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Introduction

Le changement climatique constitue un défi colossal. Parmi les impacts des activités humaines sur son environnement, le changement climatique est celui qui représente, en retour, la plus grande menace pour les êtres humains [START_REF] Masson-Delmotte | Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF]. La taille de ce défi est aussi due à son universalité. Bien que chacun contribue et soit affecté par le changement climatique de manière inégale [2][3][4], chacun est partie prenante. La planète Terre avec son climat est notre plus grand bien commun, et l'ampleur du défi nécessite d'agir à toutes les échelles possibles [START_REF] Ostrom | A Multi-Scale Approach to Coping with Climate Change and Other Collective Action Problems[END_REF].

Le constat scientifique est sans équivoque : atténuer le changement climatique nécessite une réduction rapide et conséquente des émissions de gaz à effets de serre [START_REF] Masson-Delmotte | Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF]. Le principal levier consiste à changer notre manière de produire et de consommer de l'énergie [START_REF]Global CO2 emissions by sector[END_REF]. En effet, cette énergie provient majoritairement du pétrole, du charbon et du gaz [START_REF]Energy Sankey[END_REF], sources émettrices de CO2. Pour réduire la consommation de ces ressources, trois stratégies existent :

• La sobriété, qui consiste à changer nos modes de vie pour réduire notre besoin et consommer moins d'énergie finale (baisser le thermostat du radiateur par exemple). • L'efficacité énergétique, qui consiste à assurer un besoin en consommant moins d'énergie primaire (utiliser une chaudière à haut rendement, ou isoler thermiquement un logement par exemple). • Remplacer l'usage d'énergies primaires carbonées par des sources moins carbonées (utiliser une chaudière à bois plutôt qu'une chaudière consommant du fioul par exemple).

Non sans oublier le premier point, nous nous concentrons maintenant sur les deux derniers. L'efficacité énergétique peut être améliorée en travaillant sur les processus qui consomment et/ou transforment l'énergie, en mutualisant les ressources et les besoins, en utilisant des énergies fatales ou de récupération, et en recherchant la complémentarité entre vecteurs énergétiques (électricité, chaleur, froid, gaz, etc.). Les sources d'énergies peu carbonées incluent l'énergie hydraulique, géothermique, nucléaire, solaire, éolienne etc. Ces deux dernières ne peuvent être pilotées, et leur production n'est pas toujours en phase avec la demande. Ce déphasage nécessite le recours à la flexibilité d'autres moyens de production (hydrauliques, nucléaires, fossiles), voire à des sources de flexibilité supplémentaires comme le stockage d'énergie [START_REF] Clerjon | Analyse et modélisation des impacts du développement des énergies renouvelables intermittentes sur le système électrique Français : Etude du potentiel du stockage de l'électricité et de la complémentarité avec la chaleur[END_REF].

Travailler sur l'efficacité énergétique et le remplacement d'énergies primaires carbonées par des sources moins carbonées peut se faire à plusieurs échelles. Cette thèse concerne l'échelle locale : industries, quartiers, villes ou territoires. En revanche, les méthodes citées et développées par la suite ne sont pas exclusivement réservées à cette échelle. Nous parlerons de systèmes énergétiques pour désigner les principaux composants technologiques qui, utilisés ensemble, permettent de produire, convertir, stocker et transporter de l'énergie vers un consommateur. Quelques exemples : un réseau de chaleur urbain, un processus industriel couplé à une production d'énergie locale, une production d'hydrogène et d'électricité pour alimenter une flotte de véhicules.

La conception (ou l'éco-conception) de systèmes énergétiques passe par plusieurs étapes. La Figure 1 illustre les étapes typiques d'un tel projet, jusqu'à la gestion opérationnelle du système. Cette thèse concerne les étapes de faisabilité et de préconception. La question de la viabilité de ces projets est une question complexe. Cette complexité provient d'une part de la diversité et de la multitude d'acteurs concernés, potentiellement dissociés : concepteurs, investisseurs, conseillers experts, opérateurs, fournisseurs, ou encore usagers. La dimension politique, d'abord présente pour des questions d'emploi ou d'accès à l'énergie est aujourd'hui essentielle pour considérer la dimension écologique dans de tels projet. Cette dernière est éminemment complexe, de par son étendue à toute la durée de vie du projet et de par la multitude d'indicateurs qu'elle englobe [START_REF] Sharma | Integration of environmental analysis in the assessments of hybrid energy systems[END_REF]. Simultanément, la durée de vie des projets, la diversité des ressources et les incertitudes quant à leur accessibilité future rend l'équation économique difficile à résoudre. Finalement, la complexité technique s'intensifie avec l'utilisation de ressources intermittentes ou fatales, et la recherche de complémentarité entre vecteurs énergétiques.

L'étude technico-économique de systèmes énergétiques traite des deux derniers aspects, et peut intégrer une partie de la dimension écologique sous la forme de contraintes où de pénalités financières sur les émissions de CO2. Ces études nécessitent d'évaluer le fonctionnement du système sur plusieurs dizaines d'années pour trouver un compromis entre les coûts d'opération et les coûts d'investissement. Cette évaluation se fait en simulant / optimisant l'opération du système à chaque heure, avec un horizon d'anticipation plus ou moins long (un jour, une semaine ou un an par exemple). Il y a donc plusieurs échelles de temps à traiter. De plus, ces systèmes techniquement complexes peuvent inclure un grand nombre de composants, obéir à des règles de marché élaborées ou encore dépendre de paramètres incertains.

La modélisation mathématique est donc nécessaire et fait l'objet d'un compromis difficile à trouver entre les temps de calculs pour fournir des solutions, la pertinence (ou précision) des indicateurs et la complexité du modèle. Cette dernière peut rendre son élaboration plus couteuse et son interprétabilité plus difficile. La simplicité du modèle est donc une qualité essentielle [START_REF]The nature of modelling[END_REF].

L'objet de cette thèse est d'apporter des réponses à des questions au coeur de ces problématiques : Comment faire usage des méthodes disponibles pour l'étude et la planification technico-économique de systèmes multiénergies ? Peut-on compléter le panel existant avec de nouvelles méthodes pertinentes ?

Ce manuscrit de thèse se présente sous la forme de plusieurs articles publiés ou en cours de soumission dans des journaux scientifiques. Les Chapitres 1, 2 et 4 correspondent à trois articles. Le Chapitre 3 est une note technique qui a été soumise avec l'article correspondant au Chapitre 2. Les chapitres sont donc rédigés en anglais, et introduits par un paragraphe en français.

complète également les réponses aux questions en synthétisant les options méthodologiques disponibles en fonction des objectifs de l'étude et des difficultés calculatoires rencontrées.

Chapitre 1

Ce premier chapitre constitue l'état de l'art de cette thèse. L'état de l'art est basé sur une grille de lecture originale. L'objectif est de donner une vision large et synthétique des méthodes de simulation et d'optimisation qui peuvent être utilisées dans le cadre d'études technico-économiques. Ces études permettent de mieux comprendre, concevoir et planifier l'évolution des systèmes énergétiques. Cet état de l'art concerne en particulier les méthodes utilisées à l'échelle industrielle, urbaine, ou territoriale, bien que des méthodes utilisées à des échelles supérieures puissent être pertinentes à l'échelle locale, et inversement. Ce chapitre permettra de mieux se saisir des questions motivant les études, des hypothèses de modélisation, des algorithmes utilisés et des difficultés calculatoires engendrées. Ces aspects sont interdépendants et cet état de l'art permet aussi d'en comprendre les articulations. Ce travail est un préambule à l'élaboration de méthodes innovantes et pertinentes. Il 

Local energy systems

Individual buildings, industrial energy intensive or production sites, micro grids, stand-alone systems, smart energy systems, district heating and cooling, cities and territories below national scale. Such systems are often distributed and/or multi-energy systems e.g. involving electricity, heat and gas as means to store and convert energy.

Techno-economic studies

Studies where several technologies are modelled in a more or less simplified fashion and considered together to provide a systemic view. Used to perform economic evaluation or optimisation of the system where environmental externalities can be included as constraints, objectives or simply accounted by the mean of metrics derived from life cycle analysis for instance.

A model

A simplified representation of one or several aspects of reality.

A formalism

A formal language used to build models in a non-ambiguous way.

A paradigm

A coherent set of models used in conjunction.

An algorithm

A non-ambiguous sequence of instructions or operations to solve a problem.

Simulation

Use of a model to observe results of hypothetical actions on it.

Optimisation

Use of a model including decision variables to derive their optimal values when minimizing or maximizing one or several objectives under given constraints by the mean of algorithms.

A method

A set of coherent actions and processes to answer (a) given question(s) (including possible formalisms and algorithms definitions to perform simulation and / or optimisation).

An approach

A general trend of methods.

A tool

A computer program used to build models with a possible given formalism and method(s).

Stochastic optimisation

Where the optimisation objective is to maximize or minimise the expected outcome.

Robust optimisation

Where the optimisation objective is to minimise the worst possible outcome (with possible restrictions on over-conservative solutions).

Introduction

Global environmental concerns are pushing us toward a cleaner life style in a general sense. Among these concerns, global warming stands as a major issue and most developed countries have set greenhouse gases reduction objectives after the Paris agreements [START_REF] Paris Agreement | [END_REF]. The energy sector plays a major role in European emissions; hence, the energy transition towards clean and renewable energy systems is one of the keys to limit environmental impacts. The energy transition calls for long-term planning at national levels. One related challenge is to identify evolution targets to reach efficient systems with respect to the economics and the environmental. These systems must adapt to greenhouse gases emission constraints, as well as evolving economic, climate, regulation, technological landscape and load environments. Increasingly, national targets spread at local scales so local actors are facing need for long-term energy system planning as well: [START_REF] Doubleday | Integrated distribution system and urban district planning with high renewable penetrations[END_REF] and [START_REF] Cajot | Energy Planning in the Urban Context: Challenges and Perspectives[END_REF] explore such issues at the urban level. Local energy systems (see Definitions) cover a wide range of systems including buildings, industrial energy intensive or production sites, micro grids, stand-alone systems, smart energy systems, district heating and cooling, cities and territories below national scale. With the decentralization nature of energy systems through DER (Distributed Energy Resources) and with the emergence of SES (Smart Energy Systems) (described respectively in [START_REF] Alanne | Distributed energy generation and sustainable development[END_REF] and [START_REF] Lund | 4th Generation District Heating (4GDH)[END_REF][START_REF] Lund | Smart energy and smart energy systems[END_REF]), systems become promisingly more efficient and increasingly complex. They typically include more technologies and energy vectors to become "multi-energy". This goes along with the penetration of IE (Intermittent Energies) that brings non-controllable and uncertain energy productions.

Planning the design and the evolution of such systems is thus a challenging task. A way of providing decision support is through techno-economic studies (see Definitions). Techno-economic studies often rely on simulation or optimisation models (as defined in [START_REF] Mavromatidis | Ten questions concerning modeling of distributed multi-energy systems[END_REF]). This survey focuses on optimisation models (see Definitions), where several technologies are modelled in a more or less simplified fashion and considered together to provide a systemic view. The model is then used to perform economic optimisation of the system where environmental externalities can be included as constraints, objectives or simply accounted by the mean of metrics derived from life cycle analysis for instance. Figure 2 summarises the scope of this survey. 

Modelling needs for energy planning

In line with the energy landscape evolution, the modelling task is to represent local energy systems which faces intermittencies on both load and production sides. Hence, dynamic models are often privileged with hourly or sub-hourly time steps. These systems can include different energy carriers (electricity, gas, heat or biomass for example). Multi-energy systems offer greater opportunities to reach better technical, economic and environmental performances, as stated in [START_REF] Lund | Smart energy and smart energy systems[END_REF][START_REF] Mancarella | MES (multi-energy systems): An overview of concepts and evaluation models[END_REF]. Technologies include production, conversion and storage units from daily to seasonal storage and must be modelled with a suitable amount of details.

Modelling specific market conditions might be of concern as well. Finally, the modeller must keep in mind various sources of uncertainties and can include them in the modelling (and optimisation) process. Uncertainties can lie in boundary conditions, in the model parameters or even in the model itself. They are due to uncertain data on emerging technologies, stochastic intermittencies or prospective long-term hypothesis for instance.

Most of time, techno-economic studies aim to answer the following question: What investments to undertake? At an early planning stage, many design choices remain open, leading to complex optimisation problems. Moreover, planning studies can look forward up to fifty years. This raises the question of how the system should evolve with respect to the context i.e. what investments to realise now and in the coming years. Finally, the objective of such studies can be twofold: coming up with theoretically performant solutions for a given environment (e.g. [START_REF] Gabrielli | Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis[END_REF]), or learn on innovative energy system behaviours to provide useful insights (see [START_REF] Sisternes | The value of energy storage in decarbonizing the electricity sector[END_REF], [START_REF] Clerjon | Matching intermittency and electricity storage characteristics through time scale analysis: an energy return on investment comparison[END_REF] or [START_REF] Bylling | The impact of short-term variability and uncertainty on longterm power planning[END_REF] for instance).

Therefore, there is a need for approaches that can properly represent local energy systems (as described above), and provide decision support for planning needs. In order to make the best use out of current methods or develop new ones, a clear view of current practices is needed.

At this stage, a distinction must be made between tools (computer programs used to build models such as EnergyPlan, TIMES, OSeMOSYS or DER CAM for example), and their underlying modelling and simulation / optimisation method (i.e. the formalism used and the possible optimisation algorithm).

1.2 Literature on energy system planning Energy system planning studies have recently received much attention at local, national, and even up to European scale. Papers either focus on trying out new methods (e.g., [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF][START_REF] Marquant | A holarchic approach for multi-scale distributed energy system optimisation[END_REF]) or investigate specific case studies (e.g., [START_REF] Ameri | Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex[END_REF][START_REF] Yi | Impact of carbon emission constraint on design of small scale multienergy system[END_REF]) or both. Large-scale studies address energy sectors interactions or focus on power systems. The latter include operational details [START_REF] Helistö | Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches[END_REF]. Local scale studies cover a more diverse number of cases, including microgrids [START_REF] Mashayekh | A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids[END_REF], stand-alone systems [START_REF] Zhang | A bi-level program for the planning of an islanded microgrid including CAES[END_REF], multi or smart energy systems [START_REF] Ma | The optimal structure planning and energy management strategies of smart multi energy systems[END_REF], DH (District Heating) [START_REF] Marquant | A holarchic approach for multi-scale distributed energy system optimisation[END_REF] or DHC (District Heating and Cooling), single buildings [START_REF] Arcuri | A mixed integer programming model for optimal design of trigeneration in a hospital complex[END_REF] or production sites [START_REF] Brekken | Optimal Energy Storage Sizing and Control for Wind Power Applications[END_REF].

Many reviews on tools, methods and practices for planning studies can be found in the literature. They often provide guidelines to select an appropriate tool for various energy systems, based on overall criteria (see [START_REF] Connolly | A review of computer tools for analysing the integration of renewable energy into various energy systems[END_REF][START_REF] Ferrari | Assessment of tools for urban energy planning[END_REF][START_REF] Iqbal | Optimization classification, algorithms and tools for renewable energy: A review[END_REF][START_REF] Ringkjøb | A review of modelling tools for energy and electricity systems with large shares of variable renewables[END_REF]). The Open Energy Modelling Initiative community brings a general overview of current "open" approaches [START_REF]OpenMod-initiative[END_REF]. On the side of large-scale energy system planning, methodological reviews are available: [START_REF] Dagoumas | Review of models for integrating renewable energy in the generation expansion planning[END_REF] classifies approaches into three categories: optimisation, equilibrium and alternative. They spell out their added value and limits. References [START_REF] Collins | Integrating short term variations of the power system into integrated energy system models: A methodological review[END_REF], [START_REF] Oree | Generation expansion planning optimisation with renewable energy integration: A review[END_REF] and [START_REF] Helistö | Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches[END_REF] focus on methods to include operational details in energy planning models including IEs, while [START_REF] Krishnan | Co-optimization of electricity transmission and generation-concept, review and modelling approaches[END_REF] discusses electricity network models for energy system planning. They help providing clear vision and deep understanding of current practices and bring light on today challenges. On the side of local scale energy system planning, [START_REF] Doubleday | Integrated distribution system and urban district planning with high renewable penetrations[END_REF] reviews current urban planning practices and computer tools, they argue that building activities should be co-optimised with energy systems.

In [START_REF] Scheller | Energy system optimization at the municipal level: An analysis of modeling approaches and challenges[END_REF], authors develop a general framework to review ESOMs (Energy System Optimisation Models) at the municipal level. Reference [START_REF] Mendes | On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools[END_REF] gives a general review of six planning tools for community scale system.

Reference [START_REF] Mancarella | MES (multi-energy systems): An overview of concepts and evaluation models[END_REF] focuses on MES (Multi-Energy Systems), describing related concepts such as Energy Hubs (initially introduced in [START_REF] Geidl | Integrated Modeling and Optimization of Multi-Carrier Energy Systems[END_REF]), microgrids and VPPs (Virtual Power Plants). Tools, evaluation methodologies and performance assessment criteria are covered as well. A review on optimisation methods used in various energy fields is provided in [START_REF] Baños | Optimization methods applied to renewable and sustainable energy: A review[END_REF]. Finally, [START_REF] Lyden | A modelling tool selection process for planning of community scale energy systems including storage and demand side management[END_REF] proposes a selection process to identify suitable tool at the community scale.

Contributions

To our knowledge, existing reviews and surveys on techno-economic planning of local energy systems partially analyse the underlying methodologies or are limited to generic tools and models, ignoring a part of the wide spectrum of approaches used in the literature.

We propose a survey of current optimisation methods that includes original research works. The scope is described as follows. Systems considered are complex due to multiple energy carriers, technologies, IEs, storages and involve multiple operational and/or investment decisions. We choose not list all possible optimisation methods that could be used. Instead we look at current tools, generic models and original methods found in the energy planning literature that are actually in use to address these problems. Although this work is intended to bring light for local scale techno-economic studies, we broaden the scope to some methods used at larger scales that stand between bottom up investment optimisation models (as defined in [START_REF] Herbst | Introduction to Energy Systems Modelling[END_REF]) like TIMES, and operational optimisation models like PLEXOS (we further refer to bottom up optimisation models). They can further inspire methodological improvements for local scale methods, especially since recent literature question their ability to capture operational details [START_REF] Collins | Integrating short term variations of the power system into integrated energy system models: A methodological review[END_REF][START_REF] Das | Implications of short-term renewable energy resource intermittency in long-term power system planning[END_REF][START_REF] Poncelet | Impact of the level of temporal and operational detail in energy-system planning models[END_REF][START_REF] Helistö | Long-term impact of variable generation and demand side flexibility on thermal power generation[END_REF][START_REF] Hidalgo González | Addressing flexibility in energy system models[END_REF][START_REF]REthinking Energy 2017: accelerating the global energy transformation[END_REF][START_REF] Moreno | Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies[END_REF]. Such methods benefit from abundant literature and were long time-tested to perform energy system planning (including long-term planning over multiple year periods). Furthermore, they often rely on similar formalisms as methods used at local scales (i.e. mathematical programming). Although this work is not intended to be fully exhaustive, we hope to bring light on current practices by restricting the research to papers published after 2006 that present studies with existing or original methods.

First, this paper delivers a comprehensive vision of possible added values and limits of optimisation models by the mean of an original framework. The framework identifies the different optimisation questions (i.e. what is to be optimised), the feedback level (i.e. how far it answers the optimisation question) and discusses the various modelling facets of energy systems (Section 2). We particularly reflect on the capability of a given method to accurately model local energy systems and provide decision support to the modeller. Second, we review more than sixty recent publications through the framework lens to identify main methodological trends, modelling and computational issues as well as specific state of the art approaches (Section 3). Third, reviewed papers are summarised in a complete and concise table, bringing substantial information on current literature (Table 3). Finally, possible research paths for the future are discussed.

The analysis framework

This section presents the analysis framework proposed to perform the survey. The framework is summarised on Figure 3, which shows a schematic view of a techno-economic approach. First, we introduce the Energy System Investment Planning (ESIP) problem to characterize the optimisation problem underlying in energy planning studies (Section 2.1). Then we question the capability of a method to provide decision support for ESIP studies at local scales at each step of the process. Three axes are identified: the richness of the feedback provided by the method (Section 2.2), the relevancy and accuracy of the model considered (Section 2.3), and the optimality and robustness of the optimisation method (Section 2.4). The model relevancy and accuracy are broken up into several facets: the investment decision facet and the operational facet. The latter includes technological units and networks, spatial, temporal, operational decisions and market facets. This way we hope to provide a comprehensive vision to better grasp various approaches found in the literature.

Figure 3: Summary of the analysis framework based on the approach processes. The approach capability to provide valuable feedback is questioned at each step.

The Energy System Investment Planning (ESIP) Problem

One way to provide decision support for energy system planning is to see it as an optimisation problem, where investment decisions in various technologies must be made. This analysis prism is common in energy system modelling, and optimisation methods have been increasingly used in the past decades (as shown in [START_REF] Baños | Optimization methods applied to renewable and sustainable energy: A review[END_REF]).

We define the general Energy System Investment Planning (ESIP) problem as follows. The energy can take various forms: electrical, thermal, kinetic, potential (chemical, gravitational, etc.). The ESIP problem comprises various energy systems in a broad sense, including MES, microgrids, SES, DHC, stand-alone systems, power systems, DER, single buildings, industrial energy systems, etc. These systems classically involve energy production, storage, conversion and consumption units. The investment related problem can address various sub-questions:

• "What technology to invest in?", if several technologies are in competition or can be used in symbiosis; • "How much?", when one must decide the installed capacity of a technology;

• "Where to install it?", if a detailed spatial representation is used;

• "When to install it?", when considering the system design evolution or in a Real Option (RO) thinking (see [START_REF] Schachter | A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems[END_REF]).

We respectively refer to the screening, the sizing, the sitting and the timing (with possible RO thinking) problems. ESIP problems can be structured into two stages: the investment facet and the operational facet.

Since finding a good design is tightly linked to the way the system will be operated. In other words, a balance has to be found between CAPEX (Capital Expenditures) and OPEX (Operational Expenditures). Hence, there is a need to simulate how the system will operate to assess if a design solution is of interest (see Figure 4). Since the main objective is to optimise investments, the more accurate the operation simulation, the better the resulting investment solution. 

The feedback levels from simulation and optimisation

We first make a difference between the different feedbacks that a method can provide to the modeller. At the lower stage, the method can only feedback the system operation simulation. It must be clarified that optimisation models can be used as simulators (in this case they optimise operational decisions only). We can then talk about simulation models in terms of how they are used, while they are optimisation models in terms that they include optimisation variables. Although simulation can already provide key insights for energy system planning (investment optimisation can be done "by hand" through experimental decisions), it has a limited interest when it comes to finding an optimised design within a large search space. This is the case of the EnergyPlan tool [START_REF] Lund | Modelling of energy systems with a high percentage of CHP and wind power[END_REF] or the Balmorel tool used in mode Balbase1 or Balbase3 [START_REF] Wiese | Balmorel open source energy system model[END_REF] for instance. As a consequence, simulation models are sometimes used as black boxes (so called "slave models") along with metaheuristics to optimise the system design and sometimes the system evolution (as in [START_REF] Prina | Multiobjective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model[END_REF]). Such metaheuristics optimisation algorithms can also directly be included in the energy planning tool as the iHOGA tool [START_REF] Dufo-López | iHOGA software (improved hybrid optimization by genetic algorithms[END_REF] or the Odyssey tool [START_REF] Guinot | Evaluation multicritère des technologies de stockage couplées aux énergies renouvelables : conception et réalisation de la plateforme de simulation ODYSSEY pour l'optimisation du dimensionnement et de la gestion énergétique[END_REF]. Hence, a step further is to optimise investment decisions.

The investment optimisation can be done considering an existing system or starting from scratch. We also distinguish between static, dynamic myopic and dynamic anticipative investment optimisation (as described in [START_REF] Das | Implications of short-term renewable energy resource intermittency in long-term power system planning[END_REF], see Figure 5). In the static case, a single investment decision stage is optimised. A single target year is often considered as representative of the system lifetime (e.g. [START_REF] Wiese | Balmorel open source energy system model[END_REF] and [START_REF] Moret | Strategic energy planning under uncertainty[END_REF][START_REF] Zhang | Whole-System Assessment of the Benefits of Integrated Electricity and Heat System[END_REF], references further discussed in Section 3). Such approach can also be referred as a "snapshot" investment optimisation [START_REF] Gironès | Strategic energy planning for large-scale energy systems: A modelling framework to aid decision-making[END_REF].

One can also optimise the investment in a dynamic fashion over several years and investment stages. This enables to adapt the system design under an evolving environment (loads, jurisdiction, markets, weather, etc.). Each investment decision stage considers previous investments as inputs. The investment optimisation can be myopic, which is equivalent to running static investment optimisations iteratively. This approach is used in the ReEDS tool [START_REF] Eurek | Regional Energy Deployment System (ReEDS) Model Documentation: Version 2016[END_REF], the Perseus tool [START_REF] Rosen | The future role of renewable energy sources in European electricity supply[END_REF] and the Balmorel tool [START_REF] Wiese | Balmorel open source energy system model[END_REF].

In contrast, dynamic investment optimisation can be anticipative, i.e. all investment decisions are optimised jointly. Large-scale, multi-sectors energy models like TIMES [START_REF] Loulou | Documentation for the TIMES Model: PART I[END_REF] (or so called "equilibrium models") rely on such approaches. However they can be seen as simulation models as pointed out in [START_REF] Dagoumas | Review of models for integrating renewable energy in the generation expansion planning[END_REF]. Indeed, the optimisation formalism is actually used to simulate the energy system economics under a given scenario. This way, energy policies can be assessed. At smaller scales, investment optimisation directly supports decisionmaking. Therefore, dynamic investment optimisation can bring further insights compared to static approaches as argued in [START_REF] Pecenak | Efficient multi-year economic energy planning in microgrids[END_REF].

The leap from static to dynamic myopic investment optimisation is quite straightforward from the problem complexity perspective. In contrast, dynamic anticipative investment optimisation introduce a more challenging computational burden. Running dynamic myopic investment optimisation might lead to lock-in situations where an investment was made at a particular investment decision stage that is obsolete in the future, implying sink costs. Comparing solutions from a dynamic myopic investment optimisation with multiple static investments can reveal such lock-in risks. Dynamic anticipative investment optimisation concludes on the optimal investment pathway to follow. Hence, the latter potentially provides a higher feedback level to the modeller.

The model relevancy and accuracy: keys to meaningful assessments

Techno-economic studies build on their ability to model technologies in a systemic perspective to reach performant and technically feasible solutions. Hence, the ability of the model to accurately represent key aspects of technical reality is of high relevance to raise valuable insights. We further describe accuracy levels for both investment and operational facets.

The investment facet

The investment facet represents how investment decisions are made and how it affects investment costs and/or equipment performances.

Models based on continuous variables are limiting, although they can be suitable for technologies such as batteries, PVs (Photovoltaic cells) or when considering large-scale capacities. Including discrete decisions opens larger modelling possibilities. Size or scale effects on investment costs can then be modelled (sometimes referred as "lumpy investment", e.g. [START_REF] Decarolis | Formalizing best practice for energy system optimization modelling[END_REF]). One can also include a size dependency on conversion performances or minimum working power (see [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF] for example). Finally, long-term learning effects can be relevant in case of dynamic investment optimisation over multiple years [START_REF] Decarolis | Formalizing best practice for energy system optimization modelling[END_REF].

The operational facet

The operational facet represents how the system dynamically operates. We distinguish several facets: the techno-economic, the spatial, the temporal facets, and the way operational decisions and markets are modelled. They are further detailed below.

The techno-economic facet, including technological units and networks Technology units must be described with a suitable level of detail. Table 1 shows a quick summary of aspects that can be included with continuous and discrete variables under a MP (Mathematical Programming) formalism. Discrete variables provide more modelling options but tend to increase computation costs. Since they bring more combinatorial complexity in the optimisation problem. UC (Unit Commitment) models illustrate the variety of technological operational features that can be envisaged using linear and discrete MP formulations (see [START_REF] Abdin | An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production[END_REF][START_REF] Sisternes | Investment model for renewable electricity systems (IMRES): an electricity generation capacity expansion formulation with unit commitment constraints[END_REF][START_REF] Li | Transmission-Constrained Unit Commitment Considering Combined Electricity and District Heating Networks[END_REF][START_REF] Pavičević | Hourly optimization and sizing of district heating systems considering building refurbishment -Case study for the city of Zagreb[END_REF][START_REF] Van Den Bergh | LUSYM: A unit commitment model formulated as a mixed-integer linear program[END_REF], further discussed in Section 3). In [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF], authors also use some accurate modelling features (size dependencies of component efficiencies). Different MP formulations can be used to model similar behaviours. Tight and compact formulations can be found in the literature (see [START_REF] Carrion | A Computationally Efficient Mixed-Integer Linear Formulation for the Thermal Unit Commitment Problem[END_REF][START_REF] Morales-Espana | Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem[END_REF]): they ensure higher computational efficiency. Networks are often modelled as linear energy flows formulations, including flow capacities, and sometimes linear losses. Non-linear aspects of electric networks can be approximated with a DC (Direct Current) linear approximation under certain assumptions including small voltage angle differences, high resistance / reactance ratio, and per-unit system voltage magnitudes close to 1.0 (see [START_REF] Morvaj | Optimization framework for distributed energy systems with integrated electrical grid constraints[END_REF]). DC approximation is often used as a compromise between accuracy and computation burden, especially for transmission systems [START_REF] Krishnan | Co-optimization of electricity transmission and generation-concept, review and modelling approaches[END_REF]. However, DC approximation assumptions become invalid for distribution systems [START_REF] Silva | Optimization of the planning and operations of electric distribution grids in the context of high renewable energy penetration[END_REF]. Non-linear formulations are then needed, involving more computational burden under MP formalisms [START_REF] Morvaj | Optimization framework for distributed energy systems with integrated electrical grid constraints[END_REF].

Concerning heat networks, linear approximations with variable temperatures and constant mass flow were proposed (e.g. [START_REF] Li | Transmission-Constrained Unit Commitment Considering Combined Electricity and District Heating Networks[END_REF][START_REF] Boysen | Integration of Flow Temperatures in Unit Commitment Models of Future District Heating Systems[END_REF]), even if such considerations can show little impact for low temperature levels [START_REF] Boysen | Integration of Flow Temperatures in Unit Commitment Models of Future District Heating Systems[END_REF]. Linear formulations with constant temperatures are often used [START_REF] Marquant | A holarchic approach for multi-scale distributed energy system optimisation[END_REF][START_REF] Mashayekh | A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids[END_REF][START_REF] Zhang | Whole-System Assessment of the Benefits of Integrated Electricity and Heat System[END_REF][START_REF] Pavičević | Hourly optimization and sizing of district heating systems considering building refurbishment -Case study for the city of Zagreb[END_REF] (references further discussed in Section 3). Efficiencies can still be modelled as functions of supply and return temperatures so that the latter can be externally optimised [START_REF] Fazlollahi | Multi-objective, multi-period optimization of district energy systems: IV -A case study[END_REF]. More accurate formulations also involve non-linear equations: in [START_REF] Giraud | Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear Programming[END_REF], an approximated linearized optimisation model coupled to a non-linear simulation model is used.

The spatial facet

The spatial facet usually ranges between single node (thus ignoring networks) and multi-nodes representations. Although this might be of little concern for small-scale systems, it becomes an issue when spatial aggregation is needed for computational or data availability reasons. At the same time, appropriate spatial resolutions are needed if one wants to capture network related issues or the distributed nature of solar and wind generation for instance. Reference [START_REF] Helistö | Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches[END_REF] discusses this issue for large-scale power systems. This aspect will be further addressed in Section 3.2.4.

The temporal facet

When it comes to model the system dynamics, a temporal framework is needed. For energy planning studies, a one-hour time step is used most of time, capturing energy load and production fluctuations while keeping reasonable data set sizes. We further distinguish models based on a full time horizon (usually a year), and models based on aggregated data sets.

Aggregated data sets were introduced to reduce the operational problem size, and thus the problem complexity. To this effect, discrete operational decisions involve discrete variables proportionally to the length of the time horizon. Duration curves, time slices, typical days or weeks (i.e. representative periods) are commonly used. The duration curve is the most restricting method since it does not retain chronology between time steps (a duration curve represents the given curve sorted by decreasing ordinate values). The other methods rely on a system optimisation over a smaller data set considered as representative of the system operation over its lifetime (usually some days or weeks). In a sense, it is a hypothetical extension of the full time horizon optimisation over a single year. Time slices sometimes include time steps of variable size depending on the time of the day (up to six hours steps in the night, one-hour steps in the peak periods). Typical days or weeks usually keep a one-hour time step.

Methods for building these aggregated data sets are numerous. Reference [START_REF] Poncelet | Impact of the level of temporal and operational detail in energy-system planning models[END_REF] compares the integral method (aggregation by average, a classic time slices approach) with the method consisting of selecting representative days or weeks in the whole data set with a given weight. Methods to select appropriate periods and assign them proper weights were recently discussed and designed in the literature (see [START_REF] Domínguez-Muñoz | Selection of typical demand days for CHP optimization[END_REF][START_REF] Fazlollahi | Multi-objectives, multi-period optimization of district energy systems: I. Selection of typical operating periods[END_REF][START_REF] Kotzur | Time series aggregation for energy system design: Modeling seasonal storage[END_REF][START_REF] Nahmmacher | Carpe diem: A novel approach to select representative days for long-term power system modeling[END_REF][START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF][START_REF] Schütz | Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis[END_REF][START_REF] Scott | Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage[END_REF]). Limits of such methods were also pointed out: [START_REF] Pfenninger | Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability[END_REF] highlights concurrency and continuity problems. Concurrency problems arise when correlations between different time series are lost in the process. Continuity problems concern possible lack of consistency of the system state between two time steps. In [START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF], authors state that consistent criterion for selecting representative periods is lacking, although the duration curve approximation is often used.

The number of representative periods to consider is a trade-off between representativeness and computational burden. References [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF] and [START_REF] Frew | Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model[END_REF] explore this aspect on a case study. Twelve periods are often used in ESOMs (as mentioned in [START_REF] Helistö | Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches[END_REF][START_REF] Collins | Integrating short term variations of the power system into integrated energy system models: A methodological review[END_REF]), while forty-eight were considered necessary in [START_REF] Kargarian | A Multi-Time Scale Co-Optimization Method for Sizing of Energy Storage and Fast-Ramping Generation[END_REF]. In [START_REF] Gabrielli | Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis[END_REF], it is shown that a higher resolution is needed when looking at low CO2 emissions systems.

