
HAL Id: tel-03609136
https://theses.hal.science/tel-03609136v2

Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intracellular dynamics and super-resolution imaging :
the bacterial wall probed at the molecular scale

Yunjiao Lu

To cite this version:
Yunjiao Lu. Intracellular dynamics and super-resolution imaging : the bacterial wall probed at
the molecular scale. Image Processing [eess.IV]. Université de Rennes, 2021. English. �NNT :
2021REN1S082�. �tel-03609136v2�

https://theses.hal.science/tel-03609136v2
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

École Doctorale No 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image, vision

Par

Yunjiao LU
« Dynamiques intracellulaires et imagerie de super résolution : la paroi bacterienne sondée

à l’echelle moléculaire »

Thèse présentée et soutenue EN VISIOCONFÉRENCE, le 7 Juin 2021
Unité de recherche : MaIAGE, Inra Jouy-en-Josas
Serpico, Inria Rennes – Bretagne Atlantique

Rapporteurs avant soutenance :
Xavier Descombes, Directeur de Recherche Inria, Inria Sophia Antipolis

Jean-Baptiste Masson, Chargé de Recherche, Institut Pasteur

Composition du jury :

Président : Guy Carrault, Professeur, LTSI et Université de Rennes 1

Examinateurs : Leila Muresan, Principal Investigator, Cambridge Advanced Imaging Center, Cambridge

Dir. de thèse : Charles Kervrann, DR INRIA, Centre INRIA Rennes-Bretagne Atlantique

Co-dir. de thèse : Rut Carballido-Lopez, DR INRAE, Unité Micalis Centre de Recherche de Jouy-en-Josas

Membre invité : Alain Trubuil, IR INRAE, Unité MaIAGE, Centre de Recherche de Jouy-en-Josas



ACKNOWLEDGEMENT

Three years and eight months, I am thankful for this precious time that allows me to discover,

experience, fail, think, learn, and better understand myself and the world of scientific research.

There are many people to whom I owe great gratitude.

I want to thank my supervisors, Alain Trubuil and Charles Kervrann, for the favorable envi-

ronment they offered me for my personal and professional development to become a respon-

sible scientific researcher. I am thankful for the freedom that I owned to explore and for them

being my support and guiding me with their professional expertise and rich experiences. My

thankfulness goes to my supervisor Rut Carballido-Lopez and colleagues Cyrille Billaudeau

and Arnaud Chastanet, who introduced me to their research field, microbiology. The collabo-

ration and multiple discussions with them throughout the preparation of my manuscript make

our work much more rich and valuable. I would like to thank my colleagues at MaIAGE, inclu-

ding my former collegue Pierre Hodara, as well as our administrators and IT support, for their

help, friendship, good humor, and encouragement while I was writing the manuscript, and my

colleagues at Serpico and the Institut Curie. I would like to express my gratitude to Vincent Fro-

mion and Hugues Berry, members of the CSI, for their attention to the progress of the thesis,

their precious suggestions. I also want to thank the members of the jury for their valuable time

in reading my manuscript.

I am grateful for my beloved brothers and sisters in the Church of Christ in Paris, for their

support at some impossible moments and for their living faith, which I share, which is the true

rock of my life and gives meaning to all that I experienced. I am also grateful for the interesting

encounters at the residence MIAA, in the beautiful CIUP, which became almost my whole living

space (work and live) during the last year of my PhD, due to the Covid-19 sanitary crisis. Thank

you Zejian for your help with several physical problems ; thank you Giacomo for being there.

Thank you for your passions and talents, which brightened my life during that difficult time. I

wish you all the best. Thanks to my dear parents, who waited for my return with long endurance

far away in China.



TABLE OF CONTENTS

Résumé en français 8

Contexte et Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Contexte scientifique et motivations . . . . . . . . . . . . . . . . . . . . . . . . . 9

Les défis en traitement des images biologiques et en microscopie quantitative . . 9

Contexte biologique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Modèles de diffusion pour l’analyse de dynamiques en bioimagerie . . . . . . . . 11

Contributions de cette thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Organisation du manuscrit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Introduction 17

Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Scientific context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Challenges in biological image processing and quantitative microscopy . . . . . 18

Biological context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Diffusion models for dynamics analysis in bioimaging . . . . . . . . . . . . . . . . 19

Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

The organization of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1 Cell biology of the bacteria cell wall 27

1.1 The bacteria cell wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1.1 The composition and architecture of the cell wall . . . . . . . . . . . . . . 29

1.1.2 Different models of biogenesis of the cell wall (Remodeling of the cell wall

during cell expansion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1.3 Molecules involved in the construction of the cell wall and the special role

of MreB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.2 The structure of MreB and the dynamics of MreB . . . . . . . . . . . . . . . . . . 35

1.2.1 The existing form of MreB . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2.2 The orientation of MreB filaments in the membrane and what it reveals . . 36

1.2.3 MreB exhibits distinct types of motion . . . . . . . . . . . . . . . . . . . . 37

1.3 The interaction of MreB with other PGEM components . . . . . . . . . . . . . . . 38

1.3.1 The transmembrane RodZ is required for cell-shape maintenance in B.

subtilis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3



TABLE OF CONTENTS

1.3.2 MreB, RodA, and PbpH do not form a stable complex that lasts over many

minutes but rather perform constant dynamic binding and off-binding . . . 40

2 Imaging of the membrane protein MreB 43

2.1 The diffraction limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 A summary of the conventional and super-resolution microscopy . . . . . . . . . 45

2.3 Basic principles of Total Internal Reflection Fluorescence microscopy . . . . . . . 47

2.4 Basic principles of Structured Illumination microscopy . . . . . . . . . . . . . . . 49

2.4.1 The translation of the diffraction limit in frequency space . . . . . . . . . . 49

2.4.2 The principle of SIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Sources of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Observation of the dynamics of the protein MreB during active bacteria cell growth 53

3 Statistical analysis of the dynamics of the protein MreB during cell wall synthesis 57

3.1 Diffusion models and sources of measurement errors . . . . . . . . . . . . . . . 58

3.1.1 Diffusion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.2 The sources of errors inherent to fluorescence microscopic images ac-

quisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Methods for individual trajectories analysis . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Comparison of classification methods . . . . . . . . . . . . . . . . . . . . 64

3.2.2 Estimation of the diffusion coefficient in single-particle tracking . . . . . . 76

3.2.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 MreB dynamics analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 MreB dynamics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.2 Classification of MreB trajectories . . . . . . . . . . . . . . . . . . . . . . 82

3.3.3 The estimation of diffusion coefficient D and localization error σ2
loc . . . . 84

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 Estimation of the radius of the cylinder from projected trajectories . . . . . . . . . 89

3.4.1 The estimation of the effective velocity and standard error . . . . . . . . . 89

3.4.2 Projection of a diffusion process onto a 2D plane . . . . . . . . . . . . . . 90

3.4.3 Estimation of the cylinder radius . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.4 Procedure for estimating the cylinder radius and evaluation . . . . . . . . 93

3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Probabilistic reconstruction of truncated particle trajectories on a closed surface101

4.1 Problem statement and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4



TABLE OF CONTENTS

4.1.1 Models description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.2 Modeling hypothesis and MreB dynamics . . . . . . . . . . . . . . . . . . 104

4.1.3 Some practical consideration . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Probabilistic models and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.1 Summary of notation useful for the evaluation of the likelihood . . . . . . 105

4.2.2 Likelihood of a configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.3 Maximum likelihood and optimal configuration . . . . . . . . . . . . . . . . 111

4.2.4 Estimation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.5 Limits of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.1 Generation of trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.2 The "adjusted Rand index" for the evaluation of connection results . . . . 118

4.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.4 Analysis of the connection results . . . . . . . . . . . . . . . . . . . . . . 126

4.4 An illustration of the connection algorithm applied to real MreB dynamics . . . . 131

4.4.1 Construction of the local cell referential . . . . . . . . . . . . . . . . . . . 131

4.4.2 Tracking and selection of aggregates in the observed region . . . . . . . . 131

4.4.3 The connection of tracklets . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Conclusions and perspectives 137

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A Appendix 141

A.1 Itô integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Estimation of the radius of cylinder by linear fitting (supplementary experiments) 142

A.3 Analysis of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.4 Calculation of the boundary of P (c) . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 149

List of publications 163

5



LIST OF FIGURES

1 Représentation des mécanismes dominants de l’allongement de la paroi cellu-

laire chez les bactéries en forme de bâtonnet (Figure empruntée à [TR18]) . . . 12

2 Illustration du problème de la vue incomplète dans TIRFM . . . . . . . . . . . . . 14

3 Illustration des résultats de la reconstruction sur la surface des cellules appro-

chée par un cylindre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Representation of the prevailing mechanisms of cell wall (CW) elongation in rod-

shaped bacteria (Figure from [TR18]) . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Illustration of the incomplete view in TIRFM . . . . . . . . . . . . . . . . . . . . . 23

6 Illustration of the reconstruction results on the cell surface approximated by a

cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1 Schematic illustration of the cell envelope in Gram-negative (Gram-) (left) and

Gram-positive (Gram+) (right) bacteria [Liu+15]. . . . . . . . . . . . . . . . . . . 29

1.2 A schematic diagram of one model of peptidoglycan (PG) [WSW08]. . . . . . . . 30

1.3 Schematic illustration of mechanistic models of PG synthesis in rod-shaped bac-

teria [Bil+17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Representation of the prevailing mechanisms of cell wall (CW) elongation in rod-

shaped bacteria [TR18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Illustration of MreB patches exhibiting different dynamic behaviors [Bil+17]. . . . 39

2.1 Airy disk and the Point-Spread Function (PSF) . . . . . . . . . . . . . . . . . . . 45

2.2 Illustration of the light paths of common conventional microscopy techniques.

From [Sch+19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 The Exponential Intensity Decay in the evanescent field [AWD] . . . . . . . . . . 48

2.4 Polarized Light Evanescent Intensities, where the critical angle θc = 60◦. [AWD] . 49

2.5 Airy disk in the frequency space and the OTF . . . . . . . . . . . . . . . . . . . . 50

2.6 The principle of SIM. From [Gus00] . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 A comparison of images aquired by TIRFM and SIM-TIRFM [Bil+19]. . . . . . . . 54

3.1 Simulation and classification for Brownian motion. . . . . . . . . . . . . . . . . . 71

3.2 Simulation and classification for super-diffusion. . . . . . . . . . . . . . . . . . . . 73

3.3 Simulation and classification for sub-diffusion. . . . . . . . . . . . . . . . . . . . . 74

3.4 The power of test of THOTH performed by Monte Carlo sampling [BKV18]. . . . 75

6



LIST OF FIGURES

3.5 Illustration of the performance of the classification methods on one bacterium cell. 83

3.6 Comparison of three classification methods on MreB trajectories. . . . . . . . . 84

3.7 The MSD curves of immobile particles. . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 The estimation of static localization error. . . . . . . . . . . . . . . . . . . . . . . 86

3.9 The estimation of D and σ2
loc by Optimal Least Squared Fitting (OLSF). . . . . . 87

3.10 The estimation of D and σ2
loc by Maximum Likelihood Estimation (MLE). . . . . . 88

3.11 The schema of 3D surface reconstruction (ex. cylinder) . . . . . . . . . . . . . . 91

3.12 The estimation of the radius of the cylinder by linear regression. . . . . . . . . . 94

3.13 The estimation of R at different ∆t, D = 0.04, TS = 0.5 min. . . . . . . . . . . . . 96

3.14 The estimation of R with different values of D and different ∆t, TS = 5 min. . . . 97

4.1 Illustration of the incomplete view in TIRFM. . . . . . . . . . . . . . . . . . . . . . 102

4.2 An outline of the connection procedure . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 An artificially constructed zone having the same size as the unobserved region. . 115

4.4 A set of simulated trajectories during 2.5 minutes (in stationary regime). . . . . . 117

4.5 Fluctuations of the number of trajectories w.r.t. time. . . . . . . . . . . . . . . . . 118

4.6 The estimation of τα at different sampling rate of the observed region. . . . . . . 120

4.7 The estimation of τα at different length of the observation duration TS . . . . . . . 120

4.8 The estimation of arrival rate τα w.r.t. different λ and τd. . . . . . . . . . . . . . . 121

4.9 The estimation of τd with different λ and τd. . . . . . . . . . . . . . . . . . . . . . 122

4.10 The estimation of arrival rate τα with different λ and τd. . . . . . . . . . . . . . . . 123

4.11 The estimation of death rate τd with different λ and τd . . . . . . . . . . . . . . . 124

4.12 Connection performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . 125

4.13 Connection performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . 126

4.14 Connection performance comparison for different λ and τd when TS = 5 minutes. 127

4.15 The normalized error of the estimator of vx, vy, σx, and σy. . . . . . . . . . . . . . 127

4.16 Comparison of connection performance at different v and σ . . . . . . . . . . . . 128

4.17 Illustration of the reconstruction results on the cell surface approximated by a

cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.18 The probability of nth optimal configuration and the probability of the realization. . 129

4.19 The density distribution of "number of rotations." . . . . . . . . . . . . . . . . . . 130

4.20 The estimation of the local x− y referential for a cell. . . . . . . . . . . . . . . . 132

4.21 The MreB tracklets classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.22 The distribution of drift and variance in the selected tracklets population . . . . . 133

4.23 Some optimal configurations for the population of positive speed vx. . . . . . . . 134

4.24 Second optimal configuration for the population of negative speed vx. . . . . . . 134

4.25 The three-dimensional (3D) reconstruction of tracks. . . . . . . . . . . . . . . . . 135

7



LIST OF FIGURES

A.1 The estimation of the radius of the cylinder by linear regression, ∆t = 0.25, D =

0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 The estimation of the radius of the cylinder by linear regression, ∆t = 0.1, D = 0.09144

A.3 The estimation of the radius of the cylinder by linear regression, ∆t = 0.1, D = 0.16.145

A.4 The difference between K(ct) and K(c∗) versus ARI for different values of birth

rate and death rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8



RÉSUMÉ EN FRANÇAIS

Contexte et Motivations

Contexte scientifique et motivations

Au cours des deux dernières décennies, l’imagerie biologique a connu une révolution dans

le développement de nouvelles techniques de microscopie qui permettent de visualiser les tis-

sus, les cellules, les protéines et les structures macromoléculaires à tous les niveaux de réso-

lution, ainsi que leurs états physiologiques, leurs compositions chimiques et leurs dynamiques.

Grâce aux récents progrès réalisés en optique, en biologie moléculaire et en chimie, des cap-

teurs numériques et les sondes de marquage (e.g. sondes GFP (Green Fluorescence Protein)),

permettant désormais visualiser les composants et les organites infracellulaires à l’échelle de

quelques dizaines de nanomètres. En conséquence, la microscopie fluorescente et l’imagerie

multimodale (acquisition avec plusieurs sondes et longueurs d’onde variables) sont devenues

le fer de lance de la biologie moderne. Toutes ces avancées technologiques ont fait émergé de

nouveaux problèmes et des défis pour les chercheurs spécialistes du traitement et de l’analyse

des images. Désormais les questions relatives au numérique sont davantage prises en compte

lors de la définition des preuves de concept en bioimagerie.. Un brillant exemple de ce change-

ment de paradigme est la microscopie de super-resolution basé sur la détection de molecules

uniques (Single-molecule localization microscopy, PALM, STED), qui a reçu le prix Nobel de

chimie en 2014.

Les défis en traitement des images biologiques et en microscopie quantitative

Dans la plupart des cas, la microscopie moderne en biologie est relativement complexe

et multidimensionelle : deux ou trois dimensions spatiales, de la macro à la nano-échelle, et

une dimension temporelle, parfois définie spectralement et correspondant souvent à une es-

pèce biomoléculaire particulière. La microscopie dynamique est également caractérisée par

la nature des objets (cellules, organites, molécules individuelles, etc.), par le grand nombre

d’éléments petits et mobiles (chromosomes, vésicules, etc.), par la complexité des processus

dynamiques qu’elle permet d’observer. Par ailleurs, le corpus de données à considérer pour

toute analyse impliquant l’acquisition de séries d’images multiples est massif (jusqu’à quelques

Gigaoctets par heure). Il devient donc nécessaire de faciliter et de rationaliser la production de

ces données multidimensionnelles, d’améliorer l’analyse post-acquisition, et de favoriser l’or-
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Résumé en français

ganisation et l’interprétation des informations extraites de ce corpus de données. Ce constat

a motivé le développement de méthodes et de concepts innovants pour la fusion de données,

le recalage des images, la super-résolution, la fouille de données ("data mining"), etc. Plus im-

portant encore, la microscopie moderne a permis de réaliser des percées récentes, en mettant

en évidence les corrélations et les interactions entre des molécules dans la cellule. Un objectif

de recherche à long terme consiste désormais à établir les liens qui permettent d’associer les

dynamiques des macromolécules aux fonctions cellulaires.

Afin de relever les défis associés, il est nécessaire de développer des approches et des

paradigmes innovants pour reconstruire les images, suivre des biomolécules, estimer le mou-

vement des molécules en 3D et les paramètres biophysiques sous-jacents, tout en faisant face

aux énormes volumes de données générés par les dispositifs de microscopie, toujours de plus

en plus performants. Pour répondre à ces exigences, les mathématiques appliquées, le traite-

ment et l’analyse des images et l’informatique ont un rôle essentiel à jouer pour accompagner

et soutenir les recherches menées en biophysique et en biologie.

Contexte biologique

Identifier les mécanismes qui permettent de déterminer la forme des cellules est un enjeu

essentiel en biologie cellulaire. Chez les bactéries, il est établi que la paroi cellulaire extra-

cytoplasmique joue un rôle déterminant dans le contrôle de la forme des cellules. La paroi

cellulaire est principalement composée d’un réseau de peptidoglycanes, qui n’est pas statique

mais qui se développe en permanence en fonction de la croissance cellulaire. La composition

de la paroi cellulaire et les voies impliquées dans la synthèse des composants moléculaires

sont aujourd’hui bien établies. Néanmoins, son organisation tridimensionnelle et les méca-

nismes qui contrôlent son assemblage sont encore méconnus.

D’une manière générale, il est très important de bien comprendre comment une cellule

bactérienne grandit, i.e., comment son enveloppe rigide externe est synthétisée, et comment

certains processus cellulaires ont lieu à travers cette enveloppe (e.g., infection virale, sécré-

tion, compétence génétique). D’une manière plus spécifique, plus de la moitié des antibiotiques

découverts (par exemple les beta-lactamines comme les pénicillines ou l’amoxicilline) ciblent

directement ou indirectement les processus de synthèse de la paroi bactérienne. Comprendre

comment la machinerie de synthèse de la paroi cellulaire est contrôlée spatio-temporellement

ou encore comment la synthèse de la paroi est régulée pour permettre différents taux de crois-

sance et tailles, permettra de mieux comprendre les mécanismes d’action des antimicrobiens,

puis d’établir de nouvelles pistes thérapeutiques.

Au cours des dernières décennies, les acteurs moléculaires impliqués dans l’élongation de

la paroi cellulaire ont été identifiés et analysés (Fig. 1). Il est désormais bien établi que la pro-

téine MreB, avec sa structure filamenteuse, assure la médiation des activités Peptidoglycan
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Elongation Machinery (PGEM) avec une dynamique permanente. Les trajectoires des agré-

gats de MreB ont récemment été analysées à partir d’images acquises en microscopie de fluo-

rescence à haute résolution et des algorithmes de suivi de particules uniques. Ces analyses

permettent de mieux répondre aux nombreuses questions posées par les microbiologistes :

quels sont les différents rôles/fonctions des patchs de MreB au cours des différents régimes de

diffusion ; quel est l’élément principal responsable de la dynamique circonférentielle dirigée du

PGEM induit par MreB, plus spécifiquement le "rod complex" ; enfin, comment MreB organise

les différentes enzymes afin qu’elles collaborent à l’expansion du PG.

Modèles de diffusion pour l’analyse de dynamiques en bioimagerie

Dans l’environnement subcellulaire, on observe beaucoup d’activités qui relèvent du trans-

port de biomolécules et des échanges entre les différentes organelles. La diffusion moléculaire

qui induit des fonctions cellulaires, a toujours fasciné les biophysiciens, les mathématiciens, et

les statisticiens [BN13]. La diffusion est un processus très général qui peut concerner les pro-

téines, les récepteurs dans les cellules neurones, et les vésicules dans les activités d’endo/exo-

cytose. On observe néanmoins une grande hétérogénéité liée à des changements de régime

de mouvement et modes de diffusion. Bien souvent le mouvement de référence est la diffusion

libre, expliquée pour la première fois par A. Einstein et P. Langevin selon deux point de vue dif-

férents. Par la suite, d’autres processus de diffusion, principalement caractérisés par l’équation

différentielle stochastique (SDE), ont été proposés pour décrire des mouvements moléculaires

et des comportements dynamiques intracellulaires plus complexes.

Un important effort de recherche a été conduit pour caractériser précisément la mobilité

des molécules ([Ver+21], [Ser+20]). On pense qu’il serait même possible de reconstruire les

surfaces de certaines structures biologiques à partir des trajectoires, voir de démêler les pro-

cessus physiques sous-jacents à ces trajectoires.

Entre-temps, la modélisation d’un ensemble de trajectoires statistique à partir de grandes

quantités de données ont déjà permis de caractériser les propriétés physiques locales des bio-

molécules, telles que les modules et les orientations des vecteurs vitesse, le transport actif, les

forces d’attraction, reflétant les interactions des particules avec leur environnement ([Lau+19],

[HH15]).

Notons que les méthodes d’estimation sont généralement évaluées sur des données syn-

thétiques, avant d’être testées sur des données expérimentales, bien souvent imparfaites.

Dans ce contexte, un bruit de mesure est induit lors de l’acquisition des données et lors de

la construction des trajectoires. La durée de vie du fluorophore est limitée et contraint la ré-

solution temporelle de l’acquisition et la durée d’observation. Plusieurs travaux de recherche

ont donc été menés pour caractériser l’impact de ces sources d’erreur sur l’estimation des

paramètres et des processus étudiés.
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FIGURE 1 – Représentation des mécanismes dominants de l’allongement de la paroi cel-
lulaire chez les bactéries en forme de bâtonnet (Figure en provenance de [TR18]) (A)
Illustration des mécanismes impliqués dans la croissance cellulaire, c’est-à-dire l’élongation du
peptidoglycane (PG), dans une cellule en forme de bâtonnet : le "rod complex", les hydrolases
et les protéines de liaison à la pénicilline de classe A (aPBP). Malgré des efforts importants
pour comprendre l’allongement des bactéries, de nombreuses questions restent en suspens
sur la manière dont l’assemblage des PG et la croissance cellulaire s’adaptent à différents
facteurs, tels que le métabolisme, les contraintes mécaniques et la forme des cellules. (B) En-
cart illustrant les principaux mécanismes de synthèse de la paroi cellulaire qui fonctionnent
de manière indépendante (voir, [Cho+16]) : (i) le "rod complexe" en mouvement contenant la
transglycosylase RodA, la transpeptidase PBP2, et des filaments MreB orientés circonféren-
tiellement le long de la membrane interne ; (ii) aPBPs bifonctionnels. Les hydrolases peuvent
être activement engagées dans le clivage de la paroi cellulaire pendant la synthèse de la paroi
cellulaire. Il reste à découvrir comment les hydrolases interagissent avec le "rod complexe" et
les aPBPs, et comment le "rod complexe" interagit avec les aPBPs. (C) (dans les bactéries
Gram-) les aPBPs sont activées par les lipoprotéines LpoA et LpoB de la membrane externe.
Cette interaction est suggérée pour fournir un mécanisme permettant de détecter la taille des
pores dans la paroi cellulaire afin de guider l’insertion des PG.
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Contributions de cette thèse

Dans cette thèse, nous avons rédigé un état des lieux sur les modélisations physique, sta-

tistique et mathématique pour l’analyse des trajectoires de biomolécules. Cette présentation a

été accompagné d’une évaluation expérimentale sur un problème spécifique, à savoir l’analyse

de la dynamique des protéines MreB. Les données expérimentales relatives à cette dynamique,

acquises en microscopie TIRF (Total Internal Reflection Fluorescent) présentent certaines li-

mites et sont entachées d’erreur qui peuvent être classées selon trois groupes : les erreurs de

mesure induites par une faible résolution spatiale et temporelle, la durée du film (limitées par

la durée de vie du fluorophore) et l’observation partielle induite par le champ évanescent du

dispositif TIRFM (Fig. 5). Dans le problème spécifique qui nous intéresse (MreB), nous avons

également considérer les caractéristiques particulières de la dynamique de MreB, par exemple,

le type de diffusion, la densité des particules, la forme des protéines MreB (i.e. sous la forme

d’un filament de longeur ∼ 170nm). A cet égard, la microscopie SIM (Structured Illumination

Microscopy) apporte une amélioration sensible de la perception de la dynamique de MreB, et

d’observer un filament MreB unique).

Dans ce contexte, nous avons considéré deux cadres de modélisation et d’estimation pour

analyser les trajectoires de MreB basées sur des équations différentielles stochastiques. La

première approche vise à analyser les trajectoires individuelles, c’est-à-dire à déterminer le

mode de diffusion le plus pertinent en distinguant les trois régimes suivants : diffusion libre,

super-diffusion ou sous-diffusion, et estimer les paramètres sous-jacents (i.e. dérive et coeffi-

cient de diffusion). Nous avons ainsi évalué la performance de plusieurs méthodes de classifi-

cation de trajectoires sur des données MreB. Nous avons considéré ensuite deux estimateurs

du coefficient de diffusion dans le cas de la diffusion libre. L’estimation du coefficient de diffusion

a été affinée en incluant les erreurs de mesure. Nous avons par ailleurs étudié les estimateurs

"optimaux" liés à la limite inférieure de Cramer Rao (CRLB) et nous avons établi les conditions

à remplir pour estimer de manière fiable le coefficient de diffusion en fonction de la qualité des

images (rapport signal-sur-bruit). La seconde approche vise à étudier la dynamique des bio-

molécules dans des voisinages locaux afin de construire des cartes de diffusion et de dérive.

En supposant que la dynamiques est définie par un modèle de dynamique spécifique, et étant

donné des trajectoires reposant sur une surface 3D, et observés sur un plan de projection 2D,

nous avons établi la relation entre la dérive locale et le coefficient de diffusion local en fonction

de la courbure locale de la surface. Ce résultat permet ensuite d’inférer la surface 3D et les

dynamiques 3D.

Dans la partie centrale de la thèse, afin de traiter le problème de la vue incomplète relative

aux acquisitions en microscopie TIRFM-2D, nous avons proposé un cadre mathématique pour

aborder le problème de la reconstruction des trajectoires des biomolécules qui se déplacent sur
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FIGURE 2 – (a) : Plusieurs images consécutives d’une vidéo réelle TIRFM [ABT84]. Les traces
sont superposées sur les images. (b) Gauche : Illustration des trajectoires observées pendant
le temps enregistré [0, TS ] sur la surface d’un cylindre. Seuls les mouvements à l’intérieur du
regions of observation (ROO) ] − l, 0[×[0, H] peuvent être observés, même si la dynamique se
produit sur toute la surface. Droite : L’objectif est de récupérer la dynamique sur toute la surface
à partir des observations partielles, en coordonnant les entrées par {−l} × [0, H] et les sorties
par {0}× [0, H] dans un film pendant TS , en prenant en compte les événements de "naissance"
et de "mort" des particules.
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FIGURE 3 – Illustration des résultats de la reconstruction sur la surface des cellules approchée
par un cylindre. La direction Y représente l’axe du cylindre et la direction X le côté cylindrique
déroulé. La partie ombrée représente la région cachée et la partie claire correspond à la région
observée par Total Internal Reflection Fluorescent (TIRF) microscopie. A gauche : Trajectoires
simulées dans un film. A droite : Le résultat de la connexion.

des surfaces cylindriques 3D, à partir de bouts de trajectoire ("tracklets") observés dans des fe-

nêtres 2D (voir la région d’observation (ROO)) échantillonnée sur la surface, Fig. 2). Dans cette

étude, les particules sont supposées suivre un mouvement brownien avec dérive, et peuvent

apparaître ou disparaître pendant la période d’observation. Les événements de "naissance" et

de "mort" sont décrits par des processus de Poisson. Les événements de fission ou de fusion

des agrégats ne sont pas pris en compte dans cette modélisation. Le problème de reconstruc-

tion des trajectoires est défini comme la maximisation de la fonction de vraisemblance étant

donné les "tracklets" à l’intérieur de la ROO. Le problème d’optimisation revient à résoudre un

problème de programmation linéaire entier. L’algorithme final est un algorithme piloté par les

données, sans paramètre caché. Nous avons évalué la performance et la robustesse de notre

méthode sur des données de simulation, en faisant varier le rapport entre la région observée

et la région non observée, la dérive et la variance des particules simulées, ainsi que les taux

de naissance et de mort des particules. Une illustration de la procédure de reconstruction est

présentée sur la figure 3. La procédure a également été testée sur des données expérimen-

tales de MreB. Cette approche statistique et computationnelle est la principale contribution de

la thèse.
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Organisation du manuscrit

Le document est organisé en quatre chapitres comme suit :

Chapitre 1

Dans le Chapitre 1, nous décrivons les composants de la paroi cellulaire, la modélisation

de la structure 3D la plus populaire et l’expansion de la paroi pendant la croissance cellu-

laire, pour les bactéries en forme de bâtonnet. Au cours des dernières décennies, les acteurs

moléculaires impliqués dans la synthèse du peptidoglycane ont été identifiés et analysés in-

dividuellement. Nous présentons ici les enzymes qui sont impliquées dans la machine d’élon-

gation des peptidoglycanes (PGEM). Il a également été établi que la protéine MreB, avec sa

structure filamenteuse, assure continuellement la médiation des activités de PGEM. Dans ce

chapitre, nous décrivons brièvement l’orientation et la dynamique du filament MreB, et nous

discutons plusieurs hypothèses relatives à la fonction de MreB. Nous évoquons plusieurs tra-

vaux qui traitent des interactions dynamiques de MreB avec d’autres enzymes. Ces travaux

récents ouvrent des perspectives nouvelles pour comprendre les mécanismes d’organisation

moléculaire et d’élongation des parois latérales.

Chapitre 2

Dans le Chapitre 2, nous présentons le principe de l’acquisition d’images avec les tech-

niques Total Internal Reflection Fluorescent (TIRF) et Structured Illumination microscopy (SIM).

Nous présentons les spécificités des images acquises pour observer MreB. Nous mettons en

évidence les sources d’erreurs de mesure et les limites de ces deux microscopes. Les limi-

tations de la microscopie à fluorescence sont principalement dues aux aberrations optiques,

à la résolution du système microscopique et au bilan photonique disponible pour le spécimen

biologique. En microscopie TIRFM, la résolution latérale est limitée par la limite de diffraction

∼ 250nm. En imagerie SIM, cette résolution est doublée à ∼ 120nm grâce au principe de l’illu-

mination structurée. Nous évoquons les différentes sources d’erreur impliquées : l’erreur de lo-

calisation due à la fonction d’étalement du point ("Point Spread Function (PSF)) et à l’émission

stochastique inhérente du photon, l’approximation induite par la projection des dynamiques 3D

sur un plan 2D, ainsi que le champ d’observation incomplet.

Chapitre 3

Dans le Chapitre 3, nous passons en revue les méthodes statistiques couramment utili-

sées pour analyser des trajectoires et nous évaluons leur performances sur des trajectoires de

filament MreB extraits des images SIM-TIRF, tout en tenant compte des limitations (bruit de
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mesure et projection) présentées dans le Chapitre 2. Les méthodes concernées peuvent être

classées en deux catégories. La première vise à analyser des trajectoires individuellement,

c’est-à-dire à déterminer le modèle de diffusion le plus pertinent pour décrire la trajectoire, et

estimer les caractéristiques biophysiques associées (i.e. dérive et le coefficient de diffusion). La

seconde approche s’intéresse à l’estimation des champs de dérive et de diffusion en estimant

ces caractéristiques dans des voisinages locaux.

