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Résumé : Les micrométéorites sont des 

particules extraterrestres submillimétriques qui 

représentent la majeure source de matière 

interplanétaire accrétée par la Terre chaque année. 

L’analyse des micrométéorites permet d’étudier la 

diversité des petits corps du système solaire 

(astéroïdes et comètes). Cette thèse porte sur 

l’étude de micrométéorites provenant de la 

collection Concordia, constituée depuis 20 ans grâce 

à un programme réalisé auprès de la station de 

Dôme C (Antarctique). La première partie du travail 

présenté porte sur une étude quantitative sur le flux 

de matière interplanétaire arrivant sur Terre. 

L’étude basée sur plus de 2000 micrométéorites de 

la collection Concordia montre que le flux de 

micrométéorites est de ~10 µg/m2/an, qui 

correspond à un flux global annuel de 5200 ± 1500 

tonnes sur l’ensemble de notre planète. Les 

résultats obtenus permettent de mieux contraindre 

les distributions en masse des particules dans le 

domaine en taille inférieure à 300 µm et leur 

comparaison avec les prévisions théoriques 

indiquent que la majorité des particules ont très 

probablement une origine cométaire.  

La seconde partie du travail présenté porte sur 

l’étude d’un type rare de micrométéorites, riches en 

matière organique : les micrométéorites 

antarctiques ultra-carbonées (UCAMM - Ultra-

Carbonaceous Antarctic MicroMeteorites). 

L’analyse isotopique par spectrométrie de masse 

des ions secondaires à résolution nanométrique 

(NanoSIMS) révèle des hétérogénéités isotopiques 

en H, N et C de la matière organique des UCAMMs à 

l’échelle de plusieurs microns. 

La troisième partie présente des expériences 

d’irradiations de glaces par des ions lourds, menées 

à l’aide du dispositif IGLIAS durant trois sessions  

expérimentales auprès du Grand Accélérateur 

National d’Ions Lourds (GANIL). Ces expériences 

ont permis de simuler l’interaction du 

rayonnement cosmique Galactique sur des 

mélanges de glaces azotées et carbonées à basse 

température (10K). Un résidu organique solide est 

obtenu après sublimation des espèces volatiles à 

la fin de l’irradiation du film de glace. Les résultats 

obtenus montrent qu’il est possible de 

transmettre au résidu organique produit des 

hétérogénéités isotopiques présentes dans des 

couches initialement adjacentes de glaces 

irradiées. L’analyse par imagerie ionique 

NanoSIMS des résidus organiques montre la 

formation d’hétérogénéités isotopiques dans le 

résidu organique, qui sont comparables à celles 

observées dans les UCAMMs. Ces hétérogénéités 

isotopiques dépendent de la nature chimique du 

mélange de glaces irradiées.  

L’ensemble des résultats obtenus sur les 

UCAMMs et les expériences d’irradiation menées 

à GANIL sont mis en perspective et comparés aux 

données sur d’autres matériaux interplanétaires 

d’origine astéroïdale et cométaire. Les travaux 

menés confirment que ces particules 

interplanétaires exceptionnelles proviennent très 

probablement de la surface de corps glacés, riches 

en azote, ayant évolués dans les zones externes du 

système solaire. Ils confirment que les signatures 

isotopiques en éléments légers (H, N et C) des 

UCAMMs peuvent, en partie, être héritées de 

réservoirs parents gazeux présents dans le disque 

protoplanétaire. Je présenterai enfin de futures 

études possibles sur les UCAMMs permettant de 

mieux contraindre la composition de la surface 

des corps glacés présents à de grandes distances 

héliocentriques. 
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Abstract: Micrometeorites are submillimeter 

extraterrestrial particles that represent the major 

source of interplanetary material accreted by the 

Earth each year. The analysis of micrometeorites 

allows to study the diversity of small bodies of the 

solar system (asteroids and comets). This thesis is 

about the study of micrometeorites from the 

Concordia collection, developed over the last 20 

years thanks to a program carried out at the Dome 

C station (Antarctica). The first part of the work 

presented concerns a quantitative study of the flow 

of interplanetary matter arriving on Earth. The study 

based on more than 2000 micrometeorites from the 

Concordia collection shows that the flux of 

micrometeorites is ~10 µg/m²/year, which 

corresponds to a global annual flux of 5200 ± 1500 

tons on our planet. The obtained results allow to 

better constrain the mass distributions of the 

particles in the size range below 300 µm and their 

comparison with the theoretical predictions indicate 

that the majority of the particles have most 

probably a cometary origin.  

The second part of the presented work concerns 

the study of a rare type of micrometeorites, rich in 

organic matter: the Ultra-Carbonaceous Antarctic 

MicroMeteorites (UCAMM). Isotopic analysis of 

UCAMMs by nanoscale secondary ion mass 

spectrometry (NanoSIMS) reveals isotopic 

heterogeneities in H, N and C of the organic matter 

of UCAMMs at the scale of several microns. The 

third part presents experiments of ice irradiations by 

heavy ions, carried out with the IGLIAS device during 

three experimental sessions at the Large Heavy Ion 

National Accelerator (GANIL). 

These experiments have simulated the 

interaction of the Galactic cosmic rays on mixtures 

of nitrogen- and carbon-rich ices at low 

temperature (10K). A solid organic residue is 

obtained after sublimation of the volatile species 

at the end of the irradiation of the ice film. The 

results obtained show that isotopic 

heterogeneities present in initially adjacent layers 

of irradiated ice can be transmitted to the organic 

residue produced. NanoSIMS ion imaging analysis 

of the organic residue shows the formation of 

isotopic heterogeneities in the organic residue, 

which are comparable to those observed in 

UCAMMs. These isotopic heterogeneities depend 

on the chemical nature of the irradiated ice 

mixture.  

All the results obtained on UCAMMs and the 

irradiation experiments carried out at GANIL are 

put in perspective and compared to data on other 

interplanetary materials of asteroidal and 

cometary origin. The work carried out confirms 

that these exceptional interplanetary particles 

most probably come from the surface of icy 

bodies, rich in nitrogen, having evolved in the 

outer regions of the solar system. They confirm 

that the isotopic signatures in light elements (H, N 

and C) of UCAMMs can, in part, be inherited from 

gaseous parent reservoirs present in the 

protoplanetary disk. Finally, I will present possible 

future studies on UCAMMs to better constrain the 

surface composition of icy bodies present at large 

heliocentric distances. 
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Introduction 

 

This Ph.D. thesis is focused on the study of micrometeorites, that are sub-millimeter particles 

recovered at the Earth surface. These particles are originating from solar system small bodies, asteroids 

and comets, that have kept the memory of the birth of the solar system.  

The solar system formed 4,6 billion years ago from the collapse of a molecular cloud into a dense 

core, triggered by gravitational instabilities. In the first hundreds of thousands years, the temperature 

and pressure increase in the center of the dense core gave rise to the proto-sun where fusion reactions 

started. In the meantime, under the effect of its own angular momentum, the stellar envelope formed 

a circumstellar disk around the proto-sun. The Sun entered the main sequence phase and within about 

one to tens of millions year, the material remaining within the circumstellar disk concentrated into the 

protoplanetary disk. Large objects (such as planets, dwarf planets and small bodies) formed at this 

stage by accreting debris in the protoplanetary disk. Planetary formation led to the loss of the initial 

composition of the protoplanetary disk through differentiation, resulting in the impossibility to probe 

the early phases of the solar system with planetary matter. Smaller non-differentiated bodies such as 

asteroids and comets are likely to have preserved pristine matter from that period. 

Asteroids are principally located in the main belt, orbiting between Mars and Jupiter. They consist 

in rocky bodies with sizes ranging from several meters to hundreds of kilometers, from one asteroid 

to another. Although, the larger asteroids are likely to have undergone differentiation, most of them 

have escaped to it, thus preserving some of the pristine materials (for those escaping subsequent 

alteration by metamorphism and/or space weathering, impacts). Comets are icy objects with mixed 

organics and rocks, originating from further regions, beyond the Neptune orbit: the Kuiper belt and, 

even further, the Oort cloud. When injected in the inner regions of the solar system, the increasing 

temperature of their surface triggers the sublimation of the ice, leading to the ejection of cometary 

materials in the interplanetary medium. 

The cometary and asteroidal fragments that encounter the Earth give rise to the meteorite and 

micrometeorite populations. While most of the meteorites sample the asteroids belt, more external 

regions are sampled by a part of the sub-millimeter particles such as the interplanetary dust particles 

(IDPs) and the micrometeorites. The study of micrometeorites provides information on the assemblage 

of minerals and organics present at the surface of icy bodies originating from the most remote regions 

of the solar system.  

This Ph.D. thesis is based on the study of micrometeorites from the Concordia collection that were 

collected in Antarctica over the last twenty years. In the first chapter, the Concordia collection is 

described to introduce a comprehensive study that aimed at determining the extraterrestrial sub-

millimeter flux falling on Earth. The mass fluxes and size distributions of unmelted micrometeorites 

and cosmic spherules are reported in the 30-350 µm diameter range. By combining our results with 

previous work, we inferred the global flux of unmleted micrometeorites and cosmic spherules over 

their entire size range and extrapolated their global annual flux on Earth. Taking into account the 

carbon abundances in the different types of micrometeorites form the Concordia collection, lower and 

upper limits of the carbon input on Earth are derived.  

In chapter 2, we report H, N and C isotopic data on ultra-carbonaceous micrometeorites (UCAMMs). 

UCAMMs are rare carbon-rich micrometeorites that most probably formed in outer regions of the solar 

system. The isotopic composition of the organic matter of UCAMMs provides clues to better 

understand their origin. Within the course of this thesis, 5 fragments of 3 UCAMMs were analyzed by 
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NanoSIMS at the Earth and Planets Laboratory (Carnegie, Washington DC) in collaboration with Dr. 

Nittler. A new analysis of C isotopic data acquired on an UCAMM studied by NanoSIMS at MNHN and 

at Institut Curie prior this thesis is presented.  

In chapter 3, we present experiments that aimed at synthetizing organic residues from the ion-

irradiation of isotopically heterogeneous ice films. Nine refractory organic residues were produced, 

with a dedicated set-up (IGLIAS, developed at CIMAP), during three experimental sessions in 2019, 

2020 and 2021 at the Large Collider for Heavy Ions (GANIL, France). Various ices mixtures were 

irradiated to simulate the Galactic Cosmic Ray interaction with the ice mantles at the surface of small 

bodies in the cold regions of the protoplanetary disk. The ice mixtures were isotopically heterogeneous 

in order to study the transmission of these heterogeneities to the irradiation-induced residue. The H, 

N and C isotopic compositions of the organic residues were analyzed by NanoSIMS at Institut Curie 

(Orsay, France). The results of these experiments are discussed within the scope of the astrophysical 

conditions expected in the formation regions of UCAMMs.  

The last chapter is a discussion putting into perspective the results obtained in Chapter 2 and 3 

aiming at proposing hypotheses on the formation of UCAMMs. The diversity of the isotopic 

compositions of UCAMMs is summarized and compared with other solar system objects. The 

formation scenario of UCAMM’s organic matter is exposed. Different types of organic matter, induced 

by irradiation of different types of ices, are considered. Based on theoretical models from the 

literature, a scenario is proposed considering the condensation and irradiation of different volatile 

molecular reservoirs expected to be present in the protoplanetary disk. Finally, perspectives are 

proposed to further characterize and deepen the understanding of UCAMMs.  
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1.1 The extraterrestrial matter input on Earth  

The extraterrestrial (ET) matter in the interplanetary medium is composed of asteroids, comets and 

sub-millimeter-diameter dust. These objects are likely to fall on Earth when encountering the planet 

along its orbit. The frequency of the falls depends on the size of the objects, it varies over orders of 

magnitudes from about one large impactor of 5 km diameter each 107 years to about 107 sub-

millimeter particles per day (Flynn, 2002; Plane, 2012). Over geologic time scale (> 106-107 yrs), the 

contribution to the ET input on Earth of rare large impactor becomes comparable to the daily input of 

sub-millimeter size particles (Murad and Williams, 2002; Plane, 2012). However, while the fall of a large 

impactor on Earth liberates huge amounts of energy, strongly altering its matter, an important fraction 

of sub-millimeter size particles reaches the surface with moderate alteration. Meteorites (i.e. 

centimeter to meter size objects) represent a lower contribution of the global ET input on Earth. 

Measuring the flux of sub-millimeter size particles thus means estimating the global amount of ET 

matter on Earth on short time scales (< 106 yrs). It specifically addresses the quantification of the 

exogenous material (including carbon-rich matter) input on Earth on a daily basis. 

1.1.1. The extraterrestrial flux before and after atmospheric entry 

Previous works have intended to measure the ET mass input on Earth driven by objects in the 10-9-

101 m diameter range (Cziczo et al., 2001; Hughes, 1992; Mathews et al., 2001; Plane, 2012; Taylor et 

al., 1998), leading to estimations varying sometimes by orders of magnitude (Plane, 2012). Such 

discrepancies are partly due to the fact that these techniques are not sampling exactly the same 

components of the ET flux. During atmospheric entry, an important fraction of the particles suffers 

severe heating due to friction forces, resulting in their complete or partial ablation. This fraction feeds 

the atmospheric medium in exogenous quasi-atomic elements that eventually reach the Earth’ surface. 

Their contribution to the ET mass input is evaluated by meteor radar detection (Mathews et al., 2001), 

LIDAR measurements of atmospheric metal layers (Gardner et al., 2014), elemental abundances and 

isotope records in deep seas (Peucker-Ehrenbrink, 2001). The size distribution of ablated dust DAbl (see 

Figure 1-1) is by definition not directly measurable. Conversely, atmospheric IDP collections, ground-

based meteorite and micrometeorite collections and deep-sea sediment collections sample the size 

distribution Ddust (see Figure 1-1) of the ET flux that survived the atmospheric entry and reached the 

Earth’s surface. Combining Ddust and DAbl leads to DZC (see Figure 1-1), the size distribution of the Zodiacal 

cloud (ZC) dust at 1 A.U, before atmospheric entry. The Zodiacal cloud is made of grains formed by 

collisions and destructions of comets and asteroids which derive towards the Sun (e.g. Carrillo-Sánchez 

et al. (2016); Nesvorný et al. (2011)). A direct sampling of DZC, outside the Earth atmosphere, is in 

practice not achievable in the current state of the art due to the very high relative speeds of the 

particles encountering Earth orbiting facilities (Carrillo-Sánchez et al., 2016; Cremonese et al., 2012; 

Love and Brownlee, 1993). Although Love and Brownlee (1993) estimated DZC by counting and 

measuring the particles impact craters on the Long Duration Exposure Facility (LDEF) solar panels, 

Cremonese et al. (2012) indicates that these results are highly sensitive to the speed and density 

assumptions, leading to large uncertainties (up to a factor 10 in the dust mass estimation). 

Several scientific communities are interested in the determination of the size/mass distributions 

Ddust, DAbl and DZC. For instance, the amount of ET carbon matter (altered and unaltered) falling on 

Earth is of interest for cosmochemistry and exobiology; atmospheric physicists need to constrain the 

exogenous elements playing a role in the atmospheric dynamics and studies on the ZC needs accurate 

dust distribution at 1 A.U. Stating the complexity of direct determination of DAbl and DZC, 

measurements of Ddust is a starting point to address the question of the ET matter distribution, before 

and after atmospheric entry. 
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Figure 1-1: Schematic view of the accretion of ET matter on Earth. The atmospheric entry divides 
the incoming ET flux in ablated dust and sub-millimeter dust. A direct measurement of the 
interplanetary dust size/mass distribution DZC is model-dependent and subject to important 
uncertainties. The size/mass distribution Ddust is the one that can be directly measured. 
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1.1.2. Extraterrestrial dust collections 

Murray and Renard (1891) reported the first collection of sub-millimeter ET particles collected in 

deep-sea sediments during the expedition of the H.M.S. Challenger ship between 1872 and 1876. The 

scientific team onboard the ship performed several drills of the oceanic sedimentary deposits and 

identified, trapped within them, a family of ET sub-millimeter spherical grains called cosmic spherules 

(CS). Cosmic spherule’ shape is characteristic of melting occurring during the atmospheric entry. A part 

of the particle is ablated while the remaining mass rapidly cools down, solidifies and eventually 

deposits on land or on the seabed. The hardness of CSs favors their preservation from destruction and 

erosion at the Earth surface. Murrell et al. (1980) extracted 22 mg of CSs from 411 kg of deep-see clays 

from the Pacific Ocean. They estimated a CS mass flux of 90 tons.yr-1, but modern works showed that 

this value was largely underestimated, probably due to the destruction of particles in the sediments. 

Taylor et al. (1998) recovered and identified several hundreds of CSs trapped into the South Pole water 

well (SPWW) at the Scott-Amundsen base, Antarctica. The visual aspect and the relative resistance of 

the CSs helped their detection. They estimated a flux of CS in the 50-700 µm diameter range of 1600 ± 

300 tons.yr-1.  

Hints of the existence of an unmelted ET dust population were reported by Landsberg (1947), and 

theoretically described 3 years later by Whipple (1950). To differentiate them from CSs, they are 

referred as unmelted micrometeorites (uMMs). The uMMs are more fragile and can be destroyed 

during the deposition processes or during the collection procedure itself. As a result, that population 

of dust, that has experienced less alteration at the atmospheric entry, is often under-sampled by 

collections where ET grains are subjected to high mechanical stress (due to the environment or to the 

collection itself). Due to these experimental constraints, the uMM population was first reported almost 

a century after the identification of CSs (Maurette et al., 1989; Maurette et al., 1987; Sandford and 

Walker, 1985). Since the uMM visual aspect is less characteristic than that of CSs, their identification 

implies a more comprehensive investigation of the particles to assert their ET origin. It results in a more 

meticulous work of characterization for which it is mandatory to reduce the amount of terrestrial 

contamination that can be misled with the genuine ET particles. Therefore, uMM collections are 

performed in regions where the terrestrial contamination is as low as possible. Yada et al. (2004), 

Maurette et al. (1987), Suttle and Folco (2020) performed sub-millimeter ET dust collections in several 

regions of Antarctica and reported the presence of uMMs. They estimated global mass fluxes of sub-

millimeter ET particles, including CSs and uMMs, exhibiting a wide range of variation from about 1,500 

tons.yr-1 (Suttle and Folco, 2020) up to 16,000 tons.yr-1 (Yada et al., 2004). The origin of these 

discrepancies may be related to the evaluation of the corresponding accumulation time of the particles 

in their host matrix (see sections 1.4.1 and 1.5.1). 

Interplanetary dust particles (IDPs), collected at 25 km altitude by NASA’ stratospheric aircraft 

(Bradley, 2003) are part of the unmelted cosmic dust population available in laboratories. Their typical 

diameter is below 15 µm. The study of unmelted IDPs is of great interest, unfortunately their collection 

protocol does not allow to derive a mass flux. In addition, their small size makes them unlikely to 

contribute significantly to the ET sub-millimeter mass flux (see the discussion on the cut-off at low sizes 

in section 1.4.4) 

The work presented in this chapter is based on an Antarctic collection of sub-millimeter ET particles 

trapped in ultra-clean snow. It aims at providing better constraints on the ET flux in the 30-350 µm 

diameter range for both uMMs and CSs thanks to a well-controlled collection of ET particles in this size 

range. The reliability of the flux measurement stands on the control of the extraction procedure and 

the preservation of the smaller and most fragile ET particles as detailed in sections 1.2 and 1.3. 
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1.2 Collection of micrometeorites in the central regions of Antarctica  

The micrometeorites (MM) presented in this work were collected in the vicinity of the French-

Italian CONCORDIA station at Dome C (hereafter DC), 1100 km inland on the high Antarctic plateau 

(75° 06’S 123° 20’E). This specific location offers unique preservation conditions for micrometeorites 

against aqueous alteration, and anthropic and terrestrial contaminations. The human activities in the 

region started in the 1990s ensuring that the layers of snow in the subsurface have remained pristine. 

1.2.1. The collection protocol at Dome C 

Micrometeorites falling in Antarctica are trapped within the snow that accumulates at the surface. 

Temperatures in the station area are ranging from -20°C to -40°C in summer and drop below -60°C in 

winter. These regions are among the only places where the temperature stays far below 0°C all along 

the year, preventing the transformation of snow into water that can alter the micrometeorites. 

 

 

In order to access ultraclean snow samples, 5 to 9 meters’ deep trenches were dig by a Kassbohrer 

snow groomer. Ultraclean snow was extracted from the walls of the trenches and transported to the 

station in 60 liters’ high-density polyethylene closed barrels. The snow was melted using a dedicated 

stainless-steel melter (Figure 1-2) combined with a 35 kW propane gas boiler that warmed the stainless-

steel tank via an external water bath.  

The melted snow water was sieved with a 30 µm mesh nylon filter for the 2002 (DC02) and 2006 

(DC06) campaigns, and a 20 µm mesh filter for the 2016 (DC16) campaign ( 

Table 1-1). The filtering was made using gravity without water pumping to avoid mechanical stress 

on micrometeorites. The melter is a closed system and the total weight of melted snow was obtained 

by measuring the volume of filtered water. The total weight of each melt was ranging from 200 to 1100 

kg, which represent between 2 and 7 round trips to the trench. The duration of the full operation was 

about 1-2 days, exceptionally 3 days in the rare cases of melts above 1000 kg. The residence time of 

the particles in liquid water inside the melter was ranging from a few hours up to about a day, as the 

water was regularly sieved to allow additional snow in. However, once trapped in the filter, the 

particles were still in contact with water droplets but their maximum exposure time was always less 

than 3 days. Most of the time the final temperature of water was between 0 and a few degrees Celsius, 

exceptionally above 10°C. Each melt was sieved on a single filter and extensive rinsing of the melter 

walls was performed to ensure maximum recovery of the particles. In some melts, the rinsing was 

performed directly on the same filter as the melt itself while on others the rinsing was performed on 

a dedicated filter. Immediately after the melting procedure, the filters were examined under a 

binocular microscope. For the 3 last campaigns (2019, 2016, 2014) the filters were dried under primary 

vacuum and kept under vacuum or N2 inert atmosphere prior shipping back to France. All filters were 

Figure 1-2: Dome C station in Antarctica. The base is located 1100 km inland on the Antarctic plateau. 
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subsequently analyzed in a dedicated clean room (ISO 7) under a clean hood at CSNSM (Centre de 

Sciences Nucléaires et de Sciences de la Matière, now IJCLab).  

 

1.2.2. The field campaigns at Dome C 

Since the beginning of the program at Dome C, six expeditions have been performed.  

Table 1-1 summarizes these field campaigns. In this work, we used the data from MMs collected 

during the three austral summers 2001-2002, 2005-2006 and 2015-2016 (respectively referred as 

DC02, DC06 and DC16).  

 

Year Name Participant Number 
filters 

Total weight 
of snow (kg)  

Period of 
stay 

Trenc
h 
depth 
(m) 

Trench location 

2000 DC00 J. Duprat  
G. Immel 

- 3900 
Winter 2000 

0m - 

2002 DC02 J. Duprat  
C. Engrand 
 

12 3620 17/01/2002 
– 
04/02/2002 

3 - 4 (75°06’25.5’’S 
123°20'39.66’’E) 

2006 DC06 J. Duprat 
M. 
Gounelle 

12 7636 05/01/2006 
– 
03/02/2006 

3.3-
4.3 

(75°06’35.46’’S 
123°20’39.66’’E) 

2014 DC14 J. Duprat 
M. Godard 
L. Delauche 

5 2400  14/01/2014 
– 
28/01/2014 

5-6 m (75°07’44’’S 
123°22’6.74’’E) 

2016 DC16 E. Dartois 
M. Godard 
L. Delauche 

17 16598 18/12/2015 
– 
30/01/2016 

6 - 9 (75°07'29.1’’S 
123°21'42.6’’E) 

2019 DC19 E. Dartois 
F. Fortuna 
S. Hervé 

10 21000 13/12/2018 
– 
30/01/2019 

7-8 (75° 07' 23.5''S 
123° 21' 23.4''E) 

 

Table 1-1: List of the expeditions at Dome C in the course of the micrometeorite @ DC program.  

Figure 1-4 shows the locations of the DC extraction sites around the Concordia station. The DC02 

site was located 600 m to the south of the station at GPS coordinates (75°06’25.5’’S 123°20'39.66’’E). 

Twelve melts were performed with snow extracted at 3-4 m depths in the trench. The DC06 extraction 

Figure 1-3: Blocks of snow are extracted from a trench with clean shovels and barrels (left). The extracted snow 
is subsequently melted in a clean closed-system (center). The melted snow is sieved by 30 µm mesh filters (right). 
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site was in the same zone as DC02 but 300 m further to the south (75°06’35.46’’S 123°20’39.66’’E). 

Thirteen melts were achieved with snow samples extracted between 3.3-4.3 m deep in the trench. The 

trace of the trench has been captured on a satellite image, the January 25th, 2006 (Google Earth, Figure 

1-4). In 2014, 2016 and 2019, the trenches were done in another zone, at about 3 km from the station, 

at the South West of the plane landing runway. The snow of the 14 melts of DC16 were extracted 2500 

m to the south of the station (75°07'29.1’’S 123°21'42.6’’E) at depths ranging from 6 to 9 meters.  

 

 

 
Among all melts, most were not suitable to perform flux measurements due to issues during the 

collect itself, the particle extraction protocol or, in most cases, to incomplete sorting. We first selected 

a set of 23 melts available to perform a first flux estimation, we then further restricted that set (see 

section 1.4.3).  

 

1.3 The CONCORDIA collection 

For more than a decade, the filters were examined under a binocular microscope, in the clean room 

at CSNSM/IJCLab, Orsay, France. Particles were manually extracted using dedicated fine brushes. The 

main contaminants observed in the filters were fibers from polar clothes and gloves, plastic chips from 

the barrels and from the tools used to extract and transport the snow. These contaminants were easily 

identified and removed during the filter sorting procedure.  

Figure 1-4: Map (left) and satellite image (right) of the Dome C station surroundings. Black and green dots indicate 
the sampling location of the DC field campaigns. The satellite image (right) was captured the 13th of January, 2006, 
the DC06 trench is visible but not DC14, DC16 and DC19 that performed later. 

DC06 

DC02 

DC02 

DC06 

DC19 
DC16 

DC14 
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1.3.1. The different types of micrometeorites  

Optical images of all extracted particles were taken and both their longest (a) and shortest (b) 

dimensions were documented. From these values, we derived, for each particle, an equivalent 

diameter, Deq, and an asymmetry factor, As, to quantify the geometry of the extraterrestrial particles. 

They are defined as:  

𝐷𝑒𝑞 = (𝑎 × 𝑏 × 𝑏)
1
3 

𝐴𝑠 =  
𝑏

𝑎

 

Deq accounts for the mean diameter of a particle whereas As is a proxy of its spherical shape. 

Spherical particles have As = 1 and Deq is their effective diameter. Non-spherical particles are 

characterized by As < 1. The mesh size of the filters was 30 µm for DC02 and DC06, and 20 µm for 

DC16, however some particles with Deq slightly smaller than these mesh sizes were retrieved due to 

their non-spherical geometry and/or trapping within the textile fibers present in the filters.  

After extraction from the filters, all the extraterrestrial particles were classified into two main 

categories: unmelted micrometeorites (uMMs) and cosmic spherules (CSs). uMMs were subsequently 

fragmented with a needle or a thin scalpel blade and a fragment was deposited on a conductive carbon 

tape mounted on a one-inch aluminum stub for analytical scanning electron microscopy (SEM-EDX). 

Cosmic spherules (CSs) were mounted on carbon tape without fragmentation. All CS and uMM 

fragments were analyzed with a SEM equipped with secondary (SE) and back-scattered electron (BSE) 

detectors and an Energy Dispersive X-ray spectrometer (EDX) to determine their major elemental 

composition patterns and assess their terrestrial or extraterrestrial origins. The types of uMM differ by 

their chemical and textural compositions. Examples of the various kinds of micrometeorites are 

displayed in Figure 1-5. 

The uMMs were then subdivided into 5 types:  

 Fine grain compact (FgC). 

 Fine grain fluffy (FgF). 

 Crystalline (Xtal). 

 Scoriaceous (Sc). 

 Ultra carbonaceous micrometeorites (UCAMM). 

 

 

Figure 1-5: Cosmic spherules and unmelted micrometeorites from CONCORDIA collection (SEM images). From left 
to right: glassy cosmic spherule, stony cosmic spherule, partially melted (scoriaceous) micrometeorite, unmelted 
fine-grained micrometeorite. 
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1.3.2. Mass densities 

MMs consist in an aggregation of phases with different densities: organic matter, silicates, oxides, 

… Their individual densities can substantially vary between values ranging from <1 to 3-4 depending 

on the various proportion of these phases and the porosity of the particle. 

Weighing individual grains with size lower than about 100 µm requires a dedicated experimental 

apparatus and implies a substantial risk of losing samples. These measurements were unfortunately 

out of our capabilities. As weighting each individual grain could not be performed, this work relied on 

Deq measurements and consider an average mass density for the grains. We considered the melted 

(CS) and unmelted (uMMs) particles separately, taking for each subset an average density inferred 

from previous studies. 

The individual CS masses were estimated assuming an average density of 3.0 g.cm-3 (Murrell et al., 

1980). Although, Yada et al. (2004) differentiated S- and G-type spherules (3.0 g.cm-3) from I-type 

spherules (5.0 g.cm-3), I-type spherules represent a minor proportion of the CS population and do not 

account significantly in the total mass estimation.  

Different average densities have been reported for unmelted extraterrestrial particles originating 

from space-borne, stratospheric and Antarctic collections (Figure 1-6). In their detailed study of 

Antarctic micrometeorites (AMMs), Yada et al. (2004) reported an average density of 1.0 g.cm-3 for 

unmelted particles from the mass and the apparent volume of 2 groups of 15 and 30 AMMs, measured 

with a microbalance and SEM images. The GIADA instrument onboard Rosetta measured the mass and 

the cross section of cometary dust ejected from the comet 67P-Churyumov-Gerasimenko thanks to 

the combination of a microbalances system and a laser (Fulle et al., 2016). From the data collected, 

and by taking into account different shapes of the grains, they estimated an average cometary dust 

mass density of about 0.8 g.cm-3. Individual interplanetary dust particles collected in the stratosphere 

by NASA (IDPs) exhibit densities ranging from 0.6 up to 4.2 g.cm-3 depending on their compact or fluffy 

nature (Joswiak et al., 2007). The technique used to derive these values is detailled in Love et al. (1994): 

EDX spectra were used to quantify the relative elemental abundances within a grain. Subsequently, a 

numerical model asserted the weigh percentage of major elements. The absolute mass of Fe was 

measured using the Fe Kα X-rays and led to the absolute mass of the grain. Grains’ volume were 

estimated from SEM images. The authors indicates that such a technique was likely to underestimate 

the weight of grains made of light elements as EDX spectra fail to detect them. 

 

Figure 1-6: densities reported in previous works 
for unmelted cometary and asteroidal grains 
including AMM (Yada et al., 2004, in red), 
cometary dust from 67P Churyumov-
Gerasimenko (Fulle et al., 2016, in blue), 
stratospheric IDPs (Joswiak et al., 2007, in green) 
and carbonaceous chondrites (CC, Consolmagno 
et al., 2008, in grey). The uMM mean density 
adopted for this work is indicated by the black 
dash-dotted line. Upper and lower dotted lines 
represent the extreme densities expected in the 
case of a chondritic composition and a cometary 
composition respectively. 
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The range of densities reported in genuine interplaneray material provides clues for identifying 

their asteroidal or cometary origin (Consolmagno et al., 2008). Unmelted particles originating from the 

cometary reservoir most probably have higher porosity, i.e. densities around 0.8-1.0 g.cm-3, while 

those originating from the asteroidal reservoir have lower porosity and an average densitity close to 

that reported for cabonaceous chondrites, i.e. 2.2 g.cm-3 (Consolmagno et al., 2008; Flynn and Sutton, 

1991; Joswiak et al., 2007; Love et al., 1994).  

In the following, we considered an average density of 1.5 g.cm-3 for uMMs, intermediate between 

these two end-members. This average density is slightly higher than that used by Yada et al. (2004), in 

agreement with the fact that we include partially melted grains in the set of uMMs particles. The 

uncertainties related to the range of possible densities will be included in the discussion on the flux of 

uMM in section 1.5.1. 

 

1.4 Measurement of the micrometeorite influx  

1.4.1. The exposure parameter S 

To estimate a micrometeorite flux at the Earth surface, one has to determine the time during which 

the particles accumulated on a given surface. When extraterrestrial particles are trapped in a host 

matrix (sediments, snow,…), it is mandatory to control the quantity of the host matrix and its growth 

rate at the age of the fall in order to infer the corresponding exposure parameter S, expressed in m².yr. 

S is an area-time product representing the accumulated quantity of host matrix trapping the particles 

(Peucker-Ehrenbrink et al., 2016). The number of micrometeorites per m2.yr is intrinsically low, and 

subject to alteration and rapid dilution into terrestrial counterparts. Most collections involve rather 

small surface exposed for rather long periods of time (see Table 1-2) for which it is not trivial to precisely 

determine the total exposure parameter and/or to accurately control its related uncertainties.  

In the case of micrometeorites collected in deep-sea sediments, the low growth rate of the host 

matrix implies that a small volume of sediments might represent a high S. For instance, Prasad et al. 

(2013) extracted two volumes of deep sea sediments V1,sed = 50×50×15 cm3 and V2,sed = 250×250×15 

cm3 and assumed a growth rate of 3∙10-6 m.yr-1, resulting in two exposure parameters S1,sed = 12,500 

m2.yr and S2,sed = 312,500 m2.yr. In such conditions, the micrometeorites trapped in the sediments have 

accumulated over a 50,000 years’ period. Particles that remain exposed to the deep sea environment 

for a long period of time undergo alteration and destruction (for the most fragile) involving a bias in 

the flux estimation (Genge et al., 2020). As a consequence, a high exposure parameter based on a large 

period of time have to be considered carefully since it might come with an under-sampling of the 

particles. By contrast, a high exposure parameter based on a short period of time and a large sampled 

surface is more relevant for a flux measurement. 

Micrometeorite collections in ancient marine limestone (Martin et al., 2018; Schmitz et al., 2019) 

are subject to the same constraints as deep-sea collections. Extraterrestrial particles trapped in the 

limestone have accumulated over 104 to 105 years’ period of time with typical sedimentation rates of 

about 10-6 to 10-7 m.yr-1 (Schmitz et al., 2019). Although a loss of a significant part of the flux may occur 

as proposed by the authors, the remaining ET material allows studying the flux variations over large 

periods of time as well as relative abundance of ET grain families contributing to the flux. 

Antarctic sediment traps are also reported in the literature as micrometeorites’ accumulation sites 

where the particles are focused under the action of winds. The traps in the Transantarctic Mountains 

(Rochette et al., 2008; Suavet et al., 2009; Suttle and Folco, 2020) and in the Sør Rondane Mountains 
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(Goderis et al., 2020) consist in relatively small areas (0.5 m² in Suttle and Folco (2020)) in which 

terrestrial and extraterrestrial dust have piled up over extended period of time, ranging from 0.8 to 3 

Myr. The weak constraints on the accumulation times of the sediments lead to important uncertainties 

on the exposure parameter, which eventually affect the flux estimation. For instance, Suttle and Folco 

(2020) mentioned an S ranging from 0.4∙106 to 1.15∙106 m².yr that introduce a factor 3 error on the 

flux measurement. 

Collections of magnetic ET dust in urban environment (Genge et al., 2017) presumably fall under 

the same considerations with gutters playing the role of the sediment trap (Genge et al., 2020). 

Although the processes of accumulation of dust is similar, the time periods of deposition differ greatly, 

being estimated to less than 6 years for the urban collections (Genge et al., 2017). Nevertheless, the 

exposure parameter is again not straightforward to derive. To date, no absolute micrometeorite fluxes 

have been derived from urban micrometeorite collections. 

Yada et al. (2004) and Maurette et al. (1991) extracted cosmic spherules and unmelted 

micrometeorites from volumes of blue ice fields, in Antarctica. The blue ice fields are formed from the 

encounter of a drifting glacier and geological obstacles as mountains. In such areas, the ice of the 

glacier shows on the surface where it is exposed to erosion and sublimation (Yada et al., 2004). 

Sublimation of the ice layers reveals the extraterrestrial particles trapped across the years. Yada et al. 

(2004) estimate that the age of the ice from which they collected micrometeorites ranges from 33 to 

27 kyrs, also mentioning the existence of a delay of about 2000-6000 years between the fall of the 

snow and its transformation in ice. Such extended time periods introduce uncertainties on the 

exposure parameter associated with blue ice field collections of micrometeorites. Measurements of 

the oxygen isotopes in air bubbles of ice cores allow at most a 6 kyr precision on the actual age of the 

ice, leaving unaddressed the determination of the snow accumulation rate at the time of the 

micrometeorites fall (Yada et al., 2004). Although blue ice fields collections shed light on the ancient 

micrometeorite input on Earth, the processes of the ice evolution and the lack of information on the 

accumulation rate of the snow at the age of the fall make the exposure parameters very hard to 

determine precisely. 

The collections of ET particles in Antarctic snows intrinsically allow more precise constraints on both 

the accumulation rate of the host matrix and the exposure parameter due to the young age of the 

snow by comparison with the ice and the sediments. By its less compressed structure, snow enables 

an accurate dating of the age of fall of the micrometeorites. Taylor et al. (1998) estimate that the CSs 

of the SPWW collection fell on Earth between 1000 and 1600 AD. The complexity of the South Pole 

water well’s geometry and the water flows prevent to unambiguously assert the exact surface of 

collection and the related exposure parameter can thus be subjected to uncertainties. 

In this work, uMMs and CSs collected near Dome C were trapped in snows from 3-9 m depths. The 

spatial configuration of the collection area (i.e. a flat area) prevent confusion in the original location of 

the falls. The snow accumulation rate Rsnow in the region of the collect is a mandatory parameter in 

order to estimate the age of fall of the micrometeorites. Previous articles on the micrometeorite flux 

at Dome C (Duprat et al., 2006; Duprat et al., 2001; Engrand et al., 2017; Rojas et al., 2019) have 

considered an average Rsnow of 3.5 g.cm-2 reported by Petit et al. (1982). This value was measured at 

(74°39’S, 124°10’E), 55 km away in the North-East direction from the actual Dome C station, using 

rather limited methods (see Petit et al. (1982)). More recent studies based on the analyses of ice cores 

sampled at Dome C (Frezzotti et al., 2005; Le Meur et al., 2018) indicate values ranging from 2.6 to 2.8 

g.cm-2.yr-1 over the last century. 
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In the present work, we considered an average value of Rsnow = (2.7±0.1) g.cm-2.yr-1 to convert the 

masses of snow into exposure parameters, in order to compute the micrometeorite flux. In addition, 

by considering a snow density equal to ρsnow = 300 kg.m-3, we derived a snow level growth rate of: 

 

𝑓𝑠𝑛𝑜𝑤 =
𝑅𝑠𝑛𝑜𝑤
𝜌𝑠𝑛𝑜𝑤

= 0.09 𝑚. 𝑦𝑟−1 

 

fsnow allows to estimate the ages of fall of the extracted snow samples, thus, that of the 

micrometeorites therein. All of CSs and uMMs are thought to have fallen between 1920 and 1980. 

