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Introduction 
 

 

Le changement climatique constitue un défi colossal. Parmi les impacts des activités humaines sur son 

environnement, le changement climatique est celui qui représente, en retour, la plus grande menace pour les 

êtres humains [1]. La taille de ce défi est aussi due à son universalité. Bien que chacun contribue et soit affecté 

par le changement climatique de manière inégale [2–4], chacun est partie prenante. La planète Terre avec son 

climat est notre plus grand bien commun, et l’ampleur du défi nécessite d’agir à toutes les échelles possibles 

[5]. 

Le constat scientifique est sans équivoque : atténuer le changement climatique nécessite une réduction rapide 

et conséquente des émissions de gaz à effets de serre [1]. Le principal levier consiste à changer notre manière 

de produire et de consommer de l’énergie [6]. En effet, cette énergie provient majoritairement du pétrole, du 

charbon et du gaz [7], sources émettrices de CO2. Pour réduire la consommation de ces ressources, trois 

stratégies existent :  

• La sobriété, qui consiste à changer nos modes de vie pour réduire notre besoin et consommer moins 

d’énergie finale (baisser le thermostat du radiateur par exemple). 

• L’efficacité énergétique, qui consiste à assurer un besoin en consommant moins d’énergie primaire 

(utiliser une chaudière à haut rendement, ou isoler thermiquement un logement par exemple).  

• Remplacer l’usage d’énergies primaires carbonées par des sources moins carbonées (utiliser une 

chaudière à bois plutôt qu’une chaudière consommant du fioul par exemple).  

Non sans oublier le premier point, nous nous concentrons maintenant sur les deux derniers. L’efficacité 

énergétique peut être améliorée en travaillant sur les processus qui consomment et/ou transforment l’énergie, 

en mutualisant les ressources et les besoins, en utilisant des énergies fatales ou de récupération, et en 

recherchant la complémentarité entre vecteurs énergétiques (électricité, chaleur, froid, gaz, etc.). Les sources 

d’énergies peu carbonées incluent l’énergie hydraulique, géothermique, nucléaire, solaire, éolienne etc. Ces 

deux dernières ne peuvent être pilotées, et leur production n’est pas toujours en phase avec la demande. Ce 

déphasage nécessite le recours à la flexibilité d’autres moyens de production (hydrauliques, nucléaires, 

fossiles), voire à des sources de flexibilité supplémentaires comme le stockage d’énergie [8]. 

Travailler sur l’efficacité énergétique et le remplacement d’énergies primaires carbonées par des sources 

moins carbonées peut se faire à plusieurs échelles. Cette thèse concerne l’échelle locale : industries, quartiers, 

villes ou territoires. En revanche, les méthodes citées et développées par la suite ne sont pas exclusivement 

réservées à cette échelle. Nous parlerons de systèmes énergétiques pour désigner les principaux composants 

technologiques qui, utilisés ensemble, permettent de produire, convertir, stocker et transporter de l’énergie 

vers un consommateur. Quelques exemples : un réseau de chaleur urbain, un processus industriel couplé à une 

production d’énergie locale, une production d’hydrogène et d’électricité pour alimenter une flotte de 

véhicules. 

La conception (ou l’éco-conception) de systèmes énergétiques passe par plusieurs étapes. La Figure 1 illustre 

les étapes typiques d’un tel projet, jusqu’à la gestion opérationnelle du système. Cette thèse concerne les étapes 

de faisabilité et de préconception. 
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Figure 1 : Etapes d’un projet de conception et d’utilisation d’un système énergétique 

La question de la viabilité de ces projets est une question complexe. Cette complexité provient d’une part de 

la diversité et de la multitude d’acteurs concernés, potentiellement dissociés : concepteurs, investisseurs, 

conseillers experts, opérateurs, fournisseurs, ou encore usagers. La dimension politique, d’abord présente pour 

des questions d’emploi ou d’accès à l’énergie est aujourd’hui essentielle pour considérer la dimension 

écologique dans de tels projet. Cette dernière est éminemment complexe, de par son étendue à toute la durée 

de vie du projet et de par la multitude d’indicateurs qu’elle englobe [9]. Simultanément, la durée de vie des 

projets, la diversité des ressources et les incertitudes quant à leur accessibilité future rend l’équation 

économique difficile à résoudre. Finalement, la complexité technique s’intensifie avec l’utilisation de 

ressources intermittentes ou fatales, et la recherche de complémentarité entre vecteurs énergétiques.  

L’étude technico-économique de systèmes énergétiques traite des deux derniers aspects, et peut intégrer une 

partie de la dimension écologique sous la forme de contraintes où de pénalités financières sur les émissions 

de CO2. Ces études nécessitent d’évaluer le fonctionnement du système sur plusieurs dizaines d’années pour 

trouver un compromis entre les coûts d’opération et les coûts d’investissement. Cette évaluation se fait en 

simulant / optimisant l’opération du système à chaque heure, avec un horizon d’anticipation plus ou moins 

long (un jour, une semaine ou un an par exemple). Il y a donc plusieurs échelles de temps à traiter. De plus, 

ces systèmes techniquement complexes peuvent inclure un grand nombre de composants, obéir à des règles 

de marché élaborées ou encore dépendre de paramètres incertains. 

La modélisation mathématique est donc nécessaire et fait l’objet d’un compromis difficile à trouver entre les 

temps de calculs pour fournir des solutions, la pertinence (ou précision) des indicateurs et la complexité du 

modèle. Cette dernière peut rendre son élaboration plus couteuse et son interprétabilité plus difficile. La 

simplicité du modèle est donc une qualité essentielle [10].    

L’objet de cette thèse est d’apporter des réponses à des questions au cœur de ces problématiques : Comment 

faire usage des méthodes disponibles pour l’étude et la planification technico-économique de systèmes multi-

énergies ? Peut-on compléter le panel existant avec de nouvelles méthodes pertinentes ?  

Ce manuscrit de thèse se présente sous la forme de plusieurs articles publiés ou en cours de soumission dans 

des journaux scientifiques. Les Chapitres 1, 2 et 4 correspondent à trois articles. Le Chapitre 3 est une note 

technique qui a été soumise avec l’article correspondant au Chapitre 2. Les chapitres sont donc rédigés en 

anglais, et introduits par un paragraphe en français. 

Le Chapitre 1, un état de l’art, dresse un tableau des méthodes existantes au travers de leurs utilisations. Le 

Chapitre 2 présente deux nouvelles méthodes pour évaluer et optimiser le fonctionnement de systèmes 

énergétiques. Les deux méthodes se distinguent de par leur capacité à utiliser des horizons d’anticipation longs 

(typiquement un an), tout en représentant dans le détail le fonctionnement du système à l’échelle horaire. Le 

Chapitre 3 teste ces deux méthodes sur un ensemble de cas élémentaires supplémentaires. Puis, le Chapitre 4 

illustre sur un cas d’étude l’impact d’hypothèses de modélisation et revient sur l’intérêt de complexifier un 

modèle pour améliorer la finesse des résultats, les temps de calculs, ou valider/invalider les hypothèses 

initiales. Finalement, la Conclusion résume les travaux réalisés pour répondre aux deux questions posées. Elle 
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complète également les réponses aux questions en synthétisant les options méthodologiques disponibles en 

fonction des objectifs de l’étude et des difficultés calculatoires rencontrées. 
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Chapitre 1 
 

 

Ce premier chapitre constitue l’état de l’art de cette thèse. L’état de l’art est basé sur une grille de 

lecture originale. L’objectif est de donner une vision large et synthétique des méthodes de simulation et 

d’optimisation qui peuvent être utilisées dans le cadre d’études technico-économiques. Ces études 

permettent de mieux comprendre, concevoir et planifier l’évolution des systèmes énergétiques. Cet état de 

l’art concerne en particulier les méthodes utilisées à l’échelle industrielle, urbaine, ou territoriale, bien que 

des méthodes utilisées à des échelles supérieures puissent être pertinentes à l’échelle locale, et inversement. 

Ce chapitre permettra de mieux se saisir des questions motivant les études, des hypothèses de modélisation, 

des algorithmes utilisés et des difficultés calculatoires engendrées. Ces aspects sont interdépendants et cet 

état de l’art permet aussi d’en comprendre les articulations. Ce travail est un préambule à l’élaboration de 

méthodes innovantes et pertinentes. Il est d’autant plus important que la littérature concernant la 

modélisation et la simulation de systèmes énergétiques est riche et foisonnante.  

 

L’article qui suit a été publié dans l’International Journal Of Energy Research : 

 

Cuisinier E, Bourasseau C, Ruby A, Lemaire P, Penz B. Techno‐economic planning of local energy 

systems through optimization models: a survey of current methods. Int J Energy Res 2020:4888–4931. 

https://doi.org/10.1002/er.6208. 

 

Les références bibliographiques de ce chapitre et des chapitres suivants sont synthétisées dans une seule et 

même section Bibliographie à la fin de ce manuscrit. De même, les annexes sont regroupées en fin de 

document. 

 

https://onlinelibrary.wiley.com/journal/1099114x
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Abstract:  

Energy system planning is a difficult task, since it involves long-term decision-makings with multiple 

dimensions: technical, economic, social, ecological, and political. The rise of distributed and multi-energy 

systems including new technologies has further increased this complexity. Techno-economic studies based on 

optimisation models have recently received much attention in the literature. They are essential to grasp energy 

systems complexity and provide decision support. This work targets methodological issues related to local 

systems while comparing them with methods used at larger scales. First, a new framework providing a 

comprehensive vision of added values and limits of optimisation models is presented. Then, the main 

methodological trends as well as several undertaken research paths are identified based on the analysis of 

more than sixty research papers. The review results are summarised in a complete and concise table. Finally, 

future research topics are discussed including the operational facets of investment optimisation models in case 

of high intermittent energy shares, flexibility issues and long-term operational decisions. The results provide 

useful information to modellers or researchers that look for appropriate and state-of-the-art optimisation 

methods, or aim to deepen current research paths. Hence, they will facilitate the planning and development of 

energy systems for the future.  

 

Highlights: 

-New framework to assess needs and methods for techno-economic local energy system planning 

-Detailed survey of more than sixty papers including original methodologies  

-Identification of main methodological trends, focuses and future challenges 

-Key insights to better understand various methods: their added value and limits 

  

Key words: Local energy systems, planning, optimisation, simulation, investment 
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Glossary 
 

Abbreviations 
 

Abbreviation Meaning 

AC Alternative Current 

ACh Absorption Chiller 

CAPEX Capital Expenditures 

CCHP Combined Cooling Heat and Power 

CE Capacity Expansion 

CHP Combined Heat and Power 

DER Distributed Energy Resources 

DES Distributed Energy System 

DH District Heating 

DHC District Heating and Cooling 

DR Demand Response 

EA Evolutionary Algorithm 

EC Electric Chiller 

EFOM Energy Flow Optimisation Model 

EPM Expansion Planning Models 

ESOM Energy System Optimisation Model 

EV Electric Vehicle 

FACTS Flexible AC Transmission Systems 

GA Genetic Algorithm 

GE Generation Expansion 

GHG Greenhouse Gases 

GSA Global Sensitivity Analysis 

HC Hydrogen Chain (electrolyser + H2 storage + fuel cell) 

HP Heat Pump 

ICE Internal Combustion Engine 

IE Intermittent Energy 

LP Linear Programming 

MC Monte Carlo 

MES Multi-Energy System 

MILP Mixed Integer Linear Programming 

MP Mathematical Programming 

MPC Model Predictive Control 

OPEX Operational Expenditures 

PWA Piece Wise Approximation 

PSO Particle Swarm Optimisation 

PV Photovoltaic cells (solar panels) 

RO Real Options 

SD Standard Deviation 

SES Smart Energy Systems 

ST Solar Thermal collectors 

TRA Trust Region Algorithm 

TS Thermal Storage 

UC Unit Commitment 

VPP Virtual Power Plant 

WT Wind Turbines 
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Definitions 
 

Expressions Definition used in this paper 

Local energy systems 

Individual buildings, industrial energy intensive or production sites, micro grids, 

stand-alone systems, smart energy systems, district heating and cooling, cities 

and territories below national scale. Such systems are often distributed and/or 

multi-energy systems e.g. involving electricity, heat and gas as means to store 

and convert energy. 

Techno-economic 

studies 

Studies where several technologies are modelled in a more or less simplified 

fashion and considered together to provide a systemic view. Used to perform 

economic evaluation or optimisation of the system where environmental 

externalities can be included as constraints, objectives or simply accounted by 

the mean of metrics derived from life cycle analysis for instance. 

A model A simplified representation of one or several aspects of reality. 

A formalism A formal language used to build models in a non-ambiguous way. 

A paradigm A coherent set of models used in conjunction. 

An algorithm A non-ambiguous sequence of instructions or operations to solve a problem. 

Simulation Use of a model to observe results of hypothetical actions on it. 

Optimisation 

Use of a model including decision variables to derive their optimal values when 

minimizing or maximizing one or several objectives under given constraints by 

the mean of algorithms. 

A method 

A set of coherent actions and processes to answer (a) given question(s) 

(including possible formalisms and algorithms definitions to perform simulation 

and / or optimisation). 

An approach A general trend of methods. 

A tool 
A computer program used to build models with a possible given formalism and 

method(s). 

Stochastic 

optimisation 

Where the optimisation objective is to maximize or minimise the expected 

outcome. 

Robust optimisation 
Where the optimisation objective is to minimise the worst possible outcome 

(with possible restrictions on over-conservative solutions). 
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1. Introduction 
 

Global environmental concerns are pushing us toward a cleaner life style in a general sense. Among these 

concerns, global warming stands as a major issue and most developed countries have set greenhouse gases 

reduction objectives after the Paris agreements [11]. The energy sector plays a major role in European 

emissions; hence, the energy transition towards clean and renewable energy systems is one of the keys to limit 

environmental impacts. The energy transition calls for long-term planning at national levels. One related 

challenge is to identify evolution targets to reach efficient systems with respect to the economics and the 

environmental. These systems must adapt to greenhouse gases emission constraints, as well as evolving 

economic, climate, regulation, technological landscape and load environments. Increasingly, national targets 

spread at local scales so local actors are facing need for long-term energy system planning as well: [12] and 

[13] explore such issues at the urban level. Local energy systems (see Definitions) cover a wide range of 

systems including buildings, industrial energy intensive or production sites, micro grids, stand-alone systems, 

smart energy systems, district heating and cooling, cities and territories below national scale. With the 

decentralization nature of energy systems through DER (Distributed Energy Resources) and with the 

emergence of SES (Smart Energy Systems) (described respectively in [14] and [15,16]), systems become 

promisingly more efficient and increasingly complex. They typically include more technologies and energy 

vectors to become “multi-energy”. This goes along with the penetration of IE (Intermittent Energies) that 

brings non-controllable and uncertain energy productions. 

Planning the design and the evolution of such systems is thus a challenging task. A way of providing decision 

support is through techno-economic studies (see Definitions). Techno-economic studies often rely on 

simulation or optimisation models (as defined in [17]).  This survey focuses on optimisation models (see 

Definitions), where several technologies are modelled in a more or less simplified fashion and considered 

together to provide a systemic view. The model is then used to perform economic optimisation of the system 

where environmental externalities can be included as constraints, objectives or simply accounted by the mean 

of metrics derived from life cycle analysis for instance. Figure 2 summarises the scope of this survey. 

 

Figure 2: Scope of this survey.  
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1.1 Modelling needs for energy planning 
 

In line with the energy landscape evolution, the modelling task is to represent local energy systems which 

faces intermittencies on both load and production sides. Hence, dynamic models are often privileged with 

hourly or sub-hourly time steps. These systems can include different energy carriers (electricity, gas, heat 

or biomass for example). Multi-energy systems offer greater opportunities to reach better technical, economic 

and environmental performances, as stated in [16,18]. Technologies include production, conversion and 

storage units from daily to seasonal storage and must be modelled with a suitable amount of details. 

Modelling specific market conditions might be of concern as well. Finally, the modeller must keep in mind 

various sources of uncertainties and can include them in the modelling (and optimisation) process. 

Uncertainties can lie in boundary conditions, in the model parameters or even in the model itself. They are 

due to uncertain data on emerging technologies, stochastic intermittencies or prospective long-term hypothesis 

for instance.  

Most of time, techno-economic studies aim to answer the following question: What investments to undertake? 

At an early planning stage, many design choices remain open, leading to complex optimisation problems. 

Moreover, planning studies can look forward up to fifty years. This raises the question of how the system 

should evolve with respect to the context i.e. what investments to realise now and in the coming years. Finally, 

the objective of such studies can be twofold: coming up with theoretically performant solutions for a given 

environment (e.g. [19]), or learn on innovative energy system behaviours to provide useful insights (see [20], 

[21] or [22] for instance). 

Therefore, there is a need for approaches that can properly represent local energy systems (as described above), 

and provide decision support for planning needs. In order to make the best use out of current methods or 

develop new ones, a clear view of current practices is needed.  

At this stage, a distinction must be made between tools (computer programs used to build models such as 

EnergyPlan, TIMES, OSeMOSYS or DER CAM for example), and their underlying modelling and simulation 

/ optimisation method (i.e. the formalism used and the possible optimisation algorithm).  

 

1.2 Literature on energy system planning 
 

Energy system planning studies have recently received much attention at local, national, and even up to 

European scale. Papers either focus on trying out new methods (e.g., [23,24]) or investigate specific case 

studies (e.g., [25,26]) or both. Large-scale studies address energy sectors interactions or focus on power 

systems. The latter include operational details [27]. Local scale studies cover a more diverse number of cases, 

including microgrids [28], stand-alone systems [29], multi or smart energy systems [30], DH (District Heating) 

[24] or DHC (District Heating and Cooling), single buildings [31] or production sites [32]. 

Many reviews on tools, methods and practices for planning studies can be found in the literature. They often 

provide guidelines to select an appropriate tool for various energy systems, based on overall criteria (see [33–

36]). The Open Energy Modelling Initiative community brings a general overview of current “open” 

approaches [37]. On the side of large-scale energy system planning, methodological reviews are available: 

[38] classifies approaches into three categories: optimisation, equilibrium and alternative. They spell out their 

added value and limits.  References [39], [40] and [27] focus on methods to include operational details in 

energy planning models including IEs, while [41] discusses electricity network models for energy system 

planning. They help providing clear vision and deep understanding of current practices and bring light on 

today challenges. On the side of local scale energy system planning, [12] reviews current urban planning 

practices and computer tools, they argue that building activities should be co-optimised with energy systems. 
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In [42], authors develop a general framework to review ESOMs (Energy System Optimisation Models) at the 

municipal level. Reference [43] gives a general review of six planning tools for community scale system. 

Reference [18] focuses on MES (Multi-Energy Systems), describing related concepts such as Energy Hubs 

(initially introduced in [44]), microgrids and VPPs (Virtual Power Plants). Tools, evaluation methodologies 

and performance assessment criteria are covered as well. A review on optimisation methods used in various 

energy fields is provided in [45]. Finally, [46] proposes a selection process to identify suitable tool at the 

community scale.  

 

1.3 Contributions 
 

To our knowledge, existing reviews and surveys on techno-economic planning of local energy systems 

partially analyse the underlying methodologies or are limited to generic tools and models, ignoring a part of 

the wide spectrum of approaches used in the literature.  

We propose a survey of current optimisation methods that includes original research works. The scope is 

described as follows. Systems considered are complex due to multiple energy carriers, technologies, IEs, 

storages and involve multiple operational and/or investment decisions. We choose not list all possible 

optimisation methods that could be used. Instead we look at current tools, generic models and original methods 

found in the energy planning literature that are actually in use to address these problems. Although this work 

is intended to bring light for local scale techno-economic studies, we broaden the scope to some methods used 

at larger scales that stand between bottom up investment optimisation models (as defined in [47]) like TIMES, 

and operational optimisation models like PLEXOS (we further refer to bottom up optimisation models). They 

can further inspire methodological improvements for local scale methods, especially since recent literature 

question their ability to capture operational details [39,48–53]. Such methods benefit from abundant literature 

and were long time-tested to perform energy system planning (including long-term planning over multiple 

year periods). Furthermore, they often rely on similar formalisms as methods used at local scales (i.e. 

mathematical programming). Although this work is not intended to be fully exhaustive, we hope to bring light 

on current practices by restricting the research to papers published after 2006 that present studies with existing 

or original methods. 

First, this paper delivers a comprehensive vision of possible added values and limits of optimisation models 

by the mean of an original framework. The framework identifies the different optimisation questions (i.e. what 

is to be optimised), the feedback level (i.e. how far it answers the optimisation question) and discusses the 

various modelling facets of energy systems (Section 2). We particularly reflect on the capability of a given 

method to accurately model local energy systems and provide decision support to the modeller. Second, we 

review more than sixty recent publications through the framework lens to identify main methodological trends, 

modelling and computational issues as well as specific state of the art approaches (Section 3). Third, reviewed 

papers are summarised in a complete and concise table, bringing substantial information on current literature 

(Table 3). Finally, possible research paths for the future are discussed. 
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2. The analysis framework  
 

This section presents the analysis framework proposed to perform the survey. The framework is summarised 

on Figure 3, which shows a schematic view of a techno-economic approach. First, we introduce the Energy 

System Investment Planning (ESIP) problem to characterize the optimisation problem underlying in energy 

planning studies (Section 2.1). Then we question the capability of a method to provide decision support for 

ESIP studies at local scales at each step of the process. Three axes are identified: the richness of the feedback 

provided by the method (Section 2.2), the relevancy and accuracy of the model considered (Section 2.3), and 

the optimality and robustness of the optimisation method (Section 2.4). The model relevancy and accuracy 

are broken up into several facets: the investment decision facet and the operational facet. The latter includes 

technological units and networks, spatial, temporal, operational decisions and market facets. This way we 

hope to provide a comprehensive vision to better grasp various approaches found in the literature. 

 

Figure 3: Summary of the analysis framework based on the approach processes. The approach capability to provide valuable 

feedback is questioned at each step. 

 

2.1 The Energy System Investment Planning (ESIP) Problem 
 

One way to provide decision support for energy system planning is to see it as an optimisation problem, where 

investment decisions in various technologies must be made. This analysis prism is common in energy system 

modelling, and optimisation methods have been increasingly used in the past decades (as shown in [45]).  

We define the general Energy System Investment Planning (ESIP) problem as follows. The energy can 

take various forms: electrical, thermal, kinetic, potential (chemical, gravitational, etc.). The ESIP problem 

comprises various energy systems in a broad sense, including MES, microgrids, SES, DHC, stand-alone 

systems, power systems, DER, single buildings, industrial energy systems, etc. These systems classically 

involve energy production, storage, conversion and consumption units. The investment related problem can 

address various sub-questions:  
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• “What technology to invest in?”, if several technologies are in competition or can be used in 

symbiosis; 

• “How much?”, when one must decide the installed capacity of a technology; 

• “Where to install it?”, if a detailed spatial representation is used; 

• “When to install it?”, when considering the system design evolution or in a Real Option (RO) 

thinking (see [54]).  

We respectively refer to the screening, the sizing, the sitting and the timing (with possible RO thinking) 

problems. ESIP problems can be structured into two stages: the investment facet and the operational facet. 

Since finding a good design is tightly linked to the way the system will be operated. In other words, a balance 

has to be found between CAPEX (Capital Expenditures) and OPEX (Operational Expenditures). Hence, there 

is a need to simulate how the system will operate to assess if a design solution is of interest (see Figure 4). 

Since the main objective is to optimise investments, the more accurate the operation simulation, the better the 

resulting investment solution. 

 

Figure 4: The need for operation simulation when optimising investment decisions. 

*Energy System Investment Planning 

 

2.2 The feedback levels from simulation and optimisation 
 

We first make a difference between the different feedbacks that a method can provide to the modeller. At the 

lower stage, the method can only feedback the system operation simulation. It must be clarified that 

optimisation models can be used as simulators (in this case they optimise operational decisions only). We can 

then talk about simulation models in terms of how they are used, while they are optimisation models in terms 

that they include optimisation variables. Although simulation can already provide key insights for energy 

system planning (investment optimisation can be done “by hand” through experimental decisions), it has a 

limited interest when it comes to finding an optimised design within a large search space. This is the case of 

the EnergyPlan tool [55] or the Balmorel tool used in mode Balbase1 or Balbase3 [56] for instance. As a 

consequence, simulation models are sometimes used as black boxes (so called “slave models”) along with 

metaheuristics to optimise the system design and sometimes the system evolution (as in [57]). Such 

metaheuristics optimisation algorithms can also directly be included in the energy planning tool as the iHOGA 

tool [58] or the Odyssey tool [59]. Hence, a step further is to optimise investment decisions.  

The investment optimisation can be done considering an existing system or starting from scratch. We also 

distinguish between static, dynamic myopic and dynamic anticipative investment optimisation (as 

described in [48], see Figure 5).  
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Figure 5: Illustration of different feedback levels when optimising investment decisions. Dynamic optimisation bring further 

insights, dynamic anticipative optimisation implies further computation challenges. 

*Optimisation 

 

In the static case, a single investment decision stage is optimised. A single target year is often considered as 

representative of the system lifetime (e.g. [56] and [60,61], references further discussed in Section 3). Such 

approach can also be referred as a “snapshot” investment optimisation [62]. 

One can also optimise the investment in a dynamic fashion over several years and investment stages. This 

enables to adapt the system design under an evolving environment (loads, jurisdiction, markets, weather, etc.). 

Each investment decision stage considers previous investments as inputs. The investment optimisation can be 

myopic, which is equivalent to running static investment optimisations iteratively. This approach is used in 

the ReEDS tool [63], the Perseus tool [64] and the Balmorel tool [56].  

In contrast, dynamic investment optimisation can be anticipative, i.e. all investment decisions are optimised 

jointly. Large-scale, multi-sectors energy models like TIMES [65] (or so called “equilibrium models”) rely on 

such approaches. However they can be seen as simulation models as pointed out in [38]. Indeed, the 

optimisation formalism is actually used to simulate the energy system economics under a given scenario. This 

way, energy policies can be assessed. At smaller scales, investment optimisation directly supports decision-

making. Therefore, dynamic investment optimisation can bring further insights compared to static approaches 

as argued in [66]. 
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The leap from static to dynamic myopic investment optimisation is quite straightforward from the problem 

complexity perspective. In contrast, dynamic anticipative investment optimisation introduce a more 

challenging computational burden. Running dynamic myopic investment optimisation might lead to lock-in 

situations where an investment was made at a particular investment decision stage that is obsolete in the future, 

implying sink costs. Comparing solutions from a dynamic myopic investment optimisation with multiple static 

investments can reveal such lock-in risks. Dynamic anticipative investment optimisation concludes on the 

optimal investment pathway to follow. Hence, the latter potentially provides a higher feedback level to the 

modeller. 

 

2.3 The model relevancy and accuracy: keys to meaningful assessments 
 

Techno-economic studies build on their ability to model technologies in a systemic perspective to reach 

performant and technically feasible solutions. Hence, the ability of the model to accurately represent key 

aspects of technical reality is of high relevance to raise valuable insights. We further describe accuracy levels 

for both investment and operational facets. 

 

2.3.1 The investment facet 
 

The investment facet represents how investment decisions are made and how it affects investment costs and/or 

equipment performances. 

Models based on continuous variables are limiting, although they can be suitable for technologies such as 

batteries, PVs (Photovoltaic cells) or when considering large-scale capacities. Including discrete decisions 

opens larger modelling possibilities. Size or scale effects on investment costs can then be modelled (sometimes 

referred as “lumpy investment”, e.g. [67]). One can also include a size dependency on conversion 

performances or minimum working power (see [23] for example). Finally, long-term learning effects can be 

relevant in case of dynamic investment optimisation over multiple years [67].  

 

2.3.2 The operational facet 
 

The operational facet represents how the system dynamically operates. We distinguish several facets: the 

techno-economic, the spatial, the temporal facets, and the way operational decisions and markets are modelled. 

They are further detailed below.  

The techno-economic facet, including technological units and networks 

Technology units must be described with a suitable level of detail. Table 1 shows a quick summary of aspects 

that can be included with continuous and discrete variables under a MP (Mathematical Programming) 

formalism. Discrete variables provide more modelling options but tend to increase computation costs. Since 

they bring more combinatorial complexity in the optimisation problem. UC (Unit Commitment) models 

illustrate the variety of technological operational features that can be envisaged using linear and discrete MP 

formulations (see [69–73], further discussed in Section 3). In [23], authors also use some accurate modelling 

features (size dependencies of component efficiencies). Different MP formulations can be used to model 

similar behaviours. Tight and compact formulations can be found in the literature (see [74,75]): they ensure 

higher computational efficiency. 
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Table 1: Technology units and network models under mathematical programming formalism. Examples of aspects that can be 

modelled with continuous and binary variables. 

Variables 

Needed 
Technology facets 

Electric 

network 

facets 

Heat network 

facets 
Others facets 

Continuous 

Maximum working power 

Linear costs 

Multiple inputs or outputs 

Maximum ramps up and down 

Ramp costs and overconsumption 

Curtailment on IEs, including costs 

Planned production or maintenances 

Constant efficiencies 

Unmet load costs 

Ramping flexibility requirements 

Spinning reserves 

Linear emissions or environmental 

impacts 

Flow capacity 

Linear losses 

DC 

approximation 

[41,76] 

Flow capacity 

with constant 

temperatures 

and linear 

losses 

 

Variable 

temperature 

and constant 

mass flow 

[71,77]. 

Energy contracts: 

utility purchase, 

injection 

 

Systemic 

constraints: 

ramping 

flexibility 

requirements, 

spinning reserves, 

linear emissions 

or environmental 

impacts 

On/off status 

(binary 

variable) 

Minimum working power 

Fixed working costs or consumption 

Minimum on and off times 

Fixed working power 

Minimum working temperature 

 

More specific 

utility purchase or 

injection rules 

(price thresholds 

for instance) 

Multiple status 

(binary 

variables) 

Piecewise efficiencies or costs 

(continuous variables can be used under 

proper convexity/concavity conditions) 

Discretized working powers 

AC 

(Alternative 

Current) 

approximation 

[78] 

 

Start-up and 

shut-down 

status (binary 

variables, on/off 

status are 

needed) 

Start up or shut down costs or 

overconsumption (continuous variables 

can be used under proper 

convexity/concavity conditions) 

Maximum number of start up or shut 

down 

Maximum start up or shut down ramps 

 

 

Networks are often modelled as linear energy flows formulations, including flow capacities, and sometimes 

linear losses. Non-linear aspects of electric networks can be approximated with a DC (Direct Current) linear 

approximation under certain assumptions including small voltage angle differences, high resistance / 

reactance ratio, and per-unit system voltage magnitudes close to 1.0 (see [78]). DC approximation is often 

used as a compromise between accuracy and computation burden, especially for transmission systems [41]. 

However, DC approximation assumptions become invalid for distribution systems [76]. Non-linear 

formulations are then needed, involving more computational burden under MP formalisms [78].  

Concerning heat networks, linear approximations with variable temperatures and constant mass flow were 

proposed (e.g. [71,77]), even if such considerations can show little impact for low temperature levels [77]. 

Linear formulations with constant temperatures are often used [24,28,61,72] (references further discussed in 

Section 3). Efficiencies can still be modelled as functions of supply and return temperatures so that the latter 

can be externally optimised [79]. More accurate formulations also involve non-linear equations: in [80], an 

approximated linearized optimisation model coupled to a non-linear simulation model is used. 
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The spatial facet 

The spatial facet usually ranges between single node (thus ignoring networks) and multi-nodes 

representations. Although this might be of little concern for small-scale systems, it becomes an issue when 

spatial aggregation is needed for computational or data availability reasons. At the same time, appropriate 

spatial resolutions are needed if one wants to capture network related issues or the distributed nature of solar 

and wind generation for instance. Reference [27] discusses this issue for large-scale power systems. This 

aspect will be further addressed in Section 3.2.4. 

 

The temporal facet 

When it comes to model the system dynamics, a temporal framework is needed. For energy planning studies, 

a one-hour time step is used most of time, capturing energy load and production fluctuations while keeping 

reasonable data set sizes. We further distinguish models based on a full time horizon (usually a year), and 

models based on aggregated data sets. 

Aggregated data sets were introduced to reduce the operational problem size, and thus the problem complexity. 

To this effect, discrete operational decisions involve discrete variables proportionally to the length of the time 

horizon. Duration curves, time slices, typical days or weeks (i.e. representative periods) are commonly 

used. The duration curve is the most restricting method since it does not retain chronology between time 

steps (a duration curve represents the given curve sorted by decreasing ordinate values). The other methods 

rely on a system optimisation over a smaller data set considered as representative of the system operation over 

its lifetime (usually some days or weeks). In a sense, it is a hypothetical extension of the full time horizon 

optimisation over a single year. Time slices sometimes include time steps of variable size depending on the 

time of the day (up to six hours steps in the night, one-hour steps in the peak periods). Typical days or weeks 

usually keep a one-hour time step.  

Methods for building these aggregated data sets are numerous. Reference [49] compares the integral method 

(aggregation by average, a classic time slices approach) with the method consisting of selecting representative 

days or weeks in the whole data set with a given weight. Methods to select appropriate periods and assign 

them proper weights were recently discussed and designed in the literature (see [81–87]). Limits of such 

methods were also pointed out: [88] highlights concurrency and continuity problems. Concurrency problems 

arise when correlations between different time series are lost in the process. Continuity problems concern 

possible lack of consistency of the system state between two time steps. In [85], authors state that consistent 

criterion for selecting representative periods is lacking, although the duration curve approximation is often 

used.  

The number of representative periods to consider is a trade-off between representativeness and computational 

burden. References [23] and [89] explore this aspect on a case study. Twelve periods are often used in ESOMs 

(as mentioned in [27,39]), while forty-eight were considered necessary in [90]. In [19], it is shown that a 

higher resolution is needed when looking at low CO2
 emissions systems. 

The temporal representation becomes more challenging if one wants to take into account long-term (i.e. 

seasonal) constraints or storages. Since, representative periods retain chronology within themselves but not 

between themselves [27]. Thus it becomes harder to consider the long-term dimension without modelling the 

full time horizon. This aspect will be further discussed in Section 3.2.5. 
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The operational decisions facet 

Operational decisions can be made under two main different methods / paradigms. The first one assumes that 

the system operational decisions follow pre-defined expert rules. Such rules take the following form: “if the 

battery state of charge is above a certain threshold: discharge it in priority to meet the load” for instance 

(strategy I in [91]). Approaches relying on this paradigm are latter called simulation-based optimisation 

approaches. They often come with the “myopic assumption”, meaning that operational decisions are made 

without considering the future of the system and its environment. It ignores load or weather predictions for 

instance, which can be limiting. In addition, such rules can be difficult to write for complex systems and can 

lead to sub-optimal operational decisions. The second paradigm is to leave the operational decisions in the 

hand of optimisation algorithms. This is often performed through MP formalism and corresponding 

algorithms, although it can also be done by other methods like dynamic programming or metaheuristics. This 

approach often relies on the “perfect foresight assumption”, meaning that the optimisation algorithm makes 

decision with perfect knowledge of the future like loads and weather forecasts. When looking at systems where 

operational decisions are supposed to be made by a single stakeholder, this can refer to MPC (Model Predictive 

Control). For large-scale, multi-sectors energy models like TIMES, they represent energy markets operations. 

Indeed, they are often supposed to maximize the total surplus or minimise overall costs, which simulates the 

market behaviour under perfect competition (and perfect foresight) assumptions. In both cases, the perfect 

foresight assumption is limiting since it overestimates weather, load and market forecast capabilities.  

 

The market facet 

Markets or energy contracts can be more or less challenging to include in the model. Besides, what is meant 

by “market facet” strongly differs between large scale and small scale energy models.  

For large scales, multi-sectors models like TIMES, market mechanisms are captured by the MP formalism 

and associated optimisation methods to derive optimal transactions between many actors. Relying on economy 

theory, such models can simulate a (partial) supply-demand equilibrium under the perfectly competitive (and 

perfect foresight) market assumptions. They consider price-elastic end-use demand curves as well as supply 

curves (using convexity/concavity properties for linearization [65]). The total surplus is maximised so the 

market equilibrium is reached. Others consider fixed energy demands and satisfy them at minimum costs, see 

[92] for instance. More detailed market representations including multiple actors and / or imperfect markets, 

or day-ahead and balancing steps involve multi-level problems that can be much more challenging to solve 

as described in [93].  

At local scales, when stakeholders access energy markets, incentives or energy contracts should be explicitly 

modelled. Linear formulations can easily capture constant or variable energy prices on the spot market. 

