N

N

Open-Ended Affordance Discovery in Robotics Using
Pertinent Visual Features

Pierre Luce-Vayrac

» To cite this version:

Pierre Luce-Vayrac. Open-Ended Affordance Discovery in Robotics Using Pertinent Visual Features.
Robotics [cs.RO]. Sorbonne Université, 2019. English. NNT: 2019SORUS670 . tel-03610427

HAL Id: tel-03610427
https://theses.hal.science/tel-03610427
Submitted on 16 Mar 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03610427
https://hal.archives-ouvertes.fr

~. SORBONNE
UNIVERSITE

2

Theése de Doctorat
de Sorbonne Université

Spécialité : Informatique (EDITE)
Présentée par : M. Pierre Luce-Vayrac

Pour obtenir le grade de
Docteur de Sorbonne Université

Open-Ended Affordance
Discovery in Robotics Using
Pertinent Visual Features

These dirigée par Raja Chatila

Soutenue le 5 Juillet 2019

Rapporteurs David FILLIAT - ENSTA Paristech, Saclay
Justus PIATER - UBIK, Innsbruck

Examinateurs Marten BJORKMAN KTH, Stockholm
Stéphane DONCIEUX ISIR, Sorbonne Université
Eva CRUCK - Direction Générale de I’Armement

Directeur Raja CHATILA - ISIR, Sorbonne Université

Abstract

Scene understanding is a challenging problem in computer vision and robotics. It is
traditionally addressed as an observation only process, in which the robot acquires
data on its environment through its exteroceptive sensors, and processes it with
specific algorithms (using for example Deep Neural Nets in modern approaches), to
produce an interpretation: 'This is a chair because this looks like a chair’.

For a robot to properly operate in its environment it needs to understand it. It
needs to make sense of it in relation to its motivations and to its action capacities.
We believe that scene understanding requires interaction with the environment,
wherein perception, action and proprioception are integrated. The work described
in this thesis explores this avenue which is inspired by work in Psychology and
Neuroscience showing the strong link between action and perception.

The concept of affordance has been introduced by James J. Gibson in 1977.
It states that animals tend to perceive their environment through what they can
accomplish with it (what it affords them), rather than solely through its intrinsic
properties: 'This is a chair because I can sit on it..

There is a variety of approaches studying affordances in robotics, largely agree-
ing on representing an affordance as a triplet (effect, (action, entity)), such that the
effect effect is generated when action action is exerted on entity entity. However
most authors use predefined features to describe the environment. We argue that
building affordances on predefined features is actually defeating their purpose, by
limiting them to the perceptual subspace generated by these features. Furthermore
we affirm the impracticability of predefining a set of features general enough to
describe entities in open-ended environments.

In this thesis, we propose and develop an approach to enable a robot to learn
affordances while simultaneously building relevant features describing the environ-
ment. To bootstrap affordance discovery we use a classical interaction loop. The
robot executes a sequence of motor controls (action a) on a part of the environ-
ment ("object’ 0) described using a predefined set of initial features (color and size)
and observes the result (effect e). By repeating this process, a dataset of (e, (a,
0)) instances is built. This dataset is then used to train a predictive model of the
affordance.

To learn a new feature, the same loop is used, but instead of using a predefined
set of descriptors of o we use a deep convolutional neural network (CNN). The raw
data (2D images) of o is used as input and the effect e as expected output. The
action is implicit as a different CNN is trained for each specific action. The training
is self-supervised as the interaction data is produced by the robot itself. In order
to correctly predict the affordance, the network must extract features which are
directly relevant to the environment and the motor capabilities of the robot. Any
feature learned by the method can then be added to the initial descriptors set.

ii

To achieve open-ended learning, whenever the agent executes the same action
on two apparently similar objects (regarding a currently used set of features), but
does not observe the same effect, it has to assume that it does not possess the
relevant features to distinguish those objects in regard to this action, hence it needs
to discover and learn these new features to reduce ambiguity. The robot will use
the same approach to enrich its descriptor set.

Several experiments on a real robotic setup showed that we can reach predictive
performance similar to classical approaches which use predefined descriptors, while
avoiding their limitation.

Contents

1 Introduction 1
1.1 The Problem of Scene Understanding 1
1.2 Features Learning through Ambiguity Reduction 3
1.3 Contributions e 3
1.4 Thesis Structure Lo 4

2 Context: From Perception to Affordance 5
2.1 Introduction Lo 5
2.2 Passive Perception Lo 6
2.3 Active Perception 7
2.4 Interactive Perception L .. 8
2.5 Affordanceso 9

3 Probabilistic Learning of Affordances through Interaction 13
3.1 Introduction. 13
3.2 Affordance Model and Definitions 14

3.2.1 Affordance Definition 14
3.2.2 Sensory Perception oL 18
3.3 Affordances Learning 21
3.3.1 Proposed Method 21
3.3.2 Experiments and Results 23
3.3.3 Partial Conclusion 26
3.4 Composition of Affordances 26
3.4.1 Affordances of Composite Objects 27
3.4.2 Loss and Preservation of Affordances 28
3.4.3 Experiments and Results 31
3.5 Conclusion and Discussion 32

4 Ambiguity Reduction and Features Learning 35

4.1 Introduction. 36
4.1.1 The Limits of Predefined Features 36
4.1.2 Related Work oL oo 39

4.2 Revised Model and Ambiguity Definition 40
4.2.1 Ambiguity Definition 40
4.2.2 Affordance Revision 41
4.2.3 Sensory Perception oL 44
4.2.4 Effect Clustering 44
4.2.5 Features Extraction 44

4.3 Interaction Workflow, 51

4.3.1 Object Image Acquisition 51

iv Contents
4.3.2 Action Execution 52

4.3.3 Effect Detection and Clustering 52

4.3.4 Ambiguity Detection and Reduction 52

4.4 Experiments and Results. 54
4.4.1 Data Collection 54

4.4.2 Experimental Setups 54

4.4.3 Experiment 1: Pushable objects 56

4.4.4 Experiment 2: Rollable objects 65

4.4.5 Experiment 3: No Pretraining 73

4.5 Perceiving Affordances o oL 74
4.6 Conclusion and Discussion 75
4.6.1 Contributions and Limitations 75

4.6.2 Future Work 76

5 Conclusion and Discussion 79
5.1 Contributions e 79
5.2 Discussion and Future Work 79
Bibliography 81
A Annexes 87
A1l Methodso 87
A.1.1 CNNs Architectures 87