The temporal representation becomes more challenging if one wants to take into account long-term (i.e. seasonal) constraints or storages. Since, representative periods retain chronology within themselves but not between themselves [START_REF] Helistö | Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches[END_REF]. Thus it becomes harder to consider the long-term dimension without modelling the full time horizon. This aspect will be further discussed in Section 3.2.5.

The operational decisions facet

Operational decisions can be made under two main different methods / paradigms. The first one assumes that the system operational decisions follow pre-defined expert rules. Such rules take the following form: "if the battery state of charge is above a certain threshold: discharge it in priority to meet the load" for instance (strategy I in [START_REF] Castañeda | Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system[END_REF]). Approaches relying on this paradigm are latter called simulation-based optimisation approaches. They often come with the "myopic assumption", meaning that operational decisions are made without considering the future of the system and its environment. It ignores load or weather predictions for instance, which can be limiting. In addition, such rules can be difficult to write for complex systems and can lead to sub-optimal operational decisions. The second paradigm is to leave the operational decisions in the hand of optimisation algorithms. This is often performed through MP formalism and corresponding algorithms, although it can also be done by other methods like dynamic programming or metaheuristics. This approach often relies on the "perfect foresight assumption", meaning that the optimisation algorithm makes decision with perfect knowledge of the future like loads and weather forecasts. When looking at systems where operational decisions are supposed to be made by a single stakeholder, this can refer to MPC (Model Predictive Control). For large-scale, multi-sectors energy models like TIMES, they represent energy markets operations. Indeed, they are often supposed to maximize the total surplus or minimise overall costs, which simulates the market behaviour under perfect competition (and perfect foresight) assumptions. In both cases, the perfect foresight assumption is limiting since it overestimates weather, load and market forecast capabilities.

The market facet

Markets or energy contracts can be more or less challenging to include in the model. Besides, what is meant by "market facet" strongly differs between large scale and small scale energy models.

For large scales, multi-sectors models like TIMES, market mechanisms are captured by the MP formalism and associated optimisation methods to derive optimal transactions between many actors. Relying on economy theory, such models can simulate a (partial) supply-demand equilibrium under the perfectly competitive (and perfect foresight) market assumptions. They consider price-elastic end-use demand curves as well as supply curves (using convexity/concavity properties for linearization [START_REF] Loulou | Documentation for the TIMES Model: PART I[END_REF]). The total surplus is maximised so the market equilibrium is reached. Others consider fixed energy demands and satisfy them at minimum costs, see [START_REF]OSeMOSYS Documentation[END_REF] for instance. More detailed market representations including multiple actors and / or imperfect markets, or day-ahead and balancing steps involve multi-level problems that can be much more challenging to solve as described in [START_REF] Pineda | Capacity expansion of stochastic power generation under two-stage electricity markets[END_REF].

At local scales, when stakeholders access energy markets, incentives or energy contracts should be explicitly modelled. Linear formulations can easily capture constant or variable energy prices on the spot market. Including discrete variables can further model annual utilization times or threshold effects for example. Here again, more detailed models lead to multi-level problems (see [START_REF] Blanco | Operational Planning and Bidding for District Heating Systems with Uncertain Renewable Energy Production[END_REF], Section 3.2.3 for instance).

Optimality and robustness: including uncertainties

When relying on optimisation approaches, the modeller often needs to assess the robustness of obtained solutions (through sensitivity analysis). A step further is to look directly for robust solutions through the optimisation process. By "robust" one can have in mind that "the solution remains good" when the model inputs are changed. "Good" can be defined in two possible ways: good in average or good in worst cases. The first can be achieved by stochastic optimisation, the second by robust optimisation. Both objectives can be in competition: hybrid methods help to reach trade-offs. With more hindsight, one would like the obtained solution to "remain good" in real life conditions. While the model inputs correspond to parametric uncertainties, the latter considerations also include structural uncertainties as defined in [START_REF] Edenhofer | Induced technological change: Exploring its implications for the economics of atmospheric stabilization: Synthesis report from the innovation modeling comparison project[END_REF] (see also endogenous and exogenous uncertainties as defined in [START_REF] Dreier | OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling[END_REF]).

We further refer to three types of uncertainties: those related to the purely operational problem (optimise operational decisions for a given design), those related to the investment problem (with operation simulation) and the lasts concerning the system environment evolutions. A quick overview is given in Table 2 including methodological options observed during the survey process (Section 3). More details are given Sections 3.2.1 and 3.2.2. Risk based methods are reviewed in [START_REF] Ioannou | Risk-based methods for sustainable energy system planning: A review[END_REF]. 

Uncertainty type

Dynamic investment problem (system environment evolutions)

Static investment Problem Purely Operational Problem

Description

Load trends, jurisdictions, technology breakthroughs, costs and performances (learning effects), energy costs & weather trends.

Operational & investment facets modelling (structural).

Technology parameters (OPEX, CAPEX, lifetime, replacement costs, efficiencies), input data series (parametric).

Forecast errors (loads or weather) & technology failures (parametric).

Time scale

Several years to tens of years One year to several years Daily to one year

How they can be considered (parametric uncertainties)

Mainly deterministic scenario runs [START_REF] Yue | A review of approaches to uncertainty assessment in energy system optimization models[END_REF].

Uncertainty propagation or sensitivity analysis. Monte Carlo scenarios with stochastic / robust optimisation) (see Section 3.2.1).

Monte Carlo scenarios with two-stage stochastic optimisation (for forecast errors) (see Section 3.2.2.).

For the purely operational problem, the goal is to be as performant as possible by reducing uncertainties and including them in the optimisation process. In particular, methods including stochastic optimisation were utilised to include forecasting errors (see [START_REF] Blanco | Operational Planning and Bidding for District Heating Systems with Uncertain Renewable Energy Production[END_REF] for instance). When moving to the investment problem, the issue for the operational facet is different: it should represent how the system will be operated, including forecasting errors. It was recently argued that energy planning optimisation approaches should include the fact that operational systems, especially with high IE shares, face uncertainties [START_REF] Helistö | Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches[END_REF][START_REF] Pineda | Capacity expansion of stochastic power generation under two-stage electricity markets[END_REF]. Moving from the perfect foresight to the imperfect foresight hypothesis by modelling the actual forecasting errors reduces structural uncertainties. Parametric uncertainties for investment problems can be addressed by various means (see Table 2). They include uncertain technology parameters and input data series like solar and wind generation that show significant inter-annual variability [START_REF] Pfenninger | Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability[END_REF]. Finally, uncertainties related to the system environment evolution (sometimes referred as "deep uncertainties") are most of time ignored or considered by testing different deterministic scenarios, although recent search investigates ways to better account for it (see [START_REF] Yue | A review of approaches to uncertainty assessment in energy system optimization models[END_REF]).

Survey of optimisation methods for energy system planning

We propose a survey of current optimisation methods for local energy system planning. As discussed in Section 1.3, we include a short overview of bottom up optimisation models used at larger scales. The survey is summarised in Table 3.1 to 3.14 (end of Section 3). These tables classify several ESIP studies performed with generic or specific methods. All papers discussed in Section 3 that can be found in Table 3.1 to 3.14 are annotated by *. More generic tools and models are also cited for illustrative purposes as well as further references. This survey is intended to be complementary with previously cited reviews that discuss other criteria (sector or technologies considered, availability, openness or development platform for instance) or consider different scopes (see Section 1.2.2).

The organisation of Section 3 is summarised in Figure 6. The following information is retained from each paper: the system considered, a general description of the simulation / optimisation method, the type of problem(s) considered (sizing, sitting, screening, timing), the investment feedback level, the investment facet, the operational facets and how uncertainties where considered (or not). Since this survey focuses on ESIP problems, the term "uncertainties" here refers to parametric uncertainties related to the investment problem (as defined in Section 2.1). The operational facet is broken up into further categories as discussed in Section 2.3.2. Key aspects of techno-economic facets are raised (original formulations, use of integer variables, nonlinearities, etc.). 3. 3. Survey of optimisation methods for energy system planning 28 Figure 7 gives a simplified summary of the analysis framework described in Section 2 on a concise spider graph. Spatial considerations, treatment of investment uncertainties and representations of markets are excluded for sake of clarity. The different "levels" on the graph are defined by a general order of interest for local energy planning through techno-economic studies. Main identified methodological trends are mentioned in Section 3.1 and their typical capabilities are displayed on Figure 8. As mentioned in Section 1.3, methods used at larger scales were included in the analysis for their potential interest at local scales. Clearly, each methodological trend can be more or less suited depending on the scale and the aim of the study. Here the aim is to understand and summarise what they generally take into account and how they would perform within the scope of local planning studies. Methodological capabilities shown in Figure 8 represent a typical use of corresponding approaches (illustrative references are provided). * Linear Programming ** Mixed Integer Linear Programming Such capabilities can be further extended on various aspects like uncertainties, spatial and temporal granularities, or markets modelling for instance (see Section 3.2). However, it could be more or less challenging depending on the chosen approach. For instance, extending the investment options search space might be more impacting for master investment algorithms like metaheuristics, but the later can be more suited to explore discontinuous options. On another hand, extending time and space granularity, increasing the information feedback level, or solving multi-level problems is generally more challenging for MILP (Mixed Integer Linear Programming) than LP (Linear Programming) approaches since MILP includes integer variables (as a general rule of thumbs: the more integer variables the more challenging the problem is to solve). Finally, purely operational MILP approaches can further push the accuracy boundaries since the operational problem could be temporally broken up within the rolling horizon approach.

3.1 Trending main methodological approaches 3.1.1 Bottom up optimisation approaches for large scale systems (Table 3.1 to 3.4) Energy planning studies for large-scale systems (national and above) are numerous. Several approaches can be seen in the literature. Main trends of bottom up optimisation approaches used at large scales are summarised below.

Operational MILP approaches (i.e. UC models, Table 3.1):

Purely operational MILPs are usually quite accurate (see Figure 8). They optimise operational decisions over several hours or days. They are often used within a rolling horizon approach to simulate a full year or to update available information for purely operational purposes. We typically refer to well-known UC models (sometimes called UCED for Unit Commitment and Economic Dispatch) like PLEXOS (e.g. [99]*) or LUSYM [START_REF] Van Den Bergh | LUSYM: A unit commitment model formulated as a mixed-integer linear program[END_REF] where UC decisions are included (start-up and shut-down decisions). The SILVER model [START_REF] Mcpherson | A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model[END_REF]* includes a price setting module and a real time optimal power flow module. These models are mostly used for power systems but also for DH systems (see [START_REF] Carrion | A Computationally Efficient Mixed-Integer Linear Formulation for the Thermal Unit Commitment Problem[END_REF] for instance). In [START_REF] Meibom | Stochastic Optimization Model to Study the Operational Impacts of High Wind Penetrations in Ireland[END_REF]*, authors consider wind generation and load as stochastic inputs within their UC model (Monte Carlo scenarios for day-ahead decisions); they formulate a MILP with a rolling horizon approach to simulate the system operation. The EUCAD model [START_REF] Després | Development of a dispatch model of the European power system for coupling with a longterm foresight energy model[END_REF] was used with POLES (a top-down simulation model at global scale) to consider power systems operations. Such models can be used as simulators when it comes to investment decisions. LP approaches (Table 3.2): LP approaches (see Figure 8) are typically used in energy modelling tools like TIMES [START_REF] Loulou | Documentation for the TIMES Model: PART I[END_REF] (a complete implementation of the TIMES model at the European scale can be found in [START_REF] Simoes | The JRC-EU-TIMES model: assessing the long-term role of the SET plan energy technologies[END_REF]), PERSEUS-RES-E [START_REF] Rosen | The future role of renewable energy sources in European electricity supply[END_REF]* or open source licensed tools like OSeMOSYS [START_REF]OSeMOSYS Documentation[END_REF]. The OSeMOSYS model was used in [START_REF] Poncelet | Impact of the level of temporal and operational detail in energy-system planning models[END_REF] and [START_REF] De Jonghe | Determining optimal electricity technology mix with high level of wind power penetration[END_REF]*, some improvements are documented in [START_REF] Welsch | Enhancing the treatment of systems integration in long-term energy models[END_REF][START_REF] Welsch | Supporting security and adequacy in future energy systems: The need to enhance long-term energy system models to better treat issues related to variability: Supporting security and adequacy in future energy systems[END_REF][START_REF] Welsch | Modelling elements of Smart Grids -Enhancing the OSeMOSYS (Open Source Energy Modelling System) code[END_REF] and [START_REF] Welsch | Incorporating flexibility requirements into long-term energy system models -A case study on high levels of renewable electricity penetration in Ireland[END_REF]* for instance. OSeMOSYS was recently upgraded to perform stochastic uncertainty analysis by the mean of Monte Carlo simulation (uncertainty propagation) [START_REF] Dreier | OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling[END_REF]. ReEDS [START_REF] Cole | Regional energy deployment system (reeds) model documentation: Version 2018[END_REF] is another example of such modelling tools, although it has a stronger focus on the electric network facet (with a DC approximation) with high spatial details. These models are often used with a time slice or representative period approach, but full time horizon can be considered as well [START_REF] De Jonghe | Determining optimal electricity technology mix with high level of wind power penetration[END_REF]*. The Balmorel tool [START_REF] Wiese | Balmorel open source energy system model[END_REF] proposes four running modes which corresponds to different trade-offs between temporal resolution and feedback level.

Such models are typically referred as ESOMs, EPMs (Expansion Planning Models) or EFOMs (Energy Flow Optimisation Model) for general energy systems (from energy extraction to end-uses) and CE (Capacity Expansion) or GE (Generation Expansion) models for power or DH systems. We further use the ESOM & CE designations. LP approaches are most of time used for large-scale systems even if they can be adapted for smaller scales: the EnergyScope TD model [START_REF] Limpens | EnergyScope TD: A novel open-source model for regional energy systems[END_REF] was recently designed for urban and regional energy planning studies. It models multiple energy sectors and targets fast computation times to stay suited for uncertainty applications.

LP approaches consider load or weather predictions; they usually rely on a perfect foresight hypothesis. Some of these tools or models perform myopic dynamic or static investment optimisation like ReEDS or EnergyScope TD respectively. On the other hand, others like TIMES or OSeMOSYS can easily optimise several investment decision stages over multiple decades in a predictive fashion. Hence, they can show how the system optimally evolves along with its environment (jurisdiction, load and energy prices trends, etc.) so that decision makers can experiment various energy policies. Finally, one advantage of the LP approach is the easiness of performing a sensitivity analysis by the interpretation of dual variables. In the case of ESOMs simulating supply-demand equilibrium (see Section 2.3.2), one can derive marginal value pricing of commodities for instance [START_REF] Loulou | Documentation for the TIMES Model: PART I[END_REF].

Main drawbacks are poor modelling accuracy, especially due to the restriction to linear equations. The lack of technical accuracy of large scale LP models has been recently discussed [START_REF] Collins | Integrating short term variations of the power system into integrated energy system models: A methodological review[END_REF][START_REF] Das | Implications of short-term renewable energy resource intermittency in long-term power system planning[END_REF][START_REF] Poncelet | Impact of the level of temporal and operational detail in energy-system planning models[END_REF][START_REF] Helistö | Long-term impact of variable generation and demand side flexibility on thermal power generation[END_REF][START_REF] Hidalgo González | Addressing flexibility in energy system models[END_REF][START_REF]REthinking Energy 2017: accelerating the global energy transformation[END_REF][START_REF] Moreno | Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies[END_REF] as well as options to overcome such issues like soft or hard link between ESOMs / CE models and UC models. Reference [START_REF] Abdin | An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production[END_REF] compares a soft-link model with an integrated model and argue that short-term constraints should not be neglected. In [START_REF] Merkel | A model-based assessment of climate and energy targets for the German residential heat system[END_REF]* an extended TIMES model at a national level is soft-linked with a residential building stock and energy demand model and with an optimisation model for pre-dimensioning decentralized heat systems. Another soft-linking example can be found in [START_REF] Deane | Soft-linking of a power systems model to an energy systems model[END_REF]*. MILP approaches (Table 3.3): MILP formulations (see Figure 8) can also be used to optimise investment decisions at large scales [START_REF] Zhang | Whole-System Assessment of the Benefits of Integrated Electricity and Heat System[END_REF][START_REF] Abdin | An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production[END_REF][START_REF] Koltsaklis | A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints[END_REF]*. The IMRES model [START_REF] Sisternes | Investment model for renewable electricity systems (IMRES): an electricity generation capacity expansion formulation with unit commitment constraints[END_REF]* is an example of such approaches. MILP formulations can be seen as a form of trade-offs between ESOMs / CE models and UC models [START_REF] Lund | Smart energy and smart energy systems[END_REF]. They usually perform static or myopic dynamic investment optimisation and use aggregated data (representative days for instance) to reduce computational burden. Indeed, computation times can be very high for large systems or for detailed models. For instance, the MILP used in [START_REF] Sisternes | Investment model for renewable electricity systems (IMRES): an electricity generation capacity expansion formulation with unit commitment constraints[END_REF]* takes around ninety hours to converge (the optimality gap was not specified).

MILP investment approaches are often used at smaller scales: more details are given in Section 3.1.2.

The case of Energy Plan (Table 3.4):

Previous approaches rely on a MP formalism. The Energy Plan tool follow a different paradigm: it is an energy simulation tool where operational decisions are made based on pre-defined expert rules. Alone, Energy Plan cannot optimise investment decisions. It was used by [START_REF] Prina | Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning[END_REF]* as a black box with a metaheuristic to optimise several investment decisions stages in a dynamic anticipative fashion (see Figure 8). Energy Plan can perform full year operation simulation at the hourly level; however, the operational decision facet of the model does not take weather or load predictions into account.

Similar approaches are used at smaller scales; see Section 3.1.2 for more details.

3.1.2 Approaches at local scales (Table 3.5 to 3.7) MILP approaches (Table 3.5):

MILPs are very popular in the literature, especially at local scale. They were used for various cases including power systems, DES (Distributed Energy Systems), buildings, MES, etc. Problems studied include screening, sizing and sitting questions. The use of binary or integer variables is justified by various aspects for both operational facet (see Table 1) and investment facet. DER CAM is a commercial tool based on this approach. It is used in [START_REF] Jung | Optimal planning and design of hybrid renewable energy systems for microgrids[END_REF]* and [START_REF] Mashayekh | A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids[END_REF]*, another example can be found in [START_REF] Stadler | Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel[END_REF]. Open licensed tools like OMEGAlpes [START_REF] Pajot | OMEGalpes: An Optimization Modeler as an Efficient Tool for Design and Operation for City Energy Stakeholders and Decision Makers[END_REF] and Oemof [START_REF] Hilpert | The Open Energy Modelling Framework (oemof) -A new approach to facilitate open science in energy system modelling[END_REF] also rely on MILP formulations.

As LP models, investment MILP models consider load or weather predictions, and rely on perfect foresight hypothesis. They usually perform static investments (a single investment optimisation stage) and use aggregated data (typically representative days) to reduce computational burden. See [START_REF] Ameri | Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex[END_REF][START_REF] Ma | The optimal structure planning and energy management strategies of smart multi energy systems[END_REF][START_REF] Schütz | Optimal design of energy conversion units and envelopes for residential building retrofits using a comprehensive MILP model[END_REF][START_REF] Wang | Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch[END_REF][START_REF] Yang | An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems[END_REF]*. On the other hand, [START_REF] Opathella | MILP formulation for generation and storage asset sizing and sitting for reliability constrained system planning[END_REF]* uses a MILP formulation to perform dynamic anticipative investment optimisation with a high level of technical details. The temporal facet is restricted to two typical days per year to limit computational costs. Another example of dynamic investment optimisation based on a MILP formulation can be found in [START_REF] Pecenak | Efficient multi-year economic energy planning in microgrids[END_REF], where both myopic and anticipative approaches are tried out. A main drawback of this formalism is the restriction to linear models as pointed out in [START_REF] Lamaison | Storage influence in a combined biomass and powerto-heat district heating production plant[END_REF]. Here, authors compare results from a MILP formulation for the system sizing with operational performances based on a detailed dynamic thermalhydraulic model. They find an error of 5.1% in the energy mix. MILP models were also used at larger scales: see Section 3.1.1.

Master investment algorithms with slave operational models (Table 3.6 and 3.7):

A possible approach is to separate the investment and the operational problems with master algorithms which optimise investment decisions by the mean of a slave operational model. Such master algorithms often rely on exhaustive search, heuristic or metaheuristic approaches. Metaheuristics enable various investment considerations (with discrete decisions); however the search space of investment options is a sensitive parameter that affect computation times.

Simulation models coupled with pre-defined expert rules for operational decisions are often used as slave operational model (Table 3.6). We can refer to simulation-based optimisation models. PSO (Particle Swarm Optimisation) or GA (Genetic Algorithm) are commonly used metaheuristics (e.g. [START_REF] Brekken | Optimal Energy Storage Sizing and Control for Wind Power Applications[END_REF][START_REF] Dufo-López | Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage[END_REF][START_REF] Sharafi | Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach[END_REF]]*). Examples of tools are: Energy Pro [124]*, HOMER [START_REF] Lambert | Micropower system modeling with HOMER[END_REF], iHOGA [START_REF] Dufo-López | iHOGA software (improved hybrid optimization by genetic algorithms[END_REF] and Odyssey [START_REF] Guinot | Evaluation multicritère des technologies de stockage couplées aux énergies renouvelables : conception et réalisation de la plateforme de simulation ODYSSEY pour l'optimisation du dimensionnement et de la gestion énergétique[END_REF]. The two last include their own master investment optimisation algorithm. Main advantages are quick simulation times, thus easiness of considering full time horizons (one year or more with hourly or sub-hourly time steps) and potentially highly accurate techno-economic facets (non-linear). Quick simulation times enable trying out different investment decisions rapidly [START_REF] Hast | The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity[END_REF]*. Reference [START_REF] Bernal-Agustín | Simulation and optimization of stand-alone hybrid renewable energy systems[END_REF] provides a review of such approaches. Their main drawback is that they often impose a myopic operational facet.

In [START_REF] Perera | Machine learning methods to assist energy system optimization[END_REF]*, authors propose an approach based on artificial neuronal networks to speed up calculations further. A surrogate model (an artificial neuronal network) approximates a simulation model (physical model with pre-defined operational rules). A steady e-state evolutionary algorithm optimises sizing decisions and uses the surrogate model to build a Pareto front which is with the original model in a second stage. The author first trains the surrogate model on several data sets and re-trains it for data sets with different characteristics (load, solar and wind data). The system architecture is kept constant. Although computations were sped up, costs and benefits of such approaches should be assessed while keeping in mind training cost relative to the computation time saved (simulation models with pre-defined operational rules usually already run fast).

Master investment algorithms can also be used with MP approaches for operational simulation (see Table 3.7). However, this approach is less common and was not reported in Figure 8 for sake of clarity. Reference [START_REF] Rigo-Mariani | Integrated Optimal Design of a Smart Microgrid With Storage[END_REF]* uses a master algorithm for sizing decisions (efficient global optimisation based on the Kriging method) with various black box models for operation simulation and optimisation. This way they compared TRA (Trust Region Algorithm), PSO, dynamic programming and a MILP (with a simplified storage representation) coupled with the TRA (with the original storage representation). Finally, the KEO model [START_REF] Günther | Evaluation of Long-Term Scenarios for Power Generation and District Heating at Stadtwerke München[END_REF]* is a UC model that is soft-linked to an energy-economic model built on Excel to evaluate long-term scenarios for both power and district heating systems.

Approaches with specific focuses

Section 3.1 aimed to depict main trends in energy system planning optimisation approaches. Many of the reviewed papers extend these approaches or develop alternative ones to focus on particular issues (including uncertainties, market mechanisms, spatial and network details etc.). These papers are presented here, including concise descriptions of their optimisation approaches.

3.2.1

Including investment parametric uncertainties in the optimisation process (Table 3.8 and 3.9)

Without timing optimisation (Table 3.8): MP formulations were used to account for parametric uncertainties related to the investment problem. In [START_REF] Kuznia | Stochastic optimization for power system configuration with renewable energy in remote areas[END_REF]*, authors performed a stochastic optimisation of a stand-alone power system based on multiple daily scenarios for load and wind production with a MILP formulation. A MILP is also used in [START_REF] Yi | Impact of carbon emission constraint on design of small scale multienergy system[END_REF]* to account for uncertain solar generation over typical weeks. In previous cases, problems are reformulated in their equivalent deterministic version. In [START_REF] Zheng | Optimization under uncertainty of a biomassintegrated renewable energy microgrid with energy storage[END_REF]*, uncertain load, solar and wind as well as OPEX and CAPEX are considered. They used an operational LP model with a rolling horizon for operation simulation. Architectures and sizing are then investigated over Monte Carlo scenarios by exhaustive search. Finally, [START_REF] Gabrielli | Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis[END_REF]* uses a single MILP with typical days coupling methods. They first perform a sensitivity analysis on temporal resolution to derive the number of typical days needed. They later characterize uncertainty sources to derive scenarios on loads and PV generation. They optimise the system design for each scenario and evaluate the design operational performances on every other scenario. They define robustness and optimality metrics and compute their correlations with the maximal daily thermal demand and annual energy demand. This way they define a "robust" scenario on which the system design is finally optimised and compared with "average" and "worst case" scenarios.

In another paradigm, [START_REF] Nadal | Uncertainty sensitivity assessment on the optimization of the design of complex energy systems: two complementary approaches[END_REF]* uses the Odyssey simulation tool as a black box and perform a hybrid robust and stochastic optimisation of a stand-alone power system. Most influential parameters are first determined with a general 2-stage sensitivity analysis (based on the Morris method and the Sobol sensitivity indexes); the system size is then optimised with a GA (hybrid stochastic/robust optimisation with selected uncertain parameters). More details can be found in [START_REF] Nadal | Influence des incertitudes sur l'optimisation technico-économique de systèmes énergétiques hybrides[END_REF].

At a larger scale [START_REF] Moret | Strategic energy planning under uncertainty[END_REF]* develops a robust formulation while considering a target year with a monthly time steps. Here again, a GSA (General Sensitivity Analysis) helps deriving the most influential parameters. The proposed robust MILP formulation includes protection parameters that can be tuned to avoid overconservative solutions: the formulation of [START_REF] Bertsimas | The Price of Robustness[END_REF] is extended to account for multiple uncertain parameters multiplying single decision variables.

With timing optimisation (RO approaches) (Table 3.9):

Other methods also consider such uncertainties with a focus on the economic benefits to perform investment timing flexibility: they allow differing investments as uncertainty decreases (to avoid sink costs for instance). These methods rely on the so-called RO approach. In [START_REF] Moreno | Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies[END_REF]*, authors optimise battery and generators capacity along with transmission lines and installation of FACTS (Flexible AC Transmission Systems) devices with a stochastic/robust multi-stage MILP. They perform anticipative dynamic investment optimisation over a PV prices scenario tree. In [START_REF] Martinez Cesena | Flexible Distributed Multienergy Generation System Expansion Planning Under Uncertainty[END_REF]* a method is proposed to optimise investment decisions for a DES with energy prices and demands evolving under uncertainty. They start by performing an exhaustive search for the system design using a MILP to simulate the system operation (under all possible demand and prices scenarios). In a second step, they formulate a multi-stage stochastic MILP to optimise the investment decisions timing using the pre-computed operational costs. The RO thinking is also applied in [START_REF] Cardin | An approach for analyzing and managing flexibility in engineering systems design based on decision rules and multistage stochastic programming[END_REF]*. Here again, the investment decisions timing is optimised. The investment facet is built in an original way: investments decisions follow pre-defined expert rules which parameters are optimised with a multi-stage stochastic MILP (solved with a Lagrangean decomposition). The authors point out that such approach might be more intuitive for decision makers who rely on heuristics rules rather than on advanced mathematical concepts. They apply it to a hybrid waste-to-energy system with a simple static economic facet. Finally, [START_REF] Mirkhani | Stochastic modeling of the energy supply system with uncertain fuel price -A case of emerging technologies for distributed power generation[END_REF]* uses a multi-stage stochastic LP model to optimise investments in power systems with unfolding uncertainty on gas prices, they also rely on a static simplified economic facet. Other examples of the RO approach can be found in the literature (e.g. [START_REF] Odetayo | A real option assessment of flexibilities in the integrated planning of natural gas distribution network and distributed natural gas-fired power generations[END_REF][START_REF] Guo | Investment timing study for residential distributed energy resource projects: A Real-Option approach[END_REF]). A review focusing on smart grids and low carbon systems can be found in [START_REF] Schachter | A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems[END_REF].

3.2.2 Reducing structural uncertainties by considering imperfect forecasts (Table 3.10) Some methods have a strong focus on the operational facet. They typically consider imperfect load, weather or price forecasts. This reduces structural uncertainties for the investment problem (see Section 2.4). In [START_REF] Hu | Optimization of a hybrid diesel-wind generation plant with operational options[END_REF]*, authors consider stochastic wind generation inputs modelled with a Weibull probability density function. Operational decisions are taken by a dynamic program in a RO fashion. Reference [START_REF] Kargarian | A Multi-Time Scale Co-Optimization Method for Sizing of Energy Storage and Fast-Ramping Generation[END_REF]* presents a LP model that considers sub-hourly power adjustments with uncertain wind generation and demand fluctuations as well as forecast errors. It enables the sizing of storage and thermal units (static investment) and includes ramp and reserves margins. In [START_REF] Shin | Operational planning and optimal sizing of microgrid considering multiscale wind uncertainty[END_REF]*, a two-stage stochastic MILP is used: at first stage, day-ahead start up decisions are optimised based on Monte Carlo scenarios for wind production. Decisions related to flexible equipment are taken in a second stage, after scenario realization. The problem is reformulated as an equivalent full deterministic MILP and relies on a rolling horizon approach. They additionally rely on an approximated value function method (based on Bellman's equation) to consider the value of storage and non-decommissioned production units at the end of the optimisation horizon. This approach draws on the Markov Chain formulation previously used to build Monte Carlo scenarios. The value function is based on a linear formulation with a coefficient adjusted by a learning procedure. Sizing optimisation (batteries and wind turbines) is performed with a response surface method using the value function as a surrogate model. Finally, [START_REF] Bylling | The impact of short-term variability and uncertainty on longterm power planning[END_REF]* uses a two-stage stochastic LP ("DS" model) to model day-ahead market and include balancing costs (under a perfect market assumption). They explore the impact of imperfect wind forecasts and short-term variability modelling on the investment problem results.

Market oriented approaches (Table 3.11)

Other studies focus on modelling energy markets (including imperfect forecasts or not). In [START_REF] Li | Participation of an Energy Hub in Electricity and Heat Distribution Markets: An MPEC Approach[END_REF]*, authors model deregulated electricity and heat markets for a power and heat energy hub. They propose a bi-level MILP recasted in a single level formulation to model a single leader versus multi-follower Stackelberg game. The heat and electricity market clearing sub-problems are convex, hence replaced by their Karusk-Kuhn-Tucker conditions. Perfect foresight is assumed but the model could be extended to account for imperfect forecasts. Although designed for operational decisions optimisation, [START_REF] Blanco | Operational Planning and Bidding for District Heating Systems with Uncertain Renewable Energy Production[END_REF]* proposes a model for the day-ahead market (solved every day) and balancing market (solved every hour) with bidding decisions (written as two two-stage stochastic LPs). They consider perfect foresight only one hour ahead for VRE generation and twenty-four hours ahead for the heat load. Stochastic scenarios are used otherwise. A rolling horizon approach allows simulating the full system operation. Finally, [START_REF] Pineda | Capacity expansion of stochastic power generation under two-stage electricity markets[END_REF]* spells out MP formulations for CE problems (investment decisions optimisation). They account for perfect and imperfect markets (non-cooperative sequential game between a collusion of producers making expansion decisions to maximize profits and a market operator who minimises the energy cost). They also account for perfect and imperfect forecasts with two sub-cases: efficient market (day-ahead decision while considering balancing scenarios) and inefficient market (day-ahead decision without considering balancing scenarios). Some formulations are multi-level (possibly stochastic) optimisation problems that can be reduced to single level (deterministic) optimisation problems under simplifying assumptions (discrete investment decisions, linear models). 3.12) Spatial representations were not discussed in detail in most investigated papers. Reference [START_REF] Marquant | A holarchic approach for multi-scale distributed energy system optimisation[END_REF]* proposes a spatial clustering and optimisation method for a district heating investment problem. An intra-cluster optimisation is performed by a MILP based heuristic: network options are explored by a minimum spanning tree algorithm from multiple starting points (buildings). Then, a MILP optimises investment decisions for energy production means (with a 2% relative gap) before a final MILP optimises operational decisions (0% relative gap). An inter-cluster network optimisation is performed in a second step. In [START_REF] Fazlollahi | Multi-objective, multi-period optimization of district energy systems: IV -A case study[END_REF]* and [START_REF] Fazlollahi | Multi-objectives, multi-period optimization of district energy systems: I. Selection of typical operating periods[END_REF][START_REF] Fazlollahi | Multi-objectives, multi-period optimization of district energy systems: II-Daily thermal storage[END_REF][START_REF] Fazlollahi | Multi-objective, multi-period optimization of district energy systems: III. Distribution networks[END_REF], EAs (Evolutionary Algorithms) are used for investment decisions coupled to slaves modules. The first module is a thermo-economic simulation model that compute parameters including operation expenses, emissions, technical constraints and reference stream values. The second module is a MILP that optimises operational decisions. The last module computes indicators like the system efficiency, the total annual cost and CO2 emissions. The Geneva canton is clustered into thirteen nodes. The complete system is modelled by three layers: the global layer, the DHC networks (heat cascading) layer and local layer. Network temperatures are discretized into multiple temperature streams in the MILP model. Heat networks modelling options are further discussed in [START_REF] Li | Transmission-Constrained Unit Commitment Considering Combined Electricity and District Heating Networks[END_REF][START_REF] Boysen | Integration of Flow Temperatures in Unit Commitment Models of Future District Heating Systems[END_REF]: they propose a linear approximation accounting for temperature variations with constant mass flow rates. They apply their formulations to UC models for district heating. On the side of electric networks, [START_REF] Morvaj | Optimization framework for distributed energy systems with integrated electrical grid constraints[END_REF]* proposes three optimisation methods for DES with an AC model for distribution networks. The "combined method" consists in a GA algorithm used as a master algorithm to optimise investment decisions. A slave MILP optimises operational decisions including an in-house linearized AC model, more accurate than the classic DC approximation. The full AC steady-state power flow model is then computed for every time step to detect voltage and current violations (based on the Newton-Raphson method with Matpower, MATLAB). The voltage and current violations are accounted by the GA master algorithm via penalty costs. For further insights about electric networks modelling and optimisation, see [START_REF] Krishnan | Co-optimization of electricity transmission and generation-concept, review and modelling approaches[END_REF][START_REF] Silva | Optimization of the planning and operations of electric distribution grids in the context of high renewable energy penetration[END_REF].

