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RÉSUMÉ EN FRANÇAIS

Contexte et Motivations

Contexte scientifique et motivations

Au cours des deux dernières décennies, l'imagerie biologique a connu une révolution dans le développement de nouvelles techniques de microscopie qui permettent de visualiser les tissus, les cellules, les protéines et les structures macromoléculaires à tous les niveaux de résolution, ainsi que leurs états physiologiques, leurs compositions chimiques et leurs dynamiques.

Grâce aux récents progrès réalisés en optique, en biologie moléculaire et en chimie, des capteurs numériques et les sondes de marquage (e.g. sondes GFP (Green Fluorescence Protein)), permettant désormais visualiser les composants et les organites infracellulaires à l'échelle de quelques dizaines de nanomètres. En conséquence, la microscopie fluorescente et l'imagerie multimodale (acquisition avec plusieurs sondes et longueurs d'onde variables) sont devenues le fer de lance de la biologie moderne. Toutes ces avancées technologiques ont fait émergé de nouveaux problèmes et des défis pour les chercheurs spécialistes du traitement et de l'analyse des images. Désormais les questions relatives au numérique sont davantage prises en compte lors de la définition des preuves de concept en bioimagerie.. Un brillant exemple de ce changement de paradigme est la microscopie de super-resolution basé sur la détection de molecules uniques (Single-molecule localization microscopy, PALM, STED), qui a reçu le prix Nobel de chimie en 2014.

Les défis en traitement des images biologiques et en microscopie quantitative

Dans la plupart des cas, la microscopie moderne en biologie est relativement complexe et multidimensionelle : deux ou trois dimensions spatiales, de la macro à la nano-échelle, et une dimension temporelle, parfois définie spectralement et correspondant souvent à une espèce biomoléculaire particulière. La microscopie dynamique est également caractérisée par la nature des objets (cellules, organites, molécules individuelles, etc.), par le grand nombre d'éléments petits et mobiles (chromosomes, vésicules, etc.), par la complexité des processus dynamiques qu'elle permet d'observer. Par ailleurs, le corpus de données à considérer pour toute analyse impliquant l'acquisition de séries d'images multiples est massif (jusqu'à quelques Gigaoctets par heure). Il devient donc nécessaire de faciliter et de rationaliser la production de ces données multidimensionnelles, d'améliorer l'analyse post-acquisition, et de favoriser l'or-ganisation et l'interprétation des informations extraites de ce corpus de données. Ce constat a motivé le développement de méthodes et de concepts innovants pour la fusion de données, le recalage des images, la super-résolution, la fouille de données ("data mining"), etc. Plus important encore, la microscopie moderne a permis de réaliser des percées récentes, en mettant en évidence les corrélations et les interactions entre des molécules dans la cellule. Un objectif de recherche à long terme consiste désormais à établir les liens qui permettent d'associer les dynamiques des macromolécules aux fonctions cellulaires.

Afin de relever les défis associés, il est nécessaire de développer des approches et des paradigmes innovants pour reconstruire les images, suivre des biomolécules, estimer le mouvement des molécules en 3D et les paramètres biophysiques sous-jacents, tout en faisant face aux énormes volumes de données générés par les dispositifs de microscopie, toujours de plus en plus performants. Pour répondre à ces exigences, les mathématiques appliquées, le traitement et l'analyse des images et l'informatique ont un rôle essentiel à jouer pour accompagner et soutenir les recherches menées en biophysique et en biologie.

Contexte biologique

Identifier les mécanismes qui permettent de déterminer la forme des cellules est un enjeu essentiel en biologie cellulaire. Chez les bactéries, il est établi que la paroi cellulaire extracytoplasmique joue un rôle déterminant dans le contrôle de la forme des cellules. La paroi cellulaire est principalement composée d'un réseau de peptidoglycanes, qui n'est pas statique mais qui se développe en permanence en fonction de la croissance cellulaire. La composition de la paroi cellulaire et les voies impliquées dans la synthèse des composants moléculaires sont aujourd'hui bien établies. Néanmoins, son organisation tridimensionnelle et les mécanismes qui contrôlent son assemblage sont encore méconnus. D'une manière générale, il est très important de bien comprendre comment une cellule bactérienne grandit, i.e., comment son enveloppe rigide externe est synthétisée, et comment certains processus cellulaires ont lieu à travers cette enveloppe (e.g., infection virale, sécrétion, compétence génétique). D'une manière plus spécifique, plus de la moitié des antibiotiques découverts (par exemple les beta-lactamines comme les pénicillines ou l'amoxicilline) ciblent directement ou indirectement les processus de synthèse de la paroi bactérienne. Comprendre comment la machinerie de synthèse de la paroi cellulaire est contrôlée spatio-temporellement ou encore comment la synthèse de la paroi est régulée pour permettre différents taux de croissance et tailles, permettra de mieux comprendre les mécanismes d'action des antimicrobiens, puis d'établir de nouvelles pistes thérapeutiques.

Au cours des dernières décennies, les acteurs moléculaires impliqués dans l'élongation de la paroi cellulaire ont été identifiés et analysés (Fig. 1). Il est désormais bien établi que la protéine MreB, avec sa structure filamenteuse, assure la médiation des activités Peptidoglycan Elongation Machinery (PGEM) avec une dynamique permanente. Les trajectoires des agrégats de MreB ont récemment été analysées à partir d'images acquises en microscopie de fluorescence à haute résolution et des algorithmes de suivi de particules uniques. Ces analyses permettent de mieux répondre aux nombreuses questions posées par les microbiologistes : quels sont les différents rôles/fonctions des patchs de MreB au cours des différents régimes de diffusion ; quel est l'élément principal responsable de la dynamique circonférentielle dirigée du PGEM induit par MreB, plus spécifiquement le "rod complex" ; enfin, comment MreB organise les différentes enzymes afin qu'elles collaborent à l'expansion du PG.

Modèles de diffusion pour l'analyse de dynamiques en bioimagerie

Dans l'environnement subcellulaire, on observe beaucoup d'activités qui relèvent du transport de biomolécules et des échanges entre les différentes organelles. La diffusion moléculaire qui induit des fonctions cellulaires, a toujours fasciné les biophysiciens, les mathématiciens, et les statisticiens [START_REF] Paul | Stochastic models of intracellular transport[END_REF]. La diffusion est un processus très général qui peut concerner les protéines, les récepteurs dans les cellules neurones, et les vésicules dans les activités d'endo/exocytose. On observe néanmoins une grande hétérogénéité liée à des changements de régime de mouvement et modes de diffusion. Bien souvent le mouvement de référence est la diffusion libre, expliquée pour la première fois par A. Einstein et P. Langevin selon deux point de vue différents. Par la suite, d'autres processus de diffusion, principalement caractérisés par l'équation différentielle stochastique (SDE), ont été proposés pour décrire des mouvements moléculaires et des comportements dynamiques intracellulaires plus complexes.

Un important effort de recherche a été conduit pour caractériser précisément la mobilité des molécules ( [START_REF] Hippolyte | Learning physical properties of anomalous random walks using graph neural networks[END_REF], [START_REF] Alexander | Statistical tests for force inference in heterogeneous environments[END_REF]). On pense qu'il serait même possible de reconstruire les surfaces de certaines structures biologiques à partir des trajectoires, voir de démêler les processus physiques sous-jacents à ces trajectoires.

Entre-temps, la modélisation d'un ensemble de trajectoires statistique à partir de grandes quantités de données ont déjà permis de caractériser les propriétés physiques locales des biomolécules, telles que les modules et les orientations des vecteurs vitesse, le transport actif, les forces d'attraction, reflétant les interactions des particules avec leur environnement ([Lau+19], [START_REF] Nathanael | Recovering a stochastic process from noisy ensembles of many single particle trajectories[END_REF]).

Notons que les méthodes d'estimation sont généralement évaluées sur des données synthétiques, avant d'être testées sur des données expérimentales, bien souvent imparfaites.

Dans ce contexte, un bruit de mesure est induit lors de l'acquisition des données et lors de la construction des trajectoires. La durée de vie du fluorophore est limitée et contraint la résolution temporelle de l'acquisition et la durée d'observation. Plusieurs travaux de recherche ont donc été menés pour caractériser l'impact de ces sources d'erreur sur l'estimation des paramètres et des processus étudiés. Illustration des mécanismes impliqués dans la croissance cellulaire, c'est-à-dire l'élongation du peptidoglycane (PG), dans une cellule en forme de bâtonnet : le "rod complex", les hydrolases et les protéines de liaison à la pénicilline de classe A (aPBP). Malgré des efforts importants pour comprendre l'allongement des bactéries, de nombreuses questions restent en suspens sur la manière dont l'assemblage des PG et la croissance cellulaire s'adaptent à différents facteurs, tels que le métabolisme, les contraintes mécaniques et la forme des cellules. (B) Encart illustrant les principaux mécanismes de synthèse de la paroi cellulaire qui fonctionnent de manière indépendante (voir, [START_REF] Hongbaek | Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously[END_REF]) : (i) le "rod complexe" en mouvement contenant la transglycosylase RodA, la transpeptidase PBP2, et des filaments MreB orientés circonférentiellement le long de la membrane interne ; (ii) aPBPs bifonctionnels. Les hydrolases peuvent être activement engagées dans le clivage de la paroi cellulaire pendant la synthèse de la paroi cellulaire. Il reste à découvrir comment les hydrolases interagissent avec le "rod complexe" et les aPBPs, et comment le "rod complexe" interagit avec les aPBPs. (C) (dans les bactéries Gram-) les aPBPs sont activées par les lipoprotéines LpoA et LpoB de la membrane externe. Cette interaction est suggérée pour fournir un mécanisme permettant de détecter la taille des pores dans la paroi cellulaire afin de guider l'insertion des PG.

Contributions de cette thèse

Dans cette thèse, nous avons rédigé un état des lieux sur les modélisations physique, statistique et mathématique pour l'analyse des trajectoires de biomolécules. Cette présentation a été accompagné d'une évaluation expérimentale sur un problème spécifique, à savoir l'analyse de la dynamique des protéines MreB. Les données expérimentales relatives à cette dynamique, acquises en microscopie TIRF (Total Internal Reflection Fluorescent) présentent certaines limites et sont entachées d'erreur qui peuvent être classées selon trois groupes : les erreurs de mesure induites par une faible résolution spatiale et temporelle, la durée du film (limitées par la durée de vie du fluorophore) et l'observation partielle induite par le champ évanescent du dispositif TIRFM (Fig. 5). Dans le problème spécifique qui nous intéresse (MreB), nous avons également considérer les caractéristiques particulières de la dynamique de MreB, par exemple, le type de diffusion, la densité des particules, la forme des protéines MreB (i.e. sous la forme d'un filament de longeur ∼ 170nm). A cet égard, la microscopie SIM (Structured Illumination Microscopy) apporte une amélioration sensible de la perception de la dynamique de MreB, et d'observer un filament MreB unique).

Dans ce contexte, nous avons considéré deux cadres de modélisation et d'estimation pour analyser les trajectoires de MreB basées sur des équations différentielles stochastiques. La première approche vise à analyser les trajectoires individuelles, c'est-à-dire à déterminer le mode de diffusion le plus pertinent en distinguant les trois régimes suivants : diffusion libre, super-diffusion ou sous-diffusion, et estimer les paramètres sous-jacents (i.e. dérive et coefficient de diffusion). Nous avons ainsi évalué la performance de plusieurs méthodes de classification de trajectoires sur des données MreB. Nous avons considéré ensuite deux estimateurs du coefficient de diffusion dans le cas de la diffusion libre. L'estimation du coefficient de diffusion a été affinée en incluant les erreurs de mesure. Nous avons par ailleurs étudié les estimateurs "optimaux" liés à la limite inférieure de Cramer Rao (CRLB) et nous avons établi les conditions à remplir pour estimer de manière fiable le coefficient de diffusion en fonction de la qualité des images (rapport signal-sur-bruit). La seconde approche vise à étudier la dynamique des biomolécules dans des voisinages locaux afin de construire des cartes de diffusion et de dérive.

En supposant que la dynamiques est définie par un modèle de dynamique spécifique, et étant donné des trajectoires reposant sur une surface 3D, et observés sur un plan de projection 2D, nous avons établi la relation entre la dérive locale et le coefficient de diffusion local en fonction de la courbure locale de la surface. Ce résultat permet ensuite d'inférer la surface 3D et les dynamiques 3D.

Dans la partie centrale de la thèse, afin de traiter le problème de la vue incomplète relative aux acquisitions en microscopie TIRFM-2D, nous avons proposé un cadre mathématique pour aborder le problème de la reconstruction des trajectoires des biomolécules qui se déplacent sur des surfaces cylindriques 3D, à partir de bouts de trajectoire ("tracklets") observés dans des fenêtres 2D (voir la région d'observation (ROO)) échantillonnée sur la surface, Fig. 2). Dans cette étude, les particules sont supposées suivre un mouvement brownien avec dérive, et peuvent apparaître ou disparaître pendant la période d'observation. Les événements de "naissance" et de "mort" sont décrits par des processus de Poisson. Les événements de fission ou de fusion des agrégats ne sont pas pris en compte dans cette modélisation. Le problème de reconstruction des trajectoires est défini comme la maximisation de la fonction de vraisemblance étant donné les "tracklets" à l'intérieur de la ROO. Le problème d'optimisation revient à résoudre un problème de programmation linéaire entier. L'algorithme final est un algorithme piloté par les données, sans paramètre caché. Nous avons évalué la performance et la robustesse de notre méthode sur des données de simulation, en faisant varier le rapport entre la région observée et la région non observée, la dérive et la variance des particules simulées, ainsi que les taux de naissance et de mort des particules. Une illustration de la procédure de reconstruction est présentée sur la figure 3. La procédure a également été testée sur des données expérimentales de MreB. Cette approche statistique et computationnelle est la principale contribution de la thèse.

Organisation du manuscrit

Le document est organisé en quatre chapitres comme suit :

Chapitre 1

Dans le Chapitre 1, nous décrivons les composants de la paroi cellulaire, la modélisation de la structure 3D la plus populaire et l'expansion de la paroi pendant la croissance cellulaire, pour les bactéries en forme de bâtonnet. Au cours des dernières décennies, les acteurs moléculaires impliqués dans la synthèse du peptidoglycane ont été identifiés et analysés in- 

INTRODUCTION

Context and motivation

Scientific context and motivations

During the past two decades, biological imaging has undergone a revolution in the development of new microscopy techniques that allow visualization of tissues, cells, proteins and macromolecular structures at all levels of resolution, physiological states, chemical composi- 

Challenges in biological image processing and quantitative microscopy

In most cases, modern microscopy in biology is characterized by a large number of dimensions that fit perfectly with the complexity of biological features: two or three spatial dimensions, at macro to nano-scales, and one temporal dimension, sometimes spectrally defined and often corresponding to one particular biomolecular species. Dynamic microscopy is also characterized by the nature of the observable objects (cells, organelles, single molecules, etc.), by the large number of small and mobile elements (chromosomes, vesicles, etc.), by the complexity of the dynamic processes involving many entities or group of entities sometimes interacting, by particular phenomena of coalescence often linked to image resolution problems, finally by the association, dissociation, recomposition or constitution of those entities (such as membrane fusion and budding). Thus, the corpus of data to be considered for any analysis involving multiple image series acquisitions is massive (up to a few Gigabytes per hour). Therefore, it becomes necessary to facilitate and rationalize the production of those multidimensional data, to improve post-acquisition analysis, and to favor the organization and the interpretation of the information extracted from this data corpus. This motivates innovative methods and concepts for data fusion, image registration, super-resolution, data mining, etc. More importantly, modern microscopy led to recent breakthroughs, related to the potential correlations between interacting molecules in the cell. A long-term research aim now consists in inferring the relationships between the dynamics of macromolecules and their functions.

In order to tackle the aforementioned challenges, it is necessary to develop innovative approaches and paradigms for image reconstruction, 3D molecule tracking and motion estimation, and biophysical parameter estimation to face the huge data volumes acquired with cutting-edge microscopy set-ups. To this end, applied mathematics, image processing and analysis, and computer science have to be considered in association with biophysics and biology.

Biological context

Determining the mechanisms of cell shape establishment is one of the critical goals of cell biology. In bacteria, it is widely assumed that the extra-cytoplasmic cell wall (CW) is the primary physical determinant of cell shape. The CW is mainly composed of a peptidoglycan (PG) meshwork, which is not static but expands in permanent concert with cell growth. The composition of the cell wall and the pathways involved in the synthesis of the molecular components are well established. Still, its three-dimensional organization and the mechanism controlling its assembly remain unclear.

In general, it is very important to understand how a bacterial cell grows, i.e., how its outer rigid envelope is synthesized, and how certain cellular processes take place through this envelope (e.g., viral infection, secretion, and genetic competence). In a more focused way, more than half of the antibiotics discovered (e.g. beta-lactam antibiotics such as penicillins or amoxicillin) directly or indirectly target the bacterial wall synthesis processes and thus understanding how the CW synthesis machinery is spatio-temporally controlled or how the wall synthesis is regulated to allow different growth rates and sizes may lead to a better understanding of the 

Diffusion models for dynamics analysis in bioimaging

In the subcellular environment, active life activities are constantly taking place. The molecular diffusion underlying the operation of the cell has always fascinated biophysicians, mathematicians, and statisticians to analyze them [START_REF] Paul | Stochastic models of intracellular transport[END_REF]. The diffusion may concern proteins, receptors in neuronal cells, and vesicles in the endo/exo-cytosis activities which depict great heterogeneity, in terms of motion regime. Free diffusion, which was first explained by A. Einstein and P.

Langevin from two different perspectives, has the position of the cornerstone of the diffusion process. Later on, other diffusion processes, mostly characterized by the Stochastic Differential Equation (SDE), have been proposed to model more complicated intracellular biomolecular diffusion, related to different underlying mechanisms.

A large research effort in cell biology is focused on the inference on the modes of mobility of molecules ([Ver+21], [START_REF] Alexander | Statistical tests for force inference in heterogeneous environments[END_REF]). It is believed that it may be possible to reconstruct some biological structures from the trajectories of a certain biomolecule, and to unravel the underlying physical processes corresponding to these trajectories.

In the mean time, statistical ensemble modeling from large quantities of data has also been developed to observe local physical properties of the particles, such as velocity, diffusion, confinement, or attracting forces, reflecting the interactions of the particles with their environment

([Lau+19], [HH15]).
Mathematical or statistical modeling is usually evaluated on synthetic data, before being applied on experimental biological data. It is worth noting that no perfect experimental data exist. The measurement noise is induced in data acquisition and trajectory construction. The lifetime of fluorophore set a constraint on the temporal resolution of acquisition and the duration of the observation. Therefore, some research work has been dedicated to the evaluation of noise and artefacts on the estimation of the parameters of interest or the processes under study.

Contribution of this thesis

In this thesis, physical, statistical and mathematical modeling methods for the analysis of single particle trajectories have been reviewed and improved, accompanied by experimental evaluation on a specific problem, concerning the dynamics of MreB. The experimental data related to MreB dynamics acquired by TIRF microscopy have some limitations, which can be categorized into three groups: measurement errors (due to the spatial resolution), the time resolution and the duration of the movie (limited by the lifetime of fluorophore) and the partial observation induced by TIRF evanescent field (Fig. 5). In the specific problem of MreB, we should also consider the particular features of the dynamics of MreB, e.g., the diffusion types (or modes), the density of the particles, the existence form of the MreB (MreB exists as a filament of ∼ 170nm. SIM can therefore bring improvement in the perception of the MreB dynamics, as it allows us to observe a unique MreB filament).

In this context, we consider two modeling and estimation frameworks to analyze the trajectories of MreB based on diffusion characterized by Stochastic Differential Equations. The first approach consists in analyzing individual trajectories, that is determining their diffusion mode (free diffusion, super-diffusion or sub-diffusion), as well as estimating diffusion parameters (drift and diffusion coefficient). We evaluate the performance of several classification methods on MreB trajectories. Then we apply two estimators to obtain the diffusion coefficient for the class of free diffusion particles. The estimation of the diffusion coefficient is refined by including the measurement errors. We study the "optimal" estimators related to the Cramer Rao Lower Bound (CRLB) and try to answer the question of how well the diffusion coefficient can be estimated,

given the image quality (Signal-to-Noise Ratio). The second approach involves investigating the dynamics of particles in the neighborhood of a position point, and further obtaining the drift field and the diffusion field. Assuming that the dynamics, defined by a prior dynamic model, take place on a 3D surface and are recorded as the planar projection, we derive the relation between the local drift and local diffusion coefficient, and the local curvature. Therefore, the resulting estimation method can lead to the recovery of the 3D surface and the reconstruction of the 3D dynamics, from the planar projection of the dynamics.

In the central part of the thesis, in order to deal with the incomplete view in TIRF microscopy, we focused on the design and evaluation of a self-contained mathematical framework to tackle the reconstruction of particle trajectories on cylindrical surfaces, given the tracklets observed in a small window (the region of observation (ROO)) sampled on the surface (Fig. 5).

In our study, the particles are assumed to obey a Brownian motion with drift and may appear or disappear during the observation period. The birth and death events are described by Poisson processes. Split or merge events of aggregates are not considered in the modeling framework.

The trajectory reconstruction problem is defined as the maximization of the likelihood function given tracklets inside the ROO. The optimization problem to be solved is formulated as an integer linear programming problem. The final algorithm is a data-driven algorithm with no hidden parameter to be set by the user. We evaluated the performance and robustness of our computational method on simulation data, by varying the ratio of observed to unobserved regions, the drift and variance of particles, as well as the rates of birth and death of particles. An illustration of the reconstruction procedure is shown in Fig. 6. The procedure is also tested on an experimental MreB dynamics movie. According to the procedure, some MreB particles having exited the ROO are identified when they re-enter into the ROO. This statistical and computational approach is the main contribution of the thesis. 

Chapter 2

In Chapter 2, we explain the basics related to image acquisition with TIRF and SIM techniques. We present the modalities of acquisition of MreB dynamics images. We highlight the sources of measurement errors and the limitations using these two microscopes. Fluorescence microscopy limitations are due to optical aberrations, the resolution of the microscopy system, and the photon budget available for the biological specimen. In TIRFM, the lateral resolution is limited by the diffraction limit ∼ 250nm. In SIM this resolution is doubled to ∼ 120nm thanks to the structured illumination. We summarize different sources of error, the localization error due to the PSF and due to the inherent stochastic emission of photon, the approximation caused by the projection of 3D dynamics onto a 2D plane, and the incomplete observation field.

Chapter 3

In Chapter 3, we review commonly-used statistical methods for trajectory analysis and we evaluate the performance of these methods on the trajectories of MreB filaments extracted from SIM-TIRF images, while taking into account the limitations (measurement noise and projection) of the images introduced in chapter 2. The methods concerned can be divided into two categories. The first one comprises individual trajectory analysis, i.e. the classification of the diffusion regimes, and the estimation of the diffusion features (the drift and the diffusion coefficient). The second category concerns the estimation of the drift field and the diffusion field by estimating the diffusion features at each point position in the field.

Chapter 4

Chapter 4 focuses on the conception and evaluation of a self-contained mathematical framework to tackle the reconstruction of particle trajectories on cylindrical surfaces, given the tracklets observed in a small window sampled on the surface. The analysis is restricted to directed trajectories. The particles are assumed to obey a stochastic Brownian motion with drift and may appear or disappear during the observation period. In the probabilistic framework,

Poisson processes are used to describe birth and death events. The developed computational procedure aims at connecting tracklets belonging to the same trajectory, and thus recovering the dynamics of particles on the whole closed surface.

CHAPTER 1

CELL BIOLOGY OF THE BACTERIA CELL

WALL Introduction

Determining the mechanisms of cell shape establishment is one of the critical goals of cell biology. In bacteria, it is widely assumed that the extra-cytoplasmic CW is the primary physical determinant of cell shape. The CW is mainly composed of a PG meshwork, which is not static but expanding in permanent concert with the cell growth. The composition of the cell wall and the pathways involved in the synthesis of the molecular components are well established [START_REF] Höltje | Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli[END_REF]. Still, its three-dimensional organization and the mechanism controlling its assembly remain unclear. PG is also known to bear the intracellular osmotic pressure and protect bacteria from the outside environment and, importantly, it is unique to bacterial cells. It is consequently the target of numerous antibiotics.

During decades of research, the molecular actors implicated in cell-wall elongation have been identified and analyzed. The PGEM is thought to contain the transmembrane proteins MreC and MreD, RodA and RodZ, PG hydrolases, and penicillin-binding proteins (PBPs), the enzymes that catalyze PG elongation and cross-linking ([CLF07], [START_REF] William | Sculpting the bacterial cell[END_REF]). It has been shown

that the protein MreB controls the action of the PGEM ([Gar+11], [START_REF] Julia | Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria[END_REF]). However, how these presumed individual PGEMs are coordinated in time and space and surmount the formidable task of weaving an intact mesh network three orders of magnitude larger than themselves, remains active research subject.

Over the last two decades, the rapid development of protein labeling and high-resolution fluorescent microscopy have made possible that we observe specifically targeted protein dynamics with unprecedented spatial and temporal resolution. TIRF microscopy is a technique that allows us to image events close to the cell surface. This property makes it possible to observe the events in the vicinity of the CW and cell membrane and avoid the noise coming from the unrelated cytoplasmic dynamics.

TIRFM makes it possible to unravel that MreB proteins form discrete, diffraction-limited (less than 250nm) assemblies that exhibit different dynamic behaviors along the bacterial sidewalls, chapitre1 processive, circumferential motion around the rod-shaped cell's perimeter, free diffusion, or constrained motion [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF]. Cells adapt the dynamics of MreB to distinct growth states. More recently, super-resolution SIM-TIRF (resolution ∼ 120nm) showed that in the Gram-positive model organism Bacillus subtilis MreB forms ∼ 170nm-long filaments during exponential growth period. On the contrary, the filaments' width is still inaccurate, as it is under the resolution limit In Section 1.1, the PG composition, its most popular 3D structure for both Gram-positive (Gram+) and Gram-negative (Gram-) bacteria, and the known molecular actors involved in PG synthesis are introduced. Next, in Section 1.2, the knowledge about MreB filaments, their existing form, orientation and dynamics observed by optical fluorescence microscopy are presented. Finally, in Section 1.3, the interaction of MreB with other PGEM proteins, e.g., RodZ, RodA, and PBPs is discussed.

The bacteria cell wall

The bacteria envelope, at the interface between the external medium and the intracellular medium, consists of several structures: the cytoplasmic membrane; the CW, a rigid sugarbased exoskeleton (or sacculus) primarily composed of a PG meshwork; and the outer membrane in Gram-bacteria (Fig. 1.1) [START_REF] Yao | Antibacterial photodynamic therapy : overview of a promising approach to fight antibiotic-resistant bacterial infections[END_REF]. In Gram+ bacteria, in addition to PG, the CW is also made of anionic polymers (teichoic and lipoteichoic acids). They constitute up to 60% of the dry weight of CW in B. subtilis and have essential cellular function [START_REF] Morales | The cell wall of Bacillus subtilis[END_REF]. The CW is a highly dynamic structure, constantly synthesized and remodeled as the cell cycle progresses and as the bacterium adapts to its environment. In this work, we were mostly interested in the bio-genesis of the cylindrical part of the CW in B. subtilis. We will describe the composition and architecture of the wall and the major molecular actors involved in the elongation of the CW. 

The composition and architecture of the cell wall

Along decades of study, the chemical composition of PG has been revealed with great details, as well as the biosynthetic pathway leading to the construction of the PG scaffold [START_REF] Morales | The cell wall of Bacillus subtilis[END_REF].

The PG is a unique large macromolecule that envelops the entire bacterial cell. It is made of a covalently bound meshwork of glycan strands interconnected by peptide bonds. Glycan strands are made of an alternation of two families of sugar molecules, N-Acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) (Fig. 1.2). Two strands are linked by peptidic bridges between two NAM molecules. Supported by Atomic force microscopy (AFM), Electron cryotomography (CryoET) imaging, and live-cell imaging of cell-wall insertion, the current model is that the glycan strands are oriented around the cell circumference in rod-shaped bacteria, either Gram-or Gram+([Bee+13], [START_REF] Lu | Molecular organization of Gramnegative peptidoglycan[END_REF]). In Gram-, the PG layers is ∼ 5nm thick and the PG structure is compatible with a monolayed model of sacculus (Fig. 1.1, left). In Gram+ bacteria, the sacculus structure is harder to observe due to the thickness of the material (25nm ∼ 50nm)

[MB05].
The CW is composed of several (10 to 30) layers of PG strands (Fig. 1.1 (right)).