Table 1-3 summarizes the exposure parameter S for each melt. They are derived from the mass of snow 

in a melt Mmelt (g) and the accumulation rate Rsnow (g.m-2.yr-1) by : 

𝑆 =
𝑀𝑚𝑒𝑙𝑡
𝑅𝑠𝑛𝑜𝑤

  

The small uncertainties on the weighed masses of snow, the good constraints on the snow 

accumulation rate at Dome C and the limited time (i.e. depth) extension of the collection sampling 

leads to an unprecedented control on the exposure parameter. Such result can be achieved thanks to 

the existence of a young host matrix. In section 1.6, we discuss the impact of the exposure parameter 

on an extraterrestrial flux measurement. 
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Table 1-2: Summary of the characteristics of micrometeorite flux measurements reported in the literature adapted from Suttle and Folco (2020). The result from this work are 
presented in the last column (Rojas et al., 2021). The flux derived from the Concordia collection do not take into account the extrapolation made for CSs with the SPWW data 
(see section 1.5.1). 

References Prasad et al. 
(2013) 

Schmitz et al. 
(2019) 

Suttle and Folco 
(2020) 

(Genge et al., 
2017) 

Yada et al. (2004) Taylor et al. 
(1998) 

Rojas et al. 
(2021) 

Collection type Deep sea 
sediments 

Ancient marine 
limestone 

Sediment trap Urban trap Blue ice fields Snow of the 
South Pole water 
well 

Subsurface 
Antarctic snow 

Exposure 
parameter 

(m².yr) 

12,500 – 
312,500 

- 0.4∙106 - 1.15∙106 1.8∙105 -1.5∙106 13 - 93 6500 - 8200 89 - 132 

Host matrix  
growth rate 

(m.yr-1) 
3∙10-6 10-6 – 10-7 - - 

0.15 
(at the time of the 

fall) 
_ 0.09 

Estimated 
duration of the 
accumulation 

(yr) 

50,000 104 - 105 106 6 - 50 6000 450 60 

Flux 
(tons.yr-1) 160 ± 70 - 1550 ± 750 _ 15,000 ± 10,000 1,600 ± 300 4,400 ± 1,300 

(DC data only) 

Time period 
sampled 

50,000 B.C. - 
present 

Various 
3,000,000 – 
800,000 B.C. 

1960 A.D. - 
Present 

33,000 – 27,000 
B.C. 

1000 – 1500 A.D. 1920 – 1980 A.D. 
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1.4.2. Collection efficiency Q 

We defined Q, the efficiency of collecting the particles within a filter during a melt. Q was monitored 

by introducing in the inner tank, before the snow-melting, a given number of colored terrestrial sand 

and glass particles of two size ranges: 50-100 µm and 100-400 µm. The colors were different from one 

melt to another and between the two size ranges in order to identify possible size dependence in the 

collection efficiency as well as possible mixing between consecutive melts in the case of incomplete 

rinsing. These colored particles were recovered and counted during the extraction procedure in the 

clean room, in France. The inferred average Q for these two size ranges was found to be Q = (90±10) 

% with no significant variations from one melt to another or between the two size ranges. This high Q 

was obtained by virtue of the design and polishing of the melter walls, and the extensive and careful 

rinsing of the overall apparatus after each melt. We systematically divided the number of 

micrometeorites recovered per melt by Q in order to infer the actual number of particles in the melt. 

 

1.4.3. Melts selection 

In order to achieve the extraterrestrial flux estimation, we selected a subset of melts appropriated 

for the study.  Let us consider the number and mass of reference of extraterrestrial particles per liter 

of snow, nref and mref.  

 

The 23 melts listed in the Table 1-3 were ranked according to the 3 following parameters (Figure 1-7):  

 The exposure parameter.  

A low exposure parameter (S < 20 m².yr) implies a small amount of extraterrestrial 

particles (typically < 0.05 kg-1) collected and so a large statistical error on both the 

number and total mass of particles from the melt (see section 1.6.1). 

 The numbers of extraterrestrial particles per kilograms of snow n.  

It has to be compared to the exposure parameter. Melts with similar exposure 

parameters (greater than 20 m².yr) are expected have n values clustering around an 

average value with a dispersion related to  statistical variations. However, some melts 

can have substantially lower n value due to an incomplete sorting of the filter. 

 The mass of extraterrestrial particles per kilograms of snow m. 

This parameter is the mass influx we want to measure. We expect that melts with 

increasing exposure parameters will converge on the mref value. 

For unbiased melts with S > 20 m².yr, m and n are not expected to be greater than mref and nref. 

However, the two proxies are not equivalent as n depends on the size cut-off at low size during the 

searching procedure. The examination of one filter takes weeks and is often performed sequentially 

by different persons. Therefore, all filters were not examined with strictly the same efficiency. The 

important point is to maximize the number of particles recovered in the size range that is contributing 

the most to the mass flux.  

The smaller the particle, the harder to identify and extract. We thus expect that the relative number 

of particles per kg in the smallest size range (i.e. < 40 µm) may exhibit substantial variation as some 

filters may have been better checked than others. However, these potential large variations in n, may 

not affect significantly the mass per kg as long as the contribution of these tiny grains remains low. In 

the following we show how we manage these potential issues. We treated CSs and uMMs separately 

in the 23 melts of the dataset and the properties of the selected melts are shown in Figure 1-7.  
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We selected the same melts for CSs and uMMs and we added one additional melt for uMMs, in 

which uMMs turned out to be fully extracted. For the CSs, the 3 selected melts, DC06-07, DC06-08 and 

DC06-09, share similar m (≈0.16 µg.kg-1) and n (≈0.14 L-1). One other melt, DC06-04, presents lower 

m=0.09 µg.kg-1 and n=0.07 L-1 and was thus considered not fully counted. The 4 selected uMMs melts, 

DC06-07, DC06-08, DC06-09 and DC06-11, displayed more spread values of m and n, ranging from 0.7 

to 0.14 µg.kg-1 and 0.7 to 0.33 L-1 respectively. This wider variation is attributed to the difficulty to 

identify and collect uMMs in a filter due to their non-spherical shape, in comparison to the CSs. The 

selected dataset is referred as the dataset #1. In total, the selected set contains 657 uMMs and 328 

CSs. 

Besides these selected melts in which the particle extraction was exhaustive, we recovered many 

CSs and uMMs from the 19 other melts. The collection protocols from these melts were identical to 

those of the selected melts. From these 19 additional melts, we extracted 480 CSs and 623 uMMs (see 

Table 1-3). The average number of particles per kg of snow in these additional melts was lower than 

that found in the selected melts mentioned above, due to incomplete scanning of the filters. However, 

the size distribution of particles within these additional melts was found compatible with that of the 

selected melts, indicating that there was no significant size bias between the two sets of data (dataset 

#1 and additional). We used the dataset #1 to infer the absolute value of the fluxes, and the complete 

set of data (dataset #1 + additional melts) to infer the global size and mass distributions. The global 

mass influx distributions were then normalized to the absolute values of the flux inferred from the 

selected melts. 

For the uMM and CS selected melts, the average exposure parameters and masses of particles per 

kilograms of snow are: <SuMM> = 33.0 m2.yr, <muMM> = 0.103 µg.kg-1 and <SCS> = 22.4 m2.yr, <mCS> = 

0.163 µg.kg-1. If one computes the total m and n obtained by summing the selected melts of uMM and 

CS separately (i.e. as if the selected melts were 2 global melts of uMMs and CSs), one gets similar 

values: SuMM = 131.9 m2.yr, muMM = 0.107 µg.kg-1 and SCS = 89.6 m2.yr, mCS = 0.162 µg.kg-1. 
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Figure 1-7. Melt selection graphics. Left, total mass of uMMs (blue dots) and CSs (red dots) per kg of snow M 

plotted against the exposure parameter S for the melts forming the selected dataset. Each point stands for a 

single melt. CSs and uMMs are treated separately. The exclusion zone in dashed brown (left) indicates the region 

where S is too low (< 20 m².yr) to perform an accurate measurement. The exclusion zone in green (bottom) 

indicates the region where M is significantly lower (< 0.05 µg.kg-1) than its average value (0.163 and 0.103 µg.kg-

1 for CSs and uMMs respectively) confirming the incomplete extraction/identification of the particles in the filters. 

The average <M>, average<S> and total S are reported as colored crosses. Right: mass flux (µg.m -2.yr-1) versus 

abundance flux (particles.m-2.yr-1) for the selected melts of CS and uMM, corrected from Q. These fluxes are 

derived from the sum of the mass in the melt divided by the exposure parameter. 
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 Date (mm/dd) Name NuMMs NCSs MuMMs 
(µg) 

MCSs 
(µg) 

Mass of 
snow (kg) 

S (m².yr) nuMMs 
(part.kg-1) 

nCSs 
(part.kg-1) 

muMMs 
(µg.kg-1) 

mCSs 
(µg.kg-1) 

Flux 
(µg.m-2.yr-1) 

Selected melts 
2

0
0

6
 

01/14 DC06-04 59 42 14 43 639 23.7 0.092 0.066 0.022 0.067 - NO 

01/16 DC06-05 63 50 4 44 384 14.2 0.164 0.130 0.010 0.115 - NO 

01/19 DC06-07 103 89 49 120 681 25.2 0.151 0.131 0.072 0.176 2.1 5.2 YES 

01/21 DC06-08 65 123 71 136 835 30.9 0.078 0.147 0.085 0.163 2.5 4.8 YES 

01/23 DC06-09 294 116 116 136 903 33.4 0.326 0.128 0.128 0.151 3.8 4.6 YES 

01/26 DC06-10 33 31 9 27 721 26.7 0.046 0.043 0.012 0.037 - NO 

01/27 DC06-11 195 0 146 0 1142 42.3 0.171 0 0.128 0 3.8 - YES (only uMMs) 

               

2
0

0
2

 

 DC02-01 6 6 6 11 304 11.3 0.020 0.020 0.020 0.036 - NO 

 DC02-02 4 8 2 17 206 7.6 0.019 0.039 0.010 0.083 - NO 

 DC02-03 20 16 16 41 283 10.5 0.071 0.057 0.057 0.145 - NO 

 DC02-04 15 17 52 31 280 10.4 0.054 0.061 0.186 0.111 - NO 

 DC02-05 5 7 4 12 195 7.2 0.026 0.036 0.021 0.062 - NO 

 DC02-06 28 21 28 15 608 22.5 0.046 0.035 0.046 0.025 - NO 

 DC02-07 37 35 9 70 257 9.5 0.144 0.136 0.035 0.272 - NO 

 DC02-08 31 17 34 22 170 6.3 0.182 0.100 0.200 0.129 - NO 

 DC02-09 49 21 22 23 212 7.9 0.231 0.099 0.104 0.108 - NO 

 DC02-10 57 23 17 28 408 15.1 0.140 0.056 0.042 0.069 - NO 

 DC02-11 18 12 14 17 455 16.9 0.040 0.026 0.031 0.037 - NO 

 DC02-12 14 16 3 35 242 9.0 0.058 0.066 0.012 0.145 - NO 

               

2
0

1

6
 

01/06 DC16-06 8 1 2 3 1244 46.1 0.006 0.001 0.002 0.002 - NO 

01/08 DC16-08 64 120 32 166 1530 56.7 0.042 0.078 0.021 0.108 - NO 

01/14 DC16-11 30 10 33 1 2111 78.2 0.014 0.005 0.016 0.000 - NO 

01/20 DC16-14 83 25 67 41 1983 73.4 0.042 0.013 0.034 0.021 - NO 

Table 1-3: List of individual melts forming part of the dataset used in this work. Individual mass fluxes are indicated for the selected melts. They are given by the sum of the 
particles mass divided by the exposure parameter S and the  collection efficiency Q.
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1.4.4. Flux size and mass distributions 

The size distributions of uMMs and CSs from the complete data set are reported in Figure 1-8. The 

uMMs and CSs exhibit a maximum flux in number of particles at Deq = 50 µm. The cumulative size 

distributions and mass fraction derived from the overall data set are also shown in Figure 1-8. Both size 

and mass cumulative distribution exhibit a strong decrease with the equivalent diameter, but a single 

power law cannot describe them over the entire interval in size reported. The cumulative distributions 

of uMMs and CSs can be approached by a function 𝑓 = 𝑏 ∙ 𝐷𝑒𝑞
−𝑎 between 80 and 200 µm with auMM= 

-3.2 and aCS = -2.9 for uMM and CS respectively.  

 

 

 

Figure 1-8: Histograms of MMs (blue) and CSs (red) size distributions using equivalent diameter bins of 30 µm 

(top panels). Cumulative number and mass distributions of MMs (blue and grey) and CSs (red and orange) (bottom 

panels). The numbers are reported on the right vertical axis and mass fractions on the left vertical axis 
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In Figure 1-9, we report the uMM and CS mass influx distributions from the selected melts (dataset 

#1) and the complete dataset using 30 µm diameter bins (in the upper panels of Figure 1-8, grey and 

orange squares for the selected melts, and blue and red for the complete dataset) along with their fits 

assuming log-normal laws. The shape of the particles’ size distribution of the complete data set is 

compatible with that of the selected melts data (dataset #1), confirming the absence of significant size 

bias due to the incomplete sorting the filters in the complete data set.  

The mass fluxes derived from the integration of the fit of dataset #1 points by log-normal laws are 

equal to 2.7 µg.m-².yr-1 for uMMs and 5.2 µg.m-².yr-1 for CSs. These values, which are corrected from 

Q, provide the absolute mass flux within the diameter range where these measurements were 

performed, i.e. between 30 to 240 µm. We used these absolute values to normalize the log-normal 

Figure 1-9: (top panels) Size and Mass distributions for MMs (left) and CSs (right) given as mass influxes using 30 

µm bins in equivalent diameter and logarithmic bins in mass. The sizes distributions of MMs and CSs from the 
selected melts (Dataset #1) are reported in grey and orange symbols, and that considering the full dataset in blue 
and red symbols. The uncertainties of the MM and CS size distributions of the full dataset are outlined in the shaded 
areas. (bottom panels) Mass distributions for MMs (left) and CSs (right) deduced from the full dataset. 
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laws fitted on the complete dataset (in the Deq = 30 and 240 µm range). Data points from the selected 

and complete data sets are reported in Table 1-4.  

Taking these normalized log-normal fits and assuming that their behavior stays relevant below and 

above the measured interval of the dataset (30 -350 µm), one can deduce the global mass flux over a 

broader size range. Considering a lower cut-off at 12 µm and an upper cut-off at 700 µm, the inferred 

global values for uMMs and CSs are uMM = 3.0 ± 1.0 µg.m-2. yr-1 and CS = 5.7 ± 1.5 µg.m-2. yr-1, 

respectively (see Table 1-4). The errors are derived assuming that the number of influx particles follows 

Poisson statistics.  

The mass distributions of uMMs and CSs respectively reach their maxima at Deq = 100 µm and Deq = 

120 µm. These sizes correspond to uMMs and CSs of masses around 0.8 and 2.7 µg (Figure 1-9 bottom 

panels). For masses above 10 µg, uMMs contribute 10 times less than CSs to the mass influx. The total 

mass is not sensitive to the broad cut-off considered here (12 -700 µm) as long as their values are 

chosen sufficiently far from the mass distribution maxima. If one restricts the integration to the range 

in which particles are actually recovered in the complete dataset, i.e. from 30 µm to 350 µm, the mass 

influxes are respectively 3.0 ± 1.0 µg.m-2.yr-1 and 5.6 ± 1.5 µg.m-2.yr-1 for uMMs and CSs, i.e. about 2% 

lower than the total mass flux inferred from the normalized log-normal fit over the whole size range 

for CSs (12-700 µm).  

As detailed in Table 1-4, about 75% of the uMMs and CSs in the CONCORDIA collection are within 

the 30-100 µm size range, but they account for less than 30% of the mass influx. uMMs and CSs with 

diameters ranging from 100 up to 200 µm account for 15% to 20% of the total numbers of particles, 

but represent about half of the total mass influx. Finally, particles with Deq > 200 µm are rare (a few % 

in numbers) but their contribution to the mass influx is still significant, close to 20%. Due to their 

scarcity, the uncertainties on the contribution of these large particles to the mass influx are higher 

compared to those in the 30-100 µm range.  

At their entry in the terrestrial atmosphere, the meteoroids of large size/mass tend to reach higher 

temperature than the small ones. That effect becomes pronounced for particles with diameters above 

a few 100-200 µm. As a result, the proportion of CS is expected to dominate the mass flux in a size 

range that is not well sampled by our measurement (i.e. > 200 µm). The Concordia Collection allows 

having an accurate control on the absolute flux over a limited size range that is relevant for uMM but 

not for CS at sizes above 200 µm (because of their too low statistics). The extrapolation of the global 

CSs flux for particles at size above 200 µm is thus expected to be less accurate and probably tends to 

underestimate their actual proportion. By contrast, other collection such as that performed in SPWW 

is expected to have an accurate control on the shape of that distribution for sizes ranging from 200-

300 µm up to about 700 µm (Taylor et al., 1998). We show below, that a global CS mass flux can be 

deduced from the gathering of these two complementary measurements (see section 1.5.1). 
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1.5 Discussion 

In this section, the results obtained with the CONCORDIA Collection are compared with previous 

works on similar collections from Antarctica (Figure 1-10). The global flux of CS is deduced over the (12 

– 700 µm) range by combining the results from this work with that obtained by Taylor et al. (1998) 

using the South Pole water well micrometeorite collection. Finally, the implication of this work on the 

flux of carbonaceous material on Earth and the asymmetry distribution of the particles are discussed.  

 

1.5.1. Comparison with previous works, the DC-SPWW complementarity 

Yada et al. (2004) performed 5 independent collections in 3 different blue ice fields around the 

Yamato Mountains (Antarctica). The mass distributions, including both CSs and uMMs, exhibit a 

maximum between 100 and 200 µm, slightly higher than that determined in the present work for 

uMMs (100 µm), and in relative agreement with that for CSs (120 µm). The global micrometeorite (CSs 

and uMMs) flux measured in this work is, within uncertainties, in broad agreement with that measured 

by Yada et al. (2004) in locations J09 and J01, but is lower than that in the 3 other locations. The 

variations between the flux measured in distinct blue ice field locations may be explained by the 

differences in snow accumulation rate and erosion leading to an uncertainty in the S parameter 

associated with each collection site, and/or by possible variations of the extraterrestrial influx over 

long periods of time (several 10 kyrs, see section 1.4.1)  

Taylor et al. (1998) performed a collection of CSs in the 50 – 700 µm diameter range from material 

recovered at the bottom of the South Pole water well (SPWW) of the South Pole Scott-Amundsen 

station, allowing the recovery of a large number of particles with sizes mainly above a few hundred 

µm, up to 700 µm. More recently, Suttle and Folco (2020) reported a flux value and size distributions 

D < 30µm 
30µm - 
100µm 

100 µm - 
200µm 

> 200µm TOTAL 

 Dataset #1 All Dataset #1 All Dataset #1 All Dataset #1 All Dataset #1 All 

NCS 5 23 264 614 55 160 4 11 328 808 

NuMM 18 79 532 997 102 194 5 10 657 1280 

           

MCS (µg) < 1 1 112 292 228 624 67 224 407 1141 

MuMM (µg) < 1 1 126 243 144 357 65 116 335 717 

           

Flux with efficiency correction (µg.m-².yr-1) 
 

30–240 
µm 

12-700 
µm 

CS (fit) < 0.1 
 

< 0.1 

1.3 
 

0.9 

3.3 
 

1.5 

1.1 
 

0.6 

5.2 
 

2.7 

5.7† /7.1* 
 

3.0 
uMMs (fit) 

Table 1-4: Numbers and mass of uMMs and CSs extracted from selected melts (Dataset#1) and from the complete 
data set (All) in 3 different size ranges (<30 µm, 30-100 µm, 100-200 µm, > 200 µm). The 2 last rows indicate their 
corresponding contributions to the mass flux, taking account of the collection efficiency (see text). Particles in the 
100-200 µm size range make the highest contribution to the mass flux. The uMM and CS distributions from the 
complete data set are normalized to the selected data set between 30 and 240 µm in diameter. The inferred total 
mass influx from both uMMs and CSs in the 30-240 µm range and on a global range (12 - 700 µm) are reported 
in the last columns. For CSs, we indicate their mass influx considering the Dome C data alone (noted †) and that 
(noted *) considering the merging of the distribution from this work with that from the SPWW collection (Taylor 
et al.) for diameters > 200 µm (see section 1.5.1). 
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of thousands extraterrestrial particles gathered from a collection performed in a sediment trap in the 

Transantarctic Mountains (TAM). The maxima in the size distributions inferred from both the SPWW 

and TAM collections are located on a significantly larger range (Deq = 200 - 300 µm) than that reported 

in this work.  

 

The high statistics of both the SPWW and TAM collections for large particles allows a precise size 

distribution to be inferred but only above 200 µm. The contribution of smaller particles is more 

uncertain in these two collections due to lower statistics and uncertainties in the Q value. The transport 

and settling of the particles within the SPWW geometry and the accumulation in the TAM sediment 

trap are complex processes resulting in uncertainties in the S and thus on the absolute value of the CS 

flux.  

The present work on the Concordia Collection is thus complementary to the SPWW and TAM 

measurements as it provides an accurate constraint on the absolute value of the flux and on its 

mass/size distribution for both uMMs and CSs below 200 µm. In the right panel of Figure 1-11 we 

combine the DC distribution for the low size range with the SPWW distribution for the higher size range 

(> 200 µm), in order to infer a global CS distribution in the overall diameter range (12 – 700 µm). The 

uncertainties (the envelope in red) were deduced by shifting vertically the SPWW distribution, but 

constraining its values to stay consistent with the DC CS experimental points at 195 µm and 225 µm. 

Such an error range on the absolute value of the SPWW flux is conceivable given the uncertainties on 

Q and S for this collection. While the flux deduced only from the DC collection yielded an 

underestimated mass flux of 5.7±1.5 µg.m-2.yr-1 for CSs, taking into account the SPWW data, the 

integration of the resulting distribution over the total range (12 – 700 µm) yields a total CS flux of 7.1 

Figure 1-10: Comparison of the mass distributions of cosmic spherules and unmelted micrometeorites collected 

in Antarctica and Greenland ices and snows. The pre-atmospheric entry distribution of dust measured by Love 
and Brownlee (1993) is plotted for indication. 
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± 1.4
2.0 µg.m-2.yr-1, which is a 25% increase of the flux derived from the DC CSs only. By extrapolating this 

result to the Earth surface, one gets 3,600±700
1000 tons.yr-1. 

 

 

1.5.2. The Impact of the density of MMs on the flux measurement 

A CS average density of 3.0 g.cm-3 is considered by most authors (Murrell et al., 1980; Yada et al., 

2004). The uncertainty on that value is lower than for uMMs as CSs are mainly composed of the same 

components (silicates, metals and oxides) and do not exhibit significant porosity. By contrast, uMMs 

can exhibit a wide range of porosities, which may be related to their parent bodies’ characteristics 

(cometary or asteroidal). Their average densities can vary between 0.8 g.cm-3 and 2.2 g.cm-3 for 

cometary and asteroidal end-members as discussed in section 1.3.2. Left panel of Figure 1-11 shows the 

range of variation (blue envelope) of the uMM mass distribution for these two density values. 

Assuming a median density of 1,5 g.cm, and extrapolating over the entire Earth’s surface, the global 

flux of uMMs is 1,600 ± 500 tons.yr-1 (4.4 ± 1.4 tons.d-1). Considering the two end-members densities 

(0.8 g.cm-3 and 2.2 g.cm-3, the annual global uMM flux on Earth would be shifted by about 45%, that is 

800 and 2,400 tons.yr-1, for average densities expected for cometary and asteroidal particles 

respectively. As a result, the inferred total flux of micrometeorites on Earth is estimated at 5,200±1200
1500 

tons.yr-1, with 3,600±700
1000 tons.yr-1 from CSs and 1,600±500 tons.yr-1 from uMMs. 

 

1.5.3. The flux before the atmospheric entry, previous measurements and models  

Love and Brownlee (1993) reported a measurement of the interplanetary dust flux prior the 

atmospheric entry by measuring and counting hypervelocity craters on the solar panels of the Long 

Duration Exposure Facility (LDEF) spacecraft. Their size distribution is plotted on Figure 1-10. The large 

difference between the ground-based measurements and this space-based measurement confirm that 

a significant part of the particles is ablated at the atmospheric entry. However, it is worth keeping in 

mind that the derivation of the mass of the incoming particles from the craters is highly sensitive on 

assumptions on both the speed and density of the particles before their impact that might lead to large 

uncertainties (see section 1.1.1, and Cremonese et al. (2012)). The size distributions of uMMs and CSs 

Figure 1-11. Left: global distribution of CSs inferred from the DC data (this work) for D<200 µm and SPWW (Taylor 

et al. 1998) data for CS with D>200 µm. The two datasets consider fully melted particles (CSs) recovered from 
melted Antarctic snow. The shaded area outlines the uncertainties in the global distribution. Right: uMMs 
distribution. The blue envelope indicates the impact of the mass density of uMMs on the uMM mass influx 
distribution, the lower and upper limits of the envelope correspond to uMM average densities of 0.8 and 2.2 g.cm-

3. 



 

38 
 

from our work were compared with results from the CAMBOD-ZoDy model that simulate the position 

and velocity vectors of dust originating from different sources (Jupiter family comets, Halley-type 

comets and main belt asteroids) combined them with an ablation model of meteoroids at the 

atmospheric entry (Carrillo-Sánchez et al., 2016; Carrillo-Sánchez et al., 2015; Nesvorný et al., 2011). 

By constraining the model with the flux measurements on Earth, the model predicts the flux before 

the atmospheric entry and its possible origins. Based on the Concordia flux measurments, the 

CABMOD-ZoDy model predicts that the flux before the atmospheric entry is ranging from 10,000 to 

20,000 tons·yr-1, with the majority of the dust particles coming from the Jupiter family comets (Rojas 

et al., 2021). 

 

1.5.4. Estimation of the carbon flux on Earth 

Based on the flux estimation from the Concordia collection and the carbon (C) content of 

micrometeorites, it is possible to estimate the carbon flux on Earth carried by sub-millimeter particles. 

One part of the carbon flux reaches the Earth surface carried by particles that did not suffer from high 

temperature at atmospheric entry (unaltered carbon Cunalt) while another part the altered (altered 

carbon Calt) is carried by CSs or uMMs that suffered various degrees of heating at atmospheric entry. 

Cunalt is carried by the fine-grained uMMs (Fg-uMMs) and the Ultra-Carbonaceous Antarctic 

micrometeorites (UCAMMs) with extreme C concentrations (see Chapter 2). The Fg-uMM mass flux 

represents 40% of the uMM flux and their C concentration, C, is similar to that in carbonaceous 

chondritic material. Considering an average C = (32) wt% (Matrajt et al., 2003), their global Carbon 

flux is (1913) tons.yr-1. The C/Si ratio in UCAMMs varies over a wide range from 10 to 103 (Dartois et 

al., 2018). Considering an average C=(6030)wt% and that the mass of UCAMM is 0.7% of that of 

uMMs in the CONCORDIA collection, their associated C flux is (73) tons.yrs-1. The resulting global flux 

of Cunalt is thus (2616) tons.yr-1. Considering an average C of (0.60.4)wt% for CSs and (10.8)wt% 

for non-Fg uMMs (Matrajt et al., 2003), the total flux of Calt is (3122) tons.yr-1, with 70% carried by 

CSs and 30% by partially heated uMMs. Given these uncertainties, the total C flux shows a quite large 

range of variation (20-100 tons.yr-1), with up to half of this C flux being in form of Cunalt. Noticeably, the 

flux of C from UCAMMs represents about 25% of the Cunalt flux, indicating that a substantial part of the 

interplanetary organics reaching Earth surface can originate from the specific cometary reservoir that 

is the parent body of UCAMMs. 

 

1.5.5. The asymmetry factor distributions 

The equivalent diameter and asymmetry distributions of the different types of uMMs and CSs from 

the Concordia collection are reported on Figure 1-12 and Figure 1-13. Asymmetry factors of uMMs, 

which have experienced no or little heating during atmospheric entry, are representative of a 

population of dust in the interplanetary medium. Conversely, CSs have been largely heated when going 

through the atmosphere, leaving no clue of their original shape.  

The equivalent diameter distributions of uMMs and CSs do not exhibit substantial differences, all 

peaking around 30 and 60 µm. The distributions of asymmetry factors for the different types of 

particles are shown in Figure 1-13. CSs are characterized by As close to 1, reflecting their spherical 

shapes, while uMMs have mostly non-spherical geometry with As ranging from 0.2 to 1. The As 

distributions exhibit a maximum at 0.7 and no significant differences is observed between the different 

types of uMMs. 
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Figure 1-12: Distributions of equivalent diameter for the different types of particles (DC06 and DC16 data). 

Figure 1-13: Distributions of asymmetry parameter for the different types of particles (DC06 and DC16 data).  

Figure 1-14: Aspect ratio distribution of 
different types of grains sampled by the 
COSIMA instrument onboard Rosetta. 
From Lasue et al., 2019. 
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The COSIMA instrument onboard Rosetta spacecraft was able to measure the projected area and 

the orthogonal height of individual cometary grains ejected from the comet 67P/Chryumov-

Gerasimenko. An aspect ratio, defined as 
ℎ𝑒𝑖𝑔ℎ𝑡

√𝑎𝑟𝑒𝑎
, was computed for each grain and aspect ratio 

distributions were derived for different types of grains (Langevin et al., 2015; Lasue et al., 2019). The 

cometary grains measured by COSIMA impacted the collection plate with velocities ranging from 1 to 

15 m.s-1, enough to flatten or crumble some of the original particles (Langevin et al., 2015). The 

asymmetry factor and the aspect ratio are not strictly equivalent since the later may exceed 1. 

Nevertheless, they both are a measurement of the asymmetric shape of a particle. 

Aspect ratios of compact grain type share a same variation range, from 0.4 to 1, with the asymmetry 

factors of the uMMs, suggesting a similar general behavior. Though compact grains aspect ratios peak 

at 0.5 and 1 while uMMs As peak at 0.7 (Table 1-5). It is possible that the fluffier aggregates reported 

by COSIMA (Lasue et al., 2019) cannot reach the Earth surface undamaged and thus are not 

represented in the uMM asymmetry ratio distributions. A potential breakdown of these particles at 

the atmospheric deceleration could either destroy or split them in smaller fragments not collected or 

identified by the today collections. These geometrical properties of grains will be the subject of a 

dedicated forthcoming study as the present work provides new constraints on these distributions for 

grains with low sizes (i.e. below 100 µm) that are of interest in aggregation models of dust in 

protoplanetary disks.  

 

Table 1-5: Mean values and standard deviations of Deq and As for the 6 types of micrometeorites.  

Type UCAMM FgF FgC Xtal Sc CS 

Deq ± σ (µm) 52 ± 23 65 ± 39 67 ± 34 77 ± 38 73 ± 35 72 ± 39 

As ± σ 0.67 ± 0.15 0.71 ± 0.15 0.70 ± 0.17 0.74 ± 0.15 0.70 ± 0.16 0.94 ± 0.10 

 

 

1.6 Exposure factor dependence 

The influx of extraterrestrial material on our planet is a key parameter in many fields beside 

cosmochemistry (e.g. space science, geochemistry, atmospheric physics, glaciology). It is and will be 

the subject of large numbers of new attempts to precise its value. Most of these studies have to take 

into account the statistical fluctuations induced by the finite number of micrometeorites collected. The 

mass/size distributions obtained above allows modeling the number (and mass) expected to fall on a 

given surface·time. We present below Monte-Carlo simulations to quantify these statistical 

fluctuations. Such a study will be relevant to future collects as they provide a direct estimation of the 

statistical uncertainty related to a given exposure parameter.  

 

1.6.1. Modeling ET flux sampling 

Using the total mass distributions of Figure 1-9, we considered a nominal flux 0 given by uMM and 

CS, carried by uMms and CSs. The statistical variation on the number of particles collected with a 

sufficiently large S (Sref = 105 m². yr) is negligible and allows to infer the average number of uMMs and 

CSs per unit of surface and time within the 12-700 µm diameter range: Nref(uMM) = 4.3 m-2. yr-1 and 

Nref(CS) = 3.6 m-2. yr-1. 
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We then simulated the number Nsimu of collected particles for a set of exposure parameter S. For 

each simulation, the Nsimu value was sorted with a binomial law of parameters (n = Nref , p = 
𝑆

𝑆𝑟𝑒𝑓
). The 

masses Msimu of the Nsimu particles were subsequently randomly chosen using the global uMM and CS 

mass distributions reported in Figure 1-9. A numerical measured flux was then computed with Msimu, 

the sum of the masses as 𝛷 = 
𝑀𝑠𝑖𝑚𝑢

𝑆
 . For each S, we simulated 105 numerical measured fluxes 𝛷, to 

infer their median values and their 10-90% and 25-75% variations from the nominal flux 0. The 

resulting distributions as function of S are presented in the Figure 1-15 left panel, for S ranging from 10-

1 to 105 m².yr.  

Figure 1-15 right illustrates the probability, for a collection on a given exposure parameter S, to 

estimate the real flux 0 with a relative uncertainty ( - 0)/0 smaller than 10%, 20% and 30% 

(respectively P10, P20 and P30). The accuracy of a flux measurement for a given S is monitored by the 

median /0 ratio and its variations at the first and last quartile (25-75%) and decile (10-90%). 

For S lower than 1 m2.yr, more than 75% of the simulated fluxes have relative uncertainties greater 

than 30% (Figure 1-15, right), preventing reliable measurements. The left panel in Figure 1-15 also 

demonstrates that collections performed with S lower than a few m2.yr are subjects to a systematic 

bias toward an underestimation of the real flux. This feature is due to the fact that, for such low S, the 

collection statistically misses a significant number of large size particles so that the masses collected 

tend to be lower than expected from the real mass distribution. For S greater than a few tens of m2.yr, 

this systematic effect becomes negligible (the median /0 approaches 1), and variations on the 

measured flux substantially decrease.  

For S ≈ 100 m2.yr, there is a probability of about 90% (about 2 ) that the relative difference 

between the measured flux  and the real flux 0 is less than 20%. We report on Figure 1-15 the 

exposure parameter of the sum of the selected melts (dataset #1) for CSs and uMMs (S = 89.6 m2.yr 

for CSs and S = 131.9 m2.yr for uMMs). Figure 1-15 is helpful for evaluating the statistical biases inherent 

in a collection for a given exposure parameter.  
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1.6.2. Selected melt validation 

We used the results of these Monte-Carlo simulations to verify that the spread of the flux 

estimations from the selected melts were consistent with statistical fluctuations of the number of 

particles collected. Melts from the dataset #1 were simulated according to the protocol detailed in 

section 1.6.1. Based on the S value associated to each melt, we simulated Nsimu collected particles with 

a binomial law (n = Nref , p = 
𝑆

𝑆𝑟𝑒𝑓
). The mass of each particle was sorted with the global uMM and CS 

mass distributions. By repeating this operation 105 times for each melt (i.e. each S), we obtained the 

range of variation of the measured flux. The results of the simulations are shown in Figure 1-16. Blue 

shades represent the density of simulated measurements with a given mass influx. Red dotted lines 

indicate their 10th and 90th percentiles. Yellow lines are the actual flux measurements derived from the 

real data of the selected melts. 

For uMMs, the spread selected is broadly consistent with expected statistical variations inherent to 

the exposure parameter S of each melt. The variations of the CS flux derived from the selected melts 

are less pronounced, most probably reflecting the fact that these particles are easier to identified in 

the filters and thus their actual number closer to the exact number located on the sampled surface. 

The CS flux variations are thus fully compatible with statistical variations of the number of infalling 

particles. 

It is worth noting that, in the CSs’ case, the mass influx derived from the sum of the selected melts 

(Figure 1-16, i) panel) 5.0 µg.m-2.yr-1 is slightly lower than the actual real flux estimation, that is 5.7 µg.m-

2.yr-1. Indeed, the real flux value is integrated over the 12-700 µm diameter range whereas, the CSs’ 

selected melts do not contain particles with Deq > 250 µm. Because the contribution of a limited 

number (sometimes only one) large particles is significant in the total mass budget of a melt, their 

absence tends to minimize the flux derived from the dataset #1.  

Figure 1-15. Impact of the exposure parameter on flux measurements. Left: Variation of the ratio between the 

measured flux () and the nominal input flux 0 for different percentile ranges and recovery probability as a 

function of the exposure parameter S. Right: P30, P20 and P10 are the probabilities (depending on the exposure 

parameter) that the nominal input flux is estimated to have with less than 30%, 20% or 10% uncertainty, 

respectively. The vertical dashed lines indicate the exposure parameters SCS and SMM of the CS and MM collection 

from this work are indicated by the vertical dashed lines. 
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Figure 1-16: Measured flux values (yellow line) compared to simulated values obtained with the mass 

distributions from Figure 1-9. Red dotted lines indicate the 10th and 90th percentiles of the simulated 
values. Top: a,b,c,d are the selected melts for the MMs, and (e) is the sum of the selected MMs dataset, 
bottom: f, g, h are the selected melts for the CSs, and (i) is the sum of the selected CSs data set. 
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1.7 Summary 

The work presented in this chapter is a comprehensive study on the flux of interplanetary sub-

millimeter particles falling on Earth based on the Concordia Antarctic micrometeorites collection. The 

characteristics of the Concordia collection (location, weather conditions, field campaigns and collects 

protocols, types of particles, …) are presented. We show how both the exposure parameter S and 

collection efficiency Q are well controlled at Dome C and allow to obtain reliable sub-millimeter 

particles collections. A sub-set of melts form the Concordia collection is then selected, with high 

counting statistics, and the absolute mass distributions inferred, in the 12-700 µm diameter range, for 

both unmelted micrometeorites (uMM) and cosmic spherules (CS). The global micrometeorite flux on 

Earth is then extrapolated and discussed and compared with previous similar measurements from the 

literature. A global CS flux, in the 12-700 µm diameter range, is obtained by combining the Concordia 

CS flux distribution (accurate below ≈300 µm) with the SPWW CS flux distribution (accurate above 

≈300 µm). The inferred total flux of micrometeorites on Earth is estimated at 5,200 tons.yr-1, with 3600 

tons.yr-1 from CSs and 1,600 ± 500 tons.yr-1 from uMMs. The flux of carbon on Earth carried by 

micrometeorites is estimated to range from 20 to 100 tons.yr-1. Finally, a statistical study is developed 

in order to underline the intrinsic uncertainties related to the exposure parameter and the 

requirements and limitations for futures works on this subject. Collections with exposure parameters 

higher than 100 m²·yr have 90% chance to measure the flux with less than a 20% error. 
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2.1 The Ultra-Carbonaceous MicroMeteorites (UCAMMs) 

Ultra-Carbonaceous Antarctic MicroMeteorites (UCAMMs) are carbon-rich micrometeorites 

collected in Antarctica. Among the diversity of extraterrestrial sub-millimeter particles (IDPs, 

micrometeorites), UCAMMs are the objects with the higher concentration in organic matter (Dartois 

et al., 2018). They were identified independently in the French and Japanese collections of Antarctic 

micrometeorites (Duprat et al., 2010; Nakamura et al., 2005). 

