopy height) and pixels may be achieved by better data co-alignment between LiDAR and spectral 

data as shown in [55]. Second, only VNIR data (400 nm to 1000 nm) were used. Ferreira et al. [41] 

reported that the addition of SWIR (Short-Wave Infrared) data improved the identification of species 

of interest by 13% in their study. SWIR data was acquired simultaneously and will be used to enrich 

species spectral characterization. Third, LiDAR derived features such as tree height [56], crown density 

and crown shape may constitute complementary features to include in the species classification [57]. 

Additional information related to pulse distribution or other features extracted from the LiDAR wave 

form have also proven to be useful [58]. Ultimately, more advanced classification methods such as SVM 

or Convolutional Neural Networks may provide some additional improvement in classification 

accuracy. 

Discriminating trees species becomes more difficult as the number of species increases [45]. 

Detecting targeted species within a large set of species, many of which not being identified, is a slightly 

different problem from the one addressed in this study, in which a predetermined subset of species 

had to be sorted out. The former problem is particularly challenging in the case of hyperdiverse 

canopies [13]. Yet it is an unavoidable step to be taken before a reference hyperspectral database for 

the vast number of tropical species becomes available. The extreme species richness of tropical forests 

makes recognition of all species in the canopy a very challenging enterprise, even if those species 

constitute only a subset of the tree species diversity. Futher complication comes from the fact that 

species abundance is extremely variable and that some species are globally or locally rare [1]. However 

mapping diversity patterns does not necessarily rely on species identification. Spatial patterns of species 

diversity can correlate to patterns of spectral diversity [59,60]. 

The majority filter per crown used here requires a pre-segmentation of individual crowns. In the 

present case, crown segmentation was performed manually on high-resolution images and validated in 

the field. However, automatic segmentation of tree crowns from point clouds is becoming effective even 

in dense tropical forests [61] and can be further refined using hyperspectral data [62]. Therefore high 

throughput mapping of selected species in complex tropical forest canopies seems to be a realistic goal 

for the near future. One limitation to automatic detection of targeted species may stem from locally 

abundant lianas and epiphytes, which can strongly affect or even mask out the tree’s specific spectral 

signature. Detection of lianas and characterization of their abundance at crown level seems to be 

tractable [63] but deserves further study. 

BRDF effects caused by anisotropic scattering property, related to view and illumination geometry 

during images acquisition [64], may affect the mapping of tree species. Colgan et al. [43] reported a 

slight improvement using SVM classification after applying a MODIS derived BRDF model to airborne 

hyperspectral data. The spectrum range most impacted by this effect seemed to be in the visible range. 

Correction of such bi-directional reflectance effects may also be required to fully standardize species 

spectral signature, in particular in cases of large variation in Viewing Zenith Angle (VZA). 
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5. Conclusions 

This study confirms earlier ones showing that the discrimination and identification of tree species 

in a hyper-diverse canopy by means of imaging spectroscopy is possible with a high accuracy, even for 

as many as 20 species. A major contribution of our study was to clearly show that the best pre-

processing pathway will likely depend on the particular settings of the study. 

We found that atmospheric correction did not improve the classifier’s accuracy in a single date-

single site setting (as compared to more readily applicable statistical procedures). However, when 

different dates were considered (the classifier trained on one date and tested on another date using 

different trees in training and testing sets) the atmospheric correction provided an obvious benefit, 

improving classification accuracy by 8% at crown level. 

We, therefore, recommend to systematically conduct atmospheric compensation, in order to 

gradually build databases of standardized species spectral signatures. Such databases will be required 

to effectively move towards high throughput species mapping of tropical forest canopies, by allowing to 

circumvent or significantly alleviate the site specific calibration stage of the classifier. Finally, our results 

showed that the use of raw flight lines images improved both training and classifying over the use of a 

mosaic image. We recommend to systematically examine the benefit of using overlapping images for 

species recognition. 
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6. Abbreviations 

The following abbreviations are used in this manuscript: 

CIRAD Centre de coopération internationale en recherche agronomique pour le développement 

LiDAR Light Detection And Ranging 

RGB Red, Green, Blue 

ITC individual tree crowns  

DSM Digital Surface Model  

WGS World Geodetic System 

UTM Universal Transverse Mercator 

EPSG European Petroleum Survey Group 

APDA Atmospheric Precorrected Differential Absorption  

AOT Aerosol Optical Thickness 

SHAOT shadow-based AOT 

BRDF bidirectional reflectance distribution function 

SNR Signal to Noise Ratio 

LDA Linear Discriminant Analysis  

SVM Support Vector Machine 

RBF Radial Basic function  

SWIR Short-Wave Infrared 
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7. Appendix A 

Table A1 shows the discrepancy between two strategies: mean spectrum and majority vote by 

crown. The mean spectrum was computed using the multi flight line. The training was realized as 

described in the classification section. The standard deviation of accuracy using the mean crown 

spectrum computed for the 20 runs was around 4% which it is higher than using majority vote 

procedure (1–1.5%). This is probably due to the much lower number of elementary observations when 

mean crown spectra are used. 

 
Table A1. Summary of mean accuracies and kappa results from data acquired on the 19 September using the 20 most 

abundant species and comparing two strategies: object and majority vote. 

Spectral Average  Majority Vote Accuracy (%) Kappa 

(%) Accuracy (%) Kappa (%) 

L1b 79.4 76.2 75.5 70.6 
L1b Spa.F 79.6 76.4 81.7 78.9 
L1b Spa.F, norm. 81.7 79.0 83 80.5 
L1b Spa.F, norm., Sha.R 81.7 79.0 83.3 80.9 
L1c without SHAOT 79.1 75.7 74.3 68.9 
L1c with SHAOT 79.2 75.9 75.3 70.3 
L1c SHAOT, Spa.F 79.2 75.9 81.9 79.1 
L1c Spa.F, SHAOT 79.4 76.2 82.0 79.3 
L1c SHAOT, Sha.R 79.7 76.5 76.5 71.9 
L1c Spa.F, SHAOT, norm. 81.3 78.5 82.7 80.1 
L1c Spa.F, SHAOT, Sha.R 79.7 76.5 82.6 80.0 

L1c Spa.F, SHAOT, norm., Sha.R 81.4 78.6 83.2 80.8 

 

8. Appendix B 

Figure A1 shows the similarities with the ANOVA results. 
 

Figure A1. SNR (Signal to Noise Ratio) computed for one flight line. 
 

The SNR was computed on one cloudless flight line based on the PARGE method. The algorithm 

applies a high pass filtering on a dark homogeneous ROI (Region Of Interest) and works as follows: 

• Search for the 7 × 7 pixels patch with smallest noise throughout the whole image in each band. 

Treatment 
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• Calculate the mean of the whole image and the mean of the patch 

• Calculate the noise in the found patch after high pass filtering 

• Obtain SNR values as mean reflectance divided by the noise in the patch 

The smallest noise is obtained as the pixel of the minimum squared deviation between of high-pass 

filtered image (with 7 pixel size kernel). The obtained SNRs are a best-guess estimate and should not 

be taken as absolute quality measure for an imaging system. More details are given in PARGE 

documentation [27]. 

9. Appendix C 

A Random Forest classifier was used with 1000 trees repeated 20 times while keeping the same 

methodology used for the LDA classifier (see Table A2). The atmospheric correction and the 

suppression of shadowed pixels have an impact on classification accuracies. Nevertheless, these 

accuracies are lower than using a LDA classifier (about 18% difference, see Table A2 and Table 4). 

Table A2. Summary of mean accuracies and kappa results from data acquired on the 19 September using the 20 most 

abundant species based on a Random Forest classifier. 

Pixel Object 

Accuracy (%) Kappa (%) Accuracy (%) Kappa (%) 

L1b Spa,F, norm, 56.4 21.5 59.0 40.7 
L1c Spa,F, SHAOT, norm, 58.3 28.2 61.7 46.8 
L1b Spa,F, norm., Sha,R 57.3 25.4 60.3 44.0 

L1c Spa,F, SHAOT, norm., Sha,R 59.3 32.6 62.4 48.6 

 

10. Appendix D 

The airborne LiDAR scanning data were acquired at the same time as the hyperspectral data, 

using a LMS Q780 RIEGL. The scan frequency was 400 khz and the final point density was around 33 

pts/m2. The scan angle was between ±30◦. The point cloud was processed to provide geo-referenced 

3D point cloud. The position and orientation of the platform were given by on-board GPS/IMU 

measurements. These parameters provided a point cloud in the WGS84/UTM zone 22N coordinate 

system. Point cloud filtering was done to remove non-valid points. 
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C. Conclusion of the chapter  
This study is in agreement with previous studies, showing the feasibility of species identification. 

In our case, more than 20 species were successfully separated. However, we have highlighted the need 
for preprocessing in order to improve this identification. Comparison between corrected and 
uncorrected data for atmospheric effects revealed that at a site scale atmospheric corrections are not the 
most important corrections. The LDA classifier1 maintained very good performance when developed 
with and applied to radiance spectra. However, when using new acquisitions, atmospheric corrections 
were necessary. We recommend to systematically apply atmospheric corrections in order to build a 
database of species spectral signatures. On the other hand, we found that the use of overlapping images 
(flight strips rather that mosaic) improved classifiers significantly.  

In this first analysis, we used only hyperspectral data using the spectral range between 500nm and 
1000nm. The spectral range between 1000 nm and 2500 nm was not used. This additional information is 
rich and has already enabled more efficient classifications to be made (Clark et al., 2005). 

Another limitation of this work is that it discriminated 20 species amongst one another. However, 
there are hundereds of species in a single ha of tropical forest. The task of identifying trees in tropical 
forests among a great variety of plants is a much more complex challenge which will be dealt with in 
the next chapter. 
  

                                                           
1 There was a mistake in the parameterizing of the LDA classifier in this study. The prior 

probabilities used were defined based on the species relative abundance (instead of setting them to a 
constant value). After noticing the error, we rerun the calculations which produced numerically diferent 
results but did not affect the results qualitatively. 
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VIII. Chapter 2: Specific identification of plant species in tropical 

environments in a hyper-diverse context 

A. Introduction: 
The identification of tropical forest tree species on spectral iagery is feasible. As shown in the 

previous chapter, the results are acceptable if we try to identify one species among twenty other species 
even when restricting the spectral range to 500 nm to 1000 nm. 

In an operational configuration, the managers of Guyanese forest areas must identify a species from 
among a wide variety of flora. The problem is much more delicate, because the classifier must identify 
what discriminates a particular species from a whole set. To take a comparison builing on object 
recognition, the simple case would amount to finding the car brand among all cars and the complicated 
case would be to find the car brand among all motor vehicles. Thus, the objective is to find an approach 
which would make it possible to identify a species of commercial interest on the entire image acquired. 
To improve our chances of discriminating one species from the others, we used the entire spectral range 
(from 500 nm to 2500 nm). We test the efficacy of our classifiers by predicting stocking per psecies per 
plot in the Paracou experimental. For this step we used LiDAR based segmentation of individual crowns. 
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Abstract: Tropical forests have exceptional floristic diversity, but their characterization remains 

incomplete, in part due to the resource intensity of in-situ assessments. Remote sensing technologies 

can provide valuable, cost-effective, large-scale insights. This study investigates the combined use of 

airborne LiDAR and imaging spectroscopy to map tree species at landscape scale in French Guiana. 

Binary classifiers were developed for each of 20 species using linear discriminant analysis (LDA), 

regularized discriminant analysis (RDA) and logistic regression(LR). Complementing visibleand near 

infrared (VNIR) spectral bands with short wave infrared (SWIR) bands improved the mean average 

classification accuracy of the target species from 56.1% to 79.6%. Increasing the number of non-focal 

species decreased the success rate of target species identification. Classification performance was not 

significantly affected by impurity rates (confusion between assigned classes) in the non-focal class 

(up to 5% of bias), provided that an adequate criterion was used for adjusting threshold probability 

assignment. A limited number of crowns (30 crowns) in each species class was sufficient to retrieve

correct labels effectively. Overall canopy area of target species was strongly correlated to their basal 

area over 118 ha at 1.5 ha resolution, indicating that operational application of the method is a realistic 

prospect (R2 = 0.75 for six major commercial tree species).

Keywords: tropical forest; species diversity; hyperspectral; LiDAR

1. Introduction

Tropical forests are a major terrestrial plant biodiversity reservoir [1]. The preservation of this 

biome is therefore globally important. Persistent deforestation [2] is resulting in drastic declines in 

biodiversity. From 2000 to 2010, logging in natural forests removed approximately 5% of the world’s 

forest area [3]. While the biggest drivers for biodiversity change [4] have been shown to be land use 

change and climate change, logging impact on the biodiversity of various taxonomic groups 

(mammals, birds, amphibians) is also well documented [5]. Logging impact is not restricted to the 

removal of a few commercial stems per ha, but also includes damage associated with opening tracks 

to access to the logging area. Untargeted trees can be wounded in the process of timber felling and 

hauling, contributing to carbon release [6] and possibly slowing forest recovery rate [7] by favouring 

fast-growing species such as lianas [8,9]. Logging may therefore profoundly modify the floristic
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composition of the exploited plot [10] while disturbing wildlife [11,12]. Proper management of tropical 

forests is therefore crucial to mitigate the erosion of biodiversity [13]. 

Remote sensing technologies can provide valuable information for the preservation of tropical 

forests. Large-scale species distribution maps may provide valuable insights into species autecology and 

species population dynamics. Imaging spectroscopy has proven useful in monitoring the development 

of invasive species [14–16]. From a forest management perspective, evaluating abundance and spatial 

distribution of commercial species will help prioritize areas to be set aside for regeneration purposes 

and biodiversity conservation, or simply because there is not enough commercially valuable resource 

for logging operations. Accurate mapping of species prior to opening roads and tracks can therefore 

support the development of reduced impact logging techniques by minimizing the detrimental impact 

on soil and forest cover and contributing to protect and maintain forest diversity [17]. This technology 

is particularly well adapted to tropical forestry, since trees of commercial interest are typically large, 

upper canopy trees (dominant or emergent) but making up a small part of the entire tree community. 

The efficacy of tree species discrimination in tropical forests via airborne imaging spectroscopy has 

been demonstrated [18–22]. At leaf scale, part of the SWIR1 domain (1467 nm to 1771 nm) was found to 

support accurate species identification. The SWIR2 domain (1994 nm to 2435 nm) was also found to be 

important in discriminating species at crown level [23]. A study conducted in semi-deciduous tropical 

forest [24] reported that including SWIR information (1045 nm to 2395 nm) improved their classification 

accuracy from 64.2% to 79.8%. While extending the spectral range increases the discriminative power 

of hyperspectral imagery, it has known drawbacks. Sensors limited to the VNIR domain are lower cost, 

more widespread, more easily miniaturized to mount on UAV platforms and have better intrinsic 

performance (higher signal-to-noise ratio). Hence, the balance between costs and benefits of increasing 

the spectral range should be assessed with respect to the specific task considered. 

Improved accuracy has been reported from performing classification at the crown level as 

opposed to the pixel level [22,25,26]. However, segmentation of individual tree crowns (ITCs) in dense 

canopies remains a difficult task. Light detection and ranging (LiDAR) can help considerably. A recent 

benchmark study comparing crown segmentation methods using the LiDAR point cloud of a dense 

tropical canopy [27] identified AMS-3D (Adaptive Mean Shift in 3 Dimensions) as the most effective 

method. LiDAR and hyperspectral data fusion may further improve our ability to distinguish 

individual crowns [28]. 

Most studies in tropical forest so far have focused on discriminating a limited number of species 

against one another. In the present study, we are interested in retrieving a few target species amongst a 

very large number of non-focal species. To this end, one might consider focussing the annotation effort 

on the well-known more easily recognized focal species. This raises the question of the definition of 

the non-focal species class. A random sample of pixels of the area may capture the diversity of species 

in the background but will most likely include pixels of the focal species as well. Standard measures of 

accuracy such as F-measure then become inappropriate during the training stage due to this possible 

source of bias. A new unbiased criterion was proposed to replace the F-measure in such settings [29] 

It is based on the evaluation of the focal class (given by the recall metrics) divided by the probability 

that a sample is classified in the focal class among the non-focal class. This methodology was applied 

to identify five species on Barro Colorado Island (BCI) [19]. In the latter study, the authors did not 

specifically study the sensitivity of the classifier to the level of bias (impurity of the non-focal class). 

Finally, we go beyond individual tree classification accuracy evaluation by exploring how well one 

can predict the cumulative basal area of commercial species per unit area from imaging spectroscopy 

to truly tackle the issue of quantitative forest resource mapping. 

Our study starts by examining the benefits of using a SWIR sensor (1000 nm to 2500 nm) in 

conjunction with a VNIR sensor (400 nm to 1000 nm) for tree species discrimination. We then move on 

to the core of our study, which is to evaluate the potential of hyperspectral imagery in an operational 

setting. We first explore for 20 locally abundant species how much the retrieval rate may depend on 

the diversity of the set of species among which the target species are mixed. We compare the 
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performance of different binary classifiers developed to retrieve target species from wide views of the 

forest canopy after delineating individual tree crowns using LiDAR data. We further examine the 

impact of mislabeling of the focal and non-focal classes on the different classifiers’ performance. We also 

briefly examine the impact of the size of the training set representing the species of interest. We finally 

compare hyperspectral predictions of basal area per species to a large ground inventory database. 

2. Materials and Methods 
 

1.1. Study Site 

The study site of Paracou (5◦18JN, 52◦53JW) was established during the 1980s in French Guiana. 

The main objective of the experimental set-up was to document the impacts of different silvicultural 

practices on the dynamics of a tropical rainforest in order to provide guidelines for its sustainable 

exploitation [30]. Seventy-six 125 × 125 m plots (118.75 ha) are regularly monitored (stem girth and 

vital status being recorded). All trees with a diameter at breast height (DBH) higher than 10 cm have 

been identified to species level (or higher order taxon level if species was unknown). At the onset of 

the experiment, all the trees were geo-located using a meter tape after materializing a 12.5 × 12.5 m 

grid on the ground using strings. Tree location accuracy was estimated to be +/− 2 m. 

1.2. General Methodology Outline 

The general methodology is outlined in Figure 1. LiDAR data was used to segment crowns 

(Section 2.4.1) over the entire area of interest (118.75 ha). Manual segmentation (Section 2.3.3) and 

ground referencing was used to build a reference spectral signature database and species-specific 

allometric models. Inventory data (Section 2.4.2) were then paired with the automatically segmented 

(Section 2.4.1) crowns based on size and geolocation congruence. 

 

Figure 1. General methodological outline illustrated for a sample plot. The inventory data (green points) are 

paired with the automatically segmented crown (orange outline). Pairing is based on an allometric model 

developed from manually segmented crowns (black outline). In the segmented and colorized image, the green 

segment is one potential crown of the focal species; in grey, the neighbouring crowns that are also masked to 

make sure all pixels of the focal class are removed (striped segments) from the data set; in blue, the crowns 

preserved. 
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The spectral signature database was used to train the binary classifiers, developed for each focal 

species (Section 2.5). The automatically delineated and labeled segments were used to mask the focal 

species across the whole area of the permanent plots to ensure a high level of purity of the non-focal 

class. To ensure that the non-focal class contained as few pixels as possible from the focal class, we 

considered a buffer around the crowns determined by the automatic assignment as belonging to the 

focal class. All contiguous segments and the segment itself were excluded from the training and 

testing sets (Figure 1). 

1.3. Remote Sensing Data 

 

1.3.1. Hyperspectral Imaging 

Imaging spectroscopy data was acquired with a Hyspex VNIR-1600 and a Hyspex SWIR-384 

(Hyspex NEO, Skedsmokorset, Norway) sensor. The VNIR-1600 sensor covers the range from 414 nm 

to 1000 nm with 160 spectral bands and a spectral sampling distance of 3.64 nm. The SWIR-384 sensor 

covers the range from 1000 nm to 2500 nm with 288 spectral bands and a spectral sampling distance 

of 5.45 nm. The entire spectral range of the VNIR sensor was used. The information acquired in the 

SWIR domain is sensitive to atmospheric water absorption, so the spectral information corresponding 

to the low signal-to-noise ratio domains was discarded. Finally, the following spectral windows were 

kept: for the SWIR domain: 1009 nm to 1318 nm, 1454 nm to 1796 nm and 1964 nm to 2458 nm. Hence, 

195 SWIR bands were retained. The King Air B200 airplane flew at an average altitude of 920 m. The 

flight took place on a cloudless day (from 15:00 to 17:00, solar time) on the 19th September 2016. Images 

were orthorectified and georeferenced with the PARGE software [31] using the canopy DSM (digital 

surface model) produced from the LiDAR point cloud (see next section). The DSM was created from 

the point cloud by selecting point of maximum height on a 1-m resolution grid. The spatial resolutions 

of the VNIR and SWIR images were 1 m and 2 m respectively. In order to merge the data without 

degrading the spatial resolution of the VNIR imagery, we resampled the SWIR imagery at 1 m using 

the nearest neighbor method. In addition, the fields of view of the two sensors are not identical (17◦ 

and 16◦). We constrained the spectral information to the narrowest field of view corresponding to the 

one of the SWIR sensor. In the end, we obtained VSWIR imagery covering the entire spectrum (414 

nm to 1963 nm) corresponding to 355 bands. Spectral information used to train the species classifiers 

was extracted from flight lines rather than from a mosaic, as it was previously shown to be more 

effective [22]. Although the training was carried out on the flight lines, the prediction was done on the 

mosaic where the pixels with viewing angle closest to vertical were kept (“center cropped” option of 

PARGE software [32]). 

Atmospheric correction was applied using ATCOR-4 software [31]. The water vapor was retrieved 

using the APDA (atmospheric pre-corrected differential absorption) algorithm. The aerosol optical 

thickness (AOT) represents the amount of aerosols in the entire column of the atmosphere. It was 

considered constant. Non-vegetated pixels were identified based on NDVI (normalized difference 

vegetation index) thresholding, following recommendations for wavelength selection given in [33]. 

 

6789 = :;;< > :2;2:;;< ? :2;2 (1) 

Pixels with NDVI values higher than 0.4 were considered vegetation. Then, we applied a spatial 

mean filtering and a spectrum normalization by the mean as described in [22]. The illumination ratio 

was used to remove pixels with a scaled shadow fraction value higher than 0.6. 

1.3.2. LiDAR Data and RGB Imagery 

Airborne laser scanning data and RGB imagery were acquired during the same flight as the 
hyperspectral data. The LiDAR system was an LMS Q780 RIEGL operated with the following 

characteristics: a scan frequency of 400 kHz, a scan angle of +/− 30◦. Neighbouring strips overlapped 
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by 90%. Final mean pulse density was 33 pulses·m−2. In addition, RGB (red, green, blue) imagery was 

acquired during the same flight using an iXu 180 Phase One camera. The final spatial resolution of the 

RGB orthorectified mosaic was 10 cm. 

1.3.3. Ground Reference Data 

A field survey was conducted to build a large ground reference dataset distributed over 56 of 

the 76 plots monitored on the study site (87.5 ha). Easily discernible crowns were first delineated 

manually based on the canopy height model (CHM), derived from LiDAR data with the help of the 

high-resolution RGB mosaic. The correct delineation of these ITCs was then validated in the field and 

the corresponding species ascertained. The 20 most abundant species in the delineated ITC dataset 

represented 1297 ITCs with a minimum of 24 individuals per species. Another 949 crowns were 

delineated, corresponding to 226 species. In total, the labeled database contained 2246 trees (Table 1). 