Chapitre 4

Le Chapitre 4 vise à concevoir et évaluer un cadre mathématique pour aborder la question

de la reconstruction des trajectoires des biomolécules en mouvement sur des surfaces cylin-

driques 3D, à partir de bouts de trajectoire observés dans des fenêtres échantillonnées sur

la surface. L’approche a été développée pour analyser des trajectoires dirigées. Les biomo-

lécules sont supposées suivre un mouvement brownien stochastique avec dérive et peuvent

apparaître ou disparaître pendant la période d’observation. Dans le cadre probabiliste choisi,

les processus de Poisson sont utilisés pour décrire les événements de "naissance" et de "mort".

La procédure algorithmique développée relie les bouts de trajectoire appartenant à une même

trajectoire, et permet ainsi d’inférer les trajectoires des biomolécules sur la surface fermée.
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Context and motivation

Scientific context and motivations

During the past two decades, biological imaging has undergone a revolution in the deve-

lopment of new microscopy techniques that allow visualization of tissues, cells, proteins and

macromolecular structures at all levels of resolution, physiological states, chemical composi-

tion and dynamics. Thanks to recent advances in optics, digital sensors and labeling probes

(e.g., Colored Fluorescence Protein), one can now visualize sub-cellular components and or-

ganelles at the scale of several hundreds of nanometers to a few dozen nanometers. As a

result, fluorescent microscopy and multimodal imaging (fluorophores at various wavelengths)

have become the spearhead of modern biology. All these technological advances in microscopy

have created new issues and challenges for researchers in quantitative image processing and

analysis. Since digital imaging is part of the imaging loop, image processing may even drive

imaging. A brilliant example of this shift in paradigm is Single-molecule localization microscopy

(PALM, STED), which was awarded the 2014 Nobel Prize in Chemistry.

Challenges in biological image processing and quantitative microscopy

In most cases, modern microscopy in biology is characterized by a large number of dimen-

sions that fit perfectly with the complexity of biological features: two or three spatial dimensions,

at macro to nano-scales, and one temporal dimension, sometimes spectrally defined and often

corresponding to one particular biomolecular species. Dynamic microscopy is also characteri-

zed by the nature of the observable objects (cells, organelles, single molecules, etc.), by the

large number of small and mobile elements (chromosomes, vesicles, etc.), by the complexity

of the dynamic processes involving many entities or group of entities sometimes interacting,

by particular phenomena of coalescence often linked to image resolution problems, finally by

the association, dissociation, recomposition or constitution of those entities (such as mem-

brane fusion and budding). Thus, the corpus of data to be considered for any analysis involving

multiple image series acquisitions is massive (up to a few Gigabytes per hour). Therefore, it

becomes necessary to facilitate and rationalize the production of those multidimensional data,

to improve post-acquisition analysis, and to favor the organization and the interpretation of the

information extracted from this data corpus. This motivates innovative methods and concepts
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for data fusion, image registration, super-resolution, data mining, etc. More importantly, modern

microscopy led to recent breakthroughs, related to the potential correlations between interac-

ting molecules in the cell. A long-term research aim now consists in inferring the relationships

between the dynamics of macromolecules and their functions.

In order to tackle the aforementioned challenges, it is necessary to develop innovative ap-

proaches and paradigms for image reconstruction, 3D molecule tracking and motion estimation,

and biophysical parameter estimation to face the huge data volumes acquired with cutting-edge

microscopy set-ups. To this end, applied mathematics, image processing and analysis, and

computer science have to be considered in association with biophysics and biology.

Biological context

Determining the mechanisms of cell shape establishment is one of the critical goals of cell

biology. In bacteria, it is widely assumed that the extra-cytoplasmic cell wall (CW) is the pri-

mary physical determinant of cell shape. The CW is mainly composed of a peptidoglycan (PG)

meshwork, which is not static but expands in permanent concert with cell growth. The compo-

sition of the cell wall and the pathways involved in the synthesis of the molecular components

are well established. Still, its three-dimensional organization and the mechanism controlling its

assembly remain unclear.

In general, it is very important to understand how a bacterial cell grows, i.e., how its outer

rigid envelope is synthesized, and how certain cellular processes take place through this en-

velope (e.g., viral infection, secretion, and genetic competence). In a more focused way, more

than half of the antibiotics discovered (e.g. beta-lactam antibiotics such as penicillins or amoxi-

cillin) directly or indirectly target the bacterial wall synthesis processes and thus understanding

how the CW synthesis machinery is spatio-temporally controlled or how the wall synthesis is

regulated to allow different growth rates and sizes may lead to a better understanding of the

mechanism of action of antimicrobials and open new therapeutic avenues.

During the past decades of research, the molecular actors implicated in CW elongation have

been identified and analyzed (Fig. 4). It is well established that the protein MreB, with its fila-

mentous structure, mediates the PGEM activities with permanent dynamics. The trajectories of

MreB aggregates have been analyzed with the help of high-resolution fluorescent microscopy

and single particle techniques. The analyses of the dynamics of MreB help us to addressing

different questions which interest microbiologists: what the different roles/functions of MreB

patches play during its different diffusion regimes; what drives the directed circumferential dy-

namics of the MreB-mediated PGEM, more specifically the Rod Complex; and finally, how MreB

organizes different enzymes to work together on expanding the PG.
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FIGURE 4 – Representation of the prevailing mechanisms of CW elongation in rod-shaped
bacteria (Figure from [TR18]) (A) Illustration of machinery implicated during cell growth, i.e.,
peptidoglycan (PG) elongation, in rod-shaped cell: the rod complex, hydrolases, and class A
penicillin-binding proteins (aPBPs). Despite long-lasting efforts to understand bacterial CW
elongation, many open questions still exist about how PG assembly and cell growth adapt
to different factors, such as metabolism, mechanical stresses, and cell shape. (B) Insert illus-
trating the key CW synthesis machineries which work independently, according to a recent
work [Cho+16]: (i) the processively moving rod complex containing the transglycosylase RodA,
the transpeptidase PBP2, and circumferentially oriented MreB filaments along the inner mem-
brane; (ii) the bi-functional aPBPs. Hydrolases may be actively engaged in CW cleavage during
CW synthesis. It remains to be discovered how hydrolases interact with the rod complex and
aPBPs, and how the rod complex interacts with aPBPs. (C) (in Gram- Bacteria) aPBPs are acti-
vated through outer membrane (OM) lipoproteins LpoA and LpoB. This interaction is suggested
to provide a mechanism to sense pore sizes in the CW to guide PG insertion.
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Diffusion models for dynamics analysis in bioimaging

In the subcellular environment, active life activities are constantly taking place. The molecu-

lar diffusion underlying the operation of the cell has always fascinated biophysicians, mathema-

ticians, and statisticians to analyze them [BN13]. The diffusion may concern proteins, receptors

in neuronal cells, and vesicles in the endo/exo-cytosis activities which depict great heteroge-

neity, in terms of motion regime. Free diffusion, which was first explained by A. Einstein and P.

Langevin from two different perspectives, has the position of the cornerstone of the diffusion

process. Later on, other diffusion processes, mostly characterized by the Stochastic Differen-

tial Equation (SDE), have been proposed to model more complicated intracellular biomolecular

diffusion, related to different underlying mechanisms.

A large research effort in cell biology is focused on the inference on the modes of mobility

of molecules ([Ver+21], [Ser+20]). It is believed that it may be possible to reconstruct some

biological structures from the trajectories of a certain biomolecule, and to unravel the underlying

physical processes corresponding to these trajectories.

In the mean time, statistical ensemble modeling from large quantities of data has also been

developed to observe local physical properties of the particles, such as velocity, diffusion, confi-

nement, or attracting forces, reflecting the interactions of the particles with their environment

([Lau+19], [HH15]).

Mathematical or statistical modeling is usually evaluated on synthetic data, before being

applied on experimental biological data. It is worth noting that no perfect experimental data

exist. The measurement noise is induced in data acquisition and trajectory construction. The

lifetime of fluorophore set a constraint on the temporal resolution of acquisition and the duration

of the observation. Therefore, some research work has been dedicated to the evaluation of

noise and artefacts on the estimation of the parameters of interest or the processes under

study.

Contribution of this thesis

In this thesis, physical, statistical and mathematical modeling methods for the analysis of

single particle trajectories have been reviewed and improved, accompanied by experimental

evaluation on a specific problem, concerning the dynamics of MreB. The experimental data

related to MreB dynamics acquired by TIRF microscopy have some limitations, which can be

categorized into three groups: measurement errors (due to the spatial resolution), the time

resolution and the duration of the movie (limited by the lifetime of fluorophore) and the partial

observation induced by TIRF evanescent field (Fig. 5). In the specific problem of MreB, we

should also consider the particular features of the dynamics of MreB, e.g., the diffusion types (or
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modes), the density of the particles, the existence form of the MreB (MreB exists as a filament

of ∼ 170nm. SIM can therefore bring improvement in the perception of the MreB dynamics, as

it allows us to observe a unique MreB filament).

In this context, we consider two modeling and estimation frameworks to analyze the trajec-

tories of MreB based on diffusion characterized by Stochastic Differential Equations. The first

approach consists in analyzing individual trajectories, that is determining their diffusion mode

(free diffusion, super-diffusion or sub-diffusion), as well as estimating diffusion parameters (drift

and diffusion coefficient). We evaluate the performance of several classification methods on

MreB trajectories. Then we apply two estimators to obtain the diffusion coefficient for the class

of free diffusion particles. The estimation of the diffusion coefficient is refined by including the

measurement errors. We study the "optimal" estimators related to the Cramer Rao Lower Bound

(CRLB) and try to answer the question of how well the diffusion coefficient can be estimated,

given the image quality (Signal-to-Noise Ratio). The second approach involves investigating

the dynamics of particles in the neighborhood of a position point, and further obtaining the drift

field and the diffusion field. Assuming that the dynamics, defined by a prior dynamic model,

take place on a 3D surface and are recorded as the planar projection, we derive the relation

between the local drift and local diffusion coefficient, and the local curvature. Therefore, the

resulting estimation method can lead to the recovery of the 3D surface and the reconstruction

of the 3D dynamics, from the planar projection of the dynamics.

In the central part of the thesis, in order to deal with the incomplete view in TIRF micro-

scopy, we focused on the design and evaluation of a self-contained mathematical framework

to tackle the reconstruction of particle trajectories on cylindrical surfaces, given the tracklets

observed in a small window (the region of observation (ROO)) sampled on the surface (Fig. 5).

In our study, the particles are assumed to obey a Brownian motion with drift and may appear or

disappear during the observation period. The birth and death events are described by Poisson

processes. Split or merge events of aggregates are not considered in the modeling framework.

The trajectory reconstruction problem is defined as the maximization of the likelihood function

given tracklets inside the ROO. The optimization problem to be solved is formulated as an inte-

ger linear programming problem. The final algorithm is a data-driven algorithm with no hidden

parameter to be set by the user. We evaluated the performance and robustness of our compu-

tational method on simulation data, by varying the ratio of observed to unobserved regions, the

drift and variance of particles, as well as the rates of birth and death of particles. An illustration

of the reconstruction procedure is shown in Fig. 6. The procedure is also tested on an experi-

mental MreB dynamics movie. According to the procedure, some MreB particles having exited

the ROO are identified when they re-enter into the ROO. This statistical and computational

approach is the main contribution of the thesis.
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FIGURE 5 – (a): Several consecutive images from a real TIRFM movie [ABT84]. Tracks are
superposed on the images. (b) Left: Illustration of trajectories observed during recorded time
[0, TS ] on the surface of a cylinder. Only the motions inside the regions of observation (ROO)
]− l, 0[×[0, H] can be observed, even though the dynamics happen on the whole surface. Right:
Representation of the dynamics on a two-dimensional (2D) unwrapped surface ] −L, 0[×[0, H].
The objective is to recover the dynamics on the whole surface from the partial observations, by
coordinating the inputs through {−l} × [0, H] and the outputs through {0} × [0, H] in a movie
during TS , taking into account particle birth and death events.
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FIGURE 6 – Illustration of the reconstruction results on the cell surface approximated by a
cylinder. Y− direction represents the axis of the cylinder and X− direction the unwrapped
cylindrical side. The shaded part represents the hidden region and the light part corresponds
to the region observed by TIRF microscopy. Left: Simulated trajectories in one movie. Right:
The connection results.

The organization of the manuscript

This thesis is organized into four chapters as follows:

Chapter 1

In Chapter 1, we describe the cell wall’s components, its most popular 3D structure mo-

deling and its dynamic expansion during cell growth, for rod-shaped bacteria. During the last

decades, the molecule actors involved in Peptidoglycan synthesis, have been identified and

analyzed individually. We introduce the enzymes that have been identified in the Peptidogly-

can elongation machinery (PGEM). It has been also established that the protein MreB, with

its filamentous structure, mediates PGEM activities with permanent dynamics. In this chapter,

we briefly describe the orientation and dynamics of the MreB filament, and we discuss several

hypotheses about the function of MreB. Several works devoted to the analysis of the dyna-

mic interaction of MreB with other enzymes are discussed, which open new perspectives for

understanding the molecular organization and the mechanism of sidewall elongation.
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Chapter 2

In Chapter 2, we explain the basics related to image acquisition with TIRF and SIM tech-

niques. We present the modalities of acquisition of MreB dynamics images. We highlight the

sources of measurement errors and the limitations using these two microscopes. Fluorescence

microscopy limitations are due to optical aberrations, the resolution of the microscopy system,

and the photon budget available for the biological specimen. In TIRFM, the lateral resolution is

limited by the diffraction limit ∼ 250nm. In SIM this resolution is doubled to ∼ 120nm thanks to

the structured illumination. We summarize different sources of error, the localization error due

to the PSF and due to the inherent stochastic emission of photon, the approximation caused by

the projection of 3D dynamics onto a 2D plane, and the incomplete observation field.

Chapter 3

In Chapter 3, we review commonly-used statistical methods for trajectory analysis and we

evaluate the performance of these methods on the trajectories of MreB filaments extracted from

SIM-TIRF images, while taking into account the limitations (measurement noise and projection)

of the images introduced in chapter 2. The methods concerned can be divided into two catego-

ries. The first one comprises individual trajectory analysis, i.e. the classification of the diffusion

regimes, and the estimation of the diffusion features (the drift and the diffusion coefficient). The

second category concerns the estimation of the drift field and the diffusion field by estimating

the diffusion features at each point position in the field.

Chapter 4

Chapter 4 focuses on the conception and evaluation of a self-contained mathematical fra-

mework to tackle the reconstruction of particle trajectories on cylindrical surfaces, given the

tracklets observed in a small window sampled on the surface. The analysis is restricted to di-

rected trajectories. The particles are assumed to obey a stochastic Brownian motion with drift

and may appear or disappear during the observation period. In the probabilistic framework,

Poisson processes are used to describe birth and death events. The developed computational

procedure aims at connecting tracklets belonging to the same trajectory, and thus recovering

the dynamics of particles on the whole closed surface.
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CHAPTER 1

CELL BIOLOGY OF THE BACTERIA CELL

WALL

Introduction

Determining the mechanisms of cell shape establishment is one of the critical goals of

cell biology. In bacteria, it is widely assumed that the extra-cytoplasmic CW is the primary

physical determinant of cell shape. The CW is mainly composed of a PG meshwork, which

is not static but expanding in permanent concert with the cell growth. The composition of the

cell wall and the pathways involved in the synthesis of the molecular components are well

established [Höl98]. Still, its three-dimensional organization and the mechanism controlling its

assembly remain unclear. PG is also known to bear the intracellular osmotic pressure and

protect bacteria from the outside environment and, importantly, it is unique to bacterial cells. It

is consequently the target of numerous antibiotics.

During decades of research, the molecular actors implicated in cell-wall elongation have

been identified and analyzed. The PGEM is thought to contain the transmembrane proteins

MreC and MreD, RodA and RodZ, PG hydrolases, and penicillin-binding proteins (PBPs), the

enzymes that catalyze PG elongation and cross-linking ([CLF07], [Mar09]). It has been shown

that the protein MreB controls the action of the PGEM ([Gar+11], [DE+11]). However, how these

presumed individual PGEMs are coordinated in time and space and surmount the formidable

task of weaving an intact mesh network three orders of magnitude larger than themselves,

remains active research subject.

Over the last two decades, the rapid development of protein labeling and high-resolution

fluorescent microscopy have made possible that we observe specifically targeted protein dyna-

mics with unprecedented spatial and temporal resolution. TIRF microscopy is a technique that

allows us to image events close to the cell surface. This property makes it possible to observe

the events in the vicinity of the CW and cell membrane and avoid the noise coming from the

unrelated cytoplasmic dynamics.

TIRFM makes it possible to unravel that MreB proteins form discrete, diffraction-limited (less

than 250nm) assemblies that exhibit different dynamic behaviors along the bacterial sidewalls,
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processive, circumferential motion around the rod-shaped cell’s perimeter, free diffusion, or

constrained motion [Bil+17]. Cells adapt the dynamics of MreB to distinct growth states. More

recently, super-resolution SIM-TIRF (resolution ∼ 120nm) showed that in the Gram-positive

model organism Bacillus subtilis MreB forms ∼ 170nm-long filaments during exponential growth

period. On the contrary, the filaments’ width is still inaccurate, as it is under the resolution limit

[Bil+19].

The function of MreB filament is debated. It is well accepted that MreB moves in the direc-

tion of its orientation. The prevailing model states that MreB filaments intrinsically orient in the

direction of the largest principal curvature ([Hus+18]) of the membrane. This property alone can

promote the formation of rod-shape and reinforce the elongation of rod-shape. It has also been

hypothesized that diffusive MreB may be in the process of recruiting other proteins to form the

PGEM. Study of the dynamics of components of the PGEM can shed light on the role of MreB

and the organization of the enzymes during CW expansion. By combining different microscopic

techniques, TIRF, SIM, and single-particle Tracking (SPT)-Photoactivated Localization micro-

scopy (PALM), it is possible to observe the dynamics of proteins in different spatio-temporal

scales. Some mathematical modeling also exist to combine the enzymes organization and the

mechanical 3D expansion model of the PG during cell growth ([Din+17] and [Ngu+15]).

In Section 1.1, the PG composition, its most popular 3D structure for both Gram-positive

(Gram+) and Gram-negative (Gram-) bacteria, and the known molecular actors involved in PG

synthesis are introduced. Next, in Section 1.2, the knowledge about MreB filaments, their exis-

ting form, orientation and dynamics observed by optical fluorescence microscopy are presen-

ted. Finally, in Section 1.3, the interaction of MreB with other PGEM proteins, e.g., RodZ, RodA,

and PBPs is discussed.

1.1 The bacteria cell wall

The bacteria envelope, at the interface between the external medium and the intracellular

medium, consists of several structures: the cytoplasmic membrane; the CW, a rigid sugar-

based exoskeleton (or sacculus) primarily composed of a PG meshwork; and the outer mem-

brane in Gram- bacteria (Fig. 1.1) [Liu+15]. In Gram+ bacteria, in addition to PG, the CW is

also made of anionic polymers (teichoic and lipoteichoic acids). They constitute up to 60% of

the dry weight of CW in B. subtilis and have essential cellular function [AS21]. The CW is a

highly dynamic structure, constantly synthesized and remodeled as the cell cycle progresses

and as the bacterium adapts to its environment. In this work, we were mostly interested in the

bio-genesis of the cylindrical part of the CW in B. subtilis. We will describe the composition and

architecture of the wall and the major molecular actors involved in the elongation of the CW.
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1.1. The bacteria cell wall

FIGURE 1.1 – Schematic illustration of the cell envelope in Gram- (left) and Gram+ (right) bac-
teria [Liu+15].

1.1.1 The composition and architecture of the cell wall

Along decades of study, the chemical composition of PG has been revealed with great de-

tails, as well as the biosynthetic pathway leading to the construction of the PG scaffold [AS21].

The PG is a unique large macromolecule that envelops the entire bacterial cell. It is made

of a covalently bound meshwork of glycan strands interconnected by peptide bonds. Glycan

strands are made of an alternation of two families of sugar molecules, N-Acetylmuramic acid

(NAM) and N-acetylglucosamine (NAG) (Fig. 1.2). Two strands are linked by peptidic bridges

between two NAM molecules. Supported by Atomic force microscopy (AFM), Electron cryoto-

mography (CryoET) imaging, and live-cell imaging of cell-wall insertion, the current model is

that the glycan strands are oriented around the cell circumference in rod-shaped bacteria, ei-

ther Gram- or Gram+([Bee+13], [GCJ08]). In Gram-, the PG layers is ∼ 5nm thick and the PG

structure is compatible with a monolayed model of sacculus (Fig. 1.1, left). In Gram+ bacteria,

the sacculus structure is harder to observe due to the thickness of the material (25nm ∼ 50nm)

[MB05]. The CW is composed of several (10 to 30) layers of PG strands (Fig. 1.1 (right)).

1.1.2 Different models of biogenesis of the cell wall (Remodeling of the cell wall
during cell expansion)

Although the composition of PG is well known, the dynamics and the 3D structure of Gram-

and Gram+ sacculi are poorly understood. Even though this thesis is primarily concerned by the

CW of Gram+ bacteria using the B. subtilis as model, the remodeling of CW is discussed in this
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FIGURE 1.2 – A schematic diagram of one model of PG. Shown are the polysaccharide chains
made of alternating N-Acetylmuramic acid and N-Acetylglucosamine, the tetrapeptide side
chains and peptide interbridges [WSW08].

section with relation to both Gram+ and Gram- bacteria. The common features and differences

between the two models can be informative of each other.

The series of events involved in the PG synthesis can be summarized as follows: the ba-

sic bricks, made of a disaccharide (N-Acetylmuramic acid (NAM) plus N-acetylglucosamine

(NAG)), bearing a pentapeptide, are synthesized in the cytosol and flipped across the mem-

brane before being assembled into glycan chains by transglycosylases, and finally cross-linked

into the existing mesh by transpeptidation of their stem peptides (see [Höl98] for a review).

In Gram- bacteria, CW expansion implies expansion of the PG monolayer. New insertion

happens at the same region as the hydrolysis. The prevailing strategies of CW expansion are

the "cut and insertion" from [BP84] and the "3-for-1" from [Höl98]. In a "cut-and-insertion" stra-

tegy (Fig. 1.3b left), peptide bridges are cleaved, allowing new glycan strands to be inserted.

However, odd numbers of strands (e.g., single strand insertion) impose a stress on the cross-

links as the peptides on the left and on the right of a strand are not aligned but staggered, while

even numbers (e.g., double-strand insertion) do not. In the "3-for-1" insertion model (Fig. 1.3b

right), a triplet of glycan strands is inserted to replace an existing strand of the meshwork. The

strand number increases by two, therefore no stress is introduced. Moreover, in the "3-for-1"

model, 50% of PG is recycled per cell cycle, which coincide with the observed high rate of PG

recycling per generation in Gram- [PU08].
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1.1. The bacteria cell wall

For the multilayered Gram+ sacculi, the "3-under-2" model was recently proposed by [Bil+17].

Due to the thickness of the cell wall in Gram+ bacteria (∼ 25−50nm), the detailed ultrastructure

of the sacculus is not yet been established [VH04]. In the "3-under-2" model, the assumption

was made that the CW is composed of several concentric layers of PG. In each layer, pa-

rallel circumferential glycan strands cross-linked by peptide bridges run perpendicular to the

long axis of the cell [Koc98] (Fig. 1.3a). The "3-under-2" model is based on the previous work

of "inside-to-out" mode of growth, where new layers of PG are added to the innermost face

of the sacculus, pushing outwards the previous layers which will be eventually degraded by

hydrolases, accounting for the observed PG turnover ([KD85], [Poo76], [DBKW81]). In the "3-

under-2" model, other two assumptions were made. Firstly, a single new PG layer is added

per cell cycle and the cell has to double its length. Secondly, the stress-bearing layer is the

innermost PG layer. According to the "3-under-2" model, three new glycan strands are added

underneath two strands of the innermost PG layer (Fig. 1.3c). It worth noting that the addition

of new PG strands will not allow expansion, until peptide cross-links on the upper layers are

cleaved in a somewhat synchronized way and the new layer becomes stress bearing.

Other possibilities of stress-bearing are explored (Fig. 1.3c). If the stress is borne by the

penultimate n − 1 layer (Fig. 1.3c right), the number of glycan chains inserted to double the

length of the sidewall is two-fold bigger than when stress is borne on the innermost layer.

Accordingly, the energetic cost will increase as well.

The above mentioned principles are tested respectively by mathematical modeling, "3-for-1"

principle for Gram- [Ngu+15] and the "3-under-2" for Gram+ [Din+17]. The mathematical models

make it possible to couple global aspects of the morphogenesis with more local molecular

activities related to the wall synthesis. These modeling approaches have proven useful to test

predictions on the fine mechanisms underlying the insertion of strands during growth, such

as the composition of the synthetic machinery, orientation of the enzymes, the sequence of

enzymatic reactions, etc.
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FIGURE 1.3 – Schematic illustration of mechanistic models of PG synthesis in rod-shaped
bacteria [Bil+17] (a): Idealized and simplified 3D representation of one layer of PG. Glycan
strands (blue rings) run orthogonal to cell’s long axis, cross-linked by stem peptides (yellow
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1.1. The bacteria cell wall

springs). (b): Strategies of glycan strand insertion in a 2D (x, y) PG layer in Gram- bacteria
(monolayered PG). Red lines represent peptide bridges, brown tubes for disaccharide strands.
In a "cut-and-insertion" strategy (b left), peptide bridges are cleaved, allowing new strands to
be inserted. Odd numbers of strands (e.g., single strand insertion) impose a stress on the
cross-links as the peptides are staggered rather than aligned (dotted line), while even num-
bers (e.g., double-strand insertion) do not. In the "3-for-1" insertion (b right), a triplet of glycan
strands is replacing an existing strand of the meshwork. The net increase in strand number
being even, no stress is introduced. (c): "3-under-2" glycan strand insertion modes in a mul-
tilayered PG meshwork in 2D side view (x, z) in Gram+ bacteria. Peptide bridges are shown
in gray, in a relaxed conformation (broken lines), in full extension (straight lines), or hydrolyzed
(dashed lines). Circles indicate cross-sections of glycan chains newly (blue) or previously in-
serted (orange). Two possibilities are explored in which stress either is borne by the innermost
(newest) layer alone (left) or by the penultimate n−1 layer (right). Arbitrarily, only five PG layers
are presented (numbered n 0 to n-4 from the innermost to the outermost).

1.1.3 Molecules involved in the construction of the cell wall and the special role
of MreB

The following section concerns the two best studies bacterial models, the Gram+ B. subtilis

and the Gram- Escherichia coli. displaying both dispersed insertion of new PG along the cell-

wall, without preferred regions of insertion (e.g., at the poles).

Proper cell-wall expansion requires the coordination of multiple cytoplasmic and extracellu-

lar or periplasmic steps: (1) precursor synthesis and flipping from the cytoplasm to the extra-

cellular/periplasmic side; (2) cell-wall cleavage by DD-endopeptidases and possibly other hy-

drolases for cell-wall expansion along the long axis of the cell; (3) glycan-strand polymerization

(transglycosylation,RodA); (4) cross-linking to neighboring strands (transpeptidation PBP2A

and PBPH in B. subtilis).

The most recent evidence suggests that two different machineries contribute to sidewall

synthesis somewhat in an independent manner [Cho+16] (see Fig. 1.4, B, C): firstly, the rod

complex consisting of mono-functional transpeptidases (PBP2A and PBPH in B. subtilis), the

transglycosylase RodA, and the transmembrane protein RodZ, in concert with the cytoskele-

tal MreB; secondly, the bi-functional class A penicillin-binding proteins (aPBPs) (importantly,

PBP1a and PBP1b in E. coli [Cho+16] and PBP1, PBP2c, and PBP4 in B. subtilis [Mee+16]

and [KDE09]). The two machineries exhibit different dynamics in the cell membrane, which

have been proposed to reflect distinct aspects of PG synthesis. The rod complex exhibits cir-

cumferential, processive movement around the cell diameter. It has been suggested that this

corresponds to the processive insertion of long glycan strands. The aPBPs move seemingly

diffusively in the membrane, with intermittent pauses, and have been associated with localized

cell-wall insertion events, to repair PG synthesis errors or holes in the sacculus [Cho+16]. An

33



chapitre1

FIGURE 1.4 – Representation of the prevailing mechanisms of CW elongation in rod-
shaped bacteria [TR18] (A) Illustration of machinery implicated during cell growth, i.e., pep-
tidoglycan (PG) elongation, in rod-shaped cell: the rod complex, hydrolases, and class A
penicillin-binding proteins (aPBPs). Despite long-lasting efforts to understand bacterial CW
elongation, many open questions still exist about how PG assembly and cell growth adapt to
different factors, such as metabolism, mechanical stresses, and cell shape. (B) Insert illustra-
ting the key CW synthesis machineries which work independently, according to a recent work.
[Cho+16]: (i) the processively moving rod complex containing the transglycosylase RodA, the
transpeptidase PBP2, and circumferentially oriented MreB filaments along the inner membrane;
(ii) the bi-functional aPBPs. Hydrolases may be actively engaged in CW cleavage during CW
synthesis. It remains to be discovered how hydrolases interact with the rod complex and aPBPs,
and how the rod complex interacts with aPBPs. (C) (in Gram- Bacteria) aPBPs are activated
through outer membrane (OM) lipoproteins LpoA and LpoB. This interaction is suggested to
provide a mechanism to sense pore sizes in the CW to guide PG insertion.
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attractive hypothesis for the role of aPBPs is that in Gram- bacteria, aPBPs together with their

cognate outer-membrane lipoprotein activators LpoA and LpoB ([Typ+10], [PB+10])(Fig. 1.4 C)

sense the pore size on the PG meshwork and insert more PG where the pore size is increased

by the mechanical pressure.

Physically, cleavage is indispensable for CW expansion. Endopeptidase activity has been

found to be particularly important, as it cuts the bonds between neighboring glycan strands,

thus allowing new PG to be inserted and the CW to be expanded along the long axis of the cell.

How these groups of machinery depend and interact with each other remains to be elucida-

ted. Hypotheses are made that they may work together and even form transient joint complexes

[Cho+16]. Elucidating the strengths and duration of these interactions and spatio-temporal or-

ganization of all these actors will be important to fully understand the important factors to main-

tain the integrity and rod shape of cell-wall.

1.2 The structure of MreB and the dynamics of MreB

The actin-like MreB protein is a crucial player of the machinery controlling the elongation

and maintenance of the cell shape in most rod-shaped bacteria. MreB motion is shown to be

dependent on PG synthesis ([DE+11], [Gar+11]), indicating that it parallels the action of the

PGEM and thus reflects sidewall synthesis. Although the ultra-structure of MreB assemblies

in vivo remains controversial, the current model proposes that they are membrane-associated

scaffolds that spatially coordinate extra- and intra-cellular PG-synthesizing enzymes to ensure

controlled cylindrical expansion of the sacculus ([Gar+11], [DE+11], [Ols+13], [Rue+14]).

It is well accepted that MreB forms filaments. Its structure, length, orientation, and conditions

of establishment and its dynamics have been actively discussed ([Bil+17], [Bil+19], [Hus+18]).

MreB protein is known to be highly dynamic. A portion of the MreB filaments move along

the short axis of cells, which is assumed to be driven by the PG synthesis. More recently, it

has been debated that the curved structure of MreB filaments could be a determinant of the

orientation of the filament and the orientation of the circumferential movement along the short

axis of the cells ([Hus+18], [WGA19]).

1.2.1 The existing form of MreB

In vitro, MreB proteins self-assemble into filaments that bind directly to membranes ([Sal+11],

[Ent+14]). In vivo, the structure of MreB first observed using immunofluorescence microscopy

and Green fluorescence protein (GFP) fusion showed micron-long helical polymers spanning

the length of the cell ([EWT06], [EAL01]). However, later in vivo studies, using higher-resolution

light microscopy (TIRF and confocal microscopy), it is shown that MreB forms discrete patches
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along the plasmic membrane during active growth. MreB patches appeared as spherical or el-

liptical light spots close to the diffraction limit (∼ 250−300nm) ( [VT+11], [Gar+11] and [DE+11],

[Bil+17]). More recently, combining TIRF with super-resolution SIM, it was found that MreB as-

semblies have a mean length of 172nm±41nm in B. subtilis during exponential growth [Bil+19].

As the length of MreB filaments was above the lateral resolution of the SIM-TIRF (∼ 110nm),

the measure is reliable. However, the width of the filament is remained under the resolution limit

of SIM-TIRF, calling for other super-resolution techniques to be elucidated.