A.1.2 Grid Search Parameters 95

CHAPTER 1

Introduction

Contents
1.1 The Problem of Scene Understanding
1.2 Features Learning through Ambiguity Reduction
1.3 Contributions o o 0o Lo o e
1.4 Thesis Structure,

_Ww W o

1.1 The Problem of Scene Understanding

Nowadays robots are being used in more and more contexts that goes way beyond
the historical use in industry lines. They appear in household as helpers, from
cooking robots to vacuum cleaners. In shopping malls, to guide customers. On
the road as autonomous vehicles. One denominator to all these applications is the
requirement for the robots to perceive their environments to be able to perform
their tasks. A cooking robot must be able to find the tools it needs. A guide in
the shopping mall should be able to avoid persons and obstacles (lest it might try
swimming in decorative pools). And obviously it is mandatory for autonomous
vehicles to be aware of its surroundings, should it be pedestrians or other vehicles.

What these robots require, more than simply perceiving their environment, is
to make sense of it. To perceive can be as limited as to ’see’ a bunch of pixels. To
make sense of it is to know that this bunch of pixels is in fact a car. This process
is called scene understanding and can be seen as interpreting the raw sensory
inputs into abstract knowledge.

Scene understanding has been a long standing question in robotic, and has yet to
be solved. In order to act in an environment a robot must be able to understand it.
That is to make sense of the environment, of the scene that surrounds it. What is
the context? Where am 1?7 In what position am 17 Is there movement around me?
Many more questions could be considered, each of them being useful or necessary
for a certain context or behavior. The problem is then to enable the agent to answer
these questions.

How does a robot construct this knowledge? Essentially it consists in interpret-
ing the raw sensory input perceived by the robot into higher dimension representa-
tions. If we except the cases where the robot acts blindly, every interaction requires

2 Introduction

(to some extent) a minimal knowledge of the environment to be accomplished. It
ranges from the global context, to the precise target for the action, passing by the
local state of the agent. Moving requires the agent to be able to distinguish obsta-
cles from safe ground. Grasping requires a model of objects and a way of segmenting
said objects from the background. Activating a switch requires a physical model
of the switch, and a representation of the global state that it will alter. Generally
speaking, the more complex the interaction is, the more knowledge it will require.

Humans are proficient in scene understanding, they quickly and intuitively make
sense of their surroundings (Oliva (2005). They are very efficient to select a relevant
information from a large sensory input, and ignore the rest. Yet the problem remains
open in robotics, with some tasks being very hard to solve. And it is often tasks
that seem easy to humans that are the most challenging for robots. For instance
we could consider the robot DeepBlue (Campbell et al. (2002)), able to best Garry
Kasparov at playing chess, while still requiring a human help to move the pieces.
The manipulation of the pieces on the board would first require to be able to identify
the board itself and to distinguish it from the background. The robot would require
a visual model of each pieces in order to recognize them. Lastly it would require
precise motor controls to properly pick up pieces in a clustered board. Each task in
itself is a challenge even for nowadays robotics. Especially if we consider the large
variety of shapes, sizes and colors a chess board can come in. Therefore any method
trying to tackle these problems has to be somewhat resilient to that change.

Traditionally in robotic scene understanding would be done by engineering the
representations that will be necessary for the agent to complete its intended goals
(Hanson (1978)). You would design a robot for a specific task, and therefore provide
it with the required tools to perform this task. Which includes the perceptive
functions for computing any necessary information from the raw sensory input. The
main advantage is that the provided representations can be tested and validated.
Furthermore since they are tailor-made to the task, they usually have a high level of
performance. Consequently this approach requires to have beforehand knowledge
of the context and specifics of the task. Which limits its usefulness to scenario
where the information available to the engineer is sufficient. Sufficient regarding
the complexity of the task, or the level of risk implied by the robot action, etc.

For instance industrial robots which operate in a strictly controlled environment.
Their controllers and sensors are fine-tuned to accomplish a task with little to no
room for un-predicted variations. In the other hand, autonomous vacuum cleaners
need to operate in various homes but only require proximity sensors to do so. A
certain degree of similarity is assumed regarding the disposition of apartments, and
no particular risk is raised by the light weight and slow moving robot itself.

Thus scene understanding becomes increasingly difficult the further we stray
robots from controlled and known environments. As you cannot predict the en-

1.2. Features Learning through Ambiguity Reduction 3

vironment the robot will have to face, it is impossible to accurately design its
behavior. Therefore it becomes necessary for the agent to be able to build new
representations, or at least adapt pre-existing ones to the specifics of the actual
environment it will have to operate in. Scene understanding becomes an active
process. Moreover it becomes a life-long process.

1.2 Features Learning through Ambiguity Reduction

This thesis address the problem of scene understanding through the spectrum of
interactive perception (Bohg et al. (2017)), and more precisely through the concept
of affordances (Gibson (1977)). The concept of affordances states that one’s per-
ception of the environment is based on what one can accomplish with it rather than
based on its intrinsic properties. As an agent, I perceive the environment through
what I can do with it, through what it affords me.

In a first attempt to tackle this problem we proposed a Bayesian approach for
learning affordances through interaction. However this approach revealed several
limitations that conducted us to propose a second method for learning affordances
through the reduction of ambiguities. What we call ambiguities are the states in
which an agent observe contradictory perceptual inputs after interacting with the
environment.

The main contribution of this thesis lies in the proposed approach (chapter 4)
to simultaneously learn affordances while constructing the relevant visual features.

1.3 Contributions

In this manuscript we aimed to answer the following question:

How can a robotic system be enabled a life-long ability to discover
affordances in an unconstrained environment?

Which has led to two main contributions:
e A probabilistic representation of affordances and of their combinatory nature.

e An ambiguity based method to construct pertinent visual features using CNN
simultaneously to discovering affordances.

