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“Solving a problem for which you know there is an answer is like climbing a moun-
tain with a guide, along a trail someone else has laid. In mathematics, the truth is
somewhere out there in a place no one knows, beyond all the beaten paths. And it’s
not always at the top of the mountain. It might be in a crack on the smoothest cliff or
somewhere deep in the valley. ”

YOKO OGAWA.





Stabilization of some coupled systems involving
(thermo-)viscoelastic/elastic transmission problems or telegraph

equations in bounded domains or in networks

by Alaa HAYEK

Abstract
This thesis is concerned with the stabilization of some coupled systems that in-
volves (thermo-) viscoelastic/elastic transmission problems and telegraph equations
in bounded domains or in networks. First, we consider the stability of a system of
weakly coupled wave equations with one or two local internal Kelvin-Voigt damp-
ings located via a non-smooth coefficient in a part of the domain. First, using a
unique continuation theorem, we obtain a new uniqueness result and therefore, we
show that our system is strongly stable. Next, we show that the system is not al-
ways exponentially stable. However, using a frequency domain approach combined
with a multiplier technique, we establish different polynomial stability results in
any space dimension by assuming that the damping region satisfies some geometric
conditions. Second, we study the existence, uniqueness and stability of a gener-
alized telegraph equation set on a one-dimensional star-shaped network. On the
interior common node, we consider a dynamic boundary condition (called the im-
proved Kirchhoff condition), while on the exterior nodes of the network, a dissipa-
tive boundary condition is applied. Using frequency domain approach combined
with a multiplier technique and the construction of a new multiplier satisfying some
ordinary differential inequalities, we prove that the system is uniformly (exponen-
tially) stable. Finally, we investigate the indirect stability of an elastic/thermo-elastic
transmission problem on networks. On each elastic edge, we consider two conser-
vative wave equations while, on each thermo-elastic edge, we consider two coupled
wave equations such that one of them is damped via a coupling with a heat equa-
tion. Mainly, we show that the stability of the system is influenced by the thermal
effect and the speed of the two propagating waves. Consequently, different results
of exponential or polynomial stability are established.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Keywords ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Exponential stability, analytic semigroup, polynomial stability, Kelvin-Voigt,
thermo-elastic, telegraph, networks, improved Kirchhoff law, dynamic boundary
condition.
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Stabilisation de quelques systèmes couplés impliquant problèmes de
transmission (thermo-) viscoélastiques/élastiques ou équations

télégraphiques dans des domaines bornés ou sur réseaux

par Alaa HAYEK

Résumé
Cette thèse s’intéresse à la stabilisation de certains systèmes couplés impliquant des
problèmes de transmission (thermo-) viscoélastique/élastique et des équations télé-
graphiques dans des domaines bornés ou sur réseaux. Dans un premier temps,
nous considérons la stabilité d’un système d’équations d’ondes faiblement couplées
avec un ou deux amortissements de type Kelvin-Voigt. L’amortissement est localisé
via un coefficient singulier dans une partie du domaine. D’abord, en adaptant un
théorème de continuation unique, nous obtenons un nouveau résultat d’unicité et
nous montrons, par conséquence, que notre système est fortement stable. Ensuite,
nous montrons que le système n’est pas exponentiellement stable. Cependant, en
utilisant une méthode fréquentielle combinée avec une méthode de multiplicateur
par morceaux, nous établissons différents type de stabilisation polynomiale en toute
dimension d’espace dès que la région d’amortissement satisfait certaines conditions
géométriques. Dans un second temps, nous étudions l’existence, l’unicité et la stabil-
ité de la solution d’une équation télégraphique généralisée sur un réseau en forme
d’étoile mono-dimensionnel. Sur le nœud commun intérieur, nous considérons une
condition aux limites dynamique (appelée condition de Kirchhoff améliorée), tandis
que sur les nœuds extérieurs du réseau, une condition aux limites dissipative est
appliquée. En utilisant une méthode fréquentielle combinée avec une nouvelle tech-
nique de multiplicateur, nous montrons que le système est uniformément (exponen-
tiellement) stable. Finallement, nous étudions la stabilité indirecte d’un problème de
transmission élastique/thermo-élastique sur réseaux. Sur chaque bord élastique, on
considère deux équations d’onde conservatives tandis que, sur chaque bord thermo-
élastique, on considère deux équations d’onde couplées avec un seul amortissement
thermique. Nous montrons que la stabilité du système est influencée par l’effet ther-
mique et la vitesse de propagation des deux ondes. Différents résultats de stabilité
exponentielle ou polynomiale sont établis.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Mots clés ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Stabilité exponentielle, semi-groupe analytique, stabilité polynomiale, Kelvin-Voigt,
thermo-élastique, télégraphe, réseaux, loi de Kirchhoff améliorée, condition aux lim-
ites dynamique.
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“It’s the question we can’t answer that
teach us the most. They teach us to think.
If you give a man an answer, all he gains

is a little fact. But give him a question
and he’ll look for his own answers. ”

Patrick Rothfuss

In this part, we start by a general introduction that will helps the reader to be
familiar with the systems of partial differential equations and the types of dampings
considered in this thesis, in addition to their contribution with real life applications.
Then, we give the main introduction in which we outline the thesis chapter by chap-
ter and state the main problems considered with the main results obtained. Finally,
we present a thesis overview in which we give a brief mathematical explanation of
the problem investigated in each chapter.
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Introduction
Mathematical models play an important role in designing, understanding and
analyzing many physical systems. For instance, the mathematical modeling of
the vibration of flexible structures, the regulation of blood flow in cardiovascular
networks, the flow of gas in pipes and electromagnetism was set up over years.
Recently, modeling has progressed tremendously which provoked the mathe-
maticians’ curiosity in the stabilization of simple and coupled systems of partial
differential equations arising in several mathematical models.

In general, the stability of a coupled system of partial differential equations is
influenced by several properties. Among these properties we have: the nature of
the partial differential equations, the set of boundary conditions, the type of the
damping, the kind of the medium and the type of the coupling. In this PhD thesis
we study the stabilization of three coupled systems that arise in three different
mathematical models. What characterizes the problems studied in this thesis is the
diversity in the properties of the considered coupled systems:

• Partial differential equations: wave equation, heat equation, telegraph equa-
tion.

• Boundary conditions: Dirichlet, Neumann, standard Kirchhoff condition,
dynamic boundary conditions.

• Dissipation mechanisms: visco-elastic damping, thermo-elastic damping,
boundary damping.

• Mediums: bounded domains, networks.

• Coupling mechanisms: by displacement, by velocity, other..

In what follows, we will start by a general introduction in which we intro-
duce briefly some of the properties of the coupled systems of partial differential
equations investigated in this thesis. To do this, first we begin in section 0.1 by
introducing the wave equation used in Chapter 1 (in multi-dimentional space) and
the generalized telegraph equation considered in Chapter 2. Next, in section 0.2, we
recall the heat equation and explain briefly the thermo-mechanical process leading
us to the thermo-elastic system encountered in Chapter 3. Then, due to the fact
that the damping mechanism is the soul of the stabilization process of systems of
partial differential equations, we focus in section 0.3 on three types of dampings
that deals with this thesis. Finally, in section 0.4, we present some types of boundary
conditions used in Chapter 2 and Chapter 3.

Interested readers can also go directly to the main introduction in which we
present the main results obtained in this thesis.

5



I) GENERAL INTRODUCTION

Partial differential equations play a relevant role in mathematical physics, mainly
those of the second order. These equations are useful to describe a diversity of phys-
ical phenomena that include wavelike propagation, diffusion, and transport pro-
cesses in practically all branches of physics. Namely, in continuous and classical
mechanics, it is common to face problems of either the hyperbolic (vibrating strings,
stretched membranes) or the parabolic (heat conduction) types.

FIGURE 1: waves in sciences

0.1 Vibrations and waves

Vibrations and waves are extremely important phenomena in physics. In nature, os-
cillations are found everywhere. From the jiggling of atoms to the large oscillations
of sea waves. Wave is a flow or transfer of energy in the form of oscillation through
a medium – space or mass. In Mathematics, the wave equation is a second order
partial differential equation which describes the propagation of oscillations with a
constant velocity in some quantity f = f (x1, · · · , xn, t) of time variable t and spacial
variables (x1, · · · , xn). The wave equation is given by

∂2 f
∂2t

= s2∆ f , (0.1.1)

where s is the velocity of the wave. The quantity f may be, for example, the pressure
in a liquid or gas, or the displacement, along some specific direction, of the particles
of a vibrating solid away from their resting positions.

There are different types of waves including electromagnetic waves and me-
chanical waves.

6



Mechanical waves:
• A mechanical wave is an oscillation of matter and therefore a transfer of the
energy through a medium.

• This kind of waves needs a medium in order to propagate itself.

• Sound waves, water waves, stadium waves, and jump rope waves are ex-
amples of mechanical waves; each requires some medium in order to exist.

FIGURE 2: Sea waves FIGURE 3: waves on
the strings of a guitar

For example, the one-dimensional wave equation of a vibrating string with tension
T and mass density m, is

∂2u
∂2t

=
T
m

∂2u
∂2x

, (0.1.2)

where u is the displacement along the direction of the particles of the vibrating

string away from their resting positions and
√

T
m is the speed of the propagation of

the wave.

Electromagnetic waves:
• Electromagnetic waves are created by a fusion of electric and magnetic fields. The
light you see, the colors around you are visible because of electromagnetic waves.

• Unlike mechanical waves, electromagnetic waves do not need a medium to
travel.

• Microwaves, X-ray, radio waves are all examples of waves that are capable
to propagate in vacuum.

The mostly used equation which models the propagation of electromagnetic waves
is the telegraph equation.

7



FIGURE 4: Electromagnetic waves

0.1.1 Telegraph equation

In many industrial applications, like microwave communication systems, transmis-
sion lines (including coaxial cables) are used to transmit signals from one point to
another. In fact, these signals are transmitted along cables by electromagnetic waves
which consist of variations in the magnitude and direction of the electric and mag-
netic fields produced by the line voltages and currents. The electromagnetic fields
are the solution of the 3D Maxwell’s equation. But, since a cable is a thin struc-
ture whose transverse dimensions are much smaller than the longitudinal one, one
would like to use a simplified 1D model because 3D Maxwell’s equations can be
very complicated to solve: complex geometry due to defaults, 3D mesh for the thin
cable... In such a situation, electrical engineers use the well-known telegraph equa-
tion for perfect coaxial cables (homogeneous with circular cross-section), where the
electric unknowns are reduced to an electric potential V(x, t) and an electric current
I(x, t), where x denotes the abscissa along the cable, t is time and in absence of source

C
∂V
∂t

+ GV − ∂I
∂x

= 0,

L
∂I
∂t

+ RI − ∂V
∂x

= 0,

(0.1.3)

where the capacitance C, the inductance L, the conductance G and the resistance R
can be expressed it terms of the geometry of the cross-section.

FIGURE 5: A coaxial cable

Differentiating in time (resp. space) the first (resp. second) equation in (0.1.3), we
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get a partial differential equation with only one dependent variable V,

∂2V
∂2x

= LC
∂2V
∂2t

+ (LG + RC)
∂V
∂t

+ RGV. (0.1.4)

Similarly, differentiating in space (resp. time) the first (resp. second) equation in
(0.1.3), we get a partial differential equation with only one dependent variable I,

∂2 I
∂2x

= LC
∂2 I
∂2t

+ (LG + RC)
∂I
∂t

+ RGI. (0.1.5)

Further, in the case of loss-less coaxial cable (i.e., R = G = 0), equations (0.1.4) and
(0.1.5) will be two exact wave equations

∂2V
∂2t

= s2 ∂2V
∂2x

,

∂2 I
∂2t

= s2 ∂2 I
∂2x

,

where s = 1√
LC

is the propagation speed of the wave along the cable.

In the case of more general and realistic situation namely, when each cross
section is heterogeneous (physical characteristics of the medium vary in the cross
section) and the cable has a variable cross section and material properties along the
cable, another model is derived. In fact, a 1D limit model for the propagation of
electromagnetic waves in thin heterogeneous co-axial cables by means of asymptotic
analysis of the original 3D model with respect to a small geometric parameter δ
(representing the transverse dimensions of the cables) is derived. The resulting
model is a generalized telegraphist’s model whose coefficients are determined from
the solutions of 2D scalar problems in normalized cross sections. Mathematically,
the generalized telegraph equation set in a real interval (model on a cable from
Imperiale and Joly, 2014) given by:

Vt + gV + aIx + kW = 0, in (0, L)× (0, ∞),
It + rI + bVx = 0, in (0, L)× (0, ∞),
Wt + cW = V, in (0, L)× (0, ∞).

(0.1.6)

This generalized telegraph equation is a coupling between the usual telegraph equa-
tion where the electric unknowns are V and I representing the electric potential and
the electric current respectively with a first order differential equation of parabolic
type involving an auxiliary variable W representing the non-local effects. The coef-
ficients a, b, c, r, k and g are all non-negative functions in L∞(0, L) that verify some
assumptions mentioned in Chapter 2.

0.2 Heat transfer

Heat transfer describes the flow of heat (thermal energy) due to temperature differ-
ences and the subsequent temperature distribution and changes. One of the various
mechanisms of heat transfer is heat conduction. Heat conduction, also called dif-
fusion, is the direct microscopic exchange of kinetic energy of particles through the
boundary between two systems. When an object is at a different temperature from
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another body or its surroundings, heat flows so that the body and the surroundings
reach the same temperature, at which point they are in thermal equilibrium.

FIGURE 6: Heat conduction

Heat conduction is a diffusive process governed by a parabolic differential equa-
tion which lacks second-order derivative with respect to time, characteristic of a
wave equation. In Mathematics, the heat equation is a second order partial differ-
ential equation which describes the propagation of heat with a in some quantity
f = f (x1, · · · , xn, t) of time variable t and spacial variables (x1, · · · , xn). The heat
equation is given by

∂ f
∂t

= ∆ f , (0.2.1)

where, f is the temperature deviation from the reference temperature.

0.2.1 Combination between mechanical and thermal processes

Mechanical equipment are affected by various interactions during their operation,
the most significant being the mechanical and thermal effects. Mechanical and ther-
mal loads usually occur simultaneously and as a result, the displacement and tem-
perature fields are created in close connection with each other. In fact, Changes in
temperatures causes thermal effects on materials. Some of these thermal effects in-
clude thermal stress, strain, and deformation. Thermal deformation simply means
that as the "thermal" energy (and temperature) of a material increases, so does the
vibration of its atoms/molecules and this increased vibration results in what can be
considered a stretching of the molecular bonds - which causes the material to ex-
pand. In the same manner, if the thermal energy (and temperature) of a material
decreases, the material will shrink or contract. Thus, thermo-elasticity is based on
temperature changes induced by expansion and compression of the test part. There-
fore, both mechanical and thermal fields have to be defined simultaneously taking
the relationship between them into account which in practice proves to be rather
difficult. Thermo-mechanical processes are described by the basic equations of con-
tinuum mechanics and thermodynamics. Mathematically, a linear one-dimensional
thermo-elastic system satisfied by a thermoelastic bar (0, L) is represented by the
following two equations:{

utt − uxx + αθx = 0, in (0, L)× (0, ∞),
θt − θxx + αutx = 0, in (0, L)× (0, ∞),

(0.2.2)

where, u is the displacement, θ is the temperature deviation from the reference
temperature and the mechanical-thermal coupling α is a positive constant.

10



Recently, the study of the control and stabilization of thermo-elastic systems
constitutes the framework of many dynamical developing areas of industry. For
instance, the production of high-speed airplanes, the design of space vehicles,
rocket and jet engines, the technology of large turbines and the design of nuclear
reactors. This is due to the need of designing equipment that can operate at very
high temperatures without being destroyed.

FIGURE 7: A launched rocket

In general, during wave propagation, the wave eventually reaches an end of the
material. Some of the wave will reflect back to its source. If the reflection reaches the
source at the same time a new wave is generated, the two waves will combine and
be synchronized in phase. Later, if those two waves reflections return to the source
at the same time the next new wave is generated, all three waves will combine. This
will continue for as long as waves are generated under these conditions, and the
resultant wave will increase in amplitude, theoretically to infinity. This is called
resonance. If this wave reinforcement is allowed to continue, the system eventually
will either self-destruct or fatigue to failure.

FIGURE 8: The generation of several waves
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Hence, in order to prevent the resonance energy from reaching an infinite
value and thus forbidding the structure failure, a dissipation mechanism via a
damping is invoked.

0.3 Damping

Damping is a phenomenon that dissipates the energy of every vibrating system.
Depending on its spatial origin, damping can be classified as material damping,
boundary damping and damping due to fluid-structure interactions. Materials
with high damping coefficients are used in applications of shock absorption,
vibration control, noise reduction, and dissipation of increased heat. Engineers use
damping coefficients to compare materials to see which will be the best one for the
application. Within this section, we will focus on three types of dampings which
are: viscous damping, visco-elastic damping and thermo-elastic damping.

Viscous damping usually models external friction forces such as air resistance
acting on the vibrating structures and is thus called ”external damping”. Most often
they damp motion by providing a force or torque opposing motion proportional to
the velocity.

FIGURE 9: viscous fluids

Visco-elastic damping originates from the internal friction of the material of the
vibrating structures and thus called ”internal damping”. Visco-elastic materials,
as their name suggests, combine two different properties which are elasticity and
viscosity. The term “viscous” implies that they deform slowly when exposed to
an external force. The term “elastic” implies that once a deforming force has been
removed the material will return to its original configuration. So, visco-elastic ma-
terials exhibit mechanical properties intermediate between those of viscous liquid
and those of elastic solid. When a visco-elastic material is subjected to a stress, the
response is composed by an elastic deformation (which stores energy) and a viscous
flow (which dissipates energy). For example, tall buildings vibrate when dynam-
ically loaded by wind or earthquakes. Visco-elastic materials have the property of
absorbing such vibrational energy – damping the vibrations. Visco-elastic dampers
are used in some tall buildings, for example in the Columbia Center in Seattle,
in which the dampers consist of steel plates coated with a visco-elastic polymer
compound - the dampers are fixed to some of the diagonal bracing members.
Different models can be used to describe the visco-elastic behavior among them,
Maxwell model (i.e., spring and shock absorber in series) and Kelvin-Voigt model
(spring and shock absorber in parallel) describe the simpler ones.
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FIGURE 10: A group of visco-elastic materials

Thermo-elastic damping is a source of intrinsic material damping due to thermo-
elasticity present in almost all materials. As the name thermo-elastic suggests, it
describes the coupling between the elastic field in the structure (caused by defor-
mation) and the temperature field. The effect of including thermo-elastic damping
is that a heat source term, proportional to the rate of stress change, is added to the
heat balance equations, see (0.2.2).

In any vibrating structure, the strain field causes a change in the internal en-
ergy such that compressed region becomes hotter (assuming a positive coefficient
of thermal expansion) and extended region becomes cooler. The mechanism
responsible for thermo-elastic damping is the resulting lack of thermal equilibrium
between various parts of the vibrating structure. Energy is dissipated when irre-
versible heat flow which is driven by the temperature gradient causes vibrational
energy to be dissipated. So, thermo-elastic damping refers to the process in which
part of the vibration energy of a mechanical resonator is dissipated into thermal
energy, through irreversible heat conduction accompanying elastic vibrations in the
resonator.

In practice, from the research laboratory to the production line, scientists study the
influence of such dampings (viscous, visco-elastic or thermo-elastic) on the behavior
of the considered physical system. Hence, in this context many questions arise.
Among the most frequently asked questions we mention:

1) Is the damping involved in a system of partial differential equations set in
a certain medium (bounded domain or a network) strong enough to prove the
strong stability of the system? In other words, is the damping able to dissipate the
waves propagating in this medium and therefore leading the energy of the solution
of the system to converge to zero?

2) How is the decay of the energy of the solution of the system varying with
respect to the different localizations of the damping?
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3) What is the optimal decay rate obtained and in which geometric situations?

FIGURE 11: Different localizations of the damping. The pink color
represents the damping region.

On the other hand, in addition to the significant role of the damping, the type of the
medium and the type of the boundary conditions also contribute in the stabilization
process of a physical system. For this aim, we will discuss briefly in the following
section some boundary conditions used in this thesis.

0.4 Boundary conditions on networks

From the theoretical point of view the most challenging current problems are prob-
ably in the control questions for flows on networks. Probably, this is due to the fact
that the recent applications, like electrical circuits, arterial networks, networks of
open channels, traffic flows on networks, computer networks, chemical and biologi-
cal networks, all involve systems of partial differential equations set on networks or
graphs. Typical examples are the telegrapher equations for electrical lines, the shal-
low water (Saint–Venant) equations for open channels, the Euler equations for gas
flow in pipelines or the Aw-Rascle equations for road traffic (see Bastin and Coron,
2016; Gugat, Dick, and Leugering, 2011; Leugering, Gugat, and Dick, 2010; Valein
and Zuazua, 2009; Zhang and Xu, 2012; Kramar, Mugnolo, and Nicaise, 2020b).

FIGURE 12: Chemical and computer networks

For a spatial network, the dynamics is typically described first at the level of indi-
vidual edges, followed by a model for the junctions. So, once a reduced model is
obtained, the next question is to impose the correct coupling conditions between the
different branches (edges). In this case some transmission conditions that translate
some physical preservation have to be imposed at the junctions. In fact, a particular
choice for the coupling conditions determines the particular physics of the under-
lying problem. Hence, different coupling conditions give rise to different network
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FIGURE 13: Electrical and arterial networks

problems. In this sense, the commonly used boundary condition at the junction is
the standard Kirchhoff condition given by ∑

j∈I(v)
qj(v) = 0,

pj(v) = pℓ(v); j, ℓ ∈ I(v),
(0.4.1)

where v is the node of the junction of the connected edges adjacent to v.
The first equation of (0.4.1) describes the mass conservation (resp. charge conser-
vation) for fluid flow models (resp. electrical circuits); on the contrary the second
equation means that the pressure (resp. voltage) is continuous at the junction.

But since such transmission conditions do not take into account the geometry
of the 3D structure, another coupling conditions called the improved Kirchhoff’s
circuit laws characterizing (up to a certain extent) the 3D properties and the physical
parameters of the junction was derived (see Beck, 2016 and Joly and Semin, 2008).
In this sense, the interesting 1D variables used are the electrical potential and
the electrical current present in the limit star-like graph made out of one knot
(assume x=0 is the node at the knot) and L + 1 branches. Such a reduced model was
derived using asymptotic analysis of Maxwell’s equations. The so-called improved
Kirchhoff’s law is a dynamic boundary condition made of L + 1 equations and
given by

N

∑
k=1

Zℓk Ik,t(0, t) =
1
δ
(V0(0, t)− Vℓ(0, t)), in R∗

+, ∀ℓ ∈ {1, ...., N},

V0,t(0, t) =
−1
δY

N

∑
ℓ=0

Iℓ(0, t) in R∗
+,

(0.4.2)

where Y is a positive constant and Z = (Zℓk)N×N is a symmetric, positive definite
matrix. The two effective coefficients Y and Z integrate the complex structure of the
knot area. The cable 0th plays a privileged role because it is chosen as the reference
from which the electrical potential of each cable is expressed. Further, if δ = 0 then,
the improved Kirchhoff’s circuit rules become the usual Kirchhoff’s law given in
(0.4.1).

On the other hand, concerning the terminals of a network also several bound-
ary conditions can be considered such as the well-known Dirichlet and Neumann
boundary conditions. In addition to these conditions and in the presence of
disturbances, such as a blockage, the response of the system is to return it to it’s
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equilibrium. Hence, boundary control conditions are imposed at the terminals
to control the dynamic system. For example, in the network of large arteries, the
process of auto-regulation can be modeled using boundary controls (at the root
of the network-the heart and the peripheral nodes-the ends of the large arteries)
deriving the system back to a dynamic equilibirium in a minimum time. In fact, the
terminal boundary condition widely used in the modelling of arterial networks in
cardio-vascular systems (in analogy with electrical circuits) is the pure resistance
condition given by

Wb = −RTW f

where, W f is the forward characteristics information leaving the outlet of an arterial
domain, Wb is the backward characteristic information reflected by the terminal
model and −1 ≤ RT ≤ 1 is the terminal reflection coefficient. Rt = 1 corresponds to
a complete reflection of the characteristic (complete blockage in the terminal site);
Rt = 0 means that there is no reflected characteristic at the terminal site, and RT = 1
represents an outflow with an open end (free end), see Cascaval et al., 2017.
In reality, a controlling mechanism specifies what resistance values are applied in
order to regulate the desired equilibrium.
Beside the boundary conditions stated above there are still various dynamic, mixed
or control boundary conditions used in the control and stabilization of dynamic
systems on flow networks (see Bressan et al., 2014; Kramar, Mugnolo, and Nicaise,
2020a) but within this section we just focus on the boundary conditions that will be
used within the thesis.

Now, we will introduce the main introduction followed by a thesis overview in
which we give a brief explanation of the problems and the results obtained.
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II) MAIN INTRODUCTION

In this thesis we study the stabilization of three coupled systems concerned with
(thermo-) viscoelastic/elastic transmission problems and telegraph equations in
boun-ded domains or in networks. This PhD thesis is divided into three parts. In
part 1, we give a general introduction followed by a main introduction and a thesis
overview in which we give a brief mathematical description of the problems and
the results obtained in each chapter.

In part 2, we introduce Chapter 1, in which we consider a viscoelastic/elastic
transmission problem in a bounded domain. Mainly, in this part we study the
stabilization of a system of weakly coupled wave equations with one or two Kelvin-
Voigt dampings and non-smooth coefficient at the interface. First, using semigroup
theory, we prove the well-posedness of the system. Second, in the absence of the
compactness of the resolvent and using a unique continuation result combined with
a general criteria of Arendt and Batty, 1988, we show the strong stability of our
system in different situations. Then, we establish a non-uniform stability result for
the case when only one equation is damped with a globally distributed damping.
Next, we study the energy decay rate in several distinguished cases. We prove
that the corresponding semigroup is analytic when the Kelvin-Voigt dampings
are globally distributed. Then, when only one non-smooth local Kelvin-Voigt
damping is effective and under some assumptions (some of which are related to
the decay rate of a wave equation with a frictional damping), we prove that the
energy of the system decays polynomially with different decay rates according to
these conditions. The results obtained are established by using a frequency domain
approach combined with a multiplier technique. The method used give different
quantitative results related to the asymptotic behavior of the energy depending on
some geometric situations.

In part 3, we investigate the stabilization of two coupled systems involving a
thermo-elastic/elastic transmission problem and telegraph equations on networks.
This part is composed of two chapters, Chapter 2 and Chapter 3.

Chapter 2 concerns with the existence, uniqueness and stabilization of solu-
tions of a generalized telegraph equation on star shaped networks. At the central
interior node of the network, we consider the improved Kirchhoff conditions. In
such node conditions, not only function values but also time derivatives appear.
That is at the junction, the conditions considered are not system of algebraic equa-
tions but instead a system of ordinary differential equations. At the exterior nodes,
we imposed a dissipative boundary condition. First, we provide a well-posedness
result. Next, in the absence of the compactness of the resolvent, we prove that our
system is strongly stable using a general criteria in Arendt and Batty, 1988, com-
bined with a new uniqueness result. Finally, using a frequency domain approach
combined with a multiplier technique and the construction of a new multiplier
satisfying some ordinary differential inequalities, we show that the energy of the
system decays exponentially to zero, under some regularity assumptions on two
coefficient functions of the system.

Chapter 3 concerns with the stability of a transmission problem of a thermo-
elastic system on networks. Mainly, we focus on networks composed of both elastic
and thermo-elastic materials. On the thermo-elastic edges, we consider a system of

17



two wave equations coupled by velocity, such that one wave equation is coupled
to a heat equation with a thermal effect. On the purely elastic edges, we consider
only a system of two conservative wave equations. Using a general criteria of
Arendt and Batty, 1988, we prove the strong stability of the system under some
conditions related to the coupling coefficient and the geometry of the network.
Then, we prove the exponential stability of the system under the condition that the
two waves propagate with the same speed on each thermo-elastic edge. Otherwise,
we establish a polynomial decay rate.

Thesis Overview

Let us now briefly outline the content of this thesis.

Chapter 1: In this chapter, we consider the following system of coupled wave
equations with viscoelastic dampings:

Ztt − div(∇Z + D∇Zt) + BZ = 0, in Ω × R∗
+,

Z = 0, on Γ × R∗
+,

Z(0) = Z0, Zt(0) = Z1 in Ω,

(0.4.3)

where
• Z = (u, y) with u = u(x, t) and y = y(x, t), Zt = (∂tu, ∂ty) denotes the time
derivative of Z.

• D(x) =

(
b(x) 0

0 c(x)

)
with b, c : Ω → R are the visco-elastic damping

functions satisfying
b, c ∈ L∞(Ω), (0.4.4)

and
b(x) ≥ 0, c(x) ≥ 0 for almost all x ∈ Ω. (0.4.5)

• B(x) =
(

0 α(x)
α(x) 0

)
with α : Ω → R is the coupling function satisfying

α ∈ L∞(Ω), ||α||∞ <
1

C0
, (0.4.6)

where C0 denotes the Poincaré constant.

In Najdi, 2016, the author considered system (0.4.3) and proved a polynomial
energy decay rate of type t−1/4 provided that the coupling coefficient is a constant
real number, the damping coefficient b ∈ C1,1(Ω), and the damping region is
covering the whole boundary (that represent a quite restrictive assumption). In
addition, it was proved that the polynomial energy decay rate of order t−1/4 is
optimal in some sense. Also a decay rate of the energy in t−1/2 and an optimality
result is proved in Oquendo and Pacheco, 2017 provided that the coupling function
is a constant, c = 0 and the visco-elastic coefficient b is a positive constant (that
means that the damping acts on one equation but on the whole domain).

In this chapter, our main interest is to improve these previous results. Mainly,
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we consider system (0.4.3) with a coupling function and a non-smooth locally
Kelvin-Voigt damping distributed in a part of the domain and we get a better
polynomial decay rate than the one obtained in Najdi, 2016.

We assume that there exist three constants b0, c0 and α0 and three open sets
ωb, ωα and ωc contained in Ω such that

b(x) ≥ b0 > 0, ∀x ∈ ωb, (0.4.7)

α(x) ≥ α0 > 0, ∀x ∈ ωα, (0.4.8)

and
c(x) ≥ c0 > 0, ∀x ∈ ωc. (0.4.9)

First, we study the existence, uniqueness and regularity of the solution of sys-
tem (0.4.3) using a semigroup approach. We start by defining the energy space H
by

H = (H1
0(Ω)× L2(Ω))2 (0.4.10)

equipped with the following inner product:

(U, V)H =
∫

Ω
(∇u · ∇û +∇y · ∇ŷ) dx +

∫
Ω
(vv̂ + zẑ) dx

+Re
∫

Ω
α(x)(uŷ + yû) dx,

(0.4.11)

for all U = (u, v, y, z) , V = (û, v̂, ŷ, ẑ) ∈ H.
Then, we define the unbounded linear operator A by:

D(A) =

{
(u, v, y, z) ∈ H : div(∇u + b∇v) ∈ L2(Ω), div(∇y + c∇z) ∈ L2(Ω)

and v, z ∈ H1
0(Ω)

}
,

AU = (v, div(∇u+ b(x)∇v)− αy, z, div(∇y+ c(x)∇z)− αu), ∀U = (u, v, y, z) ∈ D(A).

The energy of the system is given by

E(t) =
1
2

[ ∫
Ω
(|ut|2+ | ∇u |2 +|yt|2+ | ∇y |2) dx + 2Re

∫
Ω

αuy dx
]

. (0.4.12)

For a smooth solution, a straightforward computation leads to

E′(t) = −
∫

Ω
(b | ∇v |2 +c | ∇z |2) dx ≤ 0. (0.4.13)

Then, system (0.4.3) is dissipative in the sense that its energy is non-increasing with
respect to time t.

By putting v = ut, z = yt and if U = (u, ut, y, yt) is a regular solution of sys-
tem (0.4.3), we can rewrite this system as the following evolution equation:
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Ut = AU, U(0) = U0, (0.4.14)

where U0 = (u0, u1, y0, y1).
We easily prove that the operator A is maximal dissipative. Then, using Lumer-
Phillips Theorem (see Pazy, 1983) we conclude that A generates a C0-semigroup of
contractions on H. Hence, semigroup theory leads us to an existence and unique-
ness result stated in Chapter 1, Theorem 1.2.2.

Second, we study the strong stability of the system in different geometrical
situations. More precisely, we prove that for an initial data in H, the energy
converges to zero as t tends to infinity if one of the following geometric situations
hold.

(H1) If α = α0 is a positive constant, then suppose that either ωb or ωc is a
non-empty open subset of Ω.

(H2) If α is a non-zero function, then suppose that ωb or ωc is is a non-empty open
subset of Ω. Further, assume that either ω1 = ωb ∩ ωα satisfies meas(ω1 ∩ Γ) > 0 or
ω2 = ωc ∩ ωα satisfies meas(ω2 ∩ Γ) > 0.

(H3) ω3 = ωb ∩ ωc is a non-empty open subset of Ω.

To prove the system strongly stable, we first use a unique continuation result
based on a Carleman estimate to derive a new uniqueness result. Then, we use
the obtained uniqueness result combined with a general criteria of Arendt and
Batty, 1988 to achieve our goal. Later on, we show that strongly stable semigroup
associated to system (0.4.3) is analytic when the Kelvin-Voigt dampings are globally
distributed. Then, we show that system (0.4.3) is not uniformly stable for the
case when the coupling coefficient is a positive constant and only one equation
is damped with a globally distributed damping. For this desire, we study the
asymptotic behavior of the eigenvalues of A near the imaginary axis. In fact, we

show that there exists k0 ∈ N∗ sufficiently large and two sequences
(

λ+
k

)
and(

λ−
k

)
satisfying the following asymptotic behavior

λ+
k = iµk −

α2

2µ4
k
+ O

(
1
µ9

k

)
, ∀|k| ≥ k0 (0.4.15)

and

λ−
k = −iµk −

α2

2µ4
k
+ O

(
1
µ9

k

)
, ∀|k| ≥ k0, (0.4.16)

where {µ2
k}∞

k=1 is the sequence of eigenvalues of the Laplace operator ∆.

Due to the fact that the sequences of eigenvalues of A ((0.4.15) and (0.4.16))
are close to the imaginary axis as k tends to infinity, a polynomial decay is hoped.
This leads us to our main result in this chapter. Mainly, when the system (0.4.3)
is partially damped by one locally Kelvin-Voigt damping distributed in a flexible
geometry that covers several situations and under conditions (0.4.7) and (0.4.8),
we confirm that there exists a constant C > 0 such that for every initial data
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U0 = (u0, u1, y0, y1) ∈ D(A), the energy of system (0.4.3) verifies the following
estimate:

E(t) ≤ C
1√

t
∥U0∥2

D(A), ∀t > 0. (0.4.17)

This result is achieved by using a frequency domain approach combined with a mul-
tiplier technique and using the exponential stability of a wave equation with a fric-
tional damping in ω1 = ωb ∩ ωα, namely

φtt − ∆φ + 1ω1 φt = 0 in Ω × (0, ∞),
φ = 0 on Γ × (0, ∞),
φ(t = 0) = φ0, φt(t = 0) = φ1.

(0.4.18)

After that and under an additional condition on ωα and by using the exponential or
polynomial decay of the energy of system (0.4.18), we establish different quantita-
tive results relating the decay rate of the energy of system (0.4.18) and the decay rate
of the energy of system (0.4.3). Then, we prove a better polynomial decay rate in
the case of two active dampings. Finally, we prove the optimality of the polynomial
decay rate t−1/2 in the case where only one of the damping coefficients is effective
and is globally distributed.

In the next chapter, we focus on a coupled system involving the telegraph
equation on a network.
Let S be a star shaped network made of N + 1 cables where, N is a positive
integer. Without loss of generality, we assume that all the N + 1 cables are of
equal length L > 0. Also, fix different real valued and non-negative functions
a = (aℓ)N

ℓ=0, b = (bℓ)N
ℓ=0, c = (cℓ)N

ℓ=0, k = (kℓ)N
ℓ=0, r = (rℓ)N

ℓ=0, and g = (gℓ)N
ℓ=0 in

(L∞(0, L))N+1 satisfying the following assumption

aℓ ≥ µ, bℓ ≥ µ, cℓ ≥ µ, kℓ + gℓ ≥ µ a.e in (0, L), ∀ℓ = 0, . . . , N, (0.4.19)

where µ > 0 is a positive real number.

Chapter 2: In this chapter, we consider the generalized telegraph equation on
a star shaped network S :

Vℓ,t + gℓVℓ + aℓ Iℓ,x + kℓWℓ = 0, (x, t) ∈ (0, L)× R∗
+,

Iℓ,t + rℓ Iℓ + bℓVℓ,x = 0, (x, t) ∈ (0, L)× R∗
+,

Wℓ,t + cℓWℓ = Vℓ, (x, t) ∈ (0, L)× R∗
+.

(0.4.20)

Previously, Nicaise, 2015, has considered the stabilization of the generalized
telegraph equation set in a real interval (0, L) with L > 0 (model on a cable from Im-
periale and Joly, 2014) with the Dirichlet boundary condition at x = 0, L. He proved
that under the condition r ̸= 0, system (0.4.20) is strongly stable in the energy Hilbert
space. Then, under the additional conditions that are r ∈ W1,∞(0, L) and r + g > 0 in
(0, L), an exponential energy decay rate was established. Otherwise, a polynomial
energy decay rate of type t−1 for smooth initial data was attained. Moreover, he
showed that the obtained polynomial decay rate is optimal in the case r = g = 0.
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Our main interest is to extend the analysis to a networked system. This generaliza-
tion is very well-motivated by engineering applications since electric power grids
are complex networked systems.

We considered system (0.4.20) with the following dissipative boundary condi-
tion at the exterior vertices

Vℓ(L, t)− αℓ Iℓ(L, t) = 0, in R∗
+, αℓ > 0, ∀ℓ ∈ {0, ...., N}, (0.4.21)

and the transmission conditions from Beck, 2016, §8.2 or Joly and Semin, 2008 (called
by these authors the improved Kirchhoff conditions) at the interior common vertex

N

∑
k=1

Zℓk Ik,t(0, t) =
1
δ
(V0(0, t)− Vℓ(0, t)), in R∗

+, ∀ℓ ∈ {1, ...., N},

V0,t(0, t) =
−1
δY

N

∑
ℓ=0

Iℓ(0, t) in R∗
+,

(0.4.22)

where, Y and δ are two positive constants and Z = (Zℓk)N×N is a symmetric, positive
definite matrix. These boundary conditions are derived in Beck, 2016, §8.2 or Joly
and Semin, 2008. In fact, these junction nodes are improved in the sense that instead
of zero-order Taylor approximation, a first order Taylor approximation is considered.
As a consequence, in the node conditions not only functions appear but also time
derivative appears and thus leading to a system of ordinary differential equations.
The geometry of the joint can be described by the angles between the joined edges.
This angle enters in the node conditions as a parameter. In addition, the coefficient Y
and the matrix Z are defined from the material properties of the medium and from
3D potentials defined in the reference domain.

By setting ν(t) = V0(0, t) and η(t) = (ηℓ(t))N
ℓ=1 with ηℓ(t) =

N

∑
k=1

Zℓk Ik(0, t), system

(0.4.20)-(0.4.22) is completed with the following initial conditions
V(x, 0) = V0(x), I(x, 0) = I0(x), W(x, 0) = W0(x), x ∈ (0, L),

ν(0) = ν0, η(0) = η0.

(0.4.23)

Our main desire within this chapter is to find the sufficient conditions on the
coefficients of the system, i.e., on the functions aℓ, bℓ, cℓ, kℓ, rℓ, and gℓ that guarantee
that system (0.4.20)-(0.4.23) is strongly stable and then exponentially stable.

For all p ∈ [1, ∞], denote by L
p(S) = Lp(0, L)N+1, 1 ≤ p ≤ ∞ and

H
1(S) = H1(0, L)N+1.