Including discrete variables can further model annual utilization times or threshold effects for example. Here 

again, more detailed models lead to multi-level problems (see [94], Section 3.2.3 for instance). 
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2.4 Optimality and robustness: including uncertainties 
 

When relying on optimisation approaches, the modeller often needs to assess the robustness of obtained 

solutions (through sensitivity analysis). A step further is to look directly for robust solutions through the 

optimisation process. By “robust” one can have in mind that “the solution remains good” when the model 

inputs are changed. “Good” can be defined in two possible ways: good in average or good in worst cases. The 

first can be achieved by stochastic optimisation, the second by robust optimisation. Both objectives can be in 

competition: hybrid methods help to reach trade-offs. With more hindsight, one would like the obtained 

solution to “remain good” in real life conditions. While the model inputs correspond to parametric 

uncertainties, the latter considerations also include structural uncertainties as defined in [95] (see also 

endogenous and exogenous uncertainties as defined in [96]).  

We further refer to three types of uncertainties: those related to the purely operational problem (optimise 

operational decisions for a given design), those related to the investment problem (with operation simulation) 

and the lasts concerning the system environment evolutions. A quick overview is given in Table 2 including 

methodological options observed during the survey process (Section 3). More details are given Sections 3.2.1 

and 3.2.2. Risk based methods are reviewed in [97]. 

 

Table 2: Examples of uncertainties related to techno-economic planning of energy systems (problem-based classification). 

Uncertainty type 

Dynamic investment 

problem (system 

environment evolutions) 

Static investment Problem 
Purely Operational 

Problem 

Description 

Load trends, jurisdictions, 

technology breakthroughs, 

costs and performances 

(learning effects), energy 

costs & weather trends. 

Operational & investment 

facets modelling (structural). 

 

Technology parameters 

(OPEX, CAPEX, lifetime, 

replacement costs, 

efficiencies), input data series 

(parametric). 

Forecast errors (loads or 

weather) & technology 

failures (parametric). 

Time scale Several years to tens of years One year to several years Daily to one year 

How they can be 

considered 

(parametric 

uncertainties) 

Mainly deterministic 

scenario runs [98]. 

Uncertainty propagation or 

sensitivity analysis. 

Monte Carlo scenarios with 

stochastic / robust 

optimisation) (see Section 

3.2.1). 

Monte Carlo scenarios with 

two-stage stochastic 

optimisation (for forecast 

errors) (see Section 3.2.2.). 

 

For the purely operational problem, the goal is to be as performant as possible by reducing uncertainties and 

including them in the optimisation process. In particular, methods including stochastic optimisation were 

utilised to include forecasting errors (see [94] for instance). When moving to the investment problem, the issue 

for the operational facet is different: it should represent how the system will be operated, including forecasting 

errors. It was recently argued that energy planning optimisation approaches should include the fact that 

operational systems, especially with high IE shares, face uncertainties [27,93]. Moving from the perfect 

foresight to the imperfect foresight hypothesis by modelling the actual forecasting errors reduces structural 

uncertainties. Parametric uncertainties for investment problems can be addressed by various means (see Table 

2). They include uncertain technology parameters and input data series like solar and wind generation that 

show significant inter-annual variability [88]. Finally, uncertainties related to the system environment 

evolution (sometimes referred as “deep uncertainties”) are most of time ignored or considered by testing 

different deterministic scenarios, although recent search investigates ways to better account for it (see [98]).  
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3. Survey of optimisation methods for energy system planning 
 

We propose a survey of current optimisation methods for local energy system planning. As discussed in 

Section 1.3, we include a short overview of bottom up optimisation models used at larger scales. The survey 

is summarised in Table 3.1 to 3.14 (end of Section 3). These tables classify several ESIP studies performed 

with generic or specific methods. All papers discussed in Section 3 that can be found in Table 3.1 to 3.14 are 

annotated by *. More generic tools and models are also cited for illustrative purposes as well as further 

references. This survey is intended to be complementary with previously cited reviews that discuss other 

criteria (sector or technologies considered, availability, openness or development platform for instance) or 

consider different scopes (see Section 1.2.2). 

The organisation of Section 3 is summarised in Figure 6. The following information is retained from each 

paper: the system considered, a general description of the simulation / optimisation method, the type of 

problem(s) considered (sizing, sitting, screening, timing), the investment feedback level, the investment facet, 

the operational facets and how uncertainties where considered (or not). Since this survey focuses on ESIP 

problems, the term “uncertainties” here refers to parametric uncertainties related to the investment problem 

(as defined in Section 2.1). The operational facet is broken up into further categories as discussed in Section 

2.3.2. Key aspects of techno-economic facets are raised (original formulations, use of integer variables, non-

linearities, etc.). 

 

 

 

Figure 6: Description of the organisation of Section 3: how to read it with Table 3. 
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Figure 7 gives a simplified summary of the analysis framework described in Section 2 on a concise spider 

graph. Spatial considerations, treatment of investment uncertainties and representations of markets are 

excluded for sake of clarity. The different “levels” on the graph are defined by a general order of interest for 

local energy planning through techno-economic studies. Main identified methodological trends are mentioned 

in Section 3.1 and their typical capabilities are displayed on Figure 8. As mentioned in Section 1.3, methods 

used at larger scales were included in the analysis for their potential interest at local scales. Clearly, each 

methodological trend can be more or less suited depending on the scale and the aim of the study. Here the aim 

is to understand and summarise what they generally take into account and how they would perform within the 

scope of local planning studies. Methodological capabilities shown in Figure 8 represent a typical use of 

corresponding approaches (illustrative references are provided).  

 

 

 

 

Figure 7: Schematic simplified visual of the proposed framework (excluding spatial, market facets and investment uncertainties). 
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Figure 8: Illustration of the four "main trends" in energy system planning within the simplified framework. 

* Linear Programming 

** Mixed Integer Linear Programming 

 

 

Such capabilities can be further extended on various aspects like uncertainties, spatial and temporal 

granularities, or markets modelling for instance (see Section 3.2). However, it could be more or less 

challenging depending on the chosen approach. For instance, extending the investment options search space 

might be more impacting for master investment algorithms like metaheuristics, but the later can be more suited 

to explore discontinuous options. On another hand, extending time and space granularity, increasing the 

information feedback level, or solving multi-level problems is generally more challenging for MILP (Mixed 

Integer Linear Programming) than LP (Linear Programming) approaches since MILP includes integer 

variables (as a general rule of thumbs: the more integer variables the more challenging the problem is to solve). 

Finally, purely operational MILP approaches can further push the accuracy boundaries since the operational 

problem could be temporally broken up within the rolling horizon approach. 

 

3.1 Trending main methodological approaches 
 

3.1.1 Bottom up optimisation approaches for large scale systems (Table 3.1 to 3.4) 
 

Energy planning studies for large-scale systems (national and above) are numerous. Several approaches can 

be seen in the literature. Main trends of bottom up optimisation approaches used at large scales are summarised 

below. 
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Operational MILP approaches (i.e. UC models, Table 3.1): 

Purely operational MILPs are usually quite accurate (see Figure 8). They optimise operational decisions over 

several hours or days. They are often used within a rolling horizon approach to simulate a full year or to update 

available information for purely operational purposes. We typically refer to well-known UC models 

(sometimes called UCED for Unit Commitment and Economic Dispatch) like PLEXOS (e.g. [99]*) or 

LUSYM [73] where UC decisions are included (start-up and shut-down decisions). The SILVER model [100]* 

includes a price setting module and a real time optimal power flow module. These models are mostly used for 

power systems but also for DH systems (see [74] for instance). In [101]*, authors consider wind generation 

and load as stochastic inputs within their UC model (Monte Carlo scenarios for day-ahead decisions); they 

formulate a MILP with a rolling horizon approach to simulate the system operation. The EUCAD model [102] 

was used with POLES (a top-down simulation model at global scale) to consider power systems operations. 

Such models can be used as simulators when it comes to investment decisions. 

LP approaches (Table 3.2): 

LP approaches (see Figure 8) are typically used in energy modelling tools like TIMES [65] (a complete 

implementation of the TIMES model at the European scale can be found in [103]), PERSEUS-RES-E [64]* 

or open source licensed tools like OSeMOSYS [92]. The OSeMOSYS model was used in [49] and [104]*, 

some improvements are documented in [105–107] and [108]* for instance. OSeMOSYS was recently 

upgraded to perform stochastic uncertainty analysis by the mean of Monte Carlo simulation (uncertainty 

propagation) [96].  ReEDS [109] is another example of such modelling tools, although it has a stronger focus 

on the electric network facet (with a DC approximation) with high spatial details. These models are often used 

with a time slice or representative period approach, but full time horizon can be considered as well [104]*. 

The Balmorel tool [56] proposes four running modes which corresponds to different trade-offs between 

temporal resolution and feedback level.  

Such models are typically referred as ESOMs, EPMs (Expansion Planning Models) or EFOMs (Energy Flow 

Optimisation Model) for general energy systems (from energy extraction to end-uses) and CE (Capacity 

Expansion) or GE (Generation Expansion) models for power or DH systems. We further use the ESOM & CE 

designations. LP approaches are most of time used for large-scale systems even if they can be adapted for 

smaller scales: the EnergyScope TD model [110] was recently designed for urban and regional energy 

planning studies. It models multiple energy sectors and targets fast computation times to stay suited for 

uncertainty applications.  

LP approaches consider load or weather predictions; they usually rely on a perfect foresight hypothesis. Some 

of these tools or models perform myopic dynamic or static investment optimisation like ReEDS or 

EnergyScope TD respectively. On the other hand, others like TIMES or OSeMOSYS can easily optimise 

several investment decision stages over multiple decades in a predictive fashion. Hence, they can show how 

the system optimally evolves along with its environment (jurisdiction, load and energy prices trends, etc.) so 

that decision makers can experiment various energy policies. Finally, one advantage of the LP approach is the 

easiness of performing a sensitivity analysis by the interpretation of dual variables. In the case of ESOMs 

simulating supply-demand equilibrium (see Section 2.3.2), one can derive marginal value pricing of 

commodities for instance [65]. 

Main drawbacks are poor modelling accuracy, especially due to the restriction to linear equations. The lack of 

technical accuracy of large scale LP models has been recently discussed [39,48–53] as well as options to 

overcome such issues like soft or hard link between ESOMs / CE models and UC models. Reference [69] 

compares a soft-link model with an integrated model and argue that short-term constraints should not be 

neglected. In [111]* an extended TIMES model at a national level is soft-linked with a residential building 

stock and energy demand model and with an optimisation model for pre-dimensioning decentralized heat 

systems. Another soft-linking example can be found in [99]*.  
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MILP approaches (Table 3.3): 

MILP formulations (see Figure 8) can also be used to optimise investment decisions at large scales 

[61,69,112]*. The IMRES model [70]* is an example of such approaches. MILP formulations can be seen as 

a form of trade-offs between ESOMs / CE models and UC models [16]. They usually perform static or myopic 

dynamic investment optimisation and use aggregated data (representative days for instance) to reduce 

computational burden. Indeed, computation times can be very high for large systems or for detailed models. 

For instance, the MILP used in [70]* takes around ninety hours to converge (the optimality gap was not 

specified).  

MILP investment approaches are often used at smaller scales: more details are given in Section 3.1.2. 

The case of Energy Plan (Table 3.4): 

Previous approaches rely on a MP formalism. The Energy Plan tool follow a different paradigm: it is an energy 

simulation tool where operational decisions are made based on pre-defined expert rules. Alone, Energy Plan 

cannot optimise investment decisions. It was used by [152]* as a black box with a metaheuristic to optimise 

several investment decisions stages in a dynamic anticipative fashion (see Figure 8). Energy Plan can perform 

full year operation simulation at the hourly level; however, the operational decision facet of the model does 

not take weather or load predictions into account.  

Similar approaches are used at smaller scales; see Section 3.1.2 for more details. 

 

3.1.2 Approaches at local scales (Table 3.5 to 3.7) 

 
 

MILP approaches (Table 3.5): 

MILPs are very popular in the literature, especially at local scale. They were used for various cases including 

power systems, DES (Distributed Energy Systems), buildings, MES, etc. Problems studied include screening, 

sizing and sitting questions. The use of binary or integer variables is justified by various aspects for both 

operational facet (see Table 1) and investment facet. DER CAM is a commercial tool based on this approach. 

It is used in [113]* and [28]*, another example can be found in [114]. Open licensed tools like OMEGAlpes 

[115] and Oemof [116] also rely on MILP formulations.  

As LP models, investment MILP models consider load or weather predictions, and rely on perfect foresight 

hypothesis. They usually perform static investments (a single investment optimisation stage) and use 

aggregated data (typically representative days) to reduce computational burden. See [25,30,117–119]*. On 

the other hand, [120]* uses a MILP formulation to perform dynamic anticipative investment optimisation with 

a high level of technical details. The temporal facet is restricted to two typical days per year to limit 

computational costs. Another example of dynamic investment optimisation based on a MILP formulation can 

be found in [66], where both myopic and anticipative approaches are tried out. A main drawback of this 

formalism is the restriction to linear models as pointed out in [121]. Here, authors compare results from a 

MILP formulation for the system sizing with operational performances based on a detailed dynamic thermal-

hydraulic model. They find an error of 5.1% in the energy mix.  

MILP models were also used at larger scales: see Section 3.1.1. 

 

 

 



3. Survey of optimisation methods for energy system planning 32 

 

Master investment algorithms with slave operational models (Table 3.6 and 3.7): 

A possible approach is to separate the investment and the operational problems with master algorithms which 

optimise investment decisions by the mean of a slave operational model. Such master algorithms often rely 

on exhaustive search, heuristic or metaheuristic approaches. Metaheuristics enable various investment 

considerations (with discrete decisions); however the search space of investment options is a sensitive 

parameter that affect computation times.  

Simulation models coupled with pre-defined expert rules for operational decisions are often used as slave 

operational model (Table 3.6). We can refer to simulation-based optimisation models. PSO (Particle Swarm 

Optimisation) or GA (Genetic Algorithm) are commonly used metaheuristics (e.g. [32,122,123]*). Examples 

of tools are: Energy Pro [124]*, HOMER [125], iHOGA [58] and Odyssey [59]. The two last include their 

own master investment optimisation algorithm. Main advantages are quick simulation times, thus easiness of 

considering full time horizons (one year or more with hourly or sub-hourly time steps) and potentially highly 

accurate techno-economic facets (non-linear). Quick simulation times enable trying out different investment 

decisions rapidly [124]*. Reference [126] provides a review of such approaches. Their main drawback is that 

they often impose a myopic operational facet. 

In [127]*, authors propose an approach based on artificial neuronal networks to speed up calculations further. 

A surrogate model (an artificial neuronal network) approximates a simulation model (physical model with 

pre-defined operational rules). A steady e-state evolutionary algorithm optimises sizing decisions and uses the 

surrogate model to build a Pareto front which is with the original model in a second stage. The author first 

trains the surrogate model on several data sets and re-trains it for data sets with different characteristics (load, 

solar and wind data). The system architecture is kept constant.  Although computations were sped up, costs 

and benefits of such approaches should be assessed while keeping in mind training cost relative to the 

computation time saved (simulation models with pre-defined operational rules usually already run fast). 

Master investment algorithms can also be used with MP approaches for operational simulation (see Table 3.7).  

However, this approach is less common and was not reported in Figure 8 for sake of clarity. Reference [128]* 

uses a master algorithm for sizing decisions (efficient global optimisation based on the Kriging method) with 

various black box models for operation simulation and optimisation. This way they compared TRA (Trust 

Region Algorithm), PSO, dynamic programming and a MILP (with a simplified storage representation) 

coupled with the TRA (with the original storage representation). Finally, the KEO model [129]* is a UC model 

that is soft-linked to an energy-economic model built on Excel  to evaluate long-term scenarios for both power 

and district heating systems. 

 

3.2 Approaches with specific focuses 
 

Section 3.1 aimed to depict main trends in energy system planning optimisation approaches. Many of the 

reviewed papers extend these approaches or develop alternative ones to focus on particular issues (including 

uncertainties, market mechanisms, spatial and network details etc.). These papers are presented here, including 

concise descriptions of their optimisation approaches. 

 
3.2.1 Including investment parametric uncertainties in the optimisation process (Table 3.8 and 3.9) 
 

Without timing optimisation (Table 3.8): 

MP formulations were used to account for parametric uncertainties related to the investment problem. In 

[130]*, authors performed a stochastic optimisation of a stand-alone power system based on multiple daily 
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scenarios for load and wind production with a MILP formulation. A MILP is also used in [26]* to account for 

uncertain solar generation over typical weeks. In previous cases, problems are reformulated in their equivalent 

deterministic version. In [131]*, uncertain load, solar and wind as well as OPEX and CAPEX are considered. 

They used an operational LP model with a rolling horizon for operation simulation. Architectures and sizing 

are then investigated over Monte Carlo scenarios by exhaustive search. Finally, [19]* uses a single MILP with 

typical days coupling methods. They first perform a sensitivity analysis on temporal resolution to derive the 

number of typical days needed. They later characterize uncertainty sources to derive scenarios on loads and 

PV generation. They optimise the system design for each scenario and evaluate the design operational 

performances on every other scenario. They define robustness and optimality metrics and compute their 

correlations with the maximal daily thermal demand and annual energy demand. This way they define a 

“robust” scenario on which the system design is finally optimised and compared with “average” and “worst 

case” scenarios.  

In another paradigm, [132]* uses the Odyssey simulation tool as a black box and perform a hybrid robust and 

stochastic optimisation of a stand-alone power system. Most influential parameters are first determined with 

a general 2-stage sensitivity analysis (based on the Morris method and the Sobol sensitivity indexes); the 

system size is then optimised with a GA (hybrid stochastic/robust optimisation with selected uncertain 

parameters). More details can be found in [133]. 

At a larger scale [60]* develops a robust formulation while considering a target year with a monthly time 

steps. Here again, a GSA (General Sensitivity Analysis) helps deriving the most influential parameters. The 

proposed robust MILP formulation includes protection parameters that can be tuned to avoid over-

conservative solutions: the formulation of [134] is extended to account for multiple uncertain parameters 

multiplying single decision variables. 

 

With timing optimisation (RO approaches) (Table 3.9): 

Other methods also consider such uncertainties with a focus on the economic benefits to perform investment 

timing flexibility: they allow differing investments as uncertainty decreases (to avoid sink costs for instance). 

These methods rely on the so-called RO approach. In [53]*, authors optimise battery and generators capacity 

along with transmission lines and installation of FACTS (Flexible AC Transmission Systems) devices with a 

stochastic/robust multi-stage MILP. They perform anticipative dynamic investment optimisation over a PV 

prices scenario tree. In [135]* a method is proposed to optimise investment decisions for a DES with energy 

prices and demands evolving under uncertainty. They start by performing an exhaustive search for the system 

design using a MILP to simulate the system operation (under all possible demand and prices scenarios). In a 

second step, they formulate a multi-stage stochastic MILP to optimise the investment decisions timing using 

the pre-computed operational costs. The RO thinking is also applied in [136]*. Here again, the investment 

decisions timing is optimised. The investment facet is built in an original way: investments decisions follow 

pre-defined expert rules which parameters are optimised with a multi-stage stochastic MILP (solved with a 

Lagrangean decomposition). The authors point out that such approach might be more intuitive for decision 

makers who rely on heuristics rules rather than on advanced mathematical concepts. They apply it to a hybrid 

waste-to-energy system with a simple static economic facet. Finally, [137]* uses a multi-stage stochastic LP 

model to optimise investments in power systems with unfolding uncertainty on gas prices, they also rely on a 

static simplified economic facet. Other examples of the RO approach can be found in the literature (e.g. 

[138,139]). A review focusing on smart grids and low carbon systems can be found in [54].  
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3.2.2 Reducing structural uncertainties by considering imperfect forecasts (Table 3.10) 
 

Some methods have a strong focus on the operational facet. They typically consider imperfect load, weather 

or price forecasts. This reduces structural uncertainties for the investment problem (see Section 2.4). In [140]*, 

authors consider stochastic wind generation inputs modelled with a Weibull probability density function. 

Operational decisions are taken by a dynamic program in a RO fashion. Reference [90]* presents a LP model 

that considers sub-hourly power adjustments with uncertain wind generation and demand fluctuations as well 

as forecast errors. It enables the sizing of storage and thermal units (static investment) and includes ramp and 

reserves margins. In [141]*, a two-stage stochastic MILP is used: at first stage, day-ahead start up decisions 

are optimised based on Monte Carlo scenarios for wind production. Decisions related to flexible equipment 

are taken in a second stage, after scenario realization. The problem is reformulated as an equivalent full 

deterministic MILP and relies on a rolling horizon approach. They additionally rely on an approximated value 

function method (based on Bellman’s equation) to consider the value of storage and non-decommissioned 

production units at the end of the optimisation horizon. This approach draws on the Markov Chain formulation 

previously used to build Monte Carlo scenarios. The value function is based on a linear formulation with a 

coefficient adjusted by a learning procedure. Sizing optimisation (batteries and wind turbines) is performed 

with a response surface method using the value function as a surrogate model. Finally, [22]* uses a two-stage 

stochastic LP (“DS” model) to model day-ahead market and include balancing costs (under a perfect market 

assumption). They explore the impact of imperfect wind forecasts and short-term variability modelling on the 

investment problem results. 

 

3.2.3 Market oriented approaches (Table 3.11) 
 

Other studies focus on modelling energy markets (including imperfect forecasts or not). In [142]*, authors 

model deregulated electricity and heat markets for a power and heat energy hub. They propose a bi-level MILP 

recasted in a single level formulation to model a single leader versus multi-follower Stackelberg game. The 

heat and electricity market clearing sub-problems are convex, hence replaced by their Karusk-Kuhn-Tucker 

conditions. Perfect foresight is assumed but the model could be extended to account for imperfect forecasts. 

Although designed for operational decisions optimisation, [94]* proposes a model for the day-ahead market 

(solved every day) and balancing market (solved every hour) with bidding decisions (written as two two-stage 

stochastic LPs). They consider perfect foresight only one hour ahead for VRE generation and twenty-four 

hours ahead for the heat load. Stochastic scenarios are used otherwise. A rolling horizon approach allows 

simulating the full system operation. Finally, [93]* spells out MP formulations for CE problems (investment 

decisions optimisation). They account for perfect and imperfect markets (non-cooperative sequential game 

between a collusion of producers making expansion decisions to maximize profits and a market operator who 

minimises the energy cost). They also account for perfect and imperfect forecasts with two sub-cases: efficient 

market (day-ahead decision while considering balancing scenarios) and inefficient market (day-ahead decision 

without considering balancing scenarios). Some formulations are multi-level (possibly stochastic) 

optimisation problems that can be reduced to single level (deterministic) optimisation problems under 

simplifying assumptions (discrete investment decisions, linear models). 

 

3.2.4 Spatial and network oriented approaches (Table 3.12) 
 

Spatial representations were not discussed in detail in most investigated papers. Reference [24]* proposes a 

spatial clustering and optimisation method for a district heating investment problem. An intra-cluster 

optimisation is performed by a MILP based heuristic: network options are explored by a minimum spanning 

tree algorithm from multiple starting points (buildings). Then, a MILP optimises investment decisions for 
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energy production means (with a 2% relative gap) before a final MILP optimises operational decisions (0% 

relative gap). An inter-cluster network optimisation is performed in a second step. In [79]* and [82,143,144], 

EAs (Evolutionary Algorithms) are used for investment decisions coupled to slaves modules. The first module 

is a thermo-economic simulation model that compute parameters including operation expenses, emissions, 

technical constraints and reference stream values. The second module is a MILP that optimises operational 

decisions. The last module computes indicators like the system efficiency, the total annual cost and CO2 

emissions. The Geneva canton is clustered into thirteen nodes. The complete system is modelled by three 

layers: the global layer, the DHC networks (heat cascading) layer and local layer. Network temperatures are 

discretized into multiple temperature streams in the MILP model. Heat networks modelling options are further 

discussed in [71,77]: they propose a linear approximation accounting for temperature variations with constant 

mass flow rates. They apply their formulations to UC models for district heating. On the side of electric 

networks, [78]* proposes three optimisation methods for DES with an AC model for distribution networks. 

The “combined method” consists in a GA algorithm used as a master algorithm to optimise investment 

decisions. A slave MILP optimises operational decisions including an in-house linearized AC model, more 

accurate than the classic DC approximation. The full AC steady-state power flow model is then computed for 

every time step to detect voltage and current violations (based on the Newton-Raphson method with 

Matpower, MATLAB). The voltage and current violations are accounted by the GA master algorithm via 

penalty costs. For further insights about electric networks modelling and optimisation, see [41,76]. 

 

3.2.5 Considering long-term operational issues (Table 3.13) 
 

Considering long-term aspects like seasonal storages or annual constraints can lead to computational 

challenges. Since the operational optimisation horizon is then necessarily extended. Methods were proposed 

to optimise investment decisions while considering long-term operational issues. References [23,83]* draw 

on the approach consisting of a single MILP model (for investment and operational decisions) solved over 

representative periods (days). They further extend it by proposing representative periods coupling methods. 

The computational efficiency of such approaches is used in [19]* to consider load and weather data series 

uncertainties in the design phase (see Section 3.1.2). The coupling method proposed in [23]* is implemented 

in the model EnergyScope TD [110]. Long-term issues are also considered in [141]* via a value function 

method (see Section 3.2.2, Table 3.9). In [145]*, a MILP with a rolling horizon approach including long-term 

constraints for optimising operational decisions is proposed. They include them by utilising a simplified 

representation for long-term operation decisions while keeping a detailed model for upcoming decisions. In 

[146]*, authors use a long-term model that provides storage level objectives to a short-term model 

(unidirectional link). The long-term model uses a coarse temporal representation while the short-term model 

optimises decisions at the hourly level. Finally, [147]* proposes a rolling horizon approach where a MILP is 

solved iteratively over one week. Yearly constraints (primary energy savings and efficiency) are considered 

on past, current and future performances. Future performances are first estimated based on typical weeks.  The 

model is run over several years until yearly constraints are satisfied: future performances estimations are 

updated based on of the previous year simulation. 

 

3.2.6 Tackling computational challenges (Table 3.14) 
 

ESIP problems can be very challenging to solve, they are usually NP-hard. In [148], authors show that the 

synthesis problem (i.e. the investment problem) of decentralized energy systems is strongly NP-hard. Some 

papers reviewed focus on computational issues and propose alternative approaches. The widely used MILP 

approach is usually challenging due to integer or binary variables (as stated in [68]*).  

Data aggregation methods are a straightforward way to tackle computational challenges: it reduces the 

problem size. The use of representative periods is widespread in the literature. In [149]*, modellers propose a 
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data aggregation differing from representative periods that allows accounting for inter-day storages: they 

aggregate similar time steps (load, solar or wind generation) instead. 

It is pointed out in [150]* that time series aggregation deteriorates the solution quality, especially for storage 

optimisation. They explore a solving method for complex problems including seasonal storages: a MILP 

model is solved by computing lower and upper bounds until a certain optimality gap. The model producing 

upper bounds optimises sizing and operational decisions on aggregated data (typical days) followed by a MILP 

optimising operational decisions only on full data.  A branch-and-cut commercial solver produces lower 

bounds, as well as an in-house algorithm based on data aggregation and relaxations. A Bender decomposition 

approach with Pareto optimal cuts is used in [130]*. Reference [68]* proposes another decomposition method: 

an upper level MILP with discrete investment decisions optimises the full problem with relaxed operational 

decisions variables to get a lower bound. Then, they optimise independent operational problems for each time 

period separately (lower level) to obtain upper bounds. A similar approach is suggested with typical periods 

at the upper level. They propose extra lower/upper bounding strategies as well as an ordering strategy for 

solving lower level problems so that the lower bound increases faster. Both previous approaches rely on the 

fact that only investment decision variables link the operation variables of each time step in a single 

optimisation problem. In [72]*, a heuristic method to solve a MILP problem formulation in three steps is 

developed. At first, a full year optimisation on aggregated time steps (more than two hours) is performed, it 

uses a LP approach for the operational facet (ramps are also excluded). The building envelope retrofits and 

ST (Solar Thermal collectors) sizes are fixed after this first step. Then a full year optimisation with an hourly 

time step fixes other technology sizes, here again the operational facet is simplified. In the last step, the system 

operation is optimised over a full year with an hourly time step and operational considerations such as on/off 

status and ramps. Finally, [151]* uses EAs as master algorithms for investment decisions, a MILP is used as 

a slave operational model. The MILP is firstly solved with a 10% relative gap to obtain a lower bound for 

design solutions, it is then run with a 1% relative gap if the solution is promising, i.e. the lower bound is 

significantly lower than the current best solution. It is solved on three representative weeks independently. 

Different solving strategies based on integer variable relaxations are tested for investment decisions.  
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Table 3.1: Operational MILP, large scales   (see also Table 3.2: [99]) 

Reference System Optimisation method 

Problem 

(Section 

2.1) 

Investment 

feedback 

level 

(Section 2.2) 

Investment 

facet (Section 

2.3.1) 

Operational facets (Section 2.3.2) Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal Operational decisions 

[100] 

Ontario province 

(Canada) power 

system (nuclear, gas, 

hydro, wind, biofuel 

and solar, electric 

network, electric 

load, DRb, EVc, 

pumped hydro 

storages) 

SILVER model, three 

stages: 

-Day ahead economic 

dispatch setting prices 

(marginal cost, 

assuming generation 

assets are price-setters) 

-Day ahead UC model 

-Real time optimal 

power flow dispatch 

Operation simulation only 

Linear models (depending on the 

different stages): on/off status, 

start-up/shut-down status (and 

costs), ramps, minimum up and 

down times, availability of EV, 

DR linear model 

 

Networks: DC linear electrical 

network model (500, 230 and 

115kV lines) 

Several 

(missing 

information) 

24-hour 

optimisation 

horizon, 1-hour 

time step 

Partial foresight 24 hours 

ahead (forecast errors built by 

an hyperbolic distribution 

(wind and solar) 

NA 

[101] 

Irish power system 

(storages, WTd, peat, 

hydro, pumped 

hydro, tidal stream, 

peak production, 

GTs, transmissions 

with Great Britain 

modelled in an 

aggregated way) 

Scenario tree building 

tool + operational 

model: 

stochastic MILP + 

rolling horizon (day-

ahead and re-scheduling 

decisions on a 3-hour 

horizon) 

(Wilmar tool 

extension) 

Operation simulation/optimisation only 

(year 2020), different portfolios 

simulated 

Linear model: on/off and start-up 

status, costs,  reserves, minimum 

working power, up and down 

times, ramps, opportunity value of 

having online units and storage 

levels at the end of the 

optimisation horizon. PWAe for 

fuel consumption curves 

Networks: Linear energy flow 

model including losses 

21 nodes 
36 hours 

horizon 

Perfect foresight assumed over 

3 hours. Before: MCf multi-

stages scenario trees (with a 

regressing moving average and 

a SDg depending on the 

forecast horizon) are used for 

load and wind generation 

forecast errors as well as 

forced outages. The MC 

simulations include spatial 

correlations. 

NA 

a Combined Heat and Power  e Piecewise Approximation 
b Demand Response   g Standard Deviation 
c Electric Vehicle    f Monte Carlo 
d Wind Turbines 
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Table 3.2:  LP based approaches, large scales 

Reference System Optimisation method 

Problem 

(Section 

2.1) 

Investment 

feedback level 

(Section 2.2) 

Investment facet 

(Section 2.3.1) 

Operational facets (Section 2.3.2) Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[64] 

Europe energy system 

(energy vectors & 

materials including 

pollutants and GHGa) 

Perseus-RES-E (Single 

LP) 
Sizing 

Dynamic myopic 

optimisation from 

2000 to 2020 

(cost based 

optimisation, 

investment every 

5 years) 

Continuous 

Linear model including ramp costs 

and limits, reserve capacities 

Networks: energy flow with losses 

15 regions 

4 typical years, 8 

typical days for each 

year divided in time 

slots (2 to 6-hour time 

step) 

Prefect 

predictions 

assumed 

Multiple 

deterministic 

scenarios 

[99] 

Irish power system 

(gas, coal, peat and WT 

generation, hydro pump 

storages) 

The Irish TIMES model 

(single LP) is used for 

investment decisions 

(generation portfolio) 

which are provided as 

inputs to the PLEXOS 

model (operational MILP) 

Sizing 

Static investment 

optimisation, 

2020 is used as a 

target test year 

(cost based) 

Continuous 

TIMES model: linear, supply cost 

and demand elasticity curves 

PLEXOS: on/off status, minimum 

working power, on/off times, start-

up/shut-down status, ramps 

Missing 

information 

PLEXOS: 30-minutes 

time step, 24 hours 

horizon (full year 

simulation by rolling 

horizon) 

TIMES: perfect 

foresight 

assumed 

PLEXOS: 

random outages 

generated by MC 

simulations 

TIMES: 

multiple 

deterministic 

scenarios 

[104] 

Large scale power 

system (4 different 

conventional production 

technologies: base, mid, 

peak and high peak) 

Single LP Sizing 

Static 

optimisation (cost 

based) 

Continuous 

Linear models including ramps, 

operation reserves, must-run 

constraints and periodic 

maintenance 

Single node 
Full year horizon, 1-

hour time step 

Perfect foresight 

assumed 
NA 

[108] 

Ireland power system 

(WT, PV, storage and 

various power plants) 

OSeMOSYS (single LP) 

including fashioned 

operational constraints 

Sizing, 

timing 

Dynamic 

anticipative 

optimisation on 

40 years (cost 

based, investment 

every 5 years) 

Continuous 

Linear model with fashioned 

operational constraints: operating 

reserve, minimum working power, 

wind availability, CO2 emissions 

constraints 

Single node 

12 typical days: day, 

night and peak time 

for 4 seasons, 1-hour 

time step 

Perfect foresight 

assumed 
NA 

[111] 

German residential 

heat system and power 

system (HPb, biomass 

boilers, micro CHP, gas 

boiler, ST, several heat 

demand classes) 

Enhanced TIMES (single 

LP) model (TIMES-

HEAT-POWER) with 

inputs from a residential 

building stock model 

(providing final energy 

demand scenarios) and pre-

dimensioning for 

decentralized heat systems 

(MILP) 

Sizing, 

timing 

Dynamic 

anticipative 

optimisation from 

2015 to 2050 

(cost based,  

investment every 

5 years) 

Continuous 

TIMES model: aggregated power 

system, differentiated heat system 

(140 heat classes) 

Decentralized heat system: MILP 

model 

Single node 

TIMES model: 8 

typical days with 2 to 

6-hour time step, total 

of 48 time slices. 

Decentralized heat 

system optimisation: 

9 typical weeks, 15-

minutes time step 

Perfect foresight 

assumed 

Multiple 

deterministic 

scenarios 
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a Green House Gases  
b Heat Pump  

Table 3.3: MILP based approaches, large scales 

Reference System Optimisation method Problem (Section 2.1) 

Investment 

feedback level 

(Section 2.2) 

Investment facet 

(Section 2.3.1) 

Operational facets (Section 2.3.2) Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[61] 

Great Britain 

power and heat 

systems (power 

units, heat and 

electricity 

networks and 

loads, daily TSa, 

WT, PV) 

Single MILP 

Sizing (power units, 

TS, WT, PV), 

penetration level of 

district network VS 

end use heating 

technologies, 

electricity network 

reinforcements and 

district heating 

network investments 

Static 

optimisation, year 

2030 (cost based) 

Cost function 

based on 

preliminary 

estimates for 

district heating, 

linear investment 

in electricity 

network 

reinforcement, 

linear model for 

production 

means 

Linear model: ramps, on/off status and 

start-up status (start up and fixed working 

costs), operating areas for CHP + demand 

side management model (within a day), pre-

heating, carbon constraint 

Networks: DC linear electrical network 

model, sub-hourly frequency regulation and 

reserve constraints. Linear heat network 

energy flow model including linear losses 

4 

regional 

nodes 

Typical days, 

1-hour time 

step 

Perfect 

foresight 

assumed 

Deterministic 

[69] 

French power 

system (nuclear, 

coal and gas 

turbine 

generations, WT 

and PV) 

Single MILP with integer 

clustering method: binary 

variables of similar 

production unit are 

aggregated into a single 

integer variable. 

Different flexibility 

metrics, method for 

selecting typical weeks 

based on dynamic 

programming. 