The organic matter in UCAMMs is characterized by high N/C ratios, ranging from 4·10-2 to 2·10-1 

(Dartois et al., 2018), higher than the ones measured in insoluble organic matter (IOM) extracted from 

meteorites and close to the interstellar medium (ISM) upper limit of 1.4·10-1, determined by 

considering that the missing nitrogen in the diffuse medium is locked in carbonaceous dust (Dartois et 

al., 2018; Verstraete, 2011) (see Figure 2-1, left). The atomic carbon to silicon ratio (C/Si) of UCAMMs 

is also higher than the ones measured in meteorites and IDPs. Strikingly, its value lays above the value 

expected for interstellar dust (Figure 2-1, right), (Millar, 2015), suggesting that the organic matter of 

UCAMMs is not a phase directly inherited from the interstellar medium. A depletion in minerals of that 

magnitude can be explained by the synthesis of the organic matter of UCAMMs in a mineral-free 

environment such as ice mantles at the surface of small bodies, in cold regions of the solar system, 

where minerals are locked in depths (see Chapter 3). UCAMMs display a wide range of deuterium 

enrichments, with one particle exhibiting up to δD ≈ 30,000 ‰ and another δD ≈ 0 ‰ (Duprat et al., 

2010; Yabuta et al., 2017). 

 

The isotopic composition of light elements (H, C, N) is commonly used as a tool of classification of 

the extraterrestrial organic matters (see e.g. Floss et al. (2004); Alexander et al. (2007); Aléon et al. 

(2001) and references therein). It enables to identify possible links between interplanetary objects and 

heritage from different stages of evolution of the solar system. In this chapter, we report 

measurements of the H, C and N isotopic compositions of the organic matter of UCAMMs. Three 

UCAMMs were analyzed during this thesis: DC16-309 (hereafter DC309), DC06-18 (hereafter DC18) 

and DC06-43 (hereafter DC43). In addition, correlations of the H, C and N isotopic data are reported 

on another UCAMM, DC06-94 (hereafter DC94), analyzed by Bardin (2015).   

Figure 2-1 from Dartois et al. (2018). N/C ratios (left) and C/Si ratios (right) measured in UCAMMs (stars) 
compared to data measured in chondrites (purple and green circles from Kerridge (1985) and Alexander et al. 
(2007), respectively) and IDPs (triangles and diamonds). The bulk silicate Earth and interstellar medium values 
are indicated by an orange cross and a blue square. 
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2.2 The NanoSIMS technique 

Isotopic data presented in this chapter were acquired by nanoscale secondary ions mass 

spectrometry (NanoSIMS). The NanoSIMS technique was developed by Pr. Georges Slodzian with the 

aim to perform in-situ mass spectrometry measurements with high mass resolution and lateral spatial 

resolution of 50 – 100 nanometers. 

 

2.2.1. The NanoSIMS instrument 

The Cameca NanoSIMS 50 instrument (Figure 2-2) couples a primary ion beam that sputters the 

surface of a sample to a mass spectrometer that collects the resulting secondary ions in order to 

analyze them. Primary ions are extracted from a cesium source (Cs+) or an oxygen source (O-). They are 

then guided through the primary and coaxial columns and impact the sample, leading to the extraction 

of neutral atoms, molecules and ions (secondary ions) from the sample. Secondary ions are collected 

under the action of a set of lenses and directed to the mass spectrometer via the coaxial column. 

Primary and secondary ions in the coaxial column travel in opposite directions and consequently have 

charges of opposite signs. The deviating plates P1 (Figure 2-2) allow the primary beam to enter the 

coaxial column and the secondary beam to enter the mass spectrometer (horizontal plane, in green in 

Figure 2-2). Nanoscale spatial resolution is achieved thanks to the coaxial column which allow a better 

precision than classical secondary ion mass spectrometry (SIMS) instruments. 

Secondary ions’ trajectories are selected at the entrance of the mass spectrometer by an entrance 

slit (ES) and an aperture slit (AS). An energetic and angular focusing of the ions is achieved with an 

electrostatic sector (SS100) and a magnetic prism (Magnet). The magnetic prism allows to select a set 

of ion masses that are detected by the multi-collection detectors (electron multipliers). Faraday cup 

detectors are also available for the detection of ions, however, they were not used during the 

NanoSIMS sessions described in this work since their time response is not compatible with imaging. 

The detectors stand on trolleys able to move horizontally along the focal plan of the magnetic prism 

to catch specific ions. The fine selection of a monochromatic ion beam (made of ions of a same mass) 

is performed by the combination of the action of the deflectors (Pd) and the positioning of the exit slits 

(ExS) before the detectors. Up to seven electron multiplier detectors (depending on the instrument) 

allow to record simultaneously the signals of different ions. The mass resolution of the NanoSIMS 

enables the separation of isotopologs such as 12C15N- and 13C14N- with very similar masses. 

Ion images are acquired with the NanoSIMS by rastering the primary beam on the sample. A sub-

micron scale resolution is achieved thank to the synchronized addressing of the primary and secondary 

ion beams (dynamic transfer, Slodzian et al. (2017)). The coupling of the dynamical transfer and the 

high resolution/multi-collection mass spectrometer allows to derive ratio images that can be used to 

measure elemental abundances (e.g. 12C14N/12C2 ratio image for the N/C elemental ratio) or isotopic 

ratios (e.g. 12C15N/12C14N ratio image). 
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2.2.2.  Data treatment 

Ion images are formed pixel by pixel by rastering the primary beam on the sample surface and 

collecting the locally extracted ions. After receiving an ion, an electron multiplier is not able to detect 

another impact during the so-called “dead-time”. This results on an underestimation of the number of 

ions collected by the detector and can be corrected as follow: 

𝑁𝑐𝑜𝑟𝑟 =
𝑁

1 − 𝑁
𝜏

𝑆𝑟𝑎𝑡𝑒

 

where N is the recorded number of ions per pixel, Ncorr the number of ions per pixel corrected from 

the dead-time, τ the dead-time and Srate the dwell-time (i.e. the time of residence of the primary beam 

on each pixel). 

Slodzian et al. (2004) reported that in the case of important production rate of secondary ions by 

the primary beam, several ions are likely to impact a detector at the exact same time. Because the 

electron multipliers are not able to distinguish single or multiple ions impacts, this causes an 

underestimation of the counted ions. This effect is referred as quasi-simultaneous arrivals effect (QSA). 

The QSA effect can impact importantly the isotopic ratio images since it is expected to induced an 

underestimation of the number of the more abundant isotope/isotopolog and marginally affect the 

less abundant. Thus, a mass fractionation caused by the QSA effect enhances isotopic ratios (minor 

isotopolog/major isotopolog). A correction of the QSA can be made at the first order as follow (Slodzian 

et al., 2004): 

𝑁𝑐𝑜𝑟𝑟 = 𝑁 ∙ (1 +
1

2
𝐾) 

Figure 2-2: schematic diagram of the 

Cameca NanoSIMS 50L instrument at the 
Earth and Planets Laboratory (EPL, 
Carnegie institution) from Hauri et al. 
(2016). Ions of the primary beam are 
produced from the duoplasmatron (O-) or 
the cesium source (Cs+). The primary ions 
are guided through the primary and 
coaxial columns and impact the sample. 
By doing so, they lead to the production 
of secondary ions from the sample that 
are collected and sent to the mass 
spectrometer via the coaxial and 
secondary columns. Because the primary 
and secondary ions travel along the 
coaxial column in opposite directions, 
they must have charge of opposite sign. 
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where N is the measured number of secondary ions, Ncorr the number of secondary ions corrected 

from the QSA effect and K the average number of secondary ions ejected per primary ions. The QSA 

correction has to be applied after the dead-time correction. Typical values of K were 2·10-2 for the 12C- 

emission, 3·10-3 for the 12C2
- emission and 7·10-4 for the 12C14N- emission.  

Measurements of elemental or isotopic ratios with the NanoSIMS are also subject to instrumental 

mass fractionation (IMF). The IMF is often controlled by measuring standard samples with known 

compositions, leading to the IMF correction factor 𝛼 =
𝑅𝑒𝑥𝑝

𝑅𝑠𝑡
 with Rexp and Rst the measured and 

calibrated ratios (isotopic or elemental) of the standard sample respectively. The ratios measured on 

unknown samples are then divided by α. 

Isotopic images presented in this work were corrected from the dead-time, the QSA effect and the 

IMF. 

Several notations are used to report isotopic ratio values:  

 Ratio of the more abundant to the less abundant isotopes, e.g. H/D, 14N/15N, 12C/13C. 

 Ratio of the less abundant to the more abundant isotopes, e.g. D/H, 15N/14N, 13C/12C. 

 Delta (δ) notation expressing the difference between a measured ratio (a/A)meas and a 

reference value (a/A)ref, e.g. δD, δ15N, δ13C. For instance, for two isotopes a (less 

abundant) and A (most abundant), one has: 

𝛿𝑎 = (
(𝑎 𝐴⁄ )𝑚𝑒𝑎𝑠

(𝑎 𝐴⁄ )𝑟𝑒𝑓
− 1) × 1000 

The δ values are expressed in permil (‰).  

In this chapter, we report isotopic ratios with the second and third notations. The reference values for 

the δ notation are the VSMOW (Vienna Standard Mean Ocean Water, D/H = 1.558·10-4), ATM 

(atmospheric N2, 15N/14N = 3.676·10-3) and VPDB (Vienna Pee Dee Belemnite, 13C/12C = 1.124·10-2) 

values. The terms “enrichment” or “depletion” refer to enrichment or depletion relatively to the 

VSMOW, ATM and VPDB values if not specified otherwise. 
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2.3 Isotopic analyses of UCAMMs  

2.3.1. UCAMMs analyzed at the Earth and Planets Laboratory (Washington) 

In April 2019, in collaboration with Dr. Nittler, we performed isotopic maps on 3 UCAMMs at the 

Carnegie Earth and Planets Laboratory (EPL, Washington DC, USA). The goal of this session was to 

acquire correlated maps of the D/H, 15N/14N and 13C/12C ratios on the 3 UCAMMs. Five fragments were 

prepared for analysis. In the following sections, the individual fragments and their isotopic maps are 

presented. We could not perform isotopic maps on an additional sample, the DC18 FIB section, due to 

its loss during the analysis, though, for the sake of completeness, the preparation procedure is detailed 

in annex 5.1.1. 

Two settings of the NanoSIMS instrument were used. The D/H maps were obtained by collecting H-

, D-, CH-, OH- ions and the 15N/14N and 13C/12C maps by collecting 16O-, 12C2
-, 12C13C-, 12C14N-, 12C15N-, 32S- 

ions (Table 2-1). For the two settings, the intensity of the primary Cs+ beam was 10 µA and the dwell 

time was set to 2 ms/pixel. The instrumental mass fractionation (IMF) affecting the D/H ratios was 

controlled by measuring an in-house organic standard C30H50O with δD = -152‰. For carbon 

acquisitions, IMF was controlled thanks to a SiC standard (δ13C = -22‰) and the IOM QUE 99177  (δ13C 

= -20.8‰, Alexander et al. (2007)). A Si3N4 sample with δ15N = 0‰ was used to correct the IMF on 

nitrogen. The IMF correction factors measured on standards are listed in annex 5.1.2. Isotopic maps 

and values reported hereafter are corrected from the IMF. 

The full sorting of the data was performed in Orsay, starting from raw data extracted with the 

OpenMIMS software (open-source software funded by the NIH/NIBIB National Resource) and using a 

dedicated procedure written in Python programming language (Python Software Foundation, 

https://www.python.org/) during the course of this work.  

 

Table 2-1: characteristics of the NanoSIMS analyses performed at the Earth and Planets Laboratory, 
Washington DC in April 2019. Five acquisitions on 3 UCAMMs samples are presented in this section 

UCAMMs Analyzed 
Area 

Session D 
H, D, CH, OH 

Session 15N, 13C 
16O, 12C2, 12C13C, 12C14N, 12C15N, 32S 

  Raster 
(pixels) 

N frames Raster (pixels) N frames 

DC309 5x5 µm² 128x128 15 128x128 20 

DC43 C1 12x12 µm² 128x128 26 256x256 10 

DC18 A 50x50 µm² 512x512 30 512x512 35 

DC18 B 45x45µm² 256x256 40 512x512 30 

DC18 C 20x20 µm² 256x256 11 256x256 30 

 

  

https://www.python.org/
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2.3.1.1. UCAMM DC309 on a diamond cell  

Prior to the NanoSIMS analyses, the DC309 sample was the object of an extensive study by 

nanoscale infrared spectroscopy (AFMIR) reported in Mathurin et al. (2019). A fragment of the DC309 

micrometeorite was embedded in sulfur and ultramicrotomed. The resulting slices were subsequently 

deposited on a diamond cell (Figure 2-3) and the remaining sulfur was removed by a slow annealing at 

50°C. The nature of the slice was confirmed by far field IR measurements. For the purpose of NanoSIMS 

analyses, a 40 nm thick gold coating was deposited on the sample. 

  

 

The analyzed zone, shown in Figure 2-3, consisted in a 5x5 µm² area imaged on a 128x128 pixels 

raster (see Table 2-1). Isotopic images of the DC309 section are shown in Figure 2-4 along with a CH- 

image. The CH- image show no apparent difference in structure within the sample, as confirmed by the 

SEM image (Figure 2-3). The bulk composition was determined to be δ15N = -125 ± 31‰, δ13C = 27 ± 

16‰ and δD = 6800 ± 500‰, depleted in 15N in comparison with the Earth atmosphere and with a high 

deuterium abundance. Two regions with distinct D/H and 15N/14N ratios are observed. The region at 

the left has lower D and higher 15N composition (δD≈4200‰, δ15N≈-69‰) than the region at the right 

(δD≈8700‰, δ15N≈-178‰). Measurements on specific regions of interest (ROI), drawn in white and 

yellow in Figure 2-4, are detailed in Table 2-2 and plotted in Figure 2-9.  

Figure 2-3: SEM image of the DC309 fragment. The yellow square was analyzed by NanoSIMS. 
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2.3.1.2. UCAMM DC43 on a diamond cell  

The DC43 sample analyzed at EPL was prepared by pressing a fragment of UCAMM DC43 between 

two diamond windows in a dedicated cell. An image of the resulting C1 fragment, measuring 9µm by 

5µm is shown in Figure 2-5. A 20 nm gold layer was deposited at the surface of the sample prior the 

analyses. The H- and D- images were acquired on a 12x12µm² area over 128x128 pixels. Images of the 
12C2

-, 12C13C-, 12C14N-, 12C15N- ions were measured on the same zone with a 256x256 pixels raster (Table 

2-1). 

Figure 2-6 shows the CH- and the δD, δ15N, δ13C images of the DC43 C1 fragment. For the δD image, 

the contour of the particle was defined on the basis of the CH- emission. The bulk isotopic composition 

of DC43 C1 is δ15N = 272 ± 46‰, δ13C = -12 ± 18‰ and δD = 3100 ± 300‰. Three regions were spotted 

with δ13C below -40‰ (see Table 2-2 and Figure 2-9). One present richer 15N-composition (δ15N≈610‰) 

and a bulk-like D/H (δD≈3400‰), another a higher D/H ratio (δD≈6500‰) and a bulk-like 15N/14N ratio 

(δ15N≈350‰) and the third one has low D/H and 15N/14N ratios (δD≈500‰, δ15N≈41‰). 

 

Figure 2-4. Top left: CH- (counts) image of the zone of the DC309 section analyzed by NanoSIMS. Top right, bottom 
left and bottom right: δD, δ15N and δ13C images. Regions of interest are drawn in white in yellow. Two zones with 
different isotopic composition δD and δ15N are observed. The 13C/12C ratios do not present significant variations.  
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2.3.1.3.  UCAMM DC18 in a gold foil 

Three fragments of the DC18 UCAMM deposited on a gold foil were analyzed by NanoSIMS. 

Secondary electron microscopy images of the three fragments labeled A, B and C are shown in Figure 

2-7. Fragment A is a single piece, 40µm long and 17µm large, fragment B consists of several small pieces 

of matter grouped on a 27x20 µm² area, and fragment C is made of two pieces with a total dimension 

of 18x7 µm². 

Figure 2-5. SEM image of the DC43 fragment C1 analyzed by 

NanoSIMS. The fragment was deposited on a diamond cell 
and pressed. The dimensions of the fragment are 9x5 µm.  

Figure 2-6: Top left: CH- image of the DC43 C1 fragment analyzed by NanoSIMS. Top right, bottom left and bottom 
right: δD, δ15N and δ13C images. Three regions of interest are drawn in white in yellow where abnormal isotopic 
compositions are observed. 
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The isotopic maps of hydrogen and nitrogen on the fragment B are reported on Figure 2-8. The 

isotopic maps on fragments A and C are detailed in the annex 5.1.3. Carbon isotopic images on DC18 

are not reported due to an interruption of the monitoring of the magnetic field (magnet, Figure 2-2) 

during the acquisition. Nitrogen data were validated by re-measuring the fragments and the Si3N4 

standards subsequently. Unfortunately, the carbon standards could not be measured. 

The three fragments present very similar bulk D/H and 15N/14N ratio: δD≈960‰, δ15N≈-120‰ (Figure 

2-9 and Table 2-2). A peculiar grain of fragment C measured with an ROI has δD = -60 ± 70‰ and δ15N 

= -58 ± 70‰. Based on several ROIs (drawn in yellow and white on Figure 2-8 and on the annex 5.1.3 

figures), DC18 seems to show a correlation between the lower δD and higher δ15N values relative to 

its bulk composition, as observed in DC309 over a larger range of variation. The bulk D/H of DC18 is 

the lowest one measured in UCAMMs from the Concordia collection so far.  

 

Figure 2-7: SEM images of DC18 fragments A (top), B (bottom left) and C (bottom right) analyzed by NanoSIMS. 
They were deposited on a gold foil. 
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Figure 2-8: Top left: CH- image of the DC18 B fragment analyzed by NanoSIMS. Top right: δD image of DC18 B. Bottom 
left: CN- image of DC18 B. Bottom right: δ15N image of DC18 B. Five regions of interest are drawn in white in yellow. 
The ROI at the left side of the image sample an organic matter with a deuterium composition close to the SMOW value 
and 15N/14N higher than the bulk composition. 
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2.3.1.4.  The UCAMMs analyzed at EPL: summary  

The three UCAMMs analyzed at Carnegie EPL present distinct bulk isotopic compositions (Figure 

2-9). Although DC18 and DC309 share a same low 15N-nitrogen composition, below -100‰, the organic 

matter of DC309 is 6 to 7 times more enriched in D than DC18. DC43 has a 15N-rich composition, with 

a substantial D-enrichment. It also contains anomalous grains bearing different isotopic signatures. 

Carbon fractionation in DC309 and DC43 slightly varies from 30‰ to -12‰. These results are discussed 

in chapter 4. 

 

 

  

Figure 2-9. The D, 15N and 13C enrichments measured in UCAMMs DC309, DC43 and DC18 at Carnegie EPL. The δ13C 
composition is given by the pink color bar. The bulk isotopic bulk values of the UCAMMs are indicated by stars. Solid 
circles, hexagons and octagons account for isotopic values measured on ROIs on DC18, DC43 and DC309 respectively. 
The 13C/12C ratios of DC18 are not available (see section 2.3.1.3). 
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Table 2-2: D/H, 15N/14N and 13C/12C ratios measured in DC309, DC43, DC18A, DC18B and DC18C. Isotopic ratios 
are also indicated with the δ notation. Errors at 1σ are computed by combining the error on the IMF correction 
factor and the errors on the statistics on the image. 13C/12C ratios on DC18 are not available (see section 2.3.1.3). 

UCAMM  D/H (x10-4) δD (‰) 15N/14N (x10-3) δ15N (‰) 13C/12C (x10-2) δ13C 
(‰) 

        
DC309 Bulk 12.2 ± 0.9 6800 ± 

500 
3.22 ± 0.12 -125 ± 31 1.154 ± 0.018 27 ± 16 

 1 15.2 ± 1.2 8700 ± 
800 

3.02 ± 0.12 -178 ± 32 1.162 ± 0.020 34 ± 16 

 2 13.4 ± 1.3 7600 ± 
900 

3.05 ± 0.14 -171 ± 37 1.155 ± 0.021 28 ± 16 

 3 11.0 ± 1.3 5800 ± 
800 

3.30 ± 0.17 -110 ± 45 1.155 ± 0.024 28 ± 16 

 4 8.0 ± 1.2 4200 ± 
700 

3.42 ± 0.18 -69 ± 50 1.139 ± 0.024 14 ± 16 

 5 12.0 ± 1.2 6700 ± 
800 

3.39 ± 0.15 -78 ± 40 1.161 ± 0.021 33 ± 16 

 6 9.9 ± 1.0 5300 ± 
700 

3.54 ± 0.15 -36 ± 41 1.151 ± 0.021 25 ± 16 

        

DC43 Bulk 6.4 ± 0.5 3100 ± 
300 

4.67 ± 0.17 272 ± 46 1.111 ± 0.021 -12 ± 18 

 1 6.8 ± 0.9 3400 ± 
600 

5.92 ± 0.31 610 ± 85 1.066 ± 0.028 -51 ± 25 

 2 11.7 ± 1.5 6500 ± 
900 

4.97 ± 0.31 350 ± 84 1.064 ± 0.030 -54 ± 27 

 3 2.3 ± 0.5 500 ± 300 3.83 ± 0.24 41 ± 64 1.076 ± 0.030 -42 ± 26 

        

DC18A Bulk 3.1 ± 0.1 990 ± 80 3.27 ± 0.08 -110 ± 23 - - 

 1 3.8 ± 0.2 1440 ± 
110 

3.17 ± 0.11 -136 ± 29 - - 

 2 3.4 ± 0.2 1200 ± 
100 

3.31 ± 0.11 -100 ± 30 - - 

 3 2.8 ± 0.1 820 ± 90 3.29 ± 0.12 -105 ± 32 - - 

 4 3.7 ± 0.2 1400 ± 
110 

3.32 ± 0.13 -98 ± 35 - - 

        

DC18B Bulk 2.9 ± 0.1 850 ± 80 3.20 ± 0.08 -130 ± 21 - - 

 1 2.8 ± 0.2 1420 ± 
120 

3.05 ± 0.10 -170 ± 27 - - 

 2 2.4 ± 0.1 550 ± 80 3.31 ± 0.10 -100 ± 26 - - 

 3 3.9 ± 0.2 1510 ± 
160 

3.07 ± 0.12 -165 ± 33 - - 

 4 3.8 ± 0.2 1430 ± 
130 

2.98 ± 0.10 -190 ± 27 - - 

 5 1.5 ± 0.1 -60 ± 70 3.46 ± 0.11 -58 ± 30 - - 

        

DC18C Bulk 3.2 ± 0.1 1030 ± 90 3.20 ± 0.08 -129 ± 22 - - 

 1 3.3 ± 0.2 1090 ± 
110 

3.16 ± 0.09 -140 ± 23 - - 

 2 3.1 ± 0.2 1010 ± 
100 

3.22 ± 0.09 -124 ± 24 - - 
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2.4 C, H and N isotopic analyses on UCAMM DC94 

Four NanoSIMS sessions were performed, between October 2012 and February 2014, to acquire 

D/H, 15N/14N and 13C/12C images on the DC94 UCAMM fragment (see Table 2-3). The D/H and 15N/14N 

acquisitions were performed within the course of N. Bardin Ph.D. thesis (2012-2015), on the same 

50x50 µm² areas at Institut Curie (Orsay, France) while the 13C/12C measurements were made on 20x20 

µm² areas at IMPMC-MNHN (Paris, France). In order to obtain a comprehensive dataset on the 

correlations between H, N and C isotopic compositions, this work presents a new analysis of these data 

on a selected set of acquisitions. The processing of DC94 data was performed from the raw data and 

using the same dedicated procedure developed for the UCAMMs analyzed at EPL (see section 2.3.1) 

that combined the OpenMIMS software and specially developed routines in Python programming 

language.  

A presentation of the DC94 is made and the Carbon acquisitions are detailed, followed by the 

presentation of the Deuterium and Nitrogen acquisitions. Then, the three sets of data are combined 

to get systematic measurements of the isotopic composition of the DC94 fragment. 

 

2.4.1. Anterior analyses on DC94 

The DC94 UCAMM was identified in the 5th filter of the 2006 Antarctic expedition. The particle 

originally measured 53x66 µm and was fragmented in more than 20 fragments which were used to 

perform various characterizations such as Raman and IR spectroscopy (Dartois et al., 2013; Dartois et 

al., 2018), TOF-SIMS (Briani et al., 2012) and SEM/EDX. 

A DC94 fragment was deposited and crunched on a gold foil in order to perform NanoSIMS analyses. 

Figure 2-10 shows an image of the fragment acquired by secondary electrons microscopy. After 

preparation, its size was 125x125 µm². The characteristics of the DC94 fragment have been previously 

reported by Bardin (2015). The fragment has been analyzed several times with the NanoSIMS 

instrument at Institut Curie (October 2012, July 2013) and IMPMC-MNHN (January 2014) resulting in 

hydrogen, carbon and nitrogen isotopic maps (Table 2-3). Its H and N isotopic composition was 

extensively studied in N. Bardin Ph.D. thesis. However, the carbon data were not fully analyzed and 

reported. Here we summarize the results of her work and present new analysis on the carbon data as 

well as correlations between the H, N and C isotopic data. 

On the Figure 2-10, areas analyzed during the 13C/12C sessions are represented by white squares 

whereas areas of the 15N/14N and D/H sessions, analyzed during the N. Bardin Ph.D. thesis are reported 

in blue. The zones where the 13C/12C, D/H and 15N/14N acquisitions overlap define the zones A, B, C and 

D discussed in this section. Details on these zones are given in Table 2-3. Acquisitions are named by 

their corresponding number followed by the first letters of the element investigated (Carb for carbon, 

Nit for nitrogen and Deut for deuterium). The 5-Deut and 5-Nit acquisitions included C2
- images which 

were used to align the two set of data. The sub-section A, B and C were defined by comparing the 12C- 

images of acquisitions 7-8-Carb, 7-9-Carb and 7-10-Carb with the C2
- images of 5-Deut and 5-Nit. For 

the zone 6, we used the C2H- image of 6-Deut to perform the alignment with the C2
- image of 6-Nit and 

the 12C- image of 6-1-Carb.  

In a first approach, a set of regions of interest (ROI) was defined based on identifiable structures on 

the C2
-, 12C- and C2H- images to measure correlated isotopic ratios. The isotopic composition of carbon 

in the ROIs is first reported for A, B, C and D regions. Deuterium and nitrogen 15 enrichments are then 

reported in the corresponding ROIs. In the last section, the Carbon acquisitions are rotated in order to 
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overlap with the Deuterium and Nitrogen acquisitions. Isotopic ratios are then measured following a 

hexagonal mesh in the zone A, B and C. Due to strong distortions observed in zone D between the 

images of 7-6-Carb and 6-Deut and 6-Nit, the latter procedure was not applied to that zone.  

 

Table 2-3: characteristics of the NanoSIMS sessions performed on zones A, B, C and D shown in Figure 2-10. For 
each session, the name and the date of the acquisition is listed in the column “Acquisition”. The “Original size” 
column indicates the dimension of the sampled area (µm²) and the raster size (pixel², in parentheses). Sub-
selection of the NanoSIMS maps were needed to match the different acquisitions. The size of the sub-selection is 
indicated in the column “Restricted size”. 

Zone Session 13C/12C Session D/H Session 15N/14N 

 Acquisition Original 
size 

Restricted 
size 

Acquisition Original 
size 

Restricted 
size 

Acquisition Original 
size 

Restricted 
size 

A 7-9-Carb 
02.03.2014 

20x20 
(256x256) 

20x20 
(256x256) 

5-Deut 
07.22.2013 

50x50 
(512x512) 

22x24 
(222x247) 

5-Nit 
07.29.2013 

50x50 
512x512 

22x24 
(222x247) 

B 7-10-Carb 
02.03.2014 

20x20 
(256x256) 

20x11 
(256 x140) 

5-Deut 
07.22.2013 

50x50 
(512x512) 

21x13 
(218x132) 

5-Nit 
07.29.2013 

50x50 
512x512 

21x13 
(218x132) 

C 7-8-Carb 
02.03.2014 

20x20 
(256x256) 

20x17 
(256 x216) 

5-Deut 
07.22.2013 

50x50 
(512x512) 

21x19 
(216x196) 

5-Nit 
07.29.2013 

50x50 
512x512 

21x19 
(216x196) 

D 7-6-Carb 
01.31.2014 

20x20 
(256x256) 

20x20 
(256x256) 

6-Deut 
10.30.2012 

50x50 
(512x512) 

23x23 
(234x234) 

6-Nit 
07.29.2013 

50x50 
512x512 

23x23 
(234x234) 

 

 

 

Figure 2-10: SEM image of the analyzed DC94 fragment (from Bardin (2015)). The image is flipped to match with the 
NanoSIMS maps’ orientation. Dark blue squares represent the region where H and N isotopic ratios were measured. 
White squares indicate the regions where C isotopic ratio were measured. Zone A, B, C and D were defined on regions 
where the hydrogen, nitrogen and carbon acquisitions overlap.  
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2.4.2. 13C/12C data on DC94 

The isotopic images on the zone 6-1, 7-8, 7-9 and 7-10 were acquired in January and February 2014 

at IMPMC-MNHN (Paris, France). Acquisitions were made on 20 µm size zones sampled on 256x256 

pixels. For each zone, a set of 200 consecutive plans of 12C-, 13C-, 16O-, 17O-, 18O- ions were collected with 

a primary Cs+ ion probe of 1.0 pA. The dwell time was 1.0 ms/pixel. All the images were corrected from 

dead time and quasi simultaneous (QSA) effects. During the analyses, the instrumental mass 

fractionation (IMF) affecting the 13C/12C ratio was controlled with a kerogen standard (see annex 5.1.2). 

Results presented in the following section are corrected from the IMF. In order to maximize the 

counting statistics, the 200 consecutive plans were aligned and summed. The alignment procedure 

consisted in simple translations. It was based on the 12C- consecutive plans and the transformation 

matrix was subsequently applied to the 13C- sequence. 

A set of regions of interest (ROIs) were used to measure the 13C/12C content on specific areas of 

zone A, B, C and D. A more systematic analysis was completed by applying a hexagonal mesh to the 
13C- and 12C- maps. The isotopic ratio of an ROI or an individual mesh i was given by the ratio of the sum 

of 12C- and 13C- counts: 

𝑅 𝑖 =
∑ 𝑁( 𝐶 

13 −)𝑝𝑖𝑥𝑒𝑙𝑠

∑ 𝑁( 𝐶 
12 −)𝑝𝑖𝑥𝑒𝑙𝑠

 

Hexagonal meshes are made 624 pixels, i.e. 3.8 µm², given the spatial definition of the acquisitions. 

Relative errors related to the counting statistics on the ROIs are often lower than 0.5 %. 

 

2.4.2.1.  DC94, 13C/12C : zone A 

The 7-9-Carb acquisition zone overlap entirely with the Zone A. Figure 2-10 and Figure 2-11 show the 
12C- emission image resulting from the sum of the 200 consecutive plans of acquisition 7-9-Carb. 

Several patches of matter appear on the 12C- image (see Figure 2-11, left). These patches, homogeneous 

on the 12C- image were used to define 13 ROIs, labeled from A-1 to A-13, where the 13C/12C ratio was 

measured (see Figure 2-11 right and Table 2-4). 

In addition to the 13 ROIs, a hexagonal mesh was applied to the zone 7-9 in order to derive the 13C-

abundance independently from the structures visible on the 12C- image (Figure 2-12, left). The measured 

δ13C values are shown in Figure 2-12, right, with the ROI and mesh measurements represented in dark 

and light blue respectively.  

Based on the hexagonal mesh, the median value of the δ13C-image is -99‰. However, two 

populations of mesh units appear: one with the lowest δ13C, ranging from -100 ‰ to -160 ‰ and the 

other with δ13C ranging from -50 ‰ to -110 ‰. The low δ13C are associated with slightly higher 12C- 

emission and mainly correspond to the patches of organic matter. The ROIs with highest δ13C 

correspond to matter that present a fluffier aspect on the 12C- images excepted for the A-12 ROI (-64 ± 

10 ‰) which have a smooth aspect.  
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2.4.2.2.   DC94, 13C/12C : zone B 

Zone B corresponds to a sub-section of the 7-10-Carb acquisition. Figure 2-13 shows the 12C- emission 

of 7-10-Carb (left) and the selected sub-section matching with zone B (top right). Four ROIs (B-1 to B-

4) were defined in structures visible on the 12C- image. They all display low 13C-abundance, with δ13C 

ranging from -55‰ to -127‰. An extremely low δ13C value equal to -127 ± 9 ‰ is observed in B-1 

which correspond to a large patch of organic matter. The isotopic image (Figure 2-13, bottom right) 

shows that this patch of matter displays a homogeneous 13C-low composition. A hexagonal mesh 

applied to zone B highlight the presence of two distinct populations, as in zone A (Figure 2-14), with 

δ13C ranging from -40‰ to -100‰ for the hotter and from -100‰ to -160‰ for the colder. The median 

value of the δ13C image is -96‰, laying between its two poles. 

 

 

Figure 2-11. Left: 12C- emission image of the 7-9 zone resulting from the sum of 200 plans. Right: δ13C map on zone 7-
9. The isotopic map is masked at 3%. 

Figure 2-12. Left: hexagonal mesh on the δ13C map of zone 7-9. The cells of the mesh are made of 624 pixels. Right: 
δ13C values against the total number of 12C- ions collected for the cells of the hexagonal mesh (light blue) and the 13 
ROIs (dark blue). The isotopic map is masked at 3%. 
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2.4.2.3.  DC94, 13C/12C : zone C 

Acquisition 7-8-Carb overlaps with zone C as indicated on Figure 2-15 (yellow square). The 13C/12C 

ratios were measured on 9 ROIs (C-1 to C-9) drawn on the 12C- image. Isotopic 13C/12C ratios were 

measured in the whole zone C thanks to a hexagonal mesh (Figure 2-16). As observed in zone A and B, 

the 13C-low ratios are correlated with large patch of organic matter (Figure 2-15 and Figure 2-16). 

However, the two distinct populations of pixels visible on Figure 2-12 and Figure 2-14 (right) are not fully 

resolved on Figure 2-16. This might be due to the presence of very large patches of 13C-depleted matter 

(ROIs 1 and 2) in the image that dominate the pixel distribution. The median value of δ13C on zone C is 

-105 ‰. 

Figure 2-13. Left: 12C- emission image of the 7-10 zone. The yellow rectangle shows the region B. Top right: zone B, 
fraction of the image analyzed in this section. 13C/12C mesurments have been limited to this region for comparisons 
with the D/H and 15N/14N measurements. Bottom right: δ13C image of the zone B. 

Figure 2-14. Left: hexagonal mesh applied on zone B. Right: δ13C values against the total number of 12C- ions 
collected for the cells of the hexagonal mesh (light red) and the 4 ROIs (dark red). 
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Figure 2-15: Top: 12C- emission image of the 7-8-Carb acquisition. The yellow rectangle shows the zone C, where 
13C/12C, D/H and 15N/14N measurements are performed. Bottom left: 12C- emission in zone C. Bottom right: δ13C image 
of the zone C. 

Figure 2-16. Left: hexagonal mesh applied on the zone C. Right: δ13C values against the total number of 12C- ions 
collected for the cells of the hexagonal mesh (light red) and the 9 ROIs (dark red). 
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2.4.2.4.   DC94, 13C/12C : zone D 

The zone D corresponds to the bottom part of acquisition 6-1-Carb. We defined 7 ROIs based on 
12C- image (Figure 2-17). The δ13C values measured in these ROIs are ranging from -25‰ to -100‰, 

lower than in the zone A, B and C. This general feature was confirmed by measurements made with a 

hexagonal mesh on the zone D. Half of the individual mesh have δ13C values comprised between -26‰ 

and -52‰, with a median value at -41‰. These values are compatible with the low pole observed on 

zone A, B and C. A small area, at the right of ROI 5 and the left of ROI 7 displays a δ13C below -100‰. 

Zone D does not exhibit the large patches of organic matter observed in the other zones. The ROIs of 

zone D correspond to less compact units of organic matter.  

 

 

 

 

 

 

Figure 2-17. Right: 12C- emission image of the zone 6-1. Left: δ13C image on the same zone.  

Figure 2-18. Left: hexagonal mesh on the zone D. Right: δ13C values against the total number of 12C- ions collected for 
the cells of the hexagonal mesh (light gray) and the 7 ROIs (black). 
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2.4.2.5.  UCAMM DC94, 13C/12C   summary 

Isotopic mapping of 13C/12C abundances in 4 zones of the DC94 UCAMM reveal a 13C-depleted 

organic matter. Two distinct poles of organic matter are observed. The 13C-cold matter is characterized 

by δ13C values ranging between - 100‰ and -150‰. It is mostly present in the zone A, B and C under 

the form of large and smooth patches of carbonaceous matter. Low δ13C values are also observed on 

zone D but in much lower abundance and without being associated with a patch structure. Zone D 

exhibits a matter with larger 13C/12C ratios, with δ13C values ranging from -26‰ to - 52‰. This pole is 

also observed on the zone A, B and C as a fluffier matter with a broader spread which can reach -100‰.  

The bulk median δ13C values of zone A, B and C are very close the one another, around -100‰, 

resulting from a mix of the two poles of matter. Conversely, the bulk median value of zone D is -41‰ 

consisting in matter with a higher δ13C value. 

  



 

66 
 

Table 2-4: Measurements of the 13C/12C ratios on the ROI on the zone A, B, C and D. Values reported are corrected 
from the IMF. Errors are indicated at 1σ. 

 

 

  

ROI 13C/12C ± Err (x 10-3) δ13C ± Err (‰) 

A-1 9.50 ± 0.11 -155 ± 10 

A-2 9.77 ± 0.11 -130 ± 9 

A-3 9.78 ± 0.10 -129 ± 9 

A-4 9.53 ± 0.12 -152 ± 11 

A-5 9.61 ± 0.10 -145 ± 9 

A-6 9.62 ± 0.11 -144 ± 10 

A-7 9.86 ± 0.11 -123 ± 10 

A-8 9.98 ± 0.11 -112 ± 10 

A-9 10.05 ± 0.13 -106 ± 11 

A-10 10.19 ± 0.11 -93 ± 10 

A-11 9.89 ± 0.11 -120 ± 10 

A-12 10.52 ± 0.12 -64 ± 10 

A-13 10.07 ± 0.11 -104 ± 10 

B-1 9.81 ± 0.10 -127 ± 9 

B-2 10.36 ± 0.11 -78 ± 9 

B-3 9.92 ± 0.10 -117 ± 9 

B-4 10.62 ± 0.11 -55 ± 9 

C-1 9.89 ± 0.10 -120 ± 9 

C-2 9.94 ± 0.10 -115 ± 9 

C-3 10.03 ± 0.12 -107 ± 11 

C-4 9.95 ± 0.13 -114 ± 11 

C-5 10.28 ± 0.11 -85 ± 10 

C-6 9.86 ± 0.10 -123 ± 9 

C-7 10.25 ± 0.12 -88 ± 11 

C-8 10.69 ± 0.11 -48 ± 10 

C-9 10.25 ± 0.12 -88 ± 11 

D-1 10.75 ± 0.07 -44 ± 6 

D-2 10.95 ± 0.08 -25 ± 7 

D-3 10.85 ± 0.09 -34 ± 8 

D-4 10.89 ± 0.07 -31 ± 7 

D-5 10.19 ± 0.08 -93 ± 7 

D-6 10.65 ± 0.07 -52 ± 6 

D-7 10.12 ± 0.07 -100 ± 6 
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2.4.3. D/H and 15N/14N in DC94 

Hydrogen and nitrogen isotopic ratios of DC94 were measured during 3 sessions in 2012 and 2013, 

at Institut Curie (Orsay, France) and were presented in details in N. Bardin Ph.D. thesis. For the purpose 

of this study, we summarize here the set of data on two zones, named 5 and 6, overlapping with zones 

A, B, C and D (Table 2-5 and blue squares on Figure 2-10). In this section, the D and 15N enrichments 

measured on the ROIs corresponding to the ones defined for the carbon acquisition (see section 2.4.2) 

are presented. Measurements based on a hexagonal mesh are presented in the section 2.4.4, along 

with the rotated maps of the carbon acquisitions. 