First, we study the existence, uniqueness and regularity of the solution of sys-
tem (0.4.20) using a semigroup approach. We start by defining the energy space

H = (L2(S))3 × CN+1,
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that is a Hilbert space equipped with the following inner product:

⟨(V , I, W , ν, η)⊤, (V∗, I∗, W∗, ν∗, η∗)⊤⟩H =
N

∑
ℓ=0

∫ L

0
(θℓVℓV∗

ℓ + βℓ Iℓ I∗ℓ + γℓWℓW∗
ℓ ) dx

+ δY νν∗ + δ (η, Z−1η∗)CN

where θ = (θℓ)
N
ℓ=0, β = (βℓ)

N
ℓ=0, γ = (γℓ)

N
ℓ=0 ∈ L

∞(S) will be fixed later but are
such that

θℓ ≥ µ0, βℓ ≥ µ0, γℓ ≥ µ0 a.e in Ω, ℓ = 0, . . . , N, (0.4.24)

for some µ0 > 0.

The energy of the system is given by

E(t) =
1
2
||(V , I, W , ν, η)||2H.

For a strong solution, technical computations gives

E′(t) ≤ −1
2

N

∑
ℓ=0

∫ L

0
(θℓgℓ|Vℓ|2 + 2βℓrℓ|Iℓ|2 + γℓcℓ|Wℓ|2)dx −

N

∑
ℓ=0

αℓ|Iℓ(L)|2 ≤ 0.

This means that our system is dissipative in the sense that its energy is non-
increasing with respect to t.

Next, we define the unbounded linear operator A : D(A) → H by

D(A) =

{
(V , I, W , ν, η) ∈ H : V ∈ H1(S), I ∈ H1(S), Vℓ(L) = αℓ Iℓ(L), ∀ℓ ∈ {0, . . . , N},

ν = V0(0), and η = (ηℓ)
N
ℓ=1 with ηℓ =

N

∑
k=1

Zℓk Ik(0)
}

,

and

A


V
I

W
ν
η

 = −
(

g ⊗V + a⊗ Ix +k⊗W , r⊗ I + b⊗V x, c⊗W −V ,
1

δY

N

∑
ℓ=0

Iℓ(0),
1
δ
(Vℓ(0)− ν)N

ℓ=1

)⊤
,

where for two vector functions P = (pℓ)N
ℓ=0 ∈ L∞(S), and Q = (qℓ)N

ℓ=0 ∈ L2(S), we
set

P ⊗ Q = (pℓqℓ)N
ℓ=0,

while for Q = (qℓ)N
ℓ=0 ∈ H1(S),

Qx = (qℓ,x)
N
ℓ=0.
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Then, setting U(t) = (V(·, t), I(·, t), W(·, t), ν(t), η(t))⊤, System (0.4.20)-(0.4.22) can
be formally written as a linear evolution equation in the space H{

U t = AU, t ∈ R∗
+,

U(0) = U0,
(0.4.25)

where U0 = (V0, I0, W0, ν0, η0)
⊤.

First, we prove that the operator A is maximal dissipative. Then, using Lumer-
Phillips Theorem (see Pazy, 1983) we conclude that A generates a C0-semigroup of
contractions on H. Hence, semigroup theory leads us to an existence and unique-
ness result stated in Chapter 2, Theorem 2.2.2.

Second, we study the strong stability of the system in the absence of the com-
pactness of the resolvent and without any additional conditions on the coefficients
of the system. Within this chapter, the reader will realize that analyzing the stability
of our system is not immediate. The result is given in the following theorem.

Theorem 0.4.1. Assume that assumptions (0.4.19) and (0.4.24) hold. Then, the C0-
semigroup (etA)t≥0 is strongly stable on the energy space H, i.e., for any U0 ∈ H, we
have

lim
t→∞

||etAU0||H = 0.

The proof of this theorem is based on the following lemmas.

Lemma 0.4.2. Under the assumptions of Theorem 0.4.1, we have

ker(iλ −A) = {0}, ∀λ ∈ R.

Lemma 0.4.3. Under the assumptions of Theorem 0.4.1, we have

R(iλ −A) = H, ∀λ ∈ R.

The first result is proved by using the dissipativeness of A and our boundary and
transmission conditions, while the second one is based on a compact perturbation
argument in addition to a new uniqueness result and Lemma 0.4.2.
These two Lemmas guarantee that the resolvent set ρ(A) of A contains the whole
imaginary axis. Hence, by a general criteria of Arendt-Batty (see Arendt and Batty,
1988), we deduce that the C0-semigroup of contractions (etA)t≥0 is strongly stable,
i.e., the energy of system (0.4.20)-(0.4.23) converges to zero as time t tends to infinity.

Later on, under the condition that aℓ, bℓ ∈ W1,∞(0, L), for all ℓ ∈ {0, .., N} we
prove that the semigroup (etA)t≥0 is exponentially stable, i.e. there exist two
positive constants M and ϵ > 0 such that

||etAU0||H ≤ Me−ϵt||U0||H, ∀t ≥ 0, ∀U0 ∈ H.

Here contrary to Nicaise, 2015, we do not require that rℓ + gℓ is uniformly
bounded from below for each ℓ (see the assumption (25) in Nicaise, 2015) to get
exponential decay of the energy but rather exploit the dissipative boundary condi-
tions (0.4.21) at the exterior nodes. To prove our result we combine the frequency
domain approach with an ad-hoc multiplier method given in the following lemma.
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Lemma 0.4.4. Let ℓ ∈ {0, .., N} be fixed and assume that the functions aℓ, bℓ ∈ W1,∞(0, L).
Then, there exists hℓ ∈ W1,∞(0, L) and a positive real number ρℓ such that

hℓ(0) = 0, (0.4.26a)
hℓ,x(x) ≥ ρℓ > 0, for a.a. x ∈ (0, L), (0.4.26b)

hℓ,x(x)
(

aℓ(x)
bℓ(x)

)
+ hℓ(x)

(
aℓ(x)
bℓ(x)

)
x
≥ 0, for a.a. x ∈ (0, L). (0.4.26c)

Finally, we discuss the stability of the system (0.4.20) with some extensions, either
by considering a general dynamic boundary condition or by considering general
networks.

In the last chapter, we consider a coupled system involving a thermo-elastic/elastic
transmission problem on networks (see "General notations on graphs" page xiii).

Chapter 3: Let N be a network of elastic and thermo-elastic materials. The
set of edges I(N ) is split up into I(N ) = Ite ∪ Ie, with Ie ∩ Ite = ∅, in other
words, Ite (resp. Ie) is the set of thermo-elastic (resp. elastic) edges. Assume that N
contains at least one thermoelastic edge, that Vext ̸= ∅, that every maximal subgraph
of elastic edges is a tree whose all of its exterior vertices except one are attached to
thermo-elastic edges and that every subgraph of thermo-elastic edges is not a circuit.

In this chapter, we investigate the stabilization of the following thermo-
elastic/elastic transmission problem on N .

• On every thermo-elastic edge of N (j ∈ Ite) the following equations hold:
uj

tt − uj
xx + αjθ

j
x − β jy

j
t = 0 in (0, ℓj)× (0, ∞),

yj
tt − ρjy

j
xx + β ju

j
t = 0 in (0, ℓj)× (0, ∞),

θ
j
t − κjθ

j
xx + αju

j
tx = 0 in (0, ℓj)× (0, ∞),

(0.4.27)

where αj, ρj, κj and β j are positive constants.
• On every elastic edge of N (j ∈ Ie) one has:{

uj
tt − uj

xx − β jy
j
t = 0 in (0, ℓj)× (0, ∞),

yj
tt − ρjy

j
xx + β ju

j
t = 0 in (0, ℓj)× (0, ∞),

(0.4.28)

where β j and ρj are positive constants.
We assume that the initial data on the network N are

uj(x, 0) = uj
0(x), uj

t(x, 0) = uj
1(x),

yj(x, 0) = yj
0(x), yj

t(x, 0) = yj
1(x), θ j(x, 0) = θ

j
0(x), ∀j ∈ I(N ).

(0.4.29)

Previously, several authors considered the linear one-dimensional thermo-elastic
system on a thermo-elastic rod (0, L) given by:{

utt − uxx + αθx = 0, in (0, L)× (0, ∞),
θt − θxx + αutx = 0, in (0, L)× (0, ∞),

(0.4.30)
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with the initial conditions

u(x, 0) = u0, ut(x, 0) = u1, θ(x, 0) = θ0, x ∈ (0, L), (0.4.31)

where u is the displacement, θ is the temperature deviation from the reference
temperature and α is a positive constant.

Both Hansen, 1992 and Liu and Zheng, 1993 considered the stabilization of
system (0.4.30)-(0.4.31) on a thermo-elastic rod (see Figure 14). Hansen, 1992 consid-
ered (0.4.30)-(0.4.31) with u and θ satisfying the Dirichlet and Neumann condition
respectively (or vice versa) while, Liu and Zheng, 1993 considered (0.4.30)-(0.4.31)
with u and θ satisfying both the Dirichlet condition. Both authors succeeded in
proving the exponential stability of the system.

FIGURE 14: A thermoelastic rod

Later on, Marzocchi, Rivera, and Naso, 2002 considered the stabilization of system
(0.4.30)-(0.4.31) on a one dimensional body which is configurated in [0, L3] ⊂ R and
for a given L1, L2 ∈]0, L3[, they assumed that the material is thermo-elastic over
]0, L1[∪]L2, L3[ and elastic over ]L1, L2[. The authors proved that the whole system is
exponentially stable.

Then, Fatori, Lueders, and Rivera, 2003, considered the stabilization of a trans-
mission problem for the thermo-elastic system with local thermal effect which is
effective only over the interval [0, L0], L0 ∈ [0, L]. Similarly, the authors proved
that the thermal damping are strong enough to prove the exponential decay of the
energy to zero.

FIGURE 15: An elastic/thermo-elastic transmission problem

In Shel, 2012, the author studied the stability problem of a thermoelastic system
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on particular cases of networks of elastic and thermoelastic materials. In the first
case, they suppose that two elastic edges cannot be adjacent. In the second one,
they consider a tree of elastic materials, the leaves of which thermoelastic materials
are added as follows: the thermoelastic body is related to only one leaf by an end,
and the second is free or connects two leaves, with the condition that each leaf
is connected to only one thermoelastic body, see Figure 16. Under the continuity
condition of the displacement, the Neumann condition for the temperature at the
internal nodes, and the balance condition, an exponential stability was proved.

FIGURE 16: Elastic/therm-elastic networks
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Later on Han and Zuazua, 2017 discussed the asymptotic behaviour of a transmis-
sion problem of the thermo-elastic system on star shaped networks of elastic and
thermo-elastic rods, see Figure 17.

FIGURE 17: A star shaped network of elastic/ thermo-elastic rods

When only one purely elastic edge is present the uniform exponential decay rate
was proved by a frequency domain analysis. Otherwise, a polynomial decay rate
was deduced under a suitable irrationality condition on the lengths of the rods
when more than one purely elastic edge is involved.

In this chapter, our main interest is to generalize the previous results by con-
sidering more general networks and by studying a more complicated thermo-elastic
system such that on each thermo-elastic edge of the considered networks, we have
a system of two wave equations coupled by velocity, such that one wave equation
is coupled to a heat equation with a thermal effect while, on each purely undamped
elastic edges, we have only a system of two conservative wave equations coupled
by velocity, namely we consider system (0.4.27)-(0.4.29).
We prove that the dissipation due to the thermal effect is also strong enough to
prove the exponential stability of the energy of the whole system when the two
wave equation propagate with the same speed at each thermo-elastic edge of N .
Otherwise, a polynomial decay is established.

To complete formulating our system, we need to indicate the boundary conditions
considered with system (0.4.27)-(0.4.29). Denote by Ite(ak) (resp. Ie(ak)) the set of
indices of thermo-elastic (resp. elastic) edges adjacent to ak and denote by V ′

ext( resp.
V ′

int) the set of exterior (resp. interior) nodes of maximal subgraph of thermo-elastic
edges. Then the boundary condition on N are described as follows:
The displacement and temperature satisfies the Dirichlet boundary condition,

uj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,
yj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,
θ j(ak, t) = 0, j ∈ Ite(ak), ak ∈ V ′

ext.

(0.4.32)

The displacement and temperature are continuous,
uj(ak, t) = uℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,
yj(ak, t) = yℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,
θ j(ak, t) = θℓ(ak, t), j, ℓ ∈ Ite(ak), ak ∈ V ′

int.

(0.4.33)
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The system satisfies the balance condition on y at every interior node,

∑
j∈I(ak)

dkjρjy
j
x(ak) = 0, ak ∈ Vint. (0.4.34)

The system satisfies the following balance conditions on u and θ,
∑

j∈Ite(ak)

dkjκjθ
j
x(ak, t) = 0, ak ∈ V ′

int,

∑
j∈Ite(ak)

dkj(u
j
x(ak)− αjθ

j(ak)) + ∑
j∈Ie(ak)

dkju
j
x(ak) = 0, ak ∈ Vint.

(0.4.35)

First, we prove that system (0.4.27)-(0.4.29) with the boundary conditions (0.4.32)-
(0.4.35) admits a unique solution in an appropriate Hilbert space H using semigroup
theory. Then, we give sufficient conditions that guarantee the strong stability of the
system. In fact, we prove that the energy of the system converges to zero as t tends
to infinity, if one of the following conditions holds,

1) Each maximal subgraph of thermo-elastic edges has an exterior vertex that
belongs to Vext .

2) There exists a maximal subgraph of thermo-elastic edges with no exterior
vertices that belong to Vext and β j = β, for all j ∈ I(N ).

We rely on the Theorem of Arendt and Batty, 1988 combined with a unique
continuation result derived in Hayek et al., 2020 and an iteration method to prove
that our system is strongly stable. Later on, we distinguish between two different
energy decay rates. More precisely, our main results are given in the following
theorems.

Theorem 0.4.5. Let N be an arbitrary network for which system {(0.4.27)− (0.4.29)} with
the boundary conditions {(0.4.32) − (0.4.35)} is stable. If ρj = 1, for all j ∈ Ite, then the
energy of the system decays exponentially in H. In other words, there exist two positive
constants M and ϵ such that

∥etAx0∥H ≤ Me−ϵt∥x0∥H, ∀ t > 0, ∀ x0 ∈ H.

Let I ′
ext denotes the set of indices of edges adjacent to a vertex in V ′

ext.

Theorem 0.4.6. Let N be an arbitrary network for which system (0.4.27) − (0.4.29) with
the boundary conditions (0.4.32) − (0.4.35) is stable. Assume that there exists j ∈ Ite ∩ I ′

ext
such that ρj ̸= 1. Then, the energy of the system decays polynomially in H. More precisely,
there exists C > 0 such that for all t > 0 we have

E(t) ≤ C
t1/3 ||U0||2D(A), ∀U0 ∈ D(A). (0.4.36)

Finally, we present some other boundary conditions (in particular the Neumann
boundary conditions) and we study the stabilization of system (0.4.27)-(0.4.29) on
some particular networks similar to the networks considered in Shel, 2012. The
networks considered in this case are shown in the following figure.
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e1
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e3

a0
e1
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a2

e2
a3

e3

: θ j(ak) = 0

: θ
j
x(ak) = 0

(P)

(G1) (G2)

Thermo-elastic edge

Elastic edge

The boundary conditions of system (0.4.27)-(0.4.29) on the considered networks
P , G1 and G2 will be as follows.
The system satisfies the Dirichlet boundary condition for the displacement and
temperature at the exterior nodes,

uj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,
yj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,
θ j(ak, t) = 0, j ∈ Ite(ak), ak ∈ Vext.

(0.4.37)

The displacement is continuous at every interior node,{
uj(ak, t) = uℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,
yj(ak, t) = yℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint.

(0.4.38)

The temperature satisfies the Neumann condition at the interior nodes,

θ
j
x(ak, t) = 0, j ∈ Ite(ak), ak ∈ Vint. (0.4.39)

The system satisfies the balance condition at every interior node,
∑

j∈Ite(ak)

dkj(u
j
x(ak)− αjθ

j(ak)) + ∑
j∈Ie(ak)

dkju
j
x(ak) = 0, ak ∈ Vint,

∑
j∈I(ak)

dkjρjy
j
x(ak) = 0, ak ∈ Vint.

(0.4.40)

Using semigroup theory, we easily prove the well-posedness of the system. Then,
we discuss its strong stability and we show that under some sufficient conditions
on the lengths of the purely elastic edges attached to the thermo-elastic ones, the
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system (0.4.27)-(0.4.29) with the boundary conditions (0.4.37)-(0.4.40) is strongly
stable and then exponentially stable on the above described networks. More
precisely, we show that the energy of the solution of the system (0.4.27)-(0.4.29) with
the boundary conditions (0.4.37)-(0.4.40) converges to zero as t tends to infinity if
one of the following conditions hold.

1) N is the graph G1,

2) N is the graph P , β j = β, ρj = 1, ∀j ∈ I(P), and there exists j ∈ {1, 3}
such that

ℓj ̸=
mπ√
2β j

, ∀m ∈ N∗, (0.4.41)

3) N is the graph G2, β j = β, ρj = 1, ∀j ∈ I(G2), and in every circuit C, for the
unique j, k ∈ Ω such that ej and ek are edges of C, we have

sin(
√

2β jℓj) + sin(
√

2βkℓk) ̸= 0. (0.4.42)

Finally, we again guarantee that the system (0.4.27)-(0.4.29) with the boundary con-
ditions (0.4.37)-(0.4.40) is also exponentially stable whenever it is strongly stable.
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Part 2

♢A viscoelastic/elastic transmission
problem in a bounded domain of RN♢
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Chapter 1

A transmission problem of a
system of weakly coupled wave
equations with Kelvin-Voigt
dampings and non-smooth
coefficient at the interface

Abstract

The purpose of this chapter is to investigate the stabilization of a system of weakly
coupled wave equations with one or two locally internal Kelvin-Voigt damping and
non-smooth coefficient at the interface. The main novelty in this work is that the
considered system is a coupled system and that the geometrical situations covered
(see Remark 1.5.6, 1.5.12) are richer than all previous results, even for simple wave
equation with Kelvin-Voigt damping. First, using a unique continuation result, we
prove that the system is strongly stable. Second, we show that the system is not
always exponentially stable, instead, we establish some polynomial energy decay
estimates. Further, we prove that a polynomial energy decay rate of order t−1/2 is
optimal in some sense.

1.1 Introduction

Let Ω ⊆ RN , N ≥ 1 be a bounded open set with a Lipschitz boundary Γ. We consider
the following system of coupled wave equations with viscoelastic dampings:

Ztt − div(∇Z + D∇Zt) + BZ = 0, in Ω × R∗
+,

Z = 0, on Γ × R∗
+,

Z(0) = Z0, Zt(0) = Z1 in Ω,

(1.1.1)

where
• Z = (u, y) with u = u(x, t) and y = y(x, t), Zt = (∂tu, ∂ty) denotes the time
derivative of Z.
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Chapter 1. A transmission problem of a system of weakly coupled wave equations
with Kelvin-Voigt dampings and non-smooth coefficient at the interface

• D(x) =

(
b(x) 0

0 c(x)

)
with b, c : Ω → R are the visco-elastic damping

functions satisfying
b, c ∈ L∞(Ω), (1.1.2)

and
b(x) ≥ 0, c(x) ≥ 0 for almost all x ∈ Ω. (1.1.3)

• B(x) =
(

0 α(x)
α(x) 0

)
with α : Ω → R is the coupling function satisfying

α ∈ L∞(Ω), ||α||∞ <
1

C0
, (1.1.4)

where C0 denotes the Poincaré constant. More precisely, C0 is the smallest positive
constant such that ∫

Ω
|θ|2 dx ≤ C0

∫
Ω
|∇θ|2 dx, ∀ θ ∈ H1

0(Ω).

System (1.1.1) models the vibration of bodies which have one part made of a Kelvin-
Voigt type viscoelastic material and the other one is made of an elastic material.
Naturally, system (1.1.1) is dissipative. Indeed, the energy of the system defined by

E(t) =
1
2

∫
Ω
(|ut|2+ | ∇u |2 +|yt|2+ | ∇y |2) dx + 2Re

∫
Ω

αuy dx (1.1.5)

is decreasing with respect to t ∈ (0, ∞) since

∂E(t)
∂t

= E′(t) = −
∫

Ω
(b(x) | ∇ut |2 +c(x) | ∇yt |2) dx ≤ 0.

Besides, when no damping is applied to the system (b = c = 0 on Ω), the energy is
conserved, i.e. E(t) = E(0), for all t > 0.

The stabilization of systems (simple or coupled) with Kelvin-Voigt damping
has attracted the attention of many authors. In particular, in the one dimensional
case, it was proved that the smoothness of the damping coefficient at the interface
plays a critical role in the stability and regularity of the solution of the system (see
Liu, 1997; Liu, Chen, and Liu, 1998; Liu and Liu, 1998; Liu and Liu, 2002; Liu and
Rao, 2005; Zhang, 2010). However, there are only a few number of publications in
the multi-dimensional setting. Let us start by recalling some previous studies in the
case of simple wave equation system given by:

utt − div(a∇u + b∇ut) = 0, in Ω × R∗
+,

u(x, t) = 0, on Γ × R∗
+,

u(x, 0) = u0, ut(x, 0) = u1, in Ω.

(1.1.6)

In Huang, 1988, the author proved that when the Kelvin-Voigt damping
div(b(x)∇ut) is globally distributed i.e. b(x) ≥ b0 > 0 for almost all x ∈ Ω,
the wave equation (1.1.6) generates an analytic semi-group. In Liu and Rao,
2006, the authors considered the wave equation with local visco-elastic damping
distributed around the boundary of Ω. They proved that the energy of the system
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decays exponentially to zero as t goes to infinity for all usual initial data under the
assumption that the damping coefficient satisfies: b ∈ C1,1(Ω), ∆b ∈ L∞(Ω) and
|∇b(x)|2 ≤ M0b(x) for almost every x in Ω where M0 is a positive constant. On the
other hand, in Tebou, 2012, the author studied the stabilization of the wave equation
with Kelvin-Voigt damping. He established a polynomial energy decay rate of type
t−1 provided that the damping region is localized in a neighborhood of a part of
the boundary and verifies the Piecewise Multiplier Geometric Condition (PMGC in
short) from Liu, 1997.

Also in Nicaise and Pignotti, 2016, under the same assumption on b, the authors
established the exponential stability of the wave equation with local Kelvin-Voigt
damping localized around a part of the boundary and an extra boundary with
time delay where they added an appropriate geometric condition. Later on, in
Cavalcanti, Domingos Cavalcanti, and Tebou, 2017, the authors proved an expo-
nential decay of the energy of a wave equation equation with two types of locally
distributed mechanisms; a frictional damping and a Kelvin-Voigt damping where
the location of each damping is such that none of them is able to exponentially
stabilize the system. Under an appropriate geometric condition (PMGC) on a
subset ω of Ω where the dissipation is effective, they proved that the energy of
the system decays polynomially of type t−1 in the absence of regularity of the
Kelvin-Voigt damping coefficient b. In Ammari, Hassine, and Robbiano, 2018, the
wave equation with Kelvin-Voigt damping localized in a subdomain ω far away
from the boundary without any geometric conditions was considered. The authors
established a logarithmic energy decay rate for smooth initial data.

Further, in Nasser, Noun, and Wehbe, 2019, the authors investigate the stabi-
lization of the wave equation with Kelvin-Voigt damping localized via non smooth
coefficient in a suitable sub-domain of the whole bounded domain. They proved
a polynomial stability result in any space dimension, provided that the damping
region satisfies some geometric conditions. Finally in Hassine, 2015 this system
is considered in the interval (0, L), with L > 0, when b = d1(α,β), with d > 0,
and 0 ≤ α < β < L, where an energy decay rate in t−4 is obtained. On the other
hand, to the best of our knowledge, the stabilization of a system of weakly coupled
wave equations with one locally Kelvin-Voigt damping was studied in Najdi,
2016; Oquendo and Pacheco, 2017; Hassine and Souayeh, 2019. In Najdi, 2016,
the author proved a polynomial energy decay rate of type t−1/4 provided that the
coupling coefficient is a constant real number, the damping coefficient b ∈ C1,1(Ω),
and the damping region is covering the whole boundary (that represent a quite
restrictive assumption). In addition, it was proved that the polynomial energy
decay rate of order t−1/4 is optimal in some sense. A decay rate of the energy in
t−1/2 and an optimality result is proved in Oquendo and Pacheco, 2017 provided
that the coupling function is a constant, c = 0 and the visco-elastic coefficient b is
a positive constant (that means that the damping acts on one equation but on the
whole domain). A strongly coupled system (i.e. the term BZ is replaced by BZt)
in the interval (−1, 1) is considered in Hassine and Souayeh, 2019 when c = 0
and b = d1(0,1), with d > 0, where a decay rate of the energy in t−

1
6 is obtained.

Let us finally mention the paper Hassine, 2016, where a transmission wave/beam
system with a local Kelvin-Voigt damping is studied. So, since the stabilization
of the system (1.1.1) with more significant geometric situations and more flexible
conditions on the damping coefficient is not covered yet and since the problem
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of energy decay rate remains an open problem, our goal is to answer this open
question.

In this chapter, we consider (1.1.1) with non smooth globally or locally dis-
tributed Kelvin-Voigt dampings in richer geometric situations than all previous re-
sults. First, we study the strong stability in several geometric situations. More pre-
cisely, we assumed that there exist three constants b0, c0 and α0 and three open sets
ωb, ωα and ωc contained in Ω such that

b(x) ≥ b0 > 0, ∀x ∈ ωb, (1.1.7)

α(x) ≥ α0 > 0, ∀x ∈ ωα, (1.1.8)

and
c(x) ≥ c0 > 0, ∀x ∈ ωc. (1.1.9)

Then, we proved that the energy of the system (1.1.1) decays to zero as t tends to
infinity if one of the following assumptions hold:

(H1) If α = α0 is a positive constant, then suppose that either ωb or ωc is a
non-empty open subset of Ω (see Figure 1.1).

(H2) If α is a non-zero function, then suppose that ωb or ωc is is a non-empty open
subset of Ω. Further, assume that either ω1 = ωb ∩ ωα satisfies meas(ω1 ∩ Γ) > 0 or
ω2 = ωc ∩ ωα satisfies meas(ω2 ∩ Γ) > 0 (see Figure 1.1).

(H3) ω3 = ωb ∩ ωc is a non-empty open subset of Ω.

FIGURE 1.1: Examples of domains Ω

α = 1

ωb

α = 1

Ω

ω1

Ω

Ω verifies (H2) Ω verifies (H1)

Next, we study the energy decay rate in distinguished several cases. In the first case,
we proved that the corresponding semi-group is analytic when the Kelvin-Voigt
dampings are globally distributed (i.e. ωb = ωc = Ω). Then, for the system (1.1.1)
with one non-smooth local Kelvin-Voigt damping and under some conditions
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specified below satisfied by ωb or ωc and ωα, we showed that the energy of the
system decays polynomially with different decay rates according to these condi-
tions. In particular, we prove that the energy decay rate obtained in Najdi, 2016 is
not optimal. We even improve this result by proving a polynomial energy decay
rate of type t−1/2 when the system (1.1.1) is partially damped by one non-smooth
locally Kelvin-Voigt damping (b ≥ 0, c = 0 or b = 0, c ≥ 0 on Ω) distributed in a
flexible geometry that covers several situations (see Remark 5.6). Moreover, in the
case where c = 0, b = 1 and α is constant, we prove that our energy decay rate of
type t−1/2 is the optimal decay rate (better than the one obtained in Najdi, 2016).

Let us briefly outline the content of this chapter. First, in Section 1.2, we show
that the system (1.1.1) is well-posed using semi-group theory. Then, using a
unique continuation result based on a Carleman estimate and a general criteria of
Arendt-Batty in Arendt and Batty, 1988, we proved the strong stability of the system
in the absence of the compactness of the resolvent. In Section 1.3, we prove that the
associated semi-group is analytic in the case of the global Kelvin-Voigt damping
(ωb = ωc = Ω). In Section 1.4, using a spectral analysis, we prove the non uniform
stability of the system in the case where c = 0, b = 1 and α is constant. In Section 1.5,
when the system (1.1.1) is partially damped by one locally distributed Kelvin-Voigt
damping ( b ≥ 0, c = 0 or b = 0, c ≥ 0 on Ω), we established in different cases
polynomial energy decay rates for smooth solutions using a frequency domain
approach combined with a multiplier method. In Section 1.6, we prove a better
polynomial decay rate in the case of two active damping. Finally, in Section 1.7,
we prove the optimality of the polynomial decay rate t−1/2 in the case where
c = 0, b = 1 and α is constant.

1.2 Well-posedness and strong stability

In this section, we will study the existence, uniqueness and regularity of the
solution of system (1.1.1) using a semi-group approach. Later, we will show the
strong stability of this system in the absence of the compactness of the resolvent.

Let us start by proving the wellposedness of system (1.1.1).

1.2.1 Well-posedness

First, we define the energy space H by

H = (H1
0(Ω)× L2(Ω))2 (1.2.1)

equipped with the following inner product:

(U, V)H =
∫

Ω
(∇u · ∇û +∇y · ∇ŷ) dx +

∫
Ω
(vv̂ + zẑ) dx

+Re
∫

Ω
α(x)(uŷ + yû) dx,

(1.2.2)

for all U = (u, v, y, z) , V = (û, v̂, ŷ, ẑ) ∈ H. Note that (1.2.2) is an inner product due
to condition (1.1.4).
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Next, we define the unbounded linear operator A by:

D(A) =

{
(u, v, y, z) ∈ H : div(∇u + b∇v) ∈ L2(Ω), div(∇y + c∇z) ∈ L2(Ω)

and v, z ∈ H1
0(Ω)

}
,

AU = (v, div(∇u+ b(x)∇v)− αy, z, div(∇y+ c(x)∇z)− αu), ∀U = (u, v, y, z) ∈ D(A).

By putting v = ut, z = yt and if U = (u, ut, y, yt) is a regular solution of system
(1.1.1), we can rewrite this system as the following evolution equation:

Ut = AU, U(0) = U0, (1.2.3)

where U0 = (u0, u1, y0, y1).

We recall that the energy of the system is given by

E(t) =
1
2

[ ∫
Ω
(|ut|2+ | ∇u |2 +|yt|2+ | ∇y |2) dx + 2Re

∫
Ω

αuy dx
]

, (1.2.4)

and it is non-negative for any solution U. In fact,

E(t) ≥ 1
2
(
||v||2L2(Ω) + ||z||2L2(Ω)

)
+

1
2
(1 − ||α||∞C0)

(
||u||2H1

0 (Ω)
+ ||y||2H1

0 (Ω)

)
.

Then, under assumption (1.1.4) we deduce that the energy E(t) is non-negative.

Proposition 1.2.1. The unbounded linear operator A generates a C0 semi-group of contrac-
tions on H.

Proof. Using Lumer-Phillips Theorem (see Pazy, 1983), it is sufficient to prove that A
is a maximal dissipative operator so that A generates a C0 semi-group of contractions
on H. First, let U = (u, v, y, z) ∈ D(A). Then, by Green’s formula we have

Re(AU, U)H = −
∫

Ω
(b | ∇v |2 +c | ∇z |2) dx ≤ 0. (1.2.5)

This implies that A is dissipative. Now, let us go on with maximality. Let F =
( f1, f2, f3, f4) ∈ H, we look for U = (u, v, y, z) ∈ D(A) solution of

− AU = F. (1.2.6)

Equivalently, we have the following system

−v = f1, (1.2.7)
−div(∇u + b(x)∇v) + αy = f2, (1.2.8)

−z = f3, (1.2.9)
−div(∇y + c(x)∇z) + αu = f4. (1.2.10)
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Multiplying equation (1.2.8) by φ1 ∈ H1
0(Ω) and equation (1.2.10) by φ2 ∈ H1

0(Ω)
respectively, integrating over Ω, and using Green’s formula we get∫

Ω
∇u · ∇φ1 dx +

∫
Ω

b∇v · ∇φ1 dx +
∫

Ω
αyφ1 dx =

∫
Ω

f2φ1 dx, (1.2.11)

and ∫
Ω
∇y · ∇φ2 dx +

∫
Ω

c∇z · ∇φ2 dx +
∫

Ω
αuφ2 dx =

∫
Ω

f4φ2 dx. (1.2.12)

Replacing (1.2.7) in (1.2.11) and (1.2.9) in (1.2.12), then adding the resulting equations
we obtain the following variational problem:

a((u, y)(φ1, φ2)) = L(φ1, φ2), ∀(φ1, φ2) ∈ H1
0(Ω)× H1

0(Ω), (1.2.13)

where

a((u, y)(φ1, φ2)) =
∫

Ω
(∇u · ∇φ1 +∇y · ∇φ2 + αyφ1 + αuφ2) dx

and
L(φ1, φ2) =

∫
Ω
( f2φ1 + b∇ f1 · ∇φ1 + f4φ2 + c∇ f3 · ∇φ2) dx.

First, using (1.1.4), a is a continuous and coercive form on H1
0(Ω) × H1

0(Ω) then,
by Lax-Milgram theorem, the variational problem (1.2.13) admits a unique solution
(u, y) ∈ H1

0(Ω)× H1
0(Ω). Next, taking φ1 ∈ C∞

c (Ω), φ2 ≡ 0 in (1.2.13) and applying
Green’s formula again, we deduce that∫

Ω

(
div(∇u − b∇ f1) + αy

)
φ1 dx =

∫
Ω

f2φ1 dx, ∀φ1 ∈ C∞
c (Ω). (1.2.14)

This implies that div(∇u − b∇ f1) = f2 − αy ∈ L2(Ω). Similarly, by taking φ1 = 0
and φ2 ∈ C∞

c (Ω) in (1.2.13) we deduce that div(∇y − c∇ f3) = f4 − αu ∈ L2(Ω).
Finally, by setting v = − f1 and z = − f3, we conclude that U = (u, v, y, z) ∈ D(A)
is solution of equation (1.2.6). To conclude, we need to show the uniqueness of such
a solution. So, let U = (u, v, y, z) ∈ D(A) be a solution of equation (1.2.6) with
f1 = f2 = f3 = f4 = 0, then we directly deduce that v = z = 0 and therefore
(u, y) ∈ H1

0(Ω)× H1
0(Ω) satisfies (1.2.13) with L(φ1, φ2) = 0. As a is a sesquilinear,

continuous coercive form on H1
0(Ω)× H1

0(Ω), we deduce that u = y = 0, in other
words, kerA = {0} and 0 belongs to the resolvent set ρ(A) of A. The proof is thus
complete since ρ(A) is open.

As A generates a C0-semigroup of contraction (etA)t≥0 (see Pazy, 1983), we have the
following result:

Theorem 1.2.2. (Existence and uniqueness of the solution)
(1) If U0 = (u0, u1, y0, y1) ∈ D(A), then problem (1.2.3) admits a strong unique solution
U = (u, v, y, z) satisfying:

U ∈ C1(R+,H) ∩ C0(R+, D(A)).

(2) If U0 = (u0, u1, y0, y1) ∈ H, then problem (1.2.3) admits a unique weak solution U =
(u, v, y, z) satisfying:

U ∈ C0(R+,H).
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Now, we are able to study the strong stability of system (1.1.1).

1.2.2 Strong Stability with non compact resolvent

In this section, we will prove the strong stability of the system using a unique con-
tinuation result based on a Carleman estimate and a general criteria of Arendt-Batty
(see Arendt and Batty, 1988). But, before stating the main result of this section, our
goal is to prove a local unique continuation result for a coupled system of wave
equation.
We define the following elliptic operator P defined on a product space by

P : H2(V)× H2(V) −→ L2(V)× L2(V)

(u, y) −→ (∆u, ∆y)
(1.2.15)

and the following function g defined by

g : L2(V)× L2(V) −→ L2(V)× L2(V)

(u, y) −→ (−λ2u + αy,−λ2y + αu)
(1.2.16)

In order to prove our result, we need a Carleman estimate represented in the follow-
ing Lemma (see Hörmander, 1969, Hörmander, 2009 and Theorem 3.5 in Lebeau,
1996):

Lemma 1.2.3. Let V be a bounded open set in RN and let φ = eρψ with ψ ∈ C∞(RN , R);
|∇xψ| > 0 and ρ > 0 large enough. Then, there exist τ0 > 0 large enough and C > 0 such
that

τ3||eτφu||2L2(V) + τ||eτφ∇xu||2L2(V) ≤ C||eτφ∆u||2L2(V) (1.2.17)

for all u ∈ H2
0(V) and τ > τ0.

Now, we are ready to state our first result in this section (see Section 4 in Lebeau,
1996).

Proposition 1.2.4. Let Ω be a bounded open set in RN and x0 be a point in Ω. In a
neighborhood V of x0 ∈ Ω, take a function f such that ∇ f ̸= 0 in V. Moreover, let (u, y) ∈
H2(V) × H2(V) be a solution of P(u, y) = g(u, y). If u = y = 0 in {x ∈ V; f (x) ≥
f (x0)} then, u = y = 0 in a neighborhood of x0.

Proof. Set W := {x ∈ V; f (x) ≥ f (x0)}. Choose V ′ and V ′′ neighborhoods of x0
such that V ′′ ⊆ V ′ ⊆ V (see Figure 1.2). Let χ ∈ C∞

c (V ′) such that χ = 1 in V ′′.
Set ũ = χu and ỹ = χy. Then, (ũ, ỹ) ∈ H2

0(V)× H2
0(V). Let ψ = f (x)− c|x − x0|2

and set φ = eρψ. Then, apply the Carleman estimate of Lemma 1.2.3 to ũ and ỹ
respectively then add both inequalities to obtain

τ3
∫

V′
e2τφ(|ũ|2 + |ỹ|2)dx + τ

∫
V′

e2τφ(|∇ũ|2 + |∇ỹ|2)dx

⩽ C
∫

V′
e2τφ(|∆ũ|2 + |∆ỹ|2)dx.

(1.2.18)

As V ′′ ⊆ V ′ and χ ∈ C∞
c (V ′) such that χ = 1 in V ′′, we get

τ3
∫

V′′
e2τφ(|u|2 + |y|2)dx + τ

∫
V′′

e2τφ(|∇u|2 + |∇y|2)dx ⩽ C
∫

V′′
e2τφ(|∆u|2 + |∆y|2)dx

+C
∫

V′\V′′
e2τφ(|∆ũ|2 + |∆ỹ|2)dx.
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x0

S
f (x) = f (x0)

W

φ(x) = φ(x0)

φ(x) = φ(x0)− ϵ/2

φ(x) = φ(x0)− ϵ

B0

V ′′V ′V

FIGURE 1.2: W is the region above the curve f (x) = f (x0) and S is
the region shaded with blue.

This implies that,

τ3
∫

V′′
e2τφ(|u|2 + |y|2)dx ⩽ C

∫
V′′

e2τφ(|∆u|2 + |∆y|2)dx + C
∫

V′\V′′
e2τφ(|∆ũ|2 + |∆ỹ|2)dx.

But ∆u = −λ2u + αy and ∆y = −λ2y + αu. Hence, there exists Cλα > 0 such that

(τ3 − Cλα)
∫

V′′
e2τφ(|u|2 + |y|2)dx ⩽ C

∫
V′\V′′

e2τφ(|∆ũ|2 + |∆ỹ|2)dx.

Then, there exist τ > 0 large enough and C > 0 such that

τ3
∫

V′′
e2τφ(|u|2 + |y|2)dx ⩽ C

∫
V′\V′′

e2τφ(|∆ũ|2 + |∆ỹ|2)dx. (1.2.19)

As u = y = 0 in W we obtain,

τ3
∫

V′′
e2τφ(|u|2 + |y|2)dx ⩽ C

∫
S

e2τφ(|∆ũ|2 + |∆ỹ|2)dx, (1.2.20)

where S = V ′ \ V ′′ ∪ W.
Set Jϵ = {x ∈ V; φ(x) ≤ φ(x0) − ϵ} and J′ϵ = {x ∈ V; φ(x) ≥ φ(x0) − ϵ

2}. There
exists ϵ > 0 such that S ⊂ Jϵ. Then choose a ball B0 with center x0 such that B0 ⊂
V ′′ ∩ J′ϵ. Then, using (1.2.20), we have∫

B0

(|u|2 + |y|2)dx ⩽
Ce−ϵτ

τ3

∫
S
(|∆ũ|2 + |∆ỹ|2)dx. (1.2.21)
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Taking τ tends to infinity, we obtain that u = y = 0 in B0. So the desired goal is
achieved.