Spatial and network oriented approaches (Table

Considering long-term operational issues (Table 3.13)

Considering long-term aspects like seasonal storages or annual constraints can lead to computational challenges. Since the operational optimisation horizon is then necessarily extended. Methods were proposed to optimise investment decisions while considering long-term operational issues. References [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF][START_REF] Kotzur | Time series aggregation for energy system design: Modeling seasonal storage[END_REF]* draw on the approach consisting of a single MILP model (for investment and operational decisions) solved over representative periods (days). They further extend it by proposing representative periods coupling methods. The computational efficiency of such approaches is used in [START_REF] Gabrielli | Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis[END_REF]* to consider load and weather data series uncertainties in the design phase (see Section 3.1.2). The coupling method proposed in [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF]* is implemented in the model EnergyScope TD [START_REF] Limpens | EnergyScope TD: A novel open-source model for regional energy systems[END_REF]. Long-term issues are also considered in [START_REF] Shin | Operational planning and optimal sizing of microgrid considering multiscale wind uncertainty[END_REF]* via a value function method (see Section 3.2.2, Table 3.9). In [START_REF] Shu | Optimal operation of energy systems with long-term constraints by time-series aggregation in receding horizon optimization[END_REF]*, a MILP with a rolling horizon approach including long-term constraints for optimising operational decisions is proposed. They include them by utilising a simplified representation for long-term operation decisions while keeping a detailed model for upcoming decisions. In [START_REF] Goeijen | Improving an Integer Linear Programming Model of an Ecovat Buffer by Adding Long-Term Planning[END_REF]*, authors use a long-term model that provides storage level objectives to a short-term model (unidirectional link). The long-term model uses a coarse temporal representation while the short-term model optimises decisions at the hourly level. Finally, [START_REF] Bischi | A rolling-horizon optimization algorithm for the long term operational scheduling of cogeneration systems[END_REF]* proposes a rolling horizon approach where a MILP is solved iteratively over one week. Yearly constraints (primary energy savings and efficiency) are considered on past, current and future performances. Future performances are first estimated based on typical weeks. The model is run over several years until yearly constraints are satisfied: future performances estimations are updated based on of the previous year simulation.

Tackling computational challenges (Table 3.14)

ESIP problems can be very challenging to solve, they are usually NP-hard. In [START_REF] Goderbauer | The synthesis problem of decentralized energy systems is strongly NP-hard[END_REF], authors show that the synthesis problem (i.e. the investment problem) of decentralized energy systems is strongly NP-hard. Some papers reviewed focus on computational issues and propose alternative approaches. The widely used MILP approach is usually challenging due to integer or binary variables (as stated in [68]*).

Data aggregation methods are a straightforward way to tackle computational challenges: it reduces the problem size. The use of representative periods is widespread in the literature. In [START_REF] Pineda | Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage[END_REF]*, modellers propose a data aggregation differing from representative periods that allows accounting for inter-day storages: they aggregate similar time steps (load, solar or wind generation) instead.

It is pointed out in [START_REF] Baumgärtner | RiSES4: Rigorous Synthesis of Energy Supply Systems with Seasonal Storage by relaxation and time series aggregation to typical periods[END_REF]* that time series aggregation deteriorates the solution quality, especially for storage optimisation. They explore a solving method for complex problems including seasonal storages: a MILP model is solved by computing lower and upper bounds until a certain optimality gap. The model producing upper bounds optimises sizing and operational decisions on aggregated data (typical days) followed by a MILP optimising operational decisions only on full data. A branch-and-cut commercial solver produces lower bounds, as well as an in-house algorithm based on data aggregation and relaxations. A Bender decomposition approach with Pareto optimal cuts is used in [START_REF] Kuznia | Stochastic optimization for power system configuration with renewable energy in remote areas[END_REF]*. Reference [START_REF] Yokoyama | Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method[END_REF]* proposes another decomposition method: an upper level MILP with discrete investment decisions optimises the full problem with relaxed operational decisions variables to get a lower bound. Then, they optimise independent operational problems for each time period separately (lower level) to obtain upper bounds. A similar approach is suggested with typical periods at the upper level. They propose extra lower/upper bounding strategies as well as an ordering strategy for solving lower level problems so that the lower bound increases faster. Both previous approaches rely on the fact that only investment decision variables link the operation variables of each time step in a single optimisation problem. In [START_REF] Pavičević | Hourly optimization and sizing of district heating systems considering building refurbishment -Case study for the city of Zagreb[END_REF]*, a heuristic method to solve a MILP problem formulation in three steps is developed. At first, a full year optimisation on aggregated time steps (more than two hours) is performed, it uses a LP approach for the operational facet (ramps are also excluded). The building envelope retrofits and ST (Solar Thermal collectors) sizes are fixed after this first step. Then a full year optimisation with an hourly time step fixes other technology sizes, here again the operational facet is simplified. In the last step, the system operation is optimised over a full year with an hourly time step and operational considerations such as on/off status and ramps. Finally, [START_REF] Elsido | Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units[END_REF]* uses EAs as master algorithms for investment decisions, a MILP is used as a slave operational model. The MILP is firstly solved with a 10% relative gap to obtain a lower bound for design solutions, it is then run with a 1% relative gap if the solution is promising, i.e. the lower bound is significantly lower than the current best solution. It is solved on three representative weeks independently. Different solving strategies based on integer variable relaxations are tested for investment decisions. 

Deterministic scenarios
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Table 3.5: MILP approaches, local scales (see also Table 3.8: [19], [START_REF] Yi | Impact of carbon emission constraint on design of small scale multienergy system[END_REF], [START_REF] Kuznia | Stochastic optimization for power system configuration with renewable energy in remote areas[END_REF], Table 3.10: [START_REF] Hu | Optimization of a hybrid diesel-wind generation plant with operational options[END_REF] & Table 3.13: [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF] & [START_REF] Kotzur | Time series aggregation for energy system design: Modeling seasonal storage[END_REF]) The e-constraint method is an alternative way to perform multi-objective optimisation: extra objectives are included in the form of constraints. For instance, a certain limit on yearly CO2 emissions can be set. This enables the user to obtain one point of a Pareto set. 

Reference

Discussion

This survey offers a wide and detailed picture of current optimisation methods used for techno-economic analysis of energy system planning. One can note that despite their expansion in other research topics, artificial intelligence techniques were not often observed. A possible explanation is that energy system planning is an exploratory task while artificial intelligence performs well in known situations.

At local scales, a wide variety of approaches was observed. A first observation is the less recent use of simulation-based optimisation approaches (Section 3.1.2). Mainly since the decisions rules hardly apply to complex systems and have to be adapted by hand when one needs to evaluate several architectures. In addition, they can lead to sub-optimal operations (due to their myopic assumption) and lose relevance for systems with high IE shares, storages, or when investigating production and demand flexibility. In such systems, operational performances issues are important to include at investment planning stages [START_REF] Bylling | The impact of short-term variability and uncertainty on longterm power planning[END_REF].

On the opposite side, the increasing complexity of energy systems has led to the common use of optimisation approaches relying on mathematical programming formalisms (Section 3.1.2). At small scale, MILP formulations is a straightforward way to optimise investments and operational decisions under the assumption of an effective control of the future system i.e. with perfect forecast of load and production fluctuations. They often rely on energy models. This accuracy level might be considered adequate for this type of study although some technical aspects are sometimes deepened within the limits of linear formulations: DC approximations for electric networks or further discrete constraints and costs for production and conversion technologies for instance. This is an important limitation of MILP approaches, since non-linear formulations are needed for rigorous consideration of physical aspects. More generally, MILP formulations face inherent computation burdens that particularly increase with the use of integer variables i.e. with technological / economic details, and with spatial / temporal dimensions. This is the case of on/off, start-up/shut-down or other non-linear behaviours of operational decisions. These aspects are often considered as essential to account for the system flexibility to obtain technically feasible solutions. In parallel, computational burdens strongly increase with stochastic optimisation when accounting for operational or investment uncertainties, or when considering market mechanisms. This often leads to multi-stage problems (Sections 3.1.1-3).

Some authors explored further strategies including decompositions methods and heuristics to solve tough MILP problems (Section 3.1.6). Researchers could benefit from further crossings between energy system planning literature and operational research applied in other industrial areas. However, these strategies are often problem specific and require more resources. As a consequence, many approaches rely on time series aggregation in the form of representative periods (see Section 2.3.2). Options to reduce complexity while keeping complete temporal data include rolling horizon approaches. They further account for more realistic operational decisions (with limited foresight). However these approaches cannot optimise investment decisions alone. In addition, simulation times must be kept short if one wants to evaluate multiple investment options (see [START_REF] Zheng | Optimization under uncertainty of a biomassintegrated renewable energy microgrid with energy storage[END_REF] for instance).

Such considerations elaborate on the following challenge: provide substantial investment decision support while relying on realistic operational models. This topic is a current concern on the side of optimisation models for large scale energy system planning since the integration of IEs [START_REF] Helistö | Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches[END_REF][START_REF] Collins | Integrating short term variations of the power system into integrated energy system models: A methodological review[END_REF][START_REF] Oree | Generation expansion planning optimisation with renewable energy integration: A review[END_REF]. If the LP approach is widely applied at large scales, researchers recently questioned flexibility related assumptions for large shares of IEs. Efforts are driven toward these issues (see Section 3.1.1) and can further inspire energy system planning at smaller scales.

With the penetration of IEs, the system flexibility is a growing issue. Modelling flexibility is challenging, even more when considering seasonal storages or other long-term operational issues (Section 3.2.5). The use of aggregated data alleviates computation burden but has an impact on flexibility strategies as argued in [START_REF] Poncelet | Impact of the level of temporal and operational detail in energy-system planning models[END_REF] and [START_REF] Baumgärtner | RiSES4: Rigorous Synthesis of Energy Supply Systems with Seasonal Storage by relaxation and time series aggregation to typical periods[END_REF]. This was also observed in [START_REF] Limpens | EnergyScope TD: A novel open-source model for regional energy systems[END_REF]. Moreover, the quality of the approximation is data and problem specific so it may have variable performances [START_REF] Pfenninger | Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability[END_REF]. They also found higher discrepancies when looking at high IE shares. Hence there is a need for optimisation models that rely on full temporal data to properly consider flexibility issues. Such models should include long-term operational issues like seasonal storage.

Another key aspect for flexibility assessment is the weather related uncertainties. Most reviewed studies considered perfect foresight hypothesis, which becomes limiting in case of high IE shares. Indeed, data series uncertainties and forecast errors become increasingly important. Perfect foresight hypothesis also become limiting when considering long-term operational issues like seasonal storages since it increases the operational optimisation horizon. In such cases, forecast assumptions must be challenged.

Conclusion & perspectives

Future energy systems are expected to rely on multiple energy vectors [START_REF] Lund | Smart energy and smart energy systems[END_REF][START_REF] Lund | 4th Generation District Heating (4GDH)[END_REF] and multiple scales (countries, regions, cities, individual actors). Long-term energy system planning is now needed at both large and local scales [START_REF] Doubleday | Integrated distribution system and urban district planning with high renewable penetrations[END_REF][START_REF] Cajot | Energy Planning in the Urban Context: Challenges and Perspectives[END_REF]. This is in line with a decentralised tendency of energy systems [START_REF] Alanne | Distributed energy generation and sustainable development[END_REF] and can be supported by techno-economic studies based on optimisation models. Such models must relevantly describe energy systems and optimise investment decisions to expose useful insights and decision support to the user. Literature about ESIP (Energy System Investment Planning) optimisation is abundant and a clear view of current modelling methods used for this subject is far from evident. We proposed a survey of current optimisation methods. Unlike existing reviews on local energy system planning, this survey goes deeper into modelling methods. This is done through an original analysis framework that questions their modelling accuracy and the feedback level they provide for local investment planning studies. The analysis reviews substantial information relative to the systems studied, the method used, the problems considered, the feedback levels and the modelling assumptions.

We first summarise main methodological trends that include operational and investment optimisation models based on mathematical programming formalisms as well as black box models used with metaheuristics to optimise investment decisions.

Then we identify current research paths: including parametric uncertainties, structural uncertainties related to the forecast assumptions, market mechanisms, spatial representations, long-term operational and computational issues.

We finally discuss added values, limits and particular consideration of systems flexibility in current models. Indeed, with a growing integration of IEs [START_REF]Installed renewable energy power capacity[END_REF], the systems flexibility becomes a critical issue. Current flexibility assumptions are now being challenged for large scales energy systems. When looking at local scales, such issues are amplified. Flexibility constraints and ability of short and long-term storages should be modelled, while keeping realistic foresight assumptions and accurate temporal representations accounting for realistic operational constraints. Such research orientations are expected to raise tough optimisation problems, which already pushes researchers to explore original methods. Concurrently, including uncertainties in the optimisation process to reach robust solutions will further increase computational challenges.

Chapitre 2

Le chapitre précédent a permis de comprendre les enjeux relatifs à la modélisation et à l'optimisation de systèmes énergétiques pour des études technico-économiques. Il en ressort le besoin de simuler et d'optimiser ces systèmes sur la base de modèles opérationnels plus précis, en tenant compte d'hypothèses plus réalistes. Cela implique de représenter plus finement les technologies avec leurs contraintes techniques, utiliser des séries temporelles complètes, et tenir compte des limites dans la capacité du pilotage à prévoir et optimiser le fonctionnement du système.

Le choix est fait de s'intéresser aux méthodes basées sur le mécanisme d'horizon glissant. En effet, le mécanisme d'horizon glissant est déjà utilisé pour piloter des systèmes énergétiques existants et est inspiré du principe du contrôle prédictif. De plus, utiliser un tel mécanisme permet de faire interagir différentes briques méthodologiques (module d'optimisation, de prévisions, simulateur, etc.), ouvrant la porte à l'exploration d'hypothèses plus fines concernant les aspects technologique, économique, décisionnel, ou encore temporel. Finalement, cette approche permet de découper temporellement le problème d'optimisation et donc d'utiliser des variables entières sans faire exploser les temps de calcul. En effet, si l'on cherche à résoudre un problème opérationnel au pas de temps horaire sur un an, l'utilisation de variables entières en augmentera fortement la complexité.

Les approches classiques en horizon glissant utilisent généralement un horizon d'optimisation tronqué (quelques jours), pour ne pas retomber sur les difficultés calculatoires rencontrées lorsque l'on résout le problème complet en une fois. Cependant, lorsque les décisions opérationnelles court terme dépendent de décisions lointaines (si le système inclue un stockage saisonnier par exemple), l'horizon tronqué conduit à de mauvaises solutions.

Le deuxième chapitre propose une approche pour inclure ces décisions opérationnelles long terme dans l'optimisation court terme. Les pas de temps lointains sont agrégés pour maîtriser les temps de calcul. Deux méthodes d'agrégation sont présentées.

L'utilisation d'horizons glissants permet de simuler l'opération du système. Ce simulateur pourra être utilisé avec un algorithme maître (de type métaheuristique par exemple) pour optimiser la conception du système. La vitesse d'exécution du simulateur sera alors une qualité recherchée au même titre que la pertinence de ses résultats.

L'article qui suit a été publié dans le journal Energy : Abstract:

The planning of complex systems such as energy systems calls for multiple and recurrent operational decisions depending on the present situation as well as future trends. Such decisions can be optimised with rollinghorizon approaches where most immediate decisions are fixed, based on current previsions, while next decisions are made at further optimisation steps with updated information. In this paper, we focus on cases where long-term decisions have to be balanced with detailed short-term decisions to insure operational realism. On such problems, standard rolling horizon approaches are hard to solve due to the substantial increase of the temporal dimension. To overstep this issue, we propose new approaches to balance short and long-term decisions. Two modelling approaches, based on aggregated time steps, are proposed and tested on an energy production problem where energy can be stored seasonally. Approaches are compared to benchmarks approaches, and a sensitivity analysis is performed. Both approaches show promising savings and correspond to different compromises between simplicity, computation time and performance.

Introduction

This paper proposes new rolling horizon approaches to deal with dynamic operational problems that include both short and long-term decisions. We particularly focus on cases where immediate short-term decisions must be modelled with a detailed discretization of time, whereas long-term decisions must be anticipated but cannot be taken in advance due to poor quality of forecast information. The new approaches are illustrated on a typical energy planning problem where energy production decisions depend on seasonal variations; however, this energy planning problem can be substituted by any production planning problem where short and long-term decisions must be balanced.

Rolling horizon (RH) approaches are common in decision making [START_REF] Chand | Forecast, solution, and rolling horizons in operations management problems: A classified bibliography[END_REF][START_REF] Sahin | Rolling horizon planning in supply chains: review, implications and directions for future research[END_REF] and are particularly relevant to solve recurrent, dynamic or multi-period problems where some immediate decisions must be made and available data can be up-dated through time. The idea is to solve the problem over a chosen planning horizon and using current forecasts, but to fix and effectively apply only a part of the optimised decisions. Then, for the next step, the system state as well as forecasts are updated, as in real life situations, and the problem is solved again on the shifted planning horizon. Relying on a RH can also help to divide a large optimisation problem into smaller ones. In [START_REF] Marquant | Reducing Computation Time with a Rolling Horizon Approach Applied to a MILP Formulation of Multiple Urban Energy Hub System[END_REF][START_REF] Ommen | Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling[END_REF], authors compare the solving of energy planning problems over the entire problem horizon with RH approaches.

RHs are particularly applied in the energy sector. They were traditionally used to solve so-called unit commitment problems, where the set-up and the power dispatch of energy production units must be decided [START_REF] Carrion | A Computationally Efficient Mixed-Integer Linear Formulation for the Thermal Unit Commitment Problem[END_REF]. A RH based method is applied in [START_REF] Giraud | Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear Programming[END_REF] to optimise operations in a district heating system. In [START_REF] Costley | A rolling-horizon unit commitment framework with flexible periodicity[END_REF], authors develop a three level RH framework for power systems and evaluates the impact of forecast accuracy. In [START_REF] Blanco | Operational Planning and Bidding for District Heating Systems with Uncertain Renewable Energy Production[END_REF], authors use a RH approach to optimise energy market bids and balancing market decisions in a stochastic framework. [START_REF] Silvente | A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids[END_REF] uses a RH approach to optimise operations in an electric microgrid (i.e. electricity purchased, produced, stored, consumed and sold). In [START_REF] Saint-Pierre | Active Distribution System Management: A Dual-Horizon Scheduling Framework for DSO/TSO Interface Under Uncertainty[END_REF][START_REF] Schulze | The value of stochastic programming in day-ahead and intra-day generation unit commitment[END_REF][START_REF] Zhou | Deep learning-based rolling horizon unit commitment under hybrid uncertainties[END_REF], authors optimise electric network operations. They rely on RH algorithms to optimise day and intra-day decisions. They investigate various models that consider the stochastic nature of the intermittent energy productions and of the demand. Authors from [START_REF] Wirtz | Design optimization of multi-energy systems using mixedinteger linear programming: Which model complexity and level of detail is sufficient?[END_REF] use a RH model as a reference to evaluate several mathematical programming formulations dedicated to the design and operation optimisation of an energy system. Further examples can be found in [START_REF] Lamaison | Storage influence in a combined biomass and powerto-heat district heating production plant[END_REF][START_REF] Hermans | Impact of CCGT start-up flexibility and cycling costs toward renewables integration[END_REF][START_REF] Bai | Rolling-horizon dispatch of advanced adiabatic compressed air energy storage based energy hub via data-driven stochastic dynamic programming[END_REF].

In the previous examples, RHs consider short planning horizons with detailed time discretization. For instance, energy system modelling often requires an hourly discretization of time. In cases of long-term planning needs (typically when energy systems include seasonal storage), short planning horizons are limiting: a hourly planning horizon of 48 hours can fail to provide an effective use of a seasonal storage for instance. On the other hand, increasing it to 8760 hours can lead to untractable optimisation problems. One could drop the RH approach and solve the problem as a single mathematical program with heuristics or decomposition techniques. However, this would require the perfect foresight assumption while the RH approaches enable to consider imperfect forecasts and information updates. Furthermore, RH approaches can include interactions of the decision model with other parties. Hence, this paper focuses on RH applications where short-term decisions should be optimised along with long-term ones. In such cases, there is a need to consider decisions over different time scales and to optimise them jointly.

This challenge was recently discussed in the energy system literature. Authors in [START_REF] Goeijen | Improving an Integer Linear Programming Model of an Ecovat Buffer by Adding Long-Term Planning[END_REF] use a RH to optimise a heat supply system that includes a seasonal storage. The RH includes a few days planning horizon with seasonal storage level targets at each RH cycle. The economic objective is penalised if targets are not met. However, the penalty price is still to be found. In [START_REF] Helseth | Detailed long-term hydro-thermal scheduling for expansion planning in the Nordic power system[END_REF], large scale hydro-thermal systems are optimised with a RH mechanism. The long-term hydro storage is managed by introducing a value for the stored water at the end of the planning horizon. However, the computation of this value is not detailed. Finally, authors from [START_REF] Shin | Operational planning and optimal sizing of microgrid considering multiscale wind uncertainty[END_REF] simulate a microgrid with a RH. The value of storage and set-up units at the end of the planning horizon
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The need for a long-term planning horizon can also occur from annual constraints or objectives like energy efficiency/savings, peak power prices, or environmental emission limits for instance. In [START_REF] Shu | Optimal operation of energy systems with long-term constraints by time-series aggregation in receding horizon optimization[END_REF], authors consider annual network charges based on an energy use threshold. They use a RH with a planning horizon based on time aggregation by representative days on the long-term. In [START_REF] Bischi | A rolling-horizon optimization algorithm for the long term operational scheduling of cogeneration systems[END_REF], a RH is used to optimise the system operation and reach energy efficiency and energy saving targets. They rely on long-term estimations based on representative weeks. Contrarily to [START_REF] Shu | Optimal operation of energy systems with long-term constraints by time-series aggregation in receding horizon optimization[END_REF], the computations had to be done solved several times with updated estimations to reach the targets. In both cases, the continuity between aggregated periods is not kept, so such methods cannot be used if long-term decisions are path-dependent: in case a long-term storage for instance.

Finally, authors from [START_REF] Upadhya | A Dispatch Optimization Model for Hybrid Renewable and Battery Systems Incorporating a Battery Degradation Model, Online: Energy Sustainability[END_REF] focus on the long-term degradation of batteries while optimising their daily operation in a RH model. They develop a specific parametric model to anticipate future costs of the battery deteriorating modes.

Contributions:

Few researches were found that deal with the cases where detailed short-term decisions must be optimised along with long-term decisions. This type of challenge is relevant in the field of energy research. Methods proposed in [START_REF] Goeijen | Improving an Integer Linear Programming Model of an Ecovat Buffer by Adding Long-Term Planning[END_REF][START_REF] Helseth | Detailed long-term hydro-thermal scheduling for expansion planning in the Nordic power system[END_REF] rely on key arbitrary values. Methods from [START_REF] Shu | Optimal operation of energy systems with long-term constraints by time-series aggregation in receding horizon optimization[END_REF][START_REF] Bischi | A detailed MILP optimization model for combined cooling, heat and power system operation planning[END_REF] do not keep continuity between long-term decisions. Hence, they are not applicable if long-term strategies are path dependent. The method from [START_REF] Upadhya | A Dispatch Optimization Model for Hybrid Renewable and Battery Systems Incorporating a Battery Degradation Model, Online: Energy Sustainability[END_REF] is technology specific and [START_REF] Shin | Operational planning and optimal sizing of microgrid considering multiscale wind uncertainty[END_REF] provides one heuristic method. Given the related problems complexity, heuristics relying on future data approximations are of interest. Different heuristics can provide different compromises between computation times, performances and simplicity. Furthermore, this can vary over the application case. Hence, authors contribute to this research gap by proposing two news approaches.

Both approaches rely on an adaptive time-step aggregation. They do not need the modeller to provide a value for long-term moves. Furthermore, both can keep the continuity between state variables over the long term and ensure short computation times. The first one stands out for its easiness of application and short computation times with a case-dependent solution quality. The second for its potential to reach better solutions. The proposed approaches are illustrated on an energy production planning problem and can be extended to other domains.

The paper is organised as follows. We first introduce the problem studied (Section 2). Then, Section 3 describes the proposed approaches. Results are shown and discussed in Section 4 and a sensitivity analysis is performed on the two best versions of the models (Section 5).
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Problem formulation

This section presents the problem used to illustrate the proposed methodologies. It is a heat production case study: heat production units and storage must be managed to supply a network that delivers heat to dwellings corresponding to 5000 inhabitants. The time varying heat demand (D) must be supplied at each period (units considered are actually energy units). It can be supplied with two production means: an Inflexible (but cheap) Production (IFP) and a Flexible (but expensive) Production (FP). They respectively correspond to a biomass boiler and a gas boiler. Additionally, two storage units can be used: a Short-Term Storage (STS) and a Long-Term Storage (LTS). The latter has a higher capacity but lower performances.

The mathematical description of the problem is further detailed. This model is supposed to perfectly represent the real life problem. The mathematical formulation is described on a discrete horizon 𝐻 = {1, … , 𝛩 ∈ ℕ * }.

The time step size (in hours) is given by 𝑑𝑡 and ensures units consistency. Variables are written in bold, continuous variables in capital letters and binary variables in small letters. In order to represent units consistency, 𝑋 corresponds to units/hour and 𝐸 to units. Parameters and variables are detailed below.

Production units:

• The FP unit is only defined by its unitary production cost in euros/unit 𝐶 𝐹 , with no constraint on the produced quantity. Variable 𝑿 𝒕 𝑭 ∈ ℝ + corresponds to the production of the FP at 𝑡 in units/hour.

• The IFP is characterised by a minimum and a maximum production capacity in units/hour (𝑋𝑚𝑖𝑛 𝐼 and 𝑋𝑚𝑎𝑥 𝐼 ), a maximum change of its production rate in units/hour (𝑋𝑟 𝐼 ), a minimum on time in hours (i.e. if turned on, the IFP must be kept on over at least 𝑇𝑚𝑖𝑛 𝐼 time steps), a unitary production cost in euros/unit (𝐶 𝐼 ), a fixed production cost in euros/hour (𝐶𝑜𝑛 𝐼 ) and a set-up cost in euros (𝐶𝑠𝑒𝑡 𝐼 ).

Variable 𝑿 𝒕 𝑰 ∈ {0 ∪ [𝑋𝑚𝑖𝑛 𝐼 , 𝑋𝑚𝑎𝑥 𝐼 ]} corresponds to the production of the IFP at 𝑡 in units/hour, 𝒚 𝒕 𝑰 ∈ {0,1} equals 1 if the IFP is on at 𝑡, 0 otherwise and 𝒛 𝒕 𝑰 ∈ {0,1} equals 1 if the IFP is being set-up at 𝑡, 0 otherwise.

Storage units:

Storage units (STS and LTS) are respectively defined by a maximum capacity in units (𝐸𝑚𝑎𝑥 𝑆 ,𝐸𝑚𝑎𝑥 𝐿 ), a storing efficiency (𝜂 𝑆 , 𝜂 𝐿 ) corresponding to the percentage of units that are actually stored during the storing operation (the rest is lost), losses in units lost/unit stored/hour (𝛿 𝑆 , 𝛿 𝐿 ) and a similar stock/destock capacity in units/hour (𝑋𝑚𝑎𝑥 𝑆𝐿 ). Associated variables are the stored quantity in units (𝑬 𝒕 𝑺 ∈ [0, 𝐸𝑚𝑎𝑥 𝑆 ] and 𝑬 𝒕 𝑳 ∈ [0, 𝐸𝑚𝑎𝑥 𝐿 ]) and the stock and destock rates in units/hour ((𝑿𝒐𝒖𝒕 𝒕 𝑺 , 𝑿𝒐𝒖𝒕 𝒕 𝑳 , 𝑿𝒊𝒏 𝒕 𝑺 , 𝑿𝒊𝒏 𝒕 𝑳 ) ∈ [0, 𝑋𝑚𝑎𝑥 𝑆𝐿 ] 4 ) at time step t.

Demand:

The demand (𝑋 𝑡 𝐷 in units/hour) has seasonal variations with higher values in winter and intermediate seasons than in summer. It also varies weakly, and daily due to external temperatures and sociological aspects.

The mathematical formulation of the problem is as follows:
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The objective E1 is to minimise the sum of all costs. E2 ensures that the demand is satisfied. E3 and E4 are the balance equations for both storage units. E5-E6 set the minimum capacity of the IFP and fixes 𝒚 𝒕 𝑰 . E7 fixes 𝒛 𝒕 𝑰 . E8-E9 limit the changes in the IFP production rate. The minimum on/off times of the IFP are given by E10-E11. Finally, E12 states that the final LTS level is at least equal to its initial level. This last constraint is only used if H corresponds to a year (𝑬 𝟎 𝑳 is set to 0 otherwise). Other variables are set to 0 if 𝑡 = 0.

We assume that the problem we address is fully described by the above model. This problem can be solved iteratively over 𝐻 in a rolling horizon fashion (see next section). However, with the possibility to store units over the long term with the LTS, the optimal operation of the system for a given RH cycle can only be found by setting the length of 𝐻 equal to a year. With an hourly time step, 𝐻 would include 8760 periods which highly increases the problem dimension. To overcome this issue, new approaches are proposed in Section 3.

Proposed rolling horizon approaches to solve the optimisation problem

This section describes the approaches proposed in this paper. They enable to solve the problem presented in Section 2 in a RH fashion by considering long-term future decisions while optimizing short-term ones.

Figure 9 describes the RH approach as well as the additional notations used in this paper. The problem is solved over a chosen planning horizon with available forecasts. Optimised decisions are effectively applied over the fixed horizon (𝐹𝐻). At the next cycle, 𝐻 is shifted by the length of 𝐹𝐻. The system state as well as forecasts are updated before the problem is solved again on 𝐻. This process goes infinitely. As mentioned previously, the possibility to store units over the long term extends the planning horizon length, leading to computational issues. In order to make this extension possible, we introduce the idea of short and long-term horizons with aggregated time steps. The horizon of the original model (𝐻) is divided into 𝑆𝐻 = {1, … , 𝜃 -1} and 𝐿𝐻 = {𝜃, … , 𝛩} where 𝜃 ∈ 𝐻 (𝐻 = 𝑆𝐻 ∪ 𝐿𝐻). The time step size of the original model (𝑑𝑡) is kept over 𝑆𝐻 while it is increased over 𝐿𝐻. Time step aggregations were already used in other fields of energy system analysis [START_REF] Reno | Variable Time-Step Implementation for Rapid Quasi-Static Time-Series (QSTS) Simulations of Distributed PV[END_REF][START_REF] Savvidis | Variable Time Resolution in LP Electricity Market and Investment Models[END_REF]: time steps with similar values are aggregated to reduce the problem size.

Here, aggregations are made on the more distant time steps for which uncertainty increases i.e. the more distant, the bigger the aggregation. Hence, the time step size 𝑑𝑡 is now dependent on 𝑡: 𝑑𝑡 𝑡 . The approach enables a long-term vision up to a year or more while limiting the total number of time steps. Furthermore, the aggregation is adapted to the immediate decision need: upcoming decisions are accurately modelled while long-term ones are reduced to necessary variables. This way, short and long-term decisions are reconciled.

The slicing (i.e. the values of 𝜃 and 𝑑𝑡 𝑡 ) is arbitrary and is to be defined by the modeller. It is problem dependant. One could further define a hypothetical medium-term horizon for instance. An example of slicing is given Figure 10. This slicing naturally fits the problem of Section 2 with its actual data (see Section 4). The time step size is adapted to the forecast accuracy. Different versions of this slicing will be tested in the numerical experiments (Section 4). In all cases, the original MILP formulation of the problem of Section 2 is kept over 𝑆𝐻, which includes 𝐹𝐻. Hence, E2, E5 and E6 are satisfied as well as E3, E4, and E7-E11 within 𝐹𝐻. The RH mechanism ensures that E3, E4 and E7-E11 are satisfied between each 𝐹𝐻. Finally, E12 is satisfied because 𝑬 𝟎 𝑳 is set to 0. Hence, the solution provided by the RH is a solution of E2-12.

Two models are proposed for 𝐿𝐻 to capture long-term data and decisions. The optimisation is then carried out on both horizons jointly in order to keep consistency between short and long-term decisions. 

E12

Although the Mean-SetUp model is expected to perform better than the Mean model, both models rely on an approximation of future costs. This approximation is based on means and on a lightened version of the original problem formulation. These models are expected to give lower bounds for the original problem over 𝑇 and to underestimate future costs. In particular, the use of means leads to ignore oscillations, which are costly to the system. This justifies the elaboration of a second method described in the next section.
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Aggregation by Representative Periods and Cost Functions: the RpCf model

In order to overcome the mentioned limits of the Mean model, we introduce the RpCf (Representative periods and Cost functions) model. It relies on an aggregation of future data by representative periods (RPs). RPs could be used directly over 𝐿𝐻 with the original MILP formulation, as performed in [START_REF] Shu | Optimal operation of energy systems with long-term constraints by time-series aggregation in receding horizon optimization[END_REF]. However, this can highly increase computation times and the continuity between time steps is lost. Hence we propose a new approach.

First, 𝜏 is introduced as the current step of the RH process. Hence, the couple (𝑡, 𝜏) describes one actual period of time. The proposed RpCf approach relies on a pre-computation of operational costs in function of a variable which describes the long-term evolution of the system state: 𝑐 𝑡,𝜏 . In our case this variable is the variation of the state of the LTS: 𝜟 𝒕 = 𝑬 𝒕 𝑳 -𝑬 𝒕-𝟏 𝑳 . Note that 𝑐 𝑡,𝜏 could have been defined as dependant of 𝑬 𝒕 𝑳 and 𝑬 𝒕-𝟏 𝑳 .

