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Abstract

English
Graphene physics and plasmonics are two fields which, once combined, promise a variety of excit-

ing applications. One of those applications is the integration of active nano-optoelectronic devices in
electronic systems, using the fact that plasmons in graphene are tunable, highly confined and weakly
damped. Before achieving these active device, a crucial challenge remains : finding a platform enabling
a high propagation of Graphene Plasmons Polaritons (GPPs).

In this framework, a full study of the propagation of plasmons through suspended graphene is ad-
dressed. This study start by reviewing the theoretical and experimental research achievement related to
the really recent emerging field of graphene plasmonics. A numerical investigation by FDTD method is
presented, and the conditions for a realisation of the study of graphene plasmons in suspended graphene
are analysed. A design of the sample with an experimental process is proposed. Finally, an experimental
study from the fabrication in clean room, then the characterisation of graphene and plasmonics structure,
to the optical measurement through Scanning Near-field Optical Microscopie is presented.

Keywords— Surface plasmon resonance; Graphene; Simulation methods; Near-field microscopy; Infrared
spectroscopy

French
La physique du graphène et la plasmonique sont deux domaines qui, une fois combinés, promettent

une variété d’applications intéressantes. Une de ces applications est l’intégration de dispositifs nano-
optoélectroniques actifs dans des systèmes électroniques, en utilisant le fait que les plasmons dans le
graphène sont accordables, fortement confinés et faiblement amortis. Avant de réaliser ces dispositifs
actifs, un défi crucial demeure : trouver une plateforme permettant une forte propagation des Polaritons
Plasmons Graphène (GPP).

Dans ce cadre, une étude complète de la propagation des plasmons à travers le graphène en suspension
est abordée. Cette étude commence par examiner les résultats de la recherche théorique et expérimentale
liés au domaine émergent de la plasmonique du graphène. Une étude numérique par méthode FDTD est
présentée, et les conditions pour la réalisation de l’étude des plasmons de graphène dans le graphène en
suspension sont analysées. Une conception de l’échantillon avec un processus expérimental est proposée.
Enfin, une étude expérimentale, de la fabrication en salle blanche, puis la caractérisation de la structure
graphène et plasmonique, à la mesure optique par microscopie optique à champ proche à balayage, est
présentée.

Mots Clés — Résonance plasmonique de surface; Graphène; Simulation, Méthodes de; Microscopie en champ
proche; Spectroscopie infrarouge
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Introduction

Over the past century, the field of infinitely small has started to be investigated, as the tools were de-
veloped and being available in the research centers. Nanoscience have been carrying the promises of
revolution in many fields. Among other, huge effort are made in the fields of medicine and information
technology, where progress are strongly demanded. Nanoscience is present in our daily life through the
electronic devices, where the size of the component has been reduced steadily to the nanoscale. However,
the nanoworld does not work with the same physical rules, where others phenomena take place. Many
researches are directed toward the resolution of the arising problems, to make nano-device work in the
way it works on our scale. Other research are driven in order to take advantage of those new rules and
phenomena. This research aims at showing some recent results about electromagnetic waves appearing
down to the atomic scale. This thesis work is taking place at the intersection of two fields, plasmonic
and graphene.

Plasmonics is part of the general field of plasma. Plasma is a state of the matter, where collective
electrons density waves can be manipulated. It exists on several forms, and one of them is the 2D col-
lective oscillation of electrons at the surface of conducting materials. At the interface between a metal
and an insulator, surface plasmons can be found. This electromagnetic wave can be coupled with light,
and the latter can be confined at the subwavelength scale. The confinement of the light is an important
research topic as photonic devices suffer from their size. This plasmonic phenomenon has been studied
on 2D material and more particularly graphene.

In the quest of understanding and manipulating the infinitely small, graphene appears as a very
promising material. It is in fact infinitely thin: the first single-atom-thick layer discovered. Moreover,
the strong carbon-carbon bound allow the scientist to manipulate it with macroscopic tools. On the
top of that, it is possible to isolate a graphene layer by the scotch-tape mechanical exfoliation tech-
nique. This technique is so simple and cheap that it can be reproduced by any research team all over
the world. Finally, its peculiar properties open up new fields of research. In order to have an idea
of the importance of the discovery, it took only 6 years to Andrei Geim and Kostya Novoselov to get
their Nobel price after their famous publication. In this context appears the field of graphene plasmonics.

The field of graphene plasmonics emerged recently, within few years after the Nobel price. Graphene
plasmons have shown their potential through their high confinement and tunability. This work is all about
graphene plasmonics, which is introduced through this thesis. In the first chapter, some basic knowledges
about plasmonics in general and graphene properties, mostly electronic, are presented. The second
chapter is a literature review about graphene and graphene plasmonics, as well as the demonstration of
a basic model explaining graphene plasmons properties. In the third chapter, a numerical study about
plasmons propagating in suspended graphene is shown. In the fourth chapter, fabrication of samples as
well as optical measurements through home-made SNOM are introduced. Finally, the main results of
this thesis are summarized, as well as the possible research direction to consider, following this work.
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Chapter 1

Theoretical background

This thesis takes place in the framework of a broad and not really intuitive field of science usually called
nanotechnology. The name refers directly to the size (nanometres) of the systems studied because of the
wide properties arising from this range of length. New properties arise from the confinement of the media
in one or more dimensions. As an example, the ratio of surface atoms over core atoms vary dramatically
when reducing the dimensions of an object to the nanometric scale. Figure 1.1 shows the ratio of surface
atoms over core atoms in the case of a spherical bulk of palladium when the cluster diameter is reduced.
In fact, surface atoms exhibit different properties as the forces applied on them differ, as well as chemical
terminations. Therefore, surface atoms give to the structure new chemical properties, as they build the
physical interface between the solid and its environment. The confinement of the structure also gives
physical, mechanical, electromagnetic, and in particular plasmonic, remarkable new properties. That
is noticiably the case for the 2 dimensions materials discovered quite recently [119], and among them
graphene.

Figure 1.1: Variation of the percentage of surface atoms as a function of the size of a palladium cluster,
adapted from [120]

In order to go deeper into the field of graphene plasmonics, the first chapter aims to expound the
bases in plasmonics and about graphene. Therefore, in a first part, Maxwell’s equations and the Drude
model are introduced, which will give the keys for treating the second part of this chapter, i.e. the surface
plasmons polaritons (SPPs). Finally, some of the graphene electronics properties will be explained.
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1.1 Maxwell’s equations and Drude model
Maxwell’s equations are the bases of a revolution in physics [56, 71]. These equations couple the magnetic
field H(r, t) and the electric field E(r, t). In space and time domain, the 6 scalar functions of these fields
are interrelated by the Maxwell’s equations, which give birth to the electromagnetic wave’s equations.
This set of partial differential equations is a part of the laws of science. There are four equations that it
is possible to define depending on the surrounding media. In a medium, two additional vector fields are
required, showing up in the Maxwell’s equations : the electric flux density D(r, t) and the magnetic flux
density B(r, t). To simplify the notations, the informations about time and space "(r, t)" will be omitted.

Maxwell’s equation, in a medium without (and with) free charges ρf and currents density Jf , are
given by :

∇ ·D = 0(+ρf ) Gauss’s law for electricity (1.1)

∇ ·B = 0 Gauss’s law for magnetism (1.2)

∇×E = −∂B
∂t

Faraday’s law (1.3)

∇×H = ∂D
∂t

(+Jf ) Ampère’s law (1.4)

The two first Equations (1.1) and (1.2) are known as the Gauss’s laws for electricity and magnetism
respectively. They are related to the charge and magnetic sources. The two last equations, i.e. the
Faraday’s law (1.3) and the Ampère’s law (1.4), are governing the time evolution of the electromagnetic
fields. The relation between the fields and the flux densities are described by :

D = ε0E + P
B = µ0H + µ0M

(1.5)

where ε0 ≈ 8.854187817.10−12F/m, or approximately 1/36π.10−9F/m, is the vacuum permittivity, µ0 =
4π.10−7V.s.A−1m−1 is the vacuum permeability. The vectors fields P and M are related to the properties
of the media. The first one is called the polarization density [C/m2] that corresponds to a volume density
of dipole moments. The second one is the magnetisation density [A/m]. They are describing the reaction
of the medium to external fields. In non-magnetic media, we have :

D = ε0E + P = ε0εrE (1.6)

B = µ0H (1.7)

with ε = ε0εr the absolute permittivity of the medium. The physical quantity εr refer to the relative
permittivity, which can be written as εr(r) when highlighting a spacial dependence. εr is the sqaure of
the refractive index of the medium.

1.1.1 Electromagnetic wave equation and dispersion relation
The electromagnetic wave equation is a second order partial equation, arising from the Maxwell’s Equa-
tions (1.3) and (1.4). In fact, these equations can be combined in non magnetic media which gives, in
absence of charge and current :

∇×∇×E = −µ0
∂2D
∂t2

(1.8)

Then, using mathematical identities such as ∇×∇×E ≡ ∇(∇ ·E)−∇2E as well as ∇ · (εr(r)E) ≡
E · ∇εr(r) + εr(r)∇ ·E, and inserting Equation (1.1) in Equation (1.8), leads to :
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∇
(
− 1
εr(r)

E · ∇εr(r)
)
−∇2E = −µ0ε0εr(r)

∂2E
∂t2

(1.9)

Latter the last equation will be solved in different media separately. In an homogeneous medium, the
dielectric function can be considered as constant in space, which leads to : ∇εr(r) = ∇εr = 0. Finally,
the well known electromagnetic wave equation, named d’Alembert equation, can be deduced as :

∇2E− ε

c2
∂2E
∂t2

= 0 (1.10)

where c = 299792458m/s is the speed of the light in vacuum. In order to simplify the model, the
wave is assumed to be solution of the d’Alembert equation, i.e. this wave is a superposition of progressive
harmonic plane waves. Such a wave has a plane wavefront orthogonal to its propagating direction. It is a
solution of Maxwell’s equations, which has 6 electromagnetic components, with a same pulsation w and
wave vector k. It is common to write the harmonic electric and magnetic fields with complex notations
so that E(r, t) = E0e

j(k.r−wt). Using the partial derivative in time and in space, E is governed by :

∇E = jk and ∂E
∂t

= −jw (1.11)

Combining equations (1.10) and (1.11), leads to the dispersion relation :

k2 = ε
w2

c2
i.e. k =

√
ε
w

c
(1.12)

This dispersion relation describes the dynamic of a plane wave in a medium. If the medium is said to
be dispersive, its dielectric function is function of the light wavelength. The dielectric function is usually
noted ε(w). In the vacuum, ε(w) = 1 and the well known linear dispersion relation becomes :

k = w

c
(1.13)

1.1.2 Boundary conditions
Maxwell’s equations are valid for a continuous medium. However, they can be used in the case of in-
terfaces, where they constrain the behavior of electromagnetic fields leading to the so-called boundary
conditions. As a result, a part of the energy is generally reflected, and another transmitted. It is also
possible to deduce from it directions and angles of the resultant fields, depending on the incident beam,
its polarisation as well as the media properties. More specifically for this study, the dispersion relation
of graphene plasmons (see section 2.3.2) arises from the boundary conditions applied on the magnetic
field (see below).

The boundary conditions for electromagnetic fields can be derived from integral forms of the Maxwell’s
equations expounded in the introduction of Section 1.1. Let’s consider an interface between two homo-
geneous media. In the following description, the notation E1i will be used, with i = x, y, z (cartesian
coordinate) or i = t (tangential to the boundary i.e. in the plane (x,y)), for the component of the elec-
tric field lying in the medium 1 (see Figure 1.2). Four boundary conditions arise from the 4 Maxwell’s
equations seen above. They are demonstrated in the four paragraphs below.

From the Ampère’s law Starting from Equation (1.4), which is integrated over a surface bounded
by a loop (see Figure 1.2), Stokes’ theorem is applied :

ˆ
S

∇×H · dS =
˛
C

H · dl = ∂

∂t

ˆ
S

D · dS (1.14)

Following Figure 1.2, where the Roman numbers are defining the edges of a rectangle loop perpendicular
to the interface, and assuming a constant electric flux D over the surface S, it is possible to develop :

(I) + (II) + (III) + (IV ) = ∂

∂t
D · ey

ˆ
S

dS (1.15)
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with ey the unit vector in the y direction. The Roman numbers are directly related to the terms on the
left side in the next equation. The electric flux density D is oriented through the loop, and is directly
proportional to the surface involved in the experiment. Therefore, it is possible to re-write Equation
(1.15) as:

H1x · dx + (H1z + H2z) · dz−H2x · dx− (H1z + H2z) · dz = ∂

∂t
D · ey(dxdz) (1.16)

If the distance dz tends to zero, Equation (1.16) becomes :

(H1x −H2x) · dx = 0 (1.17)

H1x = H2x (1.18)

Equation (1.18) can be generalized for all the magnetic field compounds in plane as follow :

H1t = H2t (1.19)

As it has been mentioned in introduction, a key equation for obtaining graphene plasmons relation
dispersion is lying in the boundary condition applied on the magnetic field. That comes from the fact that
graphene is a semi-metal (see Section 1.3.2), which has quasi-free electrons (see Section 1.3). Therefore,
taking into account surface currents at the interface of two media, with dz tending to zero and the use
of Equations (1.17) and (1.16)), Equation (1.14) becomes :

˛
C

H · dl = (H1x −H2x) · dx =
ˆ
S

(
∂D
∂t

+ Jf

)
· dS = dxJS · ey (1.20)

and therefore
H2x −H1x = −JSy (1.21)

with Jf the volumetric density of current (A.m−2) and JS the surface density of current (A.m−1).
When an electric field is applied to the object, electrons will move. The Ohm’s law states that :

J = σE (1.22)

Plugging Equation (1.22) in Equation (1.21) leads to :

H2t −H1t = −σEt⊥ (1.23)

with σ the surface conductivity. This key equation will be used in order to obtain the dispersion relation
of graphene plasmons in section 2.3.2, in the case of TM (Transverse Magnetic) modes.

From the Faraday’s law Using the same development as in the previous paragraph, Equation (1.3)
leads to :

E1x = E2x (1.24)

Generalised to all the tangential components, it is possible to write :

E1t = E2t (1.25)

From the Gauss’s law (electricity) The schema helping to solve this boundary condition problem
is illustrated in Figure 1.3. We can see there an interface, plane in blue, separating two media (medium
1 and 2). The Roman numbers represent surfaces delimiting a pillbox, in red, which is crossing the
interface. (I) represents the surface of the pillbox parrallel to the interface in the medium 1. (II)
represents the surface of the pillbox parrallel to the interface in the medium 2. (III) represents the
surface of the pillbox which is perpendicular and crossing the interface. The electric flux density Di,n
normal to the interface is represented in the two media (i=1,2) with an arrow. Let’s take the Maxwell
equation (1.1), integrate over the pillbox and apply Gauss’ theorem in the absence of charge :

ˆ
V

∇ ·D dV =
˛
S

D · dS = 0 (1.26)
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Figure 1.2: Schema describing the interface (in blue) between two media, medium 1 and the medium 2.
Two electric field tangential to the interface are displayed. A rectangle loops crossing perpendicularly
the interface is also shown in red, used for getting the boundary condition using the Maxwell’s Equations
(1.3) and (1.4)

where V and S are respectively the volume and the surface of the pillbox. The surface integral can be
separated into three parts :

˛
S

D · dS =
ˆ
SI

D1,n · dSI +
ˆ
SII

D2,n · dSII +
ˆ
SIII

Dt · dSIII (1.27)

where (I) and (II) are the flat ends, and (III) is the curved surface as shown on Figure 1.3. It can be
noticed first of all notice that SI = SII = S. Then, let’s take the limit in which the pillbox height tends
to zero, to obtain :

−D1n · S + D2n · S = 0 (1.28)

D1n = D2n (1.29)

From the Gauss’s law for magnetism Starting from Maxwell’s equation (1.2), and using the same
development as in the previous paragraph, we have :

B1n = B2n (1.30)

1.1.3 Review of the Drude model and the free electrons gas equations of
motion

The Drude model was constructed three years after Thomson’s discovery of electrons. In a metal, Drude
considers a sea of electrons and uses the theory of gases to describe the electrical and thermal conductions.
In this model, it is assumed that electrons are spherical solids identically moving along a straight line. A
time average (t = τ) known as the collision time is set delimiting two collisions. The electrons will emerge
with a random direction and random speed after each collision (no particular initial condition). There is
no force applied on electrons except the one occurring when they collide: no electron-electron interaction
(independent electrons approximation), no electron-ion interaction (free electrons approximation).

Case of a uniform and constant perturbation. In the case where a uniform and constant electrical
field (E) is applied, electrons feel the electrostatic force Fel:

Fel = −eE (1.31)
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Figure 1.3: Schema describing the interface (in blue) between two media, medium 1 and the medium 2.
Two electric flux density normal to the interface are displayed. A pillbox crossing perpendicularly the
interface is also shown in red, used for getting the boundary condition using the Maxwell’s Equations
(1.1) and (1.2)

with the electronic charge e = 1.6021765×10−19 C. With me the mass of a free electron (9.11×10−31kg),
the fundamental principle of dynamic gives:

me
dv
dt

= Fel = −eE (1.32)

Since the electron past move is unknown (direction, velocity), all prior contribution to the electron
motion is ignored and the average of the electronic velocity is defined as following :

vavg = −eE
me

τ (1.33)

The current density J is expressed as:
J = −nev (1.34)

with n the charge carrier density. Combining the last equation with the Ohm law, E = ρJ, leads to the
resistivity ρ:

ρ = me

ne2τ
(1.35)

This first result is interesting because it gives an order of magnitude of the collision time for metals.

Dielectric function of the electron gas. The optical response of a Drude metal, in absence of drag
force, can also be established. Plugging the electron displacement x(ω) = x0e

−iωt in Equation (1.32),
and linking the polarisation density P(ω) with x(ω) through P(ω) = −nex(ω) lead after a little algebra
to :

P(ω) = −ne
2

mω2 E (1.36)

The frequency dependent dielectric function of Drude metal can be expressed, using Equation (1.5) as:

ε(ω) = 1− ne2

ε0mω2 = 1−
ω2
p

ω2 (1.37)

with ωp the plasma frequency. At this angular frequency, the collective motion of electrons in a conducting
medium, such as a metal, is resonant. Under this frequency, the medium is reflecting the electromagnetic
wave, whereas above it, the wave are propagating through the medium.
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Equations of motion for a free charge carrier. It is possible to describe the dynamic of a free
charge carrier adding a damping term. An electron has a velocity v0(t) at time t and the probability dt

τ

to collide at t+dt. Therefore 1 − dt
τ is the probability to avoid a collision. While an electron does not

experience collision, it moves following Equation (1.32) and will get a velocity:

dv = Feldt
me

(1.38)

Thus, an electron has a probability of 1 − dt
τ to not collide at a time t+dt and add to its own velocity

(v0(t) at the time t) a velocity dv. Considering a metal with free electrons, all the electrons which collide
can be neglected. Thus, the contribution to the velocity per electron added by all the electrons which
survive during a time dt, v(t+ dt), can be calculated as:

v(t+ dt) =
(

1− dt

τ

)(
v0(t) + Feldt

me

)
=
(

1− dt

τ

)
(v0(t) + dv) (1.39)

The second magnitude order (dt2) in the development of the following equation is not taken into account:

v(t+ dt) = v0(t) + Feldt
me

− dt

τ
v0(t) (1.40)

To obtain finally the equations of motion for a free charge carrier when dt→ 0:

v(t+ dt)− v0(t)
dt

= dv(t)
dt

= Fel
me
− v(t)

τ
(1.41)

It is possible to re-write the last equation with p the momentum of the electron:

dp
dt

= −p
τ
− eE (1.42)

Equation (1.42) is the other significant result of the Drude model, with Equation (1.35). When an
external perturbation E(ω) oscillates periodically such as E(ω) = E0e

−iωt, the solution of Equation
(1.42) is of the form p(ω) = p0e−iwt, and we get :

p(w) = − ieE(w)
w + i/τ

(1.43)

Taking Equation (1.22), with J = −nep/me the current density and n the carrier density, the optical
conductivity σ(w) as a function of the pulsation can be deduced as:

σ(w) = ine2

m(w + i/τ) (1.44)

From the optical conductivity to the permittivity. Let’s take the case where a free current
takes place at an interface between two media, characterized by their relative permittivity ε1 and ε2.
εs = (ε1 + ε2)/2 is defined as the surrounding permittivity. Taking Maxwell Ampère’s law, it is possible
to write :

∇×H = ∂D
∂t

+ Jf (1.45)

= ε0εs
∂E
∂t

+ σE = (−iωε0εs + σ)E (1.46)

Using equation (1.9), it follows :

∇×∇×E = −∇2E = −µ0
∂∇×H
∂t

(1.47)

= −µ0(−iω)(−iωε0εs + σ)E (1.48)
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After some rearranging, using the partial derivative in space (1.11), the dispersion relation can be
found :

k2 =
(
εs + iσ

ωε0

)
ω2

c2
(1.49)

The relative permittivity of a metal-like material (Drude conductivity) as a function of the optical
conductivity can thus be written as:

ε(w) = εs + iσ(w)
ε0w

= εs −
ne2

mε0(w2 + iw/τ) = εs −
w2
p

w2 + iw/τ
(1.50)

with wp = ne2/mε0 the plasma frequency of the free electron gas. Because the Drude model doesn’t
take into consideration interband transition in its model, the description is not valid for high frequency,
relatively to the plasma frequency wp and the relaxation time τ . In this case, the sign of the real part of
the relative permittivity change and its optical response is not anymore metallic. However, in the scope
of this thesis, we would like to work in the infrared range, where no interband transition may appear.

The permittivity is a really interesting intrinsic property of materials because it gives access to the
optical answer of a material under perturbations. Unfortunately, this property is convenient only for
3D materials modeling. Graphene being a one atom thick carbon sheet, we will more likely use 2D
conductivity. However, as a first approach, the Drude model can convert the 2D conductivity into a
3D permittivity, giving us a good idea about the optical response of graphene in the infrared range. Its
optical properties via materials permittivity has been widely used at first for graphene, thus enabling
FDTD simulation.

This 3D approach implies to model materials with a finite thickness arbitrary set as 2a, for the sake
of simplicity in the next section. In this model, graphene surroundings, characterized by a permittivity
εs, also plays a crucial role :

εg(ω) = εs(ω) + iσ2D(w)
ω2aε0

(1.51)

In the case of suspended graphene, ε1 = ε2 = εair = 1 and thus εs = 1, and Equation (1.51) leads to :

εg(ω) = 1 + iσ2D(w)
ω2aε0

(1.52)
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1.2 Surface plasmon polaritons

In the framework of the study of electromagnetic waves, Surface Plasmons Polaritons (SPPs) can be seen
as a particular result of the Maxwell’s equations at the interface of two media with specific properties
[101, 128, 130]. In order to give a picture about plasmonics, it is interesting to go back to its physical
origin. It can be seen as a collective motion of electron reacting to an electric field. However, they tend
to travel slightly too far and as a result, a restoring force pulls them back in order to screen the charge
disturbance created by their displacement. This first collective motion is repeated such that a weakly
damped oscillation occurs. Therefore, a plasmon can be defined as a coherent collective oscillations of
free electrons. When the excitation of the plasmon is light, a coupling between plasmons and the eletro-
magnetic wave takes place, resulting in a Surface Plasmon Polariton (SPPs).

1.2.1 Surface plasmon polaritons at a single interface in absence of free cur-
rent

We can start the description of surface plasmons by solving the problem of a plane wave crossing an
interface separating two media defined by their dielectric function ε1 and ε2.

An arbitrary polarized plane wave E = E0e
i(k.r−wt) can always be split up into two orthogonally po-

larized plane waves. Basing our problem on the interface between the two medium ε1 and ε2, the electric
field is moving parallel to the interface for the first case, and in the other case, we set the magnetic field
parallel to the interface. In the first case, we speak about a transverse electric (TE or s) polarization.
In the second case, we speak about a transverse magnetic polarization (TM or p), which is illustrated in
Figure 1.4.

Figure 1.4: Schema of an incident TM polarized wave propagating in the plane xz, crossing an interface
(from medium 2 to medium 1). A part of this incident electromagnetic wave is reflected back in the
medium 2, and a part is transmitted in the medium 1. The wave is characterized by a wavector ki,j,
with i=1,2 stands for the medium, and j=I,R,T in case where we are looking at the Incident, Reflected
of Transmitted component. As well, the electric field Ei,j and the magnetic field Bi,j are illustrated.

In our case, we are interested in surface plasmons, only appearing in TM mode (for the TE case, see
[101]). In TM mode, the non-zero components are Hy, Ex and Ez. Let’s write the fields in the media
(1) and (2) as follows :
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For z>0 H2 = (0,Hy2, 0)ei(kx2x+kz2z−wt)

E2 = (Ex2, 0,Ez2)ei(kx2x+kz2z−wt)

For z<0 H1 = (0,Hy1, 0)ei(kx1x−kz1z−wt)

E1 = (Ex1, 0,Ez1)ei(kx1x−kz1z−wt)

(1.53)

At the interface between two media, in the absence of free charges and currents, the tangential
components of the electric and magnetic fields, Et and Ht, as well as the normal components of the
electric and magnetic flux densities, Dn and Bn, must be continuous (see sub-section 1.1.2) :

E1t = E2t for the electric field
H1t = H2t for the magnetic field
D1n = D2n for the electric flux density
B1n = B2n for the magnetic flux density

(1.54)

Let’s start from the fact that the boundary conditions must be satisfied everywhere on the interface.
Let us consider a point p(x,y,0) such as it belongs to the plane z=0. It means that the electric field can
be written :

Ex1e
i(kx1x−wt) = Ex2e

i(kx2x−wt) so Ex1 = Ex2 = Ex and kx1 = kx2 = kp (1.55)

And the magnetic field :

Hy1e
i(kpx−wt) = Hy2e

i(kpx−wt) so Hy1 = Hy2 (1.56)

The time dependence is assumed to be harmonic ( ∂∂t = −iw). The harmonic time dependence,
applied to the magnetic field via the d’Alembert Equation (1.10) thus yields to the Helmholtz equation :

∇2Hi + k2
0εHi = ∂2Hi

∂z2 + (εk2
0 − k2

p)Hi = 0 (1.57)

If this equation is applied to the media (1) and (2), the following relations are obtained:

(−ikz1)2 + (ε1k2
0 − k2

p) = 0 and (ikz2)2 + (ε2k2
0 − k2

p) = 0 (1.58)

which yield to the general equation :

kzi =
√
εik2

0 − k2
p (1.59)

It is important to keep in mind that the wave is polarized TM (Ey = Hx = Hz = 0) and that
homogeneity is maintained in the y-direction, such that ( ∂∂y = 0). Maxwell’s Equation (1.4) can now be
applied to obtain the electric field :

iwε0εiExi = ∂Hyi

∂z
(1.60)

either
Exi = −i

wε0εi

∂Hyi

∂z
(1.61)

for each media. Applying Equation (1.61) at the boundary, plugging the Equations (1.53) in and
using the results found in the Equations (1.55) and (1.56) lead to:

kz1
ε1

= −kz2
ε2

or ε2
ε1

= −kz2
kz1

(1.62)

Inserting Equation (1.59) into Equation (1.62) leads to the dispersion relation of the SPs in a single
interface system :
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(a) Dispersion relation of plasmons. (b) Magnetic field profile of SPPs at ω = 0.35 ωSP and ω
= 0.57 ωSP .

Figure 1.5: Dispersion relation and magnetic field profile of SPPs at a planar interface between air and
a Drude-metal with no damping.

kx = kp = k0

√
ε1ε2
ε1 + ε2

(1.63)

kp is the surface plasmon wavevector. The component kzi can also be developed combining Equation
(1.59) and Equation (1.63), to find :

kzi = k0

√
ε2i

ε1 + ε2
(1.64)

From these results, it is possible to describe the appropriate environment for surface plasmon mode
at the interface between two media. Indeed, surface plasmon propagate parallel to the surface, vanishing
in the z-direction. Hence, as it has been seen previously, kzi should be purely imaginary. Therefore,
following Equation (1.64), the condition becomes ε1 + ε2 < 0. Then, considering a wave that propagates
along the interface, kp should be real. Therefore, following Equation (1.63), we shall have ε1ε2 < 0.

This means that one medium must exhibit a negative dielectric function, with an absolute value
exceeding that of the other. Such materials can be found among noble metals, which exhibit a large
negative real part. It is also the case of graphene in the infrared range (see Figure 2.13), using the model
described Section 3.2. The second medium should have a positive real dielectric value, not too large.
Dielectric media such as SiO2 or air are good candidates.

In the case of a system presented in Figure 1.4, with a medium 2 which is air, ε2 = 1. Defining the
medium 1 as a Drude metal, neglecting the damping (Equation (1.37)), Equation (1.63) becomes :

kpc

ωp
= ω

ωp

√
ε1(ω/ωp)

ε1(ω/ωp) + 1 (1.65)

Equation (1.65) is plotted in Figure 1.5a. For real kp (in blue) and ω < ωp (half bottom part),
ω/ωp → 1/

√
2. The black dashed curve represents the limit for the incident photon dispersion rela-

tion. The lack of overlapping between the incident photon relation dispersion and the SPPs relation
dispersion poses problems regarding to the excitation of SPPs, where a third structure is needed for the
coupling. For kp pure imaginary, in red, the plasmons are localized. For ω > ωp, so-called Brewsters
modes are supported.
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Going further, Figure 1.5b displays the magnetic field profile at this interface, using Equation (1.64)
and Hy = H0e

−ikziz, with H0 = 1. We can observe that SPPs are more confined to the interface as we
approach ωSP = ωp/

√
2. As ω tends to ωSP , the group velocity vg = ∂ω/∂k of the SPPs decreases.

Finally, coming back to Equation (1.65), the plasmons wavevector kp can give interesting information
such as the propagation length :

L = 1
2Im[kp]

(1.66)

as well as the effective surface plasmon wavelength and the penetration depth in the medium :

λp = 2π
Re[kp]

(1.67)

δ = 1
Im[kzi]

= 1
|kzi|

(1.68)

The propagation length is the length at which the intensity, proportional to the square of the elec-
tromagnetic field modulus, fall to 1/e. The penetration depth gives a direct information about the
confinement of the electromagnetic field in its surrounding. Finally, the wavelength of the plasmons is
the effective wavelength that can be measured, for example, by Scanning Near-Field Optical Microscopy
(SNOM). This last physical quantity can be normalized by the excitation field and is called in this case
the localization factor. It gives also, indirectly, a good idea of the confinement of the electromagnetic
field in the materials.

1.2.2 Surface plasmon polariton in a multilayer system
In the multi-layer model (illustrated in Figure 1.6), a thin metallic layer (in blue) sandwiched between
two (infinitely) thick dielectric claddings (media 1 and 2). This system is often refereed as an insu-
lator/metal/insulator (IMI) heterostructure. Here the simplest case is considered, such as the same
insulator above and below is sandwiching the metallic layer.

A multilayer system is defined when an interaction/coupling between the surface plasmon of different
interfaces takes place. This means that the thickness of the metal is comparable to or smaller than the
decay of the surface plasmon.

Figure 1.6: Geometry of a two-interface system consisting of a thin layer (metallic medium with a
thickness of ∆ = 2a) sandwiched between two infinite half spaces (dielectric medium).

The vectorial base being centred in the middle of the metallic thin layer (with a thickness of ∆ =
2a), we will distinguish three parts of the system : for z > a, a medium with a permittivity ε2, for
a > z > −a, a medium with a permittivity εm and for z < a, a medium with a permittivity ε1.

Following the same path as in Section 1.2.1, and taking into account the symmetry of the system,
the boundary conditions imply that kx1 = kx2 = kp.

Let’s assume that for z > a, the magnetic field can be simplified as follow :
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Hy2 = AeikZ2zeikpx (1.69)

with an harmonic time dependence, and A the amplitude of the Hy2 field. It must be noticed below
that the notation for the wavevector in the z direction is the following : ki ≡ kzi for i=1,2 in the dielectric
medium and m for the metallic one. Using Equation (1.61), it is possible to write :

Ex2 = k2

wε0ε2
Aeik2zeikpx (1.70)

In the same way, we can write for z < −a :

Hy1 = Be−ik1zeikpx (1.71)

Ex1 = − k1

wε0ε1
Be−ik1zeikpx (1.72)

with B the amplitude of Hy1. While for −a < z < a, we have a combination of the modes from the
media upon and below and we can write, with C+ and C− the amplitude of the field for respectively z
positive and z negative :

Hym =C+ei(kpx+kmz) + C−ei(kpx−kmz)

=(C+eikmz + C−e−ikmz)eikpx
(1.73)

Exm =−i(ikm)
wε0εm

C+eikmzeikpx + −i(−ikm)
wε0εm

C−e−ikmzeikpx

= km
wε0εm

(C+eikmz − C−e−ikmz)eikpx
(1.74)

Hy has to fulfill the wave equation which gives again (see Equation (1.59)) :

ki =
√
εik2

0 − k2
p (1.75)

Here, we have ki ≡ kzi for i=1,2 and m, and kp ≡ kx. The boundary continuity requirement seen in
the subsection 1.1.2 implies that Hy2 = Hym at z = a as well as Hy1 = Hym at z = −a :

Aeik2a = C+eikma + C−e−ikma at z=a (1.76)

Beik1a = C+e−ikma + C−eikma at z=-a (1.77)

While for Ex, we have :

k2

ε2
Aeik2a = km

εm
(C+eikma − C−e−ikma) at z=a (1.78)

−k1

ε1
Beik1a = km

εm
(C+e−ikma − C−eikma) at z=-a (1.79)

Those four equations can be seen as a linear system. Let’s take first Equations (1.76) and (1.78),
which lead to :

C− = C+e2ikma km/εm − k2/ε2
km/εm + k2/ε2

(1.80)

Then, doing the same for Equations (1.76) and (1.78) results in :

C+ = C−e2ikma km/εm − k1/ε1
km/εm + k1/ε1

(1.81)

Finally, multiplying Equation (1.80) by Equation (1.81) yields to the general equation :
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ei4kma = km/εm + k2/ε2
km/εm − k2/ε2

km/εm + k1/ε1
km/εm − k1/ε1

(1.82)

This equation is a general equation for a two interfaces system. It is interesting to notice that if the
thickness a is infinite, Equation (1.62) for a single interface is retrieved (keeping in mind that km is pure
imaginary). In the case of this thesis, the study of suspended graphene requires to set the two media
above and below the graphene as the same dielectric one, with a permittivity εd. Therefore, the simplest
case of a symmetric structure will be solved and Equation (1.82) becomes :

e2ikma = ±km/εm + kd/εd
km/εm − kd/εd

(1.83)

Here, it is really interesting to realize that two solutions arise and therefore two branches on the
dispersion relation will appear. Going back to Equations (1.81) and (1.80), and replacing k1/ε1 and
k2/ε2 by kd/εd, yield to C− = ±C+. This result can be plugged in Equation (1.73) which becomes :

Hym = (eikmz ± e−ikmz)Cei(kpx−wt) (1.84)

Figure 1.7: The magnitude of the field H for the symmetric (left) and anti-symmetric (right) modes while
surface plasmon is propagating in a symmetric structure

It is possible to solve Equation (1.83) knowing that tanh(z) = (e2z − 1)/(e2z + 1) which leads to the
two following solutions :

tanh(ikma) = εdkm
εmkd

for the symmetric mode where C− = −C+ (1.85)

tanh(ikma) = εmkd
εdkm

for the anti-symmetric mode where C− = C+ (1.86)

These results are shown in Figure 1.7 where the magnetic field profile for the symetric modes is shown
on the left and for the anti-symetric modes on the right. Using the result of Section 1.2.1, i.e. kzi should
be a pure imaginary, it is possible to replace it as kzi = iqzi with qzi real positive and qzi =

√
k2
p − εik2

0.
Finally, the dispersion relations for the symmetric modes and anti-symmetric modes in a thin slab of
metal m sandwiched between a dielectric d turn into their most known forms :

tanh(a
√
k2
p − εmk2

0) = −
εd

√
k2
p − εmk2

0

εm

√
k2
p − εdk2

0

(1.87)
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tanh(a
√
k2
p − εmk2

0) = −
εm

√
k2
p − εdk2

0

εd

√
k2
p − εmk2

0

(1.88)

When d tends to infinity, Equation (1.85) and Equation (1.86) are reduced to the equation of disper-
sion of surface plasmons at a single interface, Equation (1.63), since tanh tends to 1.

(a) The thickness of the core is chosen as a =0.5*c/wp.
For typical value of fp = 2.1015Hz (silver and gold), we
get a thickness around 12 nm.

(b) The thickness of the core is chosen as a =0,012*c/wp.
For typical value of fp = 2.1015Hz (silver and gold), we
get a thickness around 0.3 nm.

Figure 1.8: Dispersion relations of symmetric and antisymmetric modes in a Metal-Insulator-Metal
waveguide. The metal is modeled as a lossless Drude dispersion. The black dotted lines indicate the
dispersion relation of the light in air, whereas the dashed line represent decoupled SPPs.