4 Introduction

1.4 Thesis Structure

This manuscript is structured as follows:

Chapter 1 is a general introduction to the thesis. We present the overall context,
and outline the motivation and goal of this study.

Chapter 2 presents a quick history of Active Perception methods and the state
of the art in Affordance theory applied to robotics. We firstly try to introduce the
concept of Active Perception and details some of the reasons why nowadays robotics
could require such approaches. Then we express the link and relationship between
Active Perception, Interactive Perception and Affordance theory. We emphasis the
way all three approaches pervade and refine each other. Finally we present a short
state of the art of applied affordance theory to robotics, and more specifically for
learning visual representations of the environment.

Chapter 3 presents our base approach at learning affordances using Bayesian
Networks. We propose a method for learning probabilistic affordances through
interactions. The interactions produce a dataset of sensorimotor information that
we use to learn the structure of a Bayesian Network. The structure of this network
represents the discovered affordances. Then we discuss the possibility of composing
/ decomposing affordances through the composition / decomposition of objects.

Chapter 4 proposes an extension to the method presented in 3 by removing the
constraint on predefined features and proposing an ambiguity based approach to
discovering affordances. We emphasis the importance of any a priori information
given to the agent in orienting or limiting the discoverable affordances. We then
attempt to reduce this limitation by proposing a method to learn both descriptors
of the environment and affordances simultaneously.

Chapter 5 aims to draw some conclusions about the contributions and limitations
of this study. We discuss the extensions and future work. As well as the possible
case of use of the presented methods.

Finally in Annex A the reader will find some background information about
the methods that we used but were not described in length in previous chapters, ad-
ditional results regarding chapter 4, and details of algorithms presented throughout
this manuscript.

CHAPTER 2
Context: From Perception to

Affordance

Contents

2.1 Imtroductiono
2.2 Passive Perception 00000
2.3 Active Perception 000000
2.4 Interactive Perception

2.5 Affordances i i i i i e e e e e e e e e e e e e e e

© 0w 9 o w;

2.1 Introduction

This chapter presents a state of the art regarding the methods of perception in
robotic. The focus of this thesis is to discuss the acquisition of sensorimotor rep-
resentations (affordances) by a robot through interaction. Therefore the main part
of this chapter will be about the history of affordances learning in section 2.5. In
which we will discuss the different methods to leverage the theory of affordances
for enabling a robot to better understand it’s environment.

However we chose to consider first the history of perception in its whole, and
how the concept of Affordance might have pervaded and influenced the domain.

That is to go from Passive Perception to Interactive Perception through active
perception. We will try to present the cumulative progress in these fields and how
they are directly useful to building affordances in a robot.

The goal is to explain what all three domains have in common, and how they
differ, in order to better emphasis what each one brought to the overall domain of
perception, and how it can be leveraged to learn affordances.

Passive, Active and Interactive Perception are methods of perception, while
Affordance is a paradigm on how the environment is perceived. In other words, we
use AP methods to build affordances.

Thus this chapter will try to give a short history of Perception in robotics, to
introduce the concepts of Active Perception and Interactive Perception. And then
we will present a review of the current state of the art in Affordance theory applied
to robotics.

6 Context: From Perception to Affordance

2.2 Passive Perception

Passive Perception is mostly defined by opposition to Active Perception. However
and in order to set a sort of baseline for the upcoming sections, we will try to give
a formal definition of it.

A perceiver is passive when there is no active process regarding the acquisition
process of the information.

The way the information is perceived or gathered is not altered by the motivation
of the agent or its current mind state. And the agent does not take any action in
order to specifically perceive a certain information.

Most current robotic applications are passive observer. Industry line robots
possess sensors to regulate the timing of their sequence of control commands or to
detect a breach of safety measures. Vacuum cleaner robots use infrared sensors or
contact bumpers to detect obstacles. Yet none of them actively decide to perceive.
They receive a constant flow of information that they interpret based on a fixed
set of rules. They do not change the way their sensors work nor do they execute
a motor control sequence in order to receive a specific signal. In other word they
never interfere in the process of perception. Although what they perceive might
influence the actions they take, they do not take actions to influence what or how
they perceive.

In many contexts this approach is more than enough to enable a robot to perform
its intended tasks. And it also bring a few advantages. Since the perception process
is constant, the behavior of the robot is equally predictable. Furthermore there is
no additional computation cost to select the perception process.

This approach fit well any reactive programming methods (Nilsson et al. (2002)).
Where an agent is designed to react to its environment by executing predefined
motor controls based on predefined perceptive cues.

However it is unsuited for unconstrained and varying environments. Any
changes in the environmental conditions will test the resilience of the program,
to the point where it will require some degrees of adaptation. Thus the study of
computer vision requires to integrate an active aspect.

Furthermore the field of ecological psychology has long been claiming that per-
ception is not at all passive, but the result of a sensorimotor process. Sensorimotor
describing here the pairing of the sensor and motor systems.

For instance J.J. Gibson proposes that we animals perceive their environment
in terms of actions possibilities (Gibson (1977), Gibson (1979)), which he called
affordances.

Similarly K. O’Regan proposes that the ability to perceive is the result of a
learning process, during which the agent learns to identify sensorimotor contingen-
cies. A sensorimotor contingency represent the correlation between an action and
sensory input. By exploring its motor capabilities, the agent also explores the re-
lated sensory contingencies. It is through this exploratory process that the agent is
able to develop a representation of its environment.

These studies about natural perception have inspired the field of computer vi-

2.3. Active Perception 7

sion, as we will discuss in the next section. For a more complete history of perception
the reader should refer to Pastore (1974), and to Wade (2000) for natural history
of vision.

2.3 Active Perception

As defined in Bajecsy et al. (2018), the essence of active perception is:

“to set up a goal based on some current belief about the world and to
put in motion the actions that may achieve it.”

In the process of perception, an active observer is one that not only receives
sensory input, but which acts in order to sense.
As stated in Bajcsy et al. (2018),

“The fundamental difference between an active perception system and
other perception systems lies in action, or lack of it. Whereas both
types of systems include decision-making components, only the active
system includes dynamic modulations to the overall agent’s behavior,
both external (via motors) and internal (via parameter configurations)’.