Theorem 1.2.5. (Calderón theorem). Let Ω be a connected open set in RN and let ω ⊂ Ω,
with ω ̸= ∅. If (u, y) in H2(Ω)× H2(Ω) satisfies P(u, y) = g(u, y) in Ω and u = y = 0
in ω, then u and y vanishes in Ω.

Proof. By setting F = supp u ∪ supp y and using Proposition 1.2.4 instead of Propo-
sition 4.1 in the proof of Theorem 4.2 in Rousseau and Lebeau, 2011 the result holds
(see Figure 1.3).

Ω

F

A = Ω \ F

B1

B0

FIGURE 1.3: A dimonstrated figure

Now, we are in position to state our stability result.

Theorem 1.2.6. Let Ω be a connected open set in RN and assume that either (H1), (H2)
or (H3) holds. The C0-semi group of contractions (etA)t≥0 is strongly stable in the energy
space H in the sense that

lim
t→∞

∥etAU0∥ = 0, ∀U0 ∈ H.

Remark 1.2.7. Theorem 1.2.6 shows that for the strong stability of the semi-group, we only
need one of the damping coefficients b or c to be non-zero function.

The resolvent of A is not compact. Then classical methods such as Lasalle’s
invariance principle in Slemrod, 1989 or the spectrum decomposition theory of
Benchimol, 1978 are not applicable in this case. We prove the strong stability with a
more general criteria of Arendt and Batty, 1988 that states that a C0-semigroup of
contractions in a reflexive Banach space is strongly stable, if there is no eigenvalues
on the imaginary axis and the set σ(A)∩ iR is countable. In order to prove Theorem
1.2.6 we need the following two Lemmas.
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Lemma 1.2.8. Assume that either (H1), (H2) or (H3) holds. Then, we have

ker(iλ −A) = {0} , ∀ λ ∈ R.

Proof. From Proposition 1.2.1 we know that 0 ∈ ρ(A), then we may assume that
λ ̸= 0 and let U = (u, v, y, z) ∈ D(A) such that

AU = iλU. (1.2.22)

Using the identity (1.2.5) and the above assumption we get

0 = Re(iλ∥U∥2) = Re(AU, U) = −
∫

Ω
(b(x)|∇v|2 + c(x)|∇z|2)dx. (1.2.23)

This implies that,
√

b∇v = 0 in Ω and
√

c∇z = 0 in Ω. (1.2.24)

Inserting (1.2.24) into (1.2.22), we get
v = iλu, in Ω,
∆u − αy = iλv, in Ω,
z = iλy, in Ω,
∆y − αu = iλz, in Ω.

(1.2.25)

Here, we distinguish between the following three cases :
Case 1. If (H3) holds i.e. ωb ̸= ∅, ωc ̸= ∅ and ω3 = ωb ∩ ωc satisfies
meas(ω3 ∩ Γ) > 0. Then, by Poincaré inequality we have

v = z = 0 in ω3.

So, the first and the third equation in (1.2.25) imply that u = 0 and y = 0 respectively
in ω3. Consequently, we have the following system

λ2u + ∆u − αy = 0, in Ω,
λ2y + ∆y − αu = 0, in Ω,
u = y = 0, in ω3.

(1.2.26)

Then, by applying Theorem 1.2.5 we get u = y = 0 in Ω. Consequently, by the first
and third equation of (1.2.25) we deduce that v = z = 0 in Ω and the desired goal
U = 0 holds.

Case 2. For simplicity, assume that ωb ̸= ∅ and ωc = ∅ ( The same proof
holds if ωc ̸= ∅ and ωb = ∅). If (H2) holds then, α is a non-zero function and
ω1 = ωb ∩ ωα satisfies meas(ω1 ∩ Γ) > 0. Then, Poincaré inequality imply that

v = 0 in ω1.

So, the first equation in (1.2.25) gives that u = 0 in ω1. From the second and third
equations in (1.2.25) and as ω1 ⊆ ωα we deduce respectively that y ≡ 0 and z ≡ 0 in
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ω1. Then, we get the following system
λ2u + ∆u − αy = 0, in Ω,
λ2y + ∆y − αu = 0, in Ω,
u = y = 0, in ω1.

(1.2.27)

Similarly, by applying Theorem 1.2.5 we get u = y = 0 in Ω. Consequently, by the
first and third equation of (1.2.25) we deduce that v = z = 0 in Ω.
Case 3. Otherwise, if (H1) holds, i.e. α = α0 is a positive constant and ωb is any open
subset of Ω. Then, by the first equation of (1.2.25) and using (1.2.24) we get

∇u = 0 in ωb.

By differentiating the second equation of (1.2.25) we obtain

∂j(αy) = 0 in ωb, ∀j = 1, .., N,

but since α is constant, we deduce that

∂jy = 0 in ωb, ∀j = 1, .., N.

Then, for all j = 1, .., N, we have the following system
λ2∂ju + ∆∂ju − α∂jy = 0, in Ω,
λ2∂jy + ∆∂jy − α∂ju = 0, in Ω,
∂ju = ∂jy = 0, in ωb.

(1.2.28)

Repeating the same argument of the first case and applying Theorem 1.2.5 we obtain

∂ju = ∂jy = 0 in Ω, ∀j = 1, .., N.

Then,
u = y = c in Ω,

for some constant c. But as u|Γ = y|Γ = 0, we get u = y = 0 in Ω. Consequently,
U = 0 in Ω.

Lemma 1.2.9. Under the assumptions of Lemma 1.2.8, we have

R(iλI −A) = H, ∀λ ∈ R.

Proof. Let F = ( f1, f2, f3, f4) ∈ H, we look for U ∈ D(A) such that

iλU −AU = F. (1.2.29)

This is equivalent to v = iλu − f1, z = iλy − f3 and to the following system{ λ2u + div(∇u + iλb(x)∇u)− αy = f , in Ω,

λ2y + div(∇y + iλc(x)∇z)− αu = g, in Ω,
(1.2.30)

where f = − f2 − iλ f1 + div(b∇ f1) ∈ H−1(Ω) and g = − f4 − iλ f3 + div(c∇ f3) ∈
H−1(Ω). Now, define the linear operator L : H1

0(Ω) × H1
0(Ω) −→ H−1(Ω) ×
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H−1(Ω) by

L
(

u
y

)
:=

 −div(∇u + iλb∇u) + αy

−div(∇y + iλc∇y) + αu

 . (1.2.31)

Let U = (u, y)T and F = ( f , g)T, then (1.2.30) is equivalent to

(λ2I − L)U = F. (1.2.32)

Since the operator L is an isomorphism from H1
0(Ω) × H1

0(Ω) onto H−1(Ω) ×
H−1(Ω) and I is a compact operator from H1

0(Ω)× H1
0(Ω) onto H−1(Ω)× H−1(Ω).

Then, using Fredholm’s Alternative theorem, problem (1.2.32) admits a unique so-
lution in H1

0(Ω) × H1
0(Ω) if and only if λ2I − L is injective. For that purpose, let

U = (u, y) ∈ ker(λ2I − L). Then, if we set v = iλu and z = iλy, we deduce that
U = (u, v, y, z) ∈ D(A) is a solution of

(iλ −A)U = 0.

Using Lemma 1.2.8, we deduce that u = v = y = z = 0. This implies that
equation (1.2.32) admits a unique solution U = (u, y) ∈ H1

0(Ω) × H1
0(Ω) and

div(∇y + iλc∇y − c∇ f3), div(∇u + iλb∇u − b∇ f1) ∈ L2(Ω). By setting v =
iλu − f1 and z = iλy − f3, we deduce that U = (u, v, y, z) ∈ D(A) is the unique
solution of equation (1.2.29) and the proof is thus complete.

Proof of Theorem 1.2.6. Using Lemma 1.2.8, the operator A has no pure imaginary
eigenvalues and by Lemma 1.2.9, we have R(iλI −A) = H, for all λ in R. There-
fore, the closed graph theorem implies that σ(A) ∩ iR = ∅. Following Arendt-Batty
(see Arendt and Batty, 1988), the C0-semi group of contractions (etA)t≥0 is strongly
stable and the proof is complete.

1.3 Analytic Stability

In this section, under the condition that ωb = ωc = Ω, we will prove that the as-
sociated semigroup of the system (1.1.1) is analytic. For this aim, we will use the
following result (see Corollary 3.7.18 page 157 in Arendt et al., 2001).

Theorem 1.3.1. Let (S(t) = etA)t≥0 be a C0-semi group of contractions in a Hilbert space.
Assume that

iR ⊂ ρ(A) (A1).

Then, (etA)t≥0 is analytic if and only if

lim sup
λ∈R,|λ|→∞

1
|λ|−1 ∥(iλ −A)−1∥L(H) < ∞ (A2).

Now, we are ready to state our result.

Theorem 1.3.2. (Analytic stability)
Assume that (1.1.7), (1.1.9) hold and ωb = ωc = Ω. Then the C0-semigroup (etA)t≥0 is
analytic.

Proof. We know that condition (A1) is verified. Our goal now is to prove that con-
dition (A2) is satisfied. To this aim, we proceed by a contradiction argument. Sup-
pose that (A2) does not hold, then there exist a sequence (λn) ⊂ R and a sequence

47



Chapter 1. A transmission problem of a system of weakly coupled wave equations
with Kelvin-Voigt dampings and non-smooth coefficient at the interface

(Un) ⊂ D(A) such that

|λn| −→ +∞, ∥Un∥H = ∥(un, vn, yn, zn)∥H = 1 (1.3.1)

and
λ−1

n (iλn −A)Un = ( f n
1 , gn

1 , f n
2 , gn

2 ) −→ 0 in H (1.3.2)

are satisfied.
Step 1. (The dissipation).
Multiply in H equation (1.3.2) by the uniformly bounded sequence Un =
(un, vn, yn, zn), we get

λ−1
n

∫
Ω
(b|∇vn|2 + c|∇zn|2) dx = −λ−1

n Re((iλn I −A)Un, Un)H = o(1).

Then, using (1.1.7), (1.1.9) and as ωb = ωc = Ω, it follows that

λ−1/2
n ∥∇vn∥L2(Ω) = o(1), (1.3.3)

and
λ−1/2

n ∥∇zn∥L2(Ω) = o(1). (1.3.4)

Using Poincaré inequality, we get

λ−1/2
n ∥vn∥L2(Ω) = o(1), λ−1/2

n ∥zn∥L2(Ω) = o(1). (1.3.5)

In what follows, we drop the index n for simplicity.
Step 2. (Information on ∇u and ∇y).
By detailing equation (1.3.2), we get the following system

λ−1(iλu − v) = f1 −→ 0 in H1
0(Ω), (1.3.6)

λ−1(iλv − div(∇u + b∇v) + αy) = g1 −→ 0 in L2(Ω), (1.3.7)
λ−1(iλy − z) = f2 −→ 0 in H1

0(Ω), (1.3.8)
λ−1(iλz − div(∇y + c∇z) + αu) = g2 −→ 0 in L2(Ω). (1.3.9)

From equations (1.3.3), (1.3.6), (1.3.8), (1.3.4) and (1.3.5), we get{
∥∇u∥L2(Ω) = o(1) and ∥∇y∥L2(Ω) = o(1),
∥u∥L2(Ω) = o(1) and ∥y∥L2(Ω) = o(1).

(1.3.10)

Step 3. (Information on v and z).
Multiplying equation (1.3.7) by v, then integrating over Ω gives

i
∫

Ω
|v|2 dx + λ−1

∫
Ω
∇u · ∇v dx + λ−1

∫
Ω

b|∇v|2 dx

+λ−1
∫

Ω
αyv dx =

∫
Ω

g1v dx.
(1.3.11)

Then, taking the imaginary part of (1.3.11) and using (1.3.3), (1.3.10) and the fact that
∥g1∥H1

0 (Ω) = o(1), we get
∥v∥L2(Ω) = o(1). (1.3.12)
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Similarly, multiplying equation (1.3.9) by z, then integrating over Ω gives

i
∫

Ω
|z|2 dx + λ−1

∫
Ω
∇y · ∇z dx + λ−1

∫
Ω

c|∇z|2 dx

+λ−1
∫

Ω
αuz dx =

∫
Ω

g2z dx.
(1.3.13)

Then, taking the imaginary part of (1.3.13) and using (1.3.4), (1.3.10) and the fact that
∥g2∥H1

0 (Ω) = o(1), we get
∥z∥L2(Ω) = o(1). (1.3.14)

Consequently, by (1.3.10), (1.3.12) and (1.3.14) we deduce the desired contradiction.

1.4 Non-Uniform stability of the system

In this section, we will prove the non-uniform stability of system (1.1.1). Our main
result is represented in the following theorem.

Theorem 1.4.1. Let c = 0, b = 1 and α = α0 be a positive constant. Then the energy of the
system (1.1.1) does not decay uniformly to zero as t tends to infinity.

To prove Theorem 1.4.1 we study the asymptotic behavior of the eigenvalues of
the operator A near the imaginary axis. So, let λ be an eigenvalue of A and
Φ = (u, v, y, z) be an associated eigenvector, i.e,

AΦ = λΦ, (1.4.1)

equivalently, 

v = λu, in Ω,

∆u + λ∆u − αy = λv, in Ω,

z = λy, in Ω,

∆y − αu = λz, in Ω,

u = y = 0, on Γ.

(1.4.2)

Eliminating v and z from (1.4.2), we get
λ2u − ∆u − λ∆u + αy = 0, , in Ω,

λ2y − ∆y + αu = 0, in Ω,

u = y = 0, on Γ.

(1.4.3)

From the second equation of (1.4.3), we have

u =
1
α

[
∆y − λ2y

]
. (1.4.4)
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Substituting (1.4.4) in the first equation of (1.4.3), we obtain ∆2y − λ2
(

2 + λ

1 + λ

)
∆y +

λ4 − α4

1 + λ
y = 0, in Ω,

y = ∆y = 0, on Γ.
(1.4.5)

Now, let {µ2
k}∞

k=1 be the sequence of eigenvalues of the Laplace operator with Dirich-
let boundary conditions in Ω and eigenvectors φk, i.e,{

−∆φk = µ2
k φk, in Ω,

φk = 0, on Γ.
(1.4.6)

Then by taking y = φk in (1.4.5), we deduce that λ will be an eigenvalue of A if λ is
a root of

P(λ) = λ4 + µ2
kλ3 + 2µ2

kλ2 + µ4
kλ + µ4

k − α2 = 0. (1.4.7)

We have the following result,

Proposition 1.4.2. Assume that c = 0, b = 1 and α = α0 is a positive constant. Then,

there exists k0 ∈ N∗ sufficiently large and two sequences
(

λ+
k

)
and

(
λ−

k

)
simple roots of

P (that are also simple eigenvalues of A) satisfying the following asymptotic behavior

λ+
k = iµk −

α2

2µ4
k
+ O

(
1
µ9

k

)
, ∀|k| ≥ k0 (1.4.8)

and

λ−
k = −iµk −

α2

2µ4
k
+ O

(
1
µ9

k

)
, ∀|k| ≥ k0. (1.4.9)

Proof. First, set ξ = λ
µk

and ζk =
1

µk
. Then, multiply equation (1.4.7) by 1

µ5
k
, we get

h(ξ) = ξ3 + ξ + ζk + 2ξ2ζk + ξ4ζk − α2ζ5
k = 0. (1.4.10)

Then, in order to find the roots of P, i.e. the eigenvalues of A we need before to
calculate the roots of h. We will continue the proof with three steps:

Step 1. Let
f (ξ) = ξ3 + ξ

and
g(ξ) = ξ4ζk + ζk + 2ξ2ζk − α2ζ5

k .

We look for rk sufficiently small such that

| f | > |h − f | = |g|, on ∂D,

where, D = {ξ ∈ C; |ξ − i| ≤ rk}.
Let ξ ∈ ∂D(i, rk), then ξ = i + rkeiθ with 0 ≤ θ ≤ 2π. We have

f (ξ) = ξ3 + ξ = ξrk(2ieiθ + rke2iθ).

But, if rk ≤ 1
2 then,

|ξ| ≥ |1 − rk| ≥
1
2
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and
|2ieiθ + rke2iθ | ≥ |2ieiθ | − rk ≥ 2 − rk ≥ 3/2.

This gives that

| f | = |ξ3 + ξ| ≥ 3rk

4
, if rk ≤ 1/2.

On the other hand, since ξ is bounded in D and ζk → 0 we have,

|g(ξ)| ≤ c1ζk, for some constant c1 > 0.

So, it is enough to choose rk =
4c1
3 ζk.

Similarly, we can find rk sufficiently small such that

| f | > |h − f | = |g|, on ∂D′ = ∂{ξ ∈ C; |ξ + i| ≤ rk}.

Step 2. In this step, we prove that P admits an infinity of simple roots denoted by(
λ+

k

)
and

(
λ−

k

)
for |k| ≥ k0 with k0 large enough such that

λ±
k = ±µk + µkϵ±k , with lim

|k|→∞
ϵ±k = 0. (1.4.11)

Using Step 1 and thanks to Rouché’s theorem, there exists k0 large enough such that
for all |k| ≥ k0 the roots of the polynomial h are close to the roots of the polynomial
f (ξ) = ξ3 + ξ. Then,

ξ+k = i + ϵ+k and ξ−k = −i + ϵ−k , with lim
|k|→∞

ϵ±k = 0. (1.4.12)

Using the fact that λ±
k = µkξ±k we deduce (1.4.11).

Step 3. Asymptotic behavior of ϵ±k . Inserting equation (1.4.12) into equation
(1.4.10), we get

ϵ±k

[
− 2 +

(
± 3i − 4

µk

)
ϵ±k +

(
1 ± 4i

µk

)
(ϵ±k )

2 +
1
µk

(ϵ±k )
3
]
=

α2

µ5
k

. (1.4.13)

From equation (1.4.13), we can predict that ϵ±k is in the form

ϵ±k =
−α2

2µ5
k
+ η±

k , (1.4.14)

with η±
k tends to zero as k tends to infinity.

Now, inserting expression (1.4.14) in (1.4.13), we find

a±0,k + a±1,kη±
k + a±2,k(η

±
k )2 + a±3,k(η

±
k )3 + a±4,k(η

±
k )4 = 0, (1.4.15)
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where, 

a±0,k =
α8

16µ21
k
− α6

8µ15
k
− α4

µ11
k
± (− α6

2µ16
k
+ 3α4

4µ10
k
)i,

a±1,k =
−α6

2µ16
k
+ 3α4

4µ10
k
+ 4α2

µ6
k
− 2 ± (− 3α2

µ5
k
+ 3α4

µ11
k
)i,

a±2,k =
3α4

2µ11
k
− 3α2

2µ5 − 4
µk

± (3 − 6α2

µ6
k
)i,

a±3,k =
−2α2

µ6
k

+ 1 ± 4i
µk

,

a±4,k =
1

µk
.

(1.4.16)

We can notice that a±1,k ̸= 0 for k large enough, a±i,k is bounded uniformly for k large
enough, i = 0, .., 4 and

|a±1,k| ≥ 1, ∀k ≥ k0.

Therefore, using (1.4.15) there exists C > 0 (independent of k) such that∣∣∣∣∣ a
±
0,k

a±1,k
+ η±

k

∣∣∣∣∣ ≤ C|η±
k |2. (1.4.17)

Hence, for k large enough, we deduce that

|η±
k | ≤ 2

∣∣∣∣∣ a
±
0,k

a±1,k

∣∣∣∣∣.
Simple calculations yields ∣∣∣∣∣ a

±
0,k

a±1,k

∣∣∣∣∣ = O
(

1
µ10

k

)
.

This implies that

ϵ±k =
−α2

2µ5
k
+ O

(
1

µ10
k

)
.

Consequently

ξ±k = ±i +
−α2

2µ5
k
+ O

(
1

µ10
k

)
.

Finally, using the fact that λ±
k = µkξ±k we deduce that (1.4.8) and (1.4.9) hold.

1.5 Polynomial Stability with one damping

From now on, we assume that α(x) ≥ 0 for all x ∈ Ω. In this section, we will study
the polynomial decay of our system with only one damping term (b ≥ 0, c = 0
or b = 0, c ≥ 0 on Ω). One of the main ingredients is to use the exponential or
polynomial decay of the wave equation with frictional damping in ω1 = ωb ∩ ωα,
namely
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φtt − ∆φ + 1ω1 φt = 0 in Ω × (0, ∞),
φ = 0 on Γ × (0, ∞),
φ(t = 0) = φ0, φt(t = 0) = φ1.

(1.5.1)

Without loss of generality, assume that b ̸= 0 and c = 0 (The same proof holds if
c ̸= 0 and b = 0).

Theorem 1.5.1. (Polynomial energy decay rate)
Let ωb and ωα be non-empty open subsets of Ω such that (1.1.7) and (1.1.8) hold. Also,
suppose that ω1 = ωb ∩ ωα satisfies meas(ω1 ∩ Γ) > 0. Further, assume that the energy
of the system (1.5.1) is exponentially stable. Then, there exists a constant C > 0 such that
for every initial data U0 = (u0, u1, y0, y1) ∈ D(A), the energy of system (1.1.1) verifies the
following estimate:

E(t) ≤ C
1√

t
∥U0∥2

D(A), ∀t > 0. (1.5.2)

Proof. Following Borichev and Tomilov, 2009 (see also Liu and Rao, 2005, Batty and
Duyckaerts, 2008), a C0 semigroup of contractions (etA)t≥0 on a Hilbert space H
verifies (1.5.2) if

iR ⊂ ρ(A) (S1)

and
lim sup
|λ|→∞

1
λ4 ∥(iλ −A)−1∥L(H) < ∞ (S2).

We know that condition (S1) is verified. Our goal now is to prove that condition
(S2) is satisfied. To this aim, we proceed by a contradiction argument. Suppose that
(S2) does not hold, then there exist a sequence (λn) ⊂ R and a sequence (Un) ⊂
D(A) such that

|λn| −→ +∞, ∥Un∥H = ∥(un, vn, yn, zn)∥H = 1 (1.5.3)

and

λ4
n(iλn −A)Un = ( f n

1 , gn
1 , f n

2 , gn
2 ) −→ 0 in H (1.5.4)

are satisfied.
In what follows, we drop the index n for simplicity.

Lemma 1.5.2. Under all the above assumptions, we have

∥∇v∥L2(ω1) =
o(1)
λ2 and ∥v∥L2(ω1) =

o(1)
λ2 . (1.5.5)

Proof. Multiply in H equation (1.5.4) by the uniformly bounded sequence U =
(u, v, y, z), we get∫

Ω
b(x)|∇v|2 dx = −Re((iλI −A)U, U)H =

o(1)
λ4 .

It follows that

∥
√

b∇v∥L2(Ω) =
o(1)
λ2 . (1.5.6)
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Using (1.1.7), (1.5.6) and Poincaré inequality (since meas(ω1 ∩ Γ) > 0) we get (1.5.5).

By detailing equation (1.5.4), we get the following system

λ4(iλu − v) = f1 −→ 0 in H1
0(Ω), (1.5.7)

λ4(iλv − div(∇u + b∇v) + αy) = g1 −→ 0 in L2(Ω), (1.5.8)
λ4(iλy − z) = f2 −→ 0 in H1

0(Ω), (1.5.9)
λ4(iλz − ∆y + αu) = g2 −→ 0 in L2(Ω). (1.5.10)

From equations (1.5.3), (1.5.7) and (1.5.9) we get

∥u∥L2(Ω) =
O(1)

λ
, ∥y∥L2(Ω) =

O(1)
λ

, (1.5.11)

and using (1.5.3), (1.5.5) and (1.5.7) we also have

∥∇u∥L2(ω1) =
o(1)
λ3 , and ∥u∥L2(ω1) =

o(1)
λ3 . (1.5.12)

Lemma 1.5.3. Under all the above assumptions, we have∫
Ω
|λu|2 dx = o(1). (1.5.13)

Proof. For all n ∈ N, let φn, ψn ∈ H2(Ω) ∩ H1
0(Ω) be the solution of the following

system

λ2
n φn + ∆φn − iλn1ω1 φn = un, in Ω, (1.5.14)

λ2
nψn + ∆ψn − iλn1ω1 ψn = yn, in Ω, (1.5.15)

φn = ψn = 0, in Γ, (1.5.16)

where (un, vn, yn, zn) is the solution of (1.5.7)-(1.5.10). If (1.5.1) with the local vis-
cous damping 1ω1 φt ( or 1ω1 ψt) is exponentially stable then, following Huang., 1985;
Prüss, 1984, there exists M > 0 independent of n such that

||λφn||2L2(Ω) + ||∇φn||2L2(Ω) + ||λψn||2L2(Ω) + ||∇ψn||2L2(Ω)

≤ M(||un||2L2(Ω) + ||yn||2L2(Ω)).
(1.5.17)

For simplicity, we drop the index n.
Now, multiplying (1.5.7) and (1.5.8) by iλ3φ and λ2φ respectively and applying
Green’s formula, we get

−
∫

Ω
λ2u(λ2 φ + ∆φ) dx +

∫
Ω

λ2b∇v · ∇φ dx +
∫

Ω
λ2αyφ dx

=
∫

Ω
(

g1φ

λ2 +
i f1φ

λ
) dx.

(1.5.18)

Using (1.5.14) we get

−
∫

Ω
|λu|2 dx +

∫
Ω

iλ3
1ω1 uφ dx +

∫
Ω

λ2b∇v · ∇φ dx +
∫

Ω
λ2αyφ dx

=
∫

Ω
(

g1φ

λ2 +
i f1φ

λ
) dx.

(1.5.19)
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But, using Cauchy-Schwarz inequality, (1.5.12), (1.5.17) and (1.5.3) we have,∣∣∣∣ ∫Ω
iλ3
1ω1 uφ dx

∣∣∣∣ ≤ ||λ3u||L2(ω1)||φ||L2(Ω) = o(1) (1.5.20)

and by (1.5.6), (1.5.17) and (1.5.3)∣∣∣∣ ∫Ω
λ2b∇v · ∇φ dx

∣∣∣∣ ≤ ||λ2b∇v||L2(Ω)||∇φ||L2(Ω) = o(1). (1.5.21)

Again, using Cauchy-Schwarz inequality, (1.5.11), (1.5.17) and the fact ||u||L2(Ω) =
o(1) we obtain, ∣∣∣∣ ∫Ω

λ2αyφ dx
∣∣∣∣ ≤ ||α||∞||λy||L2(Ω)||λφ||L2(Ω) = o(1). (1.5.22)

Consequently, by (1.5.19) and the fact that φ, f1 and g1 are bounded in L2(Ω) and
using (1.5.20)-(1.5.22) we get ∫

Ω
|λu|2 dx = o(1).

Lemma 1.5.4. Under all the above assumptions, we have∫
Ω
|λy|2 dx = o(1). (1.5.23)

Proof. By inserting equation (1.5.7) in equation (1.5.8) we get

−λ2u − div(∇u + b∇v) + αy =
g1

λ4 +
i f1

λ3 . (1.5.24)

Similarly, inserting equation (1.5.9) in equation (1.5.10) we obtain

−λ2y − ∆y + αu =
g2

λ4 +
i f2

λ3 . (1.5.25)

Now multiplying (1.5.24) and (1.5.25) by y and u respectively then integrating over
Ω and applying Green’s formula we obtain

−
∫

Ω
λ2uy dx +

∫
Ω
∇u · ∇y dx +

∫
Ω

b∇v · ∇y dx +
∫

Ω
α|y|2 dx

=
∫

Ω
(

g1y
λ4 +

i f1y
λ3 ) dx,

(1.5.26)

and

−
∫

Ω
λ2yu dx +

∫
Ω
∇y · ∇u dx +

∫
Ω

α|u|2 dx

=
∫

Ω
(

g2u
λ4 +

i f2u
λ3 ) dx.

(1.5.27)
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Taking the real part of (1.5.26) and (1.5.27) then subtracting both equations, using
(1.5.11) and the fact that f1, g1, f2 and g2 are bounded in L2(Ω) we get∫

Ω
α|u|2 dx + Re

∫
Ω

b∇v · ∇y dx −
∫

Ω
α|y|2 dx =

o(1)
λ4 . (1.5.28)

Using Cauchy-Schwarz inequality, (1.5.6) and the fact that ∇y is bounded in L2(Ω)
we have

Re
∫

Ω
b∇v · ∇y dx ≤

∣∣∣∣ ∫Ω
b∇v · ∇y dx

∣∣∣∣ ≤ ||b∇v||L2(Ω)||∇y||L2(Ω) =
o(1)
λ2 . (1.5.29)

This yields, ∫
Ω

α|u|2 dx −
∫

Ω
α|y|2 dx =

o(1)
λ2 . (1.5.30)

Using (1.5.13) and the fact that α ∈ L∞(Ω) we obtain∫
Ω

α|λy|2 dx = o(1).

But, using condition (1.1.8) we have

α0

∫
ω1

|λy|2 dx ≤
∫

Ω
α|λy|2 dx = o(1).

Consequently, ∫
ω1

|λy|2 dx = o(1). (1.5.31)

Now, multiplying (1.5.9) and (1.5.10) by iλ3ψ and λ2ψ respectively and applying
Green’s formula, we get

−
∫

Ω
λ2y(λ2ψ + ∆ψ) dx +

∫
Ω

λ2αuψ dx =
∫

Ω
(

g2ψ

λ2 +
i f2ψ

λ
) dx. (1.5.32)

Using (1.5.15) we get

−
∫

Ω
|λy|2 dx +

∫
Ω

iλ3
1ω1 yψ dx +

∫
Ω

λ2αuψ dx

=
∫

Ω
(

g2ψ

λ2 +
i f2ψ

λ
) dx.

(1.5.33)

But, using Cauchy-Schwarz inequality, (1.5.31), (1.5.17) and (1.5.3) we have∣∣∣∣ ∫Ω
iλ3
1ω1 yψ dx

∣∣∣∣ ≤ ||λ2y||L2(ω1)||λψ||L2(Ω) = o(1) (1.5.34)

and ∣∣∣∣ ∫Ω
λ2αuψ dx

∣∣∣∣ ≤ ||α||∞||λu||L2(Ω)||λψ||L2(Ω) = o(1). (1.5.35)

56



Chapter 1. A transmission problem of a system of weakly coupled wave equations
with Kelvin-Voigt dampings and non-smooth coefficient at the interface

Then, by (1.5.33), the fact that ψ is bounded in L2(Ω) by (1.5.11) and (1.5.17), the fact
that f2, g2 are bounded in L2(Ω) and using (1.5.34)-(1.5.35), we obtain∫

Ω
|λy|2 dx = o(1).

Lemma 1.5.5. Under all the above assumptions, we have∫
Ω
|∇u|2 dx = o(1) and

∫
Ω
|∇y|2 dx = o(1). (1.5.36)

Proof. Multiply (1.5.24) and (1.5.25) by u and y respectively, then integrate over Ω
and apply Green’s formula, we obtain

−
∫

Ω
|λu|2 dx +

∫
Ω
|∇u|2 dx +

∫
Ω

b∇v · ∇u dx +
∫

Ω
αyu dx

=
∫

Ω
(

g1u
λ4 +

i f1u
λ3 ) dx,

(1.5.37)

and

−
∫

Ω
|λy|2 dx +

∫
Ω
|∇y|2 dx +

∫
Ω

αuy dx =
∫

Ω
(

g2y
λ4 +

i f1y
λ3 ) dx. (1.5.38)

But, using Cauchy-Schwarz inequality, (1.5.6) and (1.5.3) we have∣∣∣∣ ∫Ω
b∇v · ∇u dx

∣∣∣∣ ≤ ||b∇v||L2(Ω)||∇u||L2(Ω) = o(1)

and ∣∣∣∣ ∫Ω
αyu dx

∣∣∣∣ ≤ ||α||∞||u||L2(Ω)||y||L2(Ω) = o(1).

Consequently, we get ∫
Ω
|∇u|2 dx =

∫
Ω
|λu|2 dx + o(1)

and ∫
Ω
|∇y|2 dx =

∫
Ω
|λy|2 dx + o(1).

By (1.5.13) and (1.5.23) we deduce that∫
Ω
|∇u|2 dx = o(1) and

∫
Ω
|∇y|2 dx = o(1).

In conclusion, by (1.5.13), (1.5.23) and (1.5.36) we deduce that ∥Un∥H = o(1) which
leads to the desired contradiction.

Remark 1.5.6.

1) Theorem 1.5.1 shows that we can have b ̸= 0, c ≥ 0 or b ≥ 0, c ̸= 0. In other
words, to prove the polynomial energy decay rate of type t−1/2 we only need one of
the dampings to be effective.
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2) From Zuazua, 1990, Theorem 1.1 and Remark 1.2 we deduce that if the
boundary of Ω is C2 and ω1 is a neighbourhood of the boundary, then the solution
of (1.5.1) is exponentially decaying. In fact, we know that given any point x0 ∈ RN ,
(1.5.17) is satisfied when ω1 is a neighborhood of Γ̄(x0) where

Γ(x0) = {x ∈ Γ : (x − x0).ν(x) > 0},

where ν(x) is the unit outward normal at x ∈ Γ.

3) Also, from Zuazua, 1990 and by Bardos, Lebeau, and Rauch, 1992 (see also
Lebeau, 1993-1994) for domains with boundaries, we know that when Ω is of class
C∞, (1.5.17) is satisfied when ω1 satisfies the Geometric Control Condition (GCC).
Recall that the GCC can be formulated as follows: For a subset ω of Ω, we shall say
that ω satisfies the Geometric Control Condition if there exists T > 0 such that every
geodesic traveling at speed one issued from Ω at time t = 0 intersects ω before time
T.

4) In Remark 4.3 of Liu, 1997, further examples of pairs (Ω, ω1) such that
(1.5.17) is valid are given.

Now, under an additional condition on ωα, we will show that if (1.5.1) decay expo-

nentially (β = 0) or polynomially as t
−4
β with β > 0, then the energy of the system

(1.1.1) decays polynomially as t
−2
ℓ with ℓ = 2β + 4. In fact, under the additional

assumption ωα = suppα ⊂ ωb we will find a better estimation of ||yn||L2(ωα).

Theorem 1.5.7. (Polynomial energy decay rate)
Let ωα and ωb be non-empty subsets of Ω. Assume that conditions (1.1.7) and (1.1.8) hold.
Let ωα satisfies meas(ωα ∩ Γ) > 0 and let ωα = supp α ⊂ ωb. Also, assume that the
energy of the system (1.5.1) is exponentially stable (β = 0) or polynomially stable as t

−4
β ,

with β > 0. Then, there exists a constant C > 0 such that for every initial data U0 =
(u0, u1, y0, y1) ∈ D(A), the energy of system (1.1.1) verifies the following estimate:

E(t) ≤ C

t
2
ℓ

∥U0∥2
D(A), ℓ = 2β + 4, β ≥ 0, ∀t > 0. (1.5.39)

Proof. Following Borichev and Tomilov, 2009, (see also Liu and Rao, 2005, Batty and
Duyckaerts, 2008), a C0-semigroup of contractions (etA)t≥0 on a Hilbert space H
verifies (1.5.39) if (S1) holds and

lim sup
|λ|→∞

1
λℓ

∥(iλ −A)−1∥L(H) < ∞ (S3).

We know that condition (S1) is verified. Our goal now is to prove that condition (S3)
is satisfied. To this aim, we proceed by a contradiction argument. Suppose that (S3)
does not hold, then there exist a sequence (λn) ⊂ R and a sequence (Un) ⊂ D(A)
such that (1.5.3) and

λℓ
n(iλn −A)Un = ( f n

1 , gn
1 , f n

2 , gn
2 ) −→ 0 in H (1.5.40)
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are satisfied.
In what follows, we drop the index n for simplicity.

Lemma 1.5.8. Under all the above assumptions, we have

∥∇v∥L2(ωb)
=

o(1)
λℓ/2 and ∥v∥L2(ωb)

=
o(1)
λℓ/2 . (1.5.41)

The proof is the same as the one of Lemma 1.5.2.

By detailing equation (1.5.40), we get the following system

λℓ(iλu − v) = f1 −→ 0 in H1
0(Ω), (1.5.42)

λℓ(iλv − div(∇u + b∇v) + αy) = g1 −→ 0 in L2(Ω), (1.5.43)
λℓ(iλy − z) = f2 −→ 0 in H1

0(Ω), (1.5.44)
λℓ(iλz − ∆y + αu) = g2 −→ 0 in L2(Ω). (1.5.45)

From equations (1.5.42) and (1.5.44) and using (1.5.3) we get (1.5.11), and using
(1.5.41), (1.5.42), (1.5.3), the fact that ωα = supp α ⊂ ωb, and Poincaré inequality
(since meas(ωα ∩ Γ) > 0), we also have

∥∇u∥L2(ωα) =
o(1)

λ
ℓ
2+1

and ∥u∥L2(ωα) =
o(1)

λ
ℓ
2+1

. (1.5.46)

Lemma 1.5.9. Under all above assumptions, we have∫
ωα

|y|2 dx =
o(1)
λℓ/2 . (1.5.47)

Proof. By inserting equation (1.5.42) in equation (1.5.43) we get

−λ2u − div(∇u + b∇v) + αy =
g1

λℓ
+

i f1

λℓ−1 . (1.5.48)

Similarly, inserting equation (1.5.44) in equation (1.5.45) we obtain

−λ2y − ∆y + αu =
g2

λℓ
+

i f2

λℓ−1 . (1.5.49)

Now multiplying (1.5.48) and (1.5.49) by y and u respectively, then integrating over
Ω and applying Green’s formula we obtain

−
∫

Ω
λ2uy dx +

∫
Ω
∇u · ∇y dx +

∫
Ω

b∇v · ∇y dx +
∫

Ω
α|y|2 dx

=
∫

Ω
(

g1y
λℓ

+
i f1y
λℓ−1 ) dx,

(1.5.50)

and

−
∫

Ω
λ2yu dx +

∫
Ω
∇y · ∇u dx +

∫
Ω

α|u|2 dx

=
∫

Ω
(

g2u
λℓ

+
i f2u
λℓ−1 ) dx.

(1.5.51)
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Taking the real part of (1.5.50) and (1.5.51) then subtracting both equations, using
(1.5.11) and the fact that f1, g1, f2 and g2 converge to zero in L2(Ω) we get∫

Ω
α|u|2 dx + Re

∫
Ω

b∇v · ∇y dx −
∫

Ω
α|y|2 dx =

o(1)
λℓ

. (1.5.52)

Using Cauchy-Schwarz inequality, (1.5.41) and the fact that ∇y is bounded in L2(Ω)
we have

Re
∫

Ω
b∇v · ∇y dx ≤

∣∣∣∣ ∫Ω
b∇v · ∇y dx

∣∣∣∣ ≤ ||b∇v||L2(Ω)||∇y||L2(Ω) =
o(1)
λℓ/2 . (1.5.53)

This yields, ∫
Ω

α|u|2 dx −
∫

Ω
α|y|2 dx =

o(1)
λℓ/2 . (1.5.54)

But, using (1.5.46) and the fact that ωα = suppα, we get∫
Ω

α|u|2 dx ≤ ||α||∞
∫

ωα

|u|2 dx =
o(1)

λ
ℓ
2+1

.

Then, (1.5.54) becomes ∫
Ω

α|y|2 dx =
o(1)
λℓ/2 .

But, using condition (1.1.8) and as ωα = suppα, we deduce that∫
ωα

|y|2 dx =
o(1)
λℓ/2 . (1.5.55)

Lemma 1.5.10. Under all the above assumptions, if ℓ ≥ max{β + 2, 2β} we have∫
Ω
|λu|2 dx = o(1). (1.5.56)

Proof. For all n ∈ N, let φn, ψn ∈ H2(Ω) ∩ H1
0(Ω) be the solution of (1.5.14)-(1.5.16).

