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Introduction in french

L’intelligence artificielle en général, et l’apprentissage profond en particulier, sont utilisés dans
les voitures autonomes, la médecine, la prévention des fraudes, la prédiction des tremblements
de terre, le traitement du langage naturel, les jeux, etc. Certains de ces domaines sont des en-
vironnements critiques pour la sécurité, des environnements dans lesquels la sécurité est d’un
intérêt primordial et où la défaillance des modèles d’apprentissage profond peut causer des dom-
mages importants, c’est le cas des voitures autonomes et de la médecine. Par exemple, en ce qui
concerne les voitures autonomes, la classification erronée d’un panneau d’arrêt comme une lim-
itation de vitesse peut être très dangereuse. Et de manière intrigante, il est possible, en modifiant
malicieusement un panneau stop avec des étiquettes ou des patchs, de tromper les classifieurs
d’apprentissage profond pour qu’ils prédisent une limitation de vitesse au lieu d’un panneau stop,
alors qu’un humain reconnaîtrait toujours un panneau stop. Ces images soigneusement modifiées
sont appelées exemples adversaires. Ils apparaissent dans la classification d’images ainsi que dans
d’autres domaines, comme le montre le chapitre consacré aux exemples adversaires. L’existence
de tels exemples adversaires peut avoir un effet dissuasif sur l’utilisation de l’apprentissage pro-
fond, en particulier dans les environnements critiques pour la sécurité. Il n’y a pas encore de con-
sensus sur la raison de l’existence des exemples adversaires. Cependant, leur existence soulève
un certain nombre de questions, allant jusqu’à remettre en cause la croyance bien établie selon
laquelle les modèles d’apprentissage profond identifient des concepts de plus en plus complexes
à mesure que l’on passe de la couche d’entrée vers la couche de sortie. Certaines exigences sont
nécessaires pour rendre davantage populaire l’utilisation de l’apprentissage profond en particulier
et de l’IA en général, comme le stipule les lignes directrices éthiques pour une IA digne de confiance
de l’Union européenne : "Les systèmes d’IA doivent être plus fiables, suffisamment sûrs pour ré-
sister à la fois aux attaques manifestes et aux tentatives plus subtiles de manipulation des don-
nées." Il soulève une série de besoins auxquels doivent répondre les algorithmes d’apprentissage
profond pour encourager leur utilisation à l’avenir :

• Transparence : les utilisateurs doivent savoir que des modèles d’apprentissage profond sont
utilisés et connaître les forces et les limites de ces modèles.

• Explicabilité/interprétabilité, les décisions des modèles d’apprentissage profond doivent
être interprétables. Les décisions des modèles doivent pouvoir être expliquées aux humains.
Les humains doivent être en mesure de connaître le raisonnement qui sous-tend les déci-
sions du modèle.

• Les modèles doivent être précis et leurs performances reproductibles, ou du moins afficher
des résultats comparables lorsqu’ils sont exécutés sur les mêmes données. Ils doivent égale-
ment être fiables, leurs décisions devant rester correctes même lorsque les données ont été
malicieusement manipulées pour les tromper.

Comme il est très facile de tromper les modèles lorsqu’ils ne sont pas entraînés pour être ro-
bustes aux attaques adverses, ce qui remet en question leur fiabilité, des mesures ont été prises
pour résoudre ce problème. Des méthodes d’entraînement qui rendent les réseaux neuronaux
moins susceptibles d’être trompés par des exemples adversaires sont en cours de développement,
allant de l’idée de générer des exemples adversaires et de s’entraîner sur ces derniers, à des procé-
dures plus sophistiquées. Ces procédures sont appelées "défense". Par opposition aux procédures
utilisées pour trouver des exemples adversaires, qui sont appelées attaques. Une course aux arme-
ments entre les attaques adversaires et les défenses adversaires s’est produite. Chaque fois qu’une
défense semblait être robuste face aux attaques existantes au moment de la publication, ses vul-
nérabilités étaient exposées quelque temps plus tard par une nouvelle attaque. Et finalement,
cette nouvelle attaque échouera contre une défense plus récente. Cette situation montre que,
si l’évaluation des attaques contre les défenses peut suffire à évaluer l’efficacité des attaques, ce
n’est pas le cas pour les défenses. En effet, une défense peut être très efficace contre une famille
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d’attaques alors qu’elle ne rend pas vraiment plus robustes les modèles, mais utilise plutôt des as-
tuces qui rendent difficile pour une certaine famille d’attaques la recherche des exemples adver-
saires. Dès lors, comment évaluer l’efficacité des méthodes de défense adversaires si l’utilisation
d’attaques ne suffit pas ? Des méthodes de vérification formelle sont utilisées. Elles consistent à
formuler la recherche d’exemples adversaires comme un problème d’optimisation ou comme un
problème dans un autre cadre mathématique qui est capable de trouver les exemples adversaires
que les autres attaques peinent à trouver. Les vérifications formelles sont très puissantes, mais
elles ont un inconvénient majeur, elles prennent généralement beaucoup de temps.

Cette thèse se concentre sur la fiabilité des modèles. Ses contributions portent sur les mé-
canismes de défense et les moyens de mesurer plus précisément la robustesse des modèles à un
moindre coût en termes de temps de calcul.

Structure de la thèse: Cette thèse est composée de deux parties : Pré-requis et outils (back-
ground and tools) et nos contributions (our contributions). La première partie est composée de
deux chapitres : Outils d’optimisation et Exemples adversaires : un tour d’horizon.

Dans le chapitre Outils d’optimisation, nous présentons des méthodes telles que les program-
mes linéaires qui sont utilisées dans certaines méthodes de vérification ainsi que dans certaines
de défenses contre les exemples adversaires. Nous présentons ensuite la méthode Branch-and-
Bound qui peut être utilisée pour résoudre certains problèmes qui ne peuvent pas être résolus par
des programmes linéaires. Nous présentons ensuite la Satisfiabilité Modulo Théories (SMT) qui
est une généralisation du problème de la satisfaction booléenne, le problème SAT. Nous présen-
tons également les programmes linéaires entiers (ILP, Integer Linear program) ainsi que les pro-
grammes mixtes entiers (MIP, Mixed Integer Program) pour résoudre les programmes linéaires
comme les problèmes d’optimisation avec des valeurs discrètes. MIP et SMT utilisent une sorte
de Branch-and-Bound et sont utilisés pour vérifier formellement la robustesse des réseaux de neu-
rones. Nous présentons également l’algorithme de Différence de fonctions convexe (DCA, Differ-
ence of Convex algorithm) qui peut être utilisé pour essayer de trouver des exemples adversaires
qui sont aussi proches des exemples originaux que ceux trouvés par les méthodes de vérification
formelle tout en étant moins coûteux en temps. L’algorithme DCA est basé sur une reformulation
de la formulation MIP qui relaxe les contraintes entières tout en pénalisant la solution qui ne sont
pas entières. Il s’est avéré efficace sur certains problèmes MIP classiques où il parvient à trouver
des solutions optimales.

Le deuxième chapitre commence par des illustrations montrant certains domaines où l’apprentissage
profond est utilisé. Ensuite, un problème général de classification est posé, suivi de la sous-section
des exemples adversaires. Dans cette sous-section, une terminologie sur les exemples adversaires
est donnée ainsi que quelques hypothèses expliquant leur existence. Ensuite, les attaques adver-
saires sont présentées, montrant les différents types de perturbations adversaires et la manière
dont elles sont mesurées, donnant une taxonomie des attaques, suivie de quelques attaques tirées
de la longue liste d’attaques existantes. Ces attaques sont choisies en fonction de leur popular-
ité, de leur originalité ou de leur efficacité. Nous présentons ensuite les défenses adversaires en
partant d’une formulation de la classification en présence d’exemples adversaires, une taxonomie
des défenses, puis nous divisons les défenses en deux parties : les défenses empiriques qui sont
les plus courantes et les défenses prouvables qui viennent avec une preuve plus formelle de ro-
bustesse. Après cela, nous introduisons les méthodes de vérification formelle, puis nous par-
lons des limites théoriques de la robustesse aux exemples adversaires. Enfin, nous présentons
quelques outils à utiliser pour travailler sur les exemples adversaires.

Dans la deuxième partie, nous présentons nos contributions en trois chapitres, un chapitre
présentant un mécanisme de défense (chapitre trois), et deux chapitres dans lesquels nous présen-
tons des attaques qui sont dérivées d’une formulation MIP de la vérification de la robustesse. Le
chapitre trois vise à produire un réseau plus robuste en combinant l’entraînement adversaire avec
l’idée de double rétro-propagation, d’où le nom, L1-norm double backpropagation adversarial de-
fense. La double rétropropagation est le fait de pénaliser le gradient de la sortie par rapport à
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l’entrée pour obtenir des modèles qui généralisent mieux.
Après avoir travaillé sur un mécanisme de défense, nous nous intéressons aux moyens de

mesurer efficacement sa robustesse. Le MIP, étant la formulation de vérification de la robustesse
la plus populaire en raison de sa précision, sert de point de départ à partir duquel nous essayons
de trouver des moyens de le rendre plus efficace, de le rendre moins chronophage. Nous utilisons
une approche de relaxation et de pénalisation, en relaxant les contraintes d’intégrité qui rendent
le MIP lent et en introduisant une pénalisation pour obtenir l’intégrité en utilisant l’algorithme de
différence de fonctions convexes (DCA) au chapitre quatre. Assez rapidement, cette approche a
atteint sa limite, cependant elle nous a conduit à une autre attaque, également dérivée de la vérifi-
cation du MIP et qui est très efficace, Linear Program Powered Attack (LiPPA) qui est notre dernier
chapitre, le chapitre cinq.

Le chapitre cinq présente une nouvelle attaque, LiPPA, qui exploite les propriétés des réseaux
neurones avec des activations ReLUs. En effet, l’espace d’entrée de ces réseaux de neurones peut
être partitionné astucieusement de sorte que l’exemple adversaire le plus proche d’un exemple
valide puisse être retrouvé juste en résolvant un programme linéaire. Dans ce chapitre, nous
faisons aussi le lien entre cette partition et les variables binaires qui sont utilisées dans la for-
mulation MIP de la vérification de la robustesse des réseaux de ces neurones. Ce chapitre ouvre la
porte à de nombreuses perspectives quant à l’accélération des méthodes de vérification.
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Introduction

“ AI systems need to be more
reliable, secure enough to be
resilient against both overt attacks
and more subtle attempts to
manipulate data. ”

EU’s ethics guidelines for
trustworthy AI

Artificial Intelligence in general, and especially Deep Learning, are used in self-driving cars,
medicine, fraud prevention, earthquake prediction, natural language processing, game playing,
etc. Some of these areas are safety-critical environments, environments in which safety is of
paramount interest and where the failure of deep learning models can cause significant damage,
such as self-driving cars and medicine. For example, regarding self-driving cars, the misclassifica-
tion of a stop sign as a speed limitation can be very dangerous. And intriguingly, it is possible by
maliciously modifying a stop sign with tags or with patches, to fool deep learning classifiers to pre-
dict a speed limitation instead of a stop sign while a human would still recognize a stop sign. Those
carefully modified images are called adversarial examples. They occur in image classification as
well as in other domains as it is shown in the adversarial example overview chapter. The existence
of such adversarial examples can have a deterrent effect on the use of deep learning, particularly
in safety-critical environments. There is not yet a consensus on the reason of the existence of
adversarial examples. However, it raises a number of questions, going as far as questioning the
well-established belief that deep learning models identify increasingly complex concepts as we
go from the input layer to the output layer. Some requirements are necessary to popularize even
more the use of deep learning in particular and AI in general as stated in the European Union’s
ethics guidelines for trustworthy AI : "AI systems need to be more reliable, secure enough to be
resilient against both overt attacks and more subtle attempts to manipulate data." It raises a series
of needs that need to be addressed by deep learning algorithms to encourage its use in the future:

• Transparency, the users should know that deep learning models are used, and be aware of
the strengths and limitations of the models.

• Explainability/interpretability, the decisions of the deep learning models are required to be
interpretable. Models’ decisions have to be explainable to humans. Humans should be able
to know the reasoning behind the decisions of the model.

• Trustworthiness/reliability, models should be accurate and their performance reproducible,
at least they should display comparable results when run on the same data. They should
also be reliable, their decision should stay correct even when the data have been maliciously
manipulated to fool them.

Since it is very easy to fool models when they are not trained to be robust to adversarial at-
tacks, questioning their reliability, steps have been taken to address this issue. Training methods
that make neural networks less prone to be fooled by adversarial examples are being developed,
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going from the idea of generating adversarial examples and training on them, to more sophisti-
cated procedures. Those procedures are called defenses. As opposed to the procedures used to
find adversarial examples that are called attacks. An arms race between adversarial attacks and
adversarial defenses occurred. Whenever a defense seemed to be robust to existing attacks at
publication time, its vulnerabilities were exposed some time later by a new attack. And eventually,
that new attack will fail against a newer defense. This situation shows that, if evaluating attacks
against defenses can be enough to assess the effectiveness of attacks, it is not the case for de-
fenses. In fact, a defense may be very effective against a family of attacks while it does not truly
make more robust models, but rather uses tricks that make it hard for a certain family of attacks to
find adversarial examples. So, how can we assess the effectiveness of adversarial defense methods
if using attacks is not enough? Formal verification methods are used. They consist of formulat-
ing the search of adversarial examples as an optimization problem or as a problem in another
mathematical framework that is able to find the adversarial examples that the attacks struggle to
find. The formal verifications are very powerful, but they have a main drawback, they are generally
time-consuming.

This thesis focuses on the reliability of the models. Its contributions are on the defense mech-
anisms and ways to measure more accurately the robustness of the models.

Structure of the thesis: This thesis is made of two parts : Background and tools and our contri-
butions. The first part is made of two chapters : Optimization tools and Adversarial examples: an
overview.

In the chapter Optimization tools, we present methods such as linear programs that are used
in some verification methods as well as in some defenses. Then we present the Branch-and-Bound
method that can be used to solve some problems that cannot be handled by linear programs. We
then present Satisfiability Modulo Theories (SMT) which are a generalization of the Boolean sat-
isfying problem. We also present Integer Linear Programs (ILP) as well as Mixed Integer Programs
(MIP) to solve Linear Programs like optimization problems with discrete values. MIP and SMT use
some kind of Branch-and-Bound and are used to formally verify the robustness of neural networks.
We also present Difference of Convex Algorithms (DCA) that can be used to try to find adversarial
examples that are as close to original examples as those found by the formal verification methods
while being less time-consuming. DCA is based on a reformulation of the MIP formulation that
relaxes the integer constraints while penalizing the non-integer solutions. It has proven effective
on some classical MIP problems where it manages to find solutions that are optimal.

The second chapter starts with illustrations showing some domains where deep learning is
used. Then a general classification problem is set, followed by the adversarial examples subsec-
tion. In this subsection, some terminology about adversarial examples is given as well as some
hypotheses explaining their existence. Then adversarial attacks are presented, showing the dif-
ferent kinds of adversarial perturbations and of they are measured, giving a taxonomy of attacks,
followed by some attacks from the long list of existing attacks. Those attacks are chosen accord-
ing to their wide use, their originality or their effectiveness. Then we present adversarial defenses
starting with a formulation of adversarial classification, a taxonomy of defenses, we then divide
the defenses into two parts the empirical defenses that are most common and provable defenses
that come with a more formal proof of robustness. After that, formal verification methods are
introduced. Then, we talk about the theoretical limits on adversarial robustness and finally we
present some tools to use when it comes to adversarial examples.

In the second part, we present our contributions in three chapters, a chapter presenting a
defense mechanism (Chapter 3), and two chapters in which we present attacks that are derived
from a MIP formulation of the robustness verification. Chapter 3 aims at producing more robust
networks by combining the adversarial training with the double backpropagation idea, hence the
name, L1-norm double backpropagation adversarial defense. Double-backpropagation is the fact
of penalizing the gradient of the output with respect to the input to obtain models that generalize
better. After working on a defense mechanism, we get interested in the ways to measure efficiently
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its robustness. The MIP being the most popular robustness verification formulation due to its ac-
curacy serves as starting point as we try to find ways to make it run faster. We use a relaxation and
penalization approach, relaxing the integrity constraints that make the MIP slow and introduce
a penalization to obtain the integrity using Difference of Convex Algorithm (DCA) in Chapter 4.
This approach reached its limit quickly enough, however it led us to another attack, also derived
the MIP verification and that is very efficient, Linear Program Powered Attack (LiPPA) that is our
last chapter, Chapter 5.

In chapter 5, LiPPA is presented, a new attack which exploits the properties of neural networks
with ReLU activations. Indeed, the input space of these neural networks can be partitioned in a
clever way allowing to find in regions of this partition the closest adversary example just by solving
a linear program. In this chapter, we also relate this partition to the binary variables that are used
in the MIP formulation of the robustness verification of these neural networks. This chapter opens
the door to many perspectives on the acceleration of verification methods.
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• Linear Program Powered Attack. Ismaila Seck, Gaëlle Loosli, and Stephane Canu. Con-
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• Generative Adversarial Networks and Cerema AWP database. Ismaila Seck and Gaëlle Loosli.
European Network for Business and Industrial Statistics 2018.

• Baselines and a datasheet for the Cerema AWP dataset. Ismaïla Seck, Khouloud Dahmane,
Pierre Duthon, and Gaëlle Loosli. Conférence d’Apprentissage 2018.
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Part I

Background and tools
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Background and tools: Introduction

In the part, we are going to present optimization tools used in adversarial example field to verify
the robustness of neural networks or to find adversarial examples. This part is made of two chap-
ters, the first one dealing with the optimization tools and the second one presenting adversarial
examples.
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CHAPTER 1. OPTIMIZATION TOOLS

1.1 Introduction

In this chapter, we present some tools sufficient to enable a good comprehension of the meth-
ods used throughout this manuscript. Methods presented here are Linear Programs (LPs), Mixed
Integer Programs (MIPs), Satisfiability Modulo Theories (SMT), and Difference of Convex Algo-
rithm. The MIPs and SMT are then seen as a special case of the Branch-and-Bound (BB), that is
also presented.

1.2 Linear Programs

1.2.1 Definition and illustration

Definition 1.1 (Linear Programs). Linear Programs are optimization problems where the objective
function and the constraints are linear with respect to its variables that are continuous.

LPs are usually of the form, or can be rewritten to fit the form [Wolsey and Nemhauser, 1999]:


max

x
c>x

s.t. Ax ≤ b,
x ≥ 0,

(1.1)

with x the variables of the optimization problem, c and b are vectors, and A is a given matrix. The
function that associates x to c>x is the objective function. The constraints Ax ≤ b and x ≥ 0 define
the set of feasible solutions which is a convex polytope. Let us give an illustration of how a real life
problem can be modeled as a linear program to maximize a profit.

Example 1.1 (Example of linear program). A farmer produces two types of strawberry yogurt using
strawberries, milk, and sugar. To produce one kilogram of type 1 yogurt, which is sugar free, two
kilograms of strawberries and one kilogram of milk are used. To produce one kilogram of the type 2,
one kilogram of strawberries, two kilograms of milk, and one kilogram of sugar are used. The type
1 yogurt is sold 4€ and the type 2, 5€. The farmer has 800 kg of strawberries, 700 kg of milk, and 300
kg of sugar.

Let x1 and x2 be, respectively, the quantity in kilograms of type 1 and type 2. Which quantity
should the farmer produce to maximize the selling price?

The problem is modeled in a linear program:

• The selling prize, the objective function, is 4x1 +5x2.

• The constraint on the available quantity of strawberries: 2x1 +x2 ≤ 800.

• The constraint on the available quantity of milk: x1 +2x2 ≤ 700.

• The constraint on the available quantity of sugar: x2 ≤ 300.

• Constraints on production: positivity constraints: x1, x2 ≥ 0.

The problem is written:



max
x1,x2

4x1 +5x2

s.t. 2x1 +x2 ≤ 800
x1 +2x2 ≤ 700

x2 ≤ 300
x1, x2 ≥ 0

(1.2)

The canonical form can be obtained identifying: x =
[

x1

x2

]
, c> = [

4 5
]
, A =

2 1
1 2
0 1

, b =
800

700
300

.
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Figure 1.1 – Graphical Resolution of a Linear Program. The constraints are represented by the corresponding
line and the region not respecting them are hatched. The objective function is represented in red. Sliding
its line in the direction maximizing its value leads to the optimal solution: (300,200).

1.2.2 Dual a Linear Program

Considering that Problem (1.1) to be primal, the dual optimization problem problem associated is
of the form: 

min
u

b>u

s.t. A>u ≥ c,
u ≥ 0,

(1.3)

Nevertheless, since the dual of the dual is the primal, it is not essential which one is called
primal or dual.

Proposition 1.1 (Weak Duality). If x is a solution of the primal (Problem (1.1)) and u is a solution
of the dual (Problem (1.3)), then we have c>x ≤ b>u.

The primal-dual relation allows to have bounds. At the optimum (if it exists), this inequality of
the Weak Duality proposition is satisfied as an equality as stated by the following theorem.

Theorem 1. If (1.1) and (1.3) have finite solutions x∗ and u∗, then c>x∗ = b>u∗.

This theorem can be used to prove that an optimal solution is found.

1.2.3 Resolution of Linear Programs

There are several ways to solve a linear program. A linear program can have a graphical solution. In
that case, the polytope of feasible solutions is drawn and the optimal solution is found by a sliding
the line representing the objective function in the direction maximizing the profit until the optimal
solution is reached. Usually, the optimal solution is a vertex, a corner of the feasible polytope. An
illustration is given in Figure 1.1. We can see in that figure, the lines represent the constraints and
the polytope formed by the feasible region. We can also see the line representing the reward that
is slided in the direction that maximizes the reward until the optimal point is reached.

It is not always possible to have a graphical solution due the dimension of the variables x which
can reach several thousands for some problems. In that case, the most popular methods to solve
linear programs are interior-point methods and simplex algorithms.
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Interior-point methods One strong point of the interior-point method is that they are polyno-
mial for some class of optimization problems, in particular linear programs. They are iterative
methods that find a better solution at each iteration within the polytope. They are competitive
with the simplex methods.

Simplex algorithms The simplex is the most popular method to solve linear programs. This
method has been preferred to interior-point methods’ implementations that were not yet effi-
cient. It constructs a series of feasible solutions by visiting the vertices of the feasible polytope. In
practice, The simplex method is very efficient, however, the worst-case complexity of the simplex
is exponential time.

Example of optimization problem that are not Linear Programs. All problems cannot fit the
linear program canonical formulation, i.e., they are not linear programs. For example, some con-
straints could have polynomial with respect to the variables x, in the case the polynomials of de-
gree two, we get a quadratic program. Or we could get a variable taking values in several intervals
that are not contiguous. Another case is when we have functions that are piecewise linear in the
constraints or as the objective function. Some variables could belong to a discrete set, for example
N, in that case, Branch-and-Bound can be used to solve the optimization problem.

1.3 Branch-and-Bound

Branch-and-bound (BB) algorithms have been successfully used to find exact solutions for a wide
range of optimization problems. BB uses a tree search strategy to implicitly list all possible so-
lutions to a particular problem, using trimming rules to exclude regions of the search space that
cannot lead to a better solution[Morrison et al., 2016]. Let us define an minimization problem as
P = (X, f

P
), where:

• X, the search space, is a set of valid solutions to the problem,
• f

P
: X →R is the objective function that is minimized.

The goal is to find an optimal solution x∗ ∈ argmin
x∈X

f
P

(x). To solve P , BB iteratively builds

a search tree T of subsets of the search space or subproblems. The best feasible solution, the
incumbent solution, x̂ ∈ X, is stored. At each iteration, the algorithm selects a new subproblem
S ⊆ X to explore from a list L of unexplored subproblems. If a candidate incumbent solution x̂′ ∈ S
can be found with a better objective value than x̂, i.e. f

P
(x̂′) < f

P
(x̂), the incumbent solution is

updated. On the other hand, if it can be proven that no solution in S has a better objective value
than x̂, i.e. ∀x ∈ S, f

P
(x) ≥ f

P
(x̂), the subproblem is pruned.

Otherwise, child subproblems are generated by partitioning S into an exhaustive set of sub-
problems S1,S2, etc which are then inserted into T, the search tree. Once no unexplored subprob-
lem remains, the best incumbent solution is returned. Since subproblems are only pruned if they
contain no solution better than x̂, it must be the case that x̂ ∈ argmin

x∈X
f (x). A pseudocode for the

common BB algorithm is given in algorithm 1.

Branching Branching refers to the fact that at a given node the search space is divided into
smaller regions. During the branching, no feasible solution should be lost since it could mean
missing the optimal solution. The branching rules used in practice give a guarantee on keeping all
feasible solutions. If we were to apply only branching, we would branch on all nodes containing
more than one solution, until all leaves are reached. The use of bounding helps to avoid such a
prohibitive task.

Bounding The part that allows to discard a search region is the bounding and helps reduce the
time spent branching on nodes that will not give a better solution. At a given node, a bound of
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Algorithm 1 : Branch-and-Bound(X, f
P

)

Input: X and f
P

Result : x̂ and a lower bound on the best solution
Set L = {X}
while L 6= ; do

Select a subproblem S from L to explore
if a solution x̂′ ∈ {x ∈ S : f

P
(x) < f

P
(x̂)} then

Set x̂ = x̂′

end
if S cannot be pruned then

Partition S into S1,S2, ...
Insert S1,S2, ... into L

end
Remove S from L

end
Return x̂

the objective function is evaluated. And if after evaluation we note that from that a better solu-
tion cannot be found from that node, then there is no need to continue branching on that node.
Computing good bounds can help reduce importantly the time spent branching. However, the
computing time of the bounds should be very low since the evaluation of bounds are repeated a
large number of times.

BB and termination The algorithm 1 is guaranteed to terminate if X is finite and the partitioning
procedure creates child subproblems S1,S2, ... that are proper subsets of S at each subproblem S.
Let us recall the definition of a proper set: a set S1 is a proper subset of S, noted S1 ( S, if S1 is a
subset of S but S1 is not equal to S. In other words, there is at least one element of S which does
not belong to S1. The order in which the subsets are selected depends on the search strategy that
is discussed in Section 1.3.1.

BB worst-case time complexity Remark that the set X and all subproblems are usually given
implicitly. That is, given an element x, membership in a subproblem can be verified without dif-
ficulty, and it is not necessary to know all the members of X or its subproblems to partition them.
The complexity of BB algorithm is linked to two factors:

• the branching factor βT of the search tree, the maximum number of children generated at
any node of the tree,

• the search depth δT of the search tree, the length of the longest path from the root of T to a
leaf, a node with no children.

BB algorithms operate in O (Mβ
δT
T ) worst-case running time, where M is a bound on the needed

time to explore a subproblem. This worst-case time complexity can be prohibitive even for some
toy problems. For example, in our case where binary values are used, if we do a binary branching,
βT = 2 and δT = e is the number of ReLUs in the model (or the number of unstable ReLUs, see
the end of the paragraph 5.4.1), which is O (M 2e ). Nevertheless, the pruning happening during
optimization can drastically improve the algorithm performance.

BB phases There are two significant phases of all BB algorithms, the search phase and the verifi-
cation phase, as shown in figure 1.2. The search phase is the phase in which the algorithm has not
yet found an optimal solution. The verification phase is the phase in which the incumbent solu-
tion is optimal but there are still unexplored subproblems in the tree that cannot be pruned. The
incumbent solution can not be proven to be optimal until no unexplored subproblems remain.
Moreover, the delimitation between the search phase and the verification phase is not known un-
til the algorithm terminates. In the case that BB has completed the verification phase, it is said
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to have produced a certificate of optimality. This certificate of optimality and the guarantee it
gives are the main reason MIP are used to find the minimal adversarial distortion and adversarial
verification.

Branch-and-bound

Phase 1 : Search Phase 2 : Verification

Heuristic
Solution

Certificate of
Optimality

Figure 1.2 – Phases of the branch-and-bound algorithm [Morrison et al., 2016].

Reasons to improve BB search phase performance There are two main considerations to im-
prove the BB algorithm during the search phase:

• First, if the algorithm terminates without producing a certificate of optimality, for example,
the time limit is reached, the incumbent solution can still be returned as an heuristic so-
lution. In our case, an heuristic solution would correspond to an adversarial example, and
its distance to the original example can be satisfying even though it is not guaranteed that
the adversarial example is at the minimal adversarial distortion distance. In that case, the
search phase of the BB can be seen as an attack.

• Secondly, finding an optimal solution earlier, the search phase has a direct impact on the size
of the search tree and therefore on the required time to certify the optimality since all nodes
with bounds greater than the optimum value are pruned. That is intuitively the reasoning
behind best-first search strategy [Dechter and Pearl, 1985] that is shown to explore the fewest
number of subproblems of any search strategy.

Our attack can be seen as improvement of the search phase of the BB search phase. With our
attacks, it is possible to initialize the BB to an optimal or near-optimal solution.

1.3.1 Search strategies

The exploration order of unexplored subproblems of T is determined by the search strategy. There
mainly two options using a priori rules, for example Depth-first search, or using adaptive rules,
for example best-first search. We discuss the common search strategies along with their strengths
and weaknesses.

Depth-first search The Depth-first search (DFS) strategy is a search strategy that can be imple-
mented by maintaining the list of unexplored subproblems L as a stack. The algorithm removes
the top item from the stack to take the next subproblem to explore, and when children are gener-
ated as a result of branching, they are inserted on the top of L. Thus, the next subproblem that is
explored is the most recently generated subproblem, last in first out. Experience seems to indicate
that feasible solutions are more likely to be found deep in search trees than at nodes near the root.
Depth first search is the default option in most commercial codes [Wolsey and Nemhauser, 1999].