Sizing, timing 

Dynamic 

anticipative or 

myopic (missing 

information) 

optimisation on 10 

years (cost based, 

investments every 

year (emission 

targets) 

Continuous 

Linear model including reserves, ramps, 

on/off and start-up/shut-down status, 

minimum up and down times, minimum 

working power 

Single 

node 

Each year is 

represented by 

4 typical 

weeks, 1-hour 

time step 

Perfect 

foresight 

assumed 

12 

deterministic 

scenarios 

[70] 

Power system 

(power plants, 

storage including 

hydraulic, 

electric load, PV 

and WT) 

IMRES model: single 

MILP 

Screening (for power 

plants only), sitting if 

multi-nodes 

Static optimisation 

(cost based) 
Discrete 

Linear model: on/off, start up and shut 

down status used for minimum working 

power, minimum up and down time 

constraints, up and downward reserves, CO2 

emissions constraint, hydro storage linear 

model, ramps, demand side management 

To be 

defined 
To be defined 

Perfect 

foresight 

assumed 

Deterministic 

[112] 

Greek power 

system (lignite, 

natural gas, coal 

and oil  

production units, 

hydro, WT, PV, 

biomass) 

Single MILP 

Sizing, screening (8 

technology options), 

timing 

Dynamic myopic 

optimisation from 

2014 to 2030 (cost 

based 

optimisation, 

investments every 

year) 

Discrete 

On/off, start-up status (including hot, warm, 

cold status, (de)synchronization and soak 

times), minimum up/down times, ramps, 

reserves, 4 marginal cost blocks for imports 

and exports 

Networks: linear energy flow model 

5 nodes 

12 typical days, 

1-hour time 

step 

Prefect 

predictions 

assumed 
Deterministic 

a Thermal Storage  
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Table 3.4: Master investment algorithms + slave operational models with pre-defined expert rules for operational decisions, large scales 

Reference System Optimisation method 
Problem 

(Section 2.1) 

Investment feedback level (Section 

2.2) 

Investment facet 

(Section 2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[152] 

Italian 

energy 

system 

EnergyPlanOpt TP: sequential 

simulations with EnergyPlan + 

metaheuristic for sizing (MOEA) 

Sizing (PV, 

WT and 

batteries) 

Dynamic anticipative optimisation 

on 30 years, investments every 

years (CO2 emissions and cost 

based) 

Continuous 

investment, 

including learning 

effects 

Missing 

information 
Missing 

information 
Full year 

operation 

simulation 

Myopic: pre-

defined decision 

rules 
Deterministic 

scenarios 
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Table 3.5: MILP approaches, local scales  (see also Table 3.8: [19], [26], [130], Table 3.10: [140] & Table 3.13: [23] & [83]) 

Reference System Optimisation method 
Problem (Section 

2.1) 

Investment feedback 

level (Section 2.2) 

Investment facet 

(Section 2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[25] 

CCHPa  and DHC 

systems (electric grid, GT, 

boiler, AChb, ECc, PV, heat 

recovery stream generator, 

compression chiller, heat 

and cooling networks) 

Single MILP 
Screening, sizing 

(including 

networks 

architectures) 

Static optimisation 

(cost based) 
Continuous and 

discrete 

On/off status for minimum 

working powers and affine 

performances 

 

Networks: Linear energy flow 

linear model, include losses 

7 nodes (each 

is a CCHP 

system) 

2 typical 

days, 1-hour 

time step 

Prefect 

predictions 

assumed 
Deterministic 

[28] 

Microgrid (electric, heat 

and cooling loads, ICEd, 

batteries, PV, gas boiler, 

EC, ACh, electric and heat 

networks) 

Single MILP (DER 

CAM model) 

Sitting, screening 

and sizing (8  

equipment 

options) 

Static optimisation 

(cost based) 
Continuous and 

discrete investments 

Linear models for 

technologies, electricity 

market model including a 

binary variable (purchase 

decision) 

Networks: DC linear electrical 

network model, linear heat 

network energy flow model 

including losses 

Single node 

case 

and multi-

node case 

(5 nodes, 4 

buildings) 

36 typical 

days, 1-hour 

time step 

Perfect 

foresight 

assumed 
Deterministic 

[30] 

MES (electric, heat and 

cooling loads, various 

energy converters, PV, WT, 

various energy storages) 

Single MILP 

Screening (10 

equipment 

options) 

Static optimisation 

(cost based) 
Discrete Linear model Single node 

4 typical 

days, 1-hour 

time step 

Perfect 

foresight 

assumed 

Sensitivity 

analysis 

[113] 

A campus (PV, electric 

grid, batteries, loads, diesel 

generator) 

Single MILP (DER 

CAM) combined with 

the Distribution 

Engineering 

Workstation (DEW) 

tool in a second stage 

Sizing (DER 

CAM output) and 

sitting (4 cases 

assessed with the 

DEW tool) 

Static optimisation 

(cost based) 
Continuous 

investments 

Not detailed (DER CAM tool 

to assess power system 

violations and losses). 

Networks: Not detailed (DEW 

tool) 

25 nodes 
24 typical 

days, 1-hour 

time step 

Perfect 

foresight 

assumed 
NA 

[117] 

Building model (PV, ST, 

boiler, battery, TS, gas & 

electricity utilities, building 

envelop) 

Single MILP (e-

constrainte method for 

CO2 emissions), a 

lexicographic 

enumeration is used to 

build a Pareto front 

Screening (6 

different 

component types 

for batteries, TS, 

boiler, CHP and 

HP), sizing (PV 

and ST) 

Static optimisation 

(cost & CO2 

emissions based) 

Discrete and 

continuous (for PV 

and ST) 

Linear models, low order 

building heat model 
Single node 

12 typical 

days, 1-hour 

time step 

Prefect 

predictions 

assumed 

Deterministic 
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[118] 

MES (electricity, heat and 

cooling loads, electricity & 

gas resources, energy 

converters and storages) 

Single MILP (energy 

hub concept) 

Screening 

(including hubs 

ports connections 

selection) 

Static optimisation 

(cost based) 
Discrete Linear model Single node 

5 typical 

days, 1-hour 

time step 

Perfect 

foresight 

assumed 

Sensitivity 

analysis on 

equipment 

availability 

[119] 

Urban DES (main thermal 

power plant, electric (low 

and medium voltage), heat 

(steam and hot water) and 

cooling distribution 

networks, distribution 

stations, electric, heat and 

cooling loads) 

Single MILP 

Sitting, screening, 

sizing (13 

equipment 

options, networks 

architectures) 

Static optimisation 

(cost based) 
Discrete 

Linear models for 

technologies with on/off status 

(minimum working power & 

affine efficiency) 

 

Networks: Linear energy flow 

model 

10 nodes (2 

possible 

nodes for 

power plant 

sitting, 3 

nodes for 

distribution 

station 

sitting) 

3 typical 

days, 2 hour 

time step 

Perfect 

foresight 

assumed 

Deterministic 

[120] 

Ward-Hale 6-bus system 

and iEEE 118 bus system 

(various generation and 

storages technologies, grid 

imports, loads, electric 

network) 

Single MILP 

Screening and 

sitting (10 

generation 

options and 10 

storage options 

for both cases) 

Dynamic anticipative 

investment 

optimisation (cost 

based) 

Discrete 

On/off and start-up/shut-down 

status are considered to model 

minimum working power, 

start-up/shut-down costs and 

minimum up and down times. 

Includes a linear loss of load 

probability constraint and 

ramp constraints. 

Networks: DC linear electrical 

network model 

6 and 118 

nodes 

2 typical 

days, 1-hour 

time step 

Prefect 

predictions 

assumed 

Deterministic 

[121] 

Biomass and power to 

heat production plant 

(biomass boiler, heat pump, 

heat storage, gas boiler 

backup, network heat load, 

CO2 emissions and 

renewable energy ratios 

from the electricity grid for 

3 countries) 

Single MILP for 

sizing optimisation, 

MILP + rolling 

horizon + numerical 

simulator (Standard 

Modelica and 

DistrictHeating 

Modelica libraries)  

for assessment of 

operational 

performances 

Sizing 

Static optimisation 

(cost based, 3 e-

constraints on CO2 

emissions, biomass 

availability and on 

renewable energy 

ratio) 

Continuous (the 

storage sizing includes 

a two-part piecewise 

linear formulation) 

Sizing: on/off and start-

up/shut-down status are 

considered to model minimum 

working power minimum up 

and down times. Includes 3 

yearly e-constraints. 

 

Operation: similar MILP 

formulation, coupled to 

detailed dynamic thermal-

hydraulic model. 

Single node 

Full year 

horizon, 2-

hour time 

step for 

sizing, 15 

minutes time 

step for the 

operation 

simulation 

Prefect 

predictions 

assumed over 

a year for 

sizing, over 1 

day for the 

operation 

simulation 

Deterministic 

a Combined Cooling Heat and Power  b Absorption Chiller 
c Electric Chiller     d Internal Combustion Engine 
e The e-constraint method is an alternative way to perform multi-objective optimisation: extra objectives are included in the form of constraints. For instance, a certain limit on yearly CO2 

emissions can be set.  This enables the user to obtain one point of a Pareto set.  
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Table 3.6: Master investment algorithms + slave operational models with pre-defined expert rules for operational decisions, local scales  (see also Table 3.8: [132]) 

Reference System Optimisation method 
Problem (Section 

2.1) 

Investment feedback 

level (Section 2.2) 

Investment 

facet (Section 

2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, Section 

2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[32] 

Wind farm (WT + 

batteries + forecasted 

total output to the 

grid) 

Several operational models used: pre-

defined decision rules, fuzzy strategy 

and artificial neural network for 

battery control. Exhaustive search and 

GA are used for sizing and 

operational decision rules setting. 

Sizing (battery: 

capacity and 

power) 

Static optimisation (cost 

based, including unmet 

forecasted output within 

4% and 90% of time) 
Continuous Linear model Single 

node 
282 days, 10 

time step 

 

1-hour forecast 

considered 
Deterministic 

[91] 

Stand-alone hybrid 

energy system (PV + 

HCa + battery + 

electric load) 

3 control strategies + Matlab 

simulink used for sizing 

Sizing (PV, FC, 

electrolyser, 

batteries & 

hydrogen storage 

capacity) 

Static optimisation 

(technical criteria 

based) 

Continuous Physical model, non-

linear 
Single 

node 

Full year 

horizon, 1-

hour time 

step 

Myopic: pre-

defined 

decision rules 
Deterministic 

[122] 

Stand-alone hybrid 

system (PV, battery, 

diesel generator, HC, 

WT, Hydro, electrical 

load) 

Master GA for sizing + physical 

model with operational decision rules 

(a GA optimises operational decision 

rules parameters) 

Sizing (full 

system) 
Static optimisation (cost 

based) Discrete Physical model, non-

linear 
Single 

node 

Full year 

horizon, 1-

hour time 

step 

Myopic: pre-

defined 

decision rules 
Deterministic 

[123] 

Stand-alone hybrid 

system (PV, WT, 

diesel engine, HC, 

electric load) 

Master PSO for sizing + physical 

model with operational decision rules 
Sizing (full 

system) 

Static optimisation (cost 

based, C02 emissions 

and unmet load are 

included with the e-

constraint method) 

Continuous Physical model, non-

linear 
Single 

node 

Full year 

horizon, 1-

hour time 

step 

Myopic: pre-

defined 

decision rules 

Sensitivity analysis 

on economic 

parameters 

[124] 

DH network (78000 

people) (gas, fuel, 

biomass or waste 

boilers, CHP) 

Operation simulation with Energy 

Pro + exhaustive search for sizing 
Sizing (heat 

storage, heat pump 

and ST) 
Static optimisation (cost 

based) Discrete 

Energy Pro model 

(includes start-up costs, 

minimum working 

power, minimum 

operating hours, start-up 

time, shut-down time) 

Single 

node 

Full year 

horizon, 1-

hour time 

step 

Myopic: pre-

defined 

decision rules 

Deterministic (3 

electricity price 

scenarios tested + 

sensitivity analysis) 

[127] 

DES (PV, WT, 

battery, internal 

combustion 

generator, electric 

load) 

Master metaheuristic for investment 

optimisation with a slave surrogate 

model (artificial neuronal network) 

for operation simulation 

See Section 3.1.2 

Sizing (PV, WT, 

battery, internal 

combustion 

generator) 

Static optimisation (cost 

and grid integration 

level based) 
Continuous Linear Single 

node 

Full year 

horizon, 1-

hour time 

step 

Myopic: pre-

defined 

decision rules 
Deterministic 

a Hydrogen Chain (Electrolyser – Gas Storage – Fuel Cell) 
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Table 3.7: Master investment algorithms + slave LP or MILP operational models  (see also Table 3.12: [78] & [79]) 

Reference System Optimisation method Problem (Section 2.1) 

Investment 

feedback level 

(Section 2.2) 

Investment 

facet (Section 

2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[29] 

Islanded microgrid: 

CAES (daily storage, 

WT, PV, diesel 

engine) 

Master GA for sizing + 

operational MILP 
Sizing (CAES, PV, WT, 

diesel engine) 
Static 

optimisation 

(cost based) 
Discrete 

Linear model: linear CAES 

storage model (including 

compression and expansion 

stages), on/off and start-up 

variables for start-up costs, 

ramps, operational reserves 

Single node 
6 typical 

days, 1-hour 

time step 

Prefect 

predictions 

assumed 

Sensitivity 

analysis on 

operating reserve 

and cost 

parameters 

[31] 

Hospital (CHP, 

boiler, HP, electric 

grid, electric, heat and 

cooling loads) 

Exhaustive search for 

screening and sizing + 

operational MILP followed 

by a financial analysis 

Screening (architecture and 

technologies), sizing 
Static 

optimisation 

(cost based) 
Discrete 

Discrete model, on/off 

variables, each module is 

either off or working at full 

power. Includes operating 

reserve constraint. 

Single node 

6 typical 

days, 

2-hour time 

step 

Perfect 

foresight 

assumed 
Deterministic 

[153] 

CCHP microgrid 

system, hospital case 

study (electric, heat 

and cooling loads, 

various energy 

converters, PV, 

storages) 

4 architectures tested: master 

GA for sizing and screening 

+ operational MILP 
Screening, sizing 

Static 

optimisation on 

2 criteria: CO2 

emissions and 

cost 

Continuous 

and discrete 

investments 
Linear model Single node 

36 typical 

days, 1-hour 

time step 

Perfect 

foresight 

assumed 
Deterministic 

[128] 

Microgrid (PV and 

fly-wheels, electric 

grid) 

Efficient Global Optimisation 

(based on Kringing method) 

for sizing + various 

operational optimisation 

algorithms: Trust Region 

Algorithm, PSO, dynamic 

programming, and MILP 

with simplified model 

(storage losses) + correction 

with original model and Trust 

Region algorithm 

Sizing 
Static 

optimisation 

(cost based) 
Continuous 

Piecewise linear 

approximation of storage 

losses, binary variable for 

grid penalty costs 
Single node 

1 day, 1-hour 

time step 

(repeated for 

365 days) 

Prefect 

predictions 

assumed 
Deterministic 

[129] 

Munich DH network 

(CHPa, biogas, 

geothermal & heating 

plants) 

Energy-economic model built 

on Excel (“EW” model) soft-

linked (bi-directional) with a 

UC model (KEO) 

Various analysis managed by the EW model (prices, 

investment, expansion planning, sales decline scenarios 

etc.) 

UC model (ramps, on/off and 

start-up/shut down variables 

for minimum up and down 

times, start-up priorities, 

minimum working power 

etc.) 

Missing 

information 

Rolling 

horizon with 

a 5 days 

horizon 

Perfect 

foresight over 

5 days 

NA 
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Table 3.8: Focus on investment uncertainties, without timing optimisation 

Reference System Optimisation method 
Problem 

(Section 2.1) 

Investment 

feedback level 

(Section 2.2) 

Investment 

facet (Section 

2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties (Parametric, 

Section 2.4) 
Tech-eco Spatial Temporal 

Operational 

decisions 

[19] 

Urban MES (energy 

hub with PV, ST, HC, 

batteries, HP, gas 

convertors, boiler, TS, 

gas & electric grids, 

heat and electric loads) 

Single MILP with a 

typical days coupling 

method run on a robust 

scenario 

 

See Section 3.2.1 

Sizing, 

screening 

Static 

optimisation 

(cost based, with 

e-constraints on 

CO2 emissions) 

Piecewise 

linear 

investments 

with fixed 

costs 

Linear model, on/off 

status for conversion 

technologies, affine 

efficiencies with size 

dependency, minimum 

working power with 

size dependency 

Single 

node 

Typical days (from 3 

to 48) coupled with 

storage equations 

(method ‘M1’) or full 

year for continuous 

variables and typical 

days for binary 

variables (method 

‘M2’), 1-hour time 

step 

Perfect 

foresight 

assumed 

Considering uncertain 

ambient temperature, solar 

irradiance to compute 

uncertain PV outputs and to 

derive uncertain loads with 

EnergyPlus (including other 

uncertain building-related 

parameters). 1440 scenarios 

used in total. 

[26] 

MES (gas turbines, 

CHP, boiler, batteries, 

TS, HP, PV, gas and 

electricity grids, 

electric and heat loads) 

Two-stage stochastic 

MILP: screening and 

sizing at first stage, 

operation at second stage 

over different scenarios. 

Problem solved with a 

single MILP equivalent 

deterministic formulation. 

Screening, 

sizing 

Static 

optimisation 

(cost based, with 

e-constraint 

method for CO2 

emissions) 

Discrete 

Linear model: on/off 

status for minimal 

working power, ramps, 

capacity requirements, 

binary variable for 

energy shortage + CO2 

emissions constraint 

Single 

node 
3 typical weeks, 1-

hour time step 
Perfect 

foresight 

assumed 

Uncertain PV production 

considered (10 MC scenarios 

for each typical week) 

[60] 

Swiss energy system 

(energy resources, 

mobility, storages, 

industrial heat, 

centralized DHN, 

decentralized heating, 

energy loads) see 

reference for further 

details 

GSA followed by a robust 

MILP formulation. 

See Section 3.2.1 

Screening and 

sizing  of 

technologies 

(see reference 

for further 

details) 

Static 

optimisation for 

the 2035 target 

year (cost based) 

Continuous 

and discrete Linear energy model Single 

node 
Full year horizon, 

monthly time step Static model 

Discount rate, technology 

lifetime, investment and 

operation costs, costs of 

resources (considered in the 

robust optimisation after 

GSA) 

[130] 

Stand-alone power 

system (WT, batteries, 

electric load and grid, 

thermal generators) 

MILP + Bender’s 

decomposition and use of 

Pareto-optimal cuts. 

Sizing (number 

of batteries, WT 

and 

transmission 

line capacity 

units) 

Static 

optimisation 

(cost based) 

Discrete 

(integer 

variables) 

with fixed cost 

(binaries) 

Linear model with 

on/off status for fixed 

operational costs 
Single 

node 
4 typical days, 1-hour 

time step 
Perfect 

foresight 

assumed 

Multiple scenarios for each 

typical day (demand and wind 

production scenarios) with 

varying SD and mean. 
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[131] 

Microgrid (WT, PV, 

battery, biomass CHP, 

classic CHP, biomass 

gasifier, internal 

combustion engine, gas 

storage, boiler, heal and 

electricity loads) 

5 architectures tested, 

exhaustive search for WT 

and PV sizing, rolling 

horizon with a LP model 

for operation optimisation 

over MC scenarios 

Screening for 

the system 

architecture and 

sizing (WT and 

PV) 

Static 

optimisation 

(cost based) 
Continuous Linear model, 

including ramps 
Single 

node 1 day, 1-hour time step 

Perfect 

foresight 

assumed over 

the 4 hour 

horizon of the 

rolling horizon 

model 

Uncertain loads, PV and WT 

production considered (1000 

daily scenarios) as well as 

OPEX and CAPEX + 

sensitivity analysis on battery 

capacity, electricity and gas 

prices and loads 

[132] 

Stand-alone power 

system (electric load, 

PV, batteries, HC) 

GSA followed by a master 

GA for robust / stochastic 

investment optimisation 

with an operation 

simulation tool. 

See Section 3.2.1 

Sizing (all 

items) 

Static 

optimisation , 

two objectives: 

cost and unmet 

load 

minimization 

Continuous 

Non-linear polynomial 

efficiencies, 

electrolyser & fuel cell 

replacements based on 

utilisation (Odyssey 

tool) 

Single 

node 
Full year horizon, 1-

hour time step 
Myopic: pre-

defined 

decision rules 

All technologies techno-

economic parameters, 24 

parametrical parameters in 

total 
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Table 3.9: Focus on investment uncertainties: with timing optimisation (RO approaches) 

Reference System Optimisation method Problem (Section 2.1) 
Investment feedback 

level (Section 2.2) 

Investment facet 

(Section 2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, Section 2.4) 
Tech-eco Spatial Temporal 

Operational 

decisions 

[53] 

Power system test 

case (WT, PV, 

electrical network, 

battery, quad-booster 

transformer) 

Stochastic / robust 

multi-stage MILP 

Sizing (batteries, 

generators) and 

screening / sitting 

(network architecture 

and FACTS devices), 

timing 

Dynamic anticipative 

optimisation (cost 

based optimisation) 
Continuous and discrete 

Linear model including 

ramps, linear FACTS 

(flexible AC 

transmission system) 

device model. 

 

Networks: DC model 

3 nodes 
1 typical 

day, 1-hour 

time step 

Perfect 

foresight 

assumed 
Scenario tree on the PV 

prices 

[135] 

DES (gas & electrical 

grids, CHP, boiler, 

EHP, TS, electric & 

heat load) 

Multi-stage 

stochastic MILP with 

pre-computed 

operational costs. 

See Section 3.2.1 

Timing (CHP, EHP, TS) 
Dynamic anticipative 

optimisation over 15 

years, investments 

every 5 years 
Discrete 

Linear models with 

on/off status (minimum 

working power), 

including ramps 

Single 

node 
6 typical 

days, 1-hour 

time step 

Perfect 

foresight 

assumed 

Uncertain electricity, gas 

prices & demand 

evolution unfolding 

through the scenario tree 

(1600 scenarios) 

 

[136] 

Hybrid waste to 

energy system 

(anaerobic digester 

and gasifier, gas 

turbine) 

Multi-stage 

stochastic MILP 

optimizing 

investment decision 

rules parameters. 

See Section 3.2.1 

Timing 
Dynamic anticipative 

optimisation over 9 

years (with imperfect 

foresight) 

Investment decision 

rules with parameters, 

continuous investments 

every year (anaerobic 

digester and gasifier) 

Economic linear model NA Static Static 
Uncertain amount of two 

waste types evolution 

every year (unfolding 

through the scenario tree) 

[137] 

Distributed 

generation, national 

power system (gas 

engine, WT, PV) 

Multi-stage 

stochastic LP on a 

scenario tree 
Timing (gas engine, WT 

and PV penetrations) 

Dynamic anticipative 

optimisation over 20 

years (with imperfect 

foresight) 
Continuous Economic linear model NA Static Static 

Uncertain gas prices 

evolution (unfolding 

through the scenario tree) 
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Table 3.10: Considering imperfect forecasts  (see also Table 3.1 & Table 3.11: [93] & [94]) 

Reference System Optimisation method 
Problem (Section 

2.1) 

Investment feedback 

level (Section 2.2) 

Investment facet 

(Section 2.3.1) 

Operational facets (Section 2.3.2) Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal Operational decisions 

[22] 

Power system 

(WT, gas, nuclear 

& coal) 

Several models, description of the 

“DS” model: A two-stage 

stochastic LP for day ahead and 

real time markets. Solved as a 

single deterministic LP. Forecast 

errors are modelled via an ARMA 

time series model with decaying 

autocorrelation. 

Sizing (starting 

from scratch) 
Static optimisation 

(cost based) Continuous Linear model including 

ramps 
Single 

node 
1 to 100 

typical days, 1-

hour time step 

Imperfect wind 

forecast considered 

(24 hours ahead). 1000 

wind scenarios are 

generated and then 

reduced to 10 with a 

reduction method. 

Deterministic 

[90] 

IEEE 24-bus test 

system (power 

thermal units, 

storage, demand 

response, 

electrical network, 

WT) 

Single LP with chance constraint 

programming. 

See Section 3.2.2 

Sizing for storage 

and thermal units 

(capacity and 

ramping 

capability) 

Static optimisation 

(cost based) Continuous 

Linear models including 

ramps at both time scales 

for thermal units + ramp 

reserve capabilities for 

regulation level (within the 

5-minutes time steps) 

Networks: DC model 

24 

nodes 

Two scales: 1-

hour time step 

and 5-minute 

time step, 48 

typical days 

Imperfect foresight 

considered: uncertain 

inputs and their 

forecast errors are 

estimated and 

incorporated at intra 

hour time step. 

Deterministic 

[140] 

Hybrid 

generation plant 

(WT + diesel 

generator + 

electrical load) 

Exhaustive search for sizing + 

dynamic programming for 

operational decisions (RO 

approach) 

Sizing (number of 

WT) 
Static optimisation 

(cost based) Discrete Linear model with on/off 

status 
Single 

node 
Full year 

horizon, 1-

hour time step 

Imperfect foresight 

considered for wind 

generation (modelled 

by a Weibull 

distribution) 

Deterministic 

[141] 

Microgrid (WT, 

batteries, 

inflexible and 

flexible 

production units, 

electricity grid) 

Two-stage stochastic MILP with 

dynamic programming for 

operation optimisation. Surrogate 

model for investment 

optimisation. 

See Section 3.2.2 

Sizing (battery 

and WT) and 

system operation 

optimisation 

Static optimisation 

(cost based) Discrete 

Linear model with on/off 

and start-up/ shut down 

binary variables to account 

for fix, start up and shut-

down costs, lost demand 

cost, ramps. 

Single 

node 
Full year 

horizon, 1-

hour time step 

Perfect foresight 24 

hours ahead for WT 

generation, stochastic 

scenarios otherwise 

(10 different for each 

day) 

Deterministic 
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Table 3.11: Market oriented approaches  (see also Table 3.10: [22]) 

Reference System Optimisation method 
Problem (Section 

2.1) 

Investment 

feedback level 

(Section 2.2) 

Investment facet 

(Section 2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[93] 

Danish power system 

(inflexible and flexible 

generation, WT, electric load) 

Different models for 

various market and 

forecast assumptions 

are spelled out. 

See Section 3.2.3 

Sizing (WT) 
Static 

optimisation 

(cost based) 

Discrete (in order 

to recast the 

multi-level 

problem as a 

single-level 

problem) 

Linear (so that the lower-

level problems satisfy 

the linearity constraint 

qualification to recast the 

multi-level problem as a 

single-level problem) 

 

Network: energy flow 

model 

Two nodes 
Full year 

horizon, 1-hour 

time step 

Imperfect foresight 

considered (24 hours 

ahead imperfect 

forecasts) 

Deterministic 

[94] 

DH: heat production with 

participation on electricity 

day-ahead and balancing 

markets (heat load, CHP, gas 

boilers, ST, PV, WT, TS, gas 

grid, electric boiler) 

2 two-stage 

stochastic LPs 

consecutively solved 

in a rolling horizon 

approach. 

See Section 3.2.3 

Operation simulation/optimisation only, 

considering day-ahead market bids & balancing 

markets. 

Linear model including a 

penalty cost model for 

bid deviations 

(prohibiting speculation) 
Single node 

Rolling horizon 

for both LPs (3 

days ahead and 

12 hours ahead), 

1-hour time step 

Perfect foresight 1 

hour ahead for VRE 

generation and 24 

hours ahead for heat 

load, stochastic 

scenarios otherwise 

NA 

[142] 

IEEE 33-bus test system 

coupled to a 32-node district 

heat network (electric & heat 

markets, HP, CHP, batteries, 

TS, gas grid, heat and electric 

loads) (Each energy hub can 

consume or offer electricity 

and only consume heat) 

Single leader VS 

multi-follower 

Stackelberg game: 

bi-level MILP 

recasted as a single 

MILP. 

See Section 3.2.3 

Operation simulation/optimisation only, 

considering an energy hub participating into day-

ahead markets for heat and electricity operated by 

two different operators (pay-as-bid agreement). 

Linear models 

IEEE 33-bus 

power 

distribution 

network and a 

32-node district 

heating model 

3 typical days, 1-

hour time step 

Perfect forecast 

(imperfect forecasts 

could be included by a 

scenario approach) 
NA 
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Table 3.12: Spatial and network oriented approaches 

Reference System Optimisation method Problem (Section 2.1) 

Investment 

feedback level 

(Section 2.2) 

Investment facet 

(Section 2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[24] 

DH: centralized 

production means with 

heat network and 

decentralized 

production means (PV, 

CHP, boiler, TS) 

Clustering method + 

intra-cluster 

optimisation by MILP 

based heuristic + inter-

cluster network 

optimisation in a second 

step. 

See Section 3.2.4 

Screening, sizing, 

sitting (production 

means and heat 

network) 

Static 

optimisation 

(cost objective 

and CO2 

emissions 

objective) 

Continuous 

investments with 

minimum installed 

capacity and fixed 

cost 

Linear models for 

technologies with on/off 

status (minimum 

working power). 

 

Networks: linear heat 

network energy flow 

model including losses 

221 buildings 

grouped in 13 

clusters and 25 

outliers 

Typical days 

linked by a 

storage 

constraint, 1-

hour time step 

Perfect 

foresight 

assumed 
Deterministic 

[78] 

DES test case (5 

residential buildings seen 

as energy hubs: TS, PV, 

GB, CHP, heat and 

electric load, gas and 

electric grids (constant 

prices)) 

3 methods compared 

including a master GA 

for investment 

optimisation, a MILP 

for system operation 

optimisation and an AC 

steady state power flow 

model. 

See Section 3.2.4 

Sizing 

Static 

optimisation 

(cost and CO2 

emissions 

based) 

Continuous with 

fixed costs 

Linear models for 

technologies (LP), 

building consumption 

modelled with 

EnergyPlus 

 

Networks: AC non-linear 

model and in-house 

linearized AC model 

(includes a piecewise 

linear approximation to 

account for the current 

magnitude) 

5 nodes (residential 

buildings) 
12 typical 

days, 1-hour 

time step 

Perfect 

foresight 

assumed 
Deterministic 

[79] 

Geneva canton, 

Switzerland 

(hypothetical case, 

multiple investment 

options: centralized and 

decentralized options are 

tested over different 

scenarios) 

EA for investment 

optimisation coupled to 

slave modules: See 

Section 3.2.4 

Sizing (including 

minimum sizes for 

technologies, CO2
 

taxes) and screening 

(networks architecture, 

flow rates, supply and 

return temperatures) 

Static 

optimisation 

(cost, efficiency 

and CO2 

emissions 

based) 

Continuous and 

discrete 

(technologies, 

resources selection, 

CO² taxes and 

networks 

connections) 

MILP model: linear, 

including on/off status 

and material, power and 

heat streams 

 

DHC networks: linear 

energy flows including 

multiple temperature 

intervals through the 

definition of streams and 

layers 

A clustering 

algorithm is used to 

define 13 integrated 

zones modelled in 3 

layers (global, DHC 

networks and local 

streams), 

8 typical days, 

1-hour time 

step 

Perfect 

foresight 

assumed 

Deterministic 
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Table 3.13: Including long-term operational issues   (see also Table 3.10: [141] & Table 3.14: [149]) 

Reference System Optimisation method 

Problem 

(Section 

2.1) 

Investment 

feedback 

level 

(Section 2.2) 

Investment 

facet 

(Section 

2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, 

Section 2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[23] 

Urban MES (energy hub 

with PV, ST, HC, batteries, 

HP, gas convertors, boiler, 

TS, gas & electricity 

utilities, heat and electric 

loads) 

Single MILP with a typical 

days coupling methods 
Sizing, 

screening 

Static 

optimisation 

(cost based 

with e-

constraints 

on CO2 

emissions) 

Piecewise 

linear 

investments 

with fixed 

costs 

Linear model, on/off status for 

conversion technologies, affine 

efficiencies with size dependency, 

minimum working power with size 

dependency 

Single 

node 

Typical days (from 3 to 

72) coupled with storage 

equations (method ‘M1’) 

or full year for 

continuous variables and 

typical days for binary 

variables (method ‘M2’). 

1-hour time step 

Perfect foresight 

assumed Deterministic 

[83] 

3 systems: CHP system 

(gas & electricity utilities, 

CHP, gas boiler, TS, heat & 

electric loads), residential 

system (electricity utility, 

PV, HP, electric heater, heat 

storage, heat & electric 

loads), island system (WT, 

back up, PV, HC, battery, 

electric load) 

Single MILP with a typical 

days coupling method Sizing 
Static 

optimisation 

(cost based) 

Continuous 

with fixed 

cost 
Linear model Single 

node 
12 typical days, coupled 

with storage equations, 

1-hour time step 
Prefect predictions 

assumed Deterministic 

[145] 

CCHP system (boilers, 

CHP, ACh, turbo chiller, 

heat and cold storages, gas 

and electricity grids, 

electric, heat and cooling 

loads) 

MILP + rolling horizon (24 

hours shifting). A 48 hour 

horizon + 6 typical days 

represent the rest of the year 

and are (re)computed at 

every stages of the rolling 

horizon 

Operation simulation only 

Annual considerations (annual peak 

power price, grid prices reduced 

above a certain annual utilization 

time), linear model (convex 

performance curves are linearized) 

Single 

node 

2 days + 6 typical days 

representing the rest of 

the year + critical time 

steps accounting for 

extreme data, 1-hour 

time step 

Perfect foresight 

over 2 days NA 
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[146] 

Heat supply system 

(seasonal sensible TS, ST, 

HP, heater, heat load) 

A long-term model (LP) 

setting storage level targets 

(non-linear penalty cost if 

not satisfied) to a short-term 

model (greedy heuristic 

optimisation with a rolling 

horizon) 

Operation simulation only 
Linear models, binary variable for 

short-term storage decision (fixed 

input/output flows) 
Single 

node 

Long-term model: full 

year horizon, daily time 

step. 

Short-term model: few 

days horizon, 15-minute 

time step 

Perfect foresight 

for the short-term 

model, imperfect 

foresight for the 

long-term model 

NA 

[147] 

Hospital distribution 

system (electricity grid, low 

and high temperature 

thermal grids, boilers, heat 

storage, ICEs, time 

dependent demands, 

electricity available from the 

grid, electricity prices and 

ambient temperature) 

MILP + rolling horizon. A 

one week horizon is used 

with future estimations based 

on typical weeks or on the 

previous year simulation (see 

Section 3.2.5) 

Operation simulation only 

Linear model, on/off and start-up 

status with related costs and 

constraints, polynomial efficiencies, 

yearly constraints on primary energy 

saving and on the system efficiency 

Single 

node 

The full year horizon is 

simulated, typical weeks 

are used at the first 

iteration. 

Perfect foresight 

over the one week 

horizon 

NA 
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Table 3.14: Tackling computational challenges  (see also Table 3.12: [24] and Table 3.8: [130]) 

Reference System Optimisation method 
Problem (Section 

2.1) 

Investment 

feedback level 

(Section 2.2) 

Investment 

facet (Section 

2.3.1) 

Operational facets (Section 2.3.2) 
Uncertainties 

(Parametric, Section 

2.4) Tech-eco Spatial Temporal 
Operational 

decisions 

[68] 

Gas turbine CHP system 

(GT generator, waste heat 

recovery boilers, gas fired 

boilers, electric 

compression refrigerators, 

steam absorption 

refrigerators, 6 buildings 

with electric, steam and 

cold loads) 

Single MILP solved by 

computing lower and 

upper bounds until a 

certain optimality gap. 

See Section 3.2.6 

Screening, sizing 

(4 options for each 

technology) 

Static 

optimisation 

(cost based) 
Discrete Linear model with on/off 

status Single node Full year horizon, 

1-hour time step 
Perfect 

foresight 

assumed 
Deterministic 

[72] 

DH system (boiler, HP, 

electric heater, ST, TS, 

building envelop retrofit, 

heat load, electricity grid) 

MILP based heuristic 

solved in 3 steps. 

See Section 3.2.6 

Sizing (boiler, HP, 

electric heater, ST, 

TS, building 

envelop retrofit) 

Static 

optimisation 

(cost based) 

Scale effects 

(linear 

piecewise 

function) 

Linear model including 

ramps, on/off status, 

temperature-dependent 

COP, CO2 emissions 

constraints 

Networks: energy flow 

model (linear losses) 

Missing 

information 
Full year horizon, 

1-hour time step 
Perfect 

foresight 

assumed 

9 scenarios tested 

with specific design 

and operation 

constraints in, each 

scenario 

[149] 

European power system 

2030 (base and peak power 

generations, WT, PV, 

intraday and inter-day 

storages, hydro, 

transmission lines) 

Single LP model with a 

time aggregation approach 

based on a clustering 

algorithm: time steps with 

similar load, WT and PV 

productions are aggregated 

(chronology between time 

steps is retained). 

Sizing (starting 

from scratch, 

power generation, 

WT, PV, storages , 

hydro and 

transmission lines) 

Static 

optimisation 

(cost based) 
Linear 

Linear model including 

ramps (UC constraints were 

excluded for simplicity) 

Networks: energy flow 

model (linear losses) 

28 bus 

network (one 

country is 

represented 

by one bus) 

Full year horizon, 

variable time step 

(1-hour or more) 

defined by the 

clustering 

algorithm 

Perfect 

foresight 

assumed 
Deterministic 

[150] 

Small MES (Absorption 

chiller, boiler, CHP, 

compression chiller, 

electric boiler, HP, PV, 

WT, electric storage, cold 

and heat (seasonal) 

storage) 

MILP model solved by 

computing lower and 

upper bounds until a 

certain optimality gap. 