Among the earliest work on active perception is the thesis dissertation of J.M.
Tenenbaum (Tenenbaum (1970)). In this study the author proposes to adapt a
computer vision system to its environment by controlling its camera’s parameters.
The difference from traditional image processing systems lies in the fact that here
the sensor is automatically accommodated and treated as an integral part of the
recognition process.

Although one of the first author to directly discuss the concept of Active Per-
ception is Ruzena Bajcsy in Bajcsy (1988).

In 1988 R. Bajcsy wrote:

“Active sensing is the problem of intelligent control strategies applied
to the data acquisition process which will depend on the current state of
data interpretation including recognition.”

Active perception is the problem of actively controlling an otherwise passive
process, sensing, in order to collect data that will be adapted to the agent’s current
state of mind. Two aspects of perception can be controlled, the tuning of the sensors
and the interpretation of the sensed data.

The tuning of sensors allows the agent to alter the intrinsic parameters of its sen-
sors. Thus maximising the quality of perception. While the interpretation could be
compared to the post-processing of a raw flux. The agent is continuously irrigated
through its sensors, the interpretation process executes a selection and interpreta-
tion of the low level feed into a higher dimension abstraction.

For instance our eyes adapting to changes of illumination is a control of sensor.
While the monkey business illusion (Simons (2010)) is a very good example of how
the state of mind influences the interpretation and filtering of the sensory input.

8 Context: From Perception to Affordance

In more recent work (Bajcsy et al. (2018)) they propose a refined definition of
an active perceiver:

“An agent is an active perceiver if it knows why it wishes to sense,
and then chooses what to perceive, and determines how, when and where
to achieve that perception.”

They emphasis the notion of active perceiver around 5 criterion, why, what, how,
when and where. Which they define in the following table: 2.3.

Active Perception Definition

‘Why The current state of the agent determines what its next actions might be based on the expectations
that its state generates. These are termed Expectation-Action tuples. This would rely on any
form of inductive inference (inductive generalization, Bayesian inference, analogical reasoning,
prediction, etc.) because inductive reasoning takes specific information (premises) and makes a
broader generalization (conclusion) that is considered probable. The only way to know is to test
the conclusion. A fixed, pre-specified, control loop is not within this definition

‘What Each expectation applies to a specific subset of the world that can be sensed (visual field, tactile
field, etc.) and any subsequent action would be executed within that field. We may call this Scene
Selection

How A variety of actions must precede the execution of a sensing or perceiving action. The agent must

be placed appropriately within the sensory field (Mechanical Alignment). The sensing geometry
must be set to enable the best sensing action for the agent’s expectations (Sensor Alignment,
including components internal to a sensor such as focus, light levels, etc.). Finally, the agent’s
perception mechanism must be adapted to be most receptive for interpretation of sensing results,
both specific to current agent expectations as well as more general world knowledge (Priming)

When An agent expectation requires Temporal Selection, that is, each expectation has a temporal com-
ponent that prescribes when is it valid and with what duration
Where The sensory elements of each expectation can only be sensed from a particular viewpoint and its

determination is modality specific. For example, how an agent determines a viewpoint for a visual
scene differs from how it does so for a tactile surface. The specifics of the sensor and the geometry
of its interaction with its domain combine to accomplish this. This will be termed the Viewpoint
Selection process

Table 2.1: The five main constituents of an actively perceiving agent are defined
Bajcsy et al. (2018)

Although AP does not limit the range of action to solely modifying the inner
state of the agent. It does not either emphasis the need to interact with the en-
vironment. Which is why the field of Interactive Perception has diffenrentiated
itself.

2.4 Interactive Perception

[citation to incorporate: Battaglia et al. (2016) interaction networks to learn
physics, Hégman et al. (2016) sensorimotor learning framework for object cate-
gorization,]

Interactive Perception differs from Active Perception exactly on that em-
phasis about interaction. Interactive Perception pose as a prerequisite that some
information is inaccessible through observation alone. Thus it is only through in-
teraction that the environment will truly make sense to the agent (Bohg et al.
(2017)).

This concept is deeply linked to the psychological concept of affordance (Gibson
(1977).

We argue that Interactive Perception constitutes an extension to Active Percep-
tion, rather than being of a complete different nature. It stress the importance of

2.5. Affordances 9

interaction in perception. To gather pertinent information about the environment
requires to interact with it.

The main incentive for Interactive Perception (IP) over Active Perception (AP)
is that it allows the user to gather more information about the environment. Infor-
mation that could not be obtained solely through vision, like the texture or weight
of objects. The agent needs to interact with the environment in order to gather
such information.

Whereas in AP the perceiver does not necessarily interacts with the environ-
ment, IP emphasis the importance of interaction to gather information. Either
because the information might be hidden otherwise (texture, weight), or because
the information is temporal, and relative to an action (i.e. an effect). Thus the
very nature of the information changes. It is not only a question of observing the
environment, but to modify it in order to gather new knowledge.

In the recent study Bohg et al. (2017), they talk of forceful interaction to describe
an IP process. Which they define as “Any action that exerts a potentially time-
varying force upon the environment is a forceful interaction”.

In order for the ’agent’ to interact with the ’environment’, the ’agent’ needs to
have a sense of its own embodiment. By that we mean that it needs to be able to
differentiate ’itself” from its environment.

To that effect the concepts of Proprioception and Exteroception are used.
They distinguish the perceptive capabilities of an agent in terms of its own embod-
iment, to draw the frontier between what is ’internal’ and ’external’ to it.

Proprioception describes all the sensory inputs that are internal to an agent’s
embodiment. Respectively Exteroception describes all the sensory inputs that
are external to the agent’s embodiment.

The overall objective of IP is to improve the process of perception by coupling
proprioception and exteroception.

Through forceful interactions new sensory signals are created. Signals that could
not be obtained through an observation process alone. These signals encapsulate the
relation between action, sensory input, and time. Thus it enables the perceiver to
learn to predict the consequences to its actions. By multiplying the interactions over
time, the agent is able to discover the regularities of the action-sensory loop. Thus
enabling the agent to model the causal relationship between actions and sensory
inputs.