If the system (1.5.1) with ω1 = ωα decays exponentially (β = 0) or polynomially as

t
−4
β , with β > 0. Then, following Borichev and Tomilov, 2009, there exists M > 0

independent of n such that

||λφn||2L2(Ω) + ||∇φn||2L2(Ω) + ||λψn||2L2(Ω) + ||∇ψn||2L2(Ω)

≤ M|λ|β(||un||2L2(Ω) + ||yn||2L2(Ω)).
(1.5.57)

Hence, using (1.5.11) we have,
||λφ||L2(Ω) =

O(1)

λ1− β
2

, ||∇φ||L2(Ω) =
O(1)

λ1− β
2

,

||λψ||L2(Ω) =
O(1)

λ1− β
2

, ||∇ψ||L2(Ω) =
O(1)

λ1− β
2

.

(1.5.58)
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Now, multiplying (1.5.42) and (1.5.43) by iλ3 φ and λ2φ respectively and applying
Green’s formula, we get

−
∫

Ω
λ2u(λ2 φ + ∆φ) dx +

∫
Ω

λ2b∇v · ∇φ dx +
∫

Ω
λ2αyφ dx

=
∫

Ω
(

g1φ

λℓ−2 +
i f1φ

λℓ−3 ) dx.
(1.5.59)

Using (1.5.14) we get

−
∫

Ω
|λu|2 dx +

∫
Ω

iλ3
1ωα uφ dx +

∫
Ω

λ2b∇v · ∇φ dx +
∫

Ω
λ2αyφ dx

=
∫

Ω
(

g1φ

λℓ−2 +
i f1φ

λℓ−3 ) dx.
(1.5.60)

But, using Cauchy-Schwarz inequality, (1.5.46) and (1.5.58) we have,∣∣∣∣ ∫Ω
iλ3
1ωα uφ dx

∣∣∣∣ ≤ |λ|2||u||L2(ωα)||λφ||L2(Ω) =
o(1)

λ
ℓ−β

2

. (1.5.61)

This means that we need ℓ−β
2 ≥ 0, i.e, ℓ ≥ β so that∫

Ω
λ3
1ωα uφ dx = o(1).

Also, by (1.5.41) and (1.5.58) we have∣∣∣∣ ∫Ω
λ2b∇v · ∇φ dx

∣∣∣∣ ≤ |λ|2||b∇v||L2(Ω)||∇φ||L2(Ω) =
o(1)

λ
ℓ−β

2 −1
. (1.5.62)

This means that we should have ℓ−β
2 − 1 ≥ 0, i.e, ℓ ≥ β + 2 so that∫

Ω
λ2b∇v · ∇φ dx = o(1).

Again, using Cauchy-Schwarz inequality, (1.5.47), (1.5.58) and as ωα = suppα, we
obtain ∣∣∣∣ ∫Ω

λ2αyφ dx
∣∣∣∣ ≤ ||α||∞|λ|||y||L2(ωα)||λφ||L2(Ω) =

o(1)

λ
ℓ−2β

4

. (1.5.63)

This means that we should have ℓ−2β
4 ≥ 0, i.e, ℓ ≥ 2β so that∫

Ω
λ2αyφ dx = o(1).

On the other hand, using Cauchy-Schwarz inequality, (1.5.58) and the fact that f1
and g1 converge to zero in L2(Ω) we have∣∣∣∣ ∫Ω

(
g1φ

λℓ−2 +
i f1φ

λℓ−3 ) dx
∣∣∣∣ ≤ ( 1

|λ|ℓ−2 ||g1||L2(Ω) +
1

|λ|ℓ−3 || f1||L2(Ω)

)
||φ||L2(Ω)

=
o(1)

λℓ− β
2

+
o(1)

λℓ−1− β
2

.
(1.5.64)
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This means that we need ℓ− 1 − β
2 ≥ 0, i.e, ℓ ≥ β

2 + 1 so that∫
Ω
(

g1 φ

λℓ−2 +
i f1φ

λℓ−3 ) dx = o(1).

As a conclusion, if ℓ ≥ max{β + 2, 2β} we get∫
Ω
|λu|2 dx = o(1).

Lemma 1.5.11. Under all above assumptions, if ℓ ≥ 2β + 4 then, we have∫
Ω
|λy|2 dx = o(1). (1.5.65)

Proof. Now, multiplying (1.5.44) and (1.5.45) by iλ3ψ and λ2ψ respectively and ap-
plying Green’s formula, we get

−
∫

Ω
λ2y(λ2ψ + ∆ψ) dx +

∫
Ω

λ2αuψ dx =
∫

Ω
(

g2ψ

λℓ−2 +
i f2ψ

λℓ−3 ) dx. (1.5.66)

Using (1.5.15) we get

−
∫

Ω
|λy|2 dx +

∫
Ω

iλ3
1ωα yψ dx +

∫
Ω

λ2αuψ dx

=
∫

Ω
(

g2ψ

λℓ−2 +
i f2ψ

λℓ−3 ) dx.
(1.5.67)

But, using Cauchy-Schwarz inequality, (1.5.55) and (1.5.58) we have∣∣∣∣ ∫Ω
iλ3
1ωα yψ dx

∣∣∣∣ ≤ |λ|2||y||L2(ωα)||λψ||L2(Ω) =
o(1)

λ
ℓ−2β

4 −1
. (1.5.68)

This means that we need ℓ ≥ 2β + 4 so that∫
Ω

λ3
1ωα yψ dx = o(1).

Again using Cauchy-Schwarz inequality, (1.5.58), (1.5.46) and the fact that ωα =
supp α, we have∣∣∣∣ ∫Ω

λ2αuψ dx
∣∣∣∣ ≤ ||α||∞||λu||L2(ωα)||λψ||L2(Ω) =

o(1)

λ1+ ℓ−β
2

. (1.5.69)

This means that we need ℓ ≥ β − 2 so that∫
Ω

λ2αuψ dx = o(1).
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On the other hand, by Cauchy-Schwarz inequality, (1.5.58) and the fact that f2, g2
converge to zero in L2(Ω) we have∣∣∣∣ ∫Ω

(
g2ψ

λℓ−2 +
i f2ψ

λℓ−3 ) dx
∣∣∣∣ ≤ ( 1

|λ|ℓ−1 ||g2||L2(Ω) +
1

|λ|ℓ−2 || f2||L2(Ω)

)
||λψ||L2(Ω)

=
o(1)

λℓ− β
2

+
o(1)

λℓ−1− β
2

.
(1.5.70)

This means that we need ℓ− 1 − β
2 ≥ 0, i.e, ℓ ≥ β

2 + 1 so that

∫
Ω
(

g2ψ

λℓ−2 +
i f2ψ

λℓ−3 ) dx = o(1).

As a conclusion, if ℓ ≥ 2β + 4 we obtain∫
Ω
|λy|2 dx = o(1).

Consequently, if ℓ = 2β + 4 we deduce that∫
Ω
|λu|2 dx = o(1),

∫
Ω
|λy|2 dx = o(1),

and using Lemma 1.5.5, we obtain∫
Ω
|∇u|2 dx = o(1), and

∫
Ω
|∇y|2 dx = o(1).

Thus, we conclude that ∥Un∥H = ∥(un, vn, yn, zn)∥H = o(1) which leads to the de-
sired contradiction.

Remark 1.5.12.

1) In Stahn, 2017, the damped wave equation (1.5.1) with Dirichlet boundary
conditions was considered on the unit square (0, 1)2. In fact, it is proved that
if ω1 = {(x, y) ∈ (0, 1)2; x < σ}, where σ is some fixed number from the
interval (0, 1). Then, the energy of (1.5.1) decays polynomially as t−4/3, which
corresponds to β = 3 in Theorem 1.5.7. The author noticed that the same decay
remains true in higher dimensional spaces, namely in a hyper cube (0, 1)N and
ω1 = {(x1, .., xN) ∈ (0, 1)N ; x1 < σ}.

2) In example 3 of Liu and Rao, 2005, the authors considered the wave equa-
tion with local viscous damping in the square (0, π)2. Based on their results, if we
impose that the damping region ω1 contains a vertical strip of the square domain,
i.e,

ω1 ⊃ Ωs = {(x1, x2)/a < x1 < b, 0 < x2 < π}.

Then, the energy of (1.5.1) decays polynomially as t−1, i.e, β = 4 in Theorem 1.5.7.
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1.6 Polynomial stability with two dampings

In this section, we will improve the polynomial decay obtained in section 5, by us-
ing two damping terms. One of the main ingredients is to use the exponential or
polynomial decay of the wave equation with frictional damping in ω3 = ωb ∩ ωc,
namely 

φtt − ∆φ + 1ω3 φt = 0 in Ω × (0, ∞),
φ = 0 on Γ × (0, ∞),
φ(t = 0) = φ0, φt(t = 0) = φ1.

(1.6.1)

Theorem 1.6.1. (Polynomial energy decay rate)
Let ωb, ωc and ωα be non-empty open subsets of Ω. Assume that conditions (1.1.7), (1.1.8)
and (1.1.9) hold. Let ω3 = ωb ∩ ωc satisfies meas(ω3 ∩ Γ) > 0 and let supp α ⊆ ω3. Also,
assume that the energy of the system (1.6.1) is exponentially stable (β = 0) or polynomially
stable as t

−4
β , with β > 0. Then, there exists a constant C > 0 such that for every initial data

U0 = (u0, u1, y0, y1) ∈ D(A), the energy of system (1.1.1) verifies the following estimate:

E(t) ≤ C

t
2

β+2
∥U0∥2

D(A), ∀t > 0. (1.6.2)

Proof. Following Borichev and Tomilov, 2009, (see also Liu and Rao, 2005, Batty and
Duyckaerts, 2008), a C0-semigroup of contractions (etA)t≥0 on a Hilbert space H
verifies (1.6.2) if (S1) holds and

lim sup
|λ|→∞

1
λℓ

∥(iλ −A)−1∥L(H) < ∞, ℓ = β + 2 (S4).

As (S1) already holds, our goal is to prove that condition (S4) is satisfied. To this
aim, we proceed by a contradiction argument. Suppose that (S4) does not hold,
then there exist a sequence (λn) ⊂ R and a sequence (Un) ⊂ D(A) such that (1.5.3)
and (1.5.40) are satisfied.

In what follows, we drop the index n for simplicity.

Lemma 1.6.2. Under all the above assumptions, we have
∥∇v∥L2(ω3) =

o(1)
λℓ/2 , ∥v∥L2(ω3) =

o(1)
λℓ/2 ,

∥∇z∥L2(ω3) =
o(1)
λℓ/2 , ∥z∥L2(ω3) =

o(1)
λℓ/2 .

(1.6.3)

Proof. Multiply in H equation (1.5.40) by the uniformly bounded sequence U =
(u, v, y, z), we get∫

Ω
(b(x)|∇v|2 + c(x)|∇z|2) dx = −Re((iλI −A)U, U)H =

o(1)
λℓ

.

It follows that 
∥b1/2∇v∥L2(Ω) =

o(1)
λℓ/2 ,

∥c1/2∇z∥L2(Ω) =
o(1)
λℓ/2 .

(1.6.4)
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Using (1.1.7), (1.6.4) and Poincaré inequality (since meas(ω3 ∩ Γ) > 0) we get (1.6.3).

By detailing equation (1.5.40), we get (1.5.42)-(1.5.44) and

λℓ(iλz − div(∇y + c∇z) + αu) = g2 −→ 0 in L2(Ω). (1.6.5)

From equations (1.5.42) and (1.5.44) and using (1.5.3) we get (1.5.11).
Using (1.5.3), (1.6.3), (1.5.42) and (1.5.44) we also have

∥∇u∥L2(ω3) =
o(1)

λ
ℓ
2+1

and ∥u∥L2(ω3) =
o(1)

λ
ℓ
2+1

,

∥∇y∥L2(ω3) =
o(1)

λ
ℓ
2+1

and ∥y∥L2(ω3) =
o(1)

λ
ℓ
2+1

.
(1.6.6)

Lemma 1.6.3. Under all the above assumptions, if ℓ ≥ β + 2 then, we have∫
Ω
|λu|2 dx = o(1) and

∫
Ω
|λy|2 dx = o(1). (1.6.7)

Proof. For all n ∈ N, let φn, ψn ∈ H2(Ω) ∩ H1
0(Ω) be the solution of (1.5.14)-(1.5.16).

If (1.6.1) decays exponentially (β = 0) or polynomially as t
−4
β , β > 0. Then, following

Borichev and Tomilov, 2009 and using (1.5.11), we know that (1.5.57) and (1.5.58)
hold.
As before we deduce that (1.5.59) holds, i.e,

−
∫

Ω
|λu|2 dx +

∫
Ω

iλ3
1ω3 uφ dx +

∫
Ω

λ2b∇v · ∇φ dx +
∫

Ω
λ2αyφ dx

=
∫

Ω
(

g1φ

λℓ−2 +
i f1φ

λℓ−3 ) dx.
(1.6.8)

But, using Cauchy-Schwarz inequality, (1.6.6) and (1.5.58) we have,∣∣∣∣ ∫Ω
iλ3
1ω3 uφ dx

∣∣∣∣ ≤ |λ|2||u||L2(ω3)||λφ||L2(Ω) =
o(1)

λ
ℓ−β

2

. (1.6.9)

This means that we need ℓ−β
2 ≥ 0 i.e. ℓ ≥ β so that∫

Ω
λ3
1ω3 uφ dx = o(1).

Also, by (1.6.4) and (1.5.58) we have∣∣∣∣ ∫Ω
λ2b∇v · ∇φ dx

∣∣∣∣ ≤ |λ|2||b∇v||L2(Ω)||∇φ||L2(Ω) =
o(1)

λ
ℓ−β

2 −1
. (1.6.10)

This means that we should have ℓ−β
2 − 1 ≥ 0 i.e. ℓ ≥ β + 2 so that∫

Ω
λ2b∇v · ∇φ dx = o(1).
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Again, using Cauchy-Schwarz inequality, (1.6.6) and (1.5.58) we obtain,∣∣∣∣ ∫Ω
λ2αyφ dx

∣∣∣∣ ≤ ||α||∞|λ|||y||L2(ω3)||λφ||L2(Ω) =
o(1)

λ
ℓ−β

2 +1
. (1.6.11)

This means that we should have ℓ−β
2 + 1 > 0 i.e. ℓ ≥ β − 2 so that∫

Ω
λ2αyφ dx = o(1).

On the other hand, (1.5.64) holds, so we need ℓ− 1 − β
2 ≥ 0 i.e ℓ ≥ β

2 + 1 so that∫
Ω
(

g1 φ

λℓ−2 +
i f1φ

λℓ−3 ) dx = o(1).

As a conclusion, if ℓ ≥ β + 2 we get∫
Ω
|λu|2 dx = o(1).

Similarly, multiplying (1.5.44) and (1.6.5) by iλ3ψ and λ2ψ respectively, applying
Green’s formula, and Cauchy-Schwarz inequality, we prove that∫

Ω
|λy|2 dx = o(1),

if ℓ ≥ β + 2.

Lemma 1.6.4. Under all the above assumptions, if ℓ ≥ 0 then,∫
Ω
|∇u|2 dx =

∫
Ω
|λu|2 dx + o(1), and

∫
Ω
|∇y|2 dx =

∫
Ω
|λy|2 dx + o(1).

Proof. By inserting equation (1.5.42) in equation (1.5.43) we get

−λ2u − div(∇u + b∇v) + αy =
g1

λℓ
+

i f1

λℓ−1 . (1.6.12)

Similarly, inserting equation (1.5.44) in equation (1.6.5) we obtain

−λ2y −−div(∇y + c∇z) + αu =
g2

λℓ
+

i f2

λℓ−1 . (1.6.13)

Now, multiply (1.6.12) and (1.6.13) by u and y respectively then integrate over Ω and
apply Green’s formula, we obtain

−
∫

Ω
|λu|2 dx +

∫
Ω
|∇u|2 dx +

∫
Ω

b∇v · ∇u dx +
∫

Ω
αyu dx

=
∫

Ω
(

g1u
λℓ

+
i f1u
λℓ−1 ) dx

(1.6.14)
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and

−
∫

Ω
|λy|2 dx +

∫
Ω
|∇y|2 dx +

∫
Ω

c∇z · ∇y dx +
∫

Ω
αuy dx =∫

Ω
(

g2y
λℓ

+
i f1y
λℓ−1 ) dx.

(1.6.15)

But, using Cauchy-Schwarz inequality, (1.6.4) and (1.5.3) we have∣∣∣∣ ∫Ω
b∇v · ∇u dx

∣∣∣∣ ≤ ||b∇v||L2(Ω)||∇u||L2(Ω) =
o(1)
λℓ/2 ,

∣∣∣∣ ∫Ω
αyu dx

∣∣∣∣ ≤ ||α||∞||u||L2(Ω)||y||L2(Ω) = o(1),

and ∣∣∣∣ ∫Ω
c∇z · ∇y dx

∣∣∣∣ ≤ ||c∇z||L2(Ω)||∇y||L2(Ω) =
o(1)
λℓ/2 .

Consequently, we get ∫
Ω
|∇u|2 dx =

∫
Ω
|λu|2 dx + o(1),

and ∫
Ω
|∇y|2 dx =

∫
Ω
|λy|2 dx + o(1).

Consequently, if ℓ = β + 2 we deduce that∫
Ω
|λu|2 dx = o(1),

∫
Ω
|λy|2 dx = o(1),

and using Lemma 1.6.4, we obtain∫
Ω
|∇u|2 dx = o(1), and

∫
Ω
|∇y|2 dx = o(1).

Thus, we conclude that ∥Un∥H = ∥(un, vn, yn, zn)∥H = o(1) which leads to the de-
sired contradiction.

Remark 1.6.5. In Theorem 1.6.1, if supp α ⊈ ω3 then, we can easily prove that the

energy of system (1.1.1) decays polynomially as t
−2

β+2 , with β < 2. Indeed, in order to
prove that (compare with (1.6.11))∫

Ω
αλ2yψ dx = o(1),

we will need β < 2.
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1.7 Optimality of the polynomial decay rate

We study here the optimality of the polynomial decay rate obtained for the N−
dimensional coupled wave system in Theorem 1.5.1.

Theorem 1.7.1. Assume that c = 0, b = 1 and α = α0 > 0. Then the energy decay rate
(1.5.2) is optimal in the sense that for any ϵ > 0 we cannot expect the decay rate 1

t1/2+ϵ for
all initial data U0 ∈ D(A).

Proof. Assume that there exist ϵ > 0 and C such that

||etA||H ≤ C

t
1
4+ϵ

||U||D(A), ∀U ∈ D(A). (1.7.1)

Then, by Theorem 2.4 of Borichev and Tomilov, 2009, we deduce that there exists
C′ > 0 such that

||(is −A)−1||L(H) ≤ C′|s| 4
1+4ϵ , ∀s ∈ R, (1.7.2)

or equivalently,

||U||H ≤ C′|s| 4
1+4ϵ ||(is −A)U||H, ∀U ∈ D(A). (1.7.3)

Now, let λ+
k , with k ≥ k0, be the sequence of eigenvalues of A described in Proposi-

tion 1.4.2 and let Un ∈ D(A) be the normalized eigenfunction. Moreover, set

βk = ℑ(λ+
k ), ∀k ≥ k0. (1.7.4)

Then, using (1.4.8) we have

||(iβk I −A)Uk||H ∼ 1
µ4

k
. (1.7.5)

Consequently, by (1.7.3), we will have

1 = ||Uk||H ≲
C′|βk|

4
1+4ϵ

µ4
k

≲ C′µ
4

1+4ϵ−4
k ≲ C′µ

−16ϵ
1+4ϵ

k .

This leads to a contradiction.

1.8 Conclusion

The following table summarizes our main results.
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Kelvin-Voigt
Damping

Sufficient conditions Obtained de-
cay rate

Covered geometrical
situations

One non-
smooth

(H2), (1.1.7) and (1.1.8),
(1.5.1) exponentially de-
caying

pol. t−1/2

1) Ω C∞, ω1 satisfies
GCC.
2) Ω C2, ω1 neighbor-
hood of the boundary.
3) See Remark 1.5.6.

One non
smooth

(1.1.7) and (1.1.8),
meas(ωα ∩ Γ) > 0,
ωα = supp α ⊂ ωb,
(1.5.1) exponentially sta-
ble
or polynomially stable

as t
−4
β , with β > 0.

pol. t
−1

β+2

1) Ω C∞, ωα satisfies
GCC.
2) Ω C2, ωα is a neigh-
borhood of the bound-
ary.
3) ωα contains a verti-
cal strip of the square
(0, π)2.
4) See Remark 1.5.6,
1.5.12.

Two non
smooth

(1.1.7), (1.1.8) and (1.1.9),
ω3 = ωb ∩ ωc satis-
fies meas(ω3 ∩ Γ) > 0,
supp α ⊆ ω3,
(1.6.1) is exponentially
stable or polynomially

stable as t
−4
β , with β > 0.

pol. t−
1

β/2+1

1) Ω C∞, ω3 satisfies
GCC.
2) Ω C2, ω3 is a neigh-
borhood of the bound-
ary.
3) ω3 contains a verti-
cal strip of the square
(0, π)2.
4) See Remark 1.5.6,
1.5.12.

Two non
smooth

(1.1.7), (1.1.9), ωb = ωc =
Ω.

Analytic Lipschitz boundary
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Chapter 2

Existence, uniqueness and
stabilization of solutions of a
generalized telegraph equation on
star shaped Networks

Abstract

The existence, uniqueness, strong and exponential stability of generalized tele-
graph equation set on one dimensional star shaped networks are established. It is
assumed that a dissipative boundary condition is applied at all the external vertices
and an improved Kirchhoff law at the common internal vertex is considered. First,
using a general criteria of Arendt-Batty (see Arendt and Batty, 1988), combined with
a new uniqueness result, we prove that our system is strongly stable. Next, using
a frequency domain approach, combined with a multiplier technique and the con-
struction of a new multiplier satisfying some ordinary differential inequalities, we
show that the energy of the system decays exponentially to zero.

2.1 Introduction

Over decades, telegraph equations have gained attention and interest among sci-
entists due to their different applications in the transmission of electrical signals
along transmission lines of all frequencies, in addition to many other physical, bi-
ological and engineering applications (see Bohme, 1987; Evans and Bulut, 2003; Jor-
dan, Meyer, and Puri, 2000; Mohanty, 2009; Pascal, 1986). As a consequence, many
mathematical models were set up, for instance in Imperiale and Joly, 2014, a general
and realistic situation was considered and a mathematical model of electromagnetic
wave propagation in heterogeneous lossy coaxial cables was derived. Recently, re-
ferring to Nicaise, 2015, S. Nicaise has considered the stabilization of the generalized
telegraph equation set in a real interval (model on a cable from Imperiale and Joly,
2014): 

Vt + gV + aIx + kW = 0, in (0, L)× (0, ∞),
It + rI + bVx = 0, in (0, L)× (0, ∞),
Wt + cW = V, in (0, L)× (0, ∞),

(2.1.1)
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with the following boundary conditions

V(0, t) = V(L, t) = 0, t ∈ R∗
+,

and the following initial conditions

V(x, 0) = V0(x), I(x, 0) = I0(x), W(x, 0) = W0(x), x ∈ (0, L),

where, a, b, c, r, k and g are all non-negative functions in L∞(0, L) that verify some
assumptions mentioned in Nicaise, 2015, see (2.1.2) below for the exact conditions.
The generalized telegraph equation is a coupling between the usual telegraph equa-
tion where the electric unknowns are V and I representing the electric potential and
the electric current respectively with a first order differential equation of parabolic
type involving an auxiliary variable W representing the non-local effects. In Nicaise,
2015, the author was interested in studying the energy decay rate of system (2.1.1).
In fact, under the additional condition that r + g > 0 in (0, L), an exponential energy
decay rate was established. Otherwise, he proved a polynomial energy decay rate
of type t−1 for smooth initial data. Moreover, the obtained polynomial decay rate is
optimal in the case r = g = 0. On the other hand, first order hyperbolic systems set
on graphs, also called networks, appear in recent applications, like electrical circuits,
arterial networks, networks of open channels, traffic flows on networks (see Bastin
and Coron, 2016; Gugat, Dick, and Leugering, 2011; Leugering, Gugat, and Dick,
2010; Valein and Zuazua, 2009; Zhang and Xu, 2012; Kramar, Mugnolo, and Nicaise,
2020b; Kramar, Mugnolo, and Nicaise, 2020a; Kramar and Sikolya, 2004; Dorn et al.,
2010; for heat, wave or beam equations on graphs, see Mehmeti, 1994; Below and
De Coster, 2000; Gugat and Sigalotti, 2010; Mugnolo and Romanelli, 2007; Mugnolo,
2010; Zhang, Xu, and Mastorakis, 2009; Mugnolo, 2014) and the references there. In
particular, referring to Nicaise, 2017, the usual telegraph equation was considered
on a network with a general class of transmission conditions, including reasonable
ones (like the Kirchhoff law) so that with the dissipative boundary conditions at
the exterior vertices, an exponential stability was established. Note that some exact
controllability results or stability properties have been obtained in Diagne, Bastin,
and Coron, 2012; Gen Qi Xu and Liu, 2008; Lagnese, Leugering, and Schmidt, 1994;
Maffucci and Miano, 2006; Perrollaz and Rosier, 2014; Zhou and Kriegsmann, 2009;
Gugat and Sigalotti, 2010; Zhang, Xu, and Mastorakis, 2009 for instance. But to
the best of our knowledge, the stability of the generalized telegraph equation on
a network is an open problem. This motivates us to study this equation on star
shaped graphs.

In the present work, we consider system (2.1.1) on a star shaped network S
made of N + 1 cables of equal length L > 0, with a positive integer N (see Figure
2.1). For that purpose, we fix different real valued and non-negative functions
a = (aℓ)N

ℓ=0, b = (bℓ)N
ℓ=0, c = (cℓ)N

ℓ=0, k = (kℓ)N
ℓ=0, r = (rℓ)N

ℓ=0, and g = (gℓ)N
ℓ=0 in

(L∞(0, L))N+1 satisfying the following assumption

aℓ ≥ µ, bℓ ≥ µ, cℓ ≥ µ, kℓ + gℓ ≥ µ a.e in (0, L), ∀ℓ = 0, . . . , N, (2.1.2)

where µ > 0 is a positive real number. These assumptions are in agreement with the
physical setting from Imperiale and Joly, 2012; Imperiale and Joly, 2014.
On each edge eℓ with index ℓ ∈ {0, ...., N}, we consider the generalized telegraph
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FIGURE 2.1: A star-shaped network

equation
Vℓ,t + gℓVℓ + aℓ Iℓ,x + kℓWℓ = 0, (x, t) ∈ (0, L)× R∗

+,
Iℓ,t + rℓ Iℓ + bℓVℓ,x = 0, (x, t) ∈ (0, L)× R∗

+,
Wℓ,t + cℓWℓ = Vℓ, (x, t) ∈ (0, L)× R∗

+,

(2.1.3)

where Vℓ represents the electric potential, Iℓ represents the electric current and Wℓ

represents the non-local effects. Moreover, we denote by V = (Vℓ)
N
ℓ=0, I = (Iℓ)N

ℓ=0,
and W = (Wℓ)

N
ℓ=0.

Let us mention that the case when the edges have different lengths Lℓ, ℓ = 0, · · · , N,
namely system

Vℓ,t + gℓVℓ + aℓ Iℓ,x + kℓWℓ = 0, (x, t) ∈ (0, Lℓ)× R∗
+,

Iℓ,t + rℓ Iℓ + bℓVℓ,x = 0, (x, t) ∈ (0, Lℓ)× R∗
+,

Wℓ,t + cℓWℓ = Vℓ, (x, t) ∈ (0, Lℓ)× R∗
+,

can be treated similarly since it can be reduced to (2.1.3) as follows. Indeed by per-
forming on edge ℓ, the change of variable xℓ = L

Lℓ
x, with a fixed L > 0, and the

change of unknowns

Îℓ(xℓ, t) = Iℓ(
Lℓ

L
xℓ, t), V̂ℓ(xℓ, t) = Vℓ(

Lℓ

L
xℓ, t), Ŵℓ(xℓ, t) = Wℓ(

Lℓ

L
xℓ, t),

we transform this system into (2.1.3) where the coefficients aℓ and bℓ are changed
into L

Lℓ
aℓ and L

Lℓ
bℓ respectively (and that continue to satisfy (2.1.2)).

System (2.1.3) is considered with the following dissipative boundary condition at
the exterior vertices

Vℓ(L, t)− αℓ Iℓ(L, t) = 0, in R∗
+, αℓ > 0, ∀ℓ ∈ {0, ...., N}, (2.1.4)

75



Chapter 2. Existence, uniqueness and stabilization of solutions of a generalized
telegraph equation on star shaped Networks

and the transmission conditions from Beck, 2016, §8.2 or Joly and Semin, 2008 (called
by these authors the improved Kirchhoff conditions) at the interior common vertex

N

∑
k=1

Zℓk Ik,t(0, t) =
1
δ
(V0(0, t)− Vℓ(0, t)), in R∗

+, ∀ℓ ∈ {1, ...., N},

V0,t(0, t) =
−1
δY

N

∑
ℓ=0

Iℓ(0, t) in R∗
+,

(2.1.5)

where, Y and δ are two positive constants and Z = (Zℓk)N×N is a symmetric, positive
definite matrix. These boundary conditions are derived in Beck, 2016, §8.2 or Joly
and Semin, 2008 by using the method of matched asymptotics starting from thin
coaxial cables of thickness δ. The coefficient Y and the matrix Z are defined from the
material properties of the medium and from 3D potentials defined in the reference
domain.

Remark 2.1.1. If rℓ = 0, then differentiating (2.1.4) with respect to t and using the
second equation of (2.1.3), we exactly find the Neumann velocity feedback law

Vℓ,t(L, t) = −αℓbℓVℓ,x(L, t), in R∗
+, ∀ℓ ∈ {0, ...., N},

from Cox and Zuazua, 1995, (4) or Gugat, 2014, (4).

By setting ν(t) = V0(0, t) and η(t) = (ηℓ(t))N
ℓ=1 with ηℓ(t) =

N

∑
k=1

Zℓk Ik(0, t), System

(2.1.3)-(2.1.5) is completed with the following initial conditions
V(x, 0) = V0(x), I(x, 0) = I0(x), W(x, 0) = W0(x), x ∈ (0, L),

ν(0) = ν0, η(0) = η0.

(2.1.6)

As suggested before, our goal is then to find sufficient conditions on the func-
tions aℓ, bℓ, cℓ, kℓ, rℓ, and gℓ that guarantee that the above system is strongly stable
and then exponentially stable.

Let us briefly outline the content of this chapter. First, in Section 2.2, we show
that System (2.1.3)-(2.1.6) admits a unique solution in an appropriate Hilbert space
using semi-group theory. Next, using a general criteria of Arendt-Batty (see Arendt
and Batty, 1988), we prove the strong stability of the system in the absence of
the compactness of the resolvent. Then, in Section 2.3, based on a frequency
domain approach combined with an ad-hoc multiplier technique, we establish an
exponential energy decay rate. Finally, in Section 2.4, we discuss the stability of
our system with some extensions, either by considering general dynamic boundary
conditions or by considering general networks.

Let us finish this introduction with some notations used in the remainder of the pa-
per: for all p ∈ [1, ∞], Lp(S) = Lp(0, L)N+1, 1 ≤ p ≤ ∞ and H1(S) = H1(0, L)N+1.
We denote by (·, ·)CN the inner product in CN .

76



Chapter 2. Existence, uniqueness and stabilization of solutions of a generalized
telegraph equation on star shaped Networks

2.2 Well posedness and strong stability

In this section, we will study the existence, uniqueness, regularity and asymptotic
behavior of the solution of System (2.1.3)-(2.1.6).

2.2.1 Well posedness of the problem

First, we define the energy space

H = (L2(S))3 × CN+1,

that is a Hilbert space equipped with the following inner product:

⟨(V , I, W , ν, η)⊤, (V∗, I∗, W∗, ν∗, η∗)⊤⟩H =
N

∑
ℓ=0

∫ L

0
(θℓVℓV∗

ℓ + βℓ Iℓ I∗ℓ + γℓWℓW∗
ℓ ) dx

+ δY νν∗ + δ (η, Z−1η∗)CN

where θ = (θℓ)
N
ℓ=0, β = (βℓ)

N
ℓ=0, γ = (γℓ)

N
ℓ=0 ∈ L

∞(S) will be fixed later but are
such that

θℓ ≥ µ0, βℓ ≥ µ0, γℓ ≥ µ0 a.e in Ω, ℓ = 0, . . . , N, (2.2.1)

for some µ0 > 0.
Next, we define the unbounded linear operator A : D(A) → H by

D(A) =

{
(V , I, W , ν, η) ∈ H : V ∈ H1(S), I ∈ H1(S), Vℓ(L) = αℓ Iℓ(L), ∀ℓ ∈ {0, . . . , N},

ν = V0(0), and η = (ηℓ)
N
ℓ=1 with ηℓ =

N

∑
k=1

Zℓk Ik(0)
}

,

and

A


V
I

W
ν
η

 = −
(

g ⊗V + a⊗ Ix +k⊗W , r⊗ I + b⊗V x, c⊗W −V ,
1

δY

N

∑
ℓ=0

Iℓ(0),
1
δ
(Vℓ(0)− ν)N

ℓ=1

)⊤
,

where for two vector functions P = (pℓ)N
ℓ=0 ∈ L∞(S), and Q = (qℓ)N

ℓ=0 ∈ L2(S), we
set

P ⊗ Q = (pℓqℓ)N
ℓ=0,

while for Q = (qℓ)N
ℓ=0 ∈ H1(S),

Qx = (qℓ,x)
N
ℓ=0.

Then, setting U(t) = (V(·, t), I(·, t), W(·, t), ν(t), η(t))⊤, System (2.1.3)-(2.1.6) can be
formally written as a linear evolution equation in the space H{

U t = AU, t ∈ R∗
+,

U(0) = U0,
(2.2.2)
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where U0 = (V0, I0, W0, ν0, η0)
⊤.

For this system, we have the following existence result.

Theorem 2.2.1. Assume that condition (2.1.2) holds. Then, there exist θ, β, γ ∈ L∞(S)
satisfying (2.2.1) such that the operator A generates a C0-semigroup of contractions (etA)t≥0
on H.

Proof. Using Lumer-Phillips Theorem (see Pazy, 1983; Z. Liu, 1999), it is sufficient to
prove that A is a maximal dissipative operator so that A generates a C0-semigroup
of contractions on H.
Step 1. Let us start by the dissipativity. Let U = (V , I, W , ν, η)⊤ ∈ D(A) then, we
have

ℜ⟨AU, U⟩H =ℜ
[
−

N

∑
ℓ=0

∫ L

0
θℓ(gℓVℓ + aℓ Iℓ,x + kℓWℓ)Vℓ dx

−
N

∑
ℓ=0

∫ L

0
βℓ(rℓ Iℓ + bℓVℓ,x)Iℓ dx

+
N

∑
ℓ=0

∫ L

0
γℓ(Vℓ − cℓWℓ)Wℓ dx − V0(0)

N

∑
ℓ=0

Iℓ(0)−
N

∑
ℓ=1

(Vℓ(0)− V0(0))Iℓ(0)

]

=−
N

∑
ℓ=0

∫ L

0
(θℓgℓ|Vℓ|2 + βℓrℓ|Iℓ|2 + γℓcℓ|Wℓ|2) dx −ℜ

N

∑
ℓ=0

∫ L

0
θℓaℓ Iℓ,xVℓ dx

−ℜ
N

∑
ℓ=0

∫ L

0
βℓbℓVℓ,x Iℓ dx +ℜ

N

∑
ℓ=0

∫ L

0
(γℓ − θℓkℓ)VℓWℓ dx −ℜV0(0)

N

∑
ℓ=0

Iℓ(0)

−ℜ
N

∑
ℓ=1

(Vℓ(0)− V0(0))Iℓ(0).

Now, as in Nicaise, 2015, we chose θℓ = a−1
ℓ , βℓ = b−1

ℓ for all ℓ, and apply Green’s
formula on the third term of the right-hand side, we obtain

ℜ⟨AU, U⟩ = −
N

∑
ℓ=0

∫ L

0
(a−1

ℓ gℓ|Vℓ|2 + b−1
ℓ rℓ|Iℓ|2 + γℓcℓ|Wℓ|2) dx −ℜ

N

∑
ℓ=0

∫ L

0
Iℓ,xVℓ dx

+ℜ
N

∑
ℓ=0

∫ L

0
Iℓ,xVℓ dx −ℜ

N

∑
ℓ=0

Vℓ(L)Iℓ(L) +ℜ
N

∑
ℓ=0

Vℓ(0)Iℓ(0)

+ℜ
N

∑
ℓ=0

∫ L

0
(γℓ − θℓkℓ)VℓWℓ dx −ℜV0(0)

N

∑
ℓ=0

Iℓ(0)

+ℜV0(0)
N

∑
ℓ=1

Iℓ(0)−ℜ
N

∑
ℓ=1

Vℓ(0)Iℓ(0)

= −
N

∑
ℓ=0

∫ L

0
(a−1

ℓ gℓ|Vℓ|2 + b−1
ℓ rℓ|Iℓ|2 + γℓcℓ|Wℓ|2) dx

+ℜ
N

∑
ℓ=0

∫ L

0
(γℓ − θℓkℓ)VℓWℓ dx −

N

∑
ℓ=0

αℓ|Iℓ(L)|2.
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Finally, by estimating the second term of this right-hand side by Young’s inequality
we get,

ℜ⟨AU, U⟩ ≤ −
N

∑
ℓ=0

∫ L

0
(a−1

ℓ gℓ|Vℓ|2 + b−1
ℓ rℓ|Iℓ|2 + γℓcℓ|Wℓ|2) dx −

N

∑
ℓ=0

αℓ|Iℓ(L)|2

+
N

∑
ℓ=0

∫ L

0

|γℓ − kℓθℓ|
2

(ϵℓ|Vℓ|2 +
1
ϵℓ
|Wℓ|2) dx,

for all ϵ(x) = (ϵℓ(x))N
ℓ=0 positive vector ( i.e. ϵℓ(x) > 0, ∀ℓ ∈ {0, .., N}, x ∈ (0, L)).

Now, we need to find ϵ(x) = (ϵℓ(x))N
ℓ=0 and γ = (γℓ)

N
ℓ=0 to satisfy for all

ℓ ∈ {0, .., N} :
|γℓ − kℓθℓ|ϵℓ

2
− θℓgℓ ≤ 0

and
|γℓ − kℓθℓ|

2ϵℓ
− γℓcℓ ≤ 0.

But according to the proof of Theorem 2.1 of Nicaise, 2015 (see p. 3224-3225 in
Nicaise, 2015) such a choice is always possible (we do not give the details and re-
fer to that paper for the details). With such a choice, we find

ℜ⟨AU, U⟩ ≤ −1
2

N

∑
ℓ=0

∫ L

0
(θℓgℓ|Vℓ|2 + 2βℓrℓ|Iℓ|2 + γℓcℓ|Wℓ|2)dx

−
N

∑
ℓ=0

αℓ|Iℓ(L)|2 ≤ 0,

(2.2.3)

and consequently, A is dissipative.

Step 2. Now, let us go on with the maximality. Let λ > 0 be fixed. Given
F = ( f 1, f 2, f 3, f 4, f 5)

⊤ ∈ H, we look for U = (V , I, W , ν, η)⊤ ∈ D(A) solution of

(λI −A)U = F,

or equivalently,

λVℓ + aℓ Iℓ,x + gℓVℓ + kℓWℓ = fℓ,1, ∀ℓ ∈ {0, .., N},
λIℓ + bℓVℓ,x + rℓ Iℓ = fℓ,2, ∀ℓ ∈ {0, .., N},
λWℓ + cℓWℓ − Vℓ = fℓ,3, ∀ℓ ∈ {0, .., N},

λν +
1

δY

N

∑
ℓ=0

Iℓ(0) = f4,

ληℓ +
1
δ
(Vℓ(0)− ν) = fℓ,5, ∀ℓ ∈ {1, .., N}.