Table 2-5: Analytical conditions of the NanoSIMS sessions on the DC94 fragment. 

Date Ions Zone Primary 
current (pA) 

Dwell time 
(ms/pix) 

N plans Laboratory 

07.22.2013 12CH-, 12C2
-, 12C2H-, 12C2D- 5 11.5 0.5 119 (120) Institut Curie 

10.30.2012 12C2H-, 12C2D-, 12OH-, 12OD- 6 7.7 1.0 30 Institut Curie 

07.29.2013 12CH-, 12C2
-, 12C14N-, 12C15N- 5 10.0 0.5 118 (120) Institut Curie 

07.29.2013 12CH-, 12C2
-, 12C14N-, 12C15N- 6 10.0 0.5 160 Institut Curie 

 

2.4.3.1.  DC94, zone 5 (zone A, B and C) 

The zone 5 was analyzed in July 2013 (5-Deut and 5-Nit sessions, see Table 2-3). It consists on a 

512x512 pixels image on a 50x50 µm² area. The 5-Deut session consisted in the multi-collection of the 
12CH-, 12C2

-, 12C2H-, 12C2D- ions extracted with a 11.5 pA primary ion probe. The dwell-time was set to 

0.5 ms/pixel. One hundred and twenty plans were accumulated from which one was removed due to 

the presence of artifacts. Ions 12CH-, 12C2
-, 12C14N-, 12C15N- were collected during the 5-Nit session on the 

same area (same raster) with a primary current set to 10.0 pA and a dwell time of 0.5 ms/pixel. From 

the 120 plans acquired, 2 were removed. For the two sessions, the individual ion images were 

corrected from dead-time and QSA prior to be summed. The instrumental mass fractionation (IMF) for 

the D/H and 15N/14N ratios were controlled by measuring the terrestrial anthracite DonH8 and a 

dedicated deuterated polystyren standard as detailed in annex 5.1.2 (Bardin et al., 2015; Sangely, 

2004).  

Figure 2-19 shows the C2
- emission images acquired during the 5-Deut (left) and 5-Nit (right) sessions. 

Collored squares indicate the corresponding 7-8, 7-9 and 7-10 areas analyzed during the carbon 

sessions. The analyses presented in this section were restricted to these areas (see Table 2-3). Sizes of 

zone A, B and C are 222x247 pixel², 218x132 pixel² and 216x196 pixel² respectively. 

The δD and δ15N images of the zone A, B and C are shown on Figure 2-21, Figure 2-22 and Figure 2-23. 

Regions of interest defined on the 3 zones correpond to the regions of interest defined in section 2.4.2. 

Although the ROIs were chosen to fit as well as possible for the 5-Deut, 5-Nit and Carb sessions, they 

can still differ marginally. The differences are mainly caused by the evolution of the area under the 

succesive NanoSIMS sessions and by the variability in the aspect of the structures imaged with the 12C- 

and 12C2
- ions. Isotopic enrichments in D and 15N in the ROIs are reported in Table 2-6. 
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Figure 2-19: Zone 5. C2
- images acquired by the NanoSIMS during the 5-Deut (left) and 5-Nit (right) sessions. The 

yellow, green and blue squares indicate the zones A, B and C where carbon measurements were performed.  

Figure 2-20: Zone 6. C2
- images acquired during the C2H-C2D session in October 2012 (left) and during the C14N-C15N 

session in July 2013 (right). The yellow square indicates the zone C where 13C and 12C measurements were performed. 
C2

- acquisition was not performed during the October 2012 session. 
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Figure 2-21. Left: regions of interest (ROI) on the zone A (C2
- emission image). δD (center) and δ15N (right) maps 

on zone A.  

Figure 2-22. C2
- image of zone B with its 4 ROIs (left). δD (center) and δ15N (right) maps on zone B. 

Figure 2-23. Left: C2
- image of zone C with its 9 ROIs. δD (center) and δ15N (right) maps on zone C. 
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2.4.3.2.  DC94 zone 6 (zone D) 

The hydrogen isotopic composition on zone 6 which overlaps with zone D was analyzed during a 

first session in October 2012. Ions 12C2H-, 12C2D-, 12OH-, 12OD- were collected on a 50x50 µm² area 

(512x512 pixels) with a 7.7 pA ion probe. The dwell time was set to 1.0 ms/pixel. All the consecutive 

30 plans were corrected from dead-time and QSA effects and summed. A Don-H8 sample and a 

deuterated polystyrene standard (Bardin et al., 2015) were used to control the IMF. 

The nitrogen isotopic content of zone 6 was measured in another session in July 2013, consecutively 

to the analysis of zone 5 (see section 2.4.3.1 and Table 2-5). The 6-Nit acquisition consisted in 160 

consecutive plans recording the 12CH-, 12C2
-, 12C14N-, 12C15N- signals with a 10.0 pA ion probe. The dwell 

time was set to 0.5 ms/pixel. A dead-time and QSA correction was applied to all the individual plans 

before summing them. As for the zone 5, the IMF was controlled with the Don-H8 sample. 

Because 12C2
- ions were not collected during the 6-Deut acquisitions, the identifications of 

structures and ROIs are based on comparisons between the C2H- image from 6-Deut and the C2
- image 

from 6-Nit. Figure 2-24 shows the ion images associated with the δD and δ15N maps. 

 

2.4.3.3. UCAMM DC94, D/H and 15N/14N summary  

Isotopic mapping of D/H in 4 zones of DC94 allow to identify a heterogeneous D-rich signature of 

the organic matter with δD values ranging between about 500‰ and 6000‰. Zones A, B and C present 

the lower δD value (lower than 4000‰, measured in ROIs) while δD up to 6000‰ are observed in zone 

D. Local D/H heterogeneities appear to be more frequent in zone D (Figure 2-24) than in zones A, B and 

C (Figure 2-21, Figure 2-22, Figure 2-23). The δ15N values in the zones A, B, C and D are fairly homogeneous 

with a mean value of δ15Nmean = 63‰ and isolated hotspots (e.g. δ15N = 264 ± 7‰, ROI A-10 in Table 

2-6).  

Figure 2-24. Left: C2H- images of zone D with the 7 ROI analyzed (top) and δD image on the corresponding zone 
(bottom). Right: C2

- image of the zone C (top) and the corresponding δ15N image (bottom). 
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Table 2-6: D/H and 15N/14N ratios measured in the ROIs on zones A, B, C and D . Ratios have been corrected from 
the IMF. Errors are indicated at 1σ. 

ROI D/H ± err (10-4) δD ± err (‰) 15N/14N ± err (10-3) δ15N ± err (‰) 

A-1 2.71 ± 0.08 740 ± 51 3.79 ± 0.03 30 ± 8 

A-2 4.50 ± 0.10 1892 ± 69 3.89 ± 0.02 59 ± 7 

A-3 3.31 ± 0.06 1123 ± 41 3.87 ± 0.02 52 ± 6 

A-4 2.41 ± 0.08 544 ± 54 3.82 ± 0.03 40 ± 9 

A-5 3.03 ± 0.06 948 ± 41 3.85 ± 0.02 48 ± 6 

A-6 3.82 ± 0.10 1454 ± 62 3.93 ± 0.03 70 ± 7 

A-7 4.85 ± 0.11 2112 ± 71 3.87 ± 0.03 52 ± 7 

A-8 3.64 ± 0.08 1336 ± 51 4.01 ± 0.02 90 ± 6 

A-9 4.88 ± 0.10 2131 ± 67 3.91 ± 0.03 62 ± 7 

A-10 6.82 ± 0.13 3376 ± 84 4.65 ± 0.03 264 ± 7 

A-11 3.94 ± 0.09 1527 ± 60 3.94 ± 0.03 71 ± 7 

A-12 7.12 ± 0.14 3574 ± 92 4.08 ± 0.03 110 ± 7 

A-13 3.39 ± 0.08 1179 ± 49 3.92 ± 0.02 67 ± 6 

B-1 3.96 ± 0.06 1545 ± 40 3.85 ± 0.02 48 ± 5 

B-2 4.72 ± 0.08 2031 ± 54 3.94 ± 0.02 71 ± 5 

B-3 4.31 ± 0.08 1764 ± 48 3.85 ± 0.02 48 ± 5 

B-4 3.94 ± 0.07 1529 ± 46 3.80 ± 0.02 33 ± 6 

C-1 3.06 ± 0.06 966 ± 40 3.83 ± 0.02 42 ± 5 

C-2 3.05 ± 0.05 957 ± 35 3.84 ± 0.03 45 ± 5 

C-3 3.12 ± 0.10 1003 ± 66 3.83 ± 0.04 41 ± 8 

C-4 2.31 ± 0.09 484 ± 56 3.80 ± 0.03 33 ± 9 

C-5 4.95 ± 0.11 2178 ± 71 3.97 ± 0.02 80 ± 6 

C-6 3.29 ± 0.07 1114 ± 47 3.84 ± 0.02 45 ± 6 

C-7 7.32 ± 0.19 3700 ± 123 4.13 ± 0.04 123 ± 10 

C-8 4.50 ± 0.10 1888 ± 64 3.84 ± 0.02 43 ± 6 

C-9 3.55 ± 0.10 1281 ± 64 3.78 ± 0.03 27 ± 7 

D-1 9.46 ± 0.48 5072 ± 306 3.98 ± 0.02 83 ± 5 

D-2 10.34 ± 0.61 5641 ± 391 3.80 ± 0.04 32 ± 11 

D-3 10.66 ± 0.66 5844 ± 422 3.81 ± 0.03 37 ± 8 

D-4 10.04 ± 0.51 5445 ± 324 3.99 ± 0.02 86 ± 6 

D-5 6.21 ± 0.40 2983 ± 256 3.65 ± 0.03 -6 ± 9 

D-6 11.25 ± 0.60 6222 ± 387 4.14 ± 0.03 126 ± 7 

D-7 6.37 ± 0.38 3091 ± 245 3.30 ± 0.02 -101 ± 6 
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2.4.4. Correlation of H, C and N isotopic maps on DC94 

In the following section, the δ13C, δ15N and δD maps on DC94 are compared.  

2.4.4.1. Correlation between δ13C, δ15N and δD measured in the ROIs 

Isotopic measurements based on the ROIs detailed in Table 2-4 and Table 2-6 are combined to 

investigate isotopic correlations on the zones A, B, C and D. Results are presented with colored error 

bars on the δ13C against δ15N and δ13C against δD graphs on Figure 2-26. 

The δ15N values in the regions of interest appears to be homogeneous, ranging from 30‰ to 100‰. 

Two anomalous spots are observed on ROIs A-10 and D-7 with δ15N equal to 264 ± 7 ‰ and -101 ± 6 

‰ respectively. No correlation is observed between the δ15N and δ13C or δD variations. 

Deuterium enrichments on DC94 range from about 500‰ to 6000‰. The right panel of Figure 2-26 

shows the positive correlation between the δ13C and δD values measured in the ROIs (dotted line, 

Pearson correlation coefficient of 0.802). Whereas zones A, B and C seem to sample a similar matter 

with δ13C in the [-150‰ ; -50‰] interval and δD in the [500‰ ; 4000‰] interval, zone D is 

characterized by higher 13C and D contents ranging from -60‰ to -20‰ and 4500‰ to 6000‰ 

respectively at the exception of ROIs D-5 and D-7 that display low δ13C and δD comparable with those 

observed on zones A, B and C. 

2.4.4.2. Correlation between δ13C, δ15N and δD maps using a mesh 

In order to perform a complete comparison between the images, the 7-8-Carb, 7-9-Carb and 7-10-

Carb acquisitions were resized and rotated to match with the 5-Nit and 5-Deut acquisitions on zones 

A, B and C (see Figure 2-25). The sizes of 12C- images of zones A, B and C were rescaled by a factor 0.90 

± 0.04 to match with the sizes of the zones in the 5-Nit and 5-Deut sets (Table 2-3). In the rescaled 

images, pixels resulting from the merging of two or more pixels were filled with the average value of 

the original pixels. Once rescaled, the images were rotated without performing interpolation. 

Structures visible on the C2
- images from 5-Nit and 5-Deut served as references to adjust the rotation. 

The accuracy of the operation was estimated by comparing the position of the structures on the 

modified 12C- images and C2
- images. The same processing was applied to the 13C- images. Isotopic ratio 

images were subsequently derived. No transformations were applied on the 5-Nit and 5-Deut datasets 

A hexagonal mesh was applied to the Carb, Deut and Nit acquisitions on zone A, B and C (Figure 

2-25). Figure 5-4 in annex 5.1.4 shows the mesh on the isotopic images. Each mesh cell is made of 624 

pixels accounting for 5.95 µm², based on the 5-Deut and 5-Nit spatial definition. The δ13C, δ15N and δD 

values are plotted on Figure 2-26. Small shifts are still visible from one acquisition to the other, as a 

perfect overlapping of these maps is not achievable without introducing non-linear distortions of the 

images. Moreover, the erosion of zone A, B and C induced by the successive NanoSIMS sessions, along 

with the nature of the collected ions, are expected to impact the apparent structures, highlighting the 

necessity of a careful approach when comparing the H, C and N datasets. Still, when compared to the 

size of the hexagonal cells, the residual shifts resulting from the alignment process appear negligible.  

For the zone D, a hexagonal mesh was applied on the deuterium and nitrogen maps but not on the 

carbon map. The correlation of the deuterium, nitrogen and carbon isotopic compositions in zone D is 

based on the ROIs. 



 

73 
 

 

The measurements derived from the hexagonal mesh are presented by gray error bars on Figure 

2-26. The spread of 13C, 15N and D enrichments are characterized by the mean value, 0.1 and 0.9 

quantiles as follow: 

Figure 2-25: 12C2
- images from 5-Deut (left column), 5-Nit (middle column) and 12C- images from Carb acquisitions 

(right column) for zones A (top row), B (middle row) and C (bottom row). The transformation applied on 12C- data only 
consisted in linear operations without interpolation. 12C- image from the Carb acquisitions have been downsized and 
rotated in order to overlap the 12C2

- images from Deut- and Nit- acquisitions (see text). The hexagonal mesh is used to 
derive the correlations between δ13C, δ15N and δD maps. The transformation applied on 12C- data only consisted in 
linear operation without interpolation.  
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 δ13Cmean = -87‰ ; δ13C0.1 = -135‰ ; δ13C0.9 = -58‰ 

 δDmean = 2521‰ ; δD0.1 = 836‰ ; δD0.9 = 3179‰ 

 δ15Nmean = 63‰ ; δ15N0.1 = 17‰ ; δ15N0.9 = 87‰ 

As observed with the ROIs’ measurements and on the isotopic maps, the nitrogen isotopic 

composition is rather homogeneous. A single region of zone A, around ROI A-10 display an 15N-enriched 

composition with δ15N above 200‰.  

The positive correlation between 13C and D enrichments is confirmed by the mesh sampling, 

however, Figure 2-26 (top right) indicates that the population of organic matter with higher 13C/12C 

ratios is statistically less sampled by the ROIs approach. This arises from the selection of ROIs on the 

basis of patches of matter identified on the ion images (12C- and 12C2
-): a low 13C-content was 

preferentially sampled in comparison to the fluffy interstitial matter with, in average, higher 13C-

content.  

 

       

Figure 2-26: Correlation of δD, δ15N and δ13C 

measured with the hexagonal mesh (gray 

dots) and the ROIs (color dots) in zones A, B, 

C and D. δ13C and δD values exhibit a 

correlation indicated by dotted line (Pearson 

correlation coefficient of 0.802).  



 

75 
 

2.5 Summary 

This chapter presents analyses of the H, N and C isotopic compositions of the organic matter of 

UCAMMs. Isotopic imaging was performed on 5 fragments of 3 UCAMMs (DC43, DC309 and DC18) and 

data acquired prior this Ph.D. on another UCAMM (DC94) were sorted, in order to present the first 

comprehensive study of correlated D/H, 13C/12C, 15N/14N ratios on several fragments of these rare 

particles. The bulk isotopic composition substantially differs from one UCAMM to another and large 

variations can also be observed within individual UCAMM fragments (Figure 2-27). Some isotopic 

heterogeneities exhibit linear correlations while others appear as isolated anomalous spots. These 

linear correlations are observed on UCAMM DC309 (δ15N vs. δD) between a cold component [δ15N≈-

200‰;δD≈8500‰] and a 15N-richer component [δ15N≈-30‰;δD≈4000‰] (thick gray line in Figure 2-27) 

and on UCAMM DC94 (δ13C vs. δD) between a cold δ13C component [δ13C≈-150‰;δD≈800‰] and a 
13C-richer component [δ13C≈-30‰;δD≈6000‰] (dotted line in Figure 2-26). Chapter 3 presents a series 

of new experiment to show that the irradiation of isotopically heterogeneous ice mixtures can produce 

organic matter with large isotopic heterogeneities comparable to that reported in this chapter. 

Chapter 4 will compare the H, N and C isotopic compositions of UCAMMs to the isotopic compositions 

of other solar system objects and predictions of theoretical models of molecular reservoirs in the 

protoplanetary disk. 

 

 

 

Figure 2-27: summary of the δD, δ15N and δ13C measured on DC309, DC18, DC43 and DC94. The color scale 
indicates the δ13C values. Bulk composition are plotted with stars and measurements on ROIs by circles (DC18), 
octagons (DC309), hexagons (DC43) and pentagons (DC94). The linear correlations observed in DC309 and DC94 
are represented by gray thick lines. 
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3.1 The production and isotopic study of irradiation-induced residues 

3.1.1. Motivation and experimental approach 

Irradiation experiments of nitrogen-rich ice films by swift ions (energetic ions for which the 

electronic stopping power dominates over the nuclear stopping power) demonstrated that the 

irradiation of nitrogen-rich ice mantles followed by a slow annealing was able to form an organic 

matter with an infrared (IR) signature similar to the one of UCAMMs (Figure 3-1, Augé et al. (2016)). 

However, Augé et al. (2019) showed that the Hydrogen isotopic fractionation induced by the 

irradiation process itself cannot explain the large deuterium heterogeneities observed in the organic 

matter of UCAMMs. The isotopic heterogeneities in H, N and C in the organic matter of UCAMMs 

(Chapter 2) might thus be inherited from the nature of parent reservoirs.  

 

 

 

The experimental approach described in this chapter aims to reproduce the formation of organic 

matter induced by irradiation of nitrogen and carbon rich ices of relevance to the solar system, by swift 

ions. Such a process is experienced by the surface of icy bodies submitted to the GCR in the cold outer 

regions of the solar system. The experiments performed at GANIL are in the follow-up of the work 

described in Augé et al. (2016) and Augé et al. (2019).  

N-rich complex organic residues can be formed by the slow annealing (0.1 – 0.5 K/min) of N-rich 

ices mixed with hydrocarbons ices after they have been irradiated by swift ions. The infrared signature 

of the residues present similarities with that of UCAMMs. Augé et al. (2019) showed that the D/H 

isotopic fractionation associated with the swift ion-irradiation itself remains marginal (i.e. lower than 

a few ten percent) and thus cannot account for the large D/H fractionation (i.e. from 10 to 20 times 

the SMOW value) observed in UCAMMs’ organic matter. In the same study, Augé et al. (2019) showed 

that the irradiation of a mixture of ices with a high local isotopic heterogeneity in D, induces a residue 

that exhibits isotopic heterogeneities, suggesting that the isotopic heterogeneities observed in 

UCAMMs may be related to isotopic heterogeneities of the original ices layers at the surface of their 

icy parent body/bodies.  

 

 

Figure 3-1 : FTIR spectra of organic residues 

compared to the spectrum of an UCAMM from 

Augé et al. (2016). The red spectrum corresponds 
to an organic residue formed from the irradiation 
of a N2-CH4 ice mixture subsequently annealed to 
600K in order to simulate the heating 
experienced by UCAMMs during their 
atmospheric entry. The UCAMM spectrum was 
reported by Dartois et al. (2013). Blue spectra: 
residues “a” to “d” produced in Augé et al. (2016) 
after irradiation and annealing to 300 K. Black 
spectra, top: poly-HCN before and after 
annealing to 600 K (Bonnet et al., 2015). Bottom:  
pure HCN ice after irradiation with 0.8 MeV 
protons from Gerakines et al. (2004). 
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The aim of the experiments performed during this thesis is to extend these previous works to:  

- Irradiate D, 15N and 13C labeled ices to study correlated H, C and N isotopic heterogeneities 

- Compare the organic residues induced by irradiation of different ice composition 

representative of icy bodies orbiting in different regions of the solar system (N2-CH4 for 

external regions, NH3-CH4 for internal) or that may have lost the more volatile N2 in the 

subsurface after thermal events (e.g. triggered by impacts). 

In order to study the transfer of isotopic heterogeneities from the ice to the organic residue, we 

deposited an isotopically labeled thin ice layer (Figure 3-2, red layer) within an unlabeled ice film (Figure 

3-2, light-blue volume). We chose the chemical composition of the labeled layer as close as possible to 

the composition of the main ice film to avoid chemical driven fractionations. Though, we introduced 

in some of them slight variations of the composition to explore perturbative effects induced by the 

composition. Prior irradiation, the isotopically labeled and unlabeled ices were deposited sequentially 

in order to be spatially well separated (Figure 3-2). 

Molecular nitrogen and ammonia are two species observed at large heliocentric distances that can 

be a relevant source of the nitrogen observed in the cometary organic matter. Methane ice is also 

observed at the surface of Pluto (Grundy et al., 2016) and is a carbon provider, essential for the 

formation of organic matter. Its concentration in the ice will determine the maximum quantity of 

organic matter that can be formed.  

Two main compositions of ice were explored, composed of nitrogen rich molecules (N2 or NH3) and 

mixed with a fraction of carbon-bearing simple ice precursors (CH4):  

 N2 ices mixed with 10% of CH4: N2 – CH4 (90:10). 

 NH3 ices mixed with 10% of CH4: NH3 – CH4 (90:10). 

The deposited ice film thickness was about ≈10µm (see section 3.1.3.1). This chosen thickness 

ensured that the heavy ion energy was sufficiently high to deposit energy within the ice without 

stopping (and therefore implanting ions) within the ice sandwich. The irradiation doses were ranging 

from 8 to 25 eV·molec-1, the values after which no more significant chemical recombination are 

observed through the infrared monitoring of the ice (Augé et al., 2016). A slow annealing of the 

processed ice was subsequently performed in order to sublimate the remaining unprocessed volatile 

species and condensate the refractive materials on the windows (Figure 3-2, bottom). After each 

experiment, the windows with the organic refractive residues obtained at room temperature (300K) 

were quickly extracted from the chamber, stored in vacuum cells and brought back to Orsay to be 

analyzed by NanoSIMS at Institute Curie. 
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Figure 3-2 : Principle of ice irradiation experiments. A N-rich ice film is formed at 10K by the deposition on a 
substrate window (in yellow) of 2 istopically unlabeled ice layers (in light blue, step 1 and 3) surrounding an 
isotopically labeled ice layer (in red, step 2). The resulting 10 µm thick ice film is then irradiated by swift ions (step 
4) until the formation of new chemical species (step 5). At the end of the irradiation , the ice film is very slowly 
warmed-up to 300K in order to concentrate the refractive species as an organic residue on the window (step 7). 
During the annealing, the remaining volatile ice and light radiolytic products sublimate (step 6). The ≈10µm-thick 
ice films are mainly composed of isotopically unlabeled N-rich molecules mixed with methane N2—CH4 (90:10) or 
NH3—CH4 (90:10). The final organic residue is about 50 – 150 nm thick. 
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3.1.2. The IGLIAS set-up at GANIL (CIMAP) 

Ice irradiation experiments were conducted at the large heavy ions accelerator GANIL (Grand 

Accélérateur National d’Ions lourd, Caen, France). GANIL is a national facility built for experimental nuclear 

physics involving ions with energies ranging from 1 to 102 MeV/amu. Ions are extracted from a plasma 

formed by the heating of a gaseous or solid source and subsequently injected in a first cyclotron C0 where 

they are accelerated to an energy of about 1 MeV/amu. The lower energy beams in the range covered are 

directly sent to IRRSUD at the exit of C0 (Figure 3-3). Beams with higher energies can be achieved through 

two additional cyclotrons CSS1 and CSS2, up to 102 MeV/amu. The experiments described in this chapter 

were all performed with the low energy ion beam IRRSUD (0.5 – 1 MeV/amu). 

 

IGLIAS (Irradiation de GLaces d’Intérêt Astrophysique) is an experimental set-up designed at the CIMAP 
(Centre de recherche sur les Ions, les MAtériaux et la Photonique) for the irradiation of ice of astrophysical 
interest (Augé et al., 2018; Augé et al., 2019). It consists of an Ultra High Vacuum (UHV) chamber 
connected to the beam line where ices can be deposited and irradiated (Figure 3-4). Up to three IR 
transparent windows can be set on the holder (see Figure 3-5) and cooled down to 9K by a cryogenic head 
equipped with a closed system helium cryostat. A Lake Shore temperature controller allows adjusting the 
temperature of the holder between 9K and 300K, with a precision better than a few Kelvins.  
The experiments are monitored in situ with 3 instruments:  

 a Fourier transform infrared (FTIR) spectrometer (Brucker Vertex 70v) that follows the evolution of 

the ice film during the irradiation, in the 500 to 6000 cm-1 wavenumber range. 

 a quadrupolar mass spectrometer (QMS, Microvision 2 MKS104) that measures the gas phase in the 

chamber in the 1 to 70 mass to charge ratio (m/z) with a rate of 4.6 scans per minute. 

 a visible-ultraviolet (Vis-UV) spectrometer to monitor the ice evolution. We did not use it during our 

experiments; it is thus not represented in Figure 3-4. 

During the experiment, the substrate windows can be aligned in 2 positions: one for the ice film deposition 

facing the gas injection system and the second for the ion irradiation coupled to the infrared 

Figure 3-3: left, aerial view of the GANIL facility. Right, map of the beamlines and cyclotrons C0, C1, CSS1 and 
CSS2 at GANIL. Yellow circles indicate the IRRSUD beamline where the IGLIAS experimental set-up was 
installed.The other installations are mainly used fo nuclear physics experiments. 
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measurements. This is achieved by rotating the entire sample holder head in the chamber. IGLIAS main 

chamber is represented in Figure 3-4. 

The ice films are formed by condensation of a specific gas mixture on the cold substrate windows (Figure 

3-2, Figure 3-4). A mobile needle can be translated up to 15 mm from the window to inject the gas with a 

minimum spread around the target to minimize background vacuum contamination. A mixing chamber 

(not visible on Figure 3-4) is located before the gas injection needle to prepare the mixture of gases prior 

injection. 

The IGLIAS main chamber is connected to the beam line through a differential pumping chamber in 

order to preserve a pressure of 2∙10-10 mbar with a cryogenic pump (Augé et al., 2018). In position of 

irradiation, the window is aligned with the laser beam to perform IR spectra (Figure 3-4). The angle of 

incidence of the IR beam with the normal direction of the windows is ϴIR = 12°. The substrate windows we 

used in the experiments were first ZnSe and then Si high purity windows that are both transparent to IR 

to achieve the monitoring with the IR transmission spectra. 

 

Figure 3-4: left, technical scheme of the IGLIAS chamber. Right, picture of the IGLIAS chamber installed at 

IRRSUD. The windows are attached to a cold finger system. An ice sample is formed by the condensation of gaz 
injected on the window cooled by the cold finger. The ion beam irradiation of the window models the GCR 
irradiation of ice mantles. A quadrupolar mass spectrometer (QMS) and a Fourier Transform InfraRed 
spectrometer (FTIR) are used to monitor the evolution of the ice during the irradiation. 



 

83 
 

  

Figure 3-5: The IGLIAS window holder. Three  20 mm 
diameter windows can be mounted simultaneously in the 
holder (only one is present in the picture). Inside the IGLIAS 
chamber, the holder is cooled down to 9K by a cold finger. 
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3.1.3. Synthesis of refractory organic residue by heavy ion irradiation  

3.1.3.1. Ice sandwiches condensation and IR monitoring 

Ice films were deposited on substrate windows at a temperature ranging from 9K to 12K following a 

three-step procedure (Figure 3-2, top):  

1. A first lower thick layer of unlabeled ice (N2-CH4 or NH3-CH4) was deposited. 

2. An isotopically (D, 13C, 15N) labeled thin ice layer with a thickness accounting from about 1 to 5% 

of the total thickness of the ice sandwich was added. 

3. The upper unlabeled layer (identical to the first layer) was deposited. 

The ice deposition was controlled by recording IR spectra of the intermediate deposited ice layers and 

final deposited films. IR spectra are recorded to measure the transmittance T, i.e. the ratio of transmitted 

(through the film) and the bare window incident radiant fluxes, Φt and Φi respectively. In this chapter, 

transmission spectra were converted into optical depth spectra. The optical depth τ is derived from the 

transmittance as follow: 

𝜏 = − ln(𝑇) = − ln (
𝛷𝑡
𝛷𝑖
) (1) 

 

 

 

In the case of identified vibrational bands (e.g. the ν3 and ν4 CH4 stretching and deformation bands in 

Figure 3-6), the column density of the corresponding molecule was calculated from the known integrated 

absorption band strength A and the integrated optical depth S as follow: 

𝑁(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 ∙ 𝑐𝑚−2) =
1

𝐴
× ∫ 𝜏d𝜈

𝜈𝑚𝑎𝑥

𝜈𝑚𝑖𝑛

=
𝑆(𝑐𝑚−1)

𝐴(𝑐𝑚 ∙ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1)
 (2) 

Numerous authors have reported the band positions and integrated absorption band strengths of pure 

molecule ices at low temperature i.e. below 25 K, such as CH4, NH3, CO, CO2. However, there are few 

reported oscillator strength measurements for the isotopolog molecules (i.e. with the 15N, 13C and D 

isotopes). When the band strengths of isotopically labeled molecules such as CD4, 13CD4 and 15ND3 were 

Figure 3-6: IR spectrum of a N2-CH4 ice 

sample prior irradiation (Sd3, see section 

3.2). The blue curve shows the raw 
spectrum before correction. The slope 
and the oscillations of the baseline were 
corrected using an empirical function. 
The period of the oscillations, indicated 
by red vertical arrows, was used to 
estimate the thickness of the ice sample 
d = 11.1 ± 0.5 µm. Orange line is the 
corrected spectrum. Bands of CH4 and 
CD4 were used to estimate the D/H bulk 
ratio. 



 

85 
 

not documented in the literature, we estimated them by applying a linear correction linked to the shift of 

the corresponding vibrational band following from the change in reduced mass: 

𝐴(𝑚𝑜𝑙, 𝜈𝑖) = 𝐴(𝑀𝑂𝐿, 𝜈𝑖) ×
𝜈𝑖
𝜈𝑖
 (3) 

where mol is the isotopically labeled molecule, MOL the isotopically unlabeled molecule and 𝜈𝑖 and 𝜈𝑖 the 

position of the two corresponding bands in cm-1. 

An IR spectrum was acquired at the end of the deposition process to control the overall thickness and 

composition of the ice sandwich (Figure 3-6). Periodic oscillations are observed on the IR spectra; they are 

related to reflections at the interfaces of the ice deposits (Fabry-Perot effect) and are inversely 

proportional to its thickness. Following Domingo et al. (2007), the thickness dosc of the ice film can be 

derived from the period Δν of the oscillations with the equation: 

𝑑𝑜𝑠𝑐 =
1

2𝑛 ∙ ∆𝜈 ∙ cos𝜃𝐼𝑅
 (4) 

with: 

 n the refractive index of the ice, with nN2 = 1.2 for N2 ices (Satorre et al., 2008) and nNH3 = 1.38 for 

NH3 ices (Satorre et al., 2013). 

 ϴIR = 12° the angle of incidence of IR beam on the window. 

The quantity of gas injected in the chamber was given by the pressure differential in the mixing 

chamber ΔP = Pfin - Pini with Pini and Pfin the pressure in the mixing chamber respectively before and after 

the injection of gas.  

When the IR spectra were subject to high uncertainties, i.e. for the 2020 experimental session (see below), 

a calibration factor k1 had to be introduced to relate the differential pressures and the thickness of the ice 

deposits, based on the thickness measurements performed in the previous experiments. The calibration 

factor 𝑘 =
𝑑

∆𝑃
 was equal to k1 = 1.14 for N2-CH4 (90:10) mixtures and k2 = 0.77 for NH3-CH4 (90:10) mixtures.  
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3.1.3.2. QMS monitoring 

The quadrupolar mass spectrometer allows to access to the composition of the deposited ices in the 

chamber by ionizing molecules in the gas phase during the deposition and collecting the resulting ions. 

Deposition of the 
lower layer of 
unlabeled ice 

Deposition of isotopically 
labeled layer 

(1.1 – 4.2% of the total 
volume) 

Deposition of the 
upper layer of 
unlabeled ice 

Heavy ion irradiation 

Figure 3-7. Top: sequential view of the formation and irradiation of an ice sample. The ice sandwich is formed by 
the deposition of three ice layers. The upper and lower layers are made of isotopically unlabeled ice. The central 
layer, isotopically labeled account for 1% to 5% of the total volume of the ice sample. Bottom: QMS spectra 
obtained during the experiment at GANIL monitoring the ice deposition and irradiation of W#3 2019 (sd3) 
consisting in N2-CH4 and 15N2 -CD4. The deposition of the unlabeled layers is characterized by a high signal of the 
m/z = 28 and 16 (respectively accounting for the CH4

- and N2
- ions). The labeled ice layer was made of 15N2 and 

CD4 and is characterized by a high signal of m/z = 30 and 20. 
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Ionization is achieved by electron impacts leading to a fragmentation pattern including smaller ionized 

fragments, which are subsequently detected according to their mass to charge ratio m/z. The ions 

collection by the QMS results in a mass spectrum, i.e. the abundance of the ions signals against their m/z 

values. 

We used the QMS set with an electron-impact ionization energy of 70 eV and recorded a mass spectrum 

in the m/z = 1—70 range each 13 seconds. Output files consisted in cubes of data containing the relative 

abundance of each m/z signal in function of the scan and thus the time (Figure 3-8). In this chapter, QMS 

data are represented under the form of a mass spectrum from the integration of multiple scans (Figure 3-9) 

or under the form of abundances vs. time graphs (Figure 3-7, bottom).  

 

Figure 3-7, bottom shows the correspondence between the steps of the deposition sequence and the 

QMS signal of major species contributing to the layers in the case of the sandwich Sd3 (2019, see section 

3.2). N2-CH4 deposits are characterized by strong signals at m/z = 28 (14N2
-), m/z = 14 (14N-, 12CH2

-) and m/z 

= 16 (12CH4
-) whereas the isotopically labeled layer made of 15N2-CD4-13CO (80:10:10) is characterized by 

signals at m/z = 30 (15N2
-), m/z = 15 (15N-), m/z = 20 (12CD4

-) and m/z = 29 (13CO-).  

The nature of the fragmentation patterns and the relative abundance follow probabilistic laws and 

varies with the electron energy. The signal contribution and abundance for a given molecule is obtained 

from its fragmentation pattern. We performed internal calibrations to derive the fragmentation pattern 

f(X,m/z) of an initial molecule X with m/z fragments (Dartois et al., 2020): 

𝑓(𝑋,𝑚 𝑧⁄ ) =
𝐼(𝑚 𝑧⁄ )

∑ 𝐼(𝑚 𝑧⁄ )𝑚
𝑧
=𝑋𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

 (5) 

with I(m/z) the measured intensities of the m/z fragments. We assumed that the fragmentation patterns 

of a molecule and its isotopologs are the same. When internal calibrations were not possible, we used the 

fragmentation pattern from the NIST database (https://webbook.nist.gov/chemistry/). The errors on the 

fragmentation patterns’ coefficients were estimated to range from 20% to 30% by comparing the 

calibrations’ results from one experiment to another. 

Mass spectra acquired during the deposition process resulted in the addition of the signals from 

multiple species present in the gas phase. In order to identify and quantify these components, we 

numerically modelled the experimental mass spectra Iexp(m/z) with linear combinations of the 

fragmentation patterns of the species likely to be present in the gas phase (Figure 3-9, top). The simulated 

Figure 3-8: graphical representation of the 

QMS data structure. A QMS data file is 
made of the compilation of QMS scans, 
each of them containing a mass spectrum 
ranging from m/z = 1 to 70. The duration 
of a scan is 13 seconds. Data can be 
visualized as single mass spectrum as 
shown here and in Figure 3-9Erreur ! 
Source du renvoi introuvable. or as the 
evolution of specific m/z signals over time 
(Figure 3-7, bottom). 

https://webbook.nist.gov/chemistry/
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intensity Isimu(m/z) of a m/z value in a mass spectrum was reconstructed from the fragmentation patterns 

f(Xj,m/z) of species contributing to this m/z value and their scaling factor α(Xj) by the relation: 

𝐼𝑠𝑖𝑚𝑢(
𝑚
𝑧⁄ ) =∑𝛼(𝑋𝑗) ∙ 𝑓(𝑋𝑗,

𝑚
𝑧⁄ )

𝑋𝑗

 (6) 

 

 

 

Figure 3-9: upper left, experimental mass spectrum integrated over the labeled layer deposition. It consists on the 
collection of the Iexp(m/z) intensities for each m/z. Upper right, simulated mass spectrum aiming to reproduce 
the experimental spectrum by a linear combination of the fragmentation patterns of the molecules assumed to 
be present. The simulated intensities are referred as Isimu(m/z). Bottom, final mass spectrum with the estimated 
contribution of each species Iest(Xj,m/z). Error bars are estimated from the difference between the experimental 
and simulated mass spectra. 
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The associated error was given by: 

𝛿(𝑚 𝑧⁄ ) =
|𝐼𝑠𝑖𝑚𝑢 − 𝐼𝑒𝑥𝑝|

𝐼𝑒𝑥𝑝
(7) 

Therefore, the simulated contribution of the Xj species in the total intensity Isimu(m/z) is: 

𝑖𝑠𝑖𝑚𝑢(𝑋𝑗,
𝑚
𝑧⁄ ) = 𝛼(𝑋𝑗) ∙ 𝑓(𝑋𝑗 ,

𝑚
𝑧⁄ ) (8) 

and the estimated abundance of the Xj species from the m/z intensity (Figure 3-9 bottom, bars of the 

same color) is given by: 

𝑖𝑒𝑠𝑡(𝑋𝑗,
𝑚
𝑧⁄ ) =

𝑖𝑠𝑖𝑚𝑢(𝑋𝑗 ,
𝑚
𝑧⁄ )

𝐼𝑠𝑖𝑚𝑢(
𝑚
𝑧⁄ )

∙ 𝐼𝑒𝑥𝑝(
𝑚
𝑧⁄ ) (9) 

The relative abundances A(Xj) were computed by averaging the abundances derived from each m/z 

intensities associated with a same species Xj: 

𝐴(𝑋𝑗) =
1

𝑁𝑓𝑟𝑎𝑔
∙

1

𝜎𝑖𝑚𝑝𝑎𝑐𝑡(𝑋𝑗)
∙ ∑

𝑖𝑒𝑠𝑡(
𝑚
𝑧⁄ )

𝑓(𝑋𝑗,
𝑚
𝑧⁄ )𝑁𝑓𝑟𝑎𝑔

 (10) 

with Nfrag the number of fragments of the molecule Xj and σimpact(Xj) the electron-impact ionization cross 

section of the molecule Xj at 70 eV (NIST database). 