The two branches of the dispersion relations of plasmons for a IMI hetero-structure are shown in
Figure 1.8, for two different thicknesses. It is interesting to notice that the anti-symmetric modes vanish
as the thickness of the metal gets atomically thin. It can be explained as follow. When the metallic core
becomes thinner and tends to atomic thickness, we can express the hyperbolic tangent as Taylor serie as
:

tanhx = x− x3

3 + 2x5

15 +O(x7) (1.89)

Taking Equations 1.85 and 1.86, we find :

− εd
εmkd

→ 0 for the symmetric mode (1.90)

−εmkd
εdk2

m

→ 0 for the anti-symmetric mode (1.91)

For the symmetric modes, kd tends to infinity which means that kp >> k0. For the anti-symmetric
modes, kd tends to 0 and therefore kp → k0. Therefore, the antisymmetric modes tend to become radia-
tive, as it follows the dispersion relation of the light in air. Therefore, for graphene which is a one atom
thick material, only the symmetric dispersion relation remains. As it can be observed in Figure 1.8b,
a significant mismatch between the light wave-vector (black dotted line) and the plasmons wave-vector
takes place. In fact, at a certain frequency, the mismatch is higher than in conventional noble material,
as it can be observed in Figure 2.19b. As qzi =

√
k2
p − εik2

0 is really high, the penetration depth get
small (Equation (1.68)), which leads to very high confinement.

Coming back to Equation (1.84), the magnetic field for the symmetric modes and for the anti-
symmetric modes can be obtained applying the boundary conditions at z = ±a:
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(a) Y component of the magnetic field Hy as a function
of z, the normal space axis, in the case of the symmetric
modes

(b) Y component of the magnetic field Hy as a function of
z, the normal space axis, in the case of the anti-symmetric
modes

Figure 1.9: Magnetic field profile in a Metal-Insulator-Metal waveguide. The thickness of the core is
chosen as a =0.5*c/wp. For typical value of fp = 2.1015Hz (silver and gold), we get a thickness around
12 nm.The metal is modeled as a lossless Drude dispersion. The black lines indicate the interface between
the air and the metal.

Hs
y(x, z) =

{
A cosh(kmz)
cosh(kma)e

ikpx, where |x| < a

Ae−kd(|z|−a)eikpx, where |x| > a

Ha
y (x, z) =

{
A sinh(kmz)
sinh(kma)e

ikpx, where |x| < a
z
|z|Ae

−kd(|z|−a)eikpx, where |x| > a

, which gives modes with the shape drawn in Figure 1.9.

The study done in this chapter have been conducted toward plamonics in extremely thin metal. Graphene,
which is a semi-metal, has plasmonics behaviour remarkably close to the SPPs arising from extremely
thin layer of common noble metal. However, its 2D crystalline structure as well as its electrons dynamic
make Graphene Plasmons (GPs) a bit different. In the next section, we will therefore focus on graphene
crystalline and electronics properties, before going deeper into graphene plasmonics, in Chapter 2.
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1.3 Properties of Graphene
1.3.1 A sheet of carbon atom

Graphene is the mother of all graphitic forms: it is a sheet of carbon atoms in a honeycomb lattice.

Figure 1.10: Artistic representation of graphene

It possesses unique physical properties: graphene is
the strongest and the most stretchable known mate-
rial, it has the record of thermal conductivity, and is
completely impermeable [50, 8]. Moreover, from the
opto-electronic point of view, its carriers (both elec-
trons and holes) exhibit ultra-high mobility and long
mean free path. Graphene has gate-tunable carrier
densities, anomalous quantum Hall effects, fine struc-
ture constant defining optical transmission, and so on.
Also, this two dimensional one atom thick membrane is
a perfect example of a two-dimensional electron system
for a physicist. According to [62], "When the quantum
theory of solids was developed, graphite was one of the
earliest materials to which it was applied. The first
calculations of the energy band structure of graphite
appears to have been made by Hund and Mrowska in
1937 as an academic exercise."

In order to study graphene opto-electronic properties in detail, it is important to look at its crystalline
structure. It is a monolayer of sp2 bounded carbon atoms in a honeycomb lattice. Each carbon atom
is attached to three neighbours by covalent bounds with a length of about a0 = 0.142nm. This lattice
configuration comes from the atomic orbitals interferences between neighbouring carbon atoms (orbital
hybridisation).

Let’s first zoom on the smallest unit of its structure: the carbon atom. This chemical element has
six electrons, four of the electrons are in its valence shell (outershell). Carbon’s ground state configu-
ration is 1S22S22P 2 which can also be written in order to show the valence electrons [He]2S22P 2, or
more easily read :

↑↓
1S

↑↓
2S

↑ ↑ ↑
2P

(1.92)

Here we can see the six electrons represented by arrows (the direction of the arrow represents the
electron spin). The electrons located the closest to the nucleus are found in the 1s orbital. These elec-
trons are usually considered as "frozen" in the pseudo-potential approximation, which takes place in many
models. The pseudopotential model is a way of replacing the complicated effects of the motion of the core
(i.e. non-valence) electrons of an atom and its nucleus with an effective potential, or pseudopotential.
Those electrons are not involved in bounding. The next two will go into the 2s orbital. The remaining
ones will be in two separate 2p orbitals. The p orbitals have the same energy and the electrons would
rather be in separate orbitals.

In graphene, carbon atom rearranges its valence electrons so as to create bounds with its three neigh-
bours. In fact, creating a bound decreases the energy of the system. The first step is to describe the
atom in one of its excited state, which can be displayed as

s
px
py
pz

 with a electronic configuration : ↑
2S

↑ ↑ ↑
2P

(1.93)

Then, these orbitals will mix in a special manner in order to create three covalent bounds. This
concept of mixing atomic orbitals into new hybrid orbitals is called hybridisation. A more intuitive way
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to look at the carbon atom and its hybridisation is to use an energy level graph shown in Figure 1.11.
One s orbital is hybridized with two p orbitals. The orbital pz remains unchanged.

(a) Hybridisation (b) Illustration of the carbon atom after sp2

hybridisation

Figure 1.11: Illustration of the three hybridised orbitals : as an energy diagram (a) and as a picture on
the right (red sphere represent Carbon atoms).

The three orbitals sp2 form a triangular base with 120◦ angle in the hexagonal plane and will create
σ bounds. The last orbital pz is the only one electron which does not belong to the core neither to the
covalent bounds and form a π bound perpendicular to the plane. Its interaction with the lattice will
give the main electronic properties of the graphene at relatively low energy, such as the massless fermion
behavior (see section 1.3.2)

Crystal structure in the real space and in the reciprocal space

Carbon atoms in a graphene plane are located at the vertices of a hexagonal lattice (Figure 1.12a). This
triangular lattice has two atoms per unit cell (in green), A atom (in red) and B atom (in blue). The
atoms A form a sublattice, and each atom A is surrounded by three atoms B, and vice versa. The basis
vectors of this honeycomb lattice are a1 and a2, defined with the unit vector x,y by :

a1 = a0
√

3
(√

3
2 ,

1
2

)
and a2 = a0

√
3
(√

3
2 ,−1

2

)
(1.94)

with a0 = 1.42Å the nearest-neighbour distance.

(a) Hexagonal lattice of graphene (b) Reciprocal lattice of graphene

Figure 1.12: Graphene lattice (a) in the real space and (b) in the reciprocal space with the main
parameters described in the text.

It is also interesting to describe the sub-lattice B starting from one A atom. We can build in this
case three vectors :
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δ1 = a0

(
−1

2 ,
√

3
2

)
and δ2 = a0

(
−1

2 ,−
√

3
2

)
and δ3 = a0 (1, 0) (1.95)

Then, it is interesting to go a bit further into the description of graphene by defining the concept
of reciprocal space. This is an important concept because every crystalline structure have a particular
reciprocal network. This signature of a structure can be recorded experimentally with diffraction pattern
that give valuable informations about the reciprocal space .

We define the reciprocal space vectors by :

bi.aj = 2πδij therefore we get b1.a1 = 2π b1.a2 = 0
b2.a2 = 2π b2.a1 = 0 (1.96)

We can then deduce the reciprocal vectors, drawn on the Figure 1.12b :

b1 = 2π
3a0

(
1,
√

3
)

and b2 = 2π
3a0

(
1,−
√

3
)

(1.97)

In Figure 1.12b, we have drawn in green the Brillouin zone, which is the the primitive cell of the
reciprocal space. It is a really interesting notion because it makes possible to study the lattice vibration
as well as the electronic properties of the crystal by its symmetries. The three high symmetry points of
the Brillouin zone, Γ , K and M are the center, the corner, and the center of the edge of the hexagon,
respectively. More in detail, there are two non-equivalent corners, here noted K1 and K2, like in the real
space :

K1 = 2π
3a0

(
1, 1√

3

)
and K2 = 2π

3a0

(
1,− 1√

3

)
(1.98)

This results will be important for the next section, where the main electronic properties of graphene
are expounded through the tight binding model. This model will give the so peculiar band structure of
graphene in the reciprocal space. In between a semi-conductor and a metallic behavior, graphene can be
considered as a zero-gap semi-conductor, or a semi-metal.

1.3.2 The tight binding model : a study about the dynamics of the electrons
Modelling the dynamics of electrons, a set of hypothesis

In order to study in detail the opto-electronic properties of graphene, giving rise to plasmons, it is im-
portant to have a look at the electron dynamics in this 2D material.

This problem is well known and can be solved by mixing solid states physics with quantum mechan-
ics. The first point is to realize that such a n-body system cannot be solved exactly, due to the huge
interactions and degrees of freedom which take place. In fact, electrons and holes are charge carriers,
therefore their dynamic depends on all the others particles (electrons, holes, nuclei and defects) in the
media. Exact computation on such systems requires power of calculus that is not available nowadays.
This is the reason why physicists set up methods of calculus based on approximations which enable to
get results close to the experimental ones.

Here, the goal is to understand the electronic properties of graphene via the tight binding model
which gives a result in a form of band energy structures [23, 54]. In this approach, electrons are moving
through a periodic potential that is very strong in the vicinity of the the lattice atoms (see Figure 1.13).
In general, the tight-binding approximation [10, 82] can handle the case where the overlapping of atomic
wave functions is significant enough to require corrections to the representation of isolated atoms, but
not enough to make inappropriate atomic description.

Looking at the dynamics of electrons in a lattice is somehow looking at the delocalization of the
electrons caused by the neighboring atoms. This system is a many-electron problem which requires us

20



to make the following assumptions to solve it.

The π-band approximation. In a single atom, electrons belong to atomic orbitals. The atomic
orbitals can be seen as a mathematical function which describes the wave-like behaviour of an electron
in an atom. In a crystalline solid, the atomic orbitals interact with each others to form bounds. As seen
before, the electrons which are involved in the low energy range of electronic properties, are those that
can be found in the π band. The pz orbitals do not overlaps with the sp2 orbitals (see Figure 1.11b),
therefore, other electrons belonging to the σ band should not be taken into account. This unsaturated
orbital pz can be described by a wave-function that is noted P sz (r) with s being the index for the two
sub-lattice (s= A or B). s can also be seen as the number of bands or the number of atomic wave-functions
used in a unit cell.

Figure 1.13: Representation
of the potential for the three
models described here

The frozen heart. We will consider the approximation of "frozen
heart", which assumes that all the electrons belonging to the core shell
(1S), which are not involved in bounding, are not disrupting. As well,
we consider the nuclei as entities positively charged (cations) and immo-
bile (in reality, the atoms vibrate). This approximation gives rise to a
positive pseudo-potential emerging from the lattice nucleus.

The perfect crystal. The perfect crystal will not suffer any defects.
In order to build a description of the behaviour of electrons delocalizing
from π to π bands, we need to take into account all the π-bounded
electrons of the graphene lattice. We will first consider one unit cell (in
green in Figure 1.12a), which is composed of two carbon atoms, A and B.
Then, the process will be duplicated in order to recover a perfect lattice.

The single and independent electron approximation. In this
approximation, the electron-electron interaction is not taken into ac-
count. Indeed, the electron-electron interaction does not give rise to a
periodic potential, which could complexify the model. The tight-binding
model is a one-electron model, which is not suitable for electron-electron
interaction. Fortunately, electron-electron interaction is usually weaker
than ion-electron interactions.

The time independent periodic potential. From the previous approximations, we can now assume
that electrons will be subjected to a periodic and static potential. Therefore, the wave functions Ψ
describing the dynamics of electrons form standing waves called stationary states, which are the physical
quantities defining orbitals. They are solutions of the time independent Schrödinger equation :

ĤΨ = EΨ (1.99)

Ĥ is the Hamiltonian, which can be seen as a matrix which gives us the possible energy of the
system when it is operating on the wave-function of the graphene lattice. E is the energy eigen-values
of the system, which constitute a discrete set of solutions that would be found if the energy of the
system was measured. In order to get the energy of delocalized electrons in the honeycomb lattice of
graphene, the Schrödinger equation should be solved for all the π-bonded electrons of the 2D lattice.
In our perfect lattice, we will sum the orbitals wave-function of the atoms belonging to each sub-lattice
Φs(r,k) ∝

∑
P sz (r), and then build the total wave-functions Ψ(r,k) ∝ ΦA(r,k)+ΦB(r,k) describing the

whole lattice. k is the wave vector, which is related to the quantized crystal momentum p, by p = ~k.

The Bloch’s theorem. We know that the eigenstates of an electron in a periodic potential can
be written as Bloch waves, according to the Bloch theorem. Those eigenstates are characterized by a
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wave-vector k that belongs to the first Brillouin zone. Assuming a perfect pristine graphene sheet, an
orbital wave-function P sz (r) should satisfy the Bloch’s theorem, which gives us :

TRP
s
z (r) = eik.RP sz (r) (1.100)

with R the periodicity of the underlying lattice and TR the translation operator along the periodicity.
This means that we have a translational symmetry of the unit cells in the direction of a lattice vector.
We can notice that the eigenfunctions assessed at two different lattice locations, 1 and 2 associated to
respective position vectors r1 and r2, differ from each other in just a phase factor, eik.(r1−r2). Finally,
it is possible to write the Bloch function, which is a sum of the Bloch wave-function over the lattice, for
one sub-lattice :

Φs(r,k) = 1√
N

∑
Rs

eik.RsP sz (r−Rs) (1.101)

with N the number of cells that are taken into account in the model.
Therefore, we can write the total wave-function for the lattice as a sum of the Bloch wave-functions

of the lattice A and B, which will give :

Ψ(r,k) =
∑
s

CsΦs(r,k) = CAΦA(r,k) + CBΦB(r,k) (1.102)

with Cs the weight associated to sum of the atomic orbitals (Φs(r,k)) of the sub-lattice s. With the
Dirac notations, the wave-function Ψ can finally be described by :

|Ψ〉 =
∑
s

Cs|Φs〉 (1.103)

The tight binding model : solving the Schrödinger time independent equation

Let’s come back on the time independent Schrödinger equation ( Equation (1.99)), and insert the equation
describing the wavefunction seen in Equation (1.103). We obtain using bra and ket notation :

Ĥ|Ψ〉 = E|Ψ〉 (1.104)

∑
s

CsĤ|Φs〉 = E
∑
s

Cs|Φs〉 (1.105)

In order to work with a scalar equation, the last equation is multiplied by its conjugate, which leads
to : ∑

s,s′

CsC
∗
s′〈Φs′ |Ĥ|Φs〉 = E

∑
s,s′

CsC
∗
s′〈Φs′ |Φs〉 (1.106)

∑
s,s′

CsC
∗
s′Hs′s = E

∑
s,s′

CsC
∗
s′Ss′s (1.107)

where Hs′s is the matrix representation of the Hamiltonian in the orbitals |Φs〉 base. Ss′s is the
overlapping orbitals matrix, which is a quantitative measurement of the overlap of two atomic orbitals
belonging to two different atoms. The last equation can be re-written more compactly in matrix form
as :

HC = ESC (1.108)

This matrix equation leads to the following condition for non-trivial solutions:

det[H − ES] = 0 (1.109)

This equation will give us the dispersion relation of the graphene and provides n energy eigen-value as
a function of k, with n the number of bands for n orbitals in the unit cell. Since the unit cell contains
two atoms, n=2 and the Hamiltonian matrix will have a dimension of 2× 2.
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Diagonal matrix elements. The Hamiltonian Hα,β , with (α, β ∈ A,B), when α = β = A is given
as follows:

HAA = 1
N

N∑
i

N∑
j

eik·(RA,j−RA,i)〈PAz (r−RA,i)|Ĥ|PAz (r−RA,j)〉 (1.110)

with i and j defining different unit cell. Here we will only consider the nearest neighbour (i=j), the others
being neglected so that the equation becomes :

HAA = 1
N

N∑
i

〈PAz (r−RA,i)|Ĥ|PAz (r−RA,i)〉 = 1
N

N∑
i

ε2P = E2P (1.111)

with E2P being the reference energy. The reference energy is usually set to zero, in order to have the
junction (Dirac point) between the upper band and the lower band of the pz orbital at 0. The atoms of
the second sub-lattice being chemically identical, it is possible to write :

HAA = HBB = E2P (1.112)

For the overlap matrix, regarding the A sublattice, it is assumed that there is no contribution from the
other A atoms, which leads to :

SAA = 1
N

N∑
i

〈PAz (r−RA,i)|PAz (r−RA,i)〉 = 1 (1.113)

This means that the wave-function does not overlap any other wave-function of another same sub-lattice
atom.

Off-diagonal matrix elements. The Hamiltonian Hα,β , with (α, β ∈ A,B), when α 6= β is given
as follows:

HAB = 1
N

N∑
i

N∑
j

eik·(RB,j−RA,i)〈PAz (r−RA,i)|Ĥ|PBz (r−RB,j)〉 (1.114)

In the approximation of the nearest-neighbours, only the three nearest atoms will be taken into
account, belonging to the other sub-lattice. In this case of an atom A belonging to the unit cell i, the
three neighbours atoms B will be considered and they will be indexed with l=1,2,3. This can be written
as:

HAB = 1
N

N∑
i

3∑
l

eik·(RB,l−RA,i)〈PAz (r−RA,i)|Ĥ|PBz (r−RB,l)〉 (1.115)

For each neighbouring pair (atoms A-B), we will have the same matrix element that we can note:

γ0 = −〈PAz (r−RA,i)|Ĥ|PBz (r−RB,l)〉 (1.116)

Therefore

HAB = −γ0

N

N∑
i

3∑
l

eik·δl ≡ −γ0f(k) (1.117)

and since the Hamiltonian is also hermitian,

HBA ≡ −γ0f
∗(k) (1.118)

with

f(k) = 1
N

N∑
i

3∑
l

eik·δl =
3∑
l

eik·δl = eia0kx + e−ia0
1
2kxe−ia0

√
3

2 ky + e−ia0
1
2kxeia0

√
3

2 ky

= eia0kx + 2cos
(
a0

√
3

2 ky

)
e−ia0

1
2kx

(1.119)
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using Equations (1.95). The overlap matrix will be treated in the same way, and for the neighbouring
atoms pair (A-B), we expect the same matrix element:

s0 = −〈PAz (r−RA,i)|PBz (r−RB,l)〉 (1.120)

which leads to :
SAB = −s0f(k) and SBA = −s0f

∗(k) (1.121)

To summarize, the Hamiltonian matrix and the overlapping matrix become:

H =
(

E2P −γ0f(k)
−γ0f

∗(k) E2P

)
(1.122)

S =
(

1 −s0f(k)
−s0f

∗(k) 1

)
(1.123)

which can be pugged in Equation (1.109) :

det[H − ES] = det

(
E2P − E −(γ0 + Es0)f(k)

−(γ0 + Es0)f∗(k) E2P − E

)
= 0 (1.124)

to obtain:
E2P − E = ±(γ0 + Es0)|f(k)| (1.125)

which leads to the final dispersion relation for the dynamic of electrons in graphene, taking into account
the three nearest neighbour:

E± = E2P ± γ0|f(k)|
1∓ s0|f(k)| (1.126)

with (+) for the π band and (-) for the π∗, and

|f(k)| =

√
4cos2(a0

√
3

2 ky) + 4cos(a0
√

3
2 ky)cos(3a0

2 kx) + 1 (1.127)

E2P , γ0 and s0 are three parameters used to fit the experiments. E2P is usually set to 0 in order to have
the Fermi energy at 0ev. Indeed, taking the point of high symmetry K1 and K2 seen in Equation (1.98),
the calculation gives E±=0 : graphene is a semi-conductor with a bandgap null. According to [136],
the parameters E2P=0, γ0=3.033eV and s0=0.129eV should be used in order to get the best fit of the
first principles calculations. The plot is displayed in Figure 1.14a as well as zoom on the high symmetry
point K1/K2 in Figure 1.14b.

It is also possible to make approximations in order to simplify Equation (1.126). For the overlap
matrix of the neighbouring atoms pair (A-B), it can be reasonably supposed that the overlap of the A
and B wavefunctions is very low and can be neglected. As a matter of fact, the electrons which account
for transport are in pz orbitals which exhibit a small spatial extension in the x,y plane. Therefore, we
can ignore non-diagonal terms and set s0 = 0. It is interesting to note that by setting s0 = 0, the π
and π∗ bands will become symmetrical. Hence, we find the widely spread equation describing the band
structure of the graphene layer :

E± = ±γ0

√
4cos2(a0

√
3

2 ky) + 4cos(a0
√

3
2 ky)cos(3a0

2 kx) + 1 (1.128)

The band structure. The orbitals pz being half filled, each energy band is either full or empty.
The valence band and the conduction band touch at two points in the Brillouin zone (Figure 1.14a),
K1 and K2 in our model (Figure 1.12a). As a consequence, graphene is often refereed to as a zero-gap
semi-conductor or a semi-metal. It is interesting to observe that at low energy, the dispersion relation
around the K points is linear (Figure 1.14b), which gives to graphene electronic band structure this
peculiar shape of cone at the vicinity of the Dirac point.
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(a) Electronic dispersion relation of graphene single layer drawn in the first brillouin
zone with the fitting value from [136].

(b) Zoom at the point of high
symmetry K, for low energy
we have a linear dispersion

Figure 1.14: Illustration of the dispersion relation of graphene electrons (a) in the first brillouin zone
and (b) at the vicinity of the high symmetry point K.

The Dirac equation for low energy. The dispersion relation of graphene tends to be linear for
low energy, around the Dirac cones. In the model developed before, it happens therefore at the points
K1 and K2 on Figure 1.12a (see Equations (1.98)). The best fit at low energy is given with E2P=0,
γ0=2.7eV and s0=0 according to [132], which gives E± = ±γ0|f(k)|. In order to demonstrate it, let’s
go back to Equation 1.119 and insert q = K1 + δk. Using Taylor serie for trigonometric functions and
keeping only the first order term, it is possible to write:

f(q) = eia0qx + 2cos
(
a0

√
3

2 qy

)
e−ia0

1
2 qx

=
(
−1

2 + i

√
3

2

)
(1 + ia0δkx) +

(
1− 3

2a0δky

)(
1
2 − i

√
3

2

)(
1 + ia0

1
2δkx

)
+O(δk2)

= 3a0

2

(
−1

2 + i

√
3

2

)
(iδkx + δky) +O(δk2)

= 3a0

2 ei
2π
3 (iδkx + δky) +O(δk2)

(1.129)

Therefore, in the vicinity of the K points, the dispersion relation can be approximated as

E± = ±γ0|f(q)| = ±γ0
3a0

2 |δk| = ±~vF |δk| (1.130)

where the Fermi velocity has been defined as vF = γ0
3a0
2~ ≈ 106m.s−1. Moreover, the Fermi speed

does not depend on the mass. We will therefore speak about the electron as massless Fermions of Dirac
in graphene. One of the consequence is the ultra-high mobility of the carrier in graphene, leading to a
high conductivity of this material even at room temperature. It is also a really interesting behaviour to
study in quantum mechanics.

1.3.3 Graphene electron-hole excitation spectrum
The electron hole excitations in the low energy range can be explained looking carefully at the cone-like
band structure (Figure 1.14b). Those excitations are really important in the study of graphene plasmon-
ics because there is a possibility of an energy transfer between plasmons and single particle excitation
resulting in plasmons damping. This damping is called the Landau damping, which is a loss of collective
electronic motion from the plasmons to the excitation of electron-hole pairs, a single particle excitation.
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Figure 1.15: Illustration of the construction of the intraband excitation zone in graphene (on the right),
from its electronic band structure (on the left). Here it has been considered a n-doped graphene (con-
duction band half filled in orange on the electronic band structure). Each arrow on the band structure
represent a couple energy-wavevector of a specific electronic transition. The crosses on the corresponding
map represent the different transitions illustrated by the arrows on the band structure.

Figure 1.15 illustrates the construction of the single particle excitation zone SPEintra (on the right
in orange on the map E(k‖)) where intraband excitation takes place. In this case, both the electrons
and holes taking place in the excitations of electron-hole pairs, are located in the conduction band (for
E positive, upper cone, on the left of Figure 1.15). The different possible excitations are represented by
the coloured arrows on a graphene n-doped electronic band structure, on the left of Figure 1.15. Each
arrow is defined by a particular energy/wavenumber couple (E, k‖). Picking up all the possible couple
(E, k‖) of intraband electron-hole excitations, it is possible to plot a map displaying the wavenumber
and the energy, in x and y axis respectively (on the right Figure 1.15). A region in orange appears on
the dispersion relation graphic, where each coloured arrow has been replaced by a corresponding cross.
This region is called the intraband single particle excitation zone (SPEintra).

Figure 1.16: Possible interband single particle excitation (electron-hole-excitations) in graphene n-doped
and illustration of the interband transition zone. The conduction band is illustrated by the orange zone,
whereas the valence band is illustrated in green. The arrow represent the couple energy-wavevector of a
specific transition. The cross represent the different transitions illustrated on the band structure.
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Figure 1.16 illustrates the interband excitation, in which electrons participating to the excitations
are located in the valence band, whereas holes are located in the conduction band. The electron is
promoted from the valence band to the conduction band when the condition (E, k‖) is met. In the
same way than above, a region in green appears, which is called the interband single particle excitation
zone (SPEinter). The interband transition are only possible above an energy threshold of EF, where
an electron at the dirac crossing can get promoted with a couple of energy-wavevector (EF,kF). An
interesting point is to realize that a photon can excite an electron only at the energy of 2EF and above.
This 2EF is usually called the Pauli-blocking threshold. Therefore, at energy below this threshold,
the interband contribution to the optical response of graphene becomes insignificant as compare to the
intraband one. This will be see section 2.2.1, where the optical conductivity of graphene is demonstrated.

Figure 1.17: Illustration of the zone where there is no Landau damping in the ideal case, in yellow. The
orange zone on the spectrum illustrates the intraband excitation, whereas the green zone illustrates the
interband single particle excitation.

Figure 1.17 summarize the figure 1.15 and 1.16. In yellow is highlighted the zone in which there should
be a weak Landau damping for the surface plasmons to propagate. However, outside this triangular zone,
plasmons experience high dampings due to electron-hole excitations. Therefore, when studying graphene
plasmons, it is important to carefully choose the energy of excitation.

1.4 Conclusion
In this first chapter, the fundamental principles have been presented in order to cover both fields, plas-
monics and graphene. The physics principles of electromagnetism have been used to understand the
basis of plasmonics, in the general case as well as in the case of thin films. Then, the main properties
of graphene are introduced. Particularly, the tight binding model provides an understanding on the
behavior of electrons in graphene. It leads to the construction of a graphic representing the possible
excitation of electrons-holes as a function of a given energy and momentum. This latter is a necessity in
order to work on a long propagation of plasmons in graphene.

In the next chapter, the knowledge gathered here will be utilized to study the field of graphene
plasmonics.
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Chapter 2

Graphene plasmonics

Electronic devices, used in telecommunication and information processing, exhibit inherent limitations
due to materials electronic losses and noises which have consequences on their conductivity and associ-
ated energy consumption. To remove this barrier and keep on increasing electronic devices performances,
the technological trend is to find another information carrier that is able to replace or complete electrons,
among which photons appear to be the ideal candidate. Until now, however, despite recent promising
demonstrations of strong near-field confinement in hybrid Silicon on Insulator structures, e.g [99], pho-
tonic devices have been diffraction-limited by the light wavelength which leads to some difficulties when
components are scaled down to nanoscale.

Recently, graphene [50] has been proposed as a good candidate to bridge the gap between electrons
and photons for a new generation of optoelectronic devices [14]. While many promising properties like its
ultimate thickness, transparency, ultra-high electronic mobility or mechanical strength have concentrated
the efforts of numerous groups, a few pioneering groups have recently started considering and studying
graphene for its optoelectronic [20] and plasmonic properties [57], opening new routes to ultimate opto-
electronic nanodevices based on electron-photon interactions.

From all the pioneering theoretical [159, 58, 66, 59] and experimental [117, 114] studies, it now appears
feasible to use light as an information carrier by manipulating it through Graphene Plasmons Polaritons
(GPPs).

The promises of graphene for plasmonics lie in the high confinement and weak damping [49] of sus-
tained plasmons as well as in the possibility to electrostatically tune them simply by applying a voltage.
The main asset would be to enable miniaturization of photonic component without facing usual thermal
limitations thanks to low graphene electronic losses. The applications could therefore be numerous.

This chapter aims to expound the literature review of graphene and graphene plasmonics, as well
as the properties of graphene plasmons. At first, the discovery of graphene will be traced as well as
its limits in term of transport properties. Then, the optical properties of graphene will be introduced
and an overview of graphene plasmonics state of the art will be presented. Subsequently, the dispersion
relation of graphene plasmons will be demonstrated. Afterwards, the graphene plasmonics properties
will be reviewed in details and finally, a conclusion through the objectives of this study will be made.

2.1 Litterature review on graphene and its transport properties

2.1.1 The discovery of graphene and the synthesising process
In october 2004, two papers were published [17, 117] and showed some properties of few layers of carbon on
different substrates. Despite the common thought [105], such extremely thin films are thermodynamically
stable. Two different ways of fabrication were used : on silicon carbide by thermal desorption of Si [17]
(Figure 2.1a, STM image), and by mechanical exfoliation [117] (Figure 2.1b, AFM image).
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(a) STM image of few layers graphene grown by carbon
segregation on SiC [17]

(b) AFM image of a single layer graphene mechanically
exfoliated [117]

Figure 2.1: The two first papers published in October 2004 reporting graphene monolayer with different
fabrication process

The behavior of 2D electron gas properties in such thin film have been demonstrated, opening wild
area of research in domain such as quantum mechanics. It has also been shown shown that graphene
is a semi-metal and can sustain huge current. The transport of electrons in this medium shows small
electrical resistivity (ballistic transport), limited by scattering effect, and a significant mobility. Finally,
the most important feature discovered is the possibility to inject carriers in graphene (doping) which
changes its conductivity/resistivity and exhibits an ambipolar electric field effect (conductivity carried
by electron or hole depending on the applied voltage). This discovery led to a Physics Nobel price and
many promising applications. In the next paragraphs, the different ways of producing graphene will be
reviewed.

Mechanical exfoliation. This method [117] consists in a repeated peeling of highly oriented pyrolytic
graphite with the use of clean room tape (Figure 2.2). The advantage of this method is a high quality
of single layer graphene deposited on various substrate. The mono-cristaline flake can be up to millime-
tre scale and shows excellent electronic properties. Although this method have been widely used for
fundamental studies, it is impractical for large scale application.

Carbon segregation. It is possible to get graphene from silicon carbide [17] or other metal substrates,
through carbon segregation. At high temperature, on SiC, silicon desorption occurs leaving on the
substrate few to one layer of graphene. It is possible to obtain free standing graphene of high quality
via, among others, hydrogen treatment [134].

Chemical Vapour Deposition. Another way for graphene synthesis emerged in 2008/2009 [166, 93].
This process has drawn a lot of interest in the industry because of the possibility to grow it on a large
scale basis at low cost. Hydrocarbon species are introduced in a high temperature chamber, where is
lying a metal substrate. Two type of metals are widely used : Nickel (Figure 2.3a) and Copper (Figure
2.3b). The choice of metal is important because it determines the growth mechanism and eventually the
quality of the graphene.

It has been demonstrated [169] that the graphene growth on Ni (Figure 2.3a) is a segregation process,
where carbon is first dissolved in the metal substrate at high temperature. Then, the substrate is cooled
down to a temperature for which the carbon is less soluble in Nickel, forming at the surface multi layer
and polycristalline graphene.
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Figure 2.2: Illustration of Micro exfoliation (a)A pressure is applied to stick the tape to the surface of the
material. (b) Few layers of the material are attached to the tape. (c) The tape is then pressed against
the substrate. (d) One or few layers remain on the substrate once the tape is withdrawn [118]

On Cu substrate (Figure 2.3b), the metal acts as a catalyst and graphene is formed at its surface
from the decomposition of the hydrocarbon precursor. This comes from the fact that carbone solubility
in copper is low. Two consequences arise: only one layer can be form, because the metal underlying is the
catalyst, and once it is covered by a first layer, no other reaction can take place. The second consequence
is that it is possible to get large monocrystalline flakes of graphene. The quality of the copper substrate
is crucial in order to get low defects in CVD graphene [171].

(a) Growth of graphene on Nickel substrate by
segregation reaction process, leading to muliti-
layer and polycristalline graphene

(b) Growth of graphene on Copper substrate
by surface reaction process, leading to single
layer monocristalinne graphene

Figure 2.3: Growth of graphene by Chemical Vapour Deposition on different substrate [169]

Chemical methods and chemically modified graphene. It is possible to fabricate graphene
through colloidal suspension of graphite [31]. In the presence of strong acids and oxidants, oxidation of
graphite occurs with the intercalation of epoxide and hydroxyl groups. The hydrophilic properties of
these chemical end points facilitate the introduction of water and the dispersion of graphene layers in
solution. This method is inexpensive and produce large flakes but the remaining graphene have a poor
conductivity with significant amount of defects. Research groups [126] have been trying to reduce the
graphene oxide (Figure 2.4) but obtaining pristine graphene properties remains a challenge.

Liquid phase exfoliation of graphene. By using different types of solvent (aqueous or not), it is
possible to disperse graphene flakes from powdered graphite via ultrasonication. In that way, unoxidised,
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Figure 2.4: Illustration of a flake of graphene oxide with epoxide (-O-) and hydroxyl (-OH) groups [126]

high quality, scalable graphene has been obtained [61] , which can be for example deposited by spray
coating. This inexpensive method, as compared to CVD graphene, and the high quality of graphene
obtained, as compared to the chemically modified graphene, attract wide interest in the scientific com-
munity.

Transfer of graphene on a targeted area. The potential possibilities od devices offered by graphene
through its opto-electronic properties require the ability to deposit it on a targeted area where electrodes
are located. However, the manipulation of an atomic layer is not trivial. The main challenge is to keep
the sheet undamaged and its opto-electronic properties intact. Several ways have been studied [20], and
the most popular one is based on the use of PMMA layer [133] (see Figure 2.5).

Figure 2.5: Illustration of the transfer of a CVD graphene layer by the use of PMMA. (a) and (b), the
graphene is grown on metal substrate. (c) A thin film of PMMA is deposited on the metal+graphene
sample. (d) The metal is then etched, and graphene+PMMA is remaining. (e) Graphene+PMMA is
transfered on the chosen substrate and (f) the PMMA layer is removed. [118]

One of the most challenging step is then to clean the graphene. Acetone is widely used to remove the
PMMA layer, but it also contaminates the graphene layer [68]. In general, any chemical component in
contact with graphene can potentially affect its opto-electronic, and thus transport properties. Therefore,
many groups have been working on the measurement, the identification and the quantification of the
limit of graphene transport properties. This issue will be discussed in the next section.

2.1.2 Limits on the transport properties of graphene
The transport properties of graphene are limited by different scattering mechanisms. The magnitude of
the carrier scattering can be expressed in term of mobility µ, which links the average drift velocity of a
charge carrier to an applied electric field. Graphene on SiO2 substrate exhibits a mobility of more than
1m2V −1s−1, one order of magnitude higher than the silicon that is the most common electronic material
[57]. However, the scattering rate remains an obstacle and limits potential application in opto-electronic,
as well as in fundamental physics [19].

Scattering can be divided into two categories. The first one concerns intrinsic scattering mechanisms,
such as graphene defects, grain boundaries, intrinsic ripples or graphene phonons, emerging from the
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graphene itself. The second one involves the extrinsic mechanisms, arise from the surrounding materials,
like charged impurities in the substrate or trapped under/above the graphene, corrugations and strains
induced by the substrate, and remote interfacial phonon. All these scattering sources influence the
mobility of the charged carriers and we are going to enumerate and quantify their weight through a
literature review.

(a) Artistic illustration of the model of charged im-
purities sandwiched in between graphene and sub-
strate [4]. It creates a local inhomogeneous voltage
fluctuation, illustrated in inset [4].

(b) Fluctuation of the density of carriers from the
substrate with EF close to zero, as observed by scan-
ning single-electron transistor [104]

Figure 2.6: Charged impurities as an explanation of the limitation of experimental transport properties
of graphene

Charged impurities. Graphene being confined ultimately in one dimension, it is natural to speak
about two-dimensional electron systems. As other two-dimensional systems, the electrons in graphene
do not move as independent particles, but rather by pair, where the distance between two electrons have
a central role [57]. Electrons are strongly interacting with each other, and we speak about an interaction
potential u(r) = e2/εsr. Their motion are therefore correlated and the potential u(r) created by their
separation distance r is really sensitive to the surrounding media, εs = (ε1 +ε2)/2 [57] (see section 1.1.3).
Therefore, the effects of the substrate and any chemical component in the vicinity of the carbon sheet
should be taken into account carefully.

Scattering from charged impurities by the substrate [7, 116, 173] was pointed out as the limiting
factor of the transport properties. Located near the interface between graphene and substrate (Figure
2.6a), or in the substrate (Figure 2.8), charged impurities generate charged puddles in the graphene layer
which influence the transport properties, being a dominant source of scattering [65]. At high Fermi level,
the density of impurities impact linearly graphene carrier transport, whereas it could explain why there
is a finite conductivity near the Dirac point [4]. Although the local density of charges from the substrate
have been imaged (see Figure 2.6b) using a scanning single-electron transistor [104], the study emphasis
that it is not sufficient to explain the emerging electron-holes puddles on graphene. It would rather come
from the pollution by resist and other chemical post treatments exposing graphene. The resist residue
have been imaged [68] by scanning tunnelling microscopy (STM) which showed a layer of photo-resist
remaining despite a careful treatment of the sample. On the other hand, molecules from air, such as
H2O or N2 trapped in between the substrate and graphene during the transfer of the carbon layer have
been suggested [170] as potential charged impurities creating charged puddles.