The use of depth-first search strategy has two drawbacks:
• The first drawback is that naive implementations of DFS do not use any information about

the problem structure or bounds, as a result, the search process can spend a long time ex-
ploring regions of the search space that cannot produce a better solution than the current
one. Another similar phenomenon is the fact that different regions of the search space fail
for the same reasons, for example, one branching constraint leading to infeasibility, but the
algorithm must explore many subproblems before finding infeasibility.
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• The second drawback is observed when the the search tree is excessively unbalanced. That
is, if some optimal solutions are close to the root, but there exist paths in the search tree
T that do not lead to an optimal solution. DFS can unfortunately explore numerous long
and bad paths before it explores a path leading to an optimal solution, although this com-
putation time often could be avoided via pruning if the search strategy instead chooses to
explore a short optimal path first.

A myriad of variants to the DFS exist that try to get around those flaws.

Breadth-first search Breadth-first search (BrFS) is the opposite of DFS for the reason that it is
implemented with a queue or the first-in-first-out data structure. With BrFS, all subproblems that
are at the same depth are explored before exploring any deeper subproblems.

One advantage of BrFS is that optimal solutions that are close to the root are discovered quickly.
Therefore, it produces good performance on unbalanced search trees. However, since complete
solutions are generally at larger depths, BrFS is usually unable to exploit pruning rules that com-
pare to the current incumbent solution. For this reason, the memory requirements for BrFS are
quite high, and it is generally not used in a BB context. Two exceptions are in the presence of dom-
inance relations, and a good heuristic finds a good incumbent solution that allows pruning. We
talk about the dominance relation between two subproblems S1 and S2 if for any feasible solution
from S2 or its descendants, it is possible to find a solution of S1 or its descendants that is at least
as good.

Best-first search In settings where sufficient memory is accessible to store the complete unex-
plored search tree, the best-first search (BFS) strategy is usually used. This strategy uses a heuristic
measure-of-best function µ that computes a value µ(S) for each unexplored subproblem, and se-
lects the one minimizing µ as the subsequent subproblem to explore. There are many choices for
the measure-of-best function, one common choice may be a bound on the quality of the most
effective solution in the subproblem. Best-first search offers a variety of serious advantages over
DFS. It is often able to find good solutions earlier within the search process because it is not tied
to exploring one specific branch of the tree before the other.

1.3.2 Lower bound and Branch-and-bound

The ability to increase the lower bound to quickly match the optimal solution is crucial if we want
to find the exact solution of a problem without the algorithm spending hours and hours. Two
aspects of the BB affect the lower bound, the pruning rules, and the branching strategy. Several
pruning rules exist, but they are often problem specific and are focused on integer variables, bi-
nary variables in our case. The most natural approach to prune is to compute a lower bound on
the objective function value for each subproblem and use this to prune subproblems having a
lower bound that is not better than the incumbent solution value. Some aspects of the problem
are relaxed to compute lower bounds. For instance, in our verification problem, lower bounds are
computed by relaxing the binary constraints and allowing values between 0 and 1 instead of be-
ing either 0 or 1. Relaxing the integrality constraints is a straightforward way of computing lower
bounds, even though it frequently leads to very loose lower bounds. And the speed at which the
lower bounds increase depends on the search strategy and the pruning rules. And illustration of
the search strategy is given in Figure 1.3.

According to the illustration in Figure 1.3, the search could end after 8 steps for DFS, 9 steps
for BrFS, and 6 steps for the BFS. At the same time, if the initial incumbent solution was 9, at most
2 iterations would have been taken before termination of the search, and several branching would
not have been necessary. This also illustrates the importance of having a heuristic able of quickly
finding a good solution, as it is the case when we use LiPPA to find adversarial examples that could
be optimal without having to go through branching and bounding since it exploits previously un-
used information. Having an efficient way to compute tight lower bounds for the BB can also
speed up the verification phase a lot.
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Figure 1.3 – Illustration of the search strategies and the evolution of the lower bound. On the left we have an
illustration of the DFS, in the middle we have an illustration of the BrFS, and on the right an illustration of
the BFS. The dashed subproblem is optimal, the numbers inside the nodes are subproblem lower bounds,
and numbers outside the nodes indicate the exploration order. The algorithm starts with an incumbent
solution of value 10. BFS uses the lower bound as the measure-of-best, with ties broken arbitrarily. Note that
this requires that a subproblem’s lower bound is computed prior to inserting it into the list of unexplored
subproblems [Morrison et al., 2016].

In this section, we have seen that the MIP used as a verification method can be assimilated
to the execution of a BB algorithm. We have seen that the BB has two phases, a phase in which
the optimal solution is searched and the verification phase where the optimal solution is found
but the certificate of optimality is not yet found. Two intuitive ways of improving the performance
of MIP are having better heuristics and pair them with a tighter lower bound approximation of
the objective function. Our algorithm LiPPA fits well in the first way since it is derived from the
MIP formulation of minimal adversarial distortion and exploits information that are not directly
available to the MIP to potentially find the optimal solution, thus leading to pruning considerable
regions of the search space.

1.4 Satisfiability Modulo Theories

SMT is a generalization of SAT problem to more complex theories than the boolean one. It is
therefore intuitive to start by stating the SAT problems and how they are solved in practice. More
information are available in [Biere et al., 2009].

1.4.1 (Boolean) satisfiability problem

Reminder on Boolean algebra We will start with a reminder on Boolean algebra.A Boolean vari-
able is a variable that can take the values Tr ue or Fal se, also noted 1 and 0. There are three basic
operations used in Boolean algebra, all other operations can be expressed using only those three:

• the conjunction, AND noted ∧ such that:

x1 ∧x2

{
1, if x1 = x2 = 1
0, otherwise

(1.4)

• the disjonction, OR noted ∨ such that:

x1 ∨x2

{
0, if x1 = x2 = 0
1, otherwise

(1.5)

• the negation, NOT noted ¬ such that:

¬x

{
1, if x = 0
0, if x = 1

(1.6)
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Table 1.1 – Truth tables of ∧,∨ and ¬.

x1 x2 x1 ∧x2 x1 ∨x2 espace x ¬x
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1
1 1 1 1

The truth tables of those basic operations can be found in Table 1.1.
The basic operations can also be expressed with ordinary arithmetical operations (addition

and multiplication) or with minimum and maximum functions:

x1 ∧x2 = x1x2 = min(x1, x2)
x1 ∨x2 = x1 +x2 −x1x2 = max(x1, x2)

¬x = 1−x
(1.7)

Definition 1.2 (Boolean formula). A Boolean formula is made of Boolean variables, Boolean op-
erators, and parenthesis and takes the value Tr ue or Fal se (respectively 1 or 0) when its boolean
variables are assigned to Tr ue or Fal se.

Example 1.2 (Example of a boolean formula). (x1 ∨¬x2 ∨x3)∧ (¬x1 ∨x2 ∨x4)

Each one of the sequences in that example is a clause, a disjunction of Boolean variables. A
Boolean variable is called a positive literal and its negation is called a negative literal.

Definition 1.3. A formula is said to be in conjunctive normal form when it is a conjunction of
clauses or a single clause.

The Boolean formula in Example 1.2 is in conjunctive normal form. This form will be used to
deal with satisfiability problems since every Boolean formula can be developed into an equivalent
conjunctive normal form.

Definition 1.4 (SAT). A Boolean satisfiability problem, also called propositional satisfiability prob-
lem or SAT, is a problem of determining, given a Boolean formula (and its variables), whether or not
there is a way to assign the variables to Tr ue or Fal se such that the formula is evaluated as Tr ue.

Definition 1.5 (n-SAT). When a formula is a conjunction of clauses of at most n literals, finding if
it is satisfiable or not is known to be an n-SAT problem.

SAT is the first problem that was shown to be NP-Complete1. A SAT problem can be solved
using BB algorithm as shown in the following example.

Example 1.3 (SAT and BB). Let S(x1, x2, x3, x4), defined as follow, be the formula we want to satisfy:

S(x1, x2, x3, x4) = (x1 ∨x2 ∨x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨¬x3 ∨x4)︸ ︷︷ ︸
C2

∧ (x2 ∨¬x3 ∨x4)︸ ︷︷ ︸
C3

∧

(¬x1 ∨¬x2 ∨x3)︸ ︷︷ ︸
C4

∧ (¬x1 ∨¬x3 ∨¬x4)︸ ︷︷ ︸
C5

∧ (x1 ∨¬x2 ∨¬x3)︸ ︷︷ ︸
C6

(1.8)

Let us solve this SAT problem using BB as illustrated in Figure 1.4 with Depth-First-Search as a
branching strategy. We branched on the value of x1 to obtain S(0, x2, x3, x4) and S(1, x2, x3, x4). The
assignation x1 = 0, mean the clause C2,C4 and C5 are satisfied, and can be ignored(since 1∧ x = x),
so:

S(0, x2, x3, x4) = (x2 ∨x3)︸ ︷︷ ︸
C1|x1=0

∧ (x2 ∨¬x3 ∨x4)︸ ︷︷ ︸
C3|x1=0

∧ (¬x2 ∨¬x3)︸ ︷︷ ︸
C6|x1=0

. (1.9)

1The particular case 2-SAT is can be solved in polynomial time.
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S(x1, x2, x3, x4)

S(0, x2, x3, x4) S(1, x2, x3, x4)

x1 = 0 x1 = 1

S(0,0, x3, x4)

x2 = 0 x2 = 1

S(0,1, x3, x4)

S(0,0,0, x4)

x3 = 0

S(0,0,1, x4)

x3 = 1

S(0,0,1,0)

x4 = 0

S(0,0,1,1)

x4 = 1

1

2

3

4 5

6 7

Figure 1.4 – Illustration of the use of BB to solve a SAT problem.The number near the nodes represents the
visiting order in the search tree. The red nodes mean that we found a combination that does not satisfy our
formula. The green node represents a solution satisfying our formula.

From S(0, x2, x3, x4) and branching on the value of x2, we get S(0,0, x3, x4) and S(0,1, x3, x4).
When x2 = 0, the clause C6 is satisfied and can be ignored:

S(0,0, x3, x4) = x3︸︷︷︸
C1|x1=0,x2=0

∧ (¬x3 ∨x4)︸ ︷︷ ︸
C3|x1=0,x2=0

. (1.10)

From S(0,0, x3, x4), we see that if x3 = 0, no matter what the value of x4 is, S will be unsatisfied,
and then is not necessary to branch on the value of x4. Then if x3 = 1, C1 is satisfied and we get:

S(0,0,1, x4) = x4︸︷︷︸
C3|x1=0,x2=0,x3=1

. (1.11)

Then assigning x4 = 0, will lead to S(0,0,1,0) = 0, and assigning x4 = 1, would give S(0,0,1,1) = 1
proving that S(x1, x2, x3, x4) is satisfiable.

Another solution could have been found using Breath-First-Search at the node S(0,1,0, x4) = 1.

Note that there are other methods to solve a SAT problem and can be related one way or an-
other to branch-and-bound and search trees. That is the case of DPLL algorithm (used in the ver-
ification method [Katz et al., 2017]) and also Conflict-Driven Clause Learning (CDCL) methods.

The satisfiability problem has been formulated with Boolean variables. It can be extended to a
more rich set using some constraints, for example, as discussed in 1.4.2.

1.4.2 Satisfiability Modulo Theories

Definition 1.6 (What is a theory?). A theory T on a set of symbols Σ is a set of formulas on the
symbols of Σ. Σ is called signature.

Example 1.4 (Equational theory). With the equation theory with Σ = {=}. The inequality, since
x1 6= x2 can be reformulated as ¬(x1 = x2). Here is an example of the formula of the equational
theory: x1 +x2 = 17∧x1 −x2 = 5∧x1 6= 13
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Decision procedure SMT relies on decision procedures. Decision procedures are methods used
to decide on the satisfiability of formulas for elementary theories such as equational theory. Those
procedures must satisfy some properties: incrementality, backtrackability, production of explica-
tions, and constraint implications.

Incrementality It should be possible to successively call the decision procedure on a set of con-
straints c0 ⊂ c1 ⊂ ·· · ⊂ ck in such a way that for a given set of constraints ci it is possible to reuse
the computation done for ci−1, instead of starting from scratch.

Backtrackability The data structure used should allow to backtrack efficiently to an anterior
state of the algorithm without having to reinitialize the computations.

Production of explanations When a set c of constraints is unsatisfiable, the decision procedure
should produce a subset U of inconsistent constraints. The subset is referred to as the unsat core,
and shows why the set c is unsatisfiable. That set should be as small as possible since its com-
plementary could be added to the constraints while looking for feasible solutions as illustrated in
Example 1.5. For example, if c = x < y, y < z, z < 10, x < z, x > 15, a < b, then the set U should be:
z < 10, x < z, x > 15.

Example 1.5. Using the equational theory presented above, here is a formula:

S(a,b, x1, x2, x3) =¬(a = b)∧(x1 = a∨x1 = b)∧(x2 = a∨x2 = b)∧(x3 = a∨x3 = b)∧¬(x1 = x2) (1.12)

Finding a solution satisfying of S using the classical branching on the tree can take some time
while a few steps suffice when other search methods are simultaneously deployed. In this example,
we use CDCL, which we consider to be a heuristic that goes through the search tree to reach leaves
that potentially contain a solution instead of using tradition search strategies. In Figure 1.5, we have
an illustration of how a SMT problem is linked to a corresponding SAT problem. The SMT problem
from Step 1 is transformed into a SAT problem in Step 2 via T2B, which is solved and a solution is
given in Step 3. That solution is transformed back to the original form of the SMT problem in Step
4 via the function B2T. Then a theory solver T Solve is used to evaluate if the proposed solution
satisfies the formula at Step 5 and the solution does not satisfy our formula. The explanation, the
core unsat, is given in Step 6 and converted in SAT in Step 7, U = P2 ∧P4 ∧¬P8. In Step 8, neg (U ) is
added to the initial. This addition can be seen as forcing to backtrack to a node that does not violate
the added constraint. Then the new Boolean formula is solved in step 9, and transformed back in
Step 10. The evaluation at Step 11 shows that the problem is satisfied by the assignation in step 10.
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¬(a = b)
(x1 = a ∨ x1 = b)
(x2 = a ∨ x2 = b)
(x3 = a ∨ x3 = b)
¬(x = y)

T2B

¬P1

(P2 ∨ P3)
(P4 ∨ P5)
(P6 ∨ P7)

¬P8

CDCL1

¬P1, ¬P8

P2 , ¬P3

P4 , ¬ P5

P6 , ¬P7
B2T

¬(a = b) , ¬(x = y)
x1 = a , ¬(x1 = b)
x2 = a , ¬(x2 = b)
x3 = a , ¬(x3 = b)

T Solve

UNSAT

explain

x1 = a
x2 = a

¬(x1 = x2)

T2B
P2

P4

¬P8

add ¬U 2

¬P1

(P2 ∨ P3)
(P4 ∨ P5)
(P6 ∨ P7)
¬P8

(P8 ∨¬P2 ∨¬P4)

U

CDCL

¬P1, ¬P8

P2 , ¬P3

¬P4 , P5

P6 , ¬P7

B2T

¬(a = b) , ¬(x = y)
x1 = a , ¬(x1 = b)

¬(x2 = a), x2 = b
x3 = a , ¬(x3 = b)

T Solve
SAT

Step 1 Step 2 Step 3

Step 4

Step 5

Step 6Step 7Step 8

Step 9

Step 10
Step 11

Figure 1.5 – Illustration of the resolution of an SMT problem. We use T2B to convert the formula from its
theory to Boolean variables to obtain a SAT problem, CDCL is used to solve the SAT problem. Then B2T is
used to reconvert the SAT assignation to the corresponding SMT one. A solution of the SAT is not always a
solution of the SMT as shown at Step 5.To check if a solution of the SAT problem satisfies the STM one, the
function T Solve is use. In Step 8, The negation of the core unsat U is then added to force the SAT to respect
some new constraint that were not initially encoded in Step 2. And this time, the solution given by the SAT
solver also satisfies the initial formula.
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1.5 Integer Linear Programs and Mixed Integer Programs

1.5.1 Definition and illustration

Integer Linear Programs (ILPs) are like LPs but instead of optimizing over continuous variables,
the optimization is done over a discrete set, for example N. Integer programming is NP-complete.
It has several applications, for example, in production planning and Traveling Salesman Problem.

max
x

c>x

s.t. Ax ≤ b,
x ≥ 0,
x ∈Nn

(1.13)

In some problems, we can have some integer variables and other continuous ones:
max

x
c>x

s.t. Ax ≤ b,
x ≥ 0,
x ∈Nn1 ×Rn2

(1.14)

with n1 the number of integer variables and n2 the number of continuous variables.

Example 1.6. We can take the same Example 1.1 and add the constraint that the number of kilo-
grams of yogurt is an integer. We would then obtain the following:

max
x1,x2

4x1 +5x2

s.t. 2x1 +x2 ≤ 800
x1 +2x2 ≤ 700

x2 ≤ 300
x1, x2 ≥ 0
x1, x2 ∈N

(1.15)

We just added the constraint: x1, x2 ∈ N, and it was enough to transform the Linear Program
(1.2) into an Integer Linear Program. We can also want x1 to be an integer while we allow x2 to stay
continuous to obtain a Mixed Integer Program.

1.5.2 Solving an ILP or a MIP

To solve ILPs and MIPs, Branch-and-Bound is commonly used with integer relaxation as the eval-
uation method to compute the bounds. After relaxation, the problem becomes a Linear Program
that can be solved to obtain a bound on the objective function. Bounds that can be used to discard
some regions of the search space as discussed in Section 1.3.

Branching for ILP/MIP After relaxation, there are chances that real values are found for variables
that should be integers. For example, we found x1 = 3.4 where x1 is supposed to be an integer at
the final solution. Then the branching on the value of x1 consists in splitting the search region into
two regions. Since x1 is supposed to be an integer, we either have x1 ≤ 3 or x1 ≥ 4. The splitting
used for ILPs/MIPs is such that if we want to split according to a variable x whose value is not an
integer yet, we split the search region into two part, the part x ≤ bxc and the part x ≥ bxc+1.

Bounding for ILP/MIP The resolution of the LP obtained after relaxation gives a bound on the
optimal value of the objective function. At each node, a bound is computed. The bounds get
tighter and tighter when the resolution progresses and reaches deeper nodes.

Example 1.7 (illustration of the Branch-and-Bound). Let us illustrate some iterations of the Branch-
and-Bound applied to an ILP.
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max
x1,x2

2x1 +3x2

s.t. 3x1 +2x2 ≤ 17
−x1 +7x2 ≤ 23

x1, x2 ≥ 0
x1, x2 ∈N

(1.16)

A graphical illustration of the BB applied to (1.16) is seen in Figure 1.6. We relax the integrity
constraints and solve the linear program we obtain which will be the evaluation of the root (node
1). We get as a solution ( 73

23 , 86
23 ), let us say (3.17,3.74), giving 17.57 as the first bound on the objective

function. For the sake of argument, we branch on the value of x1. We then have a left child (node
2) with the addition of the constraint x1 ≤ 3 and a right child (node 3) with the addition of the con-
straint x1 ≥ 4. Note that this preserve all solutions since it only eliminates the values of x1 between
3 and 4 not included. Then we solve the subproblem at the node corresponding to the left child. We
find approximately (3,3.72) with a bound of 17.15. We see that there is already a slight improvement
of the bound. Solving the subproblem of the right child, we get (4,2.5) and the bound 15.5 which is a
greater improvement over the previous best bound. Then splitting on the left side we find a solution
that gives the value 15 for the objective function. This solution is the optimal solution for our prob-
lem. We can exploit the information that the objective function should be an integer and deduce
from the best bound 15.5 a better bound 15. If the bound found at node 3 was greater than 16, we
would have to branch at that node to make sure that there does not exist a better solution than the
one given at node 4.

In practice, we could have used the equation 3x1 +2x2 ≤ 17 to derive bounds on x1 and x2, we
would get x1 ≤ 5 = ⌊17

3

⌋
and x2 ≤ 3 = ⌊17

5

⌋
. This process is called a cutting-plane method known as

Gomory’s cut. For the interested reader, more details are available in [Wolsey and Nemhauser, 1999].

1.5.3 Optimality proof and optimality gap

Proving that a solution is optimal is not an easy task for ILPs and MIPs. For some problems, in
practice, the optimization does not run until the optimality is proven, an optimality gap is instead.

Definition 1.7 (Optimality Gap). The optimality gap measures the gap between the incumbent, the
best known solution, and the best bound. Let x̂ be the incumbent solution, and ζ the best bound on
the objective function, the gap is defined as:

|x̂−ζ|
|x̂| , if x̂ 6= 0

0 , if x̂ = ζ= 0
∞ , if x̂ = 0 and ζ 6= 0

(1.17)

It is necessary to have an optimality gap of 0 to claim the optimality has been proven.
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17.57

17.15 15.5

1

2 3

(3.17,3.74)

(4,2.5)(3,3.72)

x1 ≤ 3 x1 ≥ 4

154 (3,3)

x2 ≤ 3

;5

x2 ≥ 4

Figure 1.6 – The BB tree and a graphical illustration of the first branching. The value written on the left of
each node is the order, we use a Breadth-First-Search. The value in the node is the upper bound found by
the LP at that node and the value on the right of the node is the coordinate that achieves the bound. Then
from left to right and top to bottom, we have the graphical illustrations of the Root problem (node 1), its
left child (node 2), its right child (node 3), and the optimal solution (node 4). The coordinate shown are
the coordinate of the point solution of the relaxation. At the root we have an upper bound of 17.57, which
mean the objective value is bounded by 17 since 2x1 +3x2 should be an integer. The right child improves
that bound to 15 = b15.5c, with 15.5 the bound found at node 3. Then The node 4 gives the optimal solution.
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1.6 Difference of Convex Algorithm

During this thesis, we had to deal with mixed integer programs. One way to solve this type of
problem is to consider their continuous relation and recast the resulting nonconvex optimization
problem as a DC program [Niu and Pham Dinh, 2008].

The difference of convex algorithm (DCA) has been designed for finding a local solution to
this kind of nonconvex optimization problems when the cost function to be minimized is DC (this
problem is also called a DC program), that is when it can be expressed as the difference of two
convex functions. We just give hereafter a brief introduction to DC programming. For more details,
see for instance [Horst and Thoai, 1999, Niu, 2010].

Definition 1.8 (DC function). Let J1(x), J2(x) two real valued convex functions on some Euclidian
space, J(x) is a DC function if it can be expressed as J(x) = J1(x)− J2(x).

Example 1.8. The function J(x) = x(1− x) is a DC function since J(x) = J1(x)− J2(x) with J1(x) = x
and J2(x) = x2.

Indeed, the DC decomposition of a given DC function J is not unique since, for any convex func-
tion g (x), we have J(x) = (J1(x)+ g (x))− (J2(x)+ g (x)).

Based on DC functions, we can define DC programs as follows.

Definition 1.9 (DC Program). Let J be a DC function over Rd and X a closed convex subset of Rd .
Then, the following optimization problem

min
x∈X

J(x),

is called a DC Program.

Example 1.9. The optimization problem minx∈[0,2] x(1− x), is a DC program. It admits a global
solution (x = 2) and a suboptimal local minimum (x = 0).

Note that many non-convex optimization problems under constraints,including MIP , can be trans-
formed into DC Programs [Niu and Pham Dinh, 2008].

An interesting property of DC functions is that they can have a convex majorization. Assume
J2(x) is differentiable and ∇xJ2(xt ) denotes its gradient at xt . A convex majorization function of
J(x) = J1(x)− J2(x) at xt is

J(x) ≤ J1(x)− J2(xt )− (x−xt )>∇xJ2(xt ) .

The DC Algorithm (DCA) is a general procedure based on this convex majoration and design to
minimize a DC function. It proceeds by successive convex relaxations. At each iteration t , we can
define the convex majoration function

Jc (x) = J1(x)− J2(xt )− (x−xt )>∇xJ2(xt ),

to be minimized. The Algorithm 3 presents the pseudo code of DCA for solving the DC program
minx∈X J(x) = J1(x)−J2(x). It has been proven that DCA is a well defined and convergent algorithm.

In practice, the convergence conditions |(g −h)(xt+1)− (g −h)(xt )| ≤ ε or ‖xt+1 − xt‖ ≤ ε are
often used, with a user defined value of ε. Note also that, although there is no analytic result yet
to justify this, according to the DC Programming literature, the local optimization approach often
yields the global optimum for some problems. The main difficulty for DCA implementation is to
find a relevant DC decomposition.

28



CHAPTER 1. OPTIMIZATION TOOLS

Algorithm 2 : DCA(J)

Input: J1(x), J2(x) and X

Result : x? ∈X a local minimizer of J(x) over X

Set t = 0, initialize xt ∈ domJ1 ∩X

while not convergence do
Solve xt+1 = argminx∈X Jc (x) = J1(x)−x>∇xJ2(xt )
t = t +1

end
Return xt

1.7 Conclusion

In this chapter, we have presented methods that are used in the verification of the robustness of
neural networks except DCA. We started with Linear Programs.

We then talked about the Branch-and-Bound that can be used to deal with some optimization
problems that Linear Programs cannot handle. Then we saw the Satisfiability Modulo Theories
that is a generalization of the (Boolean) Satisfiability problem.

After we saw the Integer Linear Programs and Mixed Integer Programs, to handle problems
that are very similar to Linear Programs but that have values that should be integers. We also how
to solve those problems with Branch-and-Bound using Linear Programs to evaluate the bounds.

Finally, we talk about Difference of Convex Algorithms that we will use to find adversarial ex-
amples.
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Deep learning, the state-of-the-art Deep learning is now used in many domains as the state-
of-the-art tool. Neural networks became the go-to when it comes to several tasks such as image
classification [Krizhevsky et al., 2017]. They even made possible things that were considered im-
possible not long ago. Deep learning is used on self-driving cars, in medicine, in fraud prevention,
in earthquake prediction, in natural language processing and in game playing just to name a few
(see for instance [Sengupta et al., 2020] for a detailed review and associated references).

Illustrations of its use on self-driving cars In autonomous vehicles, deep learning can be used
in several ways. It can be used to drive the car by controlling the speed and direction of the car
using reinforcement learning [Bansal et al., 2018]. It can also be used to recognize traffic signs in
order to respect the highway code, the stops, the priorities, the speed limitation. Another use of
deep learning would be putting bounding boxes and tracking other vehicles [Shafiee et al., 2020]
in order to avoid collision as illustrated in Figure 2.1. It can be used also to monitor the human
driver himself.

Figure 2.1 – Illustration of an automatic perception (left) of a real road scene (right). Image from Waymo’s
video showing autonomous driving technology interacting with crowded school crossing1.

Illustrations of its use in Medicine Deep learning is used in medical imaging [Suzuki, 2017], to
provide diagnostics [Bakator and Radosav, 2018, Esteva et al., 2021] (as illustrated Figure 2.2) and
in surgery [Hashimoto et al., 2018]. It could be used either to act autonomously or as an assistant
to human professionals.

Existence of adversarial examples However, neural networks are very brittle in the sense that,
their high accuracy can rapidly drop to nearly zero when maliciously crafted noise is added to the
input, which becomes an adversarial example, as shown in Figure 2.3 [Goodfellow et al., 2015].

The use of adversarial examples in safety-critical environments This kind of behavior of neural
networks has a deterrent effect making their use in safety-critical environments such as in aviation
safety (see Example 1.1), self-driving car (see Example 1.2) or in medical imaging (see Figure 2.4
for an illustration) a topic of controversy, rightly or wrongly.

In fact, in order to use deep learning in such environments, some guarantees are needed in
terms of reliability, explainability of the decision-making and interpretability.

Example 2.1 (The ACAS Xu safety system). Designed to avoid mid-air collisions between aircrafts,
the ACAS Xu system issues turn advisory outputs - strong left, weak left, conflict-free, weak right, or
strong right - given the input values for relative positions, headings, and speeds. Originally created
as a multi-gigabyte lookup table of rules, the system has been compiled using a series of 45 neural
networks. Inputs and outputs of the system are illustrated Figure 2.5. The safety of this critical

1youtube.com/watch?v=Vu8gmFhiGko
2openai.com/blog/adversarial-example-research/
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Figure 2.2 – A multimodal discriminative model, trained on image data with convolutional networks and
non-image data, with the appropriately chosen deep network [Esteva et al., 2021].

Figure 2.3 – The famous Panda’s picture popularized by [Goodfellow et al., 2015] seminal paper on adver-
sarial examples. The image on the left is a clean image recognized by a deep network as a panda, on the
center some noise calculated to make the resulting image (on the right) be recognized as a gibbon with high
confidence. Taken from OpenAI’s blog2.

Figure 2.4 – Illustration of two different adversarial attacks on a medical diagnostic system based on deep
learning image processing. Adapted from [Finlayson et al., 2019].
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Figure 2.5 – Illustration of the input (left) and output (right) of the ACAS Xu system. Pictures are from [Katz
et al., 2017] were you can find more details.

system clearly depends on the reliability of these neural networks. Originally introduced by [Katz
et al., 2017], this example has been used in the 2020 competition for neural network verification3.

Example 2.2 (Self driving cars). The new generation of advanced driving assistance systems (ADASs)
and autopilots of semi or fully autonomous cars include neural networks (see for instance [Grig-
orescu et al., 2020]). These systems have been proven to be vulnerable to attacks, as illustrated in
Figure 2.6. See [Qayyum et al., 2020] for a review on this topic.

Figure 2.6 – Speed limit road sign designed to fool Tesla’s Autopilot4(left) and projected images that cause
the ADAS to fail [Nassi et al., 2020] (right).

The necessity of defense mechanisms and some defense mechanisms Several defense mecha-
nisms have been deployed since [Papernot et al., 2016c] which prove later to be inefficient when
attacks get stronger. Those stronger attacks may be completely new. Sometimes, it is enough to
allow more attempts to existing attacks to expose the weakness of the defenses.

Measuring the robustness of DNN In that context, complete verification methods such as Re-
luplex [Katz et al., 2017] and MIP (Mixed Integer Programming) formulations of the search of ad-
versarial examples [Tjeng et al., 2018] seem to be the ultimate judge able to give the exact robust
test error of a neural network [Bastani et al., 2016]. However,those complete verifiers can spend,
on some examples, up to an hour without being able neither to find an adversarial example nor to
prove that there is no adversarial within a given neighborhood of the original example. This leads
sometimes to have models for which robustness is not guaranteed and no adversarial example is
found. That sometimes justifies the use of attacks to measure the robustness of classifiers even
though attacks can miss some adversarial examples. Even though using attacks it is not possible
to prove that there are no adversarial examples in a region.