1.2.2 The orientation of MreB filaments in the membrane and what it reveals

It has been known that the MreB filaments move in the direction along which they are orien-

ted ([Urs+14], [Bil+14]). In [Hus+18], new insights were obtained into possible mechanisms by

which MreB guides CW synthesis to create rod shape. First, the curved ultra-structure of MreB

filaments causes them to self-orient and move along the direction of the greatest principal cur-

vature of the membrane, coordinating the insertion of new PG strands in that direction. Second,

both the formation and propagation of rod shape occur by a local, self-reinforcing process: once

a local region of rod shape forms, it promotes self-alignment of MreB filaments along the hi-

ghest curvature, which in turn propagates more rod shape by pushing the neighboring strands

in the axial direction of the rod.

As MreB filaments align along the direction of the largest principal curvature, they are sup-

posed to serve as a curvature sensor. This conclusion can be supported by the fact that MreB

filaments move in the direction perpendicular to the axis in rod-shaped bacteria cells, even

when in wall-less cells in which the rod shape is imposed outwardly [Hus+18]. Another ob-

servation can also support the conclusion. In spherical cells, the direction of MreB motion is

isotropic. However, rod shape can be de novo established, in the region of local bulges, flanked

by negative Gaussian curvature. Once rod shape is reestablished, the rotation of MreB filament

and the new formed rod-shaped PG can reinforce and maintain the rod shape propagation

[Hus+18].

The principle that MreB filaments align in the largest principal curvature can also explain the

enrichment of MreB in regions with negative Gaussian curvature, observed in several reports

([Urs+14], [Won+17]) and the removal of MreB filament from cell poles. Wong et al. [WGA19]

modeled MreB motion by minimizing the energy needed for inwardly curved MreB to bind into

the less curved cell membrane. The model explained why MreB prefers to align the largest

principal curvature. According to the same model, as the curved filaments need more energy

to escape the regions with negative Gaussian curvature, it causes the enriched localization of

MreB filaments in these regions.

Based on the mechanical binding model of MreB filaments to cell membrane [WGA19], a

model for the dynamics of translocation of MreB filaments has also been proposed. The model
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for directed motion, called "biased random walk," suggests that MreB filaments move at the

direction of its orientation θ, i.e., the direction of the largest principle curvature, with a slight

bias η ∼ N (0, σ2) due to stochastic factors (equation (3) in [WGA19]). It is easy to demonstrate

that this model is equivalent to the directed Brownian motion model (Bmd) ((3.11) in chapter

3). The authors acclaimed that the "biased random walk" model of filament trajectories leads to

predictions of MreB localization.

The orientation of MreB filaments has revealed the role of local sensing of MreB ([WGA19],

[Hus+18]). Consequently, MreB, together with the shape-reinforcing CW synthesis, could pro-

vide a robust, self-organizing mechanism for the stable maintenance and rapid reestablishment

of rod shape. We gained one step further in the understandings of how the local activity of short

MreB filaments (∼ 170nm) guide the emergence of a shape many times their size (cell diameter

(∼ 900nm)).

Even though MreB filaments play a crucial role in the circumferential insertion of the CW, it

should be noticed that other factors are also needed for the maintenance of rod shape. The in-

teraction of MreB with other proteins will be discussed in the following sections. As the curvature

of membrane-bound MreB filaments is much greater than the curvature of the cell membrane

[WGA19], MreB filaments do not define a specific cell radius. A discussion about how MreB

filaments intervene in the regulation of cell radius can be found in [Dio+19].

1.2.3 MreB exhibits distinct types of motion

As MreB assemblies are regarded as the proxy of PGEM, its localization and dynamics

during growth and dynamic perturbations such as nutrient shift can reveal how bacteria cells

regulate the expansion of CW and cell growth. Sub-populations of MreB with distinct behaviors

were found by analyzing the Mean Squared Displacement (MSD) of the trajectories of MreB

patches, imaged by TIRF microscopy. It is observed that MreB patches perform circumferential

directed motion, random diffusion and constrained motion. Due to the limit of the classification

method by MSD, one fraction of the trajectories of MreB is unclassified, which we call from

now on the anomalous diffusion. This heterogeneity of the dynamics of MreB patches may

reflect distinct physiological states (Fig. 1.5). The fraction of MreB performing circumferential

motion is believed to be related to the PG insertion, with a speed v = 30 − 60nm/s under

different nutrient conditions. The circumferential motion, mostly orthogonal to the axis of the

bacteria, is driven by the PG synthesis ([Gar+11], [Bil+17]). The intrinsic curvature of the MreB

filament orients the motion in the direction of the maximal principal curvature (section 1.2.2).

PG polymerization by aPBPs occurs in a diffusive manner, outside MreB-associated PGEMs

([KDE09], [SSS97], [Cho+16], [Lee+16]"). It is plausible that the fraction of MreB exhibiting

random diffusion is associated with aPBPs-dependent diffusion PG synthesis. The anomalous

motion of MreB may be caused by the interaction with other components of the PGEM. One
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hypothesis is that constraint motions reflect MreB recruiting missing components of the PGEM

to initiate local PG insertion.

Another independent study of the dynamics of MreB in B. subtilis was carried out using

Single Molecule Tracking (SMT) [Rös+18], which has a temporal resolution ∼ 25 fold higher

than in TIRF microscopy [Der+20]. Instead of analysis by MSD, which calculates one averaged

diffusion coefficient for a trajectory, a Gaussian Mixture Model (GMM) was used to fit the displa-

cement ∆x to estimate the diffusion coefficient of single-molecule MreB. It was found that MreB

diffusion could be best described by at least two populations: The slow moving population with

diffusion coefficient of D = 0.044µm2s−1 ± 0.005 [Luc+18], and the fast diffusive population,

with D = 0.53µm2s−1 ± 0.08, which lies in the range of a freely diffusing cytosolic protein (e.g.,

DnaA, [Sch+17]).

1.3 The interaction of MreB with other PGEM components

The machineries contributing to sidewall synthesis have been described above (section

1.1.3). To understand how MreB orchestrates PG synthases (transglycosylases and transpep-

tidases) and PG hydrolases to allow coordinated CW expansion, several studies have addres-

sed the dynamic interaction of MreB with other enzymes in the rod complex, especially the

transmembrane protein RodZ, the transglycosylase RodA and the transpeptidase PbpH, in B.

subtilis. Based on the knowledge of the function of the individual enzymes, the interaction bet-

ween MreB and these enzymes is expected to reveal the spatio-temporal organization of their

activity during CW expansion.

1.3.1 The transmembrane RodZ is required for cell-shape maintenance in B.

subtilis

RodZ is one of the numerous players in the CW biosynthesis game (see [AS19] for a mini-

review of E. coli). It was discovered more than ten years ago ([SSN08], [Ben+09], [Aly+09]) and

has been investigated mostly in E. coli. However, it is also found in numerous bacterial species,

both Gram+ and Gram-, either rod-shaped bacteria or cocci. It is a bipartite membrane pro-

tein with a cytoplasmic domain and an extracellular domain. The structure of the extracellular

domain of RodZ of B. subtilis was predicted by Nuclear magnetic resonance (NMR) [Per+15].

RodZ may interact with cytoplasmic proteins in the vicinity of the internal membrane and with

CW synthesis enzymes in the periplasm.

RodZ interacts with MreB and several components of the Rod complex including MreC,

MreD, PB2, RodA as shown using Bimolecular fluorescence complementation, Fluorescence

Resonance Energy Transfer (FRET), and bacterial two-hybrid assays [Mor+15]. It also performs
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1.3. The interaction of MreB with other PGEM components

FIGURE 1.5 – Schematic illustration of a Gram+ bacterium of MreB patches exhibiting
different dynamic behaviors in the cytoplasmic membrane [Bil+17]: Orange: randomly
diffusing MreB filaments; blue: circumferentially moving MreB filaments; green: constrained
MreB filaments. The black cover represents the PG CW. The zoom-in view shows different PG
layers, d: discontinuous outermost PG layers; s: stress-bearing PG layer; n: newly constructed,
uncompleted innermost PG layer.

39



chapitre1

circumferentially oriented motion and thus is assumed to belong to the Rod complex.

RodZ has also been observed in the vicinity of LipidII in the Gram- Caulobacter crescentus.

It is supposed to be implicated in the regulation of peptidoglycan synthesis [Aly+09]. Seve-

ral works have proposed that RodZ is not necessary but promotes MreB rotation [Der+20]. It

could also regulate the MreB polymer number by stimulating the production of new polymers

[Bra+18]. In the B. subtilis model, it is supposed that RodZ is required for cell-shape mainte-

nance [MCB13].

To summarize, RodZ and MreB have intricate feedback with each other. MreB may influence

RodZ localization and dynamics, and RodZ may influence the density and rotation of MreB

polymers. However, RodZ is not the motor for the rotation of MreB. RodZ may be a link between

MreB and proteins RodA and PBP2 from the Rod complex.

1.3.2 MreB, RodA, and PbpH do not form a stable complex that lasts over many
minutes but rather perform constant dynamic binding and off-binding

It has been shown that RodA, the transglycosydases, and PbpH, the transpeptidase, cir-

cumferentially move around the cell wall, and their motion stronly colocalizes with MreB and its

homologues (Mbl and MreBH) [DE+11]. The velocity and the angle of the trajectories of MreB,

RodA and PbpH show strong similarities by comparing the maximum projections of two movies

of two protein species, and by kymograph quantification.

In [Der+20], dynamics of RodA, PbpH and MreB are visualized with the same imaging

settings. Two types of microscopy were employed, SIM-TIRF and SMT [Rös+18] to investigate

the dynamics in different spatial and temporal scales. SIM-TIRF revealed that MreB, RodA, and

PbpH all move in the direction perpendicular to the long axis of the CW (θ = 88±8◦, 88±10◦, and

92±14◦, respectively) with similar velocity (v = 37±16, 33±16, and 38±22nm/s, respectively),

which coincides with the findings in [Gar+11] and [DE+11]. More precisely, it is found that the

distribution of the length of the tracks of the three proteins differs evidently, 8 ± 3s, 3.8 ± 2.1s,

and 2.4 ± 1.1s, respectively. These statistical findings support the fact that the three proteins

share some tracks, because of the similarity of the velocity and the direction among the tracks.

At the same time, it argues against the existence of a multi-protein complex that is stable over

many minutes.

Using SMT [Rös+18], which offers temporal resolution 25-folds higher than SIM-TIRF, two

populations of single-molecule dynamics of MreB are revealed, one freely diffusing (D ∼
0.53µm2s−1 ± 0.08) and another with slow/static mobility (D ∼ 0.044µm2s−1 ± 0.005). The fin-

dings of different behaviors of MreB motion are comparable to a previous study, [Bil+17], where

the motion of MreB is categorized into three groups, the directed motion (the slow motion),

free diffusion (the fast motion) and constrained motion (the slow/static motion). The ratio of

these two populations is around half-half. Similarly, two populations, half free diffusive and half
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1.3. The interaction of MreB with other PGEM components

slow/static moving are discovered for RodA and PbpH. It leads to assuming free diffusion for

molecules not involved in active cell wall synthesis and slow-motion for enzymes associated

with activities in synthesis or filament formation in the case of MreB. Interestingly, RodA, PbpH

and MreB react remarkably differently when cells are challenged by an outward stress (e.g.

osmotic stress). MreB responds to the stress condition by increasing the free diffusion fraction.

In contrast, the movement of RodA and PbpH was hardly affected. During the stress adaptation

period (∼ 2h), cells continued to grow, but in a way less coordinated.

Conclusions

Despite decades of research, understanding bacteria cell morphogenesis, i.e., how cells

maintain their shape and regulate their size during cell growth remains an active research

domain. The CW, as a rigid sacculus, plays a vital role in processes of bacteria cell morpho-

genesis. As the osmotic pressure bearer, the cell wall protects the physiology and metabolism

inside the cell.

In this chapter, we reviewed several mechanical CW expansion models, e.g., "3-for-1" for

Gram- and "3-under-2" for Gram+. Moreover, we presented the molecular actors (enzymes) dis-

covered during the past years implicated in the cell wall elongation process. More specifically,

two machineries were found to work independently, one is the processively and circumferen-

tially moving rod complex, controlled by the MreB proteins, and the other is the bi-functional

aPBPs. Biologists are interested in knowing how molecular actors are involved in the regulation

of CW expansion and in the maintenance of cell shape. By mathematical modeling, different

mechanistic hypotheses combined with the enzymes dynamics introducing new material into

an existing PG network have been simulated. For Gram+ bacteria, due to the complexity of

multilayer PG, the existing model remains preliminary and needs to be developed further.

To further explore the question of how bacteria cells maintain their shape, a much-studied

key player is MreB, a cytoplasmic filamentous protein, which is known to control the PGEM

working outside the cytoplasmic membrane to insert new PG in order to complete the task of

building the PG meshwork. We summarized the known dynamic characteristics of MreB, e.g.,

its different modes of motion (circumferentially directed motion, free diffusion and constrained

motion), its speed and diffusion coefficient, and the orientation of its directed motion. We also

presented several works focused on depicting the interaction of the MreB with other crucial

enzymes involved in cell wall elongation processes (e.g. RodA and PbpH) by quantitatively

analyzing the simultaneously recorded fluorescent images of different species of molecules.

Over several decades, research in the field focused on the function of individual genes

and proteins implicated in CW synthesis in isolation. Nowadays, thanks to the development

of fluorescence labeling and super-resolution microscopy, it is a highly active domain to study
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proteins behavior by analyzing their high-resolution fluorescence microscopy images, to deduce

their functionality or co-functionality with other proteins.
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CHAPTER 2

IMAGING OF THE MEMBRANE PROTEIN

MREB

Introduction

Optical fluorescent microscopy has the advantages of sample preservation, imaging flexibi-

lity and target specificity. It allows the observations of specifically targeted proteins or vesicles,

performing dynamics in an ideally living specimen. It becomes a widespread tool used by bio-

logists in understanding the cellular function and organization in a molecular scale.

In this chapter, we present several techniques related to the observations of the dynamics

of MreB in model bacteria Bacillus subtilis. Total Internal Reflection Fluorescent (TIRF) micro-

scopy is used to observe the dynamics of MreB protein in [Bil+17]. Compared to Wide-Field

Fluorescence microscopy (WFFM), TIRF imaging provides improved axial resolution (limited

by the diffraction of light, presented in Section 2.1) with thin optical sectioning (< 200nm). Mo-

reover, it allows us to follow rapid dynamics of molecules by acquiring fluorescent images at

high temporal resolution. Therefore, it is specifically suitable for observing the protein MreB

which is known to be highly dynamic moving near the membrane. In addition, because that the

evanescent wave avoids the illumination of the whole cell but only illuminate a thin section near

the slides, TIRF provides high signal-to-noise and low phototoxicity to the living specimen.

However, in TIRF images, MreB proteins appear as patches of the same size, with diameter

∼ 250nm which is around the diffraction limit ([Bil+17], [Bil+19]). It suggests that the actual

size of a unique MreB filament should be smaller than the diffraction limit. SIM is a super-

resolution technique which goes beyond but is still essentially limited by the diffraction limit.

By structured illumination, 2D-SIM can achieve at best a lateral resolution equal to half of

the diffraction limit (∼ 120nm). However, SIM methods are suited for live-cell imaging with

conventional fluorophores. Furthermore, it can be combined with TIRF to benefit the high axial

resolution. In [Bil+19], the SIM-TIRF images are used to observe the dynamics of MreB and it

brings very important information on the length of a unique MreB filament (∼ 170nm), which is

hidden in conventional TIRF images.

The microscopic images of the dynamics of MreB during the active growth phase acquired
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by SIM-TIRF and TIRF are further analyzed, using advanced statistical and mathematical mo-

deling in Chapter 3 and Chapter 4. It worth noting that during the image acquisition, different

sources of noise are introduced, due to the stochastic nature of the photon emission and the

imaging system. It can make the inference of the underlying biophysical processes (e.g., the

mode of motion, the parameters of motion) more accurate, when we involve the noise into the

modeling.

This chapter is organized as follows: an easy-to-understand introduction of the diffraction

limit is presented in Section 2.1; In Section 2.2, we summarize the conventional and super-

resolution fluorescent microscopy. The physical principles for the conception of TIRF and SIM

are respectively presented in Sections 2.3 and 2.4. In Section 2.5, we summarize the common

sources of noise that could be produced during the fluorescent image acquisition. Finally, in

Section 2.6, we present the practical application to observe MreB filaments using TIRF and

SIM-TIRF.

2.1 The diffraction limit

As stated previously, the resolution of conventional wide field microscopy is limited to ∼
200 − 300nm laterally and ∼ 500 − 700nm axially due to the diffraction limit of light microscopy,

as characterized by Abbe and Rayleigh [Ray80]. The image of an infinitely small self-luminous

object in a microscopy is a finite-size diffraction pattern created by the interference in the image

plane. The image consists of a central spot surrounded by concentric rings of decreasing in-

tensity. The central spot which contains ∼ 84% of the photons from the emitter, is called the

Airy disk (Fig. 2.1 left). According to the Rayleigh criterion[Ray80], two point sources are just

resolved if the central maximum of the intensity diffraction pattern produced by one point source

coincides with the first zero of the intensity diffraction pattern produced by the other. Note the

Airy disk radius as d, given by the equation d = 0.61λ/NA, where λ is the emission wavelength

and NA is the numerical aperture of the objective, then optical microscope cannot distinguish

two objects that are closer than d. This means that all tagged fluorescent proteins or protein

complexes (1 − 10nm) show up as blured focal spots of diameter ∼ 250nm (of length ∼ 600nm

in the axial dimension), and thus that two molecules within this distance cannot be separately

identified.

The Point-Spread Function (PSF) describes the response of an imaging system to a point

source or point object (Fig. 2.1). In 3D, the focal spot referred as the PSF appears as an ellipse

stretched along the optical axis. In space-invariant system, i.e. the PSF is the same everywhere

in the imaging space, the fluorescent images are the convolution of the PSF and the intensity

of the image, related to the number of photons. The PSF is commonly approximated by a

Gaussian distribution [ZZOM07]. The diffraction limit can be broken when SNR is high enough.

44



2.2. A summary of the conventional and super-resolution microscopy

−500 −250 0 250 500
x/nm

−500

−250

0

250

500

y
/n

m

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

lo
g 1

0(
I
/I

0)

−500 −250 0 250 500
r/nm

0.0

0.1

0.2

0.3

0.4

I
/I

0

FIGURE 2.1 – Left: the Airy disk; Right: The Point-Spread Function (PSF) when setting
λ = 509nm (GFP emission wavelength) and NA = 1.5 (theoretical maximum value). Plotted
according to the Point-Spread Function (PSF) equation in [ZZOM07]

If the good model of PSF is chosen and the images are recorded without noise, then any

wanted resolution can be reached through modeling. However, in real, the PSF is unknown

and the noises introduced during the acquisition are the reasons of the existence of a limit

of resolution. One category of the recently widely used and still in fast development Super-

Resolution microscopy (SRM) is based on the modeling of the PSF by localizing the position of

a single molecule ( [Hua+08], [SWB08]).

2.2 A summary of the conventional and super-resolution micro-

scopy

In this section, we give a brief summary of the existing conventional and super-resolution

microscopy techniques. We keep in mind the objective of observing the dynamics of MreB in

model bacteria Bacillus subtilis. The bacteria cells are small, ∼ 1µm in diameter and several

micrometer in length. The MreB patches are relatively sparse and perform at least two different

modalities of motion (slow and fast) [DE+11].

The conventional techniques of light microscopy involve WFFM, TIRF, and Confocal micro-

scopy (Fig. 2.2 [Sch+19]). In WFFM (or epi-fluorescence) setups, the incident light is parallel

to the optical axis (i.e., normal to the coverslip/sample surface) and thus travels across the

45



Imaging of the membrane protein MreB

entire sample, simultaneously exciting all fluorophores in the cell. The detected fluorescence

from out-of-focus plane generates a high background noise and thus a low signal-to-noise ratio

(contrast).

On the contrary, in confocal microscopy, point illumination is used to scan across the sample

and a pinhole in front of the detector keep only the in-focal signal. Therefore, confocal micro-

scopy produces images with enhanced contrast compared to WFFM. However, the improved

contrast is at the expense of fluorescence intensity (much of the light is blocked at the pinhole)

and the temporal resolution (scanning is required as only one point is illuminated at one time).

Given the diameter of a bacterium cell ∼ 1µm and the focal plane thickness ∼ 0.5µm, confocal

microscopy brings little improvement in the contrast.

In TIRF microscopy, an exponentially decaying evanescent wave is generated at the in-

terface between the coverslip (glass) and the sample/water (aqueous medium), when a laser

beam with an incident angle larger than the critical angle is completely reflected at the surface.

TIRF excites the fluorophores at the proximity (100 − 200nm) of the coverslip, smaller than the

conventional axial diffraction-limited resolution. As only a small section of the cellular volume is

illuminated, it can be much less phototoxic than WFFM, and can image longer periods if new

fluorescent molecules enter into the evanescent field. Less detected out-of-focus fluorescence

enables a high contrast. Due to the low phototoxicity, high contrast, high axial resolution and

high temporal resolution, and its relatively low cost set-up, TIRF stands as a method of choice

for studying membrane-associated events in bacterial cells, as in our case, the dynamics of the

membrane-associated filamentous protein MreB.

Super-resolution techniques can be sorted into two main strategies, patterned light illumi-

nation techniques with Stimulated Emission Depletion (STED) and SIM, and localization-based

techniques with Stochastic Optical Reconstruction microscopy (STORM) and PALM. Two recent

reviews of the SRM are available, see: [LLB15] and [Sch+19], where an overview of commer-

cially available and emerging SRM techniques, together with a balanced assessment of their

strengths and weaknesses with examples of biological applications are provided.

Compared to other diffraction-unlimited SRM, SIM methods are considered rather ‘gentle’,

and are particularly suited for live-cell imaging with conventional (nonswitchable) fluorophores

(e.g., GFP), and for higher throughput applications. Classic interference-based SIM utilizes

frequency shifting upon patterned wide-field illumination and mathematical reconstruction. It

can best double the spatial diffraction-limited resolution in lateral (x, y) and axial (z), reaching

∼ 100nm lateral and ∼ 300nm axial resolution, equivalent to an ∼ 8-fold volumetric improve-

ment. However, the mathematical post-processing of classic interference-based SIM requires

significant knowledge to detect and avoid the reconstruction artefacts [Dem+17].

In addition to TIRF and SIM, there exist other techniques which can bring improvement

on the observation of the dynamics of MreB. However, due to technical and practical reasons,
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FIGURE 2.2 – Illustration of the light paths of common conventional microscopy tech-
niques. From [Sch+19] (a) Wide-field illumination is achieved by concentrating the excitation
light to a single point in the centre of the pupil plane, (b) In TIRF the spot is shifted to the edge of
the pupil plane so that the light beam hits the cover slip interface at a super-critical angle to the
optical axis, generating a rapidly decaying excitation beam close to the cover slip surface (the
upright set-up is shown, however the inverted set-up for TIRF is more common), (c): In confocal
microscopy, the pupil plane is filled, generating a focused spot in the image plane which is to
be scanned across the field-of-view.

these techniques has not yet been realized on our model bacterium. They are further addressed

in the discussion section. In the next two sections, we focus on the physical principles of TIRF

and SIM.

2.3 Basic principles of Total Internal Reflection Fluorescence mi-

croscopy

The phenomenon of total internal reflection was first introduced to the domain of optical

fluorescence microscopy by [ABT84]. Here we give a rapid recap of the principles of TIRF

and its virtues compared to the conventional WFFM and the confocal FM. More details of the

theories used in the conception of TIRF can be find in [MFTW13].

When a light beam hits the interface of two isotropic media with refractive indices ni and nt,

then Snell’s law describes the relation between the incidence angle θi and the refractive angle

θt as follows:

ni sin θi = nt sin θt. (2.1)

When the light passing from the medium with higher refractive index into that with lower refrac-

tive index (i.e. ni > nt), and as the incident angle increases, it reaches one point called the

critical angle θc. The critical angle θc = sin−1(nt

ni
), where the refraction angle θt = 90◦ and the

light is totally reflected.
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FIGURE 2.3 – The Exponential Intensity Decay in the evanescent field [AWD]

When the θi > θc, the large majority of the light is reflected and only a small portion of

the reflected light penetrates through the interface, and propagates parallel to the plane of

incidence creating an electromagnetic field in the vicinity of the interface. This electromagnetic

field is named evanescent field and can be described by (2.2), where the real term Eote
−zξ

describes the wave amplitude which decreases with z and the complex term describes the

propagation of the electromagnetic wave along the interaction surface in the x− direction.

Et = Eote
−zξei[ktnix sin θi/ni−ωtt] (2.2)

where ξ = kt

nt
(n2

i sin2 θi − n2
t )1/2.

As the intensity of the electromagnetic I is proportional to E2
t , from (2.2), I decays along

z− direction normal to the interface:

I = I0e
−z/d (2.3)

where d, termed as penetration depth, is functional to the wavelength of incident light λ0 and

the refractive indices ni and nt:

d =
λ0

4π
(n2

i sin2 θi − n2
i )−1/2. (2.4)

It can be noticed from (2.3) that at z = d, the intensity I = I0e
−1 (right side of Fig. 2.3), in other

words, the intensity at d decays to e−1 times as the intensity at the interface (where z = 0).

The polarization properties of the evanescent field can be deduced using Fresnel’s equa-

tions (see details in [MFTW13]). It can be shown that the intensity of the evanescent field at

the interface, I0, can be several times stronger than the intensity of the incident wave (Fig. 2.4).
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2.4. Basic principles of Structured Illumination microscopy

FIGURE 2.4 – Polarized Light Evanescent Intensities, where the critical angle θc = 60◦. [AWD]

When the incident angle increases from θc ∼ 60◦ to ∼ 75◦, I0 can be 4 to 1 times stronger than

the intensity of the incident wave.

2.4 Basic principles of Structured Illumination microscopy

SIM uses spatial structured illumination light in a wide field microscope. By the inference

of the excitation light with the emission light from the illuminated sample, higher frequency

information is encoded, by the produced analogous Moiré fringes effect, and is recorded in the

images. It improves the diffraction limit by a factor of two. In the following, we introduce firstly

the diffraction limit explained on the reciprocal space. Then we briefly present the principles of

SIM.

2.4.1 The translation of the diffraction limit in frequency space

In the reciprocal space (or the frequency space), the resolution limit is translated to the ob-

servable region (Fig. 2.5 left). The Optical Transfer Function (OTF) is the Fourier transformation

of the PSF (Fig. 2.5 right). The observable region corresponds to all frequencies where the

OTF has non-zero values, thus in the support of the OTF. Note k0 the maximum non-zero value

of the OTF, then k0 is the limited observable spatial frequency.

High-frequency information residing outside of the support of the OTF can not be observed.
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FIGURE 2.5 – Left: Airy disk in the frequency space; Right: The OTF, when setting λ = 509nm
(GFP emission wavelength) and NA = 1.5 (theoretical maximum value). Plotted according to
the PSF equation in [ZZOM07]

Therefore the microscopy acts as a low-pass filter, only allowing the observation of frequencies

with a magnitude less than or equal to that of k0 as illustrated in Fig. 2.6 (b).

The classical limit of resolution in the microscopy translates into frequency space, defining

a maximum observable spatial frequency k0 given by:

k0 = 2NA/λem, (2.5)

where NA is the numerical aperture of the objective, and λem is the average observed emission

wavelength.

2.4.2 The principle of SIM

As stated in the previous section, the observable region of spatial frequencies is within k0

in conventional microscope. When structured illumination is used, it interacts with the sample

and produce an effect similar to the generation of Moiré fringes (Fig. 2.6 (a)), which is the

multiplication of the illumination light and the sample. It can be seen that such Moiré fringes

can be coarser than either of the original patterns. The higher spatial frequencies in the sample

which are beyond the diffraction limit can therefore be shifted inside the observable region.

Let us see the theory in the way of Fourier transform. The observed fluorescent emission,

E(r), is primarily determined by three factors, the local density of the fluorophore D(r), multi-

plied by the local intensity of excitation illumination I(r), which is then convolved with the PSF
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FIGURE 2.6 – The principle of SIM. From [Gus00] (a): The interference between the illu-
mination and the specimen produce the analogous Moiré fringes. The high spatial frequency
information cannot be observed due to diffraction limit is encoded in the Moiré fringes; (b):
The spatial frequency can be observed only if it falls into the circle region with raduis k0 (2.5);
(c):A sinusoidal structured light with parallel stripes has three non-zero points in the reciprocal
space; (d): Three circle regions, centred by three points shown in (c) and with radius k0, can
be observable (2.10); (e): Repeat (d) for two more times by shifting the direction of the stripes,
normally 120◦ each time, an observable region twice as large as (b) can be obtained.

of the optical system PSF(r),

E(r) = [D(r) · I(r)] ⊛ PSF(r). (2.6)

The Fourier transform of (2.6) is given by:

Ẽ(k) = [D̃(k) ⊛ Ĩ(k)] · OTF(k), (2.7)

where f̃(·) denotes the Fourier transform of f(·) and OTF(k) is the Fourier transform of PSF(r).

As it is explained before, D̃(k) ⊛ Ĩ(k) can only be observable within the non-zero support of

OTF(k) (Fig. 2.5), that is a circle region of radius k0 (Fig. 2.6 (b)). The same circle defines the

set of patterns that it is possible to create in the illumination light. Structured illumination does

not alter this physically observable region, but it moves information into the region from the

outside, and thereby makes that information observable.

If I(r) is uniform, therefore Ĩ(k) has trivial value, then the observed fluorescence frequency

Ẽ(k) depends directly on D̃(k). However if the illumination I(r) is structured, e.g. sinusoidal

pattern of parallel stripes used in the original of SIM, given by

I(r) = I0[1 + cos(k0 · r + φ)], (2.8)
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its Fourier transform has three non-zero points (Fig. 2.6 (c)):

Ĩ(k) = I0[δ(0) + δ(k + k0)eiφ + δ(k − k0)e−iφ]. (2.9)

The observed frequency in images following:

Ẽ(k) = I0[D̃(k) + 0.5D̃(k + k0)eiφ + 0.5D̃(k − k0)e−iφ] · OTF(k) (2.10)

Therefore, the image that is seen through the microscope contains, not only the normal image

as in conventional microscope, but also higher frequency information, which, in the reciprocal

space, is moved from the outside into the observable region (Fig. 2.6 (d)).

If the frequency of the structured illumination is chosen as high as possible, i.e., k0 as given

in (2.8), then it is possible to extract information out to double the resolution limited by the

diffraction of light, in the direction of the stripe (2.6 (d)). By repeating this three times with the

pattern orientated in different directions, one can gather essentially all the information within a

circle twice as large as the physically observable region (Fig. 2.6 (e)).

2.5 Sources of noise

We introduce here the common sources of noise during the image acquisition, in order to

include them in the image processing and dynamics analysis. The noise sources in the micro-

scope imaging system are listed in [ZZOM07]. The principle instruments used for fluorescence

detection in TIRF is Charge-Coupled Device (CCD). The noise model can be approximated

by a mixed-Poisson-Gaussian (MPG) model, combining the Fluorescence photon noise, dark

noise, and readout noise.

The final detected signal S can be given as follows

S = α(Np +Nd) +Nr, (2.11)

where α is the overall gain of the camera, Np is the number of photon which follows a Poisson

distribution with intensity parameter λ, Np ∼ P(λ), Nd is the dark noise due to the kinetic vibra-

tion of silicon atoms in the CCD substrate which will liberate electrons or holes even when no

incident fluorescence photon is present and Nd ∼ P(λd), Nr is the readout noise primarily ori-

ginates from the imperfectness of the output amplifier during the process of converting charge

into a voltage signal, which is described by a normal distribution, Nr ∼ N (µ, σ2).

The fluorescence photon noise, due to the stochastic nature of the photon emission, is

inherent in all optical signals. If we dispose of a high photon flux, which is the case for WFFM

and TIRF, Np will be asymptotically normally distributed with both the mean and the variance
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equal to λ.

In [TLW02], the precision of localization under two limit conditions, the photon shot noise-

limited case and the background noise-limited case is discussed. The photon shot noise-limited

case occurs when the noise in each pixel is dominated by photons originating from the particle

being localized. The background noise-limited case occurs when the noise is caused by other

sources, e.g. readout noise, dark noise, extraneous fluorescence in the microscope (caused for

example by dust), and cellular auto-fluorescence.