Most crowns were imaged twice by hyperspectral sensors because of the overlapping flight lines. The 

normalized mean spectra and its standard deviation for the most abundant tree species is illustrated 

in Figure 2. 

 
Table 1. List of target species, and corresponding number of crowns and total number of pixels retained for 

analysis (each crown was imaged twice, but some pixels were removed due to low illumination or NDVI values). 

Sample representation refers to the proportion of manually segmented crowns of a given species. Mean crown 

area followed by standard deviation in brackets. Commercial species are underlined. 

Species (Acronyms) 
 Number of 

Crowns 
Number of 

Pixels 

Mean Crown 
Area (m2) 

(SD) 
Sample Representation (%) 

Qualea rosea (Q.r.) 206 27,828 109.5 (59.4) 9.2 

Pradosia cochlearia (P.c.) 164 38,349 142.3 (122.5) 7.3 

Eschweilera sagotiana (E.s.) 139 12,559 49.1 (29.0) 6.2 

Dicorynia guianensis (D.g.) 108 18,589 102.7 (66.8) 4.8 

Eperua falcata (E.f.) 106 15,355 71.7 (41.3) 4.7 

Eperua grandiflora (E.g.) 74 10,859 87.3 (46.2) 3.3 

Recordoxylon speciosum (R.s.) 69 7944 69.6 (26.2) 3.1 

Tachigali melinonii (T.m.) 51 6745 106.2 (67.1) 2.3 

Couratari multiflora (C.m.) 49 4850 55.1 (33.8) 2.2 

Licania alba (L.a.) 46 3894 47.0 (18.4) 2.0 

Symphonia sp.1 (S.s.) 34 3355 50.2 (20.1) 1.5 

Vouacapoua americana (V.a.) 34 3218 65.4 (34.0) 1.5 

Sextonia rubra (S.r.) 32 4070 118.5 (99.3) 1.4 

Tapura capitulifera (T.c.) 32 1224 30.5 (12.2) 1.4 

Licania heteromorpha (L.h.) 27 1437 40.3 (21.7) 1.2 

Moronobea coccinea (M.c.) 27 3355 68.8 (36.7) 1.2 

Inga alba (I.a.) 26 3846 81.3 (58.7) 1.2 

Goupia glabra (G.g.) 25 4998 133.7 (77.3) 1.1 

Bocoa prouacensis (B.p.) 24 2375 54.9 (35.8) 1.1 

Jacaranda copaia (J.c.) 24 1705 40.4 (22.7) 1.1 

Others 949 84,713 80.8 (71.6) 42.3 

 

In the 20 plots where no manual segmentation of ITC was done, 532 species were recorded for a 

total of 19,379 trees. 
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Figure 2. Normalized mean reflectance spectra (and standard deviation) for six focal species estimated on 

manually segmented crowns. 

1.4. Automatic Segmentation Method 

 

1.4.1. AMS-3D Method 

We applied AMS-3D [34] to the LiDAR data for ITCs segmentation. The AMS-3D algorithm 

considers the point cloud as a multi-modal 3D distribution where each mode corresponds to the location 

of a tree crown. To find the modes, a Pollock function was used as bandwidth [35], with parameters 

changing with points’ height to allow higher crowns to be bigger [34]. Points converging to the same 

mode were attributed the same ITC. The 3D clusters corresponding to each crown were then projected 

vertically to obtain polygons. The point cloud segmentation was conducted with the Computree 

platform (http://computree.onf.fr/), and the projection with the R package lidR [36]. 

1.4.2. Correspondence between ITC and Inventory Data 
The automatically segmented crowns were then paired with the inventory data, using a pairing 
algorithm based on allometric relation and distance between the crown and the stem [27]. First, using 
data from the manually segmented crowns, we modelled each tree DBH as a function of crown 
diameter, height and taxon:  

 

 @AB7CD5E = FGH) ? IGH)@ABD5 × J75E ? K (2) 

 K L MBN, O5PE (3) 

where DBHi is the DBH (cm) of tree i of species spi, Hi is its height, CDi its crown diameter, and ε the 

error term. We then computed the distance between each manual segmented crown and all trunks of 

the inventory, computed the distance ranking of the trunk associated with the crowns, and fitted an 

exponential distribution on the ranks: 

Q5,R "= "FS-TU),V  (4) 

where ri,j is the rank of tree j associated with crown i, and α is the parameter of the exponential 

distribution. Then, we developed an algorithm to optimally pair a crown with a tree from the inventory 

using the model previously parameterized. This algorithm takes two types of information into account: 
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(i) the distance between the crown center (computed as the 2D-centroid of crown projection) and the 

trunk location in the inventory should be close, and (ii) the tree should obey the allometric relation 

between the crown size and the trunk diameter. We considered those two rules to apply independently, 

neglecting a possible dependency of crown trunk distance on tree size. The pairing algorithm pairs 

each crown with the tree with highest: 
 W5,R ="Q5,R X Y5,R (5) 

where gi,j is the density function of the allometric model. Stems were ordered by decreasing DBH, and 

they were paired one after another in that order, with the segmented crown having the largest di,j in 

the neighbourhood of the stem (15 m). When a crown was allocated to a stem, it was no longer 

available for others. Details of the algorithm can be found in [27]. 

1.5. Classification Method 

We compared three classification methods for tree species identification: linear discriminant 

analysis (LDA), regularized discriminant analysis (RDA) and logistic regression (LR). We used the 

python language and the sklearn library [37]. The optimization of hyperparameters for the LR required 

considerable computing power. We used a Singularity container [38] and ran the code on a cluster of 

computers. 

The LDA classification algorithm is well adapted to classification problems in high-dimension 

feature spaces provided that the number of observations is larger than the number of features in the least 

abundant class [39]. The principle of LDA consists in calculating new variables called discriminating 

canonical variables as linear combinations of the initial variables. It is calculated to maximize the ratio 

of the inter-group variance to the intra-group variance. 

RDA is a compromise between LDA and quadratic discriminant analysis (QDA). QDA is a variant 

of LDA, the former being better adapted for non-linear separation. LDA assumes multivariate normal 

distribution of features with a common covariance matrix and different mean vector for each class. 

As shown by [40], LDA is not sensitive to the normal distribution assumption. Nevertheless, when the 

assumption of common covariance matrix is not satisfied, the individual covariance matrix for each 

group should preferably be estimated. This specific step characterizes QDA. The discriminating 

boundaries of the QDA are quadratic curves. The intermediate method between the two gives the 

RDA method proposed by [41] and makes it possible to regularize group covariance matrices, while 

preserving its performance in multi-dimensionality [42]. 

The assumptions of multivariate normality and equal variance–covariance matrices between 

groups are required before proceeding with LDA. On the contrary, in LR, these assumptions are not 

made. The authors of [43] showed in a bivariate case that in binary classification LR would be more 

efficient as soon as the normality assumption would be violated. A regularization term penalizing 

large values of the parameters was considered to avoid possible overfitting during the training step. 

A penalty parameter controlling the relative cost of errors occurring in the two classes was also tuned. 

We used a grid search to find the best combination of hyper-parameters C (regularization) and wc 

(relative focal class weight) over the values C {e0, e1, e2, . . . , e6 } and wc{1,2, . . . ,10 }. In case of bias 

(impure non-focal class), we used the criterion of [29], otherwise we used the F-measure metric (see 

below). 

1.5.1. Classifier Evaluation Criteria 

To assess the reliability of the binary classifier, the F-measure was the chosen accuracy measurement. It 
relies on the estimation of the precision and recall of the class of interest. F-measure was used instead of 
accuracy due to the difference in proportion between the classes. The precision is the number of correct 
positive results divided by the number of all positive results returned by the classifier, 
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and the recall is the number of correct positive results divided by the number of all relevant samples 

(all samples that should have been identified as positive). 

 

Z >measure = [ × precision × recallprecision ? recall  (6) 

\recision = ! ]\! B]\ ? Z\E (7) 

^ecall = ! ]\! B]\ ? Z_E (8) 

TP, FP and FN refer to true positive, false positive and false negative, respectively. 

For comparison between LDA, RDA and LR, we used the exact same randomly sampled training 

and testing sets. 

1.5.2. Optimization Step 

All classifiers used in this study output a probability for a pixel of belonging to the focal class, 

which is defined by the maximum likelihood. The threshold used for assignment to the focal class can 

be refined by using a specified criterion, to improve the classification performance. We used different 

criteria for the standard (unbiased) case and when the non-focal class was impure. In the standard 

case, we sought to maximize the pixel level F-measure. When dealing with the mislabeled non-focal 

class (i.e., when the non-focal class contained pixels of the focal class), true precision was unknown, 

so we sought to maximize the following quantity [29]: 

`Sbd@@PfBgBhE = jE (9) 

where the Recall is recall of the accuracy and P[f (x) = 1] is the probability that a sample is classified in 

the focal class. 

1.6. Experimental Set-Up 

We present four different experiments. All classifiers considered in this study were binary 

classifiers; i.e., a particular focal species is classified against a large set of non-focal species. As a rule, 

we separated the data into 70% of the crowns used for the training set and 30% for the test set (Figure 3) 

repeating the operation 30 times. We provide the mean and the standard deviation of the F-measure. 

We first compared classification performances obtained when using spectral information from either 

VNIR or VSWIR on the 20 most abundant species only (Experiment 1). Then, we explored how the 

performance of the classifier would be affected by gradually increasing the number of species 

among which our focal species was retrieved (Experiment 2). In a third experiment, we explored 

the sensitivity of the classifiers to different types of errors affecting the training data (labeling errors) 

(Figure 3, Experiment 3). In a final test (Experiment 4), we predicted the basal area of focal species per 

1.56 ha plot from the hyperspectral data. 
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Figure 3. Nested datasets are used as illustrated in the leftmost chart. Flowchart 1 refers to Experiment 1. 

Flowchart 2 illustrates how classifiers were penalized by contamination of the non-focal class (Experiment 3). 

1.6.1. Experiment 1—VNIR versus VNIR+ SWIR 

We assessed the effectiveness of adding SWIR bands to the VNIR spectrum. We used manual 

segmentation data and we selected the 20 most abundant tree species (Figure 3, 1). The same pixels 

were used to build training and test sets (70%–30%) for VNIR and VSWIR data. For this first experiment, 

none of the three classification methods were subject to secondary optimization. 

1.6.2. Experiment 2—Increasing Background Spectral Diversity 

The same 20 focal species were considered for this experiment, but we gradually added more 

species to the non-focal class. We first added the crowns of the most abundant species present in the 

manually segmented crowns database, up to 99 different species. We then added all the remaining 

crowns from the manual segmentation database (each crown being the sole representative of its species) 

in arbitrary order. Thereby, the 364 different species were opposed to each of the 20 species alternately. 

For this first experiment, LDA was used, without an optimization step. 

1.6.3. Experiment 3—Effect of Noise in the Training Data 

In an operational case, the inventory effort will likely be focused on few target species. Thus, the 

other non-focal species will not be systematically inventoried. Therefore, to train the classifier, the 

non-focal species class will be represented by a random selection of pixels over the entire study area 

(excluding crowns known to belong to the focal species). However, the probability for a pixel of the 

focal class of being selected and contributing to the non-focal class is dependent on the distribution of 

this species in the study area, viewed at canopy level. 

To assess the impact of a given level of mislabeling of the non-focal pixels, we artificially biased 

the learning data set (Figure 3, 2). We randomly selected 100,000 pixels from the background, excluding 

the focal species to create the training set for the non-focal species. We simulated three level of bias in 

the training data by successively replacing 1%, 2% and 5% of the pixels labeled as belonging to the 

non-focal class with pixels taken from crowns of the focal species class. 

We also explored the potential impact of mislabeling of the focal pixels, reckoning that such 

errors may occur regardless of the efforts made in the field (identification errors, matching errors, 

etc.). We used Mahalanobis distance to detect outliers among the 20 most abundant species in the 

manually segmented crown database. For each species, we computed this multi-dimensional distance 

for each pixel, we then computed the mean Mahalanobis distance per crown. Crowns beyond two 

standard deviations were considered as pseudo-outliers and removed from the database. Binary 
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x − u 

classifications using all the information (including pseudo outliers) were then compared to those 

excluding pseudo-outliers. 

Mahalanobis distance is a multi-dimensional distance measure between a point and a distribution. 

This distance d(x) can also be defined as a dissimilarity measure between a vector and a mean vector 

from the same distribution: 

QBhkE = "qBhk > tvkEwx Bhk > tvkE-1 " (10) 

where x is a spectrum, u the mean spectrum, Σ is the variance–covariance matrix. 

1.6.4. Experiment 4—Predicting Basal Area per Species per Plot 

The ground inventory data comprised 76 plots of 1.56 hectares. For each plot, we compared the 

canopy surface predicted per species (at crown and pixel level) by the best-performing classification 

method and the basal area of the species using a linear regression. The learning step used all the 

information on the focal species which was available in the manually segmented crown database to 

build the focal class and 100,000 pixels randomly selected from the same 56 plots. Hence, 20 plots (c. 

25% of the area) were set aside to be used for independent validation. The learning step used 100,000 

pixels from flight lines, while the prediction was realized on the mosaic. 

We compared prediction of the three classifiers applied with and without an optimization step 

and with or without majority vote at crown level. The majority vote rule was applied to decide on the 

species label to be assigned to ITCs, which corresponded to a filling rate higher than 50% of the pixels. 

We present the results obtained with the LDA only. The basal area considered here is the basal area of 

all trees with DBH greater than 10cm. It may be noted that smallest trees will not be visible in the areal 

imagery. 

3. Results 
 

1.7. Experiment 1 

The combination of VNIR and SWIR information strongly improved the performances of all 

classifiers compared to VNIR information only, with an increase in F-measure of 23.8%, 27.3% and 

19.4% for LDA, RDA and LR respectively. The contribution of SWIR was very important for all species. 

The difference between LDA and RDA was not significant in this case. All species were rather well 

identified (F-measure never lower than 59%). LR did not outperform LDA nor RDA. 

Moderate differences in performance were observed between classifiers when only the VNIR 

information was used. LR performed slightly better than the other two methods except for Eschweilera 

sagotiana (70% vs. 79%) and RDA appeared to perform slightly worse, particularly at pixel level 

(Appendix A). The change from pixel to object level was confirmed to be very beneficial. LDA gained 

the most from the majority vote, with an increase of 15.5% in F-measure using the complete VSWIR 

information (Table 2). 

 
Table 2. Comparison of the F-measure at object level (and standard deviation) obtained after classification with 

the three methods when either VNIR or VSWIR information are used. Commercial species are underlined. The 

best prediction for each species with either VNIR or VSWIR information is in bold. 

 
 VNIR VSWIR 

 

Species 
LDA RDA LR LDA RDA LR 

B.p. 25.4 (±11.6) 22.3 (±8.5) 26.4 (±7.2) 66.9 (±11.3) 83.3 (±10.4) 61.0 (±18.0) 
C.m. 66.7 (±13.2) 64.8 (±13.5) 67.5 (±11.0) 75.0 (±10.7) 67.9 (±9.9) 77.0 (±8.4) 
D.g. 61.2 (±4.5) 61.3 (±4.7) 69.2 (±7.0) 88.6 (±2.5) 86.3 (±3.6) 90.3 (±2.4) 
E.f. 46.9 (±5.5) 7.3 (±2.5) 29.6 (±9.6) 70.0 (±5.8) 72.9 (±8.2) 73.9 (±6.7) 
E.g. 63.1 (±6.4) 61.8 (±7.4) 79.4 (±5.0) 82.1 (±5.3) 87.6 (±4.4) 89.7 (±3.6) 

       

       

       

= 
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E.s. 79.0 (±3.3) 72.8 (±5.3) 70.6 (±7.3) 89.6 (±2.8) 89.3 (±1.9) 86.4 (±2.1) 
G.g. 44.3 (±8.9) 63.3 (±12.1) 67.6 (±12.9) 84.1 (±7.3) 83.9 (±12.0) 80.4 (±12.7) 
I.a. 44.4 (±14.2) 49.4 (±15.6) 62.7 (±17.2) 77.6 (±10.0) 76.3 (±8.5) 66.0 (±16.0) 
J.c. 58.4 (±16.7) 59.2 (±12.6) 57.1 (±16.6) 59.2 (±19.1) 58.2 (±18.1) 70.2 (±16.8) 
L.a. 55.9 (±10.0) 62.9 (±10.7) 62.6 (±11.4) 78.1 (±4.5) 79.6 (±9.5) 74.6 (±9.1) 
L.h. 22.2 (±8.0) 16.7 (±0.0) 20.0 (±0.0) 65.2 (±11.3) 60.7 (±13.7) 49.0 (±14.6) 
M.c. 64.5 (±11.4) 52.7 (±14.3) 64.1 (±13.3) 82.8 (±10.9) 74.7 (±17.4) 79.7 (±12.7) 
P.c. 80.5 (±4.2) 83.6 (±3.8) 88.4 (±3.3) 93.5 (±1.9) 93.6 (±1.9) 94.1 (±1.6) 
Q.r. 94.8 (±1.6) 94.6 (±1.5) 95.6 (±1.2) 96.9 (±1.1) 96.2 (±1.4) 97.2 (±1.1) 
R.s. 84.9 (±6.0) 81.4 (±5.0) 90.0 (±4.7) 91.4 (±3.3) 87.1 (±6.1) 90.6 (±3.8) 
S.r. 55.0 (±9.2) 50.6 (±14.5) 53.7 (±13.2) 77.6 (±11.5) 82.9 (±8.4) 85.2 (±7.3) 
S.s. 24.0 (±0.0) 0.0 (±0.0) 11.3 (±0.0) 64.0 (±11.7) 68.9 (±12.1) 50.5 (±13.7) 

T.m. 73.3 (±7.7) 79.2 (±6.0) 84.1 (±5.6) 93.5 (±4.1) 93.3 (±4.3) 93.4 (±4.1) 
T.c. 35.4 (±8.7) 17.1 (±4.0) 38.2 (±14.1) 82.6 (±8.9) 72.7 (±11.8) 83.5 (±9.8) 
V.a. 48.7 (±13.8) 52.8 (±13.7) 43.0 (±14.7) 85.1 (±8.3) 83.8 (±10.0) 77.1 (±10.1) 

Mean F-measue 56.4 52.7 59.1 80.2 80.0 78.5 
 

 
1.8. Experiment 2 

We gradually added crowns from new species to increase the spectral variability of the non-focal 

class. We used an LDA binary classifier to retrieve each of the 20 most abundant species. No 

optimization was applied. We present the results at object level (following majority vote). 

The overall trend in Figure 4 highlights that increasing the number of species degraded the 
classifier’s performance. Some species were highly affected (e.g., Eschweilera sagotiana); others were 
only slightly affected (e.g., Qualea rosea). Increasing the number of species from 99 to 364 significantly 
affected discrimination of all target species. F-measure for Qualea rosea, the best-identified species, 
decreased from 88.6% to 84.9%, a loss of about 4% points. 

 

Figure 4. Evolution of species discrimination by successive addition of new species. F-measure value is 

smoothed using a five-step moving average, except after the 99th species when all remaining species were 

added at once (red box). Commercially valuable species are plotted in bold line. 

The F-measure value for the species Licania alba, Licania heteromorpha and Inga alba declined sharply 

with the added species. In these cases, the focal species was well retrieved (the recall was higher than 

70%), but the precision was very low (a lot of pixels were wrongly predicted to belong to the focal 

class). 
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1.9. Experiment 3 –Exploring the Impact of Training Set Impurity 

To evaluate the impact on the classification performance of mislabeled pixels in the non-focal 
class, we applied different levels of contamination bias (1%, 2% and 5%). 

1.9.1. Low Level of Impurity (All Species) 

We first examined to what degree the different classification methods were affected by a low level 

of impurity of the non-focal class, and whether optimizing the pixel threshold based on the criterion 

proposed by [29] could mitigate this bias. 

A noise of 1% had no significant effect on the identification of species, whether an optimization step 

was used or not (Table 3). When no optimisation was applied, LDA was outperformed by the other two 

methods for most of the species. For some species, LR was more efficient (e.g., Pradosia cochlearia) while 

for other species (e.g., Sextonia rubra) RDA performed best. Once optimized, all methods performed 

on a par in this experiment. 

 
Table 3. Object level F-measure (and its standard deviation in brackets) of species binary classifiers trained with 

1% mislabeling of the non-focal class. Plain and optimized indicate whether an optimization step (selecting a 

threshold probability value) was applied to maximize either the F-measure (0% contamination) or the Lee and Liu 

2003 criterion (1% contamination). Standard deviation is given in Appendix B. The best prediction for each 

species and method is in bold. 

Bias 
0% 1% 

Plain Optimized Plain Optimized 

Species LDA RDA LR LDA RDA LR LDA RDA LR LDA RDA LR 
B.p. 35.8 (±10.3) 57.7 (±12.4) 37.5 (±15.5) 65.4 57.5 42.1 36.4 58.5 43.4 64.3 56.2 43.0 
C.m. 68.3 (±10.8) 64.7 (±10.1) 68.0 (±10.5) 69.8 68.3 71.4 67.4 65.1 66.5 69.8 68.0 69.4 
D.g. 57.7 (±3.9) 72.3 (±6.0) 78.2 (±6.1) 75.8 72.0 78.5 57.5 72.6 78.2 74.8 72.2 78.3 

E.f. 50.8 (±4.1) 67.7 (±6.1) 69.2 (±6.2) 71.5 68.9 70.5 51.5 67.9 68.0 72.1 69.2 70.5 
E.g. 65.1 (±7.0) 82.0 (±5.3) 84.4 (±4.6) 82.4 82.7 84.8 64.9 81.9 82.5 82.0 82.5 84.7 
E.s. 68.1 (±4.2) 74.2 (±4.1) 71.0 (±5.2) 74.7 74.1 75.9 68.5 74.7 69.2 74.1 73.4 74.9 

G.g. 62.5 (±12.6) 73.4 (±11.5) 76.4 (±12.5) 74.5 73.5 77.3 62.8 72.6 74.8 74.5 74.4 75.0 

I.a. 38.3 (±11.5) 42.3 (±12.7) 38.5 (±11.6) 43.0 41.0 41.4 38.9 42.7 36.6 43.0 41.4 40.9 
J.c. 50.7 (±19.7) 51.4 (±16.8) 52.4 (±17.1) 50.9 49.3 53.1 52.2 49.0 51.6 51.5 50.4 52.6 

L.a. 41.6 (±8.7) 56.3 (±10.8) 53.9 (±10.5) 56.6 54.4 62.3 41.9 56.8 48.5 57.0 54.7 59.7 

L.h. 25.6 (±8.9) 43.6 (±11.0) 22.8 (±8.1) 44.0 34.2 25.5 26.5 43.5 23.5 46.6 33.7 26.0 
M.c. 58.5 (±13.8) 55.5 (±16.9) 60.0 (±14.5) 56.3 54.9 62.7 58.6 56.1 56.5 55.4 56.2 61.7 

P.c. 69.5 (±4.5) 77.1 (±4.9) 85.9 (±3.6) 77.6 77.0 84.3 69.6 78.0 85.8 78.2 77.4 84.0 

Q.r. 86.6 (±2.5) 88.1 (±2.7) 91.3 (±2.3) 86.4 85.8 90.7 86.9 88.1 91.2 86.6 86.2 90.8 

R.s. 82.5 (±3.8) 78.8 (±4.5) 81.2 (±5.2) 81.0 80.7 84.9 82.4 79.3 79.5 80.7 79.7 83.4 

S.r. 54.3 (±9.2) 70.8 (±10.7) 61.6 (±14.7) 71.8 66.9 68.0 53.8 69.7 52.3 71.3 66.4 61.1 
S.s. 29.1 (±5.9) 36.7 (±9.1) 21.3 (±7.1) 36.6 36.7 25.6 29.1 35.8 21.3 35.5 35.8 25.6 
T.m. 64.7 (±6.4) 69.9 (±6.0) 80.7 (±9.4) 76.3 75.8 78.8 64.9 70.4 78.2 76.0 75.6 78.9 

T.c. 58.3 (±11.5) 65.4 (±12.5) 72.2 (±14.8) 65.8 52.1 72.5 58.2 65.4 69.6 63.6 51.0 70.6 

V.a. 68.2 (±8.7) 72.8 (±12.2) 65.1 (±12.8) 74.4 74.4 66.9 66.5 74.1 63.9 74.4 73.6 64.6 
Average 56.8 65.0 63.6 66.7 64.0 65.9 56.9 65.1 62.0 66.6 63.9 64.8 

1.9.2. High Level of Impurity (Most Abundant Species) 

This analysis was restricted to the five most abundant species in order to explore the effect of high 

rates of contamination of the non-focal species, which required having sufficient focal pixels. Results 

are summarized in Figure 5. 