See Section 3.2.6 

Sizing 
Static 

optimisation 

(cost based) 
Continuous 

Linear model with on/off 

status for minimum working 

power 
Single node Full year horizon, 

1-hour time step 
Perfect 

foresight 

assumed 
Deterministic 

[151] 

CHP units network (GT, 

ICE, boiler, steam cycles, 

heat storage, electric and 

heat load, electric grid) 

Master EAs for investment 

decisions with slave 

MILPs for operation 

simulation. 

See Section 3.2.6 

Screening, sizing 

(20 to 30 

investment 

variables) 

Static 

optimisation 

(cost based) 

Discrete and 

continuous 

variables, non-

linear costs 

(scale effects) 

On/off status, performance 

curves (linearized with 

PWA, concave and not 

concave), including two-

degree-of-freedom units 

with PWA 

Single node 
3 typical weeks 

(CA algorithm 

developed), 1-hour 

time step 

Perfect 

foresight 

assumed 
Deterministic 
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4. Discussion 
 

This survey offers a wide and detailed picture of current optimisation methods used for techno-economic 

analysis of energy system planning. One can note that despite their expansion in other research topics, artificial 

intelligence techniques were not often observed. A possible explanation is that energy system planning is an 

exploratory task while artificial intelligence performs well in known situations.  

At local scales, a wide variety of approaches was observed. A first observation is the less recent use of 

simulation-based optimisation approaches (Section 3.1.2). Mainly since the decisions rules hardly apply to 

complex systems and have to be adapted by hand when one needs to evaluate several architectures. In addition, 

they can lead to sub-optimal operations (due to their myopic assumption) and lose relevance for systems with 

high IE shares, storages, or when investigating production and demand flexibility. In such systems, operational 

performances issues are important to include at investment planning stages [22].  

On the opposite side, the increasing complexity of energy systems has led to the common use of optimisation 

approaches relying on mathematical programming formalisms (Section 3.1.2). At small scale, MILP 

formulations is a straightforward way to optimise investments and operational decisions under the assumption 

of an effective control of the future system i.e. with perfect forecast of load and production fluctuations. They 

often rely on energy models. This accuracy level might be considered adequate for this type of study although 

some technical aspects are sometimes deepened within the limits of linear formulations: DC approximations 

for electric networks or further discrete constraints and costs for production and conversion technologies for 

instance. This is an important limitation of MILP approaches, since non-linear formulations are needed for 

rigorous consideration of physical aspects. More generally, MILP formulations face inherent computation 

burdens that particularly increase with the use of integer variables i.e. with technological / economic details, 

and with spatial / temporal dimensions. This is the case of on/off, start-up/shut-down or other non-linear 

behaviours of operational decisions. These aspects are often considered as essential to account for the system 

flexibility to obtain technically feasible solutions. In parallel, computational burdens strongly increase with 

stochastic optimisation when accounting for operational or investment uncertainties, or when considering 

market mechanisms. This often leads to multi-stage problems (Sections 3.1.1-3). 

Some authors explored further strategies including decompositions methods and heuristics to solve tough 

MILP problems (Section 3.1.6). Researchers could benefit from further crossings between energy system 

planning literature and operational research applied in other industrial areas. However, these strategies are 

often problem specific and require more resources. As a consequence, many approaches rely on time series 

aggregation in the form of representative periods (see Section 2.3.2). Options to reduce complexity while 

keeping complete temporal data include rolling horizon approaches. They further account for more realistic 

operational decisions (with limited foresight). However these approaches cannot optimise investment 

decisions alone. In addition, simulation times must be kept short if one wants to evaluate multiple investment 

options (see [131] for instance).  

Such considerations elaborate on the following challenge: provide substantial investment decision support 

while relying on realistic operational models. This topic is a current concern on the side of optimisation 

models for large scale energy system planning since the integration of IEs [27,39,40]. If the LP approach is 

widely applied at large scales, researchers recently questioned flexibility related assumptions for large shares 

of IEs. Efforts are driven toward these issues (see Section 3.1.1) and can further inspire energy system planning 

at smaller scales.  

With the penetration of IEs, the system flexibility is a growing issue. Modelling flexibility is challenging, 

even more when considering seasonal storages or other long-term operational issues (Section 3.2.5). The use 

of aggregated data alleviates computation burden but has an impact on flexibility strategies as argued in [49] 

and [150]. This was also observed in [110]. Moreover, the quality of the approximation is data and problem 
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specific so it may have variable performances [88]. They also found higher discrepancies when looking at 

high IE shares. Hence there is a need for optimisation models that rely on full temporal data to properly 

consider flexibility issues. Such models should include long-term operational issues like seasonal storage.  

Another key aspect for flexibility assessment is the weather related uncertainties. Most reviewed studies 

considered perfect foresight hypothesis, which becomes limiting in case of high IE shares. Indeed, data series 

uncertainties and forecast errors become increasingly important. Perfect foresight hypothesis also become 

limiting when considering long-term operational issues like seasonal storages since it increases the operational 

optimisation horizon. In such cases, forecast assumptions must be challenged.  

 

5. Conclusion & perspectives 
 

Future energy systems are expected to rely on multiple energy vectors [16,154] and multiple scales 

(countries, regions, cities, individual actors). Long-term energy system planning is now needed at both large 

and local scales [12,13]. This is in line with a decentralised tendency of energy systems [14] and can be 

supported by techno-economic studies based on optimisation models. Such models must relevantly describe 

energy systems and optimise investment decisions to expose useful insights and decision support to the user. 

Literature about ESIP (Energy System Investment Planning) optimisation is abundant and a clear view of 

current modelling methods used for this subject is far from evident. We proposed a survey of current 

optimisation methods. Unlike existing reviews on local energy system planning, this survey goes deeper into 

modelling methods. This is done through an original analysis framework that questions their modelling 

accuracy and the feedback level they provide for local investment planning studies. The analysis reviews 

substantial information relative to the systems studied, the method used, the problems considered, the feedback 

levels and the modelling assumptions.  

We first summarise main methodological trends that include operational and investment optimisation models 

based on mathematical programming formalisms as well as black box models used with metaheuristics to 

optimise investment decisions.  

Then we identify current research paths: including parametric uncertainties, structural uncertainties related to 

the forecast assumptions, market mechanisms, spatial representations, long-term operational and 

computational issues.   

We finally discuss added values, limits and particular consideration of systems flexibility in current models. 

Indeed, with a growing integration of IEs [155], the systems flexibility becomes a critical issue. Current 

flexibility assumptions are now being challenged for large scales energy systems. When looking at local 

scales, such issues are amplified. Flexibility constraints and ability of short and long-term storages should be 

modelled, while keeping realistic foresight assumptions and accurate temporal representations 

accounting for realistic operational constraints. Such research orientations are expected to raise tough 

optimisation problems, which already pushes researchers to explore original methods. Concurrently, 

including uncertainties in the optimisation process to reach robust solutions will further increase 

computational challenges.  
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Chapitre 2  
 

  

Le chapitre précédent a permis de comprendre les enjeux relatifs à la modélisation et à l’optimisation 

de systèmes énergétiques pour des études technico-économiques. Il en ressort le besoin de simuler et 

d’optimiser ces systèmes sur la base de modèles opérationnels plus précis, en tenant compte d’hypothèses 

plus réalistes. Cela implique de représenter plus finement les technologies avec leurs contraintes techniques, 

utiliser des séries temporelles complètes, et tenir compte des limites dans la capacité du pilotage à prévoir 

et optimiser le fonctionnement du système.  

 

Le choix est fait de s’intéresser aux méthodes basées sur le mécanisme d’horizon glissant. En effet, le 

mécanisme d’horizon glissant est déjà utilisé pour piloter des systèmes énergétiques existants et est inspiré 

du principe du contrôle prédictif. De plus, utiliser un tel mécanisme permet de faire interagir différentes 

briques méthodologiques (module d’optimisation, de prévisions, simulateur, etc.), ouvrant la porte à 

l’exploration d’hypothèses plus fines concernant les aspects technologique, économique, décisionnel, ou 

encore temporel. Finalement, cette approche permet de découper temporellement le problème 

d’optimisation et donc d’utiliser des variables entières sans faire exploser les temps de calcul. En effet, si 

l’on cherche à résoudre un problème opérationnel au pas de temps horaire sur un an, l’utilisation de variables 

entières en augmentera fortement la complexité. 

 

Les approches classiques en horizon glissant utilisent généralement un horizon d’optimisation tronqué 

(quelques jours), pour ne pas retomber sur les difficultés calculatoires rencontrées lorsque l’on résout le 

problème complet en une fois. Cependant, lorsque les décisions opérationnelles court terme dépendent de 

décisions lointaines (si le système inclue un stockage saisonnier par exemple), l’horizon tronqué conduit à 

de mauvaises solutions.  

 

Le deuxième chapitre propose une approche pour inclure ces décisions opérationnelles long terme dans 

l’optimisation court terme. Les pas de temps lointains sont agrégés pour maîtriser les temps de calcul. Deux 

méthodes d’agrégation sont présentées. 

 

L’utilisation d’horizons glissants permet de simuler l’opération du système. Ce simulateur pourra être utilisé 

avec un algorithme maître (de type métaheuristique par exemple) pour optimiser la conception du système. 

La vitesse d’exécution du simulateur sera alors une qualité recherchée au même titre que la pertinence de 

ses résultats. 

 

L’article qui suit a été publié dans le journal Energy : 

 

Cuisinier E, Lemaire P, Penz B, Bourasseau C, Ruby A. New rolling horizon optimization approaches to 

balance short-term and long-term decisions: an application to energy planning. Energy 2022; 245. 

https://doi.org/10.1016/j.energy.2021.122773. 

 

Les renvois au Chapitre 1 correspondent à la référence [156]. 
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Abbréviations utilisées au Chapitre 2 : 

 
Abbréviation Expression complète 

CF Cost Function 

D Demand 

FP Flexible Production 

IFP Inflexible Production 

LTS Long-term Storage 

RH Rolling Horizon 

RP Representative Period 

STS Short-term Storage 
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Abstract:  

The planning of complex systems such as energy systems calls for multiple and recurrent operational decisions 

depending on the present situation as well as future trends. Such decisions can be optimised with rolling-

horizon approaches where most immediate decisions are fixed, based on current previsions, while next 

decisions are made at further optimisation steps with updated information. In this paper, we focus on cases 

where long-term decisions have to be balanced with detailed short-term decisions to insure operational 

realism. On such problems, standard rolling horizon approaches are hard to solve due to the substantial 

increase of the temporal dimension. To overstep this issue, we propose new approaches to balance short and 

long-term decisions. Two modelling approaches, based on aggregated time steps, are proposed and tested on 

an energy production problem where energy can be stored seasonally. Approaches are compared to 

benchmarks approaches, and a sensitivity analysis is performed. Both approaches show promising savings and 

correspond to different compromises between simplicity, computation time and performance. 

 

Highlights: 

-New rolling horizon approaches with an extended planning horizon are proposed. 

-Detailed short-term decisions and long-term decisions are optimised jointly. 

-Approaches rely on an adaptive time step aggregation method. 

-Approaches are tested on a complex heat production problem with seasonal storage. 

-Solutions are improved with no / limited increase of computation times. 

  

Key words: rolling-horizon, energy planning, optimisation, predictive strategy, MILP 
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1. Introduction 
 

This paper proposes new rolling horizon approaches to deal with dynamic operational problems that include 

both short and long-term decisions. We particularly focus on cases where immediate short-term decisions 

must be modelled with a detailed discretization of time, whereas long-term decisions must be anticipated but 

cannot be taken in advance due to poor quality of forecast information. The new approaches are illustrated on 

a typical energy planning problem where energy production decisions depend on seasonal variations; 

however, this energy planning problem can be substituted by any production planning problem where short 

and long-term decisions must be balanced. 

Rolling horizon (RH) approaches are common in decision making [157,158] and are particularly relevant to 

solve recurrent, dynamic or multi-period problems where some immediate decisions must be made and 

available data can be up-dated through time. The idea is to solve the problem over a chosen planning horizon 

and using current forecasts, but to fix and effectively apply only a part of the optimised decisions. Then, for 

the next step, the system state as well as forecasts are updated, as in real life situations, and the problem is 

solved again on the shifted planning horizon. Relying on a RH can also help to divide a large optimisation 

problem into smaller ones. In [159,160], authors compare the solving of energy planning problems over the 

entire problem horizon with RH approaches. 

RHs are particularly applied in the energy sector. They were traditionally used to solve so-called unit 

commitment problems, where the set-up and the power dispatch of energy production units must be decided 

[74]. A RH based method is applied in [80] to optimise operations in a district heating system. In [161], authors 

develop a three level RH framework for power systems and evaluates the impact of forecast accuracy. In [94], 

authors use a RH approach to optimise energy market bids and balancing market decisions in a stochastic 

framework. [162] uses a RH approach to optimise operations in an electric microgrid (i.e. electricity 

purchased, produced, stored, consumed and sold). In [163–165], authors optimise electric network operations. 

They rely on RH algorithms to optimise day and intra-day decisions. They investigate various models that 

consider the stochastic nature of the intermittent energy productions and of the demand. Authors from [166] 

use a RH model as a reference to evaluate several mathematical programming formulations dedicated to the 

design and operation optimisation of an energy system. Further examples can be found in [121,195,167]. 

In the previous examples, RHs consider short planning horizons with detailed time discretization. For instance, 

energy system modelling often requires an hourly discretization of time. In cases of long-term planning needs 

(typically when energy systems include seasonal storage), short planning horizons are limiting: a hourly 

planning horizon of 48 hours can fail to provide an effective use of a seasonal storage for instance. On the 

other hand, increasing it to 8760 hours can lead to untractable optimisation problems. One could drop the 

RH approach and solve the problem as a single mathematical program with heuristics or decomposition 

techniques. However, this would require the perfect foresight assumption while the RH approaches enable to 

consider imperfect forecasts and information updates. Furthermore, RH approaches can include interactions 

of the decision model with other parties. Hence, this paper focuses on RH applications where short-term 

decisions should be optimised along with long-term ones. In such cases, there is a need to consider decisions 

over different time scales and to optimise them jointly. 

This challenge was recently discussed in the energy system literature. Authors in [146] use a RH to optimise 

a heat supply system that includes a seasonal storage. The RH includes a few days planning horizon with 

seasonal storage level targets at each RH cycle. The economic objective is penalised if targets are not met. 

However, the penalty price is still to be found. In [168], large scale hydro-thermal systems are optimised with 

a RH mechanism. The long-term hydro storage is managed by introducing a value for the stored water at the 

end of the planning horizon. However, the computation of this value is not detailed. Finally, authors from 

[141] simulate a microgrid with a RH. The value of storage and set-up units at the end of the planning horizon 
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are given by a value function. The latter is estimated by solving a simplified version of the infinite horizon 

problem with dynamic programming. 

The need for a long-term planning horizon can also occur from annual constraints or objectives like energy 

efficiency/savings, peak power prices, or environmental emission limits for instance. In [145], authors 

consider annual network charges based on an energy use threshold. They use a RH with a planning horizon 

based on time aggregation by representative days on the long-term. In [147], a RH is used to optimise the 

system operation and reach energy efficiency and energy saving targets. They rely on long-term estimations 

based on representative weeks. Contrarily to [145], the computations had to be done solved several times with 

updated estimations to reach the targets. In both cases, the continuity between aggregated periods is not kept, 

so such methods cannot be used if long-term decisions are path-dependent: in case a long-term storage for 

instance. 

Finally, authors from [169] focus on the long-term degradation of batteries while optimising their daily 

operation in a RH model. They develop a specific parametric model to anticipate future costs of the battery 

deteriorating modes. 

Contributions: 

Few researches were found that deal with the cases where detailed short-term decisions must be optimised 

along with long-term decisions. This type of challenge is relevant in the field of energy research. Methods 

proposed in [146,168] rely on key arbitrary values. Methods from [145,170] do not keep continuity between 

long-term decisions. Hence, they are not applicable if long-term strategies are path dependent. The method 

from [169] is technology specific and [141] provides one heuristic method. Given the related problems 

complexity, heuristics relying on future data approximations are of interest. Different heuristics can provide 

different compromises between computation times, performances and simplicity. Furthermore, this can 

vary over the application case. Hence, authors contribute to this research gap by proposing two news 

approaches. 

Both approaches rely on an adaptive time-step aggregation. They do not need the modeller to provide a 

value for long-term moves. Furthermore, both can keep the continuity between state variables over the long 

term and ensure short computation times. The first one stands out for its easiness of application and short 

computation times with a case-dependent solution quality. The second for its potential to reach better 

solutions. The proposed approaches are illustrated on an energy production planning problem and can be 

extended to other domains. 

The paper is organised as follows. We first introduce the problem studied (Section 2). Then, Section 3 

describes the proposed approaches. Results are shown and discussed in Section 4 and a sensitivity analysis is 

performed on the two best versions of the models (Section 5). 
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2. Problem formulation 
 

This section presents the problem used to illustrate the proposed methodologies. It is a heat production case 

study: heat production units and storage must be managed to supply a network that delivers heat to dwellings 

corresponding to 5000 inhabitants. The time varying heat demand (D) must be supplied at each period (units 

considered are actually energy units). It can be supplied with two production means: an Inflexible (but cheap) 

Production (IFP) and a Flexible (but expensive) Production (FP). They respectively correspond to a biomass 

boiler and a gas boiler. Additionally, two storage units can be used: a Short-Term Storage (STS) and a Long-

Term Storage (LTS). The latter has a higher capacity but lower performances. 

The mathematical description of the problem is further detailed. This model is supposed to perfectly represent 

the real life problem. The mathematical formulation is described on a discrete horizon 𝐻 = {1, … , 𝛩 ∈ ℕ∗}. 

The time step size (in hours) is given by 𝑑𝑡 and ensures units consistency. Variables are written in bold, 

continuous variables in capital letters and binary variables in small letters. In order to represent units 

consistency, 𝑋 corresponds to units/hour and 𝐸 to units. Parameters and variables are detailed below. 

Production units: 

• The FP unit is only defined by its unitary production cost in euros/unit 𝐶𝐹, with no constraint on the 

produced quantity. Variable 𝑿𝒕
𝑭 ∈ ℝ+corresponds to the production of the FP at 𝑡 in units/hour. 

 

• The IFP is characterised by a minimum and a maximum production capacity in units/hour (𝑋𝑚𝑖𝑛𝐼 and 

𝑋𝑚𝑎𝑥𝐼), a maximum change of its production rate in units/hour (𝑋𝑟𝐼), a minimum on time in hours 

(i.e. if turned on, the IFP must be kept on over at least 𝑇𝑚𝑖𝑛𝐼 time steps), a unitary production cost in 

euros/unit (𝐶𝐼 ), a fixed production cost in euros/hour (𝐶𝑜𝑛𝐼) and a set-up cost in euros (𝐶𝑠𝑒𝑡𝐼). 

Variable 𝑿𝒕
𝑰 ∈ {0 ∪ [𝑋𝑚𝑖𝑛𝐼 , 𝑋𝑚𝑎𝑥𝐼]} corresponds to the production of the IFP at 𝑡 in units/hour, 𝒚𝒕

𝑰 ∈

{0,1} equals 1 if the IFP is on at 𝑡, 0 otherwise and 𝒛𝒕
𝑰 ∈ {0,1}  equals 1 if the IFP is being set-up at 𝑡, 

0 otherwise. 

Storage units:  

Storage units (STS and LTS) are respectively defined by a maximum capacity in units (𝐸𝑚𝑎𝑥𝑆,𝐸𝑚𝑎𝑥𝐿), a 

storing efficiency (𝜂𝑆, 𝜂𝐿) corresponding to the percentage of units that are actually stored during the storing 

operation (the rest is lost), losses in units lost/unit stored/hour (𝛿𝑆, 𝛿𝐿) and a similar stock/destock capacity in 

units/hour (𝑋𝑚𝑎𝑥𝑆𝐿). Associated variables are the stored quantity in units (𝑬𝒕
𝑺 ∈ [0, 𝐸𝑚𝑎𝑥𝑆] and 𝑬𝒕

𝑳 ∈

[0, 𝐸𝑚𝑎𝑥𝐿]) and the stock and destock rates in units/hour ((𝑿𝒐𝒖𝒕𝒕
𝑺, 𝑿𝒐𝒖𝒕𝒕

𝑳, 𝑿𝒊𝒏𝒕
𝑺, 𝑿𝒊𝒏𝒕

𝑳) ∈ [0, 𝑋𝑚𝑎𝑥𝑆𝐿]4) at 

time step t. 

Demand:  

The demand (𝑋𝑡
𝐷in units/hour) has seasonal variations with higher values in winter and intermediate seasons 

than in summer. It also varies weakly, and daily due to external temperatures and sociological aspects. 

The mathematical formulation of the problem is as follows: 
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𝑀𝑖𝑛:    ∑ (𝐶𝐹𝑿𝒕
𝑭 + 𝐶𝐼𝑿𝒕

𝑰 + 𝐶𝑜𝑛𝐼𝒚𝒕
𝑰) ∗ 𝑑𝑡 + 𝐶𝑠𝑒𝑡𝐼𝒛𝒕

𝑰
𝑡∈𝐻    E1  

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

∀ 𝑡 ∈ 𝐻:   𝑋𝑡
𝐷 = 𝑿𝒕

𝑭 + 𝑿𝒕
𝐼 + 𝑿𝒐𝒖𝒕𝒕

𝑺 − 𝑿𝒊𝒏𝒕
𝑺 + 𝑿𝒐𝒖𝒕𝒕

𝑳 − 𝑿𝒊𝒏𝒕
𝑳    E2 

𝑬𝒕
𝑺 = 𝑬𝒕−𝟏

𝑺 ∗ (1 − 𝛿𝑆𝑑𝑡) + (𝜂𝑆𝑿𝒊𝒏𝒕
𝑺 − 𝑿𝒐𝒖𝒕𝒕

𝑺)𝑑𝑡    E3 

𝑬𝒕
𝑳 = 𝑬𝒕−𝟏

𝑳 ∗ (1 − 𝛿𝐿𝑑𝑡) + (𝜂𝐿𝑿𝒊𝒏𝒕
𝑳 − 𝑿𝒐𝒖𝒕𝒕

𝑳)𝑑𝑡    E4 

𝑿𝒕
𝑰 ≤ 𝑋𝑚𝑎𝑥𝐼𝒚𝒕

𝐼        E5 

𝑋𝑚𝑖𝑛𝐼𝒚𝒕
𝐼 ≤ 𝑿𝒕

𝑰        E6 

𝒚𝒕
𝑰 − 𝒚𝒕−𝟏

𝑰 ≤ 𝒛𝒕
𝑰       E7 

𝑿𝒕
𝑰 − 𝑿𝒕−𝟏

𝑰 ≤ 𝑋𝑟𝐼       E8 

 𝑿𝒕−𝟏
𝑰 − 𝑿𝒕

𝑰 ≤ 𝑋𝑟𝐼       E9 

∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛𝐼 , … , 𝛩}:  ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=𝑡+1−𝑇𝑚𝑖𝑛𝐼 ≤ 𝒚𝒕
𝑰      E10 

∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛𝐼 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=1 ≤ 𝒚𝒕
𝑰          E11 

𝑬𝟎
𝑳 ≤ 𝑬𝜣

𝑳             E12 

 

The objective E1 is to minimise the sum of all costs. E2 ensures that the demand is satisfied. E3 and E4 are 

the balance equations for both storage units. E5-E6 set the minimum capacity of the IFP and fixes 𝒚𝒕
𝑰. E7 fixes 

𝒛𝒕
𝑰. E8-E9 limit the changes in the IFP production rate. The minimum on/off times of the IFP are given by 

E10-E11. Finally, E12 states that the final LTS level is at least equal to its initial level. This last constraint is 

only used if H corresponds to a year (𝑬𝟎
𝑳 is set to 0 otherwise). Other variables are set to 0 if 𝑡 = 0. 

We assume that the problem we address is fully described by the above model. This problem can be solved 

iteratively over 𝐻 in a rolling horizon fashion (see next section). However, with the possibility to store units 

over the long term with the LTS, the optimal operation of the system for a given RH cycle can only be found 

by setting the length of 𝐻 equal to a year. With an hourly time step, 𝐻 would include 8760 periods which 

highly increases the problem dimension. To overcome this issue, new approaches are proposed in Section 3. 

 

3. Proposed rolling horizon approaches to solve the optimisation 

problem 
 

This section describes the approaches proposed in this paper. They enable to solve the problem presented in 

Section 2 in a RH fashion by considering long-term future decisions while optimizing short-term ones. 

Figure 9 describes the RH approach as well as the additional notations used in this paper. The problem is 

solved over a chosen planning horizon with available forecasts. Optimised decisions are effectively applied 

over the fixed horizon (𝐹𝐻). At the next cycle, 𝐻 is shifted by the length of 𝐹𝐻. The system state as well as 

forecasts are updated before the problem is solved again on 𝐻. This process goes infinitely. 
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Figure 9: Rolling horizon principle. 

As mentioned previously, the possibility to store units over the long term extends the planning horizon length, 

leading to computational issues. In order to make this extension possible, we introduce the idea of short and 

long-term horizons with aggregated time steps. The horizon of the original model (𝐻) is divided into 𝑆𝐻 =

{1, … , 𝜃 − 1} and 𝐿𝐻 = {𝜃, … , 𝛩} where 𝜃 ∈ 𝐻 (𝐻 = 𝑆𝐻 ∪ 𝐿𝐻). The time step size of the original model (𝑑𝑡) 

is kept over 𝑆𝐻 while it is increased over 𝐿𝐻. Time step aggregations were already used in other fields of 

energy system analysis [171,172]: time steps with similar values are aggregated to reduce the problem size. 

Here, aggregations are made on the more distant time steps for which uncertainty increases i.e. the more 

distant, the bigger the aggregation. Hence, the time step size 𝑑𝑡 is now dependent on 𝑡: 𝑑𝑡𝑡. The approach 

enables a long-term vision up to a year or more while limiting the total number of time steps. Furthermore, 

the aggregation is adapted to the immediate decision need: upcoming decisions are accurately modelled while 

long-term ones are reduced to necessary variables. This way, short and long-term decisions are reconciled. 

The slicing (i.e. the values of 𝜃 and 𝑑𝑡𝑡) is arbitrary and is to be defined by the modeller. It is problem 

dependant. One could further define a hypothetical medium-term horizon for instance. An example of slicing 

is given Figure 10. This slicing naturally fits the problem of Section 2 with its actual data (see Section 4). The 

time step size is adapted to the forecast accuracy. Different versions of this slicing will be tested in the 

numerical experiments (Section 4). 

 

 

Figure 10: Planning horizon including a long-term vision with aggregated time steps 
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In all cases, the original MILP formulation of the problem of Section 2 is kept over 𝑆𝐻, which includes 𝐹𝐻. 

Hence, E2, E5 and E6 are satisfied as well as E3, E4, and E7-E11 within 𝐹𝐻. The RH mechanism ensures that 

E3, E4 and E7-E11 are satisfied between each 𝐹𝐻. Finally, E12 is satisfied because 𝑬𝟎
𝑳 is set to 0. Hence, the 

solution provided by the RH is a solution of E2-12. 

Two models are proposed for 𝐿𝐻 to capture long-term data and decisions. The optimisation is then carried out 

on both horizons jointly in order to keep consistency between short and long-term decisions. 

 

3.1. Aggregation by Means and Relaxation: the Mean model 
 

This approach uses means of the demand over 𝐿𝐻 as an aggregation of future data. The demand 𝑋𝑚𝑒𝑎𝑛𝑡
𝐷 

over the current time step 𝑡 of size 𝑑𝑡𝑡 is the mean of the original demand over this time step. Two formulations 

are presented for the problem over 𝐿𝐻. 

 

3.1.1. Linear formulation: the original Mean model 
 

Here, the original MILP formulation given by E1-E11 is kept but integer variables are set to zero over 𝐿𝐻. 

Variables on 𝐿𝐻 represent the means of the original continuous variables over the aggregated period. This 

new formulation is given below. Changes are marked in blue and new equations are indexed by “E.X1”. We 

assume that 𝑛𝐼 < 𝜃 . 

The Mean model is as follows: 

𝑀𝑖𝑛: 

∑ (𝐶𝐹𝑿𝒕
𝑭 + 𝐶𝐼𝑿𝒕

𝑰) ∗ 𝑑𝑡𝑡)𝑡∈𝐻 + ∑ (𝐶𝑜𝑛𝐼𝒚𝒕
𝑰 ∗ 𝑑𝑡𝑡 + 𝐶𝑠𝑒𝑡𝐼𝒛𝒕

𝑰)𝑡∈𝑆𝐻      E1.1  

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

∀ 𝑡 ∈ 𝐻:   𝑋𝑚𝑒𝑎𝑛𝑡
𝐷 = 𝑿𝒕

𝑭 + 𝑿𝒕
𝑰 + 𝑿𝒐𝒖𝒕𝒕

𝑺 − 𝑿𝒊𝒏𝒕
𝑺 + 𝑿𝒐𝒖𝒕𝒕

𝑳 − 𝑿𝒊𝒏𝒕
𝑳    E2.1 

𝑬𝒕
𝑺 = 𝑬𝒕−𝟏

𝑺 ∗ (1 − 𝛿𝑆𝑑𝑡𝑡) + (𝜂𝑆𝑿𝒊𝒏𝒕
𝑺 − 𝑿𝒐𝒖𝒕𝒕

𝑺)𝑑𝑡𝑡    E3.1 

𝑬𝒕
𝑳 = 𝑬𝒕−𝟏

𝑳 ∗ (1 − 𝛿𝐿𝑑𝑡𝑡) + (𝜂𝐿𝑿𝒊𝒏𝒕
𝑳 − 𝑿𝒐𝒖𝒕𝒕

𝑳)𝑑𝑡𝑡   E4.1 

∀ 𝑡 ∈ 𝑆𝐻:   𝑿𝒕
𝑰 ≤ 𝑋𝑚𝑎𝑥𝐼𝒚𝒕

𝐼        E5.1 

    𝑋𝑚𝑖𝑛𝐼𝒚𝒕
𝑰 ≤ 𝑿𝒕

𝑰        E6.1 

𝒚𝒕
𝑰 − 𝒚𝒕−𝟏

𝑰 ≤ 𝒛𝒕
𝑰       E7.1 

𝑿𝒕
𝑰 − 𝑿𝒕−𝟏

𝑰 ≤ 𝑋𝑟𝐼       E8.1 

𝑿𝒕−𝟏
𝑰 − 𝑿𝒕

𝑰 ≤ 𝑋𝑟𝐼       E9.1 

∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛𝐼 , … , 𝜃 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=𝑡+1−𝑇𝑚𝑖𝑛𝐼 ≤ 𝒚𝒕
𝑰      E10 

∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛𝐼 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=1 ≤ 𝒚𝒕
𝑰          E11 

𝑬𝟎
𝑳 ≤ 𝑬𝜣

𝑳             E12 
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3.1.2. Including set-up costs: the Mean-SetUp model 
 

In a second formulation, we propose the inclusion of set-up costs over 𝐿𝐻. This is because set-up costs can be 

preponderant (see Section 4), thus there might be an interest in setting-up the IFP for longer than the length 

of 𝑆𝐻. This is done by including the second part of E4, E5-E7, as well as set-up costs in the objective on 𝐿𝐻. 

The model including the set-up costs is called Mean-SetUp. Contrarily to the Mean model, the Mean-SetUp 

model is expected to better manage a potential cycling of the IFP. The MILP formulation of the Mean-SetUp 

model is given below. Changes compared to the Mean model are shown in blue and new equations are indexed 

by “E.X2”. 

The Mean-SetUp model is as follows: 

𝑀𝑖𝑛: 

∑ ((𝐶𝐹𝑿𝒕
𝑭 + 𝐶𝐼𝑿𝒕

𝑰) ∗ 𝑑𝑡𝑡) + 𝐶𝑠𝑒𝑡𝐼𝒛𝒕
𝑰)𝑡∈𝐻 + ∑ (𝐶𝑜𝑛𝐼𝒚𝒕

𝑰 ∗ 𝑑𝑡𝑡)𝑡∈𝑆𝐻      E1.2  

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

∀ 𝑡 ∈ 𝐻:   𝑋𝑚𝑒𝑎𝑛𝑡
𝐷 = 𝑿𝒕

𝑭 + 𝑿𝒕
𝑰 + 𝑿𝒐𝒖𝒕𝒕

𝑺 − 𝑿𝒊𝒏𝒕
𝑺 + 𝑿𝒐𝒖𝒕𝒕

𝑳 − 𝑿𝒊𝒏𝒕
𝑳    E2.1 

𝑬𝒕
𝑺 = 𝑬𝒕−𝟏

𝑺 ∗ (1 − 𝛿𝑆𝑑𝑡𝑡) + (𝜂𝑆𝑿𝒊𝒏𝒕
𝑺 − 𝑿𝒐𝒖𝒕𝒕

𝑺)𝑑𝑡𝑡    E3.1 

𝑬𝒕
𝑳 = 𝑬𝒕−𝟏

𝑳 ∗ (1 − 𝛿𝐿𝑑𝑡𝑡) + (𝜂𝐿𝑿𝒊𝒏𝒕
𝑳 − 𝑿𝒐𝒖𝒕𝒕

𝑳)𝑑𝑡𝑡   E4.1 

𝑿𝒕
𝑰 ≤ 𝑋𝑚𝑎𝑥𝐼𝒚𝒕

𝑰       E5 

𝒚𝒕
𝑰 − 𝒚𝒕−𝟏

𝑰 ≤ 𝒛𝒕
𝑰       E7 

∀ 𝑡 ∈ 𝑆𝐻:   𝑿𝒕
𝑰 ≤ 𝑋𝑚𝑎𝑥𝐼𝒚𝒕

𝑰       E6.1 

𝑿𝒕
𝑰 − 𝑿𝒕−𝟏

𝑰 ≤ 𝑋𝑟𝐼       E8.1 

 𝑿𝒕−𝟏
𝑰 − 𝑿𝒕

𝑰 ≤ 𝑋𝑟𝐼       E9.1 

∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛𝐼 , … , 𝜃 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=𝑡+1−𝑇𝑚𝑖𝑛𝐼 ≤ 𝒚𝒕
𝑰      E10 

∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛𝐼 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=1 ≤ 𝒚𝒕
𝑰          E11 

𝑬𝟎
𝑳 ≤ 𝑬𝛩

𝑳             E12 

 

Although the Mean-SetUp model is expected to perform better than the Mean model, both models rely on an 

approximation of future costs. This approximation is based on means and on a lightened version of the original 

problem formulation. These models are expected to give lower bounds for the original problem over 𝑇 and to 

underestimate future costs. In particular, the use of means leads to ignore oscillations, which are costly to the 

system. This justifies the elaboration of a second method described in the next section. 
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3.2. Aggregation by Representative Periods and Cost Functions: the RpCf model 
 

In order to overcome the mentioned limits of the Mean model, we introduce the RpCf (Representative periods 

and Cost functions) model. It relies on an aggregation of future data by representative periods (RPs). RPs 

could be used directly over 𝐿𝐻 with the original MILP formulation, as performed in [145]. However, this can 

highly increase computation times and the continuity between time steps is lost. Hence we propose a new 

approach. 

First, 𝜏 is introduced as the current step of the RH process. Hence, the couple (𝑡, 𝜏) describes one actual period 

of time. The proposed RpCf approach relies on a pre-computation of operational costs in function of a variable 

which describes the long-term evolution of the system state: 𝑐𝑡,𝜏. In our case this variable is the variation of 

the state of the LTS: 𝜟𝒕 = 𝑬𝒕
𝑳 − 𝑬𝒕−𝟏

𝑳 . Note that 𝑐𝑡,𝜏  could have been defined as dependant of 𝑬𝒕
𝑳 and 𝑬𝒕−𝟏

𝑳 . 

Using 𝜟𝒕 instead loses information but reduces (pre-)computation times. 

Hence, future system costs are estimated depending on the quantity moved to the LTS (possibly negative) 

over all periods of the 𝐿𝐻. The functions 𝑐𝑡,𝜏 are called the cost functions (CFs) and are defined for all periods 

𝑡 and for all steps 𝜏. 

Similarly to Section 3.1, we present two versions of the RpCf model: a first one without including set-up costs 

over 𝐿𝐻, and a second one that includes them. 

 

3.2.1. The original RpCf model 
 

Assuming that functions 𝑐𝑡,𝜏 are known, the problem is formulated as follows. Changes to the original MILP 

formulation are shown in blue and new equations are indexed by “EX.3”. 