2.5 Affordances

Naturally IP finds its way to the concept of Affordance. To learn affordances is
to discover the relata between one’s actions and one’s perception. Thus the process
of learning affordances is by definition an IP process. We go further by saying that
IP is a process to acquire information, while the theory of affordances is a theory
of how the world is perceived.

The concept of Affordances was first introduced by psychologist James J. Gibson

10 Context: From Perception to Affordance

in the book "The Senses Considered Perceptual Systems" in 1966 Gibson
(1966). However the concept as we use it was more clearly refined in his 1979 book,
"The Ecological Approach to Visual Perception" Gibson (1979). In which it
is defined as follows:

“The affordances of the environment are what it offers the animal,
what it provides or furnishes, either for good or ill. The verb to afford
is found in the dictionary, the noun affordance is not. I have made it
up. I mean by it something that refers to both the environment and
the animal in a way that no existing term does. It implies the comple-
mentarity of the animal and the environment. (p. 127) ... [Objects] can
all be said to have properties or qualities: color, texture, composition,
size, shape and feature of shape, mass elasticity, rigidity, and mobility.
Orthodox psychology asserts that we perceive these objects insofar as
we discriminate their properties or qualities. Psychologists carry out el-
egant experiments in the laboratory to find out how and how well these
qualities are discriminated. The psychologists assume that objects are
composed of their qualities. But I now suggest that what we perceive
when we look at objects are their affordances, not their qualities. We
can discriminate the dimensions of difference if required to do so in an
experiment, but what the object affords us is what we normally pay
attention to. The special combination of qualities into which an object
can be analyzed is ordinarily not noticed. (p. 134)”

—Gibson (1979, p. 127)

To learn affordances is to construct representations of the environment that will
be directly linked to the motor capabilities of the agent. Therefore by definition to
learn affordances can only be done through interactions with the environment.

Affordances naturally find their way in robotics. They represent and express
the embodiment of intelligence in an animal, therefore they can be used to create
such an embodiment of a robot’s own "intelligence". It enables the robot to build
representations and concepts that will be grounded in its own physical and percep-
tive capabilities. It constrains the model to integrate the limitations of the agent as
well as it’s specificity. Which in turns means that the constructed representations
are more meaningful to the agent because they are specific to it’s own embodiment
and motivation.

In other terms, a model of the theory of affordances applied to robotics should
satisfy two main criteria:

o Different robots, with different motor and perceptive capabilities should not
construct the same representations of the environment. There is no reason
for the tall pinch-gripper robot to acquire the same affordances as the small
vaccum-gripper one.

e Two identical robots, in the same environment, but with different motivations
should not construct the same representations. Even in the same context and

2.5. Affordances 11

with identical capabilities, the motivation is the primary drive to learning,
and therefore should differentiate the learned affordances.

Over the years the fields of affordances in robotics as seen many contributions,
as the recent study from Zech et al. (2017) shows. However the field is not recent
and his prone to debate as to what exactly is and affordance (Jones (2003), Dotov
et al. (2012)).

CHAPTER 3
Probabilistic Learning of
Affordances through Interaction

The results and text of this chapter have been published in the following articles.
o Chavez-Garcia, R. O., Andries, M., Luce-Vayrac, P., and Chatila, R. (2016a).

Discovering and Manipulating Affordances. 2016 International Symposium
on Experimental Robotics (ISER).

o Chavez-Garcia, R. O., Luce-Vayrac, P., and Chatila, R. (2016b). Discov-
ering Affordances through Perception and Manipulation. 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages
3959-3964. IEEE.

e Chatila, R., Renaudo, E., Andries, M., Chavez-Garcia, R.O., Luce-Vayrac,
P.,Gottstein, R., Alami, R., Clodic, A., Devin, S., Girard, B., and Khamassi,
M. (2018). Toward Self-Aware Robots. Frontiers in Robotics and Al, 5:88.

Contents
3.1 Introductionttt 13
3.2 Affordance Model and Definitions 14
3.2.1 Affordance Definition 14
3.2.2 Sensory Perception oo, 18
3.3 Affordances Learningot 21
3.3.1 Proposed Method 21
3.3.2 Experiments and Results 23
3.3.3 Partial Conclusion 26
3.4 Composition of Affordances 26
3.4.1 Affordances of Composite Objects 27
3.4.2 Loss and Preservation of Affordances 28
3.4.3 Experiments and Results 31
3.5 Conclusion and Discussion 32

3.1 Introduction

The problem of scene understanding has been addressed in Al and Robotics since
the 1970’s. Despite numerous results over this long time period, the problem of

14 Probabilistic Learning of Affordances through Interaction

actually understanding a scene by a robot is still open. Understanding is indeed
not just about attaching labels on image regions, it’s actually about grounding
perceptual representations in the reality of the world. This cannot be achieved by
a process of observation alone and requires interaction between the agent and its
environment.

This chapter presents an approach for enabling robots to understand their envi-
ronment by interacting with it. We study and develop sensorimotor representations
and scene interpretation processes based on visual and proprioceptive inputs when
the robot physically interacts with objects. The processes build models of objects
based on perceptual clues and effects of robot actions on them, which relate to the
notion of affordances.

In this work we follow a bottom-up approach that starts from low-level data
from sensors and actuators, up-to learning relations between higher-level represen-
tations. The probabilistic nature of the work maintains the uncertainty charac-
teristic of the perception-action cycle. Our sensorimotor representation encodes,
through the learning of affordances, effects, objects and actions in the same feature
space. It enhances works such as Lopes and Santos-Victor (2007) and Ugur et al.
(2015) by including an information-based methodology to find the relations in the
combined feature space instead or relying on a preferred-relation list. Following the
categorization proposed by Bohg et al. (2017), our work can be considered a mul-
timodal Interactive Perception approach with given priors on the robot dynamics,
and on the observations. It has as goals automatic object segmentation, estima-
tion of intrinsic object parameters, sensorimotor learning, and eventually semantic
categorization.