A labeling error of 5% did not affect LDA, with or without an optimization step. However, the 

optimization step was very beneficial in both cases. RDA was mildly affected by labeling error and not 

improved by optimization. LR classification method was much more impacted by a 5% error level and 

the optimization only partially compensated for this. The average loss in F-measure was 11.8% 

(without optimization) and 6.7% (with optimization). More complete results on the average F-measure, 

with or without an optimization step are provided in Appendix B, including results obtained for 

2% bias. 
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Figure 5. Object level F-measure (and its standard deviation) of species binary classifier trained with either 0% 

or 5% mislabeling of non-focal class. Paler color represents performance after applying an optimization step 

(see text). An arrow indicates cases when optimization decreased performance. 

In summary, RDA appeared to be robust to high noise level even without optimization. LR was 

sensitive to noise even after including a modified optimization step criterion [29]. LDA performed 

very well, provided that an optimization step was included. 

1.9.3. High Level of Impurity—Smaller Focal Training Class 

To assess the impact of the size of the focal class on classification performance we reduced the 

number of crowns to 30 in the focal class while still considering 100,000 pixels randomly selected for 

the non-focal class. Only the five most abundant species were considered. Miss-labeled pixels were 

added to the non-focal class to achieve different levels of contamination (1%, 2% and 5%). Results 

were almost undistinguishable from those obtained with larger training sets for the same level of bias 

(see Appendix C). 

1.9.4. Focal Class Purification 

Mean crown Mahalanobis distance (computed across pixels within species) was used to try to 

detect outliers (Figure 6). Only Licania alba and Bocoa prouacensis had no outliers (outliers being defined 

as crowns showing a mean Mahalanobis distance greater than two standard deviations from the mean 

of all crowns). The most heavily impacted species were Jacaranda copaia and Goupia glabra (see table in 

Appendix D). Overall, for the 1297 representatives in the 20 focal classes, 55 crowns were potential 

outliers. There was thus a global potential bias of the focal classes of 4.2% or 2844 unreliable spectra. 

We examined all those potential outliers on high-resolution RGB imagery. In a few cases, those 

outliers could be related to particular features (illustrated in Appendix D): low illumination leaving 

very few pixels per crown after filtering, higher than average contribution of wood caused by partial 

leaflessness (especially for Eperua falcata), presence of liana in the crown. However, in 90% of the cases, 

no peculiarity was detected on high-resolution imagery. One cannot exclude that crown mislabeling 

occurred, but this could not be ascertained. 

To evaluate the improvement achieved after removing potential outlier crowns, a Student test by 

species was performed on each metric at object level for the three classifiers (without the optimization 

step). We compared those metrics before and after removal of the potential outliers. The most 

impacted species were the Couratari multiflora (from 68% to 71.6% using LR) and Sextonia rubra (from 

61.6% from 64.7% using LR) (p-value <0.01). Recordoxylon speciosum (from 81.2% to 83.8% using LR) 

and Jacaranda copaia (from 50.7% to 59.2% using LDA) were less impacted (p-value <0.05). The RDA 

method was the method least sensitive to the introduction of outliers. For more detail, see the table in 

Appendix D. 
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Figure 6. Within-species Mahalanobis distance (computed per crown). The blue line represents the mean of the 

Mahalanobis distance. The red lines represent the mean plus or minus two standard deviations. 

1.10. Experiment 4 

We related the recorded basal area per species per plot with the canopy area predicted to belong to 

the same species by the different classifiers. We used all the available crowns in our manual segments 

database to train the classifiers. For each focal species, we randomly selected 100,000 pixels to create 

the non-focal class for training the classifier. Results for LDA are reported in Figure 7 for the most 

abundant commercial species. Results for all other species are provided in Appendix E, Figure A3. 

 

 

Figure 7. Relation between basal areal (m2·ha−1) and area predicted (m2·ha−1) using the optimized LDA. Plots 

not used for training are plotted in red and the R-squared for those observations given in brackets. The plot 

used for the training are in blue. Global R-squared values are given using all points (red and blue). In solid black 

line, linear regression based on all points passing through zero. The normal confidence ellipses are given, 

computed for each group points using the corresponding color (red or blue). 



Remote Sens. 2020, 12, 1577 
 

61 
Laybros A. - Doctoral thesis 

As expected, the effectiveness of the classifier conditions the correlation between the predicted 
canopy area and the basal area. The mean linear correlation coefficient across species was 0.70 (n = 20; 

Appendix F). Optimized LDA and RDA were the methods that provided the best average R2 both at 
pixel and object level (not shown). 

In addition, we compared the slope of the relations across species. We used a linear model without 

intercept. While species effect was significant overall (p < 0.01, e.g., Eperua grandiflora vs. Eperua falcata), 

some species shared a very similar slope (e.g., Qualea rosea vs. Vouacapoua americana). It might therefore 

be possible to use a common model between these species 

Object-based prediction was better correlated to basal area than pixel-based prediction (4–8 point 

gain in R2) for all classifiers. Less than 2% of the pixels were classified into more than one species for 

both LDA and RDA. Hence, the confusion was low, despite the fact that the species-specific classifiers 

were developed independently. After majority voting, no confusion remained. 

4. Discussion 

The first experiment unambiguously confirmed that addition of SWIR information vastly improves 

classification performance. Our results on the contribution of SWIR information to species identification 

are in line with those obtained in previous studies [23,26,44]. The authors of [23] found that the LDA 

classification accuracy of seven tropical forest tree species was improved from 67.3% to 83.6%. 

Similarly, we found an increase in accuracy of about 20%–25% on average across species depending 

on the method considered. We noted that the gain was more important for LDA and RDA than for 

LR. In addition, we assessed the quality of our database. In fact, our database may contain a few 

mislabeled cases, as suggested by the Mahalanobis distance analysis. However, these outliers had a 

limited negative effect on classification in general. It is unclear how many of these pseudo-outliers are 

actual outliers. Phenology or presence of lianas was not found to be significantly associated with 

potential outliers. 

The comparison of the results obtained in this study (Table 3, without bias) with previously 

published results (Table 4 in Laybros et al., 2019) indicates that there is no significant difference in 

performance between the binary and multiclass LDA classifier at pixel level. However, at the object 

level, the binary classifiers are clearly outperformed, implying a strong influence of the majority vote. 

The relative majority can be effective in a multi-class problem, whereas the absolute majority is required 

when only two classes are considered. 

An important characteristic of our study case is the unbalanced number of spectra (pixels) in each 

class. The minority classes are the most affected by this constraint. Unbalanced classes impact results 

obtained with SVM classifications [45]. In some studies, the authors used SVM without a specific 

method to control for this effect [20,21,24,26,46]. This method is, however, sensitive to unbalanced 

classes [47–50]. Biasing the classifier by adding weights and breaking down the penalization of the 

classifiers (parameter C) into two parameters was recommended by [19,51] in order to reduce the 

negative impact of the minority classes. Conversely, LDA is not sensitive to the number of elements per 

class [52] because it shares the variance–covariation matrix between the classes. In addition, training 

on the entire data set or a subset of only 30 crowns did not affect the performance of the classifier. The 

similar results between the LDA and the RDA methods seem to confirm that RDA is not sensitive to the 

disproportion between classes either. 

It is preferable to optimize a specific metric in the biased cases and especially with a high bias rate. 

F-measure is not a good choice, because the precision is biased to an unknown extent. The use of the 

criterion proposed by [29] proved useful. In addition, when the bias is very severe, it is recommended 

to use a threshold that will optimize discrimination [49]. In the present study, LR was found to benefit 

much from this methodology. Conversely, the optimal probability threshold did not improve species 

discrimination for RDA. 

The maximum level of bias tested here was 5%. How likely are larger biases to occur? In an 

operational case, the random selection of pixels on the study area will comprise a range of species 
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reflecting the local flora of the study site. Despite the extremely high local tree species diversity (alpha 

diversity) in tropical forests [53], some species are spatially aggregated as a result of either 

environmental preference or dispersal limitation. For example, the Eperua falcata measured in the Piste 

de St Elie region, is a species with an aggregated spatial distribution [54]. Vouacapoua americana and 

Qualea rosea species were also reported as being highly aggregated [55,56]. Extreme cases of 

aggregation may lead to monodominance [57], where more than 50% of the stems belong to a single 

species (e.g., Spirotropis longifolia). This, however, is a rare case and local frequency of the focal species 

will seldom reach 5% [58]. 

Most previous studies focused on discriminating a few well-known species against each other, 

which is of little relevance to an operational context. Here, we focused on assessing the potential of 

classification methods using hyperspectral information for retrieving particular species in a diverse 

canopy. This problem was previously addressed by [19], who highlighted the feasibility of identifying 

four tree species in a tropical forest canopy using biased SVM on the BCI site. As reported by [59], the 

taxonomic diversity in BCI is lower than in Paracou, whatever the diversity considered (alpha, beta 

or gamma diversity). On the BCI site, 225 tree species have been counted among more than 21,457 

stems for an area of 50 hectares. On the Paracou site, 229 tree species were listed among 1124 stems 

for an area of 2 hectares. Therefore, the identification of focal tree species may be more challenging in 

the context of the present study than in the [19] study. As shown in Experiment 1, the performance of 

the classifiers tends to decrease with increasing diversity of the background. 

The size of the training data set can be critical in an operational setting. The minimum number of 

crowns to be used for training in tropical canopies was investigated by [18,45]. Thirty crowns were 

found to be reasonable for species retrieval against 100,000 pixels. In the present study reducing the 

number of focal crowns from 74-144 to 30 crowns did not entail any loss in F-measure (comparison 

between Table 3 and Figure A1). However, the minimum training set size may depend on the species 

[18] and the diversity of the canopy. For the same number of crowns in the learning set (34 crowns, 

Table 1), the F-measure for Vouacapoua americana reached of 72.8% while it was only 36.7% for 

Symphonia sp.1 (Table 3, RDA). In addition, because classification results were so variable across 

species (Figure 4), we examined correlations between the predictability of the species (F-measure), 

the size of the focal species training set, the intra-specific spectral variance—sensu [60]—and the 

dispersion of the Mahalanobis distance values. The only significant correlation detected was with the 

size of the training set (number of crowns or number pixels) highlighting that the detectability of a 

species is difficult to predict (Appendix F, Table A5). 
Forest managers need to quantify the resource of the forest in order to orient the choices to be 

made. We found the relation between basal area and crown area in the canopy to vary across species. 

The authors of [61] mention that a global allometric model can predict the diameter of the crown from 

the diameter of the stem. These estimates are based on more than 108,753 stems with different 

geographic locations, consisting of 1,492 tree species. However, this general relation is only valid at 

coarse grain, and studies comparing species occurring in a restricted geographical range repeatedly 

found marked inter-species differences. This was the case for Indian monsoon forest [62] and Sumatran 

peneplains agroforests [63], for instance. In addition, it should be stressed that, albeit visible from 

above (and therefore segmented and labeled), a crown may be partially masked by its neighbors, so the 

area of the visible segment can differ from the total crown area. Finally, errors stemming from the 

automatic segmentation step may have further blurred the basal area–crown area relation. 

The use of LiDAR data allowed us to cluster points into putative crowns using the AMS-3D 

algorithm. This segmentation step allowed improving the performance of classifications through 

majority voting by an average of 10%–18%. This suggests that improving the segmentation step might 

provide improvement in the classification results. Segmentation itself may take advantage of 

multisource data. Depending of the way data are merged, fine co-registration can be required but may 

be difficult to achieve [64,65]. 
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The next major challenge to address in remote species classification is transferring the knowledge 

acquired on one site to another one [22]. The spectral signature may vary over both space and time. 

One reason is variation in the timing of leafing, fruiting and flowering, which is still not well 

characterized for the vast majority of species in evergreen forest [66]. Tropical rainforest trees produce 

leaves with widely variable phenology and longevity [67,68]. Leaf optical properties may differ 

significantly between young newly sprouted leaves and one- to two-month-old fully mature photo-

synthetically competent leaves [69]. In French Guiana where our study took place, a seminal work 

[70] monitored the phenology of 750 trees belonging to 35 species during two years. Various leafing 

patterns were reported to occur in that study: deciduous with synchronous or asynchronous leaf drop, 

or evergreen with continuous or seasonal leaf flushing. Local conditions (and notably soil water 

holding capacity) will contribute to desynchronize the phenological stage of deciduous trees 

submitted to similar weather conditions. Difference in tree water status may also alter leaf inclination 

through wilting which may affect the crown reflectance properties [71]. Additionally, differences in 

soil chemical fertility may induce differences in the spectral signatures of species. A long-known effect 

of an increase in nitrogen availability is an increased chlorophyll content and greenness [72]. The 

second major reason, and probably the most stringent issue, is the variability in imaging conditions. 

Several factors come into play to modify the apparent reflectance. On the one hand, during the 

acquisition, the sun–sensor angles change, as both the positions of the sun and the sensor are changing. 

The reflectance depends on those angles, and this dependency is idiosyncratic (i.e., depends on the 

characteristics of the object being imaged). Modelling the bidirectional reflectance distribution function 

(BDRF) to correct these spurious variations in spectral signature is extremely delicate. BRDF is likely to 

vary from tree to tree as it depends on characteristics such as foliage density, crown geometry (leaf size, 

leaf angle). Empirical or semi-empirical kernel-driven models [73] would probably require very large 

datasets to achieve a reasonable level of accuracy. The fact that reflectance in NIR is also significantly 

affected by neighbors identity [69] renders the hyper-diverse tropical forest particularly challenging in 

this respect. 
 

5. Conclusions 

We present a method that leverages the fusion of LiDAR data for ITC mapping and hyperspectral 

imagery for species identification. This method allowed us to accurately predict basal area of commercial 

species in a highly diverse tropical forest. As both types of sensors are likely to become more and more 

common, we hope that the proposed method will promote sustainable management of tropical forest. 

Addition of the SWIR domain (1000nm to 2500nm) to the more commonly used VNIR spectrum 

was very useful and is strongly recommended whenever possible. In this study, we have examined 

different scenarios that forest managers may encounter to map specific species in tropical forests, 

including limited training set and labeling errors affecting both the focal and non-focal classes. We have 

successfully tested various methods to circumvent labeling error issues. We recommend using robust 

discriminant analysis, which seems to be the method least sensitive to bias while also offering very 

good results in the absence of bias in the training data. In addition, we have found that sampling can 

be limited to a few individuals (30 crowns) without reducing the accuracy of the classifications. 

Certain species were poorly identified with all classification methods. No indicator based on spectral 

characteristics allowed upstream identification of what made it possible to carry out an efficient 

classification of a given tree species. 
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6. Appendix A. Experiment 1 

 
Table A1. Pixel-level results from the one versus 19 other species method. Only the F-measure is given with 

the standard deviation. The best prediction for each species with either VNIR or VSWIR information is in bold. 

 VNIR VSWIR 

 

Species 
LDA RDA LR LDA RDA LR 

B.p. 13.2(±6.5) 18.2(±10.4) 24.1(±12.8) 42.7(±7.7) 65.2(±6.5) 54.7(±7.8) 
C.m. 66.8(±12.0) 65.0(±12.6) 67.2(±10.5) 75.3(±8.0) 72.2(±8.5) 75.6(±5.9) 
D.g. 54.2(±4.3) 51.9(±5.8) 60.1(±4.8) 76.1(±3.3) 75.0(±3.6) 78.9(±3.0) 
E.f. 33.6(±4.5) 14.1(±3.2) 36.5(±4.5) 59.3(±5.2) 66.6(±6.2) 69.4(±4.8) 
E.g. 49.2(±6.5) 56.3(±4.9) 69.6(±4.2) 74.6(±3.5) 79.9(±3.4) 81.5(±2.7) 
E.s. 59.3(±3.4) 66.2(±3.9) 65.7(±4.2) 75.8(±3.0) 78.2(±3.0) 75.6(±3.4) 
G.g. 37.8(±9.7) 62.2(±9.1) 67.4(±9.3) 80.6(±6.2) 81.3(±8.2) 77.2(±10.2) 
I.a. 38.1(±11.0) 45.9(±13.9) 64.6(±12.0) 63.6(±9.5) 69.2(±7.5) 64.6(±8.1) 
J.c. 58.8(±19.4) 59.5(±22.7) 54.5(±20.4) 56.8(±16.9) 53.4(±20.5) 55.3(±12.5) 
L.a. 34.0(±7.3) 52.1(±9.4) 54.0(±9.7) 58.0(±7.9) 67.4(±8.7) 64.2(±6.0) 
L.h. 9.4(±3.9) 5.6(±4.8) 5.6(±4.8) 20.3(±8.3) 46.5(±12.3) 36.0(±9.4) 
M.c. 45.5(±9.3) 50.0(±11.3) 64.4(±9.1) 68.8(±9.0) 70.0(±11.1) 71.1(±5.9) 
P.c. 78.2(±3.2) 78.8(±1.5) 81.3(±1.6) 89.1(±1.6) 88.2(±1.4) 88.9(±1.6) 
Q.r. 88.4(±2.0) 88.1(±1.6) 90.8(±0.8) 94.0(±0.8) 93.0(±1.0) 94.4(±0.8) 
R.s. 76.6(±5.0) 75.1(±5.3) 81.3(±3.4) 84.1(±3.5) 82.4(±4.4) 81.7(±3.5) 
S.r. 36.4(±7.8) 52.3(±10.3) 55.3(±10.0) 53.8(±10.4) 69.2(±6.6) 71.7(±4.6) 
S.s. 13.2(±3.8) 0.4(±0.4) 10.4(±2.7) 33.9(±8.4) 54.6(±6.1) 52.4(±6.6) 
T.m. 63.3(±7.8) 67.8(±7.6) 68.5(±5.8) 87.7(±3.4) 87.1(±3.5) 85.5(±3.4) 
T.c. 7.4(±2.7) 8.8(±6.3) 40.5(±9.0) 30.3(±7.6) 60.0(±12.1) 59.2(±8.7) 
V.a. 31.2(±8.6) 48.6(±10.0) 46.3(±12.5) 69.6(±5.8) 72.4(±7.8) 63.0(±7.1) 

Mean F-measue 44.7 48.3 55.4 64.7 71.6 70.1 

without (44.7% vs. 48.3%) an SWIR spectrum. At object level, LDA and RDA were the best 

methods. 
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7. Appendix B. Experiment 3 (Low Level of Impurity) 

 
Table A2. Full table for the comparison between methods and bias applied, with and without optimisation step. Plain and optimized indicate whether an optimization step (selecting a 

threshold probability value) was applied to maximize either the F measure (0% contamination) or the Lee and Liu 2003 criterion (1% contamination). The F-measure is given at crown 

scale. The best prediction for each species, configurations and methods is in bold. 