By adding potassium atoms as impurity centers, a study [27] showed that the conductivity gets lower
as the density of impurities gets higher. It could be possible, according to [28], to get a mobility as high
as 4m2V −1s−1, provided one gets rid of charged impurities. However, an alternative explanation have
been pointed out through the study of suspended graphene [105]: corrugation of graphene layer (see
section below).
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Figure 2.7: Artistic illustration of what a real graphene should look like, with the presence of ripples
[105]

Corrugation. Using Transmission Electronic Microscope (TEM) technique, it was shown that graphene
is not flat [105], in agreement with the theory predicting that perfect 2D material are unstable under
ambient condition. Suspended graphene exhibits microscopic corrugation in the three dimensions as
illustrated on Figure 2.7. On SiO2 substrate, perturbations and fractures of the hexagonal lattice sym-
metry have been imaged [68] by scanning tunnelling microscopy (STM). The authors demonstrated a
correlation between the graphene lattice perturbation and the underlying substrate. However, it was
suggested that in their study, there was no independent intrinsic graphene corrugations, but rather ex-
trinsic corrugations caused by the lattice mismatch with the substrate. The presence of corrugations
partially matching the underlying SiO2 substrate, inducing stiffness in the graphene sheet, are more
likely to create strain-induced disorder, and dramatically affect the electronic transport properties in
graphene. Both extrinsic and intrinsic ripples have been observed on SiO2 substrate [52], meaning that
the graphene would be partially suspended in between the sample surface relief (see Figure 2.8).

Figure 2.8: Schema drawn from STM and AFM data, showing how graphene wraps a substrate. Graphene
is represented in orange, charged impurities in light grey dots [9].

Following these investigations, studies demonstrated that intrinsic [78] as well as extrinsic [80] corru-
gations could be an alternative explanation to the scattering rate observed experimentally in graphene. In
fact, such scattering mechanisms produce similar effects on the conductivity, as compared to the charges
impurities, and could be confused with charge impurities effect. However, it was shown, by STM-based
dI/dV mapping, that there is no correlation between corrugations and scattering centers.[170]

Lattice disorder. The structure of graphene, made of sp2 covalent bond in between carbon (see Figure
1.11), make lattice defects relatively rare, according to [19]. However, several types of defect can still be
found, such as grain boundaries (Figure 2.9b, 2.9c), vacancies or atoms substitution(point defect, Figure
2.9a), mechanical distortion of the lattice, etc... Studies have allowed one to analyze the influence of
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(a) STM image of a point defect
of bilayer graphene grown on SiC
From [135]

(b) TEM image of CVD graphene
grown on copper. Two grain bound-
ary meeting each other at an angle
of 27 deg. Scale bar 5 Å from [64]

(c) TEM image of CVD poly-
cristalline graphene grown on cop-
per. Fake color representing dif-
ferent grain orientation. Scale bar
500nm from [64]

Figure 2.9: (a) STM image of point defects, (b) TEM image of a grain boundary and (c) TEM image of
a polycristalline CVD graphene.

(a) Numerical phonon dispersion in graphene
from the Long-range Carbon Bond Order Potential
(LCBOPII) [77].

(b) Graphene plasmons coupling with
SiO2 surface optical phonon revealed
through extinction measurement, with
ωSO1 = 485 cm−1 (≈ 20.6 µm), ωSO21
= 806 cm−1 (≈ 12.4 µm), ωSO3 = 1229
cm−1 (≈8.1 µm) [100].

Figure 2.10: Intrinsic phonon of a monolayer graphene and extrinsic phonon-plasmons coupling at the
interface between graphene and SiO2 substrate
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such defects on the opto-electronic properties of graphene [127]. They have been imaged through various
techniques. As an example, bilayer graphene grown epitaxially on SiC have been investigated by STM
technique, where it is possible to see different perturbation and point defect of the lattice structure [135].
It puts into evidence the critical influence of the substrate and the substrate quality on the transport
properties of graphene.

More specifically, CVD graphene, which has been used in this study, presents many defect types,
depending on the type and the quality of the substrate [171], as well as on the process of growth and
transfer. One of the most common defects is grain boundaries (Figure 2.9b), that have been imaged
through STM [33], TEM [81, 64], but also Raman spectroscopy [75] and later with SNOM [43] (Figure
2.18b). In general, grain boundaries tend to reduce the electrical conductivity of polycrystalline graphene
[75], even if larger grain does not coincide with higher conductivity [64]. Comparing the influence on
the conductivity of three types of defects (point defect, surface contamination and line defects), grain
boundary seems to be the main factor [142] limiting the electronic transport in CVD graphene.

Electron-Phonon interactions. Several types of phonon can interact with electrons in graphene,
which are as many possible energetic channel leading to the scattering of charge carrier.

The intrinsic phonons, three optical and three acoustic phonons, are present in this 2D material (see
Figure 2.10a). The optical phonons are energetically too high for IR-SNOM to be taken into account,
and are usually studied by spectroscopy. The intrinsic acoustic phonons have been studied for their un-
usual heat transport properties [115] as well as for their impact on the conductivity. They are nowadays
pointed to be one of the main graphene plasmons scattering mechanism, limiting their propagation in
h-BN/graphene heterostructure [153, 114].

A first study analysing the transport in high quality graphene [110] predicted an extremely low
electrons-phonons scattering, even at high temperature. The limitation of the mobility would stand as
high as 20m2V −1s−1 if extrinsic scattering are eliminated. A second one discussed theoretically in plane
acoustic phonons [67]. The authors show that those phonons would limit the mobility of graphene at
more than 10m2V −1s−1. Therefore, according to these studies, in plane phonon would not be a signifi-
cant scattering mechanism. However, flexural phonon could be significant in suspended membrane [102].
These out-of-plane quasi-particles would be present in any samples due to intrinsic ripples [78], and more
particularly in suspended graphene [122].

This scattering process involves two flexural phonons [22], excited simultaneously, and limits the
mobility in suspended graphene around 1m2V −1s−1. However, strain induced mechanically or by back
gate potential could reduce the influence of this scattering in suspended graphene, to be analogous to
the in plane one [103]. Further experimental data agreed [88] with the theory for a value of mobility
in suspended graphene at room temperature around 1.5m2V −1s−1 [37]. However, recently, it has been
recorded a mobility as high as 24m2V −1s−1 in CVD suspended graphene at room temperature. In bilayer
graphene, the electron-phonon coupling mechanism is different. As a consequence, the mobility could be
found as high as 10− 20m2V −1s−1 [121].

The Remote Interfacial Phonon (RIP) is a phonon of the substrate excited by the charge carriers
in graphene. In the presence of a polar substrate, such as Si02 or SiC, the carriers in graphene couple
with the polarisation field at the interface graphene-substrate. This scattering mechanism is known to
limit electronic transport in 2D-like Si structure [48]. Plasmons-phonon coupling have been observed
experimentally on SiC substrate [95] as well as on SiO2 substrate ([100], Figure 2.10b). Others high-k
dielectric substrates have been investigated, stuying mobility in presence of charged impurities [83]. The
advantage of dielectric screening effect of impurities, thanks to high-k substrate, is lost by RIP arising.
So it has been predicted not much improvement of the mobility at room temperature . A numerical study
[123] of graphene on SiO2 and HfO2 (high-k substrate) at room temperature predicted a limitation for
the mobility between 0.55 to 2.4 m2V −1s−1 due to RIP (with EF from approximately 0.1eV to 0.3eV).
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Dc scattering approximation. As it has been seen in this section, the sources of scattering are multi-
ple. Usually, the mobility is evaluated for a Direct Current, which is a good starting point. Following this
rule, the mobility can be expressed as µ = τDCev

2
F

EF
. Here, τDC is the relaxation time of the electrons in

the DC approximation. However, it has been observed values relatively different when coming to optical
frequency. At first, electrons-electrons scattering has been pointed [70] to be responsible for unexpected
increased of scattering rate [42]. In the case of the study of plasmons, authors in ref. [57] emphasized that
"The plasmon lifetime, τpl, however, should not be confused with the d.c. transport scattering time, τDC".

In another study [129] focusing on the plasmons losses in h-BN/graphene heterostructures, the authors
compare the contributions of graphene’s acoustic phonons and h-BN optical phonons to GPs damping.
In the introduction, the authors reminded the Boltzman-transport theory, which demonstrates that the
mobility µ is inversely proportional to the charge carrier density n. The Fermi level EF beeing propor-
tional to the square roots of the density of charge carrier, τDC ∝ 1√

n
. However, it was claimed that the

plasmons lifetime should be increasing for increasing carrier density. τpl would therefore be anticorrelated
with the mobility. However, recent imaging of plasmons in encapsulated h-BN, heterostructure known to
enhance greatly the mobility, gives the best results [153]. In any case, increasing the Fermi level should
increase the plasmons lifetime. Working with high-k dielectric material, in order to gate electrostatically
the graphene and obtain high Fermi level, is one direction where research teams have been looking at
recently.

Relationship between Fermi level and mobility. As a conclusion of what was seen above, the
mobility, which aims to measure scattering mechanism, is limited by numerous factors. To summarize
mobility, we can divide the different contribution in two categories [158], the intrinsic mechanisms or
short range scattering (µshort in the Figure 2.11 : lattice disorder e.g. vacancies, adatoms, absorbed
molecules, grain boundaries) and the extrinsic mechanisms or coulumb scattering (µcoulumb in the Figure
2.11 : charged impurities from substrate, interfacial phonons). According to [158], the former depends
on carrier concentration in graphene. The dependence of the carrier concentration/Fermi level versus
the mobility (µcoulumb, µshort and µtotal) is plotted Figure 2.11. The chemical doping, with H3PO4,
increase the carrier concentration (Fermi level), but increase also the short range scattering.

Maximizing the propagation length Lp of plasmons in graphene is a complexe task. In one hand, a
high Fermi level seems to be a rather good target for getting long propagation, which is in agreement with
recent experiment (will be seen section 2.3). In the other hand, plasmons being a collective oscillation of
free charge carriers, a high mobility seems to be necessary. Moreover, h-BN, which is the support for the
longest propagation, maximized the mobility [153]. However, high Fermi energy does not always match
with high mobility, and uncertainties remain [129].

Beside the electronic transport, the optical behavior of graphene is of the first importance in order
to understand graphene plasmons properties. Therefore, in the following section, the optical properties
of graphene will be reviewed.

2.2 Litterature review on optics and plasmonics graphene prop-
erties

As it has been seen in Section 1.3 , graphene exhibits exotic properties. Among others, the massless
dirac particule behavior of electrons leads to a really high mobility of the charged carriers (see Section
2.1.2). Moreover, the possibility to tune the Fermi level of graphene, and thus its optical properties,
leads to a wide interest in the scientific community for graphene plasmonics. In fact, charge carriers can
be injected up to 0.01 per atom of carbone for back gate system (1×1013cm−2), and up to 0.1 per atoms
for solid gel electrolyte [97]. Although much below the doping concentration that can be achieve in noble
metal (up to 1 per atom), the injection of charges in graphene results in a significant change of optical
properties of graphene.

The tunability of optical properties of graphene compared to a bulk of metal one can be understood
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Figure 2.11: Mobility as a function of carrier concentration for graphene deposited on SiO2 when
graphene is doped chemically with H3PO4[158]

as follow. When a bulk of metal stands in a strong electric field, the electrons accumulate along the
surface and shift the state of all the electrons inside the bulk. However, the total Fermi level is not
changed and therefore, the property of the metal is not changed. At the contrary, in a single layer of
carbon atoms, there is an effective change of the electrons/holes density in the material, which changes
the conductivity and then the optical response [69]. Therefore, it is possible to modulate the dispersion
relation of plasmons (see Section 2.3), which attracts considerable interest in the scientific world.

In the following section, the theory of the optical properties of graphene will be introduced, and then,
the predicted opto-electronic devices emerging subsequently through simulation will be expounded. In
a second part, an overview of what have been experimentally done in the graphene plasmonics field will
be presented.

2.2.1 Theory of the optical properties and simulation of graphene-based de-
vices

Graphene is a promising material for opto-electronics, but remain challenging to manipulate and control,
because of its one atom thickness. However, the possible applications coming out have attracted wide
interest and many groups worked on the theory and simulated devices based on graphene to design
future opto-electronic platform. In this sub-section, a semi-classical way to treat the graphene optical
properties will be given, based on the Kubo formula [59]. Subsequently, devices based on graphene,
predicted through different simulation methods, will be enumerated.

The optical properties of graphene

The needs of understanding graphene peculiar electro-optics behaviour through the theory have been
motivated early by the discovery and the characterisations of a monolayer graphene sheet [17, 117]. The
tight binding approach (see Section 1.3.2) applied to this 2D honeycomb lattice enables to understand
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most of the unusual electronic properties [54]. However, the interaction of graphene with light is not
trivial and many research groups have been working on different approaches to model it [58, 40, 59, 106].
Here, a first look will be taken at the semi-classical formalism, starting from the Kubo formula [59], which
represents graphene as a conductive surface. Ryogo Kubo introduced an electronic transport formalism
in order to describe the conductivity, based on linear response theory. It gives the conductivity depending
on the electric field applied. To express the intrinsic conductivity of the graphene, the magnetic effect
will be ignored. It is then possible to obtain the conductivity as a function of the radian frequency ω,
the chemical potential µ, the scattering rate Γ and the temperature T [41]:

σ(ω, µ,Γ, T ) =− ie2(ω + i2Γ)
π~2

[
1

(ω + i2Γ)2

ˆ ∞
0

E

(
∂f(E)
∂E

− ∂f(−E)
∂E

)
dE

−
ˆ ∞

0

f(−E)− f(E)
(ω + i2Γ)2 − 4(E/~)2 dE

] (2.1)

where

f(E) = 1

1 + e
E−µ
kbT

(2.2)

is the Fermi distribution. Equation (2.1) can be expressed as a sum of the intraband term (first
integral term) and the interband term (second integral term), i.e σ = σintra + σinter.

σintra(ω,Γ, T, µc) = −ie2

π~2(ω + i2Γ)

∞̂

0

E

(
∂f(E)
∂E

− ∂f(−E)
∂E

)
∂E (2.3)

σinter(ω,Γ, T, µc) = ie2(ω + i2Γ)
π~2

∞̂

0

f(−E)− f(E)
(ω + i2Γ)2 − 4(E/~)2 ∂E (2.4)

It is interesting to notice that σintra (Equation (2.3)) is responsible for the intraband transitions that
can be seen as the electron-phonon scattering process [98], whereas the second term (Equation (2.4)) is
about the interband electron transitions. The scattering rate Γ can also be expressed as a function of
relaxation time τ , by Γ = 1/2τ .

It is possible to solve analytically the intraband term which gives :

σIntra(w,EF , τ, T ) = ie2EF
π~2(w + i/τ)

[
1 + 2kBT

EF
ln(e−EF /kBT + 1)

]
(2.5)

, where the chemical potential µ has been replaced by the Fermi energy. It is possible to do so when
the chemical potential is much higher than kBT [98]. It is also interesting to note that the intra-band
term turns to a Drude like form when EF >> kBT :

σintra(w,EF , τ, T ) = ie2EF
π~2(w + i/τ) (2.6)

However, the interband contribution is more difficult to evaluate analytically. At finite, but low tem-
perature (EF , ω >> kBT ), several interband contribution part of the conductivity have been proposed.
According to [40]:

σinter(w,EF , τ, T ) = σ0

[
1
2 + 1

π
arctan

(
~w − 2EF

2kBT

)
− i

2π ln
(

(~w + 2EF )2

(~w − 2EF )2 + 4(kBT )2

)]
(2.7)

with σ0 = e2/4~. According to [84], the electron disorder scattering processes i~/τ can be added to
the second part of the equation to get at any temperature :
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σinter(w,EF , τ, T ) = σ0

[
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π
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~w − 2EF

2kBT

)
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2π ln
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(~w + 2EF + i~/τ)2

(~w − 2EF + i~/τ)2 + 2(kBT )2

)]
(2.8)

According to [24], the inter band term of the optical conductivity in a single layer of graphene can
be writen as :

σinter(w,EF , τ, T ) = σ0

2

[
tanh

(
~w + 2EF

4kBT

)
+ tanh

(
~w − 2EF

4kBT

)
− i

π
ln

(
(~w + 2EF )2

(~w − 2EF )2 + 4(kBT )2

)]
(2.9)

(a) σ/σ0 of graphene details term by term (b) σ/σ0 of graphene for two different temperature

Figure 2.12: Optical conductivity of graphene using the Equations (2.9) and the full intraband term,
Equation (2.5) as a function of the pulsation ω. The mobility of graphene (unit e2/4~) is set at
1m2V −1s−1.

Plots of the optical conductivity σ/σ0 is shown Figures 2.12, where σinter has been taken from Equa-
tion (2.9) and σintra is computed through the Equation (2.5). The conductivity is plotted as a function
of the energy of the electromagnetic wave, normalized by the Fermi energy. In Figure 2.12a, the different
terms of the conductivity are plotted separately. It is interesting to observe that the intraband terms
of the conductivity (in red) approach the total term (in black) when ~ω << EF . Therefore, the intra
band term is dominating in the infrared region, while in the near-infrared and the visible regions, the
interband term dominates. In figure 2.12b, as expected from Equations (2.7), (2.8), (2.9), the real part of
the interband contribution displays a step at ~ω = 2EF , which represents the losses due to the interband
excitation of carriers. Two electronic band structures of graphene are shown in inset. The Fermi level is
illustrated by the interface between the orange and the white. The black arrow represents the interband
transition, not possible for ~ω < 2EF , and possible above the threshold of 2EF .

Finally, it is worth speaking about the 3D approach based on a convenient 3D permittivity for
graphene. As seen in the Section 1.1.3, Equation (1.51) gives a conversion of the 2D optical conductivity
into a 3D electrical permittivity, to represent graphene as a 3D material with a finite thickness. Let’s write
the optical conductivity of the graphene as a sum of a Real part and an Imaginary part, σ = σR + iσI ,
which leads to :

ε(ω) = εs(w)− σI(ω)
ω2aε0

+ i
σR(ω)
ω2aε0

(2.10)

It is interesting to notice that the positive imaginary part of the optical conductivity at low frequency
(see Figure 2.12b) will give a negative real part of the graphene permittivity when εs(w) − σI(ω)

ω2aε0
< 0.

In this case, graphene layer has a metallic behavior and plasmons can be supported. The positive real
part of the conductivity corresponds to the imaginary part of the permittivity, which is related to losses
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experienced by an electromagnetic field. This last term will be determinant for the dissipation losses of
surface plasmons in graphene.

Figure 2.13: Permittivity of graphene (Ef = 0.6eV, µ = 1m2V −1s−1) compare to Gold in the infrared
range, using Equation (1.51) and the Drude-like conductivity Equation (2.6), valid under these conditions
(see Section 3.2.1)

Simulations of devices based on graphene plasmonics

Early, the power of graphene local tunability has shown the possibility to create exotic devices. As an
exemple, at a p-n junction of graphene layers, it is theoretically possible to get a Veselago lens. This type
of lens act like a slab of material with negative refractive index, giving counter intuitive properties. [25].
Therefore, graphene based device could lead to electronic lenses, but also graphene-based transistors.
Soon after, the p-n junction applied for graphene plasmonics have been studied [108] and a plasmon
transistor has been envisaged.

(a) Simulation showing an almost total reflec-
tion of plasmons at an interface of two graphene
layer with different conductivity.

(b) AFM image of a single layer graphene me-
chanically exfoliated

Figure 2.14: Two snapshot in time showing the y component of the electric field at low temperature
(T=3K) on free standing graphene. From [148]

An interesting study has shown [148] that the local modulation of optical properties in a single layer of
suspended graphene could lead to complex photonic function and eventually transfomative optics device
(Figures 2.14). It is due to the low-loss plasmonic properties and to its intrinsic two dimensional struc-
ture. Playing with local electrostatic potential applied to graphene, they demonstrated total reflection
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of plasmons (Figure 2.14a) and plasmonics waveguide (Figure 2.14b). From this starting point emerged
a lots of new device proposals based on the control of the Fermi level in graphene (electrostatic gatting).
Plasmonic switches and transistors [3, 32, 55, 26], light modulators [94, 163, 35, 167], photodetectors
[172], ring filters [91, 92], plasmonic lens [149], logic gates [125, 164] and waveguides [124, 86] have been
predicted numerically.

In most of the cases cited above, the studies suppose to have an excellent control over the amount of
charge carrier located in different part of the layer, by applying electric field. Unfortunately, it remains a
big challenge since the electric field needed locally is really important. Therefore, many research groups
are working on finding an experimental system that could lead to variation of graphene optical and elec-
tronical properties on micrometric scale on demand. In fact, the substrate plays a key role (see section
2.1.2) in order to get optimal eletro-optic properties [57].

2.2.2 Experimental observation of plasmons in graphene
Several techniques enable researchers to access to a direct proof of the existence of plasmons in graphene.
The first experimental evidence showing the phenomenon has been performed by Electron Energy
Loss Spectroscopy (EELS) [111, 39, 96], where electrons are used to probe the graphene properties.

Figure 2.15: Electrons energy
loss spectra obtained in 1992
for graphene grown on TiC
surface [111]

In this method, an incident beam of electrons strikes the carbon sheet.
Some of the electrons will transfer a part of their energy, through inelastic
scattering, to the graphene plasmons. Their energy will be eventually
recorded after the reflection or the transmission through the sample,
and an electrons energy loss spectrum is obtained (see Figure 2.15). In
graphene, it is known that there are two kinds of valences electrons : the
π electrons responsible for the covalent bounds between carbone atoms,
and the σ electrons, quasi free, which are creating bounds over pz orbitals
(see Figure 1.11b). Therefore, several types of plasmons may exist [36]:

• The low energy plasmons, usually refereed as 2D plasmons, with
energy lower than 3 eV, which is the field of interest of this thesis.

• The high energy plasmons, corresponding to the π (around 4.7 eV)
and π + σ (around 14.6 eV) plasmons.

In Figure 2.15, the signature of two different plasmons can be ob-
served : one of high energy ((b) on the Figure), corresponding to
a π + σ plasmon, and one with lower energy ((a) on the Figure),
corresponding to the 2D plasmons [111]. However, 2D plasmons are
difficult to probe because they appear with relatively high doping
(Fermi level), beeing highly dependent to it. They are also depen-
dent on other parameters like the substrate and the temperatures
[98].

It is also possible to record plasmonic effects in graphene by
confining the carbon sheet in a second dimension, which leads
to structures so-called ribbons. As for noble materials, a reso-
nance peak can be observed with an infrared light polarized per-
pendicularly to the ribbon axis, function of its width. The
resonance in graphene ribbons is characteristic of 2D electrons
gas (Figure 2.16b). It is worth mentioning that this prop-
erty is also present at room temperature, compared to other 2D
materials [76]. But the most interesting feature in graphene
as a plasmonic material is, one more time, the possibility to
tune its optical properties, and therefore to tune the absorp-
tion peak of the device through electrostatic gating (see Figure
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(a) Tuning of the transmission of an array of
graphene ribbons on SiO2 through electrostatic
gating [76]. ∆T = T − TCNP with CNP Charge
Neutral Point. Inset the transmission for a paral-
lel polarisation. Ribbons width of 4µm.

(b) Tuning of the transmission of an array of graphene
ribbons on SiO2 varying the width of the ribbons [161].

Figure 2.16: Intrinsic graphene plasmons confined by designing ribbons

2.16a).

Confining the graphene in 3 dimensions gives also interesting results. Micro-disk of graphene+insulators,
deposited on quartz for its transparency in the infrared region, have been engineered in order to create
plasmonics resonators. Stacks of several layers have been fabricated enhancing the plasmonics resonance
frequency and magnitude, and far-infrared notch filters as well as polarisers are demonstrated [160].

Figure 2.17: Illustration of the experimental configuration describing the SNOM tips launching and
detecting simultaneously the Graphene plasmon in (a), and the obtained near field amplitude on graphene
nanoribbon on top of 6H-SiC. [29]

In 2012, two papers [42, 29] have been published simultaneously describing the first real-space imaging
of surface plasmons propagating on a substrate Si/SiO2 for the first one (Fig 2.18a), and on graphene
nanoribbon on the top of 6H-SiC substrate for the second (Fig 2.17). It has been a challenge to record
the signature of such a wave because of its nonradiative nature. In order to visualize those evanescent
waves, a Scanning Near-field Optical Microscope has been used (SNOM, Fig. 2.17) in the infrared region.

An infrared beam is focused on an Atomic Force Microscope (AFM) metal tip (apertureless). The
tip scatters the light and a fraction of the resulting angular spectrum will excite a plasmon in graphene
with the correct wave-vector. The plasmon will propagate in the 2D sheet of carbone and be reflected
by a grain boundary, or graphene edge (Figure 2.18b). This reflected plasmon will interfere with the
incoming one, resulting in an interference pattern, creating a standing wave, (Figure 2.18a). It is pos-
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sible to extract from the standing wave the effective wavelength of the graphene plasmons, which agree
with the theory to be much smaller than the excitation one. These two papers are the starting point of
nano-imaging of plasmons in graphene by SNOM technique.

Following the previous studies, in 2013, a study [43] demonstrates that the SNOM technique is able
to highlight the grain boundary (Figure 2.18b) in CVD graphene, and could be applied in order to char-
acterize graphene cristallinity. The key point here is that the grain boundaries, that were challenging to
image, are scattering centers that obstruct the electronic transport as well as the plasmon propagation.
In the meanwhile [30], nano-defects in graphene on silicon carbide have been revealed by the same tech-
nique and surface roughness of the substrate such as SiC terraces have been studied. It is shown that
plasmons in graphene are highly disturbed by substrate and substrate discontinuities.

(a) Image of the interference occurring between the tip-launched
plasmon (in green) and the edge reflected plasmon (in white),
creating the standing waves. [42]

(b) Mapping of grain in a single
layer graphene through the in-
terferences created by the grain
boundary and/or grain overlap
under SNOM tips [43]

Figure 2.18: Interferometric image of graphene layer using SNOM technique at graphene edges and grain
boundary

The next step was the development of h-BN/graphene structure, predicted to be one of the best
platform for optimizing transport properties of graphene [19, 174]. Low plasmons damping as well as
high confinement have been shown [153]. Intriguing behaviour of this heterostructure have been studied
[34] showing hybrid plasmons-phonons polariton phenomenon with low losses. The properties of infrared
plasmons have been shown by pump-probe technique [114]. It must be underlined that the high quality
of such structure is able to sustain high propagation of plasmons, which can be switched by electrostatic
gating.

2.3 Properties of Graphene Plasmons
It is interesting to notice two things when speaking about plasmons in graphene. They show a lot of
similarities with the surface plasmons at an interface between a dielectric and a metal (see section 1.2.1).
However, two properties of the system imply different characteristics of plasmon in graphene. The first
one is that electrons are frozen perpendicular to the surface, and the second is about the dispersion
relation of electrons in graphene (see Section 1.3.2), as compared to the parabolic one in metals [70].
Those two major differences lead to different dispersion relations in between those two systems, that will
be studied below.

This study aims to focus on longitudinal modes, where the electric field associated with the plasmons
are in the plane, parallel to the wave vector. Those modes are known as Transverse Magnetic modes.
They appear at a frequency below the Pauli-blocking energy. A transverse electric mode of plasmon
exists also in graphene, where a collective oscillation of electrons transverse to the graphene plane can
be found [15]. However, the dispersion curve of those modes seems to be too close to the one of the light.
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As a results, on the energy confinement point of view, it seems less interesting than the TM modes are[70].

In 2007, it has been proposed several ways to study the transverse electric and magnetic plasmonic
modes on graphene. [66, 106]. In the following sections two semi-classical approaches will be proposed in
order to get the dispersion relation of plasmon in graphene. One is based on a volume approach, and the
other one consists of a surface approach. Then the different parameters that matter in the propagation
of graphene plasmons will be analysed.

2.3.1 Dispersion relation by the volume approach
In this section, graphene will be considered as a material with a finite thickness. Therefore, graphene will
be described as an extremely thin metallic slab with a complex permittivity εm. The results that have
been found in section 1.2.2 will be extensively used, where the system can be described as a multilayer and
graphene is embedded in a dielectric media with dielectric permitivity εd. Graphene being a material
which is one-carbone atom thick, the thickness ∆ = 2a can be approximated as tending towards 0.
Introducing Equation (1.87) and using a finite expansion of tanh when z tends to 0, tanh(z) = z+o(z2),
it is possible to write :

tanh(a
√
k2
p − εmk2

0) = −
εd

√
k2
p − εmk2

0

εm

√
k2
p − εdk2

0

≈ a
√
k2
p − εmk2

0 (2.11)

− εd
aεm

≈
√
k2
p − εdk2

0 (2.12)

k2
p ≈ εdk2

0 + ε2d
a2ε2m

(2.13)

In order to further simplify this equation, let’s suppose that the graphene sheet is suspended, and
therefore εd = 1. Let’s insert Equation (1.52), in the last equation to find :

k2
p ≈ k2

0 + 1
a2

(ε0w2a)2

(ε0w2a)2 − σ2
2D + 2iw2aε0σ2D

(2.14)

In the vanishing thickness limit, we finally get :

k2
p ≈ k2

0 −
(

2ε0w
σ2D

)2
(2.15)

kp ≈ k0

√
1−

(
2ε0w
k0σ2D

)2
(2.16)

Knowing that k0 = w/c and inserting the impedance of the surrounding medium η =
√
µ0/ε0, it leads

to :

kp ≈ k0

√
1−

(
2

ησ2D

)2
(2.17)

In section 3, an introduction to the simulation of material-light interaction will be given. In order to
study graphene via numerical tools, a material model is needed. As a first approach, the results obtained
above has been implemented in Lumerical FDTD software, where graphene was treated as a 3D material
(3D permittivity, Equation (2.10)), with finite thickness. However, the meshing required is very small
compare to the infrared wavelength, and some aberration may occur (see Section 3.2.2). Therefore, a
second model had been developped, with graphene seen as a 2D material, defined by its 2D conductivity.
This second approach is demonstrated hereafter.
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2.3.2 Dispersion relation by the surface approach
Another way to get the dispersion relation of plasmons in graphene is to describe the system as an
interface of two dieletric media, with a free current laying in between. Therefore, the same method as
in Section 1.2.1 will be used. The same TM mode, using Equations (1.53), will be considered. The
boundary conditions on the electric field lead to Ex1 = Ex2 = Ex and kx1 = kx2 = kp. Let’s take
Equation (1.61) and apply it in the two media, which leads in media 1:

Exwε0ε1
kz1

= −Hy1 (2.18)

and in media 2:
Exwε0ε2
kz2

= Hy2 (2.19)

Combining with Equation (1.23), the boundary equation for Hx in the case of surface current, it becomes
:

Exwε0

(
ε2
kz2

+ ε1
kz1

)
= Hy2 −Hy1 = −σEx (2.20)

And the dispersion relation is finally obtained for TM mode:

ε2
kz2

+ ε1
kz1

= − σ

wε0
(2.21)

It has been seen previously that kzi should be pure imaginary. It is therefore possible to replace it as
kzi = iqzi with qzi real positive and qzi =

√
k2
p − εik2

0. The dispersion relation is revealed in its most
known form :

ε2√
k2
p − ε2k2

0

+ ε1√
k2
p − ε1k2

0

= − iσ

wε0
(2.22)

If graphene is sandwiched in air, ε1 = ε2 = 1, the dispersion relation of plasmons in graphene seen in
Equation (2.15) can be found easily.

(a) Plot of the full dispersion relation of graphene plas-
mons (Equation (2.22)) Vs the non-retarded approxima-
tion for graphene (Equation (2.23))

(b) Plot of the dispersion relation of plasmons for a sin-
gle interface Gold/air (in red, Equation (1.63)), for a thin
film of gold (1nm) sandwiched in air (in blue, Equation
(1.87)) and graphene sandwiched in air (in green, Equation
(2.23)). Frequency is taken from 8.3 microns to 50 microns.
Gold is set as a Drude metal with ωp = 2, 15.1015Hz and
Γ = 17, 14.1012Hz

Figure 2.19: Dispersion relation of graphene plasmons without and with non-retarded approximation,
and comparison with Gold. The substrate is set as a pure dielectric with ε = 5. Graphene is set with
EF = 0.3eV and a mobility of µ = 1m2V −1s−1.
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2.3.3 Graphene plasmons propagation and damping rate
Considering a non retarded regime, in the case where kp >> k0, Equation (2.22) can be simplified:

kp ≈
iωε0
σ

(ε1 + ε2) (2.23)

This approximation validity is demonstrated in Figure 2.19a. As an example, the plasmonic dispersion
relation of a sheet of graphene with a Fermi level EF = 0.3eV and a mobility of µ = 1m2V −1s−1 is
computed using the full Equation (2.22), and the simplified Equation (2.23). As we can see, the two
curves fit really well and we can safely use the simplified equation (2.23). The next step is to plug in
this equation the optical conductivity (seen Section 2.2.1). Let’s start with a graphene which is highly
doped, EF >> kbT and an excitation energy below the optical phonon in graphene, ~ω ≈ 0.2eV . We
can therefore use the Drude-like expression of the conductivity, Equation (2.6), and we find:

kp = 1
λ0

π~
2ατEF

(ε1 + ε2)(ωτ + i) (2.24)

Therefore, using Equation (1.130) (EF = ~vF kF ), we obtain finally:

~ω
EF

=
√

c

vF

4α
(ε1 + ε2)(1 + i

ωτ )
kp
kF

(2.25)

, where α = e2/4πε0~c ≈ 1/137 is the fine structure constant. Figure 2.19b shows a comparison
between graphene plasmons dispersion relation and gold plasmon relation dispersion. The graphene is
free standing (sandwiched in air); it is represented in green in Figure 2.19b. Two cases have been taken
into account for gold. The red curve corresponds to a semi infinite system, where surface plasmons take
place at an interface between gold and air. The second case, in blue, is a free-standing thin film of gold
of 1-nm thickness (sandwiched in air). Comparing dispersion relation of graphene with gold, we can
observe that GPs wavevectors kp are generally much higher in graphene than for the gold, which means
that we have a higher spatial confinement.

Dispersion relation of GPs is also calculated via the Random Phase Approximation (RPA) model.
This model comes from the wish of researchers to introduce in the theory quantum mechanical inter-
actions between the electrons. It takes into account the weak screening Coulomb interaction, so the
electrons are driven by a total potential summing the external potential and the coulomb potential. Sev-
eral groups [66, 159] worked on doped graphene at 0 temperature in order to get the dielectric function
of graphene as a function of q and ω. The graphene plasmons are derived directly from it (Figure 2.20).
For small values of q, the dispersion relation wsp(q) is proportional to √q and remains really close to
the semi-classical model. But for finite values, it is really interesting to notice that the square roots
behaviour vanishes. Instead, the dispersion relation converges to the boundary line between the two
SPE region (section 1.3.3, Figure 1.17) without entering in the intraband SPE zone. In any cases, in the
mid-infrared region, the dispersion relation lies in the weakly damped area and therefore can theoreti-
cally propagate on long distance. Some high-resolution electron energy-loss spectroscopy are fitted well
by the RPA theory [139], but the approximation of infinite electron relaxation time coupled with the
complicated case of graphene plasmon limits the scope of this model [98].

As it has been seen in Section 1.2.1, the wavelength of the plasmon in the graphene can be obtained
using Equation (1.67). It is also possible to get the propagation distance with the Equation (1.66), as
well as the penetration depth (Equation (1.68)) of the field in the dielectric medium. All this physical
quantities can be derived from the real and the imaginary parts of the wave vector kp (see Equation
(2.24)). Let’s take into consideration the case of a graphene layer sandwiched in between a dielectric and
the air. Therefore, we can define ε1 = εsub = ε′+ iε′′ and ε2 = εair = 1. The wavelength of the plasmons
λsupp can be therefore established, as well as its propagation distance Lsupp and the penetration depth for
supported graphene as follow :

λsupp = λ0
4ατEF

~((ε′ + 1)ωτ − ε′′) (2.26)
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Figure 2.20: Dispersion relation of graphene plasmon calculated by RPA (solid line), and by the classical
model (dashed line). The graphene is lying on SiO2 substrate. The two kind of SPE zone are drawn in
background (see Figure 1.17)

Lsupp = λ0
ταEF

π~(ε′ + 1 + ε′′ωτ) (2.27)

δsupp = 1
Re(kp)

=
λsupp

2π (2.28)

From Equation (2.27), it is interesting to notice that the propagation of plasmons in graphene depend
on three main factors. The first one is the lifetime of the plasmons τpl, which is a phenomenology
parameter. This factor takes into account mechanism of scattering in graphene seen section 2.1.2. The
second interesting parameter is the Fermi energy. The Fermi energy in graphene vary with the process
of fabrication and transfer of graphene, but can also be tuned electrostatically. The third parameter is
the permittivity of the dielectric medium surrounding graphene. The propagation distance of plasmons
in graphene being inversely proportional to those dielectric permittivity, it is interesting to work with
substrate having really low permittivity. For example, working in a configuration of suspended graphene,
the Equations (2.26) and (2.27) become :

λsuspp = λ2
0
α

~πc
EF (2.29)

Lsuspp = λ0
ταEF
2π~ (2.30)

It is interesting to notice that the plasmons wavelength in suspended graphene is a direct measurement
of the Fermi level in this graphene sheet. An other interesting parameter is the quality factor, also called
figure-of-merits, which is usually used to compare a phenomenon applied to different materials [151].
It takes into account the complex permittivity of a substrate at differents wavelength. The imaginary
part of the permittivity is responsible for the loss, and the real part of the permittivity is describing the
distribution of the field in a material. The inverse of this physical quantity is more common in graphene
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Figure 2.21: Plot of the damping rate of graphene plasmons for suspended monolayer graphene

plasmonics field [42] and it is called the damping rate, or propagation loss. Let’s take the general case
of a monolayer sheet of carbon deposited on a substrate. Therefore, we can define ε1 = εsub = ε′ + iε′′

and ε2 = εair = 1. The damping rate can be written as :

γ = Im(kp)
Re(kp)

= ε′ + 1 + ε′′ωτ

(ε′ + 1)ωτ − ε′′ ≈
1
ωτ

+ ε′′

ε′ + 1 (2.31)

The last approximation made on the right side of the equation above is true as long as we remain
far enough from the intrinsic phonon of the substrate. In the case of suspended graphene, ε′ = 1 and
ε′′ = 0 and it is possible to plot the damping rate for graphene plasmons in the range of interest. Figure
2.21 shows the damping rate of graphene plasmons as a function of the wavelength in the mid-infrared
range. The lifetime τ is set as a approximation as the DC relaxation time of electrons (see Section
2.1.2). The different curves correspond to different Fermi level and different mobility. As expected,
higher is the mobility/Fermi level, and lower is the damping rate. From this Figure, it is possible to
see that the damping rate is increasing as the wavelength does (as long as the wavelength is above the
intrinsic phonon in plasmons, around 6.5 µm). However, for high quality of graphene and high doping,
the plasmons loss is less and less dependant of the wavelength.