The RpCf model is as follows: 

𝑀𝑖𝑛: 

∑ (𝐶𝐹𝑿𝒕
𝑭 + 𝐶𝐼𝑿𝒕

𝑰 + 𝐶𝑜𝑛𝐼𝒚𝒕
𝑰) ∗ 𝑑𝑡𝑡 + 𝐶𝑠𝑒𝑡𝐼𝒛𝒕

𝑰)𝑡∈𝑆𝐻 + ∑ ( 𝑐𝑡,𝜏(𝜟𝒕))𝑡∈𝐿𝐻     E1.3  

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

∀ 𝑡 ∈ 𝑆𝐻:   𝑋𝑡
𝐷 = 𝑿𝒕

𝑭 + 𝑿𝒕
𝑰 + 𝑿𝒐𝒖𝒕𝒕

𝑺 − 𝑿𝒊𝒏𝒕
𝑺 + 𝑿𝒐𝒖𝒕𝒕

𝑳 − 𝑿𝒊𝒏𝒕
𝑳    E2.3 

𝑬𝒕
𝑺 = 𝑬𝒕−𝟏

𝑺 ∗ (1 − 𝛿𝑆𝑑𝑡𝑡) + (𝜂𝑆𝑿𝒊𝒏𝒕
𝑺 − 𝑿𝒐𝒖𝒕𝒕

𝑺)𝑑𝑡𝑡    E3.1 

𝑬𝒕
𝑳 = 𝑬𝒕−𝟏

𝑳 ∗ (1 − 𝛿𝐿𝑑𝑡𝑡) + (𝜂𝐿𝑿𝒊𝒏𝒕
𝑳 − 𝑿𝒐𝒖𝒕𝒕

𝑳)𝑑𝑡𝑡   E4.3 

𝑿𝒕
𝑰 ≤ 𝑋𝑚𝑎𝑥𝐼𝒚𝒕

𝑰        E5.1 

𝑋𝑚𝑖𝑛𝐼𝒚𝒕
𝑰 ≤ 𝑿𝒕

𝑰        E6.1 

𝒚𝒕
𝑰 − 𝒚𝒕−𝟏

𝑰 ≤ 𝒛𝒕
𝑰       E7.1 

𝑿𝒕
𝑰 − 𝑿𝒕−𝟏

𝑰 ≤ 𝑋𝑟𝐼       E8.1 

𝑿𝒕−𝟏
𝑰 − 𝑿𝒕

𝑰 ≤ 𝑋𝑟𝐼       E9.1 

∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛𝐼 , … , 𝜃 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=𝑡+1−𝑇𝑚𝑖𝑛𝐼 ≤ 𝒚𝒕
𝑰      E10.1 

∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛𝐼 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=1 ≤ 𝒚𝒕
𝑰          E11 
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𝑬𝟎
𝑳 ≤ 𝑬𝜣

𝑳             E12 

∀ 𝑡 ∈ 𝐿𝐻:   𝑬𝒕
𝑳 = 𝑬𝒕−𝟏

𝑳 ∗ (1 − 𝛿𝐿𝑑𝑡𝑡) + 𝜟𝒕     E13.3 

Equation E13.3 is the storage balance equation over 𝐿𝐻. With E4.3, it ensures continuity between the LTS 

states over H. One can note that the problem over 𝐿𝐻 is a shortest path problem. 

The CFs are naturally included in the MILP formulation as piecewise linear functions. The CFs are estimated 

by solving the original problem over one or several RPs of the period 𝑡, for all 𝜏 and for various values of 𝛥. 

The method for estimating the CFs is detailed in Appendix A for a given horizon slicing. In the case of the 

problem given in Section 2 and the data used in Section 4, the CFs are very close to piecewise linear functions 

and are convex. Slopes of the linear parts correspond to the marginal cost of the last called production unit 

(IFP or FP). Hence they are easily included in the MILP formulation. However, non-convex and non-linear 

functions would be more costly to handle. 

Contrarily to the mean approximation, costs estimations based on RPs do not ignore the hourly oscillations 

which are costly to the system. Furthermore, costs are estimated based on the original problem formulation as 

opposed to the Mean model where a linear approximation is used. 

 

3.2.2. Side effects and inclusion of set-up costs:  
 

The RP-FC-SetUp model computations of CFs are subject to side effects depending on the STS and the IFP 

states at the beginning of the RP. In particular, set-up costs can be preponderant (see Section 4) and ignoring 

them over could lead to sub-optimal solutions. Hence, similarly to the Mean-SetUp approach, we extend the 

RP-FC approach so that set-up costs are anticipated over the long term. This is done by computing CFs for 

both assumptions: 

• The IFP is already set-up at the beginning of the RP (“On” assumption). 

• The IFP is off at the beginning of the RP (“Off” assumption). 

Hence, two sets of CFs are obtained: 𝑐𝑜𝑛 and 𝑐𝑜𝑓𝑓. This information is included in the model as follows. 

Changes compared to the formulation of the RpCf model are shown in blue and new equations are indexed by 

“EX.4”. 

We remind that 𝑆𝐻 = {1, … , 𝜃 − 1} and 𝐿𝐻 = {𝜃, … , 𝛩}. 

 

The RpCf-SetUp model is as follows: 
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𝑀𝑖𝑛: 

∑ (𝐶𝐹𝑿𝒕
𝑭 + 𝐶𝐼𝑿𝒕

𝑰 + 𝐶𝑜𝑛𝐼𝒚𝒕
𝑰) ∗ 𝑑𝑡𝑡 + 𝐶𝑠𝑒𝑡𝐼𝒛𝒕

𝑰)𝑡∈𝑆𝐻    

+ 𝑐𝜃,𝜏
𝑜𝑛(𝜟𝜽

𝒐𝒏) +  𝑐𝜃,𝜏
𝑜𝑓𝑓

(𝜟𝜽
𝒐𝒇𝒇

) + ∑ ( 𝑐𝑡,𝜏
𝑜𝑛(𝜟𝒕))𝑡∈𝐿𝐻\{𝜃}        E1.4  

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

∀ 𝑡 ∈ 𝑆𝐻:   𝑋𝑡
𝐷 = 𝑿𝒕

𝑭 + 𝑿𝒕
𝑰 + 𝑿𝒐𝒖𝒕𝒕

𝑺 − 𝑿𝒊𝒏𝒕
𝑺 + 𝑿𝒐𝒖𝒕𝒕

𝑳 − 𝑿𝒊𝒏𝒕
𝑳    E2.3 

𝑬𝒕
𝑺 = 𝑬𝒕−𝟏

𝑺 ∗ (1 − 𝛿𝑆𝑑𝑡𝑡) + (𝜂𝑆𝑿𝒊𝒏𝒕
𝑺 − 𝑿𝒐𝒖𝒕𝒕

𝑺)𝑑𝑡𝑡    E3.1 

𝑬𝒕
𝑳 = 𝑬𝒕−𝟏

𝑳 ∗ (1 − 𝛿𝐿𝑑𝑡𝑡) + (𝜂𝐿𝑿𝒊𝒏𝒕
𝑳 − 𝑿𝒐𝒖𝒕𝒕

𝑳)𝑑𝑡𝑡   E4.3 

𝑿𝒕
𝑰 ≤ 𝑋𝑚𝑎𝑥𝐼𝒚𝒕

𝑰        E5.1 

𝑋𝑚𝑖𝑛𝐼𝒚𝒕
𝑰 ≤ 𝑿𝒕

𝑰        E6.1 

𝒚𝒕
𝑰 − 𝒚𝒕−𝟏

𝑰 ≤ 𝒛𝒕
𝑰       E7.1 

𝑿𝒕
𝑰 − 𝑿𝒕−𝟏

𝑰 ≤ 𝑋𝑟𝐼       E8.1 

𝑿𝒕−𝟏
𝑰 − 𝑿𝒕

𝑰 ≤ 𝑋𝑟𝐼       E9.1 

∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛𝐼 , … , 𝜃 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=𝑡+1−𝑇𝑚𝑖𝑛𝐼 ≤ 𝒚𝒕
𝑰      E10.1 

∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛𝐼 − 1}: ∑ 𝒛𝒕′
𝑰𝑡

𝑡′=1 ≤ 𝒚𝒕
𝑰          E11 

𝑬𝟎
𝑳 ≤ 𝑬𝛩

𝑳             E12 

∀ 𝑡 ∈ 𝐿𝐻\{𝜃}:   𝑬𝒕
𝑳 = 𝑬𝒕−𝟏

𝑳 ∗ (1 − 𝛿𝐿𝑑𝑡𝑡) + 𝜟𝒕     E13.4 

𝑬𝜽
𝑳 = 𝑬𝜽−𝟏

𝑳 ∗ (1 − 𝛿𝐿𝑑𝑡𝜃) + 𝜟𝜽
𝒐𝒏 + 𝜟𝜽

𝒐𝒇𝒇
        E14.4 

𝜟𝜽
𝒐𝒏 ≤ 𝒚𝜽−𝟏

𝑰 𝐸𝑚𝑎𝑥𝐿           E15.4 

𝜟𝜽
𝒐𝒇𝒇

≤ (𝟏 − 𝒚𝜽−𝟏
𝑰 )𝐸𝑚𝑎𝑥𝐿          E16.4 

 

Equation E14.4 is the storage balance equation exclusive to time step 𝜃. E15.4-E16.4 ensure the consistency 

between the CFs 𝑐𝑜𝑛 and 𝑐𝑜𝑓𝑓 with the state of the IFP at 𝜃 − 1. This way, the continuity between the IFP 

states is kept up to 𝜃. 

Since the information about the state of the IFP is lost after 𝜃, CFs computed with the “On” assumption are 

used afterwards (E1.4). This is because future costs are overestimated otherwise, which can lead to unused 

stored units and costly solutions. This model is called the RP-FC-SetUp model. It is expected to perform better 

than the RP-FC model since continuity between the IFP states is kept between 𝑆𝐻 and 𝐿𝐻. 
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4. Comparison of all approaches: computational experiments 
 

In this section, the proposed approaches are compared on the basis of the problem described in Section 2. The 

problem corresponds to a heat production case study: heat production units and storages must be managed to 

supply a network that delivers heat to 5000 inhabitants. Other production planning problems where short and 

long-term decisions must be balanced could be used as well. The data are shown Table 4. 

Table 4: Data of the heat production problem. 

Element Parameter Notation Value 

Flexible Production 

(FP), gas based 

Capacity (units/hour) 

Cost (euros/unit) 
N.A. Uncapacited 

Cost (euros/unit) 𝐶𝐹 
66.8 (See Appendix D 

for details) 

Inflexible Production 

(IFP), biomass based 

Capacity (units/hour) 𝑋𝑚𝑎𝑥𝐼 3 

Minimum capacity 

(units/hour) 
𝑋𝑚𝑖𝑛𝐼 1.2 

Maximum change in 

production 
𝑋𝑟𝐼 1.2 

Variable cost 

(euros/unit) 
𝐶𝐼 

33.3 (See Appendix D 

for details) 

Fixed cost (euros/unit) 𝐶𝑜𝑛𝐼 10 

Set up costs (euros) 𝐶𝑠𝑒𝑡𝐼 500 

Short-term Storage 

(STS) 

Capacity (units) 𝐸𝑚𝑎𝑥𝑆 30 

Efficiency 𝜂𝑆 0.98 

Losses (units/unit stored 

/hour) 
𝛿𝑆 0.00021 (0.5% per day) 

Stock/destock capacity 

(units/hour) 
𝑋𝑚𝑎𝑠𝑆 3 

Long-term Storage 

(LTS) 

Capacity (units) 𝐸𝑚𝑎𝑥𝐿 1500 

Efficiency 𝜂𝐿 0.97 

Losses (units/unit stored 

/hour) 
𝛿𝐿 0.00042 (1% per day) 

Stock/destock capacity 

(units/hour) 
𝑋𝑚𝑎𝑠𝐿 3 

Demand (D) 
Demand profile 

(units/hour) 
𝑋𝑡

𝐷 
See Appendix C for 

details 
 

4.1. Experiments procedure 
 

The same heat demand profile le is used over both horizons 𝑆𝐻 and 𝐿𝐻. This way, only biases on the data 

aggregation method and on the models themselves are accounted for. Other demand profile les as well as 

imperfect forecasts will be tested in Section 5. 

1. The RH process is parametrized as follows: for all computations, the Fixed Horizon (FH) is set to 24 

hours, and three different planning horizons are tested, as defined by Figure 11. H1 and HM are 

respectively a simplified and a truncated version of H2. 
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Figure 11: Planning horizon H1, H2 and HM 

 

Two extra computations are performed to provide benchmark references: 

• A “Cicada” approach where the problem is solved based on a similar RH mechanism as previous 

approaches, except that the planning horizon 𝐻 is limited to 𝑆𝐻. This approach is used as a benchmark 

where forecasts are limited to 48 hours. As mentioned in Section 2, given the seasonal variations of 

the demand and given the possibility to store units over the long term with the LTS, the optimal 

solution might only be found by solving the problem over a year. Hence the Cicada strategy suffers 

from the so-called truncated horizon effect as de ned in [173]. Storage units are emptied and the IFP 

is turned o at the end of 𝐻. The FH of 24 hours limits these side effects but is not sufficient to ensure 

an efficient long-term strategy. 

 

• A “One Shot” optimisation of production decisions where the problem (original formulation, E1-E12) 

is solved over a year in a single optimisation (with an hourly time discretization). This is used as a 

benchmark where the hourly demand is perfectly known over the whole year, which over-estimates 

forecast abilities and under-estimate the system operating costs. Given the problem size, only the lower 

and upper bounds are obtained. 

 

All approaches are evaluated over a year. Solutions retained correspond to solutions on the FHs of the RH 

process over a year (see Figure 12). Since the yearly strategy over the LTS might evolve if more years are 

simulated, models are run until it converges. In practice, this is the case after one or two years. 
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Figure 12: Evaluation process 

 

4.2. Computational environment 
 

Computations are performed within the PERSEE environment (see Figure 13). PERSEE is a modelling 

software dedicated to techno-economical assessment and design of energy systems at local, industrial and 

territorial scales, while optimizing their operating costs. It has been developed in CEA (Centre Energie 

Atomique et Energies Alternatives) since 2018 on the basis of past experiences from the Odyssey [194] and 

the PEGASE platforms [174]. It relies on the MILP formalism which is widely applied to deal with problems 

related to energy-system planning [156]. PERSEE provides a graphical user interface that allows one to model 

the system by assembling MILP model contributions from a C++ library, building the whole optimisation 

problem. Multiple carriers can be used including electricity, heat or materials (gas, fuel, biomass etc.). 

Variables can describe energy, mass, power or mass flows. The net present value is used as the objective 

function. It accounts for capital and operating expenditures, replacement, purchase and sales costs as well as 

possible carbon emission penalties. It becomes an operating cost function when the system operation only is 

considered. Following up [156], PERSEE models have been written to be compliant with several time 

discretizations including representative periods and time dependent aggregated time steps. 

The problem is solved by one of the solvers available through a multi-MILP-solver interface (OSI open source, 

CPLEX, GUROBI etc.) As part of the PEGASE platform, PERSEE is able to control fine simulators, digital 

twins or real systems using model predictive control. PEGASE is compliant with the FMI-Cosimulation 2.0 

norm. Both PERSEE and PEGASE are expected to be open source by 2022, in the frame of the starting CEA 

Trilogy project. 

In this paper, the 12.9.0 version of the CPLEX solver [175] was used on an Intel Xeon Gold 6154 CPU with 

2 processors of 3 GHz. The installed RAM is 96 GB. Threads used were limited to 8 threads except for the 

One Shot optimisation where all threads were used with a limit of 40 hours. In all cases, the final relative gap 

was set to 10-6. 
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Figure 13: Schematic description of the modelling environment 

 

4.3. Results 
 

4.3.1. Economic performances and computation times 
 

Results are given in Table 5. The final relative gap with upper and lower bounds are given for the One Shot 

optimisation. Savings are defined as the difference between the total costs of the Cicada approach with the 

total costs of another approach. This way, only compressible costs are considered. Savings of Table 5 are 

displayed on Figure 14. 
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Figure 14: Savings of all approaches compared to the Cicada approach (k-euros), with upper bound (red) and lower bound 

(green) of the One Shot optimisation. 

 

Table 5: Results 

Model 
Planning 

horizon 

Total cost 

(euros) 

Savings 

compared to 

the Cicada 

approach 

(euros) 

Simulation 

computation 

time (sec) 

Cost functions 

computation 

time (sec) 

Mean 
H1 

847 755 16 887 36 0 

Mean-SetUp 835 340 29 302 33 0 

Mean 
H2 

844 700 19 942 33 0 

Mean-SetUp 833 924 30 718 34 0 

Mean 
HM 

851 083 13 559 40 0 

Mean-SetUp 837 918 26 724 40 0 

RpCf 
H1 

844 948 19 694 95 353 

RpCf-SetUp 827 315 37 327 95+95* 695 

RpCf 
H2 

846 071 18 571 202 9 331 

RpCf-SetUp 833 064 31 578 253 18 64 

RpCf 
HM 

849 442 15 200 130 8 9701 

RpCf-SetUp 834 456 30 186 131 17 945 

Cicada approach 864 642 0 32 0 

One Shot optimisation 

Lower bound: 

806 435 
58 207 40 hours 

Final relative 

gap: 1.03% 

RAM used: 56 

GB 

0 
Upper bound 

814 863 
49 779 

*Only case where the computations converged after two years instead of one year. 
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4.3.2. Solutions 
 

The solutions for the benchmark Cicada approach, for models Mean, Mean-SetUp, RpCf, RpCf-SetUp with 

horizon H1 and for the One Shot optimisation are described here (Figure 15 to Figure 20). For each figure, 

the upper graph shows the elements of the balance equation E2, while the lower graph shows the state of both 

storages. All graphs start on the first of July. 

 

Figure 15: Results for the benchmark Cicada approach. 
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Figure 16: Results for the One Shot optimisation. 
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Figure 17: Results for the Mean model, with horizon H1. 
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Figure 18: Results for the Mean-SetUp model, with horizon H1. 
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Figure 19: Results for the RpCf model, with horizon H1. 
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Figure 20: Results for the RpCf-SetUp model, with horizon H1. 

 

The Cicada approach shows nearly no use of the LTS. It makes the IFP cycling a lot. This is due to the fact 

that it does not anticipate set up costs after 48 hours. 

In the One Shot optimisation solution, the IFP is started up only few times during the summer to limit set-up 

costs. The storage is filled up to 650 units before the heating season. 

The Mean model makes the IFP cycle as much as the Cicada approach before the heating season (the same 

phenomena occurs with H2 and HM). It makes use of the LTS (which is not the case with 𝐻𝑀) but stores 

more than the One Shot optimisation. This is because it does not anticipate the destocking flow capacity of 

the LTS and the demand flows lower than the IFP capacity. Hence the stored quantity is held longer than 

expected which implies more losses. 

The Mean-SetUp model makes longer cycles with the IFP (the same phenomena occurs with H2 and HM). It 

stands far from the cycling strategy of the One Shot optimisation because the minimum capacity of the IFP is 

not considered on the LH. Hence, future costs are under-estimated. The inclusion of set-up costs also adds a 

phase where the IFP is used at minimum capacity (before the heating season). 
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The RpCf model also makes the IFP cycle a lot (to a lesser extent that the Cicada or the Mean models). It also 

stores less units before the heating season, which is an improvement compared to the Mean model. 

Finally, the RpCf-SetUp model has an efficient cycling strategy on summer which is comparable to the One 

Shot optimisation. The model also stores units at the end of the heating season, contrarily to the One Shot 

optimisation. One explanation is that the approximation with RPs led to an overestimation of future costs on 

these periods. 

 

4.4 Discussion and recommendations 
 

Solutions quality: 

All approaches bring savings compared to the Cicada benchmark approach (see Figure 14). In most cases, 

RpCf approaches yield better solutions than Mean approaches. The difference is more significant with H1. 

These savings are also significant compared to the upper and lower bounds obtained by the One Shot 

optimisation. The difference with the One Shot optimisation is due to the model approximations and to the 

aggregation of future data. 

Computation times: 

Table 5 shows the computation times for the different approaches (Appendix B provides further information 

on the convergence of the One Shot optimisation). The inclusion of a long-term horizon with the Mean and 

Mean-SetUp approaches does not significantly impact computation times. Computation times with HM 

increased because the relative gap was not adapted to the horizon length (the objective is optimised down to 

the euro for horizons H1 and H2 while it is optimised down to the tenths of euro on the HM horizon which is 

over-qualitative). On the other hand, computation times are three times higher for the RpCf models on H1. It 

further increases when moving to H2 and HM horizons. The RP-CF-SetUp model with H2 needed a second 

year of simulation to converge: the first year ended with a higher storage level than what it started with. 

Regarding the CFs building computation times, they can easily be reduced by using binary search techniques 

or parallel computations for instance. Computation times are relatively high for horizons H2 and HM because 

CFs are computed for every day and week of the year, while H1 only requires CFs for every period of 4 weeks. 

What modelling aspects to include in the long-term model: 

Long-term models that include set-up costs give better savings. This is due to the high set-up costs: there is 

an interest in setting up the IFP for longer than the SH. Further applications should include decisions that have 

a potential long-term impact in the long-term model. Concerning the Mean models, the problem formulation 

to use as a long-term approximation can be case dependent. In this case, inclusion of the IFP minimal capacity 

was not fruitful for instance. It led to an overestimation of future costs and units were stored for no use. A 

formulation that under-estimates future costs will at least perform better than the Cicada approach. This is true 

for Mean models on this case study because oscillations of the system are costly. 

Choice of planning horizons: 

Concerning Mean approaches, the longer and the more detailed the planning horizon the better the results. 

This is not true for the RpCf model which yields a better solution with H1. This can be explained because the 

continuity of the IFP discrete states is kept between 𝑆𝐻 and 𝐿𝐻 but it is lost after the first time step of 𝐿𝐻. 

Hence, the RpCf-SetUp model benefits from the large time steps of H1. Therefore, the choice of the planning 

horizon can depend on the approach used. 
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5. Sensitivity analysis 
 

In this section, we perform a sensitivity analysis for models RpCf-SetUp and Mean-SetUp. We choose to keep 

the same 𝐿𝐻 in both cases. Hence, H1 is used because it led to significantly better results with the RpCf-SetUp 

model. The objective is to test the robustness of the two best approaches on similar horizons. Both models are 

tested with different assumptions on the data used in Section 4, and on the quality of the demand forecast. 

 

5.1 Sensitivity on the data 
 

We first test both models on different data sets. We cross two data modifications: 

• A change in the FP costs: 44.4, 55.6, 66.8 and 78.0 euros/unit are tested. A cost of 66.8 was used in 

Section 4 and a cost of 44.4 corresponds to the case where no CO2 emission penalties are considered 

(see Appendix D for details). 

• A change in the profiles used for the demand, which corresponds to different meteorological scenarios. 

Three demand profiles A, B and C are considered (details are provided in Appendix C). Profile A was 

used in Section 4. 

The savings compared to the Cicada model are compared for all tests, see Figure 21. Both models have steady 

and consistent behaviour. They bring important savings on other pro les, showing reassuring stability. The 

exception occurs when the FP costs are low. In fact, potential saving heavily depends on the FP costs. This is 

because an important part of the savings comes from an efficient management of the IFP during the summer 

and intermediate seasons. If the FP costs are lowered, it is used during the summer instead of the IFP. In 

addition, the small difference between the FP and IFP costs lowers the interest in the storage of units at the 

beginning of the heating season. This makes the RpCf-SetUp model slightly less performing than the Cicada 

model: units are stored but losses exceed the savings over the FP use (see Figure 22). This is due to an over-

estimation of future costs which can come from the data aggregation with representative periods. 

 

 

Figure 21: Savings of models RpCf-SetUp and Mean-SetUp on horizon H1, for different costs of the FP, on demand A, B and C 

(k-euros). 

*Costs of the FP. 
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Figure 22: Solution of the RpCf-SetUp model in case where the FP cost is 44.4 euros and the demand profile B is considered.. 

 

5.2 Sensitivity on the quality of forecasts 
 

Up to now, the same profiles for the demand were used for both short-term and long-term horizons. The only 

biases came from the models used and data aggregation method (i.e. means and RPs). We now compare results 

when different demand profiles are considered over the long-term horizon i.e. if forecasts are inexact after 48 

hours. 

This is done through two test procedures. In the first procedure, the planned meteorological profile after 48 

hours differs from the realised profile. However, monthly total demands are constant between the planned and 

the realised profile. This way, intra-month forecast errors are modeled. In the second procedure, extra-month 

forecast errors are considered. 

 

 

 



5. Sensitivity analysis 84 

 

5.2.1. Sensitivity on the forecast meteorological profile: intra-month forecast errors 
 

In this section, tests are run with profile A, B or C as effective demands (i.e. profiles used over 𝑆𝐻) and with 

profile A, B, C or the mean on the three profiles as forecast demands (i.e. profiles used over 𝐿𝐻). Hence, the 

demand is still perfectly known on 𝑆𝐻, but not on 𝐿𝐻. 

The savings (cost difference with the Cicada model) of different experiences are compared. Results are shown 

in Figure 23 for models RpCf-SetUp and Mean-SetUp. 

A first observation is that savings are still significant and that the model RpCf-SetUp outperforms the Mean-

SetUp model in all cases. Both approaches show relatively robust results with respect to the demand profile 

used on 𝐿𝐻. As mentioned earlier, potential savings differ from one profile to another. Interestingly, the best 

results are not necessarily obtained when the same data is used over both 𝑆𝐻 and 𝐿𝐻, and the effective demand 

seems to be the core element (savings are bigger for A and B, smaller for C): the models do not seem to overfit 

the forecast data. 

 

Figure 23: Savings obtained with models Mean-SetUp and RpCf-SetUp, on horizon H1, for different demand profiles run and 

planned (k-euros). *Profile use as forecasted demand after 48 hours. 

 

5.2.2. Sensitivity on the forecasted meteorological profile: extra-month forecast errors 
 

Data sets A, B and C are built from different meteorological scenarios. However, the building method 

supposes constant monthly total demands for all data series. In order to test our models in the case of forecast 

errors on total monthly demands, a second test procedure is applied. We introduce a monthly forecast error: 

the profile used over 𝐿𝐻 corresponds to the effective profile used over 𝑆𝐻 increased or decreased by a given 

percentage. The demand is still perfectly known over 𝑆𝐻, but not over 𝐿𝐻. Three cases are tested: 

 

• The hourly demand is always overestimated by a given percentage (+X%) 

• The hourly demand is always underestimated by a given percentage (-X%) 
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• The demand is overestimated or underestimated depending on months (+-X%, the pattern used is given 

in Appendix C). 

The savings (cost difference with the Cicada model) of the different experiences are compared on Figure 24. 

All tests are performed with profile A. 

Similarly to Section 5.2.1, savings are still significant and the RpCf-SetUp model remains more effective. 

Both models show satisfying robustness and the downgrade remains very limited as errors increase. The worst 

cases are when the demand is overestimated: this worsen the tendency of both models to store too many units 

before the heating season. 

 

Figure 24: Savings obtained for methods RpCf-SetUp and Mean-SetUp on horizon H1, for different errors on the forecasted 

demand (k-euros). 

 

5.3 Conclusion of the sensitivity analysis 
 

The sensitivity tests show that both models bring similar significant savings with different meteorological 

profiles. Modifying the cost of the FP induces significant changes in the solutions costs but this is not 

surprising: this parameter is decisive. Hence, this does not question the models relevancy but informs us on 

the models behaviour for different data. In this case, the difference in the solution costs between models is 

lowered. Additionally, the sensitivity analysis on the quality of forecasts suggests that both models yield robust 

solutions, even with forecast errors. This quality is precious for planning models. 
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6. Conclusion & perspectives 
 

Rolling horizon optimisation methods are relevant to recurrent and dynamic problems where immediate 

decisions must be made while they depend on upcoming ones. These decisions can rely on forecasts that can 

be updated at each optimisation step. This paper focuses on problems where detailed short-term decisions can 

have an impact on very distant ones and vice-versa. This highly increases the temporal dimension of the 

problem that has to be solved at each step. Hence, there is a need to adapt the way long-term decisions are 

modelled. 

For this purpose, we proposed two new approaches that include long-term decisions while keeping a detailed 

short-term formulation and a reasonable problem size. Both approaches rely on aggregated time steps that 

are adaptive to the forecasts accuracy. In the first approach, long-term data and decisions are aggregated as 

means, with a simplified long-term model. In the second approach, long-term decisions are accounted by cost 

functions. Cost functions are estimated with representative periods of future data and with the original de-

tailed model. The two approaches are described and evaluated on a case study describing a heat production 

problem. Different versions of both approaches are tested and compared with benchmark models. Finally, a 

sensitivity analysis on the data is performed. 

Both models show promising performances and can be implemented to include long-term decisions in rolling 

horizon approaches. The first one is easy to implement and has low and stable computation times. An 

advantage is that the continuity between state variables is kept over the whole planning horizon. A drawback 

is that it can miss optimal solutions depending on the problem structure and data. The second model is more 

costly to apply: it requires some parameterizations and pre-computations. The continuity between the storage 

states is kept over the whole planning horizon while the continuity between the inflexible production states is 

only kept until a certain point. However, this can be sufficient and the second model still outperforms the first 

one with limited computation times. Both show robust performances under sensitivity analysis, but their 

potential generalisation to further case studies should be questioned. For this purpose, a study of the 

generalisation aptitude on typical cases is provided as Supplementary Material1 with the online version of this 

article. Finally, all decisions with a long-term impact should be included in the long-term model, which can 

be more or less challenging depending on the approach. For instance, we anticipate possible computation 

burdens for the second approach if several long-term decisions have to be included, as this would lead to 

multi-variable costs functions. 

Future work will include the application of the approaches to other case studies, for both optimization and 

simulation purposes. Other slicing for the planning horizon can be tested and the method to build cost functions 

can be improved to reduce computation times. Finally, the second method offers the possibility to learn on 

future operational costs on the basis of more accurate models. For instance, if an optimization model gives 

instructions to a physical simulator or a real system, the feedback can be included in the cost functions. 

  

                                                           
1 Correspond au Chapitre 3 de ce manuscrit. 
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Chapitre 3 
 

 

Le précédent chapitre propose deux méthodes pour simuler et optimiser l’opération d’un système 

énergétique. Ces deux méthodes sont des extensions de de la mécanique classique de l’horizon glissant. 

Elles permettent de tenir compte de dynamiques opérationnelles long terme tout en modélisant finement des 

décisions court-terme au pas de temps horaire.  

 

Ce troisième chapitre met en œuvre de ces deux méthodes sur une série de cas élémentaires, en partie 

inspirés par des cas d’études typiques sur les systèmes énergétiques. L’objectif est de confirmer l’intérêt de 

ces méthodes pour de futures applications.  

 

Plusieurs renvois aux Chapitres 1 et 2 sont faits dans ce chapitre. Ils correspondent respectivement aux 

références [156] et [176]. 

 

La note qui suit a été publiée comme Supplementary Material de l’article du Chapitre 2. 

 

L’Appendix G citée dans ce chapitre correspond à la seconde partie de ce Supplementary Material. Le 

format papier du manuscrit limitant sa lisibilité, elle est téléchargeable ici : 

https://doi.org/10.1016/j.energy.2021.122773.  

 
 

Abbréviations utilisées au Chapitre 3 : 
 

Abbréviation Expression complète 

CP Controllable Production 

D Demand 

IP Incontrollable Production 

N Network 

S Storage 

 

  

https://doi.org/10.1016/j.energy.2021.122773
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Abstract: 

This technical note is a follow-up of [176], in which we proposed two new approaches based on rolling horizon 

to optimise the operational control of energy systems with a balance of short-term and long-term decisions. In 

this note, we further validate the interest and consistency proposed approaches, by applying it on various 

elementary and limit cases defined by open-source data. 

 

1. Introduction 
 

Rolling horizon optimisation approaches are commonly used to solve recurrent, dynamic or multi-period 

problems where immediate decisions must be made while they depend on more distant ones. In some cases, 

immediate decisions must be modelled with a detailed time discretization while they depend on very long-

term ones. In such problems, standard rolling horizon are hard to solve due to the substantial increase of the 

temporal dimension.  In [176], authors proposed two approaches to balance short and long-term decisions : 

the Mean(-SetUp) and RpCf(-SetUp) approaches (see [176] for details). Both approaches were tested on an 

energy production planning case study where a dynamic heat demand must be supplied with various 

production and storage means (including seasonal storage), with promising and realistic results. 

The purpose of this technical note is to further challenge the realism and adequacy of the obtained solutions, 

in spite of the inherent uncertainties in the modelling of the physical system and in the precision of the 

available data. To this extent, we experimentally check the consistency and relevance of the solutions obtained 

with both approaches on various elementary cases, and we check the coherence with the solutions from [176]. 

The elementary cases are derived from typical energy production planning elements that can be encountered 

in local energy systems [156] and rely on open data. 

In the next sections, we describe the experimental method, present and discuss the results. 
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2. Experimental method 
 

This section describes the experimental method used to evaluate the two approaches on various elementary 

case studies. Section 2.1 details the mathematical problem. The formulation is used as a starting point to define 

the elementary cases in Section 2.2. 

 

2.1 Energy production planning problem 
 

We now define the mathematical problem used to derive the different elementary cases. Units considered are 

energy units. The time varying demand (D) must be supplied at each period. The demand can be supplied with 

a Controllable Production (CP), and/or an Intermittent Production (IP). Energy can also be bought from an 

external network (N) with time dependant or constant prices. Additionally, an energy storage (S) can be used. 

The mathematical description of the problem is further detailed. The mathematical formulation is described 

on a discrete horizon 𝐻 = [1, … , 𝛩 ∈ ℕ+]. The time step size (in hours) is given by 𝑑𝑡 and ensures units 

consistency. Variables are written in bold, continuous variables in capital letters and binary variables in small 

letters. In order to represent units consistency, 𝑋 correspond to units/hour (power units) and 𝐸 to units (energy 

units). Parameters and variables are detailed below. 

-The demand 𝑋𝑡
𝐷 is in units/hour.  

-The CP is characterised by a minimum and a maximum production capacity in units/hour (𝑋𝑚𝑖𝑛𝐶𝑃 and 

𝑋𝑚𝑎𝑥𝐶𝑃), a maximum change of its production rate in units/hour (𝑋𝑟𝐶𝑃), a minimum on time in hour (i.e. if 

turned on, the CP must be kept on over at least 𝑇𝑚𝑖𝑛𝐶𝑃  time steps), a unitary production cost in euros/unit 

(𝐶𝐶𝑃), a fixed production cost in euros/hour (𝐶𝑜𝑛𝐶𝑃) and a set-up cost in euros (𝐶𝑠𝑒𝑡𝐶𝑃). Variables 𝑿𝒕
𝑪𝑷 ∈

[0, 𝑋𝑚𝑎𝑥𝐶𝑃] correspond to the production of the CP at 𝑡 in units/hour, 𝒚𝒕
𝑪𝑷 ∈ [0,1] equals 1 if the CP is on at 

𝑡, 0 otherwise and 𝒛𝒕
𝑪𝑷 ∈ [0,1] equals 1 if the CP is being set-up at 𝑡, 0 otherwise. 

-The intermittent production 𝑿𝒕
𝑰 is in units/hour and has a time varying capacity 𝑋𝑚𝑎𝑥𝑡

𝐼 = 𝑋𝑚𝑎𝑥𝐼 ∗ 𝑝𝑓𝑡
𝐼 (𝑿𝒕

𝑰 ∈

[0, 𝑋𝑚𝑎𝑥𝑡
𝐼]).  

-The energy bought on the network (𝑿𝒕
𝑵 ∈ [0, +∞[) is in units/hour and has a time varying price 𝐶𝑡

𝑁.  

-The storage is defined by a maximum capacity in units (𝐸𝑚𝑎𝑥), a storing efficiency (𝜂) corresponding to the 

percentage of units that are actually stored during the storing operation (the rest is lost), losses in units 

lost/units stored/hour (𝛿) and a similar stock/destock capacity in units/hour (𝑋𝑚𝑎𝑥). Associated variables are 

the stored quantity in units (𝑬𝒕  ∈ [0, 𝐸𝑚𝑎𝑥] ) and the stock and destock rates in units/hour ((𝑿𝒐𝒖𝒕𝒕, 𝑿𝒊𝒏𝒕) ∈
[0, 𝑋𝑚𝑎𝑥]) at time step 𝑡. 