Different models of biogenesis of the cell wall (Remodeling of the cell wall during cell expansion)

Although the composition of PG is well known, the dynamics and the 3D structure of Gramand Gram+ sacculi are poorly understood. Even though this thesis is primarily concerned by the CW of Gram+ bacteria using the B. subtilis as model, the remodeling of CW is discussed in this section with relation to both Gram+ and Gram-bacteria. The common features and differences between the two models can be informative of each other.

The series of events involved in the PG synthesis can be summarized as follows: the basic bricks, made of a disaccharide (N-Acetylmuramic acid (NAM) plus N-acetylglucosamine (NAG)), bearing a pentapeptide, are synthesized in the cytosol and flipped across the membrane before being assembled into glycan chains by transglycosylases, and finally cross-linked into the existing mesh by transpeptidation of their stem peptides (see [START_REF] Höltje | Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli[END_REF] for a review).

In Gram-bacteria, CW expansion implies expansion of the PG monolayer. New insertion happens at the same region as the hydrolysis. The prevailing strategies of CW expansion are the "cut and insertion" from [START_REF] Lars | Molecular model for elongation of the murein sacculus of Escherichia coli[END_REF] and the "3-for-1" from [START_REF] Höltje | Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli[END_REF]. In a "cut-and-insertion" strategy (Fig. 1.3b left), peptide bridges are cleaved, allowing new glycan strands to be inserted.

However, odd numbers of strands (e.g., single strand insertion) impose a stress on the crosslinks as the peptides on the left and on the right of a strand are not aligned but staggered, while even numbers (e.g., double-strand insertion) do not. In the "3-for-1" insertion model (Fig. 1.3b right), a triplet of glycan strands is inserted to replace an existing strand of the meshwork. The strand number increases by two, therefore no stress is introduced. Moreover, in the "3-for-1" model, 50% of PG is recycled per cell cycle, which coincide with the observed high rate of PG recycling per generation in Gram- [START_REF] James | How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan)[END_REF].

For the multilayered Gram+ sacculi, the "3-under-2" model was recently proposed by [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF].

Due to the thickness of the cell wall in Gram+ bacteria (∼ 25-50nm), the detailed ultrastructure of the sacculus is not yet been established [START_REF] Vollmer | The architecture of the murein (peptidoglycan) in gram-negative bacteria : vertical scaffold or horizontal layer (s) ?[END_REF]. In the "3-under-2" model, the assumption was made that the CW is composed of several concentric layers of PG. In each layer, parallel circumferential glycan strands cross-linked by peptide bridges run perpendicular to the long axis of the cell [START_REF] Koch | Orientation of the peptidoglycan chains in the sacculus of Escherichia coli[END_REF] (Fig. 1.3a). The "3-under-2" model is based on the previous work of "inside-to-out" mode of growth, where new layers of PG are added to the innermost face of the sacculus, pushing outwards the previous layers which will be eventually degraded by hydrolases, accounting for the observed PG turnover ([KD85], [START_REF] Hm Pooley | Turnover and spreading of old wall during surface growth of Bacillus subtilis[END_REF], [START_REF] Wr De Boer | Cell wall turnover in batch and chemostat cultures of Bacillus subtilis[END_REF]). In the "3under-2" model, other two assumptions were made. Firstly, a single new PG layer is added per cell cycle and the cell has to double its length. Secondly, the stress-bearing layer is the innermost PG layer. According to the "3-under-2" model, three new glycan strands are added underneath two strands of the innermost PG layer (Fig. 1.3c). It worth noting that the addition of new PG strands will not allow expansion, until peptide cross-links on the upper layers are cleaved in a somewhat synchronized way and the new layer becomes stress bearing.

Other possibilities of stress-bearing are explored (Fig. 1.3c). If the stress is borne by the penultimate n -1 layer (Fig. 1.3c right), the number of glycan chains inserted to double the length of the sidewall is two-fold bigger than when stress is borne on the innermost layer.

Accordingly, the energetic cost will increase as well.

The above mentioned principles are tested respectively by mathematical modeling, "3-for-1" principle for Gram- [START_REF] Lam | Coarsegrained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape[END_REF] and the "3-under-2" for Gram+ [START_REF] Marc | Validation of the 3-under-2 principle of cell wall growth in Gram-positive bacteria by simulation of a simple coarse-grained model[END_REF]. The mathematical models make it possible to couple global aspects of the morphogenesis with more local molecular activities related to the wall synthesis. These modeling approaches have proven useful to test predictions on the fine mechanisms underlying the insertion of strands during growth, such as the composition of the synthetic machinery, orientation of the enzymes, the sequence of enzymatic reactions, etc. In a "cut-and-insertion" strategy (b left), peptide bridges are cleaved, allowing new strands to be inserted. Odd numbers of strands (e.g., single strand insertion) impose a stress on the cross-links as the peptides are staggered rather than aligned (dotted line), while even numbers (e.g., double-strand insertion) do not. In the "3-for-1" insertion (b right), a triplet of glycan strands is replacing an existing strand of the meshwork. The net increase in strand number being even, no stress is introduced. (c): "3-under-2" glycan strand insertion modes in a multilayered PG meshwork in 2D side view (x, z) in Gram+ bacteria. Peptide bridges are shown in gray, in a relaxed conformation (broken lines), in full extension (straight lines), or hydrolyzed (dashed lines). Circles indicate cross-sections of glycan chains newly (blue) or previously inserted (orange). Two possibilities are explored in which stress either is borne by the innermost (newest) layer alone (left) or by the penultimate n -1 layer (right). Arbitrarily, only five PG layers are presented (numbered n 0 to n-4 from the innermost to the outermost).

Molecules involved in the construction of the cell wall and the special role of MreB

The following section concerns the two best studies bacterial models, the Gram+ B. subtilis and the Gram-Escherichia coli. displaying both dispersed insertion of new PG along the cellwall, without preferred regions of insertion (e.g., at the poles). The most recent evidence suggests that two different machineries contribute to sidewall synthesis somewhat in an independent manner [START_REF] Hongbaek | Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously[END_REF] (see Fig. 1.4, B, C): firstly, the rod complex consisting of mono-functional transpeptidases (PBP2A and PBPH in B. subtilis), the transglycosylase RodA, and the transmembrane protein RodZ, in concert with the cytoskeletal MreB; secondly, the bi-functional class A penicillin-binding proteins (aPBPs) (importantly, PBP1a and PBP1b in E. coli [START_REF] Hongbaek | Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously[END_REF] and PBP1, PBP2c, and PBP4 in B. subtilis [START_REF] Alexander | SEDS proteins are a widespread family of bacterial cell wall polymerases[END_REF] and [START_REF] Yoshikazu | Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix[END_REF]). The two machineries exhibit different dynamics in the cell membrane, which have been proposed to reflect distinct aspects of PG synthesis. The rod complex exhibits circumferential, processive movement around the cell diameter. It has been suggested that this corresponds to the processive insertion of long glycan strands. The aPBPs move seemingly diffusively in the membrane, with intermittent pauses, and have been associated with localized cell-wall insertion events, to repair PG synthesis errors or holes in the sacculus [START_REF] Hongbaek | Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously[END_REF]. An [Cho+16]: (i) the processively moving rod complex containing the transglycosylase RodA, the transpeptidase PBP2, and circumferentially oriented MreB filaments along the inner membrane;

(ii) the bi-functional aPBPs. Hydrolases may be actively engaged in CW cleavage during CW synthesis. It remains to be discovered how hydrolases interact with the rod complex and aPBPs, and how the rod complex interacts with aPBPs. (C) (in Gram-Bacteria) aPBPs are activated through outer membrane (OM) lipoproteins LpoA and LpoB. This interaction is suggested to provide a mechanism to sense pore sizes in the CW to guide PG insertion.

attractive hypothesis for the role of aPBPs is that in Gram-bacteria, aPBPs together with their cognate outer-membrane lipoprotein activators LpoA and LpoB ([Typ+10], [PB+10])(Fig. 1.4 C) sense the pore size on the PG meshwork and insert more PG where the pore size is increased by the mechanical pressure.

Physically, cleavage is indispensable for CW expansion. Endopeptidase activity has been found to be particularly important, as it cuts the bonds between neighboring glycan strands, thus allowing new PG to be inserted and the CW to be expanded along the long axis of the cell.

How these groups of machinery depend and interact with each other remains to be elucidated. Hypotheses are made that they may work together and even form transient joint complexes [START_REF] Hongbaek | Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously[END_REF]. Elucidating the strengths and duration of these interactions and spatio-temporal organization of all these actors will be important to fully understand the important factors to maintain the integrity and rod shape of cell-wall.

The structure of MreB and the dynamics of MreB

The actin-like MreB protein is a crucial player of the machinery controlling the elongation and maintenance of the cell shape in most rod-shaped bacteria. MreB motion is shown to be dependent on PG synthesis ([DE+11], [START_REF] Ethan | Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis[END_REF]), indicating that it parallels the action of the PGEM and thus reflects sidewall synthesis. Although the ultra-structure of MreB assemblies in vivo remains controversial, the current model proposes that they are membrane-associated scaffolds that spatially coordinate extra-and intra-cellular PG-synthesizing enzymes to ensure controlled cylindrical expansion of the sacculus ([Gar+11], [START_REF] Julia | Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria[END_REF], [START_REF] Philipp V | Superresolution imaging of dynamic MreB filaments in B. subtilis-a multiple-motor-driven transport ?[END_REF], [START_REF] Arnaud | An early cytoplas-157 mic step of peptidoglycan synthesis is associated to MreB in B acillus subtilis[END_REF]).

It is well accepted that MreB forms filaments. Its structure, length, orientation, and conditions of establishment and its dynamics have been actively discussed ([Bil+17], [START_REF] Cyrille | MreB Forms Subdiffraction Nanofilaments during Active Growth in Bacillus subtilis[END_REF], [START_REF] Saman | MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis[END_REF]).

MreB protein is known to be highly dynamic. A portion of the MreB filaments move along the short axis of cells, which is assumed to be driven by the PG synthesis. More recently, it has been debated that the curved structure of MreB filaments could be a determinant of the orientation of the filament and the orientation of the circumferential movement along the short axis of the cells ([Hus+18], [WGA19]).

The existing form of MreB

In vitro, MreB proteins self-assemble into filaments that bind directly to membranes ([Sal+11], [START_REF] Van Den | Bacterial actin MreB forms antiparallel double filaments[END_REF]). In vivo, the structure of MreB first observed using immunofluorescence microscopy and Green fluorescence protein (GFP) fusion showed micron-long helical polymers spanning the length of the cell ([EWT06], [START_REF] Fusinita Van Den | Prokaryotic origin of the actin cytoskeleton[END_REF]). However, later in vivo studies, using higher-resolution light microscopy (TIRF and confocal microscopy), it is shown that MreB forms discrete patches chapitre1 along the plasmic membrane during active growth. MreB patches appeared as spherical or elliptical light spots close to the diffraction limit (∼ 250-300nm) ( [VT+11], [START_REF] Ethan | Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis[END_REF] and [START_REF] Julia | Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria[END_REF], [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF]). More recently, combining TIRF with super-resolution SIM, it was found that MreB assemblies have a mean length of 172nm ± 41nm in B. subtilis during exponential growth [START_REF] Cyrille | MreB Forms Subdiffraction Nanofilaments during Active Growth in Bacillus subtilis[END_REF].

As the length of MreB filaments was above the lateral resolution of the SIM-TIRF (∼ 110nm), the measure is reliable. However, the width of the filament is remained under the resolution limit of SIM-TIRF, calling for other super-resolution techniques to be elucidated.

The orientation of MreB filaments in the membrane and what it reveals

It has been known that the MreB filaments move in the direction along which they are oriented ([Urs+14], [START_REF] Gabriel | De novo morphogenesis in L-forms via geometric control of cell growth[END_REF]). In [START_REF] Saman | MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis[END_REF], new insights were obtained into possible mechanisms by which MreB guides CW synthesis to create rod shape. First, the curved ultra-structure of MreB filaments causes them to self-orient and move along the direction of the greatest principal curvature of the membrane, coordinating the insertion of new PG strands in that direction. Second, both the formation and propagation of rod shape occur by a local, self-reinforcing process: once a local region of rod shape forms, it promotes self-alignment of MreB filaments along the highest curvature, which in turn propagates more rod shape by pushing the neighboring strands in the axial direction of the rod.

As MreB filaments align along the direction of the largest principal curvature, they are supposed to serve as a curvature sensor. This conclusion can be supported by the fact that MreB filaments move in the direction perpendicular to the axis in rod-shaped bacteria cells, even when in wall-less cells in which the rod shape is imposed outwardly [START_REF] Saman | MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis[END_REF]. Another observation can also support the conclusion. In spherical cells, the direction of MreB motion is isotropic. However, rod shape can be de novo established, in the region of local bulges, flanked by negative Gaussian curvature. Once rod shape is reestablished, the rotation of MreB filament and the new formed rod-shaped PG can reinforce and maintain the rod shape propagation [START_REF] Saman | MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis[END_REF].

The principle that MreB filaments align in the largest principal curvature can also explain the enrichment of MreB in regions with negative Gaussian curvature, observed in several reports ([Urs+14], [START_REF] Felix | Mechanical strain sensing implicated in cell shape recovery in Escherichia coli[END_REF]) and the removal of MreB filament from cell poles. Wong et al. [START_REF] Felix | Mechanics and dynamics of translocating MreB filaments on curved membranes[END_REF] modeled MreB motion by minimizing the energy needed for inwardly curved MreB to bind into the less curved cell membrane. The model explained why MreB prefers to align the largest principal curvature. According to the same model, as the curved filaments need more energy to escape the regions with negative Gaussian curvature, it causes the enriched localization of MreB filaments in these regions.

Based on the mechanical binding model of MreB filaments to cell membrane [START_REF] Felix | Mechanics and dynamics of translocating MreB filaments on curved membranes[END_REF], a model for the dynamics of translocation of MreB filaments has also been proposed. The model for directed motion, called "biased random walk," suggests that MreB filaments move at the direction of its orientation θ, i.e., the direction of the largest principle curvature, with a slight bias η ∼ N (0, σ 2 ) due to stochastic factors (equation (3) in [START_REF] Felix | Mechanics and dynamics of translocating MreB filaments on curved membranes[END_REF]). It is easy to demonstrate that this model is equivalent to the directed Brownian motion model (Bmd) ((3.11) in chapter 3). The authors acclaimed that the "biased random walk" model of filament trajectories leads to predictions of MreB localization.

The orientation of MreB filaments has revealed the role of local sensing of MreB ([WGA19], [START_REF] Saman | MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis[END_REF]). Consequently, MreB, together with the shape-reinforcing CW synthesis, could provide a robust, self-organizing mechanism for the stable maintenance and rapid reestablishment of rod shape. We gained one step further in the understandings of how the local activity of short MreB filaments (∼ 170nm) guide the emergence of a shape many times their size (cell diameter (∼ 900nm)).

Even though MreB filaments play a crucial role in the circumferential insertion of the CW, it should be noticed that other factors are also needed for the maintenance of rod shape. The interaction of MreB with other proteins will be discussed in the following sections. As the curvature of membrane-bound MreB filaments is much greater than the curvature of the cell membrane [START_REF] Felix | Mechanics and dynamics of translocating MreB filaments on curved membranes[END_REF], MreB filaments do not define a specific cell radius. A discussion about how MreB filaments intervene in the regulation of cell radius can be found in [START_REF] Michael | Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems[END_REF].

MreB exhibits distinct types of motion

As MreB assemblies are regarded as the proxy of PGEM, its localization and dynamics during growth and dynamic perturbations such as nutrient shift can reveal how bacteria cells regulate the expansion of CW and cell growth. Sub-populations of MreB with distinct behaviors were found by analyzing the Mean Squared Displacement (MSD) of the trajectories of MreB patches, imaged by TIRF microscopy. It is observed that MreB patches perform circumferential directed motion, random diffusion and constrained motion. Due to the limit of the classification method by MSD, one fraction of the trajectories of MreB is unclassified, which we call from now on the anomalous diffusion. This heterogeneity of the dynamics of MreB patches may reflect distinct physiological states (Fig. 1.5). The fraction of MreB performing circumferential motion is believed to be related to the PG insertion, with a speed v = 30 -60nm/s under different nutrient conditions. The circumferential motion, mostly orthogonal to the axis of the bacteria, is driven by the PG synthesis ([Gar+11], [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF]). The intrinsic curvature of the MreB filament orients the motion in the direction of the maximal principal curvature (section 1.2.2).

PG polymerization by aPBPs occurs in a diffusive manner, outside MreB-associated PGEMs

([KDE09], [SSS97], [Cho+16], [Lee+16]").
It is plausible that the fraction of MreB exhibiting random diffusion is associated with aPBPs-dependent diffusion PG synthesis. The anomalous motion of MreB may be caused by the interaction with other components of the PGEM. One chapitre1 hypothesis is that constraint motions reflect MreB recruiting missing components of the PGEM to initiate local PG insertion.

Another independent study of the dynamics of MreB in B. subtilis was carried out using Single Molecule Tracking (SMT) [START_REF] Thomas | SMTracker : a tool for quantitative analysis, exploration and visualization of singlemolecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome[END_REF], which has a temporal resolution ∼ 25 fold higher than in TIRF microscopy [START_REF] Simon | Super-Resolution Microscopy and Single-Molecule Tracking Reveal Distinct Adaptive Dynamics of MreB and of Cell Wall-Synthesis Enzymes[END_REF]. Instead of analysis by MSD, which calculates one averaged diffusion coefficient for a trajectory, a Gaussian Mixture Model (GMM) was used to fit the displacement ∆x to estimate the diffusion coefficient of single-molecule MreB. It was found that MreB diffusion could be best described by at least two populations: The slow moving population with diffusion coefficient of D = 0.044µm 2 s -1 ± 0.005 [START_REF] Daniella | Microdomain formation is a general property of bacterial membrane proteins and induces heterogeneity of diffusion patterns[END_REF], and the fast diffusive population, with D = 0.53µm 2 s -1 ± 0.08, which lies in the range of a freely diffusing cytosolic protein (e.g., DnaA, [START_REF] Katrin | Rapid turnover of DnaA at replication origin regions contributes to initiation control of DNA replication[END_REF]).

The interaction of MreB with other PGEM components

The machineries contributing to sidewall synthesis have been described above (section 1.1.3). To understand how MreB orchestrates PG synthases (transglycosylases and transpeptidases) and PG hydrolases to allow coordinated CW expansion, several studies have addressed the dynamic interaction of MreB with other enzymes in the rod complex, especially the transmembrane protein RodZ, the transglycosylase RodA and the transpeptidase PbpH, in B.

subtilis. Based on the knowledge of the function of the individual enzymes, the interaction between MreB and these enzymes is expected to reveal the spatio-temporal organization of their activity during CW expansion.

The transmembrane RodZ is required for cell-shape maintenance in B. subtilis

RodZ is one of the numerous players in the CW biosynthesis game (see [START_REF] Ago | RodZ : a key-player in cell elongation and cell division in Escherichia coli[END_REF] for a minireview of E. coli). It was discovered more than ten years ago ([SSN08], [START_REF] Felipe | RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli[END_REF], [START_REF] Anisah | RodZ, a component of the bacterial core morphogenic apparatus[END_REF]) and has been investigated mostly in E. coli. However, it is also found in numerous bacterial species, both Gram+ and Gram-, either rod-shaped bacteria or cocci. It is a bipartite membrane protein with a cytoplasmic domain and an extracellular domain. The structure of the extracellular domain of RodZ of B. subtilis was predicted by Nuclear magnetic resonance (NMR) [START_REF] Ana | Chemical shift assignments and secondary structure determination of the ectodomain of Bacillus subtilis morphogenic protein RodZ[END_REF].

RodZ may interact with cytoplasmic proteins in the vicinity of the internal membrane and with CW synthesis enzymes in the periplasm.

RodZ interacts with MreB and several components of the Rod complex including MreC, MreD, PB2, RodA as shown using Bimolecular fluorescence complementation, Fluorescence Resonance Energy Transfer (FRET), and bacterial two-hybrid assays [START_REF] Randy | RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis[END_REF]. It also performs It is supposed to be implicated in the regulation of peptidoglycan synthesis [START_REF] Anisah | RodZ, a component of the bacterial core morphogenic apparatus[END_REF]. Several works have proposed that RodZ is not necessary but promotes MreB rotation [START_REF] Simon | Super-Resolution Microscopy and Single-Molecule Tracking Reveal Distinct Adaptive Dynamics of MreB and of Cell Wall-Synthesis Enzymes[END_REF]. It could also regulate the MreB polymer number by stimulating the production of new polymers [START_REF] Benjamin | MreB polymers and curvature localization are enhanced by RodZ and predict E. coli's cylindrical uniformity[END_REF]. In the B. subtilis model, it is supposed that RodZ is required for cell-shape maintenance [START_REF] Katarína | Control of Bacillus subtilis cell shape by RodZ[END_REF].

To summarize, RodZ and MreB have intricate feedback with each other. MreB may influence RodZ localization and dynamics, and RodZ may influence the density and rotation of MreB polymers. However, RodZ is not the motor for the rotation of MreB. RodZ may be a link between MreB and proteins RodA and PBP2 from the Rod complex.

MreB, RodA, and PbpH do not form a stable complex that lasts over many minutes but rather perform constant dynamic binding and off-binding

It has been shown that RodA, the transglycosydases, and PbpH, the transpeptidase, circumferentially move around the cell wall, and their motion stronly colocalizes with MreB and its homologues (Mbl and MreBH) [START_REF] Julia | Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria[END_REF]. The velocity and the angle of the trajectories of MreB, RodA and PbpH show strong similarities by comparing the maximum projections of two movies of two protein species, and by kymograph quantification.

In [START_REF] Simon | Super-Resolution Microscopy and Single-Molecule Tracking Reveal Distinct Adaptive Dynamics of MreB and of Cell Wall-Synthesis Enzymes[END_REF], dynamics of RodA, PbpH and MreB are visualized with the same imaging settings. Two types of microscopy were employed, SIM-TIRF and SMT [START_REF] Thomas | SMTracker : a tool for quantitative analysis, exploration and visualization of singlemolecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome[END_REF] to investigate the dynamics in different spatial and temporal scales. SIM-TIRF revealed that MreB, RodA, and PbpH all move in the direction perpendicular to the long axis of the CW (θ = 88±8 • , 88±10 • , and 92 ± 14 • , respectively) with similar velocity (v = 37 ± 16, 33 ± 16, and 38 ± 22nm/s, respectively), which coincides with the findings in [START_REF] Ethan | Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis[END_REF] and [START_REF] Julia | Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria[END_REF]. More precisely, it is found that the distribution of the length of the tracks of the three proteins differs evidently, 8 ± 3s, 3.8 ± 2.1s, and 2.4 ± 1.1s, respectively. These statistical findings support the fact that the three proteins share some tracks, because of the similarity of the velocity and the direction among the tracks.

At the same time, it argues against the existence of a multi-protein complex that is stable over many minutes.

Using SMT [START_REF] Thomas | SMTracker : a tool for quantitative analysis, exploration and visualization of singlemolecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome[END_REF], which offers temporal resolution 25-folds higher than SIM-TIRF, two populations of single-molecule dynamics of MreB are revealed, one freely diffusing (D ∼ 0.53µm 2 s -1 ± 0.08) and another with slow/static mobility (D ∼ 0.044µm 2 s -1 ± 0.005). The findings of different behaviors of MreB motion are comparable to a previous study, [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF], where the motion of MreB is categorized into three groups, the directed motion (the slow motion), free diffusion (the fast motion) and constrained motion (the slow/static motion). The ratio of these two populations is around half-half. Similarly, two populations, half free diffusive and half slow/static moving are discovered for RodA and PbpH. It leads to assuming free diffusion for molecules not involved in active cell wall synthesis and slow-motion for enzymes associated with activities in synthesis or filament formation in the case of MreB. Interestingly, RodA, PbpH and MreB react remarkably differently when cells are challenged by an outward stress (e.g. osmotic stress). MreB responds to the stress condition by increasing the free diffusion fraction.

In contrast, the movement of RodA and PbpH was hardly affected. During the stress adaptation period (∼ 2h), cells continued to grow, but in a way less coordinated.

Conclusions

Despite decades of research, understanding bacteria cell morphogenesis, i.e., how cells maintain their shape and regulate their size during cell growth remains an active research domain. The CW, as a rigid sacculus, plays a vital role in processes of bacteria cell morphogenesis. As the osmotic pressure bearer, the cell wall protects the physiology and metabolism inside the cell.

In this chapter, we reviewed several mechanical CW expansion models, e.g., "3-for-1" for Gram-and "3-under-2" for Gram+. Moreover, we presented the molecular actors (enzymes) discovered during the past years implicated in the cell wall elongation process. More specifically, two machineries were found to work independently, one is the processively and circumferentially moving rod complex, controlled by the MreB proteins, and the other is the bi-functional aPBPs. Biologists are interested in knowing how molecular actors are involved in the regulation of CW expansion and in the maintenance of cell shape. By mathematical modeling, different mechanistic hypotheses combined with the enzymes dynamics introducing new material into an existing PG network have been simulated. For Gram+ bacteria, due to the complexity of multilayer PG, the existing model remains preliminary and needs to be developed further.

To further explore the question of how bacteria cells maintain their shape, a much-studied key player is MreB, a cytoplasmic filamentous protein, which is known to control the PGEM working outside the cytoplasmic membrane to insert new PG in order to complete the task of building the PG meshwork. We summarized the known dynamic characteristics of MreB, e.g., its different modes of motion (circumferentially directed motion, free diffusion and constrained motion), its speed and diffusion coefficient, and the orientation of its directed motion. We also presented several works focused on depicting the interaction of the MreB with other crucial enzymes involved in cell wall elongation processes (e.g. which is known to be highly dynamic moving near the membrane. In addition, because that the evanescent wave avoids the illumination of the whole cell but only illuminate a thin section near the slides, TIRF provides high signal-to-noise and low phototoxicity to the living specimen.

However, in TIRF images, MreB proteins appear as patches of the same size, with diameter ∼ 250nm which is around the diffraction limit ([Bil+17], [START_REF] Cyrille | MreB Forms Subdiffraction Nanofilaments during Active Growth in Bacillus subtilis[END_REF]). It suggests that the actual size of a unique MreB filament should be smaller than the diffraction limit. SIM is a superresolution technique which goes beyond but is still essentially limited by the diffraction limit.

By structured illumination, 2D-SIM can achieve at best a lateral resolution equal to half of the diffraction limit (∼ 120nm). However, SIM methods are suited for live-cell imaging with conventional fluorophores. Furthermore, it can be combined with TIRF to benefit the high axial resolution. In [START_REF] Cyrille | MreB Forms Subdiffraction Nanofilaments during Active Growth in Bacillus subtilis[END_REF], the SIM-TIRF images are used to observe the dynamics of MreB and it brings very important information on the length of a unique MreB filament (∼ 170nm), which is hidden in conventional TIRF images.

The microscopic images of the dynamics of MreB during the active growth phase acquired by SIM-TIRF and TIRF are further analyzed, using advanced statistical and mathematical modeling in Chapter 3 and Chapter 4. It worth noting that during the image acquisition, different sources of noise are introduced, due to the stochastic nature of the photon emission and the imaging system. It can make the inference of the underlying biophysical processes (e.g., the mode of motion, the parameters of motion) more accurate, when we involve the noise into the modeling.

This chapter is organized as follows: an easy-to-understand introduction of the diffraction limit is presented in Section 2.1; In Section 2.2, we summarize the conventional and superresolution fluorescent microscopy. The physical principles for the conception of TIRF and SIM are respectively presented in Sections 2.3 and 2.4. In Section 2.5, we summarize the common sources of noise that could be produced during the fluorescent image acquisition. Finally, in Section 2.6, we present the practical application to observe MreB filaments using TIRF and SIM-TIRF.

The diffraction limit

As stated previously, the resolution of conventional wide field microscopy is limited to ∼ 200 -300nm laterally and ∼ 500 -700nm axially due to the diffraction limit of light microscopy, as characterized by Abbe and Rayleigh [START_REF] Lord | Investigations in optics, with special reference to the spectroscope[END_REF]. The image of an infinitely small self-luminous in the axial dimension), and thus that two molecules within this distance cannot be separately identified.