TIRF gives high signal-to-noise with little recorded out-of-focus fluorescence and it has a

rather high flux of photon. Therefore, we consider the photon noise-limited case.

Each photon collected in the image gives a measure of the position of the object, and the

position error of each measurement is identical as the Standard Deviation (SD) of the PSF of

the microscope. The estimated position is the average of the positions of the individual detected

photons, and the variance of localization is given by

E((∆x)2) =
s2

N
; (2.12)

where s2 is the variance of the PSF and N the number of photons N . This noise model will

further be used in the next chapter in the modeling of the dynamics by diffusion processes.

2.6 Observation of the dynamics of the protein MreB during active

bacteria cell growth

In this section, we discuss the practical issues concerning the observation of the dynamics

of the MreB during active bacteria cell growth.

A detailed guidebook for MreB observations in TIRF microscopy is available [Cor+20]. Ma-

terials and Methods for Bacteria cell growth, Agarose pad preparation and slide mounting, and

TIRF imaging are presented. The challenges and practical issues are also discussed. The TIRF

images used in this thesis are acquired in the ProCeD team, Micalis Unit (INRAE, Jouy-en-

josas, France). The modalities for TIRF setting is described in [Bil+17]. MreB dynamics movies

are acquired at ∆t = 1s during 2 minutes, with an exposure time tE = 0.1s. The final pixel size

was 64nm.

SIM-TIRF imaging was performed at the Advanced Imaging Center (AIC) (Janelia Research

Campus, VA, USA), as described in [Li+15]. SIM reconstructed images and average TIRF

images were processed from nine raw acquisitions (three translations × three rotations). Each

image is exposed during 10ms (total exposure time 90ms) and the time interval ∆t = 1s. The

duration of movies is 0.5 − 1 minute. The experimental resolution limit at 488nm was estimated

to be 114.37 ± 16nm (n = 198 beads), using 40nm fluorescent beads.
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Imaging of the membrane protein MreB

FIGURE 2.7 – A comparison of images aquired by TIRFM and SIM-TIRFM [Bil+19].

The images of MreB, acquired by TIRFM and SIM-TIRFM, respectively, are presented in

Fig. 2.7. It can be noticed that, in TIRFM the MreB proteins shows up as spherical spots, due

to the diffraction limit. In SIM-TIRF instead, several separated elliptical spots are observed.

There exist other possible microscopy methods suitable for MreB imaging, which have the

potential to break certain limits of the current acquired MreB image by TIRFM and SIM. Espe-

cially, we would like to have a complete view to observe the dynamics of MreB on the whole

membrane, at high spatial (lateral and axial) and temporal resolution.

TIRF imaging, thanks to the illumination in a small section, benefits from the low phototoxi-

city and photobleaching. At the same time, it sets an important limit of TIRFM, the incomplete

observation view. TIRF measurements can be further exploited using the relationship between

the incident angle and the penetration depth of the evanescent wave (2.4), thus adding a third

dimension to TIRF imaging. A reconstruction algorithm of high-resolution 3D volume from mul-

tiangle TIRF images stacks has been developed by Boulanger et al. [Bou+14]. The Multi-angle

TIRF (3D) is able to achieve 50nm axial resolution over a range of 800nm above the coverslip.

At the same time, it has reduced phototoxicity and photobleaching compared to WFFM.

The Lattice Light Sheet microscopy (LLSM) can also be considered for 3D MreB dynamics

observation, as it is characterized by very high imaging speed, high contrast, and good optical

penetration depth. The recent developed LLSM is improved to reach a quasi-isotropic resolu-

tion 230nm × 230nm × 370nm, thus increasing the volumetric resolution [Che+14a]. It can be
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2.6. Observation of the dynamics of the protein MreB during active bacteria cell growth

combined to SIM to further increase the resolution.

In order to analyse the dynamics of MreB, to test whether it performs free diffusion, the tem-

poral scale is also critical. The 3D-SIM even can achieve super resolution volume acquisition

[Sch+08], and therefore allows the observation of the whole membrane surface of B. subtilis,

has rather low temporal resolution of (∆t ∼ 1s− 1m) [Sch+19].

Multi-angle TIRF microscopy and LLSM devices installed in a collaborative lab, PICT -

IBISA, Institut Curie, have been tested to acquire the dynamics of MreB. However, due to

practical challenges of microscope and obstacles related to the sanitary (COVID-19) crisis,

the Multi-angle TIRF and LLSM acquisitions was suspended. The 3D-SIM device is recently

installed in the ProCeD team, Micalis Unit (INRAE, Jouy-en-josas, France), yet, some techni-

cal issues (e.g., photobleaching and sensitivity) prevent us from obtaining 3D-SIM images with

enough temporal frequency and observation duration.

Conclusion

In this chapter, the principles of TIRFM and SIM are reviewed. Several information should

be kept in mind to continue the reading of the following chapters:

Due to the total reflection and the evanescent field of around 100nm ∼ 200nm, only around

one third of the bacteria surface can be observed. The recorded trajectories are the projection

of the trajectories along the surface of the 3D cell membrane.

The resolution of SIM is around ∼ 110nm, which allows to observe unique MreB filament,

whose average length is around ∼ 170nm [Bil+19]. Therefore, the gain in resolution by com-

bining SIM with TIRF sheds light on the understanding of the dynamics and spatio-temporal

distribution of MreB. However, as several raw images are needed to reconstruct an image, the

movie duration is limited to 0.5 − 1 minute due to the photobleaching of the fluorophores.

Several sources of noises in fluorescent imaging system are introduced. The localization er-

rors in the shot noise-limited case is given by a simple formula (2.12), which allows the quantifi-

cation of errors and is further included in trajectories analysis procedures presented in Chapter

3.
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CHAPTER 3

STATISTICAL ANALYSIS OF THE

DYNAMICS OF THE PROTEIN MREB

DURING CELL WALL SYNTHESIS

Motivation

The environment inside living cells is very complex. Experimental observations have revea-

led that biomolecules and molecular aggregates inside cells perform different types of move-

ments. Several of them differ significantly from pure diffusion. The study of the trajectories of

molecular aggregates can help to decipher different biophysical processes such as free dif-

fusion, constrained dynamics in crowded environments, and dynamics mediated by molecular

motors. Several types (classes) of dynamic biophysical processes have been identified over the

past years. These processes are often characterized by a few interpretable features (e.g. diffu-

sion coefficient, velocity). These features allow us to compare the individual interaction among

particles and their environment, within the same cell or between different cells.

In this chapter, we aim to gain a detailed description of the heterogeneous dynamics of a

target protein, MreB, which is known to be moving along the surface of the inner membrane and

performing different regimes of motions during the growth of the rod-shaped bacteria cell. Two

different points of view are considered to study the dynamics. The first one consists in analyzing

individual trajectories of particle, including the mode of motion and the biophysical parameters

of the motion, e.g., the drift and the diffusion coefficient. The second one aims at studying

the dynamics of particles in the neighborhood of a position point and further characterizing

dynamical events, e.g., the shape and distribution of potential wells or confinements areas.

In the first section of this chapter, we review some classical diffusion models and measure-

ment errors, including static localization error induced by the limit of spatial-resolution of optical

microscopy and the motion blur due to the finite exposure time during image acquisition. Sec-

tion 2 is dedicated to the analysis methods of individual trajectories. We first review the main

approaches for trajectories classification into several categories of diffusion: free, confined,

and directed diffusion. Furthermore, we present the advantages and limitations of competi-
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tive methods used to estimate the underlying biophysical parameters. Section 3 is devoted to

analyzing the dynamics of MreB aggregates analyzed with the aforementioned methods. The

dynamics of MreB, which take place in the vicinity of the inner membrane surface, are acquired

with SIM-TIRFM. It is worth noting that the analysis is performed on partially observed dyna-

mics, as only the particles of the evanescent field can be observed with this imaging technology.

It is also noted that a significant bias is induced by the planar projection of the 3D dynamics

onto a 2D plane. In Section 4, the local properties of the dynamics field are examined. We

focus on the local drift and the particle diffusion coefficient. Assuming that the dynamics follow

a certain diffusion model, a method for reconstructing the 3D surface (in our specific case, the

recovery of the radius of the bacteria cell) from a planar projection of the 3D trajectories, is

proposed.

3.1 Diffusion models and sources of measurement errors

Thanks to the development of fluorescence labeling, super-resolution microscopes, and

single-particle tracking techniques, research scientists are equipped with many advanced tools

to take a glimpse into the very complex environment in living cells. It is well established that the

characteristics of the motions of biomolecules present a great heterogeneity in living cells. In

this section, firstly, we describe the main diffusion types usually considered in biophysics and

related stochastic models. Beforehand, it is important to know that the input data (i.e., images,

trajectories) are corrupted by several sources of errors during the acquisition and analysis of

fluorescence images. We discuss here two main sources of errors: the limited localization pre-

cision due to light diffraction and motion blur caused by the exposure time and particle diffusion.

3.1.1 Diffusion models

From a probabilistic point of view, a diffusion process Xt is a continuous time process that

possesses the Markov property and for which the sample paths are continuous. The Markov

property states that if we know the present state of the process, the future behavior of the

process is independent of its past, described by the σ-field Ft:

P (Xt+s ∈ A|Ft) = P (Xt+s ∈ A|Xt). (3.1)
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3.1. Diffusion models and sources of measurement errors

Diffusion process satisfies three key conditions [KT81]:

lim
∆→0

1

∆
P (||Xt+∆ −Xt|| > ǫ|Xt = x) = 0,∀ǫ > 0, (3.2)

lim
∆→0

1

∆
E(Xt+∆ −Xt|Xt = x) = µ(x, t), (3.3)

lim
∆→0

1

∆
E(||Xt+∆ −Xt||2|Xt = x) = σ2(x, t). (3.4)

The first condition (3.2) states that large displacements are very unlikely over infinitesimal time

intervals, while conditions (3.3) and (3.4) characterize the mean and the variance of the infini-

tesimal displacements and confirm the existence of the limits.

Brownian motion or free diffusion is a fundamental diffusion process in biophysics. It was

first observed in 1827 by the British botanist, who observed the motion of particles in pollen

grains in water. It was explained many decades later by A. Einstein in [Ein05], who demons-

trated that apparent pollen motion was induced by water molecule displacement.The related

probability theory was derived by N. Wiener in 1923. In the subsequent years, it has been

established that Brownian motion was equivalent to a Wiener process defined as follows:

Definition 1 A stochastic process Bt is a Brownian motion if it satisfies the following proper-

ties:

— Bt is a process with independent increments: for t > s, Bt − Bs is independent of the

field Fs generated by the history of the process Bm,m ∈ [0, s] until time s.

— For all t > s, Bt −Bs ∼ N (0, t− s).

— The paths of Bt are almost surely continuous and nondifferentiable.

Moreover, Langevin justified with another modeling approach the motion of suspended par-

ticles [Lan08]. Particle motion is characterized by the d−dimensional so-called Langevin equa-

tion:

m
dv(t)

dt
= −ζv(t) + L(t), (3.5)

where v is the velocity of the particle, m denotes the mass, ζ > 0 is the friction coefficient and

L is a random force resulting from the collisions with the surrounding particles. The process

received a more thorough mathematical examination several decades later by Uhlenbeck and

Ornstein [UO30] and Chandrasekhar [Cha43].

A recent presentation of Einstein’s approach and Langevin’s approach in bioimaging is given

in [BVK20]. In summary, it is established that the solution of the overdamped Langevin equation

defined as follows
dXt

dt
= −1

ζ
∇U(X) +

√
2DR(t) (3.6)

where U(X) is the particle interaction potential and R(t) is a standard Gaussian variable, is

also known as Brownian motion. Note that Brownian motion by Einstein (equivalently driftless
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Wiener process) is nowhere differentiable. However, Brownian motion characterized by the

overdamped Langevin equation is differentiable. Nevertheless, both definitions are consistent

in the sense that the MSD is asymptotically linear with time:

ρ(t) = E(||Xt −X0||2) = 2dDt, (3.7)

where D = kBT
ζ denotes the diffusion coefficient, kB is the Bolzmann constant, T is the tempe-

rature and ζ is the friction constant as introduced in (3.5).

In [BVK20], other diffusion processes are reviewed, well-grounded in Einstein’s and Lan-

gevin’s theories, for modeling respectively sub-diffusion and super-diffusion in biophysics. The

most intuitive way to distinguish sub- and super- diffusions from free diffusion is still performed

via MSD analysis (see details in Sections 3.2.1.2 and 3.2.2.1). If the MSD is sub-linear with

time t then the diffusion is regarded as sub-diffusion. On the contrary, if the MSD is over-linear

with time t, then the diffusion is accordingly super-diffusive. Among existing models, the most

popular sub-diffusion models are shortly described below: Ornstein-Uhlenbeck (OU) process

[UO30], fractional Brownian motion (fBm) (with 0 < H < 1/2 where H is the Hurst index), re-

commended to characterize dynamics in crowded cellular environments [MVN68], Continuous

Time Random Walk (CTRW), for analyzing trapping areas and nanodomains within the cell

([SM75]) or modeling the axon growth cone [DZK17], Generalized Langevin Equation (GLE)

([Zwa01], [Kou+08]), for taking into account the viscosity properties of the environment. Super-

diffusions are mainly defined as Brownian motion with drift and fBm (with 1/2<H<1).

Ornstein-Uhlenbeck (OU) process

A unified approach for representing diffusion processes is to consider that they are solutions

of Stochastic Differential Equation (SDE). For example, the OU velocity process is the solution

of the SDE:

mdv(t) = −ζv(t)dt+ σdBt, (3.8)

where m, v and ζ represent the mass and the velocity of the particle and the friction coefficient,

respectively, as in (3.5) and Bt denotes Brownian motion defined in Def. 1.

In mathematics, the OU process is defined by the following stochastic differential equation:

dXt = −λ(Xt − θ)dt+ σdBt (3.9)

where Xt is the position of the process, and λ > 0 reflects a restoring force directed towards

the long term average θ.
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3.1. Diffusion models and sources of measurement errors

Fractional Brownian motion (fBm)

fBm is defined by the covariance function of {BH
t }, a continuous zero-mean Gaussian pro-

cess with stationary increments:

cov(BH
t , B

H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H), (3.10)

where 0 < H < 1 denotes the Hurst index. It is noticed that in biophysics, although fBm with

1/2 < H < 1 may represent super-diffusion, fBm is mainly used to characterize sub-diffusion

(i.e., for 0 < H < 1/2).

Brownian motion with drift (Bmd)

The Brownian motion with drift (Bmd) is solution of the d-dimensional SDE:

dXt = vdt+ σdBt, (3.11)

where v is the drift and σ the standard deviation, Bt is the standard Brownian motion such that

the diffusion coefficient D = 2σ2.

For the past 15-20 years, we have the opportunity to observe and analyze the dynamics of

biomolecules in live cells with advanced imaging technologies. They can produce high spatial

resolution image sequences and particle tracks, but different sources of noise and errors inhe-

rently corrupt the data. In the next section, we quantify the errors of measurements due to the

light diffraction limit and exposure time duration.

3.1.2 The sources of errors inherent to fluorescence microscopic images ac-
quisition

Localization error due to the diffraction limit

The main source of uncertainty is the localization noise. Usually, the localization uncertainty

of a particle located at (x, y) in a 2D plane can be characterized by a Gaussian probability

distribution, with standard deviation σx (resp. σy) depending on the standard deviation s0 of

PSF and the number of photons N . If we assume σloc = σx = σy, we have

σloc =
s0√
N

(3.12)

which represents the static localization uncertainty. In other words, σloc represents the localiza-

tion uncertainty for an immobile particle [TLW02]. Consequently, the measured position of the
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particle at time t is written Xt = X̃t + ǫ, where ǫ ∼ N (0, σ2
loc) and X̃t is the physical real position

of the particle.

Motion blur

The second source of uncertainty is due to "Motion blur," where the average position of

a particle is estimated over the exposure time tE . We suppose that a particle moving in one

dimension according to Brownian motion with diffusion coefficient D is captured by a camera.

During the time interval ∆t, the camera shutter may be opened during duration tE , tE ≤ ∆t. In

[Ber10], Berglund defines the motion blur coefficient as:

M =
1

∆t

∫ ∆t

0
S(t)[1 − S(t)]dt, (3.13)

where S(t) is the illumination percentage occurring before time t (between the beginning and

the end of a frame), during the interval of time ∆t. S(t) =
∫ t

0 s(t
′)dt′, where s(t) is the shutter

function. The value of M lies between 0 and 1/4, depending on the camera exposure mode

and duration. M equals zero (no motion blur) if and only if the shutter function s(t) consists of

a single vanishing peak at any point within the frame. The coefficient M reaches its maximum

value 1/4 when there is a double-pulse sequence at the start and the end of the frame. In the

common experimental case of a uniform exposure of duration tE ≤ ∆t, setting S(t) = t
tE

in

(3.13), it yields to

M =
1

6

tE
∆t

. (3.14)

It is shown in Section 3.2.2 that the localization noise and motion blur induce correlations

between the observed displacements of the moving particles. Both static and dynamic localiza-

tion errors σ2
loc and M are used further to elaborate several different estimators (Optimal Least

Squared Fitting (OLSF), Maximum Likelihood Estimation (MLE), Covariance-based Estimator

(CVE)) of particle dynamics.

3.1.3 Discussion

In addition to the two main sources of errors under concern, the errors induced by the spot

detectors ([Des17], [DG+19]) or particle trackers ([Jaq+08], [Yan+12]) should not be ignored

either. The light diffraction makes that the particle in the image appears not as a dot but rather

as a blurred spot. During the spot detection step, when two particles are located too close to

each other (i.e., when the distance is less than the size of Airy disk [Air35]), two fluorescent

spots overlap. This induces confusion for the algorithm to detect the two spots. The detection

errors are false negatives (the algorithm fails to detect an existing particle) or false positives (the
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algorithm detects a fake spot while there is no particle). Falsely detected particles usually yield

short trajectories. However, particles along a trajectory may not be detected in all frames, ge-

nerating undesirable several sub-tracks and gaps. To re-connect these sub-tracks (or tracklets),

several tracking algorithms include a gap-closing procedure ([Jaq+08], [Che+14b]).

The success rate of trajectory estimation is closely related to noise level (or Signal to Noise

Ratio (SNR)) in images. The peak SNR value is generally used to assess the amount of noise

of images and requires no information about the acquisition device. It is defined as follows

[Che+14b]:

pSNR(x, y, z) =
I(x, y, z)

σn
, (3.15)

where I(x, y, z) is the intensity at point (x, y, z) and σn the empirical estimation of the standard

deviation of the noise. The impact of the noise can be evaluated by simulating blurred data,

applying the spot detection and the tracking algorithm before applying the trajectories analysis

procedures.

3.2 Methods for individual trajectories analysis

In this section, we review several competitive methods developed for the analysis of in-

dividual trajectories. Several features, including length and direction of particle trajectories,

diffusion types, parameters (diffusion coefficient, drift), and diffusion regime transitions, help

decipher the mechanisms of various cellular processes and the roles of proteins involved in

these processes. The problem amounts to identifying the right diffusion model and the opti-

mal estimated parameters for each trajectory. We introduce several methods for classifying

different diffusion motions and estimating the parameters of models under concern (diffusion

coefficients, drift...). MSD is probably the baseline method used to address this challenge. More

sophisticated methods based on MLE, Bayesian estimation, and learning-based approaches

have been proposed to overcome the difficulties faced by the MSD approach.

In the classification task, the parameters, e.g., the diffusion coefficient D, must be prelimi-

narily estimated. On the flip side, to estimate the parameters, especially when using parametric

methods (e.g., MLE), knowing the diffusion mode is required. In practice, one needs to keep in

mind that those two problems are interwoven.

The presence of measurement errors adds more difficulties to the problem. On the one

hand, the errors degrade the estimators of D; On the other hand, the quantification of the

errors due to measurement depends on the diffusion coefficient D. Finding a way out of this

interwoven problem requires different shortcuts and ingenuity, depending on the experimental

conditions and prior knowledge. In the case of the dynamics of the MreB observed with SIM-

TIRFM, we present a dedicated solution in Section 3.3.
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In what follows, firstly, the classification methods, using the canonical MSD method and a

new statistical hypothesis test, called Testing HypOtheses for diffusion TricHotomy (THOTH),

are presented (Section 3.2.1). Secondly, several parameter estimation methods, including the

MSD based OLSF, MLE, and CVE, are presented in Section 3.2.2. The measurement errors is

taken into account in the definition of estimators.

3.2.1 Comparison of classification methods

In this section, we provide an overview of existing methods used to determine modes of

motion for single-particle trajectories. Then, in the case of MreB trajectories, we focus on three

non-parametric classification methods, two of them are based on MSD and another one is

THOTH.

3.2.1.1 Bayesian methods and Deep Learning

In [TM13], Türkcan and Masson proposed a computational approach able to determine the

motion model that best fits the observed trajectories. The method is based on Bayesian infe-

rence to calculate the a posteriori probability given an observed trajectory. Information theory

criteria, such as the Bayesian information criterion (BIC), are used for selecting the most appro-

priate model taken in a set of pre-specified models, including free Brownian motion, confined

motion in 2nd or 4th order potentials, and more complex motion models able to represent for

instance phenomena like active transport and hopping. The main limitation of the method is

related to the number of trajectory points required for reliable estimation. At least 20 points are

actually needed to discriminate free diffusion from confined motions, and at least 50 points are

needed to determine confined motions in 2nd order (even more points with higher order).

The Bayesian approach in [TM13] is based on the exhaustive comparison of several para-

metric models, and assess the goodness of fit of the observed trajectory to each parametric

model. Unlike [TM13], the statistical test approach called THOTH and proposed by [BKV18] is

a non-parametric method. It can discriminate at once free diffusion from sub- and super- diffu-

sion. It is a non-parametric method, therefore it does not determine to which sub- (or super-)

diffusive model the data fit the best, knowing that there are different models for sub- (or super-)

diffusion due to different physical mechanisms. One of the advantage of the hypothesis test

is that it performs well for short trajectories from 10 points and beyond. About the calculation

complexity, it needs to be mentioned that the optimization algorithm to find the Maximum A Pos-

teriori in Bayesian approach is very time consuming compared to the simplicity of the method

proposed by [BKV18].

Meanwhile, machine learning methods have been investigated to classify particles trajec-

tories into categories of motion. Deep learning method, to our knowlege, was first introduced
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by [Gra+19a] for single-particle-diffusion analysis and classification of single-particle trajecto-

ries into three sub-groups: Brownian motion, fractional Brownian motion and Continuous Time

Random Walk. A network architecture is also used to estimate the Hurst exponent for fractional

Brownian motion and the diffusion coefficient for Brownian motion, on both simulated and ex-

perimental data. It turns out that these networks achieve greater accuracy than time-averaged

MSD analysis on simulated trajectories while only requiring as few as 25 time points. A set of

multi-tracks networks were also designed to tackle a problem of high practical importance of

experiments in which only numerous very short trajectories are available (i.e., ∼10 time points)

rather than a single long trajectory. Therefore deep learning is an appealing approach with

high potential for identifying complex models in large quantities of data, with a relative simpli-

city of implementation (once trained), inference speed, and robustness. In addition, graph mo-

dels have been developed to describe single-particle trajectories or other sub-cellular objects

([Ver+21], [Gra+19b]). Recently, combining with deep learning networks, the Graph Neural Net-

works (GNN) have been widely used to infer the underlying biophysical properties of the studied

objects ([ZCZ20], [Art+19]).

In the scenario of MreB protein dynamics observed in TIRFM, the average number of points

in a trajectories is around 10. The length of trajectories limits the use of Bayesian method and

makes it difficult to have information of goodness of fit of trajectories to a specific parametric

model. As investigated in [Bil+17], the MreB trajectories can be clustered into three groups: free

diffusion, super-diffusion and sub-diffusion. Our first objective is then to classify trajectories into

these three categories with non parametric model selection. Therefore, we focused on the MSD

method and the THOTH to address the problem.

3.2.1.2 Classification methods based on MSD

The MSD is a widely used approach (e.g. [Fed+96], [Bil+17]) to discriminate free diffusion,

sub, and super diffusion. Given a lag n, MSD (3.7) can be estimated from the average over all

independent pairs of points with time lag n, or all pairs of points with time lag n:

ρ̂n = ρ̂(n∆t) =
1

N − n

N−n
∑

i=1

||Xn+i −Xi||2. (3.16)

According to diffusion regimes, the MSD curve has different shapes [SJ97]. The analytical

forms of the curves of MSD versus time lag n for different modes of motion are at the origin of

various classification methods. In summary, three main modes are characterized as follows in
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the 2D spatial domain:















ρ(t) = 4Dt (1) free diffusion,

ρ(t) = 4Dtβ, β < 1 (2) anomalous diffusion,

ρ(t) = 4Dt+ (vt)2 (3) directed motion with diffusion,

(3.17)

where ρ(t) is the theoretical MSD at time lag t, v is the velocity, andD is the diffusion coefficient.

The most intuitive and the first MSD-based classification method was proposed by [Fed+96].

The main mechanism lies in the setting of a threshold on the coefficient of the exponent β, which

is obtained by linear fitting log(ρ̂n) = β0 + β log(n∆t). If 0.9 < β < 1.1, the particle motion is

classified as Brownian diffusion; if 0.1 < β < 0.9, the particle motion is classified as anomalous

sub-diffusion; if β > 1.1, the particle motion is classified as super-diffusion. The particle is

considered immobile if β < 0.1. However, the critical values are chosen empirically. We call

hereafter this classification method by "β-MSD."

In [Bil+17], Billaudeau performed the classification of trajectories of MreB aggregates by ad-

justing linear and quadratic curves to MSD data points of MSD curves, that is ρ̂n = a0 + a1n∆t

and ρ̂n = b0 + b2(n∆t)2. The idea is based on the known result that the MSD of Brownian diffu-

sion is linear to time and the MSD of Brownian motion with drift is parabolic to time. Classifica-

tion is performed according to the goodness of fit measured by the coefficient of determination,

R-squared. R2
diff (resp., R2

dir) is the coefficient of determination to measure the goodness-of-fit

w.r.t. the diffusion (resp., directed) model. The MSD curves with a maximal value <0.05µm2 are

classified as constrained patches. The MSD curves with a maximal value >0.05µm2, providing

that the fitting of the MSD curve with a quadratic model provides a goodness-of-fit R2
dir > 0.8

and R2
dir > R2

diff, are classified as directed motion. If the fitting of MSD data points with a linear

model provides a goodness-of-fit R2
diff > 0.8 and R2

diff > R2
dir, the MSD curve is classified as

random diffusive motion. Otherwise, they are unclassified. The unclassified trajectories will be

labeled "anomalous diffusion" in our simulations and experiments.

It is worth noting the MSD-based classification is controlled by parameters arbitrarily cho-

sen, including the number of points to be used in the MSD curves and the threshold value for

the coefficient β and the R-squared. Also, it is established that the variance of MSD increases

with higher values of t. This property was used in [Pis+15] to design a more properly weighted

least square estimation method, but with moderate improvement on experimental data. One of

the noticeable drawbacks of classification methods based on MSD is the lack of precision. They

have major difficulties in distinguishing free diffusion from super- and sub- diffusions.
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3.2.1.3 Classification by statistical hypothesis test, the THOTH method

To overcome the limitations of MSD, a recent statistical test procedure for motion classi-

fication, based on the normalized maximal distance covered by a particle, has recently been

proposed by [BKV18]. The three-decision procedure includes two complementary tests:

— Test 1. H0 : "Xt is a Brownian motion" versus H1: "Xt is a sub-diffusion",

— Test 2. H0 : "Xt is a Brownian motion" versus H2: "Xt is a super-diffusion".

and results in three possible decisions:















do not reject H0;

accept that H1 is true;

accept that H2 is true.

(3.18)

The test statistic denoted Tn is the standardized maximal distance covered by the dynamical

process from its starting point:

Tn =
Sn

√

(tn − t0)σ̂2
n

(3.19)

where Sn is the maximal distance of the process with respect to its starting point Xt0
, defined

as

Sn = max
i=1,··· ,n

‖Xti
−Xt0

‖ , (3.20)

with σ̂n a consistent estimator of σ and n the number of time steps of the trajectory. If Tn is

small, it means that the process stays close to its initial position during the period [t0, tn].

The asymptotic distribution of the test statistic Tn when n → ∞ under the null hypothesis is

given in Theorem 3.1 in [BKV18]. Furthermore, the p−value of the test H0 vs H1 is defined as:

p1,n = Fn(Tn).

Similarly, the p−value of the test H0 vs H2 is defined as:

p2,n = 1 − Fn(Tn),

where Fn denotes the cumulative distribution function of Tn under H0. However, in practice, n

may be small, the asymptotic approximation of quantiles of Tn may not be accurate. A Monte

Carlo estimate of the quantile qn(α) was then proposed by drawing a sample from the distri-

bution of Tn under H0, where α is the significance level of the test. Therefore, the cumulative

distribution function of Tn under H0 can be estimated by Monte Carlo simulation,

F̂n(x) = N−1
N
∑

i=1

1(T (i)
n ≤ x).
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In [BKV18], two estimators (first and second orders) of σ are considered:

σ̂2
1,n =

1

dn∆

n
∑

j=1

||Xtj
−Xtj−1

||2, (3.21)

σ̂2
2,n =

1

2dn∆

n
∑

j=1

||(Xtj+1
−Xtj

) − (Xtj
−Xtj−1

)||2. (3.22)

Note that these two estimators exploit the information of the first and second lag of the MSD ρ̂1

and ρ̂2, respectively. At this stage, the localization errors have not yet been taken into account

in the calculation of estimators.

3.2.1.4 Illustration of the performance of MSD-based and THOTH classification me-

thods on simulated trajectories

In this section, we compare the performance of the MSD-based classification methods and

THOTH on synthetic data.

Data generation

Our motivation is to evaluate the potential of the aforementioned methods on synthetic data

that mimic MreB dynamics.To test whether the classification methods can reliably identify free

diffusion, sub-, and super- diffusion, three datasets depicting different diffusion processes are

respectively simulated with Algorithm 1-3. Dataset of Brownian motion (Algo. 1, v = 0); The

super-diffusion dataset consists of 50% Bmd (Algo. 1, v = 0.7, σ = 0.3) and 50% fBm (Algo.

2, H = 0.85); The sub-diffusion dataset consists of 50% OU (Algo. 3 λ = 0.53) and 50% fBm

(Algo. 2, H = 0.13). Each dataset contains 40 trajectories. The length of the trajectories is set to

N = 30. The time interval ∆t = 1s. Note that the unit used for simulations is expressed in pixel

size instead of micrometer. We manually tuned the parameters of the two MSD-based methods

([Fed+96], [Bil+17]) in order to get the best possible results.

Experimental results on simulated data

Trajectories in the Brownian motion dataset have been simulated similarly: the identical

parameters σ = 0.3, length N = 30, ∆t = 1. Nevertheless, as illustrated in (Fig. (3.1) (b)),

the MSD curves calculated from trajectories depict high heterogeneity, which is due to the

stochasticity of the process. The red line represents the theoretical result ρ(t) = 4Dt. It can

be noticed that the standard deviation grows with high values of t. The coefficient β, therefore,
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Algorithm 1 Simulation of a trajectory following Brownian Motion with drift

Input: v, σ,Xini,∆t,N
//v the speed of the drift term, when v = 0, it corresponds to pure diffusion
//σ the standard deviation
//Xini the initial position of a trajectory
//∆t time interval between two points
//N the number of points in a path

Output: the path of a trajectory of Bmd: X
1: for i=1 to N do
2: if i=1 then
3: X(i) = Xini

4: else
5: Draw ǫ ∼ N (0, 1)
6: drift = v∆t
7: variance = σ

√
∆tǫ

8: increment = drift + variance
9: X(i) = X(i− 1)+ increment

10: end if
11: end for

also has a higher variance as t increases. The β−MSD method provides unsatisfactory results,

as it wrongly classifies Brownian motion into either sub-diffusion or super-diffusion (Fig. (3.1)

(c)). The R2−MSD method based on linear and quadratic fitting of MSD ([Bil+17]) has similar

drawbacks (see Fig. (3.1) (d)). Several MSD curves depicting Brownian motion fit better the

quadratic model (red dashed line) or fit neither of the two models (green dashed line) and are

therefore not identified as Brownian motion. On the contrary, the THOTH achieves an accuracy

of 95% (Fig. (3.1) (e)), which is consistent with the theoretical result, as the significance level α

was set to 0.05.