Taking the case of graphene deposited on a SiO2/Si wafer(Optical constant from Palik Handbook,
Figure 2.22a), we can plot the damping rate in the same range, Figure 2.22b. Here again the graphene
parameter such as the Fermi level and the mobility have been varied. Figure 2.22b shows a minimum
around 11 µm, which correspond to the litterature [42].

However, the values obtained here, are relatively low compared to the literature review. As mention
in the papers [42, 43], it is probably due to a many-body interaction at the edge and grain boundary of
the graphene sheet, where other scattering mechanisms (electrons-electrons) take place.
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(a) Permittivity of SiO2 substrate using Palik Handbook. (b) Zoom on the minimum of the damping rate

Figure 2.22: Damping rate of graphene plasmons for suported graphene

2.4 Aim of this study
The initial aim of this study is to lay the foundations of plasmon propagation for the development
of future graphene-based optoelectronic devices. Ideally, graphene plasmons in the infrared suffer low
metallic losses as compared to noble metals. This is due to its excellent electronic properties. How-
ever, substrate implies impurities and defects that affect the transport properties of graphene. Also,
the use of a substrate induces a strong damping due to a high optical energy dissipation. In this con-
text, suspended graphene appears to be a promising route for the design of future opto-electronic devices.

The scope of this work is the study of plasmons in free standing graphene. Free standing graphene
enable to get rid of the interaction of graphene charges with the substrate. Under special condition,
graphene plasmons could reach interesting propagation length. Therefore, a numerical study is detailed
in the chapter 3. In the chapter 4, experimental results are presented. The fabrication of samples,
the characterizations as well as optical measurements are introduced in the chapter 4. The optical
measurement are performed with an home made Scanning Near-field Optical Microscope (SNOM) in the
infrared range.
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Chapter 3

FDTD Simulation of the propagation
of plasmons in suspended graphene

The work of a researcher is to undertake creative investigation on a systemic, organized basis. Therefore,
numerical tools have been developed to help scientists to predict interesting roads to explore, before
experimental demonstrations. The finite-difference time-domain (FDTD) method is a numerical analysis
technique which gives to the community of optics the possibility to simulate various interaction between
light and matter. Surface Plasmons excitation is one phenomenon taking place in the scope of those in-
teractions, appearing theoretically after rearranging Maxwell’s equations. These equations are the basis
of the FDTD method, which aims to solve them in discretized space and time. Therefore, plasmons can
be computed and study through this numerical method.

First of all, the basic idea of the FDTD method will be introduced briefly. Then, the modelization of
graphene through FDTD will be discussed. Finally, the case of the plasmons propagation in suspended
graphene will be detailed: at first, the use of an in plane nano-antenna for Graphene Plasmons (GPs)
excitation will be investigated. Then, a system taking into account the constrain induced by the goal of
a long propagation is designed. Finally, some critical remarks are addressed.

3.1 Basic idea of the Finite-Difference Time-Domain (FDTD)
FDTD method is based on an algorithm proposed by Kane Yee, who used second-order central difference
[146]. The key steps of the algorithm are summarized in the following, with some references to the 1D
case that will be developed subsequently.

1. Replace all the time and space derivatives of the Ampère (Equation (1.3)) and Faraday laws
(Equation (1.4)) by finite differences (see Equation (3.2)). Doing so, the space and time are
discretized and the electric and magnetic fields are staggered in the four dimensions.

2. Solve the different equations (Equation (3.1)), using second-order central differences (Equations
(3.6) and (3.5)), and express the future unknown fields in terms of known past fields (Equation
(3.7)).

3. Evaluate the magnetic fields one time-step into the future so they are now known (effectively they
become past fields).

4. Evaluate the electric fields one time-step into the future so they are now known (effectively they
become past fields).

5. Repeat the previous two steps until the fields have been obtained over the desired duration.

Let’s have a more detailed look at the simplest case : the one dimension case.

50



3.1.1 1-D FDTD
From the Maxwell’s equations, the wave equation for electromagnetic waves can be obtained (Equation
(1.8)). To simplify, the wave equation in free space with no current and source can be expressed in 1D
as follow:

∂2u

∂x2 −
1
v2
∂2u

∂t2
= 0 (3.1)

with u as a scalar field to be described. A gaussian wave can be seen as a possible solution. Let’s
assume this wave propagating from left to right (increasing x), so it is possible to draw the following
schema (Figure 3.1). It represents snapshots of the field at different time steps tn and position xi, where
i and n are intergers. xi ≡ i∆x is defined to dicretize the space and tn ≡ n∆t is defined for the time.

Figure 3.1: Skecth of the discretization in time and space of a gaussian wave propagating towards the
right

Then, the new wave equation taking into account these discrete variables is written as :

∂2u

∂x2

∣∣∣∣∣
tn

xi

− 1
v2
∂2u

∂t2

∣∣∣∣∣
tn

xi

= 0 (3.2)

Let’s freeze the time. Taylor series expansion on the term utnxi+1
≡ uni+1 can be written as :

uni+1 = uni + ∆x∂u
∂x

∣∣∣∣∣
tn

xi

+ (∆x)2

2!
∂2u

∂x2

∣∣∣∣∣
tn

xi

+ (∆x)3

3!
∂3u

∂x3

∣∣∣∣∣
tn

xi

+ (∆x)4

4!
∂4u

∂x4

∣∣∣∣∣
tn

xi

+ ... (3.3)

From the space-step i− 1 to the step i, Equation 3.3 becomes :

uni−1 = uni −∆x∂u
∂x

∣∣∣∣∣
tn

xi

+ (∆x)2

2!
∂2u

∂x2

∣∣∣∣∣
tn

xi

− (∆x)3

3!
∂3u

∂x3

∣∣∣∣∣
tn

xi

+ (∆x)4

4!
∂4u

∂x4

∣∣∣∣∣
tn

xi

− ... (3.4)

Adding Equations (3.3) and (3.4) gives :

∂2u

∂x2

∣∣∣∣∣
tn

xi

=
uni+1 − 2uni + uni−1

∆x2 +O(∆x2) (3.5)

The same method can be used to get the partial derivative in time :

∂2u

∂t2

∣∣∣∣∣
tn

xi

= un+1
i − 2uni + un−1

i

∆t2 +O(∆t2) (3.6)

Substituting Equations (3.5) and (3.6) to Equation (3.2) leads to:
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un+1
i w

(
v∆t
∆x

)2
(uni+1 − 2uni + uni−1) + 2uni − un−1

i (3.7)

Equation (3.7) is said to be fully explicit. On the right side of the equation, all the fields values
are at the time step n or n − 1, therefore already computed because referring to the present and to
the past time steps respectively. On the left side, however, the value of the field corresponds to the
future, at the time tn+1. The full explicit equation enables to compute the future value of the field from
the previous value, already stored in the computer (at the current time step n and the past step time n-1).

Numerical dispersion relation In order to have an idea about the numerical accuracy of FDTD,
the Maxwell dispersion relation (Equation (3.1)) can be pluged in. Let’s write the field as a plane wave:

uni = U0e
j(wtn−kxi) (3.8)

with tn = n∆t and xi = i∆x. Substituting this to the Equation (3.7), and simplifying with the common
factor U0e

j(wn∆t−ki∆x), it becomes :

ejw∆t =
(
v∆t
∆x

)2
(e−jk∆x − 2 + ejk∆x) + 2− e−jw∆t (3.9)

It can be also written as :

ejw∆t + e−jw∆t

2 − 1 =
(
v∆t
∆x

)2(
ejk∆x + e−jk∆x

2 − 1
)

(3.10)

Recognizing the Euler’s identity, the so-called numerical dispersion relation appears as :

cos(w∆t)− 1 =
(
v∆t
∆x

)2
(cos(k∆x)− 1) (3.11)

Two cases have to be considered:

First case : if
(
v∆t
∆x

)
→ 1, Equation (3.11) becomes cos(w∆t) = cos(k∆x) and finally the exact

dispersion relation w = kv will be approached. Unfortunately, it is only occurring in 1-D, but it is not
the case in 2D and 3D [146]. Let’s therefore look at the second case.

Second case : if ∆t → 0 and ∆x → 0 Using the Taylor series for cosine expressed as cos(x) =

1− x2

2! +O(x3), Equation (3.11) tends to the exact dispersion relation w = kv. The discrete dispersion
relation in time and space converges to the exact analytical solution for ∆t → 0 and ∆x → 0, which is
intuitively what is expected.

Numerical accuracy in FDTD Two numerical factors are defined. They have to be considered in
order to avoid numerical errors and aberrations, which are :

S ≡ v ∆t
∆x and Nλ ≡

λ

∆x (3.12)

The first one is the FDTD stability factor, or Courant number. It plays a role in determining the
stability of the simulation. In fact, let’s assume that the simulation takes place in the vacuum. Therefore,
v=c, with c the speed of the light. For one time step ∆t, a Gaussian pulse (Figure 3.1) will therefore
travel over length L = c×∆t = S∆x. If S > 1, the pulse will propagate to more than one spatial step.
Therefore, Equation (3.7) which takes into account the first neighbour cells, would not solve the future
field accurately. In fact, it produces unstable results and numerical errors. According to [146], when the
Courant number is all but 1, the FDTD grid is dispersive, which means that different frequencies travel
at different speeds. In practice, the dispersive effect is something to avoid.
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The second one is the grid sampling density in the case of free space. According to [2], in order to
keep reasonable errors, the size of ∆x should be 10 times smaller than the wavelength. Here, it is impor-
tant to notice that the wavelength of graphene plasmons can be more than 100 times smaller than the
excitation in free space [70]. Therefore, the meshing size should be at least 1000 times smaller than the
excitation. This leads to extremely small meshing, huge computation resources and possible numerical
aberrations (see Section 3.2.2).

Let’s come back to the dispersion relation found above. It is possible to re-write the numerical
dispersion relation, Equation (3.11), with the two numerical factors introduced above (Equation (3.12)),
as follow :

k = Nλ
λ
cos−1

(
1 + 1

S2

(
cos

(
2πS
Nλ

)
− 1
))

(3.13)

It is interesting to notice that we recover the exact wave-number when S=1. More detailed examples
and analysis for different value of S and Nλ can be found in the literature [146], which shows percentages
errors and non-physical behavior of waves using not appropriated values of these two parameters. In
practice, we will play with these two parameters to minimize the time of simulations whereas converging
to a solution which agrees with the theory.

3.1.2 FDTD in 3 dimensions

Figure 3.2: Yee cell with the representation of the different component of the E and H field

In 3 dimensions, the FDTD technique, which is a time-domain method, solves the Maxwell’s curl
equations (Equations (1.3) and (1.4)) in a discretised space. This gives rise to a set of 6 scalar equations
for 6 vector field components, Ex, Ey, Ez, Hx, Hy, Hz, that are computed within a Yee cell. The Yee
cell, from the name of its inventor, is a staggered and uncollocated grid, which means that E and H are
not sampled on the same location, and each 3 vectorial components of the two fields are not computed
on the same location, respectively.

In 40 years of existence, many other meshing structures have been proposed, but none of them has
been able to replace it. Some of the reasons are enumerated subsequently. At first, the Yee algorithm
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solves simultaneously the electric field and the magnetic field, rather than solving only one of them
through the wave equation (Equation (3.7)). Therefore, it makes the computation more robust and
enlarges the field of possible simulations, including singularities near edges and corners.

Secondly, the E-fields and H-fields components are placed particularly, such that each E-field compo-
nent is surrounded by four circulating H-field components, and inversely. This makes easier to maintain
the boundary conditions (see section 1.1.2, Figure 1.2), where the Faraday’s law and the Ampère’s law
are interlinked. The only requirement is to set the optical properties of the different materials at an
interface. The interface will be set parallel to a Yee cell face. Therefore, the interface will have a stair-
case form with a space resolution of the size of the meshing. Finally, in absence of charges and currents,
the location of the E-field and H-field, combined with the second-order differences, enforces the Gauss’s
laws, making the simulations divergence free.

Figure 3.3: Yee Cell with the representation of the E and H field, each of them calculated at different
time step : the leapfrog arrangement

Finally, the 6 components of the magnetic and electric fields are also centered in time. Figure 3.3
shows the so-called leapfrog arrangement, where the H-field (and E-field) are solved alternatively, in
different time steps, using the previous results stored for the E-field (H-field). The time stepping process
is centred and second order accurate, as seen Equations (3.5) and (3.6). It is robust because the fields do
not dissipate due to the time-stepping algorithm, which could arise from numerical artefacts. It is also
called "fully explicit", therefore avoiding again errors and aberrations. For more information, see [146].

For a same amount of error, the Yee cell enables to use a smaller number of cells, as comprared to
the others possibilities, namely unstaggered-collocated and staggered-collocated cells [73].
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The dispersion relation in 3 dimensions is a little bit more complex and it is possible to obtain it as :

[
1
c∆tsin

(
w∆t

2

)]2
=
[

1
∆xsin

(
kx∆x

2

)]2
+
[

1
∆y sin

(
ky∆y

2

)]2
+
[

1
∆z sin

(
kz∆z

2

)]2
(3.14)

It is interesting to notice that when ∆t, ∆x, ∆y and ∆z tend to zero, we find the analytical dispersion
relation :

(w
c

)2
= k2

x + k2
y + k2

z (3.15)

Therefore, this means that it is possible to recover any degree of accuracy, as far as the mesh grid
and time step are set at the right value. As a rule of thumb [2], the spacial step should be set as :

maximum(∆x,∆y,∆z) ≤ λmin
10nmax

or Nλ ≥ 10nmax (3.16)

where nmax is the maximum value of the different refractive index found in the system. On the other
hand, the time step should be set as :

∆t ≤ 1
c
√

1
(∆x)2 + 1

(∆y)2 + 1
(∆z)2

(3.17)

in the case where the light is propagating through vacuum at the speed c. Again, those parameters
are used to minimize the duration of the simulation whereas converging to an acceptable solution. In
the next section, the way to deal with graphene as a material is presented.

3.2 Modeling graphene in FDTD
Graphene is a 2D material, and as such it is not trivial to simulate using FDTD. First of all, the theory
which gives us the dispersion equation for graphene optical properties is based on the Kubo formula (see
Section 2.2.1). The Kubo formula gives two integral terms to be solved, which represent the intraband
term and the interband term. The former is solved analytically whereas the second can be accurately
solved numerically. Because the interband term can be solved only numerically, several approximations
exist.

Secondly, graphene optical properties, usually presented in term of 2D optical conductivity, is not
trivial to solve for FDTD 3D numerical simulation. Two methods exist: a 3D approach based on a 3D
virtual permittivity, defining graphene with a finite very weak thickness, and a 2D approach using the 2D
optical conductivity, using special algorithm for modelising graphene as a 2D material [1]. In fact, in the
case of the 3D approach, meshing a layer of graphene with a thickness of the order of magnitude around
the Angstrom gives a significant amount of Yee cells to be computed. The electro-magnetic excitation
is the infrared, which makes system structures of the order of the micrometer. Coupled with effective
wavelength of graphene plasmons which is really small, it makes the computation region huge, relatively
to the meshing.

This section will be divided into two sub-sections. At first, the different approximations using different
terms of the conductivity are presented and tested. The conditions to apply the different approximations
are given. Finally, the two main methods existing to implement graphene as a material in FDTD are
shown. The first is to modelize graphene in 3 dimensions via the permittivity. The second, implemented
recently, aims to use a special algorithm to modelize graphene as a 2D material, taking place on one face
of the cubic Yee cell.
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3.2.1 How to deal with the interband term of graphene conductivity

As it has been seen in Section 2.2.1, the optical properties of graphene can be described thanks to its
optical conductivity given by the Kubo formula (Equation (2.1)). However, some problems arise when
dealing with the interband term that can be solved only numerically.

Let’s evaluate the optical conductivity of graphene. The starting point is to express the optical
conductivity of graphene, thanks to the kubo formula (Equation (2.1)). We can therefore express the
conductivity as a sum of the intraband term σintra(ω,Γ, T, µc) and the interband term σinter(ω,Γ, T, µc)
as follow :

σintra(ω,Γ, T, µc) = −ie2

π~2(ω + i2Γ)

∞̂

0

E

(
∂fd(E)
∂E

− ∂fd(−E)
∂E

)
∂E (3.18)

σinter(ω,Γ, T, µc) = ie2(ω + i2Γ)
π~2

∞̂

0

fd(−E)− fd(E)
(ω + i2Γ)2 − 4(E/~)2 ∂E (3.19)

with fd the Fermi-Dirac distribution, µc the chemical potential, e the elementary charge, Γ the
scattering rate and ω the excitation pulsation. The scattering rate is a phenomenological physical
quantity related to the relaxation time of electron in graphene by 2Γ = τ−1. The interband term is
determined numerically whereas the intraband term of the conductivity is solved analytically as:

σintra(ω,Γ, T, µc) = ie2µc
π~2(ω + iτ−1)

[
1 + 2kBT

µc
ln(e−µc/kBT + 1)

]
(3.20)

As seen before, the intraband term can be also reduced to a Drude-like expression, in the case where
EF >> kbT :

σintra(w,EF , τ, T ) = ie2EF
π~2(w + i/τ) (3.21)

These two equations, Equations (3.20) and (3.21) will be used later on as first approximations of the
optical conductivity in the infrared range. In fact, as shown in Figure 2.22b, the ideal wavelength for
low plasmons damping lies around 11 microns, in the middle infrared. As seen with Figure 2.12a, in
the infrared range, the optical conductivity of graphene tends to the intraband terms, and the interband
terms can be neglected (no electron-hole excitation between valence and conduction band, see section
1.3.3). This case would make the analitically solved intraband terms a good approximation for the op-
tical conductivity of graphene.

Let’s come back to the Kubo formula and the resolution of its second term, namely the interband
term. For numerical evaluation of this term, it is interesting to rearrange the difference of the Fermi
function. Using an arbitrary function G(E), it is possible to write [40] :

G(E) = sinh(E/kbT )
cosh(µ/kbT ) + cosh(E/kbT ) (3.22)

Then the interband term can be re-written as :
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σinter = ie2(ω + i2Γ)
π~2

∞̂

0

G(E)
(ω + i2Γ)2 − 4(E/~)2 ∂E (3.23)

= ie2(ω + i2Γ)
π~2

 ∞̂
0

G(E)−G(ω/2)
(ω + i2Γ)2 − 4(E/~)2 ∂E +

∞̂

0

G(ω/2)
(ω + i2Γ)2 − 4(E/~)2 ∂E

 (3.24)

= ie2(ω + i2Γ)
π~2

 ∞̂
0

G(E)−G(ω/2)
(ω + i2Γ)2 − 4(E/~)2 ∂E − iG(ω/2) ~π

4(ω + i2Γ)

 (3.25)

= e2

4~

G(ω/2) + i4(ω + i2Γ)
~π

∞̂

0

G(E)−G(ω/2)
(ω + i2Γ)2 − 4(E/~)2 ∂E

 (3.26)

This mathematical simplification removes the singularity from the integrals. Figure 3.4 shows the
real part (solid line) and imaginary part (dashed line) of the optical conductivity of graphene. As it
can be seen in Figure 3.4, the conductivity (σintra+ σinter) plotted with the function G(E) introduced
above (in red on the graph) removes the singularity at high energy (low wavelength on the graphic), as
compared to the conductivity plotted with the integral (in blue on the figure), Equation (3.19).

It is then possible to compare the optical responses of a graphene sheet for different Fermi level,
corresponding to different densities of charge. In Figure 3.5, the optical conductivity of graphene is plot-
ted as function of the wavelength, for different Fermi levels (colour). The dash lines correspond to the
imaginary part of the conductivity, whereas the solid lines correspond to the real part. As expected, the
wavelength threshold between the interband and intraband domains takes place at 2EF , and diminishes
as the Fermi level gets higher (Figure 3.5).

Figure 3.4: Conductivity numerically calculated with (in red) and without (in blue) the functions G(E)
and G(ω/2) [40]

Graphene has been implemented in FDTD at first by using only the Drude-like intraband approx-
imation (Equation (3.21)). This approximation is known to be valid at high Fermi level. Figure 3.6
displays four graphs of graphene optical conductivity, corresponding to four different Fermi energies. On
each graph, three sets of conductivity obtained in three different ways : the two approximations of the
conductivity via the intraband term (Equations (3.20) and (3.21)), compared to the full conductivity
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Figure 3.5: Comparison of the optical conductivity for different Fermi energy (0.1,0.2,0.4,0.6,1eV), using
numerical calculation for σinter and Equation (2.5) for σintra. The conductivity is plotted as a function
for the wavelength λ running from 100nm to 15 µm. The optical conductivity of graphene (unit e2/4~)
of a graphene layer with a mobility of 1m2V −1s−1.

(interband calculated numerically), in the infrared range. In red is shown the Drude-like intraband
conductivity approximation, using Equation (3.21). In blue is displayed the complete intraband term
approximation, from Equation (3.20). Finally, in green is shown the full conductivity, with the interband
term computed numerically with the method shown above. The solid lines correspond to the real part
of the optical conductivity, whereas the dashed line+symbol correspond to the imaginary part of the
conductivity.

First, let’s have a look on the two intraband terms, in red and blue for the partial and complete
terms respectively. At low Fermi energy, with EF = 0.05eV (Figure 3.6a), both approximations (in blue
and red) give graphene conductivity with a strong bias (as compared to the green). Unexpectedly, the
Drude-like conductivity (in red), which is an approximation only for high EF as compared to the full
intraband term approximation (in blue), tends to be closer to the one obtain with full conductivity (in
green). The approximations tend to be correct at a Fermi level EF ≥ 0.3eV (Figures 3.6c and 3.6d).
Therefore, the Drude-like approximation can be used in this infrared region for Fermi level higher than
0.3eV. Below 0.3eV, the full conductivity should be considered.

As we will see later (see Section 3.4), an undoped bare suspended graphene sheet can be electrostat-
ically doped only until 0.25eV. For this reason, the intraband approximation is not valid for the study
of suspended graphene. We will therefore use the full conductivity when simulating suspended graphene
with FDTD method. However, as it will be shown below, the graphene optical properties have been
implement at first in FDTD taking only into account Drude-like approximation. Moreover, graphene
was only available as a 3D material (permittivity) with finite thickness. We will see in the next section
the limit of the 3D approach, as compared to the 2D one.

3.2.2 Two methods to compute graphene in FDTD : 3D vs 2D approach
Graphene is a 2D material, and as such it is not trivial to simulate its properties using FDTD. Its optical
properties are usually presented in terms of optical conductivity, which can be expressed using the Kubo
formula (Equation 2.1). Two main methods exist to implement it in FDTD.

The first one attempts to use full Yee cells to describe it, but difficulties arise due to their inherent
3D nature. This approach requires converting the 2D conductivity (sections 2.2.1 and 3.2.1) into a vol-
ume anisotropic permittivity (Equation (2.10)), assuming that graphene has a finite thickness. A study
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(a) Fermi energy Ef = 0.05eV (b) Fermi energy Ef = 0.1eV

(c) Fermi energy Ef = 0.3eV (d) Fermi energy Ef = 0.5eV

Figure 3.6: Comparison of the conductivity σ|| of the graphene obtained using different approximations
from the Kubo formula. In red, σ|| obtained by the use of the Drude-like intraband term from equation
2.6. In blue, σ|| obtained by the use of the full intraband conductivity from equation 2.5. In green,
the full conductivity obtained by the use of the full intraband conductivity from equation 2.5 and the
interband term obtain numerically. The mobility is set at 1m2V −1s−1.
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[140] has been done in order to know if this procedure is safe or if it will profoundly change the optical
properties of the graphene sheet. We first tried following this path, and numerical results confirmed the
accuracy of this approach.

A second approach aims at describing graphene as a charged surface boundary condition applied only
to a fraction of a Yee cell [112, 59]. This condition is of the general form:

~n×
(
~H1 − ~H2

)
= σ ~Et (3.27)

where ~n is the vector normal to the graphene sheet, ~H1 and ~H2 the magnetic fields on each side of the
sheet, σ the conductivity and ~Et the tangent electric field. Through this, there is no need to discretize
space (and time) to extreme sizes, and this was found to lead to an increased stability of our simulations.
This is the method that will be used in this study.

Let’s come back to the 3D method. Using Equation (2.10), it is possible to plug in different models of
optical conductivity of graphene. As a first approximation the Drude-like conductivity is used (Equation
(2.6)) valid in the infrared range at Fermi level EF ≥ 0.3eV (Section 3.2.1). The permittivity is obtained
as follow :

ε|| = εs −
(

EF e
2w

π~2(w2 + τ−2)

)
1

wε0∆ + i

(
EF e

2

π~2(w2 + τ−2)τ

)
1

wε0∆ (3.28)

ε⊥ = εs (3.29)

Equation 3.28 is then implemented directly as an analytical material and several parameter have to
be set. At first, the surrounding permittivity, εs (see Section 1.1.3), which is chosen to be at 2.5 for
graphene on SiO2 [57] and 1 for suspended graphene. Then, the Fermi level EF and the mobility µ
values have to be chosen carefully. In fact, they are function of each others, but they are also function
of the system and phenomenon to be studied.

As seen in Section 2.2.1, the Kubo formula which gives the optical conductivity of graphene is func-
tion of the relaxation time τ (with Γ = 1/2τ). In section 2.1.2, the Boltzmann-transport approximation
(τDC = µEF /e

2vf ), linking the relaxation time with the Fermi level and the mobility, has been presented
as a good approximation. However, it usually remains too low as compared to the experiment. Different
reasons have been put forward. It is possible to enumerate dielectric losses of the substrate, electron-hole
scattering and thermal intrinsic phonon of the graphene. The FDTD commercial software used in this
study enables user to set graphene parameter only with τDC .

Therefore, it has been chosen to work with conservative values of the DC mobility. It artificially lows
down the relaxation time of graphene, being directly proportinal to it. In fact, mobility in suspended
graphene has been recently recorded up to 40 times the value of 1m2V −1s−1 that has been taken in this
study [150]. The graphene mobility limited only by acoustic phonon would be 20 times more important
than the value used here. Litterature mentions a relaxation time which would be smaller by a factor of
3-4 times as compared to the DC [42].

Finally, it is important to look at the main parameter emerging from this method : the thickness of
the graphene ∆. A straight forward way to have an idea about the range of validity of the thickness
∆ is to use a mode solver. A mode solver enable to determine all the E-field and H-field components
corresponding to the normal mode supported by an optical system. Defining the materials with complex
permittivity, it is possible to deal with a wide range of materials, including graphene.

To investigate the effect of the thickness ∆ to the TM plasmons mode of graphene in the infrared
range, we consider a Fermi level of EF = 0.5eV , in order to safely use Equations (3.28) and (3.29), and
a mobility of about 1m2V −1s−1, which are realistic properties that have been reported in the literature
[158]. That gives a relaxation time τ = 50ps and a scattering rate Γ = 6, 58.10−4eV (τDC = µEF /e

2vf ).
The mode solver computation gives the effective index neff = kp/k0 which has a real part, related to
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(a) Real part of the effective index neff of the GPs (b) Imaginary part of the effective index neff of the GPs

Figure 3.7: Comparison of the (a) real part of the effective index neff and (b) the imaginary part of
the effective index neff of the plasmons modes for 2D (in blue) vs 3D (in red) graphene (Drude-like
approximation) vs theory (in green) using Equation (2.23). The optical conductivity as well as the
permittivity of the SiO2 substrate in the case of the computation of theoretical neff is taken from the
2D simulation. The mobility of the graphene is set at 1m2V −1s−1 whereas the Fermi level is about
0.5eV.

the effective wavelength of the GPs, and an imaginary part, related to the optical loss of the mode.

Figures 3.7 show a comparison of the real part and the imaginary part of the effective index neff ,
solved with a mode solver for graphene deposited on SiO2, at a wavelength of 11 microns, in the following
cases:

1. in red, 3D graphene (Equations (3.28) and (3.29)) where neff is function of the graphene thickness
(x axis)

2. in blue, 2D graphene with the full conductivity (analytical intraband term and numerical interband
term)

3. in green, a theoretical neff based on the dispersion relation of graphene plasmons, Equation (2.23)

We can first observe that the theoritical neff in green is relatively close to the one obtained from
2D graphene, in blue. We realise also here a strong bias for the simulation using the 3D permittivity
for describing graphene. An exact value can be obtained for the real part of the effective index for
∆ = 2nm, but not for the imaginary part. The error on the latter one decreases for ∆ getting thinner.
Therefore, this model, which is a good first approach, is not enough accurate to study graphene plasmons.

Replacing the optical conductivity model (Drude like model) used for 3D graphene by the full con-
ductivity, with the interband term calculated numerically, it is possible to solve the mode for different
thickness, following the same process. Figure 3.8 shows a comparison of the normal modes obtained for
3D graphene using the full conductivity, 2D graphene with the full conductivity and using the theoritical
equation, as seen above. The comparison shows this time that smaller is the thickness, and higher is
the accuracy. This is summarized by the absolute error of the two cases seen Figure 3.7 and Figure 3.8,
plotted Figure 3.9.

Figure 3.9 shows the absolute error of the effective index neff of the TM GPs mode computed for
3D graphene (with the Drude-like approximation Figure 3.7, and the full conductivity Figure 3.8) as
compared to the theory (Equation (2.23)). The Drude like approximation gives more accurate results
for thickness higher than 2nm, but does not tend to the exact solution, as the errors on the real part of
the effective index increase for thinner layer. When using the full optical conductivity, the results seem
to converge to the exact solution when the thickness of graphene vanishes. In any case, a really small
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(a) Real part of the effective index neff of the GPs (b) Imaginary part of the effective index neff of the GPs

Figure 3.8: Comparison of the (a) real part of the effective index neff and (b) the imaginary part
of the effective index neff of the plasmons modes for 2D (in blue) vs 3D (in red) graphene (using
full conductivity) vs theory (in green) using Equation (2.23). The optical conductivity as well as the
permittivity of the SiO2 substrate in the case of the computation of theoretical neff is taken from the
2D simulation. The mobility of the graphene is set at 1m2V −1s−1 wheras the fermi level is about 0.5eV.

(a) Absolute errors (neff (3D)-neff (theo))/neff (theo)
applied for the real part and the imaginary part, of the
results obtained Figure 3.7

(b) Absolute errors (neff (3D)-neff (theo))/neff (theo)
applied for the real part and the imaginary part, of the
results obtained Figure 3.8

Figure 3.9: Absolute value of the errors on the effective index neff found in Figures 3.7 and 3.8, as
compare to the theory
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thickness is required for accurate simulation.

Therefore, this 3D graphene method requires a local spatial discretization of the order or thinner
than the nanometer, while our simulations involve wavelengths and structures bigger than the micron,
leading to huge computational domains and non-uniform meshing. Moreover, the stability criterion of
the FDTD then requires an extremely short time discretization, and a huge number of iterations is thus
needed to complete a single simulation. Therefore, this method is highly CPU-intensive and numerical
aberration may occur.

In order to illustrate a case where numerical errors may occur, Figures 3.10 show an attempt to sim-
ulate graphene plasmons launched by a nanorod, using 3D graphene. This approach will be described
in the next section. Figure 3.10a is an illustration of the system studied. A 3D graphene layer is lying
on the top of a Si/SiO2 substrate. A gold nanorod is deposited on the top of it and acts as a plasmons
launcher. The five other figures, described below, show a serie of snapshots of the electric field recorded
inside the graphene layer.

Figure 3.10b shows a half top-view of the simulation illustrated in Figure 3.10a, at t=0. Taking
advantages of symmetry, we simulate the right-side half of the full 3D system. The light is normal to the
plan of the simulation, exciting only the nanorod via Total-Field Scattering-Field source. Half of the gold
nanoantenna is also shown. At t = ∆t (Figure 3.10d), the incident X-polarized light excites typically the
dipolar mode of the rod. At t = 2∆t, the plasmons is spreading in the graphene layer, mainly in the y
direction (see next section). At t = 3∆t and t = 4∆t, it is possible to observe a field remaining in the
nanoantenna, following the grid which is about 5nm × 5nm × 1nm(x, y, z). The graphene is set with a
thickness of 2nm, using the Drude like approximation. This kind of aberration becomes more serious as
the grid becomes smaller. The total energy in the box did not vanish after the time of the simulation.
This kind of aberration adds a significant errors when studying the properties of the plasmons, like its
effective wavelength λp or its propagation length Lp. Therefore, it has been chosen to study Graphene
plasmons with the 2D model.

The 2D material modelization, which is the second approach seen above, aims to describe graphene
as a charged surface, where the boundary conditions are applied only to a fraction of a Yee cell [6]. As
such, there is no need to discretize space (and time) to extreme sizes, and this was found to lead to
an increased stability of our simulations. Moreover, it leads to results fitting really well the theory for
graphene plasmons, as shown Figures 3.8 and 3.7. This is the method that will be used hereafter. The
numerical study of graphene has been made possible thanks to the use of the super-calculator Romeo in
Reims, France.

3.3 Use of a plasmonic antenna for GPPs excitation
Originally, excitation of GPPs was achieved by the use of a laser illuminated metal tip in the scanning
near-field optical microscopy configuration [42, 29]. Although the resulting scattered angular spectrum
was broad, a small part of it was exploited for successfully launching the GPs (see section 2.2.2).

Another way for launching plasmons at metal/dielectric interfaces lies on the use of prisms or grat-
ings [143] to efficiently convert the incident wave-vector into the in plane graphene plasmon one. In
our simulations, we use Au nanorod as nanoantenna to study the GPPs launched perpendicularly to
the main axis of the nanorod in order to anticipate the possibility to maximize the power of the GPPs
launched using a grating. It is indeed possible to place side by side many nanoantenna together, and
obtain an enhancement effect thanks to the grating configuration. As a first step, we will only rely on
the angular spectrum generated by a single rod. Compared to an out-of-plane tip, the in-plane resonant
launchers allow us to envisage future integrated chips. Additionally, the longitudinal resonance enables
the enhancement of the angular spectrum components.

As a preliminary study, a gold nano-antennas with a length L acting as a resonant dipole along L
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(a) Design of the simulation (b) Top view of the simulation at t=0

(c) Top view of the simulation at t= 1∆t (d) Top view of the simulation at t= 2∆t

(e) Top view of the simulation at t= 3∆t (f) Top view of the simulation at t= 4∆t

Figure 3.10: Snapshot of the propagation of surface plasmons, resolved in time using an arbitrary ∆t,
and the 3D graphene model. The monitor is located in the graphene. The launcher is a gold nanorod
of 4 µm. The exciting source is a pulse of light, with a spectrum range from 9µm to 13µm, normal
to the images. The polarisation of the light follow the big axis. The graphene is lying under the gold
nanorod, on the entire surface (5µm× 5µm). The substrate is made of 300nm of SiO2 and 7 µm of Si.
The graphene is set with a Fermi level of 0.5eV and a mobility of 1m2V −1s−1.
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is considered. The section of the nano-rods is rectangular, 80nm large and 50nm height. The shape is
needle-like, to fit the fabrication via e-beam lithography. The nanorod was illuminated with a pulse that
propagates perpendicular to the sample plane, along z (see configuration on Figure 3.10a). The incident
light was linearly polarized with the electric field parallel to the rod long axis (x axis). This pulse has a
wide-band spectrum going from 8 µm to 12 µm, with a central wavelength around 10 µm.

Figure 3.11: Calculated extinction efficiency of gold nano-rods with a length of 3700 nm, 4000nm and
4300nm, for a width of 80nm and height of 50nm. Nanorods are standing in air.

Figure 3.11 shows the calculated extinction efficiency spectrum of three nanorods without graphene,
in air, for different lengths: 3700nm, 4000nm and 4300nm. The extinction efficiency is the sum of the
absorption and scattering efficiency. The efficiency are dimensionless properties, and can be directly
converted to the cross section by multiplying with the cross-sectional area of the nano-rods [72, 63]. It
is well-known [147] that changing the shape of the rods shifts the resonance wavelength, as a result of a
change of the oscillation length travelled by the free electrons along the long axis. When we increase the
long axis of the nano-rod, we can see a red shift in the optical spectra. We can notice that the resonance
is engineered to lie in the mid-infra-red region, in order to avoid plasmons losses and damping when
travelling through graphene, at 11 µm.