Although, as we have just seen, adversarial examples exist for all types of applications, in our work
we mainly focus on adversarial examples in computer vision, specifically for image classification.
Accordingly, the remainder of this chapter is organized as follows. We begin by introducing the
general classification problem (Section 2.1). Then, we give a general presentation of adversarial
examples and reasons that explain their existence in Section 2.2. Section 2.3 is dedicated to the
description of some popular attacks used to create adversarial examples as well as their taxon-
omy and related threat models. Next, we study the defenses in Section 2.4 and their taxonomy

3sites.google.com/view/vnn20/vnncomp
4mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
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by distinguishing between empirical and provable defenses. Then, Section 2.5 is devoted to the
formal verification methods which guarantee, theoretically and under defined threat models, the
robustness of deep neural network models. Section 2.6 is dedicated to the theoretical limits on
adversarial robustness and Section 2.7 is dedicated to the tools that can be used to work on adver-
sarial examples.

2.1 General classification problem

As said above, Deep learning is the go-to pick for more and more tasks, among which (image) clas-
sification that will be considered in the following lines. Let fθ represent a classifier with parameter
θ, and specifically a deep neural network with θ representing the weights, going from the input
space X to the output space Y . Let us define the loss function L used to compute the correct-
ness of the prediction of the classifier compared to the ground truth. The loss functions used are
mostly continuous and differentiable almost everywhere, allowing to use a gradient descent algo-
rithm. As an illustration, for images, we usually have X = [0,1]d where d is the number of pixels
of the images, the output space Y = RC or Y = [0,1]C with C the number of classes, depending
on the use or not of the softmax. The loss function is usually the cross-entropy loss written for the
ground truth y and the softmaxed ŷ = fθ(x),

L (y, ŷ) =−
C∑

j=1
y j log(ŷ j ). (2.1)

The true goal of the learning of the classifiers is to find the value of θ that minimizes:

E(x,y)∼D[L (y, ŷ)], (2.2)

with D the joint probability distribution of the input examples paired with their labels. However,
in practice, we do not have access to the distribution D but we have some realizations of it, for ex-
ample N realizations, D = (x(i ),y(i ))N

i=1 (the training set). Using the available data, model is trained
by minimizing the empirical risk:

1

N

N∑
i=1

L (y(i ), ŷ(i )). (2.3)

Once a model is trained, its performance is measured on the test set to have a sense of its
generalization performance. Deep learning models are excellent at this task as shown by empirical
results on Imagenet [Deng et al., 2009] achieving performance comparable to the human level
[Krizhevsky et al., 2017]. However, [Szegedy et al., 2014] showed that the good performance of
deep neural networks can rapidly go up in smoke if the input images were to be slightly modified
to fool the classifiers. Those misleading images are adversarial examples. Their discovery raises
new challenges to tackle not only in classification but in most tasks that can be performed by deep
learning, arising by the way some questions such as the reason of existence that will be dealt with
in the next section after we briefly define what adversarial examples are.

2.2 Adversarial examples

In this section, we define and illustrate some common terms used in the adversarial example field
in Subsection 2.2.1. After that, we look at possible explanations of the existence of adversarial
examples in Subsection 2.2.2. Most definitions and explanations can suit different domains rang-
ing from simple classification, multilabel classification, to image segmentation, and several other
domains.
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2.2.1 Definitions and illustrations

Adversarial examples Adversarial examples are introduced in [Goodfellow et al., 2017] as ‘inputs
to machine learning models that an attacker has intentionally designed to cause the model to make
a mistake’. This definition is suitable since it is extensive enough to take into account several
perturbations, threat models, attackers and can even be convenient in domains different from the
image classification that we will focus on later.

We will now give a more formal definition of adversarial examples while attempting to cover
the maximum number of machine learning situations. Let:

• x ∈X be a clean example (an unmodified image of the dataset D),
• f : X → Y , a model trained to perform a task, it could be image segmentation, speech-to-

text or simply image classification (reference to parameter θ has been omitted to alleviate
the notation),

• Y ′ the decision of the model based on its output, for example, for classification, it is the
class space different from the output space Y which would be a C dimension vector space
with C the number of classes.

• D f (x) : Y →Y ′, the decision of the model f for the input x,
• x′ = tr ans f or m(x) ∈ X , a transformation of x aiming at causing the model to make a mis-

take,
• ‖x−x′‖X ≥ 05, measuring the distortion between x and its transformed version x′,
• ‖D f (x)−D f (x′)‖Y ′ ≥ 0, measuring the difference between D f (x) and D f (x′),
• ηX , a threshold such that if ‖x−x′‖X > ηX , x′ is too far,too different from x to be considered

as being an adversarial example,
• ηY ′ , a threshold such that if ‖D f (x)−D f (x′)‖Y ′ > ηY ′ the decision taken at x is different of

the decision taken from the decision taken at x′ in such a way that if one is correct the other
is not when x and x′ are close enough.

Given these two positive thresholds ηX and ηY ′ , if D f (x), the decision of the model at x is
correct, then x′ is an adversarial example of the model f near the input x when:

‖x−x′‖X ≤ ηX and ‖D f (x)−D f (x′)‖Y ′ ≥ ηY ′ . (2.4)

This definition suits several domains such as speech-to-text, text comprehension, image segmen-
tation, classification, multilabel classification, etc. It does, however, assume that the adversarial
examples are crafted around a known clean example which is not always the case. Generative Ad-
versarial Networks [Goodfellow et al., 2014] have been used to generate adversarial examples that
are, at least a priori, not paired with any input of the dataset [Fang et al., 2019].

Nevertheless, most of the illustrations that we are going to use can be seen as classification
problems:

• multilabel classification on images can be seen as a single image classification with respect
to each set of antagonist labels,

• image segmentation can be seen as a classification problem, where each pixel is classified,
• object detection can be seen as a classification over all possible square regions on an image,

to say if they are interesting or not.

We can therefore give a formal definition most suited to classification. In that case, D f (x) =
argmaxi fi (x) ∈Y ′ where the space Y ′ is the set of classes C ⊂N and equation 2.4 in the definition
of adversarial examples becomes:

‖x−x′‖X ≤ ηX and D f (x) 6= D f (x′), (2.5)

making the threshold ηY ′ useless.

5when X is identifiable to normed vector space then a norm can be used to measure the distortion. If necessary, it
can be replaced by any other dissimilarity measure as is the case for example when x is a text.
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Adversarial perturbation An adversarial perturbation is the modification that is operated on a
clean image. Depending on how the attack is performed, a perturbation can be additive, geomet-
ric, or functional [Laidlaw and Feizi, 2019]. It is additive when it is the addition of an adversarial
noise computed, for example, using the gradient of the loss with respect to the inputs, geomet-
ric when some geometric perturbations such as rotation or translation are used. For an image,
functional perturbations could be the modification of brightness, contrast, or other characteris-
tics of the image. Adversarial noise is not random noise: random noise with small magnitude is
usually harmless to classifiers. All sorts of perturbations can be performed as far as the inputs’
classification by humans stays the same for the clean example and the manipulated one.

Attacker/adversary The agent who crafts the adversarial examples is called the attacker or the
adversary. It can be someone trying to get around a malware detector [Grosse et al., 2017]. It can
be someone trying to hack a finger print sensor [Arthur, 2013], someone trying to cause misiden-
tification of a facial recognition system [Sharif et al., 2016], or someone trying to make the vision
system of a self-driving car misclassify traffic signs [Eykholt et al., 2018]. In the following, it will
mostly refer to the person crafting adversarial examples to fool the classifiers.

Transferability of adversarial examples refers to the fact that an adversarial example created to
fool a model A, usually using information about that model, can also fool a model B or even gener-
alize to several models. For example, a model created from a deep neural network can fool another
deep model or an SVM [Papernot et al., 2016a]. Transferability will be further explored in Section
2.3 when we discuss the adversarial attacks.

We now add two more related definitions useful to Subsection 2.2.2 which will give some in-
sights explaining the existence of adversarial examples.

Useful features Given an input space, any feature that is predictive relatively to the task we want
to perform is a useful feature. For example, for a classification task, any feature that is highly
correlated with a class is a useful feature since it can help to predict the class of an input. It can be
an object, a background, or anything else that a human can see and that is meaningful to a human,
for example, the presence of a smile. It can also be something humans do not pay attention to or
simply do not perceive. Taking the example of image classification, it can be something like an
invisible tag that is highly correlated with a class.

Robust and non-robust features We are only interested in useful features, so we assume the fea-
tures are useful to discuss their robustness or not. A feature will be considered robust if, given
a task and a set of perturbations, there is no perturbation that will change the initial correlation
between the feature and a class in such a way that it creates a new misleading correlation. Typi-
cally, in image classification and the set of small `∞-norm perturbations, every feature a human
can use to classify a picture can be accepted as a robust feature. Robust features may exist even
beyond human perception, we can think again of the invisible tag example. On the contrary, given
a dataset and a set of perturbations, nonrobust features are features whose correlation to a class
can be altered to create a correlation to another class, creating a deceiving correlation. Non-robust
features are related to adversarial examples according to some authors [Ilyas et al., 2019]. As robust
features, they can be perceptible or not.

2.2.2 Source/Cause of adversarial examples

Several hypotheses have been proposed to explain the existence of adversarial examples. We will
explore the arguments of some of those hypotheses as well as the arguments going against them.
We will start by studying the hypothesis based on dimensionality and architecture via the linearity
hypothesis. Then we explore the hypothesis that adversarial examples are possible because of the

37



CHAPTER 2. ADVERSARIAL EXAMPLES: AN OVERVIEW

data via the non-robust feature hypothesis. And finally, we study the effect of the learning algorithm
through the evolutionary stalling lens.

The linearity hypothesis The linearity hypothesis is backed up by various papers with different
arguments. Although initially, the existence of adversarial seemed to be linked to the high nonlin-
earity of deep neural networks, that idea became quickly out of favor to the benefit of the linear
hypothesis that dragged more attention. The paper [Goodfellow et al., 2015] popularized the lin-
earity conjecture and strongly linked it to the dimensionality of the input examples, in particular
in the case the adversarial noise is measured with `∞-norm. Let x′ be an adversarial example such
that x′ = x+δ with ‖δ‖∞ = ε. Let w be a weight vector. We have:

w>x′ = w>x+w>δ. (2.6)

The adversarial perturbation δ cause an increase of w>δ compared to activation on the original
example x. If we maximize the increase regarding the `∞-norm and obtain δ= ε sgn(w), then the

increase will be ε
d∑

i=1
|w| = ε‖w‖1 with d the dimension of x. Let m be the average magnitude of w,

then ε
d∑

i=1
|w| = ε d m. With the explicit apparition of the input dimension d , we can infer that the

adversarial vulnerability of neural networks increases with the input dimension [Simon-Gabriel
et al., 2019]. In this latter paper, this intuition is backed up and extended. The authors showed
more formally, with theoretical and empirical evidence, that many feedforward neural networks
are increasingly vulnerable to `p -norm attacks with growing input dimensions, confirming the
relationship between dimension and vulnerability of classical training.

Despite the popularity of the linearity hypothesis and the evidence provided, there is little
skepticism about its ability to fully explain the existence of adversarial examples. The linearity
hypothesis is unconvincing according to [Tanay and Griffin, 2016]. The authors argue that "small
perturbations do not provoke changes in activation that grow linearly with the dimensionality of
the problem when they are considered relatively to the activations themselves". They highlighted
the fact that while w>δ grows linearly with the input dimension so does w>x the activation of the
clean example x, assuming that the weight and pixel distributions remain the same. As a con-

sequence, the quotient between the two quantities, w>δ
w>x would remain constant. They support

their claim by performing linear classification with a linear binary SVM to classify 3s and 7s from
MNIST and another one with a scaled-up version of the same images to have 200×200 images.
Irrespective of the size of the images, the weights vector found by linear SVM looks very similar
to the one found by logistic regression in [Goodfellow et al., 2015] when visualized. The two SVM
had the same error rate. And noting ε28 and ε200 the value of the infinite norm of the perturbation
‖δ‖∞ needed to fool the SVMs on 99% of the corresponding test set, they obtained ε200

200 ≈ ε28
28 . The

outcome of this experiment is that "the dimensionality argument does not hold: high dimensional
problems are not necessarily more prone to the phenomenon of adversarial examples". In another
experiment, they show that linear behavior alone is not sufficient to cause adversarial examples
using toy examples.

Another work, related this time to the linearity of the activation function, presents interesting
results [Krotov and Hopfield, 2018] using Dense Associative Memory models [Krotov and Hopfield,
2016]. One of the many differences between Dense Associative Memory models and common
deep neural networks is the rectified polynomials activation Fn which replace the Rectified Linear
Unit. We can have, for example:

Fn(x) =
{

xn , if x ≥ 0
0 , if x < 0.

(2.7)

This nonlinearity can make the model more robust but does not suffice by itself. The linearity that
we talk about here is according to the activation functions and not according to the input and its
dimensionality. We will talk more about Dense Associative Method when we talk about defending
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against adversarial examples in Section 2.4. It has been observed in [Krotov and Hopfield, 2018]
that the success rate of transferring adversarial examples from models with activation with a lower
degree is lower than the opposite. It means that if a model with activation Fn1 is used to create
adversarial examples, and another model is trained using Fn2 with n1 < n2, transferring adversarial
example from the first model to the second will have a low success rate compared to if position
were switched. In the case of n = 1, we get the standard ReLU activation, meaning that adversarial
examples created on a usual deep neural network architecture are harmless to Dense Associative
Methods when the parameter n is high enough.

The non-robust feature hypothesis In the paper [Ilyas et al., 2019], it is said that "Adversarial
vulnerability is a direct result of sensitivity to well-generalizing features in the data." Since the
goal of the training of deep neural networks and other classifiers is only to have good accuracy,
they can rely on any feature they find useful to do so, without distinguishing whether they are
robust or not. And the conjecture here is that the existence of imperceptible nonrobust features
used by the model is a cause, not necessarily the only one, of some adversarial vulnerability that
is exploited by attackers to fool the models. They run an experiment on a restricted version of
ImageNet, which we call D.

In that experiment, they first train a model f1 using D. They used that model f1 to create a
new version of training data in D by creating adversarial examples and pairing them randomly
with a target class to obtain the new pairs (x′, t ) that compose the training set D̂r and . Then they
train a new model f2 on D̂r and . That dataset would be mislabeled for a human because the robust
features we rely on stay unchanged. The reported accuracies of f1 and f2 on the test set of D are,
respectively, 96.6% and 87.9%.

The fact that the model f2 manages to have a high accuracy while trained on a mislabeled
data shows that non- robust features are used by the model and that those nonrobust features are
enough to achieve relatively high accuracy. The same experience but with a deterministic target
instead of a random target this time also has 64.4% accuracy on the test set D, comforting the
findings.

We can infer that there are links between those nonrobust features and the intriguing proper-
ties found in [Engstrom et al., 2019a]. In that paper, given two images x1a and x2 from two different
classes, they show that is easy to construct another image x1b indistinguishable from x1a such that
x1b and x2 have almost identical internal representation with respect to a deep neural network.
Since the models rely on nonrobust features, their internal representation may heavily be depen-
dent on them, and given a pair of images, one can without difficulty modify those features on one
image in order, aligning them with the nonrobust features present on the other image.

Along the same line of thought, showing that classifiers do not rely on the same feature than
humans, there is [Geirhos et al., 2019]. The findings of [Geirhos et al., 2019] are deep learning
models do not rely on the shape as much as humans do and rely instead on "texture", highlighting
the difference between the features used by humans for the classification task. One admissible
argument is that when instead of presenting real images, the corresponding images when passed
through an edge detector were presented to both humans and machine learning models, the ma-
chine learning models suffered an important drop in accuracy compared to the human subjects of
the experiment. Another experiment, designed to have an opposition between texture and shape
also leads to the conclusion that humans rely more on shape for classification while deep learning
models are biased toward texture.

Evolutionary stalling At the beginning of the training of deep neural networks, samples are not
well classified and contribute to the loss and therefore to readjusting the weights, in other words,
to moving decision boundaries. During training, samples start to be increasingly well classified,
contributing less and less to the loss [Rozsa et al., 2018]. As a consequence, the samples get stuck
very close to the decision boundaries, making it easy for attackers to fool the models. Evolutionary
stalling can also be linked to the presence of nonrobust features that the neural network may rely
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on and that can be manipulated to mislead the models.

Other explanation There are other explanations that are worth mentioning. The existence of
adversarial examples is "due to an inherent uncertainty that neural networks have about their
predictions" according to [Cubuk et al., 2017]. Facts such as low flexibility of the networks [Fawzi
et al., 2016a], flatness of decision boundaries [Fawzi et al., 2016b] and large local curvature of
the decision boundaries [Moosavi-Dezfooli et al., 2017b] have also been linked to the existence of
adversarial examples.

About transferability In [Tabacof and Valle, 2016] the authors empirically demonstrated that ad-
versarial examples appear in large regions in the pixel space by adding noise to adversarial images
and reporting the number of noisy images that were classified back to the correct class. The au-
thors of [Tramèr et al., 2017] found that adversarial examples span a continuous subspace of large
dimensionality. They see the overlapping of those adversarial subspaces across different classifiers
as a cause of the transferability of adversarial examples across those classifiers. This same idea is
a plausible reason for the existence of universal adversarial perturbations that are discussed in
Section 2.3.

There are many hypotheses trying to explain the existence of adversarial examples, but there
is not yet a consensus on the reasons for the existence of adversarial examples. Furthermore, all
hypotheses do not perfectly align with each other. There are even some hypotheses such as the
"linearity hypothesis" that were refuted with convincing experimental proofs.

2.3 Adversarial attacks

We have seen that adversarial attacks are a threat to the success of deep learning and to their use
in safety-critical domains. This section aims to present the main attacks producing adversarial
examples. To this end, following the Equation (2.5), we begin by describing the most common
distortion measures that are also perturbation measures. Then we introduce characteristics to
classify the attacks that we use to present a selection of the most popular attacks in the literature.

2.3.1 Perturbations and their measures

Ideally, we would use distortion measures that align perfectly with humans’ vision systems. How-
ever, finding such a measure is a very difficult problem since humans’ decision on images is in-
variant to a broad range of transformations that can fool classifiers. For that reason, more simple
measures are commonly used, such as norm-based measures. More recently, more sophisticated
perturbations have been proposed [Wong et al., 2019], showing that there is still a lot to discover
in this relatively young field. We start with norm-based perturbations which are widely used, then
we take a look at other perturbations that draw less attention.

2.3.1.1 Norm based perturbations

Data used in machine learning are usually identifiable to a vector. For that reason, using Euclidean
distance and other vector norms is straightforward. Even though those norms do not perfectly
align with human perception [Sen et al., 2019]. Robustness to such perturbations does not imply
robustness in a broader sense, but the lack of robustness to norm-based perturbations hints at
vulnerabilities to the attacks that a model may face when deployed.

`0-norm The attackers use `0 pseudo norm that counts the number of nonzero components of a
perturbation vector when they are interested in finding adversarial examples while modifying just
a few pixels of the original image. It is possible to create an adversarial example by modifying just
one pixel [Su et al., 2019]. The only constraint with `0-norm perturbations is that they have a valid
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Figure 2.7 – Image from [Wang and Bovik, 2009] showing equidistant images from an original one can be
drastically different from a reference image and between them depending on the The structural similarity
(SSIM) index.

range of pixel values to produce a valid adversarial example. Usually, this kind of perturbation is
perceivable on the image but does not alter the content since only a few pixels are modified. The
Jacobian-based Saliency Map Attack (JSMA) [Papernot et al., 2016b] described in Subsection 2.3.3
is an attack used to produce such sparse adversarial perturbations.

`1-norm Adversarial perturbations with `1-norm have not been thoroughly studied. They usu-
ally serve as convex surrogates with `0 norm [Chen et al., 2018]. Its convexity and its sparsity are
two nice properties of this norm together with its linear nature6. If while looking for a perturba-
tion with minimal `1-norm we find a perturbation with only one nonzero value, then we find at
the same time a one-pixel perturbation. The best `1-norm known attack is given by [Chen et al.,
2018].

`2-norm attacks This norm is popular even though it does not necessarily align with the human
perception as shown in Figure 2.7. Using this norm on the MNIST dataset, it is also possible for
instance to create an image of a 7 near the image of a 3, making it difficult to call the created 7
an adversarial example if it is actually a 7. Another drawback is that this norm does not facilitate
the computation of bounds on pre-ReLU activations7, compared to others. Using `2-norm and
interval arithmetic give vacuous bounds on the activations even on the first layer. The `1-norm
perturbation also suffers from this drawback. Carlini & Wagner attack [Carlini and Wagner, 2017b]
is one of the most powerful `2 −nor m attacks. The randomized Gradient-Free attacks [Croce and
Hein, 2018, Croce et al., 2020] are also very powerful.

`∞-norm The infinite norm is the most popular of this batch. One reason is that it seems to
align better with human perception than the other norm-based perturbation measures. It also has
the advantage of giving tight bounds on the activations of the first layer using interval arithmetic.
Projected Gradient Descent (PGD) [Madry et al., 2019] is among the most powerful `∞ attacks.

We can also find in the literature perturbations that respect simultaneous constraints of sev-
eral norms. We can find an example of that in [Croce and Hein, 2019] where `0-norm is combined
to `∞-norm to constraint the perturbations. That combination allowed them to find sparse per-
turbations that are less perceivable compared to the ones found using only `0-norm constraint.

6The minimization of a `1-norm is a linear program.
7more details about the pre-ReLU activation bounds on page 59, paragraph MIPVerify
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Other Researchers have started looking at perturbations and measures beyond the vector norms.
Simple geometric transformations such as translation or rotation are enough to fool classifiers
as observed in [Engstrom et al., 2019b]. It is also sometimes sufficient to change the brightness,
or the contrast of an image for classifiers to make mistakes [Yang et al., 2021]. We can also find
more complex perturbations such as the Wasserstein Attack [Wong et al., 2019] using Sinkhorn
projections. Trace-norm adversarial attacks [Kazemi et al., 2020] use the nuclear norm, the sum
of the matrix singular values of the perturbation image matrix. Such perturbations are found by
looking for adversarial perturbations with the minimal nuclear norm instead of minimal `p -norm.

2.3.2 Taxonomy of attacks

Since adversarial examples drew the attention of the community, a multitude of ways to build
them, namely, adversarial attacks, have been designed. Those adversarial attacks can be classified
according to parameters such as the goal of the attack, the level of knowledge used and some other
specificities of the attack.

2.3.2.1 Classification according to the goal of the attack

There are mainly three goals that an attacker can pursue: reducing the confidence of the predic-
tion, misleading the classifier into making a wrong prediction, or misleading the classifier into
predicting a specific class.

Confidence reduction Here, the goal is to reduce the "confidence" of the neural network. It does
not necessarily mean changing the classification, having a lower confidence for the correct class
is the objective.

Misclassification The goal here is to trick the classifier into making a wrong prediction, whatever
the wrong prediction may be. For example, the attacker may want to make a classification system
used on a self-driving car to misclassify a stop sign into any other road sign. These are untargeted
attacks as opposed to targeted attacks.

Targeted Misclassification The goal here is to trick the model into predicting a class chosen by
the attacker. Taking the same example as in simple misclassification, an attacker can be more
malicious and try to fool the classification system into classifying a stop sign into a priority road
sign, which can be harmful to passengers.

2.3.2.2 Classification according to the knowledge of the model

Attacks can also be classified according to the level of knowledge that the attackers have about the
attacked model. There are mainly two settings, white-box attacks, where the attacker has access
to all available information, and black-box attacks, where attackers are only allowed to query the
model. Gray-box setting is when the attackers have limited information about the model they
want to attack.

White-box attacks In white-box setting, the attackers have full access to the network, they have
access to the architecture, the parameters, the training data, with all available information. Ex-
ploiting that information allows attackers to find very subtle adversarial perturbations by using,
for instance, the gradient of the loss function with respect to the input of the model.

Black-box attacks To prevent the attack, an intuitive idea is to restrict the access of the model.
The model will then be considered as a black box, taking an input image and giving its class. How-
ever, even that is not enough to prevent the model from being successfully attacked. To attack a
model in such a setting, the first generation of black-box attacks creates a model that they train
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to mimic the behavior of the hidden model. They submit examples of their own dataset to the
hidden model and train their surrogate model to have the same prediction. Once the surrogate
consistently predicts the same class as the hidden model, white-box methods can be used to craft
adversarial examples for the surrogate and count on the transferability of those adversarial ex-
amples to fool the hidden model. The new generation of adversarial does not go through all that
gymnastic to fool the hidden model. They just query the hidden model and use some mechanisms
to find adversarial perturbations and to progressively improve the quality of the adversarial per-
turbations [Brendel et al., 2018]. In that setting, the number of queries needed to find reasonable
adversarial examples is taken into account to compare the efficiency of black-box attacks.

Gray-box attacks If knowledge about the architecture or (non-exclusive) about the training data
are given to the attacker, then we talk about gray-box setting. The same algorithms as in black-box
can be used while trying to exploit as much as possible the available information. It is maybe that
fact that led some authors of the community to consider gray-box settings as part of black-box
settings.

2.3.2.3 Specificities of the attack

An adversarial attack can produce perturbations that are untargeted or targeted, universal or im-
age specific, adaptive or nonadaptive, one-step or multistep, can be performed during training
time or at test time among other specificities of adversarial attacks.

Untargeted/Targeted Untargeted attacks are attacks performed with the goal of misleading a
model to make a mistake without targeting the class to be predicted a priori. Targeted attacks are
when not only we want to fool the model but we want it to predict a particular class.

Image specific/universal An attack can be image specific, meaning that given an image, the at-
tacker tries to find a transformation of the image such that the transformed image is similar to
the original one but that is misclassified. Most attacks in image classification are image-specific
since the transformations/perturbations are different for each image. There exist also universal
attacks. Unlike image-specific attacks, given a model, universal attacks aim at finding a single per-
turbation that can be added to any image to obtain an adversarial image with a high probability of
fooling the model. Those universal adversarial perturbations were also shown to transfer between
different models [Moosavi-Dezfooli et al., 2017a].

Non adaptive/Adaptive Most of the attacks used to challenge the robustness of neural networks
are nonadaptive in the sense that they are not designed to exploit the weaknesses of defense mech-
anisms but rather rely on common ways to find adversarial examples. However, some defense
mechanisms can neutralize the familiar attacks. To expose the vulnerability of these defenses,
adaptive attacks have been created. We can find in [Tramer et al., 2020] examples of defenses that
seem robust since they resist popular attacks and that have been defeated using adaptive attacks.

One step/multistep Attacks are either one-shot, meaning they perform only one step, or multi-
step, they perform several steps of the procedure they use to find adversarial attacks. Most single-
step adversarial attacks can be looped in an iterative way to obtain a multistep attack. Iterative
versions are more powerful than single step versions.For example, the Fast Gradient Sign Method
(see Definition 2.1) uses a single gradient step to find adversarial examples, so it is a one-step at-
tack. When several iterative gradient steps are used to obtain a Basic Iterative Method, we get a
multistep attack.
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Figure 2.8 – Illustration of the effect of poisonous data on the decision boundary of a classifier [Koh et al.,
2018].

Test time attacks/poisoning attacks Most of the attacks in the literature are test time attacks.
They are performed once the models are trained and do not intervene during training. Poisoning
attacks on the contrary, interfere with the training. There are two ways that poisoning attacks can
interfere with training, increasing the error rate by moving the decision boundary to poisonous
data or creating a backdoor. By modifying, adding, or deleting some data from the training set, the
attackers can alter the decision boundary of the model and increase the error rate. It is illustrated
in Figure 2.8, where we can see that the decision boundary obtained after the introduction of poi-
sonous data is incorrect. Even though the poisonous data in the example can easily be identified
as outliers, it is enough to prove the effect of data poisoning. More subtle ways of poisoning data
exist [Koh et al., 2018]. Another target of the poisoning attack is the creation of a backdoor. In
that case, the model has a normal behavior when a trigger is not present on the input. The trigger
plays the role of the signal sent to the model by the attacker. When the trigger is detected, then
the model would behave differently. For example, the provider of the spam detector can create a
backdoor activated by a particular sentence, such that any spam containing that sentence will not
be detected.

2.3.3 Adversarial attacks

Attacks presented here are essentially for image classification unless stated otherwise. The vast
majority of attacks also rely on the gradient of the loss function, the cross-entropy loss, or another
loss designed to enhance the fooling rate.

L-BFGS The paper [Szegedy et al., 2014] put the adversarial in the spotlight in the image classifi-
cation field. They found that small (additive) adversarial noises are enough to fool the classifiers.
Given a sample x, they look for an adversarial example x′:{

min
x′∈[0,1]d

‖x−x′‖2
2

s.t. D f (x′) = t ,
(2.8)

with D f (x′) = argmaxi fi (x′), the decision of the network, t , a target class different of the true label
associated with x. This problem, being difficult to solve directly, is reformulated as followed:

min
x′∈[0,1]d

c ‖x−x′‖2
2 +L (t , f (x′)) , (2.9)

where L is the cross-entropy loss function and c > 0 is a hyperparameter usually found with line
search. The problem (2.9) is then solved using L-BFGS. If the objective function (x′ → ‖x−x′‖2

2 +
L (t , f (x′))) is convex, then (2.9) gives an exact solution, but this is generally not the case for the
popular neural networks used in deep learning due to nonlinear activation functions. Since this
optimization is a bit slow, some faster ways to find adversarial examples were created soon after.
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FGSM and iterative variants Fast Gradient Sign Method [Goodfellow et al., 2015] was a popular
attack until the apparition of Projected Gradient Descent [Madry et al., 2019] among other variants
of FGSM.