All three methods perform correctly for the super-diffusion dataset (Fig. 3.2). In the second

dataset dedicated to super-diffusion analysis, the two processes have different mechanisms:

fBm (H = 0.85) is caused by positive correlation, and the Bmd (v = 0.7) results from a deter-

ministic force and a random force induced by the thermal motion of molecules. The two motion

types have different shapes (Fig. 3.2 (a)). Given the parameters of the two processes, the MSD

curves of fBm are generally smaller than Bmd curves, which is illustrated by the dark red curves

under the red curves (Fig. 3.2 (b)). Similarly, the test statistics Tn of fBm are generally smaller

than that of the Bmd (Fig. 3.2 (e)). The majority of the Tns is above the 0.975 quantiles, which

means that the corresponding trajectories are classified as super-diffusion. The statistic sum-

mary of the classification results shown in Fig. 3.2 (f) shows that the three methods have high

accuracy ∼ 95% on the simulated dataset.

For the third dataset depicting sub-diffusion, obtained by simulating OU (λ = 0.53) and fBm
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Algorithm 2 Simulation of a fBm trajectory using Cholesky decomposition

Input: H,σ,Xini,∆t, n
//H the Hurst index
//σ the standard deviation
//Xini the initial position of a trajectory
//∆t time interval between two points
//n the number of points in a path

Output: the path of a trajectory of fBm: X
1: Generate the covariance matrix C following (3.23).

C(i, j) =
σ2∆t

2
(|i|2H + |j|2H − |i− j|2H), i, j = 1, · · · , n− 1 (3.23)

2: Do Cholesky decomposition C = LLT , where L is a n − 1 dimensional lower triangular
matrix with positive diagonal entries, LT is the transpose of L;

3: for i=1 to n-1 do
4: Draw V(i)∼ N (0, 1)
5: end for
6: Generate Y = LV , then the co-variance matrix of Y is C.
7: for i=1 to n do
8: if i=1 then
9: X(i) = Xini

10: else
11: X(i) = Y (i− 1) +Xi−1

12: end if
13: end for
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FIGURE 3.1 – Simulation and classification for Brownian motion. (a): Simulated Brownian
trajectories, with σ = 0.3. (b): The MSD curves of trajectories. The red line represents the theo-
retical expectation of MSD, ρ(t) = 4Dt. (c): Classification result by β−MSD. (d): The result by
R2−MSD. In both (c) and (d), the dashed red (resp. green) lines correspond to the trajectories
wrongly classified as super- (resp. sub-) diffusion. (e) The test statistics Tn for all trajectories
and the 0.025 and 0.975 quantiles; (f) A statistic summary of the classification results. Blue
color represents the number classified as Brownian motion, and the red (resp. green) colors
represent the numbers classified as super- (resp. sub-) diffusion.
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Algorithm 3 Simulation of a multivariate O-U process
(Notations are the same as in [Meu09]: dXt = −Θ(Xt − µ)dt+ SdBt)

Input: Θ, µ, S, x0,∆t, n
n: the number of time steps
∆t: the time step
x0: the initial position of a trajectory

Output: the path of a trajectory of a multivariate OU process xcourant

1: - Diagonalization of Θ = AΓA−1 ⇒ A, Γ = (λ1, . . . , λK)
2: - change of variable : z = A−1(x− µ) ⇒ dZt = −ΓZtdt+ V dBt

3: - Calculation of V = A−1S
4: - Calculation of Φ = V V ′

5: - Calculation of the time varying covariance matrix Φt for z
6: - Choleski’s decomposition : (Φt = LLT )
7: Initialisation of z variable : z0 = A−1(x0 − µ)
8: for n-1 time steps do
9: - Calculate zt

10: - Simulate a unit variance centered i.i.d. Gaussian vector τ
11: - Calculate increment ucourant = espu + Lτ in the z coordinates system (espu,k =

e−λk∆tzk−1)
12: - Coming back to the original coordinates system: xcourant = Aucourant + µ)
13: end for

(H = 0.13, σ = 0.3), the three classification methods perform equally well (Fig. 3.3). Given

the parameters, the MSD curves of OU are generally under that of fBm (Fig. 3.3 (b)). Note

that the β−MSD method is not always capable of distinguishing sub-diffusion from "immobile"

motion, especially in the case of very small coefficients β (see Fig. 3.3 (c)). As to THOTH,

the test statistic Tn are mostly under the 0.025 quantile and are consequently classified as

sub-diffusion. However, the H0 has not been rejected for several trajectories (more fBm than

OU).
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FIGURE 3.2 – Simulation and classification for super-diffusion. (a): The simulation of 40
trajectories, half performing Bmd (v = 0.7) (red) and another half fBm (H = 0.85) (dark red).
The two kinds of motions have different shapes. (b) MSD curves of the simulated trajectories.
Given the parameters of two processes, the MSD curves of trajectories performing fBm are
under the MSD curves performing Bmd. (c): The classification result by β−MSD method. (d):
The classification result by R2−MSD method. In both (c) and (d), the dashed blue (resp. green)
lines correspond to the trajectories wrongly classified as free (resp. sub-) diffusion. (e) The test
statistics Tn for all trajectories and the 0.025 and 0.975 quantiles. (f) A statistic summary of
the classification results. Blue color (resp. red and green) represents the number classified as
Brownian motion (resp. super- and sub- diffusion).
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FIGURE 3.3 – Simulation and classification for sub-diffusion. (a): The simulation of 40 tra-
jectories, half performing fBm (h = 0.13) (dark green) and another half OU (λ = 0.53) (green).
(b) The MSD curves for the simulated trajectories. Given the parameters, the MSD curves of
trajectories performing OU are generally under the fBm. (c): The classification result β−MSD.
(d): The classification result by R2−MSD. In both (c) and (d), the dashed blue (resp. black) lines
correspond to the trajectories wrongly classified as free diffusion (resp. immobile/confined).
(e) The test statistics Tn for all trajectories and the 0.025 and 0.975 quantiles; If Tn is under
the 0.025 quantiles, the corresponding trajectory is classified as sub-diffusion. (f) A statistic
summary of the classification results. Blue color (resp. red and green) represents the number
classified as Brownian motion (resp. super- and sub- diffusion).
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FIGURE 3.4 – The power of test of THOTH performed by Monte Carlo sampling when α =
0.05, n = 10, 30 and 50 time points. The parameters v, λ, and H correspond to the drift in Bmd,
the power in OU, and the Hurst coefficient in fBm, from [BKV18].

Discussion

From our experimental results, THOTH controls the type I error as confirmed in theory. The

rate of wrongly rejected H0 is around 5%. When particles performing super- or sub- diffusion,

the power of test, i.e., the probability that the test rejects the null hypothesis H0 when a specific

alternative hypothesis H1 is true, is shown in Fig. 3.4 ([BKV18]). The larger v, λ are, and the

farther H moves away from 0.5, the higher the power of test is. In other words, the more the

trajectories differ from the free diffusion, the better THOTH performs. Therefore, in applications,

the values of dynamics parameters (e.g. v,H, λ) are very helpful in predicting THOTH’s power

of test. We can notice the low power of the test when the number of time steps is reduced to

10.
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Because of the heterogeneity induced by stochasticity, free diffusion is frequently wrongly

classified as super- or sub- diffusion when the two MSD-based methods are applied. Moreover,

the number of points used to fit the MSD curves is arbitrarily chosen by different practitioners.

Most importantly, the accuracy of the classification rate cannot theoretically be predicted.

When applying THOTH, two estimators of variance σ2 are given in (3.21) (first-order) and

(3.22) (second-order), respectively. The first order estimator (3.21) can generate bias induced

by the velocity term when the motion is Bmd. Moreover, these two estimators are not optimal in

the presence of measurement errors.

Simulation of trajectories with measurement errors could give a complementary understan-

ding of how the classification algorithms perform in the presence of measurement errors.

In the next section, we will discuss the optimal coefficient estimation for individual trajecto-

ries in the presence of measurement errors. We will focus on the simplest case, i.e., Brownian

motion.

3.2.2 Estimation of the diffusion coefficient in single-particle tracking

In the literature, several approaches have been developed to robustly estimate the diffusion

coefficient with respect to the localization noise and the motion blur effect. These approaches

have also been evaluated using challenging data. In this section, we describe Optimal Least

Square Fitting (OLSF, a MSD-based estimator), Maximum Likelihood Estimation (MLE), and

Covariance-based Estimation (CVE). It has been shown that the sources of error (see Section

3.1.2), together with the finite length of trajectory N , determine the limit of the best theoretically

achievable precision in estimating D.

This theoretical limit is quantified by the Cramer-Rao Lower Bound (CRLB), given in Appen-

dix A in [MB12]. It is proved that CRLB is related to the length of trajectory, N , and the reduced

square localization error ξ,

ξ =
σ2

loc

D∆t
− 2M, (3.24)

where M is the motion blur coefficient defined in (3.13). The CRLB is an information-theoretic

quantity derived from the likelihood function and used to determine the lower limit on the va-

riances of unbiased estimators. In other words, no practical algorithm used to estimate the

parameters D and σloc can achieve a smaller uncertainty than the CRLB.

It follows that an estimator is said to be optimal if it reaches the CRLB. We examine here

several estimators which reach CRLB in certain conditions. We illustrate the performance of

the estimators for different values of ξ and N .
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3.2.2.1 Diffusion coefficient estimation by MSD analysis

MSD and covariance analysis

MSD is a measure of the fluctuations in the position of a particle over specified time inter-

vals. Its definition and empirical estimator are given respectively by (3.7) and (3.16). For the

sake of simplicity, we use ρn to denote ρ(n∆t), which is the expectation of ρ̂n, written:

ρn = 2dDn∆t. (3.25)

However, if we simulate particles undergoing Brownian motion, one can notice that the MSD

curves deviate from the linear model defined in (3.25), especially for large time lag n. The

empirical MSD ρ̂n is generally defined as the average over N − n + 1 elements (3.16), which

are ∆2
1, · · · ,∆2

N−n+1, where ∆k = X((k + n)∆t) − X(k∆t), k = 0, · · · , N − n. For large time

lags n, the MSD estimation ρ̂n is computed from a few elements as the corresponding number

of displacements decreases. Consequently, the variance Cnn of ρ̂n is calculated as proposed

in [QSE91]. Finally, it is worth noting that the successive pairs of points with time lag n are not

independent.

In recent years, [Mic10] and [Ber10], with two different perspectives, provided similar ex-

pressions for ρn and for the variance and covariance Cmn of the MSD in the presence of mea-

surement errors. Given σloc (3.12) and M (3.13) as the quantified localization error and motion

blur effect, respectively, the MSD gives:

ρ(n∆t) = 2d(σ2
loc − 2MD∆t) + 2dDn∆t, 0 ≤ M ≤ 1

4
. (3.26)

If (3.26) is normalized by the average single frame displacement 2dD∆t, we obtain:

ρ(n∆t)

2dD∆t
=
( σ2

loc

D∆t
− 2M

)

+ n = ξ + n,

and the definition of the reduced localization error ξ is given in (3.24).

The explicit expressions for the variance and covariance of MSD, in the presence of mea-

surement errors, are given in Appendix C in [MB12]. It raises the question of how many data

points in the MSD curve are required to estimate the diffusion coefficient optimally. It was earlier

established that at large n, the variance increases due to the reduced number of samples. This

may lead us to choose the first 3-5 points in the MSD curves. However, measurement errors

can make the first few points of MSD very noisy, especially when ξ > 1. Consequently, there

exists an optimal number of points to ensure reliable estimation of the diffusion coefficient.

This number was previously arbitrarily chosen by different authors. Careful studies showed that

the choice of this number has sensible influence on the accuracy of the estimation [Mic10]. If
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another number other than the optimal number is chosen, the fitted D can be several orders

of magnitude larger than the real diffusion coefficient, i.e., the estimation can degrade several

times inferior to the optimal estimator.

The optimal number of points to be used for MSD fitting, pmin

The diffusion coefficient is obtained by linear regression given the MSD curve defined as:

ρ̂(n∆t) = a+ bn∆t. (3.27)

Combining the MSD in (3.26) with the linear model in (3.27), we obtain â = 2dσ2
loc − 4dDM∆t

and b̂ = 2dD. Here pmin denotes the optimal number of points that minimizes the fitting error

on the fit parameters, a or b. The fitting MSD data points using the optimum number is called

the Optimal Least Squared Fitting (OLSF). The explicit expression of pmin is given in Appendix

B in [MB12]. It showed that pmin is dependent on the total number of points (i.e., the length)

in a trajectory N and the reduced localization error ξ. To guide users in practices, the authors

provide a straightforward representation of pmin as a function of N and ξ (Fig. 7 in [MB12]).

A practical problem arises when one tries to find the optimal number of points in experi-

mental data, especially when ξ is not known in advance due to the lack of knowledge of D and

σ2
loc. An algorithm of iterative search was designed ([MB12] Appendix B), given a start point as

p0 = N/10, to jointly find pmin and estimate the parameters D and σ2
loc.

Summarizing the current knowledge of the MSD, it is found that a complete analysis has

been carried out, started by [QSE91], complemented by the more recent work of [Ber10],[Mic10],

and [MB12]. The complexity, the challenge, the optimal estimators, and the errors of the esti-

mators have been well understood. However, some information, e.g., the covariance in higher

time lag n, cannot be used easily to improve the accuracy of estimators due to its complexity.

3.2.2.2 Alternative methods for estimating diffusion coefficients

Other methods such as MLE ([Ber10]), CVE ([VBF14]), and Motion Blur Filter (MBF) ([Cal16])

have been proposed to estimate the coefficients reliably. We present below the main ideas and

concepts under concern.

The concept of MLE

We recall that the one-step displacement is denoted as ∆k = X((k + 1)∆t) −X(k∆t), k =

1, · · · , N − 1. In [Ber10], it is established that the measured displacements ∆k are distributed

according to a multivariate Gaussian distribution, i.e.:
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E(∆k) = 0,

E(∆j∆k) =















2D∆t− 2(2DM∆t− σ2
loc), j = k

2DM∆t− σ2
loc, j = k ± 1

0, otherwise.

(3.28)

Although a particle undergoing Brownian motion has independent increments, the presence

of measurement errors induces a non-diagonal covariance matrix. Let ∆ be the N − 1 com-

ponent column vector of observed displacements ∆k, k = 1, · · · , N − 1, and let Σ be the

N − 1 × N − 1 covariance matrix defined by (3.28). The log-likelihood function of the data

∆ is written:

L(σ2
loc,D)(∆) = −1

2
log |Σ| − 1

2
∆TΣ−1∆ + const. (3.29)

The D and σloc parameters are obtained by maximizing L(∆) numerically, which requires cal-

culating the determinant and inverse of the N ×N matrix Σ, or by a standard approximation of

Σ [Gra06].

The concept of CVE

The CVE is based on (3.28) and is defined as follows:

E(∆2
k) = 2D∆t− 2(2DM∆t− σ2

loc), (3.30)

E(∆k∆k+1) = 2DM∆t− σ2
loc.

By replacing the expectation by the empirical unbiased estimators, the unbiased CVEs of D

and σ2
loc write:

D̂ =
< ∆2

k >

2∆t
+
< ∆k∆k+1 >

∆t
, (3.31)

ˆσ2
loc = M < ∆2

k > +(2M − 1) < ∆k∆k+1 >, (3.32)

where < · > denotes the average over ∆1, · · · ,∆N−1.

In summary, the OLSF method relies on not only the first-step displacement ρ1 =< ∆2
k >

but also on higher orders ρ2, · · · , ρm where m is the optimal numbers used in MSD curves fit-

ting. However, OLSF does not take into account the variance of ρn except when the weighted

regression fitting is used. The variance and covariance of higher orders ρn have very complica-

ted forms and cannot be used easily. MLE and CVE are regression-free methods, essentially

exploiting the first-step displacement ∆k and the full distribution of ∆k. The variance and cova-
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riance of ∆k are both used in the construction of the estimators.

3.2.2.3 The performance of OLSF, MLE, and CVE compared to CRLB

As a reminder, the CRLB characterizes the smallest uncertainty that an estimator can

achieve. In [MB12], the relative standard deviation (the standard deviation of the parameter

normalized by its expectation) of the estimators is obtained from the CRLB as a function of tra-

jectory length N and the reduced localization error ξ. As shown by a simulation study in Fig. 9

in [MB12], when ξ ∼ 100, for a trajectory length N = 1000 (blue curve), the normalized standard

error of σ2
loc (resp. D) is around 0.08 (resp. 0.08), while for N = 10, the normalized standard

error of σ2
loc (resp. D) is around 1 (resp. 1). Therefore, the best possible precision depends on

the length of the trajectory N and the reduced localization error. It can be noticed that greater

N enables better accuracy of both D and σ2
loc.

Among the three proposed estimators, it is claimed that the OLSF and MLE estimators can

reach approximately the CRLB for all the settings of N from 5 to 1000 and ξ from 10−2 to 105

(Fig. 9 in [MB12]). For CVE, it can reach CRLB when ξ ≤ 1 but has greater variance than the

CRLB for ξ > 1.

3.2.3 Perspectives

In this section, we analyzed the influence of correlations and localization errors on the es-

timating of diffusion coefficients. We focused on Brownian motion, but similar analyses are

required in the case of sub- and super-diffusion.

In addition to the mentioned estimators MSD, MLE, and CVE, several other approaches

have been proposed, like MBF (modified Kalman Filter) [Cal16] and neural networks [Gra+19a].

In both cases, a unified framework was developed to handle several motion modes at once.

MBF [Cal16] models particle motion as an OU process:

dXt = (v − κXt)dt+
√

2DdBt (3.33)

ψti
=

1

tE

∫ ti

ti−tE

Xtds+ ǫloc
ti
, (3.34)

where v and κ characterize the instantaneous velocity of the particle. When v 6= 0 and κ = 0,

(3.33) is nothing else than Brownian motion with drift given in (3.11). When v = 0 and κ > 0,

(3.33) is the conventional model used to represent confined motion. MBF can separate the

motion blur effect from other localization errors and reliably estimates the model parameters

and coefficients. Equation (3.34) is used to model the errors of measurements (as in [Ber10]).

The MBF can handle the varying localization error and take into account phenomenon such as

photobleaching, and the time order of the measurement into account. It is useful to estimate
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3.3. MreB dynamics analysis

the temporal-varing parameter changes instantaneously, rather than giving only an average

over the trajectory. Therefore, the stationarity of the process is not required. The author tested

the performance of MBF for D ranging from 10−3 to 10−1µm2/s, the time interval ∆t ranging

from 25ms− 100ms, and the total number of points N ∼ 100 − 400, σloc = 30nm. However, not

all experimental data up to now can reach such quality of information. The limit of MBF needs

to be tested further in real experimental conditions.

Another model which unifies super-, free, and sub- diffusion is fBm. The Hurst index H is

model-specific, where 0 < H < 1/2, H = 1/2, and 1/2 < H < 1 represent sub-, free, and super-

diffusion, respectively. In [Gra+19a], the neural network is trained to estimate the Hurst index in

the presence of localization errors (without the effect of motion blur). The author assumed that

the dynamics of the observed particles are consistent with the fBm.

In the next section, we apply the previously mentioned methods, which are suited for MreB

dynamics analysis, to characterize dynamics of MreB aggregates observed in 2D image se-

quences acquired with fluorescence microscopy techniques.

3.3 MreB dynamics analysis

As is observed in [Bil+17], the MreB aggregates present different regimes of motion. The

proportion of each regime may vary during different cell growth periods. In this section, we

focus on the problem of classification of MreB dynamics and the optimal estimation of diffusion

coefficient D and localization error σloc.

3.3.1 MreB dynamics data

The images of the MreB dynamics are acquired by combining SIM with TIRFM (see Section

2.3). The structured illumination technique improves the spatial resolution by a factor of two (∼
120nm) compared to the diffraction limit (∼ 250nm). Consequently, SIM offers better localization

precision of the MreB aggregates and makes it possible to observe the unique filament of MreB

(∼ 170nm in length). In TIRF microscopy, the evanescent field penetrates ∼ 200nm into the

sample, which makes it suitable to observe the MreB aggregates moving along the surface

of the 3D inner membrane of rod-shaped bacteria cells. However, data acquired with TIRF is

biased as it produces temporal series of 2D images depicting the projection of the 3D dynamics

onto the support plane.

In this section, the projection bias is corrected before applying the analysis methods to the

dynamics of MreB. As the membrane shape in 3D is approximated by a cylinder, provided

that the cell radius is estimated in a separate way (e.g., by phase-contrast microscopy), the

reconstruction of the dynamics on 3D is straightforward by applying a geometrical transform. If
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the radius is unknown, we propose a computational method in Section 3.4 to assess the radius

from the planar projection of trajectories [HSH13].

3.3.2 Classification of MreB trajectories

The first problem we deal with is the classification of trajectories into different modes of diffu-

sion, namely directed motion, Brownian motion, anomalous sub-diffusion, and "immobile." The

performance of three classification methods described in Section 3.2.1, β−MSD,R2−MSD, and

the Hypothesis Test THOTH, are compared. To illustrate the performance of the three methods,

the MSD and the trajectories are plotted with classification results of the three methods (Fig.

3.5). The two MSD methods, β−MSD and R2−MSD, show similar results. The MSD curves

with larger slopes are classified as directed motion (Fig. 3.5a and b), which correspond mainly

to particles crossing the field (Fig. 3.5e and f). The THOTH also provides consistent results

with the MSD methods. In Fig. 3.5c, points with hot colors (from red to yellow), representing

Tn above the 0.975 quantiles line, are classified as super-diffusion. Points in dark blue, with

Tn lower than the 0.025 quantiles line, are classified as sub-diffusion. In Fig. 3.5d (MSD curves

plotted with the same color as in Fig. 3.5c), hot colors correspond to MSD curves with large

slopes and correspondingly cold colors to MSD curves with small slopes.

The two-by-two statistical comparison among the three methods is presented in Fig. 3.6

with the help of confusion matrices. The confusion matrix between the two MSD methods is

presented in the 1st matrix. Accordingly, the confusion matrices betweenR2−MSD and THOTH,

between β−MSD and THOTH are presented in the 2nd and 3rd matrices. It turns out that there

exist large discrepancies among the results of the three methods. The results should be analy-

zed in special cases. Relatively speaking, the R2-MSD and THOTH give similar results (the 2nd

matrix), especially in the categories of BM and super-diffusion. Between β-MSD and THOTH

(the 3rd matrix), among those classified as BM by β-MSD, 95.3% are classified identically by

THOTH. On the contrary, among those classified as BM by THOTH, only 29.1% are classi-

fied identically by β-MSD. Among those classified as super-diffusion by β-MSD, only 56.5% are

classified identically by THOTH. On the contrary, among those classified as super-diffusion by

THOTH, 94.1% are in agreement with β-MSD.

How to choose the classification method in real experimentation ? Depending on the objec-

tive of the classification, one or a combination of two methods can be privileged. For example,

if the goal of the classification is to obtain an accurate percentage of the different classes, i.e.

to maximize the overall accuracy, then the THOTH method can be preferred. If the goal is to

select all super-diffusive trajectories to further analyze the characteristics of super-diffusion,

then MSD may be preferable.

It is worth noting that if the aggregate moves by switching between different diffusion types

during the observed period, the estimated diffusion coefficient valueD will be averaged. Several
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FIGURE 3.5 – Illustration of the performance of the classification methods on one bacterium
cell. (a) and (e): The MSD and trajectories by β−MSD. (b) and (f): The MSD and trajectories
by R2−MSD. (c) and (g): the test statistic Tn and trajectories classified by THOTH. (d) and (h):
The MSD and trajectories plotted with the same color as the Tn in (c).
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FIGURE 3.6 – Comparison of three classification methods on MreB trajectories. The 1st matrix
represents the comparison between R2−MSD and β−MSD. The 2nd matrix represents the
comparison betweenR2−MSD and THOTH. The 3rd matrix represents the comparison between
β−MSD and THOTH. Blue (resp. orange) cells contain the number of trajectories identically
(resp. differently) classified by two methods. For example, in the first table, 147 trajectories
are classified as BM by both R2-MSD and β-MSD methods. However, among the trajectories
classified as BM by R2-MSD, only 33.3% are in agreement with β-MSD, others are classified
otherwise by the latter method. On the contrary, among the trajectories classified as BM by
β-MSD, 86.0% are in agreement with R2-MSD.

methods have been proposed to detect diffusion switches between different diffusion regimes

[Bri+20]. The estimation of diffusion coefficientD is then performed on sub-trajectories obtained

by segmenting the long trajectory into homogeneous motion regions.

3.3.3 The estimation of diffusion coefficient D and localization error σ
2
loc

As stated in Section 3.2.2, the CRLB depends on σloc and D. In this section, we apply two

methods, the Optimal Least Squared Fitting (OLSF) and the Maximum Likelihood Estimation

(MLE), to estimate D and σ2
loc. The final results are influenced by the signal-to-noise level (the

reduced localization error (3.24)), as discussed below.

Before applying these two estimators, we mention a simple way to estimate the localization

error with an "immobile" dataset.

Estimation of the localization uncertainty σloc with the "immobile" dataset

In this particular dataset, the "trajectories" of immobilized probes are recorded in the same

conditions for diffusing probes (same exposure time and illumination power). The particles de-

tected as "immobile" particles with the MSD methods, that is, the particles for which ρ(n∆t) <

0.01µm2 for n = 1, · · · , N , are used to constitute the dataset (Fig. 3.7). Thanks to the class of

"immobile" particles in the dataset, there exist simple and effective ways to estimate the static

localization uncertainty σloc. Two estimators of σloc are suggested in [Mic10]. The first estimator
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FIGURE 3.7 – The MSD curves of immobile particles. (a) MSD for trajectories in one bacteria
cell. Black color represents the MSD curves of immobile particles (ρn < 0.01µm2, n = 1, · · · , N ).
The randomly colored MSD curves correspond to moving particles; (b): A zoom for immobile
particles.

is through the first-order MSD:

σ̂2
1,loc = ρ1/4.

The second estimator concerns an unweighted linear fit of the two (or few) points of the MSD

curve. The second estimator gives

σ̂2
2,loc = â/4,

where â is the fitted intercept by the linear model (3.27). Applying both estimators of σ2
loc on

a set of trajectories extracted from a given cell, the order of magnitude of both estimators is

∼ 10−4µm2 (Fig. 3.8).

In what follows, we apply OLSF and MLE to estimate diffusion coefficient D and localization

error σ2
loc simultaneously for the Brownian motion dataset. In this section, images used to extract
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FIGURE 3.8 – The estimation of static localization error. (a): σ2
loc is estimated by ρ1 = 4σ2

loc;
(b): by linear regression ρ(t) = â+ b̂t, â = 4σ2

loc.

trajectories are recorded by SIM-TIRFM to benefit from the doubled resolution compared to the

diffraction limit. However, the complexity of the image reconstruction procedure makes it difficult

to quantify the motion blur effect. Moreover, in the image acquisition setting, the exposure time

(tE = 10ms for one raw image, 9 raw images required to reconstruct one SIM image) is much

shorter than the time interval (∆t = 1s). Therefore, the motion blur effect caused by particle

diffusion and finite exposure time are not considered on these datasets.

Estimation of D and σ2
loc for particles undergoing Brownian motion

Firstly, we extract the free diffusion dataset by trajectory classification. In the previous sec-

tion, we performed a simulation study with Brownian trajectories to evaluate the performance of

MSD-based methods and THOTH. We confirmed the results presented in [BKV2018] that more

than 50% of Brownian trajectories are misclassified either as super-diffusion or sub-diffusion. In

what follows, we consider THOTH as it provided more robust results: 95% of trajectories were

correctly classified as free diffusion.

Next, the diffusion coefficient D and the localization error σ2
loc are estimated by OLSF and

MLE, respectively, using estimation algorithms given in the supplementary materials in [MB12].

It is shown in [MB12] that both methods achieve nearly optimal performance according to

CRLB, as the algorithms proposed by the authors have an excellent agreement with the theory

at different settings of (ξ,N).
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FIGURE 3.9 – The estimation of D and σ2
loc by OLSF.

It is recalled that by OLSF, the MSD curve is fitted to a linear model (3.27). Consequently,

D̂ = b̂/4 and σ̂2
loc = â/4. Although negative values for the estimated σ2

loc do not have physical

meaning, the OLSF method cannot guarantee to provide positive values (Fig. (3.9) (a)). The

presence of negative values of σ2
loc may be caused by the non-free diffusion regime of the par-

ticles due to errors in tracking or classification steps. It may also be caused by variance in MSD

curves calculation. In a word, the regression method for parameters estimation is very sensible

to noise and to variance of the MSD, therefore is not easy to use in real experimentation.

With MLE, we obtain D̂ ∼ 10−4µm2, σ̂2
loc ∼ 10−4µm2, and ξ̂ ∼ 100. (Fig. 3.10). Unlike

OLSF, MLE returns non-negative values for D or σ2
loc. Although it seems initially a desirable

attribute, it tends to have an asymmetric distribution resulting in "piling up" at D = 0 and σ2
loc =

0, as discussed in [Mic10]. That could explain why two peaks appear in the distribution of

estimated σ2
loc (Fig. 3.10a) and D (Fig. 3.10b). We consider that the right side peaks of both

sub-figures correspond to the estimators for free diffusion. In contrast, the left side small peaks

may correspond to particles wrongly constructed or wrongly classified as free diffusion.

In summary, by applying the OLSF and MLE, we estimate the diffusion coefficient D and

the localization error σ2
loc for particles performing free diffusion. The regression-free MLE over-

performs the OLSF and gives more reliable estimators of D ∼ 10−4µm2 and σ2
loc ∼ 10−4µm2.

Consistently, by another independent approach, the analysis of "immobile" particles, the loca-

lization error σ2
loc is also estimated to be ∼ 10−4µm2. Consequently, the order of magnitude of

the reduced localization error ξ should lie in the range 1 − 10.

The information on ξ and N allows one to see how well the parameters can be estimated

in a given experimental scenario. As stated in Section 3.2.2, with the knowledge of ξ and the
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FIGURE 3.10 – The estimation of D and σ2
loc by MLE.

average length of the trajectories, the CRLB of the estimators of D and σ2
loc can be calculated

[MB12]. From MreB trajectories obtained with SIM-TIRF, the reduced localization noise ξ ∼ 1

and the average length of trajectoriesN ∼ 10. Consequently, the optimal estimation procedure (

i.e., the best attainable accuracy of the estimators of parameters D and σ2
loc) gives S(D)/D ∼ 1

and S(σ2
loc)/σ2

loc ∼ 1.

3.3.4 Discussion

In this section, three non-parametric classification methods were applied to analyze the

MreB trajectories, recorded with SIM-TIRF. We derived estimators of the diffusion coefficient D

and the localization error σloc obtain by the OLSF and the MLE approaches.

More sophisticated methods could be investigated (e.g., Bayesian approach), but they would

probably fail in the present study for the following reasons. First of all, the average length of

trajectories is ∼ 10. Secondly, the diffusion coefficient D ∼ 10−4µm2/s is small. Finally, the

localization error σloc has the same order of magnitude as D, which degrades the estimation of

D.

88



3.4. Estimation of the radius of the cylinder from projected trajectories

3.4 Estimation of the radius of the cylinder from projected trajec-

tories

Unlike previous methods established in the Lagrangian setting, we focus here on an Euler

paradigm suggesting that the observer stands in one position and observes all particles passing

through this position. The approach inspired by the ideas of Euler aims at estimating the local

features of the trajectories, e.g., the local drift and the diffusion coefficient. It is assumed that the

trajectories are independent. Unlike MSD methods that require long trajectories and average

the diffusion parameters along the trajectory, the approach concerned is suitable for analyzing

short trajectories and detecting the appearance or disappearance of certain dynamical events

depending on time.