Simulations have shown a red shift when the nanorods are lying on SiO2 substrate with a monolayer
of graphene deposited on it. This effect results from an increase of the effective surrounding medium.
In order to discuss the possible momentum matching between the antenna and GPs, it is interesting to
have a look to the Fourier transform of the antenna near field. Figure 3.12 shows this Fourier space at
the wavelength of 11 microns both in air and on a SiO2 substrate.

In the case of suspended graphene, the theory (Equation (2.23)), shows a large wavevector mismatch
between the incident light and the Graphene Plasmons in this range of frequencies. At 11 microns, we can
calculate the localization parameter λ0/λp,which varies as a function of the graphene layer Fermi level.
For EF = 0.3eV and a mobility µ = 1m2V −1s−1, using the DC relaxation time approximation, neff ≈ 26.

The momentum of the near field of the nanorods in the air, enhanced by the LSPR, matches the
GPs, shown on figure 3.12(a). However, when the rod is deposited on SiO2 substrate, we expect a lower
near field intensity due to the absorption of the energy by the substrate. As seen figure 3.12(b), the
system nanorods-susbtrate is able to excite the GPs. For graphene with EF=0.3eV, it matchs well the

65



Figure 3.12: Fourier transform of the near field of different systems at 11 microns with the system’s
illustrations on the top. The red arrows represent the polarisation and the magenta arrow represent the
direction of the light. In (a) case of a nanorod in air, in (b) case of a nanorod on a SiO2 substrate.

angular momentum of the nanorod on substrate. It is also interesting to note that the small width of
the nanorods along y results in enhanced wavevector components perpendicular to the nanorod axis and
not much along the long axis, which would make it integrable in a grating. To go further, a comparison
of the near-field of an antenna with and without graphene is studied.

The local near field enhancement of single rods, with and without graphene, is investigated for a
wavelength of 11 microns. It has been shown that the plasmons damping from SiO2 substrate is the
lowest [42] around this wavelength. The configuration with graphene is depicted in Fig. 3.13. A gold
nanorod having a rectangular cross section lays on a Si02/Si substrate. The nanorod is surrounded by
both suspended and supported graphene for comparison. Again, a pulse is exciting the nano-antenna,
with a propagation direction normal to the surface of the sample, along z. The incident light was linearly
polarized with the electric field parallel to the rod long axis (x axis). This pulse wavelength spectra is
going from 8 µm to 12 µm, with a central wavelength around 10 µm. The optical properties of the gold
nanoantenna are characterized numerically in order to fit the energy and momentum conditions of GPs.

Following [5, 107], the length L and the width W of the rod are first set to 2.9µm and 0.6µm re-
spectively. The nanoantenna section is therefore rectangular, and its thickness is set to 100 nm. Figures
3.14 show maps of electric field intensity around the rod under illumination, without any graphene (Fig.
3.14(a)), and with graphene (Fig. 3.14(b)). The near-field distributions displayed on these figures unam-
biguously show the dominant mode excited at this wavelength is dipolar in nature. On Figure 3.14(b),
two calculated top-view half-maps of the electric field intensity at the graphene layer plane are shown.
For y > 0, graphene is suspended, meaning that the graphene is surrounded by air. For y < 0, graphene
is sandwiched between air and the SiO2 substrate. The rod is localized at y=0 nm, acting as a resonant
dipole along L. The graphene is defined via its 2D conductivity by a Fermi level of 0.2eV, a temperature
of 300K and a mobility 1 m2s−1V−1. The parameters set for the graphene will be discussed in the next
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Figure 3.13: Illustration of a plasmonic antenna lying on a SiO2/Si substrate + graphene. A trench
is etched at the vicinity of the golden rod through the SiO2/Si substrate. A monolayer of graphene is
deposited on the top of the trench, and a gold nanoantenna is deposited on the edge of the trench. A
part of the graphene is therefore suspended.

section.

In Figure 3.14(b) the spatial decay of the intensity of propagating plasmons in graphene can be
observed. Whereas suspended graphene leads to clear propagation of GPPs (Fig. 3.14(b), top), it is
not possible to distinguish this propagation in the case of graphene supported by SiO2 substrate (Fig.
3.14(b), bottom). In the latter case, we clearly see a dipole-like resonance of the antenna at 11 µm,
comparable to the one observed in Figure 3.14(a), that does not launch any efficient GPP (in terms of
propagation length).

It is interesting to notice that the intensity tends to vanish along a vertical line (x=0) where destruc-
tive interference occurs between the phase shifted graphene plasmons that have been launched by the two
out-of-phase antenna extremities. Such effects could open new routes to GPPs designing and engineering.

Over a second phase, the question of the dimension of the nanostructure have been addressed. So
far, the geometrical parameters were chosen by considering recent studies [5, 107], where the main pa-
rameter used for optimizing the coupling is the electric field average. This factor reflects the significant
near-field enhancement, consequence of the Local Surface Plasmons Resonance (LSPR) of the antenna,
that is most likely to launch strong plasmons in graphene. As shown before, the current geometry could
be used for our purpose, but [5] only optimized the GPPs coupling efficiency through variations of the
antenna length. The rod width is another parameter that could be explored to increase the coupling
efficiency even further. As such, we followed the same path as [5], but performed a parametric study
of the near-field average |E|/|E0| for different lengths and widths of rods lying on a Si02/Si substrate
without graphene. The results are shown on Fig. 3.15. The near-field average |E|/|E0| was taken at a 10
nm distance from the rod surface. The big axis L was set from 1.6 to 3.2µm, whereas the width W was
chosen from 0.05 to 1.15 µm. A maximum of the electric near-field average is found for a micro antenna
length of 2.5µm and a width of 50nm. Taking advantage of this results, simulations with suspended
graphene are done to compare the new geometrical parameters coupling efficiency to the literature, and
to study GPPs modes in details.
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Figure 3.14: Comparison of the response of a gold nanoantenna, lying on Si/SiO2 substrate, without
(a) and with (b) graphene, through electric field intensity maps. (b) The graphene is suspended on the
half-top, and supported on SiO2 substrate for the half-bottom. The color scale is clamped in order to
see the plasmon propagating through graphene. The 2.9 µm long, 600nm width, gold nanoantenna is in
the center of the maps, at y=0, from x=-1.45 to x=1.45 µm. The wavelength excitation is 11µm.

Figure 3.15: Map of the electric near-field average, |E|/|E0|, calculated at the vicinity of rods of length
L and width W, without graphene, for an excitation at λ0 = 11µm.

Figure 3.16 shows
√
|fft(Ex)|2 + |fft(Ey)|2 + |fft(Ez)|2, the spatial Fourier Transform of the near-

field for the case of two different antenna geometry, with suspended graphene. Figure 3.16(a) shows the
case of geometry dimension taken from [5, 107], that is the Fourier transform of the near field plotted
in Fig. 3.14(b) top-half, for positive (kx,ky). It turns out that the nanorod launches two main surface
plasmons: one in the x direction (peak 2), parallel to the antenna axis, and one in the y direction (peak
1), perpendicular to the nanorod axis. They are illustrated by the two maxima along the quarter-circle
of radius

√
k2
x + k2

y/k0 = |kp|/k0 = λ0/λp = 43. These results were easily predictable from Fig. 3.14(b),
where the two main GPPs propagations can also be observed, parallel and perpendicular to the rod long
axis.

Figure 3.16(b) is using the geometry found in our parametric study (Fig. 3.15). It can be observed
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a strong enhancement of the peak 1, corresponding to GPPs launched in the y direction, whereas the
peak 2 disappears (GPPs launched in the x direction). It is concluded that the new dimensions of the
rod, following the investigation of the electric near field average (Fig. 3.15), lead to a stronger coupling
to the GPPs launched in the y direction, resulting in an increased effective propagation length in this
direction. In the future, the coupling efficiency of graphene plasmon propagating along the y direction
could be also strongly enhanced by using a set of parallel nanoantennae to form a resonant grating.

However, the coupling may still not be optimal. After all, the optimization was performed without
graphene, by using the average field exaltation as a criterion. Yet as shown here, the true value of the
coupling efficiency can only be found by actually computing the whole system, and investigating the
Fourier transform. As such, we decided to refine our optimisation once again.

Figure 3.16: Maps representing
√
|fft(Ex)|2 + |fft(Ey)|2 + |fft(Ez)|2, the spatial Fourier Transform

of the near field in the reciprocal space, with positive (kx,ky), for suspended graphene, in the case of two
different rods. (a) The rod length and width are set as L=2.9µm and W=600nm, according to [5, 107].
(b) A rod of length L=2.5µm and width W=50nm is chosen from the parametric study Fig. 3.15. The
graphene is set with a Fermi energy about 0.2 eV and a mobility of 1 m2s−1V −1.

For this purpose, spatial Fourier Transforms of the electric fields maps at 11 microns were performed
for different lengths and widths of nanorod (the height remained fixed at 100 nm). The results of this
final parametric study are shown in Fig. 3.17. Figure 3.17(a) displays the intensity of the Fourier
transform peak (Fig. 3.16(a), peak 2) of the graphene plasmons launched towards the x direction and
Fig. 3.17(b) is the one for the y direction (figure 3.16(a) and 3.16(b), peak 1). We conclude that the
best shape for the gold nanoantenna is to be as thin as possible (needle-like, see white crosses in Fig.
3.17), 50 nm here, with a length around 2.75 µm, in order to efficiently launch a plasmon perpendicular
to rod long axis. While the average near field intensity enhancement of the antenna may not be the
highest for this shape (see Fig. 3.15), it gives a stronger coupling with the plasmons in y direction. For
comparison, the black crosses in Fig. 3.17 indicate the geometry used in the papers [5, 107], Fig. 3.16(a),
while the grey crosses correspond to Fig. 3.16(b) and are the result of our first parametric study (Fig.
3.15). As far as plasmon propagation is concerned, the initial geometry (black cross) constitutes an inter-
mediate case where both x and y directions are possible, and the field energy is thus distributed into both.

In the case of suspended graphene, the theory, from Equ. (2.24), shows a large wavevector mismatch
between the incident light (characterized by k0) and the Graphene Plasmons (characterized by kp) in
this range of frequency, illustrating the need for an antenna. At 11 µm, we can calculate the localization
parameter, or effective index, λ0 / λp, which varies as a function of the Fermi level of the graphene layer.
For EF = 0.2eV and a mobility of 1 m2s−1V −1, we find real(neff ) = 42.3 from the dispersion rela-
tion (Equ. (1.65)), whereas the FDTD simulation gives an average value of 43 (±1.1) from the Fourier
transform maps. Moreover, the propagation length Lp is about 558nm theoretically (from expression
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Figure 3.17: Maximum intensity of (a) the peak 2 and (b) the peak 1, the plasmons wavenumber kp (see
Fig. 3.16(a) as an example ), in the x direction and in the y direction respectively, as a function of the
length and the width of the nanorod. The black cross indicates the dimension of nanoantenna used in
papers [5, 107], picked up from Fig.3.16(a). Grey cross corresponds to the antenna dimensions resulting
from the parametric study Fig. 3.15. White cross is showing optimum dimensions for launching plasmon
in y direction.

(1.65)) whereas we find 532nm in our simulation. It is interesting to notice that we have here already a
longer propagation length as compared to SiO2 supported graphene. Using data from [158], the longest
propagation length would be less than 300nm for SiO2-supported graphene.

Figure 3.18 shows the optimized system for GPPs launched along the y axis, with the antenna geom-
etry defined in Fig. 3.17 (white crosses). Compared to figure 3.14(b), figure 3.18 shows clearly that a rod
with a length of 2.75µm and a width of 50nm can launch stronger GPPs that propagates on suspended
graphene over a distance nearly 3µm away from the rod, normalized on the incident excitation. Again,
supported graphene (y<0) does not enable significant GPP propagation.

As we have shown in this study, the geometry used in [5, 107] does allow for a non-negligible GPP
coupling efficiency. Yet, that geometry had a fixed rod width, which could be optimized. Ultimately, our
work showed that an accurate optimization of the coupling efficiency requires simulating the full system,
and investigating the energy the plasmon actually carries through Fourier Transforms of the near field.
Quantitatively speaking, this method is superior to investigating the average field only, as the average
near field contains many k components that cannot be coupled to a GPP.

However, the average field criterion needs not to be dismissed entirely. As we showed here, it still
leads to a good first order approximation of the optimal coupling efficiency. Unlike our criterion that
requires numerical methods to compute the full system, the average field criterion can be used with
analytical or pseudo-analytical models, or numerical methods or softwares that are unable to simulate
the full system, graphene being fairly hard to simulate.

A third parameter that has not been explored is the nanoantenna thickness, but this parameter also
affects the distance between the graphene sheet and the substrate, and can then not only affect the
antenna behavior, but also the properties of graphene itself.

3.4 Designed system based on GPP
In equation (2.30), we can notice the importance of the Fermi energy for achieving a long propagation.
However, it has been shown that suspended graphene is free of intrinsic doping [16]. Suspended graphene
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Figure 3.18: Map of the electric near-field intensity, for an excitation of 11µm, with a limit up on the
color scale in order to see the plasmon propagating through graphene. The nanoantenna is on the center
of the map. The graphene is set with a fermi energy about 0.2eV and a mobility of 1 m2s−1V −1. The
dimensions of the rod are optimized for strong plasmons in y-direction : L=2750nm and W=50nm.

is thus characterized by a limited value for EF while high mobility constitutes a clear asset that has
been discussed in many published papers [37, 109, 150]. The design of a nano-opto-electronic system
based on suspended graphene should take into account this issue. Therefore, it is important to engineer
a system offering the possibility to inject charges through electrostatic gating. On SOI substrates with
300nm of SiO2 layer, it has been shown the possibility to apply a difference of potential Vg higher than
100 V [117]. Modeling a capacitor between graphene and a Si-doped substrate, with two dielectric layers
in between (SiO2 300 nm, air 100 nm, see inset of Fig. 3.19), we can estimate a Fermi energy through:

EF = ~vf
√
πn = ~vf

√
π
CgVg
e

(3.30)

Cg =
(

1
Cair

+ 1
CSiO2

)−1
(3.31)

Cair = εairε0
tair

and CSiO2 = εSiO2ε0
tSiO2

(3.32)

Where tair and tSiO2 are the thicknesses of the air gap and the SiO2 layer respectively and Cg is the total
capacitance. We find EF ≈ 0.2eV, which justifies the value used in the previous section. In addition, the
gate potential that is applied between the graphene and the substrate will bend the graphene, resulting
in a deflection height h0 that is a function of Cg, and therefore of the dielectric used. It is also a function
of the potential applied Vg, and of the length of suspension L. At high Vg, we can obtain the deflection
as [14] :

h0 =
(

3PL4

64Et

)1/3

(3.33)

P =
c2gV

2
g

2ε0
(3.34)

With E the Young’s modulus in graphene which is about 1TPa, L the length of the trench, t the thickness
of graphene, which is taken as 3.410−10m, and P the electrostatic pressure.

Let us consider the case where the graphene is suspended straight over a 100 nm deep gap, (therefore
with a maximum deflection h0 of 100nm), and a gate voltage Vg of 100V. This enables us to design
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Figure 3.19: Illustration of the system studied. A plasmonic antenna is lying on a SiO2/Si substrate.
Gold nano-slots gather and propagate the plasmons on suspended graphene. The slab has also a function
of electrode for doping suspended graphene. Gold, Si and Si02 are represented in yellow, gray and blue
respectively. Inset : a schematic side view along the x axis of the graphene, golden slot and substrate.
The deflection height h0 is also represented.

a trench of L=1.5µm, using Equ. (3.33). Taking into account the penetration depth of the plasmons
in air which is 1/Re(kp) ≈ 41nm, we have a maximum deflection depth h0 = 60 nm, and a maximum
suspension length around L = 1µm so that the plasmon experiences damping from the subtrate that is
as weak as possible.

As a result, we propose the design (see Fig. 3.19) of a realistic sample taking into account the differ-
ent experimental parameters discussed above. On a SiO2(300nm)/Si substrate are lying gold structures,
which will also play the role of suspension support for graphene, including a nanorod (antenna) for
launching GPPs. The thickness of the gold support and the gold antenna is set at 100nm. The gold
nanoantenna is embedded in a gold nano-slots system perpendicular to the rod long axis. Gold slots, of
300nm of width, are designed to both suspend graphene and guide GPPs perpendicular to the rod long
axis, opening the route to future nanophotonic circuitry based on suspended graphene.

Four slots are designed: two per extremities, in positive and negative y-directions. The extreme
left and right parts of the gold constituting the slots are designed to be used as electrodes, in-between
which voltage can be applied to generate current in gold. High temperature induced in graphene by high
current (joule effect) have shown an improvement of the mobility in suspended graphene, by evaporating
the thin layer of pollutants stuck on the carbon sheet after graphene transfer. In fact, electric current is
one of the most efficient way to heat the graphene up and clean it, in order to get the best mobility in
suspended graphene [150]. Finally, a difference of potential Vg is applied between the Si doped substrate
and the graphene, in order to raise the Fermi energy.

Suspended graphene should be free of charge impurities, strain, corrugation and remote interfacial
phonons induced by the substrate. The mobility, which is the physical value taking into account those
effects, would increase up to one order of magnitude [137] in suspended graphene, as compared to the one
on Si/SiO2 substrate. However, studies predicted that the graphene mobility at T>10K could not exceed
4 m2s−1V −1 [22, 103] due to flexural phonon. Recent reports measured a mobility of 1.5 m2s−1V −1

[37], up to 38 m2s−1V −1 [150] in CVD suspended graphene at low Fermi level. Therefore, 1 m2s−1V −1

for a Fermi energy of 0.2eV in suspended graphene is reliable.
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Figure 3.20: Map of the electric field intensity, for an excitation of 11µm, with a limit up on the color
scale in order to see the plasmon propagating through graphene. The nanoantenna is on the center of
the map (y=0). We have set the graphene with a Fermi energy of 0.2eV and a mobility of 1 m2s−1V −1.

Similarly to Fig. 5, we simulated this system, and obtained the map of the electric field intensity
shown in Fig. 3.20. In the middle of the map is laying a gold nanorod of 2.75µm of length, 80 nm
of width, and 100nm high which is launching plasmons perpendicular to the long axis (x axis) of the
antenna, i.e. along the y axis. As we have seen in Fig. 3.17, the width of the rods should be as small as
possible. However, the height of the nanorods is set to 100nm in order to safely suspend graphene. For
mechanical stability reasons when the rod is fabricated from e-beam lithography, it is better to consider
a width comparable to the height of the structure. Therefore, we choose a width of about 80nm. The
length of the rod corresponds to a resonance around 11 microns, where graphene plasmons exhibit an
optimal propagation.

Figure 3.21: Maps of the intensity (on the top) and the phase (on the bottom) of the (a) x component
of the electric field, and the (b) y component of the electric field of the system described in Fig. 3.19

While figure 3.20 reveals the micronic propagation of the total photonic intensity, Fig. 3.21 provides
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more informations. Two modes are appearing in the channel.

Figure 3.21(a) shows a TE-like mode where we have a strong intensity of the x component of the
electric field. This mode is partly supported by the edges of the gold slots and is likely to result from
coupling between GP and sharp metal edges. Properly speaking, it does not correspond to any pure GP
modes.

Figure 3.21(b) shows a TM-like mode, which is the GP mode, with a strong intensity of the y com-
ponent of the electric field. That is the surface plasmon mode of interest. It is worth noticing that
the associated wavefronts, shown in the bottom of Fig. 3.21(b), are clearly defined by the phase giving
a GPPs wavelength λp ≈ 265nm, that is to say an effective index neff ≈ 41.5. Again, the plasmons
propagation length can be calculated using the exponential decay of the electric field along the slab. In
case of Fig. 3.21(b) we find Lp higher than 525nm. The reduction of the propagation length is due
to the confinement of the GPs path by the golden slots. Reducing the width of the slot decrease the
propagation length.

As pointed out above, higher propagation length in supported CVD graphene, fabricated on indus-
trial scale, could be achieved with higher Fermi energy. In the case of chemically doped graphene, taking
data from [158], we find a propagation length of 1 micron in suspended graphene, as compared to the
300nm with graphene on SiO2, using the same data.

Moreover, it is worth noticing that the propagation length is a conservative value. For example, the
propagation length for the system described above is about 540nm. However, as we can observe Fig.
3.21(b), the intensity of the electric field decreases to the intensity of the incident light at a distance of
2 microns, that is to say about 4 times the propagation length. This phenomenon results from the field
enhancement at the launching resonant nanoantenna.

Finally, it is important to notice that the simulations here do not take into account the interaction
between graphene and metal. It is known that metal can transfer charges at the vicinity of graphene,
which could lead locally to highly doped graphene, as high as 0.4eV [141]. As we have seen in Equ. (2.30),
the propagation length of graphene plasmons is directly proportional to the Fermi energy. Therefore, it
could lead to a strong increase of the GPPs propagation.

3.5 Discussion on the applied electric field
An issue uncovered by this study may arise at the experimental step. Indeed, the FDTD does not
take into account electro-static phenomenon, such as electrostatic gating. To implement the injection of
charge in graphene, the Fermi level parameter has to be changed. However, the electric and magnetic
fields in the different materials are not taken into account.

In order to inject charges in graphene, the effective electric field applied to the graphene is huge.
Therefore, the dielectric materials in between graphene and the back gate conductive layer should tol-
erate high electric field amplitude. The property related to the maximum electric field that a material
can withstand without breakdown is called the dielectric strength. The dielectric strength of air is about
3MV/m. For a good thin film of SiO2, it is possible to have 500MV/m. H-BN dielectric breakdown has
been recorded as high as 1GV/m [60, 74]. Diamond can theoretically reach higher value [51, 156]. And
finally, ideal vacuum would withstand electric field as high as 109GV/m.

Coming back to the case of the study developed in this chapter, Section 3.4, the system is made of a
double layered dielectric sandwiched in between graphene and conductive substrate (Figure 3.22). In or-
der to be effectively accumulating charge in graphene, it has been anticipating breakdown phenomenon.
As such, the amplitude of the electric field inside the SiO2 have been kept away from its dielectric
strength, 0.5GV/m. Doing so, the capacitor effect would take place. Unfortunately, the thin layer of air
would be able to disrupt the injection of charge in graphene.
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When looking at the electric field in the different materials i for such system composed of a serie of
capacitor, it is possible to write :

Ei = Ctot
diCi

V tot (3.35)

with Ei the electric field amplitude in the dielectric i, di the thickness of the dielectric layer i, Ctot and
Ci the capacitance of the total system in Farad per square meter F.m−2, and Vtot is the difference of
potential at the extremities of the multilayer.

Ci = ε0εi
di

(3.36)

Inserting Equation 3.36 into Equation 3.35 leads to :

Ei = Ctot
ε0εi

V tot (3.37)

The electric field amplitude in the dielectric medium i is therefore given by Equation (3.37). Higher is
the static dielectric constant, and lower is the electric field. To come back to our system made of SiO2
and air, the electric field will be much higher in the air. However, in order to get significant injection of
charge in graphene, we stand at the limit of voltage breakdown in the SiO2. The disruptive electric field
in air being lower than the one in SiO2, it will ionized the air. The air will become a plasma that will
bring the charges down to the surface of the SiO2, instead of staying in the suspended graphene. The
graphene will therefore be screened and will not be significantly impacted by the electrostatic gating.

Figure 3.22: Schema illustrating the double layer capacitor used in the study of suspended graphene
in Section 3.4. Two thin dielectric layer, air and SiO2, are sandwish in between two electrode which
are the graphene and heavily doped silicon substrate Si++. A potential of 150V is applied in order to
preserve the system of breakthrough, in a part of the sample where graphene is supported on SiO2. The
amplitude of the electric field in the two dielectric layers are displayed on the right.

3.6 Conclusion
In this chapter, a numerical study have been presented. After a brief history of the FDTD method, the
solution for a one-dimensional wave problem have been solved, and then applied to the 3D case. The
technique to modalize graphene in a 3D simulation have been discussed. Finally, a design is proposed,
using antenna, to study the propagation of plasmons in suspended graphene.
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Some concerns about the feasibility of such experiment at ambient condition are giving rise to a final
discussion. A set up using a vacuum chamber would be probably required to obtain the measurement
expected in laboratory.
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Chapter 4

Experimental procedure

In this chapter, the experimental achievements are described. Chronologically, the fabrication of the first
samples have been done in parallel with the numerical simulation work presented in Chapter 3. There-
fore, a part of the work explained below was in fact a first try in order to record plasmons in suspended
graphene and the design may be a bit different than the one shown in the previous chapter. Also, it
did not take into some issues evoked in section 3.5, where it is explained why a high vacuum Scanning
Near-field Optical Microscope (SNOM) set up is required for recording plasmons on suspended graphene.

Therefore, as a first step, the process to fabricate sample with suspended graphene is described, as
well as the different designs that we wanted to study. Then, characterisation of the graphene based on
Raman spectroscopy is discussed. Finally, preliminary SNOM data will be shown and commented.

4.1 Fabrication of sample
The samples with suspended graphene have been fabricated in Singapore, at the Center for Advanced
2D Materials.

4.1.1 Fabrication process of suspended graphene samples
Hereafter are presented the patterns fabricated with the goal to observe and measure the propagation
distance of Graphene Plasmons.

(a) A perspective view of the sample (b) Cross-section view of the sample

Figure 4.1: Illustration of the design for the study of graphene plasmons through suspended graphene.
The graphene monolayer (red) is on the top of the system. The gold nanostructures are in yellow and
the substrate is made of SiO2(300nm, light blue)/Si(dark blue) doped wafer.
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A preliminary set of simulations have shown the possibility to excite graphene plasmons with plas-
monic structures (see Section 3.3). The shape that was theoritically studied is that of the simple rectan-
gular antenna, and the first results gave micrometric length and several tens of nanometers for the width
and height. An illustration of the sample is showed Figure 4.1a. The graphene layer is deposited on the
top of the system that is made of the substrate, the gold plasmonic nano-structures and the holes.

One of the challenges of fabrication process was to place the antenna really close to the holes in order
for plasmonic structures to launch plasmons in suspended graphene (see Figure 4.1b). Gold scatterers
were placed on the opposite side of the holes: small gold disks were designed to perturb in propagating
graphene plasmons and to scatter them into the far field.

In order to avoid the pollution of the graphene layer, it has been decided to deposit it on the sample
at the last step. Therefore, the fabrication process of such samples begins by etching holes and depositing
plasmonic structures as close as possible to the edges. Since the structures need to be firmly bounded to
the surface when the graphene is added at last, colloidal suspension has been dismissed. The rod being
needle-like from the simulations results (section 3.3), e-beam lithography has been used. The holes are
micrometric because the propagation length of the plasmons is expected to be micrometric. Therefore,
photo-lithography (laser writer) has been used to pattern the holes, as the resolution of this technique
is a bit less than a micron.

(a) Optical image of a pattern of holes, designed
by laser writer and etched through RIE process. A
thin layer of PMMA have been then deposited on the
surface in order to perform e-beam lithography. The
difference of colors represent gradient of the PMMA
layer thickness.

(b) MEB image of a disk shaped hole with gold an-
tenna (rods) and scatterers (dots)

Figure 4.2: Optical (a) and electronic (b) image from microscope of the samples fabricated for the study
of Graphene plasmons in suspended Graphene

At first, micrometric markers (crosses with number) and holes have been designed on samples through
laser writer technique (see Figure 4.2a). In fact, the resolution of the system LW405-A is about 700nm
and has been tested. The wavelength of the writing beam is 405 nm (GaN solid state laser). The markers
have been added in order to make possible a nanometric alignment with the e-beam lithography process.
This technique is used to deposit the plasmonic nano-antenna close to the holes.

Thanks to a laser interferometer system that guides the stage of the laser writer, the markers are
aligned with a resolution below 100 nm. The holes were designed with different shapes, including rectan-
gles, disks and triangles. Finally, the biggest issue was to find out a way to deposit plasmonic structures
as close as possible from the hole edge.

As it can be observed in Figure 4.2b, the nanostructures are not present (neither diffusers nor anten-
nas) near the hole edge. They are present few microns away from the holes (red arrows). However, it is
possible to observe carefully on the Figure 4.2b those structures left "footprint" near the holes.
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This is the first major issue when fabricating the samples. When looking at the PMMA resin before
the e-beam lithography process (Figure 4.2a), it is possible to see different color at the vicinity of the
holes. It is supposed that the following scenario happened.

When the PMMA is spin coated on the whole pattern, it is deposited on all the surface of the sample.
As we get closer to the holes, the thickness of the resin is getting thinner (Figure 4.3(a)). Then, during
the development step, the PMMA exposed at the vicinity of the holes is removed (Figure 4.3(b)). Finally,
the gold is deposited on the top of the sample (Figure 4.3(c)). But the problem is that the gold layer
thickness is of the same height than the PMMA layer at the vicinity of the hole. This is the reason
why, during the lift-off step, the structure closer to the holes were removed (Figure 4.3(d)). However,
the footprint let by the antenna and diffusers at the end of the process can still be observed in Figure 4.2b.

Therefore, the deposition of the plasmonic structures has to be done at first, and then, the holes have
been etched through Reactive Ion Etching (RIE).

In order to reduce the duration of e-beam lithography process, the markers have to be done at first
by laser writer. Therefore, the main steps of the process have been plan as follows :

1. Markers designed by photo-lithography (laser writer)

2. Deposition of metal for the markers

3. Nano-structures designed by e-beam lithography

4. Deposition of metal for the nano-antenna

5. Pattern of holes designed by photo-lithography (laser writer)

6. Etching of the holes through RIE

The six steps listed above are detailed in the following pages.

Figure 4.3: Illustration of the main problem that was encountered during the fabrication of the samples
dedicated to the study of graphene plasmons.
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4.1.2 Patterns for the study of GPs propagation
Different patterns have been fabricated in order to investigate different platforms for the propagation
of graphene plasmons. Several hole designs have been made. The shape of the trench have been made
triangular (figures 4.4a and 4.4b), circular (4.4c and 4.4d) and rectangular (4.5a and 4.5b).

(a) Hole with small trianglular shape (b) Hole with large trianglular shape

(c) Hole with small circular shape (d) Hole with large circular shape

Figure 4.4: SEM pictures of the samples fabricated in the clean room following the simulation set up.
We can see on the different images gold nano rods of 4 µm on one side of the holes, and gold diffusers,
tubular shape, on the other side of the holes.

These holes are designed to suspend graphene on them. Thanks to a highly accurate alignment
between e-beam lithography and photo-lithography, plasmonics nano rods and scatterers are placed very
near the edges of the holes. As already emphasized, one of the most challenging part of the fabrication
were to deposit the nano structures as close as it is possible from the holes. In fact, once the graphene
is deposited on the whole structure, shown in picture 4.1b, it is important that the monolayer does not
touch the substrate in between the gold structures and the holes. As we can see on the different SEM
pictures (Figures 4.4a, 4.4b, 4.4c, 4.4d, 4.5a, 4.5b, 4.6a, 4.6b), the final results is promising and we can
expect graphene to be suspended over the whole structures.
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(a) Hole with small rectangular shape (b) Hole with large rectangular shape

Figure 4.5: SEM pictures of the samples fabricated in the cleanroom following the simulation data. We
can see on the different images gold nano rods of 4 µm on one side of the holes, and gold scaterrer,
circular shape, on the other side of the holes.

4.1.3 Patterns to study the wavelength of the SPPs

A second set of patterns have been made to study the wavelength of the SPPs through graphene via
interferences phenomena.

With the patterns shown Figures 4.6a and 4.6b, we have the possibility to launch two plasmons from
two different points.

(a) Small trianglular shape of hole (b) Small trianglular shape of hole

Figure 4.6: SEM pictiures of the samples fabricated in the clean room following the simulation set up.
We can see on the different images gold nanorods of 4 µm on one side of the holes, and gold scatterers,
circular shape, on the other side of the holes.

These two surfaces waves would interfere with each other and an interference pattern may appear
at the scatterers. In fact, we would expect to have an interference pattern that would be sampled by
the scatterers, showing intense hot spots at the constructive interference location, and weak response
at the destructive interference location. Similarly to the double-slit experiment (referred to as Young’s
experiment), we can describe our experience as shown in Figure 4.7.

Assuming that a plane wave excites the two stacks of nano rods with the same phase, at the same
time, two SPPs will be launched as illustrated in Figure 4.7. Simplifying the problem to a two slits
problem (see figure 4.7 on the right), the phase of the waves at the position x on the observation screen
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Figure 4.7: Illustration of the interference pattern. Left: realistic representation wih the fabricated
sample. Right the problem simplified

(at the scatterers plane) relative to the phase at the slit (at the plasmonic nano rods) can be written as :

Φ1,2 = kl1,2 = 2πl1,2
λSPP

= 2π
λSPP

√
L2 + (s2 ∓ x)2 (4.1)

Therefore, the phase difference between the two waves can be written as:

∆Φ = 2π
λSPP

(√
L2 + (s2 − x)2 −

√
L2 + (s2 + x)2

)
(4.2)

For a period of ∆Φ = 2π, we should find the inter distance between the interference fringes via the
following equation to be solved :(√

L2 + (s2 − x)2 −
√
L2 + (s2 + x)2

)
= λSPP (4.3)

There is no trivial solution to this equation, but we can estimate numerically the results using the
experimental design. According to Figure 4.6a, we can take L=4 µm and s=6 µm. According to the
numerical studied explained Chapter 3, we can suppose that λSPP = 0.3µm (see also on the phase of
the y component of the electric field, in Figure 3.21). These assumptions lead to the plot shown shown
in Fig. 4.1a

From y=0.3 (λSPP ≈ 0.3µm), we get that the period x ≈ 0.25µm. The distance between diffuser
being 100 nm (see Figure 4.8b ), we could expect to have 2.5 scatterers, and then 2.5 measurements of the
intensity for one period of the diffraction pattern. In vacuum condition, the induced density of charge in
suspended graphene could be higher. The wavelength would therefore be higher, according to Equation
(2.29). And finally, Equation (4.3) would give a larger period, where the number of diffusers would be
more important. For example, for EF = 0.4eV, λSPP ≈ 0.6µm and we get a period of interference about
0.5 µm.

4.1.4 Pattern to study the grating effect
Finally, in order to have the higher plasmons intensity possible, it would be promising to exploit the
grating phenomenon, in addition to the resonance phenomenon of the nano rods. For this reason, it has
been fabricated for each sample 4 different patterns with different spacings between the nano rods. In
fact, the grating period of nano rods can be calculated to have an enhancement of the near field for a
particular wave vector, which gives in terms of momentum (see Figure 4.9):
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(a) Plot of the function y =(√
x2 − 6x+ 25−

√
x2 − 6x+ 25

) (b) SEM picture of diffusers : small tubular gold structures
spaced from each other by 100nm

Figure 4.8: Plot of the Equation (4.3) using experimental data from Figure 4.6a and SEM picture of the
scatterers presented Figure 4.1a

kSPP = k0 sin θ + n
2π
d

(4.4)

As we have seen previously in our simulation, we plan to illuminate our samples perpendicular to it.
Therefore, sin θ = 0 and we find :

d = n2π
kSPP

= nλSPP ≈ n300nm (4.5)

So for a multiple of 300 nm, we should get a grating effect which should enhance the plasmons
strength launched through the graphene. It has been therefore decided to fabricate several samples with
different designs changing the spacing between the nanorods which are about 150 nm, 300 nm, 450 nm
and finally 600 nm.

Figure 4.9: Illustration of the nano rods grating

4.2 Deposition of graphene and characterisation of the samples
It has been chosen to use CVD graphene which has been proved to sustain graphene plasmons [43].

As it has been explained before, the plasmons of graphene are highly sensitive to the surrounding.
One of the main issue is to get really pure and clean graphene for low optical losses and high electrons

87



mobility. At first, CVD graphene has been deposited in Singapore (see Figure 4.10).

Figure 4.10: Optical image of the first sample where graphene has been deposited

As a first observation, it is interesting to notice that we can observe the presence of graphene on the
sample, which appears to be dark blue in Figure 4.10 . This apparent color results from the interference
of the incident visible light occurring in the multilayer Si/SiO2/graphene. A second remark is that the
graphene is not homogeneously deposited on the surface. Instead, it covers sample with isles. Finally,
the samples are covered by pollution chemical rest from the transfer process.

To address this issue, the samples have been chemically washed in order to remove impurities. Three
baths have been prepared, one of acetone, one of isopropanol and one of deionized (DI) water.

Unfortunately, the results were not good enough and a lot of pollution remained, even after many
washing cycles. A big part of the contamination is most probably coming from the PMMA. In order to
have more information about the contaminant, Energy Dispersive X-Ray Spectroscopy (EDS) investiga-
tion has been performed.

This method consists in illuminating a sample with an incident x-ray light. Electrons in the inner
shell of the atoms gets excited and the subsequent de-excitation of the particle is radiative. The photons
emitted by the excited atoms are recorded and give spectra corresponding to a chemical entity. The
results of this study is presented Figure 4.11.

Figure 4.11: EDS screen shot where we have : on the left, a SEM picture of the zone studied, on the
right, the spectrum obtained.
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On the left of Figure 4.11, a SEM picture of the sample with a strong tilt. The tilt is important in
order to maximized the response of the impurities. On the right side, the obtained spectrum is displayed,
with the different chemical elements indicated above the different peaks. A high peak of carbon is visible,
which comes from a carbon tape covering the sample holder. Carbon tape has been used in order to
screen the response of the metallic holder where part of the electrons beam could land. Pronounced
peaks corresponding to Silicon and Oxygen can be seen too. Both of them come from the substrate
made of heavily doped silicon and a thin layer of silicon oxide. Additionally, even if the holder has been
protected, it still gives an optical response as the aluminum and the copper are present on the spectrum.
Finally, Chlorine is much more unexpected here, and it is not possible to remove it easily.