The Point-Spread Function (PSF) describes the response of an imaging system to a point source or point object (Fig. 2.1). In 3D, the focal spot referred as the PSF appears as an ellipse stretched along the optical axis. In space-invariant system, i.e. the PSF is the same everywhere in the imaging space, the fluorescent images are the convolution of the PSF and the intensity of the image, related to the number of photons. The PSF is commonly approximated by a

Gaussian distribution [START_REF] Bo | Gaussian approximations of fluorescence microscope point-spread function models[END_REF]. The diffraction limit can be broken when SNR is high enough.
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A summary of the conventional and super-resolution microscopy

In this section, we give a brief summary of the existing conventional and super-resolution microscopy techniques. We keep in mind the objective of observing the dynamics of MreB in model bacteria Bacillus subtilis. The bacteria cells are small, ∼ 1µm in diameter and several micrometer in length. The MreB patches are relatively sparse and perform at least two different modalities of motion (slow and fast) [START_REF] Julia | Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria[END_REF].

The conventional techniques of light microscopy involve WFFM, TIRF, and Confocal microscopy (Fig. 2.2 [START_REF] Lothar | Super-resolution microscopy demystified[END_REF]). In WFFM (or epi-fluorescence) setups, the incident light is parallel to the optical axis (i.e., normal to the coverslip/sample surface) and thus travels across the entire sample, simultaneously exciting all fluorophores in the cell. The detected fluorescence from out-of-focus plane generates a high background noise and thus a low signal-to-noise ratio (contrast).

On the contrary, in confocal microscopy, point illumination is used to scan across the sample and a pinhole in front of the detector keep only the in-focal signal. Therefore, confocal microscopy produces images with enhanced contrast compared to WFFM. However, the improved contrast is at the expense of fluorescence intensity (much of the light is blocked at the pinhole) and the temporal resolution (scanning is required as only one point is illuminated at one time).

Given the diameter of a bacterium cell ∼ 1µm and the focal plane thickness ∼ 0.5µm, confocal microscopy brings little improvement in the contrast.

In TIRF microscopy, an exponentially decaying evanescent wave is generated at the interface between the coverslip (glass) and the sample/water (aqueous medium), when a laser beam with an incident angle larger than the critical angle is completely reflected at the surface.

TIRF excites the fluorophores at the proximity (100 -200nm) of the coverslip, smaller than the conventional axial diffraction-limited resolution. As only a small section of the cellular volume is illuminated, it can be much less phototoxic than WFFM, and can image longer periods if new fluorescent molecules enter into the evanescent field. Less detected out-of-focus fluorescence enables a high contrast. Due to the low phototoxicity, high contrast, high axial resolution and high temporal resolution, and its relatively low cost set-up, TIRF stands as a method of choice for studying membrane-associated events in bacterial cells, as in our case, the dynamics of the membrane-associated filamentous protein MreB.

Super-resolution techniques can be sorted into two main strategies, patterned light illumination techniques with Stimulated Emission Depletion (STED) and SIM, and localization-based

techniques with Stochastic Optical Reconstruction microscopy (STORM) and PALM. Two recent reviews of the SRM are available, see: [START_REF] Zhe | Imaging live-cell dynamics and structure at the single-molecule level[END_REF] and [START_REF] Lothar | Super-resolution microscopy demystified[END_REF], where an overview of commercially available and emerging SRM techniques, together with a balanced assessment of their strengths and weaknesses with examples of biological applications are provided.

Compared to other diffraction-unlimited SRM, SIM methods are considered rather 'gentle', and are particularly suited for live-cell imaging with conventional (nonswitchable) fluorophores (e.g., GFP), and for higher throughput applications. Classic interference-based SIM utilizes frequency shifting upon patterned wide-field illumination and mathematical reconstruction. It can best double the spatial diffraction-limited resolution in lateral (x, y) and axial (z), reaching ∼ 100nm lateral and ∼ 300nm axial resolution, equivalent to an ∼ 8-fold volumetric improvement. However, the mathematical post-processing of classic interference-based SIM requires significant knowledge to detect and avoid the reconstruction artefacts [START_REF] Justin | Strategic and practical guidelines for successful structured illumination microscopy[END_REF].

In addition to TIRF and SIM, there exist other techniques which can bring improvement on the observation of the dynamics of MreB. However, due to technical and practical reasons, 

Basic principles of Total Internal Reflection Fluorescence microscopy

The phenomenon of total internal reflection was first introduced to the domain of optical fluorescence microscopy by [START_REF] Daniel | Total internal reflection fluorescence[END_REF]. Here we give a rapid recap of the principles of TIRF and its virtues compared to the conventional WFFM and the confocal FM. More details of the theories used in the conception of TIRF can be find in [START_REF] Ml | A 'pocket guide'to total internal reflection fluorescence[END_REF].

When a light beam hits the interface of two isotropic media with refractive indices n i and n t , then Snell's law describes the relation between the incidence angle θ i and the refractive angle θ t as follows:

n i sin θ i = n t sin θ t .
(2.1)

When the light passing from the medium with higher refractive index into that with lower refractive index (i.e. n i > n t ), and as the incident angle increases, it reaches one point called the critical angle θ c . The critical angle θ c = sin -1 ( nt n i ), where the refraction angle θ t = 90 • and the light is totally reflected. When the θ i > θ c , the large majority of the light is reflected and only a small portion of the reflected light penetrates through the interface, and propagates parallel to the plane of incidence creating an electromagnetic field in the vicinity of the interface. This electromagnetic field is named evanescent field and can be described by (2.2), where the real term E ot e -zξ describes the wave amplitude which decreases with z and the complex term describes the propagation of the electromagnetic wave along the interaction surface in the x-direction.

E t = E ot e -zξ e i[ktn i x sin θ i /n i -ωtt]
(2.2)

where ξ = kt nt (n 2 i sin 2 θ in 2 t ) 1/2 . As the intensity of the electromagnetic I is proportional to E 2 t , from (2.2), I decays along z-direction normal to the interface:

I = I 0 e -z/d (2.3)
where d, termed as penetration depth, is functional to the wavelength of incident light λ 0 and the refractive indices n i and n t :

d = λ 0 4π (n 2 i sin 2 θ i -n 2 i ) -1/2 . (2.4)
It can be noticed from (2.3) that at z = d, the intensity I = I 0 e -1 (right side of Fig. 2.3), in other words, the intensity at d decays to e -1 times as the intensity at the interface (where z = 0).

The polarization properties of the evanescent field can be deduced using Fresnel's equations (see details in [START_REF] Ml | A 'pocket guide'to total internal reflection fluorescence[END_REF]). It can be shown that the intensity of the evanescent field at the interface, I 0 , can be several times stronger than the intensity of the incident wave (Fig. 2.4). When the incident angle increases from θ c ∼ 60 • to ∼ 75 • , I 0 can be 4 to 1 times stronger than the intensity of the incident wave.

Basic principles of Structured Illumination microscopy

SIM uses spatial structured illumination light in a wide field microscope. By the inference of the excitation light with the emission light from the illuminated sample, higher frequency information is encoded, by the produced analogous Moiré fringes effect, and is recorded in the images. It improves the diffraction limit by a factor of two. In the following, we introduce firstly the diffraction limit explained on the reciprocal space. Then we briefly present the principles of SIM.

The translation of the diffraction limit in frequency space

In the reciprocal space (or the frequency space), the resolution limit is translated to the observable region (Fig. 2.5 left). The Optical Transfer Function (OTF) is the Fourier transformation of the PSF (Fig. 2.5 right). The observable region corresponds to all frequencies where the OTF has non-zero values, thus in the support of the OTF. Note k 0 the maximum non-zero value of the OTF, then k 0 is the limited observable spatial frequency.

High-frequency information residing outside of the support of the OTF can not be observed.

- .5 -Left: Airy disk in the frequency space; Right: The OTF, when setting λ = 509nm (GFP emission wavelength) and N A = 1.5 (theoretical maximum value). Plotted according to the PSF equation in [START_REF] Bo | Gaussian approximations of fluorescence microscope point-spread function models[END_REF] Therefore the microscopy acts as a low-pass filter, only allowing the observation of frequencies with a magnitude less than or equal to that of k 0 as illustrated in Fig. 2.6 (b).

The classical limit of resolution in the microscopy translates into frequency space, defining a maximum observable spatial frequency k 0 given by:

k 0 = 2NA/λ em , (2.5)
where NA is the numerical aperture of the objective, and λ em is the average observed emission wavelength.

The principle of SIM

As stated in the previous section, the observable region of spatial frequencies is within k 0 in conventional microscope. When structured illumination is used, it interacts with the sample and produce an effect similar to the generation of Moiré fringes (Fig. 2.6 (a)), which is the multiplication of the illumination light and the sample. It can be seen that such Moiré fringes can be coarser than either of the original patterns. The higher spatial frequencies in the sample which are beyond the diffraction limit can therefore be shifted inside the observable region. (2.6)

The Fourier transform of (2.6) is given by:

Ẽ(k) = [ D(k) ⊛ Ĩ(k)] • OTF(k), (2.7) 
where f (•) denotes the Fourier transform of f (•) and OTF(k) is the Fourier transform of PSF(r).

As it is explained before, D(k) ⊛ Ĩ(k) can only be observable within the non-zero support of OTF(k) (Fig. 2.5), that is a circle region of radius k 0 (Fig. 2.6 (b)). The same circle defines the set of patterns that it is possible to create in the illumination light. Structured illumination does not alter this physically observable region, but it moves information into the region from the outside, and thereby makes that information observable.

If I(r) is uniform, therefore Ĩ(k) has trivial value, then the observed fluorescence frequency Ẽ(k) depends directly on D(k). However if the illumination I(r) is structured, e.g. sinusoidal pattern of parallel stripes used in the original of SIM, given by

I(r) = I 0 [1 + cos(k 0 • r + φ)],
(2.8) its Fourier transform has three non-zero points (Fig. 2.6 (c)):

Ĩ(k) = I 0 [δ(0) + δ(k + k 0 )e iφ + δ(k -k 0 )e -iφ ].
(2.9)

The observed frequency in images following:

Ẽ(k) = I 0 [ D(k) + 0.5 D(k + k 0 )e iφ + 0.5 D(k -k 0 )e -iφ ] • OTF(k) (2.10)
Therefore, the image that is seen through the microscope contains, not only the normal image as in conventional microscope, but also higher frequency information, which, in the reciprocal space, is moved from the outside into the observable region (Fig. 2.6 (d)).

If the frequency of the structured illumination is chosen as high as possible, i.e., k 0 as given in (2.8), then it is possible to extract information out to double the resolution limited by the diffraction of light, in the direction of the stripe (2.6 (d)). By repeating this three times with the pattern orientated in different directions, one can gather essentially all the information within a circle twice as large as the physically observable region (Fig. 2.6 (e)).

Sources of noise

We introduce here the common sources of noise during the image acquisition, in order to include them in the image processing and dynamics analysis. The noise sources in the microscope imaging system are listed in [START_REF] Bo | Gaussian approximations of fluorescence microscope point-spread function models[END_REF]. The principle instruments used for fluorescence detection in TIRF is Charge-Coupled Device (CCD). The noise model can be approximated by a mixed-Poisson-Gaussian (MPG) model, combining the Fluorescence photon noise, dark noise, and readout noise.

The final detected signal S can be given as follows

S = α(N p + N d ) + N r , (2.11)
where α is the overall gain of the camera, N p is the number of photon which follows a Poisson distribution with intensity parameter λ, N p ∼ P(λ), N d is the dark noise due to the kinetic vibration of silicon atoms in the CCD substrate which will liberate electrons or holes even when no incident fluorescence photon is present and N d ∼ P(λ d ), N r is the readout noise primarily originates from the imperfectness of the output amplifier during the process of converting charge into a voltage signal, which is described by a normal distribution, N r ∼ N (µ, σ 2 ).

The fluorescence photon noise, due to the stochastic nature of the photon emission, is inherent in all optical signals. If we dispose of a high photon flux, which is the case for WFFM and TIRF, N p will be asymptotically normally distributed with both the mean and the variance equal to λ.

In [START_REF] Russell | Precise nanometer localization analysis for individual fluorescent probes[END_REF], the precision of localization under two limit conditions, the photon shot noiselimited case and the background noise-limited case is discussed. The photon shot noise-limited case occurs when the noise in each pixel is dominated by photons originating from the particle being localized. The background noise-limited case occurs when the noise is caused by other sources, e.g. readout noise, dark noise, extraneous fluorescence in the microscope (caused for example by dust), and cellular auto-fluorescence.

TIRF gives high signal-to-noise with little recorded out-of-focus fluorescence and it has a rather high flux of photon. Therefore, we consider the photon noise-limited case.

Each photon collected in the image gives a measure of the position of the object, and the position error of each measurement is identical as the Standard Deviation (SD) of the PSF of the microscope. The estimated position is the average of the positions of the individual detected photons, and the variance of localization is given by

E((∆x) 2 ) = s 2 N ; (2.12)
where s 2 is the variance of the PSF and N the number of photons N . This noise model will further be used in the next chapter in the modeling of the dynamics by diffusion processes.

Observation of the dynamics of the protein MreB during active bacteria cell growth

In this section, we discuss the practical issues concerning the observation of the dynamics of the MreB during active bacteria cell growth.

A detailed guidebook for MreB observations in TIRF microscopy is available [START_REF] Charlene | Methods for Studying Membrane-Associated Bacterial Cytoskeleton Proteins In Vivo by TIRF Microscopy[END_REF]. Materials and Methods for Bacteria cell growth, Agarose pad preparation and slide mounting, and TIRF imaging are presented. The challenges and practical issues are also discussed. The TIRF images used in this thesis are acquired in the ProCeD team, Micalis Unit (INRAE, Jouy-enjosas, France). The modalities for TIRF setting is described in [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF]. MreB dynamics movies are acquired at ∆t = 1s during 2 minutes, with an exposure time t E = 0.1s. The final pixel size was 64nm.

SIM-TIRF imaging was performed at the Advanced Imaging Center (AIC) (Janelia Research

Campus, VA, USA), as described in [START_REF] Dong | Extendedresolution structured illumination imaging of endocytic and cytoskeletal dynamics[END_REF]. SIM reconstructed images and average TIRF images were processed from nine raw acquisitions (three translations × three rotations). Each image is exposed during 10ms (total exposure time 90ms) and the time interval ∆t = 1s. The duration of movies is 0.5 -1 minute. The experimental resolution limit at 488nm was estimated to be 114.37 ± 16nm (n = 198 beads), using 40nm fluorescent beads. TIRF imaging, thanks to the illumination in a small section, benefits from the low phototoxicity and photobleaching. At the same time, it sets an important limit of TIRFM, the incomplete observation view. TIRF measurements can be further exploited using the relationship between the incident angle and the penetration depth of the evanescent wave (2.4), thus adding a third dimension to TIRF imaging. A reconstruction algorithm of high-resolution 3D volume from multiangle TIRF images stacks has been developed by Boulanger et al. [START_REF] Jérôme | Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging[END_REF]. The Multi-angle TIRF (3D) is able to achieve 50nm axial resolution over a range of 800nm above the coverslip.

At the same time, it has reduced phototoxicity and photobleaching compared to WFFM.

The Lattice Light Sheet microscopy (LLSM) can also be considered for 3D MreB dynamics observation, as it is characterized by very high imaging speed, high contrast, and good optical penetration depth. The recent developed LLSM is improved to reach a quasi-isotropic resolution 230nm × 230nm × 370nm, thus increasing the volumetric resolution [START_REF] Bi-Chang | Lattice light-sheet microscopy : imaging molecules to embryos at high spatiotemporal resolution[END_REF]. It can be combined to SIM to further increase the resolution.

In order to analyse the dynamics of MreB, to test whether it performs free diffusion, the temporal scale is also critical. The 3D-SIM even can achieve super resolution volume acquisition [START_REF] Lothar | Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[END_REF], and therefore allows the observation of the whole membrane surface of B. subtilis, has rather low temporal resolution of (∆t ∼ 1s -1m) [START_REF] Lothar | Super-resolution microscopy demystified[END_REF].

Multi-angle TIRF microscopy and LLSM devices installed in a collaborative lab, PICT -IBISA, Institut Curie, have been tested to acquire the dynamics of MreB. However, due to practical challenges of microscope and obstacles related to the sanitary (COVID-19) crisis, the Multi-angle TIRF and LLSM acquisitions was suspended. The 3D-SIM device is recently installed in the ProCeD team, Micalis Unit (INRAE, Jouy-en-josas, France), yet, some technical issues (e.g., photobleaching and sensitivity) prevent us from obtaining 3D-SIM images with enough temporal frequency and observation duration.

Conclusion

In this chapter, the principles of TIRFM and SIM are reviewed. Several information should be kept in mind to continue the reading of the following chapters:

Due to the total reflection and the evanescent field of around 100nm ∼ 200nm, only around one third of the bacteria surface can be observed. The recorded trajectories are the projection of the trajectories along the surface of the 3D cell membrane.

The resolution of SIM is around ∼ 110nm, which allows to observe unique MreB filament, whose average length is around ∼ 170nm [START_REF] Cyrille | MreB Forms Subdiffraction Nanofilaments during Active Growth in Bacillus subtilis[END_REF]. Therefore, the gain in resolution by combining SIM with TIRF sheds light on the understanding of the dynamics and spatio-temporal distribution of MreB. However, as several raw images are needed to reconstruct an image, the movie duration is limited to 0.5 -1 minute due to the photobleaching of the fluorophores.

Several sources of noises in fluorescent imaging system are introduced. The localization errors in the shot noise-limited case is given by a simple formula (2.12), which allows the quantification of errors and is further included in trajectories analysis procedures presented in Chapter In this chapter, we aim to gain a detailed description of the heterogeneous dynamics of a target protein, MreB, which is known to be moving along the surface of the inner membrane and performing different regimes of motions during the growth of the rod-shaped bacteria cell. Two different points of view are considered to study the dynamics. The first one consists in analyzing individual trajectories of particle, including the mode of motion and the biophysical parameters of the motion, e.g., the drift and the diffusion coefficient. The second one aims at studying the dynamics of particles in the neighborhood of a position point and further characterizing dynamical events, e.g., the shape and distribution of potential wells or confinements areas.

In the first section of this chapter, we review some classical diffusion models and measurement errors, including static localization error induced by the limit of spatial-resolution of optical microscopy and the motion blur due to the finite exposure time during image acquisition. Section 2 is dedicated to the analysis methods of individual trajectories. We first review the main approaches for trajectories classification into several categories of diffusion: free, confined, and directed diffusion. Furthermore, we present the advantages and limitations of competi-tive methods used to estimate the underlying biophysical parameters. Section 3 is devoted to analyzing the dynamics of MreB aggregates analyzed with the aforementioned methods. The dynamics of MreB, which take place in the vicinity of the inner membrane surface, are acquired with SIM-TIRFM. It is worth noting that the analysis is performed on partially observed dynamics, as only the particles of the evanescent field can be observed with this imaging technology.

It is also noted that a significant bias is induced by the planar projection of the 3D dynamics onto a 2D plane. In Section 4, the local properties of the dynamics field are examined. We focus on the local drift and the particle diffusion coefficient. Assuming that the dynamics follow a certain diffusion model, a method for reconstructing the 3D surface (in our specific case, the recovery of the radius of the bacteria cell) from a planar projection of the 3D trajectories, is proposed.

Diffusion models and sources of measurement errors

Thanks to the development of fluorescence labeling, super-resolution microscopes, and single-particle tracking techniques, research scientists are equipped with many advanced tools to take a glimpse into the very complex environment in living cells. It is well established that the characteristics of the motions of biomolecules present a great heterogeneity in living cells. In this section, firstly, we describe the main diffusion types usually considered in biophysics and related stochastic models. Beforehand, it is important to know that the input data (i.e., images, trajectories) are corrupted by several sources of errors during the acquisition and analysis of fluorescence images. We discuss here two main sources of errors: the limited localization precision due to light diffraction and motion blur caused by the exposure time and particle diffusion.

Diffusion models

From a probabilistic point of view, a diffusion process X t is a continuous time process that possesses the Markov property and for which the sample paths are continuous. The Markov property states that if we know the present state of the process, the future behavior of the process is independent of its past, described by the σ-field F t :

P (X t+s ∈ A|F t ) = P (X t+s ∈ A|X t ). (3.1)
Diffusion process satisfies three key conditions [START_REF] Samuel | A second course in stochastic processes[END_REF]: -B t is a process with independent increments: for t > s, B t -B s is independent of the field F s generated by the history of the process B m , m ∈ [0, s] until time s.

lim ∆→0 1 ∆ P (||X t+∆ -X t || > ǫ|X t = x) = 0, ∀ǫ > 0, (3.2) lim ∆→0 1 ∆ E(X t+∆ -X t |X t = x) = µ(x, t), (3.3) lim ∆→0 1 ∆ E(||X t+∆ -X t || 2 |X t = x) = σ 2 (x, t). ( 3 
-For all t > s, B t -B s ∼ N (0, ts).

-The paths of B t are almost surely continuous and nondifferentiable.

Moreover, Langevin justified with another modeling approach the motion of suspended particles [START_REF] Langevin | Sur la théorie du mouvement brownien[END_REF]. Particle motion is characterized by the d-dimensional so-called Langevin equation:

m dv(t) dt = -ζv(t) + L(t), (3.5)
where v is the velocity of the particle, m denotes the mass, ζ > 0 is the friction coefficient and L is a random force resulting from the collisions with the surrounding particles. The process received a more thorough mathematical examination several decades later by Uhlenbeck and Ornstein [START_REF] George | On the theory of the Brownian motion[END_REF] and Chandrasekhar [START_REF] Subrahmanyan | Stochastic problems in physics and astronomy[END_REF].

A recent presentation of Einstein's approach and Langevin's approach in bioimaging is given in [START_REF] Vincent | An overview of diffusion models for intracellular dynamics analysis[END_REF]. In summary, it is established that the solution of the overdamped Langevin equation defined as follows

dX t dt = - 1 ζ ∇U (X) + √ 2DR(t) (3.6)
where U (X) is the particle interaction potential and R(t) is a standard Gaussian variable, is also known as Brownian motion. Note that Brownian motion by Einstein (equivalently driftless Wiener process) is nowhere differentiable. However, Brownian motion characterized by the overdamped Langevin equation is differentiable. Nevertheless, both definitions are consistent in the sense that the MSD is asymptotically linear with time:

ρ(t) = E(||X t -X 0 || 2 ) = 2dDt, (3.7) 
where D = k B T ζ denotes the diffusion coefficient, k B is the Bolzmann constant, T is the temperature and ζ is the friction constant as introduced in (3.5).

In [START_REF] Vincent | An overview of diffusion models for intracellular dynamics analysis[END_REF], other diffusion processes are reviewed, well-grounded in Einstein's and Langevin's theories, for modeling respectively sub-diffusion and super-diffusion in biophysics. The most intuitive way to distinguish sub-and super-diffusions from free diffusion is still performed via MSD analysis (see details in Sections 3.2.1.2 and 3.2.2.1). If the MSD is sub-linear with time t then the diffusion is regarded as sub-diffusion. On the contrary, if the MSD is over-linear with time t, then the diffusion is accordingly super-diffusive. Among existing models, the most popular sub-diffusion models are shortly described below: Ornstein-Uhlenbeck (OU) process 

Ornstein-Uhlenbeck (OU) process

A unified approach for representing diffusion processes is to consider that they are solutions of Stochastic Differential Equation (SDE). For example, the OU velocity process is the solution of the SDE:

mdv(t) = -ζv(t)dt + σdB t , (3.8)
where m, v and ζ represent the mass and the velocity of the particle and the friction coefficient, respectively, as in (3.5) and B t denotes Brownian motion defined in Def. 1.

In mathematics, the OU process is defined by the following stochastic differential equation:

dX t = -λ(X t -θ)dt + σdB t (3.9)
where X t is the position of the process, and λ > 0 reflects a restoring force directed towards the long term average θ.

Fractional Brownian motion (fBm)

fBm is defined by the covariance function of {B H t }, a continuous zero-mean Gaussian process with stationary increments:

cov(B H t , B H s ) = 1 2 (|t| 2H + |s| 2H -|t -s| 2H ), (3.10) 
where 0 < H < 1 denotes the Hurst index. It is noticed that in biophysics, although fBm with 1/2 < H < 1 may represent super-diffusion, fBm is mainly used to characterize sub-diffusion (i.e., for 0 < H < 1/2).

Brownian motion with drift (Bmd)

The Brownian motion with drift (Bmd) is solution of the d-dimensional SDE:

dX t = vdt + σdB t , (3.11)
where v is the drift and σ the standard deviation, B t is the standard Brownian motion such that the diffusion coefficient D = 2σ 2 .

For the past 15-20 years, we have the opportunity to observe and analyze the dynamics of biomolecules in live cells with advanced imaging technologies. They can produce high spatial resolution image sequences and particle tracks, but different sources of noise and errors inherently corrupt the data. In the next section, we quantify the errors of measurements due to the light diffraction limit and exposure time duration.

The sources of errors inherent to fluorescence microscopic images acquisition

Localization error due to the diffraction limit

The main source of uncertainty is the localization noise. Usually, the localization uncertainty of a particle located at (x, y) in a 2D plane can be characterized by a Gaussian probability distribution, with standard deviation σ x (resp. σ y ) depending on the standard deviation s 0 of PSF and the number of photons N . If we assume σ loc = σ x = σ y , we have

σ loc = s 0 √ N (3.12)
which represents the static localization uncertainty. In other words, σ loc represents the localization uncertainty for an immobile particle [START_REF] Russell | Precise nanometer localization analysis for individual fluorescent probes[END_REF]. Consequently, the measured position of the particle at time t is written X t = Xt + ǫ, where ǫ ∼ N (0, σ 2 loc ) and Xt is the physical real position of the particle.

Motion blur

The second source of uncertainty is due to "Motion blur," where the average position of a particle is estimated over the exposure time t E . We suppose that a particle moving in one dimension according to Brownian motion with diffusion coefficient D is captured by a camera.

During the time interval ∆t, the camera shutter may be opened during duration t E , t E ≤ ∆t. In [START_REF] Andrew | Statistics of camera-based single-particle tracking[END_REF], Berglund defines the motion blur coefficient as:

M = 1 ∆t ∆t 0 S(t)[1 -S(t)]dt, (3.13)
where S(t) is the illumination percentage occurring before time t (between the beginning and the end of a frame), during the interval of time ∆t. S(t) = t 0 s(t ′ )dt ′ , where s(t) is the shutter function. The value of M lies between 0 and 1/4, depending on the camera exposure mode and duration. M equals zero (no motion blur) if and only if the shutter function s(t) consists of a single vanishing peak at any point within the frame. The coefficient M reaches its maximum value 1/4 when there is a double-pulse sequence at the start and the end of the frame. In the common experimental case of a uniform exposure of duration t E ≤ ∆t, setting S(t) = t t E in (3.13), it yields to 

M = 1 6 t E ∆t . ( 3 

Discussion

In addition to the two main sources of errors under concern, the errors induced by the spot detectors ([Des17], [START_REF] Fabienne | Detecting and quantifying stress granules in tissues of multicellular organisms with the Obj. MPP analysis tool[END_REF]) or particle trackers ([Jaq+08], [START_REF] Huei-Fang | Tracking growing axons by particle filtering in 3D+ t fluorescent two-photon microscopy images[END_REF]) should not be ignored either. The light diffraction makes that the particle in the image appears not as a dot but rather as a blurred spot. During the spot detection step, when two particles are located too close to each other (i.e., when the distance is less than the size of Airy disk [START_REF] Biddell | On the diffraction of an object-glass with circular aperture[END_REF]), two fluorescent spots overlap. This induces confusion for the algorithm to detect the two spots. The detection errors are false negatives (the algorithm fails to detect an existing particle) or false positives (the algorithm detects a fake spot while there is no particle). Falsely detected particles usually yield short trajectories. However, particles along a trajectory may not be detected in all frames, generating undesirable several sub-tracks and gaps. To re-connect these sub-tracks (or tracklets), several tracking algorithms include a gap-closing procedure ([Jaq+08], [START_REF] Nicolas | Objective comparison of particle tracking methods[END_REF]).