In what follows, the position of particles is modeled by the overdamped Langevin equation,

where the diffusion is generated by the thermal agitation of the ambient molecules and a field

of force. Let us consider the following SDE ([Hoz+12])

dXt = µ(Xt)dt+
√

2B(Xt)dWt, (3.35)

where µ(Xt) is the drift field, D(Xt) = 1
2B(X)BT (X) is the diffusion tensor, and Wt is the

Wiener process. The difference between Bmd in (3.11) and (3.35) is that the drift and diffusion

coefficients of a particle depend on its position Xt in (3.35).

The model parameters of (3.35), µ(Xt) and D(Xt), are recovered from the conditional mo-

ments of the trajectory increments ∆X = X(t+ ∆t) −X(t) ([Sch09])

µ(x) = lim
∆t→0

E[∆X(t)|X(t) = x]

∆t
, D(x) = lim

∆t→0

E[∆X(t)T ∆X(t)|X(t) = x]

2∆t
, (3.36)

where E[·|X(t) = x] denotes the expectation of the particle increments at point x. In practice,

the expectation is estimated with a finite sample size, and at the same time, ∆t, the time-

resolution of the recording cannot be infinitely small.

3.4.1 The estimation of the effective velocity and standard error

In this section, we briefly summarize the approach proposed by Hoze and Holcman [HH17]

to estimate the local drift and diffusion coefficients. First, the image is partitioned into square

bins (or blocks) noted as B(xk, r) with size r and square center xk = (xk, yk). The local drift

and diffusion coefficients are then estimated from trajectory points falling into each square

(see details in [HSH13]). Note that the time-resolution ∆t generates bias on the calculation of

diffusion coefficient. Therefore, based on the estimators proposed in [HSH13], we proposed an
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updated version for the estimator of diffusion coefficient, consistent with the SDE (3.35) (A.1):

µx(xk) ≈ 1

Nk∆t

Nt
∑

j=1

∑

x̃
j
i
∈B(xk,∆x/2)

(xj
i+1 − xj

i ), (3.37)

µy(xk) ≈ 1

Nk∆t

Nt
∑

j=1

∑

x̃
j
i
∈B(xk,∆x/2)

(
yj

i+1 − yj
i

∆t
);

σ̃2
xx(xk) ≈ 1

2Nk∆t

Nt
∑

j=1

∑

x̃
j
i
∈B(xk,∆x/2)

(xj
i+1 − xj

i )2 − a2
x(xk)∆t, (3.38)

σ̃2
yy(xk) ≈ 1

2Nk∆t

Nt
∑

j=1

∑

ỹ
j
i
∈B(yk,∆y/2)

(yj
i+1 − yj

i )2 − a2
y(yk)∆t.

where B(xk,∆x/2) is a square bin {x ∈ [xk − ∆x/2, xk + ∆x/2], y ∈ [yk − ∆y/2, yk + ∆y/2]},

Nk is the number of points in B(xk,∆x/2).

Based on the extracted local information, an algorithm is established for reconstructing the

3D surface and the 3D stochastic dynamics from the planar projection of trajectories [HSH13].

For particles diffusing on a 3D membrane surface, the common 2D microscope captures images

depicting the projection of their dynamics onto the 2D planar cover-slip. This projection causes

bias on the estimations of drift and diffusion coefficients. In [HSH13], the explicit expressions

of the effective (or projected) drift and diffusion coefficient are given as a function of the local

surface properties, such as the mean curvature. It is shown that for free diffusion, the projec-

tion generates a drift term in the projected dynamics. As for diffusion already containing a drift,

the observed drift is the composite of the true drift in 3D and another term due to curvature

effects. In what follows, we recap the principles of the algorithm. Furthermore, we propose an

application of this method to recover the radius of the 3D cylindrical surface.

3.4.2 Projection of a diffusion process onto a 2D plane

Assume that the surface under study has an explicit representation z = f(x, y), where

f(x, y) is a sufficiently smooth function defined in the (x, y) plane. The 2D plane is assumed to

be tangent to the surface at the origin 0. Let (i, j,k) be the orthonormal unit vector, where k is

in the direction of the z−axis. It follows that

Xt = x(t)i + y(t)j + z(t)k, z(t) = f(x(t), y(t)).
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FIGURE 3.11 – The schema of 3D surface reconstruction. The dynamics taking place on a 3D
surface (A) are acquired as 2D projected trajectories by 2D microscope (B). Through the extrac-
ted drift and diffusion of the projected dynamics (C), the original surface can be reconstructed
(D).

91



Chapter 3

It is shown in [HSH13] that when a Brownian motion on the surface S is projected onto a 2D

plane, the observed motion is no longer pure diffusion, but is composed of two terms, the drift

term and the diffusion term. The projected process on the (x, y) plane, xt = (xt, yt) is

dxt = ageometric(x)dt+ B̃(x, f(x))dw, (3.39)

where ageometric the effective drift and σ̃ = 1/2B̃B̃T the effective diffusion tensor are dependent

on the local properties of the surface, e.g. the mean curvature. Given the dynamics on the

surface as defined by the stochastic process in (3.35), the motion projected onto the plane is

also a Brownian motion with drift. The observed drift term is composed of the projection of the

original drift and the projection of diffusion, while the observed diffusion is the projection of the

original diffusion. In the simplified case, where the diffusion coefficient is constant and isotropic,

the effective diffusion tensor has the following form ((43) in [HSH13]):

σ̃x,x = D
1 + f2

y

1 + f2
x + f2

y

, σ̃x,y = D
fxfy

1 + f2
x + f2

y

, σ̃y,y = D
1 + f2

x

1 + f2
x + f2

y

, (3.40)

where D is the physical diffusion coefficient, and fx and fy are the spatial partial derivatives of

f in the direction of x and y, respectively.

3.4.3 Estimation of the cylinder radius

It is well known that MreB aggregates diffuse on the inner membrane of the rod-shaped

bacteria. The dynamics of MreB can be considered as occurring on the surface of the cylinder

due to osmotic pressure, with the inner membrane usually adhering to the cell wall. On the

surface of the cylinder, the curvature in the direction of the axis of the cylinder is null. Whereas

in the circumferential direction, it is constant 1/R where R is the radius of the cylinder. If the

radius of the bacteria cell is not provided, assuming that MreB aggregates undergo Brownian

motion with drift (3.35), it is possible to estimate the radius and therefore correct the bias of

coefficients estimations, as explained below.

Let us define a coordinate system for a cylinder object (Fig. 3.11a). The x − y plane is

parallel to the cylinder, and the x − y plane passes through the origin (0, 0, 0). The axis y is

along the direction of the axis of the cylinder, while the axis x is orthogonal to it. The axis z is

orthogonal to the x− y plane. We suppose that the dynamics are isotropic and constant on the

surface of the membrane, that is, B(X) =
√

2DI. From (3.40), it follows that

σ̃xx(x) = D
R2 − x2

R2
, σ̃yy(x) = D. (3.41)

Using (3.41), we aim to estimating the radius of the cylinder by linear fitting by solving the
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equation

1 − σ̃xx

σ̃yy
=

1

R2
x2. (3.42)

By variable substitution, note T = 1 − σ̃xx

σ̃yy
, S = x2, then it gives T = 1

R2S. By the ordinary least

square fitting, R =
√

1/b̂, where b̂ is the estimated slope of the linear model. Although there is

no intercept term in the model, we can consider including one into it due to stochastic factors. In

the simulation experiments, linear models with and without intercept term are both evaluated.

3.4.4 Procedure for estimating the cylinder radius and evaluation

By using simulated data that mimics the dynamics of MreB on the cell membrane surface

captured by TIRF microscopy, we evaluate the procedure dedicated to estimating the cylinder

radius. In our experiments, during time TS , particles are assumed to appear and disappear on

the surface with constant rates λ and τd, respectively. Particles move according to the stochastic

process (3.35). The drift µ is set to 0.7, and the diffusion coefficient D is set to a constant value

in one movie during TS . Note that, without specification, the unit used in the simulation is given

in pixel size(1pixel = 64nm). Finally, the radius of the cylinder is ∼ 8 (∼ 510nm). Dynamics on

the surface of the cylinder, having a distance to the support plane < 200nm, are projected onto

the plane and are captured with TIRFM.

In the estimation procedure, the size of the square r is set to 0.5. We aim to evaluate

how the number of points Nk in each square B(xk, r) and the dynamic feature D influence

the estimation accuracy. It is not difficult to find that Nk depends highly on the time-resolution

∆t and total observation time TS . Therefore in what follows, the procedure is evaluated with

different ∆t, TS , and D values.

The effective drift and diffusion coefficient are estimated using (3.37) and (3.38) from the

simulated images. According to (3.41), σ̃yy should be constant and σ̃xx parabolic with respect

to x, as confirmed by the simulation results (Fig. 3.12a-d). The radius is then estimated by the

linear regression (3.42) with and without an intercept term. By simulation, it turns out that allo-

wing the intercept term in fitting can make the estimation more stable (Fig. 3.12e-h, Fig. 3.13).

In Fig. 3.12, ∆t = 0.1, D = 0.04, and TS varies is set to 0.5, 1, 2, and 5 minutes, respectively. It

can be noticed that when TS = 0.5min, accordingly, the average number of points in a square

Nk ∼ 1.5 × 103, the curves are noisy, and the points are scattered (a and e). When TS = 5min,

accordingly, Nk ∼ 1.5 × 104, the curves are much more smooth and the scatter points are more

regular and aligned (d and h).

Next, for each set of ∆t, TS , and D values, the experiment is replicated 100 times. The

bar plot represents the mean and standard deviation of the estimator of the radius. If we set

TS = 0.5 min, D = 0.04 (Fig. 3.13). When ∆t varies from 0.1 to 0.25, the average number of

points in each square decreases from 1300 to 500 (b). At ∆t = 0.1, the standard deviation of
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FIGURE 3.12 – The estimated effective diffusion coefficients as a function of x (a)-(d) and
the linear regression without and with intercept(e)-(h). ∆t = 0.1, D = 0.04. Corresponding
to each line, the total observation time TS = 0.5, 1, 2, and 5 min, respectively. (a): As TS =
0.5 min, σ̃yy (magenta curve) oscillates around the horizontal line y = D = 0.04, and σ̃xx

(blue curve) oscillates around a parabolic curve, which corresponds to (3.40). (c)-(d): As TS

increases, the curves become smoother and fit better (3.40). (e): The scatter plot of T vs. S
is fitted by linear models, without (magenta) and with (purple) the intercept term, respectively.
The slope of straight lines is equal to 1/R2 (3.42). (f)-(h): As TS increases, the scattered points
become more regular and aligned. For experiments results with ∆t = 0.25, D = 0.04, 0.09
and 0.16, see A.2. The value of the slope of the fitted lines, i.e., the estimated R in different
parameter settings, can be found in Figs. 3.13 and 3.14.
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R is around 50nm. However, at ∆t = 0.25, the standard deviation of R is increased to around

200nm, while the true radius is 510nm. The performance of the estimator of R decreases when

∆t varies from 0.1 to 0.25, which is related to the decrease of the number of points Nk in the

squares, but not ∆t itself.

If we fix TS = 5 min, varying ∆t from 0.1 to 0.25, the order of magnitude of the number of

points in each square varies from 1.3×104 to 5×103. For all the evaluated values ofD, 0.04, 0.09,

and 0.16, and the drift µ = 0.7, the estimation of R is satisfying (Fig. 3.14), with relative error

< 5%(25nm).

It can be concluded that to obtain a reliable estimator of the radius, the number of points

in each square bin should be ∼ 103. The requirement of this number is remarkably relaxed

compared to the recovery of the sphere in the original paper [HSH13] (∼ 2.25 × 104). Moreover,

∆t = 0.1 to 0.25 is possible with nowadays commonly used fluorescent microscopy. The requi-

rement on the time interval ∆t is also eased compared to the infinitely small ∆t = 5 × 10−5 in

[HSH13].

In Fig. 3.14, the estimator without an intercept has a smaller standard deviation (< 10nm)

than the estimator with intercept (standard deviation< 25nm). However, when there are fewer

points, in Fig. 3.13a, when the intercept is deactivated, a bias is introduced to the estimator. On

the contrary, using linear fit with intercept, the estimator becomes non-biased and more stable.

3.4.5 Discussion

In this section, we proposed consistent estimators of the drift and the diffusion coefficient

given the dynamics following the Langevin equation (3.35). The estimators correct the biases

induced by the finite time-resolution ∆t, as investigated in [HH15]. Secondly, we applied the

method of surface reconstruction proposed in [HSH13] to estimate the radius of the rod-shaped

bacteria cell.

Again, we studied the dynamics of particles on an Euler paradigm. The local information

of the drift and diffusion is probed instead of the average information over long trajectories.

Consequently, the method is appropriate to deal with short trajectories and to handle dynamics

with switching episodes.

Assuming the dynamics follow the Langevin equation (3.35) on a cylindrical surface, a linear

fitting procedure has been designed to recover the radius of the cylinder from the projected

dynamics. The model is simplified by approximating the surface as cylindrical, whose curvature

is constant (1/R and 0 along the x and y directions, respectively) and assuming that the drift

and diffusion coefficient are constant. In order to derive reliable estimators of the effective (or

projected) drift and diffusion coefficients, the number of points in the neighborhood of a point

xk (e.g., a square B(xk, r)) must be in the order of ∼ 103. The time interval is not required to

be infinitely small. The time step ∆t = 0.1 to 0.25, which is generally possible with fluorescent

95



Chapter 3

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

 t

400

600

800

1000

1200

1400

N
u

m
b

e
r 

o
f 

p
o

in
ts

 i
n

 a
 s

q
u

a
re

(b)

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
200

400

600

800

R
a

d
iu

s
 o

f 
c
y
lin

d
e

r 
(n

m
)

D
=

0
.0

4

(a) Regression with intercept

Regression without intercept

True radius

FIGURE 3.13 – The estimation of R at different ∆t. The diffusion coefficient D = 0.04 and the
total observation time TS = 0.5 min. (a): The mean and standard deviation over 100 replications
of the estimator of the radius R, by linear fitting with (green) and without (blue) intercept term.
The red line represents the true radius 510nm. Without intercept (blue), the estimator has a
smaller standard deviation but is biased and less robust. On the contrary, the estimator with
intercept (green) is almost unbiased and is more robust. (b): The average number of points Nk

in each square at ∆t from 0.1 to 0.25, over the 100 replications. Nk decrease almost linearly
with respect to ∆t.
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FIGURE 3.14 – The estimation of R with different values of D and different ∆t. The total obser-
vation time is TS = 5min. The red line is the true value of the radius (510nm). The estimations
of R using linear regression, without intercept and with intercept, are represented in blue and
green, respectively. The vertical bars represent the standard error of 100 replications of the
experiments.
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microscopy, provides reliable estimators of R, provided that the number of points in the square

is large enough.

The procedure to estimate the cylinder radius R was evaluated on synthetic datasets. Un-

fortunately, the experimental data of MreB dynamics recorded with TIRF and SIM-TIRF do not

provide enough density of points to confirm our results obtained on synthetic datasets. In order

to ensure good performance of the procedure, single-particle tracking super-resolution micro-

scopy (e.g., spt-PALM [Bet+06]) will be investigated in future works since it will provide a high

densities of particles.
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3.5 Conclusion and Perspectives

In this chapter, we reviewed a few methods for dynamics analysis in cell imaging. The ability

and limits of these methods were discussed. In our experimental data obtained by fluorescence

microscopy, several sources of error cannot be ignored and should be included in the algorithms

in order to better interpret the results.

We addressed two main problems, that is the classification of trajectories (adjusting data

to the most appropriate model) and the estimation of coefficients. We considered different dif-

fusion types, including free diffusion, sub-diffusion (fBm (with 0 < H < 1/2) and OU) and

super-diffusion (Brownian motion with drift and fBm (1/2 < H < 1)).

To address the problem of model classification and parameters estimation, we evaluated

several approaches:

— MSD is the most used method for single-particle trajectories analysis;

— Hypothesis Test (i.e. THOTH algorithm) [BKV18] using maximum excursion distance;

— The Bayesian approach, which amounts to both estimating parameters and selecting

the best motion model among a set a pre-defined collection of models (e.g. [TM13]);

— The machine learning approach recently applied to SPT and used to discriminate free

diffusion from fBm and CTRW (see [Granik et al., 2019]). This approach is actually

dedicated to anomalous diffusion and the comparison of competing models but it can

be extended to any diffusion process.

In the case of MreB dynamics analysis, the trajectories are short (∼ 10 points, ∆t = 1) and

all the aforementioned methods cannot be safely applied. We focused on MSD and THOTH

which are non-parametric test method. THOTH considers Brownian motion as the reference

motion (Hypothesis H0) and the alternative (H1) is split into two parts: sub-diffusion and super-

diffusion. MSD follows the same idea since the reference model is free diffusion. Simulations

were carried out to assess the precision of MSD classification. Despite the lack of information

(limited SNR, short trajectories and low density of particles), we applied the approach of [MB12]

to trajectories classified as free diffusion, to extract diffusion coefficientD, localization error σ2
loc.

The analysis of individual trajectories in single-particle tracking is generally formulated in

the Lagrangian setting. Another approach consists in estimating diffusion at a given position

from several trajectories passing through a local neighborhood. This Euler setting can reveal

the 3D space or 3D surface properties, for example the potential wells, the shape of the surface

etc, provided that the density of trajectories is high enough, which is not the case with MreB

dynamics.

For future work, we plan to investigate MSD analysis by including measurement errors for

directed motion and confined motion as a supplement to free diffusion [Cal16]. In the case of

MreB, it should be valuable to aggregate the trajectories in similar cells to have more significant
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information. Furthermore, the deep learning method showed great potential for analysis in case

of noise, with multiple short trajectories [Gra+19a], [Art+19]. It can be extended to other modes

of motion and even distinguish the change of regimes along a given trajectory.

As we know that the dynamics are partially observed by TIRF microscopy, in order to obtain

a global view of the particle dynamics from the partial observations, a probabilistic procedure,

taking into account the particles exiting and re-entering the field of view is discussed in Chapter

4, to reconstruct the MreB dynamics over the whole membrane surface.
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CHAPTER 4

PROBABILISTIC RECONSTRUCTION OF

TRUNCATED PARTICLE TRAJECTORIES

ON A CLOSED SURFACE

Introduction

In two-dimensional (2D) and three-dimensional (3D) live-cell imaging, spatiotemporal events

and biomolecule dynamics are frequently observed with an incomplete field of view. Very often

these observations are related to regions of observation (ROO) inside a tissue, a cell, or in

the neighborhood of membranes. Nevertheless, it is quite unusual to analyze 3D dynamics of

biomolecules or events occurring on a closed surface and observed on a 2D plane. Our work

is motivated by the study of dynamics of MreB proteins, moving close to the inner membrane

during cell wall construction in rod-shaped bacteria ([Bil+17], [TR18]). Its dynamics can only be

observed in a small region and are recorded as 2D time-lapse movies (Fig. 4.1a). As for 3D

image acquisition, it can even solve the problem of partial observation, but is not always appro-

priate, especially if the objective is to capture fast and temporally short events as described in

[Bil+17]. The frame rate adapted to the scale of dynamics may be too high when compared to

the period of time to acquire temporal series of 3D volume ([Bou+14] and [Cor+20]).

To the best of our knowledge, identifying re-entrance events of the same entities inside

the ROO is not addressed in the literature. In experimental data, when the unobserved region

represents a significant part of the entire surface, a complete description of the dynamics on

these closed surfaces becomes of paramount importance for deciphering the mechanisms of

some processes. In our study of the regulation of the dynamics of MreB protein, as inputs,

we consider a set of trajectories estimated by tracking algorithms (e.g., [Jaq+08], [CBOM13],

[Yan+12]). These tracking algorithms are very sophisticated and allow us to handle large sets

of particles, different stochastic dynamical models [BBS88], [BN13], and observation models

[Gen+06], [LL01]. They take into account birth/death events, and/or split/merge events. Par-

ticles may be unobserved or undetected for short periods of time, especially in 2D+time micro-

scopy. However, no computational or statistical method manages the situation corresponding
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FIGURE 4.1 – Illustration of the incomplete view in TIRFM. (a): Several consecutive images
from a real TIRFM movie [ABT84]. Tracks are superposed on the images.(b) Left: Illustration of
trajectories observed during recorded time [0, TS ] on the surface of a cylinder. Only the motions
inside the ROO ]−l, 0[×[0, H] can be observed, even though the dynamics happen on the whole
surface. Right: Representation of the dynamics on a 2D unwrapped surface ] − L, 0[×[0, H].
The objective is to recover the dynamics on the whole surface from the partial observations, by
coordinating the inputs through {−l} × [0, H] and the outputs through {0} × [0, H] in a movie
during TS , taking into account particles birth and death events.

to a large hidden region inside the region of interest. Also, the identification of particles leaving

the ROO through one border of the domain and re-entering from a far border has not been

addressed. Our objective is then to provide a generic approach to tackle the problem of the

reconstruction of particle trajectories observed on a small part of a closed surface as illustrated

in Fig. 4.1b.

In this chapter, we focus on the design and evaluation of a self-contained mathematical

framework to tackle the reconstruction of particle trajectories on cylindrical surfaces, given the

tracklets observed in a small window sampled on the surface. In our study, the particles are

assumed to obey a stochastic Brownian motion with drift and may appear or disappear during

the observation period. Split or merge events are not considered in the modeling framework.

The trajectory reconstruction problem is defined as the maximization of the likelihood function

given tracklets inside the ROO. The optimization problem to be solved is formulated as an inte-

ger linear programming problem. The final algorithm is a data-driven algorithm with no hidden

parameter to be set by the user. We demonstrate the performance and robustness of our com-

putational method on simulation data, by varying the ratio of observed to unobserved region,
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the drift and variance of particles, as well as the rates of birth and death of particles.

The remainder of this chapter is organized as follows. In Section 2, we present the problem

formally and introduce notation. In Section 3, we describe the probabilistic framework, including

Poisson processes used to describe birth and death events, and Brownian motion with drift to

represent particle motion. We also describe the computational procedure aiming at connecting

tracklets belonging to the same trajectory, and then recovering the dynamics of particles on the

whole closed surface. Note that we suppose that the curvature of the cylinder is known so that

the movements are represented on a 2D unwrapped surface. In Section 4, the performance of

our algorithm is evaluated on simulated data. Finally, we conclude and propose some future

work. A summary of notation useful for the evaluation of the likelihood is given in Section 4.2.1.

4.1 Problem statement and notation

We consider a probabilistic model to represent particles that are born, move and die on a

cylindric membrane.

4.1.1 Models description

Formally, let us denote H and L to be the height and perimeter of the cylinder respectively

(see Fig. 4.1). We associate 2D coordinates (x, y) ∈ [−L, 0] × [0, H] to each point of the under-

lying cylindric manifold. The particles are "born" with a constant rate λ and appear uniformly

at random on the membrane surface. We consider a Poisson process with intensity λ to sta-

tistically represent the birth events. Each particle is assumed to have the same constant rate

of death τd such that life duration Td of a particle follows an exponential law of parameter τd.

During its lifetime, a particle k born at time t0 and located at Zk
0 = (Xk

0 , Y
k

0 ) moves according to

Brownian motion with drift. On the set ] − L, 0[×[0, H], the position of the particle at time t ≥ t0

prior to its death time is given by

Zk
t = Zk

0 + v(t− t0) + ΣBk
t−t0

(4.1)

where

Zk
t = (Xk

t , Y
k

t ),v = (vx, vy),Σ =

[

σx 0

0 σy

]

,

and Bk
t is a two-dimensional Wiener process.
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4.1.2 Modeling hypothesis and MreB dynamics

The study of the dynamics of MreB patches or assemblies in the vicinity of the internal

membrane of Bacillus subtilis bacteria reveals several subpopulations undergoing constrained,

randomly or directionally moving dynamics [Bil+17]. Herein we are interested in the directionally

moving subpopulation dynamics. This subpopulation moves possessively around the cell dia-

meter [Gar+11 ; DE+11]. Following Hussain et al, [Hus+18], Billaudeau et al [Bil+19] confirmed

that directionally moving filaments travel in a direction close to their main axis, perpendicularly

to the long axis of the cell (angle γ = 89.9◦ ± 37.0◦). Hence, for some filaments, the speed

vector may have a component in the main direction of the bacteria.

According to [WGA19], a motion model (named "biased random walk") reproduces the dy-

namics patterns of MreB filaments. In their simulations, the speed is constant and the noise

variance between several time steps depends on the duration and, possibly on the local curva-

ture of the surface. These properties are shared with the Brownian motion model with constant

drift we consider.

4.1.3 Some practical consideration

In order to model the topology of the cylinder as illustrated in Fig. 4.1, we impose determi-

nistic jumps when the process reaches one of the two borders {−L}× [0, H] or {0}× [0, H]. For

any y ∈ [0, H], the process reaching position (−L, y) jumps to position (0, y) and vice versa. In

y direction the initial position of a particle lies between [0, H]. When a particle hits the vertical

borders, its following trajectory is no longer considered. Finally, we assume that each particle

behaves independently from the others and that there is no fission or fusion of particles.

In what follows, we observe the dynamics at discrete times ∆t, 2∆t, 3∆t . . . We denote ∆t

the time step on the subset [−l, 0] × [0, H] with l < L. The observations are recorded during a

time interval [0, TS ]. As we suppose that a particle does not change its drift direction along its

trajectory, we assume that vx > 0, even though particles can actually move in both directions,

which requires a classification to separate them into two groups. We consider that an observed

tracklet of a given trajectory is an output if the last observed point of the segment is within a

neighborhood of {0} × [0, H]. Meanwhile, we consider that it is an input if the first observed

point is within a neighborhood of {−l} × [0, H]. Our main objective is then to associate the

set of tracklets exiting the observed set [−l, 0] × [0, H] with the set of tracklets entering this

observation set. The challenge is to correctly match the outputs and the inputs associated to

particles (see Fig. 4.1).
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4.2 Probabilistic models and methods

Let us consider a given sample S, the observation set of all the trajectories. We define the

sets OS = {o1, ..., op} and IS = {i1, ..., iq} of p outputs and q inputs. Each output o = (to, yo) ∈
OS is characterized by its output time to and its position yo ∈ [0, H], where the particle left the

observed region. Similarly, each input i = (ti, yi) ∈ IS is characterized by its input time ti and

its position yi ∈ [0, H], where it entered the observed region. A particle "involved" in an output

o ∈ OS either died after time to in the unobserved region, or is "involved" in a given input i ∈ IS

with ti > to. We will denote this event by {o → i}. Similarly, a particle "involved" in an input

i ∈ IS was either born before time ti in the unobserved region, or is "involved" in a given output

o ∈ OS with ti > to, which corresponds to the event {o → i}.
Define c = (Dc, Bc, bc) with Dc ⊂ OS , Bc ⊂ IS , and bc a bijection from OS \Dc to IS \ Bc in

order to describe the configuration for which all outputs in Dc died in the unobserved region, all

inputs in Bc are born in the unobserved region, and the event

⋂

o∈Os\Dc

{o → bc(o)}

was realized. Our aim is to determine the maximum likelihood configuration c given the sample

S. The outline of the connection procedure is given in Fig. 4.2 to facilitate the understanding of

the modeling steps.

4.2.1 Summary of notation useful for the evaluation of the likelihood

— H: the length of the cylinder,

— L: the length of the circumference of the cylinder,

— l: the length of the part of the of circumference that is observed,

— lu: the length of the part of the of circumference that is not observed,

— le: the difference between the length of the unobserved region and the observed region,

— Bc: for a given configuration (reconstruction) of trajectories c, the subset of trajectories

born in the unobserved region and seen on the border {−l} × [0, H],

— Dc: for a given configuration (reconstruction) of trajectories c, the subset of trajectories

seen on the border {0} × [0, H] and died in the unobserved region,

— ∆t: time stepsize between two consecutive observations,

— Nl: the number of particles born in the observed region and reaching the border {0} ×
[0, H],

— px: the probability of birth of a particle in a strip of width x, to the left side of the border

{−l} × [0, H],

— p̂x: an estimator of px,
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Sample S, the outputs and
inputs sets OS and IS ,

(section 3.1)

Estimation of parameters
τ̂α, τ̂d, v̂ and σ̂,

(sections 3.1, 3.3)

Computation of the
probability P (Bc) that the

inputs in Bc are born in the
unobserved region.

(section 3.1 Eqs. (4.6) and
(4.7))

Computation of the
probability P (Dc) that the
outputs in Dc died in the

unobserved region.
(section 3.1 Eq. (4.5))

Computation of the
probability P (♭c) that a set

of outputs are connected to
a set of inputs.

(section 3.1 Eqs. (4.8) and
(4.9)

Likelihood
(section 3.1 Eqs. (4.4),

(4.10)-(4.12))

Maximization of likelihood
with CPLEX,

(section 3.2 Eqs. (4.13)
and(4.14))

Tracks reconstruction and
estimation of connection

accuracy,
(section 4.2)

(+) Lifetime of a particle Td ∼ E(τd)
(+) The first passage time on l of a
Brownian motion Tl follows an Inverse
Gaussian distribution (Prop 1).

(+) To emphasize, τ̂α is a
novel estimator Eq.(19)

(+) The possibility to find the
nth optimal solution, second
part of section (3.2)

FIGURE 4.2 – An outline of the connection procedure: from the estimation of the parameters to
connection accuracy measurement, including likelihood formulation. All notation are defined in
the corresponding sections.
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— S: the observation set of all trajectories,

— So: the set of tracklets having an output in {0} × [0, H],

— S∗
l : the set of tracklets having an input in {−l} × [0, H] and an ouput in {0} × [0, H], that

is crossing the observed region,

— Sr: sample of points inside a restricted region inside the observed region. This region

should allow to decide if a particle died or is just moving outside the observed region.

— τα: arrival rate at border {l} × [0, H] of particles born in the unobserved region ] − L, l[,

— τ̂α: estimator of the arrival rate at border {l} × [0, H],

— τd: death rate of particles,

— τ̂d: estimator of the death rate,

— TS : time duration of observation.

4.2.2 Likelihood of a configuration

In this section, our objective is to derive an analytic expression of the likelihood Q(c) of a

configuration c. The aim is to find, for a given sample S, the configuration ĉ such that P (ĉ/S) is

maximal. It is difficult to calculate directly P (ĉ/S). Since c ⊂ S ⊂ OS , we can compute P (ĉ/S)

working conditionally on OS .

However, since the model is in continuous time and involves random variables with conti-

nuous densities with respect to the Lebesgue measure, the conditional probability P (c/OS)

is equal to 0. This prevents us from computing P (ĉ/S) directly with the classical conditional

formula

P (c/S) =
P (c/OS)

P (S/OS)
,

because it gives P (S/OS) =
∑

c∈CS
P (c/OS) = 0.

Therefore, for each input i = (ti, yi) ∈ IS , we consider a spatiotemporal neighborhood

V ǫ
i = T ǫ

i ×Hǫ
i with T ǫ

i = [ti − ǫ
2 , ti + ǫ

2 ] and Hǫ
i = [yi − ǫ

2 , yi + ǫ
2 ] for some ǫ > 0.

The idea is to replace a given configuration c by a set Cǫ
c of configurations where each

element c∗ ∈ Cǫ
c is similar to c but each input i ∈ IS is replaced by an input in V ǫ

i . Formally,

for each configuration c leading to the input set IS , Cǫ
c is the set of configurations defined as

follows: c∗ = (Dc∗ , Bc∗ , bc∗) ∈ Cǫ
c if and only if for each i ∈ IS , there exist i∗ǫ ∈ V ǫ

i satisfying















Dc∗ = Dc,

Bc∗ = {i∗ǫ , i ∈ Bc},
For each i ∈ IS \Bc, bc∗

(

b−1
c (i)

)

= i∗ǫ .
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With this definition, we have

P (c/S) = lim
ǫ→0

P (Cǫ
c/S) = lim

ǫ→0

P (Cǫ
c/OS)

∑

c′∈CS
P
(Cǫ

c′/OS

) . (4.2)

In what follows, we study the behavior of P (Cǫ
c/OS) when ǫ goes to 0. We will always work

conditionally on the realization of the output set OS but we will keep this conditioning implicit

and write P (Cǫ
c) instead of P (Cǫ

c/OS) in order to simplify the notation. The study of P (Cǫ
c) will

involve the probability for a particle to die in the unobserved region but also the probability that

a particle born in this unobserved region enters the observed one in a given spatiotemporal

neighborhood V ǫ
i .