A washing attempt has been performed, using Reactive Ion Etching (RIE). RIE is a technique that
uses a plasma to etch the sample surface. In our case, oxygen plasma has been used. It removed partly
the impurities. However, graphene turned out to be removed too. As a backup strategy, new samples
have been sent to our partner in Korea (Thanks to Rafael Salas (UTT, France) et Heejun Yang from
Sungkyunkwan University (Korea)) for a successful deposition of graphene layer.

Figure 4.12 shows an optical image of a new sample with CVD graphene from Korea on the top of it.

Figure 4.12: Optical microscope image of a pattern for the study of plasmons in suspended graphene
with graphene deposited on the top from Korea

Here we can not distinguish any impurities, and graphene (that looks blue) is deposited homoge-
neously on the top of the sample, in many locations. The next step is to characterize it.

4.2.1 General presentation of Raman spectra in graphene
With Electron-Beam Microscopie (MEB) and Atomic Force Microscopie (AFM), Raman spectroscopy
is a routine technique used to characterize graphene [155]. Whereas MEB and AFM may give physical
images of the graphene, Raman spectroscopy can provide significantly more information based on the
lattice vibration of the material. In fact, Raman spectroscopy is based on inelastic scattering of photons
by matter (see Figure 4.13a), the difference of energy being recorded as the vibration of the lattice, or
phonons. It is therefore a transfer of energy between the photon and phonon modes in a particular
lattice, ie a kind of signature of each crystal. Because Raman spectra provide information about the
lattice vibration, it is a technique that is really sensitive to the lattice structure and crystallinity. [47],
the number of graphene layers[45], strain, defect and density of charges [89], among others [46]. More-
over, it is a technique that can be performed at room temperature, which is reliable, and non-destructive.

The conservation of the momentum tells us that we cannot probe phonons far from the centre of the
Brillouin zone. This is due to the fact that the momentum of a photon is approximately three order
of magnitude less important than the one of a phonon (wavelength of the light compared to the lattice
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(a) Representation of the Raman
effect

(b) Theoritical phonon dispersion of graphene according to [77]

Figure 4.13: Illustration of the Raman effect and the phonon dispersion in graphene

parameter). But the case of graphene is a bit more complicated, and the reason why will be briefly
expounded hereafter.

It is not possible to experimentally get the whole phonon dispersion curve of graphene since there are
not enough atoms in graphene flakes for inelastic neutron scattering experiment. However, it is possible
to calculate it theoretically (see figure 4.13b).

On this figure, we can see six branches. They are called ZA, TA, LA, ZO, LO, TO. A is for acoustic,
while O is for optics. Z stands for the flexural modes (out of plane) whereas L and T correspond to the
in-plane Longitudinal and Transverse modes respectively. Only some of those modes are Raman active,
and the theory predicts that the LO and TO branches are active [154] in a single layer of graphene.
Then, looking at the Figure 4.13b, it is possible to predict that we should have a single peak around
1580 cm−1, when performing a Raman experiment (Γ point in abscisse).

This peak, called G (G stands for "Graphite"), is clearly visible in Fig. 4.14. Because of the strong
interaction electron-phonon in this zero-gap semiconductor near the centre of the Brillouin zone, the G
peak is strongly dependent upon doping.

Figure 4.14: Raman spectra of graphite and graphene probed at a light wavelength of 514 nm [131]

However, the graphene shows a second peak, usually called 2D (also called G’ sometime, because al-
ways present in graphene), around 2700 cm−1. It has been interpreted [131] as a two phonon-interaction.
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In fact, the inelastic scattering of the light is responsible for the emission of two phonon having opposite
wavevectors, such as the momentum is conserved. This is the reason why they are always active in any
graphene layer. This 2D peak is the second order of a D peak (therefore called 2D), that means that
there is a D peak which involve only one phonon, and take place at a frequency 2700/2=1350cm−1. This
is due to the breathing modes of six-atom rings and requires a defect (D for defect) for its activation.
Therefore, this particular peak is really sensitive to defect, grain boundary or edge (not present in the
Figure 4.14). The ratio between the intensities of the D peak and the G peak provide a parameter that
can be used to quantify the amount of disorder.
Several others peaks exist, mostly for defected graphene sheet. Reading and interpreting properly a
Raman spectrum is not trivial, as valuable informations can be deduced from the position, the height,
the area, the FWHM (full-width at half-maximum) and the dispersion (shift of energy as a function of
the excitation wavelength) of each peak. In the following, we will focus only on the three peaks shown
above, the G peak, the 2D peak and the D peak.

(a) Hyper-spectral Raman
mapping

(b) Raman spectra corresponding to each color

Figure 4.15: Results of a raman spectra on top right part of the pattern represented Figure 4.12

It has been possible to use an hyper-spectral Raman tool (Thermofisher), which makes a Raman
mapping of the sample possible. Its high spatial resolution (a few hundreds of nanometers), its fast
scanning as well as its image processing tools make it a powerful equipment to identify suspended
graphene on the sample. Figure 4.15 shows the results of a Raman mapping of one part of the pattern,
using a discretization with four colour. The software categories four different type of Raman response via
an algorithm. The four colors represent four Raman spectra illustrated Figure 4.15b, that can overlap
each others.

The red color spectrum is relatively close to the Silicon response, with a peak around 520 cm−1, and
is present everywhere on the mapping, except in the deep holes (20 microns deep). The blue color is
mainly present on the gold structure and in the holes. The green color appears everywhere except in the
holes and finally the yellow color appears mainly on the gold structures.

The red Raman response is therefore coming from the substrate, made of silicon and silicon oxide.
The blue and the green Raman spectra have a shape which is characteristic of the graphene response.
However, when we look at them carefully, it is possible to distinguish them. The position of the blue
peaks, related to graphene G and 2D modes, appear at lower energy, as compared to the green spectrum.
Finally, the blue response of the 2D mode is much higher than the green one. According to [16], the
blue colored raman spectra corresponds to suspended graphene, whereas green colored raman spectra
corresponds to supported graphene. Therefore, the graphene have successfully been suspended on holes.
Other parts of the sample also show suspended graphene.

The next step is to characterize the gold nanoantenna.
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4.2.2 Characterisation of the gold nano-antenna
As it has been explained in Section 3.3, the gold nano-antennas are used for launching plasmons through
graphene. In section 2.3.3, it has been shown that the lowest plasmons damping on SiO2 lie around
a wavelength of 11 microns. That is also a typical optical frequency used in a home-made Scanning
Near-field Optical Microscope (SNOM) that has been developped at UTT. Therefore, as a first try, the
nanorods have been designed in order to have a resonance frequency in this range (see Section 3.3). The
numerical simulation that we performed shows that rod length should be in the 3.8-4 microns range
(Figure 3.11), which is the case for the sample presented above (see Figure 4.4, 4.5, 4.6). Therefore, the
last step was to characterize the rods response to an infrared excitation.

For this purpose, Fourier Transform InfraRed spectroscopy (FTIR) technique has been used. This
technique enables to record simultaneously data on a large range of frequencies. Figure 4.16 shows
two spectra. In blue, a spectrum showing the response of SiO2 in reflectivity, with gold as a ref-
erence, as a function of the wave-number. This curve has been inserted on the graph for further
discussion (therefore, the corresponding intensity is not correct). In red, the response of the sample
substrate+nanorods+graphene as a function of the wave number. The intensity (y axis) is obtained by
taking a ratio of : the reflectivity given by the sample with a polarisation along the long axis of the rods,
over the reflectivity given by the sample with a polarisation along the width axis of the rods.

Figure 4.16: FTIR spectrum in reflectivity for SiO2 alone (gold reference) in blue, and sub-
strate+nanorods+graphene with a ratio between two polarisation in red

Let’s focus on the blue curve. The response of the SiO2 is interesting because it is possible to observe
its different infrared active modes. According to [138], it is possible to distinguish on the blue curve
the optical transverse phonons modes at 807 cm−1 and 1084 cm−1, as well as the optical longitudinal
phonons modes at 814 cm−1 and 1252 cm−1.

Let’s now look at the red curve. Two main features appear: one is centered around 900 cm−1, which
is the response of the nanoantenna, and one is around 2300cm−1, which is related to the CO2.

Then, the different infrared modes of the SiO2 are also appearing. This result is a confirmation that
the gold structure resonance is around 11 microns, which fits well the available set up. It is therefore
possible to analyse the samples in the near-field using the home made SNOM.

4.3 Optical measurement using Scanning Near-field Optical
Microscopy

At the beginning of the previous century, it was believed, according to the theory, that the resolution of
classical microscopy was limited to about 250 nm [168], corresponding to half light wavelength. In the
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eighties, in order to break this diffraction limit, it was proposed to use a little aperture as a light source
which would be able to confine the excitation at subwavelength scale. Later, another kind of probes
have been proposed, named "apertureless tips", which has been used in this study. Generally speaking,
Near-field Scanning Optical Microscopy (SNOM or NSOM) is a local probe microscopy where a tip is
placed near the surface of the material (< λ/2) to interact with matter within the near-field, well before
progagation and diffraction of light issued from the sample, which allows one to break the diffraction
limit. Therefore, it is possible to get nanometric resolution that is no longer imposed by the wavelength
of light. Several types of SNOM exist, classified into two main families : aperture and apertureless
probes. For more information about the different systems, see [152].

In this section, the home made apertureless SNOM set up will be introduced. It works in the mid-
infrared. Then, the fabrication process of aperturless tips will be presented. Finally, some of the results
obtained will be shown.

4.3.1 Introduction to apertureless SNOM and related approaches of signal
detection

Apertureless SNOM (also named "scattering-type SNOM: s-SNOM") using a metallic tip is based on
the principle that the extremity of a laser-illuminated sharp tip can locally enhance/perturb the elec-
tromagnetic field at the sample surface. In general , the near field on the sample interact with the
tip. The rather complex local interaction between sample and tip results in a scattered radiative wave
that can be detected in the far-field. This radiation carries the local informations (as detected by the
tip’s extremity) of the sample near field such as its optical phase and amplitude. To some extent, an
apertureless scattering-type SNOM picks up the evanescent waves and converts them into propagating
waves via a metallic tips that can been considered as an optical nanoantenna. The resulting propagating
fied is recorded by a detector in far field.

Figure 4.17: Illustration of the different contribution to the field detected by the infrared photo-detector
in far field

Figure 4.17 illustrates a SNOM tip probing a sample, and the different electromagnetic fields involved
[90]. The excitation field is represented by incident black arrows and noted Ein. A scattered background,
Escat.bkg represented in blue, occurs on the sample everywhere within the laser spot of the excitation.
The scattered field, resulting from the complex interaction between tip, sample and incident field, is
represented by Escat.tip with a red color. A specular reflection of the excitation is also represented in
black by Erefl toward the detector. Therefore, the detector is recording three different contributions.
The reflection Erefl is stronger than the scattered light Escat.bkg, the latter which is stronger than the
tip diffusion Escat.tip.
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First, the specular reflection must be filtered out. A good way do so is to tilt the sample and to
record the signal from the same path than the excitation (back scattering configuration). Higher is the
tilt of the sample, lower is the reflection from the sample. For the SNOM in infrared at UTT, the tilt is
kept higher than 45◦.

Then, a second source of problem come from the strong sample scattering (where tip is not involved)
that constitutes a background Escat.bkg. It is important to remind that our s-SNOM is working in the
MID-infrared. Therefore, the spot illuminating both the tip and the sample is about the size of the
wavelength, typically here 10 µm. It is interesting to compare, in term of area, the spot of the laser to
the zone of interest where the near field is collected by the tip. This zone corresponds to the dimension
of apex of the tip, which is typically around 20 nm. Compared to the size of the spot, it is much smaller
and the near field signal is likely to be hidden of the background Escat.bkg. It must be filtered.

An efficient way to remove it is to drive periodically the tip perpendicular to the sample so that the
tip works in AFM tapping mode [11, 87, 12]. It modulates the field scattered at the tip frequency. As
a matter of fact, the near field is strongly confined at the surface of the sample. As the tip get closer,
the near field radiated into the far-field gets bigger. Once the tips is withdrawn, the signal gets weaker.
The field is therefore modulated at a frequency Ω of the tip. The scattering background being unmod-
ulated (or poorly modulated), it is therefore suppressed post-treating the signal. The signal recorded is
demodulated at Ω. The signal coming from the probe is therefore recovered.

Technically, a Lock-in Amplifier (LIA) is used. It acts as a filter that record only the field that
is modulated at the oscillation frequency Ω of the tip. The frequency of the fork used in the lab is
about Ω = 29kHz. This approach of detection (ie direct lock-detection of the scattered light at the tip
oscillation frequency Ω), is called ""homodyne detection and is illustrated Figure 4.18 (a).

Homodyne detection

The homodyne system of detection is the simplest one, where there are only three optical arms in the
microscope and an only incident electromagnetic pulsation. The first arm is the laser excitation arm.
The second arm is the signal arm involving tip and sample. The third arm is the detection one. A lock-In
Amplifier is used to record the signal modulated at the tip frequency (or its harmonics [13]) Ω.

At the detector, interferences occur between the different radiative fields: The back-scattering acts
as a background that interferes with the near-field signal, which can be translated into equations by :

Idet = |Escat.bkg + Escat.tip|2

= |Escat.bkg|2 + |Escat.tip|2 + |Escat.bkg||Escat.tip|cos(ωt+ φscat.bkg + φscat.tip)
(4.6)

Here, |Escat.bkg|2 is not modulated at the tip frequency Ω and is therefore filtered. On the other
hand, the two others terms, namely |Escat.tip|2 and |Escat.bkg||Escat.tip|cos(ωt+ φscat.bkg + φscat.tip) are
both modulated at Ω and recorded. |Escat.tip|2 being really small, it is the interference term that will
be observed. Let us stress that the term |Escat.bkg| can act as an amplification term with regards to
|Escat.tip|
However, this amplifier is not controlled because the background diffusion is not homogeneous on the
sample. Moreover, this amplitude detection can be perturbed by the respective phases of Escat.bkg and
Escat.tip which are not controlled. Fringes generally appear on the image, hiding the signal of interest.
Finally, although phase information is contained (due to interferences) within the signal, it is difficult to
make a distinction between phase and amplitude informations. In order to recover the phase and get a
clean signal, heterodyne detection is used.

Heterodyne detection

In this case, a reference signal is added (see Figure 4.18(b)). The laser beam is split into two arms, one
will target the sample+tip, and one will be used as a reference signal. An Acoustic-Optical-Modulators
(AOM) is added in the path of the reference beam, which is shifting the signal frequency by a ∆ω. We

94



Figure 4.18: Illustration of the different system of detection. Homodyne in (a), Heterodyne in (b) and
Pseudo-heterodyne in (c). The black arrows represent the excitation beam path, in red the SNOM signal
path, and in green the reference signal path

have then two different electromagnetic frequencies, explaining the term "heterodyne"[144].

We have now three different beam hitting the detector : |Escat.back|, |Escat.tip| and |Eref |.Each of
them will have a different modulation characteristic. |Escat.bkg| is not modulated. |Escat.tip| is modulated
at the frequency of oscillation of the tip Ω. Finally, |Eref | is modulated at the frequency of the AOM
∆ω. All these fields will interfere with each others but only the interference between |Eref | and |Escat.tip|
will be modulated at Ω±∆ω. This is the field that will be recorded by the LIA system.
Hence, the carrier signal becomes Eref , instead of Escat.bkg. Unlike Escat.bkg, Eref is controlled: both
its amplitude and phase can be controlled.

More precisely, similarly to Equation 4.6, the field |Escat.tip| is amplified by a strong signal, here
|Eref |. The difference is that the reference signal is cleaned, constant, and do not depend on the position
of the tip on the sample. The recorded image become therefore clear of background signal and it is
possible to have the optical amplitude as well as the optical phase.

However, some experimental problems arise with this method [21]. Acoustic-Optical-Modulators
(AOM) are usually expensive, and not always available in a wide range of frequency. Also, the Michelson
interferometer layout mentioned above is not well adapted to the implementation of an AOM. A less
stable Mach-Zehnder configuration is used. An alternative to this method is the pseudo-heterodyne
detection, that is presented below.

Pseudo-heterodyne detection

The last method, illustrated Figure 4.18(c), is not using a frequency shift as it is done for the heterodyne
detection. Instead, a periodic oscillation of the reference arm length is performed. The phase of the
reference is therefore periodically shifted. The reference beam recombining with the SNOM signal create
the interferences which will be exploit for the detection. The main advantage of this method is that it
can be applied to any frequency range of excitation.

In fact, mirrors are mounted on a piezo material driven by a periodic signal. A mathematical signal
treatment is then performed, including a lock in amplifier process, to treat the signal and recover the
phase and the amplitude of the signal. This method is called "General Lock-In Amplifier", and more
informations can be found in [21].

4.3.2 Experimental details about the scattering-type SNOM
The experimental set up at UTT uses three lasers that cover a spectral range running from 9.5 µm to
11.4 µm. At the exit of the lasers, an isolator is placed in order to avoid any reflected beam back to
the lasers. A coupler, made of a lense mounted on a stage, drives the beam to the fiber. A collimator is
placed at the exit of the fiber to conduct the laser beam to the core of the set up. This core is represented
in Figure 4.19.
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Figure 4.19: Picture of the SNOM setup. In inset, a simplified schema representing the set up

The core of the set up is composed of four arms detailed in the inset of Figure 4.19 :

1. Both incident and back scattered paths are represented in red.

2. The "signal arms" with the stage, the tip and the sample, a mirror objective and a anti-reflection
crystal are hilighted in blue

3. The refererence interferometric arm is in green

4. The detection arm with a lens and a detector are indicated in yellow

Finally, another arm, parallel to the detection arm, is added in order to visualize the sample and the tip.
It is represented in pink in Figure 4.19.

More in details, the signal arm includes the stages supporting the tip and the sample, and an objective
to focus the beam. This is where the near field signal is converted into a far field signal. The sample
and the tip are hold by a platform that is made of several mechanical and piezoelectric stages. The me-
chanical stages enable rough movement, whereas piezoelectric stages enable fine approach and scanning.
The tip is placed at the beam focal point and does not move once scanning. Instead, it is the sample
which is moving. A anti-reflection crystal is added at the objective entrance to avoid back-reflection to
the detector.

The detection arm includes a HgCdTe detector and a lens. The detector is cooled with liquid ni-
trogen. It is linked to a Generalized Lock-In Amplifier (GLIA). In parallel, it is possible to observe on
Figure 4.19 a visualization arm, which is composed of a beam splitter, a camera(webcam), and a lens for a
magnification. It is used to focus the beam on the apex of the tip and to visualize the location of the scan.

Finally, the interferometric arm is made of three mirrors. Two of them are mounted on piezo mate-
rials and provide a shift in phase of the beam (modulating the length of the arm), whereas the last one
is mounted on a mechanical stage, and reflects the beam back to the detector. The latter is used for
alignment.
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Figure 4.20: Schema representing the electro-chemical set up for the fabrication of SNOM apertureless
tips

4.3.3 Fabrication of the tips
Tips are crucial for detecting evanescent waves. In particular, the apex of the tips should be as small
as possible in order to act as an electric dipole that picks up the near-field. The incident field from the
laser beam can be converted by the tip to local source, and excite surface plasmons. Reciprocally, the
evanescent wave of a surface plasmons can be converted into a radiative wave via the tip apex.

In order to accurately record plasmons in graphene, the diameter of the tip extremity should be
at least of the same order of magnitude than the expansion of the phenomenon in air. For graphene
plasmons, it has been shown [44] that the diameter of the apex should be around few tenths of nanometers.

Figure 4.21: Picture of a SNOM tip tooken via an electronic microscope. The apex diameter is around
10nm.

Our probes are home-made probes produced at UTT. The method consists of etching electro-
chemically a tungsten wire. It is called the double lamellae dropoff technique, and has been inspired from
[85]. It is based on the etching of a tungsten wire through a golden ring used as electrode, as illustrated
Figure 4.20. A 2.5 cm long tungsten wire is first glued at the extremity of one arm of a tuning fork. This
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tuning fork is used for tapping-mode distance regulation (see sub-section 4.3.1).
Then, the fork is clamped horizontally to a stage, with the glued wire head down. Meanwhile, an

electro-chemical circuit is installed. It is made of a generator, where the positive terminal is linked to
a multimeter and a beaker, and the negative terminal is linked with a golden ring. The beaker and the
golden ring are filled with a solution of NaOH (2.5 mol/L). The ring is attached to a stage and stand on
the top of the beaker. The circuit is turned off.
Once the tungsten wire, glued to the fork, is dipped from the ring into the beaker solution, the circuit is
turned on. A current pass through the circuit and a chemical reaction occurs between the tungsten and
the NaOH solution in the ring. Eventually, the tungsten wire will be electrochemically cut at the ring
plane and the current will goes to zero.

It has been a real issue to obtain probe with tenth of nanometers diameter. A study has been
performed to find the best parameter toward thinest tip apex. The influence of the following parameters
has been investigated:

1. The applied voltage (V)

2. The solution concentration (NaOH in mol/L)

3. The current (in mA)

4. The length of the tungsten wire (in cm)

5. The distance between the gold ring and the surface of the NaOH solution in the beaker (in cm).

The diameter of the gold ring was 0.8 cm. The applied voltage has been set at 8V. Both parameters have
not been varied. The solution concentration has been varied from 1 mol/L to 4.5 mol/L. The current
which is going through the system when the generator is turned on is of the first importance. It is related
to two main parameters : the concentration of the solution, and the amount of liquid inside the ring.
Since the concentration is controlled, the targeted current were reached managing the volume of liquid
inside the ring. The liquid inside the ring can be suck out with paper towel in order to set the correct
starting current. The length of the tungsten is an important parameter because it is directly related to
the gravitational force pulling down the wire. At the etching site, this force will tear apart the two side
of the tungsten wire. As well, the distance in between the ring and the NaOH solution in the beaker has
to be taken into account. It shows how long tungsten wire is outside the liquid, pulling down the wire
stronger. The wire length used were chosen between 0.5 to 4 cm. The distance in between the ring and
the beaker solution was chosen as a consequence of the length of the wire.

The concentration has been varied at first and 2.5mol/L gave the best results. Then, the starting
current has been investigated, and 3 mA gave the thinest apex. Finally, the length of tungsten wire
giving the best results is about 2cm long and for a distance ring-beaker solution of 1.5cm.

Optimizing these parameters did not lead to good enough distributions of tip size, which were centred
around 60 nm. The best achieved tip’s diameter was around 30nm. In fact, the quality of the NaOH
pallets used for the fabrication of the solution turned out to be the critical factor. Once it has been
renew, a tip’s distribution centred around 25 nm was obtained and reproduced (see Figure 4.22). The
best tip obtained was about 10 nm (see figure 4.21).

4.3.4 First optical measurement
At first, preliminary measurements have been performed to record plasmons in CVD-fabricated graphene.
The 2D layer was deposited on the top of a typical wafer of SiO2/Si. Optical and electronic microscope
image of the sample are shown Figure 4.23. We can observe the graphene on both pictures as it appears
darker than the bear substrate. Some impurities are also present.

In the optical image, Figure 4.23a, a red cross indicate the location from where a raman spectra have
been obtained. The result is shown in the inset. We can see here that the graphene is clean, with really
few defects (low defect peak). In the electronic image, Figure 4.23b, a green square have been drawn
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Figure 4.22: Two typical distribution of size of tip apex before and after the change of NaOH chemical
(12 tips each)

(a) Image of a sample from an optical microscope. In
inset, a Raman spectra of the graphene layer taken at
the red cross (top left).

(b) Image of the same zone of the sample, taken from
an electronic microscope. The green square is delimiting
the image obtained by SNOM, Figure 4.24.

Figure 4.23: Optical and electronic images of a sample where graphene CVD layer have been deposited
non uniformly on a substrate of SiO2/Si. The images are taken with two different microscopes at the
same location. It is possible to observe the presence of graphene, which appears darker than the substrate.
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representing more precisely the place where the optical measurement using SNOM have been made (see
Figure 4.24).

Preliminary SNOM images are shown in Figure 4.24. The excitation wavelength was 11 µm, which
in the range of low damping for graphene plasmons (see section 2.3.3). A linear polariser was used, as
shown on Figure 4.19: the polarisation of the incident beam was horizontal. The long axis of the tip is
also horizontal. The polarisation follows the excursion of the oscillation of the tip (tapping mode) too.
Therefore, this set up enable a strong excitation of the tip, which is more likely to excite plasmons in
the graphene layer.

Using our scanning probe microscope in pseudo-heterodyne mode (see section 4.3.1), it is possible
to get different kinds informations simultaneously. The first one is the topography of the sample, as
the is working as an AFM (Figure 4.24a). The second information is the optical amplitude that we
can observe Figure 4.24b. It is the main information we are looking for in SNOM measurement, and it
is really sensitive to the discontinuity of graphene (see section 2.2.2). The third picture, Figure 4.24c,
is the mechanical phase of the fork. It is sensitive to the change of the underneath material. In fact,
phase contrast can be used for determining physical and chemical differences in scanned materials [79].
Graphene looks in this case darker than SiO2. The last picture, Figure 4.24d, gives the difference of
mechanical amplitude during the scan. This amplitude is expected to be constant during scanning,
which is not exactly the case, despite the feedback loop. The feedback may have a delay, related to a
physical step encounter by the fork. This contrast in the amplitude image has to be taken into account
for interpretation of SNOM images. Indeed, SNOM images can contain artifact corresponding to the
AFM error signal [18].

We can observe on Figure 4.24b an optical response of graphene at the edges of different flakes, that
is probably related to graphene plasmons. In order to have better resolution, another scan zooming on
a different area is presented in Figures 4.25 and 4.26.

On the Figure 4.26b, it is possible to observe oscillations in the graphene that are not present on the
substrate. Those oscillations are peak to peak a bit higher than 100nm, which has also been reported
in [42]. It correspond to the effective wavelength of graphene plasmons in this condition. The graphene
intrinsic doping, deduce from this wavelength, is of the order of what is expected from the CVD synthesis
method used here [113]. Unfortunately, due to technical problem, variation of the doping by injection of
charge couldn’t be perform, and no further evidence are available.

4.4 Conclusion
This chapter presents experimental results as the last step of this research work. It shows the fabrica-
tion, characterization and optical measurements with the introduction of Scanning Near Field Optical
Microscopy technique. These experimental results are the last part of this study. The obtained results
are preliminary and more experiments should be conduct in the future in order to show the true signature
of plasmons in graphene. This chapter has also been showing the complexity to manipulate 2D material,
and to record such confined phenomenon.
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(a) AFM topography (10×10 microns) (b) Optical amplitude

(c) AFM mechanical phase of the fork (d) AFM mechanical amplitude of the fork

Figure 4.24: s-SNOM images : topography, optical amplitude, AFM phase and AFM amplitude
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(a) Image of a sample from an optical microscope.
Graphene CVD layer have been deposited non uni-
formly on a substrate of SiO2/Si. In inset, a Raman
spectra of the graphene layer tooken at the red cross.

(b) Image of the same zone of the sample than
Figure 4.23a, taken from an electronic microscope.
The green square is delimiting the image obtained
by SNOM, Figure 4.24.

Figure 4.25: Optical and electronic image of the sample study. It is possible to observe the presence of
graphene, darker than the bear substrate.

(a) AFM topography (1×1 microns) (b) Optical amplitude

(c) AFM mechanical phase of the fork (d) AFM mechanical amplitude of the fork

Figure 4.26: s-SNOM images : topography, optical amplitude, AFM phase and AFM amplitude
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Conclusion and outlook

In this research work, new studies in the graphene plasmonics field have been done. A particular at-
tention has been paid on the explanation of graphene plasmons phenomena using mostly classical physics.

In chapter one, the basis of plasmonics have been reviewed from the Maxwell’s equations. The
graphene structures has been discussed and the electrons behavior has been rose up through a tight
binding model. This chapter set the foundation necessary to the understanding of Graphene plasmonics
physics.

The second chapter has aimed at giving a literature review and analysis covering briefly the discovery
of graphene as well as the one of graphene plasmons. It gives some glimpse on the challenge remaining
in order to achieve active graphene-based electronic devices. In particular, it introduces the problematic
of the propagation of plasmons, and the need to find out a suitable platform in order to get the first
active device based on graphene plasmons. Finally, graphene plasmons physics is duscussed through
the dispersion curve, providing the necessary key parameters for a further numerical and experimental
research work.

The third chapter is dedicated to a full numerical study, based on the Finite Difference Time Domain
method. This method is shortly introduced with an history and the resolution of 1D wave problem. The
3D case is then given accordingly with the key parameter to conduct a numerical study. The problem of
simulating a 2D material in a 3D grid has been extensively addressed. Finally, a design of sample has
been proposed. It uses gold antenna as launcher of graphene plasmons. The propagation in suspended
graphene has been shown and propagation length has been discussed. Compared to supported plasmons,
surface plasmon progagation length in suspendend graphene turns out to be significant and could be
exploited in the near-future in the context of 2-D nanophotonics. A final discussion has given the limits
of this experiment proposal, where a vacuum chamber is probably required.
The fourth chapter has been dealing with preliminary experimental achievements. At first, a sample fab-
rication process has been descrided. First samples have been obtained and characterized. Some issues
faced during the process hace been addressed, which could be useful for students and researchers who will
carry on this work. Then, the characterization of antenna as well as graphene are given. Finally, Scanning
Near field Optical Microscopy technique has been introduced. It is based on a heterodyne apertureless
configuration. The home-made set up has been presented and some preliminary results have been shown.

Perspectives: the case of diamond Given the challenges met to study plasmons in suspended
graphene, an other research path have been explored. As already mentioned, Graphene plasmons lake of
propagation length Lp when researcher think about using its properties for applications purposes (sec-
tion 2.2.1). Although progress have been made recently [114, 38], the propagation length Lp remains too
short to be used in active opto-electronic devices. Several parameters [98] must be therefore considered
in order to obtain high GPs propagation (see Equation(2.27) for the following). Firstly, Lp is function of
the scattering rate of the charge carriers, which should be kept as low as possible. Secondly, Lp is propor-
tional to the squared value of the Fermi energy in the infrared range, which should therefore be as high as
possible (following the DC approximation of the relaxation time, section 2.1.2). Finally, Lp is very sen-
sitive to the imaginary part of the permittivity of the substrate ε′′, the optical energy dissipation (Im(ε)).
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Armed with these parameters, we can draw a picture of the ideal platform for high propagation of
GPPs, which should have the following properties:

1. High dielectric strength and k-dieletric constant in order to inject high density of charges into
graphene.

2. Low Im(ε), in order to have low plasmonics losses.

3. Possibility to fabricate within the same process than graphene, using CVD system.

4. Use of sustainable material.

SiO2, which is the most common substrate used to study graphene [117], induces external and/or
internal scattering [7, 78, 28, 110]. Then, the relatively low k-dielectric constant (3.9) associated to the
dielectric strength of 0.5GV/m doesn’t enable to reach high enough Fermi energy. Finally, the optical
dissipation of SiO2 induces significant damping in GPPs [42].

Soon after, studies on encapsulated graphene in h-BN, a substrate known to be suitable for graphene
[145, 53], showed promising results [34, 114]. h-BN high dielectric strength property (up to 1.2GV/m
when exfoliated) [60], as well as its good lattice matching with graphene [162], make it a good candidate.
Moreover, thin films of h-BN have been synthesis through CVD process conserving good dielectric prop-
erties (0.4 GV/m) [74]. However, h-BN optical properties induce severe damping in graphene plasmons
[153], as Im(ε) is of the same order of magnitude than the one of SiO2 [157]. Moreover, Boron is rather
rare on earth.

Comparatively, Diamond fulfills all the criteria cited above. Its dielectric strength is ideally higher
than the h-BN one [51, 156]. It can be synthesis through the unique and same CVD process [165]. It
has no optical energy dissipation in infrared region and carbon is a material that is continuously growing
on earth surface in stocks, creating environmental issues. It would be also interesting to look at the
behavior of plasmons in graphene transferred onto UNCD and SCD by changing the surface termination
(H-termination vs O-termination) of underlying diamond. Intercalate nano-spacer between graphene and
SiO2 substrate has been already studied [38], and has shown improvement of the plasmons propagation.
Therefore, the combination of diamond and graphene would definitively give important results that could
eventually lead to efficient active opto-electronic devices.
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Appendix A

Example of application : infrared
spectrometer

One of the direct application of graphene plasmons is that it could lead to optoelectronic transistors,
already demonstrated experimentally. Others theoretical devices have been also study numerically. An
infrared spectrometer concept is presented below.

Figure A.1: Illustration of a golden snail shape structure that is possible to fabricate through e-beam
lithography. In the center, golden diffusers are placed.

It is based on the grating effect which is presented Section 4.1.4. Periodic structures have the prop-
erty to diffract the light. As well as antenna (see Section 3.3), periodic structures can excite graphene
plasmons. They also show a particularity : they can enhance a near field with a particular angular
momentum.

At normal incidence, the momentum of the near field enhanced by the periodic structures is inversely
proportional to the spacing between the different periodic structures (see Equation 4.5). Therefore, the
wavelength enhanced by the periodicity of the grating is proportional to the distance between two peri-
odic structure.

Hence, it is possible to fabricate a grating with a defined space between the periodic structure which
select a wavelength (momentum) to be enhanced. As well, it should be possible theoretically to design
a periodic structure with a variable spacing, that could be able to enhance near fields with a pre-defined
range of wavelength (pre-defined range of momentum). Figure A.1 shows a snail shape periodic struc-
ture, with a distance in between golden line which vary steadily. This kind of structure can be seen as
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a many grating, drawing lines from the center of the snail to the edges. In each direction, a different
spacing between the rods enhanced a different wavelength. In the center is placed diffusers.

Let’s assume a beam of light with a broad frequency spectrum. When this beam is hitting the struc-
ture, the different period of the shape would enhanced a range of near field associated with a range of
angular momentum, depending on the spacing between the different rod. Therefore, all the plasmons
related to those angular momentum would be launched. In the case of graphene, above the intrinsic
graphene phonon taking place around 6µm, plasmons are theoretically propagating (in the case we have
a suitable platform for propagation of plasmons, with graphene doped electrostatically).

Then, the plasmon will travel toward the center of the snail, exciting the golden diffusers. The dif-
fusers would transfer the energy of plasmons to radiative light out of the plane, that could be eventually
recorded. This is general principle of this infrared spectrometer. In the following, we will now take the
case where we have a beam made of three frequencies. The spectrum of the beam is shown on the right
of the Figure A.2. The case of a beam hitting the sample with a normal angle (on the left of the Figure
A.2) is taken in this example. Finally, the spectrometer will work thanks to the tunability of graphene
plasmons, that is presented below.

Figure A.2: On the left, a beam of light hit the snail (in yellow) perpendicularly to its plane. The
substrate is represented by two different blue color. On the right is shown the spectrum of the beam
combining three distinct frequencies.

Let’s start from undoped graphene, which means that no potential is applied to the graphene (Fig-
ure A.3 left). Its Fermi level approach zero (Figure A.3 center left) and no plasmons would be able to
propagate to the diffusers (Figure A.3 center right), due to high Laundau damping (see Section 1.3.3).
No signal would be detected (Figure A.3 right).

Figure A.3: Illustration of the first step of the spectrometer concept. The graphene is undoped (0V
applied), no plasmons are propagating, and no signal is broadcast.

Let’s now rise slowly the potential (Figure A.4 left). The graphene is electrostaticaly doped. Its Fermi
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energy will rise also slowly (Figure A.4 center left). Energetically low plasmons (long wavelength) would
be able to propagate through graphene. Therefore, the related small angular momentum corresponding
to low energy plasmons would be launched and propagate to the diffusers (Figure A.4 center right). The
diffusers would transform plasmons energy into farfield signal, that can be recorded. Intensity increase
at the photodetector (Figure A.4 right). Referring to our three frequency beam, the lower frequency
would be then recorded at the photodetector (red small arrow).

Figure A.4: Illustration of the second step of the spectrometer concept. The graphene is weakly doped
by an applied voltage, low energy plasmons are propagating, and a signal is recorded.

Rising again the backgate potential would allowed higher energy plasmons to propagate to the dif-
fusers. In this case, the central frequency of the beam would be recorded (green arrow). That would
increase the intensity recorded at the detector (Figure A.5).

Figure A.5: As the applied voltage is rising, the Fermi energy in graphene is rising, enabling higher
energetical plasmons to propagate to the diffusers. A corresponding energy is transfered to the photode-
tector.