Definition 2.1. FGSM, in its original version, is a single step attack used to compute an adversarial
attack with `∞-norm constraints. Given a model f and a sample x associated with the class y, FGSM
compute an adversarial noise δ:

δ= ε sgn
(∇xL (y, f (x))

)
. (2.10)

The computation of (2.10) is fast thanks to the use of GPUs. FGSM exploits the local linearity
of models to find adversarial examples. There are some trivial variants of FGSM:

• Random Step-FGSM [Tramèr et al., 2020] where a small random step is taken before com-
puting the gradient of the loss.

• Least Likely Class Method [Kurakin et al., 2017] where the least likely class is targeted. Let us
define yLL = argmini fi (x), then the associated adversarial example x′LL is defined as follows:

x′LL = x−ε sgn
(∇xL (yLL, f (x))

)
. (2.11)

Here, we use a minus to go in the direction that will decrease L (yLL, f (x)), i.e. increasing the
chance of x′ to be recognized as belonging to the class yLL.

• Basic iterative method (BIM) / projected gradient descent (PGD), which is applying several
steps of FGSM (it can also be applied to its variants):

x′0 = x, x′i+1 = Cl i pX ,ε{x′i +αbi msgn
(∇xL (y, f (x′i ))

)
}, (2.12)

where Cl i pX ,ε ensure that a valid adversarial example is found at each step and that is
within distance ε of the original example. The positive scalar αbi m is another parameter,
such that nstep αbi m is equal to the value ε, with nstep the number of iterative steps. Sticking
to this definition and allowing the nstep αbi m to be much greater than ε, we obtain the pop-
ular Projected Gradient Descent (PGD) [Madry et al., 2019] which uses Cl i pX ,ε to project
back examples that go outside of the desired region.

• There are other variants such as, for example, the variant using momentum [Dong et al.,
2018].

JSMA The Jacobian-based Saliency Map Attack (JSMA) [Papernot et al., 2016b] is an attack aim-
ing at fooling classifiers while modifying the fewest pixels, so an attack under `0-norm. This attack
is based on targeting the pixels that are more susceptible of causing a model to fail and modify-
ing them to fool the model. They use the Jacobian matrix of the logit outputs (pre-softmax) f (x),
∇x f (x) to select the pixel to be modified. Once that pixel is modified, they repeat the same process
on the obtained image, recomputing the Jacobian matrix, and selecting the most harmful pixel.
That process is repeated until the total number of pixel modifications allowed is attained or an
adversarial example is found.

One pixel attack After JSMA proved that it was possible to fool a network by modifying a few
pixels of the input image, [Su et al., 2019] showed that it was possible to go further by fooling the
network by altering as little as one pixel. They used the Differential Evolution concept [Das and
Suganthan, 2011] belonging to the general class of evolutionary algorithms. A strength of this ap-
proach compared to other evolutionary algorithms is that it keeps the diversity of the population.
Differential Evolution does not exploit gradient-based information and thus does not need the ob-
jective function that it optimizes to be differentiable. In practice, for a given example, they create
a population in R5, each vector containing the abscissa and the ordinate, then the RGB values of
the selected candidates. After that, the elements are randomly modified creating children. Each
child competes with its parent and the fittest is conserved for the next generation. One pixel at-
tack is very successful at finding an adversarial example by modifying a single pixel with the model
having high confidence of the wrong prediction.
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Figure 2.9 – Comparison between the noise perturbations produced by DeepFool and FGSM. Left: the clean
image classified as a whale; middle: perturbations produced using DeepFool; right: perturbations produced
using FGSM. The perturbations cause the model to predict a turtle instead of a whale.

Carlini & Wagner The Carlini & Wagner attack [Carlini and Wagner, 2017b] is a gradient based
attack that can be used to generate `2, `∞ and `0 norm adversarial perturbations. It is nevertheless
mostly used with `2 perturbation, for which it is among the strongest attacks. The Carlini & Wagner
attack can be related to [Szegedy et al., 2014], which it improves by using some tricks to use the
Adam optimizer that does not naturally support box constraints. It also uses a loss that is different
from the one used during training for attack models. It was used to defeat the distillation defense
[Papernot et al., 2016c] which had so far resisted to the available attacks.

DeepFool Another algorithm named DeepFool was proposed in [Moosavi-Dezfooli et al., 2016]
to compute iteratively adversarial perturbations with small norms. Deepfool takes the original ex-
ample as an initialization and assumes the linearity of the decision boundaries around it. It then
computes, using the linear boundary assumption, the minimal distortion needed to reach the de-
cision boundary. Then, from the new point, the same operation is repeated until an adversarial
example is found. The perturbations are accumulated at each step. In practice, the adversar-
ial perturbations produced using DeepFool are less noisy than those produced using FGSM (or
its versions) as shown in Figure 2.9. The reason is that it is not necessary for the DeepFool per-
turbation to modify every pixel with the same magnitude as it is done using FGSM for instance.
Deepfool is also used to create universal adversarial perturbations that we will see now.

Universal Adversarial Perturbation All attacks cited previously create a perturbation for each
given clean example. What about the existence of a single adversarial noise that can be added to
any given image to fool the classifier with high probability? Such an adversarial perturbation was
proposed in [Moosavi-Dezfooli et al., 2017a] under the name of "universal adversarial perturba-
tion" as opposed to image-specific perturbations. For a given model, to create such a perturbation,
they select a certain number of images, for example, 2000 examples, and create for those examples
a unique adversarial perturbation that fools the model on them. That universal adversarial per-
turbation will then generalize with high probability to other examples. It has also been shown that
those universal adversarial perturbations transfer across different models. In practice, they ini-
tialize the perturbation δu with a 0 matrix of the convenient shape. Then for each example, if the
perturbation does not fool the image, an image-specific adversarial perturbation δ is computed to
fool the model. Once such a perturbation is found, it is added to δu which becomes: δu = δu +δ.
The universal adversarial perturbation is also projected to the desired region at some points dur-
ing execution. Other universal adversarial attacks can be found in [Chaubey et al., 2020] along
with some defenses against them.

Adversarial examples generated with Generative models or auto-encoder Auto-encoders can
be used to generate adversarial examples as shown in [Baluja and Fischer, 2017]. Their approach,
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Figure 2.10 – Illustration of a trojaning attack. We can see the colored trigger near the lower right corner on
the last three images. Image taken from [Liu et al., 2017].

called Adversarial Transformation Networks, is to train an auto-encoder taking clean images as
input that provides as output an adversarial image against a network or a set of networks. The loss
used to train the auto-encoder encapsulates two parts. The first part is the classical reconstruction
loss that encourages the encoder to produce an output image similar to the input, and the second
part encourages to produce an image that is misclassified by the classification network or a set
of networks. Once Adversarial Transformation Networks are fully trained, they can be used to
generate adversarial examples in a black-box setting. A similar attack, called AdvGAN, has been
proposed more recently by [Xiao et al., 2019a].

Trojaning attacks, adversarial patches and eyeglasses A trojaning attack hides a certain func-
tion in the networks that will be activated by a certain trigger. The trojaned networks would per-
form as expected when the trigger is not detected, and would act differently when the trigger is
detected as illustrated in figure 2.10. We can see [Liu et al., 2017] as an example of poisoning at-
tack. Given a model, they select some neurons that have high influence over the classification, the
neurons that are the easiest to manipulate. The neurons with the highest sum of absolute value
of incoming weights. For those neurons, they create trojan triggers by maximizing the activation
of those neurons. They create a dataset by reverse-engineering the activations of the neurons of
the model, i.e., maximizing the activation of those neurons and storing the images that maximize
their activation to form a new dataset. And for each element of that dataset, they create a trojaned
version, then they retrain the model such that it behaves normally when the trigger is not present
and makes a wrong prediction when a trigger is on the image.

Similarly, in [Brown et al., 2018], the authors present an attack that they named Adversarial
Patch, a way to craft "universal, robust, targeted adversarial image patches in the real world". The
patches created are like stickers that can be put on any image to change the classification.

The same kind of patches has been proposed to attack facial recognition systems [Sharif et al.,
2016] (a real-world attack). They consist of eyeglasses that one can wear to evade being recognized
or to impersonate another individual.

This type of attack can be very damaging, especially considering how common it is to down-
load pretrained models to fine-tune them.

Beyond simple image classification Most of the attacks presented here are relative to image
classification, in the following paragraphs, we are presenting attacks on some other domains as
illustrations of the existence of adversarial on other domains. The goal is to show that adversarial
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Figure 2.11 – Example of adversarial examples in natural language processing. The attack was performed
on ParallelDots’s sentiment analysis tool , a popular text analysis system. Image taken from [Wang et al.,
2021].

examples are observed well beyond classification.

Adversarial attacks on Speech-to-text Voice assistants that process sound to execute commands
are also prone to adversarial examples. Carlini and Wagner show that it is possible to attack algo-
rithms used in automatic recognition that are employed by voice assistants [Carlini and Wagner,
2018]. They produce sounds that are similar but are associated with very different texts8.

Attacks on natural language processing There are also adversarial examples on natural lan-
guage processus [Wang et al., 2021] as illustrated with Figure 2.11. By modifying slightly a text,
while maintaining the same idea, it is possible to mislead the models to have a wrong output.

Attacks on autoencoders and Generative Models Adversarial examples for autoencoders were
studied in [Tabacof et al., 2016]. Their attack was able to modify the input image leading the au-
toencoder to recreate a completely different image instead of the input image. To create adver-
sarial examples, they manipulate the internal representation of the adversarial image to make it
similar to that of the target image. Other methods were proposed in [Kos et al., 2017] to attack
variational autoencoder (VAE) and VAE-GAN.

Attacks on deep reinforcement Learning Deep reinforcement learning is used to efficiently train
a computer to play games against humans. Computers powered with AI are able to beat the best
human in some games, namely, AlphaGO [Holcomb et al., 2018]. However, models trained with
deep reinforcement learning are not free from adversarial vulnerabilities as illustrated in Figure
2.12. In that image, we can see the normal behavior of the model taking the right action on the
clean image. Then we can see it will take a wrong action due to adversarial manipulation of the
image. FGSM was used to create an adversarial attack on the model trained using reinforcement
learning techniques [Huang et al., 2017]. Several other attacks on deep reinforcement learning can
be found in [Chen, 2019].

Attacks on semantic segmentation and object detection Viewing the segmentation and object
detection tasks as "classifying multiple targets in an image" [Akhtar and Mian, 2018], [Xie et al.,
2017] compute adversarial examples for image segmentation and detection. The target is de-
scribed as "a pixel or receptive field in segmentation, and object proposal in detection". With

8Audio files and their transcriptions are available at https://nicholas.carlini.com/code/audio_

adversarial_examples
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Figure 2.12 – Example of adversarial attack on Deep Reinforcement Learning. On the left image, the normal
behavior of the model, we can see it takes the right decision. On the right, an adversarial image where a
wrong decision is taken. The attack on the image was done using FGSM.

this viewpoint, they proposed "Dense Adversary Generation" that optimizes a loss function over a
set of pixels to generate adversarial examples. Illustrations are given in Figure 2.13.

Transition/Summary Although deep learning algorithms are widely used, it is quite easy to fool
them due to their brittleness. There is a large body of work showing ways to attack models in image
classification. Table 2.1 summarize them with some of their attributes. Nevertheless, the challenge
that adversarial examples poses goes well beyond image classification. Adversarial examples arise
in several domains with different data, structured or not. They arise in domains like such as image
segmentation, object detection, speech-to-text, natural language processing...

Table 2.1 – Summary of the attributes of diverse attacking methods. The column ‘Perturbation’ indicates
the p-norm of the perturbations for which the attack is the most efficient. In the last column , the strength
(higher for more stars) is based on our practice of the attack. This Table is adapted from Table 1 in [Akhtar
and Mian, 2018].

Method Type Targeted or Not Specific/Universal Perturbation Learning Strength
L-BFGS White box Targeted Image specific `∞ One shot ??

FGSM White box Targeted Image specific `∞ One shot ??

PGD White box Non targeted Image specific `∞ Iterative ???

JSMA White box Targeted Image specific `0 Iterative ??

One-pixel Black box Non targeted Image specific `0 Iterative ?

C&W attacks White box Targeted Image specific `2 Iterative ???

DeepFool White box Non targeted Image specific `∞ Iterative ???

Uni. perturbations White box Non targeted Universal `∞ Iterative ??

Auto-Encoder White box Targeted Image specific `2 One shot ?
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Figure 2.13 – Adversarial example illustration for image segmentation and detection from [Xie et al., 2017].
On the first row from left to right, we have a clean example, its segmentation by [Long et al., 2015] and the
results of its segmentation by [Ren et al., 2016]. On the second row, the adversarial perturbations multiplied
by 10 to be visible, the segmentation of the adversarial image obtained and its detection. In the segmenta-
tion, the color purple represents the class dog and the light green represents the class person.

2.4 Adversarial defenses

Now that we have presented adversarial examples and different attacks to generate them, there
remains legitimate questions. How to prevent them? How to defend against them? In this sec-
tion, we review methods for training neural networks to be robust to adversarial attacks under
some threat models. There are three main ways to defend against adversarial examples. The first
way is via robust optimization. The second way is to detect adversarial examples. The third way
is by using gradient masking[Silva and Najafirad, 2020]. But first, let us start by formulating the
adversarial classification challenge.

A formulation of adversarial classification In contrast to normal classification (introduced in
the Section 2.1) which aims at classifying the input sample, adversarial classification intended to
guarantee that no input near that input sample is classified differently. Since the classification
loss measures the correctness of the classification, adversarial classification aims at having the
worst case loss around an input to be low, to guarantee the correctness of the decision taken by
the classification around that input. Hence, in adversarial training, instead of minimizing the em-
pirical loss defined in Equation (2.3) as it is done in normal classification, the following quantity is
minimized with respect to f :

1

N

N∑
i=1

max
‖x(i )−x‖X ≤ε

L (y(i ), f (x)), (2.13)

with ε a positive scalar controlling the "volume" of the desired region of robustness. This is the
quantity that adversarial defenses (those relying on robust optimization) optimize, while other
defense strategies rely on some tricks that are mostly ineffective [Carlini et al., 2019].

2.4.1 Taxonomy of defenses

Following a broad categorization proposed in [Akhtar and Mian, 2018], we can classify defense
mechanisms in three categories that can overlap:

• defenses that modify the data. Adversarial training is a good example of data modification
to achieve robustness. A less typical method to train robust models is using "robustified"
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version of the dataset as proposed in [Ilyas et al., 2019] where nonrobust features were with-
drawn from the training images. The data modification can also occur at the test time, where
input images are preprocessed with the aim of defending against adversarial examples.

• defenses that modify the model itself. Defensive distillation [Papernot et al., 2016c] that will
be discussed is an example of that.

• defenses that use another model to defend against adversarial examples, using, for example,
a GAN or an Auto-encoder to preprocess the input data so that it is well classified.

Adversarial defenses can also be categorized according to the fact that they are deterministic
or not, empirical or provable, that they have a linear behavior, or they are highly nonlinear.

Deterministic vs Stochastic Most of the defenses we are going to present are deterministic. How-
ever, there are some defenses that are stochastic, such as Stochastic Activation Pruning [Dhillon
et al., 2018] where a random subset of activations are pruned and the others are scaled up to com-
pensate. Authors claim that this method gives robustness to the models and increases accuracy.

Empirical vs provable Defenses are generally empirical. However, there are some provable de-
fenses such as [Wong and Kolter, 2018] and [Raghunathan et al., 2020] that use mathematical tools
to prove the robustness of their models.

linear vs highly nonlinear When we talk about the linearity of a model, we also include the
piecewise linear model. ReLU being the most popular activation function, the models are gen-
erally piecewise linear. Models with activations such as sigmoid or hyperbolic tangent, can be put
in the same group since they are not highly nonlinear. When we refer to highly nonlinear models,
we think about models using a rectified polynomial unit with degree going up to 30 as in [Krotov
and Hopfield, 2018].

We can also categorize the defenses according to the fact that they rely on robust optimization,
on adversarial detection or gradient masking.

Robust optimization Defenses based on robust optimization are those based on approaches
that improve the robustness of the model by using regularization, certification bounds, or adver-
sarial examples during adversarial training. It is for example the case of adversarial training where
adversarial examples are used during training, and all the defense mechanisms minimizing 2.13.

Adversarial example detection Another approach is to recognize the inputs given to the classi-
fier when they are adversarial. If adversarial examples are recognized, they can be ignored, there-
fore no need to classify them.

Gradient masking Another defense mechanism consists in denying the attacker access to mean-
ingful gradients to use to create attacks. This can be done by using functions that are not differ-
entiable. In that case, it is not possible to compute the gradient. Some tricks can also be used to
obfuscate the gradients as in k-WTA [Xiao et al., 2019b], illustrated Figure 2.14.

The taxonomy allows to compare different defense mechanisms. As it could be unfair to com-
pare deterministic mechanisms to stochastic mechanisms, for example. In the following, we present
defenses that cover the different aspects stated above. As for the attacks, we present the defenses
also based on their popularity, their efficiency, their originality, the goal being to give an overview
of the existing defenses.

2.4.2 Empirical defenses

The first defenses against adversarial examples that emerged were empirical defenses. Defensive
Distillation [Papernot et al., 2016c] is ones of them. It seemed robust at first, but more powerful
attacks showed it was not.
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Figure 2.14 – Example of gradient obfuscation. From left to right, we have a visualization of the loss of
Resnet18 model trained with k-WTA [Xiao et al., 2019b] only, another adversarially trained, a Resnet18
trained with ReLU activations, and the last one trained by adversarial training. We can see that the model
trained with k-WTA has a loss landscape that is very rugged compared to the one of the model trained with
ReLU activations. We can also observe that adversarial training has a smoothing effect on the loss land-
scape.

Figure 2.15 – On the left, the training of the "teacher" network and on the right, the training of the "student"
network, the distilled one trained with the outputs of the "teacher" network. Image taken from [Papernot
et al., 2016c].

Defensive distillation In [Hinton et al., 2015], the concept of distillation is introduced as a train-
ing method allowing to transfer knowledge from a network with a lot of parameters to another one
with fewer parameters. This concept was later used in [Papernot et al., 2016c] to defend against
adversarial attacks. How does defensive distillation work? A first neural network is trained with
a modified softmax function in the final layer, introducing a constant T◦ ≥ 1, with f (x) the pre-
softmax output for the input x and C is the number of classes:

softmaxT◦( f (x)) = exp
(

fi (x)/T◦)
C∑

c=1
exp

(
fc (x)/T◦) . (2.14)

Once this network is trained, it is considered as the "teacher" and its logits (pre-softmax activa-
tion) are going to be used as training labels for a second network called the "student", as illustrated
in Figure 2.15. Typically, higher temperatures are used for the student network since it makes the
gradient vanish. Defensive distillation has the effect of flattening the softmax while the parame-
ter T◦ grows. It becomes more obvious, when we take the limit T◦ →∞ of the softmax, since, for
any input x, we obtain the same output 1

C for all classes. And having a constant output means
the gradient can not be exploited to craft adversarial examples. Then, we can say that defensive
distillation uses gradient obfuscation to defend against attacks. It gave a false sense of robustness
until it was defeated by the Carlini & Wagner attack [Carlini and Wagner, 2017b] which showed
that distilled models are as vulnerable as undistilled models. Adversarial examples that fool the
undistilled models also fool the distilled ones.
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Adversarial training and its variants The idea that using adversarial examples to train models to
be robust against adversarial modification emerged very early. The core idea of adversarial train-
ing is to generate adversarial examples on the fly and to train on them. But the generation of
adversarial examples was too time consuming and prevented people from creating adversarial ex-
amples on the fly to robustify the models. This problem was solved using FGSM [Goodfellow et al.,
2015]. FGSM was used to prove experimentally the effectiveness of adversarial training. More re-
cently, PGD, that we presented as an iterative variant of FGSM, has been found to be preferable
to FGSM for creating adversarial examples. Even though training with PGD can take more time,
experimentally, models trained with PGD are more robust than the one trained with FGSM.

Given an adversarial example x′ near a clean example x, the robust model is trained by min-
imizing the adversarial training loss, a convex combination of the loss on the clean data and the
loss on a corresponding adversarial example:

Lad v = αL
(

f (x),y
)+ (1−α)L

(
f (x′),y

)
, (2.15)

where α ∈]0,1] balances the "importance" given to the loss at x and x′. The value α = 0 means
training only on adversarial samples, and the α = 1, normal training without adversaries. The
valueα= 0.5 seems to work well in practice even though other values could give better results. This
approach is generally used with PGD as said previously, but the idea is generic enough to be used
with any other way of generating adversarial examples. Adversarial training has a smoothing effect
on the loss function as shown in Figure 2.14. There exist also a theoretical motivation of adversarial
training coming from the robust optimization field [Tsiligkaridis and Roberts, 2021, Shaham et al.,
2018]. Adversarial training is the most popular, it has also been proven to be relatively efficient
against attacks.

Stochastic Activation Pruning It is also possible to introduce randomness in the "structure" of
the network to defend against adversarial attacks. It is that idea that is used in [Dhillon et al.,
2018] with Stochastic Activation Pruning (SAP), where some activations are randomly pruned by
being set to 0. This approach has similarities with dropout at test time [Srivastava et al., 2014]. A
difference between the latter and SAP is that, while the pruning probability is uniform for dropout,
for SAP it depends on the magnitude of the activations. The survival probability of an activation,
i.e. the probability of not being pruned, is:

p i
j =

|ẑi
j |

Ki∑
k=1

|ẑi
k |

, (2.16)

where ẑi
j is the the activation of the j -th neuron of the i -th layer and Ki is the number of activations

on the i -th layer.
We can see that neurons with smaller activation magnitudes have less chance of surviving,

meaning they are more likely to be pruned than neurons with higher activation magnitudes. The
magnitudes of the surviving neurons are rescaled so that the pruned model behaves like the "nat-
ural" one on clean samples while being more robust against adversarial attacks. The stochasticity
of the model is believed to make it more robust against attacks because the attacker has more trou-
ble accessing the gradient. In other words, SAP relies on gradient masking and is an example of a
defense modifying the model. SAP was empirically proved effective in increasing the robustness,
for example, of [van Hasselt et al., 2015] in reinforcement learning. However, SAP has been shown
to be vulnerable to an iterative attack [Athalye et al., 2018a] relying on gradients computed using
Expectation Over Transformation [Athalye et al., 2018b].

Thermometer encoding As seen previously, one of the reasons that was thought to cause the
existence of adversarial examples was the linearity of the model (cf the linearity hypothesis intro-
duced page 38). The idea that breaking that linearity should lead to a more robust model is ex-
ploited in [Buckman et al., 2018]. They propose to quantize the inputs and then use thermometer
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encoding that works as follows. Let q be the quantization function. Suppose x ∈ [0,1] a real num-
ber, let us say the value of pixel for instance, ql (x) returns the smallest value k such that x < k

l , with
l a positive integer and k ∈ {1, ..., l }. As illustration, if x = 0.55, and l = 10 q10(0.55) = 6. This quan-
tization allows to erase the effect of some small perturbations, for example, q10(0.51) = q10(0.55) =
q10(0.59) = 6. Then thermometer encoding of a real number x and k ∈ {1, ..., l } is:

TEk (x) = TEk
(
ql (x)

)= {
1 if k > ql (x),
0 otherwise .

(2.17)

For example, using the example value as in the previous example TE(0.55) = [0000011111]. The
TE representation is nonlinear and non-differentiable, making it impossible for the attacker to
directly have a gradient to exploit to create adversarial. Combining this representation with ad-
versarial training leads to models that are robust to PGD attack because this method uses gradient
masking via a modification of the input. However, TE encoding alone is not sufficient since [Atha-
lye et al., 2018a] showed that under strong enough attack, the accuracy of the model drops to 0
(or nearly 0) , meaning TE does not imply a real improvement alone. They also showed that com-
bining TE and adversarial training can lead to less robust models than using adversarial training
alone.

Parseval Network Another way to train a more robust neural network is through regularization.
Parseval Networks [Cisse et al., 2017] are an example of regularization that aims at training more
robust networks. The idea developed in this paper is to train the neural network in a way that
allows to control the difference of the loss at two points x and x′ by the difference of their norm
multiplied by a constant, the Lipschitz constant. A relation such as:

∀x,x′ ∈X ,∀y ∈Y , |L ( f (x),y)−L ( f (x′),y)| ≤ λp‖x−x′‖p , (2.18)

with λp , the Lipschitz constant for the p-norm associated with L ( f (.), .). Parseval networks are
trained to have a small of λp . Seeing networks as a composition of functions, they have to ensure
that each function of the neural network is Lipschitz function with a small Lipschitz constant.
The training is designed to maintain the spectral norm of the weight matrices to 1. For a weight
matrix W ∈Rdi n×dout with dout ≤ di n , Parseval regularization maintains W>W ≈ Idout , with Idout the
identity matrix of Rdout×dout . Combining Parseval Networks with adversarial training seems to give
a robust model. Among other benefits of Parseval Networks, they were shown to converge faster
than the corresponding vanilla version and they are believed to make a better use of the capacity
of the networks. Parseval networks have resisted FGSM, however, more powerful methods such as
PGD should break it.

Miscellaneous Detecting adversarial examples is by itself a hard task as shown in [Carlini and
Wagner, 2017a]. We did not talk about the adversarial example detection in detail for several
reasons. The first reason is that their effectiveness is not proven, to the best of our knowledge.
In [Carlini and Wagner, 2017a], all ten detection systems that were studied were successfully by-
passed even if it required the use of a particular loss. Sometimes, even attackers that are oblivious
to the detection mechanism manage to fool the detection system. Researchers are yet to produce
a detection system that is robust. And it seems to be a very difficult task since usually the models
used can be targeted and fooled.

Using ensembles of models is also not enough to be robust to adversarial attacks since di-
rections that fool simultaneously several models can be found as shown by universal adversarial
perturbation [Moosavi-Dezfooli et al., 2017a]. Preprocessings like blurring, cropping, compress-
ing are also useless, especially when the attacker is aware of the preprocessings used. And even
in the case when the preprocessings are randomly chosen, it is still possible to attack successfully
the model by using for instance the Expectation Over Transformation [Athalye et al., 2018b].

Many of the empirical defenses have been broken after being found to be effective. This calls
for a more rigorous evaluation of the robustness of neural networks, as we will see in the Section
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Figure 2.16 – Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex bound
[Wong and Kolter, 2018].

2.5. Some defense mechanisms were designed to give theoretical guarantees or empirical guaran-
tees that can be more or less easily proven by the methods which will be presented in the Section
2.5. They are called the provable defenses.

2.4.3 Provable defenses

Defending against adversarial is a very difficult task. Several defenses published at top conferences
have been proven ineffective and been completely broken for the most part by either using existing
attacks at publication time or by creating new ones more suited for the task of breaching that
defense. Hence, the needed of provable defenses that can be proven to be efficient. Those provable
neural networks are usually piecewise to allow verification.

Provable defenses via convex outer adversarial polytope The first provable defenses to be pub-
lished in image classification are [Wong and Kolter, 2018] and [Raghunathan et al., 2020]. Those
two methods use an estimation of the upper bound of the adversarial loss to train provably robust
models. We will focus on [Wong and Kolter, 2018], which is more representative of the approach
than [Raghunathan et al., 2020], which were designed for smaller networks. [Wong and Kolter,
2018] also has another version [Wong et al., 2018] that scales their defense to larger networks.

The main idea of [Wong and Kolter, 2018] is the computation of a convex outer approximation
of the set of activations that can be reached by a norm-bounded perturbation. Ideally, the set
of activations is directly computed and used, but this set is generally not convex and is difficult
to obtain. Then the authors developed a robust optimization method minimizing the worst case
over the outer approximation. In Figure 2.16, we have an illustration showing the set of activations
reachable by a norm-bounded perturbation around a clean input and an outer convex polytope.
The worst case loss over this outer region is minimized using a linear program during training. At
the test time, all examples around which there are adversarial examples are successfully found.
However, due to the fact that an upper bound of the worst case loss is used, some robust examples
can be wrongly flagged as having adversarial examples around them. Simply said, if there are
adversarial examples around the sample, this method is aware of their presence, but sometimes it
wrongly says that they are adversarial examples. Even more simply, if this method says an example
is robust, then it is robust, and if it says there are adversarial examples, it can sometimes be wrong.

Provable Robustness of ReLU networks via Maximization of Linear Regions In [Croce et al.,
2019], the provable robustness problem was discussed in a very interesting way. Working with
ReLU activation, the functions f , representing the neural networks they use, are piecewise linear.
Then any input x can be affected to a linear region. Their idea to promote robustness and prov-
ability is to maximize the linear regions containing the training points. If the linear regions around
the points are large enough, for each point, proving robustness within a p-norm ball contained in
that linear region or finding an adversarial example can be done by solving a few linear programs.
To explain the idea more clearly, given an input x, let us use the two distances they defined:

• dD(x), the distance between the input x and the decision boundary,
• dB(x), the distance between the input x and the border of the linear region containing x.
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Figure 2.17 – Left: the input x is closer to the border of the linear region containing x (black) than to the
decision boundary (red). In this case the smallest perturbation that leads to a change of the decision lies
outside the linear region of x. Right: the input x is closer to the decision boundary than to the border of
the linear region containing x, so that the projection of the point onto the decision hyperplane provides the
adversarial example with smallest norm (Figure taken from [Croce et al., 2019]).

An illustration is given in Figure 2.17, in which we can see two possible configurations: dD(x) ≤
dB(x) or dB(x) ≤ dD(x). This figure gives also an intuition about the following theorem:

Theorem 2. Explaining consequences of each setting:

1. if dB(x) ≤ dD(x), then dB(x) is a lower bound on the minimal `p -norm of the perturbation
necessary to change the class

2. if dD(x) ≤ dB(x), then dD(x) is equal to the minimal adversarial `p -norm perturbation neces-
sary to change class.

In other words, if we restrict to the linear region of the original input and compute the dB(x)
and the minimal adversarial distortion in that linear region, there are two possibilities:

• either x is closer to the border of the its linear region, in that case dB(x) is a lower bound of
the distance dD(x), which corresponds to the left image in Figure 2.17,

• or x is closer to the decision boundary than the border, and in that case, the projection of
x on the decision boundary give the minimal adversarial distortion dD(x), the case repre-
sented on the right image of Figure 2.17.