Bias 0% 1% 

 Plain Optimized Plain Optimized 

Species LDA RDA LR LDA RDA LR LDA RDA LR LDA RDA LR 

B.p. 35.8 (±10.3) 57.7 (±12.4) 37.5 (±15.5) 65.4 (±12.6) 57.5 (±17.4) 42.1 (±16.0) 36.4 (±9.8) 58.5 (±12.4) 43.4 (±13.6) 64.3 (±12.7) 56.2 (±17.3) 43.0 (±16.0) 

C.m. 68.3 (±10.8) 64.7 (±10.1) 68.0 (±10.5) 69.8 (±11.2) 68.3 (±11.3) 71.4 (±7.9) 67.4 (±11.2) 65.1 (±10.3) 66.5 (±9.5) 69.8 (±11.6) 68.0 (±11.3) 69.4 (±8.4) 

D.g. 57.7 (±3.9) 72.3 (±6.0) 78.2 (±6.1) 75.8 (±5.6) 72.0 (±6.3) 78.5 (±5.7) 57.5 (±3.8) 72.6 (±5.7) 78.2 (±5.5) 74.8 (±6.3) 72.2 (±5.4) 78.3 (±5.5) 

E.f. 50.8 (±4.1) 67.7 (±6.1) 69.2 (±6.2) 71.5 (±4.6) 68.9 (±5.2) 70.5 (±5.0) 51.5 (±4.2) 67.9 (±5.2) 68.0 (±5.4) 72.1 (±4.8) 69.2 (±4.5) 70.5 (±4.9) 

E.g. 65.1 (±7.0) 82.0 (±5.3) 84.4 (±4.6) 82.4 (±6.2) 82.7 (±6.2) 84.8 (±4.5) 64.9 (±6.9) 81.9 (±5.6) 82.5 (±6.0) 82.0 (±6.2) 82.5 (±6.0) 84.7 (±4.2) 

E.s. 68.1 (±4.2) 74.2 (±4.1) 71.0 (±5.2) 74.7 (±4.3) 74.1 (±4.6) 75.9 (±4.7) 68.5 (±4.5) 74.7 (±3.9) 69.2 (±6.0) 74.1 (±4.3) 73.4 (±4.1) 74.9 (±5.0) 

G.g. 62.5 (±12.6) 73.4 (±11.5) 76.4 (±12.5) 74.5 (±10.1) 73.5 (±10.9) 77.3 (±12.3) 62.8 (±14.2) 72.6 (±10.5) 74.8 (±11.6) 74.5 (±10.6) 74.4 (±11.2) 75.0 (±12.9) 

I.a. 38.3 (±11.5) 42.3 (±12.7) 38.5 (±11.6) 43.0 (±12.9) 41.0 (±13.3) 41.4 (±13.1) 38.9 (±11.2) 42.7 (±12.5) 36.6 (±10.7) 43.0 (±14.4) 41.4 (±13.5) 40.9 (±14.2) 

J.c. 50.7 (±19.7) 51.4 (±16.8) 52.4 (±17.1) 50.9 (±16.9) 49.3 (±17.5) 53.1 (±17.2) 52.2 (±17.2) 49.0 (±16.9) 51.6 (±16.6) 51.5 (±17.6) 50.4 (±16.5) 52.6 (±18.7) 

L.a. 41.6 (±8.7) 56.3 (±10.8) 53.9 (±10.5) 56.6 (±11.1) 54.4 (±10.6) 62.3 (±10.3) 41.9 (±9.9) 56.8 (±10.2) 48.5 (±12.1) 57.0 (±10.5) 54.7 (±10.1) 59.7 (±8.8) 

L.h. 25.6 (±8.9) 43.6 (±11.0) 22.8 (±8.1) 44.0 (±12.3) 34.2 (±13.1) 25.5 (±7.6) 26.5 (±8.9) 43.5 (±13.6) 23.5 (±8.3) 46.6 (±9.4) 33.7 (±11.5) 26.0 (±10.6) 

M.c. 58.5 (±13.8) 55.5 (±16.9) 60.0 (±14.5) 56.3 (±15.9) 54.9 (±16.0) 62.7 (±12.0) 58.6 (±12.8) 56.1 (±16.5) 56.5 (±16.9) 55.4 (±16.5) 56.2 (±15.6) 61.7 (±14.8) 

P.c. 69.5 (±4.5) 77.1 (±4.9) 85.9 (±3.6) 77.6 (±4.5) 77.0 (±4.6) 84.3 (±3.2) 69.6 (±4.9) 78.0 (±4.9) 85.8 (±3.2) 78.2 (±4.7) 77.4 (±4.8) 84.0 (±3.8) 

Q.r. 86.6 (±2.5) 88.1 (±2.7) 91.3 (±2.3) 86.4 (±2.6) 85.8 (±2.4) 90.7 (±2.6) 86.9 (±2.5) 88.1 (±2.5) 91.2 (±2.2) 86.6 (±2.6) 86.2 (±2.8) 90.8 (±2.4) 

R.s. 82.5 (±3.8) 78.8 (±4.5) 81.2 (±5.2) 81.0 (±3.7) 80.7 (±3.5) 84.9 (±4.5) 82.4 (±4.2) 79.3 (±5.0) 79.5 (±5.6) 80.7 (±4.4) 79.7 (±4.1) 83.4 (±5.3) 

S.r. 54.3 (±9.2) 70.8 (±10.7) 61.6 (±14.7) 71.8 (±13.7) 66.9 (±15.8) 68.0 (±13.8) 53.8 (±9.1) 69.7 (±12.3) 52.3 (±18.4) 71.3 (±13.5) 66.4 (±13.9) 61.1 (±17.4) 

S.s. 29.1 (±5.9) 36.7 (±9.1) 21.3 (±7.1) 36.6 (±8.0) 36.7 (±8.8) 25.6 (±14.2) 29.1 (±6.5) 35.8 (±7.9) 21.3 (±7.1) 35.5 (±9.2) 35.8 (±9.2) 25.6 (±11.7) 

T.m. 64.7 (±6.4) 69.9 (±6.0) 80.7 (±9.4) 76.3 (±7.5) 75.8 (±6.8) 78.8 (±7.2) 64.9 (±6.5) 70.4 (±5.6) 78.2 (±9.9) 76.0 (±6.8) 75.6 (±7.2) 78.9 (±9.7) 

T.c. 58.3 (±11.5) 65.4 (±12.5) 72.2 (±14.8) 65.8 (±14.4) 52.1 (±13.6) 72.5 (±15.1) 58.2 (±10.9) 65.4 (±12.7) 69.6 (±13.4) 63.6 (±14.2) 51.0 (±13.5) 70.6 (±14.2) 

V.a. 68.2 (±8.7) 72.8 (±12.2) 65.1 (±12.8) 74.4 (±12.0) 74.4 (±12.2) 66.9 (±13.3) 66.5 (±10.4) 74.1 (±12.0) 63.9 (±13.3) 74.4 (±12.1) 73.6 (±11.1) 64.6 (±12.5) 

Average 56.8 65.0 63.6 66.7 64.0 65.9 56.9 65.1 62.0 66.6 63.9 64.8 
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Bias 2% 5% 

 Plain Optimized Plain Optimized 

Species LDA RDA LR LDA RDA LR LDA RDA LR LDA RDA LR 

B.p. -- -- -- -- -- -- -- -- -- -- -- -- 

C.m. -- -- -- -- -- -- -- -- -- -- -- -- 

D.g. 56.2 (±4.2)  69.6 (±4.7)  76.5 (±5.7)  72.5 (±5.2)  67.2 (±4.9)  73.2 (±5.0) 58.5 (±4.4)  70.3 (±4.6)  72.3 (±4.8)  73.1 (±5.0)  68.0 (±4.9)  73.1 (±4.4) 

E.f. 51.4 (±4.1)  62.5 (±6.1)  61.9 (±6.5)  67.3 (±6.0)  63.4 (±5.9)  65.0 (±5.5) 52.8 (±5.4)  62.0 (±5.7)  50.7 (±8.5)  66.0 (±5.4)  62.2 (±6.6)  59.3 (±7.0) 

E.g. -- -- -- -- -- -- -- -- -- -- -- -- 

E.s. 67.4 (±5.0)  74.1 (±4.3)  69.0 (±6.2)  74.2 (±4.4)  74.2 (±4.0)  73.3 (±4.6) 69.8 (±5.5)  72.8 (±4.4)  47.1 (±8.7)  72.0 (±4.5)  72.0 (±4.0)  61.7 (±7.6) 

G.g. -- -- -- -- -- -- -- -- -- -- -- -- 

I.a. -- -- -- -- -- -- -- -- -- -- -- -- 

J.c. -- -- -- -- -- -- -- -- -- -- -- -- 

L.a. -- -- -- -- -- -- -- -- -- -- -- -- 

L.h. -- -- -- -- -- -- -- -- -- -- -- -- 

M.c. -- -- -- -- -- -- -- -- -- -- -- -- 

P.c. 70.4 (±4.9)  80.4 (±3.4)  84.6 (±4.6)  79.9 (±3.6)  79.8 (±3.5)  84.2 (±3.4) 71.4 (±4.8)  79.3 (±3.8)  74.2 (±7.7)  79.3 (±3.8)  78.7 (±3.5)  81.9 (±4.5) 

Q.r. 88.0 (±2.5)  89.0 (±2.5)  92.2 (±2.0)  85.6 (±3.1)  85.7 (±2.7)  90.6 (±1.8) 87.9 (±2.6)  89.4 (±2.7)  92.1 (±2.4)  86.6 (±3.2)  86.4 (±3.0)  90.4 (±2.6) 

R.s. -- -- -- -- -- -- -- -- -- -- -- -- 

S.r. -- -- -- -- -- -- -- -- -- -- -- -- 

S.s. -- -- -- -- -- -- -- -- -- -- -- -- 

T.m. -- -- -- -- -- -- -- -- -- -- -- -- 

T.c. -- -- -- -- -- -- -- -- -- -- -- -- 

V.a. -- -- -- -- -- -- -- -- -- -- -- -- 

Average 66.7 75.1 76.9 75.9 74.1 77.3 68.0 74.7 67.3 75.4 73.4 73.3 
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8. Appendix C. Experiment 3 (High Level of Impurity—Smaller Focal Training Class) 

The procedure was similar to Experiment 3. We set aside 30% of the data for validation. However, 

we selected only 30 crowns of the focal class to use in the training set. In addition, we selected 100,000 

pixels from the non-focal species to make up the non-focal class. We simulated three level of bias in 

the training set as described below. 

 
Table A3. Comparison of classification methods with and without bias. Plain and optimized indicate whether 

an optimization step (selecting a threshold probability value) was applied or not. This step aims at maximizing 

either the F measure (0% contamination) or the Lee and Liu 2003 criterion (1% contamination). F-measure is 

given at object level. The best predictions for each species, configuration and method are in bold. 

  LDA RDA LR 

SPID Bias Plain Optimized Plain Optimized Plain Optimized 

D. g 0 58.9 (±8.0) 69.7 (±6.4) 67.1 (±6.5) 66.7 (±6.7) 71.6 (±7.4) 74.6 (±6.5) 
E. f 0 53.4 (±7.2) 68.3 (±6.9) 66.0 (±4.9) 64.7 (±7.1) 61.2 (±9.1) 63.6 (±7.6) 
E. s 0 68.6 (±5.7) 71.7 (±6.4) 73.0 (±5.6) 71.5 (±6.3) 61.2 (±9.0) 68.4 (±8.4) 
P. c 0 73.6 (±4.4) 79.9 (±5.6) 79.5 (±5.7) 79.2 (±5.1) 83.6 (±4.2) 84.9 (±5.1) 
Q. r 0 88.8 (±2.7) 89.5 (±2.6) 89.4 (±2.6) 89.4 (±2.7) 90.2 (±2.9) 90.9 (±3.0) 

Average  68.7 75.8 75.0 74.3 73.5 76.5 

D. g 1% 58.8 (±8.3) 71.0 (±7.9) 67.8 (±7.7) 67.1 (±8.5) 70.5 (±8.7) 75.3 (±7.0) 
E. f 1% 54.1 (±6.6) 66.8 (±7.8) 65.2 (±5.7) 65.1 (±5.8) 59.0 (±10.0) 63.6 (±6.7) 
E. s 1% 69.0 (±6.6) 73.2 (±5.1) 73.4 (±5.3) 72.5 (±5.5) 52.9 (±8.1) 62.9 (±7.0) 
P. c 1% 71.9 (±5.7) 76.5 (±5.8) 75.8 (±6.7) 76.7 (±5.9) 77.1 (±5.0) 79.5 (±4.7) 
Q. r 1% 89.2 (±2.9) 89.2 (±2.3) 89.2 (±2.9) 88.9 (±2.7) 87.2 (±3.6) 88.5 (±3.6) 

Average  68.6 75.3 74.3 74.0 69.4 74.0 

D. g 2% 57.0 (±8.2) 71.5 (±5.8) 68.3 (±6.2) 67.4 (±6.7) 68.5 (±9.5) 72.9 (±7.0) 
E. f 2% 53.7 (±6.1) 66.4 (±7.7) 64.4 (±6.7) 64.6 (±7.3) 54.7 (±10.5) 62.2 (±9.6) 
E. s 2% 68.2 (±6.1) 73.3 (±5.1) 73.6 (±5.3) 71.9 (±6.7) 48.6 (±11.3) 62.0 (±10.0) 
P. c 2% 74.1 (±5.2) 79.6 (±4.0) 78.5 (±4.2) 78.6 (±5.0) 78.6 (±3.5) 82.3 (±3.4) 
Q. r 2% 88.7 (±2.9) 89.3 (±2.9) 89.3 (±2.7) 89.3 (±2.9) 84.2 (±3.0) 87.5 (±2.7) 

Average  68.3 76.0 74.8 74.3 66.9 73.4 

D. g 5% 58.8 (±6.8) 71.6 (±5.2) 68.2 (±6.2) 68.1 (±6.3) 61.3 (±5.8) 70.9 (±5.4) 
E. f 5% 52.2 (±5.9) 67.5 (±6.2) 66.1 (±6.4) 66.2 (±5.9) 45.8 (±13.2) 59.0 (±8.6) 
E. s 5% 69.2 (±5.9) 73.2 (±5.5) 73.7 (±4.8) 72.0 (±5.8) 41.6 (±11.2) 58.7 (±10.0) 
P. c 5% 74.0 (±5.7) 80.5 (±5.3) 80.2 (±6.1) 79.9 (±5.8) 71.4 (±5.7) 78.4 (±4.9) 
Q. r 5% 88.6 (±2.9) 89.4 (±2.9) 89.9 (±2.6) 89.2 (±3.1) 74.5 (±5.5) 83.4 (±6.0) 

Average  68.6 76.4 75.6 75.1 58.9 70.1 

 

The use of 30 crowns compared to the use of 70% of focal class crowns had no negative effect on 

the LDA and RDA method. Nevertheless, the LR method seemed to be more sensitive to the use of a 

smaller sample (from 79.1% to 73.5% or from 80.0% to 76.5% with optimisation step). The optimization 

step made up for part of the loss in performance of the F-measure. 
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Figure A1. Comparison of classification methods with and without bias. F-measure and its standard deviation 

are given at object level. Only 30 crowns from the focus class and 100,000 pixels from the non-focus class were 

used to train the model. Bias consisted in adding 5% of the pixels of the focal species into the non-focal class. 

Optimization step is represented in the same paler colour. An arrow indicates when optimization decreased 

performance.

9. Appendix D. Experiment 3 (Focal Class Purification)

Removal of potential outliers’ impact on F-measure of various classifiers.

Figure A2. From left to right: low illumination ratio from hyperspectral images, wood contribution, lianas 

contribution and ground contribution.

Illustration of tree crowns considered as outliers is proposed above. Low illumination led to a 

reduction in the number of pixels inside the crowns (given by hyperspectral imagery). Other possible 

causes of outlier crowns are illustrated by RGB imagery.
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Table A4. Comparison between using all crowns and without some removed crowns based on the Mahalanobis distance. The F-measure is given at object level. Significance codes: * p < 

0.1, ** p < 0.05, *** p < 0.01. The best predictions for each species, configuration and method are in bold. 

 

Removing Without With Total 

crowns 
Potential outliers Proportion (%) 

SPID LDA RDA LR LDA RDA LR 

B.p. 35.8 (±10.3) 57.7 (±12.4) 37.5 (±15.5) 40.4 (±10.2) 60.3 (±14.0) 35.0 (±13.3) 24 0 0.0 
C.m. 68.3 (±10.8) 64.7 (±10.1) 68.0 (±10.5) 68.4 (±11.6)** 65.5 (±9.8)** 71.8 (±9.1)*** 49 1 2.0 
D.g. 57.7 (±3.9) 72.3 (±6.0) 78.2 (±6.1) 55.9 (±5.2) 69.6 (±5.9) 76.6 (±5.7) 108 5 4.6 
E.f. 50.8 (±4.1) 67.7 (±6.1) 69.2 (±6.2) 50.3 (±6.1) 66.4 (±6.1) 69.3 (±5.9)* 106 2 1.9 
E.g. 65.1 (±7.0) 82.0 (±5.3) 84.4 (±4.6) 64.2 (±5.9) 81.9 (±5.2) 84.6 (±5.4) 74 5 6.8 
E.s. 68.1 (±4.2) 74.2 (±4.1) 71.0 (±5.2) 66.7 (±4.7) 74.6 (±3.9) 73.9 (±4.8)* 139 7 5.0 
G.g. 62.5 (±12.6) 73.4 (±11.5) 76.4 (±12.5) 58.4 (±8.3) 68.3 (±11.6) 73.7 (±14.8) 25 2 8.0 
I.a. 38.3 (±11.5) 42.3 (±12.7) 38.5 (±11.6) 38.4 (±9.9) 43.0 (±8.1) 33.4 (±13.2) 26 2 7.7 
J.c. 50.7 (±19.7) 51.4 (±16.8) 52.4 (±17.1) 59.2 (±10.6)** 58.5 (±10.2) 57.4 (±12.6) 24 2 8.3 
L.a. 41.6 (±8.7) 56.3 (±10.8) 53.9 (±10.5) 43.3 (±7.0) 53.3 (±8.3) 50.1 (±13.7) 46 0 0.0 
L.h. 25.6 (±8.9) 43.6 (±11.0) 22.8 (±8.1) 27.9 (±10.9) 44.0 (±16.7) 26.9 (±8.6) 27 1 3.7 
M.c. 58.5 (±13.8) 55.5 (±16.9) 60.0 (±14.5) 60.1 (±11.1) 59.9 (±14.9) 66.7 (±12.1) 27 2 7.4 
P.c. 69.5 (±4.5) 77.1 (±4.9) 85.9 (±3.6) 69.2 (±4.2) 79.0 (±3.7) 85.7 (±3.7) 164 6 3.7 
Q.r. 86.6 (±2.5) 88.1 (±2.7) 91.3 (±2.3) 88.5 (±3.0) 89.9 (±2.4) 91.9 (±2.2) 206 7 3.4 
R.s. 82.5 (±3.8) 78.8 (±4.5) 81.2 (±5.2) 83.1 (±7.6) 80.5 (±7.7) 83.8 (±6.3)** 69 2 2.9 
S.r. 54.3 (±9.2) 70.8 (±10.7) 61.6 (±14.7) 55.6 (±8.3)*** 71.3 (±7.6) 64.7 (±12.9)*** 32 2 6.3 
S.s. 29.1 (±5.9) 36.7 (±9.1) 21.3 (±7.1) 29.8 (±7.6) 36.1 (±11.5) 22.4 (±6.9) 34 2 5.9 

T.m. 64.7 (±6.4) 69.9 (±6.0) 80.7 (±9.4) 64.6 (±11.5) 69.6 (±11.8) 82.0 (±6.4) 51 4 7.8 
T.c. 58.3 (±11.5) 65.4 (±12.5) 72.2 (±14.8) 55.8 (±9.0) 68.0 (±12.8)* 73.3 (±13.9) 32 2 6.3 
V.a. 68.2 (±8.7) 72.8 (±12.2) 65.1 (±12.8) 70.0 (±8.6) 78.4 (±7.0) 67.8 (±10.7) 34 1 2.9 

Average 56.8 65.0 63.6 57.5 65.9 64.5 1297.0 55 4.2 
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10. Appendix E. Experiment 4 

 

 
 

Figure A3. Relation between basal areal (m2·ha−1) and area predicted (m2·ha−1) using the optimized LDA. Plots 

not used for training are plotted in red and the R-squared for those observations are given in brackets. The plots 

used for the training are in blue. Global R-squares are given using all data points (red and blue). In solid black 

line, linear regression based on all points passing through zero. The normal confidence ellipses are given, 

computed for each group of points using the corresponding color (red or blue). 

 

Figure A3 (basal area vs. prediction) is a fine representation of the behaviour of the classifier and 

makes it possible to understand the constraints. For example, one might think that the predictive 

performance of Inga alba is poor. However, on the plots never used for training (red point) we see that 

this species is not present. The classifier predicts few pixels of this species. The Jacaranda copaia is a 

species that has a low basal area; therefore, a prediction error is potentially more impacting than for the 

Eperua grandiflora. Note that the relationship between the basal area and the predicted area is different 

depending on the species considered, even for the species that have a high R2. 

11. Appendix F. Test of Correlation 

Data used to test the relationship between species object level F measure (obtained using and 

optimized LDA) and different metrics are given in Table A5. AB~CA r2 is the linear regression 

coefficient between the predicted canopy coverage area for a particular species and its recorded basal 

area. Number of pixels is given per species. Intra-group variance was computed as proposed by [60]. 

Species mean Mahalanobis distance was computed as described in Section 2.6.3. Pseudo-outlier refers 

to number of outliers detected if Mahalanobis distance value is higher or lower than two standard 

deviations. 
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Table A5. F-measure and various metrics tested for correlation. 
 

Species 
F-measure 

(object level) 
BA~CA r² 

Number 

of pixels 

Number 

of crowns 

Intra 

group 

variance 

Mean species 

Mahalanobis 

distance 

Pseudo 

outlier 

(%) 

B.p. 65.4 0.27 2375 24 60716044 398 0 
C.m. 69.8 0.24 4850 49 42710171 382 2 
D.g. 75.8 0.62 18589 108 88937469 383 4.6 
E.f. 71.5 0.84 15355 106 41768295 383 1.9 
E.g. 82.4 0.92 10859 74 37064303 378 6.8 
E.s. 74.7 0.47 12559 139 42879098 382 5 
G.g. 74.5 0.43 4998 25 45436876 387 8 
I.a. 43.0 0.53 3846 26 73845080 394 7.7 
J.c. 50.9 0.31 1705 24 50504397 417 8.3 
L.a. 56.6 0.49 3894 46 49323222 386 0 
L.h. 44.0 0.27 1437 27 35529833 412 3.7 
M.c. 56.3 0.33 3355 27 53471810 381 7.4 
P.c. 77.6 0.55 38349 164 46398429 374 3.7 
Q.r. 86.4 0.84 27828 206 51460549 374 3.4 
R.s. 81.0 0.79 7944 69 120765823 382 2.9 
S.r. 71.8 0.60 4070 32 31609536 417 6.3 
S.s. 36.6 0.00 3355 34 38010280 378 5.9 

T.m. 76.3 0.57 6745 51 80924196 392 7.8 
T.c. 65.8 0.78 1224 32 36278962 388 6.3 
V.a. 74.4 0.75 3218 34 137806130 387 2.9 

Pearson 
Cor. Coeff 

-- 0.71** 0.54* 0.59*** 0.28 0.08 0.48 

Spearman 
Cor. Coeff. 

-- 0.69** 0.77** 0.71*** 0.22 -0.44 -0.09 
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C. Conclusion of the chapter 
 

This chapter highlights the possibility of identifying tree species in tropical forests despite multiple 
constraints, the first of which is the diversity of species in the background. A random selection makes 
it possible to reduce the non-focal class to a small set of representative pixels, provided that the 
proportion of pixels from the focal class is not greater than 5%. In addition, species were well identified 
if they had at least 30 represntative crowns (focal class). The field inventory campaings can therefore be 
limited to 30 crowns per species of interest. Although not shown in the article, it is likely that the size 
of the crowns indirectly contributes to the correct identification. Species with small crowns may require 
more crowns. 

The complementarity of LiDAR and hyperspectral data has a high potential and allows the 
quantification of the resource, providing an estimated cumulated basal area per species consistent with 
the field inventory. Improvements in point cloud segmentation methods from LiDAR may further 
improve predictions. 

While these results are encouraging as they suggest that a limited training set size may be sufficient 
to conduct reliable inventories from the air, the next question is whether we could do without any site 
specific ground data collection. This poses the question of transferability of hyperspectral classifiers. It 
is expected that the identification of a species at the same site on a new date will offer lower results. In 
a simplified configuration as discussed in Chapter 1, using a second date with a time interval of one day 
reduces performance by 10%. In a more difficult case presented in this chapter performance may 
decrease by more than 10%. Thus, the next chapter addresses the key issue of consistency of spectral 
signature across acquisitions. 
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IX. Chapter 3: Between date sources of variation in hyperspectral 

airborne imagery over tropical forest canopy 
 

Abstract :  

Classifiers trained with airborne hyperspectral imagery can identify tree species in hyper-diverse 
tropical rainforest. However, the spectral signature varies with the atmospheric conditions and other 
acquisition characteristics leading to a drop in the performance of classifiers when applied to new 
imagery (different site or different date). Here we take advantage of repeat overflights of two tropical 
forest sites in French Guiana to investigate factors affecting spectral similarity across dates. Atmospheric 
corrections improved spectral consistency between flights in the spectral region from 400 nm to 2000 
nm but degraded spectral consistency in the 2000-2500 nm region. This spectral region also showed the 
lowest SNR. Predictability of SAM divergence between successive overflights varied with the spatial 
resolution and the spectral region considered but was consistently low (<30%). Between dates SAM 
divergence in canopy reflectance was primarily explained by the difference in solar position 
(contributing to about 50-80% of explained variance depending on the spectral region considered) and 
secondarily by view angle. Local topography only contributed marginally. However application of a 
RossThick-LiSparse BRDF correction did not improve spectral consistency between dates and only 
marginally reduced the proportion of SAM divergence explained by the model. 

Using the same predictors as those used to predict SAM divergence, the consistency of selected 
wavelengths was very much improved by a statistical correction. Both a Generalized Additive Model 
and Neural Network model trained on one part of the image and applied on another part reduced Root 
Mean Square Difference of reflectance by 10-90% (depending on the wavelength considered). 