Eventually, all the permitted graphene plasmons (above 6µm) would be allowed to travel to the dif-
fusers and be recorded to the photodetector (Figure A.6 left). Because each plasmons correspond to a
wavelength, it is possible, from the intensity spectrum recorded, to recover the incident beam spectrum.
In fact, each intensity step, corresponding to a distinct applied potential, would be interpreted as a
frequency (Figure A.6 right). A transfer function would actually exist in between the potential and the
frequency. As well, the intensity of a peak will depend on the height a a step.
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Figure A.6: On the left, the intensity finally recorded at the photodetector. It is a step function with in
x-axis the intensity versus the potential in y-axis. Each step is therefore characterized by a different of
intensity, and a potential (∆I, V). On the right, the recovered frequency spectrum of the beam.
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Introduction

Au cours du siècle dernier, le domaine de l’infiniment petit a commencé à être étudié, au fur et à mesure
que les outils ont été développé et ont été disponible dans les centres de recherche. Les nanosciences ont
porté les promesses de révolution dans de nombreux domaines. Entre autres, d’énormes efforts ont été
mis en place dans les domaines de la médecine et des technologies de l’information, où des progrès sont
fortement demandés. La nanoscience est présente dans notre vie quotidienne à travers tous les dispositifs
électroniques qui nous entourent. En effet, la taille du composant a été réduite de façon régulière jusqu’à
l’échelle nanométrique. Cependant, le nanomonde ne fonctionne pas avec les mêmes règles physiques, où
d’autres phénomènes ont lieu. Beaucoup de recherches sont orientées vers la résolution des problèmes
qui se posent, avec deux stratégies. La première est de faire fonctionner les nano-dispositifs de la même
façon que les macro dispositifs marchent à notre échelle. La seconde stratégie est de mener des recherches
afin de tirer avantage de ces nouvelles règles, de ces nouveaux phénomènes. Cette thèse vise à montrer
quelques résultats récents sur les ondes électromagnétiques apparaissant à l’échelle atomique. Ce travail
prend place à l’intersection de deux disciplines, la plasmonique et le graphène, en tant que nouveau
matériau.

La plasmonique fait partie du domaine général des plasmas. Le plasma est un état de la matière,
où les ondes collectives de densité d’électrons peuvent être manipulées. Il en existe plusieurs formes, et
l’une d’entre elles est l’oscillation collective en 2D des électrons de surface des matériaux conducteurs.
A l’interface entre un métal et un isolant, des plasmons de surface peuvent être trouvés. Ces ondes
électromagnétiques peuvent être couplées à la lumière, et cette dernière pouvant se retrouver confinée.
Le confinement de la lumière est un sujet de recherche important car les appareils photoniques souffrent
de leur taille, en grande partie due à la taille de la longueur d’onde à laquelle ils fonctionnent. Ce
phénomène plasmonique a été récemment observé dans un matériau 2D, plus particulièrement dans le
graphène.

Dans la quête de comprendre et de manipuler l’infiniment petit, le graphène apparaît comme un tré-
sor. Il est en effet infiniment mince : c’est la première couche d’un atome d’épaisseur à être découverte.
La liaison forte carbone-carbone permet au scientifique de le manipuler avec des outils macroscopiques.
En plus de cela, il est possible d’isoler une couche de graphène par la technique d’exfoliation mécanique
avec du scotche. Cette technique a un gros avantage : elle est si simple et bon marché qu’elle peut être
reproduite par n’importe quelle équipe de recherche dans le monde entier. Enfin, ses propriétés partic-
ulières ouvrent de nouveaux champs de recherche. Pour avoir une idée de l’importance de la découverte,
il n’a fallu que six ans à Andrei Geim et Kostya Novoselov pour obtenir leur prix Nobel après leur célèbre
publication. Dans ce contexte apparaît le domaine de la plasmonique dans le graphène.

Le domaine de la plasmonique dans le graphène émerge quelques années après les prix Nobel. Les
plasmons de graphène ont montré leur potentiel grâce à leur confinement élevé et leur tunabilité. Ce
domaine est détaillé dans cette thèse. Dans le premier chapitre, quelques connaissances de base sur
les propriétés plasmoniques en général, et sur les propriétés principalement électroniques du graphène,
sont exposées. Le deuxième chapitre est une revue de la littérature sur le graphène et la plasmonique
dans le graphène, ainsi que la démonstration d’un modèle de base expliquant les propriétés des plasmons
de graphène. Dans le troisième chapitre, une étude numérique sur les plasmons se propageant dans le
graphène suspendu est présentée. Dans le quatrième chapitre, la fabrication d’échantillons ainsi que les
mesures optiques à travers un SNOM (scanning near-field optic microscope) fait maison sont introduites.
Enfin, les principaux résultats de cette thèse sont résumés, ainsi que la direction de recherche possible à
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prendre en compte à la suite de ce travail.
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Contexte théorique

Cette thèse s’inscrit dans le cadre d’un champ scientifique large et peu intuitif, généralement appelé
nanotechnologie. Le nom se réfère directement à la taille (le nanomètres) des systèmes étudiés. De
nouvelles propriétés découlent du confinement dans une ou plusieurs dimensions des matériaux. A titre
d’exemple, le rapport entre les atomes de surface et les atomes de cœur varie considérablement lorsque
l’on réduit les dimensions d’un objet à l’échelle nanométrique. En fait, les atomes de surface présentent
des propriétés différentes des atomes de coeur, car les forces appliquées sur eux ainsi que leur terminaisons
chimiques diffèrent. Par conséquent, les atomes de surface donnent à la structure de nouvelles propriétés
chimiques, car ils construisent l’interface physique entre le solide et son environnement. Le confinement
de la structure donne également de nouvelles propriétés physiques, mécaniques, électromagnétiques. En
particulier, on y trouve de nouvelle propriétés plasmoniques remarquables. C’est notoirement le cas pour
les matériaux à deux dimensions découverts assez récemment [119], et parmi eux le graphène.

Afin d’aller plus loin dans le domaine de la plasmonique dans le graphène, le premier chapitre vise
à exposer les bases de la plasmonique et du graphène. Par conséquent, dans une première partie, les
équations de Maxwell et le modèle de Drude sont introduits, ce qui donnera les clés pour traiter la
deuxième partie de ce chapitre, c’est-à-dire les plasmons de surface polaritons (SPP). Enfin, certaines
des propriétés électronique du graphène seront expliquées.

Les équations de Maxwell et le modèle de Drude
Les équations de Maxwell sont les bases d’une révolution en physique [56, 71]. Ces équations couplent
le champ magnétique H(r, t) et le champ électrique E(r, t). Dans le domaine spatial et temporel, les
6 fonctions scalaires de ces champs sont reliées entre elles par les équations de Maxwell, qui donnent
naissance à l’équation de l’onde électromagnétique. Cet ensemble d’équations différentielles partielles
fait partie des lois de la science. Il y a quatre équations qu’il est possible de définir en fonction des
milieux environnants. Grâce à ces équations, il est possible d’obtenir la relation de dispersion suivante :

k2 = ε
w2

c2
ie k =

√
ε
w

c
(B.1)

Cette relation de dispersion décrit la dynamique d’une onde plane dans un milieu avec k le nombre
d’onde, ε la permittivité du milieu, w la pulsation et c la vitesse de la lumière dans le vide. Si le milieu
est dit dispersif, sa fonction diélectrique est fonction de la longueur d’onde de la lumière. La fonction
diélectrique est habituellement notée ε(w). Dans le vide, ε(w) = 1 et la relation de dispersion linéaire
devient:

k = w

c
(B.2)

Conditions aux limites
Les équations de Maxwell sont valables pour un milieu continu. Cependant, ils peuvent être utilisés dans
le cas d’interfaces, où ils contraignent le comportement des champs électromagnétiques conduisant à ce
que l’on appelle les conditions aux limites. En conséquence, une partie de l’énergie est généralement
réfléchie, et une autre transmise. Il est également possible d’en déduire les directions et les angles des
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champs résultants, en fonction du faisceau incident, de sa polarisation ainsi que des propriétés des mi-
lieux. Plus spécifiquement pour cette étude, la relation de dispersion des plasmons de graphène provient
des conditions aux limites appliquées sur le champ magnétique.

Les conditions aux limites pour les champs électromagnétiques peuvent être dérivées des formes
intégrales des équations de Maxwell exposées dans l’introduction de la section. Quatre conditions aux
limites proviennent des 4 équations de Maxwell.

Révision du modèle de Drude et des équations du mouvement des électrons
libres
Le modèle Drude a été construit trois ans après la découverte des électrons par Thomson. Dans un
métal, Drude considère une mer d’électrons et utilise la théorie des gaz pour décrire les conductions
électriques et thermiques. Dans ce modèle, il est supposé que les électrons sont des solides sphériques
se déplaçant à l’identique le long d’une ligne droite. Une moyenne temporelle (t = τ) connue sous le
nom de temps de collision est définie pour délimiter deux collisions. Les électrons émergeront avec une
direction et une vitesse aléatoire après chaque collision (pas de condition initiale particulière). Il n’y a
pas de force appliquée sur les électrons sauf celles qui se produisent quand ils entrent en collision : pas
d’interaction électron-électron (approximation indépendante des électrons), pas d’interaction électron-ion
(approximation des électrons libres).

Fonction diélectrique du gaz d’électrons. La réponse optique d’un métal Drude, en l’absence de
force de traînée, peut être établie :

ε(ω) = 1− ne2

ε0mω2 = 1−
ω2
p

ω2 (B.3)

avec n la densité de charge, e la charge élementaire, ε0 la permittivité du vide, m la masse de la
charge et ωp la fréquence du plasma. A cette fréquence angulaire, le mouvement collectif des électrons
dans un milieu conducteur, tel qu’un métal, résonne. Sous cette fréquence, le milieu réfléchit l’onde
électromagnétique, tandis qu’au-dessus, l’onde se propage à travers le milieu.

Équations de mouvement pour un porteur de charge libre. Il est possible de décrire la dy-
namique d’un porteur de charge libre en ajoutant un terme d’amortissement.

On définit donc la conductivité optique σ(w) en fonction de la pulsation par :

σ(w) = ine2

m(w + i/τ) (B.4)

De la conductivité optique à la permittivité. La permittivité est une propriété intrinsèque vrai-
ment intéressante des matériaux car elle donne accès à la réponse optique d’un matériau sous pertur-
bations. Malheureusement, cette propriété n’est utile que pour la modélisation de matériaux 3D. Le
graphène étant une feuille de carbone d’un atome d’épaisseur, nous utiliserons plus probablement la
conductivité 2D. Cependant, dans une première approche, le modèle de Drude peut convertir la conduc-
tivité 2D en une permittivité 3D, ce qui nous donne une bonne idée de la réponse optique du graphène
dans l’infrarouge. Ses propriétés optiques via la permittivité des matériaux ont été largement utilisées
au début pour le graphène, permettant ainsi la simulation FDTD.

Cette approche 3D implique de modéliser des matériaux avec un ensemble arbitraire d’épaisseur finie
de 2a. Dans ce modèle, l’environnement du graphène, caractérisé par une permittivité epsilons, joue
également un rôle crucial:

εg(ω) = εs(ω) + iσ2D(w)
ω2aε0

(B.5)

Dans le cas du graphène suspendu, ε1 = ε2 = εair = 1 et ainsi εs = 1. L’équation (B.5) mène à :

εg(ω) = 1 + iσ2D(w)
ω2aε0

(B.6)

124



Plasmons de surface polariton
Dans le cadre de l’étude des ondes électromagnétiques, les plasmons de Surface polaritons peuvent être
considérés comme un résultat particulier des équations de Maxwell à l’interface de deux milieux aux
propriétés spécifiques [101, 128, 130]. Pour donner une explication plus imagée de la plasmonique, il est
intéressant de revenir à son origine physique. Le plasmon peut être vu comme un mouvement collectif
d’électrons réagissant à un champ électrique. Cependant, ces mouvements collectifs ont tendance à se
déplacer un peu trop loin et, par conséquent, une force de rappel les tire vers l’arrière. Ceci en réaction
à la perturbation de charge créée par leur excès de déplacement. Ce premier mouvement collectif est
répété de sorte qu’une oscillation faiblement amortie se produit. Par conséquent, un plasmon peut être
défini comme une oscillation collective cohérente d’électrons libres. Lorsque l’excitation du plasmon est
légère, un couplage entre les plasmons et l’onde électromagnétique se produit, aboutissant à un plasmon
de surface polariton (SPP).

Plasmon de surface polariton sur une seule interface en absence de courant
libre
Dans notre cas, nous nous intéressons aux plasmons de surface n’apparaissant qu’en mode TM (pour le
cas TE, voir [101]). La relation de dispersion d’un SPP dans un système à une seule interface est :

kx = kp = k0

√
ε1ε2
ε1 + ε2

(B.7)

kp est le vecteur d’onde de plasmon de surface. Cette grandeur kp peut donner des informations
intéressantes telles que la longueur de propagation:

L = 1
2Im[kp]

(B.8)

aussi bien que la longueur d’onde effective du plasmon dans le matériau :

λp = 2π
Re[kp]

(B.9)

La longueur de propagation est la longueur à laquelle l’intensité, proportionnelle au carré du module
du champ électromagnétique, tombe à 1/e. La longueur d’onde des plasmons est la longueur d’onde
efficace qui peut être mesurée, par exemple, par la microscopie optique en champ proche (SNOM).
Cette dernière grandeur physique peut être normalisée par le champ d’excitation et s’appelle dans ce
cas le facteur de localisation. Il donne aussi, indirectement, une bonne idée du confinement du champ
électromagnétique dans les matériaux.

Polariton de plasmon de surface dans un système multicouche
Un système multicouche est défini lorsqu’une interaction/couplage entre des plasmons de surface de
différentes interfaces a lieu. Cela signifie que l’épaisseur du métal est comparable ou inférieure à la
décroissance du plasmon de surface.

Il existe deux modes possible, représentés par deux équations de dispersion. Le modes antisymétrique
tend à devenir radiatif, car il suit la relation de dispersion de la lumière dans l’air. Par conséquent, pour le
graphène qui est un matériau d’un atome d’épaisseur, seule la relation de dispersion symétrique subsiste.
Dans ce mode, la profondeur de pénétration devient petite, ce qui conduit à un très fort confinement .

L’étude réalisée dans ce chapitre a été menée de façon a comprendre la plamonique appliquée dans le
cas d’un métal extrêmement mince. Le graphène, qui est un semi-métal, a un comportement plasmonique
remarquablement proche des SPP provenant d’une couche extrêmement mince de métal noble commun.
Cependant, sa structure cristalline 2D ainsi que la dynamique de ses électrons rendent les Plasmons
du Graphène un peu différents. Dans la section suivante, nous nous intéresserons donc aux propriétés
cristallines et électroniques du graphène, avant d’approfondir la plasmonique graphène.
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Propriétés du graphène
Une feuille d’atome de carbone
Le graphène est la mère de toutes les formes graphitiques: c’est une feuille d’atomes de carbone dans un
réseau en nid d’abeille. Il possède des propriétés physiques uniques: le graphène est le matériau connu
le plus fort et le plus flexible, il a l’enregistrement de la conductivité thermique la plus forte, et est
complètement imperméable [50, 8]. De plus, du point de vue optoélectronique, ses porteurs (électrons
et trous) présentent une très grande mobilité et un long chemin libre moyen. Le graphène a des den-
sités de porteur de charge tunable par l’application d’un potentiel électrique. De plus, cette membrane
épaisse d’un atome est un exemple parfait d’un système d’électrons bidimensionnel pour les physiciens.
Selon [62], "Quand la théorie quantique des solides a été développée, le graphite a été l’un des premiers
matériaux auxquels cette théorie a été appliqué. Les premiers calculs de la structure en bande d’énergie
du graphite semblent avoir été faits par Hund et Mrowska en 1937 en tant qu’exercice académique. "

Afin d’étudier en détail les propriétés opto-électroniques du graphène, il est important de regarder
sa structure cristalline. C’est une monocouche d’atomes de carbone bornés sp2 dans un réseau en nid
d’abeille. Chaque atome de carbone est attaché à trois voisins par des liaisons covalentes d’une longueur
d’environ a0 = 0, 142nm. Cette configuration provient des interférences orbitales atomiques entre atomes
de carbone voisins (hybridation orbitale).

Faisons d’abord un zoom sur la plus petite unité de sa structure: l’atome de carbone. Cet élément
chimique a six électrons, quatre des électrons sont dans sa couche de valence (la couche extérieure). La
configuration de l’état fondamental de l’atome de carbon est 1S22S22P 2 qui peut aussi être écrite afin
de faire ressortir les électrons de valence [He]2S22P 2. De façon schématique :

↑↓
1S

↑↓
2S

↑ ↑ ↑
2P

(B.10)

Ici, nous pouvons voir les six électrons représentés par des flèches (la direction de la flèche représente
le spin électronique). Les électrons situés les plus proches du noyau se trouvent dans l’orbitale 1s. Ces
électrons sont généralement considérés comme "gelés" dans l’approximation pseudo-potentielle, qui a lieu
dans de nombreux modèles. Le modèle de pseudopotentiel est un moyen de remplacer les effets com-
pliqués du mouvement des électrons de noyau d’un atome et de son noyau par un potentiel effectif, ou
pseudopotentiel. Ces électrons ne sont pas impliqués dans les liaisons inter-atomiques. Les deux électrons
suivants sont dans l’orbitale 2s. Les autres seront dans deux orbitales 2p distinctes. Les orbitales p ont
la même énergie et donc les électrons seraient plutôt dans des orbitales séparées.

Dans le graphène, l’atome de carbone réarrange ses électrons de valence de manière à créer des liaisons
avec ses trois voisins. En fait, créer une liaison diminue l’énergie du système. On se retrouve donc avec
des atomes de carbone dont les états électronique sont décrit de la manière suivante :

s
px
py
pz

 with a electronic configuration : ↑
2S

↑ ↑ ↑
2P

(B.11)

De cette manière, il est possible de reconstruire la structure en nid d’abeille avec des liaisons hybrides
de type sp2

Le modèle des liaisons fortes : une étude sur la dynamique des électrons
Modélisation de la dynamique des électrons, un ensemble d’hypothèses

Afin d’étudier en détail les propriétés opto-électroniques du graphène, donnant lieu à des plasmons, il
est important de se pencher sur la dynamique des électrons dans ce matériau 2D.

Ce problème est bien connu et peut être résolu en mélangeant la physique des états solides avec la
mécanique quantique. Le premier point est de réaliser qu’un tel système de n-corps ne peut pas être
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résolu exactement, en raison des interactions et des degrés de liberté importants. En effet, les électrons
et les trous sont des porteurs de charge, donc leur dynamique dépend de toutes les autres particules
(électrons, trous, noyaux et défauts) dans les milieux. Le calcul exact sur de tels systèmes nécessite une
puissance de calcul qui n’est pas disponible de nos jours. C’est la raison pour laquelle les physiciens
mettent en place des méthodes de calcul basées sur des approximations qui permettent d’obtenir des
résultats proches des observations expérimentales.

Ici, le but est de comprendre les propriétés électroniques du graphène via le modèle des liaisons fortes
qui donne un résultat sous forme de structures d’énergie de bande [23, 54]. Dans cette approche, les
électrons se déplacent à travers un potentiel périodique très fort au voisinage des atomes du réseau. En
regardant la dynamique des électrons dans un réseau, on regarde la délocalisation des électrons causée
par les atomes voisins. On en déduit une équation de dispertion décrivant la dynamique des électrons,
qui est représenté pour les petites énergies sur la Figure B.1a.

La structure de bande La bande de valence et la bande de conduction se touchent en deux
points dans la zone de Brillouin (Figure B.1a), K1 et K2. En conséquence, le graphène est souvent
considéré comme un semi-conducteur à intervalle nul ou un semi-métal. Il est intéressant d’observer qu’à
faible énergie, la relation de dispersion autour des points K est linéaire (Figure B.1b), ce qui donne à la
structure de bande électronique du graphène cette forme particulière de cône au voisinage du point de
Dirac .

(a) Relation de dispersion électronique d’une seule couche de graphène tracée dans la
première zone brillouin.

(b) Zoom sur le point de
haute symétrie K. Dans les
faibles énergies, nous avons
une dispersion linéaire

Figure B.1: Illustration de la relation de dispersion des électrons du graphène (a) dans la première zone
brillouin et (b) au voisinage du point de symétrie élevé K.

Au voisinage des K points, la relation de dispersion peut être approchée comme étant :

E± = ±γ0|f(q)| = ±γ0
3a0

2 |δk| = ±~vF |δk| (B.12)

où la vitesse de Fermi a été définie comme vF = gamma0 frac3a02 hbar approx106m.s−1. De plus,
la vitesse de Fermi ne dépend pas de la masse. Nous parlerons donc de l’électron sous forme de fermions
de Dirac sans masse dans le graphène. L’une des conséquences est la mobilité ultra-élevée des charges
dans le graphène, conduisant à une conductivité élevée de ce matériau même à température ambiante.

Spectre d’excitation électron-trou du graphène
Les excitations de trous d’électrons dans la plage de basse énergie peuvent être expliquées en regardant
attentivement la structure de bande en forme de cône (Figure B.1b). Ces excitations sont très importantes
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dans l’étude de la plasmonie du graphène, car il existe une possibilité de transfert d’énergie entre les
plasmons et les électron-trous entraînant l’amortissement des plasmons. Cet amortissement s’appelle
l’amortissement de Landau, qui est une perte de mouvement électronique collectif des plasmons pour
l’excitation de paires électron-trou.

Conclusion
Dans ce premier chapitre, des principes fondamentaux ont été présentés afin de couvrir à la fois les
domaines de la plasmonique et du graphène. Les principes de la physique de l’électromagnétisme ont
été utilisés pour comprendre la base de la plasmonique, aussi bien dans le cas général que dans le cas
des couches minces. Ensuite, les principales propriétés du graphène sont introduites. En particulier, le
modèle des liaisons fortes fournit une compréhension du comportement des électrons dans le graphène

Dans le chapitre suivant, les connaissances recueillies ici seront utilisées pour étudier le domaine de
la plasmonique dans le graphène.
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Plasmonique de graphène

Les dispositifs électroniques, utilisés dans les télécommunications et le traitement de l’information,
présentent des limitations inhérentes dues aux pertes et aux bruits électroniques des matériaux qui ont
des conséquences sur leur conductivité et la consommation d’énergie associée. Pour supprimer ces bar-
rières et continuer à augmenter les performances des dispositifs électroniques, la tendance technologique
est de trouver d’autre support d’informations capable de remplacer ou de compléter les électrons, parmi
lesquels les photons semblent être le candidat idéal. Jusqu’à présent, cependant, malgré les récentes
démonstrations prometteuses de confinement fort en champ proche dans des structures hybrides Silicon
on Insulator, par exemple [99], les dispositifs photoniques ont été limités par la longueur d’onde de la
lumière. réduit à l’échelle nanométrique.

Récemment, le graphene [50] a été proposé comme candidat pour combler le fossé entre les électrons
et les photons pour une nouvelle génération de dispositifs optoélectroniques [14]. Alors que de nom-
breuses propriétés prometteuses du graphène telles que son épaisseur ultime, sa transparence, la mobilité
de ses électrons ou sa force mécanique concentrent les efforts de nombreux groupes, quelques groupes
pionniers ont récemment commencé à étudier le graphène pour ses propriétés optoélectroniques [20] et
plasmoniques [57], ouvrant de nouvelles voies vers des nanodispositifs optoélectroniques basés sur des
interactions électron-photon.

De toutes les études théoriques pionnières [159, 58, 66, 59] et expérimentales [117, 114], il semble
maintenant possible d’utiliser la lumière comme support d’information en la manipulant à travers des
Plasmons de graphène polaritons.

Les promesses de la plasmonique dans le graphène résident dans le confinement élevé et l’amortissement
faible de ces plasmons ainsi que la possibilité de les ajuster électrostatiquement simplement en appliquant
une tension. Le principal atout serait de permettre la miniaturisation du composant photonique sans
faire face aux limitations thermiques habituelles, grâce à de faibles pertes électroniques dans le graphène.
Les applications pourraient donc être nombreuses.

Ce chapitre vise à exposer une revue de la littérature sur le graphène et la plasmonique dans le
graphène. Dans un premier temps, la découverte du graphène sera retracée ainsi que ses limites en terme
de propriétés de transport électronique. Ensuite, les propriétés optiques du graphène seront introduites
et une vue d’ensemble de l’état de l’art de la plasmonique dans le graphène sera présentée. Par la suite,
la relation de dispersion des plasmons de graphène sera démontrée. Ensuite, les propriétés plasmoniques
du graphène seront examinées en détail et enfin, une conclusion à travers les objectifs de cette étude sera
faite.

Revue de la littérature sur le graphène et ses propriétés de trans-
port électronique
La découverte du graphène et le processus de synthèse
En octobre 2004, deux articles ont été publiés [17, 117] et ont montré quelques propriétés remarquable
de couches de carbone sur différents substrats.
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Malgré la pensée commune [105], de tels films extrêmement minces sont thermodynamiquement sta-
bles aux conditions ambiantes. Deux méthodes de fabrication différentes ont été utilisées: sur carbure
de silicium par désorption thermique de Si [17], et par exfoliation mécanique [117].

Le comportement des propriétés du gaz d’électrons 2D dans un tel film mince a été démontré, ouvrant
un énorme champ de recherche dans un domaine tel que la mécanique quantique. Il a également été
démontré que le graphène est un semi-métal et qu’il peut supporter un courant énorme. Le transport
d’électrons dans ce milieu montre une petite résistivité électrique (transport balistique), limitée par l’effet
de diffusion, et donc une mobilité importante. Enfin, la caractéristique la plus importante découverte
est la possibilité d’injecter des porteurs de charge dans le graphène (dopage) qui modifie sa conductivité
/ résistivité et présente un effet de champ électrique ambipolaire (conductivité portée par électron ou
trou en fonction de la tension appliquée). Cette découverte a conduit à un prix Nobel de physique.

Limites sur les propriétés de transport du graphène

Les propriétés de transport du graphène sont limitées par différents mécanismes de diffusion. L’ampleur
de la diffusion des porteurs de charge peut être exprimée en termes de mobilité µ, qui relie la vitesse
de dérive moyenne d’un porteur de charge à un champ électrique appliqué. Le substrat de graphène sur
SiO2 présente une mobilité de plus de 1 m2V −1s−1, un ordre de grandeur plus élevé que le silicium qui
est le matériau électronique le plus commun [57] . Cependant, le taux de diffusion reste un obstacle et
limite les applications potentielles en opto-électronique, ainsi qu’en physique fondamentale [19].

La diffusion peut être divisée en deux catégories. Le premier concerne les mécanismes de diffusion
intrinsèque, tels que les défauts du graphène, les joints de grains, les ondulations intrinsèques ou les
phonons de graphène, émergeant du graphène lui-même. La seconde implique les mécanismes extrin-
sèques, issus des matériaux environnants, comme les impuretés chargées dans le substrat ou piégées sous
/ au-dessus du graphène, les ondulations et les déformations induites par le substrat, et les phonons
d’interface.

Revue de littérature sur les propriétés optiques et plasmoniques
du graphène
Comme cela a été vu précédemment, le graphène présente des propriétés exotiques. Entre autres, le com-
portement de particule de Dirac sans masse conduit à une très grande mobilité des porteurs chargés. De
plus, la possibilité de tuner le niveau de Fermi du graphène, et donc de modifier ses propriétés optiques,
conduit à un large intérêt dans la communauté scientifique. En fait, les porteurs de charge peuvent être
injectés jusqu’à 0,01 par atome de carbone en utilisant un système à effet de champ (1× 1013cm−2), et
jusqu’à 0,1 par atome pour l’électrolyte en gel solide [97]. Bien que très inférieure à la concentration
de dopage que l’on peut atteindre en métal noble (jusqu’à 1 par atome), l’injection de charges dans le
graphène entraîne un changement significatif de ses propriétés optiques.

La tunabilité des propriétés optiques du graphène comparé à celle d’un métal volumique peut être
comprise comme suit. Quand une masse de métal se trouve dans un fort champ électrique, les électrons
s’accumulent le long de la surface. Cela entrain un décalage de l’état de tous les électrons à l’intérieur
du volume. Cependant, le niveau total de Fermi n’est pas modifié et par conséquent, la propriété du
métal n’est pas modifiée. Au contraire, dans une seule couche d’atomes de carbone, il y a un changement
effectif de la densité des électrons / trous dans le matériau, ce qui change la conductivité et ensuite la
réponse optique [69]. Par conséquent, il est possible de moduler la relation de dispersion des plasmons,
qui suscite un intérêt considérable dans le monde scientifique.

Dans la section suivante, nous introduirons la théorie des propriétés optiques du graphène, puis nous
exposerons les dispositifs opto-électroniques prédits par simulation. Dans une seconde partie, un aperçu
de ce qui a été expérimenté dans le domaine de la plasmonique dans le graphène sera présenté.
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Théorie des propriétés optiques et simulation des dispositifs à base de graphène
Le graphène est un matériau prometteur pour l’optoélectronique, mais reste difficile à manipuler et
à contrôler, en raison de son épaisseur d’un atome. Cependant, les applications possibles ont suscité
un grand intérêt et de nombreux groupes ont travaillé sur la théorie et simulé des dispositifs à base de
graphène pour concevoir les futures plateformes opto-électroniques. Dans cette sous-section, une méthode
semi-classique est proposée pour traiter les propriétés optiques du graphène, basée sur la formule de Kubo
[59]. Par la suite, les dispositifs basés sur le graphène, prédits par différentes méthodes de simulation,
seront énumérés.

Les propriétés optiques du graphène

Les besoins de compréhension du comportement électro-optique particulier du graphène à travers la
théorie ont été motivés très tôt par la découverte et la caractérisation d’une feuille de graphène mono-
couche [17, 117]. L’approche des liaisons fortes appliqué à ce réseau en nid d’abeille 2D permet de com-
prendre la plupart des propriétés électroniques inhabituelles [54]. Cependant, l’interaction du graphène
avec la lumière n’est pas triviale et de nombreux groupes de recherche ont travaillé sur différentes ap-
proches pour le modéliser [58, 40, 59, 106]. Une introduction est faite sur le formalisme semi-classique,
à partir de la formule de Kubo [59], qui représente le graphène comme surface conductrice. Ryogo Kubo
a introduit un formalisme de transport électronique pour décrire la conductivité, basé sur la théorie de
la réponse linéaire. Il donne la conductivité en fonction du champ électrique appliqué.

Observation expérimentale des plasmons dans le graphène
Plusieurs techniques permettent aux chercheurs d’accéder à une preuve directe de l’existence de plasmons
dans le graphène. La première preuve expérimentale montrant le phénomène a été réalisée par Electrons
Energy Loss Spectroscopy (EELS) [111, 39, 96], où les électrons sont utilisés pour sonder les propriétés
du graphène.

Dans cette méthode, un faisceau incident d’électrons heurte la feuille de carbone. Certains des
électrons vont transférer une partie de leur énergie, par diffusion inélastique, aux plasmons de graphène.
Leur énergie sera éventuellement enregistrée après la réflexion ou la transmission à travers l’échantillon,
et un spectre de perte d’énergie des électrons est obtenu. Dans le graphène, on sait qu’il existe deux sortes
d’électrons de valence: les électrons π responsables des bornes covalentes entre les atomes de carbone, et
les électrons σ, quasi libres, qui créent des liaisons sur les orbitales pz. Par conséquent, plusieurs types
de plasmons peuvent exister [36]:

• Les plasmons de basse énergie, habituellement appelés plasmons 2D, avec une énergie inférieure à
3 eV, qui est le champ d’intérêt de cette thèse.

• Les plasmons de haute énergie, correspondant aux plasmons π (environ 4,7 eV) et π + σ (environ
14,6 eV).

Cependant, les plasmons 2D sont difficiles à sonder car ils apparaissent avec un dopage relativement
élevé (niveau de Fermi), étant très dépendants de celui-ci. Ils dépendent aussi d’autres paramètres comme
le substrat et les températures [98].

En 2012, deux articles [42, 29] ont été publiés simultanément décrivant la première imagerie en espace
réel de plasmons de surface se propageant sur un substrat Si / SiO2 pour le premier, et sur le graphène
nanoribbon sur le dessus du substrat 6H-SiC pour le second. Il a été difficile d’enregistrer la signature
d’une telle onde en raison de sa nature non radiative. Afin de visualiser ces ondes évanescentes, un
microscope optique à champ proche a été utilisé dans la région infrarouge.

Propriétés des Plasmons de Graphène
Il est intéressant de noter deux choses quand on parle de plasmons dans le graphène. Ils montrent
beaucoup de similitudes avec les plasmons de surface à une interface entre un diélectrique et un mé-
tal. Cependant, deux propriétés du système impliquent différentes caractéristiques du plasmon dans
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le graphène. Le premier est que les électrons sont gelés perpendiculairement à la surface, et le second
concerne la relation de dispersion des électrons dans le graphène, comparée à celle parabolique dans les
métaux [70]. Ces deux différences majeures conduisent à des relations de dispersion différentes entre ces
deux systèmes.

Cette étude vise à mettre l’accent sur les modes longitudinaux, où le champ électrique associé aux
plasmons est dans le plan, parallèle au vecteur d’onde. Ces modes sont connus sous le nom de modes
magnétiques transversaux. Ils apparaissent à une fréquence inférieure à l’énergie de blocage de Pauli.
Un mode transverse électrique de plasmon existe également dans le graphène, où l’on peut trouver une
oscillation collective d’électrons transversaux au plan de graphène [15]. Cependant, la courbe de disper-
sion de ces modes semble être trop proche de celle de la lumière. En conséquence, du point de vue du
confinement énergétique, ils semblent moins intéressant que les modes TM [70].

En 2007, il a été proposé plusieurs façons d’étudier les modes plasmoniques transverses électriques
et magnétiques sur le graphène. [66, 106]. Dans les sections suivantes, deux approches semi-classiques
seront proposées pour obtenir la relation de dispersion du plasmon dans le graphène. L’un est basé sur
une approche de volume, et l’autre consiste en une approche de surface. Ensuite, les différents paramètres
importants dans la propagation des plasmons de graphène seront analysés.

Relation de dispersion par l’approche volumique

Dans cette section, le graphène sera considéré comme un matériau d’épaisseur finie. Par conséquent, le
graphène sera décrit comme une plaque métallique extrêmement mince avec une permittivité complexe
εm. Le système peut être décrit comme une multicouche et le graphène est intégré dans un milieu
diélectrique avec une perméabilité diélectrique εd. Le graphène étant un matériau dont l’épaisseur est
d’un atome, l’épaisseur ∆ = 2a peut être approchée comme tendant vers 0. On trouve la relation de
dispersion suivante :

kp ≈ k0

√
1−

(
2

ησ2D

)2
(B.13)

avec k0 = w/c et η =
√
µ0/ε0 l’impédance de l’environnement.

Une introduction à la simulation de l’interaction matériau-lumière sera donnée afin d’étudier le
graphène à l’aide d’outils numériques. En conséquent, un modèle matériel est nécessaire. En première
approche, les résultats obtenus ci-dessus ont été implémentés dans le logiciel Lumerical FDTD, où le
graphène a été traité comme un matériau 3D, avec une épaisseur finie.

Cependant, le maillage requis est très petit par rapport à la longueur d’onde infrarouge, et une certaine
aberration peut se produire. Par conséquent, un deuxième modèle a été développé, avec du graphène vu
comme un matériau 2D, défini par sa conductivité 2D. Cette deuxième approche est démontrée ci-après.

Relation de dispersion par l’approche de surface

Une autre façon d’obtenir la relation de dispersion des plasmons dans le graphène est de décrire le système
comme une interface de deux milieux diélectriques, avec un courant libre entre les deux. Le même mode
TM sera considéré. La relation de dispersion peut s’écrire :

ε2√
k2
p − ε2k2

0

+ ε1√
k2
p − ε1k2

0

= − iσ

wε0
(B.14)

Cette équation est plus facilement implémentable, et plus flexible. C’est celle ci qui sera utilisé par
la suite dans les simulations FDTD.
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Graphene plasmons propagation and damping rate

La relation de dispersion des plasmons dans le graphène peut-être simplifier sous la forme :

kp = 1
λ0

π~
2ατEF

(ε1 + ε2)(ωτ + i) (B.15)

Figure B.2: Relation de dispersion du plasmon de graphène calculée par RPA (ligne continue), et par le
modèle classique (ligne pointillée). Le graphène repose sur le substrat de SiO2. Les deux types de zone
SPE sont dessinés en arrière-plan.

La longueur d’onde du plasmon dans le graphène peut être obtenue en utilisant l’équation (B.9). Il
est également possible d’obtenir la distance de propagation avec l’équation (B.8). Toutes ces grandeurs
physiques peuvent être dérivées des parties réelles et imaginaires du vecteur d’onde kp (voir Equation
(B.15)). Prenons le cas d’une couche de graphène prise en sandwich entre un diélectrique et l’air. Par
conséquent, nous pouvons définir ε1 = εsous = ε′+ iε′′ et ε2 = εair = 1. La longueur d’onde des plasmons
λsupp peut donc être établie, ainsi que sa distance de propagation Lsupp pour le graphène supporté comme
suit:

λsupp = λ0
4ατEF

~((ε′ + 1)ωτ − ε′′) (B.16)

Lsupp = λ0
ταEF

π~(ε′ + 1 + ε′′ωτ) (B.17)

Le taux d’amortissement peut être écrit comme:

γ = Im(kp)
Re(kp)

= ε′ + 1 + ε′′ωτ

(ε′ + 1)ωτ − ε′′ ≈
1
ωτ

+ ε′′

ε′ + 1 (B.18)
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But de cette étude
L’objectif initial de cette étude est de jeter les bases de la propagation des plasmons pour le développe-
ment de futurs dispositifs optoélectroniques à base de graphène. Idéalement, les plasmons de graphène
dans l’infrarouge subissent de faibles pertes métalliques par rapport aux métaux nobles. Cela est dû à
ses excellentes propriétés électroniques. Cependant, le substrat implique des impuretés et des défauts
qui affectent les propriétés de transport du graphène. En outre, l’utilisation d’un substrat induit un fort
amortissement dû à une dissipation d’énergie optique élevée. Dans ce contexte, le graphène suspendu
semble être une voie prometteuse pour la conception de futurs dispositifs opto-électroniques.