We see now how interesting it is to be the case corresponding to the point 2 of Theorem 2. The
maximization of the linear regions done by [Croce et al., 2019] aims at putting all training points
in that situation, increasing the chances of test points to be in that same situation, and proving
robustness or vulnerability without having to solve time-consuming MIPs.

Nevertheless, we sometimes cannot escape the formal verification methods because even the
provable methods are not sufficient to prove robustness or vulnerability.

2.5 Formal verification of robustness to adversarial examples

This introduction is adapted from [Vechev, 2020] lecture on mathematical certification of neural
networks where the following quote from Dijkstra is recalled: "program testing can be used to
show the presence of bugs, but never their absence". We can adapt that quote to adversarial at-
tacks by saying that adversarial attacks can be used to show the presence of adversarial examples
but never their absence. Adversarial attacks can be identified to "program testing" in the sense
that, if they find an adversarial example which can be identified to a "bug", then it is find, but it is
not possible to certify the absence of an adversarial example using attacks. To prove the robust-
ness, it is necessary to use mathematical certification. Let us give a general formulation of formal
verification [Vechev, 2020]. Given:
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• a neural network f ,

• a property over the inputs Φ, named precondition. In our case, Φ generally represents a
region of the input space, for example given an input x, the intersection between a p-norm
ball of radius ε around x and the input space X , Bε,p (x).

• a property over the outputsΨ, named postcondition. In our case,Ψ generally represents the
right class prediction.

• a property (P), such that for every input x satisfying the precondition, the output of the neu-
ral network f (x) satisfies the postcondition.

(P) : ∀x′ ∈X , {x′ �Φ} =⇒ { f (x′)�Ψ}. (2.19)

In our case, the robustness property that means for every input belonging to a region near a
clear example, the output of the neural network is correct.

Formal verification aims at either giving

• either proves the property (P) holds.

• or returns an input x such that the property (P) does not hold, showing that:

∃x′ �Φ∧¬{ f (x′)�Ψ} . (2.20)

It means it returns an input satisfying the precondition but does not satisfy the postcondi-
tion.

Formal verifications have several characteristics: they can be sound or unsound, complete or
incomplete.

Soundness A verification method is sound if when a property is violated, when the verification
method terminates, the method always states that the property is violated. Generally, we refer to
sound methods as certification methods.

Unsoundness A method is unsound if when a property is violated, the method could poten-
tially terminate stating the property is satisfied. We can see the attacks as an unsound verification
method, in the sense that they can terminate without finding adversarial examples even though
they are the domain in which they search.

Complete A method is called complete if it is able to prove the property holds when it holds. It is
the case of MIP [Tjeng et al., 2018] or [Katz et al., 2017] which are able to prove the robustness of
a piecewise linear classifier on some regions. Complete methods are usually time-consuming and
do not yet scale to very deep neural networks.

Incomplete A method is incomplete if it is not guaranteed to prove a property when the property
effectively holds. It is the case of the verification method used in [Wong and Kolter, 2018] that uses
an upper bound on the loss. This method can flag a region potentially containing an adversarial
example while there is no adversarial example in that region.

Regarding verification methods, we generally use sound methods. Those sound methods are
generally either incomplete and scalable or complete but do not scale up very well. Incomplete
methods are usually a relaxation of some complete method allowing to speed up the computation.
Let us start by presenting the complete methods, next we present incomplete ones.

2.5.1 Complete Verification methods

The complete and sound methods are presented hereafter. These are the methods that are able
to optimally give the minimal adversarial distortion. We will take a look at the MIP formulation in
general and the formulation of [Tjeng et al., 2018] in particular, and to ReLUPlex [Katz et al., 2017].

57



CHAPTER 2. ADVERSARIAL EXAMPLES: AN OVERVIEW

Classic formulations of the robustness verification problem Let f : [0,1]d → Rd represent a
neural network’s classification function. And let Nx a convex neighborhood of x ∈X associated to
the class c.

There are two ways to formulate the robustness problem using a Mixed Integer Linear Pro-
gram. Either we minimize the difference of the outputs for two close inputs, or we look for the
closest input modifying the output.

The optimization over the output of the neural networks to prove or deny robustness around
the input x is written:

∆= min
x′∈Nx,i 6=c

fc (x′)− fi (x′), (2.21)

where fi (x′) is the output related to i-th class for the input x′ of the neural network. With this
formulation, given a convex neighborhood Nx, we know that the neural is robust on Nx if and
only if ∆> 0. ∆> 0 means that for any points x′ ∈Nx, we always have fc (x′)− fi (x′) ≥∆> 0,∀i 6= c
since by definition∆= minx′∈Nx,i 6=c fc (x′)− fi (x′) is the minimum value that fc (x′)− fi (x′) can take.
This leads to:

∀ x′ ∈Nx,∀ i 6= c, fc (x′) > fi (x′). (2.22)

Meaning any point in Nx belongs to the class y . If on the contrary ∆≤ 0, it means:

∃ x′ ∈Nx,∃ i 6= c, fc (x′) ≤ fi (x′). (2.23)

Then the neural network is not robust since there exists a point in Nx which is not classified to c.
The second way is to minimize the distance between the original example x and the adversarial

examples in Nx. It is formulated as follows: min
x′∈Nx

‖x−x′‖p

s.t. max
i={1,...,C}\c

fi (x′) > fc (x′).
(2.24)

where p is 1, 2 or ∞.
If the Problem 2.24 is infeasible, then the decision of the classifier does not change in Nx then

we have Equation 2.22. Otherwise, a solution is found and it is enough to prove that the classifier
is not robust on Nx.

Problems 2.21 and 2.24 give the same result regarding computing the robust test error. How-
ever, we prefer formulation 2.24 because it can give the minimal adversarial distortion in addition
to just proving the vulnerability in a region.

MILP formulation of ReLU Apart from the ReLU or other piecewise linear activation such as
Maxout [Goodfellow et al., 2013], the other components of neural networks are usually linear ex-
pressions and can be directly integrated in solvers. This is not the case of ReLU : ReLU is not a
linear expression, but since it is piecewise linear, some tricks can be used to obtain a linearized
expression of ReLU. Obtaining a linear expression of ReLU requires the introduction of binary val-
ues, one binary value for each ReLU activation, and the use of a majoring constant, the big-M
constant. Let ẑ be a pre-ReLU activation on a layer containing e neurons and z = ReLU(ẑ), then a
linearization can be written as follows [Wolsey and Nemhauser, 1999]:

zi ≥ 0, i = 1, . . . ,e (2.25)

zi ≤ Mr bi , i = 1, . . . ,e (2.26)

zi ≤ ẑi +Mr (1−bi ), i = 1, . . . ,e (2.27)

zi ≥ ẑi , i = 1, . . . ,e (2.28)

bi ∈ {0,1}, i = 1, . . . ,e (2.29)

with Mr such that Mr ≥ max |ẑi |,∀i = 1, . . . ,e.
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Proof. We can remark that the constraints act in pairs to fix the value of zi according to the value
of bi . The pair, when bi = 0, the pair 2.25 and 2.26 forces zi = 0 while the pair 2.27 and 2.28
forces zi = ẑi when bi = 1.The case ẑi = 0, is a particular case that can be satisfied with the ReLU
considered active, bi = 1 or inactive, bi = 0.

Let us show that this formulation is such that, for a fixed i , {ẑi ≤ 0} ⇐⇒ {zi = 0}, and {ẑi ≥
0} ⇐⇒ {zi = ẑi }:

• inactive case: {ẑi ≤ 0} ⇐⇒ {zi = 0}. Let us suppose that ẑi < 0 and prove that z = 0.

– Let us suppose bi = 1. Then we have zi = ẑi < 09, then the constraints 2.25 and 2.27 are
unsatisfiable. Thus, we cannot have ẑi < 0 and bi = 1.

– The other possibility is bi = 0. In that case, we have z = 0 and all constraints are satis-
fied.

We demonstrated that {ẑi < 0} =⇒ {zi = 0}. Let us now suppose we have zi = 0 and
show that ẑi ≤ 0. Having zi = 0, let us suppose ẑi positive, then inequation 2.28 is
infeasible, meaning that it is impossible to have zi = 0 and ẑi > 0, so {zi = 0} =⇒ {ẑi ≤
0}.

• the same reasoning is applied to prove {ẑi ≥ 0} ⇐⇒ {zi = ẑi }.

The formulation of the ReLUs and how they are handled are the main differences between
the methods used to prove the robustness of neural networks. Unfortunately, the introduction of
binary values makes the robustness verification problem NP-complete. Given a neural network,
the total number of combinations is 2 to the power of the number of ReLUs, which is already
prohibitive for small size networks. The most efficient robustness verification methods aim at
mitigating the exponential number of possible combinations by extracting information from the
neural networks.

Reluplex Reluplex is a technique for solving linear programs with ReLU constraints by extending
the simplex method to handle ReLUs, hence the name Reluplex [Katz et al., 2017]. Reluplex does
not require branching in advance as it would be the case for the branch and bound algorithm, for
example. The ReLU constraints are incrementally satisfied with slack variables, basic variables,
and nonbasic solutions as in a normal simplex. In practice, branching may be used but only when
it is necessary. In their experiment, that was used on around 10% of the total number of ReLUs.
Reluplex was then the state-of-the-art verification system. To have an efficient implementation
of reluplex, bound tightening should be used to derive bounds on the activations to get stable
ReLUs. This will in turn reduce the number of needed branching. Reluplex is based on Satisfiability
Modulo Theory (SMT). Reluplex is sound under real arithmetic (unsound under floating point
arithmetic [Singh et al., 2019]) and complete and has been used to verify the airborne collision
avoidance system (ACAS Xu) [Julian et al., 2016]. However, Reluplex is reported to produce an
"error" on some instances in [Dutta et al., 2017], the guess was that it was due to the use of floating
point arithmetic. Note that there exist other SMT based verifiers such as Planet [Ehlers, 2017].

MIPVerify Associated with [Tjeng et al., 2018], MIPVerify is the state-of-the-art verifier using MIP.
MIPVerify exploits the feedforward structure of neural networks to compute bounds on the pre-
ReLU activations of the networks. This information is used to reduce the solve time. Having tight
bounds allows to discover that some ReLUs are always active or always inactive, thus allowing to
decrease the number of binary values needed for the optimization. The authors of [Tjeng et al.,
2018] introduced asymmetric bounds, instead of using the same big-M value, they used distinct

9the case ẑi = 0 is excluded for simplicity
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values representing the lower bounds and the upper bounds. Using the setting as in 2.25-2.29 , the
set of constraints linearizing the ReLU becomes :

zi ≥ 0, i ∈I (2.30)

zi ≤ Ui bi , i ∈I (2.31)

zi ≤ ẑi −Li (1−bi ), i ∈I (2.32)

zi ≥ ẑi , i ∈I (2.33)

bi ∈ {0,1}, i ∈I , (2.34)

with I , the set of unstable ReLUs, meaning ReLUs such that Li ≤ ẑi ≤ Ui with Li < 0 and Ui > 0.
If Li ≥ 0 then i-th ReLUs is stably active then zi = 0; if Ui ≤ 0 then the neuron is stably inactive
then zi = ẑi . Note that it is possible to go back to the naive symmetric formulation by replacing
Ui and (−Li ) by M = max(Ui ,−Li ). MIPVerify was able to achieve an improvement of several or-
ders of magnitude with respect to a naive implementation of MIP. MIPVerify is also between two
and three orders of magnitude faster than the state-of-the-art Satisfiability Modulo Theory (SMT)
based verifier: Reluplex [Katz et al., 2017].

2.5.2 Incomplete Verification Methods

A unified view of LP-relaxed verifiers is presented [Salman et al., 2019] gathering all available LP-
relaxation methods used to verify the robustness of neural networks [Zhang et al., 2018, Wong and
Kolter, 2018] among others. They compared the methods between them and showed the existence
"inherent barrier to tight verification" for the large class of methods captured by their work. We
will present the certification method used in [Wong and Kolter, 2018] and DeepPoly [Singh et al.,
2019] which is using abstract interpretation.

LP-Relaxed Dual The paper [Wong and Kolter, 2018] that proposed the first provably robust
model of with more than 3 layers uses a verification method in order to robustify the model and
also prove robustness. They use the convex relaxation of ReLU with the minimum area in the
input-output plane as illustrated in the Figure 2.19-(a). This relaxation allows to find a convex
outer polytope on the set of reachable output of the neural network. Let us explicit the optimiza-
tion used to certify robustness of a model, x being the original example, c its class, Zε(x) the convex
outer polytope of the reachable output for input in Bε,p (x), f̂ is obtained by relaxation of the ReLU:{

min
x′∈Bε,p (x)

f̂c (x′)− f̂t (x′)

s.t. f̂ (x′) ∈Zε(x),
(2.35)

for a given class t 6= c. The optimization problem 2.35 is a Linear Program. Its objective func-
tion is such that if at the end of the optimization it is positive, then the neural network is robust
on Bε,p (x). For efficiency reasons, instead of solving directly the optimization problem with con-
straints represented by the relaxation, the dual problem is solved. They derived a way to find
efficiently a solution for the dual in one backward pass through a modified version of the neural
network. And since any solution of the dual solution is a lower bound of the objective function of
the Primal 2.35, the optimization is done on the dual to obtain a positive lower bound guarantee-
ing the robustness on Bε,p (x).

DeepPoly In [Singh et al., 2019], a new approach that takes `p -norm perturbations as well as
other more complex transformations such as brightening/darkening or rotation was proposed,
under the name of DeepPoly. DeepPoly can also certify neural networks with nonlinear activa-
tions like sigmoid or tanh. DeepPoly uses an abstract interpretation replacing each pixel by an
interval. This interval contains the value that the pixel can take and is in practice represented by
the lower bound and the upper bound of the pixel. For example, if 0.1 `∞-norm perturbation is
allowed and a pixel of value 0.5 will be replaced by the interval [0.4,0.6]. For each image, a lower
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Figure 2.18 – Example of attacks on the MNIST dataset [Singh et al., 2019]

Figure 2.19 – Convex approximations for the ReLU function: (a) shows the convex approximation with the
minimum area in the input-output plane in gray, (b) and (c) show the two convex approximations proposed

in [Singh et al., 2019], with λ= ui
ui−li

and µ= −li ui
ui−li

and upper images are produced with respect to the allowed perturbation, and all possible pertur-
bations "lie" between the lower and upper image, see Figure 2.18. For the `∞-norm perturbation,
the lower image is the initial image obtained when all pixels take their minimal value, the upper
image is obtained when all pixels take their maximum value. For the rotation, the lower image
is the image obtained when the initial image is rotated to achieve the maximum allowed angle
clockwise, and the upper image is obtained by rotating the initial image anticlockwise until the
maximum allowed rotation is reached. DeepPoly uses two linear relaxation of the ReLU formula-
tion choosing at each step the one giving the most tight bounds, the one that has the lower area,
corresponding to the filled region in Figure 2.19. This use of relaxations and the fact that the ex-
pressions of the intermediate value (values on the hidden layers) are expressed with respect to the
input variables only before computing the bounds, allows to have tighter bounds than previous
methods, that generally use the bounds coming from the preceding layer. Although DeepPoly is
incomplete for scalability purposes, it can be made complete by iteratively refining the input.

My experience To find adversarial examples, besides our own implementations, we used Clever-
hans. To verify the robustness of adversarial examples, we used MIPVerify. It has the advantage of
being a complete method and allows to find the minimal adversarial distortion. ERAN is another
interesting framework, an incomplete verifier that can be enough to prove robustness in a region.
It can also be used recursively to be a complete method. A more detailed review of adversarial
example and robustness related existing frameworks will be given in Section 2.7.

Summary and transition More information about the verification methods can be found in
[Huang et al., 2020] and in the included references. In [Bunel et al., 2018], a unified view of sev-
eral verification methods is presented, linking them to the branch and bound algorithms. We have
seen that proving the robustness property of a neural network is an NP-complete problem. We
have also seen some information used to make it easier to prove robustness using bound tighten-
ing and asymmetric bounds. We can now look at some theoretical limits on adversarial robustness.
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2.6 Theoretical Limits on Adversarial Robustness

Many works (see, for instance, [Shafahi et al., 2018, Pinot et al., 2019, Bhagoji et al., 2019, Dohma-
tob, 2019, Yin et al., 2019, Javanmard et al., 2020] and the included references, just to name a few)
aim at establishing theoretical results on adversary examples to answer fundamental questions
such as:

• are adversary examples inevitable?
• is it possible to simultaneously achieve good performance of clean examples and robustness

to adversarial examples?
• does achieving robustness require more data compared to general classification?
To prove that adversarial examples are inevitable, Ali Shafahi and its co-authors [Shafahi et al.,

2018] propose a theoretical analysis of adversarial examples and identify bounds on the vulnera-
bility of a classifier to adverse attacks.

Among the discussed examples in this article, the one dealing with the search for adversarial
examples in a subset of the unit cube in high dimension, is particularly enlightening. They con-
sider the case where the class of an example is defined by a bounded density function over [0,1]d ,
the unit hypercube of dimension d and where u denotes its upper bound. They also assume that
this class occupies less than half the cube. They prove, in Equation (5), that when sampling a
random point x from this class distribution, with probability at least

1 − u
exp−2πε2

2πε
,

either this point is misclassified or has an adversarial example x′ such that ‖x−x′‖2 ≤ ε. From this
inequality, they infer that:

• there is no relation between the dimension of the input space and the adversarial suscepti-
bility,

• the quantity that matters is u, the upper bound on the class density.
They emphasize the fact that the more a data set is concentrated, the greater the bound u on its
density is and the more the probability of finding an adversarial example is small. Thus, since
the MNIST dataset is much more concentrated than CIFAR 10, itself more concentrated than Ima-
geNet, the corresponding upper bound u on their densities is getting smaller and smaller, so that
it is easier to find an adversarial example for ImageNet than for CIFAR 10 and easier to find one for
CIFAR 10 than for MNIST. They conclude by noticing that the question whether adversarial exam-
ples are inevitable is an ill-posed one. Clearly, any classification problem has a fundamental limit
on robustness to adversarial attacks that cannot be escaped by any classifier.

In [Tsipras et al., 2019], to show the possible antagonism between low standard error and low
robust error, they built a classification task and a classifier on it, with a very small standard error
and large adversarial robustness error. To this end, they considered a toy binary classification task
where data’s labels y were sampled from a Rademacher distribution and input feature x sampled
as follows:

x1 =
{

y, with probability p
−y, with probability 1−p

and x2, . . . ,xp
i .i .d .∼ N (νy,1), with y ∈ {−1,1},

where ν is a fixed scalar. In this setting, it can be seen that, for ν of order 1/
p

d , a simple linear
classifier f (x) = sgn(w>x) with w = (0, 1

d , . . . , 1
d ) attains low standard error (<0.01). The probability

of making the right prediction is:

Pr [ f (x) = y] = Pr
[
sgn(w>x) = y

]= Pr
[ y

d

d∑
i=1

N (νy,1) > 0
]= Pr [N (ν,

1

d
) > 0], (2.36)

which is 0.99 when ν≥ 3/
p

d , meaning a standard error of 0.1. Note that this probability does not
depend on the value p, p could be 0.5, it would not change the standard accuracy. However, for
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ε≥ 2ν, its adversarial robust error is close to 1, since the probability of predicting correction under
attack is upper bounded by a value close to 0:

min
δ≤2ν

Pr [sgn(x+δ) = y] ≤ Pr [N (ν,
1

d
)−2ν> 0] = Pr [N (−ν,

1

d
) > 0] = 1−Pr [N (ν,

1

d
) > 0]. (2.37)

This illustrates the fact that, to achieve robustness, weakly correlated features should be avoided.
They also gave a theorem that shows that on their toy dataset, high standard accuracy and high ro-
bust accuracy cannot be simultaneously achieved. As an illustration, let us say p = 0.75, then in
order to achieve more than 0.75 standard accuracy, a classifier must rely on non-robust features
(all features except x1), and then those features can be slightly modified to cause misclassification
as shown above.

Classifier-dependent upper bounds on the adversarial robustness error were provided with
strong assumptions on both the data and the classifier, for instance, through the so-called "Strong
No Free Lunch" Theorem" using powerful tools from geometric probability theory [Dohmatob,
2019], proving that, given those assumptions, adversarial robustness is impossible. In the same
paper, [Dohmatob, 2019] also provided universal upper bounds on the adversarial robustness er-
ror by generalizing the seminal work of [Bhagoji et al., 2019] who analyzed adversarial attacks as
optimal transport.

These limits remain theoretical. The fact that our brain is able, most of the time, to be robust
to these attacks is a proof of the existence of some defense mechanism. The nature of the whole
theoretical framework on adversarial attacks and robustness has to be revisited in the light of this
remark just like in coding theory where a rethinking of the constraints on a channel leads to the
Shannon limit to be improved [Dohmatob, 2019].

2.7 Tools for adversarial examples and robustness

Adversarial attacks, defenses, and verification methods are active research fields and luckily, there
are some frameworks available to allow using them. The most used frameworks for deep learning
are Tensorflow and torch [Nguyen et al., 2019]. These frameworks mostly harness the computing
power of GPUs along with other technical tricks to allow the training of deep neural networks
that would have been impossible to train in the 50s. In this section, we are going to suppose the
reader is familiar with those standard deep learning frameworks and focus on the frameworks
that are developed on top of them and are related to adversarial attacks, defenses and verification
methods. We are going to point out some frameworks that are useful with respect to adversarial
examples, mostly in image classification.

Cleverhans Cleverhans10 is the first library related to adversarial. The goal of this platform is to
give a reference implementation of attacks against models. It can make it easier to compare the
effectiveness of a defense, for example. Cleverhans can be used with Jax, Pytorch, or TensorFlow 2.
One of the strong points of Cleverhans is its community and its contributors, among them some
big names in the field.

RobustBench RobustBench11 provides a benchmark of defenses that respect some criteria to al-
low a fair comparison between them and eliminate some defenses known to be based on gradient
masking. They maintain a leaderboard and have a collection of the most robust models. They
mainly take into account the robustness to `p -norm perturbation since they are the most popular
however they plan to extend comparison beyond `p -norm perturbation.

Adversarial Robustness Toolbox (ART) All popular machine learning frameworks are supported
by ART12. They also claim to support all data types, audio and video, for example, and machine

10https://github.com/cleverhans-lab/cleverhans
11https://robustbench.github.io/
12https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Figure 2.20 – Illustration of robustness verification via abstract interpretation, image taken from ERAN’s
github.

learning tasks citing object detection, speech recognition. ART is developed with Python. They
provide tools to developers and researchers to defend and evaluate their models against several
kinds of attacks, among which poisoning.

Marabou Queries about neural network properties, typically robustness, can be answered with
Marabou13 [Katz et al., 2019]. Marabou is based on SMT and transforms the queries into con-
straints satisfaction problems. Besides the robustness queries of neural networks, it also takes
reachability queries, meaning given an input region, can some output be reached.

ERAN A group of researchers at ETH Zurich developed the ETH Robustness Analyzer for Neural
Networks (ERAN14). ERAN is based on abstract interpretation for complete and incomplete verifi-
cation of models running on MNIST, CIFAR-10 and ACAS Xu. Figure 2.20 illustrates the verification
process performed by ERAN. It supports linear and nonlinear activation functions. It also supports
less common geometric transformations and vector field transformations. They approach to the
best of our knowledge, the only one that can certify beyond `p -norm perturbations. They also
made available a set of defended and undefended networks.

Foolbox Foolbox15 is a Python library that allows to run adversarial attacks against deep learning
models built on top of EagerPy to work natively with Tensorflow, Pytorch, and Jax. More informa-
tion about foolbox can be found in [Rauber et al., 2018, Rauber et al., 2020].

MIPVerify The paper [Tjeng et al., 2018] was accompanied with a verification framework coded
in Julia, MIPVerify16. It verifies, using a MIP formulation, the robustness of neural networks to `1,
`2 and `∞ adversarial perturbations. Using MIP means they can verify networks with piecewise
linear activations but cannot verify networks with sigmoid or tanh activations. And for a network
with piecewise linear activation, they are able to find the minimal adversarial distortion given
enough time.

TextAttack TextAttack17 is a Python framework for adversarial attacks, data augmentation, and
model training in Natural Language Processing. They gather several attacks on text models like

13https://github.com/NeuralNetworkVerification/Marabou
14https://github.com/eth-sri/eran
15https://github.com/bethgelab/foolbox
16https://github.com/vtjeng/MIPVerify.jl
17https://github.com/QData/TextAttack
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Textbugger [Li et al., 2019]. This attack is able to change the classification of a text from a negative
comment to a positive one among other uses.

2.8 Conclusion

In this chapter, we gave an informal definition of adversarial examples. We formalized that defi-
nition except for the case of adversarial examples generated from scratch. Remarking that most
of the problems we are dealing with can be seen as classification problems and that this thesis is
focused on adversarial examples in the field of image classification, we precised this formal def-
inition in the case of classification. We gave several illustrations of adversarial examples in other
domains such as speech-to-text and natural language processing. We discussed the conjectures
explaining the existence of adversarial examples, among them the linearity hypothesis, evolution-
ary stalling. We then presented a standard classification problem whose aim is just to classify
input points without searching to ensure that the points around those inputs will be classified the
same way. Then we went on to talk about adversarial attacks and the ways to create adversarial
examples. We introduced different threat models including white-box and black-box attacks, the
nature of adversarial perturbations, additive, geometric and functional perturbations, for exam-
ple. We gave several examples of perturbations in image classification and other fields such as
semantic segmentation or object detection. Then we followed up with adversarial defenses that
can be based on robust optimization, adversarial example detection, or gradient masking. Ar-
guably, defense mechanisms that do not rely on robust optimization are just subterfuges to make
it harder for attacks to find adversarial robust but do not lead to really robust models. Most of
those defenses are defeated by adaptive attacks. Once the models are trained to be robust, it is
important to have approximation of the robust test error, then using attacks is not enough since
attacks cannot guarantee the absence of adversarial examples. There is then a necessity to use
sound verification methods, whether complete or incomplete, depending on the goal, the exact
robust test error, its lower bound, or a tighter upper bound than the ones given by simple attacks.
We then studied some theoretical aspects of adversarial robustness. Theoretically, in some specific
settings, adversarial examples are inevitable, and in others it is impossible to achieve simultane-
ously good standard accuracy and good robust accuracy. However, the fact that human beings
are not prone to adversarial examples that fool deep learning models shows it should be possi-
ble to design vision systems robust to such perturbations. It also shows neural networks are not
mimicking yet the human vision system.

Here are some points to bear in mind for a better understanding of the contributions
1. Adversarial training has a regularizing effect on the loss landscape that it flattens and smoothes.

Bearing that in mind could help understand better the Chapter 3.
2. The robustness verification is an open problem. The attacks can miss adversarial exam-

ples and give a false sense of robustness, and the formal verification methods are very time-
consuming.

3. The MIP formulation of the ReLU networks introduces binary values. Those binary values
will be discussed further in Chapter 4 and Chapter 5.
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Our contributions: Introduction

After getting interested in adversarial examples, we produced an defense against them in [Seck
et al., 2019]. In that paper, we propose a penalization inspired from the double backpropagation.
That penalization combined with adversarial training allows to control locally the Lipschitz con-
stant around the training points. This is allowed by directly penalizing the gradients of the logits
instead of the gradient of the loss.

After that, we get interested formal verification of the robustness of adversarial with Mixed In-
teger Programming (MIP). And due to the fact that formal MIPs are usually time-consuming, we
made an attempt to use DCA as a way to find a good solution of the MIP more quickly using Differ-
ence of Convex Algorithms (DCA). DCA has previously been used to find good solutions for some
classical MIP problems. It was sometimes able of finding the optimal solution. Unfortunately, the
studies were not fruitful. However, the bright side is that it led us to our main contribution.

It was while studying the reasons why DCA was not as successful as expected, that the idea
of Linear Program Powered Attack (LiPPA) emerged. In that contribution, we bridge attacks and
verifications through the definition linear region. In this paper we also show that the theoretical
number of possible combination is far greater than the actual number of possible combinations
due the geometry of the verification problem in the image space. A simpler illustration is given in
2D to give an intuition about that fact.
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L1-norm double backpropagation
adversarial defense
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3.1 Introduction

In the previous chapter, we saw that how important it is to have reliable and robust models, models
that can resist adversarial attacks. To obtain such models, one idea is to have a constant output
over a region around known training points. For a differentiable function, that means an arbitrarily
chosen norm of the output’s gradient with respect to the input should be 0 or at least as small
as possible over that region. Our claim is that by using adversarial training and by penalizing
the gradient’s norm of the output with respect to the input, the robustness of the model can be
improved. The L1-norm is chosen and this choice will be theoretically motivated by calculus.

3.2 Related work

Adversarial Training The adversarial examples were popularized by [Szegedy et al., 2014], and
the principle of adversarial training was introduced at the same time. Adversarial training con-
sists in augmenting the dataset with potentially adversarial points. However, it was impractical,
since the method used to generate adversarial samples, L-BFGS, was too slow. Adversarial train-
ing became more convenient to use with the introduction of Fast Gradient Sign Method (FGSM)
[Goodfellow et al., 2015] (see Definition 2.1), which is much faster and generates adversarial exam-
ples with a good success rate. Moreover, using a first-order expansion of Taylor series, adversarial
training can be seen as an `1-norm penalty of the derivative of the loss with respect to the inputs
[Simon-Gabriel et al., 2019].

Adversarial training, regularization and Double Backpropagation Note that regularization func-
tional which penalizes derivatives of the resulting classifier function are not typically used in deep
learning [Hein and Andriushchenko, 2017]. The idea of penalizing the gradient of the output with
respect to the input was introduced by [Drucker and Lecun, 1992] under the name double back-
propagation and later used in [Hochreiter and Schmidhuber, 1995] to find large connected regions
of the error function called flat minima. The ultimate goal was the improvement of the general-
ization of their models, which differs slightly from our goal here. In double backpropagation, the
`2-norm of the loss is penalized. Using the energy loss function, it was stressed that the penaliza-
tion of the loss would have little to no effect when the classification is good. To balance out that
effect, the multiplicative parameter of the penalization ought to be large enough.