The success rate of trajectory estimation is closely related to noise level (or Signal to Noise Ratio (SNR)) in images. The peak SNR value is generally used to assess the amount of noise of images and requires no information about the acquisition device. It is defined as follows [START_REF] Nicolas | Objective comparison of particle tracking methods[END_REF]:

pSN R(x, y, z) = I(x, y, z) σ n , ( 3.15) 
where I(x, y, z) is the intensity at point (x, y, z) and σ n the empirical estimation of the standard deviation of the noise. The impact of the noise can be evaluated by simulating blurred data, applying the spot detection and the tracking algorithm before applying the trajectories analysis procedures.

Methods for individual trajectories analysis

In this section, we review several competitive methods developed for the analysis of individual trajectories. Several features, including length and direction of particle trajectories, diffusion types, parameters (diffusion coefficient, drift), and diffusion regime transitions, help decipher the mechanisms of various cellular processes and the roles of proteins involved in these processes. The problem amounts to identifying the right diffusion model and the optimal estimated parameters for each trajectory. We introduce several methods for classifying different diffusion motions and estimating the parameters of models under concern (diffusion coefficients, drift...). MSD is probably the baseline method used to address this challenge. More sophisticated methods based on MLE, Bayesian estimation, and learning-based approaches have been proposed to overcome the difficulties faced by the MSD approach.

In the classification task, the parameters, e.g., the diffusion coefficient D, must be preliminarily estimated. On the flip side, to estimate the parameters, especially when using parametric methods (e.g., MLE), knowing the diffusion mode is required. In practice, one needs to keep in mind that those two problems are interwoven.

The presence of measurement errors adds more difficulties to the problem. 

Comparison of classification methods

In this section, we provide an overview of existing methods used to determine modes of motion for single-particle trajectories. Then, in the case of MreB trajectories, we focus on three non-parametric classification methods, two of them are based on MSD and another one is THOTH.

Bayesian methods and Deep Learning

In [START_REF] Silvan | Bayesian decision tree for the classification of the mode of motion in single-molecule trajectories[END_REF], Türkcan and Masson proposed a computational approach able to determine the motion model that best fits the observed trajectories. The method is based on Bayesian inference to calculate the a posteriori probability given an observed trajectory. Information theory criteria, such as the Bayesian information criterion (BIC), are used for selecting the most appropriate model taken in a set of pre-specified models, including free Brownian motion, confined motion in 2nd or 4th order potentials, and more complex motion models able to represent for instance phenomena like active transport and hopping. The main limitation of the method is related to the number of trajectory points required for reliable estimation. At least 20 points are actually needed to discriminate free diffusion from confined motions, and at least 50 points are needed to determine confined motions in 2nd order (even more points with higher order).

The Bayesian approach in [START_REF] Silvan | Bayesian decision tree for the classification of the mode of motion in single-molecule trajectories[END_REF] is based on the exhaustive comparison of several parametric models, and assess the goodness of fit of the observed trajectory to each parametric model. Unlike [START_REF] Silvan | Bayesian decision tree for the classification of the mode of motion in single-molecule trajectories[END_REF], the statistical test approach called THOTH and proposed by [START_REF] Vincent | Statistical analysis of particle trajectories in living cells[END_REF] is a non-parametric method. It can discriminate at once free diffusion from sub-and super-diffusion. It is a non-parametric method, therefore it does not determine to which sub-(or super-)

diffusive model the data fit the best, knowing that there are different models for sub-(or super-)

diffusion due to different physical mechanisms. One of the advantage of the hypothesis test is that it performs well for short trajectories from 10 points and beyond. About the calculation complexity, it needs to be mentioned that the optimization algorithm to find the Maximum A Posteriori in Bayesian approach is very time consuming compared to the simplicity of the method proposed by [START_REF] Vincent | Statistical analysis of particle trajectories in living cells[END_REF].

Meanwhile, machine learning methods have been investigated to classify particles trajectories into categories of motion. Deep learning method, to our knowlege, was first introduced by [Gra+19a] for single-particle-diffusion analysis and classification of single-particle trajectories into three sub-groups: Brownian motion, fractional Brownian motion and Continuous Time Random Walk. A network architecture is also used to estimate the Hurst exponent for fractional Brownian motion and the diffusion coefficient for Brownian motion, on both simulated and experimental data. It turns out that these networks achieve greater accuracy than time-averaged MSD analysis on simulated trajectories while only requiring as few as 25 time points. A set of multi-tracks networks were also designed to tackle a problem of high practical importance of experiments in which only numerous very short trajectories are available (i.e., ∼10 time points) rather than a single long trajectory. Therefore deep learning is an appealing approach with high potential for identifying complex models in large quantities of data, with a relative simplicity of implementation (once trained), inference speed, and robustness. In addition, graph models have been developed to describe single-particle trajectories or other sub-cellular objects ]). Recently, combining with deep learning networks, the Graph Neural Networks (GNN) have been widely used to infer the underlying biophysical properties of the studied objects ([ZCZ20], [START_REF] Marloes | Particle mobility analysis using deep learning and the moment scaling spectrum[END_REF]).

([Ver+21], [ Gra+19b 
In the scenario of MreB protein dynamics observed in TIRFM, the average number of points in a trajectories is around 10. The length of trajectories limits the use of Bayesian method and makes it difficult to have information of goodness of fit of trajectories to a specific parametric model. As investigated in [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF], the MreB trajectories can be clustered into three groups: free diffusion, super-diffusion and sub-diffusion. Our first objective is then to classify trajectories into these three categories with non parametric model selection. Therefore, we focused on the MSD method and the THOTH to address the problem.

Classification methods based on MSD

The MSD is a widely used approach (e.g. [START_REF] Toni | Constrained diffusion or immobile fraction on cell surfaces : a new interpretation[END_REF], [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF]) to discriminate free diffusion, sub, and super diffusion. Given a lag n, MSD (3.7) can be estimated from the average over all independent pairs of points with time lag n, or all pairs of points with time lag n:

ρn = ρ(n∆t) = 1 N -n N -n i=1 ||X n+i -X i || 2 .
(3.16)

According to diffusion regimes, the MSD curve has different shapes [START_REF] Michael | Single-particle tracking : applications to membrane dynamics[END_REF]. The analytical forms of the curves of MSD versus time lag n for different modes of motion are at the origin of various classification methods. In summary, three main modes are characterized as follows in the 2D spatial domain:

       ρ(t) = 4Dt
(1) free diffusion,

ρ(t) = 4Dt β , β < 1 (2) anomalous diffusion, ρ(t) = 4Dt + (vt) 2 (3) directed motion with diffusion, (3.17) 
where ρ(t) is the theoretical MSD at time lag t, v is the velocity, and D is the diffusion coefficient.

The most intuitive and the first MSD-based classification method was proposed by [START_REF] Toni | Constrained diffusion or immobile fraction on cell surfaces : a new interpretation[END_REF].

The main mechanism lies in the setting of a threshold on the coefficient of the exponent β, which is obtained by linear fitting log(ρ n ) = β 0 + β log(n∆t). If 0.9 < β < 1.1, the particle motion is classified as Brownian diffusion; if 0.1 < β < 0.9, the particle motion is classified as anomalous sub-diffusion; if β > 1.1, the particle motion is classified as super-diffusion. The particle is considered immobile if β < 0.1. However, the critical values are chosen empirically. We call hereafter this classification method by "β-MSD."

In [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF], Billaudeau performed the classification of trajectories of MreB aggregates by adjusting linear and quadratic curves to MSD data points of MSD curves, that is ρn = a 0 + a 1 n∆t

and ρn = b 0 + b 2 (n∆t) 2 .
The idea is based on the known result that the MSD of Brownian diffusion is linear to time and the MSD of Brownian motion with drift is parabolic to time. Classification is performed according to the goodness of fit measured by the coefficient of determination, R-squared. R 2 diff (resp., R 2 dir ) is the coefficient of determination to measure the goodness-of-fit w.r.t. the diffusion (resp., directed) model. The MSD curves with a maximal value <0.05µm 2 are classified as constrained patches. The MSD curves with a maximal value >0.05µm 2 , providing that the fitting of the MSD curve with a quadratic model provides a goodness-of-fit R 2 dir > 0.8 and R 2 dir > R 2 diff , are classified as directed motion. If the fitting of MSD data points with a linear model provides a goodness-of-fit R 2 diff > 0.8 and R 2 diff > R 2 dir , the MSD curve is classified as random diffusive motion. Otherwise, they are unclassified. The unclassified trajectories will be labeled "anomalous diffusion" in our simulations and experiments.

It is worth noting the MSD-based classification is controlled by parameters arbitrarily chosen, including the number of points to be used in the MSD curves and the threshold value for the coefficient β and the R-squared. Also, it is established that the variance of MSD increases with higher values of t. This property was used in [START_REF] Pisarev | Numerical analysis of particle trajectories in living cells under uncertainty conditions[END_REF] to design a more properly weighted least square estimation method, but with moderate improvement on experimental data. One of the noticeable drawbacks of classification methods based on MSD is the lack of precision. They have major difficulties in distinguishing free diffusion from super-and sub-diffusions.

Classification by statistical hypothesis test, the THOTH method

To overcome the limitations of MSD, a recent statistical test procedure for motion classification, based on the normalized maximal distance covered by a particle, has recently been proposed by [START_REF] Vincent | Statistical analysis of particle trajectories in living cells[END_REF]. The three-decision procedure includes two complementary tests:

-Test 1. H 0 : "X t is a Brownian motion" versus H 1 : "X t is a sub-diffusion", -Test 2. H 0 : "X t is a Brownian motion" versus H 2 : "X t is a super-diffusion". and results in three possible decisions:

       do not reject H 0 ;
accept that H 1 is true; accept that H 2 is true.

(3.18)

The test statistic denoted T n is the standardized maximal distance covered by the dynamical process from its starting point:

T n = S n (t n -t 0 )σ 2 n (3.19)
where S n is the maximal distance of the process with respect to its starting point X t 0 , defined as

S n = max i=1,••• ,n X t i -X t 0 , ( 3.20) 
with σn a consistent estimator of σ and n the number of time steps of the trajectory. If T n is small, it means that the process stays close to its initial position during the period [t 0 , t n ].

The asymptotic distribution of the test statistic T n when n → ∞ under the null hypothesis is given in Theorem 3.1 in [START_REF] Vincent | Statistical analysis of particle trajectories in living cells[END_REF]. Furthermore, the p-value of the test H 0 vs H 1 is defined as:

p 1,n = F n (T n ).
Similarly, the p-value of the test H 0 vs H 2 is defined as:

p 2,n = 1 -F n (T n ),
where F n denotes the cumulative distribution function of T n under H 0 . However, in practice, n may be small, the asymptotic approximation of quantiles of T n may not be accurate. A Monte Carlo estimate of the quantile q n (α) was then proposed by drawing a sample from the distribution of T n under H 0 , where α is the significance level of the test. Therefore, the cumulative distribution function of T n under H 0 can be estimated by Monte Carlo simulation,

Fn (x) = N -1 N i=1 1(T (i) n ≤ x).
In [START_REF] Vincent | Statistical analysis of particle trajectories in living cells[END_REF], two estimators (first and second orders) of σ are considered:

σ2 1,n = 1 dn∆ n j=1 ||X t j -X t j-1 || 2 , (3.21) σ2 2,n = 1 2dn∆ n j=1 ||(X t j+1 -X t j ) -(X t j -X t j-1 )|| 2 .
(3.22)

Note that these two estimators exploit the information of the first and second lag of the MSD ρ1 and ρ2 , respectively. At this stage, the localization errors have not yet been taken into account in the calculation of estimators.

Illustration of the performance of MSD-based and THOTH classification methods on simulated trajectories

In this section, we compare the performance of the MSD-based classification methods and THOTH on synthetic data.

Data generation

Our motivation is to evaluate the potential of the aforementioned methods on synthetic data that mimic MreB dynamics.To test whether the classification methods can reliably identify free diffusion, sub-, and super-diffusion, three datasets depicting different diffusion processes are respectively simulated with Algorithm 1-3. Dataset of Brownian motion (Algo. 1, v = 0); The super-diffusion dataset consists of 50% Bmd (Algo. 1, v = 0.7, σ = 0.3) and 50% fBm (Algo.

2, H = 0.85); The sub-diffusion dataset consists of 50% OU (Algo. 3 λ = 0.53) and 50% fBm (Algo. 2, H = 0.13). Each dataset contains 40 trajectories. The length of the trajectories is set to N = 30. The time interval ∆t = 1s. Note that the unit used for simulations is expressed in pixel size instead of micrometer. We manually tuned the parameters of the two MSD-based methods ( [START_REF] Toni | Constrained diffusion or immobile fraction on cell surfaces : a new interpretation[END_REF], [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF]) in order to get the best possible results.

Experimental results on simulated data

Trajectories in the Brownian motion dataset have been simulated similarly: the identical parameters σ = 0.3, length N = 30, ∆t = 1. Nevertheless, as illustrated in (Fig. All three methods perform correctly for the super-diffusion dataset (Fig. 3.2). In the second dataset dedicated to super-diffusion analysis, the two processes have different mechanisms: fBm (H = 0.85) is caused by positive correlation, and the Bmd (v = 0.7) results from a deterministic force and a random force induced by the thermal motion of molecules. The two motion types have different shapes (Fig. 3.2 (a)). Given the parameters of the two processes, the MSD curves of fBm are generally smaller than Bmd curves, which is illustrated by the dark red curves under the red curves (Fig. 3.2 (b)). Similarly, the test statistics T n of fBm are generally smaller than that of the Bmd (Fig. 3.2 (e)). The majority of the T n s is above the 0.975 quantiles, which means that the corresponding trajectories are classified as super-diffusion. The statistic summary of the classification results shown in Fig. 3.2 (f) shows that the three methods have high accuracy ∼ 95% on the simulated dataset.

For the third dataset depicting sub-diffusion, obtained by simulating OU (λ = 0.53) and fBm

Algorithm 2 Simulation of a fBm trajectory using Cholesky decomposition

Input: H, σ, X ini , ∆t, n //H the Hurst index //σ the standard deviation //X ini the initial position of a trajectory //∆t time interval between two points //n the number of points in a path Output: the path of a trajectory of fBm: X 1: Generate the covariance matrix C following (3.23). Algorithm 3 Simulation of a multivariate O-U process (Notations are the same as in [START_REF] Attilio | Review of statistical arbitrage, cointegration, and multivariate Ornstein-Uhlenbeck[END_REF]:

C(i, j) = σ 2 ∆t 2 (|i| 2H + |j| 2H -|i -j| 2H ), i, j = 1, • • • , n -1 (3.
dX t = -Θ(X t -µ)dt + SdB t )
Input: Θ, µ, S, x 0 , ∆t, n n: the number of time steps ∆t: the time step x 0 : the initial position of a trajectory Output: the path of a trajectory of a multivariate OU process

x courant 1: -Diagonalization of Θ = AΓA -1 ⇒ A, Γ = (λ 1 , . . . , λ K ) 2: -change of variable : z = A -1 (x -µ) ⇒ dZ t = -ΓZ t dt + V dB t 3: -Calculation of V = A -1 S 4: -Calculation of Φ = V V ′ 5:
-Calculation of the time varying covariance matrix Φ t for z 6: -Choleski's decomposition : (Φ t = LL T ) 7: Initialisation of z variable : z 0 = A -1 (x 0µ) 8: for n-1 time steps do 9:

-Calculate z t 10:

-Simulate a unit variance centered i.i.d. Gaussian vector τ 11:

-Calculate increment u courant = esp u + Lτ in the z coordinates system (esp u,k = e -λ k ∆t z k-1 )

12:

-Coming back to the original coordinates system: x courant = Au courant + µ) 13: end for (H = 0.13, σ = 0.3), the three classification methods perform equally well (Fig. 3.3). Given the parameters, the MSD curves of OU are generally under that of fBm (Fig. 3.3 (b)). Note that the β-MSD method is not always capable of distinguishing sub-diffusion from "immobile" motion, especially in the case of very small coefficients β (see Fig. 3.3 (c)). As to THOTH, the test statistic T n are mostly under the 0.025 quantile and are consequently classified as sub-diffusion. However, the H 0 has not been rejected for several trajectories (more fBm than OU). 

Discussion

From our experimental results, THOTH controls the type I error as confirmed in theory. The rate of wrongly rejected H 0 is around 5%. When particles performing super-or sub-diffusion, the power of test, i.e., the probability that the test rejects the null hypothesis H 0 when a specific alternative hypothesis H 1 is true, is shown in Fig. 3.

([BKV18]

). The larger v, λ are, and the farther H moves away from 0.5, the higher the power of test is. In other words, the more the trajectories differ from the free diffusion, the better THOTH performs. Therefore, in applications, the values of dynamics parameters (e.g. v, H, λ) are very helpful in predicting THOTH's power of test. We can notice the low power of the test when the number of time steps is reduced to 10.

Because of the heterogeneity induced by stochasticity, free diffusion is frequently wrongly classified as super-or sub-diffusion when the two MSD-based methods are applied. Moreover, the number of points used to fit the MSD curves is arbitrarily chosen by different practitioners.

Most importantly, the accuracy of the classification rate cannot theoretically be predicted.

When applying THOTH, two estimators of variance σ 2 are given in (3.21) (first-order) and

(3.22) (second-order), respectively. The first order estimator (3.21) can generate bias induced by the velocity term when the motion is Bmd. Moreover, these two estimators are not optimal in the presence of measurement errors.

Simulation of trajectories with measurement errors could give a complementary understanding of how the classification algorithms perform in the presence of measurement errors.

In the next section, we will discuss the optimal coefficient estimation for individual trajectories in the presence of measurement errors. We will focus on the simplest case, i.e., Brownian motion.

Estimation of the diffusion coefficient in single-particle tracking

In the literature, several approaches have been developed to robustly estimate the diffusion coefficient with respect to the localization noise and the motion blur effect. These approaches have also been evaluated using challenging data. In this section, we describe Optimal Least Square Fitting (OLSF, a MSD-based estimator), Maximum Likelihood Estimation (MLE), and

Covariance-based Estimation (CVE). It has been shown that the sources of error (see Section 3.1.2), together with the finite length of trajectory N , determine the limit of the best theoretically achievable precision in estimating D.

This theoretical limit is quantified by the Cramer-Rao Lower Bound (CRLB), given in Appendix A in [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF]. It is proved that CRLB is related to the length of trajectory, N , and the reduced square localization error ξ,

ξ = σ 2 loc D∆t -2M, (3.24)
where M is the motion blur coefficient defined in (3.13). The CRLB is an information-theoretic quantity derived from the likelihood function and used to determine the lower limit on the variances of unbiased estimators. In other words, no practical algorithm used to estimate the parameters D and σ loc can achieve a smaller uncertainty than the CRLB.

It follows that an estimator is said to be optimal if it reaches the CRLB. We examine here several estimators which reach CRLB in certain conditions. We illustrate the performance of the estimators for different values of ξ and N .

Diffusion coefficient estimation by MSD analysis MSD and covariance analysis

MSD is a measure of the fluctuations in the position of a particle over specified time intervals. Its definition and empirical estimator are given respectively by (3.7) and (3.16). For the sake of simplicity, we use ρ n to denote ρ(n∆t), which is the expectation of ρn , written:

ρ n = 2dDn∆t. (3.25)
However, if we simulate particles undergoing Brownian motion, one can notice that the MSD curves deviate from the linear model defined in (3.25), especially for large time lag n. The empirical MSD ρn is generally defined as the average over Nn + 1 elements (3.16), which

are ∆ 2 1 , • • • , ∆ 2 N -n+1 , where ∆ k = X((k + n)∆t) -X(k∆t), k = 0, • • • , N -n.
For large time lags n, the MSD estimation ρn is computed from a few elements as the corresponding number of displacements decreases. Consequently, the variance C nn of ρn is calculated as proposed in [START_REF] Hong | Single particle tracking. Analysis of diffusion and flow in two-dimensional systems[END_REF]. Finally, it is worth noting that the successive pairs of points with time lag n are not independent.

In recent years, [START_REF] Xavier | Mean square displacement analysis of single-particle trajectories with localization error : Brownian motion in an isotropic medium[END_REF] and [START_REF] Andrew | Statistics of camera-based single-particle tracking[END_REF], with two different perspectives, provided similar expressions for ρ n and for the variance and covariance C mn of the MSD in the presence of measurement errors. Given σ loc (3.12) and M (3.13) as the quantified localization error and motion blur effect, respectively, the MSD gives:

ρ(n∆t) = 2d(σ 2 loc -2M D∆t) + 2dDn∆t, 0 ≤ M ≤ 1 4 . (3.26)
If (3.26) is normalized by the average single frame displacement 2dD∆t, we obtain:

ρ(n∆t) 2dD∆t = σ 2 loc D∆t -2M + n = ξ + n,
and the definition of the reduced localization error ξ is given in (3.24).

The explicit expressions for the variance and covariance of MSD, in the presence of measurement errors, are given in Appendix C in [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF]. It raises the question of how many data points in the MSD curve are required to estimate the diffusion coefficient optimally. It was earlier established that at large n, the variance increases due to the reduced number of samples. This may lead us to choose the first 3-5 points in the MSD curves. However, measurement errors can make the first few points of MSD very noisy, especially when ξ > 1. Consequently, there exists an optimal number of points to ensure reliable estimation of the diffusion coefficient.

This number was previously arbitrarily chosen by different authors. Careful studies showed that the choice of this number has sensible influence on the accuracy of the estimation [START_REF] Xavier | Mean square displacement analysis of single-particle trajectories with localization error : Brownian motion in an isotropic medium[END_REF]. If Chapter 3

another number other than the optimal number is chosen, the fitted D can be several orders of magnitude larger than the real diffusion coefficient, i.e., the estimation can degrade several times inferior to the optimal estimator.

The optimal number of points to be used for MSD fitting, p min

The diffusion coefficient is obtained by linear regression given the MSD curve defined as:

ρ(n∆t) = a + bn∆t. (3.27)
Combining the MSD in (3.26) with the linear model in (3.27), we obtain â = 2dσ 2 loc -4dDM ∆t and b = 2dD. Here p min denotes the optimal number of points that minimizes the fitting error on the fit parameters, a or b. The fitting MSD data points using the optimum number is called the Optimal Least Squared Fitting (OLSF). The explicit expression of p min is given in Appendix B in [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF]. It showed that p min is dependent on the total number of points (i.e., the length) in a trajectory N and the reduced localization error ξ. To guide users in practices, the authors provide a straightforward representation of p min as a function of N and ξ (Fig. 7 

in [MB12]).

A practical problem arises when one tries to find the optimal number of points in experimental data, especially when ξ is not known in advance due to the lack of knowledge of D and σ 2

loc . An algorithm of iterative search was designed ([MB12] Appendix B), given a start point as p 0 = N/10, to jointly find p min and estimate the parameters D and σ 2 loc . Summarizing the current knowledge of the MSD, it is found that a complete analysis has been carried out, started by [START_REF] Hong | Single particle tracking. Analysis of diffusion and flow in two-dimensional systems[END_REF], complemented by the more recent work of [START_REF] Andrew | Statistics of camera-based single-particle tracking[END_REF], [START_REF] Xavier | Mean square displacement analysis of single-particle trajectories with localization error : Brownian motion in an isotropic medium[END_REF],

and [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF]. The complexity, the challenge, the optimal estimators, and the errors of the estimators have been well understood. However, some information, e.g., the covariance in higher time lag n, cannot be used easily to improve the accuracy of estimators due to its complexity.

Alternative methods for estimating diffusion coefficients

Other methods such as MLE ([Ber10]), CVE ([VBF14]), and Motion Blur Filter (MBF) ([Cal16])

have been proposed to estimate the coefficients reliably. We present below the main ideas and concepts under concern.

The concept of MLE

We recall that the one-step displacement is denoted as

∆ k = X((k + 1)∆t) -X(k∆t), k = 1, • • • , N -1. In [Ber10]
, it is established that the measured displacements ∆ k are distributed according to a multivariate Gaussian distribution, i.e.:

E(∆ k ) = 0, E(∆ j ∆ k ) =        2D∆t -2(2DM ∆t -σ 2 loc ), j = k 2DM ∆t -σ 2 loc , j = k ± 1 0, otherwise.
(3.28)

Although a particle undergoing Brownian motion has independent increments, the presence of measurement errors induces a non-diagonal covariance matrix. Let ∆ be the N -1 component column vector of observed displacements ∆ k , k = 1, • • • , N -1, and let Σ be the N -1 × N -1 covariance matrix defined by (3.28). The log-likelihood function of the data ∆ is written:

L (σ 2 loc ,D) (∆) = - 1 2 log |Σ| - 1 2 ∆ T Σ -1 ∆ + const. (3.29)
The D and σ loc parameters are obtained by maximizing L(∆) numerically, which requires calculating the determinant and inverse of the N × N matrix Σ, or by a standard approximation of

Σ [Gra06]
.

The concept of CVE

The CVE is based on (3.28) and is defined as follows:

E(∆ 2 k ) = 2D∆t -2(2DM ∆t -σ 2 loc ), (3.30) E(∆ k ∆ k+1 ) = 2DM ∆t -σ 2 loc .
By replacing the expectation by the empirical unbiased estimators, the unbiased CVEs of D and σ 2 loc write:

D = < ∆ 2 k > 2∆t + < ∆ k ∆ k+1 > ∆t , (3.31) σ 2 loc = M < ∆ 2 k > +(2M -1) < ∆ k ∆ k+1 >, (3.32)
where < • > denotes the average over

∆ 1 , • • • , ∆ N -1 .
In summary, the OLSF method relies on not only the first-step displacement ρ 1 =< ∆ 2 k > but also on higher orders ρ 2 , • • • , ρ m where m is the optimal numbers used in MSD curves fitting. However, OLSF does not take into account the variance of ρ n except when the weighted regression fitting is used. The variance and covariance of higher orders ρ n have very complicated forms and cannot be used easily. MLE and CVE are regression-free methods, essentially exploiting the first-step displacement ∆ k and the full distribution of ∆ k . The variance and cova-riance of ∆ k are both used in the construction of the estimators.

The performance of OLSF, MLE, and CVE compared to CRLB

As a reminder, the CRLB characterizes the smallest uncertainty that an estimator can achieve. In [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF], the relative standard deviation (the standard deviation of the parameter normalized by its expectation) of the estimators is obtained from the CRLB as a function of trajectory length N and the reduced localization error ξ. As shown by a simulation study in Fig. 9 in [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF], when ξ ∼ 10 0 , for a trajectory length N = 1000 (blue curve), the normalized standard error of σ 2 loc (resp. D) is around 0.08 (resp. 0.08), while for N = 10, the normalized standard error of σ 2 loc (resp. D) is around 1 (resp. 1). Therefore, the best possible precision depends on the length of the trajectory N and the reduced localization error. It can be noticed that greater N enables better accuracy of both D and σ 2 loc . Among the three proposed estimators, it is claimed that the OLSF and MLE estimators can reach approximately the CRLB for all the settings of N from 5 to 1000 and ξ from 10 -2 to 10 5 (Fig. 9 in [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF]). For CVE, it can reach CRLB when ξ ≤ 1 but has greater variance than the CRLB for ξ > 1.

Perspectives

In this section, we analyzed the influence of correlations and localization errors on the estimating of diffusion coefficients. We focused on Brownian motion, but similar analyses are required in the case of sub-and super-diffusion.

In addition to the mentioned estimators MSD, MLE, and CVE, several other approaches have been proposed, like MBF (modified Kalman Filter) [START_REF] Christopher | Motion blur filtering : a statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory[END_REF] and neural networks [START_REF] Naor | Single-particle diffusion characterization by deep learning[END_REF].

In both cases, a unified framework was developed to handle several motion modes at once. MBF [START_REF] Christopher | Motion blur filtering : a statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory[END_REF] models particle motion as an OU process:

dX t = (v -κX t )dt + √ 2DdB t (3.33)
ψ t i = 1 t E t i t i -t E X t ds + ǫ loc t i , (3.34)
where v and κ characterize the instantaneous velocity of the particle. When v = 0 and κ = 0, ) is used to model the errors of measurements (as in [START_REF] Andrew | Statistics of camera-based single-particle tracking[END_REF]).

The MBF can handle the varying localization error and take into account phenomenon such as photobleaching, and the time order of the measurement into account. It is useful to estimate the radius is unknown, we propose a computational method in Section 3.4 to assess the radius from the planar projection of trajectories [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF].

Classification of MreB trajectories

The first problem we deal with is the classification of trajectories into different modes of diffusion, namely directed motion, Brownian motion, anomalous sub-diffusion, and "immobile. How to choose the classification method in real experimentation ? Depending on the objective of the classification, one or a combination of two methods can be privileged. For example, if the goal of the classification is to obtain an accurate percentage of the different classes, i.e.

to maximize the overall accuracy, then the THOTH method can be preferred. If the goal is to select all super-diffusive trajectories to further analyze the characteristics of super-diffusion, then MSD may be preferable.