Using 𝜟 𝒕 instead loses information but reduces (pre-)computation times.

Hence, future system costs are estimated depending on the quantity moved to the LTS (possibly negative) over all periods of the 𝐿𝐻. The functions 𝑐 𝑡,𝜏 are called the cost functions (CFs) and are defined for all periods 𝑡 and for all steps 𝜏.

Similarly to Section 3. The method for estimating the CFs is detailed in Appendix A for a given horizon slicing. In the case of the problem given in Section 2 and the data used in Section 4, the CFs are very close to piecewise linear functions and are convex. Slopes of the linear parts correspond to the marginal cost of the last called production unit (IFP or FP). Hence they are easily included in the MILP formulation. However, non-convex and non-linear functions would be more costly to handle.

Contrarily to the mean approximation, costs estimations based on RPs do not ignore the hourly oscillations which are costly to the system. Furthermore, costs are estimated based on the original problem formulation as opposed to the Mean model where a linear approximation is used.

Side effects and inclusion of set-up costs:

The RP-FC-SetUp model computations of CFs are subject to side effects depending on the STS and the IFP states at the beginning of the RP. In particular, set-up costs can be preponderant (see Section 4) and ignoring them over could lead to sub-optimal solutions. Hence, similarly to the Mean-SetUp approach, we extend the RP-FC approach so that set-up costs are anticipated over the long term. This is done by computing CFs for both assumptions:

• The IFP is already set-up at the beginning of the RP ("On" assumption).

• The IFP is off at the beginning of the RP ("Off" assumption).

Hence, two sets of CFs are obtained: 𝑐 𝑜𝑛 and 𝑐 𝑜𝑓𝑓 . This information is included in the model as follows.

Changes compared to the formulation of the RpCf model are shown in blue and new equations are indexed by "EX.4".

We remind that 𝑆𝐻 = {1, … , 𝜃 -1} and 𝐿𝐻 = {𝜃, … , 𝛩}.

The RpCf-SetUp model is as follows: Since the information about the state of the IFP is lost after 𝜃, CFs computed with the "On" assumption are used afterwards (E1.4). This is because future costs are overestimated otherwise, which can lead to unused stored units and costly solutions. This model is called the RP-FC-SetUp model. It is expected to perform better than the RP-FC model since continuity between the IFP states is kept between 𝑆𝐻 and 𝐿𝐻.

Comparison of all approaches: computational experiments

In this section, the proposed approaches are compared on the basis of the problem described in Section 2. The problem corresponds to a heat production case study: heat production units and storages must be managed to supply a network that delivers heat to 5000 inhabitants. Other production planning problems where short and long-term decisions must be balanced could be used as well. The data are shown Table 4. 

Experiments procedure

The same heat demand profile le is used over both horizons 𝑆𝐻 and 𝐿𝐻. This way, only biases on the data aggregation method and on the models themselves are accounted for. Other demand profile les as well as imperfect forecasts will be tested in Section 5.

1. The RH process is parametrized as follows: for all computations, the Fixed Horizon (FH) is set to 24 hours, and three different planning horizons are tested, as defined by Figure 11. H1 and HM are respectively a simplified and a truncated version of H2.
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• A "Cicada" approach where the problem is solved based on a similar RH mechanism as previous approaches, except that the planning horizon 𝐻 is limited to 𝑆𝐻. This approach is used as a benchmark where forecasts are limited to 48 hours. As mentioned in Section 2, given the seasonal variations of the demand and given the possibility to store units over the long term with the LTS, the optimal solution might only be found by solving the problem over a year. Hence the Cicada strategy suffers from the so-called truncated horizon effect as de ned in [START_REF] Federgruen | Minimal Forecast Horizons and a New Planning Procedure for the General Dynamic Lot Sizing Model: Nervousness Revisited[END_REF]. Storage units are emptied and the IFP is turned o at the end of 𝐻. The FH of 24 hours limits these side effects but is not sufficient to ensure an efficient long-term strategy.

• A "One Shot" optimisation of production decisions where the problem (original formulation, E1-E12) is solved over a year in a single optimisation (with an hourly time discretization). This is used as a benchmark where the hourly demand is perfectly known over the whole year, which over-estimates forecast abilities and under-estimate the system operating costs. Given the problem size, only the lower and upper bounds are obtained.

All approaches are evaluated over a year. Solutions retained correspond to solutions on the FHs of the RH process over a year (see Figure 12). Since the yearly strategy over the LTS might evolve if more years are simulated, models are run until it converges. In practice, this is the case after one or two years. 

Computational environment

Computations are performed within the PERSEE environment (see Figure 13). PERSEE is a modelling software dedicated to techno-economical assessment and design of energy systems at local, industrial and territorial scales, while optimizing their operating costs. It has been developed in CEA (Centre Energie Atomique et Energies Alternatives) since 2018 on the basis of past experiences from the Odyssey [START_REF] Guinot | Technoeconomic study of a pv-hydrogen-battery hybrid system for off-grid power supply: Impact of performances' ageing on optimal system sizing and competitiveness[END_REF] and the PEGASE platforms [START_REF] Vallée | An efficient cosimulation and control approach to tackle complex multi-domain energetic systems: concepts and applications of the PEGASE tool[END_REF]. It relies on the MILP formalism which is widely applied to deal with problems related to energy-system planning [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF]. PERSEE provides a graphical user interface that allows one to model the system by assembling MILP model contributions from a C++ library, building the whole optimisation problem. Multiple carriers can be used including electricity, heat or materials (gas, fuel, biomass etc.).

Variables can describe energy, mass, power or mass flows. The net present value is used as the objective function. It accounts for capital and operating expenditures, replacement, purchase and sales costs as well as possible carbon emission penalties. It becomes an operating cost function when the system operation only is considered. Following up [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF], PERSEE models have been written to be compliant with several time discretizations including representative periods and time dependent aggregated time steps. In this paper, the 12.9.0 version of the CPLEX solver [175] was used on an Intel Xeon Gold 6154 CPU with 2 processors of 3 GHz. The installed RAM is 96 GB. Threads used were limited to 8 threads except for the One Shot optimisation where all threads were used with a limit of 40 hours. In all cases, the final relative gap was set to 10 -6 .
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Economic performances and computation times

Results are given in Table 5. The final relative gap with upper and lower bounds are given for the One Shot optimisation. Savings are defined as the difference between the total costs of the Cicada approach with the total costs of another approach. This way, only compressible costs are considered. Savings of Table 5 are displayed on Figure 14. The solutions for the benchmark Cicada approach, for models Mean, Mean-SetUp, RpCf, RpCf-SetUp with horizon H1 and for the One Shot optimisation are described here (Figure 15 to Figure 20). For each figure, the upper graph shows the elements of the balance equation E2, while the lower graph shows the state of both storages. All graphs start on the first of July. The Cicada approach shows nearly no use of the LTS. It makes the IFP cycling a lot. This is due to the fact that it does not anticipate set up costs after 48 hours.

In the One Shot optimisation solution, the IFP is started up only few times during the summer to limit set-up costs. The storage is filled up to 650 units before the heating season.

The Mean model makes the IFP cycle as much as the Cicada approach before the heating season (the same phenomena occurs with H2 and HM). It makes use of the LTS (which is not the case with 𝐻𝑀) but stores more than the One Shot optimisation. This is because it does not anticipate the destocking flow capacity of the LTS and the demand flows lower than the IFP capacity. Hence the stored quantity is held longer than expected which implies more losses.

The Mean-SetUp model makes longer cycles with the IFP (the same phenomena occurs with H2 and HM). It stands far from the cycling strategy of the One Shot optimisation because the minimum capacity of the IFP is not considered on the LH. Hence, future costs are under-estimated. The inclusion of set-up costs also adds a phase where the IFP is used at minimum capacity (before the heating season).
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The RpCf model also makes the IFP cycle a lot (to a lesser extent that the Cicada or the Mean models). It also stores less units before the heating season, which is an improvement compared to the Mean model.

Finally, the RpCf-SetUp model has an efficient cycling strategy on summer which is comparable to the One Shot optimisation. The model also stores units at the end of the heating season, contrarily to the One Shot optimisation. One explanation is that the approximation with RPs led to an overestimation of future costs on these periods.

Discussion and recommendations

Solutions quality:

All approaches bring savings compared to the Cicada benchmark approach (see Figure 14). In most cases, RpCf approaches yield better solutions than Mean approaches. The difference is more significant with H1. These savings are also significant compared to the upper and lower bounds obtained by the One Shot optimisation. The difference with the One Shot optimisation is due to the model approximations and to the aggregation of future data.

Computation times:

Table 5 shows the computation times for the different approaches (Appendix B provides further information on the convergence of the One Shot optimisation). The inclusion of a long-term horizon with the Mean and Mean-SetUp approaches does not significantly impact computation times. Computation times with HM increased because the relative gap was not adapted to the horizon length (the objective is optimised down to the euro for horizons H1 and H2 while it is optimised down to the tenths of euro on the HM horizon which is over-qualitative). On the other hand, computation times are three times higher for the RpCf models on H1. It further increases when moving to H2 and HM horizons. The RP-CF-SetUp model with H2 needed a second year of simulation to converge: the first year ended with a higher storage level than what it started with.

Regarding the CFs building computation times, they can easily be reduced by using binary search techniques or parallel computations for instance. Computation times are relatively high for horizons H2 and HM because CFs are computed for every day and week of the year, while H1 only requires CFs for every period of 4 weeks.

What modelling aspects to include in the long-term model:

Long-term models that include set-up costs give better savings. This is due to the high set-up costs: there is an interest in setting up the IFP for longer than the SH. Further applications should include decisions that have a potential long-term impact in the long-term model. Concerning the Mean models, the problem formulation to use as a long-term approximation can be case dependent. In this case, inclusion of the IFP minimal capacity was not fruitful for instance. It led to an overestimation of future costs and units were stored for no use. A formulation that under-estimates future costs will at least perform better than the Cicada approach. This is true for Mean models on this case study because oscillations of the system are costly.

Choice of planning horizons:

Concerning Mean approaches, the longer and the more detailed the planning horizon the better the results. This is not true for the RpCf model which yields a better solution with H1. This can be explained because the continuity of the IFP discrete states is kept between 𝑆𝐻 and 𝐿𝐻 but it is lost after the first time step of 𝐿𝐻.

Hence, the RpCf-SetUp model benefits from the large time steps of H1. Therefore, the choice of the planning horizon can depend on the approach used.

Sensitivity analysis

In this section, we perform a sensitivity analysis for models RpCf-SetUp and Mean-SetUp. We choose to keep the same 𝐿𝐻 in both cases. Hence, H1 is used because it led to significantly better results with the RpCf-SetUp model. The objective is to test the robustness of the two best approaches on similar horizons. Both models are tested with different assumptions on the data used in Section 4, and on the quality of the demand forecast.

Sensitivity on the data

We first test both models on different data sets. We cross two data modifications: The savings compared to the Cicada model are compared for all tests, see Figure 21. Both models have steady and consistent behaviour. They bring important savings on other pro les, showing reassuring stability. The exception occurs when the FP costs are low. In fact, potential saving heavily depends on the FP costs. This is because an important part of the savings comes from an efficient management of the IFP during the summer and intermediate seasons. If the FP costs are lowered, it is used during the summer instead of the IFP. In addition, the small difference between the FP and IFP costs lowers the interest in the storage of units at the beginning of the heating season. This makes the RpCf-SetUp model slightly less performing than the Cicada model: units are stored but losses exceed the savings over the FP use (see Figure 22). This is due to an overestimation of future costs which can come from the data aggregation with representative periods. 

• A change

Sensitivity on the quality of forecasts

Up to now, the same profiles for the demand were used for both short-term and long-term horizons. The only biases came from the models used and data aggregation method (i.e. means and RPs). We now compare results when different demand profiles are considered over the long-term horizon i.e. if forecasts are inexact after 48 hours. This is done through two test procedures. In the first procedure, the planned meteorological profile after 48 hours differs from the realised profile. However, monthly total demands are constant between the planned and the realised profile. This way, intra-month forecast errors are modeled. In the second procedure, extra-month forecast errors are considered.

Sensitivity on the forecast meteorological profile: intra-month forecast errors

In this section, tests are run with profile A, B or C as effective demands (i.e. profiles used over 𝑆𝐻) and with profile A, B, C or the mean on the three profiles as forecast demands (i.e. profiles used over 𝐿𝐻). Hence, the demand is still perfectly known on 𝑆𝐻, but not on 𝐿𝐻.

The savings (cost difference with the Cicada model) of different experiences are compared. Results are shown in Figure 23 for models RpCf-SetUp and Mean-SetUp.

A first observation is that savings are still significant and that the model RpCf-SetUp outperforms the Mean-SetUp model in all cases. Both approaches show relatively robust results with respect to the demand profile used on 𝐿𝐻. As mentioned earlier, potential savings differ from one profile to another. Interestingly, the best results are not necessarily obtained when the same data is used over both 𝑆𝐻 and 𝐿𝐻, and the effective demand seems to be the core element (savings are bigger for A and B, smaller for C): the models do not seem to overfit the forecast data. 

Sensitivity on the forecasted meteorological profile: extra-month forecast errors

Data sets A, B and C are built from different meteorological scenarios. However, the building method supposes constant monthly total demands for all data series. In order to test our models in the case of forecast errors on total monthly demands, a second test procedure is applied. We introduce a monthly forecast error: the profile used over 𝐿𝐻 corresponds to the effective profile used over 𝑆𝐻 increased or decreased by a given percentage. The demand is still perfectly known over 𝑆𝐻, but not over 𝐿𝐻. Three cases are tested:

• The hourly demand is always overestimated by a given percentage (+X%)

• The hourly demand is always underestimated by a given percentage (-X%)
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• The demand is overestimated or underestimated depending on months (+-X%, the pattern used is given in Appendix C).

The savings (cost difference with the Cicada model) of the different experiences are compared on Figure 24.

All tests are performed with profile A.

Similarly to Section 5.2.1, savings are still significant and the RpCf-SetUp model remains more effective. Both models show satisfying robustness and the downgrade remains very limited as errors increase. The worst cases are when the demand is overestimated: this worsen the tendency of both models to store too many units before the heating season. 

Conclusion of the sensitivity analysis

The sensitivity tests show that both models bring similar significant savings with different meteorological profiles. Modifying the cost of the FP induces significant changes in the solutions costs but this is not surprising: this parameter is decisive. Hence, this does not question the models relevancy but informs us on the models behaviour for different data. In this case, the difference in the solution costs between models is lowered. Additionally, the sensitivity analysis on the quality of forecasts suggests that both models yield robust solutions, even with forecast errors. This quality is precious for planning models.

Conclusion & perspectives

Rolling horizon optimisation methods are relevant to recurrent and dynamic problems where immediate decisions must be made while they depend on upcoming ones. These decisions can rely on forecasts that can be updated at each optimisation step. This paper focuses on problems where detailed short-term decisions can have an impact on very distant ones and vice-versa. This highly increases the temporal dimension of the problem that has to be solved at each step. Hence, there is a need to adapt the way long-term decisions are modelled.

For this purpose, we proposed two new approaches that include long-term decisions while keeping a detailed short-term formulation and a reasonable problem size. Both approaches rely on aggregated time steps that are adaptive to the forecasts accuracy. In the first approach, long-term data and decisions are aggregated as means, with a simplified long-term model. In the second approach, long-term decisions are accounted by cost functions. Cost functions are estimated with representative periods of future data and with the original detailed model. The two approaches are described and evaluated on a case study describing a heat production problem. Different versions of both approaches are tested and compared with benchmark models. Finally, a sensitivity analysis on the data is performed.

Both models show promising performances and can be implemented to include long-term decisions in rolling horizon approaches. The first one is easy to implement and has low and stable computation times. An advantage is that the continuity between state variables is kept over the whole planning horizon. A drawback is that it can miss optimal solutions depending on the problem structure and data. The second model is more costly to apply: it requires some parameterizations and pre-computations. The continuity between the storage states is kept over the whole planning horizon while the continuity between the inflexible production states is only kept until a certain point. However, this can be sufficient and the second model still outperforms the first one with limited computation times. Both show robust performances under sensitivity analysis, but their potential generalisation to further case studies should be questioned. For this purpose, a study of the generalisation aptitude on typical cases is provided as Supplementary Material 1 with the online version of this article. Finally, all decisions with a long-term impact should be included in the long-term model, which can be more or less challenging depending on the approach. For instance, we anticipate possible computation burdens for the second approach if several long-term decisions have to be included, as this would lead to multi-variable costs functions.

Future work will include the application of the approaches to other case studies, for both optimization and simulation purposes. Other slicing for the planning horizon can be tested and the method to build cost functions can be improved to reduce computation times. Finally, the second method offers the possibility to learn on future operational costs on the basis of more accurate models. For instance, if an optimization model gives instructions to a physical simulator or a real system, the feedback can be included in the cost functions.

1 Correspond au Chapitre 3 de ce manuscrit.

Chapitre 3
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Chapitre 3

Le précédent chapitre propose deux méthodes pour simuler et optimiser l'opération d'un système énergétique. Ces deux méthodes sont des extensions de de la mécanique classique de l'horizon glissant. Elles permettent de tenir compte de dynamiques opérationnelles long terme tout en modélisant finement des décisions court-terme au pas de temps horaire.

Ce troisième chapitre met en oeuvre de ces deux méthodes sur une série de cas élémentaires, en partie inspirés par des cas d'études typiques sur les systèmes énergétiques. L'objectif est de confirmer l'intérêt de ces méthodes pour de futures applications.

Plusieurs renvois aux Chapitres 1 et 2 sont faits dans ce chapitre. Ils correspondent respectivement aux références [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF] et [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF].

La note qui suit a été publiée comme Supplementary Material de l'article du Chapitre 2. 

L'Appendix

Introduction

Rolling horizon optimisation approaches are commonly used to solve recurrent, dynamic or multi-period problems where immediate decisions must be made while they depend on more distant ones. In some cases, immediate decisions must be modelled with a detailed time discretization while they depend on very longterm ones. In such problems, standard rolling horizon are hard to solve due to the substantial increase of the temporal dimension. In [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF], authors proposed two approaches to balance short and long-term decisions : the Mean(-SetUp) and RpCf(-SetUp) approaches (see [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF] for details). Both approaches were tested on an energy production planning case study where a dynamic heat demand must be supplied with various production and storage means (including seasonal storage), with promising and realistic results.

The purpose of this technical note is to further challenge the realism and adequacy of the obtained solutions, in spite of the inherent uncertainties in the modelling of the physical system and in the precision of the available data. To this extent, we experimentally check the consistency and relevance of the solutions obtained with both approaches on various elementary cases, and we check the coherence with the solutions from [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF].

The elementary cases are derived from typical energy production planning elements that can be encountered in local energy systems [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF] and rely on open data.

In the next sections, we describe the experimental method, present and discuss the results.
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Experimental method

This section describes the experimental method used to evaluate the two approaches on various elementary case studies. Section 2.1 details the mathematical problem. The formulation is used as a starting point to define the elementary cases in Section 2.2.

Energy production planning problem

We now define the mathematical problem used to derive the different elementary cases. Units considered are energy units. The time varying demand (D) must be supplied at each period. The demand can be supplied with a Controllable Production (CP), and/or an Intermittent Production (IP). Energy can also be bought from an external network (N) with time dependant or constant prices. Additionally, an energy storage (S) can be used.

The mathematical description of the problem is further detailed. The mathematical formulation is described on a discrete horizon 𝐻 = [1, … , 𝛩 ∈ ℕ + ]. The time step size (in hours) is given by 𝑑𝑡 and ensures units consistency. Variables are written in bold, continuous variables in capital letters and binary variables in small letters. In order to represent units consistency, 𝑋 correspond to units/hour (power units) and 𝐸 to units (energy units). Parameters and variables are detailed below.

-The demand 𝑋 𝑡 𝐷 is in units/hour.

-The CP is characterised by a minimum and a maximum production capacity in units/hour (𝑋𝑚𝑖𝑛 𝐶𝑃 and 𝑋𝑚𝑎𝑥 𝐶𝑃 ), a maximum change of its production rate in units/hour (𝑋𝑟 𝐶𝑃 ), a minimum on time in hour (i.e. if turned on, the CP must be kept on over at least 𝑇𝑚𝑖𝑛 𝐶𝑃 time steps), a unitary production cost in euros/unit (𝐶 𝐶𝑃 ), a fixed production cost in euros/hour (𝐶𝑜𝑛 𝐶𝑃 ) and a set-up cost in euros (𝐶𝑠𝑒𝑡 𝐶𝑃 ). Variables 𝑿 𝒕 𝑪𝑷 ∈ [0, 𝑋𝑚𝑎𝑥 𝐶𝑃 ] correspond to the production of the CP at 𝑡 in units/hour, 𝒚 𝒕 𝑪𝑷 ∈ [0,1] equals 1 if the CP is on at 𝑡, 0 otherwise and 𝒛 𝒕 𝑪𝑷 ∈ [0,1] equals 1 if the CP is being set-up at 𝑡, 0 otherwise.

-The intermittent production 𝑿 𝒕 𝑰 is in units/hour and has a time varying capacity 𝑋𝑚𝑎𝑥 𝑡 𝐼 = 𝑋𝑚𝑎𝑥 𝐼 * 𝑝𝑓 𝑡 𝐼 (𝑿 𝒕 𝑰 ∈ [0, 𝑋𝑚𝑎𝑥 𝑡 𝐼 ]).

-The energy bought on the network (𝑿 𝒕 𝑵 ∈ [0, +∞[) is in units/hour and has a time varying price 𝐶 𝑡 𝑁 .

-The storage is defined by a maximum capacity in units (𝐸𝑚𝑎𝑥), a storing efficiency (𝜂) corresponding to the percentage of units that are actually stored during the storing operation (the rest is lost), losses in units lost/units stored/hour (𝛿) and a similar stock/destock capacity in units/hour (𝑋𝑚𝑎𝑥). Associated variables are the stored quantity in units (𝑬 𝒕 ∈ [0, 𝐸𝑚𝑎𝑥] ) and the stock and destock rates in units/hour ((𝑿𝒐𝒖𝒕 𝒕 , 𝑿𝒊𝒏 𝒕 ) ∈ [0, 𝑋𝑚𝑎𝑥]) at time step 𝑡.

Variables are set to 0 if 𝑡 = 0. The mathematical formulation of the problem is as follows:
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𝑀𝑖𝑛:

∑ (𝐶 𝐶𝑃 

∑ 𝒛 𝒕 ′ 𝑪𝑷 𝑡 𝑡 ′ =𝑡+1-𝑇𝑚𝑖𝑛 𝐶𝑃 ≤ 𝒚 𝒕 𝑪𝑷 E10 ∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛 𝐶𝑃 {: ∑ 𝒛 𝒕 ′ 𝑪𝑷 𝑡 𝑡 ′ =1 ≤ 𝒚 𝒕 𝑪𝑷 E11
The objective to minimise the sum of all costs is given by E1. E2 ensures that the demand is satisfied. E3 ensures that the amount of power consumed from the intermittent source does not exceed the available power. E4 is the balance equations for the storage. E5-6 set the minimum capacity of the CP and fixes the status 𝒚 𝒕 𝑪𝑷 .

E7 fixes the state 𝒛 𝒕 𝑪𝑷 . E8-9 limit the changes in the CP production rate. The minimum on/off times of the CP are given by E10-11.

The problem is solved iteratively over 𝐻 in a rolling horizon fashion, i.e.: most immediate decisions are fixed and forecasts are updated at each rolling horizon cycle.

Elementary cases

We define several elementary production planning cases on the basis of the mathematical problem given in Section 2.1. Each case corresponds to the production planning problem of an energy system over one year, with an hourly time step. All cases are hypothetical and do not necessarily correspond to realistic cases (for instance, a heat demand profile can be satisfied by energy from the network with electricity spot prices). The aim is to test the Mean and the RpCf methods on various production planning problem configurations. All variations on the different hypothesis are further described, as well as the experimental plan. 

Evaluation process

The rolling horizon process is parametrized as follows (further details are given in [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF]). For all computations, the Fixed Horizon 𝐹𝐻 is set to 24 hours. The Mean and the RpCf methods are used over the horizon 𝐻1 which is a slicing of 𝐻. It keeps a detailed model over the short-term horizon (𝑆𝐻) and an aggregated model (Mean or RpCf) is applied over the long-term horizon (𝐿𝐻).

Similarly to [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF], the same demand profile is used over both horizons 𝑆𝐻 and 𝐿𝐻. Hence, models are run with perfect forecasts. This way, only biases on the data aggregation method and on the models themselves are accounted for.

In both cases where the CP has its flexibility constrained, the Mean-SetUp and the RpCf-SetUp versions of the methods are applied (since they include important set-up costs). In cases where there is no storage, the RpCf method is not applicable. The two methods are compared to the Cicada strategy which uses the planning horizon 𝐻1 but without the 𝐿𝐻.

All approaches are evaluated over a year. Total costs retained correspond to the sum of costs on the 𝐹𝐻 of the rolling horizon process over a year. Since the yearly strategy might evolve if more years are simulated, models are run until it converges. In practice, this is the case after one or two years. Other experimental aspects are identical as in [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF].

Results
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Results

All detailed results are given in Table 7 including the total costs over the simulated year, the total yearly demand and amount of units produced by the different sources. The yearly total costs are plot on Figure 28 to Figure 32 for all elementary cases and all methods. Graphs describing the solutions obtained are available in Supplementary Material 2 . The graphs are entitled with respect to the type of plot (flux or storage units), the demand profile considered, the architecture tested and the method used. 
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Discussion

For cases where optimal operational decisions are obvious (the architectures Flx, Flx-Wnd, Flx-Slr, Wnd-LrgSto and Slr-LrgSto), the Mean method yields identical or better results than the Cicada method. This is consistent since these cases do not include a trade-off between short and long-term decisions. The underperforming of the Cicada method in some cases is due to the fact that it does not fill the storage at the end of the horizon even if intermittent sources are available. This shortcoming could easily be corrected with a simple heuristic (give a small economic value to the energy stored at the end of the horizon for instance).

Other cases where there could be an interest to store energy on the long term or to keep the CP turned on at the end of the SH horizon are (few exceptions apart) always better handled by the Mean and the RpCf methods.

In most cases, the RpCf method yields the best results. This is consistent with expectations and with results from [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF]. However, the RpCf method still yields sub-optimal solutions in most cases. One argument is that they can be improved by stocking units at the last moment or destocking units earlier to save on the storage losses (see the individual cases further discussed)

The cases where the Electrical demand is considered show little differences between the three methods (except when spot prices are included). This is due to the fact that the Electrical profile has lower seasonal or intramonth variations, and that it is most of time above the CP minimum capacity. Focusing on cases that include a CP with its constraints, the RpCf methods slightly underperforms other methods. Although consequences are small, the storage strategy is not fruitful and does not help on the results interpretations. Hence, the RpCf method is not recommended for cases where no particular long-term strategy is of interest.

Individual cases giving rise to discussion are further discussed, corresponding graphs can be found in the supplementary materials.
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Heat demand with Unflx-LrgSto architecture:

In this case, the RpCf method anticipates the supplementary summer production costs due to the the CP constraints and makes up a stock at the end of the heating period contrarily to the Mean method. The three distinct charging steps highlight the non-optimality of the solution, partly due to the future data approximation with representative periods. Nevertheless, the strategy stays more efficient than the Mean and the Cicada strategies (see Figure 30), which operate more cycles on the CP and pay set-up costs.

Heat demand with Unflx-SmllSto architecture:

This case shows the differences in the strategies of the Cicada, Mean and RpCf methods when the demand is lower than the minimum capacity of the CP. The Mean and the RpCf methods better anticipate future costs due to the CP cycling and make better usage of the storage. Here again, the storage management of the RpCf is sub-optimal (kept full during heating season), but the method still yields better results.

Heat demand with Unflx-HighSetUp architecture:

Here the RpCf method operates in a similar way as with the Unflx-LrgSto architecture. Expensive set-up costs keeps the CP turned on at the beginning of heating season or prevent it from turning on for few units. The Mean method does not anticipate the minimum capacity constraint that impacts the summer demand satisfaction and thus does not constitute a stock. However, expensive set-up costs prevent it from turning the CP off during the summer, which fills up the stock for the beginning of the heating season. The Cicada method yields to an expensive solution with multiple CP set-ups.

Heat demand with Unflx-NoSetUp architecture:

In this case, savings can be obtained by using the CP at high capacity. The RpCf method anticipates fixed production costs on the long-term and makes better use of the storage. The Mean and the Cicada methods operate similarly, the first slighlty outperfroming the second.

Constant, and square-wave signals demand with Unflx-LrgSto architecture:

In case of a constant demand, the RpCf method charges and discharges the storage in order to save on fixed production costs of the CP, while the Mean and the Cicada methods produce at constant rates. For semestrial, monthly and weekly square wave signals, the RpCf method also makes use of the storage to reduce start-up and fixed production costs. Still, the solutions obtained are sub-optimal. This can be due to the long-term data approximation by representative periods, extrapolation of computed costs and the loss of information on the CP state after the first long-term horizon slice (see [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF] for details). On the other side, Mean and Cicada methods show similar behaviour : they do not properly anticipate long-term CP constraints and costs and thus do not elaborate long-term strategies. Still, the Mean method uses less cycles on the CP, which improves the solution compare to the Cicada method. Finally, the daily square wave signals are slightly better handled by the Mean method, while the long-term strategy off the RpCf method is not efficient, similarly to cases where the Electric demand was considered.

Conclusion

102 5. Conclusion This technical note aimed to verify the relevancy of the two rolling horizon methods presented in [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF]. For this purpose, multiple hypothetical case studies were defined based on open data and arbitrary parameters. Both methods were tested on 24 elementary case studies including various load profiles, storages, and energy sources. All results were found consistent and confirmed the relevancy of both methods for rolling horizon optimisation in case of complex long-term operational decisions as observed in [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF]. Other cases where longterm strategies are not relevant were also properly handled by the Mean and the RpCf methods, which confirms their proper parametrization. In worst cases, solutions obtained with the RpCf method were not significantly less performant but led unnecessary variations of its strategy. This makes the interpretation of results more difficult and can be due to an overlearning of the method. Fixing this issue could be a future work before practical applications.

Chapitre 4

103 Chapitre 4 Les deux précédents chapitres proposent et valident l'intérêt de deux méthodes pour simuler et optimiser l'opération d'un système énergétique. Ces deux méthodes sont des extensions de de la mécanique classique de l'horizon glissant. Elles permettent de tenir compte de dynamiques opérationnelles long terme tout en modélisant finement des décisions court-terme au pas de temps horaire.

Ce quatrième et dernier chapitre illustre une nouvelle application possible de ces deux méthodes. Il revient également sur le besoin énoncé dans la conclusion du Chapitre 1. L'état de l'art a mené à la conclusion qu'il serait pertinent de s'appuyer sur des modèles opérationnels fins pour la conception de systèmes énergétiques où les questions de flexibilité sont essentielles. En particulier, ces modèles fins tiendraient compte de séries temporelles annuelles au pas de temps horaire (sans les agréger en jours types), de contraintes et coûts opérationnels spécifiques rendant compte de la flexibilité des technologies et d'hypothèses de prévisions imparfaites. Le Chapitre 4 questionne cette pertinence en illustrant l'impact de ces niveaux d'hypothèses sur un cas d'étude complexe, mêlant demandes en électricité et en chaleur au niveau d'un quartier. Les différents impacts pourront illustrer (ou non) l'intérêt d'utiliser un modèle plus fin pour améliorer la pertinence de l'étude. Un retour d'expérience sera dressé pour mieux anticiper ces problématiques sur de futurs cas.

Plusieurs renvois aux Chapitres 1 et 2 sont faits dans ce chapitre. Ils correspondent respectivement aux références [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF] et [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF].
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Many techno-economic studies of local energy systems rely on mathematical programming. This comes with several modelling choices including simplified technological and economical models, temporal and spatial resolutions or perfect foresight assumptions. These assumptions are challenged individually on different case studies in the literature. This paper evaluates and compares the impact of different modelling choices on a single case study. The system considered includes heat and electrical demands, a biomass-fired cogeneration, a heat pump, gas and fuel boilers, solar thermal collectors as well as a long-term heat storage. The modelling choices tested are the use of representative periods or not, the inclusion of flexibility costs and constraints for the cogeneration, the use of different methods to optimise operational decisions (including various rolling horizon methods), and the consideration of forecast errors or not. Results highlight the conditions under which representative periods can be used without introducing strong biases on the results. They show the consequence of neglecting flexibility costs and constraints in the problem formulation. Finally, they compare different rolling horizon strategies and conclude on the validity of the perfect foresight assumption on this case study.

Highlights:

-Usual assumptions taken when modelling energy systems with mathematical programming are assessed.

-The impact of several assumptions over different modelling facets are compared on a single case study including a long-term storage.

-The characteristics of the case study that favour (or not) the recourse to one assumption or another are highlighted.
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Introduction

The Intergovernmental Panel on Climate Change calls for limiting cumulative greenhouse gas emissions of human activities in order to limit global warming [START_REF] Masson-Delmotte | Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF]. Paris agreements already engaged many countries to reduce their emissions in 2015 [START_REF] Paris Agreement | [END_REF]. The energy sector plays a major role in human emissions and includes local energy systems [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF]. Local and smart energy systems [START_REF] Lund | Smart energy and smart energy systems[END_REF][START_REF] Lund | 4th Generation District Heating (4GDH)[END_REF] including distributed energy resources [START_REF] Alanne | Distributed energy generation and sustainable development[END_REF] stand as a potential way to increase energy efficiency and to lead to low carbon energy systems. Designing and simulating such systems can be a complex task which implies several modelling assumptions and choices. A multitude of modelling and optimisation methods were presented in the literature [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF]. They often rely on the mathematical programming formalism but with diverse underlying assumptions. Hence, there is a need to challenge the assumptions usually undertaken.