This study highlights the current limits to transferability of classifiers and the potential importance 
of integrating more efficient BRDF corrections to extract robust species-specific spectral signatures.  

 

A. Introduction 
A major benefit of remote sensing is to provide consistent mapping over large areas. Thanks to the 

numerous earth observation missions, it is possible to capture many images on many different sites at 
different times and with different sensors. For operationality and task automation, it is necessary to 
control for the side effects associated with the variations in acquisition parameters and also inter-
calibrate sensors in case multiple sensors are used over time (Baraldi, 2009).  

One of the first sources of variations may be the correction related to atmospheric variations in 
hyperspectral images. (Laybros et al., 2019), showed that single date discrimination of tropical species 
can be achieved using radiance images (as opposed to reflectance images which are corrected for 
atmospheric effects). However, when applied across dates species discrimination was improved when 
based on reflectance data rather than radiance data. Radiative transfer models, thanks to the 
decomposition of the contributions relative to the various physical processes disturbing the signal, make 
it possible to estimate the reflectance of the imaged object. Three components contributing to the at-
sensor-radiance need to be considered: direct and diffuse solar radiation, radiation reflected by the 
object and radiation reflected from the object neighbourhood ( Richter and Schlapfer, 2018). Each of 
these components is taken into account in the process of correcting atmospheric effects, which usually 
assumes Lambertian property of the reflecting surfaces. The atmospheric correction process is, however, 
imperfect. The review conducted by (Thompson et al., 2018) highlights the sensitivity of atmospheric 
corrections to errors in estimating the state of the atmosphere for space hyperspectral sensors. They 
identified several sources of error, the two most important of which are the estimation of water vapour 
content, which has the effect of absorbing the radiation and the estimation of the optical thickness at 
550 nm, which has the effect of scattering the radiation, errors that can be cumulative (Bhatia et al., 
2018). More specifically, the uncertainty in aerosol optical thickness (AOT) is more impactful than the 
uncertainty in water vapor (Bhatia et al., 2015). However, these two parameters are strongly positively 
correlated as shown on the city of Beijing (Che et al., 2016) and on a rural tropical area in India 
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(Srivastava et al. 2008). In the present study, two models, one for water vapour and one for optical 
thickness were used defining the absorption and scattering properties of the considered atmosphere. 
These models were chosen according to the geographical location. We followed recommendation made 
in ( Richter and Schlapfer, 2018) and used "rural" aerosol type in our sites  

A poor estimation of the water vapour column leads to an increase in the absorption of the 
wavelength at 940 nm and 1140 nm and changes in slope (derivative) especially in the spectral region 
between 2000 nm and 2500 nm (Thompson et al., 2018). APDA technique can remove the water vapour 
absorption consequences. Comparing the APDA technique (Schläpfer et al., 1998) applied on Sentinel-
2 Imagery and AERONET measurements, (Makarau et al., 2017) showed a high correlation with a low 
root-mean-square error of about 0.1 cm for water vapour values from 0.2 to 5 cm. In addition, this error 
had a very low impact on the NDVI index. According to a simulation study, the aerosol concentration 
estimation errors would affect the slope of the spectrum but especially so for short wavelengths 
(Thompson et al., 2018). However, as noted by (Bhatia et al., 2015), vegetation spectra may or may not 
be influenced depending on the characteristic wavelengths of the object in the visible and the amplitude 
of the signal in the near infrared. From a theoretical point of view for an AOT variation from 0.04 to 0.1, 
the NDVI error could range from 2% to 5% (Thompson et al., 2018). (Pflug et al., 2015) estimated the 
AOT for 45 study sites imaged all around the globe by Landsat and Rapid Eye sensors. AOT estimated 
by ATCOR-4 based on the imagers was compared to data measured on the ground locally (AERONET). 
The authors found a mean AOT difference of 0.04 with a standard deviation of 0.02, despite the inclusion 
of cloudy and foggy areas. However, the tropics have a very high and very variable optical thickness, 
which can be modified by fires, leading to an increase in carbon dioxide content in the atmosphere 
(Reddington et al., 2016). In addition, in shaded areas, such as shadows cast by trees, light intensity 
reaching the sensor is close to zero, making the estimate of reflectance particularly complex for 
atmospheric inversion methods. 

As natural surfaces are generally not Lambertian, the acquisition geometry and the illumination 
(sun-sensor geometry) have an effect on the observed reflected electromagnetic spectrum (Rajan et al., 
2006). These variations will therefore have an effect on spectral indices. (Galvão et al., 2013) using the 
Hyperion sensor (EO-1) analysed the sensitivity of these images to the effects of viewpoint and direction 
of illumination. They highlighted that the spectral indices were strongly impacted, especially those 
using information from the NIR region such as the EVI. For a VZA (vertical zenith angle) of + or - 20 °, 
the EVI spectral index could vary from + 7% to -5%. Conversely, they found that certain spectral indices 
such as NDVI (Normalized Difference Vegetation Index), SIPI (Structure Insensitive Pigment Index) 
and VOG (Vogelmann Red Edge Index) were less sensitive to variations in lighting (1% variation for a 
VZA of + or - 20 °). (Verrelst et al., 2008) performed a similar analysis on a forest and a meadow, using 
the CHRIS sensor (PROBA), to highlight the effect of reflectance anisotropy on spectral indices. The SRI 
(Simple Ratio Index), NDVI, SIPI (Structure Insensitive Pigment Index), PRI (Photochemical Reflectance 
Index) and ARI (Anthocyanin Reflectance Index) had an angular response, which depended on the type 
of cover.  

Airborne hyperspectral remote sensing further suffers from the fact that lighting conditions change 
from one flight line to the next which is acquired a few minutes later (Bréon and Vermote, 2012; Colgan 
et al., 2012; Gerard and North, 1997; Jia et al., 2020). Multiple view angles, solar positions and 
topographic configurations need to be jointly considered to determine the bidirectional reflectance 
distribution function (BRDF). In addition, BRDF varies with land cover type (Schlapfer et al., 2015). 
Knowing the local BRDF function allows to normalize the directional reflectance from the non-nadir 
view to the reflectance at the nadir. BRDF is also resolution dependent. For instance, (Roman et al. 2011) 
analyzed the surface BRDF at 3 m and 500 m resolution over a mixed agricultural landscape. They 
argued that coarser spatial resolution was preferable to finer spatial resolution using a RossThick-
LiSparse Reciprocal (RTLSR) model, due to assumption of linearity in kernel-driven BRDF model, 
which depended on the weighted sum of isotropic-scattering, volume-scattering and geometric-optical 
scattering kernels.  
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(Pacifici et al., 2014) studied a time series of 21 images acquired between 2002 and 2009 by 
QuickBird over the city of Denver, Colorado. They found that the atmospheric and geometric properties 
of the acquisitions strongly affected the calculated reflectance values of the pixels. A Kappa 
improvement of 0.374 was achieved over raw pixels when the surface reflectance values were combined 
with the angular decomposition classifying 22 urban classes. In addition, the RPV model (Rahman – 
Pinty – Verstraete, (Rahman et al., 1993)) which decomposes the angular surface reflectance observed 
into three independent components representing the amplitude, anisotropy and the asymmetry factor 
(which controls the relative amount of back and front scattering) was beneficial in identifying vegetation 
classes. The anisotropy coefficient will depend on the structure of the object and of its surrounding. In 
case of trees many parameters may be influential : shape of the tree crown, branching pattern, tree 
foliage density, foliage elements size and orientation distributions, soil contribution, adjacency effect, 
etc… (Korpela et al., 2011).  

Variation in signal intensity associated with lighting conditions can be controlled by normalizing 
spectra to a common baseline. One such option is the continuum removal, which considers the convex 
hull fit over the top of a spectrum as the base line (Clark and Roush, 1984). It was argued that this 
correction minimizes the residual effects of atmospheric correction and BRDF for a better estimate of 
the water concentration in the leaves (Kokaly and Clark, 1999). 

An additional complicating parameter is the local slope of the relief with respect to the incident 
light ( Richter and Schlapfer, 2018; Santini and Palombo, 2019). The topography is generally given by 
LiDAR measurements providing an accurate DEM (Digital Elevation Model) from which the slope and 
aspect can be mapped. The common point to all topographic correction methods is the correction of 
variable illuminance as a function of the slope. With slope values of 10 ° to 20 °, topographic effects are 
moderate (Richter et al., 2009). (Oliveira et al., 2019) applied a C-correction as proposed by (Teillet et al., 
1982). From non-corrected to corrected data, a reduction in reflectance variability was observed. The 
standard deviation was reduced in the near-infrared (6.45%), the SWIR-1 (3.3%), the "red-edge" (2.47%) 
and the visible (0.37%). Cosine correction only modifies the direct part of the incoming irradiance while 
diffuse irradiance is not taken into account, as described by the correction equation (Meyer et al., 1993). 
In the same way, the red and near infrared reflectance increases when the rate of overlap between 
crowns is important and that whatever the direction of view (Gerard and North, 1997). 

Spectral distance functions and metrics are useful tools to quantify spectral variation over an entire 
spectral range. (Deborah et al., 2015) performed an evaluation of function and spectral distance metrics 
for hyperspectral imagery taking care to consider the underlying assumptions and mathematical 
construction (triangular equality, identity of indistinguishable, monotonous increase). As noted by the 
authors, the RMSE (Root Mean Square Error) distance function differs from the SAM function because 
the latter does not comply with the assumption of the identity of the indistinguishable, due to the 
inverse cosine function. However, the advantage of the SAM is its insensitivity to the variation in 
intensity. Many other distance measurements considering a spectrum as a distribution can be used to 
quantify these differences and we refer the interested reader to (Deborah et al., 2015) . 

Adaptation domain methods (Gross et al., 2019; Matasci et al., 2012) may help addressing the issue 
of transferring a species classifier trained under particular conditions to new conditions (different time 
or area for instance). It is however of interest to first identify the source and quantify the amplitude of 
the variations between acquisition dates. Indeed, identifying the causes of the differences could guide 
the development of generic methods. The aim of this study was therefore to characterize the sources of 
variations in hyperspectral data (at sensor radiance and reflectance). The ultimate goal is to develop 
robust methods to identify particular tree species over large areas of forest without the need to retrain 
a classifier with ground inventory for every new site. We first assess the noise level variation across 
spectral regions in order to assess signal quality for each spectral range. Then, we evaluate the gain in 
signal stability brought about by atmospheric corrections by comparing repeated flights over successive 
days. We do so both for individual crowns and patches of pixels.  

We further take advantage of the particular flight plan on one site to explore the impact of the 
acquisition geometry (sun and the sensor positions) on spectral divergence between dates. Finally, we 
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examine the potential of wave length specific statistical correction to improve spectral consistency 
across dates.  

 

B. Material & Method 
 

       
Figure 1: Workflow of the study. The blue boxes refer to hyperspectral imageries. The oranges boxes refer to the methods 

used in the study. 

1. Study Sites 

Two forest sites in French Guiana were considered for this study: Paracou and Nouragues.  
The Paracou research station is located in the north of French Guiana (5°16’ N, 52°55’ W), about 15 

km from the coast (Gourlet-Fleury et al., 2004). The annual average temperature is 26 ° C with a variation 
of + -1 ° C. Precipitation is highest in May and lowest in October-November. The rainfall is around 2875 
+ - 510 mm per year. The Paracou site is a hilly area. The altitude varies from 5 m to about 45 m above 
sea level.  

The Nouragues station is located in the centre-east of French Guiana, 100 km from the coast (4°05' 
N, 52°40' W) (Bongers et al., 2013). The average temperature is similar to the Paracou site with a high 
average relative humidity, between 80 and 90%, depending on the season. The rainfall is 2990 mm / 
year. The relief is made of hills and plateaus. The elevation of the site varies from 60 m to 420 m at the 
top of the inselberg.  

2. Hyperspectral data  

For each site, hyperspectral data was acquired combining two sensors: a Hyspex VNIR-1600 
(Hyspex NEO, Skedsmokorset, Norway) sensor mounted alongside a SWIR-384 (Hyspex NEO, 
Skedsmokorset, Norway) sensor. At the same time, a LiDAR laser scanner Riegl LMSQ780 acquired 
data point clouds. The VNIR sensor covers the range from 414 nm to 1 000 nm, discretized into 160 
spectral bands. The SWIR-384 sensor covers the range from 1000 nm to 2500 nm discretized into 288 
spectral bands. The spectral sampling was 3.7 nm and 5.45 for the VNIR and SWIR sensor respectively.  

a) Date and time acquisitions  

Overflights of the Paracou site took place on September 19, 2016 and September 20, 2016. The first 
acquisition started at 1:12 PM and finished at 3:38 PM local time, starting on the western side of the site. 
The second acquisition started at 2:14 PM and finished at 3:00 PM, covering a smaller area, about one 
third of the area imaged on the first date. Overflights of the Nouragues site took place on September 21, 
2016 and September 22, 2016. The first acquisition started at 2:39 PM and finished at 4:38 PM. A low 
proportion of cloud shadows was present (Tab.1). The second acquisition started at 2:38 PM and 
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finished at 4:38 PM. A greater proportion of shadows was present on the second day (Tab.1). The flight 
plans were similar but the first overflight of this area started in the west and ended in the east, while 
the second flight started in the east and ended in the west.  
Table 2: Overflights characteristics. The proportion of cloud shadow is based on visual delineation of shadows on the 
hyperspectral imagery. 

Date Site 
Start time  

(UT -3, PM) 

End time  
(UT -3, 

PM) 

Altitude 
above the 
sea level 

(m) 

Cloud shadow 
(%) 

Poorly 
illuminated 

pixel (%) 

09/19/2016 Paracou 1:12 3:38 920 4.8 9.3 

09/20/2016 Paracou 2:14 3:00 920 1.2 25.1 

09/21/2016 Nouragues 2:39 4:38 1100 23.0 82.4 

09/22/2016 Nouragues 2:38 4:38 1100 63.9 86.6 

 

b) Corrections applied 

The hyperspectral images were radiometrically corrected using static calibration parameters of the 
manufacturer taking into account the dark signal, the bad pixels and the spectral response functions 
(SRF) depending of the FOV. Then, hyperspectral images were orthorectified and georeferenced at 1m 
spatial resolution for VNIR sensor and at 2m spatial resolution for SWIR sensor with PARGE software 
(Richter and Schlapfer, 2018). A 1m-DSM (Digital Surface Model) produced from the LiDAR point could 
was used for a fine orthorectification. The DSM was constructed using the data point cloud by selecting 
point of maximum height on a 1m resolution grid. VNIR and SWIR images were merged based on 
geographic positions using PARGE software at 2m spatial resolution. 

Each flight line was corrected using ATCOR-4 software to remove atmospheric perturbations ( 
Richter and Schlapfer, 2018). The same atmospheric look-up table file with a rural aerosol and a water 
vapour column of 0.4 g.cm-2 was used for both sites. As the aircraft flew between 920 and 1100 m 
altitude, the water vapour column was estimated for an altitude of 1000 m. Atmospheric corrections 
between Nouragues and Paracou can be compared to field measurement taken during the campaign 
and accessible using the following link: https://aeronet.gsfc.nasa.gov/cgi-
bin/draw_map_display_aod_v3. According to (Bhatia et al., 2018), the amount of aerosol optical 
thickness can be considered low to moderate (less than 0.25) at 500 nm on both days at both study sites. 
A single AOT estimate per date was considered (rather than a spatially explicit version) (Schläpfer et 
al., 2018). The water vapour column, on the other hand, was high (higher than 3.5 cm). Some spectral 
ranges were not recoverable despite the use of atmospheric corrections due to excessive noise. We 
removed wavelengths between 1318 nm and 1503 nm, between 1742 nm and 1964 nm and beyond 2450 
nm. Therefore, we used 355 spectral bands. Different sources of shadows can interfere with the spectral 
value measured by the sensor, the main ones being the shadows cast by trees and clouds. Shaded pixels 
negatively affect the results of classifications. We used a specific method to remove pixels that were 
considered poorly illuminated. We also masked non-forest areas such as rivers, roads and tracks. We 
did not mask out savannahs and rocky outcrops (Inselberg) which however were classified as non-forest 
areas. We calculated the illumination index using ATCOR-4 software based on the radiance signature 
and topographic information for the Paracou and Nouragues sites.  

We applied a BRDF correction using BREFCOR model, available in ACTOR-4 software. BREFCOR 
method (Schlapfer et al., 2015) characterizes surface type using a fuzzy classification and then computes 
anisotropy factor for correction using a semi-empirical BRDF model. In this study, the BRDF model was 
computed for five classes defined by the BCI index as proposed by default. Before this step, we masked 
all non-forest land cover: bamboo patches, water bodies, and a rocky outcrop. We compared spectral 
consistency across dates either before or after applying a BRDF correction. We expected to see a 
reduction in the spectral signature difference between dates. For this study, three spectral regions were 
considered: VNIR (500 - 1318 nm) SWIR-1 (1508 - 1740 nm) and SWIR-2 (1970 – 2450 nm). 
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c) Statistical preprocessing 

 
Radiance (also named “Geo”) and reflectance (also named “Atmo”) raster stacks were smoothed 

by applying a 3x3 mean filter. In addition, we normalized spectrum of each pixel by dividing by the 
mean VNIR spectrum value. Indeed spectral normalization was found to significantly improve tree 
species discrimination in a previous study (Laybros et al., 2019). This normalization was applied even 
though we finally selected the SAM index as a measure of spectral similarity. Normalization has no 
effect on the SAM values.  

d) Mosaicking  

 
For each site and each date, hyperspectral flight lines were mosaicked using the center-cropped 

option in PARGE, which reduced the variation in scan angle by preferentially selecting the most central 
part of each flight line. However, some flight lines were marred by cloud shadows. Cloud shadow 
masking may have resulted in a decrease in the rate of overlap between flight lines and increase scan 
angle variability.  

We overlaid the hyperspectral mosaics at both dates to estimate the spatial shift and potential 
distortions and found that alignment was consistent within +/- 2 m.  

In each site, the flight lines of the common area covered on successive days were separated into 3 
groups to build three non-overlapping mosaics: west, center and east of the area. Width of the area 
repeatedly imaged differed significantly between sites (Paracou ~1.1km, Nouragues ~2.6km). 

Spectral consistency of atmospheric-corrected data (reflectance) and uncorrected data (radiance) 
was systematically tested.  

 

3. SNR evaluation 

 
Noise affects the quality of the hyperspectral signal and denoising is delicate because of the need 

to preserve spatial and spectral information. The noise can come from different sources (Rasti et al. 
2018). Several ways have been proposed to estimate the noise contribution relative to signal. As 
highlighted in (Gao et al., 2013) working with AVIRIS data, the different noise estimation methods 
generally give similar results. We evaluated the quality of the hyperspectral signal using the SSDC 
(spectral and spatial de-correlation) method (Roger and Arnold, 1996). The noise estimation is 
performed on different non-superimposed blocks of a fixed size and preferably homogeneous. It uses 
spectral correlation and spatial correlation to identify the noise component by linear regression. A pixel 
value is predicted using spectral and spatial neighbours value. The residue is considered noise. 

The Signal-To-Noise ratio (SNR) was computed using a 13x13 pixels window (26x26m 
neighbourhoods). An illumination filter was used to exclude individual pixels with an illumination 
index below 0.6. For a robust linear regression and to correctly estimate the noise, the sampling must 
be sufficient. Among the 169 pixels, if more than 40% of pixels were removed then the calculation was 
not performed for the window. 

 

4. Manually delineated crowns 

 
In the Paracou and Nouragues sites, we manually delineated individual crowns well-illuminated 

on both dates (visual control). We used RGB images at 10 cm resolution as well as the canopy height 
model derived from LiDAR point clouds to delineate those crowns. No ground truth data was available 
to validate the quality of the segmentation.  

Table 3: Number of crowns used for each study site. 

Study site Number of crowns Area (m2) 
Paracou 106 26260 
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Nouragues 145 44619 
 

5. Patch level 

 
We partitioned the hyperspectral images into 5x5 pixels patches. We used patches rather than 

single pixels to mitigate misalignment effects between dates. As the shadows have a strong impact on 
the measured reflectance, we filtered the shadows as explained in the noise evaluation paragraph 
(permissive configuration). Another configuration, the most restrictive (restrictive configuration), used 
a patch only if 100% of its pixels had an illumination ratio above 0.6. Analyses were conducted for both 
levels of illumination quality. 

 

6. Dissimilarity index 

 
The spectral angle between dates was computed between the spectral mean over all well-

illuminated pixels of each patch/object. The SAM (Spectral Angle Mapper) metric determines the 
spectral similarity between two spectra by calculating the angle between the spectra treating them as 
vectors in a space with dimensionality equal to the number of bands. Its main advantage is it 
insensitivity to the illumination variation.  
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NRMSD (normalized Root Mean Square Deviation and SID (Spectral Information Divergence) 
were also computed. The responses were very similar whatever the spectral similarity measure used. 
Results are presented in appendix. 

 

7. Evaluation of parameter acquisitions 

 
To explore the contribution of the different predictors to the spectral divergence, we first built 

coarser resolution mosaics by aggregating radiance/reflectance values by 3x3, 5x5 or 9x9 pixels. We then 
computed between dates SAM values for each cell. We further selected the cells to which apply the 
statistical analyses by considering two illumination thresholds. In the most restrictive case only patches 
in which all the 2m pixels had an illumination ratio higher than 0.6 were kept. In a less stringent 
scenario, similarly to the SNR analysis, cells were considered if at least 60% of the pixels were well 
illuminated. In which case only those well-illuminated pixels were used to compute the cell mean 
spectrum. In addition, we also tested the application of a Savitzky-Golay spectral smoother by second 
order polynomial fit over five consecutive bands (equal to 18.5 nm for the VNIR sensor and 27.3 nm for 
the SWIR sensor). 

We explored how between dates spectral divergence as measured by SAM was related to various 
predictors. We conducted this analysis on the Nouragues site only since it showed the largest solar 
variation between dates (see M&M section). To evaluate the contribution of different predictors we 
opted for Generalized Additive Models (GAM) thereby avoiding making parametric assumptions with 
regard to the shape of the response. In GAM the response variable depends linearly on unknown 
smooth functions of some predictor variables (Hastie and Tibshirani, 1999).  

Because of the strong spatial correlation expected to occur in spectral response divergence and to 
avoid overfitting we used block cross-validation (Valavi et al., 2019) . We subdivided the area between 
north and south blocks and trained the model using one-half of the data and evaluated its prediction 
on the other half. We report the R² of the linear regression of predicted versus observed values as the 
goodness of fit statistic. We evaluated the contribution of the different predictors by recording the drop 
in explained variance when that predictor was omitted from the model (using the same cross validation 
method by blocks to assess the explained variance with or without the predictor examined). The 
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reflectance of many cover types depends on the viewing and solar illumination geometry. Added to 
this angular dependence between the sun and the sensor are the relief effects, which can be captured 
using topographic information. The Bidirectional Reflectance Distribution Function (BRDF) uses this 
information to restore the spectral signature so as to be independent of the acquisition geometry. In this 
study we explore how much the spectral consistency between dates is affected by viewing and solar 
angle, in conjunction with local topography. 

Nouragues site is mostly covered in forest. The river in the south and the large barren rocky 
outcrop in the north were identified using RGB imagery for the analysis. In addition, in Nouragues 
bamboo thickets (locally referred as “cambrouse”) create openings of a few hectares in the forest canopy. 
A mask was created for each of the non-forest categories. 