It is worth noting that if the aggregate moves by switching between different diffusion types during the observed period, the estimated diffusion coefficient value D will be averaged. Several methods have been proposed to detect diffusion switches between different diffusion regimes [START_REF] Vincent | A sequential algorithm to detect diffusion switching along intracellular particle trajectories[END_REF]. The estimation of diffusion coefficient D is then performed on sub-trajectories obtained by segmenting the long trajectory into homogeneous motion regions.

The estimation of diffusion coefficient D and localization error σ 2 loc

As stated in Section 3.2.2, the CRLB depends on σ loc and D. In this section, we apply two methods, the Optimal Least Squared Fitting (OLSF) and the Maximum Likelihood Estimation (MLE), to estimate D and σ 2 loc . The final results are influenced by the signal-to-noise level (the reduced localization error (3.24)), as discussed below.

Before applying these two estimators, we mention a simple way to estimate the localization error with an "immobile" dataset.

Estimation of the localization uncertainty σ loc with the "immobile" dataset

In this particular dataset, the "trajectories" of immobilized probes are recorded in the same conditions for diffusing probes (same exposure time and illumination power). The particles detected as "immobile" particles with the MSD methods, that is, the particles for which ρ(n∆t) < 0.01µm 2 for n = 1, • • • , N , are used to constitute the dataset (Fig. 3.7). Thanks to the class of "immobile" particles in the dataset, there exist simple and effective ways to estimate the static localization uncertainty σ loc . Two estimators of σ loc are suggested in [START_REF] Xavier | Mean square displacement analysis of single-particle trajectories with localization error : Brownian motion in an isotropic medium[END_REF]. The first estimator is through the first-order MSD:

σ2 1,loc = ρ 1 /4.
The second estimator concerns an unweighted linear fit of the two (or few) points of the MSD curve. The second estimator gives

σ2 2,loc = â/4,
where â is the fitted intercept by the linear model (3.27). Applying both estimators of σ 2 loc on a set of trajectories extracted from a given cell, the order of magnitude of both estimators is ∼ 10 -4 µm 2 (Fig. 3

.8).

In what follows, we apply OLSF and MLE to estimate diffusion coefficient D and localization error σ 2 loc simultaneously for the Brownian motion dataset. In this section, images used to extract trajectories are recorded by SIM-TIRFM to benefit from the doubled resolution compared to the diffraction limit. However, the complexity of the image reconstruction procedure makes it difficult to quantify the motion blur effect. Moreover, in the image acquisition setting, the exposure time (t E = 10ms for one raw image, 9 raw images required to reconstruct one SIM image) is much shorter than the time interval (∆t = 1s). Therefore, the motion blur effect caused by particle diffusion and finite exposure time are not considered on these datasets.

Estimation of D and σ 2 loc for particles undergoing Brownian motion

Firstly, we extract the free diffusion dataset by trajectory classification. In the previous section, we performed a simulation study with Brownian trajectories to evaluate the performance of MSD-based methods and THOTH. We confirmed the results presented in [BKV2018] that more than 50% of Brownian trajectories are misclassified either as super-diffusion or sub-diffusion. In what follows, we consider THOTH as it provided more robust results: 95% of trajectories were correctly classified as free diffusion.

Next, the diffusion coefficient D and the localization error σ 2 loc are estimated by OLSF and MLE, respectively, using estimation algorithms given in the supplementary materials in [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF].

It is shown in [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF] that both methods achieve nearly optimal performance according to CRLB, as the algorithms proposed by the authors have an excellent agreement with the theory at different settings of (ξ, N ). loc may be caused by the non-free diffusion regime of the particles due to errors in tracking or classification steps. It may also be caused by variance in MSD curves calculation. In a word, the regression method for parameters estimation is very sensible to noise and to variance of the MSD, therefore is not easy to use in real experimentation.

With MLE, we obtain D ∼ 10 -4 µm 2 , σ2 loc ∼ 10 -4 µm 2 , and ξ ∼ 10 0 . (Fig. 3.10). Unlike OLSF, MLE returns non-negative values for D or σ 2 loc . Although it seems initially a desirable attribute, it tends to have an asymmetric distribution resulting in "piling up" at D = 0 and σ 2 loc = 0, as discussed in [START_REF] Xavier | Mean square displacement analysis of single-particle trajectories with localization error : Brownian motion in an isotropic medium[END_REF]. That could explain why two peaks appear in the distribution of estimated σ 2 loc (Fig. 3.10a) and D (Fig. 3.10b). We consider that the right side peaks of both sub-figures correspond to the estimators for free diffusion. In contrast, the left side small peaks may correspond to particles wrongly constructed or wrongly classified as free diffusion.

In summary, by applying the OLSF and MLE, we estimate the diffusion coefficient D and the localization error σ 2 loc for particles performing free diffusion. The regression-free MLE overperforms the OLSF and gives more reliable estimators of D ∼ 10 -4 µm 2 and σ 2 loc ∼ 10 -4 µm 2 . Consistently, by another independent approach, the analysis of "immobile" particles, the localization error σ 2 loc is also estimated to be ∼ 10 -4 µm 2 . Consequently, the order of magnitude of the reduced localization error ξ should lie in the range 1 -10.

The information on ξ and N allows one to see how well the parameters can be estimated in a given experimental scenario. As stated in Section 3.2.2, with the knowledge of ξ and the average length of the trajectories, the CRLB of the estimators of D and σ 2 loc can be calculated [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF]. From MreB trajectories obtained with SIM-TIRF, the reduced localization noise ξ ∼ 1 and the average length of trajectories N ∼ 10. Consequently, the optimal estimation procedure ( i.e., the best attainable accuracy of the estimators of parameters D and σ 2 loc ) gives S(D)/D ∼ 1 and S(σ 2 loc )/σ 2 loc ∼ 1.

Discussion

In this section, three non-parametric classification methods were applied to analyze the MreB trajectories, recorded with SIM-TIRF. We derived estimators of the diffusion coefficient D and the localization error σ loc obtain by the OLSF and the MLE approaches.

More sophisticated methods could be investigated (e.g., Bayesian approach), but they would probably fail in the present study for the following reasons. First of all, the average length of trajectories is ∼ 10. Secondly, the diffusion coefficient D ∼ 10 -4 µm 2 /s is small. Finally, the localization error σ loc has the same order of magnitude as D, which degrades the estimation of D.

Estimation of the radius of the cylinder from projected trajectories

Unlike previous methods established in the Lagrangian setting, we focus here on an Euler paradigm suggesting that the observer stands in one position and observes all particles passing through this position. The approach inspired by the ideas of Euler aims at estimating the local features of the trajectories, e.g., the local drift and the diffusion coefficient. It is assumed that the trajectories are independent. Unlike MSD methods that require long trajectories and average the diffusion parameters along the trajectory, the approach concerned is suitable for analyzing short trajectories and detecting the appearance or disappearance of certain dynamical events depending on time.

In what follows, the position of particles is modeled by the overdamped Langevin equation, where the diffusion is generated by the thermal agitation of the ambient molecules and a field of force. Let us consider the following SDE ( [START_REF] Nathanael | Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging[END_REF])

dX t = µ(X t )dt + √ 2B(X t )dW t , (3.35)
where µ(X t ) is the drift field, D(X t ) = 1 2 B(X)B T (X) is the diffusion tensor, and W t is the Wiener process. The difference between Bmd in (3.11) and (3.35) is that the drift and diffusion coefficients of a particle depend on its position X t in (3.35).

The model parameters of (3.35), µ(X t ) and D(X t ), are recovered from the conditional moments of the trajectory increments ∆X = X(t + ∆t) -X(t) ([Sch09])

µ(x) = lim ∆t→0 E[∆X(t)|X(t) = x] ∆t , D(x) = lim ∆t→0 E[∆X(t) T ∆X(t)|X(t) = x] 2∆t , (3.36)
where E[•|X(t) = x] denotes the expectation of the particle increments at point x. In practice, the expectation is estimated with a finite sample size, and at the same time, ∆t, the timeresolution of the recording cannot be infinitely small.

The estimation of the effective velocity and standard error

In this section, we briefly summarize the approach proposed by Hoze and Holcman [START_REF] Nathanaël | Statistical methods for large ensembles of super-resolution stochastic single particle trajectories in cell biology[END_REF] to estimate the local drift and diffusion coefficients. First, the image is partitioned into square bins (or blocks) noted as B(x k , r) with size r and square center x k = (x k , y k ). The local drift and diffusion coefficients are then estimated from trajectory points falling into each square (see details in [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF]). Note that the time-resolution ∆t generates bias on the calculation of diffusion coefficient. Therefore, based on the estimators proposed in [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF], we proposed an updated version for the estimator of diffusion coefficient, consistent with the SDE (3.35) (A.1):

µ x (x k ) ≈ 1 N k ∆t Nt j=1 xj i ∈B(x k ,∆x/2) (x j i+1 -x j i ), (3.37) µ y (x k ) ≈ 1 N k ∆t Nt j=1 xj i ∈B(x k ,∆x/2) ( y j i+1 -y j i ∆t ); σ2 xx (x k ) ≈ 1 2N k ∆t Nt j=1 xj i ∈B(x k ,∆x/2) (x j i+1 -x j i ) 2 -a 2 x (x k )∆t, (3.38) σ2 yy (x k ) ≈ 1 2N k ∆t Nt j=1 ỹj i ∈B(y k ,∆y/2) (y j i+1 -y j i ) 2 -a 2 y (y k )∆t.
where

B(x k , ∆x/2) is a square bin {x ∈ [x k -∆x/2, x k + ∆x/2], y ∈ [y k -∆y/2, y k + ∆y/2]}, N k is the number of points in B(x k , ∆x/2).
Based on the extracted local information, an algorithm is established for reconstructing the 3D surface and the 3D stochastic dynamics from the planar projection of trajectories [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF].

For particles diffusing on a 3D membrane surface, the common 2D microscope captures images depicting the projection of their dynamics onto the 2D planar cover-slip. This projection causes bias on the estimations of drift and diffusion coefficients. In [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF], the explicit expressions of the effective (or projected) drift and diffusion coefficient are given as a function of the local surface properties, such as the mean curvature. It is shown that for free diffusion, the projection generates a drift term in the projected dynamics. As for diffusion already containing a drift, the observed drift is the composite of the true drift in 3D and another term due to curvature effects. In what follows, we recap the principles of the algorithm. Furthermore, we propose an application of this method to recover the radius of the 3D cylindrical surface.

Projection of a diffusion process onto a 2D plane

Assume that the surface under study has an explicit representation z = f (x, y), where f (x, y) is a sufficiently smooth function defined in the (x, y) plane. The 2D plane is assumed to be tangent to the surface at the origin 0. Let (i, j, k) be the orthonormal unit vector, where k is in the direction of the z-axis. It follows that It is shown in [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF] that when a Brownian motion on the surface S is projected onto a 2D plane, the observed motion is no longer pure diffusion, but is composed of two terms, the drift term and the diffusion term. The projected process on the (x, y) plane, x t = (x t , y t ) is

X t = x(t)i + y(t)j + z(t)k, z(t) = f (x(t), y(t)).
dx t = a geometric (x)dt + B(x, f (x))dw, (3.39) 
where a geometric the effective drift and σ = 1/2 B BT the effective diffusion tensor are dependent on the local properties of the surface, e.g. the mean curvature. Given the dynamics on the surface as defined by the stochastic process in (3.35), the motion projected onto the plane is also a Brownian motion with drift. The observed drift term is composed of the projection of the original drift and the projection of diffusion, while the observed diffusion is the projection of the original diffusion. In the simplified case, where the diffusion coefficient is constant and isotropic, the effective diffusion tensor has the following form ((43) in [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF]):

σx,x = D 1 + f 2 y 1 + f 2 x + f 2 y , σx,y = D f x f y 1 + f 2 x + f 2 y , σy,y = D 1 + f 2 x 1 + f 2 x + f 2 y , (3.40)
where D is the physical diffusion coefficient, and f x and f y are the spatial partial derivatives of f in the direction of x and y, respectively.

Estimation of the cylinder radius

It is well known that MreB aggregates diffuse on the inner membrane of the rod-shaped bacteria. The dynamics of MreB can be considered as occurring on the surface of the cylinder due to osmotic pressure, with the inner membrane usually adhering to the cell wall. On the surface of the cylinder, the curvature in the direction of the axis of the cylinder is null. Whereas in the circumferential direction, it is constant 1/R where R is the radius of the cylinder. If the radius of the bacteria cell is not provided, assuming that MreB aggregates undergo Brownian motion with drift (3.35), it is possible to estimate the radius and therefore correct the bias of coefficients estimations, as explained below.

Let us define a coordinate system for a cylinder object (Fig. 3.11a). The xy plane is parallel to the cylinder, and the xy plane passes through the origin (0, 0, 0). The axis y is along the direction of the axis of the cylinder, while the axis x is orthogonal to it. The axis z is orthogonal to the xy plane. We suppose that the dynamics are isotropic and constant on the surface of the membrane, that is, B(X) = √ 2DI. From (3.40), it follows that

σxx (x) = D R 2 -x 2 R 2 , σyy (x) = D. (3.41)
Using (3.41), we aim to estimating the radius of the cylinder by linear fitting by solving the equation

1 - σxx σyy = 1 R 2 x 2 . (3.42)
By variable substitution, note T = 1 -σxx σyy , S = x 2 , then it gives T = 1 R 2 S. By the ordinary least square fitting, R = 1/ b, where b is the estimated slope of the linear model. Although there is no intercept term in the model, we can consider including one into it due to stochastic factors. In the simulation experiments, linear models with and without intercept term are both evaluated.

Procedure for estimating the cylinder radius and evaluation

By using simulated data that mimics the dynamics of MreB on the cell membrane surface captured by TIRF microscopy, we evaluate the procedure dedicated to estimating the cylinder radius. In our experiments, during time T S , particles are assumed to appear and disappear on the surface with constant rates λ and τ d , respectively. Particles move according to the stochastic process (3.35). The drift µ is set to 0.7, and the diffusion coefficient D is set to a constant value in one movie during T S . Note that, without specification, the unit used in the simulation is given in pixel size(1pixel = 64nm). Finally, the radius of the cylinder is ∼ 8 (∼ 510nm). Dynamics on the surface of the cylinder, having a distance to the support plane < 200nm, are projected onto the plane and are captured with TIRFM.

In the estimation procedure, the size of the square r is set to 0.5. We aim to evaluate how the number of points N k in each square B(x k , r) and the dynamic feature D influence the estimation accuracy. It is not difficult to find that N k depends highly on the time-resolution ∆t and total observation time T S . Therefore in what follows, the procedure is evaluated with different ∆t, T S , and D values.

The effective drift and diffusion coefficient are estimated using (3.37) and (3.38) from the simulated images. According to (3.41), σyy should be constant and σxx parabolic with respect to x, as confirmed by the simulation results (Fig. 3.12a-d). The radius is then estimated by the linear regression (3.42) with and without an intercept term. By simulation, it turns out that allowing the intercept term in fitting can make the estimation more stable (Fig. 3.12e-h, Fig. 3.13).

In Fig. 3.12, ∆t = 0.1, D = 0.04, and T S varies is set to 0.5, 1, 2, and 5 minutes, respectively. It can be noticed that when T S = 0.5min, accordingly, the average number of points in a square N k ∼ 1.5 × 10 3 , the curves are noisy, and the points are scattered (a and e). When T S = 5min, accordingly, N k ∼ 1.5 × 10 4 , the curves are much more smooth and the scatter points are more regular and aligned (d and h). The red line represents the true radius 510nm. Without intercept (blue), the estimator has a smaller standard deviation but is biased and less robust. On the contrary, the estimator with intercept (green) is almost unbiased and is more robust. (b): The average number of points N k in each square at ∆t from 0.1 to 0.25, over the 100 replications. N k decrease almost linearly with respect to ∆t. microscopy, provides reliable estimators of R, provided that the number of points in the square is large enough.

The procedure to estimate the cylinder radius R was evaluated on synthetic datasets. Unfortunately, the experimental data of MreB dynamics recorded with TIRF and SIM-TIRF do not provide enough density of points to confirm our results obtained on synthetic datasets. In order to ensure good performance of the procedure, single-particle tracking super-resolution microscopy (e.g., spt-PALM [START_REF] Eric | Imaging intracellular fluorescent proteins at nanometer resolution[END_REF]) will be investigated in future works since it will provide a high densities of particles.

Conclusion and Perspectives

In this chapter, we reviewed a few methods for dynamics analysis in cell imaging. The ability and limits of these methods were discussed. In our experimental data obtained by fluorescence microscopy, several sources of error cannot be ignored and should be included in the algorithms in order to better interpret the results.

We addressed two main problems, that is the classification of trajectories (adjusting data to the most appropriate model) and the estimation of coefficients. We considered different diffusion types, including free diffusion, sub-diffusion (fBm (with 0 < H < 1/2) and OU) and super-diffusion (Brownian motion with drift and fBm (1/2 < H < 1)).

To address the problem of model classification and parameters estimation, we evaluated several approaches:

-MSD is the most used method for single-particle trajectories analysis;

-Hypothesis Test (i.e. THOTH algorithm) [BKV18] using maximum excursion distance; -The Bayesian approach, which amounts to both estimating parameters and selecting the best motion model among a set a pre-defined collection of models (e.g. [START_REF] Silvan | Bayesian decision tree for the classification of the mode of motion in single-molecule trajectories[END_REF]);

-The machine learning approach recently applied to SPT and used to discriminate free diffusion from fBm and CTRW (see [START_REF] Naor | Single-particle diffusion characterization by deep learning[END_REF]). This approach is actually dedicated to anomalous diffusion and the comparison of competing models but it can be extended to any diffusion process.

In the case of MreB dynamics analysis, the trajectories are short (∼ 10 points, ∆t = 1) and all the aforementioned methods cannot be safely applied. We focused on MSD and THOTH which are non-parametric test method. THOTH considers Brownian motion as the reference motion (Hypothesis H 0 ) and the alternative (H 1 ) is split into two parts: sub-diffusion and superdiffusion. MSD follows the same idea since the reference model is free diffusion. Simulations were carried out to assess the precision of MSD classification. Despite the lack of information (limited SNR, short trajectories and low density of particles), we applied the approach of [START_REF] Xavier | Optimal diffusion coefficient estimation in single-particle tracking[END_REF] to trajectories classified as free diffusion, to extract diffusion coefficient D, localization error σ 2 loc . The analysis of individual trajectories in single-particle tracking is generally formulated in the Lagrangian setting. Another approach consists in estimating diffusion at a given position from several trajectories passing through a local neighborhood. This Euler setting can reveal the 3D space or 3D surface properties, for example the potential wells, the shape of the surface etc, provided that the density of trajectories is high enough, which is not the case with MreB dynamics.

For future work, we plan to investigate MSD analysis by including measurement errors for directed motion and confined motion as a supplement to free diffusion [START_REF] Christopher | Motion blur filtering : a statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory[END_REF]. In the case of MreB, it should be valuable to aggregate the trajectories in similar cells to have more significant Chapter 3 information. Furthermore, the deep learning method showed great potential for analysis in case of noise, with multiple short trajectories [START_REF] Naor | Single-particle diffusion characterization by deep learning[END_REF], [START_REF] Marloes | Particle mobility analysis using deep learning and the moment scaling spectrum[END_REF]. It can be extended to other modes of motion and even distinguish the change of regimes along a given trajectory.

As we know that the dynamics are partially observed by TIRF microscopy, in order to obtain a global view of the particle dynamics from the partial observations, a probabilistic procedure, taking into account the particles exiting and re-entering the field of view is discussed in Chapter 4, to reconstruct the MreB dynamics over the whole membrane surface.

Introduction

In two-dimensional (2D) and three-dimensional (3D) live-cell imaging, spatiotemporal events and biomolecule dynamics are frequently observed with an incomplete field of view. Very often these observations are related to regions of observation (ROO) inside a tissue, a cell, or in the neighborhood of membranes. Nevertheless, it is quite unusual to analyze 3D dynamics of biomolecules or events occurring on a closed surface and observed on a 2D plane. Our work is motivated by the study of dynamics of MreB proteins, moving close to the inner membrane during cell wall construction in rod-shaped bacteria ([Bil+17], [START_REF] Van Teeffelen | Recent advances in understanding how rod-like bacteria stably maintain their cell shapes[END_REF]). Its dynamics can only be observed in a small region and are recorded as 2D time-lapse movies (Fig. 4.1a). As for 3D image acquisition, it can even solve the problem of partial observation, but is not always appropriate, especially if the objective is to capture fast and temporally short events as described in [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF]. The frame rate adapted to the scale of dynamics may be too high when compared to the period of time to acquire temporal series of 3D volume ([Bou+14] and [START_REF] Charlene | Methods for Studying Membrane-Associated Bacterial Cytoskeleton Proteins In Vivo by TIRF Microscopy[END_REF]).

To the best of our knowledge, identifying re-entrance events of the same entities inside the ROO is not addressed in the literature. In experimental data, when the unobserved region represents a significant part of the entire surface, a complete description of the dynamics on these closed surfaces becomes of paramount importance for deciphering the mechanisms of some processes. In our study of the regulation of the dynamics of MreB protein, as inputs, we consider a set of trajectories estimated by tracking algorithms (e.g., [START_REF] Jaqaman | Robust single-particle tracking in live-cell time-lapse sequences[END_REF], [START_REF] Nicolas | Multiple hypothesis tracking for cluttered biological image sequences[END_REF], [START_REF] Huei-Fang | Tracking growing axons by particle filtering in 3D+ t fluorescent two-photon microscopy images[END_REF]). These tracking algorithms are very sophisticated and allow us to handle large sets of particles, different stochastic dynamical models [START_REF] Henk | The interacting multiple model algorithm for systems with Markovian switching coefficients[END_REF], [START_REF] Paul | Stochastic models of intracellular transport[END_REF], and observation models [START_REF] Auguste | Multiple particle tracking in 3-D+ t microscopy : method and application to the tracking of endocytosed quantum dots[END_REF], [START_REF] Ning | Target perceivability and its applications[END_REF]. They take into account birth/death events, and/or split/merge events. Particles may be unobserved or undetected for short periods of time, especially in 2D+time microscopy. However, no computational or statistical method manages the situation corresponding to a large hidden region inside the region of interest. Also, the identification of particles leaving the ROO through one border of the domain and re-entering from a far border has not been addressed. Our objective is then to provide a generic approach to tackle the problem of the reconstruction of particle trajectories observed on a small part of a closed surface as illustrated in Fig. 4.1b.

In this chapter, we focus on the design and evaluation of a self-contained mathematical framework to tackle the reconstruction of particle trajectories on cylindrical surfaces, given the tracklets observed in a small window sampled on the surface. In our study, the particles are assumed to obey a stochastic Brownian motion with drift and may appear or disappear during the observation period. Split or merge events are not considered in the modeling framework.

The trajectory reconstruction problem is defined as the maximization of the likelihood function given tracklets inside the ROO. The optimization problem to be solved is formulated as an integer linear programming problem. The final algorithm is a data-driven algorithm with no hidden parameter to be set by the user. We demonstrate the performance and robustness of our computational method on simulation data, by varying the ratio of observed to unobserved region, the drift and variance of particles, as well as the rates of birth and death of particles.

The remainder of this chapter is organized as follows. In Section 2, we present the problem formally and introduce notation. In Section 3, we describe the probabilistic framework, including Poisson processes used to describe birth and death events, and Brownian motion with drift to represent particle motion. We also describe the computational procedure aiming at connecting tracklets belonging to the same trajectory, and then recovering the dynamics of particles on the whole closed surface. Note that we suppose that the curvature of the cylinder is known so that the movements are represented on a 2D unwrapped surface. In Section 4, the performance of our algorithm is evaluated on simulated data. Finally, we conclude and propose some future work. A summary of notation useful for the evaluation of the likelihood is given in Section 4.2.1.

Problem statement and notation

We consider a probabilistic model to represent particles that are born, move and die on a cylindric membrane.

Models description

Formally, let us denote H and L to be the height and perimeter of the cylinder respectively (see Fig. 4.1). We associate 2D coordinates (x, y) ∈ [-L, 0] × [0, H] to each point of the underlying cylindric manifold. The particles are "born" with a constant rate λ and appear uniformly at random on the membrane surface. We consider a Poisson process with intensity λ to statistically represent the birth events. Each particle is assumed to have the same constant rate of death τ d such that life duration T d of a particle follows an exponential law of parameter τ d .

During its lifetime, a particle k born at time t 0 and located at Z k 0 = (X k 0 , Y k 0 ) moves according to Brownian motion with drift. On the set ] -L, 0[×[0, H], the position of the particle at time t ≥ t 0 prior to its death time is given by

Z k t = Z k 0 + v(t -t 0 ) + ΣB k t-t 0 (4.1)
where

Z k t = (X k t , Y k t ), v = (v x , v y ), Σ = σ x 0 0 σ y ,
and B k t is a two-dimensional Wiener process. 103

Modeling hypothesis and MreB dynamics

The study of the dynamics of MreB patches or assemblies in the vicinity of the internal membrane of Bacillus subtilis bacteria reveals several subpopulations undergoing constrained, randomly or directionally moving dynamics [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF]. Herein we are interested in the directionally moving subpopulation dynamics. This subpopulation moves possessively around the cell diameter [START_REF] Ethan | Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis[END_REF][START_REF] Julia | Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria[END_REF]. Following Hussain et al, [START_REF] Saman | MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis[END_REF], Billaudeau et al [START_REF] Cyrille | MreB Forms Subdiffraction Nanofilaments during Active Growth in Bacillus subtilis[END_REF] confirmed that directionally moving filaments travel in a direction close to their main axis, perpendicularly to the long axis of the cell (angle γ = 89.9 • ± 37.0 • ). Hence, for some filaments, the speed vector may have a component in the main direction of the bacteria.

According to [START_REF] Felix | Mechanics and dynamics of translocating MreB filaments on curved membranes[END_REF], a motion model (named "biased random walk") reproduces the dynamics patterns of MreB filaments. In their simulations, the speed is constant and the noise variance between several time steps depends on the duration and, possibly on the local curvature of the surface. These properties are shared with the Brownian motion model with constant drift we consider.

Some practical consideration

In order to model the topology of the cylinder as illustrated in Fig. 4.1, we impose deterministic jumps when the process reaches one of the two borders {-L} × [0, H] or {0} × [0, H]. For any y ∈ [0, H], the process reaching position (-L, y) jumps to position (0, y) and vice versa. In y direction the initial position of a particle lies between [0, H]. When a particle hits the vertical borders, its following trajectory is no longer considered. Finally, we assume that each particle behaves independently from the others and that there is no fission or fusion of particles.

In what follows, we observe the dynamics at discrete times ∆t, 2∆t, 3∆t . . . We denote ∆t the time step on the subset [-l, 0] × [0, H] with l < L. The observations are recorded during a time interval [0, T S ]. As we suppose that a particle does not change its drift direction along its trajectory, we assume that v x > 0, even though particles can actually move in both directions, which requires a classification to separate them into two groups. We consider that an observed tracklet of a given trajectory is an output if the last observed point of the segment is within a 

Likelihood of a configuration

In this section, our objective is to derive an analytic expression of the likelihood Q(c) of a configuration c. The aim is to find, for a given sample S, the configuration ĉ such that P (ĉ/S) is Therefore, for each input i = (t i , y i ) ∈ I S , we consider a spatiotemporal neighborhood

V ǫ i = T ǫ i × H ǫ i with T ǫ i = [t i -ǫ 2 , t i + ǫ 2 ] and H ǫ i = [y i -ǫ 2 , y i + ǫ 2 ]
for some ǫ > 0. The idea is to replace a given configuration c by a set C ǫ c of configurations where each element c * ∈ C ǫ c is similar to c but each input i ∈ I S is replaced by an input in V ǫ i . Formally, for each configuration c leading to the input set I S , C ǫ c is the set of configurations defined as follows:

c * = (D c * , B c * , b c * ) ∈ C ǫ c if and only if for each i ∈ I S , there exist i * ǫ ∈ V ǫ i satisfying        D c * = D c , B c * = {i * ǫ , i ∈ B c }, For each i ∈ I S \ B c , b c * b -1 c (i) = i * ǫ .
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With this definition, we have

P (c/S) = lim ǫ→0 P (C ǫ c /S) = lim ǫ→0 P (C ǫ c /O S ) c ′ ∈C S P C ǫ c ′ /O S . (4.2)
In what follows, we study the behavior of P (C ǫ c /O S ) when ǫ goes to 0. We will always work conditionally on the realization of the output set O S but we will keep this conditioning implicit and write P (C ǫ c ) instead of P (C ǫ c /O S ) in order to simplify the notation. The study of P (C ǫ c ) will involve the probability for a particle to die in the unobserved region but also the probability that a particle born in this unobserved region enters the observed one in a given spatiotemporal neighborhood V ǫ i . Furthermore, we assume that the particles born in the unobserved region, enter the observed one with a constant rate τ α and with a uniform distribution on {-l} × [0, H]. This is consistent with the fact that the particles are born with constant rate λ and appear uniformly at random on the membrane surface. Therefore, denote by N α the Poisson process of intensity τ α counting the number of inputs involved by particles born in the unobserved region.