Variables are set to 0 if 𝑡 = 0. The mathematical formulation of the problem is as follows:  
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𝑀𝑖𝑛: 

∑ (𝐶𝐶𝑃𝑿𝒕
𝑪𝑷 + 𝐶𝑜𝑛𝐶𝑃𝒚𝒕

𝑪𝑷 + 𝐶𝑡
𝑁𝑿𝒕

𝑵)𝑑𝑡 + 𝐶𝑠𝑒𝑡𝐶𝑃𝒛𝒕
𝑪𝑷

𝑡∈𝐻    E1  

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

∀ 𝑡 ∈ 𝐻: 

𝑋𝑡
𝐷 = 𝑿𝒕

𝑪𝑷 + 𝑿𝒕
𝑵 + 𝑿𝒕

𝑰 + 𝑿𝒐𝒖𝒕𝒕 − 𝑿𝒊𝒏𝒕     E2 

𝑿𝒕
𝑰 ≤ 𝑋𝑚𝑎𝑥𝑡

𝐼        E3 

𝑬𝒕 = 𝑬𝒕−𝟏(1 − 𝛿𝑑𝑡) + (𝜂𝑿𝒊𝒏𝒕 − 𝑿𝒐𝒖𝒕𝒕)𝑑𝑡    E4 

𝑋𝑚𝑖𝑛𝐶𝑃𝒚𝒕
𝑪𝑷 ≤ 𝑿𝒕

𝑪𝑷         E5 

𝑿𝒕
𝑪𝑷 ≤ 𝑋𝑚𝑎𝑥𝐶𝑃𝒚𝒕

𝑪𝑷        E6 

𝒚𝒕
𝑪𝑷 − 𝒚𝒕−𝟏

𝑪𝑷 ≤ 𝒛𝒕
𝑪𝑷       E7 

𝑿𝒕
𝑪𝑷 − 𝑿𝒕−𝟏

𝑪𝑷 ≤ 𝑋𝑟𝐶𝑃        E8 

 𝑿𝒕−𝟏
𝑪𝑷 − 𝑿𝒕

𝑪𝑷 ≤ 𝑋𝑟𝐶𝑃       E9 

∀ 𝑡 ∈ {𝑇𝑚𝑖𝑛𝐶𝑃, … , 𝛩}: 

∑ 𝒛𝒕′
𝑪𝑷𝑡

𝑡′=𝑡+1−𝑇𝑚𝑖𝑛𝐶𝑃 ≤ 𝒚𝒕
𝑪𝑷      E10 

∀ 𝑡 ∈ {1, … , 𝑇𝑚𝑖𝑛𝐶𝑃{: 

∑ 𝒛𝒕′
𝑪𝑷𝑡

𝑡′=1 ≤ 𝒚𝒕
𝑪𝑷          E11 

 

The objective to minimise the sum of all costs is given by E1. E2 ensures that the demand is satisfied. E3 

ensures that the amount of power consumed from the intermittent source does not exceed the available power. 

E4 is the balance equations for the storage. E5-6 set the minimum capacity of the CP and fixes the status 𝒚𝒕
𝑪𝑷. 

E7 fixes the state 𝒛𝒕
𝑪𝑷. E8-9 limit the changes in the CP production rate. The minimum on/off times of the CP 

are given by E10-11. 

The problem is solved iteratively over 𝐻 in a rolling horizon fashion, i.e.: most immediate decisions are fixed 

and forecasts are updated at each rolling horizon cycle. 

 

2.2 Elementary cases 
 

We define several elementary production planning cases on the basis of the mathematical problem given in 

Section 2.1. Each case corresponds to the production planning problem of an energy system over one year, 

with an hourly time step. All cases are hypothetical and do not necessarily correspond to realistic cases (for 

instance, a heat demand profile can be satisfied by energy from the network with electricity spot prices). The 

aim is to test the Mean and the RpCf methods on various production planning problem configurations. All 

variations on the different hypothesis are further described, as well as the experimental plan.  
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Variations on the demand assumptions: 

We consider two realistic demand profiles corresponding, respectively, to a Heat and an Electrical demand 

profiles. Both are normalised so that their mean equals 3 units/hour. Additionally, we consider five artificial 

demand profiles which correspond to a constant demand (Cst) of 3 units/hour and square wave signals with 

semi-annual (Sem), mensual (Month), weekly (Week) and daily (Day) frequencies with high and low values 

of 1 and 5 units/hour.  

The heat and the electrical demand profiles are both extracted from [177]. The file used was the 

“USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3_BASE.csv” file and can be downloaded from the 

“Residential Load Data Compressed.zip” link in [177]. The heat and electricity demand respectively 

correspond to columns “Gas:Facility [kW](Hourly)” and “Electricity:Facility [kW](Hourly)” and were 

normalised so that the mean equals 3 units/hour. Profiles are shown in Figure 25. 

 

Figure 25: Demand profiles considered (heat and electrical) 

 

Variations on the IP assumptions: 

We consider two intermittent production profiles: a solar production profile and a wind production profile. 

Both were extracted from [178] (see [179] and [180] for methodological details). From the website interface, 

the latitude was set to 47.60038 and the longitude to -122.3301. The dataset selected was MERRA-2 (global), 

for year 2019, for a capacity of 6 kW. For the solar profile, the system loss was set to 0.1, the tilt parameter to 

35° and the azimuth parameter to 180°. For the wind profile, the hub height was set to 80 meters and the 

turbine model selected was the Vestas V90 2000 model.  

Profiles of the production factor 𝑝𝑓𝑡
𝐼 are shown in Figure 26. The production capacity 𝑋𝑚𝑎𝑥𝐼 is set to 6 

units/hour in both cases. 
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Figure 26: Intermittent production profiles considered 

 

Variations on the CP assumptions: 

We consider a case where the CP is entirely flexible (i.e. 𝑋𝑚𝑖𝑛𝐶𝑃 = 0, 𝑋𝑟𝐶𝑃 = 𝑋𝑚𝑎𝑥𝐶𝑃  , 𝑇𝑚𝑖𝑛𝐶𝑃 =

0, 𝐶𝑜𝑛𝐶𝑃 = 0, 𝐶𝑠𝑒𝑡𝐶𝑃 = 0) and a case where the CP has its flexibility constrained (i.e. 𝑋𝑚𝑖𝑛𝐶𝑃 =

2, 𝑋𝑟𝐶𝑃 = 1, 𝑇𝑚𝑖𝑛𝐶𝑃 = 12, 𝐶𝑜𝑛𝐶𝑃 = 10, 𝐶𝑠𝑒𝑡𝐶𝑃 = 400). In both cases, 𝐶𝐶𝑃 = 1 and 𝑋𝑚𝑎𝑥𝐶𝑃 = 9. We 

additionally consider cases where set-up costs are null or higher (4000 euros).  

Variations on the storage assumptions: 

We consider two different size: a small size (𝐸𝑚𝑎𝑥 = 75, corresponding to 25 hours of storage in mean) and 

a large size (𝐸𝑚𝑎𝑥 = 3000, corresponding to 1000 hours of storage in mean). In both cases, 𝜂 = 0.81, 𝛿 =

0.0001 and 𝑋𝑚𝑎𝑥 = 4.  

Variations on the network assumptions: 

We consider a case where the cost 𝐶𝑡
𝑁 corresponds to the French electricity spot price for year 2020 and a 

case where it is constant (𝐶𝑡
𝑁 = 1000 ∀ 𝑡 ∈ 𝐻). The French electricity spot price for year 2020 was extracted 

from [181] with the Python API [182] (the last day was ignored to consider a non-bissextile year).  It is shown 

in Figure 27. 
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Figure 27: Network spot prices considered 

 

Crossing all variations would lead to an excessive number of computations and results to interpret.  The 25 

architectures tested are described Table 6. If muted, the CP, storage and IP capacities are set to zero 

(respectively 𝑋𝑚𝑎𝑥𝐶𝑃 = 0, 𝐸𝑚𝑎𝑥 = 0 and 𝑋𝑚𝑎𝑥𝑡
𝐼 = 0 ∀ 𝑡 ∈ 𝐻).  

 

Table 6: Architectures tested (X: muted elements). 

Architecture 

abbreviation 

Variations 

on the IP 

side: 

profiles 

tested 

Variations on 

the CP side: 

Variations on 

the storage 

side: 

Variations on the 

network side: 

Variations on the 

demand side: 

profiles tested 

Flx X Flexible X Constant price Heat and Electrical 

Flx-Wnd Wind Flexible X Constant price Heat and Electrical 

Flx-Slr Solar Flexible X Constant price Heat and Electrical 

Wnd-LrgSto Wind X Large storage Constant price Heat and Electrical 

Slr-LrgSto Solar X Large storage Constant price Heat and Electrical 

Spot-LrgSto X X Large storage Variable spot price Heat and Electrical 

Unflx-LrgSto X 
Constrained 

flexibility 
Large storage Constant price 

Heat, Electrical, Cst, 

Sem, Month, Week 

and Day 

Unflx-SmllSto X 
Constrained 

flexibility 
Small storage Constant price Heat and Electrical 

Unflx-

HighSetUp 
X 

Constrained 

flexibility-

High Set Up 

costs 

Large storage Constant price Heat and Electrical 

Unflx-NoSetUp X 

Constrained 

flexibility-No 

Set Up costs 

Large storage Constant price Heat and Electrical 
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2.3 Evaluation process 
 

The rolling horizon process is parametrized as follows (further details are given in [176]). For all 

computations, the Fixed Horizon 𝐹𝐻 is set to 24 hours. The Mean and the RpCf methods are used over the 

horizon 𝐻1 which is a slicing of 𝐻. It keeps a detailed model over the short-term horizon (𝑆𝐻) and an 

aggregated model (Mean or RpCf) is applied over the long-term horizon (𝐿𝐻).  

 

Similarly to [176], the same demand profile is used over both horizons 𝑆𝐻 and 𝐿𝐻. Hence, models are run 

with perfect forecasts. This way, only biases on the data aggregation method and on the models themselves 

are accounted for.  

 

In both cases where the CP has its flexibility constrained, the Mean-SetUp and the RpCf-SetUp versions of 

the methods are applied (since they include important set-up costs). In cases where there is no storage, the 

RpCf method is not applicable. The two methods are compared to the Cicada strategy which uses the planning 

horizon 𝐻1 but without the 𝐿𝐻.  

 

All approaches are evaluated over a year. Total costs retained correspond to the sum of costs on the 𝐹𝐻 of the 

rolling horizon process over a year. Since the yearly strategy might evolve if more years are simulated, models 

are run until it converges. In practice, this is the case after one or two years. Other experimental aspects are 

identical as in [176]. 
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3. Results 
 

All detailed results are given in Table 7 including the total costs over the simulated year, the total yearly 

demand and amount of units produced by the different sources. The yearly total costs are plot on Figure 28 to 

Figure 32 for all elementary cases and all methods. Graphs describing the solutions obtained are available in 

Supplementary Material2. The graphs are entitled with respect to the type of plot (flux or storage units), the 

demand profile considered, the architecture tested and the method used.  

 

Table 7: Results of the experimental plan 

Demand Architecture Method 
Total costs 

(euros) 

Demand 

(units) 
CP (units) 

Network 

(units) 
IP (units) 

Heat 

Flx 

RpCf NA NA NA NA NA 

Mean 51336 26281 26256 25 0 

Cicada 51336 26281 26256 25 0 

Flx-Wnd 

RpCf NA NA NA NA NA 

Mean 33908 26281 21715 12 27319 

Cicada 33908 26281 21715 12 27319 

Flx-Slr 

RpCf NA NA NA NA NA 

Mean 47256 26281 22176 25 24475 

Cicada 47256 26281 22176 25 24475 

Wnd-LrgSto 

RpCf 21463100 26281 0 21463 29283 

Mean 21463100 26281 0 21463 29283 

Cicada 21473400 26281 0 21473 29267 

Slr-LrgSto 

RpCf 19483900 26281 0 19483 44906 

Mean 19483900 26281 0 19483 44906 

Cicada 19943500 26281 0 19943 41223 

Spot-LrgSto 

RpCf 706209 26281 0 29405 0 

Mean 710615 26281 0 29835 0 

Cicada 750541 26281 0 28120 0 

Unflx-

LrgSto 

RpCf 92501 26281 27782 0 0 

Mean 113088 26281 26777 0 0 

Cicada 128764 26281 26977 0 0 

Unflx-

SmllSto 

RpCf 110238 26281 27097 0 0 

Mean 113088 26281 26777 0 0 

Cicada 129444 26281 27057 0 0 

Unflx-

HighSetUp 

RpCf 102217 26281 27781 2 0 

Mean 115052 26281 27452 0 0 

Cicada 456506 26281 26978 0 0 

Unflx-

NoSetUp 

RpCf 78716 26257 27836 0 0 

Mean 87498 26281 27192 2 0 

Cicada 86920 26281 27201 1 0 

Electrical 

Flx 

RpCf NA NA NA NA NA 

Mean 26279 26279 26279 0 0 

Cicada 26279 26279 26279 0 0 

Flx-Wnd 
RpCf NA NA NA NA NA 

Mean 21643 26279 21643 0 27816 

                                                           
2 Correspond à l’Appendix G dans ce manuscrit. 
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Cicada 21643 26279 21643 0 27816 

Flx-Slr 

RpCf NA NA NA NA NA 

Mean 19103 26279 19103 0 43053 

Cicada 19103 26279 19103 0 43053 

Wnd-LrgSto 

RpCf 21445300 26279 0 21445 29283 

Mean 21445300 26279 0 21445 29283 

Cicada 21452200 26279 0 21452 29231 

Slr-LrgSto 

RpCf 18852800 26279 0 18852 44912 

Mean 18852800 26279 0 18852 44912 

Cicada 18852800 26279 0 18852 44912 

Spot-LrgSto 

RpCf 715964 26279 0 29762 0 

Mean 721806 26279 0 29845 0 

Cicada 763159 26279 0 28487 0 

Unflx-

LrgSto 

RpCf 113994 26279 26394 0 0 

Mean 113974 26279 26374 0 0 

Cicada 113977 26279 26376 0 0 

Unflx-

SmllSto 

RpCf 114024 26279 26423 0 0 

Mean 113974 26279 26374 0 0 

Cicada 113977 26279 26376 0 0 

Unflx-

HighSetUp 

RpCf 113984 26279 26384 0 0 

Mean 113974 26279 26374 0 0 

Cicada 113977 26279 26376 0 0 

Unflx-

NoSetUp 

RpCf 91468 26279 27718 0 0 

Mean 91550 26279 27790 0 0 

Cicada 91555 26279 27795 0 0 

Cst 

Unflx-

LrgSto 

RpCf 77139 26280 30669 0 0 

Mean 113666 26280 26136 0 0 

Cicada 127695 26280 29035 0 0 

Sem 

RpCf 90120 26276 27540 0 0 

Mean 112564 26276 26764 0 0 

Cicada 120016 26276 27016 0 0 

Month 

RpCf 78686 26276 28306 0 0 

Mean 112848 26276 26798 0 0 

Cicada 120040 26276 27030 0 0 

Week 

RpCf 100369 26232 28280 0 0 

Mean 113408 26232 26878 0 0 

Cicada 117433 26232 27053 0 0 

Day 

RpCf 115137 26056 27578 0 0 

Mean 114506 26056 26905 0 0 

Cicada 114559 26056 26939 0 0 
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Figure 28: Total costs for the architectures Flx, Flx-Wnd and Flx-Slr, for Heat and Electrical demand profiles 

 

Figure 29: Total costs for the architectures Wnd-LrgSto and Slr-LrgSto, for Heat and Electrical demand profiles 
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Figure 30: Total costs for the architectures Unflx-LrgSto, Unflx-SmllSto, Unflx-HighSetUp and Unflx-NoSetUp, for Heat and 

Electrical demand profiles 

 

 

Figure 31: Total costs for the architecture Spot-LrgSto, for Heat and Electrical demand profiles 
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Figure 32: Total costs for the architecture Unflx-LrgSto, for Cst, Sem, Month, Week and Dayl demand profiles 

 

4. Discussion 
 

For cases where optimal operational decisions are obvious (the architectures Flx, Flx-Wnd, Flx-Slr, Wnd-

LrgSto and Slr-LrgSto), the Mean method yields identical or better results than the Cicada method. This is 

consistent since these cases do not include a trade-off between short and long-term decisions. The 

underperforming of the Cicada method in some cases is due to the fact that it does not fill the storage at the 

end of the horizon even if intermittent sources are available. This shortcoming could easily be corrected with 

a simple heuristic (give a small economic value to the energy stored at the end of the horizon for instance).  

Other cases where there could be an interest to store energy on the long term or to keep the CP turned on at 

the end of the SH horizon are (few exceptions apart) always better handled by the Mean and the RpCf methods. 

In most cases, the RpCf method yields the best results. This is consistent with expectations and with results 

from [176]. However, the RpCf method still yields sub-optimal solutions in most cases. One argument is that 

they can be improved by stocking units at the last moment or destocking units earlier to save on the storage 

losses (see the individual cases further discussed) 

The cases where the Electrical demand is considered show little differences between the three methods (except 

when spot prices are included). This is due to the fact that the Electrical profile has lower seasonal or intra-

month variations, and that it is most of time above the CP minimum capacity. Focusing on cases that include 

a CP with its constraints, the RpCf methods slightly underperforms other methods. Although consequences 

are small, the storage strategy is not fruitful and does not help on the results interpretations. Hence, the RpCf 

method is not recommended for cases where no particular long-term strategy is of interest.  

Individual cases giving rise to discussion are further discussed, corresponding graphs can be found in the 

supplementary materials.  
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Heat demand with Unflx-LrgSto architecture:  

In this case, the RpCf method anticipates the supplementary summer production costs due to the the CP 

constraints and makes up a stock at the end of the heating period contrarily to the Mean method. The three 

distinct charging steps highlight the non-optimality of the solution, partly due to the future data approximation 

with representative periods. Nevertheless, the strategy stays more efficient than the Mean and the Cicada 

strategies (see Figure 30), which operate more cycles on the CP and pay set-up costs.  

 

Heat demand with Unflx-SmllSto architecture:  

This case shows the differences in the strategies of the Cicada, Mean and RpCf methods when the demand is 

lower than the minimum capacity of the CP. The Mean and the RpCf methods better anticipate future costs 

due to the CP cycling and make better usage of the storage. Here again, the storage management of the RpCf 

is sub-optimal (kept full during heating season), but the method still yields better results.  

 

Heat demand with Unflx-HighSetUp architecture:  

Here the RpCf method operates in a similar way as with the Unflx-LrgSto architecture. Expensive set-up costs 

keeps the CP turned on at the beginning of heating season or prevent it from turning on for few units. The 

Mean method does not anticipate the minimum capacity constraint that impacts the summer demand 

satisfaction and thus does not constitute a stock. However, expensive set-up costs prevent it from turning the 

CP off during the summer, which fills up the stock for the beginning of the heating season. The Cicada method 

yields to an expensive solution with multiple CP set-ups.  

 

Heat demand with Unflx-NoSetUp architecture:  

In this case, savings can be obtained by using the CP at high capacity. The RpCf method anticipates fixed 

production costs on the long-term and makes better use of the storage. The Mean and the Cicada methods 

operate similarly, the first slighlty outperfroming the second.  

 

Constant, and square-wave signals demand with Unflx-LrgSto architecture:  

In case of a constant demand, the RpCf method charges and discharges the storage in order to save on fixed 

production costs of the CP, while the Mean and the Cicada methods produce at constant rates. For semestrial, 

monthly and weekly square wave signals, the RpCf method also makes use of the storage to reduce start-up 

and fixed production costs. Still, the solutions obtained are sub-optimal. This can be due to the long-term data 

approximation by representative periods, extrapolation of computed costs and the loss of information on the 

CP state after the first long-term horizon slice (see [176] for details). On the other side, Mean and Cicada 

methods show similar behaviour : they do not properly anticipate long-term CP constraints and costs and thus 

do not elaborate long-term strategies. Still, the Mean method uses less cycles on the CP, which improves the 

solution compare to the Cicada method. Finally, the daily square wave signals are slightly better handled by 

the Mean method, while the long-term strategy off the RpCf method is not efficient, similarly to cases where 

the Electric demand was considered.  
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5. Conclusion 
 

This technical note aimed to verify the relevancy of the two rolling horizon methods presented in [176]. For 

this purpose, multiple hypothetical case studies were defined based on open data and arbitrary parameters. 

Both methods were tested on 24 elementary case studies including various load profiles, storages, and energy 

sources. All results were found consistent and confirmed the relevancy of both methods for rolling horizon 

optimisation in case of complex long-term operational decisions as observed in [176]. Other cases where long-

term strategies are not relevant were also properly handled by the Mean and the RpCf methods, which confirms 

their proper parametrization. In worst cases, solutions obtained with the RpCf method were not significantly 

less performant but led unnecessary variations of its strategy. This makes the interpretation of results more 

difficult and can be due to an overlearning of the method. Fixing this issue could be a future work before 

practical applications.  
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Chapitre 4 
 

 

Les deux précédents chapitres proposent et valident l’intérêt de deux méthodes pour simuler et 

optimiser l’opération d’un système énergétique. Ces deux méthodes sont des extensions de de la mécanique 

classique de l’horizon glissant. Elles permettent de tenir compte de dynamiques opérationnelles long terme 

tout en modélisant finement des décisions court-terme au pas de temps horaire. 

 

Ce quatrième et dernier chapitre illustre une nouvelle application possible de ces deux méthodes. Il revient 

également sur le besoin énoncé dans la conclusion du Chapitre 1. L’état de l’art a mené à la conclusion qu’il 

serait pertinent de s’appuyer sur des modèles opérationnels fins pour la conception de systèmes énergétiques 

où les questions de flexibilité sont essentielles. En particulier, ces modèles fins tiendraient compte de séries 

temporelles annuelles au pas de temps horaire (sans les agréger en jours types), de contraintes et coûts 

opérationnels spécifiques rendant compte de la flexibilité des technologies et d’hypothèses de prévisions 

imparfaites. Le Chapitre 4 questionne cette pertinence en illustrant l’impact de ces niveaux d’hypothèses 

sur un cas d’étude complexe, mêlant demandes en électricité et en chaleur au niveau d’un quartier. Les 

différents impacts pourront illustrer (ou non) l’intérêt d’utiliser un modèle plus fin pour améliorer la 

pertinence de l’étude. Un retour d’expérience sera dressé pour mieux anticiper ces problématiques sur de 

futurs cas. 

 

Plusieurs renvois aux Chapitres 1 et 2 sont faits dans ce chapitre. Ils correspondent respectivement aux 

références [156] et [176]. 

 

L’article qui suit est en cours de soumission dans le journal Applied Energy. 

 

 

 

Abbréviations utilisées au Chapitre 4 : 
 

Abbréviation Expression complète 

CG Cogeneration 

ED Electric Demand 

ESPP Energy System Production Planning 

FB Fuel Boiler 

G Grid 

GB Gas Boiler 

HD Heat Demand 

HP Heat Pump 

HS Heat Storage 

LP Linear Programming 

MES Multi-Energy System 

MILP Mixed Integer Linear Programming 

RH Rolling Horizon 

RP Representative Period 

ST Solar Thermal collectors 
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Abstract:  

Many techno-economic studies of local energy systems rely on mathematical programming. This comes with 

several modelling choices including simplified technological and economical models, temporal and spatial 

resolutions or perfect foresight assumptions. These assumptions are challenged individually on different case 

studies in the literature. This paper evaluates and compares the impact of different modelling choices on a 

single case study. The system considered includes heat and electrical demands, a biomass-fired cogeneration, 

a heat pump, gas and fuel boilers, solar thermal collectors as well as a long-term heat storage. The modelling 

choices tested are the use of representative periods or not, the inclusion of flexibility costs and constraints for 

the cogeneration, the use of different methods to optimise operational decisions (including various rolling 

horizon methods), and the consideration of forecast errors or not. Results highlight the conditions under which 

representative periods can be used without introducing strong biases on the results. They show the 

consequence of neglecting flexibility costs and constraints in the problem formulation. Finally, they compare 

different rolling horizon strategies and conclude on the validity of the perfect foresight assumption on this 

case study. 

 

Highlights: 

-Usual assumptions taken when modelling energy systems with mathematical programming are 

assessed. 

-The impact of several assumptions over different modelling facets are compared on a single case study 

including a long-term storage.  

-The characteristics of the case study that favour (or not) the recourse to one assumption or another are 

highlighted. 

  

Key words: energy systems, optimisation, MILP, representative periods, rolling horizon, flexibility, 

forecasts 
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1. Introduction 
 

The Intergovernmental Panel on Climate Change calls for limiting cumulative greenhouse gas emissions of 

human activities in order to limit global warming [1]. Paris agreements already engaged many countries to 

reduce their emissions in 2015 [11]. The energy sector plays a major role in human emissions and includes 

local energy systems [156]. Local and smart energy systems [16,154] including distributed energy resources 

[14] stand as a potential way to increase energy efficiency and to lead to low carbon energy systems. Designing 

and simulating such systems can be a complex task which implies several modelling assumptions and choices. 

A multitude of modelling and optimisation methods were presented in the literature [156]. They often rely on 

the mathematical programming formalism but with diverse underlying assumptions. Hence, there is a need to 

challenge the assumptions usually undertaken. 

When modelling the operation of an energy system, several modelling facets exist. Facets include the spatial 

resolution, time resolution, technological and market representations, as well as how operational 

decisions are modelled [156]. The technological and market representations are tightly linked to the 

mathematical complexity of the model. Increasing such models complexity can lead to tough optimisation 

problems [148]. The way operational decisions are modelled refers to how they are optimised and how errors 

in forecasts are considered (also referred as short-term uncertainty in [27]). Current methods based on the 

design and operation optimisation with a single mathematical program assume perfect foresight [156]. In 

real life applications, errors in forecasts and imperfect operational decisions occur. Hence, such methods can 

underestimate real life operational costs with an “over-optimised” operation of the system. In turn, this can 

lead to design solutions which are theoretically optimal but less performant in practice. Therefore, we 

distinguish three interdependent modelling issues when studying energy systems: the computational 

tractability of the model, the performance (economic, energetic, environmental, etc.) of the solutions it 

yields, and their applicability in practice.  

As mentioned in [166] and [183], there is a research gap regarding the degree of model complexity that is 

necessary while more complex models do not necessarily yield higher performances. This paper is in line with 

[166] where the impact of the model complexity on its computational tractability and on its economic 

performances is questioned. The state of the art from [166] provides many and recent references where the 

impact of the spatial and temporal resolution are investigated as well as the impact of mathematical complexity 

of the model and the system scope (in both fields of local and large-scale energy systems). Further references 

can be added: in [88], the author tests multiple temporal resolution reduction methods to summarise decades 

of hourly solar and wind time series. Methods tested include coarser temporal resolution, heuristics and 

clustering methods for selecting representative days.  A finding is that results are substantially altered, 

especially with high intermittent energy shares. On the other hand, storage options reduce the importance of 

high temporal resolution. Appropriate time resolution is case dependant and using representative periods (RPs) 

implies to set a compromise between computation times and temporal accuracy. 48 days were considered 

necessary in [19] for a robust design optimisation of a local MES (Multi-Energy System). Authors from [89] 

compare the impact of spatial and temporal resolution on the design of US regional power systems. They 

evaluate the impact of a coarser time resolution and of the number of representative days used. On the spatial 

facet, they compare an optimisation region by region with an optimisation of interconnected regions jointly. 

They finally compare different spatial resolutions within a region. On another note, the impact of the 

operational decisions modelling assumptions was investigated in [184]: the economic viability of heat pumps 

is evaluated for different operation optimisation algorithms and with different quality of forecasts. A finding 

is that both assumption levels can have important impacts on economic and energy consumption results.  
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Contributions: 

Given the extensive application of mathematical programming approaches to simulate and design local energy 

systems, questioning the relevancy of their underlying assumptions is necessary. The impact of the different 

modelling choices on computational tractability and on economic performances were individually evaluated 

in the literature (see [166], [88], [89], [19] and literature review from [166]). Authors from [184] explored the 

operational decisions modelling assumptions to better evaluate the practical expected performances of 

optimisation models. This paper adds several contributions to this research topic: 

• It evaluates the impact of the different modelling choices over operational costs on a new illustrative 

case study. Considering that this impact can be highly case dependant, this contributes to fill the 

above-mentioned research gap. The case includes electric and heat demands, as well as a large heat 

storage. It is a complex case that include daily and monthly time scales. 

• Different modelling choices are compared together on this single case study, while previous studies 

evaluated impacts individually. 

• It evaluates the impact of how operational decisions are modelled (including possible forecast errors), 

in particular in case of a large storage that implies long-term operational decisions. Methods from 

[176] are used. 

First, we describe the illustrative case study including the mathematical formulation of the problem. Second, 

the different modelling facets and their respective possible assumptions are defined. Then, the experience plan 

and the evaluation process are described. Finally, results are presented and discussed. 

 

2. Case study  
 

The case study corresponds to the satisfaction of electrical and heat demands in the Cambridge neighbourhood 

of Grenoble city, France. The system structure is illustrated on Figure 33. Time varying heat and electricity 

demands (respectively HD and ED) must be supplied at each period. The heat demand can be satisfied through 

a heat network powered by solar thermal panels (ST), a heat pumps (HP) (which consumes electricity), a gas 

boiler (GB), a fuel boiler (FB) or a biomass back-pressure cogeneration (CG) (which produces electricity as 

well). The centralized heat can be stored over long periods in a heat storage (HS). Finally, if not satisfied by 

the CG, the ED is supplied by purchasing electricity on a grid (G) at a time dependant (spot) price. The gas, 

fuel and electricity prices include CO2 emission costs. The CO2 content of the grid is also time dependant.   

The mathematical formulation of the problem is given Section 2.1. The value of parameters is given Section 

2.2.  
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Figure 33: Illustrative case study structure 

2.1 Problem formulation 
 

The following mathematical problem defines the corresponding Energy System Production Planning (ESPP) 

problem. It is described on a discrete horizon 𝐻 = [1, … , 𝛩 ∈ ℕ+]. The time step size is given by 𝑑𝑡 (equal to 

one hour). Variables are written in bold, continuous variables in capital letters and binary variables in small 

letters. In order to represent units consistency, 𝑋 correspond to power units and 𝐸 to energy units. Parameters 

and variables are detailed below.  

• The heat demand 𝑋𝑡
𝐻𝐷 and the electricity demand 𝑋𝑡

𝐸𝐷 are in kW. 

 

• The ST production 𝑿𝒕
𝑺𝑻 is in kW and has a time varying capacity 𝑋𝑚𝑎𝑥𝑡

𝑆𝑇 (𝑿𝒕
𝑺𝑻 ∈ [0, 𝑋𝑚𝑎𝑥𝑡

𝑆𝑇]). 
 

• The GB is characterised by a maximum production capacity in kW (𝑿𝒕
𝑮𝑩 ∈ [0, 𝑋𝑚𝑎𝑥𝐺𝐵]) and a unitary 

production cost in euros/kWh (𝐶𝐺𝐵). 

 

• The FB is characterised by a unitary production cost in euros/kWh (𝐶𝐹𝐵). 

 

• The HP is characterised by a maximum production capacity in kW (𝑿𝒕
𝑯𝑷 ∈ [0, 𝑋𝑚𝑎𝑥𝐻𝑃]) and an 

efficiency constant 𝜂𝐻𝑃. 

 

• The CG is characterised by a minimum and a maximum total production capacity in kW (𝑋𝑚𝑖𝑛𝐶𝐺  and 

𝑋𝑚𝑎𝑥𝐶𝐺), a maximum change of its total production rate in kW (𝑋𝑟𝐶𝐺), a minimum on time in hour 

(i.e. if turned on, the CG must be kept on over at least 𝑇𝑚𝑖𝑛𝐶𝐺  time steps), a unitary biomass cost in 

euros/kWh (𝐶𝐶𝐺), a fixed production cost in euros/hour (𝐶𝑜𝑛𝐶𝐺) and a set-up cost in euros (𝐶𝑠𝑒𝑡𝐶𝐺). 

𝜂𝑒 and 𝜂ℎ respectively correspond to the nominal electricity and heat efficiencies. The ratio 𝛼 = 𝜂𝑒/𝜂ℎ 

is introduced for convenience. The CG has the ability to produce more heat by reducing its electrical 

production by a factor 1. 𝑿𝒃𝒕
𝑪𝑮 is the amount of biomass consumed at period 𝑡, in kW. Variables 𝑿𝒉𝒕

𝑪𝑮 

and 𝑿𝒆𝒕
𝑪𝑮 respectively correspond to the heat production and the electricity production of the CG at 𝑡 

in kW, 𝒚𝒕
𝑪𝑮 ∈ {0,1} equals 1 if the CG is on at 𝑡, 0 otherwise and 𝒛𝒕

𝑪𝑮 ∈  {0,1} equals 1 if the CG is 

being set-up at 𝑡, 0 otherwise. An extra variable 𝑿𝒕𝒐𝒕𝒕
𝑪𝑮 is introduced and corresponds to the total 

power produced in kW. 
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• The electricity bought on the grid (𝑿𝒕
𝑮 ∈ [0, +∞[) is in units/hour and has a time varying price 𝐶𝑡

𝐺 .  

 

• The heat storage is defined by a maximum capacity in kWh (𝐸𝑚𝑎𝑥𝐻𝑆), a storing efficiency (𝜂𝐻𝑆) 

corresponding to the percentage of energy that is actually stored during the storing operation (the rest 

is lost), losses in kW lost/kW stored/hour (𝛿𝐻𝑆) and a stock/destock capacity in units/hour (𝑋𝑚𝑎𝑥𝐻𝑆). 

Associated variables are the stored quantity in units (𝑬𝒕
𝑯𝑺  ∈ [0, 𝐸𝑚𝑎𝑥𝐻𝑆]) and the stock and destock 

rates in kW ((𝑿𝒐𝒖𝒕𝒕
𝑯𝑺, 𝑿𝒊𝒏𝒕

𝑯𝑺) ∈ [0, 𝑋𝑚𝑎𝑥𝐻𝑆]2)) at time step 𝑡. 

 

Variables are set to 0 if 𝑡 = 0 (except for 𝑬𝟎
𝑯𝑺). The mathematical formulation of the problem is as follows. 

𝑀𝑖𝑛: 

∑ ((𝐶𝐺𝐵𝑿𝒕
𝑮𝑩 + 𝐶𝐹𝐵𝑿𝒕

𝑭𝑩 + 𝐶𝐶𝐺𝑿𝒃𝒕
𝑪𝑮 + 𝐶𝑜𝑛𝐶𝐺𝒚𝒕

𝑪𝑮 + 𝐶𝑡
𝐺𝑿𝒕

𝑮)𝑑𝑡 + 𝐶𝑠𝑒𝑡𝐶𝐺𝒛𝒕
𝑪𝑮)𝑡∈𝐻   E1  

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

∀ 𝑡 ∈ 𝐻: 

𝑋𝑡
𝐻𝐷 = 𝑿𝒕

𝑮𝑩 + 𝑿𝒕
𝑭𝑩 + 𝑿𝒉𝒕

𝑪𝑮 + 𝑿𝒕
𝑺𝑻 + 𝑿𝒐𝒖𝒕𝒕

𝑯𝑺 − 𝑿𝒊𝒏𝒕
𝑯𝑺 + 𝜂𝐻𝑃𝑿𝒕

𝑯𝑷    E2 

𝑋𝑡
𝐸𝐷 = 𝑿𝒆𝒕

𝑪𝑮 + 𝑿𝒕
𝑮 − 𝑿𝒕

𝑯𝑷          E3 

𝑿𝒕
𝑺𝑻 ≤ 𝑋𝑚𝑎𝑥𝑡

𝑆𝑇          E4 

𝑬𝒕
𝑯𝑺 = 𝑬𝒕−𝟏

𝑯𝑺 (1 − 𝛿𝐻𝑆𝑑𝑡) + (𝜂𝐻𝑆𝑿𝒊𝒏𝒕
𝑯𝑺 − 𝑿𝒐𝒖𝒕𝒕

𝑯𝑺)𝑑𝑡      E5 

𝑋𝑚𝑖𝑛𝐶𝐺𝒚𝒕
𝑪𝑮 ≤ 𝑿𝒕𝒐𝒕𝒕

𝑪𝑮          E6 

 𝑿𝒕𝒐𝒕𝒕
𝑪𝑮 ≤ 𝑋𝑚𝑎𝑥𝐶𝐺𝒚𝒕

𝑪𝑮         E7 

𝒚𝒕
𝑪𝑮 − 𝒚𝒕−𝟏

𝑪𝑮 ≤ 𝒛𝒕
𝑪𝑮          E8 

𝑿𝒕𝒐𝒕𝒕
𝑪𝑮 − 𝑿𝒕𝒐𝒕𝒕−𝟏

𝑪𝑮 ≤ 𝑋𝑟𝐶𝐺         E9 

𝑿𝒕𝒐𝒕𝒕−𝟏
𝑪𝑮 − 𝑿𝒕𝒐𝒕𝒕

𝑪𝑮 ≤ 𝑋𝑟𝐶𝐺         E10 

𝑿𝒉𝒕
𝑪𝑮 ≤ 𝑋𝑚𝑎𝑥𝐶𝐺 − 𝑿𝒆𝒕

𝑪𝑮         E11 

 𝑿𝒆𝒕
𝑪𝑮 ≤ 𝛼𝑿𝒉𝒕

𝑪𝑮          E12 

 𝑿𝒆𝒕
𝑪𝑮 + 𝑿𝒉𝒕

𝑪𝑮 = 𝑿𝒕𝒐𝒕𝒕
𝑪𝑮         E13 

𝑿𝒃𝒕
𝑪𝑮 = 1/(𝜂ℎ(𝛼 + 1))(𝑿𝒉𝒕

𝑪𝑮 +  𝑿𝒆𝒕
𝑪𝑮)        E14 

∀ 𝑡 ∈ [𝑇𝑚𝑖𝑛𝐶𝐺 , … , 𝛩]: ∑ 𝒛𝒕′
𝑪𝑮𝑡

𝑡′=𝑡+1−𝑇𝑚𝑖𝑛𝐶𝐺 ≤ 𝒚𝒕
𝑪𝑮      E15 

∀ 𝑡 ∈ [1, … , 𝑇𝑚𝑖𝑛𝐶𝐺[: ∑ 𝒛𝒕′
𝑪𝑮𝑡

𝑡′=1 ≤ 𝒚𝒕
𝑪𝑮          E16 

𝑬𝟎
𝑯𝑺 ≤ 𝑬𝜣

𝑯𝑺            E17 
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The objective to minimise the sum of operational costs is given by E1. E2 and E3 ensure that both demands 

are satisfied. E4 ensure that the amount of power consumed from the intermittent source does not exceed the 

available power. E5 is the balance equation for the HS. E6-7 set the minimum capacity of the CG and defines 

the states 𝒚𝒕
𝑪𝑮. E8 defines the states 𝒛𝒕

𝑪𝑮. E9-10 limit the changes in the CG production rate. E11-12 limit the 

heat and electricity production of the CG so that it can trade electricity production with heat production with 

a factor of 1. E13-14 define the amount of biomass consumed by the CG. The minimum on/off times of the 

CP are given by E15-16. Finally, E17 ensures that the initial storage level corresponds to the final storage 

level. 