This chapter 3 is organised as follows: In section 3.2 we present the affordance
model that we use and the corresponding definitions, along with the method of
sensory perception. In section 3.3 we present the affordance learning architecture.
In section 3.4 we extend the model to discuss the nature of affordances and their
mutual relations. Finally in section 3.5 we make a partial conclusion and discuss
the limits of the proposed method.

Parts of the texts and results of this chapter have been published in the following
articles Chavez-Garcia et al. (2016b), Chavez-Garcia et al. (2016a) and Chatila et al.
(2018).

3.2 Affordance Model and Definitions

In this section we present the model used in our approach. In part 3.2.1 we define
the model of affordance that we use. In part 3.2.2 we present the way the robot
will actually perceive its environment through sensors.

3.2.1 Affordance Definition

As presented during the introduction, the concept of affordance has been largely
studied, and has therefore taken a lot of different aspects (Zech et al. (2017)). Each

3.2. Affordance Model and Definitions 15

aspects fitting a different context or a different question to which the authors are
trying to give an answer. This is mainly possible due to the abstract nature of
the concept of affordance. Although the idea is based on work in psychology and
neuroscience (Gibson (1977), Gibson (1979), O'Regan and Noé (2001)), the actual
implementations in robotics are usually very distant from it.

Which contributes to the popularity of this idea as it enables authors to fit the
concept of affordance to their specific approaches.

In this work we chose to use the formalism described in Sahin et al. (2007),
where an affordance is defined as an (ef fect, (entity, behavior)) tuple such that:

“An affordance is an acquired relation between a certain effect and
an (entity, behavior) tuple, such that when the agent applies the be-
havior on the entity, the effect is generated.”

In this formalism the affordance is considered from the point of view of the agent,
therefore the agent is implicit in the definition, and all components are assumed
perceived by the agent. An explicit version would be to formulate an affordance as
(agent, (ef fect, (entity, behavior))). Which means that from the point of view of
agent executing behavior on entity is expected to produce a certain ef fect. We
could argue that in essence an affordance should only be considered from the point
of view of the agent. To explicit the agent in the formalism implies that the behavior
and / or entity are defined independently of it. That there is a shared perception
or concept of this behavior and entity between the agent and the observer.

We chose to use this formalism because of the high level of abstraction it of-
fers. This representation can be used in a large variety of context as the elements
that composes it (entity, behavior and effect) are of extremely general purpose. A
behavior, an entity, or an effect encapsulate a wide variety of concepts.

Two triplets example could be (lifting, (end-effector, lifted)) and (lifting, (switch,
lights on)). In the first case the behavior of lifting is applied to the end-effector,
and the result is the ’lifted’ state of the end-effector, while in the second example
the behavior of lifting is applied to a switch, which results in the effect of turning
on the lights. In one case the end-effector is considered as the target of the action,
while in the other it is part of it.

Both examples are equally valid in the aforementioned affordance paradigm,
and point out the diversity of implementations in the affordance literature.

We believe it is important to stress this fact as the definition of affordance is
extremely prone to interpretations. For instance in this basic example one could
say that the target entity for pushing was not the room but the switch. Which
raises the question of the tools.

In this particular work we focus on discovering the relations between effects,
entities and behaviors, rather than discovering or constructing those components
themselves. Therefore we make assumptions on effects, entities, and behaviors that
will be described respectively in 3.2.1.3, 3.2.1.1 and 3.2.1.2.

16 Probabilistic Learning of Affordances through Interaction

3.2.1.1 Object

In the formalism described in Sahin et al. (2007) an entity is the target of an action.
It is a part of the perceivable environment upon which an action can be executed.

In this work we chose to focus on learning affordances of physical entities, which
we will call (for lack of a better word) objects from now on. While an entity can
encapsulate abstract concepts, like ideas or state of mind, we mean by object a
physical entity with which the robot can physically interact. Which therefore
limits us to objects that are reasonably proportional to the size of the agent. We
will use tabletop scenarios with objects roughly the size of the end-effector of the
robot, but the whole architecture and therefore conclusions remain general.

To keep the general idea that objects are defined through affordances and do
not pre-exist them, we define an object as a small part of the environment that is
perceived by the agent as interesting for interaction. To do so requires the agent to
possess some segmentation capabilities that will allow it to separate from its raw
perceptual input what we will define here as a ’foreground’ (what can be interacted
with) from a ’background’ (what cannot be interacted with). This capability could
in itself be considered as an affordance, which could be formulated as "what in my

»on

environment affords me ’interactability’ ", and is in fact a research topic in itself.
However we chose to consider this capability innate in our agent, and therefore
provide for him a few set of rules to do this segmentation. Those rules can be
considered as the agent’s innate sensitivities to regularities and convexity.

Using this set of rules the agent construct a set of objects hypotheses which are
then described with a set of predefined features (color, size, shape).

To summarize in our approach an object o from a triplet (e, (a,0)) is defined
as a set of features values such that 0 = {0color, Osize, Oshape } With Ocolor, Osize and
Oshape Tespectively the color, size and shape of object o.

The exact details of the method to segment object hypotheses from the per-
ceived environment will be detailed later in 3.2.2.1 and the features definitions and
extraction will be presented in 3.2.2.2.

Using a set of features to describe objects serves two main objectives. It reduces
the dimensionality of an object hypothesis, and it ’anonimizes’ objects so that we
learn affordances regarding the properties of the objects rather than regarding an
object specifically.

3.2.1.2 Action

Similarly to the definition of object, we refine the definition of behavior towards the
one of action. In Sahin et al. (2007) a behavior is defined as:

“..the part of the agent that is generating the interaction with the
environment that produced the affordance. Ideally, the agent’s relata
should consist of the agent’s embodiment that generates the percep-
tion—action loop that can realize the affordance. We chose the term
behavior to denote this. In autonomous robotics, a behavior is defined

3.2. Affordance Model and Definitions 17

as a fundamental perception—action control unit to create a physical
interaction with the environment. We argue that this term implicitly
represents the physical embodiment of the interaction and can be used
to represent the agent’s relata.”