La portée de ce travail est l’étude des plasmons dans le graphène suspendu. Le graphène suspendu
permet de se débarrasser de l’interaction des charges du substrat. Sous des conditions spéciales, les
plasmons de graphène pourraient atteindre une longueur de propagation intéressante. Par conséquent,
une étude numérique est détaillée dans le chapitre 3. Dans le chapitre 4, les résultats expérimentaux
sont présentés. La fabrication des échantillons, les caractérisations ainsi que les mesures optiques sont
introduites dans le chapitre 4. Les mesures optiques sont réalisées avec un microscope optique à champ
proche (SNOM) à balayage dans l’infrarouge.
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FDTD Simulation de la propagation
des plasmons dans le graphène en
suspension

Le travail d’un chercheur consiste à entreprendre des recherches créatives sur une base systémique et
organisée. Par conséquent, des outils numériques ont été développés pour aider les scientifiques à prédire
les routes intéressantes à explorer, avant les démonstrations expérimentales. La méthode FDTD est une
technique d’analyse numérique qui donne à la communauté de l’optique la possibilité de simuler diverses
interactions entre la lumière et la matière. L’excitation des Plasmons de Surface est un phénomène qui se
produit dans le cadre de ces interactions, apparaissant d’un point de vue théorique après avoir réarrangé
les équations de Maxwell. Ces équations sont à la base de la méthode FDTD, qui vise à les résoudre
dans les domaines d’espace et de temps discrétisés. Par conséquent, les plasmons peuvent être calculés
et étudiés grâce à cette méthode numérique.

Tout d’abord, l’idée de base de la méthode FDTD sera introduite brièvement. Ensuite, la modélisation
du graphène à travers la FDTD sera discutée. Enfin, le cas de la propagation des plasmons dans le
graphène en suspension sera détaillé: dans un premier temps, l’utilisation d’une nano-antenne dans le
plan pour l’excitation des Plasmons Graphène (GP) sera étudiée. Ensuite, un système est conçu en
prenant en compte les contraintes induites avec pour objectif une longue propagation. Enfin, certaines
remarques et critiques sont abordées.

Idée de base de la méthode FDTD
La méthode FDTD est basée sur un algorithme proposé par Kane Yee [146]. Les étapes clés de
l’algorithme sont résumées ci-après, avec quelques références au cas 1D qui sera développé ultérieurement.

1. Remplacer toutes les dérivées temporelles et spatiales des équations de Maxwell par des différences
finies. Ce faisant, l’espace et le temps sont discrétisés et les champs électriques et magnétiques sont
décalés dans les quatre dimensions.

2. Résoudre les différentes équations de Maxwell, en utilisant l’équation différentielle centrale du
second ordre, et exprime les champs inconnus futurs en termes de champs passés connus (Equation
(B.19)).

3. Évaluer les champs magnétiques à la première itération future afin qu’ils soient maintenant connus
.

4. Évaluer les champs électriques à la première itération future afin qu’ils soient maintenant connus .

5. Répéter les deux étapes précédentes jusqu’à ce que les champs aient été obtenus pendant la durée
désirée.

Regardons de plus près le cas le plus simple: le cas à une dimension.
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1-D FDTD
En utilisant les étapes décrites précédemment, on peut trouver l’équation du champ u suivant :

un+1
i w

(
v∆t
∆x

)2
(uni+1 − 2uni + uni−1) + 2uni − un−1

i (B.19)

avec n représentant l’indexe temporel présent et connu. n-1 représente donc l’indexe temporel passé
et n+1 représente l’indexe temporel futur. De la même manière, i représente l’indexe spatial. L’équation
(B.19) est dite entièrement explicite. Du côté droit de l’équation, toutes les valeurs des champs sont à
l’étape de temps n ou n− 1, donc déjà calculées parce que se référant aux itérations de temps présentes
et passées respectivement. Sur le côté gauche, la valeur du champ correspond au futur, à l’instant tn+1.
L’équation entièrement explicite permet de calculer la valeur future du champ à partir des valeurs précé-
dentes, déjà stockée dans l’ordinateur (à l’instant n actuel et au pas passé n-1).

FDTD in 3 dimensions
En 3 dimensions, la technique FDTD, qui est une méthode temporelle, résout les équations de Maxwell
dans un espace discrétisé. Cela donne lieu à un ensemble de 6 équations scalaires pour 6 composantes
de champ vectoriel, Ex, Ey, Ez, Hx, Hy, Hz, qui sont calculés dans une cellule Yee. La cellule Yee,
du nom de son inventeur, est une grille décalée et non-affectée, ce qui signifie que E et H ne sont pas
échantillonnés au même endroit, et chacune des 3 composantes vectorielles des deux champs ne sont pas
calculés sur le même emplacement.

En 40 ans d’existence, de nombreuses autres structures en maillage ont été proposées, mais aucune
n’a pu remplacer celle de Yee. Certaines des raisons sont énumérées par la suite. Dans un premier temps,
l’algorithme de Yee résout simultanément le champ électrique et le champ magnétique, plutôt que de
résoudre seulement l’un d’entre eux par l’équation d’onde (Equation (B.19)). Par conséquent, il rend le
calcul plus robuste et élargit le champ des simulations possibles, y compris au niveau des singularités
près des bords et des coins.

Deuxièmement, les composantes des champs E et des champs H sont placées de façon particulières,
de sorte que chaque composante du champ E est entourée de quatre composantes du champ H en cercle,
et inversement. Cela facilite le maintien des conditions aux limites, où la loi de Faraday et la loi de
l’Ampère sont liées. La seule exigence est de définir les propriétés optiques des différents matériaux à
une interface. L’interface sera définie parallèlement à une face de cellule Yee. Par conséquent, l’interface
aura une forme d’escalier avec une résolution d’espace de la taille du maillage. Enfin, en l’absence de
charges et de courants, la localisation du champ E et du champ H, combinée aux différences de second
ordre, impose les lois de Gauss, rendant les simulations exemptes de divergence.

Enfin, les 6 composantes des champs magnétiques et électriques sont également centrées dans le
temps. Le processus de progression temporelle est centré et le second ordre précis. Il est robuste parce
que les champs ne se dissipent pas en raison de l’algorithme de temps d’où pourrait provenir des artefacts
numériques. Il est également appelé "entièrement explicite", évitant ainsi à nouveau des erreurs et des
aberrations. Pour plus d’informations, voir [146].

Pour une même quantité d’erreur, la cellule de Yee permet d’utiliser un plus petit nombre de cel-
lules, comme l’ont fait les autres possibilités, à savoir les cellules co-localisées non décalées et décalées [73].

Modélisation du graphène dans FDTD
Le graphène est un matériau 2D, et en tant que tel, il n’est pas trivial de le simuler en utilisant FDTD.
Tout d’abord, la théorie qui nous donne l’équation de dispersion pour les propriétés optiques du graphène
est basée sur la formule de Kubo. La formule de Kubo donne deux termes intégraux à résoudre, qui
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représentent le terme intrabande et le terme interbande. Le premier est résolu analytiquement tandis
que le second peut seulement être résolu numériquement avec précision. Parce que le terme interbandes
ne peut être résolu que numériquement, plusieurs approximations existent.

Deuxièmement, les propriétés optiques du graphène, habituellement présentées en termes de con-
ductivité optique 2D, ne sont pas triviales à résoudre pour la simulation numérique FDTD 3D. Deux
méthodes existent: une approche 3D basée sur une permittivité virtuelle 3D, définissant le graphène
avec une épaisseur finie très faible, et une approche 2D utilisant la conductivité optique 2D, utilisant un
algorithme spécial pour modéliser le graphène comme matériau 2D [1]

En fait, dans le cas de l’approche 3D, le maillage d’une couche de graphène d’une épaisseur de l’ordre
de l’ordre de l’Angstrom donne une quantité significative de cellules de Yee à calculer. L’excitation élec-
tromagnétique est l’infrarouge, ce qui rend les structures du système de l’ordre du micromètre. Couplé
avec la longueur d’onde effective des plasmons de graphène qui est vraiment petite, il rend la région de
calcul énorme, relative au maillage.

Cette méthode de graphène 3D nécessite une discrétisation spatiale locale de l’ordre de ou plus mince
que le nanomètre, tandis que nos simulations impliquent des longueurs d’onde et des structures plus
grandes que le micron, conduisant à d’énormes domaines de calcul et à un maillage non-uniforme. De
plus, le critère de stabilité de la FDTD nécessite alors une discrétisation temporelle extrêmement courte,
et un nombre important d’itérations est donc nécessaire pour compléter une seule simulation. Par
conséquent, cette méthode nécessite beaucoup de ressources en terme de processeur et des aberrations
numériques peuvent se produire.

La modélisation de matériaux 2D, qui est la deuxième approche vue plus haut, vise à décrire le
graphène comme une surface chargée, où les conditions aux limites ne sont appliquées qu’à une fraction
d’une cellule Yee [6]. En tant que tel, il n’y a pas besoin de discrétiser l’espace (et le temps) à des tailles
extrêmes, et cela s’est avéré conduire à une stabilité accrue de nos simulations. De plus, cela conduit à
des résultats qui correspondent bien à la théorie des plasmons de graphène. C’est la méthode qui sera
utilisée ci-après. L’étude numérique du graphène a été rendue possible grâce à l’utilisation du super
calculateur Romeo à Reims, en France.

Utilisation d’une antenne plasmonique pour l’excitation GPPs
A l’origine, l’excitation des GPP était obtenue par l’utilisation d’une pointe métallique éclairé par laser
dans la configuration de microscopie optique en champ proche à balayage [42, 29]. Bien que la dispersion
du spectre angulaire résultant ait été large, une petite partie a été exploitée pour lancer avec succès les GP.

Dans nos simulations, nous utilisons des nano-antennes d’or pour étudier les GPP lancés perpendic-
ulairement à l’axe principal du nanorod. Ceci afin d’anticiper la possibilité de maximiser la puissance
des GPP lancés à l’aide d’un réseau. Il est en effet possible de placer côte à côte de nombreuses nano-
antennes ensemble, et d’obtenir un effet d’amplification grâce à la configuration du réseau.

En tant qu’étude préliminaire, une nano-antenne d’or d’une longueur L est considéré agissant comme
un dipôle résonant le long de L. La section des nano-antennes est rectangulaire, 80nm de large et 50nm de
haut. La forme est en aiguille, pour s’adapter à la fabrication par lithographie par faisceau d’électrons.
Le nanorod a été illuminé avec une impulsion qui se propage perpendiculairement au plan de l’échantillon,
le long de z. La lumière incidente est polarisée linéairement, parallèle à l’axe long de la tige (axe x). Ce
pulse a un spectre large bande allant de 8 µ m à 12 µ m, avec une longueur d’onde centrale d’environ 10
µ m.

La géométrie utilisée dans [5, 107] permet une efficacité de couplage GPP non négligeable. Pourtant,
cette géométrie avait une largeur de tige fixe, qui pourrait être optimisée. En fin de compte, notre travail
a montré qu’une optimisation précise de l’efficacité du couplage nécessite de simuler le système complet,
et d’étudier l’énergie que le plasmon porte réellement à travers les transformées de Fourier du champ
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proche. Quantitativement parlant, cette méthode est supérieure à l’étude du champ moyen seulement,
car le champ proche moyen contient de nombreux composants k qui ne peuvent pas être couplés à un GPP.

Cependant, le critère de champ moyen ne doit pas être entièrement rejeté. Comme nous l’avons mon-
tré ici, il conduit toujours à une bonne approximation au premier ordre. Contrairement à notre critère
qui nécessite des méthodes numériques pour calculer le système complet, le critère de champ moyen peut
être utilisé avec des modèles analytiques ou pseudo-analytiques, ou des méthodes numériques avec des
logiciels incapables de simuler le système complet, le graphène étant assez difficile à simuler.

Un troisième paramètre qui n’a pas été exploré est l’épaisseur de nanoantenne, mais ce paramètre
affecte également la distance entre la feuille de graphène et le substrat, et peut alors non seulement
affecter le comportement de l’antenne, mais aussi les propriétés du graphène lui-même.

Système conçu basé sur GPP

En conséquence, nous proposons la conception (voir Fig. B.3) d’un échantillon réaliste prenant en compte
les différents paramètres expérimentaux discutés ci-dessus. Sur un substrat de SiO2 (300nm) / Si re-
posent des structures en or, qui joueront le rôle de support de suspension pour le graphène, et également
un nanorod (antenne) pour le lancement de GPP. L’épaisseur du support en or et de l’antenne en or
est fixée à 100 nm. L’antenne d’or est intégrée dans un système de nano-fentes d’or perpendiculaire à
l’axe longitudinal de la tige. Les fentes dorées, d’une largeur de 300 nm, sont conçues pour suspendre le
graphène et guider les GPP perpendiculairement à l’axe long de la tige, ouvrant ainsi la voie aux futurs
circuits nanophotoniques basés sur le graphène en suspension.

Figure B.3: Illustration du système étudié. Une antenne plasmonique repose sur un substrat SiO2 /
Si. Les nano-slots d’or rassemblent et propagent les plasmons sur le graphène en suspension. La dalle
a également une fonction d’électrode pour le dopage du graphène en suspension. Or, Si et Si02 sont
représentés respectivement en jaune, gris et bleu. Encart: une vue de côté schématique le long de l’axe
x du graphène, de la fente dorée et du substrat. La hauteur de déflexion h0 est également représentée.
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Discussion sur le champ électrique appliqué
Un problème non couvert par cette étude peut survenir à l’étape expérimentale. En effet, le FDTD ne
prend pas en compte les phénomènes électrostatiques. Pour implémenter l’injection de charge dans le
graphène, le niveau de Fermi doit être modifié. Cependant, les champs électriques et magnétiques dans
les différents matériaux ne sont pas pris en compte.

Afin d’injecter des charges dans le graphène, le champ électrique effectif appliqué au graphène est
énorme. Par conséquent, les matériaux diélectriques entre le graphène et la couche conductrice de la grille
arrière doivent tolérer une amplitude de champ électrique élevée. La propriété liée au champ électrique
maximal qu’un matériau peut supporter sans rupture est appelée résistance diélectrique. La rigidité
diélectrique de l’air est d’environ 3MV / m. Pour un bon film mince de SiO2, il est possible d’avoir
500MV / m. La dégradation diélectrique de H-BN a été enregistrée aussi haut que 1GV / m [60, 74]. Le
diamant peut théoriquement atteindre une valeur plus élevée [51, 156]. Et enfin, le vide idéal résisterait
à un champ électrique aussi élevé que 10 9 GV / m.

Conclusion
Dans ce chapitre, une étude numérique a été présentée. Après un bref historique de la méthode FDTD, la
solution pour un problème d’onde unidimensionnel a été résolue, puis appliquée au cas 3D. La technique
de modalisation du graphène dans une simulation 3D a été discutée. Enfin, un plan est proposé, utilisant
une antenne, pour étudier la propagation des plasmons dans le graphène en suspension.

Certaines préoccupations concernant la faisabilité d’une telle expérience à l’état ambiant donnent
lieu à une discussion finale. Une installation utilisant une chambre à vide serait probablement nécessaire
pour obtenir la mesure attendue en laboratoire.
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Procédure expérimentale

Dans ce chapitre, les réalisations expérimentales sont décrites. Chronologiquement, la fabrication des
premiers échantillons a été faite en parallèle avec le travail de simulation numérique présenté précédem-
ment. Par conséquent, une partie du travail expliqué ci-dessous était en fait un premier essai pour
enregistrer les plasmons dans du graphène en suspension et la conception peut être légèrement différente
de celle montrée dans le chapitre précédent. En outre, il n’a pas abordé certains problèmes évoqués plus
haut, où il est expliqué pourquoi une configuration de microscope optique à champ proche à balayage
sous vide (SNOM) est nécessaire pour enregistrer des plasmons sur du graphène en suspension.

Par conséquent, dans un premier temps, le processus de fabrication d’un échantillon avec du graphène
en suspension est décrit, ainsi que les différentes conceptions que nous voulions étudier. Ensuite, la car-
actérisation du graphène basé sur la spectroscopie Raman est discutée. Enfin, les résultats préliminaires
SNOM seront affichées et commentées.

Fabrication de l’échantillon
Les échantillons avec du graphène suspendu ont été fabriqués à Singapour, au Centre for Advanced 2D
Materials.

Processus de fabrication des échantillons de graphène en suspension

Ci-après sont présentés les motifs fabriqués dans le but d’observer et de mesurer la distance de propagation
des Plasmons dans le Graphène.

(a) A perspective view of the sample (b) Cross-section view of the sample

Figure B.4: Illustration de la conception pour l’étude des plasmons de graphène à travers le graphène en
suspension. La monocouche de graphène (rouge) est sur le dessus du système. Les nanostructures d’or
sont en jaune et le substrat est fait de wafer dopé SiO2 (300 nm, bleu clair) / Si (bleu foncé).
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Patterns pour l’étude de la propagation GPs
Différents modèles ont été fabriqués afin d’étudier différentes plates-formes pour la propagation des plas-
mons de graphène. Plusieurs conceptions de trous ont été faites. La forme de la tranchée a été rendue
triangulaire (figures B.5a et B.5b), circulaire (B.5c et B.5d) et rectangulaire (B.6a et B.6b).

(a) Hole with small trianglular shape (b) Hole with large trianglular shape

(c) Hole with small circular shape (d) Hole with large circular shape

Figure B.5: Images SEM des échantillons fabriqués dans la salle blanche après la mise en place de la
simulation. On peut voir sur les différentes images des nano-tiges d’or de 4 µm d’un côté des trous, et
des diffuseurs d’or, de forme tubulaire, de l’autre côté des trous.

Ces trous sont conçus pour suspendre le graphène sur eux. Grâce à un alignement très précis entre la
lithographie par faisceaux d’électrons et la photolithographie, les nano-tiges et les diffuseurs de plasmons
sont placés très près des bords des trous. Comme déjà souligné, l’une des parties les plus difficiles de
la fabrication consistait à déposer les nanostructures aussi près que possible des trous. En effet, une
fois le graphène déposé sur l’ensemble de la structure, représenté sur l’image ref FRFig::susp, il est
important que la monocouche ne touche pas le substrat entre les structures d’or et les trous. Comme
nous pouvons le voir sur les différentes images SEM (Figures B.5a, B.5b, B.5c, B.5d, B.6a, B.6b, B.7a,
B.7b), les résultats finaux sont prometteurs et on peut s’attendre à ce que le graphène soit suspendu sur
l’ensemble des structures.

Patterns pour étudier la longueur d’onde des SPP
Un second ensemble de modèles a été réalisé pour étudier la longueur d’onde des SPP à travers le
graphène via des phénomènes d’interférences. Avec les motifs représentés Figures ref FRInter1 et ref
FRInter3, nous avons la possibilité de lancer deux plasmons à partir de deux points différents.

Ces ondes à deux surfaces interfèrent entre elles et un motif d’interférence peut apparaître sur les
diffuseurs. En fait, nous nous attendrions à avoir un modèle d’interférence qui serait échantillonné par
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(a) Hole with small rectangular shape (b) Hole with large rectangular shape

Figure B.6: Images SEM des échantillons fabriqués en salle blanche suivant les données de simulation.
On peut voir sur les différentes images des nano-tiges d’or de 4 µm d’un côté des trous, et des diffuseurs
en or, de forme circulaire, de l’autre côté des trous.

(a) Small trianglular shape of hole (b) Small trianglular shape of hole

Figure B.7: Images SEM des échantillons fabriqués en salle blanche après la mise en place de la simulation.
On peut voir sur les différentes images des nanorods d’or de 4 µm d’un côté des trous, et des diffuseurs
d’or, de forme circulaire, de l’autre côté des trous.
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les diffuseurs, montrant des points chauds intenses à l’emplacement d’interférences constructives, et une
réponse faible à l’emplacement d’interférences destructives, de manière similaire à l’expérience à double
fente (appelée expérience de Young).

Modèle pour étudier l’effet de réseau
Enfin, afin d’avoir l’intensité des plasmons la plus élevée possible, il serait prometteur d’exploiter le
phénomène de réseau, en plus du phénomène de résonance des nano-tiges. Pour cette raison, il a été
fabriqué pour chaque échantillon 4 motifs différents avec des espacements différents entre les nano-tiges.
En fait, la période de réseau de nano-tiges peut être calculée pour avoir une amélioration du champ
proche pour un vecteur d’onde particulier, ce qui donne en termes d’impulsion (voir Figure B.8):

kSPP = k0 sin θ + n
2π
d

(B.20)

Comme nous l’avons vu précédemment dans notre simulation, nous prévoyons d’éclairer nos échan-
tillons perpendiculairement à celui-ci. Par conséquent, sin θ = 0 et nous trouvons:

d = n2π
kSPP

= nλSPP ≈ n300nm (B.21)

Donc, pour un multiple de 300 nm, nous devrions obtenir un effet de réseau qui devrait améliorer la
force des plasmons lancés à travers le graphène. Il a donc été décidé de fabriquer plusieurs échantillons
de conceptions différentes modifiant l’espacement entre les nanotiges qui sont d’environ 150 nm, 300 nm,
450 nm et enfin 600 nm.

Figure B.8: Illustration of the nano rods grating

Dépôt de graphène et caractérisation des échantillons
Il a été choisi d’utiliser le graphène CVD qui a été prouvé pour soutenir des plasmons de graphène [43].
Comme cela a été expliqué précédemment, les plasmons de graphène sont très sensibles à l’environnement.
L’un des principaux problèmes est d’obtenir du graphène très pur et propre pour de faibles pertes op-
tiques et une grande mobilité des électrons. Au début, le graphène CVD a été déposé à Singapour.

Présentation générale des spectres Raman dans le graphène
Avec la microscopie à faisceau d’électrons (MEB) et la microscopie à force atomique (AFM), la spec-
troscopie Raman est une technique de routine utilisée pour caractériser le graphène [155]. Alors que
MEB et AFM peuvent donner des images physiques du graphène, la spectroscopie Raman peut fournir
beaucoup plus d’informations basées sur la vibration de réseau du matériau. En fait, la spectroscopie
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Raman est basée sur la diffusion inélastique des photons par la matière, la différence d’énergie étant
enregistrée comme la vibration du réseau, ou phonons. Il s’agit donc d’un transfert d’énergie entre les
modes photoniques et les modes phononiques dans un réseau particulier, c’est-à-dire une sorte de signa-
ture de chaque cristal. Parce que les spectres Raman fournissent des informations sur la vibration du
réseau, c’est une technique qui est vraiment sensible à la structure du réseau et à la cristallinité [47], le
nombre de couches de graphène [45], la déformation, le défaut et la densité de charges [89], entre autres
[46]. De plus, c’est une technique qui peut être réalisée à température ambiante, qui est fiable et non
destructive.

Il a été possible d’utiliser un outil Raman hyperspectral (Thermofisher), ce qui permet une car-
tographie Raman de l’échantillon. Sa haute résolution spatiale (quelques centaines de nanomètres),
son balayage rapide ainsi que ses outils de traitement d’image en font un équipement performant pour
identifier le graphène en suspension sur l’échantillon.

Caractérisation de la nano-antenne d’or

Comme cela a été expliqué précédemment, les nano-antennes d’or sont utilisées pour lancer des plas-
mons à travers le graphène.Il a été montré que les plasmons les moins amorties sur du SiO2 se situent
autour d’une longueur d’onde de 11 microns. C’est aussi une fréquence optique typique utilisée dans un
microscope optique à champ proche (SNOM) à balayage qui a été développé à l’UTT. Donc, dans un
premier temps, les nanorods ont été conçus pour avoir une fréquence de résonance dans cette gamme.
La simulation numérique que nous avons effectuée montre que la longueur de la tige doit être comprise
entre 3,8 et 4 microns, ce qui est le cas pour l’échantillon présenté ci-dessus (voir Figure B.5, B.6, B.7).
Par conséquent, la dernière étape consistait à caractériser la réponse des bâtonnets à une excitation
infrarouge.

A cet effet, la technique de spectroscopie infrarouge à transformée de Fourier (FTIR) a été utilisée.
Cette technique permet d’enregistrer simultanément des données sur une large gamme de fréquences.
Les résultats ont confirmé que la résonance de la structure d’or est d’environ 11 microns, ce qui correspond
bien à la configuration SNOM disponible. Il est donc possible d’analyser les échantillons en champ proche
en utilisant le SNOM fait maison.

Mesure optique à l’aide de la microscopie optique à champ proche
à balayage

Au début du siècle précédent, on croyait, selon la théorie, que la résolution de la microscopie classique
était limitée à environ 250 nm, ce qui correspond à la demi-longueur d’onde de la lumière. Dans les
années quatre-vingt, afin de casser cette limite de diffraction, il a été proposé d’utiliser une petite ou-
verture comme source de lumière qui serait capable de confiner l’excitation. Plus tard, un autre type de
sondes a été proposé, appelé "pointe sans ouvertures", qui a été utilisé dans cette étude. D’une manière
générale, la microscopie optique à balayage de champ proche (SNOM ou NSOM) est une microscopie
locale à sonde où une pointe est placée près de la surface du matériau (< λ/2) pour interagir avec la
matière dans le champ proche. Par conséquent, il est possible d’obtenir une résolution nanométrique
qui n’est plus imposée par la longueur d’onde de la lumière. Plusieurs types de SNOM existent, classés
en deux familles principales: les sondes à ouverture et sans ouverture. Pour plus d’informations sur les
différents systèmes, voir [152].

Dans cette section, la mise en place d’un SNOM sans ouverture sera introduit. Il fonctionne dans
l’infrarouge moyen. Ensuite, le processus de fabrication des pointes sera présenté. Enfin, certains des
résultats obtenus seront affichés.
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Introduction au SNOM sans ouverture et aux approches de détection du signal
associées
Le SNOM sans ouverture (également appelé SNOM: s-SNOM "à diffusion") utilisant une pointe mé-
tallique est basé sur le principe que l’extrémité pointu de la sonde est éclairé par laser. Il peut localement
améliorer / perturber le champ électromagnétique à la surface de l’échantillon. En général, le champ
proche de l’échantillon interagit avec la pointe. L’interaction locale plutôt complexe entre l’échantillon et
l’extrémité produit une onde radiative dispersée qui peut être détectée dans le champ lointain. Ce rayon-
nement porte les informations locales (telles que détectées par l’extrémité de la pointe) du champ proche
de l’échantillon, telles que sa phase optique et son amplitude. Dans une certaine mesure, un SNOM
de type diffusion sans ouverture capte les ondes évanescentes et les convertit en ondes propagatives via
des pointes métalliques qui peuvent être considérées comme une nanoantenne optique. Le champ de
propagation résultant est enregistré par un détecteur dans le champ lointain.

Détails expérimentaux sur le SNOM
Le dispositif expérimental de UTT utilise trois lasers qui couvrent une gamme spectrale allant de 9,5 µm
à 11,4 µm. A la sortie des lasers, un isolateur est placé afin d’éviter tout retour de faisceau réfléchi vers
les lasers. Un coupleur, constitué d’une lentille montée sur une platine, entraîne le faisceau vers la fibre.
Un collimateur est placé à la sortie de la fibre pour conduire le faisceau laser au cœur de l’installation.
Ce dernier est représenté dans la figure B.9.

Figure B.9: Image de la configuration SNOM. En encart, un schéma simplifié représentant la disposition
des éléments principaux

Fabrication des pointes SNOM
Les astuces sont cruciales pour détecter les ondes évanescentes. En particulier, l’extrémité des pointes
doit être aussi petit que possible pour agir comme un dipôle électrique qui capte le champ proche. Le
champ incident du faisceau laser peut être converti par la pointe en source locale et exciter les plasmons
de surface. Réciproquement, l’onde évanescente d’un plasmons de surface peut être convertie en une
onde radiative via l’apex de la pointe.

Afin d’enregistrer précisément les plasmons dans le graphène, le diamètre de l’extrémité de la pointe
doit être au moins du même ordre de grandeur que l’expansion du phénomène dans l’air. Pour les plas-
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mons de graphène, il a été montré [44] que le diamètre de l’apex devrait être de l’ordre de quelques
dixièmes de nanomètres.

First optical measurement

Les images SNOM préliminaires sont représentées sur la figure B.10. La longueur d’onde d’excitation
est de 11 µm, ce qui se trouve dans la plage de faible amortissement des plasmons de graphène. Un
polariseur linéaire a été utilisé, comme indiqué sur la figure B.9: la polarisation du faisceau incident
est horizontale. Le grand axe de la pointe est également horizontal. La polarisation suit également
l’excursion de l’oscillation de la pointe (mode de tapotement). Par conséquent, cette configuration per-
met une forte excitation de la pointe, qui est plus susceptible d’exciter les plasmons dans la couche de
graphène.

(a) AFM topography (10×10 microns) (b) Optical amplitude

(c) AFM mechanical phase of the fork (d) AFM mechanical amplitude of the fork

Figure B.10: Images SNOM : topographie, amplitude optique, phase AFM and amplitude AFM
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Conclusion
Ce chapitre présente les résultats expérimentaux comme la dernière étape de ce travail de recherche. Il
montre la fabrication, la caractérisation et les mesures optiques avec l’introduction de la technique de
microscopie optique en champ proche. Ces résultats expérimentaux constituent la dernière partie de cette
étude. Les résultats obtenus sont préliminaires et d’autres expériences devraient être conduites dans le
futur afin de montrer la véritable signature des plasmons dans le graphène. Ce chapitre a également
montré la complexité de manipuler ce matériau 2D, et d’enregistrer ce phénomène très confiné.
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Conclusion et perspectives

Au cours de cette thèse, une exploration du champ de la plasmonique dans le graphène est donnée. Une
attention particulière a été accordée à l’explication des phénomènes de plasmons de graphène en utilisant
principalement la physique classique.

Dans le premier chapitre, les bases de la plasmonique ont été examinées à partir des équations de
Maxwell. De plus, les structures de graphène sont montrées et le comportement des électrons est aug-
menté à travers un modèle de liaison étroite. Ce chapitre a posé les bases nécessaires à la compréhension
de la physique des plasmoniques au graphène.

Le deuxième chapitre vise à donner une revue de la littérature couvrant brièvement la découverte du
graphène ainsi que celle des plasmons de graphène. Il donne un aperçu du défi qui reste à relever pour
obtenir des dispositifs électroniques actifs à base de graphène. En particulier, il introduit la probléma-
tique de la propagation des plasmons, et la nécessité de trouver une plateforme adaptée pour obtenir le
premier dispositif actif à base de plasmons de graphène. Enfin, la physique des plasmons de graphène
est expliquée à travers la courbe de dispersion, fournissant les paramètres clés nécessaires pour un autre
travail de recherche numérique et expérimental.

Le troisième chapitre est consacré à une étude numérique, basée sur la méthode du domaine temporel
des différences finies. Cette méthode est brièvement introduite avec un historique et la résolution du
problème des ondes 1D. Le cas 3D est alors donné en conséquence avec le paramètre clé pour conduire
une étude numérique. Le problème de la simulation d’un matériau 2D dans une grille 3D est abordé.
Enfin, une conception d’échantillon est proposée en utilisant l’antenne comme lanceur de plasmons. La
propagation dans le graphène suspendu est montrée ainsi que la longueur de propagation attendue. Une
discussion finale donne la limite de cette proposition d’expérience, où une chambre à vide est probable-
ment nécessaire.

Le quatrième chapitre concerne les travaux de recherche préliminaires. Au début, un processus de
fabrication d’échantillon est montré. Il se compose du processus de fabrication, ainsi que d’une image au
microscope des résultats. Certains problèmes rencontrés au cours du processus sont également abordés.
Ensuite, la caractérisation de l’antenne ainsi que le graphène sont donnés. Enfin, une introduction à la
technique de microscopie optique à champ proche à balayage est affichée. L’installation faite maison est
présentée et quelques résultats préliminaires sont montrés.

Perspective : le cas du diamant Compte tenu des défis rencontrés pour étudier les plasmons dans
le graphène en suspension, un autre chemin de recherche a été exploré. Comme déjà mentionné, les plas-
mons graphène lac de longueur de propagation Lp lorsque le chercheur pense à utiliser ses propriétés à
des fins applicatives. Bien que des progrès aient été faits récemment [114, 38], la longueur de propagation
Lp reste trop courte pour être utilisée dans les dispositifs opto-électroniques actifs. Plusieurs paramètres
[98] doivent donc être considérés afin d’obtenir une propagation de GPs élevée (voir Equation (B.17)
pour ce qui suit). Premièrement, Lp est fonction du taux de diffusion des porteurs de charge, qui devrait
être maintenu aussi bas que possible. Deuxièmement, Lp est proportionnel à la valeur quadratique de
l’énergie de Fermi dans l’infrarouge, qui doit donc être aussi élevée que possible (après l’approximation
DC du temps de relaxation). Enfin, Lp est très sensible à la partie imaginaire de la permittivité du
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substrat epsilon′′, la dissipation d’énergie optique (Im( epsilon)).

Armés de ces paramètres, nous pouvons dessiner une image de la plate-forme idéale pour la propa-
gation de GPPs, qui devrait avoir les propriétés suivantes:

1. Rigidité diélectrique élevée et constante k-diélectrique afin d’injecter une forte densité de charges
dans graphène.

2. Faible Im(ε), afin d’avoir de faibles pertes plasmonique.

3. Possibilité de fabriquer dans le même processus que le graphène, en utilisant le système CVD.

4. Utilisation de matériel durable.

SiO2, qui est le substrat le plus commun utilisé pour étudier graphene [117], induit une diffusion
externe et / ou interne [7, 78, 28, 110]. Ensuite, la constante k-diélectrique relativement faible (3.9)
associée à la rigidité diélectrique de 0.5GV / m ne permet pas d’atteindre une énergie de Fermi suffisam-
ment élevée. Enfin, la dissipation optique de SiO2 induit un amortissement important dans les GPPs [42].

Peu de temps après, des études sur le graphène encapsulé dans h-BN, un substrat connu pour être
adapté au graphène [145, 53], ont montré des résultats prometteurs [34, 114]. La propriété de haute rigid-
ité diélectrique de h-BN (jusqu’à 1.2GV / m quand exfoliée) [60], ainsi que sa bonne correspondance de
réseau avec graphene [162], en font un bon candidat. De plus, les films minces de h-BN ont été synthétisés
par un procédé CVD conservant de bonnes propriétés diélectriques (0,4 GV / m) [74]. Cependant, les
propriétés optiques h-BN induisent un amortissement sévère dans les plasmons de graphène [153], car
Im(ε) est du même ordre de grandeur que celui de SiO2 [157] . De plus, le bore est plutôt rare sur terre.

Comparativement, Diamond remplit tous les critères cités ci-dessus. Sa rigidité diélectrique est
idéalement plus élevée que la valeur h-BN one [51, 156]. Il peut être une synthèse à travers le même
processus CVD [165]. Il n’a pas de dissipation d’énergie optique dans la région infrarouge et le carbone
est un matériau qui croît continuellement sur la surface de la terre dans les stocks, ce qui crée des
problèmes environnementaux. Il serait également intéressant de regarder le comportement des plasmons
dans le graphène transféré sur UNCD et SCD en changeant la terminaison de surface (H-terminaison vs
O-terminaison) du diamant sous-jacent. Le nano-espaceur intercalé entre le graphène et le substrat SiO2
a déjà été étudié [38], et a montré une amélioration de la propagation des plasmons. Par conséquent, la
combinaison du diamant et du graphène donnerait définitivement des résultats importants qui pourraient
éventuellement conduire à des dispositifs optoélectroniques actifs.
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Etude de plasmons propagatifs dans le 
graphène par méthodes de simulation et 
spectroscopie infrarouge 
 
 
La physique du graphène et la plasmonique sont 
deux domaines qui, une fois combinés, promettent 
une variété d’applications intéressantes. Une de ces 
applications est l’intégration de dispositifs 
nanooptoélectroniques actifs dans des systèmes 
électroniques, en utilisant le fait que les plasmons 
dans le graphène sont accordables, fortement 
confinés et faiblement amortis. Avant de réaliser ces 
dispositifs actifs, un défi crucial demeure : trouver 
une plateforme permettant une forte propagation 
des Polaritons Plasmons Graphène (GPP). 
Dans ce cadre, une étude complète de la 
propagation des plasmons à travers le graphène en 
suspension est abordée. Cette étude commence par 
examiner les résultats de la recherche théorique et 
expérimentale liés au domaine émergent de la 
plasmonique du graphène. Une étude numérique par 
méthode FDTD est présentée, et les conditions pour 
la réalisation de l’étude des plasmons de graphène 
dans le graphène en suspension sont analysées. Une 
conception de l’échantillon avec un processus 
expérimental est proposée. Enfin, une étude 
expérimentale, de la fabrication en salle blanche, 
puis la caractérisation de la structure graphène et 
plasmonique, à la mesure optique par microscopie 
optique à champ proche à balayage, est présentée. 
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Graphene physics and plasmonics are two fields 
which, once combined, promise a variety of exciting 
applications. One of those applications is the 
integration of active nano-optoelectronic devices in 
electronic systems, using the fact that plasmons in 
graphene are tunable, highly confined and weakly 
damped. Before achieving these active device, a 
crucial challenge remains: finding a platform 
enabling a high propagation of Graphene Plasmons 
Polaritons (GPPs). 
In this framework, a full study of the propagation of 
plasmons through suspended graphene is 
addressed. This study starts by reviewing the 
theoretical and experimental research achievement 
related to the really recent emerging field of 
graphene plasmonics. A numerical investigation by 
FDTD method is presented, and the conditions for a 
realisation of the study of graphene plasmons in 
suspended grapheme are analysed. A design of the 
sample with an experimental process is proposed. 
Finally, an experimental study from the fabrication 
in clean room, then the characterisation of graphene 
and plasmonics structure to the optical 
measurement through Scanning Near-field Optical 
Microscopie is presented. 
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