We computed the elevation and azimuth angles of the sun for each pixel based on the time 
acquisition and geographic position. We also considered absolute scan azimuth (horizontal angle 
measured clock wise from true north), and the scan zenith angle. We also computed the slope and the 
aspect angles based on the canopy surface model re-sampled at 10 m spatial resolution. The predictors 
description and range of variation are reported in Tab.3. 

Depending on whether the configuration was restrictive or permissive, and the size of the patches 
considered, the number of observations varied widely (from 790 000,000 to 202; see appendix 3). We 
divided the dataset in two by the median Y coordinate: the north part and the south part. We randomly 
selected 10,000 pixels from the training set when more than 10,000 observations were available to speed 
up calculation.  

 
Table 4: Pixel level characteristic. Range is given in degree.  

Origin Predictor Description Range 
(degree) 

Sun 
Sun Elevation 

Absolute difference in sun elevation between 
successive flights  

26.4, 55.6 
26.2, 55.8 

Sun Azimuth 
Absolute difference in sun azimuth between 

successive flights  
264.7, 268.7 
264.0, 267.9 

Sensor 
Absolute Azimuth 

Absolute difference in sensor azimuth viewing 
angle 

0, 360 

Scan Zenith 
Absolute difference in sensor zenith viewing angle  0.0, 14.6 

0.0, 12.8 

Topography 
Slope Slope of Canopy Surface Model 0.5, 53.1 

Aspect Aspect of Canopy Surface Model  0, 360 

Combination Sun – sensor angle 
Absolute difference in the angle between the pixel-

sun vector and the pixel-sensor vector 
29.7, 74.1 
25.9, 72.3 

 

8. Spectral correction 

 
In this paragraph, we propose a method to correct the between date differences in five spectral 

bands (556 nm, 760 nm, 1058 nm, 1639 nm and 2246 nm) positioned in each of the spectral ranges (VNIR, 
SWIR-1, SWIR-2). A GAM model and a neural network model (NN) were used and compared. The NN 
model was made up of 17 layers, consisting of 32 to 102 neurons per layer. Only "Relu" functions were 
used, except for the last layer (linear) (more details are given in appendix 6). 

The data acquired in the north of the Nouragues site are used for the training of classifiers. Data in 
the south is used for prediction. We then reversed the procedure using the southern half for the training 
and the northern half for the prediction. We pooled the prediction of the two steps and we analyzed 
them jointly. Only pixels with an illumination ratio higher than 0.6 were considered. The models aimed 
to predict the difference in reflectance of specific wavelengths observed between the two acquisition 
dates. No specific transformation was applied to topography related predictors (slope and aspect).  
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C. Results 

1. SNR evaluation 

 
We evaluated the noise per spectral region, both before and after atmospheric correction for three 

subzones west, center and east in each site.  

 
Figure 2: Paracou radiance. SNR in the west (green lines), the middle (red lines) and the east (blue lines) of the overflight prior 
to applying atmospheric corrections, per spectral region. The brown and orange spectra are the spectral means of the site. 
The first date in solid lines. The second date in dashed lines 

 
Figure 3: Paracou reflectance. SNR in the west (green lines), the middle (red lines) and the east (blue lines) of the overflight 
after atmospheric corrections were applied per spectral region. The brown and orange spectra are the spectral means of the 
site. The first date in solid lines. The second date in dashed lines. 
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The SNR decreased from VNIR to SWIR-1 and even more so to SWIR-2. The hyperspectral image 
acquired on Paracou on the first date was less affected by noise than on the second date (Fig.2 and Fig.3), 
in particular over the spectral range from 1900 nm to 2450 nm. Atmospheric corrections tended to 
reduce the SNR. There was no clear strong geographic (E-W) pattern. 

 

 

Figure 4: Nouragues radiance. In each of three spectral regions, we compared the SNR in the west (green lines), the middle 
(red lines) and the east (blue lines) of the overflight prior to applying atmospheric corrections. The brown and orange spectra 
are the spectral means of the site. The first date in solid lines. The second date in dashed lines. 

 
Figure 5: Nouragues reflectance - In each of three spectral regions, we compared the SNR in the west (green lines), the middle 
(red lines) and the east (blue lines) of the overflight after applying atmospheric corrections. The brown and orange spectra 
are the spectral means of the site. The first date in solid lines. The second date in dashed lines.  
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Reflectance-SNR (Fig.5) was also significantly lower than radiance-SNR (Fig.4) in the Nouragues 
site. In addition, the SNR showed a clear spatial pattern of variation. The central area had similar SNR 
on both dates, while data acquired later in the afternoon on either date had a lower SNR. 

2. Spectral discrepancies 

To begin, we present the analysis at object level, using manually segmented crowns for both sites. 
We then present results obtained using 5x5 pixels windows on a much larger data set.  

a) Object level: 

To ensure the best object matching between dates, crowns were delineated independently on each 
mosaic (flight date). We computed the spectral mean per object before comparing spectral distance in 
terms of R-square and SAM.  

i.  R-square 

 
 
Figure 6: Spectral correlation between same crowns viewed on two dates in Paracou (full lines) and Nouragues (dashed lines) 
site. The red and blue lines represent the dataset atmospherically corrected or not respectively.  The figures are the average 
R2 value per spectral region. 

Fig.6 compares the spectral consistency for the same objects seen at a time interval of 1 day using 
the squared Pearson correlation coefficient. Atmospheric correction mostly increased the consistency of 
the spectral signature from 500 nm to 1750 nm. Beyond this threshold, the atmospheric correction 
considerably degraded the consistency between the dates. 
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ii. SAM metric 

  
Figure 7: Paracou and Nouragues sites – For each site, comparison of individual crowns SAM metric according to the spectral 

range considered. Geo (blue) uses at sensor radiance values. Atmo (red) uses reflectance spectra (after atmospheric 

correction). Median value written above each boxplot. 

Using SAM the average reflectance and radiance spectrum of each object was compared to the 
average reflectance and radiance spectrum of the same object seen on the second date (Fig.7). Data 
corrected for atmospheric effects were on average more consistent than uncorrected data (lower median 
SAM value) except in the SWIR-2 range. We observed the same behaviour for the RMSD and SID 
metrics. The correlation matrices between the spectral distances (calculated over the entire spectrum) 
SID, SAM and RMSD are given in the appendix (Fig.15 and Fig.16). 

SAM values were always lower in Paracou indicating higher discrepancy between dates in 
Nouragues.  

b) Patch analysis: 

In this part, we considered a window size of 5x5 pixels to evaluate different metrics. This allowed 
to consider many more observations compared to the object based approach (Tab. 6). 

i. R-square  

 



89
Laybros A. - Doctoral thesis

Figure 8: Relation between same patch (5x5 pixels) viewed at the two dates in Paracou (full lines) and Nouragues (dashed 

lines) site. The blue and red lines represent the dataset no corrected and corrected by atmospheric correction respectively.

The pattern found was similar to the one observed using selected crowns. Reflectance consistency 
was higher in Paracou than in Nouragues for patches like for individual crowns. A large fluctuation in 
R² was observable for crowns in Paracou in the SWIR-2 part (Fig.6). These fluctuations were much less 
when considering patches instead of crowns (Fig.9) but the overall consistency was also much lower.

Whether at the object or patch level, sudden changes in consistency appeared between two 
contiguous wavelengths. Inconsistencies around 950 nm may be due to the transition between the two 
sensors (Lenhard et al., 2015). The observed dip in R² around 1150 nm in Nouragues possibly reflected 
poorly corrected atmospheric disturbances.

R
²

R
²
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ii. SAM metric 

 
Figure 9: Paracou and Nouragues sites – Between date SAM for two sites and three spectral ranges. SAM are computed based 

on mean spectrum of 5x5 pixels patch. Geo (blue) uses at sensor radiance values. Atmo (red) uses reflectance spectra (after 

atmospheric correction). Median value written above each symbol. 

The results were very similar for different similarity indices tested (see correlation matrix between 
indices in appendix, Fig.15 and Fig.16). The only slight discrepancy occurred for SWIR-1 in Paracou 
where R² was significantly increased following atmospheric corrections (Fig.8), but SAM was not (Fig. 
9). Atmospheric corrections reduced SAM vales much more in Nouragues than in Paracou. 

The results at the crown scale (Fig.8) or patch scale (Fig.11) were very similar. The different metrics 
were all consistent.  

3. Sources of between date spectral divergence 

We now explore the spatial variation in spectral divergence along the east-west direction. We 
consider 5x5 pixel windows to compute SAM dissimilarity index between dates and report those values 
for the three sub mosaics: on the western side, the middle, and the eastern side. Both radiance (blue 
color) and reflectance (red color) dissimilarity are computed. 
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Figure 10: Characterization of spectral dissimilarity by the SAM index (5x5 patches) at the Nouragues site in three sub-zones 

(left to right) and three spectral ranges (top to bottom). Blue and red symbols stand for radiance and reflectance data 

respectively. 

The overflights, which took place on successive days began on opposite sides of the area (Fig.10). 
The first one started in the east and the second one in the west. For each flight strip, the same trajectory 
(flight path and flight direction) were maintained. We compared the average and the median SAM 
value. The middle part of the mosaic with the least difference in solar position between dates (Table 5) 
was the most consistent across dates (see median value, Fig.10). In addition, data in the east were 
significantly less consistent that in the west.  

 
Table 5: Proportion of well-illuminated pixels for each configuration. An illumination ratio higher than 0.6 was considered as 
good.  

  Good illumination (%) Solar acquisition time 

Western side 
T1 20.7 4:29PM to 4:38 PM 
T2 37.5 2:39PM to 2:48PM 

Middle 
T1 25.0 3:34PM to 3:49 PM 
T2 25.9 3:27PM to 3:39PM 

Eastern side 
T1 40.3 2:40PM to 2:49 PM 
T2 21.2 4:30PM to 4:39 PM 

 
There was an opposite variation in the quantity of well-illuminated pixels between the two dates 

along the east-west axis. (Tab.4).  
 

4. Sun-Sensor variation  

 
In this analysis, we evaluated the contribution of the variation in acquisition parameters (sun 

position and sensor orientation, and topographic variations) to the spectral dissimilarity computed 
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using SAM index. We considered two levels of illumination for selecting patches. Only reflectance 
spectral signatures were used. 
Table 6: SAM statistics (median and standard deviation) for each spectral ranges and considering two type of landcover. With 

and without SG indicates whether Savitzky-Golay spectral smoothing was applied or not. Permissive illumination configuration 

was used. 

  Cambrouse Forest 
 Size Full VNIR SWIR-1 SWIR-2 Pixels Full VNIR SWIR-1 SWIR-2 Pixels 

W
it

ho
u

t S
G

 

1 17.6 (±13.2) 4.0 (±4.4) 1.0 (±4.7) 26.8 (±42.4) 40113 18.5 (±11.7) 4.1 (±2.8) 1.3 (±2.2) 59.2 (±39.8) 716057 
3 15.5 (±12.5) 3.4 (±2.7) 0.9 (±2.6) 20.9 (±26.6) 4107 15.6 (±9.6) 3.6 (±2.0) 1.2 (±1.3) 44.9 (±21.4) 54710 
5 14.3 (±12.5) 2.8 (±2.3) 0.8 (±1.0) 21.0 (±21.4) 1352 12.7 (±8.7) 2.8 (±1.8) 1.0 (±0.8) 37.9 (±14.9) 12896 
9 13.1 (±12.5) 2.4 (±2.1) 0.8 (±0.7) 15.5 (±18.6) 355 11.1 (±7.9) 2.5 (±1.7) 0.9 (±0.6) 27.6 (±10.5) 1485 

W
it

h 
SG

 1 13.7 (±13.1) 2.6 (±4.3) 0.8 (±4.9) 15.2 (±37.1)  11.3 (±11.6) 2.3 (±2.5) 0.9 (±2.6) 27.2 (±34.6)  

3 12.6 (±12.5) 2.1 (±2.6) 0.7 (±2.1) 11.9 (±22.8)  9.9 (±9.7) 2.0 (±1.7) 0.8 (±1.2) 20.0 (±18.2)  
5 13.3 (±12.5) 2.3 (±2.1) 0.7 (±0.9) 11.4 (±19.3)  10.4 (±8.8) 2.0 (±1.5) 0.8 (±0.8) 18.1 (±13.1)  
9 12.3 (±12.4) 2.0 (±1.8) 0.7 (±0.7) 9.3 (±16.0)  9.3 (±7.9) 1.7 (±1.4) 0.8 (±0.6) 13.7 (±9.9)  

 
Coarser spatial resolution moderately increased spectral consistency. The SAM reflectance median 

and the standard deviation decreased systematically with increasing spatial aggregation. The use of a 
Savitzky - Golay smoother reduced the median SAM value by an average 10-20% for clearings and 20-
40% for forest. This reduction in SAM following spectral smoothing decreased when considering larger 
patches. The dissimilarity values were lower for the bamboo thickets compared to the forest canopy for 
the SWIR-2 spectral range. 

 Predictability of SAM divergence was analysed for windows of 1x1 and 3x3 pixels, based on a 
north-south cross validation (Figure 1111). Coarser spatial resolution significantly increased SAM 
divergence predictability for forest only and again only for VNIR and SWIR-1 (Fig.11).  

 In addition, considering only patches with all pixels illuminated (restrictive configuration), did 
not increase the explained variance (Fig.11). Although the spectral smoothing reduced the variations in 
SAM, it had no impact on the level of variance explained by the GAM models regardless of the spectral 
range considered (not shown). 
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Figure 11: R-squared given by the prediction models using specific spectral range. A) Permissive illumination configuration 

was used, B) Restrictive illumination configuration was used.  

Increasing of the aggregation factor decreased the number of available observations (Tab.6, in 
appendix). At 9x9 pixels window size, the number of observations became very low (permissive:1385, 
restrictive: 42). There was no clear trend of increasing R² in SAM predictability with increasing windows 
size beyond 3x3 pixels for forest canopy except for SWIR-1 (Fig 14 left and appendix, Fig.17).  

Filtering by an illumination ratio greater than 0.6 (as computed by ATCOR-4 module) was quite 
effective in removing any type of shadow (Tab.4). By considering only fully well-lit areas (restrictive 
configuration) we expected that we would be observing areas more consistent across dates and that this 
would globally improve spectral consistency and increase the predictability of the SAM divergence. 
None of this was observed (Appendix, Tab.7). 
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Figure 12: Relative importance of each component of the model estimated by block cross-validation. Data from the permissive 

configuration and 5x5 pixels resolution were used. 

Differences in solar position between the two dates contributed most to the explained variance 
(Fig.12). The individual contribution of a given predictor was defined as the increase in explained 
variance achieved when adding this factor to the model once all other predictors were already included. 
We report the individual contribution of each factor divided by the sum of individual contributions of 
all factors. Solar position made the largest contribution to the explained variance in SAM. Sensor 
viewing angle and sun-sensor angle came second. Topography contributed the least in all spectral 
regions. Its largest contribution was for SWIR-2. 

 

5. BRDF applied 

 
A BRDF model correction was then applied on data atmospherically corrected using the BREFCOR 

model. We computed the SAM index for both configurations and we compared the mean, median and 
standard SAM values between configurations. A decrease in the mean SAM value and/or its standard 
deviation would indicate an improvement in consistency between dates. Then, we compared the 
variance explained between both configurations. 
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Figure 13: Distribution of SAM values between data with and without BRDF correction. In red and green are given the data 

atmospherically corrected and the data atmospherically corrected with a BRDF correction respectively. The 1x1 pixel size was 

considered. The graphic point represents the mean. The value given represents the median. 

SAM values where unaffected by BRDF correction (Fig.13). This remained the case regardless of 
the size of the window considered (not shown). 

 
Figure 14: Comparison of variance explained using atmospheric correction data prior (left) or after (right) applying BRDF 

correction. Permissive illumination was used in both cases. 
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Applying a BRDF correction decreased the explained variance regardless of the spectral range 
considered (Fig.14). The largest patch size (9x9 pixels) showed an outlying behavior with an 
unexpectedly high variance explained in the SWIR-1 region only. 

 

6. Spectral correction 

 
We used acquisition parameters and reflectance values on date 1 and 2 to model the spectral 

distorsion between dates. We tested two model types (GAM and NN method). 

 
Figure 15: Five spectral bands retained and compared without correction and after corrected using a GAM or a NN model. The 

black dotted line is the regression line. The green dotted line is the line 1:1. The RMSD (Root Mean Squared Deviation) between 

dates either before (left column) or after correction (center and right columns) is given in each graph respectively. The first 

date is given on the X-axis. The second date (observed or predicted) is given on the Y-axis. 

Initially, a strong dispersion and significant bias (difference with 1:1 line) were observed between 
the reflectance values at the two dates. The two methods (GAM and NN) achieved good results by 
eliminating bias and strongly reducing dispersion: RMSD was decreased by 10.3% to 93.5% (GAM) and 
by 16.2% to 93.9% (NN) (details in appendix 6). GAM seemed less capable than NN to correct the 
extreme values (see graphs at the 556 nm and 1639 nm). Considering data without atmospheric 
correction, using the same models, the results were also in favor of NN method (appendix 7, Tab.9). 
Importantly, the reflectance data were much more predictable than radiance data, except for the 2246 
nm wavelength. 

 

D. Discussion 
 
SNR analysis indicated that SWIR-2 spectral range was extremely noisy and that atmospheric 

corrections tended to inflate that noise to the point that it reduced spectral consistency between dates 
in that spectral range (see Fig.2 and Fig.3). Two things may have contributed to the observed pattern: 
the characteristics of the sensor and the atmospheric correction. As reported by (Lenhard et al., 2015), 
characterizing the radiometric, spectral and geometric performances, the uncertainties of the 
radiometric responses evaluated for the center pixels of the sensor was higher in SWIR-2 compared to 
the rest of the spectral range. The fact that SAM dissimilarity index increased after atmospheric 
corrections indicated these corrections were less than satisfactory. 

Even without considering the SWIR-2 region, the predictability of spectral divergence between 
dates was found to be low : the cross validation R2 barely reached 0.3 in the best case scenario (i.e VNIR, 
forest only, well-illuminated 3x3 pixels window size in Figure 14 right panel).  
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The main contributing source to spectral difference between dates was the difference in solar 
position. This held true for the three spectral regions considered. However, the relative contribution of 
the various predictors included in the model varied with the spectral region (Fig.9). This would suggest 
that conducting the analysis on more narrow spectral regions or even per wavelength might help refine 
the interpretation.  

(Doxani et al., 2018) made an inter comparison of four atmospheric correction methods (ATCOR, 
FORCE, iCOR, and LaSRC) applied to spatial data (Landsat-8 and Sentinel-2), positioned all around the 
globe. They reported that AOT at 550 nm was underestimated by ATCOR compared to AERONET data. 
AERONET data are based on very local measurements made by solar photometer allowing to assess 
the direct solar radiation which provides information on AOT. The calculation of AOT by ATCOR-4 
based on shadows and dense vegetation uses the Dark Dense Vegetation (DDV) method (Richter et al., 
2006). However, AOT is affected by noise of the limited sensor accuracy. The calculation of the SNR for 
the Paracou and Nouragues data indicated that certain spectral areas were very noisy, which could have 
led to a poor estimate of the AOT. Although field measurement using a sun photometer were conducted 
during the overflights analysed here those we measured at a single spatial position during the entire 
acquisition. A spatially variable AOT maybe estimated (Schläpfer et al., 2018) and should preferably 
have been applied here. 

In our configuration and in view of the proportion of clouds present in the Nouragues study area, 
it is clear that the diffusive component of incoming light was locally high. The high concentration of 
water vapour induces an increase in the reflectance variation for certain wavelengths found mainly in 
the SWIR-2 and SWIR-1 spectral region. Although we removed the shadows cast by clouds and trees 
by filtering pixels based on the local illumination, it is possible that the second date had more variable 
water vapour concentrations given the higher cloud cover present. However, the SWIR-1 was the least 
impacted spectral zone, between dates.  

The terrain slope has a significant effect on the surface albedo. (Wu et al., 2018) using DART 
(Discrete Anisotropic Radiative Transfer) simulations and in situ observations, showed that there is an 
absolute bias between the horizontal sloping surface albedo and the sloping surface albedo. The slopes 
and orientations were simulated for values from 0 ° to 60 ° (incremented by steps of 10 °) and from 0 ° 
to 360 ° (incremented by steps of 30°). The absolute biases found, averaging around 62.2%, greatly 
surpass the effect of the optical and structural parameters. In our study, the inclination / orientation of 
the slope did not explain much variance in SAM. This may be related to the relatively flat relief on the 
study site: in Nouragues (excluding the rocky outcrop) less than 2% of the slopes (based on the 10m 
resolution DTM) were larger than 20 degrees  

BRDF correction was tested using BREFCOR model. The of BRDF corrections can be very strong 
as mentioned in ATCOR-4 manual (up to 30% changes in reflectance). Here, we found no improvement 
in spectral consistency across dates following BRDF correction, whatever the resolution (patch size) 
considered. Forest canopies have a strong anisotropic factor due to the clumping on the scale of the leaf 
and the crown (Liang et al., 2000) and BRDF models depend on the spatial scale of the measurements 
(Román et al., 2011). (Koukal et al., 2014) report significant improvement in forest type separability after 
modelling BRDF effects per forest type and computing a forest specific bidirectional reflectance factor. 
As shown on selected wavelengths, sun-sensor-topography geometry seem to affect consistency 
between dates in a predictable way. So, the reason why the applied BRDF correction did not help reduce 
spectral divergence measured using SAM deserves further scrutiny. GAM or NN method trained on 
one part of the image effectively reduced discrepancy between dates. NN models slightly outperformed 
GAM and may prove to have better generalization (extrapolation) capability.  

However, any empirical or semi-empirical approach will be based on the estimated data and 
although it may be effective in certain cases, it will not easily be generalizable. A fully physically based 
approach, using ray tracing may serve to conduct sensitivity analyses to identify in which range of 
parameters (canopy roughness, solar position, etc) BRDF is likely to significantly affect spectral 
signature. For example, the DART (Gastellu-Etchegorry et al., 2017) model or LESS model (Qi et al., 
2017) can create 3D scenes simulating the position of trees and all parameters useful for estimating the 
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BRDF. The reflectance of tree leaves is informed by means of a database or field measurements 
(Spectroradiometer). The DART model can use 3D scenes generated from LiDAR data providing 
realistic configuration and fine description of the vegetation canopy cover. LiDAR data are used to 
describe a scene by documenting individual voxels with specific turbidity characteristic. Ray-tracing 
allows to take into account the scattering within the canopy and to better correct the HDRF value over 
a large spectral range. (Fawcett et al., 2018) used the DART model to simulate the irradiance-scaling 
factor derived from top of canopy, which is more relevant than a coarse DEM. Nevertheless, the authors 
mentioned limitations such as computation time, the voxel size that should be higher than image 
resolution and a large number of scattering angle and iterations and over and underestimation of 
irradiance partially occurred for gaps between trees. This experimentation was conducted on temperate 
mixed forest. It would probably be beneficial to conduct a similar study on tropical dense rainforest. 