Double Backpropagation and adversarial examples The difference between double backprop-
agation and our gradient penalization is that we penalize the `1-norm of the gradient of each
output with respect to the input while, in backpropagation, the `2-norm of the loss is penalized.
Hence, we should not have the problem that occurs when the penalization term is multiplied by a
small error vector. Nevertheless, this might not be a problem when using a different loss function.
Although empirical evidence shows double backpropagation’s efficiency to enhance generaliza-
tion, it is insufficient to defend against adversarial examples. That is what [Papernot et al., 2016c]
highlights saying limiting sensitivity to infinitesimal perturbation [e.g., using double backpropaga-
tion][Drucker and Lecun, 1992] only provides constraints very near training examples, so it does not
solve the adversarial perturbation problem. However, there are evidence that coupling gradient
penalty with adversarial training increases the robustness.

Parseval networks As said in the previous paragraph, most regularizations are applied to the loss
function. Parseval Networks [Cisse et al., 2017] introduced a mathematically motivated training
method that enables to control the fluctuation of the output with respect to the fluctuation of the
input using a Lipschitz constraint. Their method is time consuming.
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3.3 Defensive gradient penalty

It has been shown that maliciously crafted examples can fool the deep learning classifiers and lead
them to misclassify those examples with high confidence. In addition to the adversarial training,
a gradient penalization is proposed here to make the model more robust. Let x be an input image
stored in a vector belonging to the input space X = [0,1]d , where d is the dimension of x and let y
be the target, a one-hot label, associated with x. Let f , a differentiable function, f : X →RC where
C is the number of classes, such that the decision function D f (x) = ar g max( f (x)) represents our
classifier. And let L (y, f (x)) be a common differentiable loss function.

Further intuition about the regularization effect of adversarial training The regularization ef-
fect of adversarial was empirically shown (see Figure 2.14), here we try to give another intuitive
explanation of this effect. For a given input x, a perturbation direction v and a positive scalar ε, the
first-order approximation of the transfer function i-th component, fi , of the neural network is:

fi (x+εv) = fi (x)+εvT∇x fi (x)+◦(ε‖v‖). (3.1)

The absolute difference between the output of fi at x and x+εv is approximated by:

| fi (x+εv)− fi (x)| ≈ ε|vT∇x fi (x)|. (3.2)

From Equation 3.2 we can have an intuition about the regularization effect of adversarial train-
ing, where we want the model f to have a correct output at x and at x+εv. We are going to give a
more formal relation between the absolute difference between two input points and the gradient.

Theorem 3 (Hölder’s inequality). For any pair (p, q), such that 1
p + 1

q = 1, and for any u,v ∈Rd , the
following holds:

|u>v| ≤ ‖u‖p‖v‖q . (3.3)

Formal relation between the input difference and the gradients Combining the right hand side
of (3.2) with the Hölder’s inequality gives the following:

|vT∇x fi (x)| ≤ ‖v‖∞‖∇x fi (x)‖1. (3.4)

Considering the FGSM attack [Goodfellow et al., 2015], we have v = sgn(∇xL (y, f (x))), we have v =
{±1}d , and ‖v‖∞ = 1. This gives the intuition that finding weights that minimize the sensitivity to
infinitesimal perturbations of the input can be done by minimizing the `1-norm of the gradient of
each component of the function f with respect to the input. Our approach is therefore to penalize
the `1-norm of the gradient of each coordinate fi (x) not only at the original point but also at the
potentially generated adversarial points. If we manage to have 0 as the `1-norm of those gradients
at two points that are more or less close, then the output of the classifier is almost constant along
the segment joining those two points. Indeed we have:

0 ≤ | fi (x+εv)− fi (x)| ≤ ε sup
t∈[0,ε]

‖∇x fi (x+ tv)‖1 . (3.5)

Proof. From the mean value theorem applied on g (t ) = fi (x+ tv) we have:

∃t0 ∈]0,ε[: fi (x+εv)− fi (x) = εv>∇x fi (x+ t0v). (3.6)

We can then take the absolute values and apply Hölder’s inequality which gives

| fi (x+εv)− fi (x)| = ε|v>∇x fi (x+ t0v)| ≤ ε‖v‖∞‖∇x fi (x+ t0v)‖1. (3.7)

We remind that ‖v‖∞ = 1, after that, we can see that:

‖∇x fi (x+ t0v)‖1 ≤ sup
t∈]0,ε[

‖∇x fi (x+ tv)‖1, (3.8)
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and finally

0 ≤ | fi (x+εv)− fi (x)| ≤ ε sup
t∈[0,ε]

‖∇x fi (x+ tv)‖1.

Comparison with Parseval Networks Like in Parseval Networks [Cisse et al., 2017], the main idea
is to control the fluctuations of the outputs with respect to the fluctuations of the inputs. In Par-
seval Networks, the sensitivity on the whole input domain is controlled via a Lipschitz constant.
Instead of controlling the sensitivity on the whole input domain, what we do is to control it only
around the training inputs with the regularization that will be introduced in the following lines.

Strengthening the regularization via explicit penalization and adversarial training We give
an intuition about the regularization effect of adversarial training as well as the experimental
proof. To increase the regularization effect, an explicit penalization of the `1-norm is added to
the loss function. Hence, there is an analogy to [Drucker and Lecun, 1992], which penalizes the
`2-norm of the gradient of the loss, while in this paper the sum of the `1-norm of the outputs
( f1(x), f2(x), . . . , fC(x)) with respect to the input is directly penalized. However, it is very hard to
make the derivatives very small around an input while penalizing only at one point, the clean in-
put. It is also ineffective against adversarial examples.

Better results are obtained when we penalize the gradients on the training set and on the adver-
sarial example near the training set. Doing so, each training point is associated with an adversarial
example, as in classical adversarial training, and we penalize the gradient at both these points. Let
x be a point of the training set and x′ the adversarial example computed from x using the FGSM (or
any of its variants such as PGD). Let us assume that we train the classifier for long enough so that
‖∇x fi (x)‖1 ≈ 0 and ‖∇x fi (x′)‖1 ≈ 0 for all i = 1, . . . ,c. Our conjecture is that the regularization ef-
fect induced by adversarial training reinforced by the penalization maintains the gradients’ norm
small between x and x′. Since this process is repeated, the gradients’ norm should remain small
around the clean inputs. The ideal training progress is presented in figure 3.1. See section 3.5.2 for
comparison of the results between classical adversarial training and the new variant introduced
in this paper. The loss function used is:

=

=

Lg p (y, f (x)) =

L (y, f (x))+λ‖J‖1,1,

L (y, f (x))+λ
C∑

i=1

d∑
j=1

|Ji j |

L (y, f (x))+λ
C∑

i=1
‖∇x fi (x)‖1

(3.9)

where d denotes the dimension of the input image, C, the number of neurons on the output layers

of the neural network i.e. the number of classes, λ, the penalization parameter, Ji j = ∂ fi (x)
∂x j

, the

Jacobian matrix of f and ‖.‖1,1, the entry wise L1-norm.

3.4 Why not just penalize the gradient of the loss?

Expression of the gradient of the loss with respect to the gradients of the fi The cross-entropy
loss is generally used to train image classification models. If f represents the pre-softmax output,
the cross-entropy loss is written:

L (y, f (x)) =−
C∑

j=1
y j log

 exp( f j (x))
C∑

i=1
exp( fi (x))

 . (3.10)
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The vector y is generally a one-hot vector of an integer c ∈ {1, . . . ,C} ( in the case of distillation,
it could be different from a one-hot vector ), the c-th element is 1 and all others are 0. We can then
rewrite the loss function:

L (y, f (x)) =− log

 exp( fc (x))
C∑

i=1
exp( fi (x))

=− fc (x)+ log

(
C∑

i=1
exp( fi (x))

)
. (3.11)

We take the gradient of the loss:

∇xL (y, f (x)) =−∇x fc (x)+∇x log

(
C∑

i=1
exp( fi (x))

)

=−∇x fc (x)+
∇x

(
C∑

i=1
exp( fi (x))

)
C∑

i=1
exp( fi (x))

=−∇x fc (x)+

C∑
i=1

∇x exp( fi (x))

C∑
i=1

exp( fi (x))

=−∇x fc (x)+

C∑
i=1

(∇x fi (x)
)

exp( fi (x))

C∑
i=1

exp( fi (x))

=−∇x fc (x)+
C∑

i=1

(∇x fi (x)
) exp( fi (x))

C∑
j=1

exp( f j (x))

.

(3.12)

Let us note h: hi (x) = exp( fi (x))
C∑

j=1
exp( f j (x))

∈]0,1[, the softmax applied to f (x). Then the loss is written:

∇xL (y, f (x)) = (hc (x)−1)∇x fc (x)+
C∑

i=1;i 6=c
hi (x)∇x fi (x). (3.13)

Relation between penalizing the loss and penalizing the logit As we shown by Equation (3.13),
the gradient of the loss is at each point, a linear combination of the gradients of the fi , i ∈ {1, . . . ,C}.
let us define the function α(x) : αi (x) = hi (x), i ∈ {1, . . . ,C}\{c} and αc (x) = hc (x)−1, then we have
the following condensed rewriting:

∇xL (y, f (x)) =
C∑

i=1
αi (x)∇x fi (x). (3.14)

We can take the norm of the loss and have a bound on it:
Theoretically, penalizing directly f should be more effective than penalizing the loss

‖∇xL (y, f (x))‖1 = ‖
C∑

i=1
αi (x)∇x fi (x)‖1 ≤

C∑
i=1

|αi (x)|‖∇x fi (x)‖1 . (3.15)

Note that |αi (x)| < 1, we finally have:

‖∇xL (y, f (x))‖1 ≤
C∑

i=1
‖∇x fi (x)‖1 = ‖J‖1,1 . (3.16)
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The gradient of the loss and the sign of α(x) From Equation 3.15, we see that, for the cross-
entropy loss, the gradient of the loss is a linear combination of the gradients of the logits. Thus,
theoretically, the gradient of the loss can have a small norm while the gradients of the logits have
large norms. Even more extreme, nothing prevents the the loss to have a null gradient while the
gradients of the logits have great values that cancel out during linear combination. We can also
remark that αc (x) < 0 while the others, αi (x), i 6= c, are positive. This is not counter-intuitive, since
to increase the loss function, we should follow directions decreasing the logit of the correct class,
and increase the logit of the wrong classes.

The gradient of the loss and the order of magnitude of α(x) At the end of the training, the "con-
fidences" are usually high for the prediction. Meaning the values of α(x) are very small and very
close to 0. For the correct class, we are usually near 1, meaning, αc (x) = hc (x)−1 is nearly 0 (and is
negative). We also have

C∑
i=1;i 6=c

αi (x) =
C∑

i=1;i 6=c
hi (x) = 1−hc (x),

and 0 < hi (x) < 1, meaning all those for i 6= c, hi (x) is nearly 0. Thus, generally, after training, αi (x)
are almost 0. This can reduce the effect a penalization. In an extreme case where the αi (x) = 0, we
would get a 0 gradient for the loss even if the gradients of the logits are not 0.

Another reason to penalize the gradient of the logits and not the gradient of the loss The gra-
dient of the loss being a linear combination of the gradient of the logits, controlling the gradient
of the logits can help to control the gradient of the loss (see Equation 3.16) and have a better regu-
larization. In contrast, controlling the gradient of the loss function does not give any guaranty that
the gradients of the logits are small. Furthermore, some defense mechanisms can use some tricks
to hide the gradient of the loss as it was the case with defensive distillation [Papernot et al., 2016c].
However, their trick did not seem to affect the logits even though the losses were smoothed, since
the Carlini & Wagner attack were able to fool their defense when they used the logits to compute a
new loss that they used to craft adversarial examples.

Figure 3.1 – Figure showing the ideal progression of the training for one training point x, and associated
adversarial points. At first, the difference ∆= f (x +ε)− f (x) of ordinates and gradients norm at x and x +ε
are high. During the course of the training,∆decreases, making the value at x and x+ε closer. The gradients’
norm also decrease. In the end, we have almost the same value for f at those points, and the gradients are
nearly 0. In those conditions, we have ∆1 >∆2 >∆3 >∆4 ≈ 0, and the variation between x and x +ε is then
very small.
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model A model B model C
1st layer conv(64,8,2) conv(128,3,1) FC(512)

2nd layer conv(128,6,2) conv(64,3,2) FC(256)
3rd layer conv(128,5,1) FC(128) FC(128)
4th layer FC(10) FC(10) FC(10)

Total params 710,218 1,460,938 567,434

Table 3.1 – Description of the models used in this paper: conv(n f ,k, s) represents a convolutional layer with
n f filters, of size k ×k applied with a stride s. FC(nn) represents a fully connected layer with nn neurons.
All activations are ReLU except the output layer. The numbers in the last row represent the number of
parameters.

3.5 Experimental Results

All experiments here are built upon 3 models (referred as A, B, and C for simplicity) that are de-
scribed in Table 3.1. The first experiment is our proof of concept. It shows that the penalization
helps the defense. Since alone it is still not enough to propose a robust model, the second experi-
ment explores the coupling with adversarial training.

3.5.1 Penalization effect

The goal of this experiment is to show that penalizing the gradients improves the accuracy of the
predictions against adversarial examples generated using FGSM. The more we penalize, the more
the effect is visible. Then we will have to test with more powerful attacks, we will test the perfor-
mance against FGSM.

Experimental setup We attack the model using the FGSM in a white-box setup in which the at-
tacker has access to the parameters of the model and to the test set. The value ε = 0.3 is chosen
as the intensity of the pixel-wise perturbation allowed to the attacker, as it is often the case for the
data used in this experiment. Several values of λ are used, allowing to have a notion of the influ-
ence of that hyper-parameter on the performance on adversarial samples. The MNIST dataset and
three different architectures are used. The training and testing split of Keras is used, and the train-
ing set is then split into two groups, one of 55000 is used to train the models, and the remaining
5000 are used as a validation set. Models are trained until their accuracy on the validation set stops
increasing (difference of accuracy between 2 epochs less than 0.0001) after 10 epochs, or until 100
epochs of training with clean data is achieved. This process is repeated 10 times, the mean value
and the standard deviation are recorded in Table 3.2. The program always terminated before 100
hundred epochs were reached, around the 20th epoch.

λ 50 25 10 1 0.1

A
clean 99.37±0.04 99.36±0.03 99.38±0.04 99.35±0.03 99.35±0.06
adv 45.09±5.36 44.96±4.44 46±10.16 28.83±9.34 22.64±5.02

B
clean 98.99±0.05 98.99±0.05 98.98±0.07 98.94±0.07 98.90±0.05
adv 6.35±3.258 4.69±1.91 3.69±0.73 3.00±1.14 3.17±0.82

C
clean 98.63±0.11 98.67±0.05 98.57±0.06 98.55±0.05 98.60±0.08
adv 29.92±14.24 25.76±11.96 18.24±9.97 19.99±5.63 13.66±6.64

Table 3.2 – Accuracy on clean test and adversarial test point of model. We observe that the more we penalize,
the more robust the model becomes. However, while the gain is significant, it’s clearly not enough to call it
a robust model.
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3.5.2 Coupling with adversarial training

ε
0.05 0.1 0.2 0.3

clean adv clean adv clean adv clean adv

A
adv_train 99.36

±0.05
98.57
±0.11

99.34
±0.06

97.50
±0.26

99.27
±0.03

96.39
±0.37

99.30
±0.06

95.72
±0.19

adv_train_gp 99.38
±0.028

98.73
±0.072

99.35
±0.035

97.45
±0.30

99.25
±0.061

96.63
±0.30

99.26
±0.06

97.60
±0.34

B
adv_train 98.94

±0.079
98.37
±0.48

99.07
±0.03

98.22
±0.61

98.96
±0.05

98.55
±0.26

98.85
±0.05

98.67
±0.07

adv_train_gp 99.05
±0.05

98.18
±0.15

99.06
±0.05

97,64
±1.04

98.95
±0.02

98.30
±0.49

98.84
±0.07

97.80
±1.11

C
adv_train 98.98

±0.06
96.26
±0.22

98.68
±0.06

93.56
±0.47

98.59
±0.07

93.24
±0.48

98.48
±0.1

95.52
±0.74

adv_train_gp 98.79
±0.04

96.36
±0.11

98.87
±0.07

94.56
±0.16

98.69
±0.09

93.73
±0.75

98.42
±0.08

96.62
±0.51

Table 3.3 – Table showing the performance of models A, B and C, trained with adversarial training and
adversarial training plus gradient penalty (λ = 10) We can see that, the adv_gp performs better for model
A and ε = 0.3, and is sensibly equal for other values of ε. The large standard deviation values might be an
indication that the training was still in progress when 100th epochs was reached.

The previous experiments show that our penalization has an interesting effect on the robust-
ness of the models. Now we explore the coupling with adversarial training, and the hope is that the
penalization has the same impact to obtain more robust models than adversarial training alone.
We train the same model using adversarial training with the classical loss function and with the
gradient penalty in addition to that loss. We train for one hundred epochs. The adversarial train-
ing consists in adding adversarial examples to the original training set to make the models more
robust. Typically, the FGSM is used to generate those adversarial examples due to its practicality.
Therefore, it will be used in the following experiments with clipping to make sure that adversar-
ial examples remain in X . During training, for each image of a batch, an adversarial image is
generated and added to the batch with the same target as the original image associated. A label
smoothing of 0.1 is also used for this experiment.

Table 3.3 shows results for λ = 10. It turns out that the performances are not as impressive
as they were without adversarial training, even though in some settings, the penalization helps.
One reason could be that λ is not high enough. However, for computing time reasons, we could
not conduct the same set of experiments with different values at the same level of care. Hence,
we propose some partial results to argue our point in the Table 3.4 where we see that increasing
λ provides better results until the penalization is too strong. We note also that we increased the
number of epochs up to 150.

λ 0 10 50 100 200 1000
clean 98.48

±0.10
98.42
±0.08

98.49
±0.06

98.59
±0.10

98.60
±0.11

98.62
±0.07

adv 95.52
±0.74

96.62
±0.51

97.25
±0.05

96.88
±0.51

96.71
±0.19

94.65
±0.79

Table 3.4 – For model C, we fixed ε= 0.3 and different λ, on the same setting as previous experiment. λ= 0
refers to the adversarial learning alone. We observe improvement when λ increases, until it fails when too
high.

0The loss function used in practice is not exactly the one proposed in (3.9). Instead of ‖J‖1,1,
∑d

j=1 |
∑c

i=1
∂ fi (x)
∂x j

| is

used due to time constraints.
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3.6 Conclusion

In this chapter, we propose to improve deep neural networks’ robustness to adversarial examples
by adding a penalization term. We show that penalizing the gradients of the output with respect
to the input, or in other words, the Jacobian, can have an effect defending against adversarial but
does not suffice. Coupled with adversarial training to give L1−norm double backpropopagation
adversarial defense, we provide good hints that it is a good approach. Once we have trained a
model using our method and want to measure its robustness in the most precise way. It means us-
ing a MIP since it is the state-of-the-art verification method. However, the MIP is time-consuming.
For that reason, we take a look at a promising method, DCA, that can potentially achieve the same
performance as the MIP but much faster.
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4.1 Difference of convex functions and difference of convex algorithms

Finding the adversarial example which minimizes the distance with an original example is done
using Mixed Integer Problems (MIPs) formulation of the search problem. The MIPs are time-
consuming even though there have been some improvements of their efficiency. However, those
improvements are still not enough and the runtime of the MIP is still important. In our attempt to
find a way to obtain the optimal solution without having to run the time-consuming MIP, Differ-
ence of convex and Difference of Convex Algorithms (DCA) seemed to be promising. In fact, DCA
has been been successfully used to find good solutions to MIP problems, often finding the optimal
solution much faster than done by classical MIP formulation [Niu, 2010]. Having said that, we did
not manage to find satisfying results using DCA. We will therefore present a series of experiments
highlighting the behavior of DCA, or let us say our implementation of DCA, on our problem. The
last experiment leads to a plausible reason explaining why DCA may fail on the robustness verifi-
cation problem.

MIP formulation The MIP formulation 2.24 will be used to compute, given an original example,
the closest adversarial example. For simplicity, we take here the example of a multilayer percep-
tron with e neurons that is described for an input x by the following operations:

ẑ = Wx+β,

z = max(ẑ,0),

f (x) = s = Vz+α;

(4.1)

The operation z = max(ẑ,0) is nonlinear, hence we introduce new binary variables bi , i =
1, . . . ,e as shown by its reformulation 2.25-2.29. Finally, given an original example x associated
with the class y , the obtained MIP optimization problem is:

min
x′∈[0,1]d

b∈{0,1}e

‖x−x′‖

s.t. ẑ = Wx′+β
zi ≥ 0, i = 1, . . . ,e
zi ≤ Mr bi , i = 1, . . . ,e
zi ≤ ẑi +Mr (1−bi ), i = 1, . . . ,e
zi ≥ ẑi , i = 1, . . . ,e
s = Vz+α

max
i={1,...,c}\y

si > sy

bi ∈ {0,1}, i = 1, . . . ,e

(4.2)

We simplify the optimization problem by replacing the constraint: max
i={1,...,c}\y

si > sy by st > sy ,

with t our target class. We then obtain:

min
x′∈[0,1]d

b∈{0,1}e

‖x−x′‖

s.t. ẑ = Wx′+β
zi ≥ 0, i = 1, . . . ,e
zi ≤ Mr bi , i = 1, . . . ,e
zi ≤ ẑi +Mr (1−bi ), i = 1, . . . ,e
zi ≥ ẑi , i = 1, . . . ,e
s = Vz+α
st > sy

bi ∈ {0,1}, i = 1, . . . ,e

(4.3)

This will allow us to focus only on the binaries b1, . . . ,be . Instead of directly solving (4.3), we
will try to solve it using DCA.
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DCA The main reason that makes the MIP slow is the branching on the binary values. With DCA,
we will relax the binary constraints but still manage to have a binary result with a penalty. We are
showing a way to get rid of the binary constraints on bi , i = 1, . . . ,e by combining a relaxation of
the binary constraint and a penalization of bi (1−bi ), i = 1, . . . ,e to push the optimization toward
having a binary b without explicitly declaring them as binaries. The problem is then reformulated
as follows:



min ‖x−x′‖+λ
e∑

i=1
bi (1−bi )

s.t. ẑ = Wx′+β,
zi ≥ 0, i = 1, . . . ,e
zi ≤ Mr bi , i = 1, . . . ,e,
zi ≤ ẑi +Mr (1−bi ), i = 1, . . . ,e
zi ≥ ẑi , i = 1, . . . ,e
s = Vz+α,
sk > sy

x′ ∈ [0,1]d ,
b ∈ [0,1]e ,
z ∈Re ,
ẑ ∈Re ,
s ∈RC.

(4.4)

with λ the parameter controlling how hard we penalize the solution for not having a binary values
for b.

We can now apply the idea of DCA to the problem by linearizing the terms −b2
i , i = 1, . . . ,e.

That means that, given the initialization b0, we build a sequence {bk ,k ∈N} (see algorithm 3).
At each step of the DCA, the following optimization problem, DCAStep(bk , f ) , is solved with a
fixed value for bk :



min ‖x−x′‖+λ
e∑

i=1
(bi −2bk

i bi )

s.t. ẑ = Wx′+β,
zi ≥ 0, i = 1, . . . ,e
zi ≤ Mr bi , i = 1, . . . ,e,
zi ≤ ẑi +Mr (1−bi ), i = 1, . . . ,e
zi ≥ ẑi , i = 1, . . . ,e
s = Vz+α,
st > sy ,
x′ ∈ [0,1]d ,
b ∈ [0,1]e ,
z ∈Re ,
ẑ ∈Re ,
s ∈RC.

(4.5)
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Algorithm 3 : DCA

Data : x′, f , paramsstop

Result : x′,bk

[x′, b] ← initialization(x, f ) ;
k=0
bk = b
while checkStopCriteria(paramsstop ) do

[x′,b] ← DCAStep(bk , f ) (4.5)
k ← k +1
bk ← b

end

Comments on DCA for robustness verification Given a neural network, DCA needs an initial-
ization for the value b. We will see some initializations in the following section. The used stopping
criteria is the stability of the objective function. We stop when the objective function has very little

to no change using the criteria |ob jnew−ob jol d |
|1+ob jol d | ≤ 10−8. We also stop DCA if after 30 iterations it has

not converged in the presented results. However, we observed that different stopping criteria do
not change the results. The DCA algorithm can return b that is not binary. We study the effect of
such non binary b on the results given by DCA.

What happens when b is not binary? Let us suppose we have ẑi ≤ 0, then bi should be equal
to 0. If instead of having bi = 0, we have bi = 0.01, then the constraints 0 ≤ zi ≤ bi Mr that should
constraint zi to be equal to 0 only give 0 ≤ zi ≤ 0.01Mr . In that case, zi can be different from
max(0, ẑi ) since nothing prevents it from being 0.01Mr . The same reasoning holds when ẑi ≥ 0
and that instead of having bi = 1 we have bi = 0.99. Then the constraints ẑi ≤ zi ≤ ẑi +Mr (1−bi )
that should constraint zi = ẑi when bi = 1 only give ẑi ≤ zi ≤ ẑi +0.01Mr . And nothing prevents zi

from being equal to ẑi +0.01Mr . Simply said, when b is not binary, instead of having zi = max(0, ẑi )
as done by the ReLU activation, we get zi ≥ max(0, ẑi ) with a gap zi −max(0, ẑi ) less or equal to
either bi Mr or (1−bi )Mr according to the case. That, combined to the sensitivity of the neural
networks, leads to the fact that results given by DCA do not match the true forward pass of the
neural networks when after resolution b is not binary. Hence, the proposed examples may or may
not be real adversarial examples.

4.2 DCA struggling with our problem

DCA was a promizing way to find near optimal adversarial examples, however it quickly hits its
limit as it is shown by the following experiment.

Experimental setup: We are going to show the results of 4 experiments based on the architecture
of a Multilayer Perceptron (MLP) with one hidden layer with 300 neurons, trained on MNIST. To
run the optimization, we have to give an initialization b0 to DCA, and also give a value to the
parameter λ.

4.2.1 Experiment 1: the impact of λ, with fixed initialization

The goal of this experiment is to study the impact of the value of λ on the output of DCA. We fix a
value of λ and run DCA until the stopping criteria is satisfied. We initialize b0 using the activations
of the original sample x which is, we do a forward pass of x to our network and retrieve the values
of the activations i.e. for i = 1, . . . ,e:

b̃0
i =

{
1 if ẑi ≥ 0,
0 otherwise.

(4.6)
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We will pay attention to the respect of the ReLU constraints which are met when bk returned
by DCA is either 0 or 1. Otherwise there is a gap between the value z found by DCA and the value
max(0, ẑ). As a consequence, when we pass the x′ given by DCA to the neural network, the output
layer of the neural network and the value found for s do not match. It means that the result of
the optimization is incorrect since for the same input, the output found by the optimization is
different from the actual output corresponding to the input. The optimization is very sensitive to
the value of b.

For a given example, we plot the difference between zi and max(0, ẑi ) and also the value bi (1−
bi ) for i = 1, . . . ,300 after convergence of DCA for different values of λ (see Figure 4.1). In that
figure, we see that when the value of λ is small, there is a gap between the values zi and max(0, ẑi )
making the output of DCA irrelevant. For λ = 10−1 and λ = 1, we see that for some neurons, the
associated bi is such that bi (1−bi ) is almost 0.25 which is the maximum achievable by bi (1−bi )
when bi is between 0 and 1. And it means that bi is near 0.5. For those neurons, we also see a
considerable gap between zi and max(0, ẑi ), making the result of DCA irrelevant. When the value
of λ increases, this behavior is more and more penalized so for λ ranging from 10 to 106 the values
of bi (1−bi ) get smaller and smaller, meaning the bi tends to be either 0 or 1. However, there were
still a gap between the output of the final layer of the network given by DCA when compared to the
forward pass of the neural network. It is only for λ= 107 and greater values that we get the results
of DCA become valid, i.e., they match the output of the forward pass of the neural network.

From Figure 4.1, we conclude that, when λ is not big enough the constraints of the ReLU,
zi = max(0, ẑi ), i = 1, . . . ,e are not met, leading to an invalid result. And when the value λ is big
enough, we have a binary value, however that value obtained is the same used to initialize the
DCA.

4.2.2 Experiment 2: the impact of λ, initialization based on ẑi

In the conclusion of the first experiment, we notice that for a large enough value of λ, DCA gives
a correct output without changing the initialization value of bi . In this experiment, we will use a
different initialization to have further knowledge of the behavior of DCA regarding the values of
bi . We define the rounding operation, the operation that, given an float x, returns the integer that
is closest to that integer noted bxe. We use a slightly different approach. Instead of initializing b0,
we use the following initialization:

b0
i =

{
random number between 0.5 and 1(excluded), if ẑi ≥ 0,
random number between 0 and 0.5(excluded),otherwise.

(4.7)

Doing so, we can generate several random numbers which are rounded to b̃0. We see that
when λ is not great enough, we have invalid results as in experiment 1 (§4.2.1). For big enough
λ, we observe that, at the end of the optimization the values obtained by b are equal to the round
value of the initial b0, which are equal to b̃0.

Given an initialization b0, we are tempted to conclude that whenever the solution is valid,
DCA is leaning toward the round value of b = bb0e, we refer to experiment 3 (§4.2.3) to validate this
hypothesis. Figure 4.2 shows an example of an adversarial example found using DCA.