When modelling the operation of an energy system, several modelling facets exist. Facets include the spatial resolution, time resolution, technological and market representations, as well as how operational decisions are modelled [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF]. The technological and market representations are tightly linked to the mathematical complexity of the model. Increasing such models complexity can lead to tough optimisation problems [START_REF] Goderbauer | The synthesis problem of decentralized energy systems is strongly NP-hard[END_REF]. The way operational decisions are modelled refers to how they are optimised and how errors in forecasts are considered (also referred as short-term uncertainty in [START_REF] Helistö | Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches[END_REF]). Current methods based on the design and operation optimisation with a single mathematical program assume perfect foresight [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF]. In real life applications, errors in forecasts and imperfect operational decisions occur. Hence, such methods can underestimate real life operational costs with an "over-optimised" operation of the system. In turn, this can lead to design solutions which are theoretically optimal but less performant in practice. Therefore, we distinguish three interdependent modelling issues when studying energy systems: the computational tractability of the model, the performance (economic, energetic, environmental, etc.) of the solutions it yields, and their applicability in practice.

As mentioned in [START_REF] Wirtz | Design optimization of multi-energy systems using mixedinteger linear programming: Which model complexity and level of detail is sufficient?[END_REF] and [START_REF] Nolting | Is the more complex model always the better one?[END_REF], there is a research gap regarding the degree of model complexity that is necessary while more complex models do not necessarily yield higher performances. This paper is in line with [START_REF] Wirtz | Design optimization of multi-energy systems using mixedinteger linear programming: Which model complexity and level of detail is sufficient?[END_REF] where the impact of the model complexity on its computational tractability and on its economic performances is questioned. The state of the art from [START_REF] Wirtz | Design optimization of multi-energy systems using mixedinteger linear programming: Which model complexity and level of detail is sufficient?[END_REF] provides many and recent references where the impact of the spatial and temporal resolution are investigated as well as the impact of mathematical complexity of the model and the system scope (in both fields of local and large-scale energy systems). Further references can be added: in [START_REF] Pfenninger | Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability[END_REF], the author tests multiple temporal resolution reduction methods to summarise decades of hourly solar and wind time series. Methods tested include coarser temporal resolution, heuristics and clustering methods for selecting representative days. A finding is that results are substantially altered, especially with high intermittent energy shares. On the other hand, storage options reduce the importance of high temporal resolution. Appropriate time resolution is case dependant and using representative periods (RPs) implies to set a compromise between computation times and temporal accuracy. 48 days were considered necessary in [START_REF] Gabrielli | Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis[END_REF] for a robust design optimisation of a local MES (Multi-Energy System). Authors from [START_REF] Frew | Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model[END_REF] compare the impact of spatial and temporal resolution on the design of US regional power systems. They evaluate the impact of a coarser time resolution and of the number of representative days used. On the spatial facet, they compare an optimisation region by region with an optimisation of interconnected regions jointly. They finally compare different spatial resolutions within a region. On another note, the impact of the operational decisions modelling assumptions was investigated in [START_REF] Felten | The value(s) of flexible heat pumps -Assessment of technical and economic conditions[END_REF]: the economic viability of heat pumps is evaluated for different operation optimisation algorithms and with different quality of forecasts. A finding is that both assumption levels can have important impacts on economic and energy consumption results.

Contributions:

Given the extensive application of mathematical programming approaches to simulate and design local energy systems, questioning the relevancy of their underlying assumptions is necessary. The impact of the different modelling choices on computational tractability and on economic performances were individually evaluated in the literature (see [START_REF] Wirtz | Design optimization of multi-energy systems using mixedinteger linear programming: Which model complexity and level of detail is sufficient?[END_REF], [START_REF] Pfenninger | Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability[END_REF], [START_REF] Frew | Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model[END_REF], [START_REF] Gabrielli | Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis[END_REF] and literature review from [START_REF] Wirtz | Design optimization of multi-energy systems using mixedinteger linear programming: Which model complexity and level of detail is sufficient?[END_REF]). Authors from [START_REF] Felten | The value(s) of flexible heat pumps -Assessment of technical and economic conditions[END_REF] explored the operational decisions modelling assumptions to better evaluate the practical expected performances of optimisation models. This paper adds several contributions to this research topic:

• It evaluates the impact of the different modelling choices over operational costs on a new illustrative case study. Considering that this impact can be highly case dependant, this contributes to fill the above-mentioned research gap. The case includes electric and heat demands, as well as a large heat storage. It is a complex case that include daily and monthly time scales. • Different modelling choices are compared together on this single case study, while previous studies evaluated impacts individually. • It evaluates the impact of how operational decisions are modelled (including possible forecast errors), in particular in case of a large storage that implies long-term operational decisions. Methods from [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF] are used.

First, we describe the illustrative case study including the mathematical formulation of the problem. Second, the different modelling facets and their respective possible assumptions are defined. Then, the experience plan and the evaluation process are described. Finally, results are presented and discussed.

Case study

The case study corresponds to the satisfaction of electrical and heat demands in the Cambridge neighbourhood of Grenoble city, France. The system structure is illustrated on Figure 33. Time varying heat and electricity demands (respectively HD and ED) must be supplied at each period. The heat demand can be satisfied through a heat network powered by solar thermal panels (ST), a heat pumps (HP) (which consumes electricity), a gas boiler (GB), a fuel boiler (FB) or a biomass back-pressure cogeneration (CG) (which produces electricity as well). The centralized heat can be stored over long periods in a heat storage (HS). Finally, if not satisfied by the CG, the ED is supplied by purchasing electricity on a grid (G) at a time dependant (spot) price. The gas, fuel and electricity prices include CO2 emission costs. The CO2 content of the grid is also time dependant.

The mathematical formulation of the problem is given Section 2.1. The value of parameters is given Section 2.2.

2. Case study 108 • The heat demand 𝑋 𝑡 𝐻𝐷 and the electricity demand 𝑋 𝑡 𝐸𝐷 are in kW.

• The ST production 𝑿 𝒕 𝑺𝑻 is in kW and has a time varying capacity 𝑋𝑚𝑎𝑥 𝑡 𝑆𝑇 (𝑿 𝒕 𝑺𝑻 ∈ [0, 𝑋𝑚𝑎𝑥 𝑡 𝑆𝑇 ]).

• The GB is characterised by a maximum production capacity in kW (𝑿 𝒕 𝑮𝑩 ∈ [0, 𝑋𝑚𝑎𝑥 𝐺𝐵 ]) and a unitary production cost in euros/kWh (𝐶 𝐺𝐵 ).

• The FB is characterised by a unitary production cost in euros/kWh (𝐶 𝐹𝐵 ).

• The HP is characterised by a maximum production capacity in kW (𝑿 𝒕 𝑯𝑷 ∈ [0, 𝑋𝑚𝑎𝑥 𝐻𝑃 ]) and an efficiency constant 𝜂 𝐻𝑃 .

• The CG is characterised by a minimum and a maximum total production capacity in kW (𝑋𝑚𝑖𝑛 𝐶𝐺 and 𝑋𝑚𝑎𝑥 𝐶𝐺 ), a maximum change of its total production rate in kW (𝑋𝑟 𝐶𝐺 ), a minimum on time in hour (i.e. if turned on, the CG must be kept on over at least 𝑇𝑚𝑖𝑛 𝐶𝐺 time steps), a unitary biomass cost in euros/kWh (𝐶 𝐶𝐺 ), a fixed production cost in euros/hour (𝐶𝑜𝑛 𝐶𝐺 ) and a set-up cost in euros (𝐶𝑠𝑒𝑡 𝐶𝐺 ). 𝜂 𝑒 and 𝜂 ℎ respectively correspond to the nominal electricity and heat efficiencies. The ratio 𝛼 = 𝜂 𝑒 /𝜂 ℎ is introduced for convenience. The CG has the ability to produce more heat by reducing its electrical production by a factor The objective to minimise the sum of operational costs is given by E1. E2 and E3 ensure that both demands are satisfied. E4 ensure that the amount of power consumed from the intermittent source does not exceed the available power. E5 is the balance equation for the HS. E6-7 set the minimum capacity of the CG and defines the states 𝒚 𝒕 𝑪𝑮 . E8 defines the states 𝒛 𝒕 𝑪𝑮 . E9-10 limit the changes in the CG production rate. E11-12 limit the heat and electricity production of the CG so that it can trade electricity production with heat production with a factor of 1. E13-14 define the amount of biomass consumed by the CG. The minimum on/off times of the CP are given by E15-16. Finally, E17 ensures that the initial storage level corresponds to the final storage level.

Techno-economic assumptions

Techno-economic values of parameters used to formulate the ESPP problem are given in Table 8 and Table 9. A relatively high CO2 emissions cost is considered: C CO 2 = 0.2 𝑒𝑢𝑟𝑜𝑠/𝑘𝑔. The heat demand profile, the electrical demand profile, the production factor (𝑝𝑓 𝑡 ) of the ST panels, the electricity prices 𝐶 𝑡 𝑒 and the electricity carbon content CO 2 𝑡 𝑔𝑟𝑖𝑑 profiles are shown in Appendix E. The gas price was extracted from [185]:

it corresponds to the price for non-household consumers in France in the second semester of 2020. The electricity prices profile was normalised with the electricity price for non-household consumers in France in the second semester of 2020 ([185]).

Capacities of each equipment were set after solving the investment planning problem which corresponds to the mathematical problem defined by E1-E17 without the CG specific constraints (E6-E10) and with capacities as optimisation variables. The objective was modified to minimise the total actualised costs over 20 years with a discount rate of 7%. The FB was ignored at the investment phase. It can be noticed that batteries and photovoltaic solar panels were included at the investment phase but not selected by the optimiser. This step is further detailed in Appendix E. Obtained capacities were rounded. 

Experimental method 3.1 Modelling options compared

The aim of this paper is to evaluate the impact of the modelling choices over different energy system operational facets. The modelling options of the different facets are described here.

Technological facet, two modelling options tested:

• The LP option: no CG specific constraints are considered (equations E6-E10, and E15-16 are ignored, fixed production and set-up costs of the CG are set to zero). The ESPP problem is a purely Linear Program (LP).

• The MILP option: all CG specific constraints and costs are included. The ESPP problem is a Mixed-Integer Linear Program (MILP).

Temporal facet, two modelling options tested:

• The basic option: one year of data is considered with 1 hour time step (8760 time steps).

• The RP option: several RPs representing one year of data considered (various sizes and number are tested). The method for selecting RPs is the method from [START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF] ("OPT" method with the basic model) 3 .

The ESPP problem formulation is kept identical but the reconstructed profiles are used instead. The reconstructed profile is built by attributing one RP to each original period so that the absolute error is minimised at each time step.

Operational decisions facet, optimisation algorithms tested:

• The OneShot option: perfect anticipation of future data over the year is assumed. The ESPP problem is solved as a single mathematical program.

• The Cicada and Ant options: the ESPP problem is solved in a RH fashion, the Cicada option corresponds to the usual RH solving of the ESPP problem with a planning horizon of 48 hours and a fixed horizon of 24 hours. The Ant option similar as the Cicada option, but a value to energy stored at the end of the planning horizon is attributed. This value is set to 0.7 euros/kWh, so that heat from the GB or the FB is not stored over long-term periods.

• The Mean and RpCf options from [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF]: The Mean and RpCf strategies use the same problem formulation over 48 hours and approximate next data and decisions variables with aggregated time steps. This way, yearly evolutions are anticipated. The aggregation can increase with time and is defined by a slicing of the planning horizon H. Three planning horizons are defined: H1, H2 and H3 (see Figure 34). H1 and H2 were already introduced in [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF]. H3 is a compromise between H1 and 113 H2. The Mean strategy uses average data and a simplified problem formulation over the long-term horizon. The RpCf strategy aggregates time steps by RPs, and the problem formulation is replaced by pre-computed cost functions on the long-term horizon. The horizon H2 is not applied with the RpCf strategy: this combination was found to be less efficient in [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF].

Operational decisions facet, inclusion of forecasts errors:

• The basic option: the same data sets are used as forecasts and as effective demands, PV and ST production factors, grid prices and CO2 content.

• Including forecast errors: the data sets used as forecasts after 24 hours differ from effective demands, PV and ST production factors, grid prices and CO2 content by -20% to +20%. Before 24 hours ahead, perfect forecasts are assumed. The modelling facets and the modelling options are summarised in Table 10. We further refer to a modelling configuration as a set of options abbreviations given in Table 10. For instance, the configuration MILP-Mean corresponds to the case where all CG constraints are included and where the ESPP problem is solved in a rolling-horizon fashion with the Mean method from [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF]. Also, we further use the term model to refer to a single modelling facet or a specific modelling option: for instance, "the LP model" only refers to the technological facet of the whole model. More information on the rolling horizon (RH) strategies is given below.

Evaluation process

The different configurations are used to model the operation of the energy system described by E1-E18 over one year. The configurations are compared on the basis of the total operational costs they yield over one year. This is given by E1 in case of the OneShot model (𝐻 = [1, … ,8760]). In case where a RH is used, the total costs retained correspond to the sum of costs on the fixed horizon of the RH process over a year. The fixed horizon corresponds to the part of decisions that are planned over 𝐻 and fixed before the next cycle of the RH process. It is set to 24 hours. Since the yearly strategy might evolve if more years are simulated, configurations are run until it converges. In practice, this is the case after one or two years.

In cases where the CG specific constraints and costs are included, the Mean-SetUp and the RpCf-SetUp versions of the Mean and RpCf methods from [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF] are applied (since important set-up costs are included).

The same demand profile is used over both short-term and long-term horizons if no forecast errors are considered. Hence, configurations are run with perfect forecasts (except in Section 4.4). This way, only biases on the data aggregation method and on the models themselves are accounted for.

A time limit of one hour was set for all computations. For cases where this limit was reached, results are presented respectively to the potential error due to the final relative gap. For instance, the MILP-OneShot configuration led to an optimisation problem with a high number of binary variables (17 520). Hence, computations were stopped after one hour with a final relative gap of 0.11%.

All computations are performed according to [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF], where details can be found about the in-house PERSEE modelling environment from the LSET laboratory in CEA and about the methodology used to build the cost functions. Scripts used to build cost functions are available in [START_REF] Cuisinier | Cost functions script[END_REF].

Results

This section presents the impact of the modelling choices over the technological facet, the temporal facet and the operational decisions facet.

In Section 4.1, the solutions obtained for both LP-OneShot and MILP-OneShot configurations are described in detail to understand the main dynamics of the system. In next sections, the LP-OneShot and MILP-OneShot configurations are considered as references and results are expressed and compared relatively to them.

Impact of the technological assumptions

This section compares the OneShot-MILP configuration with the OneShot-LP configuration. Including the CG costs and constraints increases the yearly costs by almost 4 percent.

The costs breakdown given in Figure 35 shows that an important percentage of this difference is due to the CG operating costs (they are ignored with the LP option). The rest is due to an increase in the total cost of the electricity bought from the grid. This can occur because more electricity is bought on the grid and/or that it is bought at higher prices. Figure 36 provides information about the proportion of each source in the HD and ED satisfaction. Overall, the CG is less used with the MILP option (has expected: it is more expensive). Hence, it produces less electricity and less heat. In turn, the HP produces more heat, so more electricity is bought from the grid. We further describe the solutions obtained: results of the OneShot-MILP and the OneShot-LP configurations are plot on Figure 37 4 and Figure 38 respectively. Zooms on both figures are given in Appendix F, they further illustrate explanations given below.
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The same strategy is used in winter, independently of the CG model: the CG and the HP are mostly used at maximum capacity. The heat storage is used to pass HD peaks. The CG trades electricity for heat before the highest HD demand peak. This is done when electricity prices are low. The GB is only used to pass the biggest HD peak. Overall, the system is highly constrained.

During the mid-season, the CG and the HP are used when electricity prices are high/low respectively. This strategy is enabled by the HS which is used over short and medium term periods to smooth the whole heat production. The HS also ensure that some HD peaks are passed without using the GB. The CG is not turned off with the MILP option to avoid start-up costs.

A similar price saving strategy is used in the summer when the CG is not constrained. The HS use is driven by the electricity prices. If it is constrained, this strategy enters in competition with the need to limit the number of start-ups. Hence, the CG price adaptive strategy is not always available and is only undertaken by the HP. This explains higher grid costs and higher use of the HP. On the side of the economic performance, the OneShot option give the best results. The operational strategies given by the OneShot option are complex and take advantage a perfect knowledge, in particular on the electricity prices variations. One can question if such optimal operation is applicable to this extent in practice. If it is not, does it have a big impact over the total costs? This is further discussed in Sections 4.3 and 4.4.

On the side of the tractability, the MILP-OneShot configuration was surprisingly well handled by the solver despite the problem complexity: the gap was already reduced to 0.26% after 3 minutes, with an objective close to the MILP-MeanH2 configuration (see Sections 4.3). Similar computations were performed with a high capacity for the GB for which the MILP-OneShot configuration was less performant. Hence its tractability is not guaranteed.

Impact of the temporal assumptions

This section assesses the impact of the temporal model by comparing the LP-OneShot configuration with the LP-OneShot-RP configurations, and the MILP-OneShot configuration with the MILP-OneShot-RP configurations (with various sizes and numbers of RPs). Figure 39 (and later Figures Figure 42 and In case of the LP option, the economic impact ranges from -6.4 to 2.1 percent of the total operational costs depending on the number and sizes of RPs used. As expected, increasing the number and the size of RPs reduces the impact, but this is not systematic. The tendency is that costs are underestimated. This could be due to the fact that extreme values are excluded when RPs are chosen (HD peaks for instance). Figure 42 shows
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the results when the period that includes the HD peak is imposed as a RP. In case of the LP option, this significantly improves results when RPs of one day are considered.

On the side of the MILP option, the impact ranges from -1.5 to 6.4 percent. Contrarily to the case where the LP option is used, costs tend to be overestimated. Also, increasing the number and size of RPs does not improve the results, suggesting that errors compensate. Overall, the recourse to RPs appears less stable in case of the MILP option. Figure 40 shows the costs breakdown of the MILP-OneShot reference configuration and the MILP-OneShot-RP configuration with 48 RPs of 1, 2 and 3 days: the CG costs are always overestimated (and the grid costs to a lesser extent). Figure 41 shows the heat balance and the grid prices for the case where 48 RPs of 2 days are used: contrarily to the MILP-OneShot reference configuration (Figure 37), the CG cycles more. This is because the reconstructed signal of the grid prices has a higher intra-month standard deviation. Hence, the CG strategy is modified accordingly. A similar phenomenon occurs with other sizes and numbers of RPs. This can be attributed to the fact that RPs keep the nature of the signal within themselves but not between themselves. Hence, the whole reconstructed signal has a different nature. Finally, costs are more overestimated when the HD peak is imposed as a RP and the RPs size is one day (Figure 42), suggesting that errors over different cost sources compensate less compared to Figure 39.

The RPs are often used to reduce the computation times [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF]. This case study includes a large thermal storage, hence, using RPs requires methods from [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF]. The method M2 is tested here: computations are run on the original data series but integer variables are gathered on the basis of RPs. This means that if two periods of the original data are represented by the same RP, integer variables are set equal on these two periods. In other words, the method M2 is a heuristic to the original problem in which the number of integer variables is reduced 5 . Figure 43 shows the computation times of this method: contrarily to the MILP-OneShot configuration (with no heuristic), the problem is solved in limited computation times. Figure 44 shows the difference in operational costs compared to the reference MILP-OneShot configuration: costs are highly overestimated. This is due to a change in the CG strategy, similarly to Figure 41. Contrarily to previous computations, there is no compensations with underestimations due to the reconstruction of the data series with RPs. Hence, on this case study, the method M2 is not fruitful. Finally, results improve when bigger RPs are used. This suggests that RPs of the size of the time constant of the CG on/off states of Figure 37 would be necessary. However, this would highly reduce the efficiency of the time aggregation. 

Discussion

The results described in Section 4 are further discussed. They are tightly linked to the case study considered. Still, more general conclusions are outlined.

Computation times in case of the MILP option:

The MILP-OneShot configuration is surprisingly well handled by the solver despite the problem complexity: the gap was already reduced to 0.26% after 3 minutes, with an objective close to the MILP-MeanH2 configuration. Hence, the method M2 from [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF] or RH methods from [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF] tested on this case study are not of interest if one only needs to reduce computation times. However, the tractability of such MILP is not guaranteed. For instance, similar computations were done with a high capacity for the GB for which the MILP-OneShot configuration was less performant. Hence, methods from [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF] or [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF] can still be further tested for this purpose.

Assumptions on the technological facet:

On the side of the assumptions over the technological model (here the inclusion of flexibility costs and constraints for the CG), they can have an important impact over the objective (around 4 percents) and on the solution. It further conditions the impact of the temporal and the operational decisions assumptions. Hence, attention should be paid to the technological assumptions. In this case study, the difference mainly comes from the fixed costs and the start-up costs of the CG. Nevertheless, the impact of the flexibility costs and constraints is not systematic: similar computations are done with economic assumptions relevant to Denmark6 and with a different type of CG (extraction condensing) 7 . The system sizing yield a smaller CG (580 kW) producing heat and electricity all year without being turned off. In turn, adding flexibility costs and constraints do not change significantly the solution and it do not condition the impact of other assumptions.

This can be put into perspective with recent literature on large-scale bottom up optimisation models: several works in the literature included detailed flexibility features ( [START_REF] Sisternes | Investment model for renewable electricity systems (IMRES): an electricity generation capacity expansion formulation with unit commitment constraints[END_REF][START_REF] Koltsaklis | A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints[END_REF][START_REF] Ma | Evaluating and planning flexibility in sustainable power systems[END_REF][START_REF] Kirschen | Optimizing the flexibility of a portfolio of generating plants to deal with wind generation[END_REF][START_REF] Pereira | Generation expansion planning with high share of renewables of variable output[END_REF]). More recently, authors from [START_REF] Poncelet | Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility[END_REF] bring contrasts on the impact of such assumptions. They conclude that the impact can be limited on the total system costs if several sources of flexibility are considered. On the other hand, they can have a significant impact on the flexibility provider optimal sizes.

Assumptions on the temporal facet:

Moving to the temporal assumptions, results indicate that in case of simple technological assumptions, a temporal aggregation with a sufficient number and size of RPs approximates well the results. It should be noted that this case study includes four data series (the HD, the ED, the ST production factor and the grid costs including CO2 emissions), which is more challenging to aggregate with RPs. Hence, authors expect the results to improve for case studies that include less data series. On the other hand, the approximation by RPs can have a higher impact if a detailed technological model is considered. In particular, this is the case if the operational strategy has medium-term dynamics. This is because RPs do not conserve the time continuity between periods.

Assumptions on the operational decisions facet:

The impact of the operational decision modelling option is observed in Sections 4.3 and 4.4. A first conclusion is that a lack of long-term strategy can have an important impact on the operational costs. Hence, in this case, results provided by a single mathematical program with a perfect foresight assumption can only hold if an effective operational strategy is applied in practice. Further experiments on operational models elaborate on how effective the strategy should be to stick with the perfect forecast assumption of the OneShot option.

In case where the LP option is used, the sensitivity of the results to the optimisation algorithm can be limited: the MeanH2, MeanH3 and RpCfH3 options yield performances close to the OneShot option. If the MILP option is used, the impact increases and only the RpCfH3 option performs close to the OneShot option. When forecast errors are considered after 24 hours of the planning horizon, results are only significantly impacted when the HD is underestimated. On the other hand, overestimating the HD can have a positive impact or only slightly deteriorates the results. The supplementary costs caused by a lack of anticipation of the HD peak are due to the use of the FB. In practice, the GB backup is oversized (the small capacity of the GB actually comes from the over-fit of the sizing solution). Hence, the demand currently satisfied by the FB could be satisfied by the GB. For instance, in the case of the RpCfH3 option (with no forecast errors), this reduces the difference with the OneShot option to less than 1%. Given these elements, supposing that if a proper optimisation algorithm, a properly sized backup solution and conservative scenarios on the HD during the winter are used, a solution close to the OneShot option can be obtained. Hence, the perfect foresight assumption of the OneShot option seems reasonable here.

A finding is that forecast errors on the ED or on the ST production factor have very limited impact, so there is no need to put efforts on a forecast method on this side (at least after 24 hours). As mentioned earlier, this is due to the fact that the ED is mainly satisfied by the grid and the ST production is marginal. Hence, marginal forecast errors (up to 20%) do not influence the operational strategies. This insensitivity to forecast errors can be anticipated on future case studies where the forecasts concern a marginal production or a demand that is mainly satisfied by the backup option (here the grid).

Similarly, the forecasts on the grid prices and CO2 content are not crucial at least after 24 hours. Further computations with the RpCfH3 option show that using constant values as previsions after 24 hours had nearly no impact on the final solution. Taking a step back, the MILP-OneShot configuration is run with constant total grid prices, and the variable profiles are applied a posteriori: the operational cost is only increased by 1%. Similarly, the OneShot option is run with total grid prices increased/decreased by 20% and the original profiles are applied a posteriori. This changed the solution: the CG is used instead of the HP in the summer if prices are increased and vice-versa. However, the operational costs do not increase more than 0.8 percent. This confirms that the lever on the total grid prices is small, which is consistent with the low impact of the grid prices and CO2 emissions forecasts. In turn, the increase in operational costs between the MILP-OneShot configuration and MILP-MeanH1-2-3, MILP-RpCfH1 or MILP-Ant configurations is more due to the less efficient cycling strategy of the CG. This comes from the algorithm used and is less impacted by forecast errors. Cases where more benefits/costs are induced by medium/long-term temporal variations and where the system has latitude to react accordingly are expected to be more sensitive to forecasts quality.

Conclusion & perspectives

This paper investigates the impact of various modelling assumptions of local multi-energy systems on a complex case study. The modelling facets considered include the technological, temporal and operational decisions representations. The impact of the inclusion of specific flexibility costs and constraints over the objective and the solutions is evaluated, and is further crossed with other modelling assumption impacts. Full hourly temporal resolution over one year is compared with the recourse of representative periods. Single mathematical formulation with perfect foresight assumption and different rolling horizon strategies including long-term operational decisions are compared. Finally, forecast errors are included. All impacts of these different assumptions are compared together in order to validate/invalidate the corresponding assumption and further prioritize modelling efforts.

A first observation is the potential high impact of the technological model over the objective and the solution (operational dynamics). It further conditions the impact of the temporal and the operational decisions assumptions. Hence, attention should be given to the flexibility costs and constraints assumptions.

In case where a simple technological model is used, relying on representative periods can well approximate operational costs and reduce computation times. However, operational strategies with medium-term dynamics can deteriorate the approximations yield by representative periods. The detailed technological model including limited flexibility of the cogeneration triggered this in this case study.

Finally, the rolling horizon methods used can help to evaluate the impact of imperfect operational decisions (including forecast errors). In this case study, it is found that forecast errors can have relatively low impacts on the operational costs if proper operational strategy and backup are applied. Hence, the perfect foresight assumption usually taken is not invalidated here: the operational decisions are not "over-optimised" by the single mathematical program. Overall, the impact of imperfect operational decisions model is difficult to anticipate, particularly if complex operational strategies are used.

Future work can include the improvement of this evaluation method with more tests on the possible forecast errors. Here, only systematic over/under estimations are tested. More detailed error patterns could be used and defined with respect to actual expected forecasts accuracy. In addition, forecast errors before 24 hours could be tested.

On the side of the computational tractability, the single mathematical program handled to the solver yields a performant feasible solution in a reasonable computation time despite the problem complexity and the detailed time resolution. Cases with problems harder to solve could discard this option (when considering part-load efficiencies for instance [START_REF] Wirtz | Design optimization of multi-energy systems using mixedinteger linear programming: Which model complexity and level of detail is sufficient?[END_REF]). If so, methods based on representative periods [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF], decomposition methods (as reviewed in [START_REF] Cuisinier | Techno-economic planning of local energy systems through optimization models: a survey of current methods[END_REF]) or the rolling horizon methods presented in [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF] can be of interest. Future work could compare these different options.

Conclusion

Résumé des travaux réalisés, réponses aux questions et contribution à l'état de l'art : Cette thèse a tenté d'apporter des réponses à deux questions principales : Comment faire usage des méthodes disponibles pour l'étude et la planification technico-économique de systèmes multi-énergies ? Peut-on compléter le panel existant avec de nouvelles méthodes pertinentes ? Le premier chapitre de cette thèse propose un état de l'art des méthodes de modélisation et d'optimisation. Cela a permis de mieux comprendre les enjeux associés, à travers un prisme d'analyse original. Il répond en partie à la première question en décrivant les méthodes existantes et leur usage en fonction du système étudié, de la question posée et de l'orientation de l'étude. Plus généralement, l'état de l'art rappelle la nécessité de bien définir les objectifs de l'étude, étape clé du processus de modélisation [START_REF]The nature of modelling[END_REF]. Ce chapitre illustre également l'usage répandu de la programmation mathématique et la diversité d'études qui l'utilisent. En effet, elle permet de représenter dynamiquement le système tout en en minimisant les coûts d'opération (et d'investissement) et en assurant le respect de bilans énergétiques et de contraintes techniques simples. L'état de l'art met en évidence le besoin de faire appel à une modélisation plus fine de l'opération du système, en particulier si l'étude porte sur la flexibilité du système. En effet, cette flexibilité garantit l'équilibre offre/demande et est aujourd'hui étudiée au regard de l'utilisation d'énergies intermittentes, ou plus généralement de ressources moins flexibles. Cela répond donc en partie à la première question : il existe un besoin de développement de nouvelles méthodes.

Le deuxième chapitre propose deux nouvelles approches pour compléter l'éventail des méthodes existantes et tournées vers une modélisation fine de l'opération du système. Ces deux méthodes permettent de mieux tenir compte d'aspects opérationnels long terme (comme le stockage saisonnier d'énergie) dans le cadre de la mécanique d'horizon glissant. Elles offrent deux nouveaux compromis entre complexité, temps de réponse et pertinence du modèle. Le troisième chapitre valide l'intérêt des deux méthodes sur un ensemble de cas élémentaires. Cela complète la réponse à la seconde question.

Le quatrième chapitre évalue l'intérêt et les conséquences de complexifier un modèle. Cette question est illustrée sur un cas d'étude complexe qui offre un retour d'expérience pour de prochaines études. Cela poursuit la réponse déjà apportée à la première question montrant comment et sous quelles conditions des méthodes avancées peuvent aider à réduire les temps de réponse, améliorer la précision des résultats, ou valider/invalider des hypothèses. De plus, ce quatrième chapitre illustre une utilisation possible des méthodes proposées au deuxième chapitre.

Le prochain paragraphe complète la réponse à la première question en proposant une synthèse des pistes méthodologiques possibles en fonction des questions posées et des difficultés calculatoires rencontrées. • La voie A peut être croisée avec d'autres voies si le nombre d'évaluations et le temps de réponse du modèle ne sont pas excessifs. • Les voies A2 et A3 nécessitant de nombreuses évaluations, il est nécessaire que le modèle ait un temps de réponse très court, comme recherché dans [START_REF] Limpens | EnergyScope TD: A novel open-source model for regional energy systems[END_REF]. Le croisement de A3 avec D2 est illustré par les méthodes citées dans la Table 3.9. • Les voies B et B2 peuvent être croisées avec les voies C et C2.

• La voie D peut être croisée avec les voies B, B2, C et C2.

La synthèse proposée par la Figure 53 n'a pas pour objectif d'être exhaustive. En effet, d'autres aspects peuvent également être approfondis comme la représentation de plusieurs acteurs échangeant selon des règles de marché (des exemples sont donnés Table 3.11). Par exemple, la fourniture d'énergie peut être assurée par différents opérateurs souhaitant maximiser leur profit. La théorie des jeux peut être utilisée pour représenter une telle situation où le fonctionnement du marché n'aboutit pas à la maximisation du bien commun (hypothèse implicite du point de départ de la Figure 53). Un autre aspect qui pourrait également être approfondi est la représentation spatiale du système. Souvent, un seul noeud est considéré. Si le système modélisé est de taille importante, ce nombre peut être augmenté pour améliorer la représentativité du modèle. Dans le cas où le nombre de noeuds devient important, des méthodes de clustering peuvent être utilisées (Table 3.12).

Limites des travaux :

Plusieurs limites peuvent être citées. Premièrement, l'état de l'art réalisé au Chapitre 1 n'est pas exhaustif, le temps consacré à sa réalisation étant limité. Deuxièmement, les cas d'études traités aux Chapitres 2, 3 et 4 font l'objet de nombreuses hypothèses. Par exemple, les modèles ne considèrent que des quantités énergétiques, alors que des grandeurs comme la température, la pression ou la tension permettrait de mieux tenir compte de phénomènes physiques influant sur le coût du système. L'efficacité de la pompe à chaleur modélisée au Chapitre 4 pourrait à ce titre être choisie dépendante de la température de sa source froide et de sa source chaude. Un autre exemple concerne la comptabilité des émissions CO2 : seules les émissions liées à la consommation de gaz, fioul ou d'achat d'électricité sur le réseau ont été considérées. A ce calcul pourrait s'ajouter la quantité de CO2 émise pendant les étapes de fabrication, ou l'étape de transport de la ressource en biomasse par exemple. Néanmoins, ces simplifications proviennent davantage de la limite de temps consacré à la modélisation et au recueil de données que de limites intrinsèques aux méthodes utilisées.

Plus généralement, la limite de ces travaux concerne l'étendue de leur pertinence sur la vie d'un projet (Figure 1). En effet, les approches présentées ont un intérêt durant les phases d'étude de la faisabilité technicoéconomique ou de préconception d'un système énergétique. Elles sont potentiellement trop complexes pour la phase d'analyse d'opportunité, et insuffisamment précises pour les phases de conception, pilotage et opération. Néanmoins, les méthodes basées sur le principe de l'horizon glissant (comme celles présentées au Chapitre 2) tendent à renforcer le lien entre l'étape de préconception et les étapes avales du projet.

Perspectives :

Plusieurs perspectives ont été mentionnées précédemment. Premièrement, les méthodes proposées au Chapitre 2 peuvent être appliquées à d'autres cas d'études (y compris dans d'autres domaines) pour illustrer leur intérêt ou explorer des problématiques opérationnelles difficiles à appréhender à cause de temps de calculs élevés. Par exemple, elles pourraient être appliquées dans des cas où des décisions réalisées à l'échelle de la minute doivent tenir compte de prévisions sur plusieurs jours.

Deuxièmement, les fonctions de coût pourraient être calculées sur des modèles plus fins pour améliorer leur pertinence. Par exemple, dans le cas où un module d'optimisation donne des instructions à un système réel, les fonctions de coût pourraient apprendre sur la base des coûts réels, et donc fournir un retour au modèle d'optimisation. Ce schéma est généralisable aux applications où le résultat des décisions n'est pas directement mesurable par le modèle d'optimisation.