In the previous analysis, we used the SAM dissimilarity index computed over large spectral regions 
(multiple wavelengths). However, the different wavelengths do not respond in the same way to the 
various disturbances (atmospheric or geometric). One follow-up study would then be to test an entirely 
data driven approach to BRDF corrections. One could build a statistical correction for each wavelength 
based on the same predictors used here to model the change between dates. Such models applied to 
atmospherically corrected data may allow improving spectral consistency between dates more than the 
semi-empirical models such as attempted here. As repeat overflights become available date, robust 
statistical models for correction of anisotropic reflectance in canopies may become effective.  

 

E. Conclusion 
The mapping of forest species over large areas using hyperspectral imagery requires to develop 

robust classification methods that can be generalized and can be adapted to a large range of acquisition 
conditions. It is therefore important to understand the sources of variation in spectral signal when only 
viewing conditions (and atmospheric conditions) are altered while the object remains essentially 
unchanged. In this study, which took advantage of repeated overflights of hyper diverse tropical 
canopies. Unsatisfactory atmospheric corrections in certain spectral ranges seem to be a major source of 
discrepancy in spectral signature between dates. While atmospheric corrections did significantly reduce 
the dissimilarity between dates for VNIR and SWIR-1 the opposite occurred beyond 2000 nm. We found 
that only a minor fraction of the difference in spectral signature between two dates acquired in a very 
short time interval could be attributed to sun-sensor-topography characteristics.  

More advanced atmospheric correction such as applying a spatially variable AOT estimate 
(Schläpfer et al., 2018) and better calibrated BRDF corrections (Richter and Schlapfer, 2018; Thompson 
et al., 2019) might improve spectral consistency but probably not dramatically so. An alternative 
complementary strategy applicable for sun-sensor-relief effects standardisation might be a purely data 
driven statistical approach. Statistical models seem promising indeed and could be further improved 
by adding relevant canopy roughness, LAD density information which is readily available from co-
occurring LiDAR data (if this the case like in the present study).  

 

F. Appendix 

1. Other metrics and their correlations 

a) SID (Kullback-Leibler, symétrie): 

To compare two datasets coming from same multidimensional distribution, it is possible to use the 
Kullback-Leibler (KL) (Kullback and Leibler 1951) divergence. KL does not assume any parametric form 
of the probability distributions being compared. KL is a measure based on the relative entropy of two 
probability density function and it is compute as follow:  

7��Bf||�E = "x fBhE"lo� �fBhE�BhE��"��  

 
P and Q are the discrete probability distribution.  
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KL divergence is not a distance because it does not verify the triangular inequality. The spectral 
mean of the two datasets are separately normalised and considered as distributions. KL divergence is 
not symmetric. Symmetry is ensured by computing the mean of DKL(P/Q) and DKL(Q/P) also known as 
Jeffrey divergence (Nguyen, Morell, and De Baets 2017) or SID measure (Chein-I Chang 2000).  

{97 = "7��Bf||�E ?"7��B�||fE"["  

b) NRMSD 

 
The normalized Root-Mean-Square Deviation is a Euclidian distance. We compute the spectral 

mean of the each objects and patches. Then, this metric was computed. 

`�{7 = "q! B��� >"��E²w�01 �  

   

2. Correlation matrix 

 
We evaluated the contribution of previous metrics and compared those with SAM. The correlation 

is therefore proposed. 

 
Figure 16: Correlation matrices between metrics, computed using all radiance information 
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Figure 17: Correlation matrices between metrics, computed using all reflectance information 

Whether before or after the atmospheric correction, the correlation between the different 
dissimilarity measurements is strong at the patch scale. This is similar between the two study sites. 
However, the scale of objects, the correlation is low, mainly in respect of objects delineated on the site 
Paracou 

3. Proportion of pixels for each configuration 

The details of pixels number per class is given in Tab.6. 
Table 7: Proportion of pixels in each class. 

Size 1 3 5 9 

Permissive 

Forest 716057 54710 12896 1385 
Cambrouse 40113 4107 1332 355 

Others 36577 2923 725 100 
Total 792747 61740 14953 1840 

Restrictive 

Forest 716057 14931 1125 42 
Cambrouse 40113 2707 735 154 

Others 36577 1110 128 6 
Total 792747 18748 1988 202 

!

The proportion of forest pixels decreases more quickly than the pixels of cambrouse. This is 
explained by the surface roughness of two types of land use. Because of its smoother surface, the 
shadows cast on a cambrouse surface are much less than on a forest canopy. 

4. SAM statistics 

 
Table 8: Median and standard deviation are given following different configuration. This table must be related to the number 

of elements per configuration (see Tab.6). 

   Permissive Restrictive 

 Size LandCover Full range VNIR SWIR-1 SWIR-2 Full range VNIR SWIR-1 SWIR-2 

S
a

v
 

1 
Forest 15.57 (±11.57) 3.60 (±2.22) 1.17 (±2.10) 45.33 (±34.36) 15.58 (±11.54) 3.60 (±2.22) 1.17 (±2.10) 45.54 (±34.37) 

Cambrouse 15.34 (±14.28) 3.33 (±2.44) 0.92 (±1.11) 20.82 (±34.70) 15.33 (±14.23) 3.33 (±2.43) 0.92 (±1.11) 20.89 (±34.63) 
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3
Forest 11.18 (±9.67) 2.44 (±1.58) 0.91 (±1.01) 27.74 (±18.07) 10.86 (±10.22) 2.27 (±1.55) 0.87 (±1.01) 22.25 (±17.65)

Cambrouse 12.93 (±14.22) 2.37 (±2.00) 0.77 (±0.78) 15.33 (±24.10) 13.06 (±15.04) 2.36 (±1.92) 0.73 (±0.68) 13.48 (±25.17)

5
Forest 10.02 (±8.79) 2.02 (±1.42) 0.83 (±0.77) 20.17 (±13.00) 10.13 (±9.35) 1.90 (±1.31) 0.81 (±0.70) 15.83 (±12.91)

Cambrouse 12.31 (±14.08) 2.05 (±1.80) 0.73 (±0.70) 11.87 (±21.52) 12.90 (±14.63) 2.10 (±1.81) 0.67 (±0.66) 10.04 (±22.56)

9
Forest 9.48 (±8.02) 1.72 (±1.28) 0.79 (±0.59) 13.73 (±9.88) 7.24 (±4.30) 1.67 (±0.91) 0.76 (±0.35) 9.53 (±3.81)

Cambrouse 12.24 (±13.47) 1.85 (±1.70) 0.67 (±0.69) 9.21 (±19.71) 12.34 (±13.90) 1.82 (±1.72) 0.63 (±0.63) 7.93 (±20.94)

N
o

S
a

v

1
Forest 18.52 (±11.65) 4.06 (±2.55) 1.24 (±1.61) 59.75 (±39.45) 18.53 (±11.63) 4.06 (±2.55) 1.24 (±1.61) 60.02 (±39.46)

Cambrouse 17.39 (±14.44) 3.82 (±2.68) 0.99 (±0.92) 26.75 (±39.13) 17.38 (±14.39) 3.82 (±2.67) 0.99 (±0.92) 26.85 (±39.08)

3
Forest 12.83 (±9.58) 2.75 (±1.90) 0.95 (±0.97) 38.06 (±21.12) 12.34 (±10.14) 2.58 (±1.88) 0.91 (±0.85) 30.55 (±20.53)

Cambrouse 14.18 (±14.24) 2.77 (±2.24) 0.82 (±0.76) 20.83 (±26.56) 14.23 (±15.07) 2.76 (±2.19) 0.77 (±0.66) 18.10 (±27.45)

5
Forest 11.43 (±8.72) 2.31 (±1.75) 0.86 (±0.74) 27.37 (±14.67) 11.35 (±9.29) 2.21 (±1.64) 0.84 (±0.64) 21.70 (±14.25)

Cambrouse 13.55 (±14.12) 2.46 (±2.07) 0.76 (±0.67) 15.08 (±22.82) 13.91 (±14.67) 2.54 (±2.09) 0.71 (±0.64) 12.91 (±23.79)

9
Forest 10.65 (±7.98) 2.03 (±1.61) 0.82 (±0.57) 18.08 (±10.37) 8.39 (±4.21) 2.06 (±1.25) 0.78 (±0.35) 13.35 (±4.19)

Cambrouse 13.20 (±13.51) 2.30 (±1.98) 0.71 (±0.67) 11.26 (±20.07) 13.27 (±13.96) 2.32 (±1.99) 0.66 (±0.61) 9.75 (±21.33)

5. BCI distribution 

Table 9: Distribution of BCI values estimated by BREFCOR model using standard calibration granularity

BCI interval [-1500:-899] [-900:-199] [-200:399] [400:899] [900:1500]

Number (%) 0.3 0.0 0.0 2.4 97.3

The BCI values ranged widely from 900 to 1500.

6. Wavelength correction 

Figure 18: Neural network structure. 17 layers were used. For each layer, 10 neurons are added compared to the initial feature 

numbers. At n + 70, the number of neurons decreases with each layer by 10 to arrive at one. The activation function for all 

neurons are “Relu” functions, except for the last one which is a linear function.

The neural network was implemented using TensorFlow library on Python. The RMSProp optimizer 
was used. 
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Table 10: RMSE computed before and after correction using a GAM or a NN model for each wavelength. Same evaluation 

have been done using data with and without atmospheric compensation. 

 
Wavelength 

(nm) 
Without correction GAM model NN model 

RMSE RMSE Percentage RMSE Percentage 

W
it

h
 

556 240 77.6 67.7 70.4 70.7 

760 1541 100.7 93.5 93.5 93.9 

1058 1925 271.4 85.9 303.9 84.2 

1639 770 256.8 66.6 195.3 74.6 

2246 432 387.6 10.3 362.2 16.2 

W
it

h
o

u
t 

556 2330 993 57.3 964 58.6 

760 8005 3435 57.1 2819 64.8 

1058 19277 14763 23.4 13996 27.4 

1639 2061 973 52.8 917 55.5 

2246 257 148 42.4 113 55.8 

 
We compared the GAM model and the NN model with and without atmospheric correction. The data 
without atmospheric correction were less predictable. 
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X. General discussion  
The main objective of my work was to propose an operational method of airborne remote sensing 

to produce inventories of tree species by jointly using hyperspectral and LiDAR information. 
Throughout this work, new and complementary results have been provided. They will be summarized 
and discussed in the following paragraphs. 

At the core of much of the work presented so far lies the issue of the quality and quantity of data 
used to training classifiers for automatic species recognition. This discussion will thefore be organized 
around this emergent nexus, as training data availability appears to be a most critical factor. 

 

 
Figure 19: Map ideas from the thesis discussion related to training data uncertainty and possible improvements 

 
Regardless of the imager, image acquisition is constantly improving. Driven by vectors such as 

drones more and more easily mobilized, sensors are improved. Increasingly efficient, faster and more 
robust detector placement through innovative cooling methods and improved optical path of light 
reduces sources of variation. However, inherent issues to the sensor should be addressed such as dead 
pixels (no signal) (Vidal and Amigo, 2012) or unexpected spectral values (Prats-Montalbán et al., 2011; 
Zhang et al., 2014). The purpose of preprocessing is to recover data free from prior contamination. 
However, it is necessary to identify the source of interference to use the most suitable pre-treatment. As 
reported by (Lenhard et al., 2015), the quality of the VNIR and SWIR imagers are satisfying. Both 
imagers are efficient radiometrically, spectrally and geometrically.  

Other sources of noise caused by instrumentation can be reduced by spatial or spectral smoothing 
methods or both (Velasco-Forero and Manian, 2009). The noise often characterized as Gaussian and 
unstructured to simplify the working hypotheses, can be reduced by a spatial / spectral smoothing 
based on the average and those without altering the quality of the measurement. A commonly used 
technique is Savitzky-Golay spectral smoothing, using a moving average of a window size to be defined 
(King et al., 1999), because it does not reduce the identifying qualities of objects. Another method is to 
consider a spatial coherence and thus use a sliding window on each of the spectral bands. While the 
Savitzky-Golay was not helpful in discriminating between species, the spatial smoothing technique was 
profitable. In addition, the signal intensity normalization by the mean value contributed significantly 
to improving the distinction of the classes. This standardization, which is little used in remote sensing, 
although very simple to calculate, has offered better results than the use of radiance or raw reflectance. 
However, this normalization no longer makes it possible to consider the spectrum in reflectance value, 
known to be relatively invariant to the acquisition conditions. Normalizing the spectrum as expressed 
in the first chapter simply eliminates the effects of lighting, which is variable during acquisition and 
between dates. Therefore, it seems relevant to find a new methodology that takes into account this effect 
relating to lighting, integrated with atmospheric corrections. Note that the contribution of pretreatments 
is relative to the final objective. In our configuration, we assessed their contribution against the objective 
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of best identifying the 20 species of interest. Thus, their assessment will be relative to the defined 
criterion (eg: RMSE) or to the classification method considered. 

In the perspective of developing species specific classifiers for a much larger range of species two 
additional difficulties may arise: taxonomic uncertainty and phylogenetic proximity. The identification 
of trees in the field is carried out primarily through their morphology. The presence of flower or fruit 
helps identification, but is not or only partially present during a year (Helmer et al., 2015). The tree’s 

membership to a genus and a species can be difficult to ascertain (Duminil and Di Michele, 2009). 
Genomic information is now commonly used to delineate species (Heuertz et al., 2020). Most tropical 
forest inventories have many unidentified species, (Schweiger et al., 2018) found that dissimilarity of 
species' leaf spectra was positively related to functional dissimilarity and the evolutionary divergence 
time. In other words, species with strongly similar functional traits will tend to have more similar 
spectral signatures. The data set collected for this project over large plots with high quality botanical 
inventories could be further used to explore how spectral distance of tropical trees relates to 
phylogenetic and functional distance. This would open-up the way to mapping functional and 
phylogenetic diversity without the need for developing classifiers for every single canopy species.  

The leaves orientation of trees plays the role of intercepting light (Muraoka et al., 1998) and may 
change with wilting. Change in leaf orientation and light scattering may affect the crown reflectance 
(Jonckheere et al., 2004). Even if the leaves are relatively small compared to the resolution of the sensor, 
change in leaf orientation may affect the anisotropic factor (Comar et al., 2014). More generally, a tree 
will adjust to its environment and the chemical composition will notably vary with nutrient availability, 
so the spectral signature of a particular species is expected to change with the local soil fertility. Indeed 
reflectance measurements can be used to infer the chemical and physical leaves’ properties or the forest 
canopy. This makes it possible to estimate the nutrient content of tree leaves (Doughty et al., 2017; Feret 
et al., 2008b; Féret et al., 2017). The reflectance measured is therefore related to the availability of 
nutrients in the soil. 

Be that as it may, remote sensing need information at crown level. The use of majority voting to 
increase accuracy has already been demonstrated. The errors’ structuring within the crown explains the 
origin of the errors. Edges and differently lit parts tend to be less predicted than homogeneously lit 
central parts. However, majority voting can be improved in a binary classification. The principle of 
majority voting is to define the class of the object in relation to the most abundant class (greater than 
50%) attributed to the pixels. However, the canopy structure can induce a reduction in illumination 
relative to the position of the sun and create a masking of crown areas. In addition, this estimate may 
depend on the species. Using the training information, we can identify the optimal fill rate of the object. 
By comparing the fill rate to that of the overall accuracy, we can find the threshold that defines the 
minimum fill for optimal prediction. 

In a non-binary classification, this methodology is more complicated. However, in this type of 
configuration, the use of multiple classes allows the misattribution error to be distributed among the 
classes, which will have less effects on the final overall precision at the object scale. Thus, we recommend 
optimizing the filling rate of objects (crowns) and the use of several classes in order to improve the 
certainty of the classes. 

On the other hand, the relationship between the area of the crown and the dbh of the trees is useful 
to make prediction of the dbh distribution within a given area. This is made possible by using models 
relating basal area and crown area or tree height, specific to each species. If most of this resource is in 
small stems, then this will have little commercial value. Based on the dbh distribution a better appraisal 
of costs and benefits becomes possible ex-ante. 

As part of the same project, (Aubry-Kientz et al., 2019) first evaluated different individual crown 
segmentation strategies applied to dense tropical forest canopy. It was found that methods based on 
point clouds were more efficient than those based on digital surface models (DSM). In addition, the 
AMS-3D method (Ferraz et al., 2016b, 2012) was the one offering the best overall performance when 
segmentation quality of both small and large tree crowns was considered. The AMS-3D method uses 
three-dimensional information from LiDAR data only and considers the point cloud as a multimodal 
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3D distribution where each mode corresponds to the theoretical location of a tree crown. To find the 
modes, a Pollock function was used as bandwidth, the parameters changing with the height of the dots 
to allow taller crowns to be taller. (Aubry-Kientz et al., Submitted) further highlighted the benefits of 
fusion spectral and LiDAR fusion for the purpose of individual tree crown segmentation.  

The use of CNN designed for object delineation applied to high spatial resolution multispectral 
data was shown to be effective for tree crown delineation (Weinstein et al., 2020, 2019). The spatial fusion 
of the two approaches, AMS-3D based on LiDAR corrected by the ImageNet neural network 
(Krizhevsky et al., 2017) built on RGB images, allowed an improvement in the characterization of the 
crowns (congruence: +4.7 %) (Aubry-Kientz et al., Submitted). (Dai et al., 2018) using multi-spectral 
aerial LiDAR showed that the use of multispectral LiDAR colorimetry allowed a 6% improvement over 
single LiDAR point clouds in delineating individual trees. Thus, the fusion of hyperspectral and LiDAR 
data (Dalponte et al., 2008; Tusa et al., 2020) using a very fine method (Brell et al., 2017) could offer 
improved results. In subtropical forest LiDAR has also been used in conjunction with spectral 
information for extracting additional features potentially useful for species identification, especially for 
differentiating conifers and deciduous trees (Shen and Cao, 2017). However, in the context of tropical 
forests, this information cannot help improving the discriminating power of hyperspectral due to 
complex ecosystems with overlapping species, nested crown structures and varying vertical 
distributions. 

During the field campaign, there are many difficulties in associating trunk with crowns. Improving 
spectral stability involves detecting outliers. To do so, we calculated the Mahalanobis distance between 
the theoretical groups with respect to each of the elements in the group. This distance allowed us to 
exclude trees crowns which phenology were quite distinct (visual interpretation from RGB images), but 
leafless trees were a very small subset of the detected outliers. In addition, using multiple cross 
validation, we found out that some crowns were never attributed to their theoretical class. Based on this 
targeted information, a ground survey made it possible to correct a few labelling errors made in the 
original database. Therefore, hyperspectral technology has shown its usefulness to correct attribution 
errors. 

Before considering the improvement of the data by knowing the origin of the disturbances, it is 
important to evaluate the confusions linked to the characterization of the measured surface. Lianas are 
an example of sources interference in the spectral signal. 

An important and less well-known component of tropical forest diversity is the lianas (lianas sensu 
stricto and hemi-epiphytes) which include thousands of species (Dewalt et al., 2000). The current impact 
of climate change on the proliferation of lianas (Körner 2009) may be contributing to the reduction of 
carbon sinks (Brienen et al., 2014; Schnitzer, 2014; van der Heijden et al., 2015) by modifying the 
dynamics of the environment through different aspects. Lianas are effective competitors who play in 
multiple arenas. This is because the canopy part of the vine has the ability to move both horizontally 
and vertically with a relatively fast growth rate compared to the trees’ (Van der Heijden and Phillips, 
2009). They therefore do not have a well-defined structure (Rowe and Speck, 1996) which complicates 
their identification. In the presence of lianas, the diameter growth rate and stem sap flow are 
significantly reduced (Schnitzer, 2014) as is the height of the canopy. Carbon accumulation is also 
reduced by the root competitiveness of lianas. The presence of lianas decreases the recruitment of young 
tree seedlings by preempting the available space. In addition, tree mortality is also increasing because 
of the weight of the lianas that have climbed to the crown of their hosts. In the long term, the amount 
of carbon fixed by the rainforest may be reduced. Lianas development could be favored by logging 
(Laurance et al., 2001; Putz, 1985) or disturbances by increasingly frequent extreme climatic events 
(Schnitzer and Bongers, 2011). The proliferation of lianas can therefore have a profound impact on the 
functioning and the floristic composition of tropical forests. The lianas mapping in rich forest areas is 
therefore of direct interest for managers in tropical forest contexts for the characterization of current 
and future forest dynamics through the temporal monitoring of the development of this component of 
the vegetation.  
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An internship has been realized on this subject. Thanks to the visual interpretation, a delimitation 
of lianas and tree crowns classes have been realized. By two types of classifier (PLSDA and 
RandomForest), it has been shown that it is possible to distinguish the lianas and trees. For this work, 
hyperspectral preprocessed as proposed in the first chapter have been done. Textural information have 
been computed on RGB images. The results are satisfactory using RGB data (89.9%) or hyperspectral 
data (88.2%). The performance results were explained for the hyperspectral data by the difference of 
leaf characteristics between the lianas and the tree crown (photosynthetic activity higher for lianas). The 
texture information of the RGB images highlighted the low relief of the lianas on the surfaces which 
they cover. Both information are complementary and using both for discriminate trees and lianas, 
improves the accuracy by 3%. More details can be found in the appendix. 

We have explored the contribution of hyperspectral signal processing such as the application of 
atmospheric corrections. When considering a single date, atmospheric corrections are not necessary. 
However, when considering multiple sites or dates, we observed a decrease in the ability (or even an 
inability) to identify species. Using a naive approach, we tried to predict the presence of certain species 
on the Montagne-Tortue and Nouragues sites. The training was based exclusively on data from Paracou. 
In addition, we found spectral discrepancies, which provenance we assessed. In this section, we discuss 
the stability of the spectral signature between different dates at the same site. 

To assess the transferability of spectral signatures, it is first important to define the measured / 
estimated physical quantities. The term reflectance is often ambiguously used and does not strictly 
describe the product used (Schaepman-Strub et al., 2006). The radiances converted by the ATCOR 
processing chain are called “surface reflectance” and correspond to top of canopy hemispherical – 
directional reflectance factor (HDRF) i.e. the irradiance is considered hemispherically while only the 
vertically reflected radiance is considered. 

 The reflectance of the surface of a material is defined as its effectiveness in reflecting radiant 
energy. It is a function of the wavelength of the light and the angle of incidence. However what is 
directly measured is the “at sensor radiance” and the corresponding surface reflectance has to be 

inferred from the prevailing illumination conditions, atmospheric disturbance corrections and solar-
sensor geometry. This is normally done by applying atmospheric correction methods such as ATCOR-
4, which was used in the present study. 

We evaluated the sources of variability between dates, considering the two same sites which were 
imaged on successive days. SNR calculation revealed a very weak signal for the SWIR-2 part (2000 nm 
to 2400 nm) of the spectral range. This weak signal reduced the reliability of the atmospheric correction, 
and this resulted in a greater inconsistency between dates. Using a GAM (Generalized additive model) 
model, we evaluated the contribution of factors relating to the acquisition geometry (sun, sensor and 
slope) in relation to the SAM dissimilarity index calculated between dates. The solar position (azimuth 
and solar elevation, in order of importance) was the most important one. These variations, linked to the 
time of acquisition, suggest making acquisitions during a restricted period of the day in order to limit 
this source of dissimilarity. While the acquisition time should be as close as possible to solar noon it 
should nevertheless avoid the passage of solar at zenith during the acquisition (hot spot effect). 