Bulk isotopic ratios of the sandwiches were computed from the abundances integrated over the 

different layers of the ice sandwich. Figure 3-9 shows the integrated mass spectrum recorded during the 

labeled ice layer condensation of Sd3 (top left), the corresponding simulated mass spectrum (top right) 

and the identification of each contributing species (bottom) computed following this procedure. 

 

3.1.3.3. Heavy-ion irradiation 

Galactic cosmic rays mainly consist in protons (87%) and helium ions (11%). The remaining 2% of the 

GCR flux is driven by heavier ions accelerated during violent events such as supernovae. However, light 

ions such as protons and helium do not carry high kinetic energy due to their low mass. Rare and heavier 

ions, conversely, can reach energies high enough to compete with protons in term of doses deposited into 

solid targets as ices (Figure 3-10, left, and Figure 3-11). The GCR flux reaches its maximum for ions with about 

60 MeV/amu (Figure 3-11). Our experiments used low-energy ion beams (0.5 MeV/amu) to model the 

impact of the GCR on nitrogen-rich ices. Despite the difference between the energies of the GCR ions and 

the ones reached in the accelerator, scaling factors in the energy deposition allow the experimental model 

to be adjusted. 

When passing through the ice, ions deposit energy via elastic and non-elastic collisions with the ice 

molecules. A non-elastic collision corresponds to the interaction between the electron clouds of the ion 

and the molecule/solid. The energy transferred via such collisions per unit of distance is referred to as 

electronic stopping power Se and is responsible for the chemical radiolysis of the ice. Elastic collisions result 

from coulomb interactions of the ion with the repulsive potential of the atoms constitutive of the solid 

and the associated energy deposit is called nuclear stopping power Sn. The values of the electronic and 

nuclear stopping powers depend on the energy of the ion. Thus, in specific energy regime, one component 
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can be cancelled (see Figure 3-10, right). The stopping power (in MeV/µm) of an ion with an energy E is the 

sum of the electronic and nuclear stopping power: 

𝑆(𝐸) = −
d𝐸

d𝑥
= 𝑆𝑒(𝐸) + 𝑆𝑛(𝐸) (11) 

S depends on the nature of the ion, its initial energy and the nature of the target material. Bringa (2003) 

reported that iron ions in the energy range representative of the GCR deposit hundred times more energy 

than protons in water ice (Figure 3-10, left). Since the stopping power depends on the energy of the ion 

(Figure 3-10, right), the dose deposited in a target is given by the combination of the energy distribution of 

the GCR and the relative abundance of the ions of the GCR (Figure 3-11). 

 

 

The ion penetration distance R in the target before stopping can be computed as follow at the first 

order: 

𝑅 = ∫
1

𝑆(𝐸)
d𝐸

𝐸𝑖𝑛𝑖

0

 (12) 

However, energy loss and deviation factors that will affect the ion trajectory can be taken into account 

in a more refined approach. The effective penetration distance of the ion in the target is given by the 

projected range Rp. During the 3 experimental sessions, we irradiated the ice films with 3 different ions: 
58Ni9+ (33 MeV), 136Xe19+ (75 MeV) and 86Kr15+ (74 MeV). We computed the stopping power S(E) and the 

projected range Rp associated to these ions with the SRIM software (Ziegler et al., 2010). In our 

experiments, the thicknesses of the irradiated ices were chosen in order to prevent ion implantation within 

the ice, ensuring a fair homogeneity in the deposited energy and the domination of electronic energy 

Figure 3-10. Left : stopping power of H, He and Fe in water ice from Bringa (2003). The nuclear stopping power is 
indicated by dashed lines and the electronic stopping power with solid lines. Right: nuclear and electronic stopping 
power of Al ions in an aluminum target (credit H. Paul). 
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deposition over nuclear energy deposition (Figure 3-12). Ions deposit their energy in the ice and their 

implantation occurs eventually in the substrate window behind. 

 

 

The quantification of the ice processing by irradiation is determined through the dose D (in 

eV·molecule-1) i.e. the energy deposited per molecule. It is given by the fluence Φt (the quantity of ions 

Figure 3-11 : Ion stopping power in keV/µm as a function of the projectile energy for various accelerated ions from Augé 

(2017)). The colored band correspond to the energies for which the GCR flux is maximal. 

Figure 3-12, left: electronic stopping power of the 3 ions used during the experimental sessions plotted against 

the thickness of an N2-CH4 (90:10) ice. The deposited energy in the ice decreases with the thickness, i.e. with the 
energy of the ion. The thicknesses of the ice films were established to avoid ion implantation in the ice. Right: 
evolution of the ratio between the nuclear and electronic stopping powers in function of the ice thickness for the 
3 ions used in the experimental sessions. For thickness below 12 µm, the nuclear stopping power remains 10 times 
lower than the electronic stopping power for the 3 considered ions. 
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per cm² that have impacted the ice over time), the mean stopping power in the ice 〈S〉 (in MeV/µm), the 

Avogadro constant NA, the density ρ (in g.cm-3) and the molar mass M (g.mol-1) of the target: 

𝐷 = 𝛷𝑡 ∙ 〈𝑆〉 ∙
𝑀

𝜌𝑁𝐴
∙ 1010      𝑒𝑉 ∙ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1 (13) 

In our case, the mean stopping power 〈S〉 is largely dominated by the mean electronic stopping power 

〈Se〉 due to the negligible values of the nuclear stopping power (see Figure 3-12, right). The evolution of the 

ice was monitored in situ with the infrared spectrometer and the irradiation was stopped at a dose Dtot, 

ranging from 8.2 to 21.8 eV·molecule-1. Such doses correspond to several million years of exposure in the 

outer solar system (Augé et al., 2016). 

 

3.1.3.4. Annealing process 

Despite the formation of organic radicals (i.e. reactive chemical species formed by the irradiation 

process), at the end of the irradiation ices and volatile radiolytic products remain major components in 

the film (e.g. Augé et al. (2019) and references therein). A slow annealing from 10 K to room temperature 

(i.e. 300K) was performed to sublimate the remaining ice allowing to concentrate the refractive molecules 

on the substrate windows. It is mandatory to use a very slow temperature ramp (<0.5 K/min) to, somehow, 

simulate a slow evolution in a space environment and to avoid explosive events due to fast sublimation of 

gas, which could blow the whole residue by volcano effect (Burke and Brown, 2010). 

Thanks to the QMS and IR monitoring, we identified on-line the temperature of sublimation of some 

major components within the ice all along the annealing process (from 20 to 28 hours). The simplest 

species were identified for the purpose of the presented analysis, but a comprehensive identification of 

all chemical species released during the ice sublimation was not performed yet due to the complexity of 

the identification of such complex mixture in the QMS data. 

 

3.1.4. NanoSIMS isotopic mapping of the residues 

Organic refractory residues formed at GANIL were analyzed by NanoSIMS to map their isotopic 

heterogeneities. The NanoSIMS sessions took place at Institut Curie (Orsay, France) during the summers 

2019, 2020, 2021, with the NanoSIMS-CAMECA 50 instrument in collaboration with Dr. T.-D. Wu (Figure 

3-13). 

 

3.1.4.1. The NanoSIMS sample preparation 

We used a Cs+ primary ion beam to analyze the residues with the NanoSIMS instrument. At the impact, 

molecules, atoms and electrons are ejected from the surface. An electric field extracts the ionized fraction 

and inject it into the mass spectrometer (see section 2.2). This process implies the potential accumulation 

of local electric charges on the sample surface that need to be evacuated. An inefficient evacuation of the 

charges is likely to give rise to an interfering electric field which can deteriorate or impede the continuity 

of the analysis (see annex 5.2). 
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To prevent analytical issues due to charge accumulation, the samples were coated with a 40 nm thick 

layer of gold by plasma deposition. When possible, half of the substrate window was left uncoated to 

perform subsequent complementary analyses (Figure 3-13, right). As charging effects occurred during the 

first experimental session (2019) due to the insulating nature of the ZnSe substrate windows, we opted 

for more conductive Si substrate windows for the 2020 and 2021 experiments. The nature of the substrate 

windows had to satisfy the requirements associated with both transparency in IR spectroscopy and 

NanoSIMS mass spectrometry. 

 

 

 

3.1.4.2. The NanoSIMS analytical conditions 

The goal of the NanoSIMS analyses was to map simultaneously the D/H, 15N/14N and 13C/12C 

heterogeneities in the refractory residue. It was achieved by multi-collection of ions 13C14N-, 12C15N-, 12C14N-

, 12CD- and 12CH-. Since 13C14N- and 12C15N- ions are both located at m/z =27, we used a switching mode to 

collect alternatively the two ions, as described in Figure 3-14. Mass spectra at mass 14 and 27 acquired on 

the Sd4 sample are shown in the Figure 3-15. Peaks of the different ions at these masses are well separated 

allowing measurements to be performed. 

Figure 3-13: left, picture of the NanoSIMS at Institut Curie, Orsay, France. Right, ZnSe window in the NanoSIMS 

dedicated holder prior the analysis in June 2019. Half of the substrat window has been gold-coated. 
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Figure 3-14: Acquisition mode used to monitor simultaneously the D/H, 13C/12C and 15N/14N ratios in a same 

area of the organic residue. The detector 4 acquired alternatively 13C14N and 12C15N maps by switching the 
voltage of the exit plates. 12C14N maps measured by the detector 3 were used to compute the 13C/12C and 
15N/14N ratios. 

Figure 3-15: NanoSIMS mass spectrum around the mass 14 (left) and 27 (right) acquired during the 2020 

experimental session at Institut Curie. 13CH-, CD- and CH2
- have very close positions but are well separated. 12C15N- 

and 13C14N- ions are well separated, no pollution of 11B16O- was observed in the samples. 
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3.2  The 3 experimental sessions at GANIL 

3.2.1. The irradiation conditions for the different ices mixtures  

The irradiation experiments took place at GANIL during about a week in May 2019, February 2020 and 
May 2021 (see Table 3-1). Each experimental session was conducted with the ions available at the time of 
the session at GANIL, different for the 3 experimental sessions. We thus adapted the ion fluence to the ion 
stopping power, to remain in the same range of doses deposited in the ice. Each ice film was formed with 
the same protocol as described in section 3.1.3.1. The isotopically labeled layer at the center of the ice film 
accounted for 1.1 to 4.2 % of the total ice volume. Labeled layer proportions in the total ice sandwich were 
kept low enough to provide a well-defined spatial heterogeneity but high enough to allow sufficient 
counting in the NanoSIMS images.  

Due to alignment issues of the FTIR IR spot and high levels of water in the MCT detector during the 

2020 session, the in-situ IR spectra of the residues were not exploitable in that session. In 2021, the spatial 

distribution of the produced residues formed from NH3-dominated ices was too irregular to obtain IR 

spectra during the annealing (see section 3.2.3.2). Additional IR spectra of the residues Sd5, Sd7 and Sd8 

were thus taken with a FTIR microscope spectrometer after extraction of the substrate windows from the 

IGLIAS chamber. These spectra allowed to compare the compositions of each residue formed during the 

different experimental sessions. 

 

Date 
GANIL 

May 2019 February 2020 May 2021 

Ion beam (a) 58Ni9+
 
(33 MeV) 136Xe19+ (75 MeV) 86Kr15+ (74 MeV) 

Sample name 
(b) 

Sd1 Sd2 Sd3 Sd4 Sd5 Sd6 Sd7 Sd8 Sd9 

Main ice (c) N2-CH4 
(90:10) 

N2-CH4 
(90:10) 

N2-CH4 
(90:10) 

N2-CH4 
(90:10) 

N2-CH4 
(90:10) 

N2-CH4 
(90:10) 

N2-CH4 
(90:10) 

NH3-CH4 
(89:11) 

NH3-CH4 
(89:11) 

Labeled ice (d) 15N2-CD4 
(89:11) 

15N2-CD4 
(89:11) 

15N2-CD4-
13CO 
(9:1:1) 

15N2-13CD4 
(88:12) 

15N2-13CO 
(88:12) 

15ND3-
13CD4 (1:1) 

15N2-CD4-
13CO 
(73.7: 
12.5: 
13.8)  

15ND3-
13CH4 
(89:11) 

15ND3-
13CH4  
(1:1) 

Ice film 
thickness (e) 
(µm) 

8.3 (*) 11.6 (*) 11.7 (*) 8.3 (†) 11.8 (†) 11.8 (†) 13.4 (*) 8.0 (*) 7.7 (*) 

Labeled ice 
contrib. (f) 1.1 % 1.8 % 1.7 % 4.0 % 2.9 % > 3.5 % 

3.6 – 
4.2 % 

3.6 % 3.4 % 

Mean 
stopping 
power 
(Mev/µm) (g) 

2.9 2.4 2.4 5.1 4.4 4.4 4.15 4.95 4.95 

Projected 
range (µm) (h) 

23 23 23 26 26 26 29 27 27 

Dose (i) 
(eV.molec-1) 

8.2 11.3 9.9 25.2 17.4 21.8 15.3 16.4 16.8 

µ-FTIR data (j) - - - - Jun. 2021 - Jun. 2021 Jun. 2021 - 

Date 
NanoSIMS (k) 

- June 2019 Aug. 2019 Sep. 2020 Sep. 2020 Sep. 2020 July 2021 July 2021 - 

Substrate 
windows (l) 

ZnSe 
Ø 20mm 

ZnSe 
Ø 20mm 

ZnSe 
Ø 20mm 

7 × Si 
Ø 5mm 

7 × Si 
Ø 5mm 

7 × Si 
Ø 5mm 

Si 
Ø 20mm 

Si 
Ø 20mm 

Si 
Ø 20mm 
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Table 3-1: Summary of the 3 experimental sessions of ice irradiation at GANIL. (a) ion used during ice irradiations, 
with the total energy of the ion. (b) Name of the sample. (c) Composition of the main ice in the deposit. (d) Composition 
of the isotopically labeled ice. (e) Thickness of the whole ice film estimated with IR measurements (*) or by pressure 
difference (†). (f) Proportion of the isotopically labeled layer in the ice film estimated by pressure difference ratios. (g) 
Mean stopping power of the ion within the ice computed with SRIM. (h) Projected range computed with SRIM. (i) Dose 
deposited in the ice film. (j) Additional µ-FTIR data acquired after the GANIL experiment. (k) Dates of the NanoSIMS 
analyses of the refractory residues. (l) Nature and diameter of the substrate windows used for the irradiation 
experiments. 

 

3.2.2. The chemical and isotopic composition of the ice mixtures 

3.2.2.1. N2-dominated ices 

Infrared spectra of N2-CH4-dominated ice films (i.e. Sd1, 2, 3, 4, 5, 6, 7) display a limited number of 

bands (see e.g. Sd7 spectrum in black in Figure 3-16) due to the low absorption of the N2 molecule (de 

Barros et al., 2015). Similarly, no bands are associated with the 15N2 molecule when present in the 

isotopically labeled layer. The strongest bands are due to the CH4 modes and their combinations. CD4 

bands were observed at 11K (Augé et al., 2019; He et al., 2010). The relative optical depths S of the CD4 

bands at 2251 cm-1 (ν3) and 990 cm-1 (ν4) and the CH4 bands at 3021 cm-1 (ν3) and 1305 cm-1 (ν4) were used 

to estimate the D/H ratio of the ice sandwiches prior irradiation, following the equations 2 and 3 (Augé et 

al., 2019): 

(
𝐷

𝐻
)
𝐼𝑅
≈
𝑆𝐶𝐷4
𝑆𝐶𝐻4

×
𝜈𝐶𝐻4
𝜈𝐶𝐷4

 (14) 

In the Sd4 ice sandwich, 13CD4 was used instead of CD4. The ν3 and ν4 bands were found close to that of 

CD4 at 2249 cm-1 and 991 cm-1 respectively. Equation (14) was used to derive the 13C/12C ratio since the 13C 

and D were carried by the same 13CD4 molecule.  

In Sd3, 5 and 7, the presence of 13CO was indicated by the band at 2092 cm-1 (Gerakines et al., 1995). 

The 13C/12C ratio is derived by the integration of the CH4 band at 1305 cm-1 and the 13CO band at 2092 cm-

1: 

(
𝐶 

13

𝐶 
12 )

𝐼𝑅

=
𝑆 𝐶𝑂 
13

𝐴( 𝐶𝑂 
13 , 2092 𝑐𝑚−1)

(
𝑆𝐶𝐻4

𝐴(𝐶𝐻4, 1305 𝑐𝑚
−1)

+ ∑
𝑆𝑖
𝐴𝑖

𝐴𝑑𝑑 𝐶 
12

)⁄  (15) 

where S are the optical depths, A the band strengths and the summing term accounts for the contribution 

of the minor 12C-bearing molecules (CD4, CO and CO2 contamination). In all ice sandwiches, the CO2 bands 

at 660 cm-1 and 2343 cm-1 were used to quantify the CO2 ice contamination. CO contamination was 

estimated with the band at 2139 cm-1. 

All the identified bands are reported in the Table 3-2 along with their band strength when documented. 

At the end of the ion irradiation of the ices, at a temperature of about 10K, the complex signatures of 

the irradiation-induced compounds are observed in the spectra (Figure 3-18, left). These new molecules 

are formed from the reaction of the N2 and CH4 atoms when processed by the ions. 13CO incorporated in 

the ice sandwich as well as CO and CO2 contamination in the chamber are observed with the bands at 2092 
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cm-1, 2139 cm-1 and 2343 cm-1. They lead to the formation of oxygenated molecules such as HNCO (2260 

cm−1) and OCN- (2170 cm−1) (Augé et al., 2019; Muñoz Caro and Schutte, 2003; Schutte, 2002)  

3.2.2.2. NH3-dominated ices 

Ice films made of the NH3-CH4 mixture present a more complex IR signature as shown on the Figure 3-16 

(Sd8, red line). The 3 main features of the NH3 ice at 10K were reported in the literature (Bouilloud et al., 

2015; D'Hendecourt and Allamandola, 1986; Holt et al., 2004). They are observed at (ν3- ν1) = 3420-3120 

cm-1, ν4 = 1626 cm-1 and ν2 = 1070 cm-1 on Figure 3-17 and Figure 3-16. A spectrum of NH3-CH4 (9:1) ice was 

recorded after the deposition of the first half of the lower layer of Sd8 (Figure 3-17, Figure 3-7, step 1). The 

column densities derived from the ν3- ν1, ν4 and ν2 features are in good agreement: N(ν4) = 5.7·1018 cm-2, 

N(ν3- ν1) = 5.7·1018 cm-2, N(ν2) = 6.0·1018 cm-2. Assuming an ice density of ρ(NH3) = 0.67 g.cm-3 (Satorre et 

al., 2013) and a molecular mass M(NH3) = 17.0 g.mol-1, we derived the ice thickness 〈𝑑𝐼𝑅〉 = 2.5 ± 0.5 µm. 

The thickness dosc estimated from the oscillation pattern (see section 3.1.3.1) was 𝑑𝑜𝑠𝑐 = 2.3 ± 0.1 µm. 

These three features allow to quantify the NH3 column density in the ice films. In the complete ice films 

Sd8 and Sd9, the (ν3- ν1) and ν2 bands were saturated, thus NH3 quantification was performed with the ν4 

band.  

The positions of the corresponding bands for the 15ND3 molecule were derived from the ND3 bands 

reported by Holt et al. (2004) at 25 K since the shift in wavenumber is not expected to be larger than 10 

cm-1. In the Table 3-2, first column, the bands associated with the ND3 molecule are reported together with 

the band positions attributed to the 15ND3 in the Sd8 and Sd9 spectra. The column density of 15ND3, 

N(15ND3), was derived from the bands at ν3 = 2490 cm-1 and ν2 = 833 cm-1 with the equation 2. The 

uncertainty on the determination of N(15ND3) is given by the difference between the results from the two 

bands. The D/H and 15N/14N ratios were then determined as follow: 

(
𝐷

𝐻
)
𝐼𝑅
=

𝑁( 𝑁 
15 𝐷3)

(𝑁(𝑁𝐻3) +
4
3𝑁
(𝐶𝐻4))

 (16)
 

(
𝑁 

15

𝑁 
14 )

𝐼𝑅

=
𝑁( 𝑁 

15 𝐷3)

𝑁(𝑁𝐻3)
 (17) 

 

In Sd6, Sd8 and Sd9, the 13C-carriers were 13CH4 molecules. No specific bands of 13CH4 were identified 

due to their small shift with respect to the bands of CH4. Measurements of the 13C/12C ratio in these 

samples were thus not achievable with the IR spectra. No signature of oxygen bearing molecules were 

observed in the ice spectra. 

At the end of the irradiation, signatures of irradiation-induced compounds are observed (Figure 3-18). 

The identified bands are listed in the Table 3-2. Based on the ν2 and ν3 NH3 bands, about the half of the 

ammonia molecules are still present in the irradiated ice film. 
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Figure 3-16: Comparison of the IR spectra of the Sd8 (main ice NH3-CH4) (red) and Sd7 (main ice N2-CH4)  (black) 

ice sandwiches. Bands associated with the NH3 molecules dominate the Sd8 spectrum (see Figure 3-17). Bands of 
13CO, 13CO2 and CO2 are visible in the Sd7 spectrum (zoom box). CH4 bands appear in both spectra. 

Figure 3-17: IR spectra of a partial (blue) and full 

(red) ice layer. The first layer (thickness 2.3 µm) 
of NH3-CH4 ice (blue) and of the whole ice on Sd8 
prior irradiation (red) before baseline 
substraction. The 3 main bands associated with 
the NH3 ice are observed at 1626 cm-1, 1070 cm-

1 and between 3420-3120 cm-1(see text). Their 
integrations allow to derive the column density 
of NH3. All of them were found relevant to 
provide measurements of the column density. In 
the Sd8 spectrum, the 3420-3120 cm-1 and 1070 
cm-1 were saturated. The quantification of NH3 
was made with the 1626 cm-1 band. Comparison 
between the blue and red spectra allows to 
identify bands associated with the 15ND3 of the 
labeled layer at 2489 cm-1 (zoom box) and 816 
cm-1.  
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Table 3-2: List of the identified IR bands in the ice sandwich prior and after irradiation. (1) Position of the band in cm-

1. Values in parentheses correspond to the effective positions of the IR bands in the experimental spectra.  (2) Molecule 
associated with band. (3) Assignment. (4) Oscillator strength (10-17 cm/molecule). (5) References where the bands 
have been identified. Adapted from Augé et al. (2019). 

Wavenumber 
cm-1 (1) 

Identification (2) 
Assignement 

(3) 
A 

× 10−17cm ∙ molec−1 (4) 
References (5) 

4538 CH4 ν2 + ν4  a 

4502 CD4 2ν3 + νL  b 

4477 CD4 2ν3  c 

4337 CH4 ν3 + ν4  a 

4327 CH4 ν3 + ν4  a 

4318 CH4 ν3 + ν4  a 

4310 CH4 ν3 + ν4  a 

4194 CH4 ν3 + 2ν4  c 

4122 CH4 2ν1 + ν4  a 

3852 CH4 3ν4  a 

3708 (3710) CO2 ν1 + ν3 0.14 t, u 

3371 (3369) NH3 ν3 1.1 q 

3420-3120 NH3 Large band 2.2-3.0 q, r 

3270 H-C=C-R ν(C-H)  d 

3226 CD4 ν3 + ν4  c 

3217 (3211) NH3 ν1  s 

3091 CD4 ν1 + ν4  c 

3087 CD4 ν1 + ν4  c 

3010 CH4 ν3 0.64 q 

2985 C2H6 ν10  d 

2983 CHD3 ν1  c 

2926 CD4 3ν4  c 

2914 CH4 ν1  a 

2832 CH4 ν2 + ν4  a 

2827 CH4 ν2 + ν4  a 

2826 CH4 ν2 + ν4  a 

2820 CH4 ν2 + ν4  a 

2814 CH4 ν2 + ν4  a 

2617 CH4 ν2 + ν4  a 

2602 CH4 2ν4  a 

2597 CH4 2ν4  a 

2503 (2489) ND3 (15ND3) ν3  s 

2402 C2D2 ν3  e 

2347 N2 ν1 0.0015 f 

2343 (2348) CO2 ν3 7.6  

2328 N2 ν1 0.00022 f 

2326 (2321) ND3 (15ND3) ν1  s 

2283 13CO2 ν3 7.8 t 

2251 (2256) CD4 ν3  c 

2242 CD4 ν3  c 
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2237 13CD4 ν3  c 

2212 C2H4N4   g 

2139 CO  1.1 h 

2100 HCN   i 

2092 13CO  1.3 t, u 

2091 CN-   j 

2073 CD4 ν2 + ν4  c 

2040 
 associated with 

13CO 
  t 

2036 HNC ν3  k 

1975 CD4 2ν4  c 

1918     

1887 C2HD ν2  e 

1656 N3  0.0072 l 

1626 NH3 ν4 0.47 - 0.56 m 

1465 C2H6  0.416 n 

1454 NH4
+ ν4  o 

1305 CH4 ν4 0.61 a 

1070 (1073) NH3 ν2 2.1 – 1.7 m, r 

990 CD4 ν4  c 

833 (816) ND3 (15ND3) ν2 5.6 s 

825 C2H6 ν12 1.6 p 

757 C3H8   d 

660 (662) CO2 ν2 1.1 T, u 

(a) Bennett and Kaiser (2007) (b) Calvani et al. (1989) (c) He et al. (2010) (d) Gerakines et al. (1996) (e) 

Bottger and Eggers (1964) (f) de Barros et al. (2015) (g) Gerakines et al. (2004) (h) Palumbo and Strazzulla 

(1993) (i) Burgdorf et al. (2010) (j) Moore and Hudson (2003) (k) Wu et al. (2013) (l) Hudson and Moore 

(2002) (m) Sandford and Allamandola (1993) (n) Moore and Hudson (1998) (o) Schutte and Khanna (2003) 

(p) Öberg et al. (2009) (q) D'Hendecourt and Allamandola (1986) (r) Bouilloud et al. (2015) (s) Holt et al. 

(2004) (t) Gerakines et al. (1995) (u) Isokoski et al. (2013). 
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3.2.3. Characterization of the residues 

3.2.3.1. Residues from N2-dominated ice films. 

All the organic residues obtained from the different irradiation sessions of N2-dominated ices (Sd1, 2, 

3, 4, 5, 6, 7) share similar IR spectra, showing that the chemical nature of the residue is driven by the nature 

of the ice mixture (Figure 3-19).  

However, the morphology of the residues changed from one experimental session to another (Figure 

3-20). Residues Sd1, 2 and 3 from the 2019 session display a compact and homogeneous structure divided 

in islands with thicker organic residue and valleys with thinner material. Measurements of the Sd2 residue 

with an atomic force microscope (AFM) indicated a typical heights hislands = 130-160 nm and hvalleys = 30-60 

nm for the islands and the valleys respectively. The residues Sd4, 5 and 6 from 2020 experiment exhibit 

larger patches of matter separated by empty furrows. The furrows’ lateral thickness slightly varies in the 

residue. Particularly, in the Sd4 residue, small concentric holes are observed (see Sd4, Figure 3-20). These 

holes are most probably due to the formation of bubbles during the slow sublimation process at the end 

of the experiment. The occurrence of such bubbles is most probably due to an imperfect thermal 

conductivity between the small 5 mm Si windows used in the sample holder. During the 2020 experimental 

session, several 5 mm Si windows did not exhibit any residue at the end of the annealing process, strongly 

suggesting an imperfect thermal contact that may have causes an uncontrolled rapid heating of the ices 

and a brutal volatilization or/and removal of both the ices and the irradiation-induced residue precursors. 

Notably, around the holes of Sd4 residues, smaller patches of organic matter are observed; we will come 

back to these peculiar patches in section 3.3.1.  

 

Figure 3-18: Evolution of the Sd7 (left) and Sd8 (right) ice films under irradiation up to ~7x1012 ions/cm2. At the 
end of the irradiation, complex compounds have formed. Large quantities of NH3 remains in the case of Sd8.  
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Figure 3-19: IR spectra of organic residues formed from the ion-iradiation of ices. Spectra of residues formed from 
N2-CH4 ices are similar. The spectrum reported by Augé et al. (2019) is plotted with dashed lines for comparison. 
The IR spectrum of Sd8 has a feature between 2100 and 2300 cm-1 (C≡N/N≡C) showing that the residue present 
a chemical composition different from the other residues (black arrow). 
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Figure 3-20: optical images of the residues taken with the 

NanoSIMS integrated CCD. The white scale bar 
corresponds to 200µm. Sd2 and Sd3 residues, formed 
during the 2019 session are dense, with areas where the 
matter is thicker (islands) and areas where the matter is 
thinner (valleys). 2020’s residues Sd4, #5 and #6 display a 
less dense structure. The matter concentrates in larger 
islands with no matter present in the gaps between them. 
Finer structure is observed in Sd4, around holes that may 
be due to bubble formation during annealing. These fine 
spots are isotopically highly enriched in D, 15N and 13C and, 
in some case, lay close to isotopically depleted areas. The 
Sd8 residue result from the irradiation of a NH3-CH4 ice, it 
is concentrated in large droplets. 

Sd2 (2019) 
N2-CH4 

ZnSe 20mm 
58Ni (33MeV) 

Sd3 (2019) 
N2-CH4 

ZnSe 20mm 
58Ni (33MeV) 

 

Sd4 (2020) 
N2-CH4 
Si 5mm 

136Xe19+ (75MeV) 

 

Sd5 (2020) 
N2-CH4 
Si 5mm 

136Xe19+ (75MeV) 

 

Sd6 (2020) 
N2-CH4 
Si 5mm 

136Xe19+ (75MeV) 

 

Sd7 (2021) 
N2-CH4 

Si 20mm 
86Kr15+ (74MeV) 

Sd8 (2021) 
NH3-CH4 
Si 20mm 

86Kr15+ (74MeV) 
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3.2.3.2. Residues from NH3-dominated ice films 

The annealing of sandwiches Sd8 and Sd9, made of NH3-dominated ice, led to the formation of several 

hundred microns large patches of organic residues separated by large empty areas (Figure 3-21, right) 

preventing the recording of relevant in-situ IR spectra due to the lack of homogeneous film of material in 

the line of sight. Subsequent IR measurements and optical images of Sd8 residue were taken with a µ-FTIR 

spectrometer after extraction of the substrate windows from the IGLIAS chamber (see Figure 3-21, left and 

Figure 3-19). Figure 3-19, bottom shows the spectrum of a spot of matter of the Sd8 residue. Following the 

methodology described in section 3.1.3.1, the thickness of the spot can be derived from the fringe pattern 

observed between 5000 and 3600 cm-1. Assuming a refractive index n = 1.55 for the Sd8 residue, classical 

of poly-HCN residue (Khare et al., 1994), one gets a thickness of 5.7 µm. The spots of residue formed from 

NH3-dominated ice are therefore scattered over the window, but up to 30 times thicker than the more 

homogeneously distributed residues formed from N2-dominated ice during the same experimental session 

(Figure 3-21, left).  

 

3.2.4. Isotopic mapping of the residues 

Isotopic mappings of the residues were obtained at the NanoSIMS instrument at Institut Curie during 

4 sessions in 2019, 2020 and 2021. The analytical conditions of the different NanoSIMS sessions are 

detailed in the annex 5.2.1. The analyses of samples Sd2 and Sd3 were limited to about 300 frames’ 

acquisitions due to the charging effects (see annex 5.2). After 300 frames, the residual charges on the 

samples caused the deviation of the secondary ion beam resulting in the extinction of the image. This issue 

was resolved in the 2020 and 2021 experiments by replacing the ZnSe substrate windows by conducting 

Si substrate windows. Thanks to these new windows, the 2020 and 2021 NanoSIMS sessions were 

remarkably stable allowing acquisitions of more than 1000 frames on a given area. In order to obtain a 

sufficient counting statistic on isotopic images, CH- and CD- frames were stacked by 100 while 12C14N-, 

Figure 3-21: optical mosaic of the 2021 residues Sd7 (left) and Sd8 (right) on the 20 mm large Si substrate windows. 
Sd7 residue has the characteristic shape of residue obtained with N2-dominated ices with a homogeneous structure 
on the substrate window. Sd8 residue is the one obtained with NH3-dominated ice, the matter is concentrated 
around smaller spots but much thicker, up to 5 µm in height. 
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13C14N-, 12C15N- frames were stacked by 50. Given that measurements with the switching mode presented 

in section 3.1.4.2 result in 2 times more CH- and CD- frames than 12C14N-, 13C14N-, 12C15N- frames, the 

synchronization of the two group of stacked frames was preserved. 

 

3.2.4.1. Isotopic images of residues from N2-CH4 ices. 

Sd3 and Sd7 ice films had the same layer composition: 15N2-CD4-13CO.  

Residue Sd3 (N2-CH4 ; 15N2-CD4-13CO)  

The concentration of labeled ice in Sd3 was about 1.7% (Table 3-1) but the NanoSIMS secondary CD- 

emission was too low to measure precisely the D/H ratio over 300 frames. Longer NanoSIMS analyses to 

increase the CD- counting were not possible due to the charging effects. 15N/14N and 13C/12C have been 

measured in the 2 first stacks of the analyses. The islands and valleys visible on the CCD images (see Figure 

3-20) appear on the ratio images, revealing that these two features have different isotopic compositions. 

Though, valleys are made of lower quantities of matter allowing measurements only in the 2 first stacks 

of the acquisition.  

 

Figure 3-22 is based on the analysis of the second stack. Points reported in the right panel are the mean 

values of the pixels contained in the mesh cells on the ratio images (left panel). An anti-correlation of the 
13C/12C and 15N/14N ratios is observed: valleys are enriched in 13C and depleted in 15N whereas islands are 

richer in 15N and depleted in 13C. However, this peculiar behavior was not observed in the other residues 

from this work (see below) and thus, given the difficult analysis conditions on that window, it remains to 

be confirmed by future experiments. In the islands, the mean ratios are well defined: ⟨15N/14N⟩islands = 

(2.4±0.2)·10-2, ⟨13C/12C⟩islands = (2.4±0.2 )·10-2. The nitrogen isotopic composition of the valley is well 

constrained with ⟨15N/14N⟩valleys = (1.8±0.3)·10-2, but its 13C/12C composition is less well constrained and 

ranges from 0.03 to 0.05. The ratios measured in the Sd3 residue are in fair agreement with the 

Figure 3-22. Left: 15N/14N ratio image of the Sd3 residue. Measurements of the 13C/12C and 15N/14N ratios were 
made according to a hexagonal mesh (top left of the image). Right: mean 13C/12C and 15N/14N ratios measured 
in the cells of the hexagonal mesh. The error bars are equal to the standard deviation of the cells’ values. The 
approximate isotopic ratios of the initial ice film estimated from the QMS data and partial pressure are reported 
in blue and green. 
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approximate bulk ratios estimated from the QMS data and the partial pressure measurements 

(respectively blue and green error bars on Figure 3-22. Left: 15N/14N ratio image of the Sd3 residue.Figure 3-22).  

Residue Sd7 (N2-CH4 ; 15N2-CD4-13CO) 

Four analyses were performed in different areas of the Sd7 residue. They revealed a diversity of isotopic 

ratios as shown in Figure 3-23. Three main isotopic poles are identified: 

 A cold endmember with (15N/14N)cold = (3.0 – 8.0)·10-2, (13C/12C)cold = (2.0 – 4.0)·10-2 and 

(D/H)cold = (1.0 - 5.0)·10-2. 

 A medium dominant component with (15N/14N)medium = (10.0 – 15.0)·10-2, (13C/12C)medium = 

(4.0 – 7.0)·10-2 and (D/H)medium = (5.0 - 9.0)·10-2. 

 A hot endmember with (15N/14N)hot = (17.0 – 20.0)·10-2, (13C/12C)hot = (7.0 – 8.0)·10-2 and 

(D/H)hot = (10.0 – 12.0)·10-2. 

 

In Sd7, the enrichments in 15N/14N, 13C/12C and D/H are clearly correlated and spread along straight lines 

(Figure 3-23, bottom panels) defining mixing lines between the main isotopic composition and the 15N, 13C 

and D rich end-members. Such feature indicates that the residue keeps the memory of the layered 

structure of the original ice film. D/H values exhibit a larger spread compared with 15N/14N and 13C/12C that 

might be the result to the lower mobility of the D and H atoms in the ice during the irradiation and the 

warming sequence. 

Figure 3-23. Top left and right: 15N/14N ratio images of 2 zones of the Sd7 residue. Bottom: 13C/12C (left), D/H 
(right) and 15N/14N ratios measured in the 4 analyzed zones of the Sd7 residues according to the hexagonal mesh 
(see text). Estimated isotopic ratios of the ice film are reported in blue (QMS) and green (partial pressure). 
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While the average 13C/12C and D/H ratios measured in the residue are close to the estimated bulk ratio 

of the ice film (blue and green error bars in Figure 3-23), the 15N/14N ratios measured in the residue are 

substantially higher than those estimated from the bulk ratio of the ice film. This underestimation of the 
15N2 in Sd7 may result from an observed small leak between the volumes of 15N2 and N2-CH4 in the mixing 

line during the 2021 experimental session.  

Residue Sd4 (N2-CH4 ; 15N2-13CD4) 

The labeled ice layer of Sd4 was made of a 15N2-13CD4 (9:1) mix. The vast majority of the residue consists 

in islands of matter (Figure 3-20) that exhibit homogeneous isotopic compositions. Strikingly, large isotopic 

heterogeneities are observed in patches of matter at the vicinity of holes (Sd4 on Figure 3-20 and Figure 3-24). 

Two NanoSIMS analyses performed in these regions revealed 3 well-defined isotopic poles, stable along 

the analyses (Figure 3-24 and Figure 3-25): 

 A cold endmember with (15N/14N)cold = (1.0 – 2.0)·10-2, (13C/12C)cold = (1.5 – 2.0)·10-2 and 

(D/H)cold = (0.2 – 0.8)·10-2. 

 A medium dominant component with (15N/14N)medium = (3.5 – 6.5)·10-2, (13C/12C)medium = (3.0 

– 6.0)·10-2 and (D/H)medium = (1.5 – 3.5)·10-2. 

 A hot endmember with (15N/14N)hot = (8.0 – 10.0)·10-2, (13C/12C)hot = (8.0 – 9.5)·10-2 and 

(D/H)hot = (1.5 – 5.0)·10-2. 