Une autre piste citée serait l'élaboration d'une méthodologie plus complète pour évaluer l'impact des incertitudes présentes lors du pilotage du système, voire de le dimensionner en tenant compte de ces incertitudes. Ces incertitudes incluent les prévisions de séries temporelles, mais aussi l'occurrence d'évènements imprévus comme des pannes ou des augmentations soudaines du prix des ressources.

Plusieurs méthodes ont été identifiées pour aider à la résolution de problèmes difficiles incluant des variables entières. Ces méthodes agrègent les données temporelles, décomposent le problème, ou utilisent des mécanismes d'horizons glissants. De futurs travaux pourraient comparer leur efficacité sur divers cas et/ou en élaborer de nouvelles. L'optimisation stochastique et/ou robuste de systèmes énergétiques en tenant compte de modèles opérationnels détaillés représente un challenge conséquent. Les travaux initiés dans [START_REF] Gabrielli | Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis[END_REF] semblent pertinents sur ce point : ils permettent de choisir un scénario optimal/robuste pour dimensionner un système plutôt que de réaliser une optimisation couteuse sur un ensemble de scénarios. Cette méthode pourrait être testée et combinée à des modèles opérationnels plus fins.

La diversité des modèles et méthodes est une richesse, mais leur dispersion et leur manque d'interopérabilité est un frein à leur utilisation par les personnes en charge des études. La mise à disposition de méthodes existantes sur des plateformes intégrées pour des modélisateurs chargés d'études faciliterait leur usage. Ce travail a déjà débuté avec la plateforme PERSEE et avec de nombreux outils comparables existants (Chapitre 1, [START_REF] Connolly | A review of computer tools for analysing the integration of renewable energy into various energy systems[END_REF]). La multiplicité de ces plateformes, leurs divergences méthodologiques ou leurs hypothèses implicites peuvent constituer un frein aux dialogues entre modélisateurs et décideurs. L'émergence de standards et la transparence de ces plateformes sont des leviers possibles, au même titre que la mutualisation de données [START_REF]Technology Data Catalogue[END_REF]192]. Les initiatives open sources [START_REF]OpenMod-initiative[END_REF] peuvent être gages de cette transparence. Une seconde action serait une collaboration plus étroite entre l'optimisation technico-économique et l'analyse environnementale, comme initiée dans [START_REF] Sharma | Integration of environmental analysis in the assessments of hybrid energy systems[END_REF]. Une intégration plus systématique d'impacts carbone issus d'analyses de cycles de vie dans les modèles d'optimisation technico-économique serait un premier pas pertinent. 
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 1 Figure 1 : Etapes d'un projet de conception et d'utilisation d'un système énergétique
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 2 Figure 2: Scope of this survey.
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 4 Figure 4: The need for operation simulation when optimising investment decisions. *Energy System Investment Planning
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 5 Figure 5: Illustration of different feedback levels when optimising investment decisions. Dynamic optimisation bring further insights, dynamic anticipative optimisation implies further computation challenges. *Optimisation
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 6 Figure 6: Description of the organisation of Section 3: how to read it with Table3.
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 7 Figure 7: Schematic simplified visual of the proposed framework (excluding spatial, market facets and investment uncertainties).
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Figure 8 :

 8 Figure 8: Illustration of the four "main trends" in energy system planning within the simplified framework. * Linear Programming ** Mixed Integer Linear Programming
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 9 Figure 9: Rolling horizon principle.
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 10 Figure 10: Planning horizon including a long-term vision with aggregated time steps
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 11 Figure 11: Planning horizon H1, H2 and HM
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 12 Figure 12: Evaluation process
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 13 Figure 13: Schematic description of the modelling environment
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 14 Figure 14: Savings of all approaches compared to the Cicada approach (k-euros), with upper bound (red) and lower bound (green) of the One Shot optimisation.
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 1576167717781879198020 Figure 15: Results for the benchmark Cicada approach.
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 218322 Figure 21: Savings of models RpCf-SetUp and Mean-SetUp on horizon H1, for different costs of the FP, on demand A, B and C (k-euros). *Costs of the FP.
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 23 Figure 23: Savings obtained with models Mean-SetUp and RpCf-SetUp, on horizon H1, for different demand profiles run and planned (k-euros). *Profile use as forecasted demand after 48 hours.
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 24 Figure 24: Savings obtained for methods RpCf-SetUp and Mean-SetUp on horizon H1, for different errors on the forecasted demand (k-euros).
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Figure 28 :

 28 Figure 28: Total costs for the architectures Flx, Flx-Wnd and Flx-Slr, for Heat and Electrical demand profiles
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 2999303110032 Figure 29: Total costs for the architectures Wnd-LrgSto and Slr-LrgSto, for Heat and Electrical demand profiles
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 33 Figure 33: Illustrative case study structure
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 34 Figure 34: Illustration of the planning horizons H1, H2 and H3
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 35 Figure 35: Operational costs breakdown. Comparison between the participation of each source in the yearly operational costs (euros) for both LP-OneShot and MILP-OneShot configurations (the ST source has no operational cost).
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 36 Figure 36: Participation of each source in the HD and ED satisfaction (kWh).Comparison for both LP-OneShot and MILP-OneShot configurations.
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 3711938 Figure 37: Solution of the OneShot-MILP configuration: heat power balance, grid prices, HS state and electricity balance

Figure 44 )

 44 thus show the variation (in percent) of the LP-OneShot-RP configurations compared to the reference: the LP-OneShot configuration. Respectively, the MILP-OneShot-RP configurations are compared to the reference: the MILP-OneShot configuration.

Figure 39 :

 39 Figure 39: Impact of the temporal aggregation. Variation on the total operational costs when RP are used compared to the case where one year of hourly data is considered, for various RPs numbers and sizes, and for both LP and MILP options. Error bars are included for the latter case.
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 401224112545 Figure 40: Operational costs breakdown. Participation of each source in the yearly operational costs (euros), comparison of the MILP-OneShot configuration with cases where 48 RPs of 1, 2 or 3 days are used.
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 4612647 Figure 46: Computation times (time to simulate a year) of the different operational decisions modelling options, for both LP and MILP options. The time limit of one hour was reached with the MILP-OneShot configuration.
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 481295113052 Figure 48: Heat power and balance and storage state for the MILP-Ant configuration.
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  Une synthèse des pistes méthodologiques pour la modélisation et l'optimisation technico-économique :La Figure53propose une synthèse pour la modélisation et l'optimisation de systèmes énergétiques dans le cadre d'études technico-économiques. La première étape consiste en un modèle écrit en programmation linéaire. Comme vu au Chapitre 1, ce formalisme est très répandu, ce qui permettra de basculer facilement sur des méthodes avancées. De plus, sa simplicité est un atout pour une première étape. Puis, différentes voies d'exploration sont possibles pour tenter d'améliorer la pertinence du modèle en fonction de l'intérêt du modélisateur. Des méthodes sont proposées à chaque étape sur la base du Chapitre 1.

Figure 53 :

 53 Figure 53: Optional assessment paths when evaluating and optimising an energy system, with possible associated methods *See Figure 54 **See Figure 55

Figure 54 : 6 . Conclusion & perspectives 138 Figure 55 :

 54613855 Figure 54: Options to reduce computation times, according to the problem structure a In case of long-term constraints or threshold, the RH might miss the target due to long-term model bias.If so, the RH can be relaunch with corrections learned from the previous try, as in[START_REF] Bischi | A rolling-horizon optimization algorithm for the long term operational scheduling of cogeneration systems[END_REF].b If the problem does not include design variables. c Case dependent performances.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  est d'autant plus important que la littérature concernant la modélisation et la simulation de systèmes énergétiques est riche et foisonnante. L'article qui suit a été publié dans l'International Journal Of Energy Research : Cuisinier E, Bourasseau C, Ruby A, Lemaire P, Penz B. Techno-economic planning of local energy systems through optimization models: a survey of current methods. Int J Energy Res 2020:4888-4931. https://doi.org/10.1002/er.6208.Les références bibliographiques de ce chapitre et des chapitres suivants sont synthétisées dans une seule et même section Bibliographie à la fin de ce manuscrit. De même, les annexes sont regroupées en fin de document. DER

	Definitions	
	Expressions	Definition used in this paper
		Distributed Energy Resources
	DES	Distributed Energy System
	DH	District Heating
	DHC	District Heating and Cooling
	DR	Demand Response
	EA	Evolutionary Algorithm
	EC	Electric Chiller
	EFOM	Energy Flow Optimisation Model
	EPM	Expansion Planning Models
	ESOM	Energy System Optimisation Model
	EV	Electric Vehicle
	FACTS	Flexible AC Transmission Systems
	GA	Genetic Algorithm
	GE	Generation Expansion
	GHG	Greenhouse Gases
	GSA	Global Sensitivity Analysis
	HC	Hydrogen Chain (electrolyser + H2 storage + fuel cell)
	HP	Heat Pump
	ICE	Internal Combustion Engine
	IE	Intermittent Energy
	LP	Linear Programming
	MC	Monte Carlo
	MES	Multi-Energy System
	MILP	Mixed Integer Linear Programming
	MP	Mathematical Programming
	MPC	Model Predictive Control
	OPEX	Operational Expenditures
	PWA	Piece Wise Approximation
	PSO	Particle Swarm Optimisation
	PV	Photovoltaic cells (solar panels)
	RO	Real Options
	SD	Standard Deviation
	SES	Smart Energy Systems
	ST	Solar Thermal collectors
	TRA	Trust Region Algorithm
	TS	Thermal Storage
	UC	Unit Commitment
	VPP	Virtual Power Plant
	WT	Wind Turbines

Table 1 :

 1 Technology units and network models under mathematical programming formalism. Examples of aspects that can be modelled with continuous and binary variables.

	Variables Needed	Technology facets	Electric network facets	Heat network facets	Others facets
		Maximum working power			Energy contracts:
		Linear costs		Flow capacity	utility purchase,
		Multiple inputs or outputs		with constant	injection
		Maximum ramps up and down		temperatures	
		Ramp costs and overconsumption	Flow capacity	and linear	Systemic
		Curtailment on IEs, including costs	Linear losses	losses	constraints:
	Continuous	Planned production or maintenances	DC		ramping
		Constant efficiencies	approximation	Variable	flexibility
		Unmet load costs	[41,76]	temperature	requirements,
		Ramping flexibility requirements		and constant	spinning reserves,
		Spinning reserves		mass flow	linear emissions
		Linear emissions or environmental		[71,77].	or environmental
		impacts			impacts
		Minimum working power			
	On/off status	Fixed working costs or consumption			
	(binary	Minimum on and off times			
	variable)	Fixed working power			
		Minimum working temperature			
	Multiple status (binary variables)	Piecewise efficiencies or costs (continuous variables can be used under proper convexity/concavity conditions) Discretized working powers	AC (Alternative Current) approximation [78]		More specific utility purchase or injection rules (price thresholds
	Start-up and shut-down status (binary variables, on/off status are needed)	Start up or shut down costs or overconsumption (continuous variables can be used under proper convexity/concavity conditions) Maximum number of start up or shut down Maximum start up or shut down ramps			for instance)

Table 2 :

 2 Examples of uncertainties related to techno-economic planning of energy systems (problem-based classification).

Table 3 .1: Operational MILP, large scales

 3 

	Reference	System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
			SILVER model, three stages:				Linear models (depending on the different stages): on/off status,		
	[100]	Ontario province (Canada) power system (nuclear, gas, hydro, wind, biofuel and solar, electric network, electric load, DR b , EV c ,	-Day ahead economic dispatch setting prices (marginal cost, assuming generation assets are price-setters)	Operation simulation only	start-up/shut-down status (and costs), ramps, minimum up and down times, availability of EV, DR linear model	Several (missing information)	24-hour time step optimisation horizon, 1-hour	Partial foresight 24 hours (wind and solar) ahead (forecast errors built by an hyperbolic distribution	NA
		pumped hydro storages)	-Day ahead UC model				Networks: DC linear electrical		
			-Real time optimal power flow dispatch				network model (500, 230 and 115kV lines)		
			Scenario tree building				Linear model: on/off and start-up			Perfect foresight assumed over
		Irish power system	tool + operational				status, costs, reserves, minimum			3 hours. Before: MC f multi-
		(storages, WT d , peat,	model:				working power, up and down			stages scenario trees (with a
		hydro, pumped					times, ramps, opportunity value of			regressing moving average and
	[101]	hydro, tidal stream, peak production, GTs, transmissions with Great Britain	stochastic MILP + rolling horizon (day-decisions on a 3-hour ahead and re-scheduling	Operation simulation/optimisation only (year 2020), different portfolios simulated	fuel consumption curves having online units and storage levels at the end of the optimisation horizon. PWA e for	21 nodes	36 hours horizon	forecast errors as well as a SD g depending on the load and wind generation forecast horizon) are used for	NA
		modelled in an	horizon)								forced outages. The MC
		aggregated way)	(Wilmar tool				Networks: Linear energy flow			simulations include spatial
			extension)				model including losses				correlations.

(see also

Table 3.2

: [99]) a Combined Heat and Power e Piecewise Approximation b Demand Response g Standard Deviation c Electric Vehicle f Monte Carlo d Wind Turbines 3. Survey of optimisation methods for energy system planning 38

Table 3 .2: LP based approaches, large scales

 3 

	Reference	System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
					Dynamic myopic						
	[64]	Europe energy system (energy vectors & materials including pollutants and GHG a )	Perseus-RES-E (Single LP)	Sizing	optimisation from 2000 to 2020 (cost based optimisation, investment every	Continuous	Linear model including ramp costs and limits, reserve capacities Networks: energy flow with losses	15 regions	4 typical years, 8 typical days for each year divided in time step) slots (2 to 6-hour time	Prefect predictions assumed	Multiple deterministic scenarios
					5 years)						
	[99]	Irish power system (gas, coal, peat and WT generation, hydro pump storages)	The Irish TIMES model (single LP) is used for investment decisions (generation portfolio) which are provided as inputs to the PLEXOS model (operational MILP)	Sizing	Static investment optimisation, 2020 is used as a target test year (cost based)	Continuous	TIMES model: linear, supply cost and demand elasticity curves PLEXOS: on/off status, minimum working power, on/off times, start-up/shut-down status, ramps	Missing information	PLEXOS: 30-minutes time step, 24 hours horizon (full year simulation by rolling horizon)	TIMES: perfect simulations foresight assumed PLEXOS: generated by MC random outages	TIMES: multiple deterministic scenarios
	[104]	Large scale power system (4 different conventional production technologies: base, mid, peak and high peak)	Single LP	Sizing	Static optimisation (cost based)	Continuous	Linear models including ramps, maintenance operation reserves, must-run constraints and periodic	Single node	Full year horizon, 1-hour time step	Perfect foresight assumed	NA
	[108]	Ireland power system (WT, PV, storage and various power plants)	OSeMOSYS (single LP) including fashioned operational constraints	Sizing, timing	Dynamic anticipative optimisation on 40 years (cost based, investment every 5 years)	Continuous	Linear model with fashioned operational constraints: operating reserve, minimum working power, constraints wind availability, CO2 emissions	Single node	12 typical days: day, time step night and peak time for 4 seasons, 1-hour	Perfect foresight assumed	NA
	[111]	German residential heat system and power system (HP b , biomass boilers, micro CHP, gas boiler, ST, several heat demand classes)	Enhanced TIMES (single LP) model (TIMES-HEAT-POWER) with inputs from a residential building stock model (providing final energy demand scenarios) and pre-dimensioning for (MILP) decentralized heat systems	Sizing, timing	Dynamic anticipative optimisation from 2015 to 2050 (cost based, investment every 5 years)	Continuous	TIMES model: aggregated power system, differentiated heat system (140 heat classes) model Decentralized heat system: MILP	Single node	TIMES model: 8 minutes time step typical days with 2 to 6-hour time step, total 9 typical weeks, 15-system optimisation: of 48 time slices. Decentralized heat	Perfect foresight assumed	Multiple deterministic scenarios

Techno-economic planning of local energy systems through optimisation models: a survey of current methods.
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a Green House Gases b Heat Pump

Table 3 .3: MILP based approaches, large scales

 3 

	Reference	System	Optimisation method Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Operational facets (Section 2.3.2) Tech-eco Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
						Cost function					
				Sizing (power units,		based on	Linear model: ramps, on/off status and				
		Great Britain		TS, WT, PV),		preliminary	start-up status (start up and fixed working				
		power and heat		penetration level of		estimates for	costs), operating areas for CHP + demand				
	[61]	systems (power units, heat and electricity networks and loads, daily TS a ,	Single MILP	reinforcements and district network VS end use heating technologies, electricity network	Static optimisation, year 2030 (cost based)	reinforcement, district heating, linear investment network in electricity	model, sub-hourly frequency regulation and Networks: DC linear electrical network side management model (within a day), pre-heating, carbon constraint	nodes 4 regional	step Typical days, 1-hour time	assumed Perfect foresight	Deterministic
		WT, PV)		district heating		linear model for	reserve constraints. Linear heat network				
				network investments		production	energy flow model including linear losses				
						means					
			Single MILP with integer								
			clustering method: binary		Dynamic						
	[69]	French power system (nuclear, coal and gas turbine generations, WT and PV)	variables of similar selecting typical weeks production unit are aggregated into a single integer variable. Different flexibility metrics, method for	Sizing, timing	anticipative or year (emission myopic (missing information) optimisation on 10 years (cost based, investments every	Continuous	Linear model including reserves, ramps, on/off and start-up/shut-down status, minimum up and down times, minimum working power	Single node	Each year is time step represented by 4 typical weeks, 1-hour	Perfect foresight assumed	12 deterministic scenarios
			based on dynamic		targets)						
			programming.								
		Power system					Linear model: on/off, start up and shut				
	[70]	(power plants, storage including hydraulic, electric load, PV	IMRES model: single MILP	Screening (for power plants only), sitting if multi-nodes	Static optimisation (cost based)	Discrete	down status used for minimum working power, minimum up and down time constraints, up and downward reserves, CO2 emissions constraint, hydro storage linear	To be defined	To be defined	Perfect assumed foresight	Deterministic
		and WT)					model, ramps, demand side management				
		Greek power			Dynamic myopic		On/off, start-up status (including hot, warm,				
		system (lignite,			optimisation from		cold status, (de)synchronization and soak				
		natural gas, coal		Sizing, screening (8	2014 to 2030 (cost		times), minimum up/down times, ramps,		12 typical days,	Prefect	
	[112]	and oil	Single MILP	technology options),	based	Discrete	reserves, 4 marginal cost blocks for imports	5 nodes	1-hour time	predictions	Deterministic
		production units,		timing	optimisation,		and exports		step	assumed	
		hydro, WT, PV,			investments every						
		biomass)			year)		Networks: linear energy flow model				

a Thermal Storage 3. Survey of optimisation methods for energy system planning

[START_REF] Oree | Generation expansion planning optimisation with renewable energy integration: A review[END_REF] 

Table 3 .4: Master investment algorithms + slave operational models with pre-defined expert rules for operational decisions, large scales

 3 

	Reference System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Operational Temporal decisions	Uncertainties (Parametric, Section 2.4)
	[152]	Italian energy system	EnergyPlanOpt TP: sequential simulations with EnergyPlan + metaheuristic for sizing (MOEA)	Sizing (PV, WT and batteries)	Dynamic anticipative optimisation on 30 years, investments every years (CO2 emissions and cost based)	Continuous investment, including learning effects	Missing information	Missing information	Full year operation simulation	Myopic: pre-defined decision rules

Table 3 .6: Master investment algorithms + slave operational models with pre-defined expert rules for operational decisions, local scales

 3 (see alsoTable 3.8: [132])

	Reference	System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Operational facets (Section 2.3.2) Tech-eco Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
			Several operational models used: pre-								
	[32]	Wind farm (WT + batteries + forecasted total output to the grid)	defined decision rules, fuzzy strategy and artificial neural network for battery control. Exhaustive search and GA are used for sizing and	Sizing (battery: capacity and power)	Static optimisation (cost 4% and 90% of time) based, including unmet forecasted output within	Continuous	Linear model	Single node	considered time step 1-hour forecast 282 days, 10	Deterministic
			operational decision rules setting.								
	[91]	Stand-alone hybrid energy system (PV + HC a + battery + electric load)	3 control strategies + Matlab simulink used for sizing	Sizing (PV, FC, electrolyser, batteries & hydrogen storage capacity)	Static optimisation (technical criteria based)	Continuous	Physical model, non-linear	Single node	Full year horizon, 1-step hour time	Myopic: pre-decision rules defined	Deterministic
	[122]	Stand-alone hybrid system (PV, battery, diesel generator, HC, WT, Hydro, electrical load)	Master GA for sizing + physical model with operational decision rules (a GA optimises operational decision rules parameters)	Sizing (full system)	Static optimisation (cost based)	Discrete	Physical model, non-linear	Single node	Full year horizon, 1-step hour time	Myopic: pre-decision rules defined	Deterministic
	[123]	Stand-alone hybrid system (PV, WT, diesel engine, HC, electric load)	Master PSO for sizing + physical model with operational decision rules	Sizing (full system)	Static optimisation (cost based, C02 emissions and unmet load are included with the e-constraint method)	Continuous	Physical model, non-linear	Single node	Full year horizon, 1-hour time step	Myopic: pre-defined decision rules	Sensitivity analysis on economic parameters
							Energy Pro model				
	[124]	DH network (78000 people) (gas, fuel, biomass or waste boilers, CHP)	Operation simulation with Energy Pro + exhaustive search for sizing	Sizing (heat storage, heat pump and ST)	Static optimisation (cost based)	Discrete	(includes start-up costs, minimum working power, minimum operating hours, start-up	Single node	Full year horizon, 1-hour time step	Myopic: pre-defined decision rules	Deterministic (3 electricity price scenarios tested + sensitivity analysis)
							time, shut-down time)				
	[127]	DES (PV, WT, battery, internal combustion generator, electric load)	Master metaheuristic for investment See Section 3.1.2 optimisation with a slave surrogate model (artificial neuronal network) for operation simulation	Sizing (PV, WT, battery, internal combustion generator)	Static optimisation (cost and grid integration level based)	Continuous	Linear	Single node	Full year horizon, 1-step hour time	Myopic: pre-decision rules defined	Deterministic
	a Hydrogen Chain (Electrolyser -Gas Storage -Fuel Cell)								

Table 3 .7: Master investment algorithms + slave LP or MILP operational models

 3 

					Investment	Investment	Operational facets (Section 2.3.2)		Uncertainties
	Reference	System	Optimisation method	Problem (Section 2.1)	feedback level (Section 2.2)	facet (Section 2.3.1)	Tech-eco	Spatial	Temporal	Operational decisions	(Parametric, Section 2.4)
	[29]	Islanded microgrid: CAES (daily storage, WT, PV, diesel engine)	Master GA for sizing + operational MILP	Sizing (CAES, PV, WT, diesel engine)	Static optimisation (cost based)	Discrete	Linear model: linear CAES storage model (including compression and expansion stages), on/off and start-up variables for start-up costs, ramps, operational reserves	Single node	6 typical days, 1-hour time step	Prefect predictions assumed	Sensitivity analysis on operating reserve and cost parameters
	[31]	Hospital (CHP, boiler, HP, electric grid, electric, heat and cooling loads)	Exhaustive search for screening and sizing + operational MILP followed by a financial analysis	Screening (architecture and technologies), sizing	Static (cost based) optimisation	Discrete	Discrete model, on/off reserve constraint. variables, each module is power. Includes operating either off or working at full	Single node	6 typical step days, 2-hour time	Perfect assumed foresight	Deterministic
		CCHP microgrid									
		system, hospital case			Static						
		study (electric, heat	4 architectures tested: master		optimisation on	Continuous			36 typical	Perfect	
	[153]	and cooling loads,	GA for sizing and screening	Screening, sizing	2 criteria: CO2	and discrete	Linear model	Single node	days, 1-hour	foresight	Deterministic
		various energy	+ operational MILP		emissions and	investments			time step	assumed	
		converters, PV,			cost						
		storages)									
			Efficient Global Optimisation								
			(based on Kringing method)								
			for sizing + various								
	[128]	Microgrid (PV and fly-wheels, electric grid)	operational optimisation algorithms: Trust Region Algorithm, PSO, dynamic programming, and MILP with simplified model	Sizing	Static optimisation (cost based)	Continuous	Piecewise linear approximation of storage losses, binary variable for grid penalty costs	Single node	1 day, 1-hour time step 365 days) (repeated for	Prefect assumed predictions	Deterministic
			(storage losses) + correction								
			with original model and Trust								
			Region algorithm								
							UC model (ramps, on/off and				
	[129]	Munich DH network (CHP a , biogas, geothermal & heating plants)	Energy-economic model built on Excel ("EW" model) soft-linked (bi-directional) with a UC model (KEO)	Various analysis managed by the EW model (prices, investment, expansion planning, sales decline scenarios etc.)	start-up/shut down variables for minimum up and down times, start-up priorities, minimum working power	Missing information	Rolling horizon with a 5 days horizon	Perfect foresight over 5 days	
							etc.)				

(see also

Table 3.12: [78] 

&

[START_REF] Fazlollahi | Multi-objective, multi-period optimization of district energy systems: IV -A case study[END_REF]

) NA Techno-economic planning of local energy systems through optimisation models: a survey of current methods.

[START_REF] Baños | Optimization methods applied to renewable and sustainable energy: A review[END_REF] 

Table 3 .8: Focus on investment uncertainties, without timing optimisation

 3 

	Reference	System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
	[19]	Urban MES (energy hub with PV, ST, HC, batteries, HP, gas convertors, boiler, TS, gas & electric grids, heat and electric loads)	Single MILP with a typical days coupling method run on a robust scenario See Section 3.2.1	Sizing, screening	Static optimisation (cost based, with e-constraints on CO2 emissions)	Piecewise linear investments with fixed costs	Linear model, on/off status for conversion technologies, affine efficiencies with size dependency, minimum working power with size dependency	Single node	Typical days (from 3 to 48) coupled with storage equations (method 'M1') or full year for continuous variables and typical days for binary variables (method 'M2'), 1-hour time step	Perfect foresight assumed	Considering uncertain ambient temperature, solar irradiance to compute uncertain PV outputs and to derive uncertain loads with EnergyPlus (including other uncertain building-related parameters). 1440 scenarios used in total.
	[26]	MES (gas turbines, CHP, boiler, batteries, TS, HP, PV, gas and electricity grids, electric and heat loads)	Two-stage stochastic MILP: screening and sizing at first stage, operation at second stage over different scenarios. Problem solved with a single MILP equivalent deterministic formulation.	Screening, sizing	Static optimisation (cost based, with e-constraint emissions) method for CO2	Discrete	Linear model: on/off status for minimal emissions constraint energy shortage + CO2 working power, ramps, capacity requirements, binary variable for	Single node	3 typical weeks, 1-hour time step	Perfect foresight assumed	Uncertain PV production considered (10 MC scenarios for each typical week)
		Swiss energy system									
	[60]	(energy resources, mobility, storages, industrial heat, centralized DHN, decentralized heating, energy loads) see reference for further	GSA followed by a robust MILP formulation. See Section 3.2.1	Screening and sizing of technologies (see reference for further details)	Static optimisation for the 2035 target year (cost based)	Continuous and discrete	Linear energy model	Single node	Full year horizon, monthly time step	Static model	Discount rate, technology lifetime, investment and operation costs, costs of resources (considered in the robust optimisation after GSA)
		details									
	[130]	Stand-alone power system (WT, batteries, electric load and grid, thermal generators)	MILP + Bender's decomposition and use of Pareto-optimal cuts.	Sizing (number of batteries, WT and transmission line capacity units)	Static optimisation (cost based)	Discrete (integer variables) with fixed cost (binaries)	Linear model with on/off status for fixed operational costs	Single node	4 typical days, 1-hour time step	Perfect foresight assumed	Multiple scenarios for each typical day (demand and wind production scenarios) with varying SD and mean.

Table 3 .9: Focus on investment uncertainties: with timing optimisation (RO approaches)

 3 

							Operational facets (Section 2.3.2)	
	Reference	System	Optimisation method Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
							Linear model including				
	[53]	Power system test case (WT, PV, electrical network, battery, quad-booster transformer)	Stochastic / robust multi-stage MILP	Sizing (batteries, timing generators) and screening / sitting (network architecture and FACTS devices),	Dynamic anticipative optimisation (cost based optimisation)	Continuous and discrete	ramps, linear FACTS (flexible AC transmission system) device model.	3 nodes	1 typical day, 1-hour time step	Perfect foresight assumed	Scenario tree on the PV prices
							Networks: DC model				
	[135]	DES (gas & electrical grids, CHP, boiler, EHP, TS, electric & heat load)	Multi-stage stochastic MILP with pre-computed operational costs. See Section 3.2.1	Timing (CHP, EHP, TS)	Dynamic anticipative optimisation over 15 years, investments every 5 years	Discrete	Linear models with on/off status (minimum working power), including ramps	Single node	6 typical days, 1-hour time step	Perfect foresight assumed	Uncertain electricity, gas prices & demand evolution unfolding through the scenario tree (1600 scenarios)
			Multi-stage								
	[136]	Hybrid waste to energy system (anaerobic digester and gasifier, gas turbine)	stochastic MILP optimizing investment decision rules parameters.	Timing	Dynamic anticipative optimisation over 9 years (with imperfect foresight)	Investment decision rules with parameters, continuous investments every year (anaerobic digester and gasifier)	Economic linear model NA	Static	Static	Uncertain amount of two waste types evolution every year (unfolding through the scenario tree)
			See Section 3.2.1								
	[137]	Distributed generation, national power system (gas engine, WT, PV)	Multi-stage stochastic LP on a scenario tree	Timing (gas engine, WT and PV penetrations)	Dynamic anticipative optimisation over 20 years (with imperfect foresight)	Continuous	Economic linear model NA	Static	Static	Uncertain gas prices evolution (unfolding through the scenario tree)

Table 3 .10: Considering imperfect forecasts

 3 (see alsoTable 3.1 & Table 3.11: [93] &[START_REF] Blanco | Operational Planning and Bidding for District Heating Systems with Uncertain Renewable Energy Production[END_REF])

	Reference	System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Temporal Operational decisions	Uncertainties (Parametric, Section 2.4)
	[22]	Power system (WT, gas, nuclear & coal)	Several models, description of the "DS" model: A two-stage stochastic LP for day ahead and real time markets. Solved as a single deterministic LP. Forecast autocorrelation. time series model with decaying errors are modelled via an ARMA	Sizing (starting from scratch)	Static optimisation (cost based)	Continuous	Linear model including ramps	Single node	1 to 100 hour time step typical days, 1-	Imperfect wind forecast considered reduction method. reduced to 10 with a (24 hours ahead). 1000 generated and then wind scenarios are	Deterministic
	[90]	IEEE 24-bus test system (power thermal units, storage, demand response, electrical network,	Single LP with chance constraint programming. See Section 3.2.2	Sizing for storage and thermal units (capacity and ramping capability)	Static optimisation (cost based)	Continuous	Linear models including ramps at both time scales for thermal units + ramp reserve capabilities for regulation level (within the 5-minutes time steps)	24 nodes	Two scales: 1-typical days hour time step time step, 48 and 5-minute	Imperfect foresight considered: uncertain incorporated at intra inputs and their estimated and forecast errors are	Deterministic
		WT)					Networks: DC model			hour time step.
	[140]	Hybrid generation plant (WT + diesel generator + electrical load)	Exhaustive search for sizing + dynamic programming for operational decisions (RO approach)	Sizing (number of WT)	Static optimisation (cost based)	Discrete	Linear model with on/off status	Single node	Full year hour time step horizon, 1-	Imperfect foresight distribution) considered for wind by a Weibull generation (modelled	Deterministic
	[141]	Microgrid (WT, batteries, inflexible and flexible production units,	Two-stage stochastic MILP with dynamic programming for operation optimisation. Surrogate model for investment optimisation.	Sizing (battery and WT) and system operation optimisation	Static optimisation (cost based)	Discrete	Linear model with on/off and start-up/ shut down binary variables to account for fix, start up and shut-down costs, lost demand	Single node	Full year horizon, 1-hour time step	Perfect foresight 24 hours ahead for WT generation, stochastic scenarios otherwise (10 different for each
		electricity grid)	See Section 3.2.2				cost, ramps.				day)

Deterministic

Techno-economic planning of local energy systems through optimisation models: a survey of current methods.