Furthermore, we assume that the particles born in the unobserved region, enter the ob-

served one with a constant rate τα and with a uniform distribution on {−l} × [0, H]. This is

consistent with the fact that the particles are born with constant rate λ and appear uniformly at

random on the membrane surface. Therefore, denote by Nα the Poisson process of intensity τα

counting the number of inputs involved by particles born in the unobserved region.

Consider an output o ∈ OS and the possibility for the particle involved in o to die in the

unobserved region. We have the following proposition (see [Sch15], [Twe45], [Wal73]).

Proposition 1 Given the particle motion model as Brownian motion with drift as described in

equation 4.1, the first passage time noted as Tl on the entrance line {−l} × [0, H] of a particle

starting at position z0 = (0, y0) for some y0 ∈ [0, H] follows a law of inverse Gaussian, that is,

Tl ∼ IG
(

lu
vx
,
( lu

σx

)2
)

where lu := L− l is the length of the unobserved region.

Recall that if X ∼ IG(µ, λ), then X ≥ 0 almost surely, and for each x ≥ 0,

P (X ≤ x) =

∫ x

0

√

λ

2πy3
exp

(− λ(y − µ)2

2µ2y

)

dy. (4.3)

In our framework, the event corresponding to the death of a particle with life duration Td fol-

lowing an exponential law of parameter τd in the unobserved region is precisely {Td < Tl}.

Hence, we can derive an explicit expression of P (Cǫ
c).

Assume ǫ small enough so that for each i, i′ ∈ IS , T
ǫ
i ∩ T ǫ

i′ = ∅. For a given configuration c

and a given ǫ > 0, we will write Cǫ
c = (Dc,Bǫ

c, ♭
ǫ
c) with Bǫ

c = {Bc∗ , c∗ ∈ Cǫ
c} and ♭ǫc = {bc∗ , c∗ ∈ Cǫ

c}.
Due to the independent behavior of the particles, we have the following decomposition:

P (Cǫ
c) = P (Dc)P (Bǫ

c)P (♭ǫc). (4.4)

We can then compute separately the probabilities of events Dc, Bǫ
c, and ♭ǫc. First, note that we

can assume without loss of generality that each output o ∈ Dc starts at time to = 0 and that

only the position yo ∈ [0, H] fluctuates with o, but with no influence on Td or Tl. Moreover, the
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loss of memory property of the exponential law ensures that the life duration Td of the particle

after the output o still follows an exponential law of parameter τd.

Since all outputs behave identically and independently, we have P (Dc) = P (Td < Tl)
|Dc|,where

|Dc| stands for the cardinal of Dc. According to Proposition 1, and since Td and Tl are inde-

pendent, we have

P (Td < Tl) =

∫ +∞

0

∫ tl

0
fTd

(td)fTl
(tl)dtd dtl, (4.5)

=

∫ +∞

0

∫ tl

0
τde

−τdtd
lu

σx

√

2πt3l

exp

(

−(vxtl − lu)2

2σ2
xtl

)

dtd dtl,

=

∫ +∞

0

lu
(

1 − e−τdtl
)

σx

√

2πt3l

exp

(

−(vxtl − lu)2

2σ2
xtl

)

dtl,

where fTd
and fTl

, respectively stand for the density functions of Td and Tl.

Now, consider the event Bǫ
c. We call "spontaneous input" an input related to a particle born

in the unobserved region that has never been observed. The set Bǫ
c is defined so that, for each

input i ∈ Bc, we have exactly one "spontaneous input" appearing during the time interval T ǫ
i ,

with a position in Hǫ
i . Moreover, outside ∪i∈BcT

ǫ
i , there is no "spontaneous input." Formally, we

have

Bǫ
c =







Nα



[0, TS ] \
⋃

i∈Bc

T ǫ
i



 = 0







⋂





⋂

i∈Bc

(

{Nα(T ǫ
i ) = 1} ∩Hǫ

i

)



 , (4.6)

where Nα is a Poisson process of intensity τα associated to the counting of inputs involved

by particles born in the unobserved region on the time interval [0, TS ]. In order to simplify the

notation, Hǫ
i denotes also the event of "spontaneous" appearance of an input i in Hǫ

i . This

event is independent of the process Nα, and since the "spontaneous inputs" appear uniformly

on [0, H], we have P (Hǫ
i ) = ǫ

H .

Meanwhile, for any time interval I, Nα(I) follows a Poisson law of parameter τα|I| where |I|
denotes the length of the interval I. Since ǫ is small enough so that for each i, i′ ∈ IS , T

ǫ
i ∩T ǫ

i′ =

∅, Nα(T ǫ
i ) and Nα(T ǫ

i′) are independent. Consequently, we can compute P (Bǫ
c) as follows:

P (Bǫ
c) = e−τα(TS−|Bc|ǫ)

(

ǫταe
−ǫτα

ǫ

H

)|Bc|

=
(

ǫ2τα

H

)|Bc|
e−ταTS . (4.7)

Finally, consider the event ♭ǫc. For each input i ∈ IS \Bc, we denote by {oi
c → V ǫ

i } the survival

event of the particle involved in the output oi
c = b−1

c (i) in the unobserved region which appears

in the spatiotemporal neighborhood V ǫ
i . Since the particles behave independently, we have

P (♭ǫc) =
∏

i∈IS\Bc

P
(

{oi
c → V ǫ

i }
)

. (4.8)
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In what follows, we consider a given input i ∈ IS \ Bc and its related output o = b−1
c (i).

Defining si = ti − to and hi = yi − yo allows us to center the situation around the output o in

the following way. A particle born at time 0 in position z0 = (0, 0) has a life duration Td following

an exponential law of parameter τd. During its lifetime, the position of the particle is driven by a

Brownian motion with drift Zt = (Xt, Yt): Zt = vt+ ΣBt, where Bt is a 2D Wiener process and

v and Σ are given in (4.1). Define Tl to be the first reaching time of lu = L − l of the process

Xt. The event {o → V ǫ
i } can now be written as follows:

{oi
c → V ǫ

i } = {Td > Tl}
⋂

{

Tl ∈
[

si − ǫ

2
, si +

ǫ

2

]}

⋂

{

YTl
∈
[

hi − ǫ

2
, hi +

ǫ

2

]}

.

This expression corresponds exactly to the fact that in order to realize {oi
c → V ǫ

i } the par-

ticle needs to have a life duration longer than its first reaching time of lu and to appear in

the spatiotemporal neighborhood
[

si − ǫ
2 , si + ǫ

2

]× [hi − ǫ
2 , hi + ǫ

2

]

. Furthermore, Td follows an

exponential law of parameter τd, Yt follows a Gaussian law of parameters vyt and σ2
yt and

Tl ∼ IG
(

lu
vx
,
( lu

σx

)2
)

. Moreover, due to the fact that Σ is diagonal, the process Yt is not only

independent of Td but also of Tl. This allows us to write

P
(

{oi
c → V ǫ

i }
)

=

∫ si+
ǫ
2

si−
ǫ
2

fTl
(tl)

(

∫ +∞

tl

fTd
(td)

(

∫ hi+
ǫ
2

hi−
ǫ
2

fYtl
(y)dy

)

dtd

)

dtl.

As the two integrals involve a small domain of size ǫ, P
({oi

c → V ǫ
i }) ∼ O(ǫ2), and

lim
ǫ→0

P
({oi

c → V ǫ
i })

ǫ2
= fTl

(si)fYsi
(hi)

∫ +∞

si

fTd
(u)du (4.9)

=
lu

σx

√

2πs3
i

exp

(

−(vxsi − lu)2

2σ2
xsi

)

1

σy
√

2πsi
exp

(

−(hi − vysi)
2

2σ2
ysi

)

e−τdsi

=
lu

2πσxσys2
i

exp

(

−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)

.

For each configuration c, we calculate the likelihood Q(c) of the configuration c as follows:

Q(c) := lim
ǫ→0

P (Cǫ
c)

ǫ2|IS |
.
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From (4.4), (4.5), (4.7), (4.8), and 4.9, we finally obtain the likelihood

Q(c) =

(

τα

H

)|Bc|

e−ταTS





∫ +∞

0

lu
(

1 − e−τdtl
)

σx

√

2πt3l

exp

(

−(vxtl − lu)2

2σ2
xtl

)

dtl





|Dc|

×
∏

i∈IS\Bc

[

lu
2πσxσys2

i

exp

(

−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)]

. (4.10)

Note that the limit when ǫ goes to 0 of P (Cǫ
c)

ǫ2|IS | is well defined, strictly positive, and that the

exponent 2|IS | does not depend on the configuration c.

Recalling (4.2), this allows us to write

P (c/S) =
Q(c)

∑

c′∈CS
Q(c′)

(4.11)

and as a consequence, we have

ĉ = argmax
c∈CS

{Q(c)}. (4.12)

4.2.3 Maximum likelihood and optimal configuration

The aim of this section is to identify the configuration c corresponding to the maximal likeli-

hood Q(c) (see (4.10)). Define

β := − log

(

τα

H

)

,

δ := − log





∫ +∞

0

lu
(

1 − e−τdtl
)

σx

√

2πt3l

exp

(

−(vxtl − lu)2

2σ2
xtl

)

dtl





and for each configuration c and each i ∈ IS \Bc

γi
c := − log

[

lu
2πσxσys2

i

exp

(

−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)]

.

It follows that

ĉ = argmax
c∈C

Q(c) = argmin
c∈C

− log (Q(c)) (4.13)

= argmin
c∈C



β|Bc| + δ|Dc| +
∑

i∈IS\Bc

γi
c



 .

This decomposition allows us to consider a linear optimization problem where β represents the

cost of the spontaneous birth of an input, δ the cost of the death of an output and γi
c the cost
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of the connection between the output b−1
c (i) and the input i. The cost of connection can be

defined for any couple (o, i) ∈ OS × IS as

γi
o := − log

[

lu
2πσxσys2

o,i

exp

(

−(vxso,i − lu)2

2σ2
xso,i

− (ho,i − vyso,i)
2

2σ2
yso,i

− τdso,i

)]

,

where so,i := ti − to, ho,i = yi − yo and the convention γi
o = +∞ if ti ≤ to.

In order to write in a canonical way this linear optimization problem, we associate to each

configuration c a family of coefficients (co,i)(o,i)∈OS×IS
such that co,i = 1 if bc(o) = i and co,i = 0 if

bc(o) 6= i. Since an output can be connected to at most one input, for each o ∈ OS ,
∑

i∈IS
co,i ∈

{0, 1} and
∑

i∈IS
co,i = 0 corresponds to the death of the output o. Similarly, for each i ∈ IS ,

∑

o∈OS
co,i ∈ {0, 1} and

∑

o∈OS
co,i = 0 corresponds to the fact that the input i is a "spontaneous

input."

Our optimization problem is then equivalent to finding the family of coefficients (co,i)(o,i)∈OS×IS

that minimizes the quantity

β





∑

i∈IS



1 −
∑

o∈OS

co,i







+ δ





∑

o∈OS



1 −
∑

i∈IS

co,i







+
∑

o∈OS

∑

i∈IS

γi
oc

o,i

or, equivalently

K(c) :=
∑

o∈OS

∑

i∈IS

(

γi
o − β − δ

)

co,i s.t.















∀o ∈ OS , ∀i ∈ IS , c
o,i ∈ {0, 1},

∀o ∈ OS ,
∑

i∈IS
co,i ∈ {0, 1},

∀i ∈ IS ,
∑

o∈OS
co,i ∈ {0, 1}.

(4.14)

In order to avoid having infinite costs γi
o when ti ≤ to,, we can also impose co,i = 0 if ti ≤ to.

Actually the problem (4.14) is a conventional linear optimization problem which can be sol-

ved by applying the CPLEX Linear Programming solver https://www.ibm.com/analytics/cplex-

optimizer.

The configuration ĉ is then the solution of the optimization problem (4.14) and corresponds

to the most likely configuration given the sample S. In order to complete the study, we propose

computing the following most likely configurations in a recurrent way by solving (4.14) with

additional constraints ensuring that the solution is different from the previous ones. In other

words we define recursively the sequence (cn)n∈N
in the following way:

— c1 := ĉ,

— ∀n ≥ 2, cn solves (4.14) with the n− 1 additional constraints

∀k ∈ {1, . . . , n− 1},
∑

o∈OS

∑

i∈IS

[

co,i
n (1 − co,i

k ) + (1 − co,i
n )co,i

k

]

≥ 1. (4.15)
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With this definition, cn is then the nth most likely configuration. When n is greater than the

number nS of configurations compatible with the sample S, the constraints are impossible to

satisfy. In other words this sequence is well defined up to nS .

4.2.4 Estimation of parameters

Several parameters are involved in our computational approach. In this section, we propose

clues to set these parameters. First, the parameters v and Σ can be estimated with classical

maximum likelihood estimation procedures.

Second, we propose an estimator τ̂d of τd as explained below. The sample S can be consi-

dered as a set of points p = (tp,Zp) observed at time tp and position Zp = (Xp, Yp) grouped in

clusters s corresponding to tracklets of trajectories. The death of a particle in the observed re-

gion is detected in S for each point p ∈ S for which the associated tracklet sp has no successor

point at time tp + ∆t. In order to be sure that the absence of successor is effectively due to the

death of a particle and not to a particle leaving the observed region, we restrict the analysis to

a region excluding a neighborhood of the border. However, in this neighborhood we can check

the existence of successors for points in the restricted region. We denote by Sr ⊂ S the sample

of points in the restricted region. For each point p ∈ Sr, we denote by Dp the event correspon-

ding to the absence of successor for p. This corresponds to the fact that the particle involved

in p died during the time interval [tp, tp + ∆t]. Since the life duration Td of a particle follows an

exponential law of parameter τd, and the absence of memory property of the exponential law,

we have

P (Dp) = P (Td ∈ [0,∆t]) = 1 − e−τd∆t. (4.16)

Hence, we define our estimator τ̂d as

τ̂d =
1

∆t|Sr|
∑

p∈Sr

1[Dp], (4.17)

where |Sr| stands for the number of points in Sr and 1[·] denotes the indicator function. Due to

the absence of memory property of the exponential law, the random variables 1[Dp] are i.i.d.

As |Sr| goes to +∞, the strong law of large numbers yields to

lim
|Sr|→∞

τ̂d =
1 − e−τd∆t

∆t
a.s.

The justification of this choice for τ̂d relies in the following almost sure convergence:

lim
∆t→0

lim
|Sr|→∞

τ̂d = τd a.s. (4.18)
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Our estimator τ̂d is then consistent as ∆t is small enough. Moreover, since the variables 1[Dp]

are i.i.d Bernoulli random variables, we can calculate the related confidence interval. If qα de-

notes the α-quantile of the standard normal distribution, we have the following confidence in-

terval of level α for 1−e−τd∆t

∆t :

CIα =






τ̂d − qα

√

√

√

√

τ̂d

(

1
∆t − τ̂d

)

|Sr| , τ̂d + qα

√

√

√

√

τ̂d

(

1
∆t − τ̂d

)

|Sr|






. (4.19)

If ∆t is small enough, we get a good approximation of a confidence interval of level α for τd

since

lim
∆t→0

1 − e−τd∆t

∆t
= τd.

Now, we describe the estimation procedure for the rate τα of "spontaneous inputs" induced

by particles born in the unobserved region [−L,−l]×[0, H] and reached the border {−l}×[0, H].

We assume here that the parameters v, Σ and τd are known, keeping in mind that in practice

estimators are used instead. As introduced earlier, L is the perimeter of the cylinder, l is the

length of the observed region, and lu = L − l is the length of the unobserved region. For a

given length x, we denote by Nx the number of tracklets born in the region ] − x, 0] × [0, H]

and reached the border {0} × [0, H]. Accordingly, Nlu

TS
is a consistent estimator of τα since the

dynamics are assumed to be homogeneous on the surface of the cylinder. Our aim is actually

to build an estimator for τα in the case where lu > l which prevents us from computing directly

Nlu . Therefore, we compute Nl by taking the whole observed region into account, and denote

by S∗
l the set of tracklets having an input in {−l} × [0, H] and an output in {0} × [0, H]. For

each tracklet s ∈ S∗
l and each length x ∈ [0, lu], we denote by Bx

s the event corresponding to

the birth of s within ] − l − x,−l] × [0, H]. Let le = lu − l be the length of the extended zone

[−lu,−l] × [0, H]. We are now interested in the realization of the events Ble
s .

In Fig. 4.3, Nl = 2 corresponds to tracks #1 and #4, S∗
l = {2, 5}, and the event Ble

2 is

realized while Ble
5 is not.

Note that since the particles have the same independent dynamics, P (Bx
s ) does not depend

on s. For x < l, this probability can easily be estimated as follows:

p̂x =
Nx
∣

∣So

∣

∣

,

where So is the set of tracklets having an output in {0}× [0, H]. The strong law of large numbers

yields a consistent estimator and allows us, in the case where le < l, to define our estimator τ̂α

as follows:

τ̂α =
Nl + p̂le |S∗

l |
TS

. (4.20)
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FIGURE 4.3 – An artificially constructed zone ] − lu, 0] × [0, H] having the same size as the
unobserved region ] − L,−l] × [0, H]. The observed region is ] − l, 0] × [0, H] ; as the width of
the invisible part is lu, the extended zone has width le = lu − l.

Intuitively, this estimator amounts to counting the number of particles reaching {0} × [0, H]

with weight 1 for each tracklet that we actually saw being born in the observed region and

with weight p̂le for each spontaneous input that appeared in {−l} × [0, H]. Note that, as Nlu =

Nl +
∑

s∈S∗
l

1[Ble
s ], τ̂α is an unbiased estimator of τα. Moreover, if we assume that the number

of observed tracklets grows linearly with the observation time TS , this estimator is consistent

when TS goes to +∞.

Now, we consider the case l < le < 2l which can easily be extended to the general case

l < le. Consider s ∈ S∗
l and denote for each interval J ⊂ [−L, 0] the event BJ

s where the tracklet

s is born in the region J × [0, H]. The event Ble
s can be decomposed as follows:

Ble
s = B[−2l,−l]

s

⋃

(

B
[−2l,−l]
s ∩B[−lu,−2l]

s

)

.

The loss of memory and homogeneity properties of the dynamics lead to the following estimator

p̂le :

p̂le := p̂l + (1 − p̂l) p̂le−l.

4.2.5 Limits of the model

The main assumptions in this work are homogeneity in time and space, induced by the

constant death and birth rates, as well as constant speed and noise. While these assumptions

lead to a simple model and allow a reasonably technical study, it is natural to question it. The

115



chapitre4

main reason for this choice is that it corresponds to uniform laws when we have no reason to

prioritize one specific behavior in particular.

Note that a similar study can be made with different speeds among trajectories. This can

be done by classifying the trajectories according to their speeds and applying the present pro-

cedure to each class. This would lead to the same estimation procedure with smaller datasets

but theoretical results will still hold.

We then discuss the homogeneity in time, for which the most questionable assumption

is the constant death rate that could possibly depend on the position or on the age of the

particle. Concerning the dependence in space, this modification would lead to the estimation

of a function of the position instead of the simple constant τd. From a practical point of view,

this would increase the dimension of the parameter to estimate, with the same size of dataset.

From a theoretical point of view a more technical study can be made as long as we assume the

death function rate (depending on the position) constant on each tracklet {y}×] −L, 0] in order

to overcome the issue of partial observation.

Concerning the dependence in time, the assumption that the death rate depends on the age

of the particle prevents us from proposing a similar study. Indeed, due to partial observation,

the age of each particle entering the observed region is unknown and cannot be estimated.

4.3 Simulation study

In this section, we present a series of experiments performed on synthetic datasets. These

experiments aim to evaluate and analyze the sensitivity of the reconstruction procedure when

the characteristics of the dynamics as well as the spatio-temporal sampling resolution of obser-

vations vary. In addition, to demonstrate the potential of our procedure, these experiments might

also be useful for the design of the experimental setting for images acquisition. The reconstruc-

tion procedure has been implemented in MATLAB ver. R2018b. The codes are available on

Github https://github.com/atrubuil/ReconstructionOfTruncatedTrajectories.

4.3.1 Generation of trajectories

Trajectories are generated on a rectangular unwrapped cylindrical surface of size [0, L] ×
[0, H] (Fig. 4.4). In our experiments, we set L = 50, H = 30. The initial position of each trajectory

is drawn from uniform distribution on the surface. Time duration T between two births follows an

exponential law with birth rate parameter λ. At each birth, the intrinsic properties of a trajectory i

are given, such as velocity vi, variance Σi, and lifetime T i
d. The lifetime Td follows an exponential

law, with the same death rate τd for all trajectories in the whole simulated image sequence. The
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FIGURE 4.4 – A set of simulated trajectories during 2.5 minutes (in stationary regime).
X(resp., Y) axis represents the unfolded circumferential (resp., main) direction of the cylinder.
Colors from light to dark green represent time evolution. The shadowed area corresponds to
the unobserved region and the white area corresponds to the ROO.

drift vi = (vxi, vyi) and noise

Σi =

[

σxi 0

0 σyi

]

are set to be constant along one given trajectory.

According to the assumptions made on real biological context, unless otherwise stated, it

is set by default, θ = 0.01(≈ 0.6◦) is the angle between the direction of motion of particle and

the X direction, vy = tan(θ)vx, σx = σy = σ, vx = 0.6, σ = 0.2, λ = 0.03, τd = 0.005. The time

interval between two images is ∆t = 0.25. As known, the theoretical depth of the observation

field of TIRFM is 200nm and the diameter of the bacteria cell is 1µm. Therefore the width of the

ROO l is set to 14.76 and that of the unobserved region lu = 35.24 (unit in pixel, note that in

TIRF images 1 pixel ≈ 64nm).

As there is no particle on the surface at the beginning, the simulated set of trajectories

needs some warm-up time to reach the stationary regime, where the law of the number of

trajectories does not depend on time. The assumed dynamic process is a special case of birth

and death process. As a known result [Kar14], the expectation of the trajectories number N

during stationary regime is E(N) = λ
τd

. To ensure that the dynamics are in a stationary regime,

the images sequence is simulated for around 2 hours (Fig. 4.5).
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FIGURE 4.5 – Fluctuations of the number of trajectories w.r.t. time. At around t = 20 minutes,
the trajectories number fluctuates around the theoretical expectation value 6.

4.3.2 The "adjusted Rand index" for the evaluation of connection results

Given the true and estimated class assignments, we compute the so-called adjusted Rand

Index (ARI) to evaluate similarity or consensus between the two sets. The ARI is the corrected-

for-chance version of the Rand index (RI). It is scored exactly 1 when the two sets are identical,

close to 0 for random labeling. It could be negative when the index is lower than the expectation

under random labeling. More precisely, let G and K be the true and estimated assignments,

respectively. Let us define a and b as: a the number of pairs of elements that are in the same

class in G and in the same class in K, b the number of pairs of elements that are in different

classes in G and in different classes in K. The raw (unadjusted) RI is then given by

RI =
a+ b

CM
2

, (4.21)

where CM
2 is the total number of possible pairs in the dataset (without ordering) of size M . The

RI score does not guarantee that random assignments will get a value close to zero. This is

especially true if the number of clusters has the same order of magnitude as the number of

samples. To overcome this difficulty, we prefer to consider the ARI defined by [Ran71]:

ARI =
RI − E(RI)

1 − E(RI)
. (4.22)

118



4.3. Simulation study

Here E(RI) denotes the expectation of the RI where the estimated assignment K is repla-

ced by an assignment chosen uniformly at random. This means that the assignment procedure

does not do better than random assignment if the ARI score is zero, and that it does worse than

random if ARI < 0.

4.3.3 Experimental results

The good performance of the connection procedure relies on the estimation of the charac-

teristics of the dynamics: the speed, v, the diffusion variance, Σ, the arrival rate τα and the

death rate τd, as these quantities are used in the calculation of the likelihood (4.13). Here we

evaluated the impact of spatio-temporal sampling (l/lu, TS) on the estimators and the impact of

parameters of the dynamics (v,Σ, τα, τd) on the accuracy of the reconstruction.

4.3.3.1 The estimator τ̂α performs well, in the case of realistic 2D-TIRF, where l
lu

≈ 0.42

The estimator τ̂α is proposed in 4.20. Here we test how it performs with different spatio-

temporal sampling (l/lu, TS), and different birth rate λ and death rate τd.

By its definition in section 4.2.2, τα, the rate of "spontaneous input" induced by particles

born in the unobserved region and reach the border of the ROO, is not a preset parameter. A

reference of the "true" value of τα is given by Nlu

Ts
, where Nlu denotes the number of tracklets

born in the region ] − lu, 0] × [0, H] and reached the border {0} × [0, H], lu is the width of the

unobserved region.

Next, we test the robustness of the estimator τ̂α w.r.t. l/lu (Fig. 4.6). To avoid the influence

of TS on the consistency of the estimator, TS is set to be 30 minutes. We can conclude that,

naturally, the larger the observed area is, the better is the performance of the estimator τ̂α

is. In the case of the simulation of the real situation, where l/lu = 0.42, the estimator works

reasonably well.

Next, we test the robustness of τ̂α w.r.t. TS (Fig. 4.7). This test is essential because in reality

it is impossible to use a 30-minute movie, because of technical issues like photobleaching of

fluorophores and natural growth in living samples. At this stage, the proportion of observed

and unobserved region l/lu is set to 0.42. TS varies from 2.5 to 30 minutes. In Fig. 4.7, it can

be noticed that the reference "ground truth" of τα (blue boxes) decreases as TS lengthens.

Actually, the reference is only a pseudo "ground truth". It is sensible to TS when TS is small and

it converges as TS → ∞. The distributions of counted "ground truth" and estimator become

close to each other for TS ≥ 10 minutes.

The absolute value of τα depends on λ and τd. Fig. 4.8 displays for different combinations

of λ and τd, the estimations of τ̂α by 5-minute movies (magenta) and 30-minute movies (blue).
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FIGURE 4.6 – At l/lu = 0.42, which corresponds to the realistic situation in 2D-TIRF, more
than half of the trials presents a relative error smaller than 10%. The proposed estimator τ̂α is
unbiased and the variance decreases as l/lu increases.
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FIGURE 4.7 – The counted "ground truth" τα and the estimated τ̂α obtained by movies of dif-
ferent duration, varying from 2.5 to 30 minutes. Blue boxes (resp., magenta boxes) correspond
to the "ground truth", i.e. the counted value (resp., the estimator τ̂α). The blue horizontal line
represents the "ground truth" value when TS = 30 minutes.
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FIGURE 4.8 – The estimation of arrival rate τα w.r.t. different λ and τd. For example, when
λ = 0.04, τd = 0.004, the median value of τ̂α is around 0.025, which means that at each moment,
the probability that a particle born in the invisible zone arrives at {−l} × [0, H] is around 0.025.

It shows that τα increases linearly as the birth rate λ increases, and decreases slightly linearly

as the death rate τd increases.

4.3.3.2 The estimator τ̂d is unbiased and performs reasonably well with 5-minute mo-

vies

As explained in section 4.2.4, τ̂d is a rather classical estimator. Fig. 4.9 shows the estima-

tor with 5-minute movies (magenta) and 30-minute movies (blue) respectively. It confirms that

the estimator is unbiased. Black horizontal lines represent the true value of τd. Naturally, the

variance is bigger with shorter movies.

4.3.3.3 The choice of TS

According to Figs. 4.8 and 4.9, when TS = 30 min, the estimators of τα and τd perform

well, being converged with small variance. As 30-minute movie acquisition is almost infeasible

under the situation of fluorescence microscopy, we need to find a compromise with smaller

TS and reasonably good estimators. We especially tested TS=2.5 minutes and TS=5 minutes.

Comparing the estimation results with 2.5-minute movies, we found that TS = 5 minutes is a

good choice to limit the estimation error of τd and to ensure a good connection performance.
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FIGURE 4.9 – τ̂d with different λ and τd. The estimator is unbiased. The variance of the estimator
is larger with shorter movies (magenta). For a given τd, when birth rate λ increases (e.g., the first
four boxes), then the number of particles also increases. Consequently, the variance decreases.

When the length of movies equals to 2.5 min, the estimation errors of τ̂α and τ̂d cause the failure

of the connection procedure as shown below.

Estimation of birth rate τα and of death rate τd

The arrival rate τα is estimated from 2.5 min movies and the result is presented in Fig. 4.10.

Compared to Fig. 4.8 where 5-min movies are used, the estimations with 2.5-min movies have

bigger variance. With 2.5-min movies, a considerable proportion of the estimations equal to

zero. Similar conclusion can be made for τ̂d comparing Fig. 4.9 and Fig. 4.11.

It is shown that both in Figs 4.10 and 4.11, the estimators τ̂α and τ̂d have many zero values.

This phenomenon will deny the birth and death of particles, and force the connection of obser-

ved tracklets. The result of connection is presented in the next section and it shows that these

biases of parameter estimation have severe influence on the tracklets connection performance.

Evaluation of the connection procedure

Figs. 4.12 and 4.13 show the results of tracklets connection measured by ARI, according

to different settings of birth rate λ and death rate τd. To be specified, τ̃α and τ̃d are estimators

when TS = 30 min, on the contrary, the estimators obtained with 2.5-min movies are denoted

as τ̂α and τ̂d. Concerning the experiment with true parameters (blue boxes in both figures),
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FIGURE 4.10 – The estimation of arrival rate τα with different λ and τd. Magenta boxes represent
τ̂α estimated by 2.5-min movies and blue boxes by 30-min movies.

for all settings of λ and τd, the connection results are satisfying. However, for the experiments

with estimated parameters (magenta boxes in both figures), we see clearly the failure of the

connection represented by boxes with very large variance and low ARI values.

To identify which estimators are the main cause of this failure, many intermediate experi-

ments are designed. To remind, τ̃α and τ̃d represent the estimators of τα and τd from 30-min

movies, while τ̂d and τ̂α from 2.5-min movies. Through Fig. 4.12 and 4.13, it can be concluded

that the error of estimators τ̂d, τ̂α is the main cause of the dramatic decrease of ARI when all

the estimators τ̂d, τ̂α, v̂ and σ̂ are used.

The accuracy of τ̂α and of τ̂d increases as the total observed time TS increases (see Fig.

4.7). Therefore, in the study, we chose movies of 5 min to estimate τα and τd and then to

evaluate the connection performance.

4.3.3.4 The connection procedure works well, even when true parameters are unknown

In this part, we assess the performance of the connection algorithm with different parame-

ters λ and τd. We evaluate as well the impact of the error of the estimator, by using in the

connection procedure true parameters τα, τd, v, σ and their estimators τ̂α, τ̂d, v̂, σ̂, respectively.

The duration of movies TS is set to 5 minutes. The connection results measured by ARI are

presented in Fig. 4.14.

Each pair of blue and magenta boxes represents the connection result of a setting of λ and
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FIGURE 4.11 – The estimation of death rate τd with different λ and τd. Magenta boxes represent
τ̂d estimated by 2.5-min movies and blue boxes by 30-min movies. Black horizontal lines re-
present the true value of τd.

τd. The black line represents the mean value of the number of tracklets fluctuating with different

settings of λ and τd. The performance of connection is affected by the number of tracklets in

each movie to be connected. The higher the density of tracklets is, the more difficult it is to find

the right ones.

It can be noticed that the ARI value when we use the estimators τ̂d, τ̂α, v̂, and σ̂ is almost

as good as when we use true values for all the parameters. This is an encouraging result as

it means that it is feasible to apply the algorithm in real image sequences. When the number

of tracklets is around 20 (e.g., λ = 0.04 and τd = 0.008), the median values of ARI are higher

than 0.9, showing a promising connection performance. Even for the case with the highest

particle density, when the average number of tracklets reaches 100 (λ = 0.1 and τd = 0.004),

the median value of ARI is still higher than 0.7.

4.3.3.5 The connection procedure is robust even when each particle moves at different

speed (but with constant speed along a trajectory). However v and σ should be

well estimated

In the previous experiments, all trajectories are generated with the same speed v and stan-

dard error σ. In this section, we design experiments to test the performance of the connection

algorithm, when the drift v varies from particle to particle, vx ∼ U(0.5, 0.9). In one movie, as
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FIGURE 4.12 – Connection performance comparison. Blue (resp. green, dark green and ma-
genta) boxes represent ARI values obtained with parameters (τd, τα,v, σ) (resp. (τ̃d, τ̃α,v, σ),
(τ̂d, τ̂α,v, σ) and (τ̂d, τ̂α, v̂, σ̂)). Light green boxes, representing the result when τ̃α, τ̃d (estima-
tors with 30-min movies) and true value v, σ are used, show performance as good as the blue
boxes, where true parameters values are used. However, the dark green boxes, where τ̂α, τ̂d

(with 2.5-min movies) and v, σ are used, show much degraded results.

all particles are in the same environment, there is no obvious reason for different particles to

have different σ . Therefore, the standard error σ is set to be constant for particles in one movie.