(2.2.4)

Assume for the moment that a solution U ∈ D(A) of (2.2.4) exists. Then, the
third equation is equivalent to

Wℓ =
Vℓ + fℓ,3

λ + cℓ
, for all ℓ ∈ {0, .., N}. (2.2.5)
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Similarly, the last two equations of (2.2.4) allow to eliminate ν and ηℓ, namely

ν =

f4 − 1
δY

N

∑
ℓ=0

Iℓ(0)

λ
, (2.2.6)

and

ηℓ =
fℓ,5 − 1

δ (Vℓ(0)− ν)

λ
, for all ℓ ∈ {1, .., N}. (2.2.7)

Replacing (2.2.5) in the first equation of (2.2.4), we get{
Vℓ + aℓ,1(λ)Iℓ,x = fλ,ℓ,
Vℓ,x + aℓ,2(λ)Iℓ = gλ,ℓ,

(2.2.8)

where 

aℓ,1(λ) =
aℓ

λ + gℓ +
kℓ

λ + cℓ

, aℓ,2(λ) =
λ + rℓ

bℓ
,

fλ,ℓ =
fℓ,1 −

kℓ fℓ,3

λ + cℓ

λ + gℓ +
kℓ

λ + cℓ

, gλ,ℓ =
fℓ,2

bℓ
,

(2.2.9)

for all ℓ ∈ {0, .., N}.

Let ψ = (ψℓ)
N
ℓ=0 ∈ H

1(S). Multiplying the second equation of (2.2.8) by ψℓ,
integrating over (0, L) and summing on ℓ ∈ {0, .., N}, yields

N

∑
ℓ=0

∫ L

0
Vℓ,xψℓ dx +

N

∑
ℓ=0

∫ L

0
aℓ,2(λ)Iℓψℓ dx =

N

∑
ℓ=0

∫ L

0
gλ,ℓψℓ dx. (2.2.10)

Similarly, multiplying the first equation of (2.2.8) by ψℓ,x, integrating over (0, L) and
summing on ℓ ∈ {0, .., N}, gives

N

∑
ℓ=0

∫ L

0
Vℓψℓ,x dx +

N

∑
ℓ=0

∫ L

0
aℓ,1(λ)Iℓ,xψℓ,x dx =

N

∑
ℓ=0

∫ L

0
fλ,ℓψℓ,x dx. (2.2.11)

By integrating by parts the first term of the left hand side of (2.2.11), we obtain

−
N

∑
ℓ=0

∫ L

0
Vℓ,xψℓ dx +

N

∑
ℓ=0

Vℓ(L)ψℓ(L)−
N

∑
ℓ=0

Vℓ(0)ψℓ(0)

+
N

∑
ℓ=0

∫ L

0
aℓ,1(λ)Iℓ,xψℓ,x dx =

N

∑
ℓ=0

∫ L

0
fλ,ℓψℓ,x dx.

(2.2.12)

80



Chapter 2. Existence, uniqueness and stabilization of solutions of a generalized
telegraph equation on star shaped Networks

Then, adding (2.2.10) and (2.2.12) leads to

N

∑
ℓ=0

∫ L

0

(
aℓ,1(λ)Iℓ,xψℓ,x + aℓ,2(λ)Iℓψℓ

)
dx +

N

∑
ℓ=0

Vℓ(L)ψℓ(L)

−
N

∑
ℓ=0

Vℓ(0)ψℓ(0) =
N

∑
ℓ=0

∫ L

0

(
fλ,ℓψℓ,x + gλ,ℓψℓ

)
dx.

(2.2.13)

By taking into account the boundary conditions in D(A), in addition to (2.2.6) and
(2.2.7), we find

N

∑
ℓ=0

Vℓ(0)ψℓ(0) = V0(0)ψ0(0) +
N

∑
ℓ=1

Vℓ(0)ψℓ(0)

= V0(0)ψ0(0) + δ
N

∑
ℓ=1

fℓ,5ψℓ(0)

+ V0(0)
N

∑
ℓ=1

ψℓ(0)− δλ
N

∑
ℓ=1

(
N

∑
k=1

Zℓk Ik(0)

)
ψℓ(0).

Then,

N

∑
ℓ=0

Vℓ(0)ψℓ(0) = V0(0)
N

∑
ℓ=0

ψℓ(0) + δ
N

∑
ℓ=1

fℓ,5ψℓ(0)

− δλ
N

∑
ℓ=1

(
N

∑
k=1

Zℓk Ik(0)

)
ψℓ(0)

=
f4

λ

N

∑
ℓ=0

ψℓ(0)−
1

δYλ

(
N

∑
ℓ=0

Iℓ(0)

)(
N

∑
ℓ=0

ψℓ(0)

)

+ δ
N

∑
ℓ=1

fℓ,5ψℓ(0)− δλ
N

∑
ℓ=1

(
N

∑
k=1

Zℓk Ik(0)

)
ψℓ(0)

and
N

∑
ℓ=0

Vℓ(L)ψℓ(L) =
N

∑
ℓ=0

αℓ Iℓ(L)ψℓ(L).

By replacing these two identities in (2.2.13), we arrive at

N

∑
ℓ=0

∫ L

0

(
aℓ,1(λ)Iℓ,xψℓ,x + aℓ,2(λ)Iℓψℓ

)
dx +

N

∑
ℓ=0

αℓ Iℓ(L)ψℓ(L)

+
1

δYλ

(
N

∑
ℓ=0

Iℓ(0)

)(
N

∑
ℓ=0

ψℓ(0)

)
+ δλ

N

∑
ℓ=1

(
N

∑
k=1

Zℓk Ik(0)

)
ψℓ(0)

=
N

∑
ℓ=0

∫ L

0
( fλ,ℓψℓ,x + gλ,ℓψℓ) dx +

f4

λ

N

∑
ℓ=0

ψℓ(0) + δ
N

∑
ℓ=1

fℓ,5ψℓ(0),

(2.2.14)

for all ψ ∈ H
1(S). Now, we notice that this problem has a unique solution

I ∈ H1(S), by the Lax-Milgram Lemma. First, this left hand side is a continuous
and coercive sesquilinear form onH1(S), since by our assumptions (in particular on
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Z), there exists a positive constant C(λ) (that depends on λ) such that

N

∑
ℓ=0

∫ L

0
(aℓ,1(λ)|Iℓ,x|2 + aℓ,2(λ)|Iℓ|2) dx +

N

∑
ℓ=0

αℓ|Iℓ(L)|2 + 1
δYλ

∣∣∣∣∣ N

∑
ℓ=0

Iℓ(0)

∣∣∣∣∣
2

+δλ(ZI∗(0), I∗(0))CN ≥ C(λ)||I||2
H1(S),

with I∗(0) = (Iℓ(0))N
ℓ=1. Secondly, the right-hand side of (2.2.14) is a continuous

form on H1(S).

Now, according to the first equation of (2.2.8) we set

Vℓ = fλ,ℓ − aℓ,1(λ)Iℓ,x, (2.2.15)

that clearly belongs to L2(0, L), for all ℓ. Then, taking in (2.2.14) a test function ψ
such that ψℓ ∈ D(0, L) for some ℓ = 0, .., N and ψj = 0, for all j ̸= ℓ, we find

∫ L

0
aℓ,1(λ)Iℓ,xψℓ,x dx +

∫ L

0
aℓ,2(λ)Iℓψℓ dx

=
∫ L

0
fλ,ℓψℓ,x dx +

∫ L

0
gλ,ℓψℓ dx.

(2.2.16)

Eliminating Iℓ,x from (2.2.15) and replacing it in (2.2.16), we get

−
∫ L

0
Vℓψℓ,x dx +

∫ L

0
aℓ,2(λ)Iℓψℓ dx =

∫ L

0
gλ,ℓψℓ dx. (2.2.17)

Applying Green’s formula on the first integral of the left-hand side of (2.2.17), we
obtain

Vℓ,x + aℓ,2(λ)Iℓ = gλ,ℓ, in D′(0, L). (2.2.18)

As −aℓ,2(λ)Iℓ + gλ,ℓ ∈ L2(0, L), we deduce that Vℓ ∈ H1(0, L) and that (2.2.8) holds.
Then, after defining W by (2.2.5), ν by (2.2.6) and η by (2.2.7), it remains to check
the boundary conditions appearing in D(A). For this purpose, we introduce two
Hilbert spaces

H1
R = {u ∈ H1(0, L); u(0) = 0},

and
H1

L = {u ∈ H1(0, L); u(L) = 0}.

Now, we first take different test functions ψ in (2.2.14). By Green’s formula and
taking into account (2.2.8), we have

N

∑
ℓ=0

Vℓ(L)ψℓ(L)−
N

∑
ℓ=0

Vℓ(0)ψℓ(0)−
N

∑
ℓ=0

αℓ Iℓ(L)ψℓ(L)

− 1
δYλ

(
N

∑
ℓ=0

Iℓ(0)

)(
N

∑
ℓ=0

ψℓ(0)

)
− δλ

N

∑
ℓ=1

(
N

∑
k=1

Zℓk Ik(0)

)
ψℓ(0)

+δ
N

∑
ℓ=1

fℓ,5ψℓ(0) +
1
λ

N

∑
ℓ=0

f4ψℓ(0) = 0, ∀ψ ∈ H1(S).

(2.2.19)
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First, we fix ℓ and take ψ ∈
N

∏
ℓ=0

H1
R such that ψℓ(L) = z arbitrary in C and ψj(L) =

0, ∀j ̸= ℓ, we get
(Vℓ(L)− αℓ Iℓ(L)) z = 0, ∀z ∈ C.

Consequently, Vℓ(L) = αℓ Iℓ(L). Second, we fix ℓ and take ψ ∈
N

∏
ℓ=0

H1
L such that

ψℓ(0) = z arbitrary in C and ψj(0) = 0, ∀j ̸= ℓ, we obtain(
−Vℓ(0)−

1
δYλ

(
N

∑
ℓ=0

Iℓ(0)

)
− δλ

(
N

∑
k=1

Zℓk Ik(0)

)
+ δ fℓ,5 +

1
λ

f4

)
z = 0, ∀z ∈ C.

Using (2.2.6) and (2.2.7) we deduce that ηℓ =
N

∑
k=1

Zℓk Ik(0). Third, we fix ℓ and take

ψ ∈
N

∏
ℓ=0

H1
L such that ψℓ = 0, ∀ℓ ̸= 0, and ψ0(0) = z, arbitrary in C we obtain

f4

λ
− 1

δYλ

N

∑
ℓ=0

Iℓ(0) = V0(0).

Using (2.2.6), we deduce that ν = V0(0). The proof of Theorem 2.2.1 is thus com-
plete.

As A generates a C0-semigroup on H, problem (2.2.2) admits a unique solution given
by

U(t) = etAU0, t ≥ 0.

Hence, the semi-group theory allows us to deduce the following existence and
uniqueness results.

Theorem 2.2.2. Assume that condition (2.1.2) holds. Then, for any initial data U0 ∈
H, problem (2.2.2) admits a unique weak solution U ∈ C0([0, ∞);H). Moreover if
U0 ∈ D(A), problem (2.2.2) admits a unique strong solution U ∈ C1([0, ∞);H) ∩
C0([0, ∞); D(A)).

As usual the energy associated with (2.2.2) is defined by

E(t) =
1
2
||(V , I, W , ν, η)||2H

and for U = (V , I, W , ν, η) ∈ C1([0, ∞);H) ∩ C0([0, ∞); D(A)), we have

E′(t) ≤ −1
2

N

∑
ℓ=0

∫ L

0
(θℓgℓ|Vℓ|2 + 2βℓrℓ|Iℓ|2 + γℓcℓ|Wℓ|2)dx −

N

∑
ℓ=0

αℓ|Iℓ(L)|2 ≤ 0.

For such a solution, we then have

E(t2) ≤ E(t1), ∀0 ≤ t1 ≤ t2,

in other words, our system is dissipative in the sense that its energy is non-
increasing with respect to t. By the density of D(A) into H, this last property
remains valid for weak solution U ∈ C0([0, ∞);H).
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Now, we are able to study the strong stability of our system.

2.2.2 Strong stability

To show the strong stability of the C0-semigroup of contractions (etA)t≥0 we will rely
on the following result due to Arendt and Batty, 1988.

Theorem 2.2.3. ( Arendt and Batty, 1988). Let A : D(A) ⊂ H → H generates a C0-
semigroup of contractions on the Hilbert space H. If
1) A has no pure imaginary eigenvalues,
2) σ(A) ∩ iR is countable,
where σ(A) denotes the spectrum of A. Then, the C0-semigroup (etA)t≥0 is strongly stable,
namely

lim
t→∞

||etAU0||H = 0, ∀U0 ∈ H.

Let us now state the main result of this subsection.

Theorem 2.2.4. Assume that assumption (2.1.2) holds. Then, the C0-semigroup (etA)t≥0
is strongly stable on the energy space H.

Its proof is based on the use of Theorem 2.2.3. Since in our situation the resolvent
of A is not compact, we have to analyze its full spectrum on the imaginary axis. More
precisely with the help of the following Lemmas, we will deduce that σ(A) ∩ iR is
empty, hence the result.

Lemma 2.2.5. Under the same condition of Theorem 2.2.4, we have iλ −A is injective for
all λ ∈ R, i.e.

ker(iλI −A) = {0}, ∀λ ∈ R.

Proof. Let λ ∈ R and U = (V , I, W , ν, η)⊤ ∈ D(A) be such that

(iλI −A)U = 0,

equivalently, 

iλVℓ + aℓ Iℓ,x + gℓVℓ + kℓWℓ = 0, ∀ℓ ∈ {0, .., N},
iλIℓ + bℓVℓ,x + rℓ Iℓ = 0, ∀ℓ ∈ {0, .., N},
iλWℓ + cℓWℓ − Vℓ = 0, ∀ℓ ∈ {0, .., N},

iλν + 1
δY

N

∑
ℓ=0

Iℓ(0) = 0,

iληℓ +
1
δ (Vℓ(0)− ν) = 0, ∀ℓ ∈ {1, .., N}.

(2.2.20)

Hence, as ℜ⟨AU, U⟩H = 0, using inequality (2.2.3) and the fact that cℓ >
0 and αℓ > 0, we get

gℓVℓ = rℓ Iℓ = Wℓ = Iℓ(L) = 0, ∀ ℓ ∈ {0, .., N}. (2.2.21)

Using the third identity of (2.2.20) we deduce that Vℓ = 0, for all ℓ ∈ {0, .., N}. On
the other hand, the first equation yields that Iℓ,x = 0, so Iℓ is constant on (0, L) for all
ℓ ∈ {0, .., N}. As Iℓ(L) = 0, we deduce that Iℓ = 0, for all ℓ ∈ {0, .., N}. This implies

that ν = V0(0) = 0 and ηℓ =
N

∑
k=1

Zℓk Ik(0) = 0, for all ℓ ∈ {1, .., N}. Hence U = 0 and

the desired goal holds.
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Lemma 2.2.6. Under the same condition of Theorem 2.2.4, we have iλ −A is surjective for
all λ ∈ R∗, i.e.

R(iλ −A) = H, ∀λ ∈ R∗.

Proof. For any λ ∈ R∗ and F = ( f 1, f 2, f 3, f 4, f 5)
⊤ ∈ H, we look for a unique

solution U = (V , I, W , ν, η)⊤ ∈ D(A) of

(iλI −A)U = F,

or equivalently,

iλVℓ + aℓ Iℓ,x + gℓVℓ + kℓWℓ = fℓ,1, ∀ℓ ∈ {0, .., N},
iλIℓ + bℓVℓ,x + rℓ Iℓ = fℓ,2, ∀ℓ ∈ {0, .., N},
iλWℓ + cℓWℓ − Vℓ = fℓ,3, ∀ℓ ∈ {0, .., N},

iλν + 1
δY

N

∑
ℓ=0

Iℓ(0) = f4,

iληℓ +
1
δ (Vℓ(0)− ν) = fℓ,5, ∀ℓ ∈ {1, .., N}.

(2.2.22)

Suppose such a U = (V , I, W , ν, η)⊤ ∈ D(A) exists, then

Wℓ =
Vℓ + fℓ,3

(iλ + cℓ)
, ∀ℓ ∈ {0, .., N}, (2.2.23)

ν =

f4 − 1
δY

N

∑
ℓ=0

Iℓ(0)

iλ
, (2.2.24)

ηℓ =
fℓ,5 − 1

δ (Vℓ(0)− ν)

iλ
, ∀ℓ ∈ {1, .., N}. (2.2.25)

Replace Wℓ in the first and second identities of (2.2.22) to get

Vℓ +
aℓ

(iλ + gℓ +
kℓ

iλ + cℓ
)

Iℓ,x =
( fℓ,1 −

kℓ fℓ,3

iλ + cℓ
)

(iλ + gℓ +
kℓ

iλ + cℓ
)

,

iλ + rℓ
bℓ

Iℓ + Vℓ,x =
fℓ,2

bℓ
, ℓ ∈ {0, .., N}.

Then, to find a solution of (2.2.22) it is enough to find a solution of{
Vℓ + aℓ,1(iλ)Iℓ,x = fiλ,ℓ,
Vℓ,x + aℓ,2(iλ)Iℓ = giλ,ℓ,

(2.2.26)

where aℓ,1(λ), aℓ,2(λ), fλ,ℓ and gλ,ℓ are defined in (2.2.9).
Now following the arguments of the proof of Theorem 2.2.1, we deduce that I ∈
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H
1(S) is a solution of

N

∑
ℓ=0

∫ L

0

(
aℓ,1(iλ)Iℓ,xψℓ,x + aℓ,2(iλ)Iℓψℓ

)
dx +

N

∑
ℓ=0

αℓ Iℓ(L)ψℓ(L)

+
1

iδYλ

(
N

∑
ℓ=0

Iℓ(0)

)(
N

∑
ℓ=0

ψℓ(0)

)
+ iδλ

N

∑
ℓ=1

(
N

∑
k=1

Zℓk Ik(0)

)
ψℓ(0)

=
N

∑
ℓ=0

∫ L

0

(
fiλ,ℓψℓ,x + giλ,ℓψℓ

)
dx +

f4

iλ

N

∑
ℓ=0

ψℓ(0) + δ
N

∑
ℓ=1

fℓ,5ψℓ(0),

(2.2.27)

for all ψ ∈ H
1(S). Here we note that Lax-Milgram Lemma cannot be applied be-

cause coercivity is not available. Therefore, we use a perturbation argument. For
that purpose, let us introduce the sesquilinear form

bλ(I, ψ) =
N

∑
ℓ=0

∫ L

0
aℓ,1(iλ)Iℓ,xψℓ,x dx +

N

∑
ℓ=0

∫ L

0

1
bℓ

Iℓψℓ dx +
N

∑
ℓ=0

αℓ Iℓ(L)ψℓ(L)

+
1

iδYλ

(
N

∑
ℓ=0

Iℓ(0)

)(
N

∑
ℓ=0

ψℓ(0)

)
+ iδλ

N

∑
ℓ=1

(
N

∑
k=1

Zℓk Ik(0)

)
ψℓ(0), ∀I, ψ ∈ H1(S).

This sesquilinear form bλ is continuous and coercive on H1(S), since for all ℓ

ℜ(aℓ,1(iλ)) =
aℓ
(
λ2gℓ + cℓ(cℓgℓ + kℓ)

)
(cℓgℓ + kℓ − λ2)2 + λ2(cℓ + gℓ)2 ≥ C(λ),

where C(λ) is a positive constant that depends only on λ. Then, by Lax-Milgram
Lemma, the operator

Bλ : H1(S) → (H1(S))∗ : I → Bλ I,

with Bλ I(ψ) = bλ(I, ψ), is an isomorphism.
Now, let us set

Rλ : H1(S) → (H1(S))∗ : I → Rλ I,

with

Rλ I(ψ) =
N

∑
ℓ=0

∫ L

0

(iλ + rℓ − 1)
bℓ

Iℓψℓ dx.

As Rλ is a compact operator, we deduce that Bλ + Rλ is a Fredholm operator of
index zero from H

1(S) to (H1(S))∗.

Now by setting

Lλ(ψ) =
N

∑
ℓ=0

∫ L

0
(giλ,ℓψℓ + fiλ,ℓψℓ,x) dx + δ

N

∑
ℓ=1

fℓ,5ψℓ(0) +
1
iλ

N

∑
ℓ=0

f4ψℓ(0),

we notice that (2.2.27) is equivalent to

(Bλ + Rλ)I = Lλ in (H1(S))∗. (2.2.28)

Hence problem (2.2.27) admits a unique solution I if and only if Bλ +Rλ is invertible.
Bλ + Rλ being a Fredholm operator it is enough to prove that Bλ + Rλ is injective,
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i.e,
ker(Bλ + Rλ) = {0}.

Let us now fix I ∈ ker(Bλ + Rλ), then it satisfies

N

∑
ℓ=0

∫ L

0

(
aℓ,1(iλ)Iℓ,xψℓ,x + aℓ,2(iλ)Iℓψℓ

)
dx +

N

∑
ℓ=0

αℓ Iℓ(L)ψℓ(L)

+
1

iδYλ

(
N

∑
ℓ=0

Iℓ(0)

)(
N

∑
ℓ=0

ψℓ(0)

)

+ iδλ
N

∑
ℓ=1

(
N

∑
k=1

Zℓk Ik(0)

)
ψℓ(0) = 0, ∀ψ ∈ H1(S).

Thus, if we set

Vℓ = − Iℓ,x

aℓ,1(iλ)
, Wℓ =

Vℓ

iλ + cℓ
and

ν =

−
N

∑
ℓ=0

Iℓ(0)

iλδY
and ηℓ =

−Vℓ(0) + ν

iλδ
,

we conclude that (V , I, W , ν, η) ∈ D(A) is a solution of

(iλ −A)(V , I, W , ν, η)⊤ = 0.

Using Lemma 2.2.5, we deduce that Vℓ = Iℓ = Wℓ = ν = ηℓ = 0 for all ℓ ∈ {0, .., N}.
This shows that Bλ + Rλ is invertible and therefore a unique solution (Iℓ)ℓ ∈ H1(S)
of (2.2.28) exists. At this stage, by setting Vℓ = fiλ,ℓ − aℓ,1(iλ)Iℓ,x, we conclude as in
the proof of Theorem 2.2.1 that (V , I, W , ν, η) ∈ D(A) is a solution of (2.2.22) and
the proof is thus complete.

It remains to show the surjectivity of A, but first let us introduce the following
Hilbert space

V∗ =

{
(V , I) ∈ H1(S)×H1(S) such that Vℓ(L) = αℓ Iℓ(L), ∀ℓ ∈ {0, .., N},

N

∑
ℓ=0

Iℓ(0) = 0, Vℓ(0)− V0(0) = 0, ∀ℓ ∈ {1, .., N}
}

.

Lemma 2.2.7. Let (θ, Λ) ∈
N

∏
ℓ=0

D(0, L)×
N

∏
ℓ=0

D(0, L), then there exists (ψ, χ) ∈ V∗ such

that {
ψℓ,x = θℓ,
χℓ,x = Λℓ, ∀ℓ ∈ {0, .., N}.

(2.2.29)

Proof. As (2.2.29) means that ψℓ (resp. χℓ) is a primitive of θℓ (resp. Λℓ), we have

ψℓ(x) =
∫ x

0
θℓ(y) dy + dℓ,

χℓ(x) =
∫ x

0
Λℓ(y) dy + pℓ,

(2.2.30)
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where dℓ, pℓ are two constants to be determined later on. Notice that (ψ, χ) ∈ V∗ if
and only if 

N

∑
ℓ=0

χℓ(0) = 0,

ψℓ(0) = ψ0(0), ∀ℓ ∈ {1, .., N},
ψℓ(L) = αℓχℓ(L), ∀ℓ ∈ {0, .., N}.

(2.2.31)

Then, knowing that

ψℓ(0) = dℓ, ψℓ(L) =
∫ L

0
θℓ(y) dy + dℓ,

χℓ(0) = pℓ, χℓ(L) =
∫ L

0
Λℓ(y) dy + pℓ,

(2.2.32)

we see that (2.2.31) is equivalent to the following system with 2N + 2 equations

N

∑
ℓ=0

pℓ = 0,

dℓ = d0, ∀ℓ ∈ {1, .., N},∫ L

0
θℓ(y) dy + dℓ = αℓ

(∫ L

0
Λℓ dy + pℓ

)
, ∀ℓ ∈ {0, .., N}.

(2.2.33)

By the second and third equations of (2.2.33) we find

pℓ =
1
αℓ

(∫ L

0
θℓ(y) dy + d0

)
−
∫ L

0
Λℓ(y) dy, ∀ℓ ∈ {0, .., N}. (2.2.34)

Then, replacing (2.2.34) in the first equation of (2.2.33) leads to

N

∑
ℓ=0

(
1
αℓ

∫ L

0
θℓ(y) dy −

∫ L

0
Λℓ(y) dy

)
+

(
N

∑
ℓ=0

1
αℓ

)
d0 = 0. (2.2.35)

As
N

∑
ℓ=0

1
αℓ

is positive, the existence of d0 is guaranteed, which proves the Lemma.

Lemma 2.2.8. Under the same condition of Theorem 2.2.4, A is surjective.

Proof. Let F = ( f 1, f 2, f 3, f 4, f 5)
⊤ ∈ H, we look for a unique solution U =

(V , I, W , ν, η)⊤ ∈ D(A) of
−AU = F,

or equivalently, 

aℓ Iℓ,x + gℓVℓ + kℓWℓ = fℓ,1,
bℓVℓ,x + rℓ Iℓ = fℓ,2,
cℓWℓ − Vℓ = fℓ,3,
1

δY

N

∑
ℓ=0

Iℓ(0) = f4,

1
δ
(Vℓ(0)− ν) = fℓ,5.

(2.2.36)
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Suppose such a U = (V , I, W , ν, η)⊤ ∈ D(A) exists, then

Wℓ =
Vℓ + fℓ,3

cℓ
, ∀ℓ ∈ {0, .., N}.

Replace Wℓ in the first and second identities of (2.2.36), we get{
Vℓ + aℓ,1(0)Iℓ,x = f0,ℓ,
Vℓ,x + aℓ,2(0)Iℓ = g0,ℓ,

(2.2.37)

where aℓ,1(0), aℓ,2(0), f0,ℓ and g0,ℓ are defined in (2.2.9).

We will proceed by dividing the proof into three steps.

Step 1. First, fix (ϕ,φ) ∈ H1(S)×H1(S), such that

ϕℓ(0) = δ fℓ,5 ∀ ℓ ∈ {1, .., N}, ϕℓ = 0 on [ϵ1, L] for some ϵ1 ∈ (0, L), ϕ0 = 0

and

φ0(0) = δY f4, φ0 = 0 on [ϵ2, L] for some ϵ2 ∈ (0, L), φℓ = 0 ∀ℓ ∈ {1, .., N}.

Then, setting V̂ℓ = Vℓ − ϕℓ and Îℓ = Iℓ − φℓ, by (2.2.37) we deduce that they satisfy{
V̂ℓ + aℓ,1(0) Îℓ,x = f̂0,ℓ,
V̂ℓ,x + aℓ,2(0) Îℓ = ĝ0,ℓ,

(2.2.38)

where,

f̂0,ℓ = f0,ℓ − (ϕℓ + aℓ,1(0)φℓ,x) and ĝ0,ℓ = g0,ℓ − (ϕℓ,x + aℓ,2(0)φℓ),

for all ℓ ∈ {0, .., N}. We further notice that
N

∑
ℓ=0

Îℓ(0) = 0,

V̂ℓ(0)− V̂0(0) = 0, ∀ℓ ∈ {1, .., N},
V̂ℓ(L) = αℓ Îℓ(L), ∀ℓ ∈ {0, .., N}.

(2.2.39)

Step 2. Let (ψ, χ) ∈ V∗. Multiplying the first and the second equation of (2.2.38) by
χℓ,x and ψℓ,x respectively, then integrating in (0, L) gives

N

∑
ℓ=0

∫ L

0
(V̂ℓχℓ,x + aℓ,1(0) Îℓ,xχℓ,x) dx +

N

∑
ℓ=0

∫ L

0
(V̂ℓ,xψℓ,x + aℓ,2(0) Îℓψℓ,x) dx

=
N

∑
ℓ=0

∫ L

0
( f̂0,ℓχℓ,x + ĝ0,ℓψℓ,x) dx.

(2.2.40)
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Again the sesquilinear form from this left-hand side is not necessarily coercive, so
again we introduce the sesquilinear form

q((V̂ , Î), (ψ, χ)) =
N

∑
ℓ=0

∫ L

0
aℓ,1(0) Îℓ,xχℓ,x dx +

N

∑
ℓ=0

∫ L

0
V̂ℓ,xψℓ,x dx

+
N

∑
ℓ=0

∫ L

0
(Iℓχℓ + Vℓψℓ) dx, ∀(V̂ , Î), (ψ, χ) ∈ V∗.

This sesquilinear form q is continuous and coercive on V∗ since

aℓ,1(0) =
aℓcℓ

(cℓgℓ + kℓ)
> 0, ∀ℓ ∈ {0, .., N}.

Then, by Lax-Milgram Lemma, the operator

Q : V∗ → (V∗)
∗ : (V̂ , Î) → Q(V̂ , Î),

with
Q(V̂ , Î)(ψ, χ) = q((V̂ , Î), (ψ, χ)),

is an isomorphism. Now, the remainder

S : V∗ → (V∗)
∗ : (V̂ , Î) → S(V̂ , Î)(ψ, χ),

with

S(V̂ , Î)(ψ, χ) =
N

∑
ℓ=0

∫ L

0
(V̂ℓχℓ,x + aℓ,2(0) Îℓψℓ,x) dx −

N

∑
ℓ=0

∫ L

0
(Iℓχℓ + Vℓψℓ) dx,

is a compact operator. Hence, we deduce that Q + S is a Fredholm operator of index
zero from V∗ to (V∗)∗.

By setting

L(ψ, χ) =
N

∑
ℓ=0

∫ L

0
( f̂0,ℓχℓ,x + ĝ0,ℓψℓ,x) dx,

we again see that (2.2.40) is equivalent to

(Q + S)(V̂ , Î) = L in (V∗)
∗. (2.2.41)

Step 3. Now, let us prove that the system (2.2.38)-(2.2.39) is equivalent to (2.2.41).
First, let (θ, Λ) be an arbitrary test function, such that θℓ′ = 0 ∀ℓ′ ∈ {0, .., N}, and
Λℓ ∈ D(0, L), for a fixed ℓ and Λj = 0, ∀j ̸= ℓ. Then, by Lemma 2.2.7, we deduce
that there exists (ψ, χ) ∈ V∗ such that{

ψℓ,x = 0,
χℓ,x = Λℓ, ∀ℓ ∈ {0, .., N}.

Replacing this (ψ, χ) in (2.2.41) we get,∫ L

0
(V̂ℓΛℓ + aℓ,1(0) Îℓ,xΛℓ) dx =

∫ L

0
f̂0,ℓΛℓ dx.
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Then,
V̂ℓ + aℓ,1(0) Îℓ,x = f̂0,ℓ in D′(0, L),

which means that the first equation of (2.2.38) holds. Second, let (θ, Λ) be an arbi-
trary test function, such that Λℓ = 0 ∀ℓ ∈ {0, .., N}, θℓ ∈ D(0, L), for a fixed ℓ and
θj = 0, ∀j ̸= ℓ. Using Lemma 2.2.7 and following the same arguments as above we
deduce that the second equation of (2.2.38) holds. In conclusion, the system (2.2.38)-
(2.2.39) admits a unique solution (V̂ , Î) if and only if Q + S is invertible. As Q + S is
a Fredholm operator, it is enough to prove that it is injective, i.e.,

ker(Q + S) = {0}.

Let (V̂ , Î) ∈ ker(Q + S) then

N

∑
ℓ=0

∫ L

0
(V̂ℓχℓ,x + aℓ,1(0) Îℓ,xχℓ,x) dx +

N

∑
ℓ=0

∫ L

0
(V̂ℓ,xψℓ,x + aℓ,2(0) Îℓψℓ,x) dx

= 0, ∀(ψ, χ) ∈ V∗.

(2.2.42)

Thus, if we set

Ŵℓ =
V̂ℓ

cℓ
, ν̂ = V̂0(0) and η̂ℓ =

N

∑
ℓ=0

Zℓ,k Îk(0).

We conclude that (V̂ , Î, Ŵ , ν̂, η̂) ∈ D(A) is a solution of

−A(V̂ , Î, Ŵ , ν̂, η̂)⊤ = 0.

Using Lemma 2.2.5, we deduce that V̂ℓ = Îℓ = Ŵℓ = ν̂ = η̂ℓ = 0 for all ℓ ∈ {0, .., N}.

So, Q + S is invertible and a unique solution (V̂ , Î) ∈ V∗ of (2.2.41) exists.
Then, by the previous arguments we deduce that (2.2.38) and (2.2.39) hold.
As we set V̂ℓ = Vℓ − ϕℓ and Îℓ = Iℓ − φℓ, we deduce that a unique solution
(V , I) ∈ H1(S)×H1(S) of (2.2.37) exists, and satisfies

N

∑
ℓ=0

Iℓ(0) = δY f4,

Vℓ(0)− V0(0) = δ fℓ,5, ∀ℓ ∈ {1, .., N},
Vℓ(L) = αℓ Iℓ(L), ∀ℓ ∈ {0, .., N}.

Finally, by defining

Wℓ =
Vℓ + fℓ,3

cℓ
∀ℓ ∈ {0, .., N}, ν = V0(0), ηℓ =

N

∑
ℓ=1

Zℓk Ik(0) ∀ℓ ∈ {1, .., N},

we deduce that a solution (V , I, W , ν, η) ∈ D(A) of (2.2.36) exists. The proof is
complete.

2.3 Exponential energy decay rate

In this section, we will prove the exponential stability of System (2.1.3)-(2.1.6) based
on a frequency domain approach. Here contrary to Nicaise, 2015, we do not require
that rℓ + gℓ is uniformly bounded from below for each ℓ (see the assumption (25) in
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Nicaise, 2015) to get exponential decay of the energy but rather exploit the dissipa-
tive boundary conditions (2.1.4) at the exterior nodes. Hence our proof fully differs
from the proof of Theorem 4.5.4. from Nicaise, 2015. We here need to combine the
frequency domain approach with an ad-hoc multiplier method (see Lemma 2.3.5
above).

Our main result is the following one.

Theorem 2.3.1. Assume that condition (2.1.2) holds. Also, assume that
aℓ, bℓ ∈ W1,∞(0, L),
for all ℓ ∈ {0, .., N}. Then, the semigroup (etA)t≥0 is exponentially stable, i.e. there exist
two positive constants M and ϵ > 0 such that

||etAU0||H ≤ Me−ϵt||U0||H, ∀t ≥ 0, ∀U0 ∈ H.

Proof. Following Huang., 1985 and Prüss, 1984, our C0-semigroup of contractions
(etA)t≥0 in H is uniformly (exponentially) stable if and only if

iR ⊂ ρ(A), (2.3.1)

and
sup
λ∈R

||(iλ −A)−1||L(H) < ∞. (2.3.2)

Since (2.3.1) was already proved, the proof of Theorem 2.3.1 is reduced to show that
condition (2.3.2) holds. This is checked by using a contradiction argument. Indeed,
suppose that (2.3.2) is false, then there exist a sequence of real number λn ∈ R and a
sequence of vectors Un = (V n, In, Wn, νn, ηn) in D(A), such that

|λn| → ∞, ||(V n, In, Wn, νn, ηn)||H = 1, (2.3.3)

and
(iλn −A)Un → 0 in H as n → ∞. (2.3.4)

Our aim is to show that ||(V n, In, Wn, νn, ηn)||H → 0. This condition permits to con-
clude a contradiction with (2.3.3). From now on, for simplicity we drop the index n.
Now, writing (2.3.4) in a detailed form we get

(iλ + gℓ)Vℓ + aℓ Iℓ,x + kℓWℓ = fℓ,1 → 0 in L2(0, L), ∀ℓ ∈ {0, . . . , N}, (2.3.5)

(iλ + rℓ)Iℓ + bℓVℓ,x = fℓ,2 → 0 in L2(0, L), ∀ℓ ∈ {0, . . . , N}, (2.3.6)

(iλ + cℓ)Wℓ − Vℓ = fℓ,3 → 0 in L2(0, L), ∀ℓ ∈ {0, . . . , N}, (2.3.7)

iλV0(0) +
1

δY

N

∑
ℓ=0

Iℓ(0) = f4 → 0 in C, (2.3.8)

iληℓ +
1
δ
(Vℓ(0)− V0(0)) = fℓ,5 → 0 in C, ∀ℓ ∈ {1, . . . , N}. (2.3.9)

Lemma 2.3.2. Under the above assumptions, we have the following estimations for all ℓ ∈
{0, .., N} :

√
gℓVℓ = o(1) in L2(0, L), (2.3.10)

Iℓ(L) = o(1) in C, (2.3.11)
√

rℓ Iℓ = o(1) in L2(0, L), (2.3.12)

Wℓ = o(1) in L2(0, L). (2.3.13)
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Proof. Taking the inner product in H of (iλ − A)U with U and using (2.2.3) and
Cauchy-Schwarz’s inequality, we get

1
2

N

∑
ℓ=0

∫ L

0
(θℓgℓ|Vℓ|2 + 2βℓrℓ|Iℓ|2 + γℓcℓ|Wℓ|2) dx + αℓ|Iℓ(L)|2 ≤ ℜ⟨(iλ −A)U, U⟩H

≤ ||(iλ −A)U||H||U||H.

As ||(iλ −A)U||H → 0 and ||U||H = 1, we obtain

1
2

∫ L

0
(θℓgℓ|Vℓ|2 + 2βℓrℓ|Iℓ|2 + γℓcℓ|Wℓ|2) dx + αℓ|Iℓ(L)|2 = o(1), ∀ ℓ ∈ {0, .., N},

and the desired results hold.

From (2.3.3), (2.3.6) and (2.3.7) we have

||Vℓ,x||L2

λ
= O(1),

||Iℓ,x||L2

λ
= O(1). (2.3.14)

Lemma 2.3.3. Under the above assumptions, for all ℓ ∈ {0, . . . , N}, we have

|Vℓ(0)| = O(1), (2.3.15)

and
|Iℓ(0)| = O(1). (2.3.16)

Proof. As Z is an invertible matrix matrix, I∗(0) = Z−1η and therefore, there exists
ζ > 0 such that

||I∗(0)||CN ≤ ζ∥η∥CN . (2.3.17)

Then, using (2.3.3), we directly deduce that (2.3.16) holds for ℓ ∈ {1, .., N}.
Now, multiply (2.3.6) by 2Iℓ, and then integrate over (0, L), to obtain

2i
∫ L

0
λVℓ Iℓ dx + 2

∫ L

0
gℓVℓ Iℓ dx + 2

∫ L

0
aℓ Iℓ,x Iℓ dx + 2

∫ L

0
kℓWℓ Iℓ dx

= 2
∫ L

0
fℓ,1 Iℓ dx.

(2.3.18)

The second and fourth integral on the left-hand side of (2.3.18) converge to zero by
(2.3.3), (2.3.10) and (2.3.13), similarly the right-hand side converge to zero, using
(2.3.3) and the fact that fℓ,1 converge to zero in L2(0, L). This yields

2i
∫ L

0
λVℓ Iℓ dx + 2

∫ L

0
aℓ Iℓ,x Iℓ dx = o(1). (2.3.19)

Taking the real part of (2.3.19) and then applying Green’s formula on the second
integral of the left side leads to,

− 2 ℑ
∫ L

0
λVℓ Iℓ dx −

∫ L

0
aℓ,x|Iℓ|2 dx + aℓ(L)|Iℓ(L)|2 − aℓ(0)|Iℓ(0)|2 = o(1), (2.3.20)
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Similarly, multiply (2.3.7) by 2Vℓ, and then integrate over (0, L), we get

2i
∫ L

0
λIℓVℓ dx + 2

∫ L

0
rℓ IℓVℓ dx + 2

∫ L

0
bℓVℓ,xVℓ dx = 2

∫ L

0
fℓ,2Vℓ dx. (2.3.21)

The right hand-side of (2.3.21) converge to zero by (2.3.6) and (2.3.3), similarly the
second integral of the left hand-side converge to zero by (2.3.3) and (2.3.12). This
yields

2i
∫ L

0
λIℓVℓ dx + 2

∫ L

0
bℓVℓ,xVℓ dx = o(1). (2.3.22)

Again, taking the real part of (2.3.22) and then, applying Green’s formula in the
second integral of the left hand side we get,

− 2 ℑ
∫ L

0
λIℓVℓ dx −

∫ L

0
bℓ,x|Vℓ|2 dx + bℓ(L)|Vℓ(L)|2 − bℓ(0)|Vℓ(0)|2 = o(1).