[START_REF] Poncelet | Impact of the level of temporal and operational detail in energy-system planning models[END_REF] 

Table 3 .11: Market oriented approaches

 3 (see alsoTable 3.10: [22])

	Reference	System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
							Linear (so that the lower-			
							level problems satisfy				
	[93]	Danish power system (inflexible and flexible generation, WT, electric load)	Different models for various market and forecast assumptions are spelled out.	Sizing (WT)	Static optimisation (cost based)	Discrete (in order to recast the multi-level problem as a single-level	the linearity constraint qualification to recast the multi-level problem as a single-level problem)	Two nodes	Full year horizon, 1-hour time step	Imperfect foresight forecasts) considered (24 hours ahead imperfect	Deterministic
			See Section 3.2.3			problem)					
							Network: energy flow				
							model				
	[94]	DH: heat production with participation on electricity day-ahead and balancing markets (heat load, CHP, gas boilers, ST, PV, WT, TS, gas grid, electric boiler)	2 two-stage stochastic LPs consecutively solved in a rolling horizon approach. See Section 3.2.3	Operation simulation/optimisation only, considering day-ahead market bids & balancing markets.	Linear model including a penalty cost model for bid deviations (prohibiting speculation)	Single node	Rolling horizon for both LPs (3 days ahead and 1-hour time step 12 hours ahead),	Perfect foresight 1 hour ahead for VRE scenarios otherwise load, stochastic generation and 24 hours ahead for heat	NA
	[142]										

IEEE 33-bus test system coupled to a 32-node district heat network

  

		Single leader VS multi-follower			IEEE 33-bus			
	(electric & heat markets, HP, CHP, batteries, TS, gas grid, heat and electric loads) (Each energy hub can and only consume heat) consume or offer electricity	See Section 3.2.3 Stackelberg game: bi-level MILP recasted as a single MILP.	Operation simulation/optimisation only, considering an energy hub participating into day-ahead markets for heat and electricity operated by two different operators (pay-as-bid agreement).	Linear models	heating model power distribution 32-node district network and a	3 typical days, 1-hour time step	Perfect forecast scenario approach) (imperfect forecasts could be included by a	NA
	3. Survey of optimisation methods for energy system planning		50			

Table 3 .12: Spatial and network oriented approaches

 3 

	Reference	System	Optimisation method Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
	[24]	DH: centralized production means with heat network and decentralized production means (PV, CHP, boiler, TS)	Clustering method + intra-cluster optimisation by MILP based heuristic + inter-cluster network optimisation in a second step.	Screening, sizing, sitting (production means and heat network)	Static optimisation (cost objective and CO2 emissions objective)	Continuous investments with minimum installed capacity and fixed cost	Linear models for technologies with on/off status (minimum Networks: linear heat working power).	221 buildings grouped in 13 outliers clusters and 25	Typical days linked by a hour time step constraint, 1-storage	Perfect assumed foresight	Deterministic
			See Section 3.2.4				network energy flow model including losses			
							Linear models for			
							technologies (LP),			
	[78]	DES test case (5 residential buildings seen as energy hubs: TS, PV, GB, CHP, heat and electric load, gas and electric grids (constant prices))	3 methods compared including a master GA for investment optimisation, a MILP for system operation optimisation and an AC steady state power flow model.	Sizing	Static optimisation (cost and CO2 emissions based)	Continuous with fixed costs	linearized AC model building consumption modelled with EnergyPlus model and in-house Networks: AC non-linear	5 nodes (residential buildings)	12 typical time step days, 1-hour	Perfect assumed foresight	Deterministic
			See Section 3.2.4				(includes a piecewise linear approximation to			
							account for the current			
							magnitude)				
							MILP model: linear,			
							including on/off status			
							and material, power and			
	[79]	Geneva canton, Switzerland (hypothetical case, multiple investment options: centralized and decentralized options are tested over different scenarios)	EA for investment optimisation coupled to slave modules: See Section 3.2.4	Sizing (including minimum sizes for technologies, CO2 taxes) and screening (networks architecture, flow rates, supply and return temperatures)	Static optimisation (cost, efficiency and CO2 emissions based)	Continuous and discrete (technologies, resources selection, CO² taxes and networks connections)	heat streams multiple temperature energy flows including DHC networks: linear	A clustering algorithm is used to define 13 integrated zones modelled in 3 streams), networks and local layers (global, DHC	8 typical days, 1-hour time step	Perfect foresight assumed
							intervals through the			
							definition of streams and			
							layers				

Deterministic

Techno-economic planning of local energy systems through optimisation models: a survey of current methods.

[START_REF] Hidalgo González | Addressing flexibility in energy system models[END_REF] 

Table 3 .13: Including long-term operational issues

 3 (see alsoTable 3.10: [141] & Table3.14:[START_REF] Pineda | Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage[END_REF])

	Reference	System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
	[23]	Urban MES (energy hub with PV, ST, HC, batteries, HP, gas convertors, boiler, TS, gas & electricity utilities, heat and electric loads)	Single MILP with a typical days coupling methods	Sizing, screening	Static optimisation (cost based with e-constraints on CO2 emissions)	Piecewise linear investments with fixed costs	Linear model, on/off status for conversion technologies, affine efficiencies with size dependency, dependency minimum working power with size	Single node	Typical days (from 3 to 1-hour time step 72) coupled with storage equations (method 'M1') variables (method 'M2'). typical days for binary or full year for continuous variables and	Perfect foresight assumed	Deterministic
		3 systems: CHP system									
		(gas & electricity utilities,									
		CHP, gas boiler, TS, heat &									
	[83]	electric loads), residential system (electricity utility, PV, HP, electric heater, heat storage, heat & electric	Single MILP with a typical days coupling method	Sizing	Static optimisation (cost based)	Continuous with fixed cost	Linear model		Single node	12 typical days, coupled with storage equations, 1-hour time step	Prefect predictions assumed	Deterministic
		loads), island system (WT,									
		back up, PV, HC, battery,									
		electric load)									
	[145]	CCHP system (boilers, CHP, ACh, turbo chiller, heat and cold storages, gas and electricity grids, electric, heat and cooling loads)	MILP + rolling horizon (24 hours shifting). A 48 hour horizon + 6 typical days represent the rest of the year and are (re)computed at every stages of the rolling horizon	Operation simulation only	Annual considerations (annual peak power price, grid prices reduced above a certain annual utilization performance curves are linearized) time), linear model (convex	Single node	2 days + 6 typical days representing the rest of time step extreme data, 1-hour the year + critical time steps accounting for	Perfect foresight over 2 days	NA

NA

Techno-economic planning of local energy systems through optimisation models: a survey of current methods.

[START_REF] Moreno | Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies[END_REF] 

Table 3 .14: Tackling computational challenges

 3 (see also Table3.12:[START_REF] Marquant | A holarchic approach for multi-scale distributed energy system optimisation[END_REF] and Table3.8:[START_REF] Kuznia | Stochastic optimization for power system configuration with renewable energy in remote areas[END_REF])

	Reference	System	Optimisation method	Problem (Section 2.1)	Investment feedback level (Section 2.2)	Investment facet (Section 2.3.1)	Tech-eco	Operational facets (Section 2.3.2) Spatial Temporal	Operational decisions	Uncertainties (Parametric, Section 2.4)
		Gas turbine CHP system									
	[68]	(GT generator, waste heat recovery boilers, gas fired boilers, electric compression refrigerators, steam absorption	Single MILP solved by computing lower and upper bounds until a certain optimality gap.	Screening, sizing (4 options for each technology)	Static optimisation (cost based)	Discrete	Linear model with on/off status	Single node	Full year horizon, 1-hour time step	Perfect assumed foresight	Deterministic
		refrigerators, 6 buildings with electric, steam and	See Section 3.2.6								
		cold loads)									
							Linear model including			
	[72]	DH system (boiler, HP, electric heater, ST, TS, building envelop retrofit, heat load, electricity grid)	MILP based heuristic solved in 3 steps. See Section 3.2.6	Sizing (boiler, HP, electric heater, ST, TS, building envelop retrofit)	Static optimisation (cost based)	Scale effects (linear piecewise function)	ramps, on/off status, temperature-dependent COP, CO2 emissions constraints Networks: energy flow	Missing information	Full year horizon, 1-hour time step	Perfect foresight assumed	9 scenarios tested with specific design and operation constraints in, each scenario
							model (linear losses)			
			Single LP model with a								
	[149]	European power system 2030 (base and peak power generations, WT, PV, intraday and inter-day storages, hydro, transmission lines)	time aggregation approach based on a clustering algorithm: time steps with similar load, WT and PV productions are aggregated (chronology between time	Sizing (starting from scratch, power generation, WT, PV, storages , hydro and transmission lines)	Static optimisation (cost based)	Linear	Linear model including ramps (UC constraints were excluded for simplicity) Networks: energy flow model (linear losses)	28 bus network (one country is represented by one bus)	Full year horizon, algorithm variable time step (1-hour or more) clustering defined by the	Perfect assumed foresight	Deterministic
			steps is retained).								
	[150]	Small MES (Absorption chiller, boiler, CHP, compression chiller, electric boiler, HP, PV, WT, electric storage, cold	MILP model solved by computing lower and upper bounds until a certain optimality gap.	Sizing	Static optimisation (cost based)	Continuous	Linear model with on/off status for minimum working power	Single node	Full year horizon, 1-hour time step	Perfect assumed foresight	Deterministic
		and heat (seasonal) storage)	See Section 3.2.6								
	[151]	CHP units network (GT, ICE, boiler, steam cycles, heat storage, electric and heat load, electric grid)	Master EAs for investment decisions with slave MILPs for operation simulation. See Section 3.2.6	Screening, sizing (20 to 30 investment variables)	Static optimisation (cost based)	Discrete and continuous variables, non-linear costs (scale effects)	On/off status, performance with PWA curves (linearized with PWA, concave and not concave), including two-degree-of-freedom units	Single node	3 typical weeks (CA algorithm time step developed), 1-hour	Perfect assumed foresight	Deterministic

  Cuisinier E, Lemaire P, Penz B, Bourasseau C, Ruby A. New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning. Energy 2022; 245. https://doi.org/10.1016/j.energy.2021.122773.
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	IFP	Inflexible Production
	LTS	Long-term Storage
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	Les renvois au Chapitre 1 correspondent à la référence [156].
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  3.1. Aggregation by Means and Relaxation: the Mean modelThis approach uses means of the demand over 𝐿𝐻 as an aggregation of future data. The demand 𝑋𝑚𝑒𝑎𝑛 𝑡 𝐷 over the current time step 𝑡 of size 𝑑𝑡 𝑡 is the mean of the original demand over this time step. Two formulations are presented for the problem over 𝐿𝐻. Including set-up costs: the Mean-SetUp model In a second formulation, we propose the inclusion of set-up costs over 𝐿𝐻. This is because set-up costs can be preponderant (see Section 4), thus there might be an interest in setting-up the IFP for longer than the length of 𝑆𝐻. This is done by including the second part of E4, E5-E7, as well as set-up costs in the objective on 𝐿𝐻. The model including the set-up costs is called Mean-SetUp. Contrarily to the Mean model, the Mean-SetUp model is expected to better manage a potential cycling of the IFP. The MILP formulation of the Mean-SetUp model is given below. Changes compared to the Mean model are shown in blue and new equations are indexed by "E.X2".

	The Mean-SetUp model is as follows:	
	𝑀𝑖𝑛:					
	∑ ((𝐶 𝐹 𝑿 𝒕 𝑭 + 𝐶 𝐼 𝑿 𝒕 𝑰 ) * 𝑑𝑡 𝑡 ) + 𝐶𝑠𝑒𝑡 𝐼 𝒛 𝒕 𝑰 ) 𝑡∈𝐻	+ ∑	𝑡∈𝑆𝐻	(𝐶𝑜𝑛 𝐼 𝒚 𝒕 𝑰 * 𝑑𝑡 𝑡 )	E1.2
	𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:					
	∀ 𝑡 ∈ 𝐻:	𝑋𝑚𝑒𝑎𝑛 𝑡 𝐷 = 𝑿 𝒕 𝑭 + 𝑿 𝒕 𝑰 + 𝑿𝒐𝒖𝒕 𝒕 𝑺 -𝑿𝒊𝒏 𝒕 𝑺 + 𝑿𝒐𝒖𝒕 𝒕 𝑳 -𝑿𝒊𝒏 𝒕 𝑳	E2.1
		𝑬 𝒕 𝑺 = 𝑬 𝒕-𝟏 𝑺	* (1 -𝛿 𝑆 𝑑𝑡 𝑡 ) + (𝜂 𝑆 𝑿𝒊𝒏 𝒕 𝑺 -𝑿𝒐𝒖𝒕 𝒕 𝑺 )𝑑𝑡 𝑡	E3.1
		𝑬 𝒕 𝑳 = 𝑬 𝒕-𝟏 𝑳	* (1 -𝛿 𝐿 𝑑𝑡 𝑡 ) + (𝜂 𝐿 𝑿𝒊𝒏 𝒕 𝑳 -𝑿𝒐𝒖𝒕 𝒕 𝑳 )𝑑𝑡 𝑡	E4.1
		𝑿 𝒕 𝑰 ≤ 𝑋𝑚𝑎𝑥 𝐼 𝒚 𝒕 𝑰	E5
	The Mean model is as follows: 𝒚 𝒕 𝑰 -𝒚 𝒕-𝟏 𝑰 𝑀𝑖𝑛: ∑ (𝐶 𝐹 𝑿 𝒕 𝑭 + 𝐶 𝐼 𝑿 𝒕 𝑰 ) * 𝑑𝑡 𝑡 ) 𝑡∈𝐻 + ∑ (𝐶𝑜𝑛 𝐼 𝒚 𝒕 𝑰 ≤ 𝒛 𝒕 𝑰 * 𝑑𝑡 𝑡 + 𝐶𝑠𝑒𝑡 𝐼 𝒛 𝒕 ∀ 𝑡 ∈ 𝑆𝐻: 𝑿 𝒕 𝑰 ≤ 𝑋𝑚𝑎𝑥 𝐼 𝒚 𝒕 𝑰 𝑰 ) 𝑡∈𝑆𝐻 𝑿 𝒕 𝑰 ≤ 𝑋𝑟 𝐼 𝑰 -𝑿 𝒕-𝟏 𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: ∀ 𝑡 ∈ 𝐻: 𝑋𝑚𝑒𝑎𝑛 𝑡 𝐷 = 𝑿 𝒕 𝑭 + 𝑿 𝒕 𝑰 + 𝑿𝒐𝒖𝒕 𝒕 𝑺 -𝑿𝒊𝒏 𝒕 𝑺 + 𝑿𝒐𝒖𝒕 𝒕 𝑳 -𝑿𝒊𝒏 𝒕 𝑳 𝑿 𝒕-𝟏 𝑰 𝑰 ≤ 𝑋𝑟 𝐼 -𝑿 𝒕 𝑬 𝒕 𝑺 = 𝑬 𝒕-𝟏 𝑺 * (1 -𝛿 𝑆 𝑑𝑡 𝑡 ) + (𝜂 𝑆 𝑿𝒊𝒏 𝒕 𝑺 -𝑿𝒐𝒖𝒕 𝒕 𝑺 )𝑑𝑡 𝑡 ∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛 𝐼 , … , 𝜃 -1}: ∑ 𝒛 𝒕 ′ 𝑰 𝑡 𝑡 ′ =𝑡+1-𝑇𝑚𝑖𝑛 𝐼 𝑰 ≤ 𝒚 𝒕 𝑬 𝒕 𝑳 = 𝑬 𝒕-𝟏 𝑳 * (1 -𝛿 𝐿 𝑑𝑡 𝑡 ) + (𝜂 𝐿 𝑿𝒊𝒏 𝒕 𝑳 -𝑿𝒐𝒖𝒕 𝒕 𝑳 )𝑑𝑡 𝑡 ∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛 𝐼 -1}: ∑ 𝒛 𝒕 ′ 𝑰 𝑡 𝑡 ′ =1 𝑰 ≤ 𝒚 𝒕 ∀ 𝑡 ∈ 𝑆𝐻: 𝑿 𝒕 𝑰 ≤ 𝑋𝑚𝑎𝑥 𝐼 𝒚 𝒕 𝐼 𝑬 𝟎 𝑳 ≤ 𝑬 𝛩 𝑳	E7 E6.1 E1.1 E8.1 E9.1 E2.1 E10 E3.1 E11 E4.1 E5.1
		𝑋𝑚𝑖𝑛 𝐼 𝒚 𝒕 𝑰 ≤ 𝑿 𝒕 𝑰	E6.1
		𝒚 𝒕 𝑰 -𝒚 𝒕-𝟏 𝑰	≤ 𝒛 𝒕 𝑰	E7.1
		𝑿 𝒕 𝑰 -𝑿 𝒕-𝟏 𝑰	≤ 𝑋𝑟 𝐼	E8.1
		𝑿 𝒕-𝟏 𝑰	-𝑿 𝒕 𝑰 ≤ 𝑋𝑟 𝐼	E9.1
	∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛 𝐼 , … , 𝜃 -1}:	∑	𝑡 𝑡 ′ =𝑡+1-𝑇𝑚𝑖𝑛 𝐼	𝒛 𝒕 ′ 𝑰	≤ 𝒚 𝒕 𝑰	E10
	∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛 𝐼 -1}:	∑	𝑡 𝑡 ′ =1	𝒛 𝒕 ′ 𝑰	≤ 𝒚 𝒕 𝑰	E11
	𝑬 𝟎 𝑳 ≤ 𝑬 𝜣					

3.1.1. Linear formulation: the original Mean model

Here, the original MILP formulation given by E1-E11 is kept but integer variables are set to zero over 𝐿𝐻. Variables on 𝐿𝐻 represent the means of the original continuous variables over the aggregated period. This new formulation is given below. Changes are marked in blue and new equations are indexed by "E.X1". We assume that 𝑛 𝐼 < 𝜃 . 𝑳
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  1, we present two versions of the RpCf model: a first one without including set-up costs over 𝐿𝐻, and a second one that includes them. Equation E13.3 is the storage balance equation over 𝐿𝐻. With E4.3, it ensures continuity between the LTS states over H. One can note that the problem over 𝐿𝐻 is a shortest path problem.The CFs are naturally included in the MILP formulation as piecewise linear functions. The CFs are estimated by solving the original problem over one or several RPs of the period 𝑡, for all 𝜏 and for various values of 𝛥.

	𝑬 𝟎 𝑳 ≤ 𝑬 𝜣 𝑳					E12
	∀ 𝑡 ∈ 𝐿𝐻:	𝑬 𝒕 𝑳 = 𝑬 𝒕-𝟏 𝑳	* (1 -𝛿 𝐿 𝑑𝑡 𝑡 ) + 𝜟 𝒕	E13.3
	The RpCf model is as follows:			
	𝑀𝑖𝑛:					
	∑	𝑡∈𝑆𝐻	(𝐶 𝐹 𝑿 𝒕 𝑭 + 𝐶 𝐼 𝑿 𝒕 𝑰 + 𝐶𝑜𝑛 𝐼 𝒚 𝒕 𝑰 ) * 𝑑𝑡 𝑡 + 𝐶𝑠𝑒𝑡 𝐼 𝒛 𝒕 𝑰 )	+ ∑	𝑡∈𝐿𝐻	( 𝑐 𝑡,𝜏 (𝜟 𝒕 ))	E1.3
	𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:				
	∀ 𝑡 ∈ 𝑆𝐻:	𝑋 𝑡 𝐷 = 𝑿 𝒕 𝑭 + 𝑿 𝒕 𝑰 + 𝑿𝒐𝒖𝒕 𝒕 𝑺 -𝑿𝒊𝒏 𝒕 𝑺 + 𝑿𝒐𝒖𝒕 𝒕 𝑳 -𝑿𝒊𝒏 𝒕 𝑳	E2.3
				𝑬 𝒕 𝑺 = 𝑬 𝒕-𝟏 𝑺	* (1 -𝛿 𝑆 𝑑𝑡 𝑡 ) + (𝜂 𝑆 𝑿𝒊𝒏 𝒕 𝑺 -𝑿𝒐𝒖𝒕 𝒕 𝑺 )𝑑𝑡 𝑡	E3.1
				𝑬 𝒕 𝑳 = 𝑬 𝒕-𝟏 𝑳	* (1 -𝛿 𝐿 𝑑𝑡 𝑡 ) + (𝜂 𝐿 𝑿𝒊𝒏 𝒕 𝑳 -𝑿𝒐𝒖𝒕 𝒕 𝑳 )𝑑𝑡 𝑡	E4.3
				𝑿 𝒕 𝑰 ≤ 𝑋𝑚𝑎𝑥 𝐼 𝒚 𝒕 𝑰	E5.1
				𝑋𝑚𝑖𝑛 𝐼 𝒚 𝒕 𝑰 ≤ 𝑿 𝒕 𝑰	E6.1
				𝒚 𝒕 𝑰 -𝒚 𝒕-𝟏 𝑰	≤ 𝒛 𝒕 𝑰	E7.1
				𝑿 𝒕 𝑰 -𝑿 𝒕-𝟏 𝑰	≤ 𝑋𝑟 𝐼	E8.1
				𝑿 𝒕-𝟏 𝑰	-𝑿 𝒕 𝑰 ≤ 𝑋𝑟 𝐼	E9.1
	∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛 𝐼 , … , 𝜃 -1}:	∑	𝑡 𝑡 ′ =𝑡+1-𝑇𝑚𝑖𝑛 𝐼	𝒛 𝒕 ′ 𝑰	≤ 𝒚 𝒕 𝑰	E10.1
	∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛 𝐼 -1}:	∑	𝑡 𝑡 ′ =1	𝒛 𝒕 ′ 𝑰	≤ 𝒚 𝒕 𝑰	E11
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3.2.1. The original RpCf model

Assuming that functions 𝑐 𝑡,𝜏 are known, the problem is formulated as follows. Changes to the original MILP formulation are shown in blue and new equations are indexed by "EX.3".

  Equation E14.4 is the storage balance equation exclusive to time step 𝜃. E15.4-E16.4 ensure the consistency between the CFs 𝑐 𝑜𝑛 and 𝑐 𝑜𝑓𝑓 with the state of the IFP at 𝜃 -1. This way, the continuity between the IFP states is kept up to 𝜃.

	𝑀𝑖𝑛:				
	∑	𝑡∈𝑆𝐻	(𝐶 𝐹 𝑿 𝒕 𝑭 + 𝐶 𝐼 𝑿 𝒕 𝑰 + 𝐶𝑜𝑛 𝐼 𝒚 𝒕 𝑰 ) * 𝑑𝑡 𝑡 + 𝐶𝑠𝑒𝑡 𝐼 𝒛 𝒕 𝑰 )
	+ 𝑐 𝜃,𝜏 𝑜𝑛 (𝜟 𝜽 𝒐𝒏 ) + 𝑐 𝜃,𝜏 𝑜𝑓𝑓 (𝜟 𝜽 𝒐𝒇𝒇 ) + ∑	𝑡∈𝐿𝐻\{𝜃}	( 𝑐 𝑡,𝜏 𝑜𝑛 (𝜟 𝒕 ))	E1.4
	𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:			
	∀ 𝑡 ∈ 𝑆𝐻:				𝑋 𝑡 𝐷 = 𝑿 𝒕 𝑭 + 𝑿 𝒕 𝑰 + 𝑿𝒐𝒖𝒕 𝒕 𝑺 -𝑿𝒊𝒏 𝒕 𝑺 + 𝑿𝒐𝒖𝒕 𝒕 𝑳 -𝑿𝒊𝒏 𝒕 𝑳	E2.3
							𝑬 𝒕 𝑺 = 𝑬 𝒕-𝟏 𝑺	* (1 -𝛿 𝑆 𝑑𝑡 𝑡 ) + (𝜂 𝑆 𝑿𝒊𝒏 𝒕 𝑺 -𝑿𝒐𝒖𝒕 𝒕 𝑺 )𝑑𝑡 𝑡	E3.1
							𝑬 𝒕 𝑳 = 𝑬 𝒕-𝟏 𝑳	* (1 -𝛿 𝐿 𝑑𝑡 𝑡 ) + (𝜂 𝐿 𝑿𝒊𝒏 𝒕 𝑳 -𝑿𝒐𝒖𝒕 𝒕 𝑳 )𝑑𝑡 𝑡	E4.3
							𝑿 𝒕 𝑰 ≤ 𝑋𝑚𝑎𝑥 𝐼 𝒚 𝒕 𝑰	E5.1
							𝑋𝑚𝑖𝑛 𝐼 𝒚 𝒕 𝑰 ≤ 𝑿 𝒕 𝑰	E6.1
							𝒚 𝒕 𝑰 -𝒚 𝒕-𝟏 𝑰	≤ 𝒛 𝒕 𝑰	E7.1
							𝑿 𝒕 𝑰 -𝑿 𝒕-𝟏 𝑰	≤ 𝑋𝑟 𝐼	E8.1
							𝑿 𝒕-𝟏 𝑰	-𝑿 𝒕 𝑰 ≤ 𝑋𝑟 𝐼	E9.1
	∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛 𝐼 , … , 𝜃 -1}:	∑	𝑡 𝑡 ′ =𝑡+1-𝑇𝑚𝑖𝑛 𝐼	𝒛 𝒕 ′ 𝑰	≤ 𝒚 𝒕 𝑰	E10.1
	∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛 𝐼 -1}:	∑	𝑡 𝑡 ′ =1	𝒛 𝒕 ′ 𝑰	≤ 𝒚 𝒕 𝑰	E11
	𝑬 𝟎 𝑳 ≤ 𝑬 𝛩 𝑳				E12
	∀ 𝑡 ∈ 𝐿𝐻\{𝜃}:		𝑬 𝒕 𝑳 = 𝑬 𝒕-𝟏 𝑳	* (1 -𝛿 𝐿 𝑑𝑡 𝑡 ) + 𝜟 𝒕	E13.4
	𝑬 𝜽 𝑳 = 𝑬 𝜽-𝟏 𝑳	* (1 -𝛿 𝐿 𝑑𝑡 𝜃 ) + 𝜟 𝜽 𝒐𝒏 + 𝜟 𝜽 𝒐𝒇𝒇	E14.4
	𝜟 𝜽 𝒐𝒏 ≤ 𝒚 𝜽-𝟏 𝑰	𝐸𝑚𝑎𝑥 𝐿	E15.4
	𝜟 𝜽 𝒐𝒇𝒇 ≤ (𝟏 -𝒚 𝜽-𝟏 𝑰	)𝐸𝑚𝑎𝑥 𝐿	E16.4
							69
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Table 4 :

 4 Data of the heat production problem.

	Element	Parameter	Notation	Value
	Flexible Production	Capacity (units/hour) Cost (euros/unit)	N.A.	Uncapacited
	(FP), gas based	Cost (euros/unit)	𝐶 𝐹	66.8 (See Appendix D for details)
		Capacity (units/hour)	𝑋𝑚𝑎𝑥 𝐼	3
		Minimum capacity (units/hour)	𝑋𝑚𝑖𝑛 𝐼	1.2
	Inflexible Production (IFP), biomass based	Maximum change in production Variable cost (euros/unit)	𝑋𝑟 𝐼 𝐶 𝐼	1.2 33.3 (See Appendix D for details)
		Fixed cost (euros/unit)	𝐶𝑜𝑛 𝐼	10
		Set up costs (euros)	𝐶𝑠𝑒𝑡 𝐼	500
		Capacity (units)	𝐸𝑚𝑎𝑥 𝑆	30
		Efficiency	𝜂 𝑆	0.98
	Short-term Storage (STS)	Losses (units/unit stored /hour)	𝛿 𝑆	0.00021 (0.5% per day)
		Stock/destock capacity (units/hour)	𝑋𝑚𝑎𝑠 𝑆	3
		Capacity (units)	𝐸𝑚𝑎𝑥 𝐿	1500
		Efficiency	𝜂 𝐿	0.97
	Long-term Storage (LTS)	Losses (units/unit stored /hour)	𝛿 𝐿	0.00042 (1% per day)
		Stock/destock capacity (units/hour)	𝑋𝑚𝑎𝑠 𝐿	3
	Demand (D)	Demand profile (units/hour)	𝐷 𝑋 𝑡	See Appendix C for details

  As part of the PEGASE platform, PERSEE is able to control fine simulators, digital twins or real systems using model predictive control. PEGASE is compliant with the FMI-Cosimulation 2.0 norm. Both PERSEE and PEGASE are expected to be open source by 2022, in the frame of the starting CEA Trilogy project.

The problem is solved by one of the solvers available through a multi-MILP-solver interface (OSI open source, CPLEX, GUROBI etc.)

Table 5 :

 5 Results

				Savings		
	Model	Planning horizon	Total cost (euros)	compared to the Cicada approach	Simulation computation time (sec)	Cost functions computation time (sec)
				(euros)		
	Mean Mean-SetUp	H1	847 755 835 340	16 887 29 302	36 33	0 0
	Mean Mean-SetUp	H2	844 700 833 924	19 942 30 718	33 34	0 0
	Mean Mean-SetUp	HM	851 083 837 918	13 559 26 724	40 40	0 0
	RpCf RpCf-SetUp	H1	844 948 827 315	19 694 37 327	95 95+95*	353 695
	RpCf RpCf-SetUp	H2	846 071 833 064	18 571 31 578	202 253	9 331 18 64
	RpCf RpCf-SetUp	HM	849 442 834 456	15 200 30 186	130 131	8 9701 17 945
	Cicada approach	864 642	0	32	0
			Lower bound: 806 435	58 207	40 hours Final relative	
	One Shot optimisation			gap: 1.03%	0
			Upper bound 814 863	49 779	RAM used: 56 GB	

*Only case where the computations converged after two years instead of one year.
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4.3.2. Solutions 

  in the FP costs: 44.4, 55.6, 66.8 and 78.0 euros/unit are tested. A cost of 66.8 was used in Section 4 and a cost of 44.4 corresponds to the case where no CO2 emission penalties are considered (see Appendix D for details).• A change in the profiles used for the demand, which corresponds to different meteorological scenarios.Three demand profiles A, B and C are considered (details are provided in Appendix C). Profile A was used in Section 4.

  G citée dans ce chapitre correspond à la seconde partie de ce Supplementary Material.

											Le
	format	papier	du	manuscrit	limitant	sa	lisibilité,	elle	est	téléchargeable	ici :
	https://doi.org/10.1016/j.energy.2021.122773.						
	Abbréviations utilisées au Chapitre 3 :							
	Abbréviation			Expression complète				
		CP			Controllable Production				
		D				Demand				
		IP			Incontrollable Production				
		N				Network				
		S				Storage				

Table 7 :

 7 Results of the experimental plan

	Demand Architecture	Method	Total costs (euros)	Demand (units)	CP (units)	Network (units)	IP (units)

2 

Correspond à l'Appendix G dans ce manuscrit.

Numerical crossed assessment of two approaches to balance short and long-term decisions in rolling horizon optimisation.

  Chapitre 4 : 

	Impact of operational modelling choices on techno-
	economic modelling of local energy systems.
	Cuisinier E. a,b,* , Bourasseau C. a , Ruby A. a , Lemaire P. b , Penz B. b
	a CEA, LITEN, DTBH, Univ. Grenoble Alpes, Grenoble, France
	b Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, Grenoble, France
	* corresponding author (etienne.cuisinier@grenoble-inp.fr)
	Abbréviation	Expression complète
	CG	Cogeneration
	ED	Electric Demand
	ESPP	Energy System Production Planning
	FB	Fuel Boiler
	G	Grid
	GB	Gas Boiler
	HD	Heat Demand
	HP	Heat Pump
	HS	Heat Storage
	LP	Linear Programming
	MES	Multi-Energy System
	MILP	Mixed Integer Linear Programming
	RH	Rolling Horizon
	RP	Representative Period
	ST	Solar Thermal collectors

  1. 𝑿𝒃 𝒕 𝑪𝑮 is the amount of biomass consumed at period 𝑡, in kW. Variables 𝑿𝒉 𝒕 𝑪𝑮 and 𝑿𝒆 𝒕 𝑪𝑮 respectively correspond to the heat production and the electricity production of the CG at 𝑡 in kW, 𝒚 𝒕 𝑪𝑮 ∈ {0,1} equals 1 if the CG is on at 𝑡, 0 otherwise and 𝒛 𝒕 𝑪𝑮 ∈ {0,1} equals 1 if the CG is being set-up at 𝑡, 0 otherwise. An extra variable 𝑿𝒕𝒐𝒕 𝒕 𝑪𝑮 is introduced and corresponds to the total power produced in kW. • The electricity bought on the grid (𝑿 𝒕 𝑮 ∈ [0, +∞[) is in units/hour and has a time varying price 𝐶 𝑡 𝐺 . • The heat storage is defined by a maximum capacity in kWh (𝐸𝑚𝑎𝑥 𝐻𝑆 ), a storing efficiency (𝜂 𝐻𝑆 ) corresponding to the percentage of energy that is actually stored during the storing operation (the rest is lost), losses in kW lost/kW stored/hour (𝛿 𝐻𝑆 ) and a stock/destock capacity in units/hour (𝑋𝑚𝑎𝑥 𝐻𝑆 ). Associated variables are the stored quantity in units (𝑬 𝒕 𝑯𝑺 ∈ [0, 𝐸𝑚𝑎𝑥 𝐻𝑆 ]) and the stock and destock

	rates in kW ((𝑿𝒐𝒖𝒕 𝒕 𝑯𝑺 , 𝑿𝒊𝒏 𝒕 𝑯𝑺 ) ∈ [0, 𝑋𝑚𝑎𝑥 𝐻𝑆 ] 2 )) at time step 𝑡.
	Variables are set to 0 if 𝑡 = 0 (except for 𝑬 𝟎 𝑯𝑺 ). The mathematical formulation of the problem is as follows.
	𝑀𝑖𝑛:					
	∑ ((𝐶 𝐺𝐵 𝑿 𝒕 𝑮𝑩 + 𝐶 𝐹𝐵 𝑿 𝒕 𝑭𝑩 + 𝐶 𝐶𝐺 𝑿𝒃 𝒕 𝑪𝑮 + 𝐶𝑜𝑛 𝐶𝐺 𝒚 𝒕 𝑪𝑮 + 𝐶 𝑡 𝐺 𝑿 𝒕 𝑮 )𝑑𝑡 + 𝐶𝑠𝑒𝑡 𝐶𝐺 𝒛 𝒕 𝑪𝑮 ) 𝑡∈𝐻	E1
	𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:					
	∀ 𝑡 ∈ 𝐻:					
	𝑋 𝑡 𝐻𝐷 = 𝑿 𝒕 𝑮𝑩 + 𝑿 𝒕 𝑭𝑩 + 𝑿𝒉 𝒕 𝑪𝑮 + 𝑿 𝒕 𝑺𝑻 + 𝑿𝒐𝒖𝒕 𝒕 𝑯𝑺 -𝑿𝒊𝒏 𝒕 𝑯𝑺 + 𝜂 𝐻𝑃 𝑿 𝒕 𝑯𝑷	E2
	𝑋 𝑡 𝐸𝐷 = 𝑿𝒆 𝒕 𝑪𝑮 + 𝑿 𝒕 𝑮 -𝑿 𝒕 𝑯𝑷				E3
	𝑿 𝒕 𝑺𝑻 ≤ 𝑋𝑚𝑎𝑥 𝑡 𝑆𝑇						E4
	𝑬 𝒕 𝑯𝑺 = 𝑬 𝒕-𝟏 𝑯𝑺 (1 -𝛿 𝐻𝑆 𝑑𝑡) + (𝜂 𝐻𝑆 𝑿𝒊𝒏 𝒕 𝑯𝑺 -𝑿𝒐𝒖𝒕 𝒕 𝑯𝑺 )𝑑𝑡	E5
	𝑋𝑚𝑖𝑛 𝐶𝐺 𝒚 𝒕 𝑪𝑮 ≤ 𝑿𝒕𝒐𝒕 𝒕 𝑪𝑮					E6
	𝑿𝒕𝒐𝒕 𝒕 𝑪𝑮 ≤ 𝑋𝑚𝑎𝑥 𝐶𝐺 𝒚 𝒕 𝑪𝑮				E7
	𝒚 𝒕 𝑪𝑮 -𝒚 𝒕-𝟏 𝑪𝑮 ≤ 𝒛 𝒕 𝑪𝑮						E8
	𝑿𝒕𝒐𝒕 𝒕 𝑪𝑮 -𝑿𝒕𝒐𝒕 𝒕-𝟏 𝑪𝑮 ≤ 𝑋𝑟 𝐶𝐺				E9
	𝑿𝒕𝒐𝒕 𝒕-𝟏 𝑪𝑮 -𝑿𝒕𝒐𝒕 𝒕 𝑪𝑮 ≤ 𝑋𝑟 𝐶𝐺				E10
	𝑿𝒉 𝒕 𝑪𝑮 ≤ 𝑋𝑚𝑎𝑥 𝐶𝐺 -𝑿𝒆 𝒕 𝑪𝑮				E11
	𝑿𝒆 𝒕 𝑪𝑮 ≤ 𝛼𝑿𝒉 𝒕 𝑪𝑮						E12
	𝑿𝒆 𝒕 𝑪𝑮 + 𝑿𝒉 𝒕 𝑪𝑮 = 𝑿𝒕𝒐𝒕 𝒕 𝑪𝑮				E13
	𝑿𝒃 𝒕 𝑪𝑮 = 1/(𝜂 ℎ (𝛼 + 1))(𝑿𝒉 𝒕 𝑪𝑮 + 𝑿𝒆 𝒕 𝑪𝑮 )	E14
	∀ 𝑡 ∈ [𝑇𝑚𝑖𝑛 𝐶𝐺 , … , 𝛩]:	∑	𝑡 𝑡 ′ =𝑡+1-𝑇𝑚𝑖𝑛 𝐶𝐺	𝒛 𝒕 ′ 𝑪𝑮	≤ 𝒚 𝒕 𝑪𝑮	E15
	∀ 𝑡 ∈ [1, … , 𝑇𝑚𝑖𝑛 𝐶𝐺 [:	∑	𝑡 𝑡 ′ =1	𝒛 𝒕 ′ 𝑪𝑮	≤ 𝒚 𝒕 𝑪𝑮	E16
	𝑬 𝟎 𝑯𝑺 ≤ 𝑬 𝜣 𝑯𝑺						E17
	2. Case study						110