In our approach we consider three levels of motor controls, motor primitives,
actions and skills. That we define as following:

e A motor primitive is a direct control of one degree of freedom from the robot.
It corresponds to a direct motor commands. For instance rotating a joint by
10 degree is a motor primitive. Each motor primitive is defined in the frame
from the activated joint.

e An action is a sequence of motor primitives. And is defined in the global
frame of the robot. For instance advancing the end-effector forward is an
action, that combines the activation of several joints in the arm.

o A skill represent a goal and the sequence of motor primitives (or action) that
can accomplish this goal. It is defined in the world reference frame. For
instance pushing is a skill, the goal is to push a target and one possible action
is to apply a force on the target through the movement of the end-effector.

Making an analogy to a newborn rough motor abilities Li and Meng (2015), we
assume that the robot is built with a set of basic motor capabilities, which we call
actions. In this set of basic actions A = {ay,...,a,} , each action can be defined as
follows:

a;(V*,7v,04,), (3.1)

where V* represents the desired value for the robot controlled variables V', « is its
propioceptive feedback and o, represents the parameters for the particular action
;.

3.2.1.3 Effect

In Sahin et al. (2007) an effect is defined as:

“..the interaction between the agent and the environment should
produce a certain effect. More specifically, a certain behavior applied
on a certain entity should produce a certain effect, for example, a certain
perceivable change in the environment, or in the state of the agent.”

Refining this definition we define an effect as a possible correlation between
an action (as defined in 3.2.1.2) and a change in the perceptual state of the en-
vironment, which includes the agent itself. For instance, when a robot interacts
with an object, it can perceive changes related to the state of the object, to the
proprioceptive values of the actuators and to the feedback from the end-effectors.

18 Probabilistic Learning of Affordances through Interaction

The concept of effect is an important element in our sensorimotor fusion and its
detection (or lack of it) plays the role of common ground for perception and action
frames.

In the same fashion that we equipped our agent with pre-existing object descrip-
tors and action primitives, we provide for the agent a set of basic effect detector.
The robot’s innately detectable effects are divided in two groups: perceptual-based
(object’s linear movement); and propioceptive-based (end-effector linear force, dis-
tance between gripper’s fingers and effector’s linear movement).

3.2.2 Sensory Perception

In previous section 3.2.1 we defined the framework to represent affordances in our
work, this section will focus on presenting the methods used to perceive the envi-
ronment and, in fine, fill those representations.

It includes two main aspects, (1) the segmentation of the environment into
objects hypothesis 3.2.2.1, and (2) the detection of effects during interactions 3.2.2.4.

3.2.2.1 Objects Segmentation

In order to interact with objects the agent must first be able to identify them as
such. Which mean that using the perceptive capabilities available to it, it must be
able to distinguish them from the background and from each other. However a core
idea of our approach is to build a system that would adapt to different contexts and
environments, therefore we need to provide as little information as possible to the
agent. Especially information that would be specific to the current situation, as it
would completely defeat the purpose of a generic approach to affordance discovery
and learning. Therefore we limit the a priori knowledge of the agent to planar
extraction and a bottom up segmentation approach to create objects hypothesis.

Usually, segmentation algorithms only consider low-level information from the
image or point cloud. Recent semantic segmentation methods take advantage of
high-level object knowledge to help disambiguate object borders Van Hoof et al.
(2014); Silberman et al. (2012). However, the computational cost of inference on
these methods rises with the increasing data resolution.

We chose to use a bottom-up approach to segmentation based on an over segmen-
tation algorithm Papon et al. (2013). Supervoxels are formed by over-segmenting a
3D image into small regions based on local low-level features, reducing the number
of nodes which must be considered for segmentation. We use a 3-D version of the
Voxel Cloud Connectivity Segmentation (VCCS) presented in Papon et al. (2013),
which takes advantage of 3D geometry provided by RGB+D cameras to generate
supervoxels evenly distributed in the observed space, rather than the projected
image plane. VCCS uses a seeding methodology based on 3D space and a flow-
constrained local iterative clustering which uses color and geometric features. The
seeding of supervoxel clusters is done by partitioning 3D space. This ensures that
supervoxels are evenly distributed according to the geometry of the scene. Due to

3.2. Affordance Model and Definitions 19

ensuring strict partial connectivity between voxels, this algorithm guarantees that
supervoxels cannot flow across boundaries which are disjoint in 3D space.

Supervoxels features are represented by 39-dimension vector composed of spatial
coordinates (z,v, z), color information (Lab color space), and 33 elements from an
extension of the Point Feature Histogram Papon et al. (2013):

F= [x’yvvaaav ba FPFHI..33] (32)

This offers a multi-dimensional pose-invariant representation based on the combi-
nation of neighboring points. For each supervoxel, in an outward direction, we
calculate a normalized spatial distance Dy, a normalized color distance D, and the
distance in the FPFH space Dk Papon et al. (2013), from the center of the su-
pervoxel (cluster) to the adjacent voxels. If the distance is the smallest seen, this
voxel and its neighbors (in the adjacency graph) become part of the supervoxel.

The result, as is shown in figure 3.1, is an over-segmented cloud where each
supervoxel (segment) cannot cross over object boundaries that are not actually
touching in 3D space. Supervoxels tend to be continuous in 3D space, since labels
flow outward, at the same rate, from the center of each supervoxel Papon et al.
(2013).

Figure 3.1 shows how supervoxels are still considered representations of indi-
vidual patches. A clustering process is needed to group the supervoxels that pos-
sibly correspond to the same object without relying on a priori information of the
number of objects. Regarding the feature representation detailed here, we use the
non-parametric technique described in Comaniciu and Meer (2002) combined to a
locally convex criterion presented in Christoph Stein et al. (2014) to find the shape
of the object hypotheses based on the set of supervoxels.

Figure 3.1: Results from the sensory perception process. RGBD cloud of points
from the real scenario (left); over-segmentation results from point cloud (middle);
results from intrinsic clustering (right).

Figure 3.1 shows the result of the clustering method. The result of this intrin-
sic clustering is a set of labels Ly, (t) for a group of supervoxels that represent
hypotheses of objects in the current scenario.