4.2.3 Experiment 3: the impact of λ, with random initialization

In this experiment, we are going to initialize b0 with a completely random value, and then run
DCA. Here again, when λ is not big enough we have small value for ‖x− x′‖2

2 and big value for∑e
i=1 bi (1−bi ), meaning b is far from being binary.We see also that for big enough λ, the final value

for b is (close to) bb0e, and the found adversarial examples are far from the original example, that
is not surprising since the values were chosen randomly (see Figure 4.3). Building on the results
of experiment 1 (§4.2.1), experiment 2 (§4.2.2), and experiment 3 (§4.2.3), we can conclude that to
get a valid result, it is necessary to have a large value for λ, and that in that case, DCA is driven to a
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Figure 4.1 – Each subplot represents the product bi (1−bi ) for each neuron in red, and the difference be-
tween zi −max(0, ẑi ) in blue. Getting 0 for all those values means when the value x′ found using DCA is
passed through our neural network, we should get the same output final, i.e. s = f (x′), and the intermediate
are the same. Otherwise, if there are some values for which there is a difference, s 6= f (x′) and zi 6= max(0, ẑi ),
which means the result of the optimization is invalid. Starting from top left to down right, the first two fig-
ures show that for λ= 0.1 and λ= 1 we see that when the correlation between bi (1−bi ) and zi −max(0, ẑi ),
we conclude that those results of that optimization is invalid. For the following values of λ the scale is
changed for visualization purpose. On this illustration, we do not get bi (1−bi ) = 0 and zi −max(0, ẑi ) = 0
(or very close to 0) until λ> 106.
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Figure 4.2 – Original and adversarial examples found using DCA with b0 such that bb0e = b̃0. The distance
l2 between these examples is 3.56, where the MIP solution associated to the binary is 3.01.

Figure 4.3 – Original and adversarial examples found using DCA with a completely random initialization.
The distance l2 between these examples is 79.99 compared to 3.56 in the previous.

solution for which the value of b is close to bbi ni t e, with bi ni t the value used to initialize b in DCA.
We see this inability of DCA to thoroughly explore the space as a limit with respect to our problem.

4.2.4 Experiment 4: the impact of the distance constraint

In this experiment, we use a big value for λ that is fixed and we initialize with the binary as in
experiment 1, but we add a constraint distance between the original sample and the adversarial
example we are looking for. We used a fixed value for λ since we are now convinced that small
values do not give valid results for our neural networks. We compute d0 using the distance to the
closest adversarial example without changing the activation and once we get it, we run DCA while
imposing a new constraint which is, ‖x−x′‖2

2 < d0/4 or d0/2, and other values (cf Figure 4.4 ). The
goal of this experiment was to see if DCA would be able to output a value of b different from b̃0.

In Figure 4.4, we present the values bi (1−bi ) and zi−max(0, ẑi ) for each neuron i = 1, . . . ,300, of
the hidden layer after convergence of DCA run with the additional constraint on the distance intro-
duced previously. It presents six figures with the constraints ‖x−x′‖2

2 < d , with d = d0/4,d0/2,3d0/4,
4d0/5,d0 and 2d0. We observe that for d0/4 and d0/2 we have some neurons for which bi (1−bi ) is
almost 0.25 even though the value of λ is big enough. It shows that DCA is unable to shift the point
toward a value b different from bbi ni t e. For the other value of d , they are still not binary, but they
are close to being binary, but still not close enough to give valid results, i.e., results matching the
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output of the neural network. We observe that, even when a restriction is applied, the optimiza-
tion does not jump from a binary to another.We also found that the quadratic constraint added
has the effect of changing the distance found by DCA even when it should not be constraining.

4.2.5 Experiment 5: changing the objective formulation

We use the same setting as in experiment 1 (§4.2.1) with the only difference that the objective
function is replaced by µ‖x−x′‖+∑e

i=1(bi −2bk
i bi ). We observe that using this formulation, we do

not get binary values when µ is small, it does not get any better when we increase it (cf Figure 4.5).
From that figure, we see that when µ is small, after convergence, the distance ‖x−x′‖2

2 is large and
the binary values are unchanged. When µ get larger, we can observe a little decrease of ‖x−x′‖2

2
while the initial binary values remain unchanged. Then for larger values µ we see that ‖x− x′‖2

2
drops to 0 and the sum

∑
bi (1−bi ) increases. This behaviour shows an antagonism between the

minimization of ‖x−x′‖2
2 and the

∑
bi (1−bi ) responsible for the respect of the ReLU constraints

in the DCA objective.
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Figure 4.4 – DCA can not give a binary value for b when the restriction on the distance between the original
sample and the example given by DCA is too hard. However, even when the restriction is less hard, for
example, when we impose ‖x−x′‖2

2 < 3d0/4 or ‖x−x′‖2
2 < 4d0/5, the optimization look no further than b0

and plays on the penalization to satisfy the constraint.
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Figure 4.5 – Illustration of the antagonism between
∑

bi (1−bi ) and ‖x−x′‖2
2. The used values for µ are the

following: 1e −8,1e −6,1e −4,1e −2,1,1e2,1e4. We observe that the harder we penalize ‖x−x′‖2
2 the closer

it comes to 0 and the bigger
∑

bi (1−bi ) is.

4.3 Conclusion

From these experiments, we conclude that to get a valid solution for our optimization problem
with DCA, it is necessary to set a big enough value for λ. The initialization of b0 is very impor-
tant since we noticed that DCA tends to go to the solution with bdca = bb0e in all our experiments,
where the solution found by the MIP differs from b0 on 11 terms. In our experiments, DCA con-
verges towards a local minima without considering any change to the binary.

We can try to give an explanation to such a phenomenon. First, the need of a big value for
λ can be explained by the sensitivity of neural networks to little changes. Due to that sensitivity,
when λ is not big enough, the optimization can allow small differences between z and max(0, ẑ) in
order to have little value of ‖x−x′‖2

2 to achieve optimal value. The x found then will not satisfy the
constraints when passed through the neural network. That can be seen as an antagonism between
‖x−x′‖2

2 and
∑e

i=1 bi (1−bi ) since moving the bi , i = 1, . . . ,e away from the binary allows to decrease
‖x−x′‖2

2. And when λ is big enough, it seems costly to try to deviate from bb0e.
A secondary reason why DCA’s performance is not as great as in other problems seems to be

much more complex that the problems used in the reference we had, in terms of the number of
binary constraints and global number of variables and constraints, even though we used a small
neural network. DCA manages to find a compromise between the two antagonistic parts of the
objective which is good with respect to the optimization. Nevertheless, this compromise is unde-
sirable since it jeopardizes the ReLU constraint making the solution given by DCA inadmissible
with respect to the neural network.

Is there a way to satisfy the ReLU constraints, i.e., respecting the binary constraints, without
going back to the MIP and not having a big value for λ ? Noting that once an initialization bi ni t is
proposed, DCA tends to return bbi ni t e, one idea is to directly solve the linear program obtained by
fixing the b to bbi ni t e and solve the resulting linear program. Furthermore, combined with a good
procedure to propose binary values b for which the resolution has a high chance of leading to a
satisfying adversarial example, one can find the optimal adversarial example much faster than the
MIP.
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5.1 Introduction

Neural networks are now the go-to when it comes to several tasks; image classification is one of
them. However, neural networks are very brittle in the sense that their high accuracy can rapidly
drop to nearly 0 when maliciously crafted noises are added to the input images, which become
adversarial examples [Goodfellow et al., 2015]. The process of designing specific noise to fool the
neural network is called attacking neural networks. This kind of behavior of neural networks has
a deterrent effect, making the use of neural networks in safety critical environments, such as in
self-driving cars or in medical imaging, a topic of controversy. Several defense mechanisms have
been deployed from [Papernot et al., 2016c], which proved later to be inefficient when attacks
get stronger, to more recent defenses. Several defense methods have been developed, often bro-
ken some time later using more sophisticated attacks or simply giving more attempts to existing
methods. Complete verification methods such as Reluplex [Katz et al., 2017] and MIP (Mixed Inte-
ger Programming) formulation of the search of adversarial examples [Tjeng et al., 2018] seem to be
the ultimate approach able to give the exact robust test error [Bastani et al., 2016]. However, these
complete verifiers can take up to an hour on some examples without being able neither to find an
adversarial example nor to prove that there is no adversarial example within a given neighborhood
of the original example. This leads sometimes to models for which there is a big gap between the
lower and the upper bound of the robust test error.

To reduce the gap between the lower bound and the upper bound of the robust test error, more
powerful attacks are needed to find adversarial examples in a more reasonable time when they ex-
ist in the region in which they are searched, and certification methods that are faster. Projected
Gradient Descent [Madry et al., 2019], Brendel & Bethge attack [Brendel et al., 2019], Carlini & Wag-
ner attack [Carlini and Wagner, 2017b] and the randomized gradient-free attack [Croce and Hein,
2018, Croce et al., 2020] are among the strongest attacks to date but even these attacks sometimes
miss adversarial examples. The fastest implementation of MIP for adversarial robustness verifi-
cation is [Tjeng et al., 2018] but it remains time consuming.We propose a new attack aiming at
reducing the gap between the lower bound of the robust test error and its upper bound. We also
propose a way to partition the input space and to link that partition to the MIP formulation to
make the MIP faster.

Our contributions
• We make the relationship between linear regions of the input space and binary combina-

tions of the MIP formulation of the robustness verification problem more obvious, for a
given model, via the introduction of a function B associating each input example with a
binary combination.

• We experimentally prove that the number of linear regions around original examples is smaller
than the exponential number of combinations allowed by the MIP formulation.

• We propose a new white-box attack that exploits, given a model, the relationship between
linear regions and binary values used in the MIP formulation. In a few seconds, our method
is able to find an adversarial example that the MIP failed to detect given a much longer time.

5.2 Background and related work

Having a complete access to a trained model (white-box setting) makes it easier to attack that
model than if the access was denied. Indeed, the weights of the networks contain information
that can be exploited to craft subtle misleading examples. This can be done using either gradient-
based methods or gradient-free methods.

We present the related works through the lens of information exploitation. We will thus see the
gradient-based attacks, gradient-free verification methods, and some gradient-free attacks. After
that, we show in 5.3 that linear regions are equivalence classes and the relationship that exists
between those linear regions and the binary values used in the MIP formulation.
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Gradient-based attacks On the one hand, gradient-based attacks such Fast Gradient Sign Method
[Goodfellow et al., 2015] or Projected Gradient Descent [Madry et al., 2019] (see Definition 2.1) use
the weight information to compute gradients that are exploited to construct adversarial examples.
This has proven to be effective on neural networks which have no defense mechanism and other
with some defense mechanisms as well [Athalye et al., 2018a]. So much so that PGD is commonly
seen as a strong attack, if not the strongest first-order attack, when searching for adversarial ex-
amples with `∞ distortion. Nevertheless, some defense mechanisms manage to have the gradient
point toward directions that are not harmful to the neural network and thus prevent gradient-
based methods from increasing the error rate, giving thereby a false sense of robustness [Athalye
et al., 2018a].

It has also been shown that when the minimal adversarial distortion is high, PGD fails to find
adversarial example, this behavior is even more patent when the allowed distortion is close the
minimal adversarial distortion [Tjeng et al., 2018].

Gradient-free verification methods On the other hand, the search for adversarial examples can
be done using formal verification methods [Bunel et al., 2018] that do not use the gradient. In par-
ticular, when the neural networks can be represented as a piecewise linear function, Satisfiability
Modulo Theory (SMT) solvers can be used as in [Katz et al., 2017] (discussed in paragraph Reluplex
in Chapter 2) as well as Mixed Integer Programming [Tjeng et al., 2018] (discussed in paragraph
MIPVerify in Chapter 2). This is the case, for instance, when the ReLU activation is used. Let us
focus on the MIP formulation. Assuming that f represents a piece-wise linear function (that is the
case for neural networks with ReLU activation) and x is an example of the input space X = [0,1]d ,
belonging to the class y . A generic formulation of the search for adversarial examples is the fol-
lowing [Tjeng et al., 2018]:


min

x′
‖x−x′‖p

s.t. argmax
i=1,...,c

fi (x′) 6= y,

x′ ∈ [0,1]d ,

(5.1)

where p is usually 2 or ∞.
To solve this optimization problem, the constraint argmax

i=1,...,c
fi (x′) 6= y is linearized and for each

neuron a binary value is introduced, indicating if the neuron is active or not, as we will see in 5.3.
We generally want to check the existence of adversarial examples in a neighborhood of clean ex-
amples, the original example for which we look adversarial examples. Computing bounds on the
pre-ReLU activation reveals useful information. Computing the lower and upper bounds on the
pre-ReLU activation can reveal that some neurons are always active and some others are always
inactive (for whatever valid distortions are applied to the example). Those are called stable ReLUs
[Tjeng et al., 2018] and they do not require to be paired with a binary. Exploiting this informa-
tion gives, to the best of our knowledge, the state of the art verification method, as it reduces the
number of binary values allowing the MIP to operate faster.

A valuable strength of the MIP is its ability to certify robustness, which is not the case for at-
tacks. However, its drawback is that it is time consuming, even when we simplify the problem to
computing the robust test error [Bastani et al., 2016]. It is, at least partially, due to the fact that
the MIP not only gives an upper bound of the minimal adversarial distortion, the distance un-
der which no modification can cause misclassification, but gives also a lower bound, that if given
enough time will converge to the same value, the minimal adversarial distortion.

It is possible to derive attacks from the MIP formulation, by dropping the part dedicated to
computing lower bounds since any adversarial example can be used to compute an upper bound.
It is the case for [Croce and Hein, 2018, Croce et al., 2020].

Gradient-free attacks The gradient-free attacks of [Croce and Hein, 2018, Croce et al., 2020] can
be seen as derived from the MIP formulation. The input space is explored to find linear regions
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and optimization over the found linear regions is done to find the optimal adversarial example in
those linear regions. Even though the authors did not mention the link between their method and
MIP verification, there exists a link that we explicit in Section 5.3.

There are also some gradient-free attacks that are not linked to the verification method such as
[Alzantot et al., 2019] where a genetic algorithm is used to find adversarial examples. They create
a population, find the best candidates to fool the network according to a fitness score. Then they
create "children" by doing a crossover while making sure to have a higher probability to select
parents among the fittest. Then the children undergo mutation. The mutated children form a new
generation. Crossovers and mutations are repeated for a predefined number of generations.

5.3 Partition of the input space

In this section, we show that the linear regions used in [Croce and Hein, 2018, Croce et al., 2020]
form equivalence classes in the input space. We also show how they are related to the binary values
of the MIP formulation.

5.3.1 Linear Regions and equivalence classes

For simplicity purpose, let us consider a multilayer perceptron with one hidden layer with e neu-
rons. The classification function of this MLP can be written:

ẑ = Wx+β,
z = max(ẑ,0),

f (x) = s = Vz+α.
(5.2)

Let us remind the linearization of the ReLU constraint, z = max(ẑ,0) using a big-M [Wolsey and
Nemhauser, 1999] as it was already presented in Chapter 2 with equations (2.25-2.29):

zi ≥ 0, i = 1, . . . ,e (5.3)

zi ≤ Mr bi , i = 1, . . . ,e (5.4)

zi ≤ ẑi +Mr (1−bi ), i = 1, . . . ,e (5.5)

zi ≥ ẑi , i = 1, . . . ,e (5.6)

with Mr such that Mr ≥ maxx |ẑi |,∀i = 1, . . . ,e,∀x ∈X .
Those constraints are such that:
• ẑi < 0 ⇒ bi = 0,
• ẑi > 0 ⇒ bi = 1.

The value ẑi = 0 can be associated with either 0 or 1, but in the following we will choose to associate
it with 1. However, this is not of crucial importance, since in practice, having pre-ReLU with a value
of exactly 0 is very unlikely.

We define function B : [0,1]d = X → B(X ) ⊆ {0,1}e which associates to each input x ∈ X ,
B : B(x ∈X ) = b ∈ {0,1}e for i ∈ {1, . . . ,e}:

bi =
{

1, ẑi ≥ 0,
0, otherwise.

(5.7)

This function B is surjective:
• for each x ∈X , there exists a unique b ∈ B(X ) such that: B(x) = b,
• for each b ∈ B(X ), there exists at least one x such that: b = B(x).
Using this function, we can define the following equivalence relation:

R : R(xφ,xω) ⇐⇒ B(xφ) = B(xω). (5.8)
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In other words R(xφ,xω) means xφ and xω have the same activation when forwarded through
the network f .

This equivalence relation is then used to create equivalence classes:

[x] = {x′ ∈X : B(x′) = B(x)}. (5.9)

We know that the set of all equivalence classes forms a partition of the input space X .

In each equivalence class [x], the relationship between an input x′ ∈ [x] and its output f (x′ ∈
[x]) is linear, there exists a matrix Γ and a vector γ such that: f (x′ ∈ [x]) = Γx′+γ. Each equivalence
class is a linear region.

The linear regions are regions of the input space where the points have the same activation
pattern. For a given ReLU network, activation patterns are defined in [Raghu et al., 2017] as a
string of form {0,1}e encoding the linear region of the activation function of every neuron. In the
following, we will refer to the activation patterns as binary combinations for two reasons :

1. we use binary variables in the MIP formulations of the search of adversarial examples,

2. all the activation patterns are binary combinations and but not all binary combinations are
not activation patterns as shown in Figure 5.1.

5.3.2 Partitioning information in the MIP formulation

Let us now study a MIP formulation and see how to incorporate the information about the linear
regions in it. To simplify the formulation,the class t is targeted using the constraint st > sy .



min ‖x−x′‖
s.t. ẑ = Wx′+β,

zi ≥ 0, i = 1, . . . ,e
zi ≤ Mr bi , i = 1, . . . ,e,
zi ≤ ẑi +Mr (1−bi ), i = 1, . . . ,e
zi ≥ ẑi , i = 1, . . . ,e
s = Vz+α,
st > sy .
x′ ∈ [0,1]d ,
b ∈ {0,1}e ,
z ∈Re ,
ẑ ∈Re ,
s ∈RC,

(5.10)

with big enough Mr .

Starting from this MIP formulation, we want to derive a powerful attack that can potentially
find the same solution as the MIP, but faster than the MIP would do since it does not go through
branching and bounding. The idea that emerged is to look for adversarial examples over linear
regions and find a mechanism to select linear regions leading to good adversarial examples. For
now, let us tackle the optimization over a linear region. To do so, we can restrict the search area to
the linear region [xφ] 

min ‖x−x′‖
s.t. s = Γx′+γ,

x′ ∈ [xφ],
st > sy .
s ∈RC.

(5.11)

Note that the optimization problem 5.11 is a linear program. Also, we do not have to determine
the matrix Γ and the vector γ. Solving 5.11 is done in practice by fixing the binary values in the MIP
(5.10) to B([xφ]) obtaining a linear program we call LP(B(xφ), t ):
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Figure 5.1 – Figure showing the correspondence between binary values and equivalence classes. Let us
assume x represents a point in a two-dimensional input space and (a), (b) and (c) represent neurons, the 3-
digit code is the encoding corresponding to the binary values associated with each linear region of the input
space. Each line represents a neuron and how it divides the plane into a part where the neuron is active and
a part where it outputs 0. For example, [x], the equivalence class of x, the linear region 3 corresponds to the
linear region where the neuron a has negative response, and the neuron b and c have positive responses.
Using the encoding abc, [x] corresponds to the linear region 011: 3. We draw your attention to the fact that
the linear region corresponding to the binary code of number 4, 100, meaning a is active while b and c are
inactive, does not have any antecedent since there can be no point in this setting verifying that. In other
words, the binary combination 100 is not an activation pattern. To model the fact that if b and c are inactive
the neuron a cannot be active, we can use the constraint a ≤ b + c, which is verified by all feasible regions
as shown in the rightmost column of the table.



min ‖x−x′‖
s.t. ẑ = Wx′+β,

zi ≥ 0, i = 1, . . . ,e
zi ≤ Mr bi , i = 1, . . . ,e,
zi ≤ ẑi +Mr (1−bi ), i = 1, . . . ,e
zi ≥ ẑi , i = 1, . . . ,e
s = Vz+α,
st > sy ,
x′ ∈ [0,1]d ,
b = B(xφ),

z ∈Re ,
ẑ ∈Re ,
s ∈RC,

(5.12)

with big enough Mr .
The optimization problems 5.11 and 5.12 are strictly equivalent since fixing b to B(xφ) means

that we are constraining the MIP to optimize only on the examples of the input space that have
the same activation as xφ that is by construction, [xφ] = {x ∈X : B(x) = B(xφ)}, as stated in 5.9.

There is also a correspondence between the linear regions and binary values in B(X ) such that
a number can be attributed to each linear region as illustrated in Figure 5.1. Each linear region also
corresponds to a leaf in the search tree associated with a MIP as shown in Figure 5.2.
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Figure 5.2 – Figure showing the relationship between the linear regions and the leaves of a search tree we
associate with the MIP. The MIP needs to go through several steps before reaching a leaf. It means that
several intermediate problems are solved before reaching a feasible own.

5.4 The SOTA MIP robustness verifier and Linear regions

In this section, we study how, given an input and the region in which we look for adversarial exam-
ples, the information contained in the weights can be exploited to accelerate the resolution of the
MIP. We show how a part of this information has been exploited by MIPVerify [Tjeng et al., 2018],
the SOTA robustness verifier, to speed up the resolution and also some proof that there are still
unexploited information that could lead to an even bigger acceleration. And given the difficulty to
uncover the unexploited information, we propose a method, Linear Program Powered Attack, that
naturally exploits that information without having to explicitly discover it.

5.4.1 MIPVerify and the partitioning information

Let x be an original example and Nx be the neighbourhood of x in which we are looking for adver-
sarial examples. And let B(Nx) be the set of all binary combinations corresponding to the linear
regions covering Nx. The MIP resolution would be much faster if we could decrease the branch
and bound space by having b ∈ B(Nx) instead of b ∈ {0,1}e in the optimization problem 5.10. [Tjeng
et al., 2018] already showed a correlation between the number of stable ReLUs and the solve time.
The more stable ReLUs there are, the more the branch and bound trees are reduced, and the less
time is spent branching and bounding to find the optimal solution and prove optimality. Several
orders of magnitude in solve time were noticed when using the information carried by the bound.
However, finding the stable ReLUs is a first step in reducing the branch and bound search tree.
The stable ReLUs are related to the set of binary combinations that can be obtained from the in-
put space. Indeed, the ReLUs corresponding to a neuron e0 is stably equal to 0 (respectively 1 )
in Nx if and only for all b ∈ B(Nx),be0 = 0 (respectively be0 = 1). Note that it was enough to gain
several orders of magnitude in solve time compared to concurrent work.

5.4.2 Still unexploited information

Using b ∈ {0,1}e in the optimization problem 5.10 is as if there is an assumption of the binary val-
ues in b being independent, but this assumption does not hold, there are interactions between
the different coordinates of the binary vector b, as we show in Figure 5.1 . In this example, we
see that, when the values of b and c are 0, then the only value that a can take is 0, a relationship
we modeled with the constraint a ≤ b + c. This shows that [Tjeng et al., 2018] uses only a part of
the information in B(Nx).However, finding the unexploited information might be very difficult. In
that example, the set of binary combinations corresponding to linear regions is {0,1}3\(1,0,0). In
this simple example with only three neurons, we observe that the number of linear regions, 7, is
less than the cardinal of {0,1}3,8. It illustrates that, with more realistic neural networks, there may
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Figure 5.3 – Left: Figure showing the evolution of binary combinations nbcombi nati ons that can be modeled
by the binary activation associated with a hidden layer, as well as the maximum number of linear regions
that this hidden layer can represent using the same number of neurons, with respect to e, the number
of neurons, and the input size. Right: Figure showing the evolution of the ratio between the number of
binary combinations that can be modeled by the binary activation associated with a hidden layer, and the
maximum number of linear regions that can be represented by that hidden with respect to the input size
and e, the number of neurons.

remain a number of binary values that do not correspond to any linear region of the input space.
The MIP will presumably spend time branching and bounding toward binary combinations with-
out correspondence to any linear region, hence those binary combinations will not produce any
solution. In fact, there is nothing to prevent the MIP from going towards such useless binary com-
binations. And so, if we manage to find and include constraints such that the optimization is done
only on binary combinations that effectively correspond to the linear regions, the combinatorial
dimension of the MIP will drastically be reduced. And we would have reduce the solve time of the
MIP. We can also refer to Lemma 4 of [Serra et al., 2018] to have an upper bound of the number of
linear regions that be represented by e neurons (see Figure 5.3).

The number of linear regions that can be represented by 20 neurons with a 2 dimensional in-
put is 211, the ratio 211

220 ≈ 0.0002. With a two-dimensional input, the ratio between the number of
linear regions than can be represented by 30 neurons and 230 is of the order of 10−7. More com-
parisons are available on Figure 5.3. Using the view of the input space as equivalency class/linear
regions, and exploiting this information by restraining the branch and bound to the set of binary
combinations paired with linear regions, could lead to a speed up of several orders of magnitude
and make the problem of complete verification of Neural Network and the search of mean minimal
adversarial distortion less prohibitively time-consuming. However, it means finding and model-
ing the constraints that discriminates between binary combinations that are activation paired with
linear regions (i.e., activation patterns) and those that do not correspond to any activation pattern
(i.e., useless binary combinations), which is out of the scope of this chapter.

5.5 Linear Program Powered Attacks

We have seen in Section 5.2 that there are two ways of exploiting the information when given full
knowledge of the model parameters, a gradient-based way and a gradient-free way. Our method
is going to use both ways. We use the information contained in the weights to see the input space
as a partition such that on each subset of that partition, for a given target class, finding the best
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adversarial example is done by solving a linear program. These attacks are based on two parts, the
exploration of the linear regions and their exploitation.

5.5.1 LiPPA0

LiPPA0 is the first step of the full attack LiPPA. It is a "one-step" attack since it exploits a single
linear region, the linear region of the clean example. Each clean example belongs to a linear region,
and exploiting its linear region can be enough to find a good adversarial example, it is sometimes
enough to find the optimal adversarial example as shown in [Croce et al., 2019]. They use two
measures :

• ∆B(x), the distance between the original example x and the border of its linear region, de-
fined as min‖x−z‖ for all z belonging to the border of the linear region of the clean example
x;

• ∆D(x), the distance between x and the decision boundary in the linear region of the clean
example x, which can be defined as min‖x− z‖ for all z belonging to the linear region of x
and are misclassified.

When ∆D(x) ≤ ∆B(x), then ∆D(x) is the minimal adversarial distortion. Indeed, when ∆D(x) ≤
∆B(x), the point producing the minimal adversarial distortion is in the linear region of the original
input, thus there is no point in looking for closer adversarial examples outside of the linear region
of the original input. Using a MIP in those cases is a waste of time since LiPPA0 is sufficient to find
the closest adversarial examples with the resolution of a single Linear Program. LiPPA0 directly
exploits the linear region of the original input while the MIP would have to go through branching
and bounding, solving several linear programs compared to a single linear program for LiPPA0.
However, LiPPA0 is not always sufficient since it can find adversarial examples that are too far
from the original to be interesting. In case there are no adversarial examples in the linear region of
the original example, LiPPA0 will definitely not find one. In that case, we have to explore the input
space looking for other linear regions to find adversarial examples.

5.5.2 LiPPA

5.5.2.1 Observations and motivations

Exploitation of linear regions and its motivation Let us assume we have an oracle predicting the
class t of the optimal adversarial example and the linear region b of the input space that contains
the optimal adversarial example. Then the optimal adversarial example is found at the cost of
solving a single linear program, LP(b, t ). Unfortunately, such an oracle is not available, therefore
we are going to use surrogates. We are going to find several ways of proposing linear regions that
should lead to good adversarial examples. In practice, we solve a linear program targeting the
incorrect class with the highest activations.

Exploration steps in order to find other regions to exploit Regarding the exploration of the in-
put space, several methods can be used. Any method that allows traveling in an n-dimensional
input space can be used. The goal of the exploration is to visit linear regions. The more linear
regions are explored, the more is increased the chances of visiting the linear region containing the
optimal adversarial example, or at least of finding a satisfying adversarial example. We will use
Basic Iterative Methods [Kurakin et al., 2017] as a gradient-based surrogate to explore the input
space. The choice of BIM for exploration can be motivated by the fact that following the adversar-
ial gradient, each step increases the loss function and therefore points generally to the direction of
a linear region potentially containing adversarial examples.

Our algorithm LiPPA is somewhat similar to the attack of [Croce and Hein, 2018, Croce et al.,
2020], but there are some differences between our approach and theirs:

• we explicitly show that linear regions are equivalency classes,
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• we explicitly show the link between the linear regions and the binary combinations in the
MIP formulation (cf figure 5.1),

• they compute, for each linear region [x] the matrix Γ and the offset γ such that f (x′ ∈ [x]) =
Γx′+γ, this computation is not required in our approach,

• last but not least, they opted for a completely gradient-free approach selecting linear regions
using a randomness, while our approach is hybrid since it uses the gradient to select the
linear regions.

In [Croce and Hein, 2018, Croce et al., 2020] the authors generate randomly a number of points
around the original example. For each random point xφ, they compute the matrix Γ and the offset
γ such that f (x′ ∈ [xφ]) = Γφx′+γφ, and also compute the set of inequalities that define the poly-
tope [xφ] over which the f is affine. In our approach, we neither compute Γφ and γφ nor do we
compute the polytope, all the information we need is contained in B(xφ) since as shown above it
defines the linear region [xφ]. They also store the activation patterns of those random points in
order to check if this point lies in a linear region that were already checked and avoid repeating
unnecessarily the same computation. This check is basically comparing the binary combinations
of the linear region of a new point to the combinations of linear regions that were visited earlier.

Visiting binary values without antecedent with respect to B During the optimization, the MIP
could visit binary values with no antecedent, i.e. binary values b for which there is no x such that
B(x) = b, which is not the case for our proposed methods since all the binary values are in B([X ]).
To have a sense of the difference that can exist between the exponential number of combination
{0,1}e and the maximum number of linear regions that can be represented by the neural network,
we can take a look at the Figure 5.3.