(2.3.23)
Adding equations (2.3.20) and (2.3.23) leads to

−
∫ L

0
aℓ,x|Iℓ|2 dx −

∫ L

0
bℓ,x|Vℓ|2 dx + aℓ(L)|Iℓ(L)|2 − aℓ(0)|Iℓ(0)|2

+bℓ(L)|Vℓ(L)|2 − bℓ(0)|Vℓ(0)|2 = o(1), ∀ ℓ ∈ {0, .., N}.
(2.3.24)

Under the assumption that aℓ, bℓ ∈ W1,∞(0, L), using (2.1.2), (2.3.3), (2.3.11), (2.3.17)
and the fact that Vℓ(L) = αℓ Iℓ(L), we deduce from (2.3.24) that

|Vℓ(0)| = O(1), ∀ ℓ ∈ {1, .., N}, (2.3.25)

and as |V0(0)| = O(1) using (2.3.3), we conclude that (2.3.15) holds. On the other
hand, for ℓ = 0 and under the assumption that a0, b0 ∈ W1,∞(0, L) and using (2.1.2),
(2.3.3), (2.3.11) and as V0(L) = α0 I0(L), we deduce from (2.3.24) that |I0(0)|2 = O(1).
Consequently, with (2.3.17), we conclude that (2.3.16) holds.

Lemma 2.3.4. Under the above assumptions, we have

ν = V0(0) = o(1), (2.3.26)

and
ηℓ = o(1) ∀ ℓ ∈ {1, .., N}. (2.3.27)

Proof. Using (2.3.8), we have

V0(0) = − 1
iλδY

N

∑
ℓ=0

Iℓ(0) +
f4

iλ
,

by (2.3.16) and the fact that | f4| = O(1), we deduce that V0(0) = o(1). Similarly,
using (2.3.9), we have

ηℓ = − 1
iλδ

Vℓ(0) +
1

iλδ
V0(0) +

1
iλ

fℓ,5,

by (2.3.15) and the fact that | fℓ,5| = O(1), we deduce that (2.3.27) holds.
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Lemma 2.3.5. Let ℓ ∈ {0, .., N} be fixed and assume that the functions aℓ, bℓ ∈ W1,∞(0, L).
Then, there exists hℓ ∈ W1,∞(0, L) and a positive real number ρℓ such that

hℓ(0) = 0, (2.3.28a)
hℓ,x(x) ≥ ρℓ > 0, for a.a. x ∈ (0, L), (2.3.28b)

hℓ,x(x)
(

aℓ(x)
bℓ(x)

)
+ hℓ(x)

(
aℓ(x)
bℓ(x)

)
x
≥ 0, for a.a. x ∈ (0, L). (2.3.28c)

Proof. We first notice that (2.3.28c) is equivalent to

hℓ,x(x)
hℓ(x)

+

(
aℓ(x)
bℓ(x)

)
x(

aℓ(x)
bℓ(x)

) ≥ 0, for a.a. x ∈ (0, L), (2.3.29)

or equivalently

hℓ,x(x)
hℓ(x)

≥ ωℓ(x) := −

(
aℓ(x)
bℓ(x)

)
x(

aℓ(x)
bℓ(x)

) , for a.a. x ∈ (0, L). (2.3.30)

Since ωℓ(x) is bounded on (0, L), then if hℓ(x) = x near zero, there exists a positive
real number ϵ (sufficiently small) such that

1
x
≥ ωℓ(x), ∀x ∈ (0, ϵ]. (2.3.31)

So, we define
Mℓ = max

x∈(0,L)
ωℓ(x),

and we distinguish the following two cases:
i) If Mℓ ≤ 1

L , then (2.3.31) holds with ϵ = L, and we can choose
hℓ(x) = x, ∀x ∈ (0, L). In this case, (2.3.28a), (2.3.28b) and (2.3.28c) hold.

ii) If Mℓ > 1
L , then we choose 0 < ϵ ≤ 1

Mℓ
, and define hℓ(x) = x, ∀x ≤ ϵ, so

that (2.3.31) holds. Now, for x ≥ ϵ, we impose that

hℓ(x) = ϵ e
∫ x

ϵ mℓ(y) dy, ∀x ≥ ϵ, (2.3.32)

with
mℓ(x) := max{ωℓ(x), κ}, (2.3.33)

for some κ > 0. Notice that lim
x→ϵ

hℓ(x) = ϵ, i.e., hℓ is continuous on (0, L). Now from

the expression (2.3.32), we have

hℓ,x(x) = ϵ mℓ(x)e
∫ x

ϵ mℓ(y) dy = hℓ(x)mℓ(x), ∀x > ϵ. (2.3.34)

As mℓ(x) ≥ ωℓ(x), we deduce that (2.3.30) holds (i.e. (2.3.28c) holds). Finally, by
(2.3.32), we have that

hℓ(x) ≥ ϵ, ∀x > ϵ, (2.3.35)
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which by (2.3.34) and (2.3.33) implies that

hℓ,x(x) ≥ ϵκ > 0, ∀x > ϵ.

In other words, (2.3.28b) holds for almost all x ∈ (0, L).

Lemma 2.3.6. Under the above assumptions, we have for all ℓ ∈ {0, .., N},

Vℓ = o(1) in L2(0, L). (2.3.36)

Proof. Fix ℓ ∈ {0, .., N} and let hℓ ∈ W1,∞(0, L) be the function defined in
Lemma 2.3.5.
First, by multiplying (2.3.5) by (2hℓVℓ,x) and then integrating over (0,L), we get

2
∫ L

0
hℓVℓVℓ,x dx − 2i

∫ L

0
hℓgℓVℓ

Vℓ,x

λ
dx − 2i

∫ L

0
aℓhℓVℓ,x

Iℓ,x

λ
dx

−2i
∫ L

0
hℓkℓWℓ

Vℓ,x

λ
dx = −2i

∫ L

0
hℓ fℓ,1

Vℓ,x

λ
dx.

(2.3.37)

The second and fourth integral on the left hand-side of (2.3.37) converge to zero
by (2.3.10), (2.3.13) and (2.3.14). Similarly, the right hand-side converge to zero by
(2.3.14) and the fact that fℓ,1 converge to zero in L2(0, L), for all ℓ. This yields

2
∫ L

0
hℓVℓVℓ,x dx − 2i

∫ L

0
aℓhℓVℓ,x

Iℓ,x

λ
dx = o(1). (2.3.38)

By eliminating Vℓ,x from (2.3.6) in the second term of (2.3.38), we obtain

2
∫ L

0
hℓVℓVℓ,x dx − 2i

∫ L

0

aℓ
bℓ

hℓ f ℓ,2
Iℓ,x

λ
dx + 2

∫ L

0

aℓ
bℓ

hℓ Iℓ Iℓ,x dx

+2i
∫ L

0

aℓ
bℓ

hℓrℓ Iℓ
Iℓ,x

λ
dx = o(1).

(2.3.39)

The second and fourth integral converge to zero by (2.3.14), (2.3.12) and the fact
that fℓ,2 converge to zero in L2(0, L), ∀ℓ. Now, by taking the real part of (2.3.39) and
applying Green’s formula on the remaining two integrals, we deduce

−
∫ L

0
hℓ,x|Vℓ|2 dx + hℓ(L)|Vℓ(L)|2 − hℓ(0)|Vℓ(0)|2 −

∫ L

0

(
aℓ
bℓ

)
x

hℓ|Iℓ|2 dx

−
∫ L

0

aℓ
bℓ

hℓ,x|Iℓ|2 dx +
aℓ(L)
bℓ(L)

hℓ(L)|Iℓ(L)|2 − aℓ(0)
bℓ(0)

hℓ(0)|Iℓ(0)|2 = o(1).
(2.3.40)

Then, due to the fact that Vℓ(L) = αℓ Iℓ(L) and using (2.3.11) and (2.3.28a), we obtain∫ L

0
hℓ,x|Vℓ|2 dx +

∫ L

0

((
aℓ
bℓ

)
x

hℓ +
aℓ
bℓ

hℓ,x

)
|Iℓ|2 dx = o(1). (2.3.41)

By using (2.3.28b) and (2.3.28c), the result holds.

Lemma 2.3.7. Under the above assumptions, we have for all ℓ ∈ {0, .., N},

Iℓ = o(1) in L2(0, L). (2.3.42)
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Proof. First, multiplying (2.3.6) by 1
bℓ

Iℓ and then integrating over (0, L), we find

∫ L

0

iλ
bℓ
|Iℓ|2 dx +

∫ L

0

rℓ
bℓ
|Iℓ|2 dx +

∫ L

0
Vℓ,x Iℓ dx =

∫ L

0

fℓ,2

bℓ
Iℓ dx. (2.3.43)

The second integral of the left hand-side of (2.3.43) converge to zero by (2.3.3) and
(2.3.13). Similarly, the integral of the right hand side converge to zero by (2.3.3) and
the fact that fℓ,2 converge to zero in L2(0, L), for all ℓ. This yields∫ L

0

iλ
bℓ
|Iℓ|2 dx +

∫ L

0
Vℓ,x Iℓ dx = o(1). (2.3.44)

Next, by applying Green’s formula on the second integral of the left-hand side of
(2.3.44), eliminating Iℓ,x from (2.3.5) and then dividing by iλ, we obtain

∫ L

0

|Iℓ|2
bℓ

dx −
∫ L

0

|Vℓ|2
aℓ

dx +
∫ L

0

gℓ
iλaℓ

|Vℓ|2 dx +
∫ L

0

kℓ
iλaℓ

VℓWℓ dx

+
Vℓ(L)Iℓ(L)

iλ
− Vℓ(0)Iℓ(0)

iλ
=
∫ L

0
Vℓ

f ℓ,1

iλaℓ
dx.

(2.3.45)

As Vℓ(L) = αℓ Iℓ(L) and using (2.1.2), (2.3.3), (2.3.11), (2.3.13) and Lemmas 2.3.3 and
2.3.6, the result holds.

Consequently, using (2.3.13), Lemma 2.3.4, Lemma 2.3.6 and Lemma 2.3.7, we
deduce the desired contradiction. This ends the proof.

Remark 2.3.8. Contrary to Bastin and Coron, 2016, §5.6 (see also Gugat and Gerster,
2019 for second order hyperbolic systems), our boundary conditions are chosen in
such a way that there is no limit of stabilization, namely under our previous assump-
tions, exponential decay occurs for all lengths L but the decay rate ϵ in Theorem 2.3.1
may depend on L. If rℓ = gℓ = 0, we conjecture that this decay rate deteriorates as L
goes to infinity.

2.4 Some extensions and open problems

2.4.1 Other dynamical boundary conditions

The standard Kirchhoff conditions at the interior common vertex are
V0(0, t)− Vℓ(0, t) = 0, in R∗

+, ∀ℓ ∈ {1, ...., N},
N

∑
ℓ=0

Iℓ(0, t) = 0 in R∗
+,

(2.4.1)

that corresponds to the limit case of (2.1.5) as δ goes to zero. These boundary con-
ditions are stationary ones but can be also used instead of (2.1.5). More generally
in the spirit of Kramar, Mugnolo, and Nicaise, 2020a, we can mix up stationary and
dynamical boundary conditions at the common vertex v in the following way. First
if u(·, t) = ((V ℓ(·, t), Iℓ(·, t), W ℓ(·, t))N

ℓ=0)
⊤ represents the unknowns in (2.1.3), we

denote by
γv(u(·, t)) = ((V ℓ(0, t))N

ℓ=0, (Iℓ(0, t))N
ℓ=0)

⊤

its trace at v that is a vector in C2(N+1). Obviously we only keep the trace of V ℓ and
Iℓ since W ℓ is not regular enough in space (see the definition of D(A)). Then we fix
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a subspace Yv of C2(N+1), another subspace Y(d)
v of Yv and finally a linear operator

Bv from Yv to Y(d)
v and set

xv(t) = Pvγv(u(·, t)),

where Pv is a projection from C2(N+1) into Y(d)
v (for an appropriate inner product of

C2(N+1)).

Hence at v, we can consider the boundary condition{
γv(u(·, t)) ∈ Yv, in R∗

+,
xv,t(t) = Bvγv(u(·, t)), in R∗

+.
(2.4.2)

The boundary conditions (2.1.5) and (2.4.1) enter in this setting. Namely in the first
case, we need to take Yv = C2(N+1) and

Y(d)
v = {((vℓ)N

ℓ=0, (iℓ)N
ℓ=0)

⊤ : i0 = vℓ = 0, ∀ℓ = 1, · · · , N},

Pv is the orthogonal projection into Y(d)
v with respect to the Euclidean inner product,

and

Bv((vℓ)N
ℓ=0, (iℓ)N

ℓ=0)
⊤ =

1
δ

((
− 1

Y

N

∑
ℓ=0

iℓ, 0, · · · , 0
)⊤

,
(

0, Z−1(v01N − v
)⊤)⊤

,

where 1N is the vector of CN with all entries equal to 1, while v = (vℓ)N
ℓ=1. On the

contrary in the case (2.4.1), we simply need to take Y(d)
v = {0} and

Yv = {((vℓ)N
ℓ=0, (iℓ)N

ℓ=0)
⊤ :

N

∑
ℓ=0

iℓ = 0 and v0 = vℓ, ∀ℓ = 1, · · · , N}.

First, under some assumptions on Yv and Bv, one can show that (2.2.3) remains
valid and therefore the associated operator A is dissipative. For the maximality,
in some particular situations, using the arguments of subsection 2.2.1 (eliminting
the variables Wℓ and one of the other variables to obtain a variational formulation),
we can prove that the associated operator is maximal dissipative under additional
conditions on Yv and Bv and therefore system (2.1.3) with the boundary conditions
(2.1.4) and (2.4.2) is well-posed and is governed by a semigroup of contractions. In
the general case, using a bounded perturbation argument as in Kramar, Mugnolo,
and Nicaise, 2020a, Theorem 3.3 we can prove that a bounded perturbation of A
is maximal dissipative under additional conditions on Yv and Bv and therefore
system (2.1.3) with the boundary conditions (2.1.4) and (2.4.2) is well-posed and is
governed by a C0 semigroup. But using the dissipativeness of A, one can deduce
that A generates a semigroup of contractions.

Once the well-posedness of our system holds, one can analyze its stability. First,
we notice that Lemma 2.2.5 remains valid because the proof presented before yields
first V ℓ = Iℓ = W ℓ = 0, for all ℓ and hence xv = Pvγv(u) will be zero as well. On
the contrary, Lemma 2.2.6 is problematic because a compact perturbation argument
cannot be invoked due to the third identity in (2.2.22). But if the surjectivity of
iλ −A holds for all λ ∈ R, then the system will be exponentially stable. Indeed, in
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this case the proof of Theorem 2.3.1 remains valid because the use of the multipliers
hℓ from Lemma 2.3.5 allows to skip the use of the boundary condition (2.4.2).

In summary the exponential stability results for system (2.1.3) with the boundary
conditions (2.1.4) and (2.4.2) are reduced to an existence result and the surjectivty of
the resolvent on the imaginary axis.

2.4.2 General networks

Obviously, we can consider system (2.1.3) on an arbitrary network G with dis-
sipative boundary conditions similar to (2.1.4) at exterior vertices (it is (2.1.4)
if the edge having the exterior vertex v as extremity is outgoing, otherwise it
is Vℓ(v, t) + αℓ Iℓ(v, t) = 0) and boundary conditions like (2.4.2) at the interior
vertices. As in the previous subsection, existence results can then be obtained under
appropriate conditions on Yv and Bv. Obviously the surjectivity of iλ − A for all
λ ∈ R will remain problematic, but here even its injectivity is not immediate.

The sole case for which injectivity of iλ −A holds for all λ ∈ R∗ is the case of trees
with the boundary conditions (2.1.5) or (2.4.1) at the interior vertices. Indeed, in this
case the arguments of Lemma 2.2.5 allow to show that V ℓ = Iℓ = W ℓ = 0, for all
edges ℓ of the last generation of the tree. But then using (2.1.5) or (2.4.1), we will
get that V ℓ′(v′) = Iℓ′(v′) = 0 for all edges ℓ′ of the penultimate generation and the
vertex v′ in common with the last generation. This means that we can use again
the arguments of Lemma 2.2.5 to these edges ℓ′ and by iteration we will find the
injectivity result. Finally, the exponential stability results for system (2.1.3) with the
boundary conditions (2.1.4) at exterior vertices and boundary conditions (2.1.5) or
(2.4.1) at interior vertices is not immediate even for trees.

Note that for general networks, as in Nicaise, 2015, once iλ − A is bijective
for all λ ∈ R, exponential stability will be valid if we assume that rℓ + gℓ is
uniformly bounded from below for each ℓ (see the assumption (25) in Nicaise,
2015); without this condition, polynomial stability can be achieved. Nevertheless
the type of the decay rate of such systems on general networks remains largely an
open problem. Does it remain exponential or polynomial? How many boundary
conditions can we remove from the exterior nodes to preserve stability? What will
happen if we add some damping terms localized at the interior nodes?

Our proof of Theorem 2.3.1 is non constructive (since it uses a contradiction
argument), hence it does not give the dependency of the decay rate with respect to
the involved parameters, hence its degeneracy as one parameter tends to zero or to
infinity (see Remark 2.3.8) cannot be detected. Therefore, it would be interesting to
characterize such dependencies by performing some spectral analysis for instance.
In power grids, failure of some parts can occur from time to time, this corresponds
to switch off one of the boundary controllers (αℓ = 0) from time to time. As in
Gugat and Sigalotti, 2010 for the wave equation, is it possible to find sufficient
conditions on the controllers to achieve exponential decay? All of these problems
are challenging and merit to be investigated.
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Chapter 3

A transmission problem of a
thermo-elastic system on Networks

Abstract

In this chapter, we investigate a network of elastic and thermo-elastic materials.
On each thermo-elastic edge, we consider two coupled wave equations such that
one of them is damped via a coupling with a heat equation. On each elastic edge
(undamped), we consider two coupled conservative wave equations. Under some
conditions, we prove that the thermal damping is enough to stabilize the whole sys-
tem. If the two waves propagate with the same speed on each thermo-elastic edge,
we show that the energy of the system decays exponentially. Otherwise, a polyno-
mial energy decay is attained. Finally, we present some other boundary conditions
and we show that under sufficient conditions on the lengths of some elastic edges,
the energy of the system decays exponentially on some particular networks similar
to the ones considered in Shel, 2012.

3.1 Introduction

Thermoelasticity is a principle concerned with predicting the thermo-mechanical
behaviour of elastic solids. Understanding such a principle is needed by many
engineers to design different materials. Thus, several scientists were motivated to
study the thermoelastic system described by the coupling between the mechanical
vibration and the heat (thermal) effect of materials. Mathematically, a linear one-
dimensional thermo-elastic system satisfied by a thermoelastic bar (0, L) is repre-
sented by the following two equations:{

utt − uxx + αθx = 0, in (0, L)× (0, ∞),
θt − θxx + αutx = 0, in (0, L)× (0, ∞),

(3.1.1)

with the initial conditions

u(x, 0) = u0, ut(x, 0) = u1, θ(x, 0) = θ0, x ∈ (0, L), (3.1.2)

where, u is the displacement, θ is the temperature deviation from the reference tem-
perature and the mechanical-thermal coupling α is a positive constant. The exis-
tence and asymptotic behavior of the solution of the linear thermo-elastic system
was firstly studied in Dafermos, 1968 but, no decay rate was given. In the one
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dimensional case, the stabilization of the linear thermo-elastic system satisfied by
thermo-elastic materials (damped by thermal effect) with various boundary condi-
tions was investigated by several authors. We will recall some of these results. In
Hansen, 1992, the author considered the stabilization of system (3.1.1)-(3.1.2) on a
thermo-elastic rod with u and θ satisfying the Dirichlet and Neumann condition re-
spectively (or vice versa). He succeeded in proving the exponential stability of the
system. More precisely, the author established the following energy estimate: There
exist two positive constants M and ϵ such that

E(t) ≤ Me−ϵtE(0), ∀t > 0. (3.1.3)

Similarly, when u and θ satisfy both the Dirichlet condition, it was shown that
the estimate (3.1.3) still holds in Liu and Zheng, 1993. Then, the method of Liu
and Zheng, 1993 was extended in Burns, Liu, and Zheng, 1993 to prove (3.1.3)
when ux − αθ satisfies Dirichlet condition on both ends and θx(0) = θx(L) = 0
or θx(0) = 0, θ(L) = 0. Later on, the importance of damping and controlling the
vibrations of materials composed of both elastic (undamped) and thermo-elastic
(damped by thermal effect) parts appears in several physical applications and
consequently in several mathematical papers. The main questions that received the
interest of the researchers is the kind of stability of the thermo-elastic system on
such composite materials and how should the thermo-elastic damping be localized
to get the best decay rate or what is the energy decay rate in different localizations of
the thermal damping? Such questions were answered in several ways. For example,
in Marzocchi, Rivera, and Naso, 2002, it was considered a one dimensional body
which is configurated in [0, L3] ⊂ R and for a given L1 < L2 in ]0, L3[, they assumed
that the material is thermo-elastic over ]0, L1[∪]L2, L3[ and elastic over ]L1, L2[. The
authors proved that the whole system is exponentially stable, i.e, (3.1.3) holds.
Then, in Fatori, Lueders, and Rivera, 2003, the authors considered the stabilization
of a transmission problem for the thermo-elastic system with local thermal effect
which is effective only over the interval [0, L0], L0 ∈ [0, L], this corresponds to the
following system:

utt − uxx + αθx = 0, in (0, L0)× (0, ∞),
θt − θxx + αutx = 0, in (0, L0)× (0, ∞),
vtt − vxx = 0, in (L0, L)× (0, ∞),

(3.1.4)

with the initial conditions

u(x, 0) = u0, ut(x, 0) = u1, θ(x, 0) = θ0, v(x, 0) = v0, vt(x, 0) = v1, x ∈ (0, L),

where u is the displacement in the thermo-elastic part, v is the displacement in the
elastic part and θ is the temperature difference from a reference value. The system is
completed with the following boundary conditions

u(0, t) = v(L, t) = θ(0, t) = 0, t ∈ (0, ∞),

and the following transmission conditions

ux(L0, t)− α θ(L0, t) = vx(L0, t) and θx(L0, t) = 0.

The authors proved that the localized dissipation due to the thermal effect is strong
enough to prove the exponential decay to zero of the energy. We also refer to Lebeau
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and Zuazua, 1999 and Oliveira and Charão, 2008 for the study of the stabilization of
multi-dimensional linear thermo-elastic systems.

On the other hand, there are only few publications on the stabilization of networks
of thermo-elastic materials. Let us recall some of these results. In Abdallah and
Shel, 2012, an exponential stability was proved on a network of thermo-elastic
materials under both Fourier’s law and Cattaneo’s law. In Shel, 2012, the author
studied the stability problem of a thermo-elastic system on particular cases of
networks of elastic and thermo-elastic materials. Under the continuity condition of
the displacement, the Neumann condition for the temperature at the internal nodes,
and the balance condition, an exponential stability was proved (see also, Shel, 2014
for the network of elastic and thermo-elastic beams). Later on, in Han and Zuazua,
2017 the authors discussed the asymptotic behaviour of a transmission problem
of the thermo-elastic system on star shaped networks of elastic and thermo-elastic
rods. The uniform exponential decay rate was proved by a frequency domain
analysis when only one purely elastic edge was present. Otherwise, a polynomial
decay rate was deduced under a suitable irrationality condition on the lengths of the
rods when more than one purely elastic edge is involved. After the review of these
results that investigated the stabilization of a thermo-elastic system composed of the
coupling between one wave equation and a heat equation, a remarkable question
can be asked. What happens if we consider a network of elastic and thermo-elastic
materials such that:

• On the thermo-elastic edges, we have a system of two wave equations cou-
pled by velocity, such that one wave equation is coupled to a heat equation with a
thermal effect.
• On the purely undamped elastic edges, we have only a system of two conservative
wave equations coupled by velocity.

Hence our main question is the following one: Will the dissipation due to the
thermal effect be also strong enough to prove the exponential stability of the energy
of the whole system? To the best of our knowledge, the answer to this question
remains an open problem. Therefore, our aim is to solve this open question.
In this work, we investigate the stabilization of the above described transmission
problem on networks of elastic and thermo-elastic materials. We prove the ex-
ponential stability of the whole system under the condition that the two waves
propagate with the same speed on all the thermo-elastic edges of the network.
On the other hand, if there exists an exterior thermo-elastic edge such that the
two waves propagate with different speed on this edge, we show the polynomial
stability of the whole system. Our main tool is a frequency domain approach,
namely to prove the exponential stability we use a result due to Huang., 1985 and
Prüss, 1984 and to show the polynomial stability we use a result due to Borichev
and Tomilov, 2009.

Now, let us introduce some notations needed to formulate the problem un-
der consideration, refer to Valein and Zuazua, 2009 and Abdallah and Shel,
2012 for more details. Let N be a network embedded in the Euclidean space
Rm, m ∈ N∗, with n vertices V = {a0, a2, .., an−1} and N edges E = {e1, .., eN}, with
I(N ) = {1, .., N}, the set of indices of edges. Each edge ej is a curve, parametrized
by

πj : [0, ℓj] → ej : xj → πj(xj). (3.1.5)
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The degree of a vertex is the number of incident edges at the vertex. A vertex with
degree 1 is called an exterior vertex. On the other hand, a vertex with degree greater
than 1 is called an interior vertex.
We assume that the network is made of thermo-elastic edges and elastic ones, this
means that I(N ) is split up into I(N ) = Ite ∪ Ie, with Ie ∩ Ite = ∅, in other words,
Ite (resp. Ie) is the set of thermo-elastic (resp. elastic) edges.

We further denote by:

Vext:= set of exterior vertices of N .

Vint:= set of interior vertices of N .

I(ak):= set of indices of edges incident to ak.

Ite(ak):= set of indices of thermo-elastic edges adjacent to ak.

Ie(ak):= set of indices of elastic edges incident to ak.

Iext:= set of indices of edges adjacent to an exterior vertex of N .

The incidence matrix D = (dkj)n×N of N is defined by

dkj =


1 if πj(ℓj) = ak,
−1 if πj(0) = ak,
0 otherwise,

(3.1.6)

and for a function f : N → C, we set f j = f ◦ πj its restriction to the edge ej. For
simplicity, we will write f = ( f 1, .., f N) and we will denote f j(x) = f j(πj(x)) for
any x in (0, ℓj). We consider a network of elastic and thermo-elastic materials that
coincides with the graph N . We assume that N contains at least one thermo-elastic
edge, that Vext ̸= ∅, that every maximal subgraph of elastic edges is a tree whose
all of its exterior vertices except one are attached to thermo-elastic edges and that
every subgraph of thermo-elastic edges is not a circuit.

Let uj = uj(x, t) and yj = yj(x, t) be the functions describing the displace-
ment at time t of the edge ej, j ∈ I(N ) and θ j = θ j(x, t) be the temperature
difference to a fixed reference temperature of ej, j ∈ Ite at time t.

Our system is described as follows:
• On every thermo-elastic edge (j ∈ Ite) the following equations hold:

uj
tt − uj

xx + αjθ
j
x − β jy

j
t = 0 in (0, ℓj)× (0, ∞),

yj
tt − ρjy

j
xx + β ju

j
t = 0 in (0, ℓj)× (0, ∞),

θ
j
t − κjθ

j
xx + αju

j
tx = 0 in (0, ℓj)× (0, ∞),

(3.1.7)

where αj, ρj, κj and β j are positive constants.
• On every elastic edge (j ∈ Ie) one has:
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{
uj

tt − uj
xx − β jy

j
t = 0 in (0, ℓj)× (0, ∞),

yj
tt − ρjy

j
xx + β ju

j
t = 0 in (0, ℓj)× (0, ∞),

(3.1.8)

where β j and ρj are positive constants.

We assume that the initial data on the network N are
uj(x, 0) = uj

0(x), uj
t(x, 0) = uj

1(x), ∀j ∈ I(N ),
yj(x, 0) = yj

0(x), yj
t(x, 0) = yj

1(x), ∀j ∈ I(N ),
θ j(x, 0) = θ

j
0(x), ∀j ∈ Ite(N ).

(3.1.9)

We denote by V ′
ext( resp. V ′

int) the set of exterior (resp. interior) nodes of maximal
subgraph of thermo-elastic edges. Then, the boundary condition on N are described
as follows:
The displacement and temperature satisfies the Dirichlet boundary condition,

uj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,
yj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,
θ j(ak, t) = 0, j ∈ Ite(ak), ak ∈ V ′

ext.

(3.1.10)

The displacement and temperature are continuous,
uj(ak, t) = uℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,
yj(ak, t) = yℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,
θ j(ak, t) = θℓ(ak, t), j, ℓ ∈ Ite(ak), ak ∈ V ′

int.

(3.1.11)

The system satisfies the balance condition on y at every interior node,

∑
j∈I(ak)

dkjρjy
j
x(ak, t) = 0, ak ∈ Vint. (3.1.12)

The system satisfies the following balance conditions on u and θ,
∑

j∈Ite(ak)

dkjκjθ
j
x(ak, t) = 0, ak ∈ V ′

int,

∑
j∈Ite(ak)

dkj(u
j
x(ak, t)− αjθ

j(ak), t) + ∑
j∈Ie(ak)

dkju
j
x(ak, t) = 0, ak ∈ Vint.

(3.1.13)

Remark that αj > 0 and κj > 0, for all j ∈ Ite while, on each elastic edge only two
conservative wave equations hold, i.e, the two wave equations on each elastic edge
are neither coupled to a heat equation nor affected by a thermal damping. Hence
for j ∈ Ie, we may set αj = κj = 0.

This chapter is organized as follows. In Section 3.2, we prove that system
(3.1.7)-(3.1.13) admits a unique solution in an appropriate Hilbert space using semi-
group theory. Next, in Section 3.3, using a general criteria of Arendt and Batty, 1988,
we discuss the strong stability of the system. In Section 3.4, under the condition
that the two waves propagate with the same speed on each thermo-elastic edge of
the network, we prove the exponential stability of the system using a frequency
domain approach combined with a multiplier technique. Otherwise, we establish
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a polynomial decay. Finally, in Section 3.5, we present the Neumann boundary
condition at the interior nodes of some particular networks, some of which being
considered in Shel, 2012. We show that under some sufficient conditions, the same
results as the ones from Section 3.4 hold.

3.2 Well-posedness

In this section, we will study the existence, uniqueness and regularity of the solution
of system (3.1.7)-(3.1.13), using a semigroup approach.

First, denote by

L2 =
N

∏
j=1

L2(0, ℓj), Hm =
N

∏
j=1

Hm(0, ℓj), m = 1, 2,

and
V = ∏

j∈Ite

L2(0, ℓj), Vm = ∏
j∈Ite

Hm(0, ℓj), m = 1, 2.

Set

H1
0 =

{
u = (uj)j∈I(N ) ∈ H1/ uj(ak) = 0, ∀j ∈ I(ak), ak ∈ Vext

and uj(ak) = uℓ(ak), ∀j, ℓ ∈ I(ak), ak ∈ Vint
}

.
(3.2.1)

We define the energy space H associated with system (3.1.7)-(3.1.13), by

H = H1
0 × L2 × H1

0 × L2 × V (3.2.2)

equipped with the following inner product:

(U, Ũ)H =
N

∑
j=1

∫ ℓj

0
(uj

xũj
x + vjṽj + ρjy

j
xỹj

x + zj z̃j) dx

+ ∑
j∈Ite

∫ ℓj

0
θ j θ̃ j dx,

(3.2.3)

for all U = (u, v, y, z, θ), Ũ = (ũ, ṽ, ỹ, z̃, θ̃) ∈ H. Next, we define the unbounded
linear operator A associated to system (3.1.7)-(3.1.13) by

A


u
v
y
z
θ

 =




vj

uj
xx − αjθ

j
x + β jzj

zj

ρjy
j
xx − β jvj

κjθ
j
xx − αjv

j
x




j∈I(N )

(3.2.4)

whose domain D(A) is given by

D(A) =
{
(u, v, y, z, θ) ∈ H ∩ [H2 × H1

0 × H2 × H1
0 × V2] satisfying (3.2.5) below

}
,
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θ j(ak) = 0, j ∈ Ite(ak), ak ∈ V ′
ext,

θ j(ak) = θℓ(ak), j, ℓ ∈ Ite(ak), ak ∈ V ′
int,

∑
j∈Ite(ak)

dkjκjθ
j
x(ak) = 0, ak ∈ V ′

int,

∑
j∈I(ak)

dkj(u
j
x(ak)− αjθ

j(ak)) = 0, ak ∈ Vint,

∑
j∈I(ak)

dkjρjy
j
x(ak) = 0, ak ∈ Vint.

(3.2.5)

If (u, y, θ) is a regular solution of (3.1.7)-(3.1.9), then by setting U = (u, ut, y, yt, θ),
we can rewrite this system as the following evolution equation:

Ut = AU, U(0) = U0, (3.2.6)

where U0 = (u0, u1, y0, y1, θ0).

We recall that the energy associated with system (3.1.7)-(3.1.13) is given by

E(t) =
1
2

N

∑
j=1

∫ ℓj

0
(|uj

x|2 + |uj
t|2 + ρj|y

j
x|2 + |yj

t|2) dx +
1
2 ∑

j∈Ite

∫ ℓj

0
|θj|2 dx (3.2.7)

and we will see that

E′(t) = − ∑
j∈Ite

∫ ℓj

0
κj|θ

j
x|2 dx, (3.2.8)

for regular solutions. Hence, the system is dissipative in the sense that its energy is
non-increasing.

Theorem 3.2.1. The unbounded linear operator A associated with system (3.1.7)-(3.1.13)
generates a C0-semigroup of contractions on H.

Proof. Using Lumer-Phillips Theorem (see Pazy, 1983), it is sufficient to prove that A
is a maximal dissipative operator so that A generates a C0-semigroup of contractions
on H. First, let U = (u, v, y, z, θ) ∈ D(A). We have,

Re(AU, U)H = Re
[ N

∑
j=1

∫ ℓj

0
vj

xuj
x dx +

N

∑
j=1

∫ ℓj

0
(uj

xx − αjθ
j
x + β jzj)vj dx

+
N

∑
j=1

∫ ℓj

0
ρjz

j
xyj

x dx +
N

∑
j=1

∫ ℓj

0
(ρjy

j
xx − β jvj)zj dx + ∑

j∈Ite

∫ ℓj

0
(κjθ

j
xx − αjv

j
x)θ j dx

]
.

(3.2.9)

Using Green’s formula, boundary and transmission conditions (3.1.10)-(3.1.13), we
get

Re(AU, U)H = − ∑
j∈Ite

∫ ℓj

0
κj|θ

j
x|2 dx ≤ 0. (3.2.10)

Thus, the operator A is dissipative. Now, in order to prove that A is maximal it is
sufficient to show that R(I −A) = H. So, for F = ( f , f̃ , g, g̃, h) ∈ H, we look for
U ∈ D(A) such that

(I −A)U = F. (3.2.11)
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Equivalently, for all j ∈ I(N ),

uj − vj = f j, (3.2.12)

vj − uj
xx + αjθ

j
x − β jzj = f̃ j, (3.2.13)

yj − zj = gj, (3.2.14)

zj − ρjy
j
xx + β jvj = g̃j, (3.2.15)

θ j − κjθ
j
xx + αjv

j
x = hj. (3.2.16)

Assume that U ∈ D(A) exists, then by using equation (3.2.12) and (3.2.14) we obtain
for all j ∈ I(N ),

vj = uj − f j, (3.2.17)

zj = yj − gj. (3.2.18)

Inserting (3.2.17)-(3.2.18) in equations (3.2.13), (3.2.15) and (3.2.16), we get the fol-
lowing system for all j ∈ I(N ),

uj − uj
xx + αjθ

j
x − β jyj = Fj

1, (3.2.19)

yj − ρjy
j
xx + β juj = Fj

2, (3.2.20)

θ j − κjθ
j
xx + αju

j
x = Fj

3 (3.2.21)

where, Fj
1 = f̃ j + f j − β jgj, Fj

2 = g̃j + gj + β j f j, Fj
3 = hj + αj f j

x.

Set

X =
{
(φ1, φ2, φ3) ∈ H1

0 × H1
0 × V1/ φ

j
3(ak) = 0, j ∈ Ite(ak), ak ∈ V ′

ext

and φ
j
3(ak, t) = φℓ

3(ak, t), j, ℓ ∈ Ite(ak), ak ∈ V ′
int
}

.
(3.2.22)

Let (φ1, φ2, φ3) ∈ X , multiply (3.2.19) by φ
j
1, (3.2.20) by φ

j
2 and (3.2.21) by φ

j
3, then

integrate over (0, ℓj) we get,

∫ ℓj

0
uj φ

j
1 dx −

∫ ℓj

0
uj

xx φ
j
1 dx +

∫ ℓj

0
αjθ

j
x φ

j
1 dx −

∫ ℓj

0
β jyj φ

j
1 dx

=
∫ ℓj

0
Fj

1φ
j
1 dx,

(3.2.23)

∫ ℓj

0
yj φ

j
2 dx −

∫ ℓj

0
ρjy

j
xx φ

j
2 dx +

∫ ℓj

0
β juj φ

j
2 dx =

∫ ℓj

0
Fj

2 φ
j
2 dx, (3.2.24)

and ∫ ℓj

0
θ j φ

j
3 dx −

∫ ℓj

0
κjθ

j
xx φ

j
3 dx +

∫ ℓj

0
αju

j
x φ

j
3 dx =

∫ ℓj

0
Fj

3 φ
j
3 dx. (3.2.25)
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Applying Green’s formula on the second and third term of (3.2.23) and taking the
sum over I(N ), we obtain using (3.1.13),

N

∑
j=1

∫ ℓj

0
uj φ

j
1 dx +

N

∑
j=1

∫ ℓj

0
uj

x φ
j
1,x dx −

N

∑
j=1

∫ ℓj

0
αjθ

j φ
j
1,x dx

−
N

∑
j=1

∫ ℓj

0
β jyj φ

j
1 dx =

N

∑
j=1

∫ ℓj

0
Fj

1 φ
j
1 dx.

(3.2.26)

Again applying Green’s formula on the second term of (3.2.24) and taking the sum
over I(N ), using (3.1.12), we get

N

∑
j=1

∫ ℓj

0
yj φ

j
2 dx +

N

∑
j=1

∫ ℓj

0
ρjy

j
x φ

j
2,x dx +

N

∑
j=1

∫ ℓj

0
β juj φ

j
2 dx

=
N

∑
j=1

∫ ℓj

0
Fj

2 φ
j
2 dx.

(3.2.27)

Similarly, applying Green’s formula on the second term of (3.2.25) and taking the
sum over I(N ), condition (3.1.13) yields that,

N

∑
j=1

∫ ℓj

0
θ j φ

j
3 dx +

N

∑
j=1

∫ ℓj

0
κjθ

j
x φ

j
3,x dx +

N

∑
j=1

∫ ℓj

0
αju

j
x φ

j
3 dx

=
N

∑
j=1

∫ ℓj

0
Fj

3 φ
j
3 dx.