 

2.2 Techno-economic assumptions  
 

Techno-economic values of parameters used to formulate the ESPP problem are given in Table 8 and Table 

9. A relatively high CO2 emissions cost is considered: CCO2 = 0.2 𝑒𝑢𝑟𝑜𝑠/𝑘𝑔. The heat demand profile, the 

electrical demand profile, the production factor (𝑝𝑓𝑡) of the ST panels, the electricity prices 𝐶𝑡
𝑒 and the 

electricity carbon content CO2𝑡
𝑔𝑟𝑖𝑑

 profiles are shown in Appendix E. The gas price was extracted from [185]: 

it corresponds to the price for non-household consumers in France in the second semester of 2020. The 

electricity prices profile was normalised with the electricity price for non-household consumers in France in 

the second semester of 2020 ([185]). 

Capacities of each equipment were set after solving the investment planning problem which corresponds to 

the mathematical problem defined by E1-E17 without the CG specific constraints (E6-E10) and with 

capacities as optimisation variables. The objective was modified to minimise the total actualised costs over 20 

years with a discount rate of 7%. The FB was ignored at the investment phase. It can be noticed that batteries 

and photovoltaic solar panels were included at the investment phase but not selected by the optimiser. This 

step is further detailed in Appendix E. Obtained capacities were rounded. 

 

Table 8: techno-economic and environmental operational parameters of primary resources 

Resources 
Low heat value 

(kWh/kg) 
Cost CO2 content (kg/kWh) 

Gas 𝐿𝐻𝑉𝑔𝑎𝑠 = 13.83 𝐶𝐹𝑅
𝑔𝑎𝑠

= 0.387 𝑒𝑢𝑟𝑜𝑠/𝑘𝑔 
CO2

𝑔𝑎𝑠 = 0.243 (3.36 𝑘𝑔
/𝑘𝑔 𝐶𝐻4) 

Fuel 𝐿𝐻𝑉𝑓𝑢𝑒𝑙 = 12 𝐶𝑓𝑢𝑒𝑙 = 1.09 𝑒𝑢𝑟𝑜𝑠/𝑘𝑔 
CO2

𝑓𝑢𝑒𝑙 = 0.340 (4.7 𝑘𝑔
/𝑘𝑔 𝐹𝑢𝑒𝑙) 

Biomass 𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 4 𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 0.12 𝑒𝑢𝑟𝑜𝑠/𝑘𝑔 CO2
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 0 

Grid NA 
𝐶𝑡

𝐺 = 𝐶𝑡
𝑒 + 𝐶𝐶𝑂2 ∗ CO2𝑡

𝑔𝑟𝑖𝑑𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ 

𝐶𝑡
𝑒: 𝑠𝑒𝑒 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 1 

CO2𝑡
𝑔𝑟𝑖𝑑: 𝑠𝑒𝑒 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 1 

 

  



Impact of operational modelling choices on techno-economic modelling of local energy systems. 111 

 

 

Table 9: techno-economic operational parameters of equipments 

Equipment Parameter Value 

GB 

𝜂𝐺𝐵 0.9 

𝑋𝑚𝑎𝑥𝐺𝐵 130 𝑘𝑊 

𝐶𝐺𝐵 

 

𝐶𝐺𝐵 = (
𝐶𝑔𝑎𝑠

𝐿𝐻𝑉𝑔𝑎𝑠
+ 𝐶𝐶𝑂2 ∗ CO2

𝑔𝑎𝑠)/𝜂𝐺𝐵 = 0.07352 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ 

 

FB 

𝜂𝐹𝐵 0.85 

𝐶𝐹𝐵 

 

𝐶𝐹𝐵 = (
𝐶𝐹𝑅

𝑓𝑢𝑒𝑙

𝐿𝐻𝑉𝑓𝑢𝑒𝑙
+ 𝐶𝐶𝑂2 ∗ CO2

𝑓𝑢𝑒𝑙)/𝜂𝐹𝐵 = 0.18686 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ 

 

ST 𝑋𝑚𝑎𝑥𝑡
𝑆𝑇 

𝑋𝑚𝑎𝑥𝑡
𝑆𝑇 = 𝑋𝑚𝑎𝑥𝑆𝑇 ∗ 𝑝𝑓𝑡 

with 𝑋𝑚𝑎𝑥𝑆𝑇 = 100 𝑘𝑊𝑐 

CG 

𝑋𝑚𝑎𝑥𝐶𝐺  800 𝑘𝑊 

𝑋𝑚𝑖𝑛𝐶𝐺  160 𝑘𝑊 

𝑋𝑟𝐶𝐺 160 𝑘𝑊 

𝑇𝑚𝑖𝑛𝐶𝐺  6 ℎ𝑜𝑢𝑟𝑠 

𝐶𝐶𝐺  

 

𝐶𝐶𝐺 =
𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠
= 0.03 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ 

 

𝐶𝑜𝑛𝐶𝐺  1.6 𝑒𝑢𝑟𝑜𝑠 

𝐶𝑠𝑒𝑡𝐶𝐺  160 𝑒𝑢𝑟𝑜𝑠 

HS 

𝐸𝑚𝑎𝑥𝐻𝑆 70 000 𝑘𝑊ℎ 

𝜂𝐻𝑆 0.95 

𝛿𝐻𝑆 0.000104 (0.25% 𝑝𝑒𝑟 𝑑𝑎𝑦) 

𝑋𝑚𝑎𝑥𝐻𝑆 2000 𝑘𝑊 

HP 
𝑋𝑚𝑎𝑥𝐻𝑃 190 𝑘𝑊 

𝜂𝐻𝑃 3 
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3. Experimental method 
 

3.1 Modelling options compared 
 

The aim of this paper is to evaluate the impact of the modelling choices over different energy system 

operational facets. The modelling options of the different facets are described here. 

 

Technological facet, two modelling options tested: 

• The LP option: no CG specific constraints are considered (equations E6-E10, and E15-16 are ignored, 

fixed production and set-up costs of the CG are set to zero). The ESPP problem is a purely Linear 

Program (LP). 

 

• The MILP option: all CG specific constraints and costs are included. The ESPP problem is a Mixed-

Integer Linear Program (MILP). 

 

Temporal facet, two modelling options tested: 

• The basic option: one year of data is considered with 1 hour time step (8760 time steps). 

 

• The RP option: several RPs representing one year of data considered (various sizes and number are 

tested). The method for selecting RPs is the method from [85] (“OPT” method with the basic model)3. 

The ESPP problem formulation is kept identical but the reconstructed profiles are used instead. The 

reconstructed profile is built by attributing one RP to each original period so that the absolute error is 

minimised at each time step. 

 

Operational decisions facet, optimisation algorithms tested: 

• The OneShot option: perfect anticipation of future data over the year is assumed. The ESPP problem 

is solved as a single mathematical program. 

 

• The Cicada and Ant options: the ESPP problem is solved in a RH fashion, the Cicada option 

corresponds to the usual RH solving of the ESPP problem with a planning horizon of 48 hours and a 

fixed horizon of 24 hours. The Ant option similar as the Cicada option, but a value to energy stored at 

the end of the planning horizon is attributed. This value is set to 0.7 euros/kWh, so that heat from the 

GB or the FB is not stored over long-term periods. 

 

• The Mean and RpCf options from [176]: The Mean and RpCf strategies use the same problem 

formulation over 48 hours and approximate next data and decisions variables with aggregated time 

steps. This way, yearly evolutions are anticipated. The aggregation can increase with time and is 

defined by a slicing of the planning horizon H. Three planning horizons are defined: H1, H2 and H3 

(see Figure 34). H1 and H2 were already introduced in [176]. H3 is a compromise between H1 and 

                                                           
3 The « OPT » method with the basic model proposed in [85] selects and attributes weights to each representative periods so that 

the sum of the difference between the original data duration curve and the weighted representative periods duration curve is 

minimized. In our case study, we consider five data set (the HD, the ED, the PV and ST production factor, the grid variable price 

including its variable CO2 content). Each data set is normalised so that the error on its duration curve equally weights in the objective 

function. It can be noted that the optimised weights are not taken into account in the profiles reconstruction process.  
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H2. The Mean strategy uses average data and a simplified problem formulation over the long-term 

horizon. The RpCf strategy aggregates time steps by RPs, and the problem formulation is replaced by 

pre-computed cost functions on the long-term horizon. The horizon H2 is not applied with the RpCf 

strategy: this combination was found to be less efficient in [176]. 

 

Operational decisions facet, inclusion of forecasts errors: 

• The basic option: the same data sets are used as forecasts and as effective demands, PV and ST 

production factors, grid prices and CO2 content. 

 

• Including forecast errors: the data sets used as forecasts after 24 hours differ from effective demands, 

PV and ST production factors, grid prices and CO2 content by -20% to +20%. Before 24 hours ahead, 

perfect forecasts are assumed. 

 

 

 

Figure 34: Illustration of the planning horizons H1, H2 and H3 

 

The modelling facets and the modelling options are summarised in Table 10. We further refer to a modelling 

configuration as a set of options abbreviations given in Table 10. For instance, the configuration MILP-Mean 

corresponds to the case where all CG constraints are included and where the ESPP problem is solved in a 

rolling-horizon fashion with the Mean method from [176]. Also, we further use the term model to refer to a 

single modelling facet or a specific modelling option: for instance, “the LP model” only refers to the 

technological facet of the whole model. More information on the rolling horizon (RH) strategies is given 

below.  
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Table 10: Modelling options and abbreviations 

Modelling 

facet 
Definition Modelling option 

Option 

abbreviation 

Technological 

The level of detail 

considered to 

model the CG 

No CG specific constraints are considered. LP 

All CG specific constraints and costs are included.  MILP 

Temporal 

How temporally 

dependant data is 

represented 

One year of data is considered with 1 hour time step 

(8760 time steps) 
- 

Several RPs of one year of data are considered to rebuild 

the data series (various sizes and number are tested).  
RP 

Operational 

decisions: 

optimisation 

algorithm 

Which algorithm 

is used to optimise 

future operational 

decision 

Perfect anticipation of future data over the year is 

assumed.  
OneShot 

The ESPP problem is solved in a RH fashion, different 

optimisation strategies are used (most are methods from 

[176]). 

-Cicada 

-Ant 

-MeanH1 

-MeanH2 

-MeanH3 

-RpCfH1 

-RpCfH3 

Operational 

decisions: 

forecasts 

What data is used 

to optimise future 

operational 

decision 

The same data sets are used as forecasts and as effective 

demands 
- 

The data sets used as forecasts after 24 hours differ from 

the effective data sets. 
- 

 

 

Configurations tested and compared:  

Testing all possible configurations would need too many computations. In order to evaluate the impact of the 

modelling choices of each modelling facet, the following configurations are compared: 

1. The impact of the technological model is assessed by comparing the LP-OneShot with the MILP-

OneShot configuration (see Section 4.1). Given the important impact of the technological model on 

the costs and the solution, we further duplicate next computations for both assumptions. 

 

2. The impact of the temporal model is assessed by comparing the LP-OneShot configuration with the 

LP-OneShot-RP configurations, and the MILP-OneShot configuration with the MILP-OneShot -RP 

configurations (with various sizes and numbers of RPs, see Section 4.2).  

 

3. To evaluate the impact of the operational decisions model, the LP-Cicada, LP-Ant, LP-Mean, LP-

MeanH2, LP-MeanH3, LP-RpCfH1 and LP-RpCfH3 configurations are compared together with the 

LP-OneShot configuration as a reference. We also compare the MILP-Cicada, MILP-Ant, MILP-

MeanH1, MILP-MeanH2, MILP-MeanH3, MILP-RpCfH1 and MILP-RpCfH3 configurations 

together with the MILP-OneShot configuration as a reference (see Section 4.3). 

 

4. Finally, the impact of the forecasts is evaluated by comparing the LP-MeanH2, LP-RpCfH3, MILP-

MeanH2, and MILP-RpCfH3 configurations with and without forecast errors (these configurations 

yield the best results in the previous step). See Section 4.4. 
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3.2 Evaluation process 
 

The different configurations are used to model the operation of the energy system described by E1-E18 over 

one year. The configurations are compared on the basis of the total operational costs they yield over one year. 

This is given by E1 in case of the OneShot model (𝐻 = [1, … ,8760]). In case where a RH is used, the total 

costs retained correspond to the sum of costs on the fixed horizon of the RH process over a year. The fixed 

horizon corresponds to the part of decisions that are planned over 𝐻 and fixed before the next cycle of the RH 

process. It is set to 24 hours. Since the yearly strategy might evolve if more years are simulated, configurations 

are run until it converges. In practice, this is the case after one or two years.  

 

In cases where the CG specific constraints and costs are included, the Mean-SetUp and the RpCf-SetUp 

versions of the Mean and RpCf methods from [176] are applied (since important set-up costs are included). 

The same demand profile is used over both short-term and long-term horizons if no forecast errors are 

considered. Hence, configurations are run with perfect forecasts (except in Section 4.4). This way, only biases 

on the data aggregation method and on the models themselves are accounted for.  

 

A time limit of one hour was set for all computations. For cases where this limit was reached, results are 

presented respectively to the potential error due to the final relative gap.  For instance, the MILP-OneShot 

configuration led to an optimisation problem with a high number of binary variables (17 520). Hence, 

computations were stopped after one hour with a final relative gap of 0.11%.  

All computations are performed according to [176], where details can be found about the in-house PERSEE 

modelling environment from the LSET laboratory in CEA and about the methodology used to build the cost 

functions. Scripts used to build cost functions are available in [186].  

 

4. Results 
 

This section presents the impact of the modelling choices over the technological facet, the temporal facet and 

the operational decisions facet.  

In Section 4.1, the solutions obtained for both LP-OneShot and MILP-OneShot configurations are described 

in detail to understand the main dynamics of the system. In next sections, the LP-OneShot and MILP-OneShot 

configurations are considered as references and results are expressed and compared relatively to them.  

 

4.1 Impact of the technological assumptions 
 

This section compares the OneShot-MILP configuration with the OneShot-LP configuration. Including the 

CG costs and constraints increases the yearly costs by almost 4 percent.  

The costs breakdown given in Figure 35 shows that an important percentage of this difference is due to the 

CG operating costs (they are ignored with the LP option). The rest is due to an increase in the total cost of the 

electricity bought from the grid. This can occur because more electricity is bought on the grid and/or that it is 

bought at higher prices. Figure 36 provides information about the proportion of each source in the HD and ED 

satisfaction. Overall, the CG is less used with the MILP option (has expected: it is more expensive). Hence, it 

produces less electricity and less heat. In turn, the HP produces more heat, so more electricity is bought from 

the grid.  
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Figure 35: Operational costs breakdown.  

Comparison between the participation of each source in the yearly operational costs (euros) for both LP-OneShot and MILP-

OneShot configurations (the ST source has no operational cost). 

 

 

Figure 36: Participation of each source in the HD and ED satisfaction (kWh). 

Comparison for both LP-OneShot and MILP-OneShot configurations. 

 

We further describe the solutions obtained: results of the OneShot-MILP and the OneShot-LP configurations 

are plot on Figure 374 and Figure 38 respectively. Zooms on both figures are given in Appendix F, they further 

illustrate explanations given below.  

The same strategy is used in winter, independently of the CG model: the CG and the HP are mostly used at 

maximum capacity. The heat storage is used to pass HD peaks. The CG trades electricity for heat before the 

highest HD demand peak. This is done when electricity prices are low. The GB is only used to pass the biggest 

HD peak. Overall, the system is highly constrained. 

                                                           
4 Figure 37 shows the heat power balance, the grid prices (including the cost of CO2 emissions), the HS state and electricity 

balance. In other figures, only the elements necessary to interpret the results are shown for compactness purposes. 
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During the mid-season, the CG and the HP are used when electricity prices are high/low respectively. This 

strategy is enabled by the HS which is used over short and medium term periods to smooth the whole heat 

production. The HS also ensure that some HD peaks are passed without using the GB. The CG is not turned 

off with the MILP option to avoid start-up costs. 

A similar price saving strategy is used in the summer when the CG is not constrained. The HS use is driven 

by the electricity prices. If it is constrained, this strategy enters in competition with the need to limit the number 

of start-ups. Hence, the CG price adaptive strategy is not always available and is only undertaken by the HP. 

This explains higher grid costs and higher use of the HP. 
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Figure 37: Solution of the OneShot-MILP configuration: heat power balance, grid prices, HS state and electricity balance 
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Figure 38: Solution of the OneShot-LP configuration: heat power balance and HS state 

 

On the side of the economic performance, the OneShot option give the best results. The operational strategies 

given by the OneShot option are complex and take advantage a perfect knowledge, in particular on the 

electricity prices variations. One can question if such optimal operation is applicable to this extent in practice. 

If it is not, does it have a big impact over the total costs? This is further discussed in Sections 4.3 and 4.4.  

On the side of the tractability, the MILP-OneShot configuration was surprisingly well handled by the solver 

despite the problem complexity: the gap was already reduced to 0.26% after 3 minutes, with an objective close 

to the MILP-MeanH2 configuration (see Sections 4.3). Similar computations were performed with a high 

capacity for the GB for which the MILP-OneShot configuration was less performant. Hence its tractability is 

not guaranteed.  

 

4.2 Impact of the temporal assumptions 
 

This section assesses the impact of the temporal model by comparing the LP-OneShot configuration with the 

LP-OneShot-RP configurations, and the MILP-OneShot configuration with the MILP-OneShot-RP 

configurations (with various sizes and numbers of RPs). Figure 39 (and later Figures Figure 42 and Figure 44) 

thus show the variation (in percent) of the LP-OneShot-RP configurations compared to the reference: the LP-

OneShot configuration. Respectively, the MILP-OneShot-RP configurations are compared to the reference: 

the MILP-OneShot configuration. 

In case of the LP option, the economic impact ranges from -6.4 to 2.1 percent of the total operational costs 

depending on the number and sizes of RPs used. As expected, increasing the number and the size of RPs 

reduces the impact, but this is not systematic. The tendency is that costs are underestimated. This could be due 

to the fact that extreme values are excluded when RPs are chosen (HD peaks for instance). Figure 42 shows 
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the results when the period that includes the HD peak is imposed as a RP. In case of the LP option, this 

significantly improves results when RPs of one day are considered.  

On the side of the MILP option, the impact ranges from -1.5 to 6.4 percent. Contrarily to the case where the 

LP option is used, costs tend to be overestimated. Also, increasing the number and size of RPs does not 

improve the results, suggesting that errors compensate. Overall, the recourse to RPs appears less stable in case 

of the MILP option. Figure 40 shows the costs breakdown of the MILP-OneShot reference configuration and 

the MILP-OneShot-RP configuration with 48 RPs of 1, 2 and 3 days: the CG costs are always overestimated 

(and the grid costs to a lesser extent). Figure 41 shows the heat balance and the grid prices for the case where 

48 RPs of 2 days are used: contrarily to the MILP-OneShot reference configuration (Figure 37), the CG cycles 

more. This is because the reconstructed signal of the grid prices has a higher intra-month standard deviation. 

Hence, the CG strategy is modified accordingly. A similar phenomenon occurs with other sizes and numbers 

of RPs. This can be attributed to the fact that RPs keep the nature of the signal within themselves but not 

between themselves. Hence, the whole reconstructed signal has a different nature. Finally, costs are more 

overestimated when the HD peak is imposed as a RP and the RPs size is one day (Figure 42), suggesting that 

errors over different cost sources compensate less compared to Figure 39. 

The RPs are often used to reduce the computation times [156]. This case study includes a large thermal storage, 

hence, using RPs requires methods from [23]. The method M2 is tested here: computations are run on the 

original data series but integer variables are gathered on the basis of RPs. This means that if two periods of 

the original data are represented by the same RP, integer variables are set equal on these two periods. In other 

words, the method M2 is a heuristic to the original problem in which the number of integer variables is 

reduced5. Figure 43 shows the computation times of this method: contrarily to the MILP-OneShot 

configuration (with no heuristic), the problem is solved in limited computation times. Figure 44 shows the 

difference in operational costs compared to the reference MILP-OneShot configuration: costs are highly 

overestimated. This is due to a change in the CG strategy, similarly to Figure 41. Contrarily to previous 

computations, there is no compensations with underestimations due to the reconstruction of the data series 

with RPs. Hence, on this case study, the method M2 is not fruitful. Finally, results improve when bigger RPs 

are used. This suggests that RPs of the size of the time constant of the CG on/off states of Figure 37 would be 

necessary. However, this would highly reduce the efficiency of the time aggregation. 

                                                           
5 Contrarily to the problem considered in [23], the case study we consider includes constraints between time steps (other than the 

storage balance). These constraints are part of the CG technical constraints (E8-9-10 and E15-16). Hence, method M2 was adapted: 

these constraints were kept within RPs but not between RPs. In particular, the CG was considered as not started up at the beginning 

of a RP.  
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Figure 39: Impact of the temporal aggregation. 

Variation on the total operational costs when RP are used compared to the case where one year of hourly data is considered, for 

various RPs numbers and sizes, and for both LP and MILP options. Error bars are included for the latter case. 

 

Figure 40: Operational costs breakdown.  

Participation of each source in the yearly operational costs (euros), comparison of the MILP-OneShot configuration with cases 

where 48 RPs of 1, 2 or 3 days are used. 
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Figure 41: Solution of the OneShot-MILP-RP configuration when 48 RPs of 2 days are used: heat power balance and grid prices 



Impact of operational modelling choices on techno-economic modelling of local energy systems. 123 

 

 

Figure 42: Impact of the temporal aggregation. 

Variation on the total operational costs when RPs are used compared to the case where one year of hourly data is considered, for 

various RPs numbers and sizes, and for both LP and MILP options. Error bars are included for the latter case.  

Results when HD peak period is imposed as a RP. 

 

Figure 43: Computation times of method M2 from [23], applied to our problem. 

This is done for various number and sizes of RPs. 
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Figure 44: Variation on the total operational costs when method M2 from [23] is used, compared to the reference MILP-OneShot 

configuration (original problem). 

This is done for various number and sizes of RPs used within method M2. 

 

4.3 Impact of the operational decisions assumptions: choice of the optimisation 

algorithm 
 

The impact of the operational optimisation algorithm is evaluated by comparing the LP-Cicada, LP-Ant, LP-

Mean, LP-MeanH2, LP-MeanH3, LP-RpCfH1 and LP-RpCfH3 configurations with the LP-OneShot 

configuration as a reference. Respectively, the MILP-Cicada, MILP-Ant, MILP-MeanH1, MILP-MeanH2, 

MILP-MeanH3, MILP-RpCfH1 and MILP-RpCfH3 configurations are compared with the MILP-OneShot 

configuration as a reference. Results are expressed as percentages in Figure 45. 

This impact is increased with the MILP option (i.e. when considering the CG constraints and costs in the 

model). Looking at the case of the Cicada option shows that the absence of long-term operational optimisation 

can have a high impact on economic results (see Figure 47 and Figure 48 for the MILP-Cicada and MILP-Ant 

solutions respectively).  

If the LP option is used, results can be close to the results of the reference. Horizons 𝐻2 or 𝐻3 better capture 

mid-term variations and significantly improve results. In particular, the HD peak is better anticipated, which 

reduces the use of the FB.  The LP-MeanH2 configuration gives a solution close to the one given by the LP-

OneShot configuration.  

If the MILP option is used, the impact is increased. The MeanH1, MeanH2 and MeanH3 options have similar 

strategies (see Figure 49 for the MeanH3 option): the CG is kept on during the summer. When electricity 

prices start to increase, it produces more and enters a lock-in situation where the HS is kept full until the 

heating season. This is due to the fact that future costs are averaged. Hence, the Mean options do not anticipate 

potential savings on the grid prices and overestimate future costs. This is similar to the Ant option. On the 

other side, the RpCfH3 option shows a strategy comparable to the OneShot option (see Figure 50). One 

difference is a lack of anticipation of the heat demand peak, which results in the use of the FB.  

Finally, computation times are given in Figure 46. If one needs to reduce computation times, RH methods 

used here are of little help if the LP option is used. They can be interesting in case of a MILP option. 
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Figure 45: Impact of the operational decisions modelling options.  

Variation on the total operational costs of different operational decisions modelling options compared to the OneShot option, for 

both LP and MILP options. Error bars are included for the latter case (only the computations for the MILP-OneShot 

configuration reached the time limit). 

 

 

Figure 46: Computation times (time to simulate a year) of the different operational decisions modelling options, for both LP and 

MILP options. The time limit of one hour was reached with the MILP-OneShot configuration. 

  



4. Results 126 

 

 

Figure 47: Heat power and balance and storage state for the MILP-Cicada configuration. 

 

 

Figure 48: Heat power and balance and storage state for the MILP-Ant configuration. 
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Figure 49: Heat power and balance and storage state for the MILP-MeanH2 configuration. 

 

Figure 50: Heat power balance and storage state for the MILP-RpCfH3 configuration. 



4. Results 128 

 

4.4 Impact of the operational decisions assumptions: forecast errors  
 

The impact of the forecast errors is assessed in case of different configurations: LP-MeanH2, LP-RpCfH3, 

MILP-MeanH2, and MILP-RpCfH3. Figure 51 shows this impact in percent: for each case, the reference is 

the corresponding configuration without forecast errors. Different levels of errors are tested (over and under-

estimation of 10 and 20%), for different data series. 

A first observation is that, contrarily to the impact of the temporal model or the impact of the optimisation 

algorithm observed before, the impact is comparable when the LP or when the MILP option is used. Also, the 

RpCfH3 option appears more robust to HD forecast errors than MeanH2 option. Similar computations were 

done with the MeanH3 option: the RpCfH3 option was still more robust. 

Concerning forecast errors on ED and on the production factor of the ST, impacts on the results are nearly 

null with the MeanH2 option. This is because within this range of errors, regardless of the forecast quality, 

the most part of the ED is satisfied by buying electricity on the grid (see Figure 36). Similarly, the ST 

production is marginal compared to the demand. Although limited, impacts are higher with the RpCfH3 

option. This is because the cost functions aggregate all cost sources into a single indicator, contrarily to the 

Mean options.  

An overestimated HD can have a positive impact. This is because the RH strategies do not store enough heat 

before the HD peak, which leads to gas and fuel overconsumption. Hence, overestimation of the HD 

compensates this bias: see Figure 52 for graphical comparison with Figure 50 (black circle). This 

overestimation also has a negative impact: the heat is unnecessarily hold in the storage, and gas is used instead 

(purple circles). Besides, under-estimating future HD leads to a higher consumption of fuel, which is more 

costly.   

Finally, forecast errors over future grid prices and CO2 content have small impacts respectively on the total 

costs. In case of the MeanH2 option, an overestimation slightly improves the results. This compensates the 

bias of the Mean options mentioned in Section 4.3. On the opposite, underestimation increases it. In case of 

the RpCfH3 option, over or underestimation deteriorates the results, which confirms a proper calibration.  
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Figure 51: Impact of the forecast assumptions. 

Variation on the total operational costs when different forecast errors are considered (errors on the HD, the ED, the production 

factor of the ST, and the errors on the grid prices and CO2 content together).  

This is done for the LP-MeanH2, LP-RpCfH3, MILP-MeanH2, and MILP-RpCfH3 configurations. 
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Figure 52: Heat power balance for the MILP-RpCfH3 configuration, case where the HD is overestimated by 20% after 24h. 
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5. Discussion 
 

The results described in Section 4 are further discussed. They are tightly linked to the case study considered. 

Still, more general conclusions are outlined.   

 

 Computation times in case of the MILP option: 

The MILP-OneShot configuration is surprisingly well handled by the solver despite the problem complexity: 

the gap was already reduced to 0.26% after 3 minutes, with an objective close to the MILP-MeanH2 

configuration. Hence, the method M2 from [23] or RH methods from [176] tested on this case study are not 

of interest if one only needs to reduce computation times. However, the tractability of such MILP is not 

guaranteed. For instance, similar computations were done with a high capacity for the GB for which the MILP-

OneShot configuration was less performant. Hence, methods from [23] or [176] can still be further tested for 

this purpose.  

Assumptions on the technological facet: 

On the side of the assumptions over the technological model (here the inclusion of flexibility costs and 

constraints for the CG), they can have an important impact over the objective (around 4 percents) and on the 

solution. It further conditions the impact of the temporal and the operational decisions assumptions. Hence, 

attention should be paid to the technological assumptions. In this case study, the difference mainly comes 

from the fixed costs and the start-up costs of the CG. Nevertheless, the impact of the flexibility costs and 

constraints is not systematic: similar computations are done with economic assumptions relevant to Denmark6 

and with a different type of CG (extraction condensing)7. The system sizing yield a smaller CG (580 kW) 

producing heat and electricity all year without being turned off. In turn, adding flexibility costs and constraints 

do not change significantly the solution and it do not condition the impact of other assumptions.   

This can be put into perspective with recent literature on large-scale bottom up optimisation models: several 

works in the literature included detailed flexibility features ([70,112,187–189]). More recently, authors from 

[190] bring contrasts on the impact of such assumptions. They conclude that the impact can be limited on the 

total system costs if several sources of flexibility are considered. On the other hand, they can have a significant 

impact on the flexibility provider optimal sizes.  

Assumptions on the temporal facet: 

Moving to the temporal assumptions, results indicate that in case of simple technological assumptions, a 

temporal aggregation with a sufficient number and size of RPs approximates well the results. It should be 

noted that this case study includes four data series (the HD, the ED, the ST production factor and the grid costs 

including CO2 emissions), which is more challenging to aggregate with RPs. Hence, authors expect the results 

to improve for case studies that include less data series. On the other hand, the approximation by RPs can have 

a higher impact if a detailed technological model is considered. In particular, this is the case if the operational 

strategy has medium-term dynamics. This is because RPs do not conserve the time continuity between periods.  

 

 

                                                           
6 The gas price was taken equal to 0.2752 euros/kWh (extracted from [185]), and different grid prices and CO2 content were used 

(leading to higher total prices). 
7 The extraction condensing CG is modelled with a 31% efficiency on electricity production and 47% efficiency on electrical 

production. It can trade heat for electricity with a ratio of 30%. Its investment cost was taken equal to 1200 euros/kW. 
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Assumptions on the operational decisions facet: 

The impact of the operational decision modelling option is observed in Sections 4.3 and 4.4. A first conclusion 

is that a lack of long-term strategy can have an important impact on the operational costs. Hence, in this case, 

results provided by a single mathematical program with a perfect foresight assumption can only hold if an 

effective operational strategy is applied in practice. Further experiments on operational models elaborate on 

how effective the strategy should be to stick with the perfect forecast assumption of the OneShot option.  

In case where the LP option is used, the sensitivity of the results to the optimisation algorithm can be limited: 

the MeanH2, MeanH3 and RpCfH3 options yield performances close to the OneShot option. If the MILP 

option is used, the impact increases and only the RpCfH3 option performs close to the OneShot option. When 

forecast errors are considered after 24 hours of the planning horizon, results are only significantly impacted 

when the HD is underestimated. On the other hand, overestimating the HD can have a positive impact or only 

slightly deteriorates the results. The supplementary costs caused by a lack of anticipation of the HD peak are 

due to the use of the FB. In practice, the GB backup is oversized (the small capacity of the GB actually comes 

from the over-fit of the sizing solution). Hence, the demand currently satisfied by the FB could be satisfied by 

the GB. For instance, in the case of the RpCfH3 option (with no forecast errors), this reduces the difference 

with the OneShot option to less than 1%. Given these elements, supposing that if a proper optimisation 

algorithm, a properly sized backup solution and conservative scenarios on the HD during the winter are used, 

a solution close to the OneShot option can be obtained. Hence, the perfect foresight assumption of the OneShot 

option seems reasonable here. 

A finding is that forecast errors on the ED or on the ST production factor have very limited impact, so there 

is no need to put efforts on a forecast method on this side (at least after 24 hours). As mentioned earlier, this 

is due to the fact that the ED is mainly satisfied by the grid and the ST production is marginal. Hence, marginal 

forecast errors (up to 20%) do not influence the operational strategies. This insensitivity to forecast errors 

can be anticipated on future case studies where the forecasts concern a marginal production or a 

demand that is mainly satisfied by the backup option (here the grid). 

Similarly, the forecasts on the grid prices and CO2 content are not crucial at least after 24 hours. Further 

computations with the RpCfH3 option show that using constant values as previsions after 24 hours had nearly 

no impact on the final solution. Taking a step back, the MILP-OneShot configuration is run with constant total 

grid prices, and the variable profiles are applied a posteriori: the operational cost is only increased by 1%. 

Similarly, the OneShot option is run with total grid prices increased/decreased by 20% and the original profiles 

are applied a posteriori. This changed the solution: the CG is used instead of the HP in the summer if prices 

are increased and vice-versa. However, the operational costs do not increase more than 0.8 percent. This 

confirms that the lever on the total grid prices is small, which is consistent with the low impact of the grid 

prices and CO2 emissions forecasts. In turn, the increase in operational costs between the MILP-OneShot 

configuration and MILP-MeanH1-2-3, MILP-RpCfH1 or MILP-Ant configurations is more due to the less 

efficient cycling strategy of the CG. This comes from the algorithm used and is less impacted by forecast 

errors. Cases where more benefits/costs are induced by medium/long-term temporal variations and where the 

system has latitude to react accordingly are expected to be more sensitive to forecasts quality. 
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6. Conclusion & perspectives 
 

This paper investigates the impact of various modelling assumptions of local multi-energy systems on a 

complex case study.  The modelling facets considered include the technological, temporal and operational 

decisions representations. The impact of the inclusion of specific flexibility costs and constraints over the 

objective and the solutions is evaluated, and is further crossed with other modelling assumption impacts. Full 

hourly temporal resolution over one year is compared with the recourse of representative periods. Single 

mathematical formulation with perfect foresight assumption and different rolling horizon strategies including 

long-term operational decisions are compared. Finally, forecast errors are included. All impacts of these 

different assumptions are compared together in order to validate/invalidate the corresponding assumption and 

further prioritize modelling efforts.  

A first observation is the potential high impact of the technological model over the objective and the 

solution (operational dynamics). It further conditions the impact of the temporal and the operational decisions 

assumptions. Hence, attention should be given to the flexibility costs and constraints assumptions.  

In case where a simple technological model is used, relying on representative periods can well approximate 

operational costs and reduce computation times. However, operational strategies with medium-term 

dynamics can deteriorate the approximations yield by representative periods. The detailed 

technological model including limited flexibility of the cogeneration triggered this in this case study. 

Finally, the rolling horizon methods used can help to evaluate the impact of imperfect operational decisions 

(including forecast errors). In this case study, it is found that forecast errors can have relatively low impacts 

on the operational costs if proper operational strategy and backup are applied. Hence, the perfect foresight 

assumption usually taken is not invalidated here: the operational decisions are not “over-optimised” by the 

single mathematical program. Overall, the impact of imperfect operational decisions model is difficult to 

anticipate, particularly if complex operational strategies are used.  