Consider an output o ∈ O S and the possibility for the particle involved in o to die in the unobserved region. We have the following proposition (see [START_REF] Schrodinger | Zur Theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung[END_REF], [START_REF] Maurice | Inverse statistical variates[END_REF], [START_REF] Wald | Sequential Analysis[END_REF]). Proposition 1 Given the particle motion model as Brownian motion with drift as described in equation 4.1, the first passage time noted as T l on the entrance line {-l} × [0, H] of a particle starting at position z 0 = (0, y 0 ) for some y 0 ∈ [0, H] follows a law of inverse Gaussian, that is, T l ∼ IG lu vx , lu σx 2 where l u := Ll is the length of the unobserved region.

Recall that if X ∼ IG(µ, λ), then X ≥ 0 almost surely, and for each x ≥ 0,

P (X ≤ x) = x 0 λ 2πy 3 exp - λ(y -µ) 2 2µ 2 y dy. (4.3)
In our framework, the event corresponding to the death of a particle with life duration T d following an exponential law of parameter τ d in the unobserved region is precisely {T d < T l }.

Hence, we can derive an explicit expression of P (C ǫ c ). Assume ǫ small enough so that for each i, i ′ ∈ I S , T ǫ i ∩ T ǫ i ′ = ∅. For a given configuration c and a given ǫ > 0, we will write 

C ǫ c = (D c , B ǫ c , ♭ ǫ c ) with B ǫ c = {B c * , c * ∈ C ǫ c }
P (T d < T l ) = +∞ 0 t l 0 f T d (t d )f T l (t l )dt d dt l , (4.5) = +∞ 0 t l 0 τ d e -τ d t d l u σ x 2πt 3 l exp - (v x t l -l u ) 2 2σ 2 x t l dt d dt l , = +∞ 0 l u 1 -e -τ d t l σ x 2πt 3 l exp - (v x t l -l u ) 2 2σ 2 x t l dt l ,
where f T d and f T l , respectively stand for the density functions of T d and T l .

Now, consider the event B ǫ c . We call "spontaneous input" an input related to a particle born in the unobserved region that has never been observed. The set B ǫ c is defined so that, for each input i ∈ B c , we have exactly one "spontaneous input" appearing during the time interval T ǫ i , with a position in H ǫ i . Moreover, outside ∪ i∈Bc T ǫ i , there is no "spontaneous input." Formally, we have

B ǫ c =    N α   [0, T S ] \ i∈Bc T ǫ i   = 0      i∈Bc {N α (T ǫ i ) = 1} ∩ H ǫ i   , (4.6)
where N α is a Poisson process of intensity τ α associated to the counting of inputs involved by particles born in the unobserved region on the time interval [0, T S ]. In order to simplify the notation, H ǫ i denotes also the event of "spontaneous" appearance of an input i in H ǫ i . This event is independent of the process N α , and since the "spontaneous inputs" appear uniformly on [0, H], we have P (H ǫ i ) = ǫ H . Meanwhile, for any time interval I, N α (I) follows a Poisson law of parameter τ α |I| where |I| denotes the length of the interval I. Since ǫ is small enough so that for each i, i

′ ∈ I S , T ǫ i ∩ T ǫ i ′ = ∅, N α (T ǫ i )
and N α (T ǫ i ′ ) are independent. Consequently, we can compute P (B ǫ c ) as follows:

P (B ǫ c ) = e -τα(T S -|Bc|ǫ) ǫτ α e -ǫτα ǫ H |Bc| = ǫ 2 τα H |Bc| e -ταT S . (4.7)
Finally, consider the event ♭ ǫ c . For each input i ∈ I S \B c , we denote by {o i c → V ǫ i } the survival event of the particle involved in the output o i c = b -1 c (i) in the unobserved region which appears in the spatiotemporal neighborhood V ǫ i . Since the particles behave independently, we have

P (♭ ǫ c ) = i∈I S \Bc P {o i c → V ǫ i } . (4.8) chapitre4
In what follows, we consider a given input i ∈ I S \ B c and its related output o = b -1 c (i). Defining s i = t it o and h i = y iy o allows us to center the situation around the output o in the following way. A particle born at time 0 in position z 0 = (0, 0) has a life duration T d following an exponential law of parameter τ d . During its lifetime, the position of the particle is driven by a Brownian motion with drift Z t = (X t , Y t ): Z t = vt + ΣB t , where B t is a 2D Wiener process and v and Σ are given in (4.1). Define T l to be the first reaching time of l u = Ll of the process X t . The event {o → V ǫ i } can now be written as follows:

{o i c → V ǫ i } = {T d > T l } T l ∈ s i - ǫ 2 , s i + ǫ 2 Y T l ∈ h i - ǫ 2 , h i + ǫ 2 .
This expression corresponds exactly to the fact that in order to realize {o i c → V ǫ i } the particle needs to have a life duration longer than its first reaching time of l u and to appear in the spatiotemporal neighborhood . Moreover, due to the fact that Σ is diagonal, the process Y t is not only independent of T d but also of T l . This allows us to write

s i -ǫ 2 , s i + ǫ 2 × h i -ǫ 2 , h i + ǫ 2 .
P {o i c → V ǫ i } = s i + ǫ 2 s i -ǫ 2 f T l (t l ) +∞ t l f T d (t d ) h i + ǫ 2 h i -ǫ 2 f Yt l (y)dy dt d dt l .
As the two integrals involve a small domain of size ǫ, P {o i c → V ǫ i } ∼ O(ǫ 2 ), and

lim ǫ→0 P {o i c → V ǫ i } ǫ 2 = f T l (s i )f Ys i (h i ) +∞ s i f T d (u)du (4.9) = l u σ x 2πs 3 i exp - (v x s i -l u ) 2 2σ 2 x s i 1 σ y √ 2πs i exp - (h i -v y s i ) 2 2σ 2 y s i e -τ d s i = l u 2πσ x σ y s 2 i exp - (v x s i -l u ) 2 2σ 2 x s i - (h i -v y s i ) 2 2σ 2 y s i -τ d s i .
For each configuration c, we calculate the likelihood Q(c) of the configuration c as follows:

Q(c) := lim ǫ→0 P (C ǫ c ) ǫ 2|I S | .
From (4.4), (4.5), (4.7), (4.8), and 4.9, we finally obtain the likelihood

Q(c) = τ α H |Bc| e -ταT S   +∞ 0 l u 1 -e -τ d t l σ x 2πt 3 l exp - (v x t l -l u ) 2 2σ 2 x t l dt l   |Dc| × i∈I S \Bc l u 2πσ x σ y s 2 i exp - (v x s i -l u ) 2 2σ 2 x s i - (h i -v y s i ) 2 2σ 2 y s i -τ d s i .
(4.10)

Note that the limit when ǫ goes to 0 of P (C ǫ c ) ǫ 2|I S | is well defined, strictly positive, and that the exponent 2|I S | does not depend on the configuration c.

Recalling (4.2), this allows us to write

P (c/S) = Q(c) c ′ ∈C S Q(c ′ ) (4.11)
and as a consequence, we have

ĉ = argmax c∈C S {Q(c)}.
(4.12)

Maximum likelihood and optimal configuration

The aim of this section is to identify the configuration c corresponding to the maximal likelihood Q(c) (see (4.10)). Define

β := -log τ α H , δ := -log   +∞ 0 l u 1 -e -τ d t l σ x 2πt 3 l exp - (v x t l -l u ) 2 2σ 2 x t l dt l  
and for each configuration c and each i ∈

I S \ B c γ i c := -log l u 2πσ x σ y s 2 i exp - (v x s i -l u ) 2 2σ 2 x s i - (h i -v y s i ) 2 2σ 2 y s i -τ d s i .
It follows that

ĉ = argmax c∈C Q(c) = argmin c∈C -log (Q(c)) (4.13) = argmin c∈C   β|B c | + δ|D c | + i∈I S \Bc γ i c   .
This decomposition allows us to consider a linear optimization problem where β represents the cost of the spontaneous birth of an input, δ the cost of the death of an output and γ i c the cost of the connection between the output b -1 c (i) and the input i. The cost of connection can be defined for any couple (o, i) ∈ O S × I S as

γ i o := -log l u 2πσ x σ y s 2 o,i exp - (v x s o,i -l u ) 2 2σ 2 x s o,i - (h o,i -v y s o,i ) 2 2σ 2 y s o,i -τ d s o,i ,
where s o,i := t it o , h o,i = y iy o and the convention γ i o = +∞ if t i ≤ t o . In order to write in a canonical way this linear optimization problem, we associate to each configuration c a family of coefficients

(c o,i ) (o,i)∈O S ×I S such that c o,i = 1 if b c (o) = i and c o,i = 0 if b c (o) = i.
Since an output can be connected to at most one input, for each o ∈ O S , i∈I S c o,i ∈ {0, 1} and i∈I S c o,i = 0 corresponds to the death of the output o. Similarly, for each i ∈ I S , o∈O S c o,i ∈ {0, 1} and o∈O S c o,i = 0 corresponds to the fact that the input i is a "spontaneous input."

Our optimization problem is then equivalent to finding the family of coefficients (c o,i ) (o,i)∈O S ×I S that minimizes the quantity

β   i∈I S   1 - o∈O S c o,i     + δ   o∈O S   1 - i∈I S c o,i     + o∈O S i∈I S γ i o c o,i
or, equivalently The configuration ĉ is then the solution of the optimization problem (4.14) and corresponds to the most likely configuration given the sample S. In order to complete the study, we propose computing the following most likely configurations in a recurrent way by solving (4.14) with additional constraints ensuring that the solution is different from the previous ones. In other words we define recursively the sequence (c n ) n∈N in the following way:

K(c) := o∈O S i∈I S γ i o -β -δ c o,i s.t.        ∀o ∈ O S , ∀i ∈ I S , c
c 1 := ĉ, -∀n ≥ 2, c n solves (4.14) with the n -1 additional constraints ∀k ∈ {1, . . . , n -1},

o∈O S i∈I S c o,i n (1 -c o,i k ) + (1 -c o,i n )c o,i k ≥ 1. (4.15)
With this definition, c n is then the nth most likely configuration. When n is greater than the number n S of configurations compatible with the sample S, the constraints are impossible to satisfy. In other words this sequence is well defined up to n S .

Estimation of parameters

Several parameters are involved in our computational approach. In this section, we propose clues to set these parameters. First, the parameters v and Σ can be estimated with classical maximum likelihood estimation procedures.

Second, we propose an estimator τd of τ d as explained below. The sample S can be considered as a set of points p = (t p , Z p ) observed at time t p and position Z p = (X p , Y p ) grouped in clusters s corresponding to tracklets of trajectories. The death of a particle in the observed region is detected in S for each point p ∈ S for which the associated tracklet s p has no successor point at time t p + ∆t. In order to be sure that the absence of successor is effectively due to the death of a particle and not to a particle leaving the observed region, we restrict the analysis to a region excluding a neighborhood of the border. However, in this neighborhood we can check the existence of successors for points in the restricted region. We denote by S r ⊂ S the sample of points in the restricted region. We assume here that the parameters v, Σ and τ d are known, keeping in mind that in practice estimators are used instead. As introduced earlier, L is the perimeter of the cylinder, l is the length of the observed region, and l u = Ll is the length of the unobserved region. For a given length x, we denote by N x the number of tracklets born in the region ]x, 0] × [0, H] and reached the border {0} × [0, H]. Accordingly,

N lu
T S is a consistent estimator of τ α since the dynamics are assumed to be homogeneous on the surface of the cylinder. Our aim is actually to build an estimator for τ α in the case where l u > l which prevents us from computing directly N lu . Therefore, we compute N l by taking the whole observed region into account, and denote by S * l the set of tracklets having an input in {-l} × [0, H] and an output in {0} × [0, H]. For each tracklet s ∈ S * l and each length x ∈ [0, l u ], we denote by B x s the event corresponding to the birth of s within ]lx, -l] × [0, H]. Let l e = l ul be the length of the extended zone

[-l u , -l] × [0, H].
We are now interested in the realization of the events B le s . In Fig. 4.3, N l = 2 corresponds to tracks #1 and #4, S * l = {2, 5}, and the event B le 2 is realized while B le 5 is not. Note that since the particles have the same independent dynamics, P (B x s ) does not depend on s. For x < l, this probability can easily be estimated as follows: , τα is an unbiased estimator of τ α . Moreover, if we assume that the number of observed tracklets grows linearly with the observation time T S , this estimator is consistent when T S goes to +∞. Now, we consider the case l < l e < 2l which can easily be extended to the general case l < l e . Consider s ∈ S * l and denote for each interval J ⊂ [-L, 0] the event B J s where the tracklet s is born in the region J × [0, H]. The event B le s can be decomposed as follows:

B le s = B [-2l,-l] s B [-2l,-l] s ∩ B [-lu,-2l] s .
The loss of memory and homogeneity properties of the dynamics lead to the following estimator ple :

ple := pl + (1pl ) ple-l .

Limits of the model

The main assumptions in this work are homogeneity in time and space, induced by the constant death and birth rates, as well as constant speed and noise. While these assumptions lead to a simple model and allow a reasonably technical study, it is natural to question it. The chapitre4 main reason for this choice is that it corresponds to uniform laws when we have no reason to prioritize one specific behavior in particular.

Note that a similar study can be made with different speeds among trajectories. This can be done by classifying the trajectories according to their speeds and applying the present procedure to each class. This would lead to the same estimation procedure with smaller datasets but theoretical results will still hold.

We then discuss the homogeneity in time, for which the most questionable assumption is the constant death rate that could possibly depend on the position or on the age of the particle. Concerning the dependence in space, this modification would lead to the estimation of a function of the position instead of the simple constant τ d . From a practical point of view, this would increase the dimension of the parameter to estimate, with the same size of dataset.

From a theoretical point of view a more technical study can be made as long as we assume the death function rate (depending on the position) constant on each tracklet {y}×] -L, 0] in order to overcome the issue of partial observation.

Concerning the dependence in time, the assumption that the death rate depends on the age of the particle prevents us from proposing a similar study. Indeed, due to partial observation, the age of each particle entering the observed region is unknown and cannot be estimated.

Simulation study

In this section, we present a series of experiments performed on synthetic datasets. These experiments aim to evaluate and analyze the sensitivity of the reconstruction procedure when the characteristics of the dynamics as well as the spatio-temporal sampling resolution of observations vary. In addition, to demonstrate the potential of our procedure, these experiments might also be useful for the design of the experimental setting for images acquisition. The reconstruction procedure has been implemented in MATLAB ver. R2018b. The codes are available on Github https://github.com/atrubuil/ReconstructionOfTruncatedTrajectories. According to the assumptions made on real biological context, unless otherwise stated, it is set by default, θ = 0.01(≈ 0.6 • ) is the angle between the direction of motion of particle and the X direction, v y = tan(θ)v x , σ x = σ y = σ, v x = 0.6, σ = 0.2, λ = 0.03, τ d = 0.005. The time interval between two images is ∆t = 0.25. As known, the theoretical depth of the observation field of TIRFM is 200nm and the diameter of the bacteria cell is 1µm. Therefore the width of the ROO l is set to 14.76 and that of the unobserved region l u = 35.24 (unit in pixel, note that in TIRF images 1 pixel ≈ 64nm).

Generation of trajectories

As there is no particle on the surface at the beginning, the simulated set of trajectories needs some warm-up time to reach the stationary regime, where the law of the number of trajectories does not depend on time. The assumed dynamic process is a special case of birth and death process. As a known result [START_REF] Samuel | A first course in stochastic processes[END_REF], the expectation of the trajectories number N during stationary regime is E(N ) = λ τ d . To ensure that the dynamics are in a stationary regime, the images sequence is simulated for around 2 hours (Fig. 4.5). 

The "adjusted Rand index" for the evaluation of connection results

Given the true and estimated class assignments, we compute the so-called adjusted Rand Index (ARI) to evaluate similarity or consensus between the two sets. The ARI is the correctedfor-chance version of the Rand index (RI). It is scored exactly 1 when the two sets are identical, close to 0 for random labeling. It could be negative when the index is lower than the expectation under random labeling. More precisely, let G and K be the true and estimated assignments, where C M 2 is the total number of possible pairs in the dataset (without ordering) of size M . The RI score does not guarantee that random assignments will get a value close to zero. This is especially true if the number of clusters has the same order of magnitude as the number of samples. To overcome this difficulty, we prefer to consider the ARI defined by [START_REF] William | Objective criteria for the evaluation of clustering methods[END_REF]:

ARI = RI -E(RI) 1 -E(RI) . (4.22)
Here E(RI) denotes the expectation of the RI where the estimated assignment K is replaced by an assignment chosen uniformly at random. This means that the assignment procedure does not do better than random assignment if the ARI score is zero, and that it does worse than random if ARI < 0.

Experimental results

The good performance of the connection procedure relies on the estimation of the characteristics of the dynamics: the speed, v, the diffusion variance, Σ, the arrival rate τ α and the death rate τ d , as these quantities are used in the calculation of the likelihood (4.13). Here we evaluated the impact of spatio-temporal sampling (l/l u , T S ) on the estimators and the impact of parameters of the dynamics (v, Σ, τ α , τ d ) on the accuracy of the reconstruction.

4.3.3.1

The estimator τα performs well, in the case of realistic 2D-TIRF, where l lu ≈ 0.42

The estimator τα is proposed in 4.20. Here we test how it performs with different spatiotemporal sampling (l/l u , T S ), and different birth rate λ and death rate τ d . By its definition in section 4.2.2, τ α , the rate of "spontaneous input" induced by particles born in the unobserved region and reach the border of the ROO, is not a preset parameter. A reference of the "true" value of τ α is given by

N lu
Ts , where N lu denotes the number of tracklets born in the region ]l u , 0] × [0, H] and reached the border {0} × [0, H], l u is the width of the unobserved region.

Next, we test the robustness of the estimator τα w.r.t. l/l u (Fig. 4.6). To avoid the influence of T S on the consistency of the estimator, T S is set to be 30 minutes. We can conclude that, naturally, the larger the observed area is, the better is the performance of the estimator τα is. In the case of the simulation of the real situation, where l/l u = 0.42, the estimator works reasonably well.

Next, we test the robustness of τα w.r.t. T S (Fig. 4.7). This test is essential because in reality it is impossible to use a 30-minute movie, because of technical issues like photobleaching of fluorophores and natural growth in living samples. At this stage, the proportion of observed and unobserved region l/l u is set to 0.42. T S varies from 2.5 to 30 minutes. In Fig. 4.7, it can be noticed that the reference "ground truth" of τ α (blue boxes) decreases as T S lengthens.

Actually, the reference is only a pseudo "ground truth". It is sensible to T S when T S is small and it converges as T S → ∞. The distributions of counted "ground truth" and estimator become close to each other for T S ≥ 10 minutes.

The absolute value of τ α depends on λ and τ d . Fig. 4.8 displays for different combinations of λ and τ d , the estimations of τα by 5-minute movies (magenta) and 30-minute movies (blue). FIGURE 4.6 -At l/l u = 0.42, which corresponds to the realistic situation in 2D-TIRF, more than half of the trials presents a relative error smaller than 10%. The proposed estimator τα is unbiased and the variance decreases as l/l u increases. FIGURE 4.7 -The counted "ground truth" τ α and the estimated τα obtained by movies of different duration, varying from 2.5 to 30 minutes. Blue boxes (resp., magenta boxes) correspond to the "ground truth", i.e. the counted value (resp., the estimator τα ). The blue horizontal line represents the "ground truth" value when T S = 30 minutes. 

The estimator τd is unbiased and performs reasonably well with 5-minute movies

As explained in section 4.2.4, τd is a rather classical estimator. Fig. 4.9 shows the estimator with 5-minute movies (magenta) and 30-minute movies (blue) respectively. It confirms that the estimator is unbiased. Black horizontal lines represent the true value of τ d . Naturally, the variance is bigger with shorter movies.

The choice of T S

According to Figs. 4.8 and 4.9, when T S = 30 min, the estimators of τ α and τ d perform well, being converged with small variance. As 30-minute movie acquisition is almost infeasible under the situation of fluorescence microscopy, we need to find a compromise with smaller T S and reasonably good estimators. We especially tested T S =2.5 minutes and T S =5 minutes.

Comparing the estimation results with 2.5-minute movies, we found that T S = 5 minutes is a good choice to limit the estimation error of τ d and to ensure a good connection performance. When the length of movies equals to 2.5 min, the estimation errors of τα and τd cause the failure of the connection procedure as shown below.

Estimation of birth rate τ α and of death rate τ d

The arrival rate τ α is estimated from 2.5 min movies and the result is presented in Fig. To identify which estimators are the main cause of this failure, many intermediate experiments are designed. To remind, τα and τd represent the estimators of τ α and τ d from 30-min movies, while τd and τα from 2.5-min movies. Through Fig. 4.12 and 4.13, it can be concluded that the error of estimators τd , τα is the main cause of the dramatic decrease of ARI when all the estimators τd , τα , v and σ are used.

The accuracy of τα and of τd increases as the total observed time T S increases (see Fig.

4.7)

. Therefore, in the study, we chose movies of 5 min to estimate τ α and τ d and then to evaluate the connection performance.

The connection procedure works well, even when true parameters are unknown

In this part, we assess the performance of the connection algorithm with different parameters λ and τ d . We evaluate as well the impact of the error of the estimator, by using in the connection procedure true parameters τ α , τ d , v, σ and their estimators τα , τd , v, σ, respectively. It can be noticed that the ARI value when we use the estimators τd , τα , v, and σ is almost as good as when we use true values for all the parameters. This is an encouraging result as it means that it is feasible to apply the algorithm in real image sequences. When the number of tracklets is around 20 (e.g., λ = 0.04 and τ d = 0.008), the median values of ARI are higher than 0.9, showing a promising connection performance. Even for the case with the highest particle density, when the average number of tracklets reaches 100 (λ = 0.1 and τ d = 0.004), the median value of ARI is still higher than 0.7.

The duration of movies

4.3.3.5

The connection procedure is robust even when each particle moves at different speed (but with constant speed along a trajectory). However v and σ should be well estimated

In the previous experiments, all trajectories are generated with the same speed v and standard error σ. In this section, we design experiments to test the performance of the connection algorithm, when the drift v varies from particle to particle, v x ∼ U(0.5, 0.9). In one movie, as all particles are in the same environment, there is no obvious reason for different particles to have different σ . Therefore, the standard error σ is set to be constant for particles in one movie.

However, we test in independent movies, when σ = 0.2, 0.3, or 0.4, the influence of σ on the performance of connection procedure. Other parameters to be specified are the angle between the direction of the motion and the circumferential direction of the cylinder, θ = 0.15(≈ 8.6 • ), The normalized error (NE) of an estimator is defined by the error of the estimator normalized by its ground truth. For example, the NE of v x equals vx-vx vx . In Fig. 4.15, the NEs of vx , vy , σx and σy when σ takes different values are presented. It shows that when σ increases, the variance of vx and vy increases.

v y = tan(θ)v x , σ y = tan(θ)σ x , σ x = σ,
For tracklets connection, we compare the results when true values of v and σ or when the estimated value v and σ, respectively, are taken by the connection procedure. The experiments are carried under three situations, when σ = 0.2, 0.3, and 0.4. The results in Fig. 4.16 show that whether using true v and σ or estimated value v and σ, the performance measured by ARI degrades when σ increases. When the standard error σ = 0.2, using true v and σ, the possible configurations c ∈ C (4.11). However, the number of configurations can be determined in order to guarantee that the sum of the probability of these configurations will be greater than a given threshold (see A.4). As a result, we can obtain lower and upper bounds for the probability.

For this example, we see that the second most likely configuration corresponds to the realization of trajectories, 0.187 < P (c t ) < 0.205 according to the algorithm (Fig. 4.18). Combining with Fig. 4.17, the optimal configuration found by the algorithm, committing one connection error, does not correspond to the realization. In section A.3, we evaluated the connection error caused by randomness.

The number of rotations around the cylinder

Once the connection procedure is achieved, we can address the question of the number of rotations of a particle around the cylinder. In the context of simulation, the death rate τ d and the dynamic velocity v x are known. Accordingly, the value of the number of rotations is known to be equal to procedure. The corresponding ARI values, indicating the connection accuracy, are given as well. The density of the theoretical values of the number of rotations is presented in green. The vertical lines represent the median values of the corresponding distribution. Overall, when τ d is small, the median value of number of rotations is higher and the distribution has a heavier tail.

In general, the distributions with all three colors are similar to each other.

An illustration of the connection algorithm applied to real MreB dynamics

Data obtained using TIRF microscopy of MreB aggregates in Bacillus subtilis [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF] are considered. A typical movie from this dataset shows several MreB aggregates moving inside one or several cells (see Fig. 4.1 and Supplementary Materials 3). The pixel size, frame rate and duration are, respectively, ∆x = ∆y = 64nm, ∆t = 1s, T = 2 minutes. Hereafter, we selected one cell to illustrate the application of our algorithm. First, tracklets exhibiting directed motion should be extracted from the movie data, then tracklets should be projected back on the cylinder shape of the cell and unwrapped, eventually the connection algorithm is applied and a list of likelihood decreasing ordered configurations of trajectories connections is presented to the user.

Construction of the local cell referential

Once MreB aggregates pixels are separated from the background inside each image of the movie, a bounding box is drawn around a given cell and a local x-y referential is estimated using Principal Component Analysis (PCA) on the coordinates of pixels belonging to aggregates (Fig. 4.20). The z coordinate of an aggregate is inferred using as a prior the cylinder shape of the bacteria and its radius, R, so z(x, y) = R -√ R 2x 2 . the borders, its intensity becomes weak as it is farther from the support plane, and less excitation light penetrates higher z-position in TIRF microscopy settings. As a result, the detection algorithm fails to detect the aggregates when they approach the borders.

Tracking and selection of aggregates in the observed region

The connection of tracklets

All the selected tracklets crossing the magenta lines in Fig. 4.21 are considered as having crossed the visible region. On the contrary, all those who appeared or disappeared inside the magenta lines are considered as birth or death events inside the visible region.

First, the speed and diffusion are estimated (Fig. 4.22) for each tracklet, respectively. Two populations of tracklets evolving in opposite x directions are identified. These two populations are considered one after the other in the connection procedure. Tracklets corresponding to speed lower than 0.4 are filtered out.

For the population of tracklets associated with positive (resp., negative) v x , death rate τ d is estimated as 0.0691 (resp., 0.0756). The arrival rate τ α is estimated as 0.0310 (resp., 0.0220).

Tracklets of positive speed v x

The first, fifth, seventh, and eighth optimal configuration suggests one connection. The second suggests that there is no connection. The third, fourth, and sixth configurations suggest two connections. Some of these configurations are shown in Fig. 4.23. 

Tracklets of negative speed v x

The first optimal configuration suggests no connection. The second one suggests one connection, Fig. 4.24.

The 3D reconstruction of the dynamics

In Fig. 4.25 we show a 3D reconstruction of the aggregates and two tracks that could correspond to aggregates doing more than one loop around the cylinder surface of the cell. For the positive (resp., negative) speed set of tracklets, the eighth (resp., second) optimal solution was selected.

Conclusion

In this chapter, we proposed a probabilistic framework and a computational approach with no hidden parameter to connect tracklets from 2D partial observations. We provided several consistent estimators of parameters to automatically drive the connection procedure. The performance of our procedure is satisfying if we consider the ARI criterion. Moreover, an ordered set of the best reconstructions could also be proposed. The robustness of the procedure has been tested for different drifts, diffusion of the dynamics, and trajectory densities. Our computational approach can be extended to the case when the drift/speed is not the same for all particles but remains constant along time. In that case, it is straightforward to estimate and classify the drifts before applying our connection procedure to each class of drift since the tracklets with different speeds are not likely to be connected.