However, we test in independent movies, when σ = 0.2, 0.3, or 0.4, the influence of σ on the

performance of connection procedure. Other parameters to be specified are the angle between

the direction of the motion and the circumferential direction of the cylinder, θ = 0.15(≈ 8.6◦),

vy = tan(θ)vx, σy = tan(θ)σx, σx = σ, birth rate and death rate are fixed, with λ = 0.08 and

τd = 0.02.

The normalized error (NE) of an estimator is defined by the error of the estimator normalized

by its ground truth. For example, the NE of vx equals vx−v̂x

vx
. In Fig. 4.15, the NEs of v̂x, v̂y, σ̂x and

σ̂y when σ takes different values are presented. It shows that when σ increases, the variance

of v̂x and v̂y increases.

For tracklets connection, we compare the results when true values of v and σ or when the

estimated value v̂ and σ̂, respectively, are taken by the connection procedure. The experiments

are carried under three situations, when σ = 0.2, 0.3, and 0.4. The results in Fig. 4.16 show

that whether using true v and σ or estimated value v̂ and σ̂, the performance measured by

ARI degrades when σ increases. When the standard error σ = 0.2, using true v and σ, the
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FIGURE 4.13 – Connection performance comparison. Blue (resp. violet, cyan and ma-
genta) boxes represent ARI values obtained with parameters (τd, τα,v, σ) (resp. (τd, τα, v̂, σ̂),
(τ̃d, τ̃α, v̂, σ̂), and (τ̂d, τ̂α, v̂, σ̂)). Boxes with blue, violet, and cyan colors are similar, which means
that the estimators v̂, σ̂, τ̃α and τ̃d do not cause degradation of the connection. Only when τ̂α

and τ̂d are used, shown in magenta boxes, the connection results degrades.

median value of ARI reaches 1. When using the estimated v̂ and σ̂, the median value of ARI

is approximately 0.75. It can be concluded that the estimation of v and σ has an impact on the

performance of the algorithm.

4.3.4 Analysis of the connection results

4.3.4.1 An example of tracklets connection

Figure 4.17 shows, on the left, trajectories in a movie and on the right, the results of tracklets

connection. The path from an output to the matched input is represented by the dashed straight

line, as we don’t know how exactly the particle went through the hidden zone. The only wrong

connection corresponds to the bold line. Compared with the figure on the left, we can find the

realization of these two tracklets. In reality, the orange bold tracklet disappeared at the hidden

region and the bold purple tracklet appeared nearby and entered into the observed zone.

In fact, not only the optimal configuration can be calculated, but also the most likely alter-

native configurations in decreasing order of probability (Fig. 4.18). It should be noticed that the

optimization algorithm tries to minimize K(c) = − logQ(c), instead of finding the c∗ maximizing

P (c). It costs too much to obtain the probability P (c∗), as it requires the enumeration of all the
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FIGURE 4.14 – Connection performance comparison for different λ and τd when TS = 5 minutes.
Blue (resp., magenta) boxes represents ARI values obtained with true parameters τd, τα, v, and
σ (resp., with estimators τ̂d, τ̂α, v̂, and σ̂). The black line represents the mean number of tracklets
in a movie.
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FIGURE 4.15 – The NEs of vx, vy, σx, and σy in cases where σ = 0.2, 0.3, and 0.4.
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FIGURE 4.16 – Comparison of connection performance measured by ARI when the procedure
takes true v and σ or estimated v̂ and σ̂ in three experiments where σ = 0.2, 0.3, and 0.4
respectively.
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FIGURE 4.17 – Illustration of the reconstruction results on the cell surface approximated by
a cylinder. Y− direction represents the axis of the cylinder and X− direction the unwrapped
cylindrical side. The shaded part represents the hidden region and the light part corresponds to
the region observed by TIRF microscopy. Left: Simulated trajectories in one movie. Right: The
connection results.
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FIGURE 4.18 – The probability of nth optimal configuration and the probability of the realization.

possible configurations c ∈ C (4.11). However, the number of configurations can be determi-

ned in order to guarantee that the sum of the probability of these configurations will be greater

than a given threshold (see A.4). As a result, we can obtain lower and upper bounds for the

probability.

For this example, we see that the second most likely configuration corresponds to the rea-

lization of trajectories, 0.187 < P (ct) < 0.205 according to the algorithm (Fig. 4.18). Combining

with Fig. 4.17, the optimal configuration found by the algorithm, committing one connection er-

ror, does not correspond to the realization. In section A.3, we evaluated the connection error

caused by randomness.

4.3.4.2 The number of rotations around the cylinder

Once the connection procedure is achieved, we can address the question of the number of

rotations of a particle around the cylinder. In the context of simulation, the death rate τd and the

dynamic velocity vx are known. Accordingly, the value of the number of rotations is known to

be equal to vxTd

L , where Td ∼ E(τd) ensures a theoretical expectation value of vx

τdL . By counting

the tracklets for each trajectory, we can obtain a proxy of the number of rotations around the

cylinder.

In Fig. 4.19, λ is set to 0.04 and different values of τd between 0.004 and 0.01 are evalua-

ted. Blue bars represent the distribution of the number of rotations of true connections. The

magenta bars display the distribution of the number of rotations estimated by the connection
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FIGURE 4.19 – The density distribution of "number of rotations." Each row represents the result
for a different τd value.
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4.4. An illustration of the connection algorithm applied to real MreB dynamics

procedure. The corresponding ARI values, indicating the connection accuracy, are given as

well. The density of the theoretical values of the number of rotations is presented in green. The

vertical lines represent the median values of the corresponding distribution. Overall, when τd is

small, the median value of number of rotations is higher and the distribution has a heavier tail.

In general, the distributions with all three colors are similar to each other.

4.4 An illustration of the connection algorithm applied to real MreB

dynamics

Data obtained using TIRF microscopy of MreB aggregates in Bacillus subtilis [Bil+17] are

considered. A typical movie from this dataset shows several MreB aggregates moving inside

one or several cells (see Fig. 4.1 and Supplementary Materials 3). The pixel size, frame rate

and duration are, respectively, ∆x = ∆y = 64nm, ∆t = 1s, T = 2 minutes. Hereafter, we

selected one cell to illustrate the application of our algorithm. First, tracklets exhibiting directed

motion should be extracted from the movie data, then tracklets should be projected back on the

cylinder shape of the cell and unwrapped, eventually the connection algorithm is applied and a

list of likelihood decreasing ordered configurations of trajectories connections is presented to

the user.

4.4.1 Construction of the local cell referential

Once MreB aggregates pixels are separated from the background inside each image of the

movie, a bounding box is drawn around a given cell and a local x-y referential is estimated using

Principal Component Analysis (PCA) on the coordinates of pixels belonging to aggregates (Fig.

4.20). The z coordinate of an aggregate is inferred using as a prior the cylinder shape of the

bacteria and its radius, R, so z(x, y) = R−
√
R2 − x2.

4.4.2 Tracking and selection of aggregates in the observed region

Using U-Track [Jaq+08], MreB aggregates are tracked and constitute a set of tracklets. The

automatic classification of these tracklets in three classes, respectively Brownian, subdiffusive,

and directed motion is done using two algorithms: the classical MSD algorithm and a recent

algorithm by statistical test [BKV18]. The tracklets classified as directed motion by either one

of the two algorithms are selected for the application of our connection algorithm (Fig. 4.21).

The tracklets were projected back on the cylinder and unwrapped. As we can see, only a few

aggregates crossed the borders of the visible region. Other aggregates, according to our defi-

nitions are born or die in the visible region, which is not true. When an aggregate approaches
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FIGURE 4.20 – The estimation of the local x− y referential for a cell.

the borders, its intensity becomes weak as it is farther from the support plane, and less exci-

tation light penetrates higher z-position in TIRF microscopy settings. As a result, the detection

algorithm fails to detect the aggregates when they approach the borders.

4.4.3 The connection of tracklets

All the selected tracklets crossing the magenta lines in Fig. 4.21 are considered as having

crossed the visible region. On the contrary, all those who appeared or disappeared inside the

magenta lines are considered as birth or death events inside the visible region.

First, the speed and diffusion are estimated (Fig. 4.22) for each tracklet, respectively. Two

populations of tracklets evolving in opposite x directions are identified. These two populations

are considered one after the other in the connection procedure. Tracklets corresponding to

speed lower than 0.4 are filtered out.

For the population of tracklets associated with positive (resp., negative) vx, death rate τd is

estimated as 0.0691 (resp., 0.0756). The arrival rate τα is estimated as 0.0310 (resp., 0.0220).

Tracklets of positive speed vx

The first, fifth, seventh, and eighth optimal configuration suggests one connection. The se-

cond suggests that there is no connection. The third, fourth, and sixth configurations suggest

two connections. Some of these configurations are shown in Fig. 4.23.
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FIGURE 4.21 – The MreB tracklets classification. (a) MSD classification. (b) STP classification.
Brownian tracklets are in blue and directed tracklets are in red. Blue lines represent the bor-
der of the visible region. Magenta lines represent the 0.1 quantile and the 0.9 quantile of x

coordinate values.

FIGURE 4.22 – The distribution of drift and variance in the selected tracklets population: (a)
without filtering, (b) after filtering.
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FIGURE 4.23 – Some optimal configurations for the population of positive speed vx. From left
to right, the first, third, and sixth better configurations. Connected tracklets are drawn with the
same color.
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FIGURE 4.24 – Second optimal configuration for the population of negative speed vx.

Tracklets of negative speed vx

The first optimal configuration suggests no connection. The second one suggests one

connection, Fig. 4.24.

The 3D reconstruction of the dynamics

In Fig. 4.25 we show a 3D reconstruction of the aggregates and two tracks that could cor-

respond to aggregates doing more than one loop around the cylinder surface of the cell. For

the positive (resp., negative) speed set of tracklets, the eighth (resp., second) optimal solution

was selected.

Conclusion

In this chapter, we proposed a probabilistic framework and a computational approach with

no hidden parameter to connect tracklets from 2D partial observations. We provided several

consistent estimators of parameters to automatically drive the connection procedure. The per-

formance of our procedure is satisfying if we consider the ARI criterion. Moreover, an ordered

set of the best reconstructions could also be proposed. The robustness of the procedure has

been tested for different drifts, diffusion of the dynamics, and trajectory densities. Our com-

putational approach can be extended to the case when the drift/speed is not the same for all
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FIGURE 4.25 – The 3D reconstruction of tracks. The centroids of aggregates are represented
as blue squares.The arrows indicates the direction of motion. The full black lines represent tra-
cklets crossing the observed region. The dotted red lines represent the simplified extrapolation
of aggregate motion in the invisible region.

particles but remains constant along time. In that case, it is straightforward to estimate and clas-

sify the drifts before applying our connection procedure to each class of drift since the tracklets

with different speeds are not likely to be connected.

After recovering the whole trajectory on the surface of the cylinder, we can have a better

understanding of the average duration of a particle, and more accurate statistics about the

spatio-temporal organization of particles. The simulation study can also serve as a guideline

for the design of experiments.

The connection procedure is tested with a real TIRFM dataset. The experimental results

are illustrated in Section 4.4. For future works, we plan to further investigate on real TIRFM

datasets. In real experimental data, the observed region corresponds approximately to one-third

of the total surface, which is rather small. However, we have shown that we are able to cope

with the hidden region of such size. Nevertheless, several assumptions and approximations

need to be further investigated. For instance, we assumed spatial homogeneity, suggesting

that the particles are born or die uniformly on the membrane surface. Moreover, we assumed a

memoryless lifetime while dependency with respect to particle "age" could be more realistic.
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Conclusion

In this thesis, we reviewed the advanced statistical and mathematical modeling tools for

single particle trajectory analysis. We deepened the analysis of the trajectories of MreB fila-

ments with the available statistical methods and algorithms and developed new probabilistic

and computational tools, to better exploit the information from trajectory data.

In the first part, we proposed two approaches to analyze the MreB trajectories based on dif-

fusion models characterized by Stochastic Differential Equations. The first approach consists

in analyzing individual trajectories, classifying the tracks into different diffusion modes (free

diffusion, super-diffusion or sub-diffusion) and estimating motion features (drift and diffusion

coefficient). We compared three non-parametric classification methods, two MSD-based me-

thods and another method based on statistical test, namely THOTH. We found that the three

methods provided consistent results in classifying super-diffusion, while THOTH is more ro-

bust than the others in identifying free diffusion. We then evaluated two diffusion coefficient

estimators for free diffusive trajectories, taking into account the measurement errors obser-

ved in high-resolution fluorescent microscopy. The two estimators, Optimal Least Squared Fit-

ting (OLSF) and maximum likelihood estimator (MLE), provided consistent results. From MreB

trajectories recorded by SIM-TIRFM and classified as free diffusion, the diffusion coefficient

D ∼ 10−3µm2/s while the measurement error approximated by a Gaussian distribution has

a variance σ2
loc ∼ 10−3µm2/s. The measurement error is estimated at the same time as the

diffusion coefficient from the trajectories and cannot be ignored, as the result shows that the

measurement error has the same order of magnitude as the the diffusion coefficient D.

It was found that the temporal resolution, the length of trajectories, and the ratio of the

signal to noise (the ratio between the diffusion coefficient and localization error) set a funda-

mental limit on the optimal estimators, which can be assessed by the Cramer-Rao Lower Bound

(CRLB). Overall, the analysis of diffusion modes and the estimation of the diffusion coefficients

by investigating individual trajectories (in the Langrangian setting), is very helpful to guide the

image acquisition by experts, that is balancing the settings of exposure time, record duration,

and the frequency of acquisition, and then to achieve the best possible precision on the target

estimators. As a short-term objective, we plan to evaluate the procedure of classification and

coefficient estimation on a larger dataset and confirm the preliminary experimental results.

The second approach involves estimating the dynamics of particles in the neighborhood
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of a position point, and further obtaining drift and diffusion fields. The dynamics is modeled by

Langevin equation. By approximating the rod-shaped cell by a cylinder, we proposed an original

procedure to estimate the cylinder radius from the planar projection of trajectories taking place

on the 3D cylindrical surface. The procedure was evaluated on synthetic data. Unfortunately, it

turned out that the current density of the trajectories of MreB aggregates is insufficient for this

procedure to work reliably on experimental data. This will be accomplished in future work from

single-molecule localization and photo-activated microscopy.

In the second part, we dealt with the problem of the incomplete (i.e., partial) observation

field in TIRMF, where only around one third of the cell membrane can be observed. Our ob-

jective was to recover the dynamics of the directed MreB particles on the whole surface of the

cylindrical membrane surface. Therefore, we proposed a probabilistic procedure, modeling the

birth and death process of the particles on the surface and particles’ exit from the region of

observation (ROO) and re-entrance into the ROO. Based on the observations of MreB dyna-

mics in the ROO, the parameters were estimated using the proposed consistent estimators.

The performance of our procedure was evaluated on synthetic data, by varying the diffusion

features and the spatio-temporal sampling rate. It is worth noting that the procedure provides

not only the optimal configuration of the reconstruction but also the first n optimal configurations

with descending probability. This ranking can be exploited by experts to select several recons-

tructions for further examination. Once the dynamics over the whole surface is recovered, it

becomes possible to address new questions. For instance, the average duration of the directed

motion of MreB filament can be further investigated.

The reconstruction procedure will be further applied to a larger dataset of cells in similar

physiological states, to gain more significant statistical information. Some assumptions imposed

in the conception of the probabilistic model could be revisited. For example, we assumed spatial

homogeneity, suggesting that the particles are born or die uniformly on the membrane surface,

independently of the existing particles in the field of view. Another assumption supposes a

constant death rate of particles, without dependency on particle "age". Furthermore, in order

to give more realistic reconstruction, once an exit is connected to a re-entrance, the path in

the hidden region could be simulated by Brownian bridge instead of being represented by a

directed motion (straight trajectory).

Perspectives

We suggest some avenues of research for future work. To reconstruct the trajectories in

the hidden region, from a large volume of repetitive observations in the ROO, the use of au-

toencoders and Generative Adversary Networks (GAN) is under investigation. The challenge

arises from the large size of the hidden area, which is almost twice as large as the ROO. The
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learning method will consist in analyzing the trajectories inside the ROOs from large quantities

of movies of a collection of different bacteria. The main idea would be to assume that, in some

way, the main characteristics of the trajectories to be reconstructed are already present inside

the training set. The first reason for this is that there is no preference for observing a specific

part of the surface with respect to the imaging support. Secondly, the biogenesis process is

mostly identically reproduced by the bacteria set under study.

Moreover, we have assumed that the particles are born or die uniformly on the membrane

surface, independently of the existing particles in the field of view. This assumption can be

formally tested by considering the recent spatial birth-death-move process [LG20]. The spa-

tial birth-death processes are generalizations of simple birth-death processes, where the birth

and death dynamics depend on the spatial locations of individuals. Spatial birth-death-move

processes further generalize the spatial birth-death processes by including a move during the

life time of a particle, according to a continuous Markov process. A non-parametric estimation

of the birth and death intensity functions β and δ has also been proposed in [LG20]. If we as-

sume that the regularity of the total intensity α = β + δ, e.g., that is α(x) depends only on the

cardinality of x, where x is a certain point process, the proposed estimator then depends only

on the distance between the cardinalify of x and the cardinalities of the observed process (Xt)

for t ∈ [0, T ]. The non-parametric estimation of the birth and death intensity function makes it

possible to test the hypothesis made on the homogeneity of birth and death of MreB particles

on the membrane surface. The challenge will be to apply this concept and the non-parametric

estimator on partial observations on a closed surface with periodicity.

As studied in the thesis, the MreB aggregates perform different types of motion. The direc-

ted circumferential movement along the perimeter is supposed to coincide with the active cell

wall elongation activities. The class of free diffusion is supposed to coincide with MreB aggre-

gates recruiting other necessary enzymes to form the machinery. Therefore, a birth event of a

free diffusion may correspond to the formation of a MreB aggregate, and a death event of a free

diffusion corresponds to the disappearance of a MreB aggregate or the starting of a directed

motion. Similarly, in the directed motion class, a birth event may represent a diffusive particle

that gets ready to circulate, and a death event may mean the end of a cell wall elongation

task. The regulation of each class proportion and the spatial-temporal organization of different

classes need to be further investigated. The spatial birth-death-move process provides a pro-

mising approach to explore the joint spatio-temporal dynamics of two groups of proteins that

seem to interact during the physiological mechanisms.
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ANNEXE A

APPENDIX

A.1 Itô integral

The true velocity and standard error on the cylinder surface is unknown. But firstly we es-

timate the effective velocity and standard error of the dynamics projected on the plane. Given

the stochastic process (3.35), for some ∆t we can integrate from t to ∆t

∫ t+∆t

t
dXt =

∫ t+∆t

t
µ(Xt, t)dt+

∫ t+∆t

t
σ(Xt, t)dWt.

We suppose that ∆t is small enough, that the drift and diffusion coefficient can be considered

constant during t and t+ ∆t. Then it gives

Xt+∆t −Xt = µ∆t+ σ

∫ t+∆t

t
dWt.

Then let us calculate the expectation of Xt+∆t −Xt and of (Xt+∆t −Xt)
2,

E(Xt+∆t −Xt) = µ∆t+ σE

[

∫ t+∆t

t
dWt

]

= µ∆t, (A.1)

E[(Xt+∆t −Xt)
2] = (µ∆t)2 + σ2

E

[

∫ t+∆t

t
dWt

]2

+ 2µσE

[

∫ t+∆t

t
dWt

]

=(µ∆t)2 + σ2∆t.

(A.2)

According to Itô Isometry Thm. 1,take φ(t, w) = 1, the second term in the last step E

[

∫ t+∆t
t dWt

]2
=

∆t.

Theorem 1 (Itô Isometry P. 26 [Oks13]) If φ(t, w) is bounded and elementary, then

E





(

∫ T

S
φ(t, w)dBt(w)

)2


 = E

[

∫ T

S
φ(t, w)2dt

]

. (A.3)
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To estimate µ(X) and σ(X), we divide the field into a grid and we consider that in each cell

of the grid, the two coefficients are constant.The empirical version for (A.1) and (A.2) can be

written as:
1

Nk∆t

Nt
∑

j=1

∑

x̃
j
i
∈B(xk,∆x/2)

(xj
i+1 − xj

i ) ≈ ax(xk), (A.4)

1

Nk∆t

Nt
∑

j=1

∑

x̃
j
i
∈B(xk,∆x/2)

(xj
i+1 − xj

i )2 ≈ σ̃2
xx(xk) + a2

x(xk)∆t, (A.5)

where B(xk,∆x/2) is a square bin {x ∈ [xk − ∆x/2, xk + ∆x/2], y ∈ [yk − ∆y/2, yk + ∆y/2]},

Nk is the number of points in B(xk,∆x/2).

A.2 Estimation of the radius of cylinder by linear fitting (supple-

mentary experiments)

As a complement to the results of the estimation of radius R presented in Section 3.4.4,

experiments with different parameters are presented in the following, with D = 0.04,∆t = 0.25

(Fig. A.1), D = 0.09,∆t = 0.1 (Fig. A.2), and D = 0.16,∆t = 0.1 (Fig. A.3).

A.3 Analysis of errors

In this section, we evaluated the connection error caused by randomness. We display in Fig.

A.4 the scatter plots of ARI value vs K(ct) − K(c∗), where c∗ denotes the optimal configura-

tion calculated by the "Tracklets Connection Algorithm" while ct is the true configuration. Each

scatter plot displays the results of 100 simulations for a given combination of λ and τd.

The difference between K(ct) and K(c∗) is always positive or null, showing the optimization

procedure works correctly to find the optimal solution. When K(ct) > K(c∗), it means that

the configuration c∗ has a higher probability than the true realization ct, which can be due to

randomness. We can notice that ARI decreases as soon as K(ct)−K(c∗) increases. This error

occurs when the realization is significantly different from the optimal configuration. Overall, ARI

values are generally above 0.7.

Overall, we observe an increment of ARI when the difference decreases. The point clouds

are diagonally shaped from top left to bottom right, showing a continuity that bigger the diffe-

rence between K(ct) and K(c∗), lower are the values of ARI.

Therefore, to improve the performance of the connection model, it is needed to find some

characteristics of different trajectories to distinguish the true realization. To investigate the

connection errors, we display in Fig. A.4 the scatter plots of ARI value vs. the difference bet-
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FIGURE A.1 – The estimated effective diffusion coefficients as a function of x (a)-(d), and the
linear regression without and with intercept(e)-(h). ∆t = 0.25, D = 0.04. Corresponding to each
line, the total observation time TS = 0.5, 1, 2, and 5 min, respectively. (a): As TS = 0.5 min,
σ̃yy (magenta curve) oscillates around the horizontal line y = D = 0.04, and σ̃xx (blue curve)
oscillates around a parabolic curve, which correspond to (3.40). (c)-(d): As TS increases, the
curves become more smooth and better fit to (3.40). (e): The scatter plot of T vs S is fitted by
linear model, without (magenta) and with (purple) the intercept term, respectively. The slope
of straight lines is equal to 1/R2 (3.42). (f)-(h): As TS increases, the scattered points become
more regular and aligned.
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FIGURE A.2 – The estimated effective diffusion coefficients as a function of x (a)-(d), and the
linear regression without and with intercept(e)-(h). ∆t = 0.1, D = 0.09. Corresponding to each
line, the total observation time TS = 0.5, 1, 2, and 5 min, respectively. (a): As TS = 0.5 min,
σ̃yy (magenta curve) oscillates around the horizontal line y = D = 0.09, and σ̃xx (blue curve)
oscillates around a parabolic curve, which correspond to (3.40). (c)-(d): As TS increases, the
curves become more smooth and better fit to (3.40). (e): The scatter plot of T vs S is fitted by
linear model, without (magenta) and with (purple) the intercept term, respectively. The slope
of straight lines is equal to 1/R2 (3.42). (f)-(h): As TS increases, the scattered points become
more regular and aligned.
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FIGURE A.3 – The estimated effective diffusion coefficients as a function of x (a)-(d), and the
linear regression without and with intercept(e)-(h). ∆t = 0.1, D = 0.16. Corresponding to each
line, the total observation time TS = 0.5, 1, 2, and 5 min, respectively. (a): As TS = 0.5 min,
σ̃yy (magenta curve) oscillates around the horizontal line y = D = 0.16, and σ̃xx (blue curve)
oscillates around a parabolic curve, which correspond to (3.40). (c)-(d): As TS increases, the
curves become more smooth and better fit to (3.40). (e): The scatter plot of T vs S is fitted by
linear model, without (magenta) and with (purple) the intercept term, respectively. The slope
of straight lines is equal to 1/R2 (3.42). (f)-(h): As TS increases, the scattered points become
more regular and aligned.
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FIGURE A.4 – The difference between K(ct) and K(c∗) versus ARI for different values of birth
rate and death rate.

ween K(ct) and K(c∗), where c∗ denotes the optimal configuration calculated by the "tracklets

Connection Algorithm" while ct is the true configuration. Each scatter plot is associated with a

given combination of λ and τd. We considered 100 replications for this experiment. On the left

column, the connection is perfect in most case. Many points overlapped and located at coordi-

nates (1,0). Overall, we observe an increment of ARI when the difference decreases. This can

be due to low values of ARI obtained when the ground truth does not correspond to the optimal

configuration.

A.4 Calculation of the boundary of P (c)

With the optimization algorithm (Eq. 4.15), we note ci the ith optimal solution. Note that Nc

is the number of all possible configurations given S. For any 1 ≤ n ≤ Nc, we have

n
∑

i=1

Q(ci) ≤
Nc
∑

i=1

Q(ci) ≤
n
∑

i=1

Q(ci) + (Nc − n)Q(cn)

Using Eq. 4.11, it gives

Q(c)
∑n

i=1Q(ci) + (Ñc − n)Q(cn)
≤ P (c) ≤ Q(c)

∑n
i=1Q(ci)

,
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where Ñc is the number of possible configurations calculated through the number of inputs and

outputs. We know that Ñc is bigger than Nc because some configurations counted in Ñc are not

compatible according to the time of inputs and outputs. Unfortunately we don’t know the exact

Nc.

Note l(c, n) = Q(c)
∑n

i=1
Q(ci)+(Ñc−n)Q(cn)

and u(c, n) = Q(c)
∑n

i=1
Q(ci)

. In order to guarantee the preci-

sion of the probability, we choose n∗, 1 ≤ n∗ ≤ Nc, big enough to satisfy, for α > 0,

(Ñc − n∗)Q(cn∗)
∑n∗

i=1Q(ci)
< α. (A.6)

This gives us

u(c, n∗)

l(c, n∗)
=

∑n∗

i=1Q(ci) + (Ñc − n∗)Q(cn∗)
∑n∗

i=1Q(ci)
= 1 +

(Ñc − n∗)Q(cn∗)
∑n∗

i=1Q(ci)
< 1 + α

which ensures that the upper and lower bounds are close from each other. As a result, it gives

n∗
∑

i=1

P (ci) >
n∗
∑

i=1

l(ci, n
∗) >

1

1 + α
.

In other words, this means that the set of configurations ci up to n∗ correspond to an highly

likely event for 1
1+α close to 1.
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ABBREVIATIONS

2D two-dimensional

3D three-dimensional

AFM Atomic force microscopy

ARI adjusted Rand Index

Bmd Brownian motion with drift

CCD Charge-Coupled Device

CRLB Cramer-Rao Lower Bound

CryoET Electron cryotomography

CTRW Continuous Time Random Walk

CVE Covariance-based Estimator

CW cell wall

fBm fractional Brownian motion

GFP Green fluorescence protein

GMM Gaussian Mixture Model

Gram+ Gram-positive

Gram- Gram-negative

LLSM Lattice Light Sheet microscopy

MBF Motion Blur Filter

MLE Maximum Likelihood Estimation

MPG mixed-Poisson-Gaussian

MSD Mean Squared Displacement

NAG N-acetylglucosamine

NAM N-Acetylmuramic acid

OLSF Optimal Least Squared Fitting

OU Ornstein-Uhlenbeck

PALM Photoactivated Localization microscopy
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PG peptidoglycan

PGEM Peptidoglycan Elongation Machinery

PSF Point-Spread Function

ROO regions of observation

SD Standard Deviation

SDE Stochastic Differential Equation

SIM Structured Illumination microscopy

SMT Single Molecule Tracking

SNR Signal to Noise Ratio

SPT single-particle Tracking

SRM Super-Resolution microscopy

STED Stimulated Emission Depletion

STORM Stochastic Optical Reconstruction microscopy

THOTH Testing HypOtheses for diffusion TricHotomy

TIRF Total Internal Reflection Fluorescent

WFFM Wide-Field Fluorescence microscopy
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Titre : Dynamiques intracellulaires et imagerie de super résolution :

la paroi bacterienne sondée à l’echelle moléculaire

Mot clés : Analyse des trajectoires de particules uniques, processus de diffusion, vidéomicro-

scopie de haute résolution, reconstruction/ traitement des images, modélisation probabilistique,

estimation paramétrique

Resumé : Dans cette thèse, les méthodes

de modélisation physique, statistique, et ma-

thématique pour l’analyse des trajectoires de

particules uniques ont été étudiées, accom-

pagnées d’une évaluation expérimentale sur

un problème spécifique, concernant la dyna-

mique d’agrégats de MreB. Dans un premier

temps, nous avons proposé deux approches

pour analyser les trajectoires de MreB à l’aide

de processus de diffusion caractérisés par

des équations différentielles stochastiques. La

première approche consiste à analyser les tra-

jectoires individuelles, à déterminer leur mode

de diffusion (diffusion libre, super-diffusion ou

sous-diffusion) et à estimer les caractéris-

tiques de diffusion (dérive et coefficient de dif-

fusion). La seconde approche consiste à étu-

dier la dynamique des particules au voisinage

d’un point dans le champ, et à obtenir ensuite

le champ de dérive et le champ de diffusion.

Dans la seconde partie de la thèse, une mo-

délisation probabiliste est proposée afin de re-

construire des dynamiques de particules en

mouvement sur une surface cylindrique à par-

tir d’observations partielles de ces dernières.

La modélisation s’appuie d’une part, sur un

processus de naissance et mort et d’autre

part un processus Brownien avec dérive. Elle

a donné lieu à une procédure de reconstruc-

tion autonome par maximisation de vraisem-

blance. Cette procédure est évaluée sur des

données de synthèse ainsi que des données

réelles de dynamiques de MreB obtenue en

microscopie TIRFM.



Title: Intracellular dynamics and super-resolution imaging: the bac-

terial wall probed at the molecular scale

Keywords : Single-particle trajectory analysis, diffusion process, time-lapse high-resolution

microscopy, image reconstruction/ processing, probabilistic modeling, parametric estimation

Abstract: In this thesis, physical, statistical

and mathematical modeling methods for the

analysis of single particle trajectories have

been reviewed, accompanied by experimen-

tal evaluation on a specific problem, concer-

ning the dynamics of MreB. Firstly, we propo-

sed two approaches to analyze the trajectories

of MreB based on diffusion characterized by

Stochastic Differential Equations. The first ap-

proach consists in analyzing individual trajec-

tories, determining their diffusion nature (free

diffusion, super-diffusion or sub-diffusion) and

estimating diffusion features (drift and diffusion

coefficient). The second approach amounts to

investigating the dynamics of particles in the

neighborhood of a position point, and further

obtaining the drift field and the diffusion field.

In the second part of the thesis, a probabilis-

tic modeling has been proposed in order to

reconstruct the dynamics of moving particles

on a cylindrical surface from partial observa-

tions of the dynamics. The modeling was ba-

sed on a birth and death process on the one

hand, and a Brownian process with drift on

the other hand. It gave rise to an autonomous

reconstruction procedure by maximizing likeli-

hood. This procedure was evaluated on syn-

thetic data as well as real data of MreB dyna-

mics obtained in TIRFM microscopy.
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