Future work can include the improvement of this evaluation method with more tests on the possible forecast 

errors. Here, only systematic over/under estimations are tested. More detailed error patterns could be used and 

defined with respect to actual expected forecasts accuracy. In addition, forecast errors before 24 hours could 

be tested. 

On the side of the computational tractability, the single mathematical program handled to the solver yields a 

performant feasible solution in a reasonable computation time despite the problem complexity and the detailed 

time resolution. Cases with problems harder to solve could discard this option (when considering part-load 

efficiencies for instance [166]). If so, methods based on representative periods [23], decomposition methods 

(as reviewed in [156]) or the rolling horizon methods presented in [176] can be of interest. Future work could 

compare these different options. 
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Conclusion 
 

Résumé des travaux réalisés, réponses aux questions et contribution à l’état de l’art : 

Cette thèse a tenté d’apporter des réponses à deux questions principales : Comment faire usage des méthodes 

disponibles pour l’étude et la planification technico-économique de systèmes multi-énergies ? Peut-on 

compléter le panel existant avec de nouvelles méthodes pertinentes ?  

Le premier chapitre de cette thèse propose un état de l’art des méthodes de modélisation et d’optimisation. 

Cela a permis de mieux comprendre les enjeux associés, à travers un prisme d’analyse original. Il répond en 

partie à la première question en décrivant les méthodes existantes et leur usage en fonction du système étudié, 

de la question posée et de l’orientation de l’étude. Plus généralement, l’état de l’art rappelle la nécessité de 

bien définir les objectifs de l’étude, étape clé du processus de modélisation [10]. Ce chapitre illustre également 

l’usage répandu de la programmation mathématique et la diversité d’études qui l’utilisent. En effet, elle permet 

de représenter dynamiquement le système tout en en minimisant les coûts d’opération (et d’investissement) et 

en assurant le respect de bilans énergétiques et de contraintes techniques simples. 

L’état de l’art met en évidence le besoin de faire appel à une modélisation plus fine de l’opération du système, 

en particulier si l’étude porte sur la flexibilité du système. En effet, cette flexibilité garantit l’équilibre 

offre/demande et est aujourd’hui étudiée au regard de l’utilisation d’énergies intermittentes, ou plus 

généralement de ressources moins flexibles. Cela répond donc en partie à la première question : il existe un 

besoin de développement de nouvelles méthodes. 

Le deuxième chapitre propose deux nouvelles approches pour compléter l’éventail des méthodes existantes et 

tournées vers une modélisation fine de l’opération du système. Ces deux méthodes permettent de mieux tenir 

compte d’aspects opérationnels long terme (comme le stockage saisonnier d’énergie) dans le cadre de la 

mécanique d’horizon glissant. Elles offrent deux nouveaux compromis entre complexité, temps de réponse et 

pertinence du modèle. Le troisième chapitre valide l’intérêt des deux méthodes sur un ensemble de cas 

élémentaires. Cela complète la réponse à la seconde question. 

Le quatrième chapitre évalue l’intérêt et les conséquences de complexifier un modèle. Cette question est 

illustrée sur un cas d’étude complexe qui offre un retour d’expérience pour de prochaines études. Cela poursuit 

la réponse déjà apportée à la première question montrant comment et sous quelles conditions des méthodes 

avancées peuvent aider à réduire les temps de réponse, améliorer la précision des résultats, ou valider/invalider 

des hypothèses. De plus, ce quatrième chapitre illustre une utilisation possible des méthodes proposées au 

deuxième chapitre. 

Le prochain paragraphe complète la réponse à la première question en proposant une synthèse des pistes 

méthodologiques possibles en fonction des questions posées et des difficultés calculatoires rencontrées. 

Une synthèse des pistes méthodologiques pour la modélisation et l’optimisation technico-économique : 

La Figure 53 propose une synthèse pour la modélisation et l’optimisation de systèmes énergétiques dans le 

cadre d’études technico-économiques. La première étape consiste en un modèle écrit en programmation 

linéaire. Comme vu au Chapitre 1, ce formalisme est très répandu, ce qui permettra de basculer facilement sur 

des méthodes avancées. De plus, sa simplicité est un atout pour une première étape. Puis, différentes voies 

d’exploration sont possibles pour tenter d’améliorer la pertinence du modèle en fonction de l’intérêt du 

modélisateur. Des méthodes sont proposées à chaque étape sur la base du Chapitre 1.  
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Figure 53: Optional assessment paths when evaluating and optimising an energy system, with possible associated methods 

*See Figure 54 

**See Figure 55 
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Figure 54: Options to reduce computation times, according to the problem structure 

 
a In case of long-term constraints or threshold, the RH might miss the target due to long-term model bias.  

If so, the RH can be relaunch with corrections learned from the previous try, as in [147]. 
b If the problem does not include design variables. 

c Case dependent performances.  
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Figure 55: RH horizon methods, according to the problem structure 

 
a In case of long-term constraints or threshold, the RH might miss the target due to long-term model bias.  

If so, the RH can be relaunch with corrections learned from the previous try, as in [147]. 
b Case dependent performances. 
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La Figure 53 suggère d’augmenter la complexité du modèle progressivement. En revanche, et même si 

l’analyse de sensibilité paramétrique est une excellente candidate pour une deuxième étape, rien n’impose 

d’explorer une voie avant une autre. Cela dépendra des objectifs du projet. Du point de vue pratique, cela 

dépendra aussi du temps consacré à l’étude et des méthodes et compétences disponibles. Le développement 

de plateformes mutualisant et validant ces méthodes est donc pertinent pour que leur temps d’appropriation 

ne soit pas trop important au regard du temps consacré à l’étude.  

La Figure 54 et la Figure 55 complètent la Figure 53 en proposant des pistes pour réduire les temps de réponse 

selon la typologie du problème, sur la base des travaux menés dans cette thèse. La Figure 53 peut être 

complétée en commentant la faisabilité, a priori, de croisements entre les voies d’exploration : 

• La voie A peut être croisée avec d’autres voies si le nombre d’évaluations et le temps de réponse du 

modèle ne sont pas excessifs. 

• Les voies A2 et A3 nécessitant de nombreuses évaluations, il est nécessaire que le modèle ait un temps 

de réponse très court, comme recherché dans [110]. Le croisement de A3 avec D2 est illustré par les 

méthodes citées dans la Table 3.9. 

• Les voies B et B2 peuvent être croisées avec les voies C et C2. 

• La voie D peut être croisée avec les voies B, B2, C et C2. 

La synthèse proposée par la Figure 53 n’a pas pour objectif d’être exhaustive. En effet, d’autres aspects 

peuvent également être approfondis comme la représentation de plusieurs acteurs échangeant selon des règles 

de marché (des exemples sont donnés Table 3.11). Par exemple, la fourniture d’énergie peut être assurée par 

différents opérateurs souhaitant maximiser leur profit. La théorie des jeux peut être utilisée pour représenter 

une telle situation où le fonctionnement du marché n’aboutit pas à la maximisation du bien commun 

(hypothèse implicite du point de départ de la Figure 53). Un autre aspect qui pourrait également être 

approfondi est la représentation spatiale du système. Souvent, un seul nœud est considéré. Si le système 

modélisé est de taille importante, ce nombre peut être augmenté pour améliorer la représentativité du modèle. 

Dans le cas où le nombre de nœuds devient important, des méthodes de clustering peuvent être utilisées (Table 

3.12). 

Limites des travaux : 

Plusieurs limites peuvent être citées. Premièrement, l’état de l’art réalisé au Chapitre 1 n’est pas exhaustif, le 

temps consacré à sa réalisation étant limité. Deuxièmement, les cas d’études traités aux Chapitres 2, 3 et 4 

font l’objet de nombreuses hypothèses. Par exemple, les modèles ne considèrent que des quantités 

énergétiques, alors que des grandeurs comme la température, la pression ou la tension permettrait de mieux 

tenir compte de phénomènes physiques influant sur le coût du système. L’efficacité de la pompe à chaleur 

modélisée au Chapitre 4 pourrait à ce titre être choisie dépendante de la température de sa source froide et de 

sa source chaude. Un autre exemple concerne la comptabilité des émissions CO2 : seules les émissions liées à 

la consommation de gaz, fioul ou d’achat d’électricité sur le réseau ont été considérées. A ce calcul pourrait 

s’ajouter la quantité de CO2 émise pendant les étapes de fabrication, ou l’étape de transport de la ressource en 

biomasse par exemple. Néanmoins, ces simplifications proviennent davantage de la limite de temps consacré 

à la modélisation et au recueil de données que de limites intrinsèques aux méthodes utilisées. 

Plus généralement, la limite de ces travaux concerne l’étendue de leur pertinence sur la vie d’un projet (Figure 

1). En effet, les approches présentées ont un intérêt durant les phases d’étude de la faisabilité technico-

économique ou de préconception d’un système énergétique. Elles sont potentiellement trop complexes pour 

la phase d’analyse d’opportunité, et insuffisamment précises pour les phases de conception, pilotage et 

opération. Néanmoins, les méthodes basées sur le principe de l’horizon glissant (comme celles présentées au 

Chapitre 2) tendent à renforcer le lien entre l’étape de préconception et les étapes avales du projet. 
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Perspectives : 

Plusieurs perspectives ont été mentionnées précédemment. Premièrement, les méthodes proposées au Chapitre 

2 peuvent être appliquées à d’autres cas d’études (y compris dans d’autres domaines) pour illustrer leur intérêt 

ou explorer des problématiques opérationnelles difficiles à appréhender à cause de temps de calculs élevés. 

Par exemple, elles pourraient être appliquées dans des cas où des décisions réalisées à l’échelle de la minute 

doivent tenir compte de prévisions sur plusieurs jours.  

Deuxièmement, les fonctions de coût pourraient être calculées sur des modèles plus fins pour améliorer leur 

pertinence. Par exemple, dans le cas où un module d’optimisation donne des instructions à un système réel, 

les fonctions de coût pourraient apprendre sur la base des coûts réels, et donc fournir un retour au modèle 

d’optimisation. Ce schéma est généralisable aux applications où le résultat des décisions n’est pas directement 

mesurable par le modèle d’optimisation.  

Une autre piste citée serait l’élaboration d’une méthodologie plus complète pour évaluer l’impact des 

incertitudes présentes lors du pilotage du système, voire de le dimensionner en tenant compte de ces 

incertitudes. Ces incertitudes incluent les prévisions de séries temporelles, mais aussi l’occurrence 

d’évènements imprévus comme des pannes ou des augmentations soudaines du prix des ressources.  

Plusieurs méthodes ont été identifiées pour aider à la résolution de problèmes difficiles incluant des variables 

entières. Ces méthodes agrègent les données temporelles, décomposent le problème, ou utilisent des 

mécanismes d’horizons glissants. De futurs travaux pourraient comparer leur efficacité sur divers cas et/ou en 

élaborer de nouvelles. 

L’optimisation stochastique et/ou robuste de systèmes énergétiques en tenant compte de modèles 

opérationnels détaillés représente un challenge conséquent. Les travaux initiés dans [19] semblent pertinents 

sur ce point : ils permettent de choisir un scénario optimal/robuste pour dimensionner un système plutôt que 

de réaliser une optimisation couteuse sur un ensemble de scénarios. Cette méthode pourrait être testée et 

combinée à des modèles opérationnels plus fins. 

La diversité des modèles et méthodes est une richesse, mais leur dispersion et leur manque d'interopérabilité 

est un frein à leur utilisation par les personnes en charge des études. La mise à disposition de méthodes 

existantes sur des plateformes intégrées pour des modélisateurs chargés d’études faciliterait leur usage. Ce 

travail a déjà débuté avec la plateforme PERSEE et avec de nombreux outils comparables existants (Chapitre 

1, [33]). La multiplicité de ces plateformes, leurs divergences méthodologiques ou leurs hypothèses implicites 

peuvent constituer un frein aux dialogues entre modélisateurs et décideurs. L’émergence de standards et la 

transparence de ces plateformes sont des leviers possibles, au même titre que la mutualisation de données 

[191,192]. Les initiatives open sources [37] peuvent être gages de cette transparence. Une seconde action 

serait une collaboration plus étroite entre l’optimisation technico-économique et l’analyse environnementale, 

comme initiée dans [9]. Une intégration plus systématique d’impacts carbone issus d’analyses de cycles de 

vie dans les modèles d’optimisation technico-économique serait un premier pas pertinent.  
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Annexes 
 

Appendix A: Computation of cost functions (Chapitre 2) 
 

This Appendix details the method for pre-computing cost functions (CFs) for the horizon H1, for a fixed 

horizon of 24 hours and for the data of Table 4. As mentioned earlier, CFs (𝑐𝑡,𝜏) are defined for all periods 𝑡 

and all steps 𝜏 of the RH process. However, different couples (𝑡, 𝜏) can describe the same actual period of 

time. Here, as H1 is used and the fixed horizon is 24 hours, functions 𝑐50,0 and 𝑐49,28 are the same for instance. 

Hence, 365 functions will be needed to simulate a year. 

These functions are estimated by solving the original problem over one or several representative period(s) 

(RP) of the actual period of time described by (𝑡, 𝜏), for various values of 𝜟𝒕. 

The Python script used to build the cost functions is available at [186]. The script modifies the input files and 

calls the PERSEE software (see Section 4). Computation steps for CFs are further described in the case where 

H1 is used: 

1. The hourly data of the year is subdivided into 13 periods of 4 weeks. Each period of 4 weeks is 

approximated by one or more RPs of chosen size, based on the method proposed by [85]. If several 

RPs are used, the method proposed by [85] provides weights for each RP such that the weighted sum 

of all RP days equals the number of days in the original period. The periods selected are those that 

minimise the difference between the duration curves of the original data and the one of the (weighted) 

representative periods (a duration curve represents the given curve sorted by decreasing ordinate 

values). An example is given for two RPs of 2 days for a given period (Figure 56, Figure 57, Figure 

58). 

 

2. Bounds over the minimal and maximal stored quantity (𝜟𝒕) are set as well as the number of points to 

be evaluated. This defines the accuracy of the CF approximation. 

 

3. For each period and for each point defined at Step 3, the CF 𝑐𝑡,𝜏(𝜟𝒕) is evaluated by solving the original 

MILP formulation of the problem (given in Section 5.2.1) over the corresponding RP(s) defined at 

Step 2. Costs are extrapolated so that they correspond to the size of the original period (4 weeks). This 

is done by multiplying the RPs costs by their weight obtained at Step 2. For instance, if 4 weeks are 

approximated by a 2-days RP, results are multiplied by 14. In the case of (see Figure 56 and Figure 

57, the 4 weeks are approximated by two 2-day RPs with different coefficients (their sum is equal to 

14). The 13 CFs obtained correspond to a single τ (see Figure 59). Obtained functions are convex. 

Hence, they are modelled as piecewise linear functions by the mean of Special Order Set (SOS) 

variables [193]. 

 

4. In order to obtain all 365 CFs, the 13 CFs obtained at Step 4 are extrapolated by weighted sums. 

 



Appendix A: Computation of cost functions (Chapitre 2) 142 

 

 

Figure 56: Example of original data for a period of 4 weeks 

 

Figure 57: Two RPs of two days for the original data 
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Figure 58: Corresponding duration curves for both original RPs, the method minimises the difference between both curves. 

 

Figure 59: Computed cost functions. 

Alternatives for CFs computations: 

There exist other ways to compute the CFs. Here, RPs are used in order to limit the computation times. The 

number and size of RPs has to be set by the modeller. Ultimately, one can use the entire original data set on 

the given period to build the CF. Also, one could ultimately reduce 𝐿𝐻 to a single time step. 

Additionally, if the CF is built large periods of time, the method M2 from [23] could be used to reduce the 

computation time if the problem structure is similar: the is one or more long-term continuous variable(s) and 

integer variables with short-term significance only.  

Stored units (𝜟𝒕, 𝒕 ∈ 𝑳𝑯) 
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Appendix B: Convergence of the One Shot optimisation (Chapitre 2) 
 

Table 11 provides extra information on the convergence speed of the One Shot optimisation. Computations 

were stopped after 40 hours. 

Table 11: Lower, upper bounds and relative gap for the One Shot optimisation in function of the running time. 

Time (seconds) Lower bound Upper bound Gap (%) 

0 800 264 1 278 809 37.42 

60 803 667 1 278 809 37.16 

90 803 667 850 715 5.53 

91 803 667 828 029 2.94 

95 803 667 817 594 1.70 

1000 804 117 814 578 1.28 

40 hours 806 435 814 863 1.03 
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Appendix C: Demand profiles (Chapitre 2) 
 

The demand profiles correspond to the heat consumption of 5000 inhabitants. It is estimated by the method 

used in [121] with 3 different meteorological profiles: A, B and C. The monthly mean demands are the same 

for all profiles. Figure 60 shows the hourly heat demand pro les over a year, starting from July. At the hottest 

periods of the year, the heat demand only corresponds to hot water for sanitary use. This is supposed 

independent from the meteorological profile, hence, all profiles are similar on these periods. Profile A is used 

in Section 4, all are considered in Section 5. 

Table 12 shows the arbitrary pattern which is used to artificially overestimate or underestimate (+-X%) the 

future demand, depending on the month, as explained in Section 5.2.2. 

 

Figure 60: Demand profiles. 

Table 12: Pattern of cover (+) or under (-) estimation for the error term of the forecast demand. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

+ - + + - + - - + + - - 
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Appendix D: Production costs (Chapitre 2) 
 

Flexible production cost: 

The production cost of the FP is computed from the equation 𝐶𝐹 = (𝐶𝐶𝐻4 + 𝐶𝐶𝑂2𝐶𝑂2
𝐶𝐻4

𝑐𝑜𝑛𝑡𝑒𝑛𝑡
)/𝐿𝑉𝐻𝐶𝐻4/

𝜂𝐹, where 𝐶𝐶𝐻4is the gas cost (0.4 𝑒𝑢𝑟𝑜/𝑘𝑔), 𝐶𝐶𝑂2 is the CO2 emissions cost (0.06 𝑒𝑢𝑟𝑜/𝑘𝑔 in Section 4), 

𝐶𝑂2
𝐶𝐻4

𝑐𝑜𝑛𝑡𝑒𝑛𝑡
 is the gas CO2 content (3.36 𝑘𝑔𝐶𝑂2/𝑘𝑔𝐶𝐻4), 𝐿𝑉𝐻𝐶𝐻4 is the gas low heat value (0.01 𝑀𝑊ℎ/𝑘𝑔) 

and 𝜂𝐹 is the efficiency of the FP (0.9). 

In Section 5, the different values tested for the FP production cost correspond to the respective CO2 emissions 

costs of 0, 0.03, 0.06 𝑎𝑛𝑑 0.09 𝑒𝑢𝑟𝑜/𝑘𝑔. 

 

Inflexible production variable cost: 

The variable cost of the IFP is computed from the equation 𝐶𝐹 = 𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠/𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠/𝜂𝐹, where 𝐶𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

is the biomass cost (0.12 𝑒𝑢𝑟𝑜/𝑘𝑔), 𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠 is the biomass low heat value (0.004 𝑀𝑊ℎ/𝑘𝑔) and 𝜂𝐹 is 

the efficiency of the IFP (0.9). CO2 emissions from the biomass life-cycle are supposed to be null. 
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Appendix E: Sizing of the energy system (Chapitre 4) 
 

Capacities of each equipment were set after solving the investment planning problem which corresponds to 

the mathematical problem defined by E1-E17 without the CG specific constraints (E6-E10) and with 

capacities as optimisation variables: 

• Parameters 𝑋𝑚𝑎𝑥𝐺𝐵 , 𝑋𝑚𝑎𝑥𝐶𝐺  and 𝐸𝑚𝑎𝑥𝐻𝑆 become variables 𝑿𝒎𝒂𝒙𝑮𝑩, 𝑿𝒎𝒂𝒙𝑪𝑮 and 𝑬𝒎𝒂𝒙𝑯𝑺. 

Variables (𝑿𝒎𝒂𝒙𝑮𝑩, 𝑬𝒎𝒂𝒙𝑯𝑺) ∈ ℝ+ and 𝑿𝒎𝒂𝒙𝑪𝑮 ∈ [0, 𝑋𝑚𝑎𝑥𝐶𝑎𝑝𝑎𝐶𝐺]. The limit on the CG 

capacity was set to take into account a limit in the biomass resource.  

 

• Parameter 𝑋𝑚𝑎𝑥𝑡
𝑆𝑇 becomes 𝑿𝒎𝒂𝒙𝑺𝑻 ∗ 𝑝𝑓𝑡, with 𝑿𝒎𝒂𝒙𝑺𝑻 ∈ ℝ+.  

 

The investment parameters are given in Table 14, the data series are shown in Figure 61. The objective was 

modified to minimise the total actualised costs over 20 years with a discount rate of 7%.  

The FB was ignored at the investment phase. Batteries and photovoltaic solar panels were included (but not 

selected by the optimiser): 

• The PV production 𝑿𝒕
𝑷𝑽 is in kW and has a time varying capacity 𝑿𝒎𝒂𝒙𝑷𝑽 ∗ 𝑝𝑓𝑡 with 𝑿𝒎𝒂𝒙𝑷𝑽 ∈

ℝ+(the same production factor 𝑝𝑓𝑡 is used for the PV and ST productions). 

 

• The batteries set is defined by a maximum capacity in kWh (𝐸𝑚𝑎𝑥𝐵𝑎𝑡𝑡), a storing efficiency (𝜂𝐵𝑎𝑡𝑡) 

corresponding to the percentage of energy that is are actually stored during the storing operation (the 

rest is lost), losses in kW lost/kW stored/hour (𝛿𝐵𝑎𝑡𝑡) and a stock/destock capacity in units/hour 

(𝑋𝑚𝑎𝑥𝐵𝑎𝑡𝑡). Associated variables are the stored quantity in units (𝑬𝒕
𝑯𝑺  ∈ [0, 𝐸𝑚𝑎𝑥𝐵𝑎𝑡𝑡]) and the 

stock and destock rates in kW ((𝑿𝒐𝒖𝒕𝒕
𝑩𝒂𝒕𝒕, 𝑿𝒊𝒏𝒕

𝑩𝒂𝒕𝒕) ∈ [0, 𝑋𝑚𝑎𝑥𝐵𝑎𝑡𝑡]2)) at time step 𝑡. The values of 

corresponding parameters are given in Table 13. 

The corresponding mathematical problem is further described. Changes compared to E1-E17 are marked in 

blue and new equations are indexed by “E.X1”. 
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𝑀𝑖𝑛: 

∑ (𝑿𝒎𝒂𝒙𝒆 ∗ 𝐶𝑃𝑋𝑒 + ∑ 𝑿𝒎𝒂𝒙𝒆 ∗ 𝑂𝑃𝑋𝑒
19

𝑦=0
/(1 + 0.07)𝑦)

𝑒 ∈ {𝐺𝐵,𝑃𝑉,𝑆𝑇,𝐶𝐺,𝐵𝑎𝑡𝑡,𝐻𝑆,𝐻𝑃}

 

+ ∑ ∑ ((𝐶𝐺𝐵𝑿𝒕
𝑮𝑩 + 𝐶𝐶𝐺𝑿𝒃𝒕

𝑪𝑮 + 𝐶𝑡
𝐺𝑿𝒕

𝑮) ∗ 𝑑𝑡/(1 + 0.07)𝑦)

𝑡∈𝐻

19

𝑦=0

 

             E1.1 

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 

∀ 𝑡 ∈ 𝐻: 

𝑋𝑡
𝐻𝐷 = 𝑿𝒕

𝑮𝑩 + 𝑿𝒉𝒕
𝑪𝑮 + 𝑿𝒕

𝑺𝑻 + 𝑿𝒐𝒖𝒕𝒕
𝑯𝑺 − 𝑿𝒊𝒏𝒕

𝑯𝑺 + 𝜼𝑯𝑷𝑿𝒕
𝑯𝑷     E2.1 

𝑋𝑡
𝐸𝐷 = 𝑿𝒆𝒕

𝑪𝑮 + 𝑿𝒕
𝑮 + 𝑿𝒕

𝑷𝑽 − 𝑿𝒕
𝑯𝑷 +  𝑿𝒐𝒖𝒕𝒕

𝑩𝒂𝒕𝒕 − 𝑿𝒊𝒏𝒕
𝑩𝒂𝒕𝒕     E3.1 

𝑿𝑡
𝑺𝑻 ≤ 𝑿𝒎𝒂𝒙𝑺𝑻 ∗ 𝑝𝑓𝑡         E4.1 

𝑬𝒕
𝑯𝑺 = 𝑬𝒕−𝟏

𝑯𝑺 ∗ (1 − 𝛿𝐻𝑆𝑑𝑡) + (𝜂𝐻𝑆𝑿𝒊𝒏𝒕
𝑯𝑺 − 𝑿𝒐𝒖𝒕𝒕

𝑯𝑺)𝑑𝑡      E5 

𝑿𝒉𝒕
𝑪𝑮 ≤ 𝑋𝑚𝑎𝑥𝐶𝐺 − 𝑿𝒆𝒕

𝑪𝑮         E11 

 𝑿𝒆𝒕
𝑪𝑮 ≤ 𝛼 ∗ 𝑿𝒉𝒕

𝑪𝑮          E12 

 𝑿𝒆𝒕
𝑪𝑮 + 𝑿𝒉𝒕

𝑪𝑮 = 𝑿𝒕𝒐𝒕𝒕
𝑪𝑮         E13 

𝑿𝒃𝒕
𝑪𝑮 = 1/(𝜂ℎ ∗ (𝛼 + 1)) ∗ (𝑿𝒉𝒕

𝑪𝑮 +  𝑿𝒆𝒕
𝑪𝑮)       E14 

𝑬𝟎
𝑯𝑺 ≤ 𝑬𝛩

𝑯𝑺            E17 

∀ 𝑡 ∈ 𝐻: 

𝑿𝒕
𝑷𝑽 ≤ 𝑿𝒎𝒂𝒙𝑷𝑽 ∗ 𝑝𝑓𝑡         E18.1 

𝑬𝒕
𝑩𝒂𝒕𝒕 = 𝑬𝒕−𝟏

𝑩𝒂𝒕𝒕 ∗ (1 − 𝛿𝐵𝑎𝑡𝑡𝑑𝑡) + (𝜂𝐵𝑎𝑡𝑡𝑿𝒊𝒏𝒕
𝑩𝒂𝒕𝒕 − 𝑿𝒐𝒖𝒕𝒕

𝑩𝒂𝒕𝒕)𝑑𝑡     E19.1 

𝑬𝟎
𝑩𝒂𝒕𝒕 ≤ 𝑬𝜣

𝑩𝒂𝒕𝒕            E20.1 

𝑿𝒕
𝑮𝑩 ≤ 𝑿𝒎𝒂𝒙𝑮𝑩, 𝑿𝒕𝒐𝒕𝒕

𝑪𝑮 ≤ 𝑿𝒎𝒂𝒙𝑪𝑮, 𝑿𝒕
𝑯𝑷 ≤ 𝑿𝒎𝒂𝒙𝑯𝑷      E21.1-23.1 

𝑬𝒕
𝑯𝑺 ≤ 𝑿𝒎𝒂𝒙𝑯𝑺, 𝑬𝒕

𝑩𝒂𝒕𝒕 ≤ 𝑿𝒎𝒂𝒙𝑩𝒂𝒕𝒕        E24.1-25.1 

 

E1.1 now minimises the total actualised costs. E2.1 now excludes the FB and E3.1 includes the batteries set. 

E4.1 now includes 𝑿𝒎𝒂𝒙𝑺𝑻 as an optimisation variable. E18.1 is the same equation as E4.1 but for the PV 

source and E19.1-20.1 are the same equations as E5 and E17 but for the batteries set. Finally, E21.1-25.1 are 

the capacity constraints for all equipment. 

E1.1-25.1 describe a linear program. It was solved in 133 seconds with a commercial solver under the PERSEE 

modelling environment. Computational aspects are identical as in [176]. 
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Table 13: techno-economic operational parameters of equipments, follow up of Table 9 

Equipment Parameter Value 

Batt 

𝜂𝐵𝑎𝑡𝑡 0.9 

𝛿𝐵𝑎𝑡𝑡 0.00001  
𝑋𝑚𝑎𝑥𝐵𝑎𝑡𝑡 2000 𝑘𝑊 

 

Table 14: Investment parameters 

Equipment Investment cost 

Yearly maintenance 

cost (in % of the 

investment cost) 

Maximum installed 

capacity 

GB 𝐶𝑃𝑋𝐺𝐵 = 100 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊 𝑂𝑃𝑋𝐺𝐵   = 4%  

PV 𝐶𝑃𝑋𝑃𝑉 = 750 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊𝑐 𝑂𝑃𝑋𝑃𝑉 = 2%  

ST 𝐶𝑃𝑋𝑆𝑇 = 200 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊𝑐 𝑂𝑃𝑋𝑆𝑇 = 2%  

CG 𝐶𝑃𝑋𝐶𝐺 = 800 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊 𝑂𝑃𝑋𝐶𝐺 = 4% 
𝑋𝑚𝑎𝑥𝐶𝑎𝑝𝑎𝐶𝐺

= 800 𝑘𝑊 

Batt 𝐶𝑃𝑋𝑏𝑎𝑡𝑡 = 220 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ 𝑂𝑃𝑋𝐵𝑎𝑡𝑡 = 2%  

HS 

𝐶𝑃𝑋𝐻𝑆 = 8.57 𝑒𝑢𝑟𝑜𝑠/
𝑘𝑊ℎ below 70 000 𝑘𝑊ℎ, 

2.86 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊ℎ above 

𝑂𝑃𝑋𝐻𝑆 = 2%  

HP 𝐶𝑃𝑋𝐻𝑃 = 1000 𝑒𝑢𝑟𝑜𝑠/𝑘𝑊 𝑂𝑃𝑋𝐻𝑃 = 1%  
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Figure 61: Demand profiles considered, ST production factor, grid prices and grid CO2 content considered. 
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Appendix F: Zooms over optimisation strategies (Chapitre 4) 
 

This appendix gathers zooms over Figure 37 and Figure 38. 

 

Figure 62: Zoom on the winter period, the strategy is identical for the LP-OneShot and the MILP-OneShot configurations 
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Figure 63: Zoom on the inter-season period, for the LP-OneShot configuration 
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Figure 64: Zoom on the inter-season period, for the MILP-OneShot configuration 
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Figure 65: Zoom on the summer period, for the LP-OneShot configuration 
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Figure 66: Zoom on the inter-season period, for the MILP-OneShot configuration 
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Appendix G: Supplementary Material (Chapitre 3) 
 

Figures with full resolution can be downloaded via this link (https://github.com/EtienneCuisinier/Appendix-

G). 

 

 

 

Legend for upper graphs:   Legend for lower graphs:  

(units/hour)    (units) 

 

 

 

Heat demand, Flx architecture 

Cicada method Mean method RpCf method: NA 

 

 

 

Heat demand, Flx-Slr architecture 

Cicada method Mean method RpCf method: NA 

 

 

  

https://github.com/EtienneCuisinier/Appendix-G
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Heat demand, Flx-Wnd architecture 

Cicada method Mean method RpCf method: NA RpCf method 

 

 

 

Heat demand, Slr-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

 

Heat demand, Wnd-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 



Appendix G: Supplementary Material (Chapitre 3) 158 

 

 

Heat demand, Spot-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

Heat demand, Unflx-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

Heat demand, Unflx-SmllSto architecture 

Cicada method Mean method RpCf method 
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Heat demand, Unflx-HighSetUp architecture 

Cicada method Mean method RpCf method 

 

 

 

Heat demand, Unflx-NoSetUp architecture 

Cicada method Mean method RpCf method 
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Electrical demand, Flx architecture 

Cicada method Mean method RpCf method: NA RpCf method 

 

 

 

Electrical demand, Flx-Slr architecture 

Cicada method Mean method RpCf method: NA RpCf method 

 

 

 

Electrical demand, Flx-Wnd architecture 

Cicada method Mean method RpCf method: NA RpCf method 
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Electrical demand, Slr-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

Electrical demand, Wnd-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

 

Electrical demand, Spot-LrgSto architecture 

Cicada method Mean method RpCf method 
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Electrical demand, Unflx-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

 

Electrical demand, Unflx-SmallSto architecture 

Cicada method Mean method RpCf method 

 

 

 

Electrical demand, Unflx-HighSetUp architecture 

Cicada method Mean method RpCf method 
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Electrical demand, Unflx-NoSetUp architecture 

Cicada method Mean method RpCf method 

 

 

 

Semestrial demand, Unflx-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

 

Monthly demand, Unflx-LrgSto architecture 

Cicada method Mean method RpCf method 
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Weekly demand, Unflx-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

Daily demand, Unflx-LrgSto architecture 

Cicada method Mean method RpCf method 

 

 

 

Constant demand, Unflx-LrgSto architecture 

Cicada method Mean method RpCf method 
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Résumé 
 

Les défis environnementaux et plus particulièrement le défi climatique poussent les pouvoirs publics à légiférer en 

faveur d’une économie moins carbonée. Ces décisions se traduisent à l’échelle locale par la recherche de performance 

énergétique et le remplacement de sources d’énergies fossiles par des sources intermittentes, renouvelables, fatales ou 

de récupération. Ces deux actions peuvent être entreprises dans le secteur de l’industrie, de la mobilité, de la production 

locale d’énergie, des micro-réseaux d’électricité ou des réseaux de chaleur et de froid. 

L’utilisation de sources renouvelables, la recherche de synergies entre plusieurs besoins et formes d’énergies 

complexifient ces systèmes Ils peuvent alors inclurent différentes technologies de production, conversion et stockage 

d’énergie : parc photovoltaïque ou éolien, cogénérations, chaudières, électrolyseurs, batteries, stockages thermiques etc. 

Concevoir de tels systèmes devient une tâche particulièrement difficile, et leur légitimité économique et écologique en 

dépend. Une des difficultés est de représenter le futur système sur toute sa durée de vie (plusieurs dizaines d’années), 

de planifier son évolution, tout en tenant compte de son fonctionnement heure par heure, voire minute par minute. En 

effet, la demande et la production d’énergie varient au sein d’une journée mais aussi d’une année à l’autre. La 

modélisation mathématique est alors un outil nécessaire pour simuler, optimiser, comprendre et dimensionner le 

système.  

Cette thèse propose deux nouvelles approches pour concilier décisions opérationnelles sur le court et le long terme. Elles 

permettent de répondre à des questions pratiques telles que : « Faut-il produire davantage aujourd’hui et stocker pour 

demain ou le mois prochain ? ». Pour cela, les décisions immédiates sont modélisées de façon détaillée, tandis que les 

décisions à venir sont agrégées pour maîtriser les temps de calcul et tenir compte de prévisions incertaines. Ce travail 

s’inscrit dans un cadre méthodologique permettant de simuler finement l’opération d’un système, pour mieux le 

concevoir.  

De nombreuses méthodes de modélisation et d’optimisation pour la planification des systèmes énergétiques existent. 

Cette thèse propose également une revue bibliographique originale et une réflexion sur l’impact de différents niveaux 

d’hypothèses de modélisation sur les temps de calcul et la pertinence des résultats obtenus. Ces deux derniers apports 

pourront guider les modélisateurs vers des méthodes pertinentes pour leur cas d’application ou vers l’élaboration de 

nouvelles méthodes.  

Summary 
 

Environmental concerns as climate change urge politics to act for decarbonizing our economy. Locally, researchers, 

companies, municipalities and individuals try to reach more performant energy system and replacement of fossil fuels 

by renewables or fatal sources. This work can lead to transformations in sectors such as industry, mobility, local energy 

production, micro-grids, and district heating and cooling networks. 

The recourse to intermittent energy sources, and the pursuit of synergies between energy vectors and between needs 

increase the complexity of current systems, which can include multiple production, conversion and storage technologies. 

Numerous technologies exist: solar panels, wind turbines, cogenerations, boilers, electrolyser, batteries, thermal storages 

etc. Hence, designing such systems is a difficult task and further conditions their economic and ecological interests. The 

complexity derives from the need to simulate and plan the system evolution over its lifetime (decades) while accounting 

for its operation every hour or minute. In fact, demand and energy production vary within days and between years. 

Mathematical programming is a performant tool to simulate, optimise, understand and design such systems.  

The present work proposes two new approaches to optimise short-term and long-term operational decisions jointly. They 

answer practical questions such as “Should we produce more today and store for long-term needs?”. In both methods, 

immediate decisions are detailed, while long-term decisions are aggregated in order to limit computation times and 

eventually consider imperfect forecasts. This work is part of a methodological framework that makes it possible to finely 

simulate the operation of a system and reach better designs.  

Numerous modelling and optimisation methods exist for the planning of energy systems. This thesis also contributes to 

the state of the art with an original survey on these methods. Furthermore, it assesses the impact of several modelling 

assumptions on computation times and on the relevance of results. This can help future modellers to select appropriate 

methods or design new ones.  