After recovering the whole trajectory on the surface of the cylinder, we can have a better understanding of the average duration of a particle, and more accurate statistics about the spatio-temporal organization of particles. The simulation study can also serve as a guideline for the design of experiments.

The connection procedure is tested with a real TIRFM dataset. The experimental results are illustrated in Section 4.4. For future works, we plan to further investigate on real TIRFM datasets. In real experimental data, the observed region corresponds approximately to one-third of the total surface, which is rather small. However, we have shown that we are able to cope with the hidden region of such size. Nevertheless, several assumptions and approximations need to be further investigated. For instance, we assumed spatial homogeneity, suggesting that the particles are born or die uniformly on the membrane surface. Moreover, we assumed a memoryless lifetime while dependency with respect to particle "age" could be more realistic.

CONCLUSION AND PERSPECTIVES Conclusion

In this thesis, we reviewed the advanced statistical and mathematical modeling tools for single particle trajectory analysis. We deepened the analysis of the trajectories of MreB filaments with the available statistical methods and algorithms and developed new probabilistic and computational tools, to better exploit the information from trajectory data.

In the first part, we proposed two approaches to analyze the MreB trajectories based on diffusion models characterized by Stochastic Differential Equations. The first approach consists in analyzing individual trajectories, classifying the tracks into different diffusion modes (free diffusion, super-diffusion or sub-diffusion) and estimating motion features (drift and diffusion coefficient). We compared three non-parametric classification methods, two MSD-based methods and another method based on statistical test, namely THOTH. We found that the three methods provided consistent results in classifying super-diffusion, while THOTH is more robust than the others in identifying free diffusion. We then evaluated two diffusion coefficient estimators for free diffusive trajectories, taking into account the measurement errors observed in high-resolution fluorescent microscopy. The two estimators, Optimal Least Squared Fitting (OLSF) and maximum likelihood estimator (MLE), provided consistent results. From MreB trajectories recorded by SIM-TIRFM and classified as free diffusion, the diffusion coefficient D ∼ 10 -3 µm 2 /s while the measurement error approximated by a Gaussian distribution has a variance σ 2 loc ∼ 10 -3 µm 2 /s. The measurement error is estimated at the same time as the diffusion coefficient from the trajectories and cannot be ignored, as the result shows that the measurement error has the same order of magnitude as the the diffusion coefficient D.

It was found that the temporal resolution, the length of trajectories, and the ratio of the signal to noise (the ratio between the diffusion coefficient and localization error) set a fundamental limit on the optimal estimators, which can be assessed by the Cramer-Rao Lower Bound (CRLB). Overall, the analysis of diffusion modes and the estimation of the diffusion coefficients by investigating individual trajectories (in the Langrangian setting), is very helpful to guide the image acquisition by experts, that is balancing the settings of exposure time, record duration, and the frequency of acquisition, and then to achieve the best possible precision on the target estimators. As a short-term objective, we plan to evaluate the procedure of classification and coefficient estimation on a larger dataset and confirm the preliminary experimental results.

The second approach involves estimating the dynamics of particles in the neighborhood 137 learning method will consist in analyzing the trajectories inside the ROOs from large quantities of movies of a collection of different bacteria. The main idea would be to assume that, in some way, the main characteristics of the trajectories to be reconstructed are already present inside the training set. The first reason for this is that there is no preference for observing a specific part of the surface with respect to the imaging support. Secondly, the biogenesis process is mostly identically reproduced by the bacteria set under study.

Moreover, we have assumed that the particles are born or die uniformly on the membrane surface, independently of the existing particles in the field of view. This assumption can be formally tested by considering the recent spatial birth-death-move process [START_REF] Frédéric | Spatial birth-death-move processes : basic properties and estimation of their intensity functions[END_REF]. The spatial birth-death processes are generalizations of simple birth-death processes, where the birth and death dynamics depend on the spatial locations of individuals. Spatial birth-death-move processes further generalize the spatial birth-death processes by including a move during the life time of a particle, according to a continuous Markov process. A non-parametric estimation of the birth and death intensity functions β and δ has also been proposed in [START_REF] Frédéric | Spatial birth-death-move processes : basic properties and estimation of their intensity functions[END_REF]. If we assume that the regularity of the total intensity α = β + δ, e.g., that is α(x) depends only on the cardinality of x, where x is a certain point process, the proposed estimator then depends only on the distance between the cardinalify of x and the cardinalities of the observed process (X t ) for t ∈ [0, T ]. The non-parametric estimation of the birth and death intensity function makes it possible to test the hypothesis made on the homogeneity of birth and death of MreB particles on the membrane surface. The challenge will be to apply this concept and the non-parametric estimator on partial observations on a closed surface with periodicity.

As studied in the thesis, the MreB aggregates perform different types of motion. The directed circumferential movement along the perimeter is supposed to coincide with the active cell wall elongation activities. The class of free diffusion is supposed to coincide with MreB aggregates recruiting other necessary enzymes to form the machinery. Therefore, a birth event of a free diffusion may correspond to the formation of a MreB aggregate, and a death event of a free diffusion corresponds to the disappearance of a MreB aggregate or the starting of a directed motion. Similarly, in the directed motion class, a birth event may represent a diffusive particle that gets ready to circulate, and a death event may mean the end of a cell wall elongation task. The regulation of each class proportion and the spatial-temporal organization of different classes need to be further investigated. The spatial birth-death-move process provides a promising approach to explore the joint spatio-temporal dynamics of two groups of proteins that seem to interact during the physiological mechanisms. ween K(c t ) and K(c * ), where c * denotes the optimal configuration calculated by the "tracklets Connection Algorithm" while c t is the true configuration. Each scatter plot is associated with a given combination of λ and τ d . We considered 100 replications for this experiment. On the left column, the connection is perfect in most case. Many points overlapped and located at coordinates (1,0). Overall, we observe an increment of ARI when the difference decreases. This can be due to low values of ARI obtained when the ground truth does not correspond to the optimal configuration.

A.4 Calculation of the boundary of P (c)

With the optimization algorithm (Eq. 4.15), we note c i the i th optimal solution. Note that N c is the number of all possible configurations given S. For any 1 ≤ n ≤ N c , we have

n i=1 Q(c i ) ≤ Nc i=1 Q(c i ) ≤ n i=1 Q(c i ) + (N c -n)Q(c n )
Using Eq. 4.11, it gives 

Q(c) n i=1 Q(c i ) + ( Ñc -n)Q(c n ) ≤ P (c) ≤ Q(c)
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FIGURE 1 -

 1 FIGURE 1 -Représentation des mécanismes dominants de l'allongement de la paroi cellulaire chez les bactéries en forme de bâtonnet (Figure en provenance de [TR18]) (A)Illustration des mécanismes impliqués dans la croissance cellulaire, c'est-à-dire l'élongation du peptidoglycane (PG), dans une cellule en forme de bâtonnet : le "rod complex", les hydrolases et les protéines de liaison à la pénicilline de classe A (aPBP). Malgré des efforts importants pour comprendre l'allongement des bactéries, de nombreuses questions restent en suspens sur la manière dont l'assemblage des PG et la croissance cellulaire s'adaptent à différents facteurs, tels que le métabolisme, les contraintes mécaniques et la forme des cellules. (B) Encart illustrant les principaux mécanismes de synthèse de la paroi cellulaire qui fonctionnent de manière indépendante (voir,[START_REF] Hongbaek | Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously[END_REF]) : (i) le "rod complexe" en mouvement contenant la transglycosylase RodA, la transpeptidase PBP2, et des filaments MreB orientés circonférentiellement le long de la membrane interne ; (ii) aPBPs bifonctionnels. Les hydrolases peuvent être activement engagées dans le clivage de la paroi cellulaire pendant la synthèse de la paroi cellulaire. Il reste à découvrir comment les hydrolases interagissent avec le "rod complexe" et les aPBPs, et comment le "rod complexe" interagit avec les aPBPs. (C) (dans les bactéries Gram-) les aPBPs sont activées par les lipoprotéines LpoA et LpoB de la membrane externe. Cette interaction est suggérée pour fournir un mécanisme permettant de détecter la taille des pores dans la paroi cellulaire afin de guider l'insertion des PG.
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 23 FIGURE 2 -(a) : Plusieurs images consécutives d'une vidéo réelle TIRFM [ABT84]. Les traces sont superposées sur les images. (b) Gauche : Illustration des trajectoires observées pendant le temps enregistré [0, T S ] sur la surface d'un cylindre. Seuls les mouvements à l'intérieur du regions of observation (ROO) ]l, 0[×[0, H] peuvent être observés, même si la dynamique se produit sur toute la surface. Droite : L'objectif est de récupérer la dynamique sur toute la surface à partir des observations partielles, en coordonnant les entrées par {-l} × [0, H] et les sorties par {0} × [0, H] dans un film pendant T S , en prenant en compte les événements de "naissance" et de "mort" des particules.

  tion and dynamics. Thanks to recent advances in optics, digital sensors and labeling probes (e.g., Colored Fluorescence Protein), one can now visualize sub-cellular components and organelles at the scale of several hundreds of nanometers to a few dozen nanometers. As a result, fluorescent microscopy and multimodal imaging (fluorophores at various wavelengths) have become the spearhead of modern biology. All these technological advances in microscopy have created new issues and challenges for researchers in quantitative image processing and analysis. Since digital imaging is part of the imaging loop, image processing may even drive imaging. A brilliant example of this shift in paradigm is Single-molecule localization microscopy (PALM, STED), which was awarded the 2014 Nobel Prize in Chemistry.

  mechanism of action of antimicrobials and open new therapeutic avenues. During the past decades of research, the molecular actors implicated in CW elongation have been identified and analyzed (Fig. 4). It is well established that the protein MreB, with its filamentous structure, mediates the PGEM activities with permanent dynamics. The trajectories of MreB aggregates have been analyzed with the help of high-resolution fluorescent microscopy and single particle techniques. The analyses of the dynamics of MreB help us to addressing different questions which interest microbiologists: what the different roles/functions of MreB patches play during its different diffusion regimes; what drives the directed circumferential dynamics of the MreB-mediated PGEM, more specifically the Rod Complex; and finally, how MreB organizes different enzymes to work together on expanding the PG.

FIGURE 4 -

 4 FIGURE 4 -Representation of the prevailing mechanisms of CW elongation in rod-shaped bacteria (Figure from [TR18]) (A) Illustration of machinery implicated during cell growth, i.e., peptidoglycan (PG) elongation, in rod-shaped cell: the rod complex, hydrolases, and class A penicillin-binding proteins (aPBPs). Despite long-lasting efforts to understand bacterial CW elongation, many open questions still exist about how PG assembly and cell growth adapt to different factors, such as metabolism, mechanical stresses, and cell shape. (B) Insert illustrating the key CW synthesis machineries which work independently, according to a recent work[START_REF] Hongbaek | Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously[END_REF]: (i) the processively moving rod complex containing the transglycosylase RodA, the transpeptidase PBP2, and circumferentially oriented MreB filaments along the inner membrane; (ii) the bi-functional aPBPs. Hydrolases may be actively engaged in CW cleavage during CW synthesis. It remains to be discovered how hydrolases interact with the rod complex and aPBPs, and how the rod complex interacts with aPBPs. (C) (in Gram-Bacteria) aPBPs are activated through outer membrane (OM) lipoproteins LpoA and LpoB. This interaction is suggested to provide a mechanism to sense pore sizes in the CW to guide PG insertion.
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 56 FIGURE 5 -(a): Several consecutive images from a real TIRFM movie [ABT84]. Tracks are superposed on the images. (b) Left: Illustration of trajectories observed during recorded time [0, T S ] on the surface of a cylinder. Only the motions inside the regions of observation (ROO) ]-l, 0[×[0, H] can be observed, even though the dynamics happen on the whole surface. Right: Representation of the dynamics on a two-dimensional (2D) unwrapped surface ] -L, 0[×[0, H].The objective is to recover the dynamics on the whole surface from the partial observations, by coordinating the inputs through {-l} × [0, H] and the outputs through {0} × [0, H] in a movie during T S , taking into account particle birth and death events.

[

  Bil+19]. The function of MreB filament is debated. It is well accepted that MreB moves in the direction of its orientation. The prevailing model states that MreB filaments intrinsically orient in the direction of the largest principal curvature ([Hus+18]) of the membrane. This property alone can promote the formation of rod-shape and reinforce the elongation of rod-shape. It has also been hypothesized that diffusive MreB may be in the process of recruiting other proteins to form the PGEM. Study of the dynamics of components of the PGEM can shed light on the role of MreB and the organization of the enzymes during CW expansion. By combining different microscopic techniques, TIRF, SIM, and single-particle Tracking (SPT)-Photoactivated Localization microscopy (PALM), it is possible to observe the dynamics of proteins in different spatio-temporal scales. Some mathematical modeling also exist to combine the enzymes organization and the mechanical 3D expansion model of the PG during cell growth ([Din+17] and [Ngu+15]).

FIGURE 1

 1 FIGURE 1.1 -Schematic illustration of the cell envelope in Gram-(left) and Gram+ (right) bacteria [Liu+15].

FIGURE 1

 1 FIGURE 1.2 -A schematic diagram of one model of PG. Shown are the polysaccharide chains made of alternating N-Acetylmuramic acid and N-Acetylglucosamine, the tetrapeptide side chains and peptide interbridges [WSW08].
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 3 FIGURE 1.3 -Schematic illustration of mechanistic models of PG synthesis in rod-shaped bacteria [Bil+17] (a): Idealized and simplified 3D representation of one layer of PG. Glycan strands (blue rings) run orthogonal to cell's long axis, cross-linked by stem peptides (yellow

  Proper cell-wall expansion requires the coordination of multiple cytoplasmic and extracellular or periplasmic steps: (1) precursor synthesis and flipping from the cytoplasm to the extracellular/periplasmic side; (2) cell-wall cleavage by DD-endopeptidases and possibly other hydrolases for cell-wall expansion along the long axis of the cell; (3) glycan-strand polymerization (transglycosylation,RodA); (4) cross-linking to neighboring strands (transpeptidation PBP2A and PBPH in B. subtilis).
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 4 FIGURE 1.4 -Representation of the prevailing mechanisms of CW elongation in rodshaped bacteria [TR18] (A) Illustration of machinery implicated during cell growth, i.e., peptidoglycan (PG) elongation, in rod-shaped cell: the rod complex, hydrolases, and class A penicillin-binding proteins (aPBPs). Despite long-lasting efforts to understand bacterial CW elongation, many open questions still exist about how PG assembly and cell growth adapt to different factors, such as metabolism, mechanical stresses, and cell shape. (B) Insert illustrating the key CW synthesis machineries which work independently, according to a recent work.[Cho+16]: (i) the processively moving rod complex containing the transglycosylase RodA, the transpeptidase PBP2, and circumferentially oriented MreB filaments along the inner membrane; (ii) the bi-functional aPBPs. Hydrolases may be actively engaged in CW cleavage during CW synthesis. It remains to be discovered how hydrolases interact with the rod complex and aPBPs, and how the rod complex interacts with aPBPs. (C) (in Gram-Bacteria) aPBPs are activated through outer membrane (OM) lipoproteins LpoA and LpoB. This interaction is suggested to provide a mechanism to sense pore sizes in the CW to guide PG insertion.
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 15 FIGURE 1.5 -Schematic illustration of a Gram+ bacterium of MreB patches exhibiting different dynamic behaviors in the cytoplasmic membrane [Bil+17]: Orange: randomly diffusing MreB filaments; blue: circumferentially moving MreB filaments; green: constrained MreB filaments. The black cover represents the PG CW. The zoom-in view shows different PG layers, d: discontinuous outermost PG layers; s: stress-bearing PG layer; n: newly constructed, uncompleted innermost PG layer.

  RodA and PbpH) by quantitatively analyzing the simultaneously recorded fluorescent images of different species of molecules. Over several decades, research in the field focused on the function of individual genes and proteins implicated in CW synthesis in isolation. Nowadays, thanks to the development of fluorescence labeling and super-resolution microscopy, it is a highly active domain to study chapitre1 proteins behavior by analyzing their high-resolution fluorescence microscopy images, to deduce their functionality or co-functionality with other proteins. Introduction Optical fluorescent microscopy has the advantages of sample preservation, imaging flexibility and target specificity. It allows the observations of specifically targeted proteins or vesicles, performing dynamics in an ideally living specimen. It becomes a widespread tool used by biologists in understanding the cellular function and organization in a molecular scale. In this chapter, we present several techniques related to the observations of the dynamics of MreB in model bacteria Bacillus subtilis. Total Internal Reflection Fluorescent (TIRF) microscopy is used to observe the dynamics of MreB protein in [Bil+17]. Compared to Wide-Field Fluorescence microscopy (WFFM), TIRF imaging provides improved axial resolution (limited by the diffraction of light, presented in Section 2.1) with thin optical sectioning (< 200nm). Moreover, it allows us to follow rapid dynamics of molecules by acquiring fluorescent images at high temporal resolution. Therefore, it is specifically suitable for observing the protein MreB

  object in a microscopy is a finite-size diffraction pattern created by the interference in the image plane. The image consists of a central spot surrounded by concentric rings of decreasing intensity. The central spot which contains ∼ 84% of the photons from the emitter, is called the Airy disk (Fig. 2.1 left). According to the Rayleigh criterion[Ray80], two point sources are just resolved if the central maximum of the intensity diffraction pattern produced by one point source coincides with the first zero of the intensity diffraction pattern produced by the other. Note the Airy disk radius as d, given by the equation d = 0.61λ/NA, where λ is the emission wavelength and NA is the numerical aperture of the objective, then optical microscope cannot distinguish two objects that are closer than d. This means that all tagged fluorescent proteins or protein complexes (1 -10nm) show up as blured focal spots of diameter ∼ 250nm (of length ∼ 600nm

FIGURE 2

 2 FIGURE 2.1 -Left: the Airy disk; Right: The Point-Spread Function (PSF) when setting λ = 509nm (GFP emission wavelength) and N A = 1.5 (theoretical maximum value). Plotted according to the Point-Spread Function (PSF) equation in [ZZOM07]
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 22 FIGURE 2.2 -Illustration of the light paths of common conventional microscopy techniques. From [Sch+19] (a) Wide-field illumination is achieved by concentrating the excitation light to a single point in the centre of the pupil plane, (b)In TIRF the spot is shifted to the edge of the pupil plane so that the light beam hits the cover slip interface at a super-critical angle to the optical axis, generating a rapidly decaying excitation beam close to the cover slip surface (the upright set-up is shown, however the inverted set-up for TIRF is more common), (c): In confocal microscopy, the pupil plane is filled, generating a focused spot in the image plane which is to be scanned across the field-of-view.

  FIGURE 2.3 -The Exponential Intensity Decay in the evanescent field[AWD] 

FIGURE 2

 2 FIGURE 2.4 -Polarized Light Evanescent Intensities, where the critical angle θ c = 60 • . [AWD]

  FIGURE 2.6 -The principle of SIM. From [Gus00] (a): The interference between the illumination and the specimen produce the analogous Moiré fringes. The high spatial frequency information cannot be observed due to diffraction limit is encoded in the Moiré fringes; (b): The spatial frequency can be observed only if it falls into the circle region with raduis k 0 (2.5); (c):A sinusoidal structured light with parallel stripes has three non-zero points in the reciprocal space; (d): Three circle regions, centred by three points shown in (c) and with radius k 0 , can be observable (2.10); (e): Repeat (d) for two more times by shifting the direction of the stripes, normally 120 • each time, an observable region twice as large as (b) can be obtained.

FIGURE 2

 2 FIGURE 2.7 -A comparison of images aquired by TIRFM and SIM-TIRFM [Bil+19].

  living cells is very complex. Experimental observations have revealed that biomolecules and molecular aggregates inside cells perform different types of movements. Several of them differ significantly from pure diffusion. The study of the trajectories of molecular aggregates can help to decipher different biophysical processes such as free diffusion, constrained dynamics in crowded environments, and dynamics mediated by molecular motors. Several types (classes) of dynamic biophysical processes have been identified over the past years. These processes are often characterized by a few interpretable features (e.g. diffusion coefficient, velocity). These features allow us to compare the individual interaction among particles and their environment, within the same cell or between different cells.

. 4 )

 4 The first condition (3.2) states that large displacements are very unlikely over infinitesimal time intervals, while conditions (3.3) and (3.4) characterize the mean and the variance of the infinitesimal displacements and confirm the existence of the limits.Brownian motion or free diffusion is a fundamental diffusion process in biophysics. It was first observed in 1827 by the British botanist, who observed the motion of particles in pollen grains in water. It was explained many decades later by A. Einstein in[START_REF] Albert | On the electrodynamics of moving bodies[END_REF], who demonstrated that apparent pollen motion was induced by water molecule displacement.The related probability theory was derived by N. Wiener in 1923. In the subsequent years, it has been established that Brownian motion was equivalent to a Wiener process defined as follows:Definition 1 A stochastic process B t is a Brownian motion if it satisfies the following properties:

[

  UO30], fractional Brownian motion (fBm) (with 0 < H < 1/2 where H is the Hurst index), recommended to characterize dynamics in crowded cellular environments [MVN68], Continuous Time Random Walk (CTRW), for analyzing trapping areas and nanodomains within the cell ([SM75]) or modeling the axon growth cone [DZK17], Generalized Langevin Equation (GLE) ([Zwa01], [Kou+08]), for taking into account the viscosity properties of the environment. Superdiffusions are mainly defined as Brownian motion with drift and fBm (with 1/2<H<1).

  .14) It is shown in Section 3.2.2 that the localization noise and motion blur induce correlations between the observed displacements of the moving particles. Both static and dynamic localization errors σ 2 loc and M are used further to elaborate several different estimators (Optimal Least Squared Fitting (OLSF), Maximum Likelihood Estimation (MLE), Covariance-based Estimator (CVE)) of particle dynamics.

  On the one hand, the errors degrade the estimators of D; On the other hand, the quantification of the errors due to measurement depends on the diffusion coefficient D. Finding a way out of this interwoven problem requires different shortcuts and ingenuity, depending on the experimental conditions and prior knowledge. In the case of the dynamics of the MreB observed with SIM-TIRFM, we present a dedicated solution in Section 3.3.In what follows, firstly, the classification methods, using the canonical MSD method and a new statistical hypothesis test, called Testing HypOtheses for diffusion TricHotomy (THOTH), are presented (Section 3.2.1). Secondly, several parameter estimation methods, including the MSD based OLSF, MLE, and CVE, are presented in Section 3.2.2. The measurement errors is taken into account in the definition of estimators.

  (

Algorithm 1

 1 3.1) (b)),the MSD curves calculated from trajectories depict high heterogeneity, which is due to the stochasticity of the process. The red line represents the theoretical result ρ(t) = 4Dt. It can be noticed that the standard deviation grows with high values of t. The coefficient β, therefore, Simulation of a trajectory following Brownian Motion with drift Input: v, σ, X ini , ∆t, N //v the speed of the drift term, when v = 0, it corresponds to pure diffusion //σ the standard deviation //X ini the initial position of a trajectory //∆t time interval between two points //N the number of points in a path Output: the path of a trajectory of Bmd: X 1: for i=1 to N do ) = X(i -1)+ increment 10:end if 11: end for also has a higher variance as t increases. The β-MSD method provides unsatisfactory results, as it wrongly classifies Brownian motion into either sub-diffusion or super-diffusion (Fig. (3.1) (c)). The R 2 -MSD method based on linear and quadratic fitting of MSD ([Bil+17]) has similar drawbacks (see Fig. (3.1) (d)). Several MSD curves depicting Brownian motion fit better the quadratic model (red dashed line) or fit neither of the two models (green dashed line) and are therefore not identified as Brownian motion. On the contrary, the THOTH achieves an accuracy of 95% (Fig. (3.1) (e)), which is consistent with the theoretical result, as the significance level α was set to 0.05.
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 231 FIGURE 3.1 -Simulation and classification for Brownian motion. (a): Simulated Brownian trajectories, with σ = 0.3. (b): The MSD curves of trajectories. The red line represents the theoretical expectation of MSD, ρ(t) = 4Dt. (c): Classification result by β-MSD. (d): The result by R 2 -MSD. In both (c) and (d), the dashed red (resp. green) lines correspond to the trajectories wrongly classified as super-(resp. sub-) diffusion. (e) The test statistics T n for all trajectories and the 0.025 and 0.975 quantiles; (f) A statistic summary of the classification results. Blue color represents the number classified as Brownian motion, and the red (resp. green) colors represent the numbers classified as super-(resp. sub-) diffusion.
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 3233 FIGURE 3.2 -Simulation and classification for super-diffusion. (a): The simulation of 40 trajectories, half performing Bmd (v = 0.7) (red) and another half fBm (H = 0.85) (dark red). The two kinds of motions have different shapes. (b) MSD curves of the simulated trajectories. Given the parameters of two processes, the MSD curves of trajectories performing fBm are under the MSD curves performing Bmd. (c): The classification result by β-MSD method. (d):The classification result by R 2 -MSD method. In both (c) and (d), the dashed blue (resp. green) lines correspond to the trajectories wrongly classified as free (resp. sub-) diffusion. (e) The test statistics T n for all trajectories and the 0.025 and 0.975 quantiles. (f) A statistic summary of the classification results. Blue color (resp. red and green) represents the number classified as Brownian motion (resp. super-and sub-diffusion). 73
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 4 FIGURE 3.4 -The power of test of THOTH performed by Monte Carlo sampling when α = 0.05, n = 10, 30 and 50 time points. The parameters v, λ, and H correspond to the drift in Bmd, the power in OU, and the Hurst coefficient in fBm, from [BKV18].

( 3 .

 3 33) is nothing else than Brownian motion with drift given in (3.11). When v = 0 and κ > 0, (3.33) is the conventional model used to represent confined motion. MBF can separate the motion blur effect from other localization errors and reliably estimates the model parameters and coefficients. Equation (3.34

  " The performance of three classification methods described in Section 3.2.1, β-MSD, R 2 -MSD, and the Hypothesis Test THOTH, are compared. To illustrate the performance of the three methods, the MSD and the trajectories are plotted with classification results of the three methods (Fig. 3.5). The two MSD methods, β-MSD and R 2 -MSD, show similar results. The MSD curves with larger slopes are classified as directed motion (Fig. 3.5a and b), which correspond mainly to particles crossing the field (Fig. 3.5e and f). The THOTH also provides consistent results with the MSD methods. In Fig. 3.5c, points with hot colors (from red to yellow), representing T n above the 0.975 quantiles line, are classified as super-diffusion. Points in dark blue, with T n lower than the 0.025 quantiles line, are classified as sub-diffusion. In Fig. 3.5d (MSD curves plotted with the same color as in Fig. 3.5c), hot colors correspond to MSD curves with large slopes and correspondingly cold colors to MSD curves with small slopes. The two-by-two statistical comparison among the three methods is presented in Fig. 3.6 with the help of confusion matrices. The confusion matrix between the two MSD methods is presented in the 1 st matrix. Accordingly, the confusion matrices between R 2 -MSD and THOTH, between β-MSD and THOTH are presented in the 2 nd and 3 rd matrices. It turns out that there exist large discrepancies among the results of the three methods. The results should be analyzed in special cases. Relatively speaking, the R 2 -MSD and THOTH give similar results (the 2 nd matrix), especially in the categories of BM and super-diffusion. Between β-MSD and THOTH (the 3 rd matrix), among those classified as BM by β-MSD, 95.3% are classified identically by THOTH. On the contrary, among those classified as BM by THOTH, only 29.1% are classified identically by β-MSD. Among those classified as super-diffusion by β-MSD, only 56.5% are classified identically by THOTH. On the contrary, among those classified as super-diffusion by THOTH, 94.1% are in agreement with β-MSD.
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 35 FIGURE 3.5 -Illustration of the performance of the classification methods on one bacterium cell. (a) and (e): The MSD and trajectories by β-MSD. (b) and (f): The MSD and trajectories by R 2 -MSD. (c) and (g): the test statistic T n and trajectories classified by THOTH. (d) and (h):The MSD and trajectories plotted with the same color as the T n in (c). 83
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 37 FIGURE 3.7 -The MSD curves of immobile particles. (a) MSD for trajectories in one bacteria cell. Black color represents the MSD curves of immobile particles (ρ n < 0.01µm 2 , n = 1, • • • , N ). The randomly colored MSD curves correspond to moving particles; (b): A zoom for immobile particles.
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 8 FIGURE 3.8 -The estimation of static localization error. (a): σ 2 loc is estimated by ρ 1 = 4σ 2 loc ; (b): by linear regression ρ(t) = â + bt, â = 4σ 2 loc .