Table 8 :

 8 techno-economic and environmental operational parameters of primary resources

Resources Low heat value (kWh/kg) Cost CO2 content (kg/kWh)

  

	Gas	𝐿𝐻𝑉 𝑔𝑎𝑠 = 13.83	𝐶 𝐹𝑅 𝑔𝑎𝑠 = 0.387 𝑒𝑢𝑟𝑜𝑠/𝑘𝑔	CO 2	𝑔𝑎𝑠 = 0.243 (3.36 𝑘𝑔 /𝑘𝑔 𝐶𝐻4)
	Fuel	𝐿𝐻𝑉 𝑓𝑢𝑒𝑙 = 12	𝐶 𝑓𝑢𝑒𝑙 = 1.09 𝑒𝑢𝑟𝑜𝑠/𝑘𝑔	CO 2	𝑓𝑢𝑒𝑙 = 0.340 (4.7 𝑘𝑔 /𝑘𝑔 𝐹𝑢𝑒𝑙)
	Biomass	𝐿𝐻𝑉 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 4	𝐶 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 0.12 𝑒𝑢𝑟𝑜𝑠/𝑘𝑔		CO 2	𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 0
	Grid	NA	𝐶 𝑡 𝐺 = 𝐶 𝑡 𝑒 + 𝐶 𝐶𝑂2 * CO 2 𝑡 𝑔𝑟𝑖𝑑 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ 𝐶 𝑡 𝑒 : 𝑠𝑒𝑒 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 1	CO 2 𝑡 𝑔𝑟𝑖𝑑 : 𝑠𝑒𝑒 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 1
						111

Table 9 :

 9 techno-economic operational parameters of equipments

	Equipment Parameter				Value
		𝜂 𝐺𝐵				0.9
		𝑋𝑚𝑎𝑥 𝐺𝐵				130 𝑘𝑊
	GB				
		𝐶 𝐺𝐵	𝐶 𝐺𝐵 = (	𝐶 𝑔𝑎𝑠 𝐿𝐻𝑉 𝑔𝑎𝑠 + 𝐶 𝐶𝑂2 * CO 2	𝑔𝑎𝑠 )/𝜂 𝐺𝐵 = 0.07352 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ
		𝜂 𝐹𝐵				0.85
	FB	𝐶 𝐹𝐵	𝐶 𝐹𝐵 = (	𝑓𝑢𝑒𝑙 𝐶 𝐹𝑅 𝐿𝐻𝑉 𝑓𝑢𝑒𝑙 + 𝐶 𝐶𝑂2 * CO 2	𝑓𝑢𝑒𝑙 )/𝜂 𝐹𝐵 = 0.18686 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ
	ST	𝑋𝑚𝑎𝑥 𝑡 𝑆𝑇				𝑋𝑚𝑎𝑥 𝑡 𝑆𝑇 = 𝑋𝑚𝑎𝑥 𝑆𝑇 * 𝑝𝑓 𝑡 with 𝑋𝑚𝑎𝑥 𝑆𝑇 = 100 𝑘𝑊𝑐
		𝑋𝑚𝑎𝑥 𝐶𝐺				800 𝑘𝑊
		𝑋𝑚𝑖𝑛 𝐶𝐺				160 𝑘𝑊
		𝑋𝑟 𝐶𝐺				160 𝑘𝑊
		𝑇𝑚𝑖𝑛 𝐶𝐺				6 ℎ𝑜𝑢𝑟𝑠
	CG				
		𝐶 𝐶𝐺			𝐶 𝐶𝐺 =	𝐶 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝐿𝐻𝑉 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 0.03 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ
		𝐶𝑜𝑛 𝐶𝐺				1.6 𝑒𝑢𝑟𝑜𝑠
		𝐶𝑠𝑒𝑡 𝐶𝐺				160 𝑒𝑢𝑟𝑜𝑠
		𝐸𝑚𝑎𝑥 𝐻𝑆				70 000 𝑘𝑊ℎ
		𝜂 𝐻𝑆				0.95
	HS	𝛿 𝐻𝑆			0.000104 (0.25% 𝑝𝑒𝑟 𝑑𝑎𝑦)
		𝑋𝑚𝑎𝑥 𝐻𝑆				2000 𝑘𝑊
		𝑋𝑚𝑎𝑥 𝐻𝑃				190 𝑘𝑊
	HP	𝜂 𝐻𝑃			

  𝑦=0/(1 + 0.07) 𝑦 ) 𝑒 ∈ {𝐺𝐵,𝑃𝑉,𝑆𝑇,𝐶𝐺,𝐵𝑎𝑡𝑡,𝐻𝑆,𝐻𝑃} now minimises the total actualised costs. E2.1 now excludes the FB and E3.1 includes the batteries set. E4.1 now includes 𝑿𝒎𝒂𝒙 𝑺𝑻 as an optimisation variable. E18.1 is the same equation as E4.1 but for the PV source and E19.1-20.1 are the same equations as E5 and E17 but for the batteries set. Finally, E21.1-25.1 are the capacity constraints for all equipment.E1.1-25.1 describe a linear program. It was solved in 133 seconds with a commercial solver under the PERSEE modelling environment. Computational aspects are identical as in[START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF].
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	+ ∑ ∑ ((𝐶 𝐺𝐵 𝑿 𝒕 𝑮𝑩 + 𝐶 𝐶𝐺 𝑿𝒃 𝒕 𝑪𝑮 + 𝐶 𝑡 𝐺 𝑿 𝒕 𝑮 ) * 𝑑𝑡/(1 + 0.07) 𝑦 )
	𝑦=0	𝑡∈𝐻
			E1.1
	𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:
	∀ 𝑡 ∈ 𝐻:
		𝑋 𝑡 𝐻𝐷 = 𝑿 𝒕 𝑮𝑩 + 𝑿𝒉 𝒕 𝑪𝑮 + 𝑿 𝒕 𝑺𝑻 + 𝑿𝒐𝒖𝒕 𝒕 𝑯𝑺 -𝑿𝒊𝒏 𝒕 𝑯𝑺 + 𝜼 𝑯𝑷 𝑿 𝒕 𝑯𝑷	E2.1
		𝑋 𝑡 𝐸𝐷 = 𝑿𝒆 𝒕 𝑪𝑮 + 𝑿 𝒕 𝑮 + 𝑿 𝒕 𝑷𝑽 -𝑿 𝒕 𝑯𝑷 + 𝑿𝒐𝒖𝒕 𝒕 𝑩𝒂𝒕𝒕 -𝑿𝒊𝒏 𝒕 𝑩𝒂𝒕𝒕	E3.1
		𝑿 𝑡 𝑺𝑻 ≤ 𝑿𝒎𝒂𝒙 𝑺𝑻 * 𝑝𝑓 𝑡	E4.1
		𝑬 𝒕 𝑯𝑺 = 𝑬 𝒕-𝟏 𝑯𝑺 * (1 -𝛿 𝐻𝑆 𝑑𝑡) + (𝜂 𝐻𝑆 𝑿𝒊𝒏 𝒕 𝑯𝑺 -𝑿𝒐𝒖𝒕 𝒕 𝑯𝑺 )𝑑𝑡	E5
		𝑿𝒉 𝒕 𝑪𝑮 ≤ 𝑋𝑚𝑎𝑥 𝐶𝐺 -𝑿𝒆 𝒕 𝑪𝑮	E11
		𝑿𝒆 𝒕 𝑪𝑮 ≤ 𝛼 * 𝑿𝒉 𝒕 𝑪𝑮	E12
		𝑿𝒆 𝒕 𝑪𝑮 + 𝑿𝒉 𝒕 𝑪𝑮 = 𝑿𝒕𝒐𝒕 𝒕 𝑪𝑮	E13
		𝑿𝒃 𝒕 𝑪𝑮 = 1/(𝜂 ℎ * (𝛼 + 1)) * (𝑿𝒉 𝒕 𝑪𝑮 + 𝑿𝒆 𝒕 𝑪𝑮 )	E14
	𝑬 𝟎 𝑯𝑺 ≤ 𝑬 𝛩 𝑯𝑺	E17
	∀ 𝑡 ∈ 𝐻:
		𝑿 𝒕 𝑷𝑽 ≤ 𝑿𝒎𝒂𝒙 𝑷𝑽 * 𝑝𝑓 𝑡	E18.1
		𝑬 𝒕 𝑩𝒂𝒕𝒕 = 𝑬 𝒕-𝟏 𝑩𝒂𝒕𝒕 * (1 -𝛿 𝐵𝑎𝑡𝑡 𝑑𝑡) + (𝜂 𝐵𝑎𝑡𝑡 𝑿𝒊𝒏 𝒕 𝑩𝒂𝒕𝒕 -𝑿𝒐𝒖𝒕 𝒕 𝑩𝒂𝒕𝒕 )𝑑𝑡	E19.1
	𝑬 𝟎 𝑩𝒂𝒕𝒕 ≤ 𝑬 𝜣 𝑩𝒂𝒕𝒕	E20.1
	𝑿 𝒕 𝑮𝑩 ≤ 𝑿𝒎𝒂𝒙 𝑮𝑩 , 𝑿𝒕𝒐𝒕 𝒕 𝑪𝑮 ≤ 𝑿𝒎𝒂𝒙 𝑪𝑮 , 𝑿 𝒕 𝑯𝑷 ≤ 𝑿𝒎𝒂𝒙 𝑯𝑷	E21.1-23.1
	𝑬 𝒕 𝑯𝑺 ≤ 𝑿𝒎𝒂𝒙 𝑯𝑺 , 𝑬 𝒕 𝑩𝒂𝒕𝒕 ≤ 𝑿𝒎𝒂𝒙 𝑩𝒂𝒕𝒕	E24.1-25.1
	E1.1	
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Table 13 :

 13 techno-economic operational parameters of equipments, follow up of Table9

	Equipment	Parameter	Value
		𝜂 𝐵𝑎𝑡𝑡	0.9
	Batt	𝛿 𝐵𝑎𝑡𝑡	0.00001
		𝑋𝑚𝑎𝑥 𝐵𝑎𝑡𝑡	2000 𝑘𝑊

Table 14 :

 14 Investment parameters

	Equipment	Investment cost	Yearly maintenance cost (in % of the investment cost)	Maximum installed capacity
	GB	𝐶𝑃𝑋 𝐺𝐵 = 100 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊	𝑂𝑃𝑋 𝐺𝐵 = 4%	
	PV	𝐶𝑃𝑋 𝑃𝑉 = 750 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊𝑐	𝑂𝑃𝑋 𝑃𝑉 = 2%	
	ST	𝐶𝑃𝑋 𝑆𝑇 = 200 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊𝑐	𝑂𝑃𝑋 𝑆𝑇 = 2%	
	CG	𝐶𝑃𝑋 𝐶𝐺 = 800 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊	𝑂𝑃𝑋 𝐶𝐺 = 4%	𝑋𝑚𝑎𝑥𝐶𝑎𝑝𝑎 𝐶𝐺 = 800 𝑘𝑊
	Batt	𝐶𝑃𝑋 𝑏𝑎𝑡𝑡 = 220 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ	𝑂𝑃𝑋 𝐵𝑎𝑡𝑡 = 2%	
		𝐶𝑃𝑋 𝐻𝑆 = 8.57 𝑒𝑢𝑟𝑜𝑠/		
	HS	𝑘𝑊ℎ below 70 000 𝑘𝑊ℎ,	𝑂𝑃𝑋 𝐻𝑆 = 2%	
		2.86 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ above		
	HP	𝐶𝑃𝑋 𝐻𝑃 = 1000 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊	𝑂𝑃𝑋 𝐻𝑃 = 1%	

Experimental method

The « OPT » method with the basic model proposed in[START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF] selects and attributes weights to each representative periods so that the sum of the difference between the original data duration curve and the weighted representative periods duration curve is minimized. In our case study, we consider five data set (the HD, the ED, the PV and ST production factor, the grid variable price including its variable CO2 content). Each data set is normalised so that the error on its duration curve equally weights in the objective function. It can be noted that the optimised weights are not taken into account in the profiles reconstruction process.

Figure 37 shows the heat power balance, the grid prices (including the cost of CO2 emissions), the HS state and electricity balance. In other figures, only the elements necessary to interpret the results are shown for compactness purposes.

Contrarily to the problem considered in[START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF], the case study we consider includes constraints between time steps (other than the storage balance). These constraints are part of the CG technical constraints (E8-9-10 and E15-16). Hence, method M2 was adapted: these constraints were kept within RPs but not between RPs. In particular, the CG was considered as not started up at the beginning of a RP.

The gas price was taken equal to 0.2752 euros/kWh (extracted from [185]), and different grid prices and CO2 content were used (leading to higher total prices).

The extraction condensing CG is modelled with a 31% efficiency on electricity production and 47% efficiency on electrical production. It can trade heat for electricity with a ratio of 30%. Its investment cost was taken equal to 1200 euros/kW.

Remerciements 1 Remerciements

Glossary

Variations on the demand assumptions:

We consider two realistic demand profiles corresponding, respectively, to a Heat and an Electrical demand profiles. Both are normalised so that their mean equals 3 units/hour. Additionally, we consider five artificial demand profiles which correspond to a constant demand (Cst) of 3 units/hour and square wave signals with semi-annual (Sem), mensual (Month), weekly (Week) and daily (Day) frequencies with high and low values of 1 and 5 units/hour.

The heat and the electrical demand profiles are both extracted from [START_REF] Wilson | Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States[END_REF]. The file used was the "USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3_BASE.csv" file and can be downloaded from the "Residential Load Data Compressed.zip" link in [START_REF] Wilson | Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States[END_REF]. The heat and electricity demand respectively correspond to columns "Gas:Facility [kW](Hourly)" and "Electricity:Facility [kW](Hourly)" and were normalised so that the mean equals 3 units/hour. Profiles are shown in Figure 25. Variations on the IP assumptions:

We consider two intermittent production profiles: a solar production profile and a wind production profile. Both were extracted from [START_REF] Pfenninger | Renewables[END_REF] (see [START_REF] Pfenninger | Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data[END_REF] and [START_REF] Staffell | Using bias-corrected reanalysis to simulate current and future wind power output[END_REF] for methodological details). From the website interface, the latitude was set to 47.60038 and the longitude to -122.3301. The dataset selected was MERRA-2 (global), for year 2019, for a capacity of 6 kW. For the solar profile, the system loss was set to 0.1, the tilt parameter to 35° and the azimuth parameter to 180°. For the wind profile, the hub height was set to 80 meters and the turbine model selected was the Vestas V90 2000 model.

Profiles of the production factor 𝑝𝑓 𝑡

𝐼 are shown in Figure 26. The production capacity 𝑋𝑚𝑎𝑥 𝐼 is set to 6 units/hour in both cases.

Numerical crossed assessment of two approaches to balance short and long-term decisions in rolling horizon optimisation. We consider a case where the CP is entirely flexible (i.e. 𝑋𝑚𝑖𝑛 𝐶𝑃 = 0, 𝑋𝑟 𝐶𝑃 = 𝑋𝑚𝑎𝑥 𝐶𝑃 , 𝑇𝑚𝑖𝑛 𝐶𝑃 = 0, 𝐶𝑜𝑛 𝐶𝑃 = 0, 𝐶𝑠𝑒𝑡 𝐶𝑃 = 0) and a case where the CP has its flexibility constrained (i.e. 𝑋𝑚𝑖𝑛 𝐶𝑃 = 2, 𝑋𝑟 𝐶𝑃 = 1, 𝑇𝑚𝑖𝑛 𝐶𝑃 = 12, 𝐶𝑜𝑛 𝐶𝑃 = 10, 𝐶𝑠𝑒𝑡 𝐶𝑃 = 400). In both cases, 𝐶 𝐶𝑃 = 1 and 𝑋𝑚𝑎𝑥 𝐶𝑃 = 9. We additionally consider cases where set-up costs are null or higher (4000 euros).
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Variations on the storage assumptions:

We consider two different size: a small size (𝐸𝑚𝑎𝑥 = 75, corresponding to 25 hours of storage in mean) and a large size (𝐸𝑚𝑎𝑥 = 3000, corresponding to 1000 hours of storage in mean). In both cases, 𝜂 = 0.81, 𝛿 = 0.0001 and 𝑋𝑚𝑎𝑥 = 4.

Variations on the network assumptions:

We consider a case where the cost 𝐶 𝑡 𝑁 corresponds to the French electricity spot price for year 2020 and a case where it is constant (𝐶 𝑡 𝑁 = 1000 ∀ 𝑡 ∈ 𝐻). The French electricity spot price for year 2020 was extracted from [START_REF]ENTSO-E Transparency Platform[END_REF] with the Python API [182] (the last day was ignored to consider a non-bissextile year). It is shown in Figure 27. Crossing all variations would lead to an excessive number of computations and results to interpret. The 25 architectures tested are described Table 6. If muted, the CP, storage and IP capacities are set to zero (respectively 𝑋𝑚𝑎𝑥 𝐶𝑃 = 0, 𝐸𝑚𝑎𝑥 = 0 and 𝑋𝑚𝑎𝑥 𝑡 𝐼 = 0 ∀ 𝑡 ∈ 𝐻). [START_REF] Cuisinier | New rolling horizon optimization approaches to balance short-term and long-term decisions: an application to energy planning[END_REF]).

Experimental method

-

Operational decisions: forecasts

What data is used to optimise future operational decision

The same data sets are used as forecasts and as effective demands -

The data sets used as forecasts after 24 hours differ from the effective data sets. -

Configurations tested and compared:

Testing all possible configurations would need too many computations. In order to evaluate the impact of the modelling choices of each modelling facet, the following configurations are compared:

123 Figure 42: Impact of the temporal aggregation. Variation on the total operational costs when RPs are used compared to the case where one year of hourly data is considered, for various RPs numbers and sizes, and for both LP and MILP options. Error bars are included for the latter case. Results when HD peak period is imposed as a RP.

Figure 43: Computation times of method M2 from [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF], applied to our problem. This is done for various number and sizes of RPs.

Results
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Figure 44: Variation on the total operational costs when method M2 from [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF] is used, compared to the reference MILP-OneShot configuration (original problem). This is done for various number and sizes of RPs used within method M2.

Impact of the operational decisions assumptions: choice of the optimisation algorithm

The impact of the operational optimisation algorithm is evaluated by comparing the LP-Cicada, LP-Ant, LP-Mean, LP-MeanH2, LP-MeanH3, LP-RpCfH1 and LP-RpCfH3 configurations with the LP-OneShot configuration as a reference. Respectively, the MILP-Cicada, MILP-Ant, MILP-MeanH1, MILP-MeanH2, MILP-MeanH3, MILP-RpCfH1 and MILP-RpCfH3 configurations are compared with the MILP-OneShot configuration as a reference. Results are expressed as percentages in Figure 45.

This impact is increased with the MILP option (i.e. when considering the CG constraints and costs in the model). Looking at the case of the Cicada option shows that the absence of long-term operational optimisation can have a high impact on economic results (see Figure 47 and Figure 48 for the MILP-Cicada and MILP-Ant solutions respectively).

If the LP option is used, results can be close to the results of the reference. Horizons 𝐻2 or 𝐻3 better capture mid-term variations and significantly improve results. In particular, the HD peak is better anticipated, which reduces the use of the FB. The LP-MeanH2 configuration gives a solution close to the one given by the LP-OneShot configuration.

If the MILP option is used, the impact is increased. The MeanH1, MeanH2 and MeanH3 options have similar strategies (see Figure 49 for the MeanH3 option): the CG is kept on during the summer. When electricity prices start to increase, it produces more and enters a lock-in situation where the HS is kept full until the heating season. This is due to the fact that future costs are averaged. Hence, the Mean options do not anticipate potential savings on the grid prices and overestimate future costs. This is similar to the Ant option. On the other side, the RpCfH3 option shows a strategy comparable to the OneShot option (see Figure 50). One difference is a lack of anticipation of the heat demand peak, which results in the use of the FB.

Finally, computation times are given in Figure 46. If one needs to reduce computation times, RH methods used here are of little help if the LP option is used. They can be interesting in case of a MILP option. The impact of the forecast errors is assessed in case of different configurations: LP-MeanH2, LP-RpCfH3, MILP-MeanH2, and MILP-RpCfH3. Figure 51 shows this impact in percent: for each case, the reference is the corresponding configuration without forecast errors. Different levels of errors are tested (over and underestimation of 10 and 20%), for different data series.

A first observation is that, contrarily to the impact of the temporal model or the impact of the optimisation algorithm observed before, the impact is comparable when the LP or when the MILP option is used. Also, the RpCfH3 option appears more robust to HD forecast errors than MeanH2 option. Similar computations were done with the MeanH3 option: the RpCfH3 option was still more robust.

Concerning forecast errors on ED and on the production factor of the ST, impacts on the results are nearly null with the MeanH2 option. This is because within this range of errors, regardless of the forecast quality, the most part of the ED is satisfied by buying electricity on the grid (see Figure 36). Similarly, the ST production is marginal compared to the demand. Although limited, impacts are higher with the RpCfH3 option. This is because the cost functions aggregate all cost sources into a single indicator, contrarily to the Mean options.

An overestimated HD can have a positive impact. This is because the RH strategies do not store enough heat before the HD peak, which leads to gas and fuel overconsumption. Hence, overestimation of the HD compensates this bias: see Figure 52 for graphical comparison with Figure 50 (black circle). This overestimation also has a negative impact: the heat is unnecessarily hold in the storage, and gas is used instead (purple circles). Besides, under-estimating future HD leads to a higher consumption of fuel, which is more costly.

Finally, forecast errors over future grid prices and CO2 content have small impacts respectively on the total costs. In case of the MeanH2 option, an overestimation slightly improves the results. This compensates the bias of the Mean options mentioned in Section 4.3. On the opposite, underestimation increases it. In case of the RpCfH3 option, over or underestimation deteriorates the results, which confirms a proper calibration.

Annexes

Appendix A: Computation of cost functions (Chapitre 2)

This Appendix details the method for pre-computing cost functions (CFs) for the horizon H1, for a fixed horizon of 24 hours and for the data of Table 4. As mentioned earlier, CFs (𝑐 𝑡,𝜏 ) are defined for all periods 𝑡 and all steps 𝜏 of the RH process. However, different couples (𝑡, 𝜏) can describe the same actual period of time. Here, as H1 is used and the fixed horizon is 24 hours, functions 𝑐 50,0 and 𝑐 49,28 are the same for instance. Hence, 365 functions will be needed to simulate a year. These functions are estimated by solving the original problem over one or several representative period(s) (RP) of the actual period of time described by (𝑡, 𝜏), for various values of 𝜟 𝒕 .

The Python script used to build the cost functions is available at [START_REF] Cuisinier | Cost functions script[END_REF]. The script modifies the input files and calls the PERSEE software (see Section 4). Computation steps for CFs are further described in the case where H1 is used:

1. The hourly data of the year is subdivided into 13 periods of 4 weeks. Each period of 4 weeks is approximated by one or more RPs of chosen size, based on the method proposed by [START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF]. If several RPs are used, the method proposed by [START_REF] Poncelet | Selecting Representative Days for Capturing the Implications of Integrating Intermittent Renewables in Generation Expansion Planning Problems[END_REF] provides weights for each RP such that the weighted sum of all RP days equals the number of days in the original period. The periods selected are those that minimise the difference between the duration curves of the original data and the one of the (weighted) representative periods (a duration curve represents the given curve sorted by decreasing ordinate values). An example is given for two RPs of 2 days for a given period (Figure 56, Figure 57, Figure 58).

2. Bounds over the minimal and maximal stored quantity (𝜟 𝒕 ) are set as well as the number of points to be evaluated. This defines the accuracy of the CF approximation.

3. For each period and for each point defined at Step 3, the CF 𝑐 𝑡,𝜏 (𝜟 𝒕 ) is evaluated by solving the original MILP formulation of the problem (given in Section 5.2.1) over the corresponding RP(s) defined at

Step 2. Costs are extrapolated so that they correspond to the size of the original period (4 weeks). This is done by multiplying the RPs costs by their weight obtained at Step 2. For instance, if 4 weeks are approximated by a 2-days RP, results are multiplied by 14. In the case of (see Figure 56 and Figure 57, the 4 weeks are approximated by two 2-day RPs with different coefficients (their sum is equal to 14). The 13 CFs obtained correspond to a single τ (see Figure 59). Obtained functions are convex. Hence, they are modelled as piecewise linear functions by the mean of Special Order Set (SOS) variables [193]. 

Alternatives for CFs computations:

There exist other ways to compute the CFs. Here, RPs are used in order to limit the computation times. The number and size of RPs has to be set by the modeller. Ultimately, one can use the entire original data set on the given period to build the CF. Also, one could ultimately reduce 𝐿𝐻 to a single time step.

Additionally, if the CF is built large periods of time, the method M2 from [START_REF] Gabrielli | Optimal design of multi-energy systems with seasonal storage[END_REF] could be used to reduce the computation time if the problem structure is similar: the is one or more long-term continuous variable(s) and integer variables with short-term significance only.

Stored units (𝜟 𝒕 , 𝒕 ∈ 𝑳𝑯)

Appendix B: Convergence of the One Shot optimisation (Chapitre 2)

Table 11 provides extra information on the convergence speed of the One Shot optimisation. Computations were stopped after 40 hours. The demand profiles correspond to the heat consumption of 5000 inhabitants. It is estimated by the method used in [START_REF] Lamaison | Storage influence in a combined biomass and powerto-heat district heating production plant[END_REF] with 3 different meteorological profiles: A, B and C. The monthly mean demands are the same for all profiles. Figure 60 shows the hourly heat demand pro les over a year, starting from July. At the hottest periods of the year, the heat demand only corresponds to hot water for sanitary use. This is supposed independent from the meteorological profile, hence, all profiles are similar on these periods. Profile A is used in Section 4, all are considered in Section 5.

Table 12 shows the arbitrary pattern which is used to artificially overestimate or underestimate (+-X%) the future demand, depending on the month, as explained in Section 5.2.2. 

Flexible production cost:

The production cost of the FP is computed from the equation 𝐶 𝐹 = (𝐶 𝐶𝐻4 + 𝐶 𝐶𝑂 2 𝐶𝑂 2 𝐶𝐻4 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 )/𝐿𝑉𝐻 𝐶𝐻4 / 𝜂 𝐹 , where 𝐶 𝐶𝐻4 is the gas cost (0.4 𝑒𝑢𝑟𝑜/𝑘𝑔), 𝐶 𝐶𝑂 2 is the CO2 emissions cost (0.06 𝑒𝑢𝑟𝑜/𝑘𝑔 in Section 4), 𝐶𝑂 2 𝐶𝐻4 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is the gas CO2 content (3.36 𝑘𝑔 𝐶𝑂 2 /𝑘𝑔 𝐶𝐻4 ), 𝐿𝑉𝐻 𝐶𝐻4 is the gas low heat value (0.01 𝑀𝑊ℎ/𝑘𝑔) and 𝜂 𝐹 is the efficiency of the FP (0.9).

In Section 5, the different values tested for the FP production cost correspond to the respective CO2 emissions costs of 0, 0.03, 0.06 𝑎𝑛𝑑 0.09 𝑒𝑢𝑟𝑜/𝑘𝑔.

Inflexible production variable cost:

The variable cost of the IFP is computed from the equation 𝐶 𝐹 = 𝐶 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 /𝐿𝐻𝑉 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 /𝜂 𝐹 , where 𝐶 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 is the biomass cost (0.12 𝑒𝑢𝑟𝑜/𝑘𝑔), 𝐿𝐻𝑉 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 is the biomass low heat value (0.004 𝑀𝑊ℎ/𝑘𝑔) and 𝜂 𝐹 is the efficiency of the IFP (0.9). CO2 emissions from the biomass life-cycle are supposed to be null.

Appendix E: Sizing of the energy system (Chapitre 4) Capacities of each equipment were set after solving the investment planning problem which corresponds to the mathematical problem defined by E1-E17 without the CG specific constraints (E6-E10) and with capacities as optimisation variables:

• Parameters 𝑋𝑚𝑎𝑥 𝐺𝐵 , 𝑋𝑚𝑎𝑥 𝐶𝐺 and 𝐸𝑚𝑎𝑥 𝐻𝑆 become variables 𝑿𝒎𝒂𝒙 𝑮𝑩 , 𝑿𝒎𝒂𝒙 𝑪𝑮 and 𝑬𝒎𝒂𝒙 𝑯𝑺 .

Variables (𝑿𝒎𝒂𝒙 𝑮𝑩 , 𝑬𝒎𝒂𝒙 𝑯𝑺 ) ∈ ℝ + and 𝑿𝒎𝒂𝒙 𝑪𝑮 ∈ [0, 𝑋𝑚𝑎𝑥𝐶𝑎𝑝𝑎 𝐶𝐺 ]. The limit on the CG capacity was set to take into account a limit in the biomass resource.

• Parameter 𝑋𝑚𝑎𝑥 𝑡 𝑆𝑇 becomes 𝑿𝒎𝒂𝒙 𝑺𝑻 * 𝑝𝑓 𝑡 , with 𝑿𝒎𝒂𝒙 𝑺𝑻 ∈ ℝ + .

The investment parameters are given in Table 14, the data series are shown in Figure 61. The objective was modified to minimise the total actualised costs over 20 years with a discount rate of 7%.

The FB was ignored at the investment phase. Batteries and photovoltaic solar panels were included (but not selected by the optimiser):

• The PV production 𝑿 𝒕 𝑷𝑽 is in kW and has a time varying capacity 𝑿𝒎𝒂𝒙 𝑷𝑽 * 𝑝𝑓 𝑡 with 𝑿𝒎𝒂𝒙 𝑷𝑽 ∈ ℝ + (the same production factor 𝑝𝑓 𝑡 is used for the PV and ST productions).

• The batteries set is defined by a maximum capacity in kWh (𝐸𝑚𝑎𝑥 𝐵𝑎𝑡𝑡 ), a storing efficiency (𝜂 𝐵𝑎𝑡𝑡 ) corresponding to the percentage of energy that is are actually stored during the storing operation (the rest is lost), losses in kW lost/kW stored/hour (𝛿 𝐵𝑎𝑡𝑡 ) and a stock/destock capacity in units/hour (𝑋𝑚𝑎𝑥 𝐵𝑎𝑡𝑡 ). Associated variables are the stored quantity in units (𝑬 𝒕 𝑯𝑺 ∈ [0, 𝐸𝑚𝑎𝑥 𝐵𝑎𝑡𝑡 ]) and the stock and destock rates in kW ((𝑿𝒐𝒖𝒕 𝒕 𝑩𝒂𝒕𝒕 , 𝑿𝒊𝒏 𝒕 𝑩𝒂𝒕𝒕 ) ∈ [0, 𝑋𝑚𝑎𝑥 𝐵𝑎𝑡𝑡 ] 2 )) at time step 𝑡. The values of corresponding parameters are given in Table 13.

The corresponding mathematical problem is further described. Changes compared to E1-E17 are marked in blue and new equations are indexed by "E.X1". This appendix gathers zooms over Figure 37 and Figure 38. Appendix G: Supplementary Material (Chapitre 3) 

Summary

Environmental concerns as climate change urge politics to act for decarbonizing our economy. Locally, researchers, companies, municipalities and individuals try to reach more performant energy system and replacement of fossil fuels by renewables or fatal sources. This work can lead to transformations in sectors such as industry, mobility, local energy production, micro-grids, and district heating and cooling networks.

The recourse to intermittent energy sources, and the pursuit of synergies between energy vectors and between needs increase the complexity of current systems, which can include multiple production, conversion and storage technologies. Numerous technologies exist: solar panels, wind turbines, cogenerations, boilers, electrolyser, batteries, thermal storages etc. Hence, designing such systems is a difficult task and further conditions their economic and ecological interests. The complexity derives from the need to simulate and plan the system evolution over its lifetime (decades) while accounting for its operation every hour or minute. In fact, demand and energy production vary within days and between years. Mathematical programming is a performant tool to simulate, optimise, understand and design such systems.

The present work proposes two new approaches to optimise short-term and long-term operational decisions jointly. They answer practical questions such as "Should we produce more today and store for long-term needs?". In both methods, immediate decisions are detailed, while long-term decisions are aggregated in order to limit computation times and eventually consider imperfect forecasts. This work is part of a methodological framework that makes it possible to finely simulate the operation of a system and reach better designs.

Numerous modelling and optimisation methods exist for the planning of energy systems. This thesis also contributes to the state of the art with an original survey on these methods. Furthermore, it assesses the impact of several modelling assumptions on computation times and on the relevance of results. This can help future modellers to select appropriate methods or design new ones.