The distributions of the isotopic ratio values in the first image are presented as 2-dimensionsal histograms 

in Figure 3-24. To each stack in abscissa is associated the pixel ratio distribution which density is given by a 

black color scale. Such 2-dimensionsal histograms allow to see the evolution of the isotopic ratios during 

the NanoSIMS analyses as well as the presence of isotopic heterogeneities in the images. 
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As observed in the Sd7 residue, the correlation between the enrichments in 15N, 13C and D indicate that 

the residue keeps the memory of the ice isotopic heterogeneities. The spread of the D/H values that extend 

on a more restricted range of variation indicates a more effective diffusion of the D and H atoms in the ice 

during either the irradiation of the ice and/or the residue formation process. 

Figure 3-24: Evolution of the D/H (top left), 15N/14N (top right) and 13C/12C (bottom left) ratios along the NanoSIMS 

analysis of the Sd4 residue. Red, blue and green error bars indicate the ratios derived from IR, QMS and partial 
pressure measurements respectively. Three isotopic poles are revealed by the analysis. 

Figure 3-25: 13C/12C 15N/14N (left), 15N/14N vs D/H (right) spatial correlations measured in the Sd4 residue with a 

hexagonal mesh. The estimated bulk ratio of the initial ice film are indicated by the dark blue (QMS) and green 
(partial pressure) error bars. 
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Residue Sd5 (N2-CH4 ; 15N2 -13CO) 

Residue Sd5 was labeled by a 15N2-13CO ice layer. The isotopic mapping of the residue displays a 

homogeneous isotopic composition (see Figure 3-26). As in the Sd4 and Sd7 residues, the 13C and 15N 

enrichments are spatially correlated. The mean isotopic ratios are 15N/14N = (4.1 ± 0.3)·10-2 and 13C/12C 

= (3.9 ± 0.2)·10-2. 

 

 

Residue Sd8 (NH3-CH4 ; 15ND3-13CH4). 

NanoSIMS isotopic maps of the Sd8 residue reveal an isotopically very homogeneous matter with 

limited spatial variations, suggesting an efficient mixing either during the irradiation and/or the annealing 

of the ice, or an efficient dissociation of NH3 compared to N2. Most of the residue display constant isotopic 

ratios with low dispersion around the mean values: 

 D/H = (8.0 ± 0.8)·10-3 

 15N/14N = (3.5 ± 0.1)·10-2 

 13C/12C = (3.5 ± 0.1)·10-2 

Errors corresponds to one standard deviation and were measured on the 6th frame.  

Bottom panels of Figure 3-27 compare the distribution of isotopic ratios with the bulk isotopic ratio of 

the ice film estimated with the QMS (dark blue), partial pressure (green) and the IR spectra (red). 13C/12C 

and 15N/14N ratios derived from the partial pressures are comparable with the ratios measured in the 

residue, however, the D/H value of the residue is lower than the estimations from partial pressures. 

Figure 3-26: Left: 15N/14N ratio image of the Sd5 residue. Right: mean 13C/12C vs 15N/14N ratios measured in the 

cells of the hexagonal mesh (see upper left). The error bars are equal to the standard deviation of the cells’ 
counting values. Isotopic ratios of the initial ice film are reported in blue (QMS) and green (partial pressure). 
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3.3 Discussion 

3.3.1. Formation of isotopic heterogeneities in the residues 

Figure 3-28 shows the H, N and C isotopic ratios measured in 5 organic residues. The spread of the 

isotopic ratios varies from one residue to another but is often distributed along a mixing line. Strikingly, 

the residues formed from the irradiation of N2-CH4 ices have more heterogeneous isotopic compositions 

than the residue formed from the irradiation of a NH3-CH4 ice (Sd8 in green in Figure 3-28). The bulk 

composition of Sd4 is indicated with blue dashed ellipses. Although patches of matter with high and low 

isotopic ratios are observed in Sd4, they are all spatially localized around holes (see section 3.2.3) and do 

not reflect the bulk composition of Sd4 (that exhibit much lower isotopic fractionation). Sd3 presents a 

specific isotopic composition with an anti-correlation of the 13C/12C and 15N/14N ratios. However, due to 

charging effects on that residue during the NanoSIMS acquisitions, we were not able to deepen the 

analysis. This feature was not observed in the residue Sd7 synthetized from an initial ice sandwich with 

the same composition and remain thus to be confirmed. The average values of the 13C/12C and 15N/14N in 

Sd3 are on the trends observed for other mixtures but their dispersion should be taken with caution and 

deserve further investigations to be confirmed.  

Figure 3-27. Top: 15N/14N (left) and D/H (right) maps of a droplet of the Sd8 residue. Bottom: spatially correlated 
13C/12C (left), D/H (right) and 15N/14N ratios measured in the Sd4 residue with a hexagonal mesh. Estimated bulk 
ratio of the ice film are indicated by the dark blue (QMS), green (partial pressure) and red (IR) error bars. 



 

111 
 

Organic residues Sd7 and Sd8 were formed during the same experimental session at GANIL in 2021, 

with the same 86Kr15+ (74 MeV) ion beam, starting from two different ice mixtures: N2-CH4 and NH3-CH4 

respectively. They experienced the exact same annealing procedure and still present very distinct 

structures and isotopic spatial distributions. The large isotopic heterogeneities in Sd7 (red crosses in Figure 

3-28) are observed at scales ranging from 1 to 10 microns (Figure 3-23). Unlike in the Sd4 residue, they are 

not spatially localized in limited zones and constitute a global feature. Conversely the Sd8 residue (green 

crosses in Figure 3-28) is characterized by a much more homogeneous composition. NanoSIMS analyses on 

Sd8 were performed on different residue droplets of matter separated by several millimeters on the 

substrate window (see Figure 3-20 and Figure 3-21) and all revealed the same homogeneous isotopic 

composition in H, N and C. The absence of heterogeneities in Sd8 most probably derives from the chemical 

specific nature of the NH3-CH4 initial ice mixture. 

Several studies on the formation of organic residues from the UV-irradiation of H2O-CH3OH-NH3 ice 

mixtures at low temperature (10K) (Piani et al., 2017; Tachibana et al., 2017) evidenced the formation of 

several microns large bubbles when warming-up the ice films. These bubbles were associated with the 

formation of H2 from the processing of NH3 and CH3OH during the irradiation, with a correlation between 

the number of bubbles and the abundances of these two molecules in the initial mixture. In an 

investigation on the annealing of NH3-H2O ice films (not containing C-bearing molecules) irradiated by 100 

keV protons, Loeffler and Baragiola (2012) observed H2 outbursts interpreted as resulting from the 

formation of bubbles in the processed ices. The high abundance of hydrogen atoms from the NH3 

molecules in the Sd8 ice film and an efficient radiolytic production of H2 might thus be responsible for the 

structure of the residue. Before the evaporation of the remaining volatile species, irradiated ice films 

display a liquid-like behavior (Tachibana et al., 2017). An extensive mixing of the synthetized radicals 

during this phase might have occurred in the case of Sd8 leading to an efficient mixing of the initial 

heterogeneous isotopic composition of the ice layers. The large size of the residue droplets in Sd8 suggest 

a different retracting dynamic of this residue (compared to the N2-CH4 residue) during the annealing. The 

fact that the mixing is less effective in the case of the N2-CH4 ice films may be due to a lower mobility (i.e. 

a higher “viscosity”) of the irradiated mixture (Piani et al., 2017), linked to the lower abundance of 

hydrogen atoms. 

Organic residues formed from the ion-irradiation of H, N and C isotopically heterogeneous ice films 

present isotopic heterogeneities at the 1 – 10 microns scale (corresponding to the typical thickness of the 

initial ice films). The structure of the residue and the transmission of isotopic heterogeneities from the ice 

mixture depend on several factors including: the nature and roughness of the substrate window, the 

energy of the ions used for the irradiation and the pace of the annealing ramp. Still, when formed under 

the very same conditions, residues derived from N2-CH4 or NH3-CH4 ice mixtures display distinct isotopic 

compositions and structures. This indicates that the chemical nature of the irradiated ice has a direct and 

crucial influence on the inheritance of H, N and C isotopic heterogeneities from the initial ice to the organic 

residue.  
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Figure 3-28 : 15N/14N vs 13C/12C (bottom) and D/H (top) ratios measured in 5 residues formed from the irradiation of 

N2-CH4 (gray, blue, yellow, red) and NH3-CH4 (green) ices. The composition of the inner labeled ice layer for each 
residue is indicated in parenthesis in the legend. Sd4 exhibit localized zones with high isotopic heterogeneities. The 
bulk composition of Sd4 is located within blue dotted ovals.  
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The formation of localized patches of matter with D/H, 15N/14N and 13C/12C ratios very different from 

the bulk ratios (Sd4, Figure 3-24) shows the possibility to concentrate a specific composition in the residue 

to give rise to highly fractionated small areas, i.e. “hotspots”. This process may be controlled by the matrix 

mobility and kinetics during the annealing. This hypothesis is supported by the fact that the Sd4 residue is 

the only residue where the tiny droplets with large isotopic anomalies (15N, 13C and D) inherited from the 

initial ice mixture are observed. Strikingly, Sd4 is also the only residue where we observed the holes, most 

probably due a perturbed heating. The perturbed annealing may have induced rapid changes in the matrix 

mobility and kinetics resulting in isolation of portions of the residue.  

The overall physico-chemical processes leading to the formation of such residues is highly complex and 

its deeper understanding would require detailed studies that are, by far, beyond the scope of the present 

work. However, even if many ice mixture compositions, other stratification of the ice layers, and processes 

remain to be explored further, the present work demonstrates that irradiation by swift ions of ices 

produces, after annealing, refractory organics with various type of isotopic heterogeneities. The mere 

observation of such diverse isotopic heterogeneities opens a path for a better understanding of the 

formation of organics at the surface of icy bodies.  

 

3.3.2. Implications on irradiation-induced organics at the surface of icy bodies  

Organic residues formed from the processing of C-bearing ice films are often considered to be 

convincing analogs of the organic matter formed in space (Bonnet et al., 2015; Gerakines et al., 2004; 

Mahjoub et al., 2021). More specifically, Augé et al. (2016) showed that the IR signature of UCAMMs can 

be fairly reproduced by heating up to 600K an organic residue synthetized from the ion-irradiation of a N2-

CH4 ice mixture. Such heating episode can be experienced by UCAMMs during their high-velocity entry in 

Earth atmosphere. N2, CH4 and CO ices were observed at the surface of several Kuiper Belt objects (KBOs, 

Figure 3-30 and Figure 3-29) (Douté et al., 1999; Grundy et al., 2016), where the different species are mixed. 

The GCRs and UVs processing of such nitrogen-rich ice mantles can produce the organic matter of 

UCAMMs. Based on a time-dependent atmospheric escape model, Schaller and Brown (2007) were able 

to explain the persistence of N2, CH4 and CO ices at the surface of large and cold KBOs (Figure 3-29). The 

chemical nature of the ices condensed at the surfaces of KBOs in the early ages of the solar system depends 

on their radial position in the disk relatively to the various volatiles species snowlines. Brown et al. (2011b) 

proposed that the nature of the organic crust formed on the surface of KBOs by the irradiation processes 

depends on the initial ice composition and the exposure time to solar radiation (Figure 3-30, left). In such a 

scenario, the ice mantles can be formed above 10 A.U. and progressively depleted from volatile species by 

atmospheric escape (within about 10 Myr, depending on their distance to the sun). It is likely that small 

bodies experienced several ice condensation and irradiation during their evolution in the early solar 

system, especially if they radially drifted in the disk. This would have resulted in the formation of a complex 

organic crust formed from the irradiation of a mixture of several (heterogeneous) ices. 

The remote observation of the disk around TW Hya (Figure 3-30, right, Qi et al. (2013)), an analog of the 

young solar disk, allowed to identify the CO snowlines at ≈30 A.U. from the emission of N2H+ that is 

efficiently destroyed when in presence of gaseous CO. This observation along with atmospheric escape 

models allow to infer that the ice mantles that can give rise to the formation of the organic matter in 

UCAMMs were most probably formed in regions above 10 A.U. Their processing by UV and GCR were most 

probably continuous over time, enabling the continuous formation of newly condensed ices resulting from 
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the radial mixing. Still, the chemical composition and the degree of mixing of the initial ices are poorly 

constrained. Investigating the transmission of isotopic heterogeneities from the initial ice to the organic 

residue can provide additional elements for the understanding of the formation of the organic matter of 

UCAMMs  

 

 

 

 

Augé et al. (2019) reported the spatial variations of the D/H ratios at a micron scale in organic residues 

formed from an N2-CH4 ice films with a local D-rich ice layer of pure CD4. Results presented in this work 

indicate that nitrogen and carbon isotopic heterogeneities can be formed in organic residues resulting 

Figure 3-29: condensation lines of CH4, CO 
and N2 on small bodies as function of the 
diameter of the bodies and the equivalent 
temperature from Brown et al. (2011a). Black 
dots are Kuiper Belt objects (KBO). Purple dots 
are KBOs where CH4 have been observed. The 
presence of volatile ice mantles on the KBOs is 
fairly well described by a model of time-
dependent atmospheric escape. In earlier 
ages of the solar system, smaller bodies may 
have been able to retain volatile ices. 

Figure 3-30. Left: depletion lines of volatile species at the surface of solar system bodies after an exposition of 
10 Myrs to the sunlights (from Brown et al. (2011b)). Right: N2H+ emission in the disk around TW Hya, an analog 
of the solar nebula, from Qi et al. (2013). The presence of N2H+ in the disk is correlated to the freeze out of the 
CO reservoir, preventing its destruction. The CO snow line is estimated to stand at ≈ 30 AU, at temperature below 
17K, from the emission of N2H+ in the disk.  
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from the irradiation of isotopically heterogeneous ice mixtures. However, the formation of such 

heterogeneities in the residues is highly dependent on the chemical nature of the initial ice. Thus the 

existence of isotopic heterogeneities at a micron scale in UCAMMs (see Chapter 2) may allow to rule out 

some parent ice reservoirs. At the surface of small bodies, in the outer cold regions of the solar system, 

the low mobility of radicals formed by irradiation of ice mantles would favor the formation of H, N and C 

isotopic heterogeneities in the organic matter of UCAMMs. The present experiments suggest that a NH3-

CH4 ice mixture is less favorable than a N2-CH4 ice mixture. However, ice mantles on small objects may 

consist in more complex ice mixture including additional chemical species (Douté et al., 1999). 

 

3.3.3. Time of irradiation of cometary surfaces 

The processing of ices in the interplanetary medium is driven by the energy deposition by UV photons, 

solar particles and the Galactic cosmic rays (see section 3.1.3.3). While photons can penetrate in the first 

tens to hundreds nanometers below the ice surface, GCRs (protons and heavier ions) can reach depths 

ranging from several micrometers to few meters (Moore et al., 2001). The dose deposited in ice mantles 

can thus vary with the nature of the UV and GCR flux and with the depth. 

In the hypothesis of the irradiation of ice mantles at the surface of a cometary parent body residing at 

a large heliocentric distance, the GCRs most likely dominate the depth energy deposition as UV photons 

do not penetrate deep in the sub-surface. Several works evaluated that the dose deposited by GCR protons 

within the first 20 cm of ice mantles at the surface comets stored in the Oort cloud during 4.6 Gyr is of 

about 40 eV.molecule-1 (see the Oort cloud dose in Donn (1976), Moore et al. (1983) and Gerakines et al. 

(2000)). However, this value is derived from the dose necessary to process ice film with protons during 

laboratory experiments and it may not be fully constrained by astrophysical considerations. Based on 

theoretical derivations on the GCRs’ energy distribution, Strazzulla and Johnson (1991) and Moore et al. 

(2001) estimate an order of magnitude higher dose, i.e. about 600 eV.molecule-1 and 150 eV.molecule-1 

(respectively) deposited within the first 10 cm of cometary ice mantles exposed for 4.6 Gyr, leading to the 

formation of a “primordial refractory mantle” (Strazzulla and Johnson, 1991). Nevertheless, the dose 

deposited in ice mantles is depth-dependent (Figure 3-31) and lower doses correspond to the processing 

experienced by deeper ice layers within the same period of time. Cooper et al. (2003) predict that the first 

1 µm of an ice mantle exposed to the GCR protons outside the heliosphere (that is relevant for objects in 

the Oort cloud) may receive a 100 eV/16-amu dose in about 2 Myr (Figure 3-31, left) while it will take about 

1 Gyr to deposit the same dose at a 1 cm depth. The dependence of the energy deposition with the depth 

will thus affect the productions of radicals able to form refractory organic molecules in different ice layers, 

as shown by Strazzulla and Johnson (1991) (Figure 3-31, right). The lower fraction of altered carbon in the 

deeper layers will thus lead to a lower yield of the formation of refractory material. 
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According to these considerations, the dose achieved in the ice irradiation experiments presented in 

this work would correspond to a lower limit on the time of irradiation by the GCRs of about 60 Myr and an 

upper limit of about 3 Gyr (based on the 10-20 cm estimations). Although these estimations span a large 

range, these values indicate that the doses considered in our experiments are consistent with that 

deposited at several depths during the lifetime of comets in the Oort cloud. If one considers the typical 

size of the organic phase in UCAMMs (≈10-3 cm) and an irradiated-ice/refractory-residue conversion yield 

of 1% (see section XX and Muñoz Caro and Schutte (2003)) a typical thickness of the parent ice mantle 

would be about 10-1 cm. The estimation of the thickness of the organic residue can be scaled to match the 

yield of other ice chemical compositions.  A surface ice mantle with such thickness would receive a 20 

eV.molecule-1 dose over ≈50 Myr based on Figure 3-31, left. However, because cometary surfaces are 

evolving structures, the processing of cometary matter most probably result in different ice mantles 

irradiated, since their formation, about 4 Gyr ago. Finally, it has to be noted that the irradiation by GCR 

ions heavier than hydrogen is likely to play an important role in the processing of the ice layers at depths 

of about 10-500 µm, where they still penetrate and deposit locally more energy than protons (see section 

3.1.3.3). At such depths, the energy deposition by heavy ions can reach about the half of the total energy 

deposition by the GCR, besides their much lower abundance. In the thickness range investigated in the 

irradiation experiments (that is about 10 µm), the higher stopping power of heavy ions allows to reach 

large cumulated dose (that would require a higher flux if performed with protons). 

Although the organic matter of UCAMMs was most likely induced by the irradiation of cometary ice 

mantles at large heliocentric distances, irradiation of small icy grains in the dense core phase may also 

have played an important role in the synthesis of organic matter available in the early stages of the solar 

system. Shen et al. (2004) developed a theoretical model to investigate the energy deposition of UVs and 

GCRs in grains of ≈ 0.1 µm radii in dense environments. By integrating the energy distribution of the GCRs 

in the [1 MeV; 104 MeV] range, including protons and heavier ions, Shen et al. (2004) estimated that GCRs 

Figure 3-31. Left: time necessary to deposit 100 eV/16-amu with protons in the local interstellar medium (LISM) as 
function of the depth, from Cooper et al. (2003). Polymerized fraction of carbon as function of the depth into a comet 
exposed for 4.6 Gyr to GCR protons, from Strazzulla and Johnson (1991) 
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deposit about 6·10-15 eV.molecule-1.s-1 within the grains. Given the dose required to process icy grains, this 

dose correspond to an exposure to the GCR of about 102 Myr. In dense environments, the UV field, which 

is induced by the GCRs interaction with the gaseous phase (i.e. mainly hydrogen atoms) is thought to 

dominate the energy deposition by one order of magnitude (Moore et al., 2001). In that case, the required 

dose represents a 10 Myr exposure time to the GCRs and the induced UV field, that is consistent with the 

estimated lifetime of the protoplanetary disk (Charnoz and Morbidelli, 2007; Raymond and Morbidelli, 

2020; Reipurth, 2005).  

 

3.4 Summary 

The scenario of formation of the organic matter of UCAMMs by the irradiation of icy mantles on the 

surface of small bodies, in cold regions of the disk, is summarized on the Figure 3-32. Small bodies in cold 

regions (as comets) are made of a mineral and water-ice-rich nucleus surrounded by an ice mantle of more 

volatile species (step 1, (Malamud and Prialnik, 2015; Neveu et al., 2015)). The irradiation of the surface 

ice mantle by the galactic cosmic rays produces radicals (step 2) that form a refractory organic crust (i.e. 

not volatile at temperatures reached during the approach in the inner solar system) once the ice mantle 

sublimates (step 3). Because the minerals are locked in the nucleus, the surface organic crust is expected 

to be depleted in minerals. 

 

The irradiation experiments presented in this chapter extend the comprehension of the transmission 

of H, N and C isotopic heterogeneities from the initial ice mixture with isotopically labeled ice layers to the 

resulting organic residues. Two main chemical composition of ice were investigated (N2-CH4 and NH3-CH4). 

Irradiation of isotopically heterogeneous N2-CH4 ice mixtures induce residues with potentially large micron 

scale isotopic heterogeneities, plotting along mixing lines, while residues formed from the irradiation of 

isotopically heterogeneous NH3-CH4 ice mixtures present reduced isotopic heterogeneities. The structure 

of the organic residues depends on the radiolysis efficiency, related to the chemical composition of the 

ice. In the highly hydrogenated NH3-dominated ice mixture, the higher sublimation temperature provides 

a larger time of recombination of the radicals formed from the irradiation (Tachibana et al., 2017). This 

tends to produce a more homogeneous, extensively mixed, isotopic composition. The low sublimation 

Figure 3-32: schematic view of the formation of the organic matter of UCAMMs by the irradiation of volatile ice 
mantles by GCRs and UVs.  
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temperature of N2 and the lower abundance of hydrogen atoms in the N2-dominated ice mixture might 

allow a better conservation of the isotopic heterogeneities inherited from the initial ice film in the organic 

residue, leading to an organic component with higher isotopic variations. However, the 3 experimental 

sessions conducted with same mixtures and different annealing ramps suggest that the efficiency of such 

freezing depends on the effective duration of the annealing. A sufficiently low annealing might allow to 

lead to a homogeneous composition, even for N2-CH4 ices. Finally, the experiments also showed that it is 

possible to form localized patches of matter with extreme isotopic anomalies inherited from the labelled 

layer, some of them likely linked to sporadic events during the annealing.  
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4.1 Comparison of the UCAMMs with other solar system materials  

The isotopic diversity of the organic matter of UCAMMs is a multiscale feature, D/H, 15N/14N and 13C/12C 

heterogeneities being observed from one UCAMM to another or within one, at a micron scale. 

Heterogeneities observed at the scale of several microns in DC94 and, to a lower extent, in DC309 show 

that a single UCAMM is likely to contain entities originating from various reservoirs, suggesting a complex 

formation history. In this chapter, we compare the isotopic composition of UCAMMs with that of other 

solar system materials and models to propose hypotheses on the origin of the different organic matter 

components of UCAMMs.  

 

 

          

  

Figure 4-1. Comparisons of correlated D, 15N and 13C enrichments measured in UCAMMs (this study), IDPs (crosses, 

Messenger (2000)) and IOM of meteorites (diamonds, Alexander et al. (2007)). IOM from OC and CR chondrites are 
specified with the labels OC and CR. δ13C values are indicated by the color scale and black dots when not available 
(DC18). Bulk isotopic compositions of UCAMMs are reported by stars, ROIs by circles (DC18), octagons (DC309), 
hexagons (DC43) and pentagons (DC94). The bulk isotopic composition of UCAMMs differ one from another, but 
some spots of DC94 (pentagons) present D and 15N content similar to the bulk composition of DC43. DC43 shares 
noticeable isotopic similarities in D, 15N and 13C with the IOM of CR chondrites. 
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4.1.1. The D/H ratios of UCAMMs 

The organic matter of UCAMMs often shows enhanced D/H bulk compositions with regard to the 

majority of the extraterrestrial objects (Figure 4-1 and Figure 4-3). Still, the magnitude of these D- 

enrichments varies from one UCAMM to another. The D/H ratio of DC18 (the UCAMM with the lower bulk 

δD = 990 ± 80‰), is comparable with values measured in the IOM extracted from chondrites and in 

chondritic porous IDPs (CP-IDPs) (Aléon et al., 2001; Alexander et al., 2007; Ceccarelli et al., 2014; 

Messenger, 2000). DC43 and DC94 have higher bulk D enrichments, above 2500‰, in the range 

of variation of the D/H ratio observed in the IOM of Renazzo-type chondrites (CR) and ordinary 

chondrites (OC). DC309 present the larger D/H bulk ratio of the 4 UCAMMs analyzed in this work 

(δD = 6800‰). 

In addition to their D-rich bulk composition, UCAMMs display localized extreme D 

enrichments, as reported by Duprat et al. (2010) and Bardin (2015). These enrichments can reach 

30 times the mean ocean water value in areas much larger (1 – 10 µm) than the extend of hotspots 

identified in IDPs (Figure 4-2).  

 

 

 

The diversity of the D/H ratios observed in the solar system has been investigated extensively, 

(see e.g. Altwegg et al. (2015); Ceccarelli et al. (2014)), highlighting the large differences between 

the protosolar nebula composition and a diversity of extraterrestrial objects (Figure 4-3). Oort cloud 

comets (OCC), originating from the outer regions of the solar system were thought to have higher 

D/H ratios than the more internal Jupiter family comets (JFC). However, in-situ measurements on 

the JFC comet 67P/Churyumov-Gerasimenko, with the ROSINA instrument on board Rosetta 

spacecraft, revealed a D/H ratio equal to (5.3 ± 0.7)·10-4, (i.e. δD≈2400‰), higher than in OCC and 

comparable to the bulk values of DC43 and DC94 (colored triangles in Figure 4-3). The bulk D/H 

ratios of DC18 is comparable the values measured in cometary water by remote sensing of comets 

Figure 4-2: extreme D/H enrichments in a several 

microns large area on UCAMM DC94 (from Bardin 

(2015)). The color scale indicates the D/H value. 
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(Biver et al., 2007; Bockelée-Morvan et al., 1997; Meier et al., 1998; Weaver et al., 2008), that are 

also in broad agreement with the bulk values of DC43 and DC18. DC309 sets apart with a higher 

bulk D content. However, water and organic matter are distinct reservoirs, formed through 

different chemical pathways and the comparison of their D/H is thus limited. In their review, 

Bockelée-Morvan et al. (2015) highlighted that C-bearing molecules originating from comets were 

systematically enriched in deuterium (≈10-3 – 10-1) in comparison to water (≈10-4). 

Large D excesses (up to D/H ≈ 10-2) are expected to rise in molecular reservoirs in cold dense 

regions at the early stages of the solar system formation (Aikawa et al., 2012; Ceccarelli et al., 

2014). UCAMMs obviously sampled a D-rich reservoir, maybe similar to that of OCCs and some 

JFCs. Still, the D-enrichments measured in the CR and OC chondrites suggest that high D/H is not 

an unambiguous tracer of a material formed in the outer cold regions of the disk. Moreover, 

Yabuta et al. (2017) reported D/H close to the terrestrial value in one UCAMM from the Japanese 

Antarctic collection, meaning that the large D-excesses may not be an ubiquitous characteristic 

of all UCAMMs. 

 

 

 

  

Figure 4-3: the D/H ratios in the solar system, adapted from Altwegg et al. (2015). UCAMMs bulk D/H are reported 
with red (DC309), blue (DC43), black (DC94) and green (DC18) triangles 
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4.1.2. The main UCAMM organic reservoir (DC43) 

The bulk H, C, N, isotopic composition of the organic matter in UCAMM DC43 is comparable (with 

slightly higher δ15N values) to that of IOM from CR chondrites (Figure 4-1 and yellow patch on Figure 4-4, 

Alexander et al. (2007)). These values are also consistent with whole rock isotopic measurements of the 

Renazzo CR chondrite (Kerridge, 1985), even though the latter might include contributions that do not 

belong to the organic phases. Among meteorites, CR chondrites are thought to bear the most primitive 

IOM (Alexander et al., 2007; Floss and Stadermann, 2009; Weisberg et al., 1993). The comparison between 

the organic matter of CR chondrites and DC43 will be discussed in more details in section 4.2. 

The D/H bulk composition of DC43 is higher than in most CP-IDPs. While high D-enrichments observed 

in extraterrestrial samples are often found in hotspots, UCAMMs distinguish themselves by displaying 

large bulk D/H ratios and extreme D-rich zones. Some IDPs and cluster porous IDPs (Aléon et al., 2003; 

Floss et al., 2006; Messenger, 2000) also display 15N/14N and/or 13C/12C values comparable to that of DC43. 

The existence of D-rich hotspots in CP-IDPs and the similarities of their 13C and 15N composition with DC43 

indicate that the main organic component of UCAMMs is similar to that of previously reported IDPs and 

IOM from specific meteorites. 

 

 

Figure 4-4. Comparison of the bulk 15N/14N and 13C/12C ratios measured in UCAMMs and in other extraterrestrial 

samples adapted from Hashizume et al. (2004). The δ13C value of DC18 is unknown. Bulk values of UCAMMs are 
plotted with triangles of different colors. The two “poles” with distinct δ13C in DC94 are shown with black diamonds. 
Bulk composition of CP-IDPs (Floss et al., 2006) are plotted with white circles. The organic matter rich CP-IDP Eliot is 
shown as dotted circle (with a 15N-depleted, 13C-enriched composition similar to that of DC309). Data on CP-IDPs from 
(Messenger, 2000) are reported by light-gray circles (including “hotspots” and “coldspots”), they have the closest δ 

13C and δ 15N values to that of DC94. The isotopic data of grains of comet 81P/Wild 2 returned by the Stardust mission 
(McKeegan, 2006) are represented by white squares. The IOM of CR chondrites (Alexander et al., 2007) are indicated 
by a light yellow patch. These values are close the DC43 isotopic bulk. The solar 13C and 15N isotopic composition 
inferred by (Hashizume et al., 2004; Marty et al., 2011) is indicated as blue arrows. 
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4.1.3. 13C-poor organic matter (DC94) 

Due to its large dimensions, DC94 was extensively characterized, first by Bardin et al. (2014), then in 

this work, allowing the identification of isotopic variations at a micron scale. We discuss here the two types 

of organic matter with the distinct 13C/12C ratios, reported in chapter 2:  

 Large platelets of organic matter present in zones A, B and C of DC94 present strong 13C-
depletions (δ13C ≈ -120‰) and δD ≈ 1500‰.  

 The matter of zone D has a fluffier structure and is less depleted in 13C and more D-rich with 
δ13C ≈ -40‰ and δD ≈ 5500‰.  

 

The δ15N composition is fairly constant (ca. + 60‰) in the 4 analyzed zones, with the exceptions of 

several “hotspots” in zone A and D. 

Phases with δ13C lower than -50‰ are not common in solar system materials. IOM extracted from 

meteorites have δ13C values around -20‰, rarely below -35‰ (Alexander et al., 2007). Large bodies from 

the inner regions of the solar system (e.g. terrestrial and martian mantles) present δ13C values at 5‰ and 

-7‰ respectively (Hashizume et al., 2004; Wright and Pillinger, 1994). The 13C-poor organic matter of DC94 

is thus noticeably different from the organics found in inner solar system bodies.  

In their study of several IDPs, Messenger (2000) and Floss et al. (2006) reported the existence of 

particles with bulk δ13C below -40‰, down to δ13C = -120±42‰ for the particle LD2009 D9 (Table 1, 

Messenger (2000)). These values are comparable to that measured in DC94. The slight 15N enrichments 

are also in broad agreements with that measured in DC94, ranging from 0‰ to 100‰. The ROI D-7 in DC94 

exhibits a specific 13C-poor and 15N-poor matter that is observed in one IDP (L2011 A3, Messenger (2000)). 

In addition, Aléon et al. (2001) measured δ13C ranging from -59±27‰ to -92±47‰ in five IDPs compatible 

with the values in DC94. The similarities between the 13C and 15N compositions of DC94 and some IDPs and 

cluster IDPs suggest the existence of a specific reservoir with a low 13C/12C ratio at the origin of this organic 

matter component in UCAMMs and, possibly, in some IDPs (see section 4.3).  

4.1.3.1. The low solar 13C/12C ratio 

The existence of a carbon reservoir with a low 13C/12C ratio is suggested by measurements of the carbon 

isotopic ratio in the solar wind (Hashizume et al., 2004; Wimmer-Schweingruber et al., 2014) and 

observations of the CO absorptions lines in the solar photosphere (Lyons et al., 2018). Hashizume et al. 

(2004) measured the 13C/12C profile in lunar regolith samples and derived the contribution of the solar 

wind implantation. The authors concluded that (in absence of fractionation processes associated with the 

acceleration of the solar winds and the implantation) the protosolar carbon ratio likely ranges from -105‰ 

to -150‰. Based on the data of the Solar Wind Ion Composition Spectrometer (SWICS) onboard ACE 

spacecraft, Wimmer-Schweingruber et al. (2014) estimated a solar wind with δ13C = -89 ± 93‰, compatible 

with the value mentioned above. However, observation of CO emission lines in the solar photosphere 

(Lyons et al., 2018) suggest a higher protosolar 13C/12C composition at δ13C = -48‰ ± 7‰. Although the 

protosolar 13C/12C ratio remains uncertain, these works strongly suggest that its bulk δ13C value was 

significantly negative, possibly below -100‰.  
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4.1.3.2. Origin of the low 13C component 

Hashizume et al. (2004) and Lyons et al. (2018) discuss the mechanisms that may give rise to carbon 

reservoirs with different isotopic compositions, including isotopic fractionation caused by CO self-shielding 

in photo-dissociation regions. In a CO cloud, the UV field ionize the 12CO and 13CO molecules at different 

wavelengths. Due to their much higher abundance, the 12CO molecules saturate their corresponding UV 

lines and the 12CO molecules in the inner regions of a dense cloud are self-shielded from photo-

dissociation. By contrast, UV photons corresponding to efficient photo-dissociation of 13CO molecules can 

penetrate deeper in the cloud allowing 13CO molecules to be ionized. As a result, in the inner regions of 

the cloud or the disk, this process leads to the formation of a 13C-depleted CO reservoir and a 

corresponding 13C-rich reservoir of C+ ions (van Dishoeck and Black, 1988; Visser et al., 2009; Warin et al., 

1996). However, the fate of these gaseous carbon reservoirs is complex as exchange reactions at low 

temperatures (below 30K) may subsequently counterbalance the isotopic fractionation of the CO reservoir 

by efficiently enhancing its 13C/12C (Langer and Graedel, 1989; Watson et al., 1976). The persistence of a 
13C-depleted CO reservoir is thus depending on several factors including the vertical position above the 

disk mid-plane and/or specific processes that may freeze the exchange reactions. The condensation of the 

gaseous CO reservoir in ice mantles could preserve a low 13C/12C resulting from the self-shielding. Whether 

the carbon reservoir at the origin of the low 13C isotopic composition of DC94 is CO or another species, it 

was possibly also sampled by several comets. The δ13C values inferred from the observation of CN and HCN 

emission lines in comet C/1995 O1 (Hale-Bopp) by Arpigny et al. (2003) and Wyckoff et al. (2000), are 

ranging from -460±130‰ to -11±164‰. Although these measurements are subject to large uncertainties, 

they are in agreement with the existence of a 13C depleted carbon reservoir in the comet forming regions. 

Figure 4-5: the diversity of 13C-abundance measured in the solar system from Lyons et al. (2018). The low 13C/12C 
ratio measured in DC94 is similar to the one derived from measurements of solar wind implantation in the lunar 
regolith.  
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4.1.3.3. Correlation of D and 13C heterogeneities in DC94 

The irradiation experiments reported in Chapter 3 demonstrate that spatial correlation of isotopic 

heterogeneities in the initial ice film can result in a residue with corresponding correlated heterogeneities. 

In DC94, the correlation between the δ13C and δD values (Figure 2-26) may thus indicate that the H-bearing 

ices associated with the 13C-depeleted ice should have lower D/H ratios than that the H-bearing ices 

associated with the 13C-richer ice. 13C-depeleted zones are also observed in DC43 but to a lesser extent, 

indicating that the organic matter of this UCAMM may also contain a component originating from the 

irradiation of such a 13C-depleted ice reservoir.   

 

4.1.4. The 15N-poor organic matter (DC309 and DC18) 

The bulk nitrogen isotopic composition of DC309 and DC18 ranges from -110‰ to -130‰. Such low 

δ15N values are not common in organic matter of meteorites (Figure 4-6) but are observed in CP-IDPs and 

cometary grains sampled by the stardust mission (Floss et al., 2006; McKeegan, 2006; Messenger, 2000). 

These samples present classical δ13C values ranging from -50‰ to 0‰ (Figure 4-7), lower than that 

measured in DC309 (bulk δ13C = 27 ± 16‰). Strikingly, the CP-IDP Eliot, reported by Floss et al. (2006) 

exhibit similar isotopic bulk composition in both N and C (δ15N = -108 ± 9‰ ; δ13C = 14 ± 18‰) with DC309. 

This IDPs is described as a smooth matter similar to the structure of DC309 (dotted circle in Figure 4-4, 

Figure 4-8).  

 

Figure 4-6: the diversity of the δ15N measured in the solar system, from Füri and Marty (2015). UCAMMs are reported 
by blue (DC43), black (DC94), red (DC309) and green (DC18) triangles. 
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Remote observations of distant objects provide additional information on the various N reservoirs in 

the solar system. Based on observations of the CN violet band and the NH2 optical band, comets appear 

to display a 15N enriched composition, with δ15N up to about 900 ‰ relative to the terrestrial atmospheric 

value (Bockelée-Morvan et al., 2008; Bockelée-Morvan et al., 2015; Füri and Marty, 2015; Shinnaka et al., 

2016). By contrast, measurements of the sub-millimeter HCN emission lines of Hale-Bopp reported by 

Jewitt et al. (1997) indicated poorer 15N composition down to δ15N = -160 ± 120 ‰. However, a reanalysis 

of these data by Bockelée-Morvan et al. (2008) concluded that the HCN-derived 15N/14N ratios of comets 

were consistent with the high ratios mentioned above. The grain residues from the comet 81P/Wild 2 

collected by the Stardust missions suggest that comets have distinct organic components with both 15N-

depleted and 15N-rich composition (Figure 4-7, McKeegan et al. (2006)). Finally, the δ13C values measured 

in comets (Jewitt et al., 1997; Lis et al., 1997; Wyckoff et al., 2000; Ziurys et al., 1999) lean towards a 13C-

depleted cometary matter, at the opposite of the composition of DC309 and CP-IDP Eliot.  

 

 

The origin of low 15N/14N ratios in UCAMMs is still puzzling. It might result from the inheritance of the 

proto-solar 15N-depleted nitrogen reservoir not observed by spectroscopic measurements on comets. 

Figure 4-7 from McKeegan (2006). δ15N and δ13C 

measured in grains from 81P/Wild 2 comet returned by 

the Stardust mission. A diversity of δ15N values are 
observed in the grains, echoing the various δ15N 
measured in UCAMMs (see colored triangles and Figure 
4-4). DC309, 18, 43 and 94 are plotted as red, green, 
blue and black triangles. 

 

 

Figure 4-8: SEM image (20x20 µm) of the CP-IDP Eliot 

from Floss et al. (2006). Eliot is made of a smooth organic 
matter characterized by a low 15N and slightly enriched 
13C composition comparable to that of DC309.  
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Floss et al. (2006) suggested that such composition could be that of cometary nucleus ices. Large variation 

of the D/H ratios associated with the low 15N-component in DC309 and DC18 suggest the possibility that 

several reservoirs with diverse D enrichments may be associated with low 15N-ices. 