FIGURE 3

 3 FIGURE 3.9 -The estimation of D and σ 2 loc by OLSF.

FIGURE 3 .

 3 FIGURE 3.10 -The estimation of D and σ 2 loc by MLE.

FIGURE 3 .

 3 FIGURE 3.11 -The schema of 3D surface reconstruction. The dynamics taking place on a 3D surface (A) are acquired as 2D projected trajectories by 2D microscope (B). Through the extracted drift and diffusion of the projected dynamics (C), the original surface can be reconstructed (D).

FIGURE 3

 3 FIGURE 3.12 -The estimated effective diffusion coefficients as a function of x (a)-(d) and the linear regression without and with intercept(e)-(h). ∆t = 0.1, D = 0.04. Corresponding to each line, the total observation time T S = 0.5, 1, 2, and 5 min, respectively. (a): As T S = 0.5 min, σyy (magenta curve) oscillates around the horizontal line y = D = 0.04, and σxx (blue curve) oscillates around a parabolic curve, which corresponds to (3.40). (c)-(d): As T S increases, the curves become smoother and fit better (3.40). (e): The scatter plot of T vs. S is fitted by linear models, without (magenta) and with (purple) the intercept term, respectively. The slope of straight lines is equal to 1/R 2 (3.42). (f)-(h): As T S increases, the scattered points become more regular and aligned. For experiments results with ∆t = 0.25, D = 0.04, 0.09 and 0.16, see A.2. The value of the slope of the fitted lines, i.e., the estimated R in different parameter settings, can be found in Figs. 3.13 and 3.14.

FIGURE 3 .

 3 FIGURE 3.13 -The estimation of R at different ∆t. The diffusion coefficient D = 0.04 and the total observation time T S = 0.5 min. (a): The mean and standard deviation over 100 replications of the estimator of the radius R, by linear fitting with (green) and without (blue) intercept term. The red line represents the true radius 510nm. Without intercept (blue), the estimator has a smaller standard deviation but is biased and less robust. On the contrary, the estimator with intercept (green) is almost unbiased and is more robust. (b): The average number of points N k in each square at ∆t from 0.1 to 0.25, over the 100 replications. N k decrease almost linearly with respect to ∆t.

FIGURE 3 .

 3 FIGURE 3.14 -The estimation of R with different values of D and different ∆t. The total observation time is T S = 5min. The red line is the true value of the radius (510nm). The estimations of R using linear regression, without intercept and with intercept, are represented in blue and green, respectively. The vertical bars represent the standard error of 100 replications of the experiments.
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 41 FIGURE 4.1 -Illustration of the incomplete view in TIRFM. (a): Several consecutive images from a real TIRFM movie [ABT84]. Tracks are superposed on the images.(b) Left: Illustration of trajectories observed during recorded time [0, T S ] on the surface of a cylinder. Only the motions inside the ROO ]-l, 0[×[0, H] can be observed, even though the dynamics happen on the whole surface. Right: Representation of the dynamics on a 2D unwrapped surface ] -L, 0[×[0, H]. The objective is to recover the dynamics on the whole surface from the partial observations, by coordinating the inputs through {-l} × [0, H] and the outputs through {0} × [0, H] in a movie during T S , taking into account particles birth and death events.

  neighborhood of {0} × [0, H]. Meanwhile, we consider that it is an input if the first observed point is within a neighborhood of {-l} × [0, H]. Our main objective is then to associate the set of tracklets exiting the observed set [-l, 0] × [0, H] with the set of tracklets entering this observation set. The challenge is to correctly match the outputs and the inputs associated to particles (see Fig. 4.1). -S: the observation set of all trajectories, -S o : the set of tracklets having an output in {0} × [0, H], -S * l : the set of tracklets having an input in {-l} × [0, H] and an ouput in {0} × [0, H], that is crossing the observed region, -S r : sample of points inside a restricted region inside the observed region. This region should allow to decide if a particle died or is just moving outside the observed region. τ α : arrival rate at border {l} × [0, H] of particles born in the unobserved region ] -L, l[, τα : estimator of the arrival rate at border {l} × [0, H], τ d : death rate of particles, τd : estimator of the death rate, -T S : time duration of observation.

  maximal. It is difficult to calculate directly P (ĉ/S). Since c ⊂ S ⊂ O S , we can compute P (ĉ/S) working conditionally on O S . However, since the model is in continuous time and involves random variables with continuous densities with respect to the Lebesgue measure, the conditional probability P (c/O S ) is equal to 0. This prevents us from computing P (ĉ/S) directly with the classical conditional formula P (c/S) = P (c/O S ) P (S/O S ) , because it gives P (S/O S ) = c∈C S P (c/O S ) = 0.

  and ♭ ǫ c = {b c * , c * ∈ C ǫ c }. Due to the independent behavior of the particles, we have the following decomposition: P (C ǫ c ) = P (D c )P (B ǫ c )P (♭ ǫ c ). (4.4) We can then compute separately the probabilities of events D c , B ǫ c , and ♭ ǫ c . First, note that we can assume without loss of generality that each output o ∈ D c starts at time t o = 0 and that only the position y o ∈ [0, H] fluctuates with o, but with no influence on T d or T l . Moreover, the loss of memory property of the exponential law ensures that the life duration T d of the particle after the output o still follows an exponential law of parameter τ d . Since all outputs behave identically and independently, we have P (D c ) = P (T d < T l ) |Dc| ,where |D c | stands for the cardinal of D c . According to Proposition 1, and since T d and T l are independent, we have

  For each point p ∈ S r , we denote by D p the event corresponding to the absence of successor for p. This corresponds to the fact that the particle involved in p died during the time interval [t p , t p + ∆t]. Since the life duration T d of a particle follows an exponential law of parameter τ d , and the absence of memory property of the exponential law, we haveP (D p ) = P (T d ∈ [0, ∆t]) = 1e -τ d ∆t .(4.16)Hence, we define our estimator τd asτd = 1 ∆t|S r | p∈Sr 1[D p ],(4.17) where |S r | stands for the number of points in S r and 1[•] denotes the indicator function. Due to the absence of memory property of the exponential law, the random variables 1[D p ] are i.i.d. As |S r | goes to +∞, the strong law of large numbers yields to lim |Sr|→∞ τd = 1e -τ d ∆t ∆t a.s. The justification of this choice for τd relies in the following almost sure convergence: lim ∆t→0 lim |Sr|→∞ τd = τ d a.s. (4.18) Our estimator τd is then consistent as ∆t is small enough. Moreover, since the variables 1[D p ] are i.i.d Bernoulli random variables, we can calculate the related confidence interval. If q α denotes the α-quantile of the standard normal distribution, we have the following confidence interval of level α for 1-e -τ d ∆t ∆t : ∆t is small enough, we get a good approximation of a confidence interval of level α for τ d since lim ∆t→0 1e -τ d ∆t ∆t = τ d . Now, we describe the estimation procedure for the rate τ α of "spontaneous inputs" induced by particles born in the unobserved region [-L, -l]×[0, H] and reached the border {-l}×[0, H].

  FIGURE 4.3 -An artificially constructed zone ]l u , 0] × [0, H] having the same size as the unobserved region ] -L, -l] × [0, H]. The observed region is ]l, 0] × [0, H] ; as the width of the invisible part is l u , the extended zone has width l e = l ul.Intuitively, this estimator amounts to counting the number of particles reaching {0} × [0, H] with weight 1 for each tracklet that we actually saw being born in the observed region and with weight ple for each spontaneous input that appeared in {-l} × [0, H]. Note that, asN lu = N l + s∈S * l 1[B le s ],τα is an unbiased estimator of τ α . Moreover, if we assume that the number of observed tracklets grows linearly with the observation time T S , this estimator is consistent

  Trajectories are generated on a rectangular unwrapped cylindrical surface of size [0, L] × [0, H] (Fig.4.4). In our experiments, we set L = 50, H = 30. The initial position of each trajectory is drawn from uniform distribution on the surface. Time duration T between two births follows an exponential law with birth rate parameter λ. At each birth, the intrinsic properties of a trajectory i are given, such as velocity v i , variance Σ i , and lifetime T i d . The lifetime T d follows an exponential law, with the same death rate τ d for all trajectories in the whole simulated image sequence. The

  FIGURE 4.4 -A set of simulated trajectories during 2.5 minutes (in stationary regime). X(resp., Y) axis represents the unfolded circumferential (resp., main) direction of the cylinder. Colors from light to dark green represent time evolution. The shadowed area corresponds to the unobserved region and the white area corresponds to the ROO.
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 45 FIGURE 4.5 -Fluctuations of the number of trajectories w.r.t. time. At around t = 20 minutes, the trajectories number fluctuates around the theoretical expectation value 6.

  respectively. Let us define a and b as: a the number of pairs of elements that are in the same class in G and in the same class in K, b the number of pairs of elements that are in different classes in G and in different classes in K. The raw (unadjusted) RI is then given by

  0.42 0.48 0.54 0.59 0.65 0.71 0.77 0.83 0.88 0

  Figs. 4.12 and 4.13 show the results of tracklets connection measured by ARI, according to different settings of birth rate λ and death rate τ d . To be specified, τα and τd are estimators when T S = 30 min, on the contrary, the estimators obtained with 2.5-min movies are denoted as τα and τd . Concerning the experiment with true parameters (blue boxes in both figures),

FIGURE 4 .

 4 FIGURE 4.11 -The estimation of death rate τ d with different λ and τ d . Magenta boxes represent τd estimated by 2.5-min movies and blue boxes by 30-min movies. Black horizontal lines represent the true value of τ d .

  birth rate and death rate are fixed, with λ = 0.08 and τ d = 0.02.

FIGURE 4 FIGURE 4

 44 FIGURE 4.15 -The NEs of v x , v y , σ x , and σ y in cases where σ = 0.2, 0.3, and 0.4.

  vxT d L , where T d ∼ E(τ d ) ensures a theoretical expectation value of vx τ d L . By counting the tracklets for each trajectory, we can obtain a proxy of the number of rotations around the cylinder. In Fig. 4.19, λ is set to 0.04 and different values of τ d between 0.004 and 0.01 are evaluated. Blue bars represent the distribution of the number of rotations of true connections. The magenta bars display the distribution of the number of rotations estimated by the connection
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 4 FIGURE 4.19 -The density distribution of "number of rotations." Each row represents the result for a different τ d value.

FIGURE 4

 4 FIGURE 4.20 -The estimation of the local xy referential for a cell.

FIGURE 4

 4 FIGURE 4.21 -The MreB tracklets classification. (a) MSD classification. (b) STP classification. Brownian tracklets are in blue and directed tracklets are in red. Blue lines represent the border of the visible region. Magenta lines represent the 0.1 quantile and the 0.9 quantile of x coordinate values.
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 4 FIGURE 4.22 -The distribution of drift and variance in the selected tracklets population: (a) without filtering, (b) after filtering.

FIGURE 4 .

 4 FIGURE 4.23 -Some optimal configurations for the population of positive speed v x . From left to right, the first, third, and sixth better configurations. Connected tracklets are drawn with the same color.

FIGURE 4

 4 FIGURE 4.24 -Second optimal configuration for the population of negative speed v x .

FIGURE 4 .

 4 FIGURE 4.25 -The 3D reconstruction of tracks. The centroids of aggregates are represented as blue squares.The arrows indicates the direction of motion. The full black lines represent tracklets crossing the observed region. The dotted red lines represent the simplified extrapolation of aggregate motion in the invisible region.
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 1 FIGURE A.1 -The estimated effective diffusion coefficients as a function of x (a)-(d), and the linear regression without and with intercept(e)-(h). ∆t = 0.25, D = 0.04. Corresponding to each line, the total observation time T S = 0.5, 1, 2, and 5 min, respectively. (a): As T S = 0.5 min, σyy (magenta curve) oscillates around the horizontal line y = D = 0.04, and σxx (blue curve) oscillates around a parabolic curve, which correspond to (3.40). (c)-(d): As T S increases, the curves become more smooth and better fit to (3.40). (e): The scatter plot of T vs S is fitted by linear model, without (magenta) and with (purple) the intercept term, respectively. The slope of straight lines is equal to 1/R 2 (3.42). (f)-(h): As T S increases, the scattered points become more regular and aligned.
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 23 FIGURE A.2 -The estimated effective diffusion coefficients as a function of x (a)-(d), and the linear regression without and with intercept(e)-(h). ∆t = 0.1, D = 0.09. Corresponding to each line, the total observation time T S = 0.5, 1, 2, and 5 min, respectively. (a): As T S = 0.5 min, σyy (magenta curve) oscillates around the horizontal line y = D = 0.09, and σxx (blue curve) oscillates around a parabolic curve, which correspond to (3.40). (c)-(d): As T S increases, the curves become more smooth and better fit to (3.40). (e): The scatter plot of T vs S is fitted by linear model, without (magenta) and with (purple) the intercept term, respectively. The slope of straight lines is equal to 1/R 2 (3.42). (f)-(h): As T S increases, the scattered points become more regular and aligned.
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 4 FIGURE A.4 -The difference between K(c t ) and K(c * ) versus ARI for different values of birth rate and death rate.

  n i=1 Q(c i ) , Titre : Dynamiques intracellulaires et imagerie de super résolution : la paroi bacterienne sondée à l'echelle moléculaire Mot clés : Analyse des trajectoires de particules uniques, processus de diffusion, vidéomicroscopie de haute résolution, reconstruction/ traitement des images, modélisation probabilistique, estimation paramétrique Resumé : Dans cette thèse, les méthodes de modélisation physique, statistique, et mathématique pour l'analyse des trajectoires de particules uniques ont été étudiées, accompagnées d'une évaluation expérimentale sur un problème spécifique, concernant la dynamique d'agrégats de MreB. Dans un premier temps, nous avons proposé deux approches pour analyser les trajectoires de MreB à l'aide de processus de diffusion caractérisés par des équations différentielles stochastiques. La première approche consiste à analyser les trajectoires individuelles, à déterminer leur mode de diffusion (diffusion libre, super-diffusion ou sous-diffusion) et à estimer les caractéristiques de diffusion (dérive et coefficient de diffusion). La seconde approche consiste à étu-dier la dynamique des particules au voisinage d'un point dans le champ, et à obtenir ensuite le champ de dérive et le champ de diffusion. Dans la seconde partie de la thèse, une modélisation probabiliste est proposée afin de reconstruire des dynamiques de particules en mouvement sur une surface cylindrique à partir d'observations partielles de ces dernières. La modélisation s'appuie d'une part, sur un processus de naissance et mort et d'autre part un processus Brownien avec dérive. Elle a donné lieu à une procédure de reconstruction autonome par maximisation de vraisemblance. Cette procédure est évaluée sur des données de synthèse ainsi que des données réelles de dynamiques de MreB obtenue en microscopie TIRFM.

  

  

  Comparison of three classification methods on MreB trajectories. The 1 st matrix represents the comparison between R 2 -MSD and β-MSD. The 2 nd matrix represents the comparison between R 2 -MSD and THOTH. The 3 rd matrix represents the comparison between β-MSD and THOTH. Blue (resp. orange) cells contain the number of trajectories identically (resp. differently) classified by two methods. For example, in the first table, 147 trajectories are classified as BM by both R 2 -MSD and β-MSD methods. However, among the trajectories classified as BM by R 2 -MSD, only 33.3% are in agreement with β-MSD, others are classified otherwise by the latter method. On the contrary, among the trajectories classified as BM by β-MSD, 86.0% are in agreement with R 2 -MSD.
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  Furthermore, T d follows an exponential law of parameter τ d , Y t follows a Gaussian law of parameters v y t and σ 2

	T l ∼ IG lu vx , lu σx	2	y t and

  In order to avoid having infinite costs γ i o when t i ≤ t o ,, we can also impose c o,i = 0 if t i ≤ t o . Actually the problem (4.14) is a conventional linear optimization problem which can be solved by applying the CPLEX Linear Programming solver https://www.ibm.com/analytics/cplexoptimizer.

	o,i ∈ {0, 1}, ∀i ∈ I S , o∈O S c o,i ∈ {0, 1}. ∀o ∈ O S , i∈I S c o,i ∈ {0, 1},	(4.14)

  T S is set to 5 minutes. The connection results measured by ARI are
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the temporal-varing parameter changes instantaneously, rather than giving only an average over the trajectory. Therefore, the stationarity of the process is not required. The author tested the performance of MBF for D ranging from 10 -3 to 10 -1 µm 2 /s, the time interval ∆t ranging from 25ms -100ms, and the total number of points N ∼ 100 -400, σ loc = 30nm. However, not all experimental data up to now can reach such quality of information. The limit of MBF needs to be tested further in real experimental conditions.

Another model which unifies super-, free, and sub-diffusion is fBm. The Hurst index H is model-specific, where 0 < H < 1/2, H = 1/2, and 1/2 < H < 1 represent sub-, free, and superdiffusion, respectively. In [START_REF] Naor | Single-particle diffusion characterization by deep learning[END_REF], the neural network is trained to estimate the Hurst index in the presence of localization errors (without the effect of motion blur). The author assumed that the dynamics of the observed particles are consistent with the fBm.

In the next section, we apply the previously mentioned methods, which are suited for MreB dynamics analysis, to characterize dynamics of MreB aggregates observed in 2D image sequences acquired with fluorescence microscopy techniques.

MreB dynamics analysis

As is observed in [START_REF] Cyrille | Contrasting mechanisms of growth in two model rod-shaped bacteria[END_REF], the MreB aggregates present different regimes of motion. The proportion of each regime may vary during different cell growth periods. In this section, we focus on the problem of classification of MreB dynamics and the optimal estimation of diffusion coefficient D and localization error σ loc .

MreB dynamics data

The images of the MreB dynamics are acquired by combining SIM with TIRFM (see Section 2.3). The structured illumination technique improves the spatial resolution by a factor of two (∼ 120nm) compared to the diffraction limit (∼ 250nm). Consequently, SIM offers better localization precision of the MreB aggregates and makes it possible to observe the unique filament of MreB (∼ 170nm in length). In TIRF microscopy, the evanescent field penetrates ∼ 200nm into the sample, which makes it suitable to observe the MreB aggregates moving along the surface of the 3D inner membrane of rod-shaped bacteria cells. However, data acquired with TIRF is biased as it produces temporal series of 2D images depicting the projection of the 3D dynamics onto the support plane.

In this section, the projection bias is corrected before applying the analysis methods to the dynamics of MreB. As the membrane shape in 3D is approximated by a cylinder, provided that the cell radius is estimated in a separate way (e.g., by phase-contrast microscopy), the reconstruction of the dynamics on 3D is straightforward by applying a geometrical transform. If R is around 50nm. However, at ∆t = 0.25, the standard deviation of R is increased to around 200nm, while the true radius is 510nm. The performance of the estimator of R decreases when ∆t varies from 0.1 to 0.25, which is related to the decrease of the number of points N k in the squares, but not ∆t itself.

If we fix T S = 5 min, varying ∆t from 0.1 to 0.25, the order of magnitude of the number of points in each square varies from 1.3×10 4 to 5×10 3 . For all the evaluated values of D, 0.04, 0.09, and 0.16, and the drift µ = 0.7, the estimation of R is satisfying (Fig. 3.14), with relative error < 5%(25nm).

It can be concluded that to obtain a reliable estimator of the radius, the number of points in each square bin should be ∼ 10 3 . The requirement of this number is remarkably relaxed compared to the recovery of the sphere in the original paper [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF] (∼ 2.25 × 10 4 ). Moreover, ∆t = 0.1 to 0.25 is possible with nowadays commonly used fluorescent microscopy. The requirement on the time interval ∆t is also eased compared to the infinitely small ∆t = 5 × 10 -5 in [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF].

In Fig. 3.14, the estimator without an intercept has a smaller standard deviation (< 10nm)

than the estimator with intercept (standard deviation< 25nm). However, when there are fewer points, in Fig. 3.13a, when the intercept is deactivated, a bias is introduced to the estimator. On the contrary, using linear fit with intercept, the estimator becomes non-biased and more stable.

Discussion

In this section, we proposed consistent estimators of the drift and the diffusion coefficient given the dynamics following the Langevin equation (3.35). The estimators correct the biases induced by the finite time-resolution ∆t, as investigated in [START_REF] Nathanael | Recovering a stochastic process from noisy ensembles of many single particle trajectories[END_REF]. Secondly, we applied the method of surface reconstruction proposed in [START_REF] Hoze | Reconstruction of surface and stochastic dynamics from a planar projection of trajectories[END_REF] to estimate the radius of the rod-shaped bacteria cell.

Again, we studied the dynamics of particles on an Euler paradigm. The local information of the drift and diffusion is probed instead of the average information over long trajectories.

Consequently, the method is appropriate to deal with short trajectories and to handle dynamics with switching episodes.

Assuming the dynamics follow the Langevin equation (3.35) on a cylindrical surface, a linear fitting procedure has been designed to recover the radius of the cylinder from the projected dynamics. The model is simplified by approximating the surface as cylindrical, whose curvature is constant (1/R and 0 along the x and y directions, respectively) and assuming that the drift and diffusion coefficient are constant. In order to derive reliable estimators of the effective (or projected) drift and diffusion coefficients, the number of points in the neighborhood of a point

x k (e.g., a square B(x k , r)) must be in the order of ∼ 10 3 . The time interval is not required to be infinitely small. The time step ∆t = 0.1 to 0.25, which is generally possible with fluorescent CHAPTER 4

PROBABILISTIC RECONSTRUCTION OF TRUNCATED PARTICLE TRAJECTORIES ON A CLOSED SURFACE

Probabilistic models and methods

Let us consider a given sample S, the observation set of all the trajectories. We define the sets O S = {o 1 , ..., o p } and I S = {i 1 , ..., i q } of p outputs and q inputs. Each output o = (t o , y o ) ∈ O S is characterized by its output time t o and its position y o ∈ [0, H], where the particle left the observed region. Similarly, each input i = (t i , y i ) ∈ I S is characterized by its input time t i and its position y i ∈ [0, H], where it entered the observed region. A particle "involved" in an output o ∈ O S either died after time t o in the unobserved region, or is "involved" in a given input i ∈ I S with t i > t o . We will denote this event by {o → i}. Similarly, a particle "involved" in an input i ∈ I S was either born before time t i in the unobserved region, or is "involved" in a given output (+) To emphasize, τα is a novel estimator Eq.( 19) (+) The possibility to find the n th optimal solution, second part of section (3.2) FIGURE 4.2 -An outline of the connection procedure: from the estimation of the parameters to connection accuracy measurement, including likelihood formulation. All notation are defined in the corresponding sections. median value of ARI reaches 1. When using the estimated v and σ, the median value of ARI is approximately 0.75. It can be concluded that the estimation of v and σ has an impact on the performance of the algorithm.

Summary of notation useful for the evaluation of the likelihood

Analysis of the connection results

An example of tracklets connection

Figure 4.17 shows, on the left, trajectories in a movie and on the right, the results of tracklets connection. The path from an output to the matched input is represented by the dashed straight line, as we don't know how exactly the particle went through the hidden zone. The only wrong connection corresponds to the bold line. Compared with the figure on the left, we can find the realization of these two tracklets. In reality, the orange bold tracklet disappeared at the hidden region and the bold purple tracklet appeared nearby and entered into the observed zone.

In fact, not only the optimal configuration can be calculated, but also the most likely alternative configurations in decreasing order of probability (Fig. 4.18). It should be noticed that the optimization algorithm tries to minimize K(c) =log Q(c), instead of finding the c * maximizing P (c). It costs too much to obtain the probability P (c * ), as it requires the enumeration of all the of a position point, and further obtaining drift and diffusion fields. The dynamics is modeled by Langevin equation. By approximating the rod-shaped cell by a cylinder, we proposed an original procedure to estimate the cylinder radius from the planar projection of trajectories taking place on the 3D cylindrical surface. The procedure was evaluated on synthetic data. Unfortunately, it turned out that the current density of the trajectories of MreB aggregates is insufficient for this procedure to work reliably on experimental data. This will be accomplished in future work from single-molecule localization and photo-activated microscopy.

In the second part, we dealt with the problem of the incomplete (i.e., partial) observation field in TIRMF, where only around one third of the cell membrane can be observed. Our objective was to recover the dynamics of the directed MreB particles on the whole surface of the cylindrical membrane surface. Therefore, we proposed a probabilistic procedure, modeling the birth and death process of the particles on the surface and particles' exit from the region of observation (ROO) and re-entrance into the ROO. Based on the observations of MreB dynamics in the ROO, the parameters were estimated using the proposed consistent estimators.

The performance of our procedure was evaluated on synthetic data, by varying the diffusion features and the spatio-temporal sampling rate. It is worth noting that the procedure provides not only the optimal configuration of the reconstruction but also the first n optimal configurations with descending probability. This ranking can be exploited by experts to select several reconstructions for further examination. Once the dynamics over the whole surface is recovered, it becomes possible to address new questions. For instance, the average duration of the directed motion of MreB filament can be further investigated.

The reconstruction procedure will be further applied to a larger dataset of cells in similar physiological states, to gain more significant statistical information. Some assumptions imposed in the conception of the probabilistic model could be revisited. For example, we assumed spatial homogeneity, suggesting that the particles are born or die uniformly on the membrane surface, independently of the existing particles in the field of view. Another assumption supposes a constant death rate of particles, without dependency on particle "age". Furthermore, in order to give more realistic reconstruction, once an exit is connected to a re-entrance, the path in the hidden region could be simulated by Brownian bridge instead of being represented by a directed motion (straight trajectory).

Perspectives

We suggest some avenues of research for future work. To reconstruct the trajectories in the hidden region, from a large volume of repetitive observations in the ROO, the use of autoencoders and Generative Adversary Networks (GAN) is under investigation. The challenge arises from the large size of the hidden area, which is almost twice as large as the ROO. The

APPENDIX A.1 Itô integral

The true velocity and standard error on the cylinder surface is unknown. But firstly we estimate the effective velocity and standard error of the dynamics projected on the plane. Given the stochastic process (3.35), for some ∆t we can integrate from t to ∆t

We suppose that ∆t is small enough, that the drift and diffusion coefficient can be considered constant during t and t + ∆t. Then it gives

Then let us calculate the expectation of X t+∆t -X t and of (X t+∆t -

According to Itô Isometry Thm. 1,take φ(t, w) = 1, the second term in the last step

Theorem 1 (Itô Isometry P. 26 [START_REF] Bernt | Stochastic differential equations : an introduction with applications[END_REF]) If φ(t, w) is bounded and elementary, then

To estimate µ(X) and σ(X), we divide the field into a grid and we consider that in each cell of the grid, the two coefficients are constant.The empirical version for (A.1) and (A.2) can be written as:

where

A.2 Estimation of the radius of cylinder by linear fitting (supplementary experiments)

As a complement to the results of the estimation of radius R presented in Section 3. 

A.3 Analysis of errors

In this section, we evaluated the connection error caused by randomness. We display in Fig.

A.4 the scatter plots of ARI value vs K(c t ) -K(c * ), where c * denotes the optimal configuration calculated by the "Tracklets Connection Algorithm" while c t is the true configuration. Each scatter plot displays the results of 100 simulations for a given combination of λ and τ d .

The difference between K(c t ) and K(c * ) is always positive or null, showing the optimization procedure works correctly to find the optimal solution. When K(c t ) > K(c * ), it means that the configuration c * has a higher probability than the true realization c t , which can be due to randomness. We can notice that ARI decreases as soon as K(c t ) -K(c * ) increases. This error occurs when the realization is significantly different from the optimal configuration. Overall, ARI values are generally above 0.7.

Overall, we observe an increment of ARI when the difference decreases. where Ñc is the number of possible configurations calculated through the number of inputs and outputs. We know that Ñc is bigger than N c because some configurations counted in Ñc are not compatible according to the time of inputs and outputs. Unfortunately we don't know the exact

In order to guarantee the precision of the probability, we choose n * , 1 ≤ n * ≤ N c , big enough to satisfy, for α > 0,

This gives us

which ensures that the upper and lower bounds are close from each other. As a result, it gives

In other words, this means that the set of configurations c i up to n * correspond to an highly likely event for 1 1+α close to 1. 

ABBREVIATIONS