5.5.2.2 Algorithm

Definition 5.1 (LPStep). The exploitation of a linear region corresponds to the search of adversarial
specifically on that linear region. It corresponds to the resolution of the linear program LP(b, t )
where t is the target class and b is the binary code corresponding the activation pattern of that
linear region (cf Figure 5.1 and Figure 5.2) to find the closest adversarial example to the original one
belonging to the class t and to the linear region corresponding to b.

Definition 5.2 (GSStep). Initialized with the solution of the LPStep, the exploration step is achieved
using various iterative gradient steps. Iterations are stopped as soon as the current point belongs to
a new linear region or after a budget limit.

Definition 5.3 (Initialization). The initialization is called LiPPA0: it is an LPStep inside the clean
example’s linear region.

Definition 5.4 (Stopping criteria). Several criteria can be used :

• an adversarial example has been found with a distance to the clean example below the tar-
geted ε,

• the time budget has been reached, we use a time limit of a few seconds since it is usualy enough
as shown in Table 5.3,

• the step budget has been reached,
• GSStep is stuck in a linear region and can not find another,that situation hardly happens.
• the algorithm has "converged", it has fallen into a local minimal where it oscillates between

two linear regions.
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Figure 5.4 – Illustration of the behavior of LiPPA. Blue lines delimit linear regions, dashed red steps corre-
spond to gradient steps and plain green ones to LP steps.

Algorithm 4 : LiPPA

Data : x, f , paramsstop , paramsg s

Result : x̂
[x̂, b] ← initialisation(x, f ) [see Def.5.3] ;
while checkStopCriteria(x,x̂,paramsstop ) [see Def. 5.4] do

[x̂, b] ← GSStep(x̂, f ,b,paramsg s) [see Def.5.2] ;
[x̂] ← LPStep(b, f ) [see Def. 5.1]

end

Inner Loop The inner loop is responsible of going from a linear region to another linear region.
In practice, we fix a limit on the number of of FGSM iterations that can be performed in order
to prevent the algorithm from having an infinite loop. Even though, in practice a few steps are
enough to go from a region to another. And if the number of steps needed appears to be too
large, one can fix that by increasing appropriately the magnitude of each gradient step. One can
also think of using variables steps, let it be randomly chosen steps or steps chosen in a specific
schedule.

Initialization/Restart We initialize our algorithm using the linear region of the original example.
It sometimes suffices to find a satisfying example. It is also proven that the optimal adversarial
example can be found in that region [Croce et al., 2019]. For an input example x with its distance
to the decision boundary being ∆D(x) and its distance to the boundary of the linear region B(x)
being∆B(x), if∆D(x) <∆B(x), then the closest adversarial example lies in the linear region B(x), the
linear region of the original input. However, that is not the most frequent case when the model
is not trained in a particular way. And sometimes the optimization over the original input space
leads to adversarial examples that are too far from the original input. In that case, we use PGD to
find a closer adversarial example that will serve as a new starting point. We also use PGD to restart
the search when LiPPA is stuck in a local minimum when it struggles to get out a linear region
while respecting the pixel range.

In summary, our method exploits both gradient-based and gradient-free information. We take
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advantage of the information given by the gradient by using BIM to go from a linear region to
another. We also take advantage of the particular partition in linear regions which is such that, for
each target class and for each linear region, the optimal adversarial example on that linear region
is found by solving a linear program, which is the gradient-free part.

5.6 Experimental results

Dataset and Models In our experiments, we used MNIST and CIFAR datasets.The architecture
MLP-B represents a multilayer perceptron that has two hidden layers, each having 100 neurons.
The architecture MLP-C represents a multilayer perceptron with one hidden layer with 1024 neu-
rons. and the models of [Salman et al., 2019]. The architecture CNN is the architecture used in
[Wong and Kolter, 2018] which is made of a first convolutional layer with 16 filters, a second with
32 filters each having a stride of two, followed by a hidden layer of 100 neurons and finally fol-
lowed by the output layer. Models are prefixed to show how they were trained. Models prefixed
with NOR were trained normally with the cross-entropy loss function. Models prefixed with ADV
were trained with adversarial examples generated by Projected Gradient Descent (PGD). Mod-
els prefixed with LPD are trained using [Wong and Kolter, 2018]. Models prefixed with Maximum
Margin Regularizer (MMR) are trained using [Croce et al., 2019]. And Models prefixed with MMR-
ADV used both adversarial training with PGD and MMR. All used models are available online at
Salman’s github1 for architecture MLP-B, at Andriushchenko’s github 2 for MLP-C and CNN except
for LPD-CNN which were taken from https://github.com/locuslab/convex_adversarial.

Threat model We consider a white box setting, i.e., the attacker has complete access to the model
and can exploit as much information as possible. This allows us to extract information from the
outputs of the hidden layers. We test robustness for `∞. However, LiPPA can also be used to look
for adversarial examples for `1 and also `2 without major changes to the algorithm or the im-
plementation. It is worth noting that for the case of `2 the obtained optimization problem is a
quadratic program instead of a linear one.

Implementation details In the implementation, we avoided the use of big-M constraints to model
the ReLU constraints. Since when using LiPPA, for each neuron of the network we know its state,
i.e., if it is active or not, we were able to directly encode that in the formulation. Let us denote i−
the indices i such that bi = 0 (meaning pre-ReLU activations) are negative and i+ the indices such
that bi = 1 (meaning pre-ReLU activations) are nonnegative. The ReLU constraints are then:

• ẑi < 0, zi = 0, i ∈ i−,
• ẑi > 0, zi = ẑi , i ∈ i+.
In practice, we start by exploiting the linear region of the original examples. That means, given

a model and an example x belonging to the class y , with t the target class (the wrong class with
the highest activation), we solve the corresponding LP(B(x), t ). It is sometimes enough to find a
satisfying adversarial example. If that is not the case, then we look for adversarial examples using
Projected Gradient Descent increasing the allowed distance when adversarial examples are not
found, allowing PGD to find adversarial with higher distance than the desired ε in order to have
a starting point for LiPPA. In fact, experiments showed that LiPPA tends to have trouble finding
good adversarial examples when the adversarial example found in the linear region of the original
is too far from the original example. Using PGD to give a starting point is therefore our workaround
for this problem. If the adversarial example found using PGD is satisfying, i.e., its distance to the
original example is less than the magnitude ε for which we want to compute the robust test error
lower bounds and upper bound, then we do not need to fully launch LiPPA. If the adversarial ex-
ample is not satisfying, we use it as a starting point for LiPPA by optimizing its linear region to find
an adversarial example closer to the original example, and then use enough iterations of FGSM to

1https://github.com/Hadisalman/robust-verify-benchmark
2https://github.com/max-andr/provable-robustness-max-linear-regions
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Figure 5.5 – Evolution of the number of found linear regions averaged over the first 100 images of the MNIST
test set with respect to the number of random samples around the original example, using MLP-B.

get to another linear region, thus alternating between gradient-free information exploitation and
gradient based one.

5.6.1 Approximation of the number of linear regions

Experimental setup and results We gave some hints allowing to understand that the effective
number of linear regions can be much smaller than the exponential number of possible binary
combinations. This holds even when we take into account the existence of stable ReLUs. Here
we run an experiment to back that claim. First, for the original image, we generate an increasing
number of points within a ball of infinite norm of 0.05 3. We count the number of uniquely dis-
covered linear regions on MLP-B for each training setting. We average results over the first 100
images of MNIST test set. We finally sample 6144 random points around the clean example and
this time count the number of unstable ReLUs we found. Table 5.1 shows the average number of
unstable ReLUs, nU, the number of all possible binary combinations to nU unstable ReLUs, and
the number of linear regions we found. Our experiments show that the number of linear regions
we found is smaller than 2nU , the number of binary combinations corresponding the nU unstable
ReLUs. Figure 5.5 shows that the average number of found linear regions does not grow as fast as
the number of random samples.

Robustness, unstable ReLUs and number of linear regions Figure 5.5 shows that, for the same
architecture, the number of found linear regions is lower for robustified models. Linking that with
robustness measures, we can say that the more robust the network, the less linear regions are
found. Moreover, a lower number of linear regions around the input examples plays a signifi-
cant role in fastening the verification. This finding goes in the same direction as previous works.
Previous results in [Tjeng et al., 2018] has already shown that verifying the robustness for models
trained with the provable method [Wong and Kolter, 2018] takes less time than on models with the
same architecture trained with adversarial training for example. It is coherent with the fact that, in
[Tjeng et al., 2018], they found more stable ReLUs for the model trained with the provable method
[Wong and Kolter, 2018] than the one trained with adversarial training for the same architecture
and the same robustness target. Our experiment goes further by approximating the number of

3After the sampling a deformation random vector, some tricks are applied to fill the box around the input image
better and maximize the chance of discovering more linear regions
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Figure 5.6 – Distribution of the number of unstable ReLUs and the number of linear regions for the MLP-B
architecture and different training methods. We observe a shift of the distribution when going from not
robust models to more robust models.
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Table 5.1 – Comparison between the number of linear regions and the number of found linear regions across
different training methods for the MLP-B architecture. The value next to the training method represents the
value `∞ the model was trained to be robust to.

Training NOR ADV-0.05 ADV-0.1 LPD-0.1
nU 24.54 14.89 7.94 4.32
2nU 2.44 107 3.04 104 246 20

linear regions 541 198 49 14

linear regions. And while in [Tjeng et al., 2018] they compute the stable ReLUs and deduce the
number of possibly unstable ReLUs, we approximate the number of found unstable ReLUs, which
can allow the deduction of the number of possibly stable ReLUs. And comparing the number of
found linear regions and the number 2nU with nU the number of unstable ReLUs we can see some
huge differences for example for the model adversarially trained to be robust to attacks with infi-
nite norm 0.05, we have on average nearly 198 linear regions while the average number of unstable
ReLUs found is 14.89, it would correspond to 214.89 > 3×104 possible binary combinations. We also
observe that the number of found linear regions is roughly 4 times less for the model trained with
adversarial training to be robust to a greater `∞ perturbation, 0.1, than for the small one, 0.05.
Likewise, the number of found linear regions for LPD is 3.5 times smaller than when trained with
adversarial training for the same allowed perturbation. We can observe a shift in the distribution
of the number of linear regions in Figure 5.6 further highlighting the effect of robust training. It is
intuitive to say that this low number of linear regions plays a role in the fact that the MIP usually
converges for the model trained with LPD method.

This shift is a direct consequence of the reduction of the number of provably unstable found
ReLUs. For MLP-B architecture, in Figure 5.6, we can observe a shift in the distribution of the
number of unstable ReLUs. We can also see that the distribution of the number of unstable ReLUs
seems to shrink, meaning the standard deviation of the number of unstable ReLU decreases. It
means not only that the mean number of unstable ReLUs decreases, but also that the numbers
are less scattered and are gathered more densely around the mean. And the model LPD-MLP-B,
which is the most robust and the most easily verified, has a very low number of unstable ReLUs
when compared to the naive model, NOR-MLP-B. The reduction of the standard deviation of the
number of unstable ReLUs also affects the standard deviation of the number of linear regions even
though it is not that obvious on Figure 5.5 due to the logarithmic scale. Nevertheless, looking at
Figure 5.3, we can clearly see that the standard deviation of the number of linear regions is several
orders of magnitude greater for NOR-MLP-B than for LPD-MLP-B. We can also remark that when
using adversarial training, the model trained to be robust to adversarial perturbations with `∞-
norm of 0.05 has more linear regions on average and also has a higher standard deviation than the
model trained to be to robust to perturbation with `∞-norm 0.1.

We can conclude that more vulnerable networks have more unstable ReLUs. Since the models
were not explicitly trained to have more stable ReLUs but to be more robust, we have an empirical
hint that robustness enhances the stability of ReLUs activation around training input points. In
other words, the more robust a neural network is, the more stable the ReLU activations will be
around the data points.

Our experiment shows evidence that the number of linear regions around the samples is less
than the number of all possible binary combinations susceptible to be explored using an MIP
formulation. And, more robust models tend to have fewer linear regions around the original ex-
amples.

Proving that the number of linear regions can be much smaller than the exponential number
of all possible combinations in a neighborhood of an image is an encouraging first step. Similar
results has been found by [Hanin and Rolnick, 2019] stating that "Deep ReLU networks have sur-
prisingly few activation patterns". This step combined with a good mechanism to select the most
promising linear regions/combinations are the heart of our approach.
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5.6.2 LiPPA0

Set-up details In this experiment, we study the first step of LiPPA, LiPPA0, consisting in looking
for adversarial examples in the linear region of the original examples. We use the first 1000 ex-
amples of the test set. The performances of LiPPA0 are reported in Table 5.2. The Figure 5.7 also
shows the distribution of the adversarial distortion necessary to fool the network while remaining
in the linear region of the original examples.

LiPPA0’s runtime The runtime of LiPPA0 is very dependent on the architecture (see Table 5.2).
For example, for the MLP-C architecture, one hidden layer of 1024 units, it takes around 2s, while it
takes around 0.27s for MLP-B architecture which is made of 2 hidden layers of 100 layers each, and
for CNN architecture it takes around 0.6s for MNIST. This is explained by the fact that architecture
affects the number of variables in the optimization problem. We can also observe nonsignificant
differences with respect to the training method for the same architecture, it is usually due to the
number of samples where LiPPA0 does not find a feasible solution. LiPPA0’s optimization is shorter
when there is no feasible solution.

Percentage of infeasible The percentage of infeasible is the percentage of samples for which
LiPPA0 was not able to find an adversarial example in the linear region of the original input sample
such that all pixels lie between 0 and 1. This percentage seems to be related to the architecture
and to the training method. Convolutional neural networks have a higher percentage of infeasible
than fully connected networks. The percentage of infeasible for NOR-CNN is 18.20% while the
percentage for NOR-MLP-B is 15.90% and the percentage of NOR-MLP-C is 0%. We also remark
that going from naive training to robust training, the percentage of infeasible increases. It is the
case for the MLP-C architecture which initially had 0% of infeasible attack which grows to 11.20%
when the adversarial training is performed to be robust to perturbations of `∞ 0.1. This increase
is not always observed for the architecture MLP-B where NOR-MLP-B has 15.90% of infeasible
optimization problems, while for the other training methods a lower percentage of infeasible is
obtained for different robust training methods. LPD-MLP-B with `∞ target robustness 0.2 is the
exception where 18.70% is obtained. For the architecture MLP-B and with adversarial training,
we observe that the percentage of infeasible optimization problems grows when the robustness
target is increased, going from 1.80% for ε= 0.03 to 10.00% for ε= 0.1. The same phenomenon is
observed for the LPD training method of the architecture MLP-B.

Minimal Adversarial Distortion (MAD) In the linear region of the input example, LiPPA0 out-
puts the minimal adversarial distortion to find an adversarial example when the corresponding
optimization problem admits a solution. That MAD distribution is different between the naive
training and the robust training procedures. For the average MAD, models trained naively have
a smaller value than models trained to be robust to adversarial perturbations. We can clearly see
that the MAD found using LiPPA0 drifts toward higher values when going from naive training to
robust training in Figure 5.7 . In the computation of the average MAD, examples that are misclas-
sified (even without adversarial perturbations) are not taken into account. While using adversarial
training for the architecture MLP-B, the average MAD found using LiPPA0 goes from 0.19 to 0.26
when the target `∞ robustness goes from 0.03 to 0.1. LiPPA0 can be used to test the presence or
effectiveness of a defense mechanism.

5.6.3 LiPPA performance

Set-up details In our experiments, we used εFGSM = 0.5/256, and as the stop criterion for the
exploration step, the fact that we changed the linear region or that we did not change linear after
50 FGSM iterations, in that case we look for a new starting point. Results are in Table 5.4, where
ε represents the magnitude for which we compute the lower bounds and upper bounds on the
robust test error. It is also used to train for robustness when the model is trained to be robust to
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Figure 5.7 – Shift in the MAD distribution found by LiPPA0. The top row represents the MLP-C architecture
and the bottom row represents the CNN architecture. The left column represents the the normal training
and the second column adversarial training with robustness target of 0.1.

adversarial attacks, which is the case with all networks except the ones starting with NOR. The
test error is the misclassification rate on the clean examples. The lower bound represents the best
lower bound on the robust classification error found using PGD and MIP with a time limit of 3600s
when results are from [Salman et al., 2019], and using PGD, the gradient-free attacks of [Croce and
Hein, 2018, Croce et al., 2020] and a MIP with a time limit of 120s when from [Croce and Hein,
2018]. The computation of the lower and upper bounds is done using the code associated with
[Tjeng et al., 2018].

Comparison to the MIP and other attacks Let us remind that when the lower bound is equal
to the upper bound, it means that for every example either an adversarial example was found or
it was proven that there is no adversarial example, i.e. there was no timeout for the MIP. In the
same way, if we have a gap between the lower and the upper bound, it means that there are some
examples around which no adversarial example was found, but at the same time there was no
proof of robustness around those examples when the time limit was reached by the MIP.

Performance On the MNIST dataset, our attack does better than the previously reported lower
bounds on NOR-MLP-C, ADV-MLP-C, and ADV-CNN where, among other attacks, the MIP had
a time limit of 120s but failed to find adversarial examples found using LiPPA in at most a few
seconds and usually less than a second. Even though the reported results for NOR-MLP-B and
ADV-MLP-B are on the whole test while the results of LiPPA are only on the first 1000 samples, it
seems that LiPPA outperforms the attacks used to compute that lower bound and the MIP which
were given an hour. On the CIFAR dataset, LiPPA matched the lower bound on one network and
had comparable results on the other.
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Table 5.2 – Table showing the performance of LiPPA0, the percentage of examples for which LiPPA0 found
no feasible solution, the average minimal adversarial distortion (MAD) and the average runtime for the first
1000 samples of the test set.

Network ε
TEST

ERROR
LOWER BOUND LiPPA0 % infeasible MAD runtime

NOR-MLP-B 0.02 2.05 10.16*[Sal manet al .,2019] 6.80 15.90 0.13 0.27
NOR-MLP-B 0.03 2.05 20.43*[Sal manet al .,2019] 10.20 15.90 0.13 0.27
NOR-MLP-B 0.05 2.05 53.37*[Sal manet al .,2019] 19.10 15.90 0.13 0.27
NOR-MLP-C 0.1 1.44 93[Cr oceet al .,2019] 51.30 0 0.11 1.97
ADV-MLP-B 0.03 1.53 4.18*[Sal manet al .,2019] 4.40 1.80 0.19 0.28
ADV-MLP-B 0.05 1.62 6.11*[Sal manet al .,2019] 6.60 4.10 0.24 0.27
ADV-MLP-B 0.1 3.33 16.25*[Sal manet al .,2019] 16.40 10.00 0.26 0.21
ADV-MLP-C 0.1 0.92 10[Cr oceet al .,2019] 6.50 11.20 0.35 1.49

ADV-CNN 0.1 0.82 3[Cr oceet al .,2019] 2.30 92.20 0.22 0.67
LPD-MLP-B 0.1 4.09 14.45*[Sal manet al .,2019] 16.3 0 0.25 0.21
LPD-MLP-B 0.2 15.72 36.33*[Sal manet al .,2019] 33.9 18.70 0.36 0.18
LPD-CNN 0.1 1.8 4.40[Cr oceet al .,2019] 4.1 91.5 0.21 0.55

MMR-MLP-C 0.1 2.11 22.5[Cr oceet al .,2019] 18.20 0 0.17 1.52
MMR-CNN 0.1 1.65 6[Cr oceet al .,2019] 4.60 86.30 0.27 2.14

MMR-ADV-MLP-C 0.1 2.04 14[Cr oceet al .,2019] 11.70 0 0.25 1.58
MMR-ADV-CNN 0.1 1.19 3.6[Cr oceet al .,2019] 2.70 94.50 0.19 0.51

Observation of runtime The average running time of LiPPA compares favorably to MIP but can
not compete with gradient methods running on GPU. However, we observed an interesting be-
havior: if LiPPA is to find an adversarial example, it finds it real quick. If LiPPA runs more than a
few seconds, it is a good prediction that it will fail. Table 5.3 illustrates this. Knowing this, a time
limit of a few seconds per image could be set to save time.

Table 5.3 – Average runtime for failed and successful LiPPA search.

Model Failed (in sec) Successful (in sec)
ADV-CNN 31.10 0.64

MMR-CNN 36.93 2.45
MMR-ADV-CNN 29.87 0.45

NOR-MLP-B 15.90 0.42
ADV-MLP-B 16.52 0.25
NOR-MLP-B 16.24 0.25
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Table 5.4 – MLP-B models are from [Salman et al., 2019] and the other from [Croce et al., 2019] completed
with our new attack for comparison on the first 1000 examples. Starred results ∗ are computed over the
whole test set. Bold results are those beating or matching previous methods. For the results taken from
[Salman et al., 2019], the lower bound reported is the best lower bound between PGD and the state-of-the-
art MIP with a timeout of 3600s. For the results taken from [Croce et al., 2019] the lower bound is the best
lower bound found by PGD, the gradient-free attack [Croce and Hein, 2018, Croce et al., 2020] and a MIP
with a timeout of 120s. The upper bounds are reported from the same paper than the lower bound of the
same line. + :The upper bound is computed on the whole test set while only the first 1000 samples were
used in our experiment.

DATASET Network ε
TEST

ERROR
LOWER BOUND LiPPA UPPER BOUND

MNIST

NOR-MLP-B 0.02 2.05 10.16*[Sal manet al .,2019] 11.40 13.48*
NOR-MLP-B 0.03 2.05 20.43*[Sal manet al .,2019] 25.20 48.67*
NOR-MLP-B 0.05 2.05 53.37*[Sal manet al .,2019] 63.30 94.04*
NOR-MLP-C 0.1 1.44 93[Cr oceet al .,2019] 94.30 100
ADV-MLP-B 0.03 1.53 4.18*[Sal manet al .,2019] 5.20 5.78*
ADV-MLP-B 0.05 1.62 6.11*[Sal manet al .,2019] 7.50 11.38*
ADV-MLP-B 0.1 3.33 16.25*[Sal manet al .,2019] 20.40 34.3*
ADV-MLP-C 0.1 0.92 10[Cr oceet al .,2019] 11.90 99

ADV-CNN 0.1 0.82 3[Cr oceet al .,2019] 4.50 100
LPD-MLP-B 0.1 4.09 14.45*[Sal manet al .,2019] 17.40+ 14.45*
LPD-MLP-B 0.2 15.72 36.33*[Sal manet al .,2019] 38.3+ 36.33*

MMR-MLP-C 0.1 2.11 22.5[Cr oceet al .,2019] 21.30 24.9
MMR-CNN 0.1 1.65 6[Cr oceet al .,2019] 5.80 6

MMR-ADV-MLP-C 0.1 2.04 14[Cr oceet al .,2019] 13.40 14.1
MMR-ADV-CNN 0.1 1.19 3.6[Cr oceet al .,2019] 3.20 3.6

CIFAR-10

NOR-CNN 2/255 24.63 91[Cr oceet al .,2019] 87.7 100
ADV-CNN 2/255 27.04 52.5[Cr oceet al .,2019] 48.1 88.5
LPD-CNN 2/255 38.91 46.6[Cr oceet al .,2019] 46.3 48

MMR-CNN 2/255 34.61 57.5[Cr oceet al .,2019] 56.9 61
MMR-ADV-CNN 2/255 35.38 47.9[Cr oceet al .,2019] 47.9 54.2
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5.7 Conclusion

We proposed a new attack, LiPPA, that alternates exploitation and exploration steps. In the explo-
ration step, LiPPA takes advantage of gradient-based information by following the gradient, not
to find adversarial examples but to explore another promising linear region that could lead to a
better adversarial example. And during the exploitation step, LiPPA benefits from gradient-free
information by solving a linear program in the linear region proposed by the exploration step. The
result of the exploitation step will serve as a starting point for the following exploration step, and
so on, and so forth.

Doing that, LiPPA was able to achieve better lower bounds on the robust test error getting
ahead of previous methods including MIP with time limits going up to one hour, as well as PGD,
establishing itself as one of the most powerful attacks. We showed that the input space of neu-
ral networks with piecewise linear activations, such as ReLU activations, can be partitioned into
equivalence classes and that the state-of-the-art MIP verifier uses a part of the information con-
tained in that partitioning to be faster. We showed that there is still unexploited information in the
verification with respect to the linear regions of the input space. In an attempt to harness that in-
formation, the attack we propose manages to find quickly adversarial examples that the MIP could
not find within the allocated time limit.

Future work includes finding better ways to propose linear regions to look for adversarial ex-
amples as well as looking for a way to discover constraints to add to the MIP formulation to focus
only on binary values corresponding the linear regions of the input space to accelerate the robust-
ness verification.
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Conclusion

Among the different challenges that deep learning models have to tackle this thesis focuses on
trustworthiness and reliability through the lens of adversarial examples. We presented adversarial
examples and why it is important to study them, particularly for models that are to be deployed
in safety-critical environments. Even though there is not yet a consensus on the reasons for the
existence of adversarial examples, several interesting hypotheses have been formulated. The evo-
lutionary stalking hypothesis states that as training progresses, correctly classified samples con-
tribute less and less to the weight updates and have little effect on the decision boundaries, leav-
ing them very close to the decision boundaries. This hypothesis seems to be the one that explains
most simply the existence of adversarial examples and it fits several domains and data types. In
the image classification domain, the existence of adversarial images challenges the idea that the
first layers learn to recognize concepts such as lines or color blobs while the layers closer to the
output learn to identify more complex concepts such as faces and trees for example. We worked
exclusively on image classification and with additive perturbation using `p norms as done by most
of the work on adversarial image classification. The reason is not that robustness to those pertur-
bations means overall robustness, but rather the fact that the lack of robustness to `p hints at
vulnerability to more complex, more realistic attacks, since simple translation or rotation opera-
tions are enough to fool classifiers. There is however much more to the perturbations than just
additive perturbations.

1st contribution: Our first contribution is a new defense mechanism based on adversarial train-
ing and double back-propagation. Adversarial training that we can see as an advance form of data
augmentation is known to have a regularization on the loss landscape, smoothing it. Double-
backpropagation has shown to be an effective regularization in the past and supports the hy-
pothesis that flattering loss landscapes leads to better generalization. Using the idea of double-
backpropagation, we further enforce that regularization by explicitly penalizing the components
of the gradient of the loss not only at the training points but at potential adversarial points around
them. It helped obtaining models that were at least as robust when only adversarial training was
used.

2nd contribution: Once a model is trained, to ensure reliability, we test the robustness of that
model against adversarial attacks. We can evaluate the robustness of a model by testing its accu-
racy against adversarial attacks such as gradient-based attacks. However, those attacks can give a
false sense of robustness. It becomes necessary to use more powerful methods, for example the
formulation of the search of adversarial examples as a MIP. However, the MIP formulation has as
main drawback the fact that it is time-consuming. We then tried to find an attack based on the MIP
formulation but that is much faster than the MIP using DCA. Starting from the MIP formulation,
DCA relaxes the binary variables and adds a penalization that allows to obtain binary values for the
relaxed variables without having to explicitly declare them as binary. That rids us of the branch-
and-bound mechanism that makes the MIP slow. However, DCA quickly reached its limits. Our
hypothesis on the reasons why DCA did not manage to obtain the good performances it obtained
on other problems is the link between the input space and the binary values that is explicit in the
last and main contribution of this thesis.
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3r d contribution: This contribution is the follow-up of the previous one. Using DCA with care-
fully chosen parameters, we notice that we could predict the final values of pseudo-binary values
knowing their initial value. In particular, when the initial values are deduced from the activation
pattern of the original input image, we retrieve the same values after convergence. That is because
there is an equivalence between the binary combination given by the activation pattern and the
linear region of the input space. Each linear region corresponds to a binary combination. How-
ever, the flip side does not hold. There are many binary combinations that do not correspond to
any linear region. This shows that the number of linear regions is smaller than the number of bi-
nary combinations as encoded in the MIP formulation. Even though there is a large number of
linear regions, exploiting the gradient as done in gradient-based attacks helps to select linear re-
gions with a higher chance of finding adversarial examples. LiPPA is, to the best of our knowledge,
the first attack that combines gradient-based and gradient-free information. Combining them,
LiPPA is able to achieve better performance than previous attacks including the MIP with a time
limit. LiPPA is more accurate than gradient-based attacks while being much faster than the MIP. It
is more accurate than the gradient-based attacks because it inherits the accuracy of the MIP. And
it is faster than the MIP because LiPPA does not have to go through branch-and-bound to find
adversarial examples and LiPPA exploits the gradient to find quickly linear regions while the MIP
does not use the gradient. That makes LiPPA a very powerful attack that is able of finding very
quickly adversarial examples that are the closest to the original inputs, the same found by the MIP
given enough time. Furthermore, exploiting the linear regions allows to find precious information
about the correlations between robustness, the number of linear regions, and the number of un-
stable ReLUs. Our experiments showed that the more robust models have less unstable ReLUs that
leads to a fewer number of linear regions.

Perspective 1: on the biases of the neural networks The existence of adversarial examples ques-
tions old beliefs about how neural networks work. It also showed that neural networks do not rely
on the same features as humans to perform image classification. Neural networks are believed
to give much less importance to the form that humans do. Neural networks are believed to rely
heavily on "texture" to make predictions. Directing the neural networks to rely more on the form
of objects could help get more robust models, models that are less prone to adversarial examples.
One way to do that is to extend the training datasets to pair each of their images with its results
when passed through an edge detector and train on those pairs. The training phase should be
crafted for the models to rely on less on "textures" and more on forms.

Perspective 2: on enhancing verifiability It is shown that having a high number of stable ReLUs
helps the verification process. Finding a training method that can give robust models while at
the same time guaranteeing a high number of stable ReLUs can lead to further verifiability of the
obtained models.

Perspective 3: Exploiting the linear regions in the verification process Each linear region cor-
responds to a binary combination, that is, a leaf on the search tree associated with branch-and-
bound, thus with complete verification methods such as MIP, and the flip side is not true. Finding
a way to limit the search of adversarial examples only to the combinations that correspond to lin-
ear regions should lead to a speed-up of several orders of magnitude. It could be, for example,
finding constraints that discriminate between the binary combinations corresponding to linear
regions and binary combinations that do not correspond to any linear region.
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