4.2 Complementary information of the chemical and structural data of UCAMMs 

In this section we put into perspective the results presented in this thesis with chemical and structural 

data from the literature and new results on UCAMMs from the B. Guérin Ph.D. thesis (2021). 

Different types of organic matter are identified in UCAMMs (Engrand et al., 2018; Guérin et al., 2020): 

 Type I and II are organic components with N/C atomic ratios in the 0<N/C<0.05 range compatible 
with that measured in the IOM from carbonaceous chondrites. Type I and II organic matters are 
spatially entangled and contain various minerals including high temperature crystalline phases 
originating from inner (i.e. hotter) regions of the solar system. Since these two types are often 
associated together, they might have formed simultaneously. 

 Type III is a nitrogen rich organic component with N/C atomic ratios ranging from 0.08 to 0.2. This 
organic matter is essentially depleted in minerals, it is the key signature of UCAMMs. This type III 
component is the component that is most probably synthetized by irradiation of nitrogen-rich ice 
mantles in outer regions of the solar system. 

 

The amount of type I, II and III organic matters varies from one UCAMM to another (Table 4-1, Figure 

4-9). In some UCAMM fragments, type III organic matter dominates and forms structural units extending 
over several tens of µm wide surfaces (see Figure 4-9). An organic matter with such extent and fully 
depleted in minerals cannot form from the aggregation of micrometer-size grains and requires a specific 
formation process able to synthetized large patches of N-rich matter (over hundreds of µm3). Conversely, 
types I and II organic matters dominate in several UCAMMs’ fragments. 

 
DC18 has a bulk N/C = 0.17±0.04, measured with an electron microprobe (Dartois et al., 2018). No bulk 

measurements were performed for DC309, though, STXM-XANES analyses showed than the type III organic 

matter is abundant in that UCAMM (Figure 4-9, Guérin et al. (2020), Guerin (2021)). High N/C ratios and/or 

high abundances of type III organic matter are consistent with organic matter synthesized in the cold 

regions of the disk by irradiation of a nitrogen-rich icy mantle (Augé et al., 2018). In cold regions, close to 

the disk midplane, these ice mantles (e.g. N2-CH4, N2-CO) are expected to have low 15N/14N ratios and 

slightly enriched 13C/12C ratios (see section 4.3). 

Conversely, DC43 and DC94 display lower N/C ratios, equal to 0.04±0.03 and 0.05±0.02
0.05 respectively 

(Bardin, 2015; Dartois et al., 2013). The STXM-XANES map on DC43 (Figure 4-9) also indicates a low 

abundance of type III organic matter in comparison to the types I and II. Such N/C ratios are comparable 

to those reported for the IOM of CR chondrites (0.032 - 0.044, Alexander et al. (2007) considered to be the 

most primitive organic matter observed in meteorites (Alexander et al., 2007; Floss and Stadermann, 2009; 

Weisberg et al., 1993). Studies on the structure of the organic matter of UCAMMs by Raman spectroscopy, 

measuring their carbonaceous structural order with the so-called D and G bands, highlighted their 

disordered nature, with band parameters overlapping that of the IOM of the most primitive meteorites, 

including CRs (Busemann et al., 2007; Dartois et al., 2018; Dobricǎ et al., 2011). The isotopic data on DC43 

exhibit D/H, 15N/14N and 13C/12C ratios comparable to that of the CRs’ IOM (Figure 4-1). The similarities of 

N/C ratios, disordered structures and isotopic compositions between DC43 and CRs suggest that these 
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objects sampled a similar organic matter reservoir. It has already been proposed that CRs may have a 

cometary heritage based on the similarities of their IOM with the CHON grains collected from the Halley 

comet by the Vega mission (Alexander et al., 2007; Krueger and Kissel, 1987). The identification of a 

carbon-rich clast within the CR2 chondrite LaPaz Icefield 02342 (Nittler et al., 2019), possibly a cometary 

building block, indicates that, at least, the CR parent body (or bodies) probably accreted matter from the 

cometary reservoir. 

The coexistence of the 3 types of organic matter in individual UCAMMs, in addition to their different 
association with crystalline and amorphous minerals (B. Guerin Ph.D. thesis (2021)) confirm the existence 
of a radial and/or vertical mixing in the protoplanetary disk, gathering organic matters formed in different 
regions of the disk (B. Guérin Ph.D. thesis (2021)). More specifically, the type III organic matter is very 
unlikely to have formed in the same regions that the crystalline minerals. Several ice reservoirs are 
proposed in section 4.3 to explain the diversity of chemical and isotopic compositions of UCAMMs. 

 
 

Table 4-1: N/C atomic ratios measured in fragments of the DC43, DC309, DC18 and DC94. (a) Bulk values measured 
by electron microprobe (EMPA) from Dartois et al. (2018). (b) N/C ratios measured in OM I, II and III by STXM-XANES 
from B. Guérin Ph.D. thesis (2021). (c) Bulk value measured by NanoSIMS from Dartois et al. (2013) and Bardin (2015).  

 N/C 

UCAMM Bulk OM I OM II OM III 

DC43 0.04±0.03 (a) 0.04 (b) 0.03 (b) 0.08 (b) 

DC309 - 0.01 (b) <0.01 (b) 0.07 (b) 

DC18 0.17±0.04 (a) <0.01 (b) - 0.11 (b) 

DC94 0.05±0.02
0.05 (c) - - - 
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4.3 Formation of N-rich organic matter with various isotopic enrichments 

The evolutions of 13C/12C, 15N/14N and D/H ratios in molecular reservoirs depend on the interactions of 

H-, C- and N-bearing species in the protoplanetary disk (Visser et al., 2018). Models of protoplanetary disk 

formation including chemical formation pathways are developed to assert the composition and dynamics 

of molecular species in the young solar system (e.g. (Visser et al., 2018; Visser et al., 2009)). In the following 

section, we propose an interpretation of the diversity of the N, C and H isotopic composition observed in 

UCAMMs based on models of disk chemistry published by Visser et al. (2018) and Aikawa et al. (2012). The 

formation scenario is subsequently discussed with regard to the chemical characteristics reported for the 

4 UCAMMs.  

 

4.3.1.  The N an C isotopic diversity in the young protoplanetary disk. 

The DALI code (Dust And Lines) is a thermochemical 2D-axisymmetric model of the young (1 Myr) 

protoplanetary disk that computes the evolution of a chemical network based on physical characteristics 

of the disk (Bruderer et al., 2014; Miotello et al., 2014). The code includes the action of the interstellar UV 

field, the galactic cosmic rays, the stellar X-ray field and the stellar black body. The chemical network was 

optimized to include the species involved in the evolution of the CO reservoir (Miotello et al., 2014) and 

Visser et al. (2018) added the carbon and nitrogen isotopologs of a large numbers of molecules in order to 

Figure 4-9 from B. Guérin Ph.D. thesis (2021). Hyperspectral 

maps on 8 UCAMMs acquired with STXM-XANES. The colors 
indicate the type of organic matter. Blue: type I, green: type 
II, red: type III. The relative abundances of the 3 types of 
organic matter vary from one UCAMM to another. Type III 
organic matter is more abundant in DC18 (DC06-18) and 
DC309 (DC06-309) than in DC43 (DC06-43), as expected 
from the bulk measurements (Table 4-1). 
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derive the spatial evolution of the 13C/12C and 15N/14N ratios of the different reservoirs. In the model, bulk 

isotopic compositions of the disk are set to δ15N=-380‰ and δ13C=290‰. While the 15N/14N ratio is 

consistent with the protosolar nebula value (Füri and Marty, 2015), the assumed 13C/12C ratio is high 

compared to the solar nebula estimation by Hashizume et al. (2004) and Lyons et al. (2018) (see section 

4.1.3) and corresponds to the inferred value for the local interstellar medium by Milam et al. (2005). 

Although the absolute ratios derived in Visser et al. (2018) depends on the initial bulk ratio assumptions, 

the relative differences remain relevant when looking at fractionation originating from the chemical 

reactions between several reservoirs. It is worth noting that the authors emphasize that their model 

overestimate the HC14N/HC15N ratio by about a factor of 2 compared to astronomical observations of disks. 

The discussion will thus focus on the comparison of relative isotopic fractionation rather than on the 

absolute isotopic ratios. 

Results from Visser et al. (2018), are reported in the Figure 4-10, as a 2D representation of a slice of the 

protoplanetary disk. The results are presented as function of the radial distance R to the star and the 

vertical distance z/R from the disk mid-plane. The model predicts substantial C and N isotopic 

fractionations in the gas phase from one species to another and from one region to another. It is important 

to note that, on Figure 4-10, the color scale gives the ratio of the molecular species, meaning that for the 

molecular nitrogen N2 (middle row, left panel), the ratio N2/N15N has to be multiplied by a factor 2 of to 

be compared to 14N/15N. 

The fractionation processes affecting the dominant N2 and CO reservoirs drive the distribution of the N 

and C isotopes. For the nitrogen, the isotope-selective photodissociation of N2 (i.e. the self-shielding 

described in section 4.1.3) dominates the fractionation processes, leading to the 15N-depletion of N2 and, 

correspondingly, a 15N-enhancement of the cyanides (HCN, HNC, CN). This fractionation occurs at 

intermediate depths from the surface of the disk (z/R ≈ 0.1 – 0.2,) in the yellow region in the N2 panel and 

the purple region in the HCN panel of Figure 4-10 (middle row). At more important depths, closer to the 

disk midplane, the isotope-selective photodissociation is less effective due to the self-shielding of N15N UV 

lines and the N2 and cyanide reservoir has 15N/14N ratios close to the bulk initial ratio (δ15N=-380‰). Low 

temperature exchange reactions do not play a significant role in the case of the nitrogen fractionation 

(Visser et al., 2018). Because NH3 form from a chemical pathway distinct from the one of the cyanides, its 
15N/14N ratio roughly follows the ratio of N2. From a general point of view, one can note that the variations 

of the 15N/14N ratio are more pronounced in the cold outer regions than in the hotter inner regions. 

Between 5 and 100 A.U. (delimited by vertical dotted lines in Figure 4-10), the various molecular reservoirs 

are characterized by large variations both in the vertical and radial directions, mainly at intermediate 

depths region (purple region in the HCN/HC15N image). Importantly, the region between 5 and 100 A.U. is 

precisely that in which the parent body of UCAMM may originate from (see chapter 3, section 3.3.2). 

The fractionation of the carbon reservoirs appears even more complex than that of nitrogen. The 

isotopic-selective photodissociation is expected to deplete the CO molecule in 13C and produce a 12C-rich 

CO reservoir in the outer mid-plane regions (see section 4.1.3.2). Correspondingly, the C+ reservoir become 

enriched in 13C+ ions that react with other carbon-molecules. However, in the case of CO, the low-

temperature (<30K) exchange reactions are effective and can rapidly counterbalance the effects of the 

self-shielding. The 13C/12C ratios of the different reservoirs depend thus on the balance between these two 

processes (i.e. depending on the UV field and the temperature profile). The CO reservoir at the vicinity of 

the midplane is globally 13C-enriched with slight enhancements between 10 and 100 A.U. because the low 
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temperature reactions dominate (bottom left panel of Figure 4-10). The 13C/12C ratio of the cyanides exhibit 

large radial and vertical variations close to the mid-plane at all distances between 10 and 100 AU. 

 

 

 

  

Figure 4-10: Nitrogen (middle row) and carbon (bottom row) isotopic composition of various chemical species in 

gas phase of the young protoplanetary disk (1 Myr) from Visser et al. (2018). The color scale gives the ratios of 
the major (14N and 12C) to minor (15N and 13C) isotopes (inverse notation to that use in the manuscript). The 
variations of the δ15N and δ13C are indicated for clarity but their absolute values are not discussed. Dashed vertical 
lines at 5 and 100 A.U. delimit a radius range where small bodies able to condensate ice mantles are expected to 
form. Hatched and dotted ovals underline possible regions of formation of the organic matter of UCAMMs based 
on their isotopic compositions. The pink hatched zone, deep in the midplane, is a region with the CO, N2 and 
cyanide reservoirs with low 15N/14N and high 13C/12C ratios. The condensation and irradiation of ices with such 
composition can form the 15N-depleted, 13C-enriched matter of DC309. The green dotted zone is located at 
intermediate depth regions, where molecular reservoirs are more 15N-rich. The condensation and irradiation of 
such ices could be at the origin of DC43 and DC94 organics. The predicted 13C-depletion of cyanides in the lower 
part of this zone could explain the low 13C/12C observed in DC94. 
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4.3.2. Fractionation of hydrogen in the disk 

Deuterium fractionation in the solar system is likely inherited from fractionation that happened in the 

early proto-stellar core stage, as shown by astronomical observations of proto-stellar objects (Bacmann et 

al., 2003; Crapsi et al., 2005; Pagani et al., 2007) and described by models (Aikawa et al., 2012; Furuya and 

Aikawa, 2018). Large D fractionation driven by gas-grain reactions can lead to the formation of deuterated 

molecular reservoirs (see e.g. HCOOH, CH3CN, NH3 in Figure 4-11 from Aikawa et al. (2012). D/H ratios in 

different molecular reservoirs in the proto-stellar core in function of the radius at t=-5.6·102 yr (thin lines), 4.3·102 

yr (thick lines) and 9.3·104 yr (bold lines).Figure 4-11). Aikawa et al. (2012) predict that such enhancements can 

occur within 105 years after the formation of the proto-stellar core. The extreme deuterium excesses in 

UCAMMs, up to δD≈30,000‰ reported in Bardin (2015) and Duprat et al. (2010), indicate that the organic 

matter of UCAMMs inherited from a highly deuterated molecular reservoir. Moreover, the preservation 

of the deuterated signature of chemical species can depend on their gaseous or solid state during the solar 

system evolution (Piani et al., 2021). The parent reservoir of UCAMMs may thus have preserved its highly 

deuterated nature under the form of ice in cold regions of the protoplanetary disk. However, some 

UCAMM, such as DC18, or the UCAMM reported by Yabuta et al. (2017) present lower δD (lower than 

1000‰), indicating that all UCAMMs may not have sample the same chemical reservoir. The diversity of 

the bulk hydrogen isotopic composition of the organic matter in UCAMMs may thus result from the 

condensation of chemical species at different heliocentric distances and/or different times (Ceccarelli et 

al., 2014; Piani et al., 2021). The bulk δD observed in the different UCAMMs analyzed in this work vary 

from about 1000‰ to 7000‰ that is consistent with the H-fractionation reached at different stages and 

locations in the disk in models (Aikawa et al., 2018; Aikawa et al., 2012). Additionally, large D/H 

fractionation, ranging from 0‰ to 6000‰ in DC94 and from 4000‰ to 9000‰ in DC94, are observed 

within individual UCAMM. In the hypothesis of a heritage of the isotopic composition of heterogeneous 

ice mantles, this would suggest that reservoirs with different H fractionation levels may have sequentially 

condensed on a same parent body. This could result from a sequential condensation at different 

heliocentric distances/temperatures. 

 

 

Figure 4-11 from Aikawa et al. (2012). D/H ratios in different molecular reservoirs in the proto-stellar core in 
function of the radius at t=-5.6·102 yr (thin lines), 4.3·102 yr (thick lines) and 9.3·104 yr (bold lines). 
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4.3.3. Probing the radial and vertical isotopic diversity of the disk with UCAMMs? 

The diversity of the UCAMMs isotopic compositions reported in this work may be related to the 

diversity of carbon and nitrogen isotopic compositions of the different molecular reservoirs described 

above. The mere variability of the isotopic compositions of UCAMMs is an additional indication that they 

most probably originate from the outer regions of the disk, that is the location where highly fractionated 

molecular reservoirs coexist. Such gaseous reservoirs can then condensate at the surface of UCAMMs 

parent bodies and, subsequent irradiation by GCR can form the isotopically heterogeneous organic matter. 

The feasibility of such a scenario, starting from chemically simple ice building blocks ubiquitous in the early 

solar system, is demonstrated by the GANIL experiments described in Chapter 3. The formation scenario 

of UCAMMs depends on the efficiency of condensing volatile species with different isotopic composition 

at the surface of small bodies. The abundance of HCN ice on grains plotted against the regions of the disk, 

in Figure 4-10 (top right panel), indicates that, in the DALI model, HCN ice is not expected below 10 A.U. at 

1 Myr. However, the condensation of volatile ices (HCN, N2, CO, CH4, …) is still possible at smaller radii on 

the surface of small bodies (Brown et al., 2011a), large enough to retain volatiles (see chapter 3, section 

3.3.2). 

The models of Visser et al. (2018) and Aikawa et al. (2012) indicate that different molecular reservoirs 

exhibit large isotopic fractionations in H, C and N that, once condensed at the surface of small bodies, can 

induce refractory organic compounds with the isotopic characteristics of UCAMMs. UCAMMs are a new 

type of interplanetary materials and, although this work gathers the most comprehensive isotopic survey 

on these objects, the constraints on their organic components remain limited. The theoretical reservoirs 

predicted by Visser et al. (2018) and Aikawa et al. (2012) display isotopic fractionations much larger than 

the one observed in UCAMMs and several combinations of these reservoirs can be considered as end-

members from which the isotopic composition of UCAMMs may originate. Although not unique, we 

emphasize below a possible solution with two parent reservoirs for the irradiation-induced organic matter 

of UCAMMs (Figure 4-10, Figure 4-12 and Table 4-2). 

Midplane regions (the pink hatched zone): 

In the outer midplane regions of the disk (R ≈ 5 – 100 A.U., z/R ≤ 0.06, pink hatched zone on Figure 4-10), 

the low temperature is expected to allow the formation of condensed ice mantles of relatively volatile ices 

(such as N2 and CO) at the surface of small bodies. The DALI model predicts that the N2 and CO reservoirs 

that are the most abundant in that region have low 15N/14N and moderate to high 13C/12C ratios. Thus the 

irradiation of such N2-CO ice mantles would lead to the formation of an organic matter with high N/C ratio, 

low 15N/14N and high 13C/12C consistent with the chemical and isotopic data on DC309 and DC18. This 

hypothesis is supported by the fact that DC309 and DC18 are both dominated by the type III organic matter 

(see section 4.2). The CP-IDP Eliot (Figure 4-8, Floss et al. (2006)) may very well originates from the same 

region. DC309, DC18 and Eliot would be formed within that midplane region, by the irradiation of N2-CO 

dominated ice mantles at very low temperatures. The characteristic isotopic fingerprint of the surface of 

small bodies with ices originating from that region would be low 15N/14N ratios and slightly enhanced 
13C/12C (Figure 4-12). 
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Intermediate depth regions (the green dotted zone): 

The lower N/C ratios in DC94 and DC43 (Table 4-1) suggest that their organic matters formed in a less 

N-rich environment than DC309 and DC18, possibly in hotter regions. The isotopic composition of DC94, 

uncommonly depleted in 13C, suggests that its organic matter may have inherited a cyanide-like 13C/12C 

ratio found in regions at 0.08 < z/R < 0.20 (green dotted zone in Figure 4-10). Its 15N/14N composition, 

higher than the PSN value but lower than the one of DC43, may result from either a mix of two fractionated 

reservoirs or come from a single reservoir in a “transition” zone (e.g. the cyanide reservoir in the dotted 

zone in Figure 4-10). The DC43 parent reservoir could also originate from this intermediate depth regions, 

possibly at higher latitudes where the 15N compositions of the cyanides are higher. Based on the similarities 

between DC43 and the IOM of CR chondrites and the CP-IDPs, the reservoir of DC43 would be more 

common and sampled by several classes of interplanetary objects. 

 

 

 

  

Figure 4-12: δ15N vs δ13C values in the 4 UCAMMs, bulk values are plotted with triangles and ROI with circles. The 
DC309 and DC18 may have formed from the irradiation of N2-CO-rich ices originating from the cold regions around 
the midplane while DC43 and DC94 may have formed from the irradiation of cyanide ices originating from 
intermediate depth (and slightly less cold) regions.  
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Table 4-2. Summary of the isotopic and chemical compositions of the 4 UCAMMs (DC309, DC18, DC43, DC94) reported 
in this work and B. Guérin Ph.D. thesis (2021). (a) OM type refers to the dominant type of organic matter observed on 
STXM-XANES maps.  

UCAMM Isotopic composition (Bulk) Chemical composition 
Reservoir 

δD (‰) δ15N (‰) δ13C (‰) OM type(a) N/C 

DC309 6800 -125 27 I, II, III - Midplane 
(hatched zone) DC18 990 -120 - III 0.17 

DC43 
3100 272 -12 I, II 0.04 

Intermediate 
depths 
regions 

(dotted zone) 
DC94 2520 63 -87 I, II 0.05 

 

 

Mixing different reservoirs 

Correlations between δ15N and δD in DC309 and between δ13C and δD in DC94 (thick gray lines in Figure 

4-13) echo the mixing lines observed in the spatial distributions of isotopic enrichment in organic residues 

formed at GANIL (see Chapter 3 section 3.3.1). They may thus be interpreted as resulting from the isotopic 

heterogeneities within the initial ice mantles. The correlation associated to DC94 indicates that the 

reservoir with the low δ13C component is probably associated with a low δD reservoir. By contrast, the 

correlation observed in DC309 connects an end-member with very high δD and low δ15N with the main 

Figure 4-13: the two possible parent reservoirs of UCAMMs represented on a δ15N vs δD vs δ13C graph. The 
intermediate depths reservoir is characterized by positive δ15N values and a δD values ranging from 0 ‰ to about 
6000‰. The midplane reservoir has lower δ15N and a wide range of δD from about 0 to 9000‰. Thick gray lines 
indicate correlations between δ15N and δD in DC309 and δ13C and δD in DC94 (section 2.5). 
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reservoir of UCAMMs. The results obtained in Chapter 3 indicate that, under specific conditions of 

annealing, the irradiation-induced residues can exhibit linear correlations between the isotopic 

compositions of specific layers of ice. The isotopic composition of DC309 may be a result from the 

sequential condensation of layers of ice from the midplane and the intermediate depths reservoirs on the 

parent body/bodies of UCAMMs. The possible correlation between these two hypothetical reservoirs 

remains an open question and data on more UCAMMs need to be gathered to obtain extended isotopic 

and chemical constraints on the organic components present in UCAMMs and on the evolution of their 

mixing within individual particles. 

The transfer of the characteristics of the parent reservoirs to the organic matter of UCAMMs requires 

the condensation of these reservoirs. However, the formation of small bodies condensing substantial ice 

mantles occurred at a more advanced stage than the one investigated by the models of Visser et al. (2018) 

and Aikawa et al. (2012). The heritage of the isotopic compositions of UCAMMs implies thus an 

intermediate step in which the isotopic compositions of these early molecular reservoirs are preserved, 

then transferred to the ice mantles on small bodies. This can have occurred through the condensation of 

the volatile reservoirs on small grains prior to their incorporation in larger parent bodies (Charnoz and 

Morbidelli, 2007). In such a scenario, subsequent surface/sub-surface processes could lead to the 

distillation of the icy grains at the parent body surface and segregate the mineral grains from the volatile 

compounds to form mineral-depleted ice mantles. An alternative possibility involves the young disk 

dynamics where, during their formation, large grains/pebbles might accrete volatiles along their journey 

toward the disk midplane. These intermediate size objects could then be incorporated in small bodies 

during their accretion phase and episodic accretion bursts may then sublimate/re-condensate the most 

volatile species on their surface (Bosman and Bergin, 2021). The subsequent irradiation of these icy 

mantles, however they formed, could then lead to the synthesis of an organic matter depleted in minerals 

as observed in UCAMM type III organic matter. 

The existence of anomalous spots with isotopic compositions profoundly different from the bulk 

composition of the UCAMMs may result from the mixing of organic matters formed in different zones as 

it is suggested by the coexistence of type I, II and III organics components within a single UCAMM (Table 

4-1). In such a scenario, the isotopic heterogeneities that plot along a correlation trend would result from 

isotopic heterogeneities within a given initial ice mixture whereas the isotopic anomalous spots (that do 

not lay on a correlation trend) would result in the mixing of organic matters formed from distinct ices. If 

the parent bodies of UCAMMs acquired their ice mantles by the aggregation of icy grains, anomalous spots 

could also result from the incorporation of individual grains with an isotopic and chemical composition 

different from the surrounding grains. A mixing (vertical and radial) of grains formed at different locations 

in the disk can result from turbulences (Bockelée-Morvan et al., 2002) and be grain size-dependent. Finally, 

the coexistence of high temperature crystalline minerals within the types I and II organic matters of 

UCAMMs (see section 4.2) indicate the occurrence of a radial mixing in the disk, but at larger scales than 

the ones between intermediate depths regions (or inner regions) and midplane regions. 
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4.4 General summary  

This Ph.D. thesis focuses on the study of micrometeorites collected around the Concordia station 

(Dome C) in central Antarctica over the last twenty years. These particles are originating from solar system 

small bodies, asteroids and comets. The study of micrometeorites from the Concordia collection sheds 

light on the flux of interplanetary dust at 1 A.U. and the refractory material present at the surface of the 

small bodies that have kept the memory of the early stages of the solar system 

The Concordia collection is described in the first chapter, introducing a comprehensive study aiming at 

constraining the extraterrestrial sub-millimeter particles flux falling on Earth. The size distributions and 

mass fluxes of unmelted micrometeorites (uMM) and cosmic spherules (CS) are reported in the 30-350 

µm diameter range. The unique conditions at Dome C allow an accurate control on both the exposure 

parameter (the equivalent surface of accumulation) and the collection efficiency. Several independent 

measurements of the flux are reported on the same site, using a method allowing to infer a well 

constrained absolute value of both the uMMs and CSs fluxes. Thanks to its experimental protocol, the 

Concordia collection accurately samples, for the first time, all micrometeorites (including the most fragile) 

down to 30µm, showing that the maximum of the mass flux of both uMMs and CSs is carried by particles 

in a size range lower than that inferred from previous works. Combined with previous measurements 

performed at the South Pole Station, the results allow to derive the global flux of uMMs and CSs over the 

12-700 µm diameter range. The global annual input of micrometeorites on Earth extrapolated from this 

study is 5,200 tons·yr-1 (3600 tons·yr-1 from CSs and 1,600 tons·yr-1 from uMMs). That value is substantially 

higher than the one derived from the South Pole collection but stays, about a factor of 3, below the flux 

expected at atmospheric entry. This study confirms that about 2/3 of the mass of the incoming flux is 

ablated at atmospheric entry and that the major contribution to the annual extraterrestrial input on Earth 

is indeed carried by particles in the size range studied in this work. Based on the carbon relative 

abundances in the different types of micrometeorites obtained from the Concordia collection analyses, 

the flux of carbon on Earth carried by micrometeorites is estimated to range from 20 to 100 tons·yr-1. From 

the mass distributions obtained in this work, a Monte-Carlo simulation is performed to calculate the 

statistical uncertainties related to the variations of the exposure parameters. The results obtained allow 

one to infer the statistical uncertainties on similar measurements for future studies on the flux of sub-

millimeter interplanetary particles.  

In chapter 2, H, N and C isotopic data on ultra-carbonaceous micrometeorites (UCAMMs) are reported. 

UCAMMs are a rare carbon-rich micrometeorites population identified in the Concordia collection that 

most probably formed in outer regions of the solar system. The isotopic composition of the organic matter 

of UCAMMs provides clues to better understand their origin. Within the course of this thesis, 5 fragments 

of 3 UCAMMs were analyzed by Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) at the Earth and 

Planets Laboratory (Carnegie, Washington DC) in collaboration with Dr. L. Nittler. An analysis of C isotopic 

data previously acquired (prior to this thesis) on a UCAMM studied by NanoSIMS at MNHN and at Institut 

Curie is also presented. This work presents the most comprehensive study available today on D/H, 13C/12C 

and 15N/14N ratios on several UCAMMs. The data obtained show that UCAMMs exhibit a variety of H, N 

and C isotopic compositions differing from one particle to another and within a given fragment. The overall 

data reveals spatial correlations between H, C and N isotopic compositions that are further discussed in 

chapter 4. 
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Chapter 3 presents experiments made to reproduce the irradiation by Galactic Cosmic Ray of ice 

mantles representative of the surface of small bodies in cold regions of the protoplanetary disk. Nine 

refractory organic residues were produced during three experimental sessions in 2019, 2020 and 2021 at 

the Large Collider for Heavy Ions (GANIL, France). The experiments used a dedicated set-up developed at 

CIMAP (IGLIAS). Ice films with several initial chemical compositions were irradiated with swift heavy ions. 

The ice films were isotopically heterogeneous in order to study the transfer of the isotopic heterogeneities 

to the irradiation-induced residue. The H, N and C isotopic compositions of the organic residues were 

analyzed by NanoSIMS at Institut Curie (Orsay, France). This study reports, for the first time, combined 

analyses of D/H, 13C/12C and 15N/14N heterogeneities in irradiation-induced residues obtained from 

mixtures of a variety of ices with different condensation temperatures: CO, NH3, N2, CH4. When formed 

under the same conditions, residues resulting from the irradiation of N2-CH4 ices display a more 

heterogeneous isotopic composition than residues formed from NH3-CH4 ices. However, the nature of the 

heterogeneities as well as the overall structure of the residues appear highly sensitive to the formation 

conditions such as the pace of the annealing. The formation of localized patches of matter with extreme 

isotopic anomalies are observed, may be linked to sporadic sublimation events during the annealing 

procedure. The results of these experiments are discussed with regard to the astrophysical conditions 

expected at the surface of icy bodies located in the cold regions of the protoplanetary disk, above 5 A.U.  

In the last chapter, the results of chapter 2 and 3 are put into perspective with the aim to delineate 
contours for a formation scenario of the organic matter of UCAMMs. The diversity of the isotopic 
composition of UCAMMs is summarized and compared with that of other solar system objects. The striking 
similarities between the isotopic compositions of one UCAMM and that of CR chondrites indicates that 
these objects might have inherited their organic matter from a similar parent reservoir, further suggesting 
a continuum between the CR parent body and cometary objects. Based on theoretical simulations from 
the literature on the H, N and C isotopic compositions of different chemical reservoirs in the 
protoplanetary disk, molecular parent reservoirs are proposed from which the UCAMMs isotopic 
heterogeneities may have been inherited. It is possible to account for the isotopic composition of some 
UCAMMs by considering the irradiation of ice mantles originating from gaseous reservoirs formed in 
regions close to the disk midplane. Other UCAMMs may have inherited from the isotopy of molecular 
reservoirs originating from a less cold environment, at intermediate depths above the disk midplane. 
These hypotheses are discussed with regard to chemical data on UCAMMs. 

 
 

4.5 Perspectives 

In this section, some trails are proposed to further expand the understanding of the formation scenario 

of UCAMMs proposed above. 

4.5.1. Coupling chemical and isotopic data at a sub-micron scale 

Chemical and isotopic characterization techniques are complementary tools to investigate the origin of 

interplanetary materials. The identification of different types of organic matters (types I, II, III) with STXM 

analyses of UCAMMs’ FIB sections and different isotopic compositions in UCAMMs with NanoSIMS 

suggests that these objects formed from, at least, two reservoirs with different properties (N-content and 

H, N, C isotopic composition). Coupling more detailed chemical and isotopic data on the organic matter of 

UCAMMs would allow a systematic determination of the chemical composition of isotopic anomalous 

spots and help to decipher their origins. This investigation requires a specific sample preparation to 
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perform analyses using additional techniques such as STXM-XANES, Nano-scale IR (AFMIR) together with 

NanoSIMS on the very same sample slice. NanoSIMS analyses were already performed on a UCAMMs thin-

section (DC309) that was previously characterized by AFMIR, demonstrating the feasibility of such an 

approach.  

The AFMIR technique couples an infrared laser system with an atomic force microscope (AFM) to 

measure the excitation of matter that absorbs photons (Dazzi et al., 2012; Mathurin et al., 2020). It allows 

to access the chemical composition of a sample at a sub-micron scale, below the diffraction limit of classic 

IR spectroscopy. Figure 4-14, middle panel, shows a map of the 1710 cm-1 to the 1600 cm-1 bands ratio 

acquired with AFMIR on DC309. This ratio, reflects the C=O/C=C relative abundance, revealing chemical 

heterogeneities at a sub-micron scale. The NanoSIMS maps were performed on that very same zone in an 

atempt to correlate the chemical and isotopic compositions at the sub-micron scale (see chapter 2 section 

2.3.1.1). Comparison of the isotopic maps with the C=O/C=C maps (Figure 2-3, Mathurin et al. (2019)) did 

not reveal correlations on that specific region. However, a more systematic investigation of UCAMMs with 

AFMIR and NanoSIMS is of great interest.  

  

Correlating AFMIR, STXM and NanoSIMS data on the very same regions on UCAMMs will clarify the 

formation scenario of the organic matter proposed in section 4.3.3. More precisely, a mapping at the same 

scale combining the N/C ratios, the infrared vibrational spectra, the abundance of minerals and the 

isotopic signatures on a sample will allow characterizing the nature of the parent reservoirs of UCAMMs 

as well as the possible interaction between distinct phases such as type I, II and III organic matter and 

minerals. An attempt has been made, however, the loss of DC18 FIB section after its transfer from a TEM 

grid to a NanoSIMS holder (see annex 5.1.1) recalls that the manipulation of such small samples remains 

highly challenging. In the framework of the recent sample-return missions on asteroids Ryugu (Hayabusa2) 

and Bennu (OSIRIS-REx), the development of such coupled techniques will provide a powerful tool for a 

future characterization of interplanetary material.   

 

Figure 4-14. Left: SEM image of the DC309 fragment analyzed by NanoSIMS. Middle: nanoscale IR mapping of 
the DC309 fragment measured by AFMIR (Mathurin et al., 2019). The colarbar indicates the ratio of the 1710 
cm-1 to the 1600 cm-1 bands corresponding to the C=O/C=C ratio. Right: δ15N image acquired with the 
NanoSIMS. The raster corresponds to the yellow square in the SEM and AFMIR images. 
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4.5.2. Abundance of pre-solar grains in UCAMMs 

Pre-solar grains in meteorites and sub-millimeter dust are refractory inclusions inherited from the 

parent clouds of the solar system (Nittler and Ciesla, 2016; Zinner, 2014). They exhibit specific isotopic 

compositions that can be linked to distinct nucleosynthetic processes. Because they can be processed 

within the protoplanetary disk and their characteristic isotopic signatures erased at high temperature, 

their preservation (and therefore abundance) is expected to be higher in interplanetary samples that 

formed in cold regions. A comprehensive search of pre-solar grains in UCAMMs could bring important 

information on the heritage of pre-solar refractory materials from deep regions of the protoplanetary disk. 

A difference in the abundance or the types of pre-solar grains in UCAMMs formed in distinct regions could 

also help to constrain the amplitude of the radial and vertical mixing in the disk (Bockelée-Morvan et al., 

2002). 

 

 

  

Figure 4-15: pre-solar grains identified in the UCAMM DC94 with the NanoSIMS at IMPMC-MNHN (Paris, France) (J.Duprat, C. 
Engrand et al., private communication). 
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5.1 Isotopic measurements on UCAMMs 

5.1.1. Preparation of the DC18 FIB section at the Naval Research Laboratory 

The DC18 FIB section was a 100 nm thick slice of UCAMM DC18 prepared by Focus Ion Beam (FIB) by 

D. Troadec at Institut d’Electronique, de Microelectronique et de Nanotechnologie (IEMN, Lille, France). It 

was attached to a grid in order to perform transmission electron microscopy (Figure 5-1, top left)). Prior 

to the present study, the DC18 FIB section had been analyzed by scanning transmission X-ray microscopy 

(STXM-XANES) coupled with scanning transmission electronic microscopy (TEM/STEM) (Guérin et al., 

2020). In order to perform NanoSIMS analyses on that FIB section at EPL (Washington DC, USA), the sample 

was detached from the TEM grid and deposited on a silicon wafer by Dr. Rhond Stroud at the Naval 

Research Laboratory (NRL, Washington DC, USA) as shown by the Figure 5-1. To ensure its stability, the FIB 

section was coated to the wafer with carbon on several spots. 

Unfortunately, the FIB section detached from the wafer during the NanoSIMS analysis, possibly due to 

charging effects, preventing the acquisitions of isotopic data. The combination of NanoSIMS and STXM-

XANES data is mandatory to deepen our understanding of the nature of the organic matter in UCAMMs. 

However, the sample preparation is challenging since it requires to manipulate samples with sub-

micron/micron dimensions. The probability of losing a sample during its preparation remains high. 

 

 

  

Figure 5-1: Preparation of the FIB section of DC18. DC18 FIB section was initially fixed to a STEM grid (top 
left). It was removed from the grid and deposited onto a silicon substarte thanks to a needle (top right 
and bottom left). At the end of the operation, the FIB section was stuck on the silicon substarte by a carbon 
coating. The handling of that transfert was done by Dr. Stroud at the Naval Research Laboratory prior the 
NanoSIMS analysis at EPL. 
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5.1.2. Control of the instrumental mass fractionation (IMF) 

The instrumental mass fractionation was controlled by a set of standards during the NanoSIMS session 

at the Carnegie institution (Table 5-1): 

 In-house standard C30H50O with δD = -152 

 SiC standard with δ13C = -22‰; the IOM QUE 99177 with δ13C = -20.8‰ 

 Si3N4 sample with δ15N = 0‰  

 

Table 5-1: instrumental mass fractionation measured on a set of standards during the 2019 NanoSIMS 
session at Carnegie Institution EPL.  

 DC309 DC43 DC18 A, B, C 

Standard    

C
ar

b
o

n
 

IO
M

 Q
U

E 

9
9

1
7

7
 IMF (α) 8.92 ± 0.13 - - 

IMF (‰) -106 ± 13 ‰ - - 

Si
C

 IMF (α) - 8.77 ± 0.15 - 

IMF (‰) - -119 ± 15 ‰ - 

N
it

ro
ge

n
 

Si
3
N

4
 IMF (α) 10.02 ± 0.22 9.87 ± 0.16 

IMF (‰) 2 ± 22 ‰ -13 ± 16 ‰ 

H
yd

ro
ge

n
 

C
3

0H
50

O
 IMF (α) 9.00 ± 0.50 10.24 ± 0.38 

IMF (‰) -85 ± 43 ‰ -20 ± 32 ‰ 
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The instrumental mass fractionation was controlled by a set of standards during the NanoSIMS session 

on DC94, at the MNHN and institut Curie (Table 5-2): 

 Terrestrial anthracite standard DonH8 with δD = -103 ‰; deuterated polystyrene PSD with δD = 

7470 ‰ (Bardin, 2015) 

 Type III kerogen with δ13C = -25 ‰ 

 Terrestrial anthracite DonH8 with δ15N = -1 ‰ 

 

Table 5-2: instrumental mass fractionation measured on a set of standards for the NanoSIMS sessions on 
the UCAMM DC94.  