(3.2.28)

Adding equations (3.2.26), (3.2.27) and (3.2.28) we obtain

a((u, y, θ), (φ1, φ2, φ3)) = L(φ1, φ2, φ3), ∀(φ1, φ2, φ3) ∈ X , (3.2.29)

where,

a((u, y, θ), (φ1, φ2, φ3)) =
N

∑
j=1

∫ ℓj

0
uj φ

j
1 dx +

N

∑
j=1

∫ ℓj

0
uj

x φ
j
1,x dx −

N

∑
j=1

∫ ℓj

0
αjθ

j φ
j
1,x dx

−
N

∑
j=1

∫ ℓj

0
β jyj φ

j
1 dx +

N

∑
j=1

∫ ℓj

0
yj φ

j
2 dx +

N

∑
j=1

∫ ℓj

0
ρjy

j
x φ

j
2,x dx

+
N

∑
j=1

∫ ℓj

0
β juj φ

j
2 dx +

N

∑
j=1

∫ ℓj

0
θ j φ

j
3 dx +

N

∑
j=1

∫ ℓj

0
κjθ

j
x φ

j
3,x dx

+
N

∑
j=1

∫ ℓj

0
αju

j
x φ

j
3 dx

and

L(φ1, φ2, φ3) =
N

∑
j=1

∫ ℓj

0
Fj

1 φ
j
1 dx +

N

∑
j=1

∫ ℓj

0
Fj

2φ
j
2 dx +

N

∑
j=1

∫ ℓj

0
Fj

3φ
j
3 dx.

As a is a continuous, coercive form on X ×X and L is a continuous form on X , then
using Lax-Milgram Theorem there exists a unique solution (u, y, θ) ∈ X of (3.2.29).
Now, take in (3.2.29) the test function (φ1, 0, 0) such that φ

j
1 ∈ C∞

c (0, ℓj), for some
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fixed j ∈ I(N ) and φk
1 = 0 for all k ̸= j, we obtain∫ ℓj

0
uj φ

j
1 dx +

∫ ℓj

0
uj

x φ
j
1,x dx −

∫ ℓj

0
αjθ

j φ
j
1,x dx

−
∫ ℓj

0
β jyj φ

j
1 dx =

∫ ℓj

0
Fj

1 φ
j
1 dx, ∀φ

j
1 ∈ C∞

c (0, ℓj) for a fixed j.
(3.2.30)

Applying Green’s formula on the second and third term of (3.2.31) we get∫ ℓj

0
uj φ

j
1 dx −

∫ ℓj

0
uj

xx φ
j
1 dx +

∫ ℓj

0
αjθ

j
x φ

j
1 dx −

∫ ℓj

0
β jyj φ

j
1 dx

=
∫ ℓj

0
Fj

1φ
j
1 dx, ∀φ

j
1 ∈ C∞

c (0, ℓj) for a fixed j.
(3.2.31)

This implies that
uj − uj

xx + αjθ
j
x − β jyj = Fj

1, in D′(0, ℓj)

where, D′(0, ℓj) is the associated space of distributions.

As uj + αjθ
j
x − β jyj − Fj

1 ∈ L2(0, ℓj), we deduce that uj ∈ H2(0, ℓj). Similarly, we can
prove that

yj − ρjy
j
xx + β juj = Fj

2,

θ j − κjθ
j
xx + αju

j
x = Fj

3

(3.2.32)

and yj, θ j ∈ H2(0, ℓj). Now, it remains to prove the transmission conditions in
(3.1.12)-(3.1.13). For that aim, fix ak ∈ Vint. Let,

φ
j
1 =



x
ℓj

, if j ∈ I(ak) and πj(ℓj) = ak,

ℓj−x
ℓj

, if j ∈ I(ak) and πj(0) = ak,

0, if j /∈ I(ak).

(3.2.33)

Then, take in (3.2.29), a test function (φ1, 0, 0) ∈ X , apply Green’s formula and take
into account (3.2.19)-(3.2.21), to get

∑
j∈I(ak)

dkju
j
x(ak)− ∑

j∈I(ak)

dkjαjθ
j(ak) = 0. (3.2.34)

Similarly, by taking in (3.2.29) the test function (0, φ1, 0) ∈ X then, using Green’s
formula and taking into account (3.2.19)-(3.2.21) we obtain (3.1.12). Finally, we fix
ak ∈ V ′

int, take (0, 0, φ1) in (3.2.29), apply Green’s formula and take into account
(3.2.19)-(3.2.21), we get (3.1.13). By defining vj by (3.2.17) and zj by (3.2.18), for all
j ∈ I(N ), we deduce that (u, v, y, z, θ) ∈ D(A) is a solution of (3.2.12)-(3.2.16) exists
and the desired goal is attained.

As A generates a C0-semigroup of contractions (etA)t≥0 (see Pazy, 1983), we have
the following result:
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Theorem 3.2.2. (Existence and uniqueness of the solution)
(1) If U0 = (u0, u1, y0, y1, θ0) ∈ D(A), then problem (3.2.6) admits a strong unique solu-
tion U = (u, v, y, z, θ) satisfying

U ∈ C1(R+,H) ∩ C0(R+, D(A)).

(2) If U0 = (u0, u1, y0, y1, θ0) ∈ H, then problem (3.2.6) admits a unique weak solution
U = (u, v, y, z, θ) satisfying

U ∈ C0(R+,H).

3.3 Strong stability

In this section, we will give sufficient conditions that guarantee the strong stabil-
ity of the system (3.1.7)-(3.1.13) in the sense that the energy E(t), of the associated
system decreases to zero as t tends to infinity. To show the strong stability of the
C0-semigroup of contractions (etA)t≥0 we will rely on the following result obtained
by Arendt and Batty, 1988.

Now, we are in position to state the main result of this section.

Theorem 3.3.1. Consider the system (3.1.7)-(3.1.13) on N . Assume additionally that one
of the following conditions holds,

1) Each maximal subgraph of thermo-elastic edges has an exterior vertex that belongs
to Vext .

2) There exists a maximal subgraph of thermo-elastic edges with no exterior vertices
that belong to Vext and β j = β, for all j ∈ I(N ).

Then,
iR ⊂ ρ(A), (S1)

and therefore lim
t→∞

E(t) → 0.

Proof. Using Sobelev embedding Theorem, we deduce that (I −A)−1 is a compact
operator. Then, the spectrum σ(A) of A is reduced to its discrete spectrum σp(A).
Hence, using Arendt and Batty, 1988, it is sufficient to prove that σp(A) ∩ iR = ∅,
since it implies that (S1) holds. Let λ ∈ R and U = (u, v, y, z, θ) ∈ D(A) be such that

AU = iλU,

equivalently, for all j ∈ I(N ) we have,

vj = iλuj, (3.3.1)

uj
xx − αjθ

j
x + β jzj = iλvj, (3.3.2)

zj = iλyj, (3.3.3)

ρjy
j
xx − β jvj = iλzj, (3.3.4)

κjθ
j
xx − αjv

j
x = iλθ j. (3.3.5)
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Eliminating vj (resp. zj) using (3.3.1) (resp. (3.3.3)) and inserting them in (3.3.2),
(3.3.4) and (3.3.5) we get the following system for all j ∈ I(N ),

λ2uj + uj
xx − αjθ

j
x + iλβ jyj = 0, (3.3.6)

λ2yj + ρjy
j
xx − iλβ juj = 0, (3.3.7)

κjθ
j
xx − iλαju

j
x − iλθ j = 0. (3.3.8)

Since we have

∑
j∈Ite

κj

∫ ℓj

0
|θ j

x|2 dx = Re(AU, U)H = Re(iλU, U)H = 0,

we deduce that
θ

j
x = 0, ∀j ∈ Ite. (3.3.9)

Thus, θ j is constant for all j ∈ Ite. But, using the fact that every maximal subgraph of
thermo-elastic edges is not a circuit and using (3.1.10) and (3.1.11), we deduce that

θ j = 0, ∀j ∈ Ite. (3.3.10)

Suppose that λ = 0. Then, (3.3.6), (3.3.7) and (3.3.9) implies that{
uj

xx = 0, ∀j ∈ I(N ),
ρjy

j
xx = 0, ∀j ∈ I(N ).

(3.3.11)

Multiplying the first equation and second equation of (3.3.11) by uj and yj, respec-
tively. Then, integrating over (0, ℓj), summing over j ∈ I(N ) and applying Green’s
formula, we get 

N

∑
j=1

∫ ℓj

0
|uj

x|2 dx −
N

∑
j=1

uj
xuj

∣∣∣∣∣
ℓj

0

= 0,

N

∑
j=1

∫ ℓj

0
ρj|y

j
x|2 dx −

N

∑
j=1

ρjy
j
xyj

∣∣∣∣∣
ℓj

0

= 0.

(3.3.12)

But using (3.3.10) and the boundary conditions (3.1.10)-(3.1.13), the boundary terms
are zero, hence (3.3.12) becomes

N

∑
j=1

∫ ℓj

0
|uj

x|2 dx = 0,

N

∑
j=1

∫ ℓj

0
ρj|y

j
x|2 dx = 0.

(3.3.13)

By the fact that ρj > 0, for all j ∈ I(N ), we obtain that uj
x = yj

x = 0, for all
j ∈ I(N ). Again, by (3.1.10), (3.1.11) and using the fact that Vext ̸= ∅, we deduce
that uj = yj = 0, for all j ∈ I(N ). Consequently, using (3.3.1) and (3.3.3), we
conclude that vj = zj = 0, for all j ∈ I(N ) and therefore, U = 0.

Now, suppose that λ ̸= 0. We will distinguish between two cases.
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Case 1. Assume that each maximal subgraph of thermo-elastic edges has an
exterior vertex that belongs to Vext. Using (3.3.10) and (3.3.8), we have

uj
x = 0, ∀j ∈ Ite. (3.3.14)

This means that uj is constant for all j ∈ Ite. But, using (3.1.10), (3.1.11) and the
fact that every maximal subgraph of thermo-elastic edges has an exterior vertex that
belongs to Vext, we deduce that uj = 0, for all j ∈ Ite. Thus, by (3.3.1), we have vj = 0
and by (3.3.6), (3.3.14) and (3.3.9), we obtain that yj = 0, for all j ∈ Ite. Consequently,
by (3.3.3), we get zj = 0, for all j ∈ Ite. Hence, uj = vj = yj = zj = θ j = 0 on both
ends of ej, for all j ∈ Ite.
Now, let ej be an elastic edge attached only to thermo-elastic edge. As ej is identified
by [0, ℓj], assume that ℓj is the extremity in common with the thermo-elastic edge.
Then, using (3.1.11), (3.3.10), (3.1.12) and (3.1.13), we have the following system

λ2uj + uj
xx + iλβ jyj = 0,

λ2yj + ρjy
j
xx − iλβ juj = 0,

uj(ℓj) = yj(ℓj) = 0,
uj

x(ℓj) = yj
x(ℓj) = 0.

(3.3.15)

Let

ũj =

{
uj, on (0, ℓj),
0, on (ℓj, ℓj + 1),

and

ỹj =

{
yj, on (0, ℓj),
0, on (ℓj, ℓj + 1).

Then, using the boundary conditions of (3.3.15), we deduce that (ũj, ỹj) belongs
to H2(0, ℓj + 1) × H2(0, ℓj + 1) and satisfies the first two equations of (3.3.15).
Consequently, using Theorem 2.5 of Hayek et al., 2020, we deduce that ũj = ỹj = 0
on (0, ℓj + 1) and hence, uj = yj = 0 on (0, ℓj). Then, vj = zj = 0 by equation (3.3.1)
and (3.3.3) respectively. We repeat this technique to every elastic edge connected
only to thermo-elastic edges and we proceed by iteration the same method on each
maximal subgraph of purely elastic edges (from the leaves to the root), so that
uj = vj = yj = zj = 0, for all j ∈ I(N ).

Case 2. Assume that there exists a maximal subgraph of thermo-elastic edges
with no exterior vertices that belong to Vext and β j = β, for all j ∈ I(N ). First,
notice that (3.3.14) holds and thus,

uj
xx = 0, ∀j ∈ Ite. (3.3.16)

Then, using (3.3.16) , (3.3.9) and the fact that λ ̸= 0, β j = β, equation (3.3.6) becomes

λuj + iβyj = 0, ∀j ∈ Ite. (3.3.17)

Differentiating (3.3.17) twice with respect to x and using (3.3.16), we deduce that

yj
xx = 0, ∀j ∈ Ite. (3.3.18)
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Then, using (3.3.18) and as λ ̸= 0, β j = β, (3.3.7) becomes

λyj − iβuj = 0, ∀j ∈ Ite. (3.3.19)

Eliminating uj from (3.3.17) and replacing it in (3.3.19) we obtain

(λ2 − β2)yj = 0, ∀j ∈ Ite. (3.3.20)

Then, for λ ̸= ±β we deduce that yj = 0, for all j ∈ Ite and thus by equation
(3.3.19) we get uj = 0, for all j ∈ Ite. Again, we proceed using unique continuation
Theorem from Hayek et al., 2020 and iteration technique used in Case 1 to conclude
that uj = vj = yj = zj = 0, for all j ∈ I(N ).
On the other hand, if λ = ±β. Without loss of generality, assume that λ = β. First,
using (3.3.19), we have

yℓ = iuℓ, ∀ℓ ∈ Ite (3.3.21)

and thus using (3.3.14), (3.3.21) implies that

yℓx = iuℓ
x = 0, ∀ℓ ∈ Ite. (3.3.22)

Our aim is to prove that {
uj

xx = 0, ∀j ∈ I(N ),
yj

xx = 0, ∀j ∈ I(N ).
(3.3.23)

This would end the proof as in the case λ = 0. As (3.3.16) and (3.3.18) hold, it is
enough to prove that (3.3.23) holds for each elastic edge. Let ej be an elastic edge
attached to a thermo-elastic edge at the vertex ak. As λ = β, then (3.3.6) and (3.3.7)
lead to

β2uj + uj
xx + iβ2yj = 0, (3.3.24)

β2yj + ρjy
j
xx − iβ2uj = 0. (3.3.25)

By eliminating uj from (3.3.24) and inserting it in (3.3.25), we obtain the following
equation

yj
xxxx + β2 (ρj + 1)

ρj
yj

xx = 0. (3.3.26)

Moreover, using (3.3.25), (3.1.11) and (3.3.21), we have

yj
xx(ak) = 0 (3.3.27)

and using (3.3.25), (3.1.12), (3.1.13), (3.3.10) and (3.3.22), we get

yj
xxx(ak) = 0. (3.3.28)

Consequently, by setting Zj = yj
xx and using (3.3.24)-(3.3.25), (3.3.27) and (3.3.28) we

have the following system 
Zj

xx + β2 (ρj + 1)
ρj

Zj = 0,

Zj(ak) = 0,
Zj

x(ak) = 0.

(3.3.29)
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Therefore, Zj = 0 and then yj
xx = 0. This means that yj

x is constant. But using
(3.1.12) and (3.3.22), we deduce that yj

x(ak) = 0. Hence, yj
x = 0. Therefore, using

(3.3.25), we obtain that yj = iuj and then yj
x = iuj

x = 0. Again, by iteration on each
maximal subgraph of purely elastic edges (from the leaves to the root), we repeat the
same procedure to prove that (3.3.23) holds. Whenever (3.3.23) is attained, we can
proceed as the case λ = 0 which finishes the proof. The same procedure can be used
in the case λ = −β.

Let us finish this section by introducing some notations that will be used in the
next section. let I ′

ext denotes the set of indices of edges adjacent to a vertex in V ′
ext

and G ′
int denotes the set of indices of edges adjacent to two vertices in V ′

int.

3.4 Energy decay estimates

Take an arbitrary network N for which the System (3.1.7)-(3.1.13) is stable. In this
section, we will prove that under the condition that the two coupled wave equations
propagate with the same speed on each thermo-elastic edge, i.e., ρj = 1, for all j ∈
Ite, and using a frequency domain approach combined with a multiplier method,
the energy of the system decays exponentially to zero. Otherwise, if there exist j ∈
Ite ∩ I ′

ext such that ρj ̸= 1, we prove a polynomial decay rate of type t−1/3, (see
Borichev and Tomilov, 2009; Prüss, 1984). The main results are presented in Theorem
3.4.1 and Theorem 3.4.13.

Theorem 3.4.1. Let N be an arbitrary network for which the operator A associated with
System (3.1.7)-(3.1.13) satisfies (S1). If ρj = 1, for all j ∈ Ite, then the energy of the system
decays exponentially in H. In other words, there exist two positive constants M and ϵ such
that

∥etAx0∥H ≤ Me−ϵt∥x0∥H, ∀ t > 0, ∀ x0 ∈ H.

Proof. Following Huang., 1985 and Prüss, 1984, a C0-semigroup of contractions
(etA)t≥0 on a Hilbert space H is exponentially stable if and only if (S1) and and

lim sup
|λ|→∞

∥(iλ −A)−1∥L(H) < ∞ (S2)

hold. As we have assumed that (S1) is satisfied, it remains to prove that condition
(S2) is satisfied. To this aim, we proceed by a contradiction argument. Suppose
that (S2) does not hold, then there exist a sequence of real numbers λn ∈ R and a
sequence of vectors Un = (un, vn, yn, zn, θn) ∈ D(A) such that

|λn| −→ +∞, ∥Un∥H = ∥(un, vn, yn, zn, θn)∥H = 1, (3.4.1)

and

(iλn −A)Un = ( fn, f̃n, gn, g̃n, hn) −→ 0 in H, (3.4.2)

are satisfied.
In what follows, we drop the index n for simplicity.

115



Chapter 3. A transmission problem of a thermo-elastic system on Networks

Now by detailing (3.4.2), we get for all j ∈ I(N )

iλuj − vj = f j → 0 in H1(0, ℓj), (3.4.3)

iλvj − uj
xx + αjθ

j
x − β jzj = f̃ j → 0 in L2(0, ℓj), (3.4.4)

iλyj − zj = gj → 0 in H1(0, ℓj), (3.4.5)

iλzj − ρjy
j
xx + β jvj = g̃j → 0 in L2(0, ℓj), (3.4.6)

iλθ j − κjθ
j
xx + αjv

j
x = hj → 0 in L2(0, ℓj). (3.4.7)

Then, by eliminating vj and zj from equations (3.4.3) and (3.4.5) respectively, (3.4.3)-
(3.4.7) imply

λ2uj + uj
xx − αjθ

j
x + iλβ jyj = β jgj − f̃ j − iλ f j, (3.4.8)

λ2yj + ρjy
j
xx − iλβ juj = −β j f j − g̃j − iλgj, (3.4.9)

iλθ j − κjθ
j
xx + iλαju

j
x = hj + αj f j

x, (3.4.10)

where, ρj = 1, for all j ∈ Ite. Now, we will proceed by dividing the proof into
different Lemmas.

Lemma 3.4.2. Under all above assumptions, we have∫ ℓj

0
|θ j

x|2 dx = o(1), ∀j ∈ Ite. (3.4.11)

Proof. Taking the inner product in H of equation (3.4.2) with the uniformly bounded
sequence U = (u, v, y, z, θ), we get

∑
j∈Ite

κj

∫ ℓj

0
|θ j

x|2 dx = −Re((iλI −A)U, U)H = o(1).

As κj > 0, ∀j ∈ Ite, it follows that

||θ j
x||2L2(0,ℓj)

= o(1), ∀j ∈ Ite.

Using (3.4.3), (3.4.5) and (3.4.1), we have for all j ∈ I(N )

||λuj||L2(0,ℓj) = O(1), ||uj
x||L2(0,ℓj) = O(1), (3.4.12)

||λyj||L2(0,ℓj) = O(1), ||yj
x||L2(0,ℓj) = O(1). (3.4.13)

Also, using (3.4.8), (3.4.9) and (3.4.10), we have for all j ∈ I(N )∣∣∣∣∣∣∣∣uj
xx

λ

∣∣∣∣∣∣∣∣
L2(0,ℓj)

= O(1),
∣∣∣∣∣∣∣∣yj

xx

λ

∣∣∣∣∣∣∣∣
L2(0,ℓj)

= O(1),
∣∣∣∣∣∣∣∣ θ j

xx

λ

∣∣∣∣∣∣∣∣
L2(0,ℓj)

= O(1). (3.4.14)
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Lemma 3.4.3. Under all above assumptions, we have for all j ∈ Ite

λuj(ℓj) = O(1), uj
x(ℓj) = O(1), (3.4.15)

λuj(0) = O(1), uj
x(0) = O(1), (3.4.16)

λyj(ℓj) = O(1), yj
x(ℓj) = O(1), (3.4.17)

λyj(0) = O(1), yj
x(0) = O(1). (3.4.18)

Proof. For all j ∈ Ite, let Φj be a function in W1,∞(0, ℓj), then multiply (3.4.8) by

2Φjuj
x, integrate over (0, ℓj), take the real part and apply Green’s formula, we get

−
∫ ℓj

0
Φj

x|λuj|2 dx + Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

−
∫ ℓj

0
Φj

x|u
j
x|2 dx + Φj|uj

x|2
∣∣∣∣∣

x=ℓj

x=0

−2Re αj

∫ ℓj

0
θ

j
xΦjuj

x dx + Re 2i
∫ ℓj

0
β jΦjλyjuj

x dx

= 2Re
∫ ℓj

0
β jΦjgjuj

x dx − 2Re
∫ ℓj

0
f̃ jΦjuj

x dx − 2Re
∫ ℓj

0
iλ f jΦjuj

x dx.

(3.4.19)

Using (3.4.12), (3.4.14) and (3.4.11) we obtain,

Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

+ Φj|uj
x|2
∣∣∣∣∣

x=ℓj

x=0

= O(1)− 2Re
∫ ℓj

0
iλ f jΦjuj

x dx. (3.4.20)

But,

−2Re
∫ ℓj

0
iλ f jΦjuj

x dx = 2Re
∫ ℓj

0
iλ f jΦj

xuj dx + 2Re
∫ ℓj

0
iλΦjuj f j

x dx

−2Re(iλ f jΦjuj)

∣∣∣∣∣
x=ℓj

x=0

.
(3.4.21)

Using (3.4.12) and the fact that f j converges to zero in H1(0, ℓj), (3.4.21) becomes

− 2Re
∫ ℓj

0
iλ f jΦjuj

x dx = −2Re(iλ f jΦjuj)

∣∣∣∣∣
x=ℓj

x=0

+ o(1). (3.4.22)

Let Φj = x, for all j ∈ Ite. Using Young’s inequality, we get∣∣∣∣∣2Re
∫ ℓj

0
iλ f jΦjuj

x dx

∣∣∣∣∣ ≤ ℓ2
j ϵj|λuj(ℓj)|2 +

| f j(ℓj)|2

ϵj
+ o(1). (3.4.23)

Recalling the Gagliardo-Nirenberg inequality in Liu and Zheng, 1999: For all ℓ > 0,
there are two positive constants C1 and C2 depending on ℓ such that for any Ψ in
H1(0, ℓ) ⊂ C([0, ℓ]),

||Ψ||L∞(0,ℓ) ≤ C1||Ψx||1/2
L2(0,ℓ)||Ψ||1/2

L2(0,ℓ) + C2||Ψ||L2(0,ℓ). (3.4.24)

117



Chapter 3. A transmission problem of a thermo-elastic system on Networks

Applying (3.4.24) to Ψ = f j and using the fact that f j converge to zero in H1(0, ℓj),
we deduce that f j(ℓj) = o(1). Thus, (3.4.23) yields that∣∣∣∣∣2Re

∫ ℓj

0
iλ f jΦjuj

x dx

∣∣∣∣∣ ≤ ℓ2
j ϵj|λuj(ℓj)|2 + o(1). (3.4.25)

By inserting (3.4.25) in (3.4.20) and as Φj = x, we obtain

(ℓj − ℓ2
j ϵj)|λuj(ℓj)|2 + ℓj|u

j
x(ℓj)|2 = O(1).

By taking ϵj =
1

2ℓj
, we deduce that (3.4.15) holds. Similarly, by taking Φj = (x − ℓj),

for all j ∈ Ite, we conclude that (3.4.16) holds. Also, multiplying (3.4.9) by 2xyj
x and

2(x − ℓj)y
j
x respectively, we deduce that (3.4.17) and (3.4.18) hold.

Lemma 3.4.4. Under all above assumptions, we have for all j ∈ Ite,∫ ℓj

0
|uj

x|2 dx = o(1),
∫ ℓj

0
|θ j|2 dx = o(1). (3.4.26)

Proof. Let j ∈ Ite. Multiply (3.4.10) by uj
x

λ and integrate over (0, ℓj) we get

i
∫ ℓj

0
θ juj

x dx −
∫ ℓj

0
κjθ

j
xx

uj
x

λ
dx + iαj

∫ ℓj

0
|uj

x|2 dx =
∫ ℓj

0
hj uj

x

λ
dx

+αj

∫ ℓj

0
f j
x

uj
x

λ
dx.

(3.4.27)

Applying Green’s formula on the first and second term of (3.4.27) and using (3.4.12),
we obtain

−i
∫ ℓj

0
θ

j
xuj dx + iθ juj

∣∣∣∣∣
x=ℓj

x=0

+
∫ ℓj

0
κjθ

j
x

uj
xx

λ
dx − κjθ

j
x

uj
x

λ

∣∣∣∣∣
x=ℓj

x=0

+i αj

∫ ℓj

0
|uj

x|2 dx = o(1).

Using Cauchy-Schwarz inequality, (3.4.1), (3.4.11) and (3.4.14), we have

i αj

∫ ℓj

0
|uj

x|2 dx + iθ juj

∣∣∣∣∣
x=ℓj

x=0

− κjθ
j
x

uj
x

λ

∣∣∣∣∣
x=ℓj

x=0

= o(1). (3.4.28)

Then, by applying Gagliardo-Nirenberg inequality for Ψ = θ j
√

λ
, Ψ = θ

j
x√
λ

and uj
x√
λ

and again using (3.4.11), (3.4.14), (3.4.15), (3.4.16), we deduce that (3.4.28) yields

i αj

∫ ℓj

0
|uj

x|2 dx = o(1).

Taking the imaginary part and using the fact that αj is a positive constant for all
j ∈ Ite, we deduce that ∫ ℓj

0
|uj

x|2 dx = o(1). (3.4.29)
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Now, multiply (3.4.10) by θ j+αju
j
x

λ and integrate over (0, ℓj), we get

i
∫ ℓj

0
|θ j + αju

j
x|2 dx −

∫ ℓj

0

κjθ
j
xx

λ
(θ j + αju

j
x) dx =

∫ ℓj

0

hj

λ
(θ j + αju

j
x) dx

+
∫ ℓj

0

αj f j
x

λ
(θ j + αju

j
x) dx.

(3.4.30)

By applying Green’s formula on the second term of (3.4.30), using Cauchy- Schwarz
inequality on the integrals of the right hand side, (3.4.1) and the fact that hj and f j

x
converge to zero in L2(0, ℓj), we obtain

i
∫ ℓj

0
|θ j + αju

j
x|2 dx +

∫ ℓj

0
κj
|θ j

x|2
λ

dx +
∫ ℓj

0
αjκjθ

j
x

uj
xx

λ
dx

−
κjθ

j
x√

λ

 θ j
√

λ
+

αju
j
x√

λ

 ∣∣∣∣∣
x=ℓj

x=0

= o(1).

(3.4.31)

Again, by using Gagliardo-Nirenberg inequality for Ψ =
θ j
√

λ
, Ψ =

θ
j
x√
λ

and

Ψ =
uj

x√
λ

, we deduce that the boundary term in (3.4.31) converges to zero. More-

over, using (3.4.11) and (3.4.14), the second and third terms of (3.4.31) converge to
zero. Consequently, using (3.4.29), we conclude (3.4.26).

Lemma 3.4.5. Under all above assumptions, we have for all j ∈ Ite∫ ℓj

0
|λuj|2 dx = o(1) and

∫ ℓj

0
|vj|2 dx = o(1). (3.4.32)

Proof. Let j ∈ Ite. Multiply (3.4.8) by uj, integrate over (0, ℓj) and apply Green’s
formula, we get

∫ ℓj

0
|λuj|2 dx −

∫ ℓj

0
|uj

x|2 dx + uj
xuj

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0
αjθ

j
xuj dx

+
∫ ℓj

0
iβ jλyjuj dx =

∫ ℓj

0
β jgjuj dx −

∫ ℓj

0
f̃ juj dx − iλ

∫ ℓj

0
f juj dx.

Using Cauchy-Schwarz inequality, (3.4.26), (3.4.15), (3.4.16), (3.4.11), (3.4.12) and
(3.4.13), we deduce that ∫ ℓj

0
|λuj|2 dx = o(1).

Using (3.4.3) we conclude that (3.4.32) holds.

As a conclusion, we have for every j ∈ Ite

vj → 0, in L2(0, ℓj),

uj → 0, in H1(0, ℓj),

θ j → 0, in H1(0, ℓj).
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Lemma 3.4.6. Assume that all above assumptions hold. Then, for every thermo-elastic edge,
we have

λuj(ℓj) = o(1), uj
x(ℓj) = o(1), Re

(
iλ f j(ℓj)uj(ℓj)

)
= o(1), (3.4.33)

λuj(0) = o(1), uj
x(0) = o(1), Re

(
iλ f j(0)uj(0)

)
= o(1), (3.4.34)

θ j(0) = o(1), θ j(ℓj) = o(1). (3.4.35)

Proof. By the proof of Lemma 3.4.3, for all j ∈ Ite, and any Φj in W1,∞(0, ℓj), (3.4.19)
holds. Then, using (3.4.26), (3.4.32), (3.4.11) and (3.4.13) we obtain

Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

+ Φj|uj
x|2
∣∣∣∣∣

x=ℓj

x=0

= o(1)− 2Re
∫ ℓj

0
iλ f jΦjuj

x dx. (3.4.36)

Then, by taking Φj = x, for all j ∈ Ite, and using (3.4.25), we deduce that (3.4.36)
becomes,

(ℓj − ℓ2
j ϵj)|λuj(ℓj)|2 + ℓj|u

j
x(ℓj)|2 = o(1).

Taking ϵj =
1

2ℓj
, we deduce that

λuj(ℓj) = o(1) and uj
x(ℓj) = o(1).

Consequently, by (3.4.36) and (3.4.22), we conclude that (3.4.33) holds. Similarly,
by taking Φj = (x − ℓj), for all j ∈ Ite, we conclude that (3.4.34) holds. On the
other hand, applying Gagliardo-Nirenberg inequality for Ψ = θ j, using (3.4.26) and
(3.4.11) we deduce that (3.4.35) holds.

Lemma 3.4.7. Under all above assumptions, we have for all j ∈ Ite,∫ ℓj

0
|yj

x|2 dx = o(1). (3.4.37)

Proof. Multiply (3.4.8) by yj
xx
λ , then integrate over (0, ℓj) we get

∫ ℓj

0
λujyj

xx dx +
∫ ℓj

0
uj

xx
yj

xx

λ
dx −

∫ ℓj

0
αjθ

j
x

yj
xx

λ
dx + i

∫ ℓj

0
β jyjyj

xx dx

=
∫ ℓj

0
β jgj yj

xx

λ
dx −

∫ ℓj

0
f̃ j yj

xx

λ
dx − i

∫ ℓj

0
f jyj

xx dx.

Using Cauchy-Schwarz inequality, (3.4.11), (3.4.14) and the fact that gj and f̃ j con-
verge to zero in L2(0, ℓj), we obtain

∫ ℓj

0
λujyj

xx dx +
∫ ℓj

0
uj

xx
yj

xx

λ
dx + i

∫ ℓj

0
β jyjyj

xx dx = o(1)− i
∫ ℓj

0
f jyj

xx dx. (3.4.38)
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Applying Green’s formula on the first and third term of the left hand side and on
the integral of the right hand side, we get

−
∫ ℓj

0
λuj

xyj
x dx + λujyj

x

∣∣∣∣∣
x=ℓj

x=0

+
∫ ℓj

0
uj

xx
yj

xx

λ
dx − i

∫ ℓj

0
β j|y

j
x|2 dx

+iβ jyjyj
x

∣∣∣∣∣
x=ℓj

x=0

= i
∫ ℓj

0
f j
xyj

x dx − i f jyj
x

∣∣∣∣∣
x=ℓj

x=0

+ o(1).

But, using (3.4.33), (3.4.34), (3.4.17), (3.4.18), (3.4.13) and the fact that f j converge to
zero in H1(0, ℓj), we deduce that

−
∫ ℓj

0
λuj

xyj
x dx +

∫ ℓj

0
uj

xx
yj

xx

λ
dx − i

∫ ℓj

0
β j|y

j
x|2 dx = o(1). (3.4.39)

Similarly, multiplying (3.4.9) by uj
xx
λ , integrating over (0, ℓj) and using the fact that

ρj = 1 for all j ∈ Ite, we get

∫ ℓj

0
λyjuj

xx dx +
∫ ℓj

0
yj

xx
uj

xx

λ
dx − i

∫ ℓj

0
β jujuj

xx dx

= −
∫ ℓj

0
β j f j uj

xx

λ
dx −

∫ ℓj

0
g̃j uj

xx

λ
dx − i

∫ ℓj

0
gjuj

xx dx.

Using Cauchy-Schwarz inequality, (3.4.14) and the fact that f j and g̃j converge to
zero in L2(0, ℓj), we obtain

∫ ℓj

0
λyjuj

xx dx +
∫ ℓj

0
yj

xx
uj

xx

λ
dx − i

∫ ℓj

0
β jujuj

xx dx = o(1)− i
∫ ℓj

0
gjuj

xx dx. (3.4.40)

Applying Green’s formula on the first and third term of the left hand side and on
the integral of the right hand side, we obtain

−
∫ ℓj

0
λyj

xuj
x dx + λyjuj

x

∣∣∣∣∣
x=ℓj

x=0

+
∫ ℓj

0
yj

xx
uj

xx

λ
dx + i

∫ ℓj

0
β j|u

j
x|2 dx

−iβ jujuj
x

∣∣∣∣∣
x=ℓj

x=0

= i
∫ ℓj

0
gj

xuj
x dx − igjuj

x

∣∣∣∣∣
x=ℓj

x=0

+ o(1).

But, using (3.4.17), (3.4.18), (3.4.26), (3.4.33), (3.4.34), and the fact that gj coverges to
zero in H1(0, ℓj), we deduce that

−
∫ ℓj

0
λyj

xuj
x dx +

∫ ℓj

0
yj

xx
uj

xx

λ
dx = o(1). (3.4.41)

Taking the imaginary part of equations (3.4.39) and (3.4.41) then, adding the two
resulting equations, we conclude that∫ ℓj

0
|yj

x|2 dx = o(1).
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and the result holds.

Lemma 3.4.8. Under all above assumptions, we have∫ ℓj

0
|λyj|2 dx = o(1), ∀j ∈ Ite. (3.4.42)

Proof. Multiply (3.4.9) by yj then, integrate over (0, ℓj) and apply Green’s formula,
we get

∫ ℓj

0
|λyj|2 dx −

∫ ℓj

0
|yj

x|2 dx + yjyj
x

∣∣∣∣∣
x=ℓj

x=0

− i
∫ ℓj

0
β jλujyj dx

= −
∫ ℓj

0
β j f jyj dx −

∫ ℓj

0
g̃jyj dx − i

∫ ℓj

0
gjλyj dx.

But, using Cauchy-Schwarz inequality, (3.4.12), (3.4.13), (3.4.17), (3.4.18), (3.4.37) and
the fact that f j, gj converge to zero in H1(0, ℓj) and g̃j converges to zero in L2(0, ℓj),
we deduce that (3.4.42) holds.

Lemma 3.4.9. Assume that all above assumptions hold. Then, for every thermo-elastic edge,
we have

λyj(ℓj) = o(1), yj
x(ℓj) = o(1), Re

(
iλgj(ℓj)yj(ℓj)

)
= o(1), (3.4.43)

λyj(0) = o(1), yj
x(0) = o(1), Re

(
iλgj(0)yj(0)

)
= o(1). (3.4.44)

Proof. The proof is the same as the one of Lemma 3.4.3 or Lemma 3.4.6, using (3.4.37)
and (3.4.42), the result holds.

Lemma 3.4.10. Under all above assumptions, for each elastic edge we have∫ ℓj

0
|λuj|2 dx = o(1),

∫ ℓj

0
|uj

x|2 dx = o(1), (3.4.45)∫ ℓj

0
|λyj|2 dx = o(1),

∫ ℓj

0
|yj

x|2 dx = o(1). (3.4.46)

Proof. Let ej be an elastic edge attached to a thermoelastic one at an interior vertex
ak, , where ak is a leaf of a maximal subgraph of elastic edge. Recall that αj = 0, and

let Φj ∈ W1,∞(0, ℓj). Multiply (3.4.8) by 2Φjuj
x then integrate over (0, ℓj), take the real

part and apply Green’s formula, we obtain

−
∫ ℓj

0
Φj

x|λuj|2 dx + Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

−
∫ ℓj

0
Φj

x|u
j
x|2 dx + Φj|uj

x|2
∣∣∣∣∣

x=ℓj

x=0

+Re 2i
∫ ℓj

0
λβ jΦjyjuj

x dx = 2Re
∫ ℓj

0
β jΦjgjuj

x dx

−2Re
∫ ℓj

0
f̃ jΦjuj

x dx − 2Re
∫ ℓj

0
iλ f jΦjuj

x dx.
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Again applying Green’s formula on the fifth term of the left hand side and on the
third term of the right hand side, we get

−
∫ ℓj

0
Φj

x|λuj|2 dx + Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

−
∫ ℓj

0
Φj

x|u
j
x|2 dx + Φj|uj

x|2
∣∣∣∣∣

x=ℓj

x=0

−Re 2i
∫ ℓj

0
λujβ jΦjyj

x dx − Re 2i
∫ ℓj

0
λujβ jΦ

j
xyj dx + Re (2iβ jΦjλyjuj)

∣∣∣∣∣
x=ℓj

x=0

= 2Re
∫ ℓj

0
β jΦjgjuj

x dx − 2Re
∫ ℓj

0
f̃ jΦjuj

x dx + Re 2i
∫ ℓj

0
λuj f j

xΦj dx

+Re 2i
∫ ℓj

0
f jΦj

xλuj dx − 2Re(iλ f jΦjuj)

∣∣∣∣∣
x=ℓj

x=0

.

(3.4.47)

But using Cauchy-Schwarz inequality, (3.4.12) and (3.4.13), we deduce that

Re 2i
∫ ℓj

0
λujβ jΦ

j
xyj dx = o(1). (3.4.48)

Also, using Cauchy-Schwarz inequality, (3.4.12), (3.4.13) and the fact that f j converge
to zero in H1(0, ℓj) and f̃ j, gj converge to zero in L2(0, ℓj), we have

2Re
∫ ℓj

0
β jΦjgjuj

x dx − 2Re
∫ ℓj

0
f̃ jΦjuj

x dx + Re 2i
∫ ℓj

0
λuj f j

xΦj dx

+Re 2i
∫ ℓj

0
f jΦj

xλuj dx = o(1).
(3.4.49)

Inserting (3.4.48) and (3.4.49) in the identity (3.4.47), we get

−
∫ ℓj

0
Φj

x|λuj|2 dx + Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

−
∫ ℓj

0
Φj

x|u
j
x|2 dx + Φj|uj

x|2
∣∣∣∣∣

x=ℓj

x=0

+Re (2iβ jΦjλyjuj)

∣∣∣∣∣
x=ℓj

x=0

+ 2 Im
∫ ℓj

0
λujβ jΦjyj

x dx = −2Re(iλ f jΦjuj)

∣∣∣∣∣
x=ℓj

x=0

.

(3.4.50)

Similarly, multiply (3.4.9) by 2Φjyj
x, integrate over (0, ℓj), take the real part and apply

Green’s formula, we obtain

−
∫ ℓj

0
Φj

x|λyj|2 dx + Φj|λyj|2
∣∣∣∣∣

x=ℓj

x=0

−
∫ ℓj

0
ρjΦ

j
x|y

j
x|2 dx + ρjΦj|yj

x|2
∣∣∣∣∣

x=ℓj

x=0

−Re 2i
∫ ℓj

0
λβ jΦjujyj

x dx = −Re 2
∫ ℓj

0
β j f jΦjyj

x dx

−Re 2
∫ ℓj

0
g̃jΦjyj

x dx − Re 2i
∫ ℓj

0
λgjΦjyj

x dx.
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Applying Green’s formula on the last integral of the right hand side, we get

−
∫ ℓj

0
Φj

x|λyj|2 dx + Φj|λyj|2
∣∣∣∣∣

x=ℓj

x=0

−
∫ ℓj

0
ρjΦ

j
x|y

j
x|2 dx + ρjΦj|yj

x|2
∣∣∣∣∣

x=ℓj

x=0

−Re 2i
∫ ℓj

0
λβ jΦjujyj

x dx = −Re 2
∫ ℓj

0
β j f jΦjyj

x dx

−Re 2
∫ ℓj

0
g̃jΦjyj

x dx + Re 2i
∫ ℓj

0
λgj

xΦjyj dx + Re 2i
∫ ℓj

0
λgjΦj

xyj dx

−2 Re(iλgjΦjyj)

∣∣∣∣∣
x=ℓj

x=0

.