The atmospheric corrections are also subject to errors due to the estimation of the water vapor 
concentration and the optical thickness of aerosols (Bhatia et al., 2018). The spatial variability of AOT 
has recently been considered (Schläpfer et al., 2018) but taking it into account did not improve our ingle-
date classification. The errors made on WV and AOT may have compound effects further increasing the 
error in the estimate of reflectance. The approach recently proposed by (Thompson et al., 2016) using 
Bayesian inference to remove systematic errors in atmospheric correction is interesting. Indeed, this 
approach makes it possible to compensate for the effects of atmospheric perturbations by combining a 
physical approach using a radiative transfer model and a statistical approach. However, its contribution 
to improving the similarity between dates would need to be tested. (Duffy et al., 2019) compared a 
physical model and a deep learning approach to remove the effects of atmospheric scattering and 
absorption as well as effects due to acquisition geometry for a time series of satellite images. The use of 
a geostationary satellite (Himwari-8 AHI) guaranteed a large redundancy in spectral information and a 
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large range of acquisition geometries. In which case the deep learning method was able to emulate a 
physically based approach (itself not free from biases and errors of its own). 

The BRDF correction model makes it possible to homogenize the successively acquired images. 
The solar position varying between two acquisitions, different visuals are perceptible. A BRDF model 
is composed in two kernel in general. The first one takes into account the geometric scattering and the 
second one takes into account the volume scattering. BRDF assumes a flat topographic. In addition, 
scattering effect depends on of the structure characterised, which it can be debatable for tropical forest 
context at a fine scale (Wen et al., 2018). Moreover, as showed by DART model, the anisotropy depends 
on leaf orientation and density distribution (Gastellu-Etchegorry et al., 2017). Soil contribution can also 
modified the albedo. 

We have evaluated the contribution of acquisition parameters to understand the SAM 
dissimilarity, which showed a variation of contribution factors related to landcover type. The SAM 
dissimilarity for forest landcover was mostly affected by acquisition parameters. We tested this 
correction (using BREFCOR module, ATCOR-4 (R Richter and Schlapfer, 2018)) in our first study in 
order to assess its interest in species discrimination. This degrades performance. We will assess its 
contribution to the reduction of variations (using SAM dissimilarity) between dates, observed on the 
Nouragues site, considering exclusively forest surface (masking the other surfaces).  

We found that spectral variations persisted between acquisitions over the same study site, despite 
atmospheric corrections aimed at normalizing the spectral signature. The passive character of this 
technology induces its dependence on the sun. Conversely, LiDAR, which is a so-called active 
technology, does not have this type of constraint. The fusion of data between the hyperspectral images 
and the LiDAR data by a back-projection method (Brell et al., 2016; Valbuena et al., 2011) would offer a 
finer method to correct the effects of variations in illumination compared to the intensity measured by 
LIDAR (Brell et al., 2017). We tried but failed to reproduce Valbuena’s methodology for hyperspectral 

data but the acquisition method between RGB and hyperspectral (pushbroom) data are very different.  
An aspect that was not covered in this thesis is the potential of radiative transfer model to better 

understand the spectral variations related to surface-solar-view geometry. DART (Discrete Anisotropic 
radiative transfer) is one of the most comprehensive radiative transfer models (Gastellu-Etchegorry et 
al., 2017). It can use a detailed 3D description of the scene of interest including the plant area density 
(m2/m3) of the vegetation cover which is accessible via LiDAR (Vincent et al., 2017) and leaf optical 
properties of leaves (Feret et al., 2008b). DART allows to specify the composition of the atmosphere, the 
solar geometry and the sensor specifications. Through simulations, it might be possible to better 
understand and rank the most factors contributing to the spectral variation both temporally and 
spatially. This kind of tool may also be used to generate many realistic acquisition configurations to 
train deep learning methods that would only need to be refined using real world data. 

The quality of the hyperspectral was discussed with the aim of improving species identification 
and understanding the inconsistencies of spectral signatures. However, as it stands, we discuss the 
limits imposed by the object study and the possibilities to improve discrimination and spectral 
coherence. 

The possibility of large-scale inventory of canopy trees in tropical forests was the main goal of this 
work. Beforehand, it is therefore necessary to make a detailed field inventory of the tree crowns to be 
characterized. We observed two major constraints for the identification of trees crowns by field 
measures in forest: hyper-diversity and tree density, limiting penetration into the forest. The number of 
data is limited by the fact that many tree species coexist. On the Paracou site for example, over the 118 
hectares have counted more than 740 species distributed unfairly among more than 75,000 trees. A small 
proportion emerged in the canopy. Emerging crowns are also unevenly distributed among a large 
number of species. Among the crowns characterized on the Paracou site, only 20 species have a number 
of crowns greater than 24 crowns. For the purpose of exploiting the timber resource, it is preferable from 
a practical point of view to identify species which have a high added value timber (timber) and which 
are abundant. It would be necessary to think of grouping together the species with high added value in 
order to identify this procession of trees of interest.  
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The question of how to make a spectral signature unique was asked in the 1990s by (Price, 1994), 
arguing that a spectral signature for each species may not be possible. (Castro-Esau et al., 2006) 
examined the influence of intra- and inter-specific spectral variation at different scales and the direct 
consequence on the identification of tree species. This detailed study focused on tropical forests. They 
highlighted the difficulty of identifying the same species at different seasons and on different sites, 
considering more than 50 species in their study. There is therefore a factor linked to intra-species 
variability and a factor linked to seasonality.  

Change in plant phenology over time will cause spectral variations to occur (Meerdink et al., 2019). 
Intra-crown variation in phenology was found to be lower during the rainy season by (Lopes et al., 
2016) who monitored 267 individual tree crowns in an evergreen Central Amazon forest. (Lopes et al., 
2016) calculated the EVI index of more than 200 tree crowns at different phenological stages using 
QuickBird images acquired at nadir. They identified that this index varied over time and that it was 
correlated with seasonality as well as with the EVI calculated from MODIS data, confirming that the 
EVI index could capture phenology and that it was not due to illumination geometry. However, 
(Dennison and Roberts, 2003) used the multiple endmember spectral mixture analysis (MESMA) 
algorithm to identify spectral variations due to seasonal variations. MESMA models mixed spectra as a 
linear combination of pure spectrum. They used the AVIRIS sensor to carry out this work, from which 
they were able to conclude that acquisition variations have a significant effect on the change in spectra. 
The study focused only on a wooded biome of chaparrals (a kind of maquisfound in California). (Ma et 
al., 2020) observed the phenology at sites of forests, woodlands and grasslands in South West Australia. 
Using a BRDF correction model based on the RossThick-LiSparse-Reciprocal kernel, they showed that 
indices like NDVI or EVI were very dependent on the acquisition geometry, noting that the EVI index 
was 50% less sensitive than the NDVI index. The EVI was more consistent over two successive 
phenological cycles.  

Hyperspectral software exist to associate hyperspectral measurements with their metadata. It is 
possible to identify two main systems developed for close range (ASD) measurements: SPECCHIO 
(Bojinski et al., 2003) and SpectraProc (Hueni and Tuohy, 2006). SPECCHIO in particular offers data 
including detailed metadata describing the environment, sampling geometry, spatial position, target 
type, object type, measurement sensor and acquisition campaign. Sharing among a spectroscopy 
community labelled airborne images acquired over various vegetation types, might help understand 
the sources of spectral dissimilarity. However, there is no dedicated system for airborne imagery 
available. The latter would need to include radiance images and detailed acquisition characteristics to 
allow the database to be useful.  

Faced with the high variability and low training sample rates, we evaluated the performance of 
classifiers in several training configurations. 

Supervised classification methods such as the SVM (Support Vector Machine), Random Forest, 
LDA (Linear Discriminant Analysis), Logistic Regression methods have been widely tested by the 
scientific community. The use of hyperspectral data requires good management of large dimensionality 
(curse for dimensionality) (Qian et al., 2009). For this, dimensionality reduction methods such as 
Principal Component Analysis can be mobilized upstream. (Landgrebe, 2003) made the point that too 
many spectral bands can be a limit to the classification performance. (Fukunaga, 1990) demonstrated a 
relationship between dimensionality and the number of samples needed for classification. The number 
of training samples required is linearly related to the dimensionality and this for different types of 
classifiers. In our setup, the use of PCA followed by an SVM classification method was not found to be 
beneficial for species identification. In chapter 1, we justified the choice of the LDA method for its ability 
to manage the large dimensionality of the explanatory variables, as well as for its ease of calculation. As 
a reminder, this method maximizes inter-specific variability and minimizes intra-specific variability. 
However, this approach can be improved through the use of RDA (Regularized Discriminant Analysis) 
which estimates a co-variance matrix specific to each of the classes (used in Chapter 2). 

We also confirmed that the increase in the number of classes induced a decrease in species 
classification accuracy. The efficiency limit of the classifier can come from its intrinsic properties. In 
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addition, the proportion of each class in the classification process is commonly unbalanced. This will be 
the case for species relative abundance in tropical forest.  

Severals studies (Ghamisi et al., 2015; Ghamisi and Benediktsson, 2015; Melgani and Bruzzone, 
2004; Pal and Mather, 2006) have shown that SVMs can efficiently classify the input data even if a limited 
number of samples learning is available. This is explained by the fact that only samples that are close to 
the boundary between classes are useful for delineating the boundary. (Feret and Asner, 2013), for 
instance, showed that for the tree species identification, SVM method (whatever the kernel) achieved 
accuracy comparable to linear classification methods (such as LDA and RDA). We found that RDA 
method was capable of identifying a particular species, using a small sample (30 crowns). In contrast 
the so-called non-focal class, consisted of pixels drawn randomly from the hyperspectral image 
(Chapter 2). A selection of 100,000 pixels was sufficient to clearly delineate the boundary between the 
two classes and represent the hyper-diversity contained in the hyperspectral data. 

The random selection of pixels on the study site may be subject to an assignment error. This error 
is function of the representation of the species in the study space. In view of the great floristic diversity, 
the representation of a particular canopy species is often less than 5 % (except in specific cases: (Kamal 
and Phinn, 2011; Traissac and Pascal, 2014)). We assessed the sensitivity of 3 classifiers to assignment 
errors. The results were very sensitive to a pollution rate less than or equal to 5%. This is reassuring, 
especially since assignment errors in the field and consequently in the data used for the creation of the 
classification model certainly occur. 

An aspect not evaluated in this thesis is the contribution of deep learning methods to the 
identification of species in tropical environments using hyperspectral data. This subject is also missing 
in the literature to my knowledge, although they are methods offering great potential for hyperspectral 
imagery (Zhang et al., 2006). The majority of studies based on hyperspectral data use well-known data 
sets such as “ROSIS-03 - Pavia University”, “AVIRIS - Indian Pines” or even “CASI - Houston”. The 

scientific community attributes to deep learning methods the ability to find invariant and abstract 
characteristics in hyperspectral data, regardless of the type of network SAE (Vincent et al. 2010), DBN 
(deep belief network) (Hinton, Osindero) , and Teh 2006) or CNN (convolutional neural network) 
(Krizhevsky et al., 2017). Their use may be limited due to the large amount of pixels required for 
training. For example, (Chen et al., 2014; Y. Chen et al., 2015; Pan et al., 2016), used half of the pixels in 
the annotated image. In our context, it is impossible to annotate so much information. On the other 
hand, neural networks use 2D convolutions to find the most relevant filters. The 2D convolutions which 
are morphological filters analyze the texture and shape of the objects to be identified. The shape of the 
crowns is very variable, constrained by its neighbors and the availability of light (Sterck and Bongers, 
2001). These two types of information may not be very specific to species characteristics. Spatial patterns 
does not seem to be the most relevant characteristics to build upon to improve classification.  

 As described previously, we failed to identify the species on the other two study sites. We trained 
the classifier on the most complete data (Paracou site) in order to detect the species of interest on new 
sites (Montagne Tortue and Nouragues) which would limit the field inventories to targeted areas. We 
then turned to methodologies who allow limiting new field inventories. 

Specific methods such as Transfer Learning method could help identifying tree species on a large 
scale. The main objective of Transfer Learning is to create effective classifications using two data 
sources, one of which is not or only partially labeled. In transfer learning, reference information, the 
most well-known and rich information, is considered to be part of the “source domain” to which we 

associate a probability distribution Ps (Xn, Yn). It is the conditional probability of a label being X given 
the observed features. The low density or zero information is part of the “target domain” to which we 

associate a probability distribution Pt (Xm, Ym). X is the vector corresponding to the spectrum. Y is the 
output variable (labeling) associated with X. The supervised methods of Transfer Learning assume that 
the number of labels of the source domain must be much higher than the labels of the target domain (in 
other words, Yn >> Ym).  

There are several approaches to Transfer Learning: homogeneous and heterogeneous knowledge 
transfer. The one that concerns us is the homogeneous knowledge transfer that is to say that the input 
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data will be similar in the two domains. The number of explanatory variables at the input of the two 
domains must be strictly equal. In this branch of homogeneous Transfer Learning several approaches 
have been proposed: Inductive, transductive and unsupervised Transfer Learning. In the first case, we 
know the labeling of data in both fields. In the second case, we only know the labels for data in the 
source domain and we do not know the labels of the target domain. Unsupervised Transfer Learning is 
defined when we do not know the labels in the two fields. The choice of method therefore depends on 
the data available. Figure 2 of (Pan and Yang, 2010) describes in more detail the different strategies and 
their implications. For our purpose, we can consider that the source data is available but that the target 
data may be missing. However, we may still consider to blindly using the target data. 

The search for an invariant, one of the knowledge transfer methods, would lead to descriptor 
reduction. (Persello and Bruzzone, 2016) used a method based on the optimization of two criteria which 
are the capacity of discrimination and the search for optimal invariants. They applied it to two 
hyperspectral images showing the ability to identify in both domains. However, the source domain 
discrimination capabilities have been reduced due to the reduction in the wavelength number. Indeed, 
the decrease in descriptor for identifying trees in a space as diverse as tropical forest will lead to a 
decrease in classification performance (Ferreira et al., 2016b). The invariant search could be replaced by 
an adaptation between the probability distributions of the two domains (Covariate Shift), which no 
reduce the dimentionality. The goal is to find a function that matches the two distribution probabilities 
(align the distribution) while minimizing the energy due to moving the data from an initial distribution 
to the most optimal. However, for very large dimensionality data this can be very penalizing (Polo and 
Vicente, 2020) and may not be computationally feasible (Pan et al., 2011, 2008). Another way is offered 
to us. Boosting Technology methods can contribute to transfer learning. These methods are iteratively 
improved by using poorly performing binary classifiers to form a better performing set of classifiers, 
where the weights of misclassified instances are adjusted so that the classifiers focus on the difficult 
cases. (Dai et al., 2007) proposed an algorithm named “TrAdaBoost” which is mainly based on the 

“AdaBoost” method. AdaBoost, which is also a meta-algorithm, separates data into several parts. By 
successive iteration and by the use of multiple classifiers, the predictive power is improved compared 
to the deemed weak algorithm. The idea of the TrAdaBoost method is that the distributions of the data 
in the two areas are different. However, some data from the source domain can be useful for learning 
the target domain. By automatically adjusting the weights of training instances, increasing it for well-
assigned training instances, the meta-classifier is improved. However, this method, which is the basis 
of many publications, has some limitations such as the problem related to class imbalance and that of 
negative transfer, which can be corrected by a new strategy of initializing the new weights and updating 
them.  

To summarize, we are limited both by the number of examples available but also by the data 
structure used. To maximize species identification, we must use all descriptors. However, this large 
dimensionality leads to computational complications. In addition, the strong disproportion between 
classes is also an issue. However, the amount of information in the source domain necessary for the 
transfer of knowledge has not yet been investigated to our knowledge except for Deep Learning 
methods (Soekhoe et al., 2016). 

Another interesting point to explore would be whether or not it is necessary to know the class of 
interest in the target domain and replace it with another piece of data common to both domains. 
Identifying specific species in tropical forests is tricky for the many reasons mentioned above. However, 
common elements can potentially be identifiable by visual interpretation, such as roads or tracks. 
Whether such limited information common to the different domains would suffice to develop transfer 
function applicable to vegetation spectra remains to be explored. Little work has been conducted so far 
on transfer learning of hyperspectral classifiers applied to species recognition in tropical forest, certainly 
due to the limited amount of terrain data and the lack of suitable hyperspectral images of high spatial 
and spectral resolution. 
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XI. Conclusion 
The aim of this work was to assess the feasibility identication and mapping of trees via airborne 

remote sensing. We explored the capacity of hyperspectral imagery and LiDAR to meet this challenge. 
During this work, we tested the capabilities and limitations of classifiers applied to the 

identification of trees in tropical forests. We showed that pre-treatments such as spatial smoothing or 
standardization were necessary. In addition, atmospheric corrections proved useful only when tree 
identification had to be performed on multiple sites. Thus, we have confirmed the ability of 
hyperspectral information to discriminate tree species. 

We made a first step towards operational deployment of the method by showing that target trees 
species could be retrieved in a highly diverse canopy even with limited ground truthing effort. For this 
step, the coupling with LiDAR information was very useful to segment individual crowns. 
Segmentation not only improved identification but also quantification of the resource since the dbh 
could be estimated from the crown size. 

The major remaining hurdle to overcome is the transposability of hyperspectral signatures. In the 
first analysis presented, we touched upon the issue by using an acquisition made on one date for 
prediction on a second date, on the same study site. We noted a significant loss in classification accuracy 
by doing so. Using data from another site, as described in the third chapter, we sought to identify the 
sources of the spectral distortions that affected spectral signatures consistency and thus the potential 
for discriminating of trees at large scale. The identification of these sources of disturbance should help 
pave the way towards a robust approach to deal with those issues.  

In view of the current state of the literature and our own results, we believe that the joint use of 
hyperspectral and LiDAR information should be encouraged. The fusion of LiDAR and hyperspectral 
data by back-projection based on the work of (Valbuena, 2014; Valbuena et al., 2011) (LiDAR and RGB) 
and (Brell et al., 2016) should be democratized by proposing a turnkey fusion method. As described 
(Brell et al., 2017), the fusion of these sources of information allows to better characterize the reflectance 
and to correct it for effects related to the acquisition geometry and atmospheric perturbations. By 
comparing the reflectances (LiDAR and hyperspectral), it is possible to refine the atmospheric 
corrections. On the other hand, the fusion of these two pieces of information could allow the 
improvement of segmentation methods. (Dai et al., 2018) have proposed a segmentation method based 
on the Mean-Shift algorithm, using the topographic characteristics (X, Y, Z) but also the colorimetric 
characteristics of some channels. 

Still with the aim of improving the identification of trees on a large scale, the use of Deep Learning 
methods may prove useful. Indeed, by coupling the physical approach and Machine Learning, it has 
been possible to reduce the impact of shadows (Windrim et al., 2018, 2016) and to improve atmospheric 
corrections (Duffy et al., 2019; Thompson et al., 2016). In this sense, new acquisitions will have to be 
carried out to capture or automatically construct invariants.  

The use of UAVs and new hyperspectral imagers is particularly valuable in tropical forests where 
cloud cover is important. The rapid deployment of this vector is its strength. In addition, the new 
HysSpex Mjolnir VS-620 has all the advantages of the sensors we used in this thesis.  

It therefore has all the means to advance the understanding of this very special biome while 
carrying out reasoned resource extraction.  

XII. Appendices 

Appendix -1 – Lianas as a complicating factor to species recognition from the air 
As part of an internship under my co-supervision, Fiston Nininahazwe had to identify the lianas 

in tropical environment by joint use of multispectral data with high spatial resolution RGB and imaging 
spectroscopy. Thus different sub-objectives were identified: 1 / Processing of acquired images, 
orthorectification, mosaicking. 2 / Manual delimitation of crowns entangled by lianas. 3 / Evaluation of 
the detectability of lianas on hyperspectral images and quantification of the degree of liana coverage. 
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To carry out this study, the Nouragues area was selected. This area, known for a stronger presence 
of lianas than on the other study sites available to us, was therefore favored. A preliminary work was 
to identify the lianas by multiple aerial RGB images (drone). This work is very delicate because it is 
difficult to assess the presence / absence of lianas, even at a spatial resolution of a few cm. Thanks to 
these data, 230 delimitations, including 129 and 101 polygons lianas and trees respectively, were 
mobilized. Hyperspectral data in the spectral range of 414 nm to 994 nm, at 1m spatial resolution was 
also used. Hyperspectral data had been corrected for atmospheric effects. Spatial smoothing with a 
window of 3x3 pixels followed by normalization by the mean was applied as described in chapter 1. 
RGB images were mobilized to calculate seven texture indices (Haralick, Shanmugam, and Dinstein 
1973) on a window of 11x11 pixels, averaged in 4 directions (0 °, 45 °, 90 ° and 135 °): mean - variance-
correlation - homogeneity - dissimilarity -entropy - contrast. 

The evaluation of the discrimination of lianas compared to trees was carried out by PLSDA 
(Discriminant Analysis by Partial Least Squares) and RandomForest. These methods also made it 
possible to identify the contribution of variables to the determination of the class of membership by the 
classifier. We found an equivalent identification rate between the two data used as well as a small 
increase due to their association. The hyperspectral, the texture indices and the combined use of these 
two sources of information allowed an identification of 88.2% (± 4.1%), 89.9% (± 2.6%) and 93.1% (± 
2.7%) respectively. Remarkably texture was more informative than imaging spectroscopy for liana 
detecition in that study. 

The average reflectance for the wavelength around 680 nm is lower for lianas compared to trees. 
The reverse is observed for the wavelength around 550 nm where the lianas have a greater reflectance. 
This is mainly explained by a greater photosynthetic activity, especially for chlorophyll pigments (Sims 
and Gamon, 2002). This is true at the leaf scale but also at the canopy scale (Castro-Esau, 2004). The 
lianas development strategy may explain this. The lianas are not self-supporting as they reach the 
canopy thanks to the trees present and can thus quickly capture a maximum of light in order to grow 
(principle of autotrophy). By analyzing the most contributing wavelengths from classification methods, 
a greater proportion of near-infrared bands emerge. The visible bands contribute, but to a lesser 
extent.(Kalacska et al., 2007; Marvin et al., 2016) confirmed the importance of these spectral regions at 
the scale of the canopy, while at the scale of the organ (the leaf) the visible was the most contributory 
area. 

While the hyperspectral focuses on spectral bands relating to the water content between liana 
leaves and tree leaves (Castro-Esau, 2004; Sánchez-Azofeifa et al., 2009; Schnitzer, 2005), the texture 
from RGB images apprehends the spatial relationships between different objects (Haralick et al., 1973). 
In extreme cases (as here in Nourageus) lianas may literelly blanket the tree canopy and contribute to 
reducing the canopy roughness. The tangled areas therefore appear smoother (Waite et al., 2019). 

The results of this internship could not be confirmed / invalidated due to the lack of suitable field 
data. This is partly explained by the fact that lianas are difficult to observe and identify, especially in 
the canopy. (Cox et al., 2019) found that there was no relationship between the number of lianas stems 
at ground level and the level of infestation of canopy crowns. Lianas may grow horizontally to reach 
the canopy and then develop on another crown or may not emerge in the crown where they started 
growing. Only an assessment in the canopy can be reliable as can be done using close-range drone 
imagery (Waite et al., 2019).  
On the other hand, it is necessary not to consider lianas as a single category in the same way as trees. 
Indeed, we consider here the lianas as unique same species whereas each species has different growth 
strategies (Rowe et al., 2004; Rowe and Speck, 2005). 
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