 DC94 A, B, C DC94 D 

Standard   

C
ar

b
o

n
 

Ty
p

e 
III

 

ke
ro

ge
n

 

IMF (α) 9.96 ± 0.09 9.55 ± 0.05 

IMF (‰) 4 ± 9 ‰ - 44 ± 5 ‰ 

N
it

ro
ge

n
 

D
o

n
H

8
 IMF (α) 9.95 ± 0.03 

IMF (‰) - 5 ± 3 ‰ 

H
yd

ro
ge

n
 

D
o

n
H

8
 

IMF (α) 10.11 ± 0.11 - 

IMF (‰) - 10 ± 10 ‰ - 

P
SD

 IMF (α) - 9.1 ± 0.3  

IMF (‰) - 760 ± 250 ‰ 
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5.1.3. NanoSIMS images of fragments DC18A and DC18B 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Top left: CH- image of the DC18 A fragment analyzed by NanoSIMS. Top right: δD image of DC18 
A. Bottom left: CN- image of DC18 A. Bottom right: δ15N image of DC18 A. Four regions of interest are drawn 
in white in yellow.  
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Figure 5-3: Top left: CH- image of the DC18 C fragment analyzed by NanoSIMS. Top right: δD image of DC18 
C. Bottom left: CN- image of DC18 C. Bottom right: δ15N image of DC18 C. Four regions of interest are drawn 
in white in yellow. 
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5.1.4. Isotopic images on zones A, B and C on DC94 (with mesh) 

 

 

 

 

Figure 5-4: δD (left), δ15N (middle) and δ13C (right) images on zones A (top row), B (middle row) and C 
(bottom row). The hexagonal mesh is used to derive the correlations between δ13C, δ15N and δD maps. 
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5.2 Ion irradiation experiments 

5.2.1. NanoSIMS analyses of the residues: experimental conditions 

The NanoSIMS analyses performed on the organic residues synthesized at GANIL took place during the 

summers 2019, 2020 and 2021. The analytical conditions of these analyses are listed in the Table 5-3. 

Table 5-3 : analytical conditions of the NanoSIMS analyses performed on the organic residues formed at 
GANIL 

Date Ions Sandwich Primary 
current 

(pA) 

Dwell 
time 

(ms/pix) 

Area 
(µm²) 

Definition 
(pixel²) 

N plans 

10.22.2019 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd3 8.0 0.5 20×20 256×256 150 
(300) 

09.07.2020 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd4 8.0 0.5 100×100 308×308 600 
(1200) 

09.08.2020 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd4 8.0 0.5 100×100 308×308 322 
(644) 

09.14.2020 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd5 8.0 0.5 100×100 308×308 757 
(1514) 

09.03.2020 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd6 8.0 0.5 100×100 308×308 750 
(1500) 

07.08.2021 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd7 3.5 0.5 30×30 256×256 300 
(600) 

07.09.2021 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd7 3.5 0.5 30×30 256×256 800 
(1600) 

07.12.2021 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd7 8.0 0.5 30×30 256×256 708 
(1416) 

07.13.2021 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd7 8.0 0.5 30×30 256×256 1000 
(2000) 

07.16.2021 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd8 8.0 0.5 30×30 256×256 681 
(1362) 

07.22.2021 12CH-, 12CD-, 12C14N-, 
12C15N-, 13C14N- 

Sd8 8.0 0.5 30×30 256×256 450 
(900) 

 

5.2.2. Analytical improvements  

Investigating the isotopic composition of organic residues formed with the IGLIAS setup requires to 

adapt the substrate windows for both IR and NanoSIMS measurements. The windows need to be 

transparent to IR and able to evacuate charges accumulated during the NanoSIMS analyses. For the first 

experimental campaign (2019), ZnSe windows, with efficient IR transmission in the wavenumber range of 

interest, were used. Although they enabled the acquisitions of high-quality IR spectra, charging effects 

occurred during the NanoSIMS analyses, prematurely ending them. In order to improve the quality of the 

isotopic measurements, we designed new targets made of seven 5mm large and 0.5mm thin Si windows 

encapsulated in 20mm large copper holders (Figure 5-5, right and middle). Si windows have good 

transmission in the IR working domain and have higher conductivity than ZnSe windows. The seven 

windows were designed with the aim to perform characterizations of the organic residues using different 

techniques. Unfortunately, at the end of the annealing ramp of the 2020 GANIL session, few organic 

residues remained on the targets (Figure 5-5, middle), with only one 5mm Si window covered in residue 

for Sd4 and Sd6 and two for Sd5. This can result from a loose thermal contact between the copper holder 

and the Si windows. Also, with such configuration, the alignment of the IR beam is critical since the copper 
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holder can intercept it. For the NanoSIMS analyses, the windows covered in residues were extracted from 

the copper holders and glued with a colloidal carbon mixture in a specially designed aluminum holder 

(Figure 5-5, right). No charging effects were observed during the NanoSIMS acquisitions that lasted up to 

12 hours. However, due to the uncertainties on the effective thermic contact of the Si windows during the 

irradiation experiments and their delicate handling during the experimental preparation, we did not use 

this target configuration for the 2021 session and opted for the conventional 20mm large Si windows. 

These IR-transparent windows allow an efficient charge evacuation and an easier handling. Though, they 

do not allow a multi-technique approach as proposed by the seven-window holder.  

 

 

  

Figure 5-5. Left: visual aspect of the target Sd 4 at the end of the temperature ramp. Middle: close-up on the 
Sd4 window at the exit of the IGLIAS chamber. The 2020 experimental targets were made of seven 5mm 
large Si windows to insure a good charge evacuation during NanoSIMS analyses. The organic residue is 
visible on the lefternmost window. Craters on the surface of the residue are certainly due to the formation 
of buble during the temperature ramp. Right: dedicated aluminium holder for the NanoSIMS analyses. Three 
2mm large Si windows from Sd4, Sd5 and Sd6 were fixed to the holder with a conductive carbon glue. 
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5.3 The NS-ION-VISU labview of the NanoSIMS mass spectrometer 

 

This section presents a labview program of the ion optics of the NanoSIMS’ mass spectrometer which 

have been developed based on the work by Georges Slodzian on the comprehensive study on the 

NanoSIMS settings. It aims at helping to visualize the effective impacts of the several devices on the 

trajectories of ion beams.  

 

 

A schematic view of the NanoSIMS’ mass spectrometer is given in Figure 5-6. The Z axis is the theoretical 

reference axis of the mass spectrometer; the X and Y axes defines the orthogonal axes in the horizontal 

and vertical directions, respectively. Figure 5-6 details the set of devices that guides the secondary ion beam 

through the mass spectrometer (i.e., deviation plate, lens, multipoles,…) and allows to perform the double 

focusing. The magnetic prism disperses the ions with different masses along the X axis. The fine selection 

of a beam of a given mass is performed by adjusting the horizontal position (along the X axis) of the exit 

slits (ExS), placed before the electron multipliers (EM). Because the mass resolution directly depends on 

the fine selection of a beam in the X direction, it is mandatory to monitor the spread of the secondary 

beams at the exit slits. Moreover, a too large extension of the secondary ion beam in X and Y direction 

along the mass spectrometer may cause instrumental mass fractionation, resulting from the interception 

of the beam by obstacles. Understanding the behavior of the secondary ions in the mass spectrometer and 

the actions of the ion optics is thus crucial to optimize the settings of the NanoSIMS. 

Georges Slodzian developed a method aiming at evaluating the trajectories of narrow beams of 

secondary ions in the mass spectrometer (i.e. “pencils” in Slodzian et al. (2014)). Pencils of trajectories are 

selected by adjusting the entrance slit (ES) and the aperture slit (AS) at the entrance of the mass 

spectrometer. The modification of the positions of those pencils, in ExS, under the action of the ion optics 

settings enables to understand the individual effect of the mass spectrometer optics on the beam. 

Figure 5-6: schematic view of the mass spectrometer of the Cameca NanoSIMS 50 (Georges Slodzian).  
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In support to this experimental work, Georges Slodzian proposed me to developed the NS-ION-VISU, a 

numerical code of the NanoSIMS’ mass spectrometer in Labview programming language. The Labview 

program is a transcription of the work performed Georges Slodzian on an Excel sheet that he is currently 

using to follow the instrumental adjustments aiming at narrower mass lines for better mass resolving 

power. This program aims at providing an interactive approach of the ion optics of the mass spectrometer 

that allows to observe in real time the effects of settings’ changes on the secondary ions’ trajectories. The 

Labview program is more user-friendly and convenient to follow the effects of instrumental adjustments 

than a worksheet. The different devices constituting the MS were modeled by transformation matrices as 

explained in the following section. 

 

5.3.1. The theoretical mass spectrometer 

The NS-ION-VISU numerical model of the mass spectrometer relies on the transfer matrices of the 

NanoSIMS’ components that act on the secondary ions’ trajectories. An ion beam is modeled by a 5 

dimensions’ vector. The distance between the different components of the NanoSIMS and their 

dimensions are approximate. The matrix used do not take into account the possible stray fields and thus 

provide a semi-quantitative approach. Nevertheless, such calculations are suitable enough to represent 

qualitatively the main features of the CAMECA NanoSIMS-50 instrument at Institut Curie (Orsay, France). 

5.3.1.1. The trajectory vector and translation matrix 

The trajectory vector is initially determined by the positions of ES and AS, defining the initial position 

X0, Y0 and angles α0 and β0. The energy of the ion is given by E0 (E0 can be set to 0 in a first approach). The 

initial trajectory vector is then: 

𝑋0 = (

𝑋0
𝑌0
𝛼0
𝛽0
𝐸0

) 

More generally, trajectory vectors are written: 

𝑋 = (

𝑋
𝑌
𝛼
𝛽
𝐸

) 

The drift of the secondary ions through a distance L where no electromagnetic fields impact the ions is 

modeled by the translation matrix: 

𝑇 =

(

 
 

1
0
0

0
1
0

𝐿
0
1

0
𝐿
0

0
0
0

0
0

0
0

0
0

1
0

0
1)

 
 

 

such as the new coordinates X’ after the translation are given by: 

𝑋′ = (

𝑋+𝛼𝐿
𝑌+𝛽𝐿
𝛼
𝛽
𝐸

) = 𝑇 ∙ (

𝑋
𝑌
𝛼
𝛽
𝐸

) = 𝑇 ∙ 𝑋 
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5.3.1.2. The deviation plates C3 and C4 

The deviation plates C3 and C4 allow to modify the angles α and β of the ion beam. Their action is 

represented by the addition of the vector XC to the trajectory vector: 

𝑋′ = (

𝑋
𝑌

𝛼+𝛼𝐶
𝛽+𝛽𝐶
𝐸

) = (

𝑋
𝑌
𝛼
𝛽
𝐸

)+ (

0
0
𝛼𝐶
𝛽𝐶
0

) = 𝑋 + 𝑋𝐶  

Than angles αC and βC can be tuned on the C3 and C4 plates. 

 

5.3.1.3. The lenses LF4, LF5 and the quadrupole Q. 

The lenses LF4 and LF5 aim at taking back the ion trajectory to the main axis of the mass spectrometer 

on the X and Y direction, respectively. The quadrupole Q has the same action on both the X and Y direction 

simultaneously. The deviation angles induced by LF4, LF5 or Q are proportional to the distance of the beam 

position from the center of the lens/quadrupole in the lens/quadrupole plane. The transformation matrix 

of the quadrupole with a deviation factor q is: 

𝑄 =

(

 
 

1 0 0
0 1 0

−1 𝑞⁄ 0 1

0 0
0 0
0 0

0 −1 𝑞⁄ 0
0 0 0

1 0
0 1)

 
 

 

with: 

𝑋′ = (

𝑋
𝑌

𝛼−𝑋 𝑞⁄

𝛽−𝑌 𝑞⁄
𝐸

) = 𝑄 ∙ (

𝑋
𝑌
𝛼
𝛽
𝐸

) = 𝑄 ∙ 𝑋 

The lens LF4 has a similar action on the angle α while LF5 only acts on the angle β. 

 

5.3.1.4. The hexapole, electrostatic sector and the magnetic prism 

More complex ion optic devices such as the hexapole, the electrostatic sector and the magnetic prism 

are described by 5x25 matrixes that include second order terms coupling the X, Y, α, β and E coordinates. 

To compute the output trajectory vector, the input vector is extended to include second order terms 

(resulting in a 25 dimensions’ vector). The transformation matrices associated with those objects were 

derived from the literature (Boerboom, 1972, 1987, 1995; Brown et al., 1964; Matsuo et al., 1982; Taya 

and Matsuda, 1972; Wollnik, 1965, 1967). Second order terms introduced by the action of these devices 

are responsible for second order aberrations that may induce undesirable cuts of the ion beam.  

5.3.2. General features of the NS-ION-VISU program 

5.3.2.1. The initialization and monitoring of the ions’ trajectories 

The NS-ION-VISU program is conceived to follow individual or multiple ion trajectories along the mass 

spectrometer. The initial ion beam(s) is defined thanks to the control panel (Figure 5-7, left). The angles α, 
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β of single ion beam trajectories are set by adjusting the position of AS. A square shape beam (square plus 

a cross), made of multiples ions, is implemented with the aim to follow the evolution of various ions’ 

trajectories simultaneously (Figure 5-7, right). The number of ions in the square shape, its size and its main 

axis can be adjusted to explore various configurations.  

 

 

Several graphical interfaces are implemented in order to monitor the evolution of the ion beam at 

various stages. Figure 5-8 shows the images of the square shape ion beam set on Figure 5-7 at AS, EnS and 

ExS. Graphs of the components of the trajectory vectors at different locations are also available (e.g. X(AS) 

vs X(ExS) to visualize the second order aberration introduced by the mass spectrometer). 

 

5.3.2.2. The setting of the mass spectrometer components 

Each component of the MS can be tuned thanks to dedicated interfaces such as shown in Figure 5-9 in 

the case of the hexapole. The effect resulting for modifying a parameter is directly observable on the 

graphic interface. A shift of the ion optic devices on the (X,Y) plan can be introduced in order to take into 

account deviations of the mass spectrometer elements from the theoretical reference axis Z. Additional 

options were added in the program to cancel or activate second order terms. Third order terms were also 

implemented for the LF4, LF5 and quadrupole since experimental works on the NanoSIMS suggested that 

they might play an important role in the formation of aberrations, especially in the vertical direction. Their 

values can be adjusted empirically on the dedicated control panels. 

5.3.2.3. Use of the model 

The NS-ION-VISU labview program will be convenient for investigating the spatial extension of the ion 

beams. It can help to understand the occurrence of beam cuts at different locations in the NanoSIMS. 

Graphs on the ExS plan allow to quantify the importance of the vertical extension of the beam that may 

carry an important part of the ionic signals in some configurations. Comparing the prediction of the NS-

Figure 5-7: screenshots of the NS-ION-VISU initialization procedure. The initial properties of the ion beam are set in the 
left panel where the its position, angles and energy can be tuned. In order to investigate simultaneously several 
secondary ions’ trajectories, a “square shape” mode has been implemented: multiple ion trajectories are 
implemented. The size of the square and the number of points can be adjusted in the field “square side” and “number 
of points”. An interactive graph allows to see the resulting figure as imaged in the AS plan (right panel). 
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ION-VISU model with the experimental observations will be of a great help in tuning the NanoSIMS mass 

spectrometer. 

 

 

Figure 5-8: NS-ION-VISU images of the ions’ trajectories in the (X,Y) plan of the aperture slit (AS, left), energy slit (EnS, 
center) and exit slit (ExS, right). Zoom can be made to see details of the shape of the ion beam (bottom row). 
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Figure 5-9: NS-ION-VISU images of the square shape ion beam initialized in Figure 5-7 visualized in ExS for two different 
voltages applied to the hexapole (left: Ve = 0; right Ve =-100). The action of the ion optics is observed in real time 
thanks to the graphs. It is worth noting that the left and right graphs are not plotted on the same scales. Modifications 
of the mass spectrometer settings can have large impacts on the shape and positions of the beam on the exit slit.  
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5.4.3. Article: The micrometeorite flux at Dome C (Antarctica) (2021) 
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5.4.4. News mentions 

 

The work described in Chapiter 1 and published in EPSL was chosen for a national press communication 

by the CNRS. It was subsequently mentioned in various press and media in different countries.  

Communiqué de press national du CNRS 8 Avril 2021.  

https://www.cnrs.fr/fr/plus-de-5-000-tonnes-de-poussieres-extraterrestres-tombent-chaque-annee-

sur-terre 

https://www.cnrs.fr/en/more-5000-tons-extraterrestrial-dust-fall-earth-each-year 

 

Scientific American, By Sararh Derouin, April 29, 2021 

Antarctic study shows how much space dust hits Earth every year 

https://www.scientificamerican.com/article/antarctic-study-shows-how-much-space-dust-hits-earth-

every-year/# 

 

Le Devoir, Canada, Pauline Gravel 24 avril 2021 Science 

Ces 5200 tonnes de poussières cosmiques qui pleuvent sur la Terre chaque année  

https://www.ledevoir.com/societe/science/599440/ces-poussieres-cosmiques-qui-pleuvent-sur-la-

terre 

 

United Academics Magazine, In Earth & Environment, Space & Physics ; April 16, 2021 Alexandra de 

Castro 

Part of the dust accumulating in your house comes from outer space 

https://www.ua-magazine.com/part-of-the-dust-accumulating-in-your-house-comes-from-outer-

space/ 

 

Science News, by Sid Perkins April 15, 2021 at 7:00 am 

Earth sweeps up 5,200 tons of extraterrestrial dust each year, Those micrometeorites come from both 

comets and asteroids  

https://www.sciencenews.org/article/earth-extraterrestrial-space-dust-weight-meteorite 

 

NRC (NL) Bruno van Wayenburg, 16 april 2021 

Hoeveel zwaarder wordt de aarde door invallende meteorieten? 

https://www.nrc.nl/nieuws/2021/04/16/hoeveel-zwaarder-wordt-de-aarde-door-invallende-

meteorieten-a4040101 

 

Popular science By Leto Sapunar April 19, 2021,  

5,000 tons of ancient ‘extraterrestrial dust’ fall on Earth each year 

https://www.popsci.com/story/space/space-dust-falls-to-earth/ 

 

Blog Astronomy Phil Plait Apr 12, 2021, 9:00 AM EDT  

Is it dusty in here or is it just the 14 tons of meteorite dust that settles to Earth every day?  

https://www.cnrs.fr/en/more-5000-tons-extraterrestrial-dust-fall-earth-each-year
https://www.scientificamerican.com/article/antarctic-study-shows-how-much-space-dust-hits-earth-every-year/
https://www.scientificamerican.com/article/antarctic-study-shows-how-much-space-dust-hits-earth-every-year/
https://www.ledevoir.com/auteur/pauline-gravel
https://www.ledevoir.com/societe/science
https://www.ledevoir.com/societe/science/599440/ces-poussieres-cosmiques-qui-pleuvent-sur-la-terre
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https://www.syfy.com/syfywire/is-it-dusty-in-here-or-is-it-just-the-14-tons-of-meteorite-dust-that-

settles-to-earth-every 

 

France Inter, Les Savanturiers, samedi 24 avril 2021 par Fabienne Chauvière 

5000 tonnes de poussières extraterrestres 

https://www.franceinter.fr/emissions/les-savanturiers/les-savanturiers-24-avril-2021 
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5.4.5. Abstract for 6th Workshop of the Scientific Committee on Antarctic Research 

(2021) 
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5.4.7. Abstract for the 51st Lunar and Planetary Sciences Conference (2020) 
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5.4.8. Abstract for the 84th Annual Meeting of the Meteoritical Society (2021) 
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5.4.9. Abstract for the 51th Lunar and Planetary Sciences Conference (2020) 
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6 Résumé détaillé en français 
 

Chapitre 1 : Le flux de micrométéorites mesuré avec la collection Concordia 

Cette thèse de doctorat porte sur l'étude des micrométéorites collectées auprès de la station 

Concordia (Dôme C, Figure A) dans les régions centrales de l’Antarctique. Les micrométéorites 

proviennent de petits corps du système solaire, les astéroïdes et les comètes. L'étude des 

micrométéorites de la collection Concordia permet de mieux contraindre le flux de poussières 

interplanétaires à 1 U.A. et d’analyser la matière réfractaire existant à la surface des petits corps 

ayant gardé la mémoire des premiers stades du système solaire. 

 

Figure A : position géographique du Dôme C en Antarctique (gauche) ; image d’une tranchée creusée pour 

l’extraction de micrométéorites à Dôme C (milieu) ; fondoir utilisé pour la fonte des neiges antarctiques et 

la collecte de micrométéorites. 

La collection Concordia est décrite dans le premier chapitre, qui présente une étude sur le flux 

de particules submillimétriques extraterrestres tombant sur la Terre. Elle rassemble les données 

obtenues au cours de différentes missions de terrain effectuées au cours de vingt dernières 

années. Les conditions de collecte exceptionnelles à Dôme C permettent un contrôle précis du 

paramètre d'exposition (la surface équivalente d'accumulation) et de l'efficacité de la collecte des 

micrométéorites. Grâce à ce protocole expérimental, la collection Concordia échantillonne avec 

précision, pour la première fois, toutes les micrométéorites (y compris les plus fragiles) jusqu’à 

des diamètres de 30 µm. Les distributions en taille et les flux massiques de micrométéorites non-

fondues (uMM) et de sphérules cosmiques (CS) sont mesurés dans la gamme de diamètres 30-

350 µm. Cette étude montre que le maximum du flux en masse des uMMs et des CSs est porté 

par des particules dans une gamme de taille légèrement inférieure à celle déduite par les 

précédentes études. Plusieurs mesures indépendantes du flux sont été réalisées avec une 

méthodologie permettant de déduire une valeur absolue des flux de uMMs et de CSs. Les flux 

mesurés à Concordia combinés à une précédente mesure de flux réalisée à la station de Scott-

Amundsen, au Pôle Sud (Taylor et al., 1998), permettent de déduire le flux global dans la gamme 

de diamètre 12-700 µm (Figure B). L'apport total annuel de micrométéorites sur Terre extrapolé 

à partir de cette étude est de 5200 tonnes/an (3600 tonnes/an de CS et 1600 tonnes/an de uMM).  
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Figure B : distributions globales en taille de sphérules cosmiques (CS, gauche) et de micrométéorites non-

fondues (uMM, droite). La distribution de CS est déduite de la combinaison de la distribution de la 

collection Concordia (DC) pour les diamètres inférieurs à 200 µm et la distribution SPWW (Taylor et al., 

1998) pour les diamètres supérieurs à 200 µm. L’enveloppe rouge indique l’incertitude sur la distribution 

globale. L’enveloppe bleue indique l’impact de la densité sur la détermination du flux d’uMM, les limites 

hautes et basse de l’enveloppe correspondent à des densités de 2,2 et 0,8 g.cm-3, respectivement. 

Cette valeur comprend la contribution portée par les particules de taille inférieure à 200 µm, 

elle est donc plus élevée que celle déduite de la collection du Pôle Sud. Elle reste toutefois 

inférieure, d’un facteur 3, au flux attendu avant l'entrée atmosphérique, confirmant qu'environ 

2/3 de la masse du flux entrant est volatilisée lors de l'entrée atmosphérique de ces particules. 

Sur la base des abondances relatives en carbone dans les différents types de micrométéorites 

(déduites des analyses des particules de la collection Concordia), le flux de carbone sur Terre 

porté par les micrométéorites est estimé entre 20 et 100 tonnes/an. A partir des distributions de 

masse obtenues dans cette étude, une simulation Monte-Carlo est réalisée pour calculer les 

incertitudes statistiques liées aux variations du paramètre d'exposition. Les résultats obtenus 

permettent de déduire les incertitudes statistiques typiques associées à de futures mesures de 

flux de particules submillimétriques sur Terre (Figure C). 
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Figure C : impact du facteur d’exposition sur la mesure du flux de micrométéorites. Gauche : variations du 

rapport du flux mesuré (Φ) sur le flux nominal (Φ0), indiqués par différents quantiles, en fonction du 

paramètre d’exposition. Droite : Probabilités d’estimer le flux avec une erreur statistique inférieure à 30% 

(P30), 20% (P20) et 10% (P10) en fonction du paramètre d’exposition. 

 

Chapitre 2 : La composition isotopique en H, C et N de la matière organique des micrométéorites 

ultra-carbonées 

Le chapitre 2 porte sur l’analyse isotopique de la matière organique de micrométéorites ultra-

carbonées (UCAMM) provenant de la collection Concordia. Les UCAMMs constituent une 

population rare de micrométéorites riches en carbone, pauvres en minéraux. Ce carbone est sous 

forme de matière organique qui présente plusieurs composantes. Les caractéristiques chimiques 

et isotopiques de la composante riche en azote de matière organique des UCAMMs indiquent 

qu’elle a très probablement été formée par irradiation par les rayonnements cosmiques 

galactiques (GCR) de manteaux de glaces, riches en azote, dans les régions externes du système 

solaire. (Figure D).  
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Figure D : scenario de formation de la matière organique riche en azote des UCAMMs. Gauche : étape 1, 

un petit corps dans les régions externes du système solaire accrète un manteau de glace volatile riche en 

azote. Les minéraux et la glace d’eau restent concentrés dans le noyau. Milieu : étape 2, le manteau de 

glace est irradié par les rayonnements cosmiques galactiques à grandes distances héliocentriques, 

conduisant à la transformation des molécules en surface et sub-surface. Droite : étape 3, les éléments 

volatiles du manteau se subliment et une croute organique réfractaire riche en azote se forme. La matière 

organique ainsi formée est riche en azote et pauvre en minéraux. 

Dans le cadre de ce scénario de formation, la composition chimique et isotopique de la matière 

organique des UCAMMs permet d’étudier la nature des réservoirs gazeux condensés sur le corps 

parent des UCAMMs. Au cours de cette thèse, les compositions isotopiques de l’hydrogène, de 

l’azote et du carbone dans la matière organique de 4 UCAMMs ont été analysées. Cinq fragments 

de trois UCAMMs ont été analysés par spectrométrie de masse des ions secondaires à l'échelle 

nanométrique (NanoSIMS) au Earth and Planets Laboratory (Carnegie, Washington DC) en 

collaboration avec le Dr L. Nittler. Une analyse des données isotopiques acquises en carbone sur 

une UCAMM étudiée par NanoSIMS au MNHN et à l'Institut Curie avant cette thèse est également 

présentée. Ce travail présente l'étude la plus complète disponible à ce jour sur les rapports D/H, 
13C/12C et 15N/14N dans les UCAMMs. Les compositions isotopiques en H, N et C des UCAMMs 

présentent une large gamme de variation d'une particule à l'autre, ainsi qu’au sein d'un même 

fragment. L'ensemble des données révèle des corrélations spatiales entre les compositions 

isotopiques en H, C et N qui sont discutées dans le chapitre 4. 
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Figure E : compositions isotopiques en δD, δ15N, δ13C des quatre UCAMMs analysées dans le chapitre 2. 

Les UCAMMs présentent une diversité de compositions isotopiques et des variations isotopiques à petites 

échelles. Les valeurs moyennes sont indiquées par des étoiles et les valeurs mesurées sur des régions 

d’intérêt spécifique par des pentagones (DC94), hexagones (DC43), octogones (DC309) et des cercles 

(DC18). 

 

Chapitre 3 : irradiation de surfaces cométaires par les rayonnements cosmiques galactiques, 

une approche expérimentale 

Le chapitre 3 présente un ensemble d’expériences de laboratoire simulant la synthèse de 

matière organique par l’irradiation de manteaux de glace de compositions isotopiques 

hétérogènes par des ions du GCR. Neuf résidus organiques réfractaires ont été produits au cours 

de trois sessions expérimentales en 2019, 2020 et 2021 au Grand Accélérateur National d'Ions 

Lourds (GANIL, France). Les expériences ont été réalisées avec le dispositif IGLIAS développé au 

CIMAP. Des films de glace avec différentes compositions chimiques et présentant des 

hétérogénéités isotopiques ont été irradiés avec des ions lourds d’énergie comprise entre 0,1 et 

1 MeV/A (Figure F). Le but de ces expériences était d'étudier le transfert des hétérogénéités 

isotopiques du mélange de glace vers le résidu formé par irradiation. 
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Figure F : Principe des expériences d’irradiation de glace effectuées au GANIL à l’aide du dispositif IGLIAS. 

(1) Une première couche (env. 5 µm) de glace non-marquée isotopiquement est déposé par condensation 

de gaz sur une fenêtre d’analyse à une température de 10K (bleu clair). (2) Un fin film (env. 0,1-0,4 µm) de 

glace marquée isotopiquement est déposé par-dessus (rouge). (3) Une seconde couche (env 5 µm) de 

glace non marqué isotopiquement, identique à la première, est déposée. (4) Le sandwich de glace est 

irradié par des ions lourds, modélisant les rayonnements cosmiques galactiques. (5-7) Le sandwich de 

glace irradié subit une lente remontée en température de 10K à 300K à une vitesse de 0,1 à 0,5 K/min. Les 

espèces volatiles se subliment et un résidu organique, réfractaire à 300K, se forme sur la fenêtre d’analyse. 

La répartition spatiale des hétérogénéités isotopiques du résidu organique est ensuite analysée à l’aide du 

NanoSIMS. 

Les compositions isotopiques en éléments légers des résidus organiques ont été analysées par 

NanoSIMS à l'Institut Curie (Orsay, France). Cette étude rapporte, pour la première fois, des 

analyses combinées des hétérogénéités en D/H, 13C/12C et 15N/14N dans des résidus formés par 

irradiation obtenus à partir de mélanges de glaces d’intérêt astrophysique présentant différentes 

températures de condensation : CO, NH3, N2, CH4. Cette étude montre que lorsqu'ils sont formés 

dans les mêmes conditions, les résidus résultant de l'irradiation de glaces N2-CH4 présentent une 

composition isotopique plus hétérogène que les résidus formés à partir de glaces NH3-CH4. 

Cependant, la nature des hétérogénéités ainsi que la structure globale des résidus sont 

particulièrement sensibles aux conditions de formation (par exemple la vitesse de remontée en 

température). Une formation d’îlots localisés de matière avec des anomalies isotopiques 

extrêmes est observée dans un résidu synthétisé lors de la session de 2020 (Figure G). Ce 

phénomène peut être liée à des événements sporadiques de sublimation pendant la procédure 

de remontée en température. Il indique qu’une mémoire de la composition isotopique locale de 

la glace peut être conservée lors de la formation du résidu organique. 
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Figure G : image du rapport 15N/14N acquises par 

NanoSIMS sur un résidus organique formés après la 

remontée en température d’un sandwich de glace 

irradié par des ions lourds (Session expérimentale 2020). 

De fortes hétérogénéités isotopiques sont observées à 

l’échelle de quelques microns dans le résidu organique. 

 

 

 

 

Les résultats de ces expériences sont discutés sur la base des conditions astrophysiques 

attendues à la surface des corps glacés situés dans les régions froides du disque protoplanétaire, 

au-delà de 5 U.A. Le phénomène d’irradiation de glaces isotopiquement hétérogènes permet 

d’expliquer la formation d’hétérogénéités isotopiques en H, N et C dans la matière organique des 

UCAMMs. 

 

Chapitre 4 : discussion et perspectives 

Dans le dernier chapitre, les résultats des chapitres 2 et 3 sont remis en perspective dans le 

cadre d'un scénario de formation de la matière organique des UCAMMs. La diversité de la 

composition isotopique des UCAMMs est résumée et comparée à celle d'autres objets du système 

solaire (Figure G). Les similitudes entre les compositions isotopiques de l’UCAMM DC43 et celles 

de la matière organique insoluble (IOM) des chondrites de type Renazzo (CR) indiquent que ces 

objets pourraient avoir hérité leur matière organique d’un réservoir parent similaire, ce qui 

suggère un continuum entre le corps parent des CR et les objets cométaires. Sur la base de 

modèles théoriques prédisant les compositions isotopiques en H, N et C des réservoirs gazeux 

primitifs du disque protoplanétaire, l’étude montre qu’il existe des réservoirs moléculaires 

pouvant rendre compte des compositions isotopiques observées dans la matière organique des 

UCAMMs. Il est ainsi possible d’expliquer les caractéristiques isotopiques de certaines UCAMMs 

en considérant l'irradiation de manteaux de glace hérités de réservoirs gazeux froids situés dans 

des régions proches du plan médian du disque à des distances héliocentriques comprises entre 

quelques AU et quelques dizaines d’AU. Les composantes organiques d’autres UCAMMs 

pourraient avoir héritées de la composition isotopiquee de réservoirs gazeux moléculaires 

provenant d’un environnement moins froid, à des profondeurs intermédiaires au-dessus du plan 

médian du disque (z ≈ 0,08 – 0,2). Ces hypothèses sont discutées au regard des données 

chimiques des UCAMMs. Des recherches futures sont proposées pour caractériser l'association 

de minéraux et de matière organique dans les UCAMMs et approfondir notre compréhension de 

la composition de la surface des petits corps glacés formés au début du système solaire.  
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Figure H : compositions isotopiques en δD, δ15N, δ13C des quatre UCAMMs analysées dans le chapitre 2, 

comparées aux compositions mesurées dans les IDPs (croix, Messenger, 2000) et dans la matière 

organique insoluble de chondrites (losange, OC et CR désignent les chondrites ordinaires et de type 

Renazzo). 
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7 Abbreviations 
 

AFMIR Atomic force microscopy-Infrared spectroscopy 

AMM Antarctic micrometeorite 

BSE Backscattered electron 

CABMOD Chemical ablation model 

CIMAP Centre de recherche sur les Ions, les MAtériaux et la Photonique, Caen, France 

CP-IDP Chondritic-porous interplanetary dust particle 

CS Cosmic spherules 

CSNSM Centre de Science Nucléaire et de Science des matériaux, Orsay, France (now 
IJCLAB) 

CR Rennazzo-type carbonaceous chondrite 

DC Dome C 

FTIR Fourier transform infrared 

ET Extraterrestrial 

GANIL Heavy ions accelerator, Caen, France 

GCR Galactic cosmic ray 

IDP Interplanetary dust particles 

IGLIAS Experimental chamber for the irradiation of ices of astrophysical relevance 

IJCLab Laboratoire Irène Joliot-Curie, Orsay, France 

IMF Instrumental mass fractionation 

IOM Insoluble organic matter 

IR Infrared  

ISM Interstellar medium 

KBO Kuiper belt objects 

LDEF Long duration exposure facility 

MM Micrometeorite 

OC Ordinary chondrite 

OM Organic matter 

QMS Quadrupolar mass spectrometer 

ROI Region of interest 

SEM Scanning electron microscopy 

SIMS (NanoSIMS) Secondary ions mass spectrometry 

SPWW South-Pole water well  

STXM Scanning transmission X-ray microscopy 

TAM Trans-Antarctic mountains 

TEM Transmission electron microscopy 

UCAMM Ultra-carbonaceous micrometeorite 

UHV Ultra-high vacuum 

uMM Unmelted micrometeorite 

UV Ultraviolet 

Vis-UV Visible-ultraviolet 

XANES X-Ray absorption near edge structure 

ZC Zodiacal cloud 

ZoDy Zodiacal cloud dynamical model 
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FIGURE 5-2: TOP LEFT: CH- IMAGE OF THE DC18 A FRAGMENT ANALYZED BY NANOSIMS. TOP RIGHT: ΔD IMAGE OF DC18 A. BOTTOM 

LEFT: CN- IMAGE OF DC18 A. BOTTOM RIGHT: Δ15N IMAGE OF DC18 A. FOUR REGIONS OF INTEREST ARE DRAWN IN WHITE IN 

YELLOW. ............................................................................................................................................................... 147 
FIGURE 5-3: TOP LEFT: CH- IMAGE OF THE DC18 C FRAGMENT ANALYZED BY NANOSIMS. TOP RIGHT: ΔD IMAGE OF DC18 C. BOTTOM 

LEFT: CN- IMAGE OF DC18 C. BOTTOM RIGHT: Δ15N IMAGE OF DC18 C. FOUR REGIONS OF INTEREST ARE DRAWN IN WHITE IN 

YELLOW. ............................................................................................................................................................... 148 
FIGURE 5-4: ΔD (LEFT), Δ15N (MIDDLE) AND Δ13C (RIGHT) IMAGES ON ZONES A (TOP ROW), B (MIDDLE ROW) AND C (BOTTOM ROW). THE 

HEXAGONAL MESH IS USED TO DERIVE THE CORRELATIONS BETWEEN Δ13C, Δ15N AND ΔD MAPS. ............................................ 149 
FIGURE 5-5. LEFT: VISUAL ASPECT OF THE TARGET SD 4 AT THE END OF THE TEMPERATURE RAMP. MIDDLE: CLOSE-UP ON THE SD4 WINDOW 

AT THE EXIT OF THE IGLIAS CHAMBER. THE 2020 EXPERIMENTAL TARGETS WERE MADE OF SEVEN 5MM LARGE SI WINDOWS TO 

INSURE A GOOD CHARGE EVACUATION DURING NANOSIMS ANALYSES. THE ORGANIC RESIDUE IS VISIBLE ON THE LEFTERNMOST 

WINDOW. CRATERS ON THE SURFACE OF THE RESIDUE ARE CERTAINLY DUE TO THE FORMATION OF BUBLE DURING THE TEMPERATURE 

RAMP. RIGHT: DEDICATED ALUMINIUM HOLDER FOR THE NANOSIMS ANALYSES. THREE 2MM LARGE SI WINDOWS FROM SD4, SD5 

AND SD6 WERE FIXED TO THE HOLDER WITH A CONDUCTIVE CARBON GLUE. ....................................................................... 151 
FIGURE 5-6: SCHEMATIC VIEW OF THE MASS SPECTROMETER OF THE CAMECA NANOSIMS 50 (GEORGES SLODZIAN). ....................... 152 
FIGURE 5-7: SCREENSHOTS OF THE NS-ION-VISU INITIALIZATION PROCEDURE. THE INITIAL PROPERTIES OF THE ION BEAM ARE SET IN THE 

LEFT PANEL WHERE THE ITS POSITION, ANGLES AND ENERGY CAN BE TUNED. IN ORDER TO INVESTIGATE SIMULTANEOUSLY SEVERAL 

SECONDARY IONS’ TRAJECTORIES, A “SQUARE SHAPE” MODE HAS BEEN IMPLEMENTED: MULTIPLE ION TRAJECTORIES ARE 

IMPLEMENTED. THE SIZE OF THE SQUARE AND THE NUMBER OF POINTS CAN BE ADJUSTED IN THE FIELD “SQUARE SIDE” AND “NUMBER 

OF POINTS”. AN INTERACTIVE GRAPH ALLOWS TO SEE THE RESULTING FIGURE AS IMAGED IN THE AS PLAN (RIGHT PANEL). .......... 155 
FIGURE 5-8: NS-ION-VISU IMAGES OF THE IONS’ TRAJECTORIES IN THE (X,Y) PLAN OF THE APERTURE SLIT (AS, LEFT), ENERGY SLIT (ENS, 

CENTER) AND EXIT SLIT (EXS, RIGHT). ZOOM CAN BE MADE TO SEE DETAILS OF THE SHAPE OF THE ION BEAM (BOTTOM ROW). ..... 156 
FIGURE 5-9: NS-ION-VISU IMAGES OF THE SQUARE SHAPE ION BEAM INITIALIZED IN FIGURE 5-7 VISUALIZED IN EXS FOR TWO DIFFERENT 

VOLTAGES APPLIED TO THE HEXAPOLE (LEFT: VE = 0; RIGHT VE =-100). THE ACTION OF THE ION OPTICS IS OBSERVED IN REAL TIME 

THANKS TO THE GRAPHS. IT IS WORTH NOTING THAT THE LEFT AND RIGHT GRAPHS ARE NOT PLOTTED ON THE SAME SCALES. 

MODIFICATIONS OF THE MASS SPECTROMETER SETTINGS CAN HAVE LARGE IMPACTS ON THE SHAPE AND POSITIONS OF THE BEAM ON 

THE EXIT SLIT.......................................................................................................................................................... 157 
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