(3.4.51)

But, using (3.4.13) and the fact that gj converge to zero in H1(0, ℓj) and f j, g̃j converge
to zero in L2(0, ℓj), we conclude that

−Re 2
∫ ℓj

0
β j f jΦjyj

x dx − Re 2
∫ ℓj

0
g̃jΦjyj

x dx + Re 2i
∫ ℓj

0
λgj

xΦjyj dx

+Re 2i
∫ ℓj

0
λgjΦj

xyj dx = o(1).
(3.4.52)

Then, inserting (3.4.52) in equation (3.4.51), we get

−
∫ ℓj

0
Φj

x|λyj|2 dx + Φj|λyj|2
∣∣∣∣∣

x=ℓj

x=0

−
∫ ℓj

0
ρjΦ

j
x|y

j
x|2 dx + ρjΦj|yj

x|2
∣∣∣∣∣

x=ℓj

x=0

+2 Im
∫ ℓj

0
λβ jΦjujyj

x dx = o(1)− 2 Re(iλgjΦjyj)

∣∣∣∣∣
x=ℓj

x=0

.

(3.4.53)

Without loss of generality, assume that πj(ak) = 0 and let Φj = x − ℓj (otherwise, let
Φj = x). Then, adding the two equations (3.4.50) and (3.4.53), using Lemma 3.4.6,
Lemma 3.4.9, the fact that u, y, f and g satisfy the continuity conditions in (3.1.11)
and u, θ and y satisfy the balance conditions (3.1.12)-(3.1.13), we deduce that∫ ℓj

0
|λuj|2 dx +

∫ ℓj

0
|uj

x|2 dx

+
∫ ℓj

0
|λyj|2 dx +

∫ ℓj

0
ρj|y

j
x|2 dx = o(1).

Consequently, as ρj > 0 for all j ∈ Ie, (3.4.45) and (3.4.46) hold. Repeating the same
technique of Lemma 3.4.6 and Lemma 3.4.9, we conclude that

λuj(0) = o(1), uj
x(0) = o(1), Re

(
iλ f j(0)uj(0)

)
= o(1),

λyj(0) = o(1), yj
x(0) = o(1), Re

(
iλgj(0)yj(0)

)
= o(1),

λuj(ℓj) = o(1), uj
x(ℓj) = o(1), Re

(
iλ f j(ℓj)uj(ℓj)

)
= o(1),

λyj(ℓj) = o(1), yj
x(ℓj) = o(1), Re

(
iλgj(ℓj)yj(ℓj)

)
= o(1).
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Then, by iteration on each maximal subgraph of purely elastic edges (from leaves to
the root), we prove that∫ ℓj

0
|λuj|2 dx +

∫ ℓj

0
|uj

x|2 dx +
∫ ℓj

0
|λyj|2 dx +

∫ ℓj

0
|yj

x|2 dx = o(1), (3.4.54)

for all j ∈ Ie.

In conclusion, using Lemmas 3.4.4, 3.4.5, 3.4.7, 3.4.8 and 3.4.10, we conclude that
||U||H = o(1), which contradicts (3.4.1).

Remark 3.4.11. Examples of networks for which (S1) holds are given by Theorem
3.3.1.

Remark 3.4.12. If there exists an elastic edge (j ∈ Ie) such that ρj ̸= 1 then, using
Lemma 3.4.10, we show that Theorem 3.4.1 holds (i.e., the energy of the system
decays exponentially to zero). But, if there exists a thermo-elastic edge (j ∈ Ite) such
that ρj ̸= 1 then, it seems that the energy of the system does not decay exponentially,
but polynomially (see Theorem 3.4.13 below).

Theorem 3.4.13. Let N be an arbitrary network for which the operator associated with
System (3.1.7)-(3.1.13) satisfies (S1). Assume that there exists j ∈ Ite ∩ I ′

ext such that
ρj ̸= 1. Then, the energy of the system satisfies

E(t) ≤ C
t1/3 ||U0||2D(A), ∀U0 ∈ D(A), t > 0, (3.4.55)

for some positive constant C > 0.

Proof. Following Borichev and Tomilov, 2009, a C0- semigroup of contractions
(etA)t≥0 on a Hilbert space H is polynomially stable if and only if (S1) and

and
lim sup
|λ|→∞

1
λ6 ∥(iλ −A)−1∥L(H) < ∞ (S2)

hold. As we have assumed that (S1) is satisfied, it remains to prove that condition
(S2) is satisfied. To this aim, we proceed by a contradiction argument. Suppose that
(S2) does not hold, then there exist a sequence of real numbers λn and a sequence of
vectors Un = (un, vn, yn, zn, θn) ∈ D(A) such that (3.4.1) and

λ6(iλn −A)Un = ( fn, f̃n, gn, g̃n, hn) −→ 0 in H (3.4.56)

are satisfied.
In what follows, we drop the index n for simplicity.

Now by detailing (3.4.56), we get for all j ∈ I(N )

λ6(iλuj − vj) = f j → 0 in H1(0, ℓj), (3.4.57)

λ6(iλvj − uj
xx + αjθ

j
x − β jzj) = f̃ j → 0 in L2(0, ℓj), (3.4.58)

λ6(iλyj − zj) = gj → 0 in H1(0, ℓj), (3.4.59)

λ6(iλzj − ρjy
j
xx + β jvj) = g̃j → 0 in L2(0, ℓj), (3.4.60)

λ6(iλθ j − κjθ
j
xx + αjv

j
x) = hj → 0 in L2(0, ℓj). (3.4.61)
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Then, by eliminating vj and zj using (3.4.57) and (3.4.59) respectively, (3.4.57)-(3.4.61)
becomes

λ2uj + uj
xx − αjθ

j
x + iλβ jyj =

β jgj

λ6 − f̃ j

λ6 − i
f j

λ5 , (3.4.62)

λ2yj + ρjy
j
xx − iλβ juj = −

β j f j

λ6 − g̃j

λ6 − i
gj

λ5 , (3.4.63)

iλθ j − κjθ
j
xx + iλαju

j
x =

hj

λ6 +
αj f j

x

λ6 . (3.4.64)

First, our aim is to prove that for each thermo-elastic edge, we have

vj → 0, in L2(0, ℓj),
uj → 0, in H1(0, ℓj),
θ j → 0, in H1(0, ℓj),
zj → 0, in L2(0, ℓj),
yj → 0, in H1(0, ℓj).

(3.4.65)

Following the same proof of Lemmas 3.4.4, 3.4.5, 3.4.7, 3.4.8, we can prove that
(3.4.65) holds for all j ∈ Ite with ρj = 1. Hence, we only need to prove that (3.4.65)
holds for all j ∈ Ite ∩ I ′

ext with ρj ̸= 1. We will proceed by dividing the proof into
different Lemmas.

Lemma 3.4.14. Under all above assumptions, we have∫ ℓj

0
|θ j

x|2 dx =
o(1)
λ6 , ∀j ∈ Ite. (3.4.66)

Proof. Same proof as the one of Lemma 3.4.2.

Using (3.4.1), (3.4.57) and (3.4.59), we can easily deduce that (3.4.12)-(3.4.13) holds,
for all j ∈ I(N ). Also, using (3.4.62), (3.4.63) and (3.4.64) we conclude (3.4.14) for all
j ∈ I(N ).

Lemma 3.4.15. Under all above assumptions, (3.4.15)-(3.4.18) holds.

Proof. Let Φj be a function in W1,∞(0, ℓj), for all j ∈ Ite. Multiplying (3.4.62) by

2Φjuj
x, integrating over (0, ℓj) then taking the real part and applying Green’s For-

mula, we obtain

−
∫ ℓj

0
Φj

x|λuj|2 dx + Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

−
∫ ℓj

0
Φj

x|u
j
x|2 dx + Φj|uj

x|2
∣∣∣∣∣

x=ℓj

x=0

−2Re αj

∫ ℓj

0
θ

j
xΦjuj

x dx + Re 2i
∫ ℓj

0
β jλyjΦjuj

x dx

= 2Re
∫ ℓj

0

β jΦjgjuj
x

λ6 dx − 2Re
∫ ℓj

0

f̃ jΦjuj
x

λ6 dx − 2Re
∫ ℓj

0
i

f jΦjuj
x

λ5 dx.

(3.4.67)

Using (3.4.12), (3.4.13) and (3.4.66) we get,

Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

+ Φj|uj
x|2
∣∣∣∣∣

x=ℓj

x=0

= O(1).
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Let Φj = x, for all j ∈ Ite. We deduce that (3.4.15) holds. Similarly, by taking

Φj = (x − ℓj), we conclude (3.4.16). Also, multiplying (3.4.9) by 2xyj
x and 2(x − ℓj)y

j
x

respectively, we deduce that (3.4.17) and (3.4.18) hold.

Lemma 3.4.16. Under all above assumptions, we have∫ ℓj

0
|uj

x|2 dx =
o(1)
λ2 , ∀ j ∈ Ite ∩ I ′

ext. (3.4.68)

Proof. Let j ∈ Ite ∩ I ′
ext. Multiply (3.4.64) by uj

x
λ , and integrate over (0, ℓj), we get

i
∫ ℓj

0
θ juj

x dx −
∫ ℓj

0
κjθ

j
xx

uj
x

λ
dx + i

∫ ℓj

0
αj|u

j
x|2 dx

=
∫ ℓj

0

hjuj
x

λ7 dx +
∫ ℓj

0

αj f j
xuj

x

λ7 dx.

(3.4.69)

Applying Green’s formula on the first and second term of (3.4.69), using Cauchy-
Schwarz inequality, (3.4.12) and the fact that f j converge to zero in H1(0, ℓj) and hj

converge to zero in L2(0, ℓj), we obtain

−i
∫ ℓj

0
θ

j
xuj dx + iθ juj

∣∣∣∣∣
x=ℓj

x=0

+
∫ ℓj

0
κjθ

j
x

uj
xx

λ
dx − κj

θ
j
x

λ
uj

x

∣∣∣∣∣
x=ℓj

x=0

+i
∫ ℓj

0
αj|u

j
x|2 dx =

o(1)
λ7 .

(3.4.70)

But, using Cauchy-Schwarz inequality, (3.4.66), (3.4.12) and (3.4.14), we deduce that∫ ℓj

0
θ

j
xuj dx =

o(1)
λ4 , (3.4.71)

and ∫ ℓj

0
θ

j
x

uj
xx

λ
dx =

o(1)
λ3 . (3.4.72)

On the other hand, by applying Gagliardo-Nirenberg inequality to Ψ = θ j and Ψ =
θ

j
x

λ , using Poincaré inequality, (3.4.66) and (3.4.14) we deduce that

θ j(0) =
o(1)
λ3 , θ j(ℓj) =

o(1)
λ3 , j ∈ Ite ∩ I ′

ext, (3.4.73)

and
θ

j
x(0)
λ

=
o(1)
λ2 ,

θ
j
x(ℓj)

λ
=

o(1)
λ2 , j ∈ Ite ∩ I ′

ext. (3.4.74)

Using (3.4.71), (3.4.72), (3.4.73), (3.4.74), (3.4.15) and (3.4.16) we conclude that (3.4.68)
holds.

Lemma 3.4.17. Under all above assumptions, we have for all j ∈ Ite ∩ I ′
ext∫ ℓj

0
|λuj|2 dx = o(1) and

∫ ℓj

0
|vj|2 dx = o(1). (3.4.75)
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Proof. Let j ∈ Ite ∩ I ′
ext. Multiply (3.4.62) by uj, integrate over (0, ℓj) and apply

Green’s formula, we get

∫ ℓj

0
|λuj|2 dx −

∫ ℓj

0
|uj

x|2 dx + uj
xuj

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0
αjθ

j
xuj dx

+
∫ ℓj

0
iβ jλyjuj dx =

∫ ℓj

0

β jgjuj

λ6 dx −
∫ ℓj

0

f̃ juj

λ6 dx − i
∫ ℓj

0

f juj

λ5 dx.

Using Cauchy-Schwarz inequality, (3.4.12), (3.4.13), (3.4.66), (3.4.68), (3.4.15) and
(3.4.16) we deduce that ∫ ℓj

0
|λuj|2 dx = o(1).

Using (3.4.57), we conclude that (3.4.75) holds.

Lemma 3.4.18. Assume that all above assumptions hold. Then, for j ∈ Ite ∩ I ′
ext, we have

λuj(ℓj) = o(1), uj
x(ℓj) = o(1), (3.4.76)

λuj(0) = o(1), uj
x(0) = o(1), (3.4.77)

θ j(0) = o(1), θ j(ℓj) = o(1). (3.4.78)

Proof. By the proof of Lemma 3.4.15, for all j ∈ Ite ∩ I ′
ext, and any Φj in W1,∞(0, ℓj),

(3.4.67) holds. Then, using (3.4.68), (3.4.75), (3.4.66) and (3.4.13) we obtain

Φj|λuj|2
∣∣∣∣∣

x=ℓj

x=0

+ Φj|uj
x|2
∣∣∣∣∣

x=ℓj

x=0

= o(1).

Then, by taking Φj = x, for all j ∈ Ite ∩ I ′
ext, we deduce that (3.4.76) holds. Similarly,

by taking Φj = (x − ℓj), for all j ∈ Ite ∩ I ′
ext, we conclude that (3.4.77) holds. On the

other hand, applying Gagliardo-Nirenberg inequality, using (3.4.66) and Poincaré
inequality, we deduce that (3.4.78) holds.

Lemma 3.4.19. Under all above assumptions, we have for all j ∈ Ite ∩ I ′
ext∫ ℓj

0
|λyj|2 dx = o(1) and

∫ ℓj

0
|zj|2 dx = o(1). (3.4.79)

Proof. Let j ∈ Ite ∩I ′
ext. Multiply equation (3.4.63) by λuj, then, integrate over (0, ℓj),

we get ∫ ℓj

0
λ3yjuj dx + ρj

∫ ℓj

0
yj

xxλuj dx − i
∫ ℓj

0
β j|λuj|2 dx

= −
∫ ℓj

0

β j f juj

λ5 dx −
∫ ℓj

0

g̃juj

λ5 dx − i
∫ ℓj

0

gjuj

λ4 dx.

(3.4.80)

Applying Green’s formula on the second term of (3.4.80), using Cauchy-Schwarz
inequality and (3.4.12), we obtain

∫ ℓj

0
λ3yjuj dx − ρj

∫ ℓj

0
yj

xλuj
x dx + ρjy

j
xλuj

∣∣∣∣∣
x=ℓj

x=0

− i
∫ ℓj

0
β j|λuj|2 dx = o(1).
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But, using (3.4.76), (3.4.77), (3.4.68) (3.4.75), (3.4.17), (3.4.18) and (3.4.13), we deduce
that ∫ ℓj

0
λ3yjuj dx = o(1). (3.4.81)

Similarly, multiply (3.4.62) by λyj then integrate over (0, ℓj) and apply Green’s for-
mula, we obtain

∫ ℓj

0
λ3ujyj dx −

∫ ℓj

0
uj

xλyj
x dx + uj

xλyj

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0
αjθ

j
xλyj dx

+iβ j

∫ ℓj

0
|λyj|2 dx =

∫ ℓj

0

β jgjyj

λ5 dx −
∫ ℓj

0

f̃ jyj

λ5 dx − i
∫ ℓj

0

f jyj

λ4 dx.

Consequently, using (3.4.68), (3.4.76), (3.4.77), (3.4.17), (3.4.18) and (3.4.66) we get∫ ℓj

0
λ3ujyj dx + iβ j

∫ ℓj

0
|λyj|2 dx = o(1).

Then, taking the imaginary part of the above equality, using (3.4.81) and the fact that
β j is a positive constant for all j ∈ Ite ∩ I ′

ext, we deduce that

∫ ℓj

0
|λyj|2 dx = o(1).

Finally, by (3.4.60), we conclude that(3.4.79) holds.

Lemma 3.4.20. Under all above assumptions, we have for all j ∈ Ite ∩ I ′
ext∫ ℓj

0
|yj

x|2 dx = o(1). (3.4.82)

Proof. Multiply (3.4.63) by yj, integrate over (0, ℓj) and apply Green’s formula, we
get

∫ ℓj

0
|λyj|2 dx − ρj

∫ ℓj

0
|yj

x|2 dx + ρjy
j
xyj

∣∣∣∣∣
x=ℓj

x=0

− i
∫ ℓj

0
β jujyj dx

= −
∫ ℓj

0

β j f jyj

λ6 dx −
∫ ℓj

0

g̃jyj

λ6 dx − i
∫ ℓj

0

gjyj

λ5 dx.

Then, using (3.4.79), (3.4.17), (3.4.18) and (3.4.13), we deduce that for all j ∈ Ite ∩I ′
ext

we have {
λyj(ℓj) = o(1), yj

x(ℓj) = o(1),
λyj(0) = o(1), yj

x(0) = o(1).
(3.4.83)

Hence, using (??) and Lemma 3.4.18 and by iteration on each maximal subgraph
of purely elastic edges (from leaves to root), the results of Lemma 3.4.10 holds for
every elastic edge. Finally, using Lemmas 3.4.16, 3.4.17, 3.4.19, 3.4.20 and 3.4.10, we
conclude that ||U||H = o(1), which contradicts (3.4.1).

Remark 3.4.21. 1) If every maximal subgraph of thermo-elastic edges is composed
of maximum three thermo-elastic edges and there exist j ∈ Ite ∩ G ′

int such that
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ρj ̸= 1 then, the same result of Theorem 3.4.13 holds. The key step to prove that
result is to show that (3.4.73) still holds. Due to (3.1.11) and as (3.4.73) holds for all
j ∈ Ite ∩ I ′

ext, we deduce that (3.4.73) is achieved for all j ∈ Ite (in particular for
j ∈ Ite ∩ G ′

int). Hence, the desired result is attained.

2) If we replace condition (3.1.13) by the following condition
∑

j∈I(ak)

dkju
j
x(ak) = 0, ak ∈ Vint,

∑
j∈Ite(ak)

dkj(αju
j
t(ak)− κjθ

j
x(ak)) = 0, ak ∈ V ′

int.
(3.4.84)

Then, we can also prove that the same results of Theorem 3.4.1 and Theorem 3.4.13
hold for system {(3.1.7)-(3.1.12),(3.4.84)}. Notice that due to condition (3.4.84), a
slight gain appears when proving the system {(3.1.7)-(3.1.12),(3.4.84)} is strongly
stable. In other words, the energy associated with system {(3.1.7)-(3.1.12),(3.4.84)}
converges to zero if one of the following conditions holds,

i) Each maximal subgraph of thermo-elastic edges contains at least one inte-
rior vertex or contains an exterior vertex that belongs to Vext.

ii) There exists a maximal subgraph of thermo-elastic edges that contains no
interior vertices and contains no exterior vertex that belongs to Vext and β j = β, for
all j ∈ I(N ).

Idea of the proof. In comparison with Theorem 3.3.1, it is enough to prove that if
each maximal subgraph of thermo-elastic edges contains at least one interior vertex,
then the energy associated with system {(3.1.7)-(3.1.12),(3.4.84)} converges to zero.
Due to the fact that (I −A∗)−1 is compact where, A∗ = A|D(A∗)

is the operator as-
sociated with system {(3.1.7)-(3.1.12),(3.4.84)}, we have σ(A∗) = σp(A∗). Following
the same proof as the one of Theorem 3.3.1, let λ ∈ R and U = (u, v, y, z, θ) ∈ D(A∗)
be such that

A∗U = iλU.

As A∗ = A|D(A∗)
, we obtain, (3.3.1)-(3.3.10). If λ = 0, we proceed exactly as in the

proof of Theorem 3.3.1. Otherwise, if λ ̸= 0 then, using (3.3.10) and (3.3.8) we have
(3.3.14), which means that uj is constant for every j ∈ Ite but, due to the fact that each
maximal subgraph of thermo-elastic edges contains at least one interior vertex (i.e.,
V ′

int ̸= ∅) and using (3.3.9), (3.3.1) and (3.1.11), the balance condition (3.4.84) asserts
that uj(ak) = 0 for some j ∈ Ite(ak), ak ∈ V ′

int. Again, using (3.1.11) we deduce that
uj = 0, for all j ∈ Ite. Finally, we proceed exactly as Case 1 of the proof of Theorem
3.3.1 to reach the desired aim.

3.5 Stabilization of Thermo-elastic System with Neumann
Boundary condition at the interior nodes of some partic-
ular networks

In this section, we investigate the stabilization of a thermo-elastic system with
Neumann boundary condition at the interior nodes of some particular networks
(composed of elastic and thermoelastic materials) similar to the particular networks
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considered in Shel, 2012. In the first case, we consider trees (G1) for which all
exterior edges (except one) are thermo-elastic. In the second case, we consider the
path (P) composed of two exterior elastic edges and an interior thermoelastic edge.
In the third case, we consider (G2), trees of elastic materials, whose leaves (exterior
nodes of the last generation) are connected to thermoelastic materials as follows:
the thermoelastic body connects two leaves issued from the same vertex, with the
condition that each leaf is connected to only one thermoelastic body.

In fact, the considered networks (G1), (P) and (G2) are particular graphs of
the general networks covered in Section 3.1-Section 3.4. Notice that, if we apply the
boundary conditions of Section 3.1 on these particular networks, we can deduce
that the stabilization of the thermo-elastic system on (G1), (P) and (G2) is achieved
when θ satisfies Dirichlet condition on each end of every thermo-elastic edge
(see Section 3.1-Section 3.4). In this section, we discuss the stabilization of the
thermo-elastic system on these particular networks such that θ satisfies Neumann
boundary condition at each interior node connected to a thermo-elastic edge (see
Figure 3.1).

a0

e1
a1

e2

a0 a1 a2 a3

e1 e2 e3

a2
a3

e3

a0
e1

a1

a2

e2
a3

e3

: θ j(ak) = 0

: θ
j
x(ak) = 0

(P)

(G1) (G2)

Thermo-elastic edge

Elastic edge

FIGURE 3.1: Some particular networks

The system is described as follows:
• On every thermo-elastic edge (j ∈ Ite) the following equations hold:

uj
tt − uj

xx + αjθ
j
x − β jy

j
t = 0 in (0, ℓj)× (0, ∞),

yj
tt − ρjy

j
xx + β ju

j
t = 0 in (0, ℓj)× (0, ∞),

θ
j
t − κjθ

j
xx + αju

j
tx = 0 in (0, ℓj)× (0, ∞),

(3.5.1)

where αj, ρj, κj and β j are positive constants.
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• On every elastic edge (j ∈ Ie) one has:{
uj

tt − uj
xx − β jy

j
t = 0 in (0, ℓj)× (0, ∞),

yj
tt − ρjy

j
xx + β ju

j
t = 0 in (0, ℓj)× (0, ∞),

(3.5.2)

where β j and ρj are positive constants.
We assume that the initial data on the network N are

uj(x, 0) = uj
0(x), uj

t(x, 0) = uj
1(x), ∀j ∈ I(N )

yj(x, 0) = yj
0(x), yj

t(x, 0) = yj
1(x), ∀j ∈ I(N ),

θ j(x, 0) = θ
j
0(x), ∀j ∈ Ite(N ).

(3.5.3)

The boundary conditions of system (3.5.1)-(3.5.3) on the considered networks will be
as follows.
The system satisfies the Dirichlet boundary condition for the displacement and tem-
perature at the exterior nodes,

uj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,
yj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,
θ j(ak, t) = 0, j ∈ Ite(ak), ak ∈ Vext.

(3.5.4)

The displacement is continuous at every interior node,{
uj(ak, t) = uℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,
yj(ak, t) = yℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint.

(3.5.5)

The temperature satisfies the Neumann condition at the interior nodes,

θ
j
x(ak, t) = 0, j ∈ Ite(ak), ak ∈ Vint. (3.5.6)

The system satisfies the balance condition at every interior node,
∑

j∈Ite(ak)

dkj(u
j
x(ak, t)− αjθ

j(ak), t) + ∑
j∈Ie(ak)

dkju
j
x(ak, t) = 0, ak ∈ Vint,

∑
j∈I(ak)

dkjρjy
j
x(ak) = 0, ak ∈ Vint.

(3.5.7)

Mainly, we find sufficient conditions on the lengths of the purely elastic edges
attached to the thermo-elastic ones so that the system is strongly stable and then
exponentially stable on the above described networks.

Here the energy space H1 is given by

H1 =
{
(u, ut, y, yt, θ) ∈ H1

0 × L2 × H1
0 × L2 × V satisfying (3.5.9) below

}
, (3.5.8)

∫ ℓj

0
(αju

j
x + θ j) dx = 0, ∀ j ∈ Gint ∩ Ite (3.5.9)

where, Gint is the set of indices of edges adjacent to two interior vertices.
The Hilbert space H1 is equipped with the inner product given in (3.2.3).
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Next, we define the unbounded linear operator A1 by:

A1


u
v
y
z
θ

 =




vj

uj
xx − αjθ

j
x + β jzj

zj

ρjy
j
xx − β jvj

κjθ
j
xx − αjv

j
x




j∈I(N )

(3.5.10)

with domain

D(A1) =
{
(u, v, y, z, θ) ∈ H1 ∩ [H2 × H1

0 × H2 × H1
0 × V2], satisfying (3.5.11)

}


θ j(ak) = 0, j ∈ Ite(ak), ak ∈ Vext,
θ

j
x(ak) = 0, j ∈ Ite(ak), ak ∈ Vint,

∑
j∈I(ak)

dkj(u
j
x(ak)− αjθ

j(ak)) = 0, ak ∈ Vint,

∑
j∈I(ak)

dkjρjy
j
x(ak) = 0, ak ∈ Vint.

(3.5.11)

Let Ω denotes the set of indices of purely elastic edges attached to thermo-elastic
edges in the network N . The main results of this section are stated in the following
Theorems:

Theorem 3.5.1. The unbounded linear operator A1 generates a C0-semigroup of contrac-
tions on H1.

Proof. The same proof as the one of Theorem 3.2.1 implies that A1 is a maximal dissi-
pative operator. Then, using Lumer-Phillips Theorem (see Pazy, 1983), A1 generates
a C0-semigroup of contractions (etA1)t≥0 on H1.

Theorem 3.5.2. Consider the system (3.5.1)-(3.5.7) on N . Assume that one of the following
conditions holds:

1) N is the graph G1,

2) N is the graph P , β j = β, ρj = 1, ∀j ∈ I(P), and there exists j ∈ {1, 3} such
that

ℓj ̸=
mπ√
2β j

, ∀m ∈ N∗, (3.5.12)

3) N is the graph G2, β j = β, ρj = 1, ∀j ∈ I(G2), and in every circuit C, for the unique
j, k ∈ Ω such that ej and ek are edges of C, we have

sin(
√

2β jℓj) + sin(
√

2βkℓk) ̸= 0. (3.5.13)

Then, iR ⊂ ρ(A1) and therefore the C0-semigroup of contractions (etA1)t≥0 is strongly
stable.

Proof. As before (I −A1)
−1 being compact, then σ(A1) = σp(A1). Thus, it is suffi-

cient to prove that σp(A1) ∩ iR = ∅. Let λ ∈ R and U = (u, v, y, z, θ) ∈ D(A1) be
such that

A1U = iλU,
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equivalently, for all j ∈ I(N ) we have (3.3.1)-(3.3.5). Using (3.3.1), (3.3.3) to elimi-
nate vj and zj, we obtain (3.3.6)-(3.3.8). Further, we easily check that

∑
j∈Ite

κj

∫ ℓj

0
|θ j

x|2 dx = Re(A1U, U)H1 = Re(iλU, U)H1 = 0.

This implies that (3.3.9) holds. Thus, θ j is constant for all j ∈ Ite.
If λ = 0 then, using (3.3.6), (3.3.8) and (3.3.9), we have

uj
xx = 0, ∀j ∈ I(N ),

uj
xx − αjθ

j
x = 0, ∀j ∈ I(N ),

ρjy
j
xx = 0, ∀j ∈ I(N ),

(3.5.14)

where αj = 0, ∀j ∈ Ie.
Multiplying the second equation and third equation of (3.5.14) by uj and yj, respec-
tively. Then, integrating over (0, ℓj), summing over j ∈ I(N ) and applying Green’s
formula, we get

−
N

∑
j=1

∫ ℓj

0
|uj

x|2 dx +
N

∑
j=1

uj
xuj

∣∣∣∣∣
ℓj

0

+
N

∑
j=1

∫ ℓj

0
αjθ

juj
x dx −

N

∑
j=1

αjθ
juj

∣∣∣∣∣
ℓj

0

= 0,

N

∑
j=1

∫ ℓj

0
ρj|y

j
x|2 dx −

N

∑
j=1

ρjy
j
xyj

∣∣∣∣∣
ℓj

0

= 0.

But, using (3.5.4), (3.5.5), (3.5.7) and (3.5.9), we obtain for all j ∈ I(N ),

−
N

∑
j=1

∫ ℓj

0
|uj

x|2 dx − ∑
j∈Ite

∫ ℓj

0
|θ j|2 dx = 0,

N

∑
j=1

∫ ℓj

0
ρj|y

j
x|2 dx = 0.

This implies that uj
x = yj

x = 0, for all j ∈ I(N ) and θ j = 0, for all j ∈ Ite. Again,
by (3.5.4)-(3.5.7), we deduce that uj = yj = 0, for all j ∈ I(N ). Consequently, using
(3.3.1) and (3.3.3), we conclude that U = 0.
Now, assume that λ ̸= 0. We will proceed by distinguishing different cases:

Case i. Assume that N is the graph G1. Then, the proof in this case is exactly
the same as the proof of Case 1 in Theorem 3.3.1. In fact, under the boundary
conditions of Section 3.5, on each thermo-elastic edge ej of (G1), θ j satisfies the
Dirichlet boundary condition on one end and the Neumann boundary condition
on the other end. While, under the boundary conditions of Section 3.1, θ j satisfies
the Dirichlet boundary condition on the both ends of each thermo-elastic edge ej

of (G1). This shows that on networks like (G1), if θ j satisfies Dirichlet boundary
condition on only one end of each thermo-elastic edge ej, then it is enough to prove
that the system is strongly stable.

Now, before proceeding the other cases (Case ii and Case iii below), remark
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that for an arbitrary network N with β j = β, ρj = 1, for all j ∈ I(N ), and using
(3.3.8) and (3.3.9), (3.3.16)-(3.3.20) hold for all j ∈ Ite. Then, for λ ̸= ±β we have
yj = 0, for all j ∈ Ite and thus by equation (3.3.19) we get uj = 0, for all j ∈ Ite.
Then, by (3.3.8), we obtain that θ j = 0, for all j ∈ Ite. Again, by proceeding using
unique continuation Theorem in Hayek et al., 2020 and iteration technique used in
Case 1 of the proof of Theorem 3.3.1, we conclude that uj = vj = yj = zj = 0, for all
j ∈ I(N ). So, it is enough to treat the remaining cases (Case ii and Case iii below)
with λ = ±β. Without loss of generality, assume that λ = β.

Case ii. Assume that N is the path P , composed of two exterior elastic edges
and an interior thermo-elastic edge, β j = β, ρj = 1, for all j ∈ I(P) and there
exists j ∈ {1, 3} such that (3.5.12) holds. Without loss of generality, assume that
π1(0) = a0, π2(0) = a1 and π3(0) = a2. For the thermoelastic edge e2, we have
u2

xx = y2
xx = 0 but, using (3.3.17) and dividing by λ = β, we also have y2 = iu2.

Thus, u2 and y2 can be written in the following form

y2 = ax + b, u2 = −iax − ib, for some a, b ∈ C. (3.5.15)

Moreover, using (3.3.9), (3.5.15) and (3.5.9), we can write

θ2 = iα2a. (3.5.16)

For the elastic edges {e1, e3}, (3.3.6)-(3.3.8) becomes,{
β2uj + uj

xx + iβ2yj = 0, on (0, ℓj), j = 1, 3,
β2yj + yj

xx − iβ2uj = 0, on (0, ℓj), j = 1, 3.
(3.5.17)

Using (3.5.4)-(3.5.7), (3.5.15) and (3.5.16), we have the following boundary condi-
tions: 

u1(0) = y1(0) = 0,
u1(ℓ1) = u2(0) = −ib, y1(ℓ1) = y2(0) = b,
u1

x(ℓ1) = u2
x(0)− α2θ2(0) = −i(1 + α2

2)a, y1
x(ℓ1) = y2

x(0) = a
(3.5.18)

and 
u3(ℓ3) = y3(ℓ3) = 0,
u3(0) = u2(ℓ2) = −iaℓ2 − ib, y3(0) = y2(ℓ2) = aℓ2 + b,
u3

x(0) = u2
x(ℓ2)− α2θ2(ℓ2) = −i(1 + α2

2)a, y3
x(0) = y2

x(ℓ2) = a.

(3.5.19)

Consequently, (3.5.17), (3.5.18) and (3.5.19) leads to the following system

Φj
x = AΦj, j = 1, 3 (3.5.20)

where,

Φj =


uj

uj
x

yj

yj
x

 and A =


0 1 0 0

−β2 0 −iβ2 0
0 0 0 1

iβ2 0 −β2 0

 .
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The solution of (3.5.20) is given by

Φj = eAx Φj(0), j = 1, 3. (3.5.21)

But using (3.5.18) and (3.5.19), we have

Φ1(0) =



0

u1
x(0)

0

y1
x(0)


; Φ1(ℓ1) =



−ib

−i(1 + α2
2)a

b

a


, (3.5.22)

and

Φ3(ℓ3) =



0

u3
x(ℓ3)

0

y3
x(ℓ3)


; Φ3(0) =



−iaℓ2 − ib

−i(1 + α2
2)a

aℓ2 + b

a


. (3.5.23)

Since we have
Φ1(0) = e−Aℓ1 Φ1(ℓ1) and Φ3(ℓ3) = eAℓ3 Φ3(0), (3.5.24)

using (3.5.22), (3.5.23) and technical computations, we obtain

i
√

2α2
2a

4β
sin(

√
2βℓ1) + iaℓ1 − ib +

iα2
2ℓ1a
2

= 0,

√
2α2

2a
4β

sin(
√

2βℓ1)− aℓ1 + b − α2
2ℓ1a
2

= 0,

(3.5.25)

and 

−i
√

2α2
2a

4β
sin(

√
2βℓ3)− ia(ℓ2 + ℓ3)− ib − iα2

2ℓ3a
2

= 0,

−
√

2α2
2a

4β
sin(

√
2βℓ3) + a(ℓ2 + ℓ3) + b +

α2
2ℓ3a
2

= 0.

(3.5.26)

Multiplying the second equation of (3.5.25) (and (3.5.26) repectively) by i, then
adding the resulting equation to the first equation of (3.5.25) (and (3.5.26) repec-
tively) we obtain,

−iα2
2a

β
√

2
sin(

√
2βℓj) = 0, ∀j ∈ {1, 3}. (3.5.27)

So, if there exists j ∈ {1, 3} such that ℓj ̸=
mπ√
2β j

, ∀m ∈ N∗, we deduce that a = 0.

Consequently, by (3.5.25) or (3.5.26) we deduce that b = 0 and hence u2 = y2 = 0
and θ2 = 0. By proceeding using unique continuation Theorem in Hayek et al., 2020
and iteration technique used in Case 1 of the proof of Theorem 3.3.1, we deduce
that uj = yj = vj = zj = 0, j = 1, 2, 3. The same procedure can be used in the case
λ = −β so that the desired goal holds.
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Case iii. Assume that N is the graph G2, β j = β, ρj = 1, for all j ∈ I(G2)
and that in every circuit C, for the unique j, k ∈ Ω such that ej and ek are edges of C,
(3.5.13) holds. Notice that for all j ∈ Ite, we have (3.3.21) holds. As in the proof of
Case 2 of Theorem 3.3.1, our aim is to prove (3.5.14). This would end the proof as in
the case λ = 0. But since, (3.3.9), (3.3.16) and (3.3.18) hold, then it is enough to prove
that (3.5.14) holds for every elastic edge. First, for a fixed circuit C of G2 without
loss of generality, we may use the parametrizations from Figure 3.2.

a1

a2 a3

e1

e2

e3

thermoelastic

elastic elastic

FIGURE 3.2: A circuit and its parametrizations: π1(0) = a1, π2(0) =
a2, and π3(0) = a3.

First, notice that for the thermoelastic edge e2, (3.5.15) and (3.5.16) hold. Also, for
the elastic edges {e1, e3}, (3.5.20) holds with

Φ1(ℓ1) =


−ib

−i(1 + α2
2)a

b
a

 and Φ3(0) =


−iaℓ2 − ib
−i(1 + α2

2)a
aℓ2 + b

a

 . (3.5.28)

Our aim is to find {u1(0), y1(0), u3(ℓ3), y3(ℓ3)}. For that purpose, we use (3.5.24) to
find Φ1(0) and Φ3(ℓ3).
Then, using (3.5.28) and technical computations, we have

u1(0) = i
√

2α2
2a

4β sin(
√

2βℓ1) + iaℓ1 − ib + iα2
2ℓ1a
2 ,

y1(0) =
√

2α2
2a

4β sin(
√

2βℓ1)− aℓ1 + b − α2
2ℓ1a
2 .

This implies that

y1
xx(0) = β2(y1(0)− iu1(0)) =

α2
2aβ√

2
sin(

√
2βℓ1). (3.5.29)
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Similarly, using (3.5.28) and technical computations, we have
u3(ℓ3) =

−i
√

2α2
2a

4β sin(
√

2βℓ3)− ia(ℓ2 + ℓ3)− ib − iα2
2ℓ3a
2 ,

y3(ℓ3) =
−
√

2α2
2a

4β sin(
√

2βℓ3) + a(ℓ2 + ℓ3) + b + α2
2ℓ3a
2 .

This implies that

y3
xx(0) = β2(y3(0)− iu3(0)) =

−α2
2aβ√
2

sin(
√

2βℓ3). (3.5.30)

On the other hand, using (3.5.4)-(3.5.7), we have u1(0) = u3(ℓ3) and y1(0) = y1(ℓ3).
Then,

y1
xx(0) = y3

xx(ℓ3). (3.5.31)

This means that
α2

2aβ√
2

(
sin(

√
2βℓ1) + sin(

√
2βℓ3)

)
= 0.

Notice that if sin(
√

2βℓ1) + sin(
√

2βℓ3) ̸= 0, then, a = 0, i.e., θ2 = 0. Using (3.3.8),
we obtain that u2

x = 0. Again, repeating the same strategy in every circuit of N and
using the fact that (3.5.13) holds, we deduce that

θ j = 0, ∀j ∈ Ite. (3.5.32)

Hence, uj
x = 0, for all j ∈ Ite and (3.3.22) holds. Consequently, using (3.5.4)-

(3.5.7), (3.5.32), (3.3.21)-(3.3.22) and using iteration method from the leaves to
the root, we prove that every elastic edge satisfies (3.3.29). This implies that
yj

xx = 0, for all j ∈ Ie. Finally, we can proceed as the case λ = 0. This finishes the
proof. The same procedure is used in the case λ = −β so that the desired goal
holds.

Theorem 3.5.3. Let N be an arbitrary network for which the operator (A1) associated with
System (3.5.1)-(3.5.7) satisfies iR ⊂ ρ(A1). If ρj = 1, for all j ∈ I(N ), then the energy of
the system decays exponentially in H1. In other words, there exist two positive constants M
and ϵ such that

∥etA1 x0∥H1 ≤ Me−ϵt∥x0∥H1 , ∀ t > 0, ∀ x0 ∈ H1.

Proof. Same proof as the one of Theorem 3.4.1 holds.

Remark 3.5.4. Examples of networks for which iR ⊂ ρ(A1) are given by Theorem
3.5.2.
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