The set of generated hypotheses from Section 3.2.2.1 are built only using the
sensory data. This means that segmentation issues can appear in the form of in-
complete, divided and false segments of real objects in the scenario. We perform
a tracking-by-detection approach to reduce the number of false positive segmenta-
tions. Only the active segments hypotheses with tracks lengths over a threshold

20 Probabilistic Learning of Affordances through Interaction

7 are considered as confirmed object for our sensory-perception task. Each ob-
ject is represented by its centroid, which offers a point of interaction (poi) for the
interaction task.

3.2.2.2 Features extraction

In this work, we assume that the robot has innate perceptual capabilities that allow
it to discretize the environment. This capabilities are related to the segmentation
approach. It can differentiate from color values. It has geometrical notion of po-
sition, continuity of segments and normal extraction for surfaces. Therefore, the
robot can extract higher level features for the description of confirmed objects. By
analyzing the cloud of points representing the object, we focus on three main fea-
tures: color, size and shape. Transforming from RGB to HSV color model, we
extract the dominant hue of the object. Size of the object is obtained from the dis-
tance between the start and end of the largest segment of the cluster representing
the object. Four-dimensional templates are used to select the form of the object
from a set of fixed three-dimensional forms: cube, cuboid, sphere, irreqular. Our
architecture allows for expanding and learning the set of perceptual features.

3.2.2.3 Sensorimotor Learning

In addition to the perceptual information, object manipulation allows the robot
to learn sensorimotor correlations between the sensor inputs fused in the objects
descriptions O, robot basic actions A and the salient changes represented by the
effects E. Starting from built-in actions, the development of the environment is
captured by perception through the information provided by effect detectors, e.g.
object movement detection and proprioceptive feedback. The goal is to learn from
regularities in the occurrences of elements in O and E when an action a; € A is
triggered.

3.2.2.4 Effect Detectors

In the same way that we consider innate action capabilities, we consider the agent
enable to detect effects. Therefore we provide effect detectors to the robot, so that
it can observe the results of its actions.

By effect detector we mean a module that given temporal inputs can compute
an ’effect’. L.E. evaluate if a certain event occurred during the interaction.

In our case an effect detector take two inputs, the initial and final states of the
scene, and compute an effect value.

3.3. Affordances Learning 21

3.3 Affordances Learning

3.3.1 Proposed Method

An affordance is an acquired relation between two interacting elements F and T,
where F is a set of effects and T is a tuple composed of a capability (in our case an
action) in A over an entity in O. One can state that when an agent g applies its
capability a over an entity o, an effect e is generated Sahin et al. (2007). From an
agent’s perspective, from now on the robot, the iy, affordance is defined as follows:

a; = (ey, (o, a;)), for e; € E,a; € A and oy, € O. (3.3)

Figure 3.2 shows an example of a relation between an entity toy perceived by
the agent robot, and the application of its capability grasp, implying that there
is a potential of generating an effect grasped. We can label this relation using its
semantic value, grasp — ability.

o } a; = grasp-ability

> Ok -_ toy

Figure 3.2: Representation of an affordance relation labeled grasp — ability.

In sections 3.2.1 and 3.2.2 we have defined the three elements mentioned in our
affordance definition. We can state our problem as learning the set of relations
o ={ai,...,a} for a set of data extracted from E, O, and A.

3.3.1.1 Structure Learning for Affordances Discovery

Let us represent the members of the set of elements F, O and A as discrete random
variables of a Bayesian Network(BN) ¢. Therefore, we can define these elements as
the discretization £ = {e;}, O = {0;} and A = {ai}. Let us assume that through
the cycle of perception-interaction we obtained instances of these variables gener-
ating a data set Z. Our problem of discovering the relations between £ and T can
be translated to finding dependencies between the variables in ¢, i.e., learning the
structure of the corresponding BN from data &. Using the BN framework we are
capable of displaying relationships between variables. The directed nature of its
structure, allows us to represent cause-effects relationships. It can handle uncer-
tainty through the establish probability theory. In addition to direct dependencies,
we can represent indirect causation. Therefore here the structure of the network
represents the induced affordances discovered by the robot through interaction.

22 Probabilistic Learning of Affordances through Interaction

One approach for inducing BN structures from data is the score-based tech-
nique, especially for the purpose of probability distribution function estimation.
The process assigns a score to each candidate BN that measures how well that BN
describes the data set 2. For a BN’s structure ¢, its score is defined as the posterior
probability given the data Z:

Se(9,) = P(9|9). (3.4)

A score-based algorithm attempts to maximize this score. Usually, this score is
rewritten using Bayes’ rule as:
P(2|9)P(9)

Sc(¥,92) = P

(3.5)

where algorithms only need to maximize the denominator, since P(Z) does not

depend on ¢. If we assume a uniform prior over the structures, we can focus
only on P(2|¥). Usually, score functions work on the logarithmic space, i.e.,
log(P(2|¥9)). These algorithms select various structures for examination and score
them. The structure with the highest score is selected. In this work, we implement
an information-based score.

3.3.1.2 Information compression score

We can define the score of a BN as the compression rate of the data 2 with an
optimal code induced by the BN. Z represents the interactions of the robot with
values for the variables in O, A and E. Using Shannon’s noiseless coding theo-
rem, we establish the limits of the compression rate. Therefore, as the number of
independent and identical distributed random variables tends to infinity, no com-
pression of the data is possible for a rate less than the Shannon entropy, without
losing information Shannon (1948).

Bayesian Information Criterion (BIC) is a generalization of the Minimum De-
scription Length (MDL) score, which uses a penalization based on the number of
bits needed to compress Z, preferring simple BN over more connected and complex
ones. We calculate the quality of ¢ as:

n(9\2) = 1(9|7) — s(N)|9| (3.6)

where I is the log-likelihood score that measures the number of bits needed to
describe Z given P(¥), and |G| denotes the network complexity. BIC uses a penal-
ization defined as s(N) = % to represent the number of bits needed to encode
. In order to increase the likelihood of a structure, we can add parameters, which
can result in overfitting. BIC penalizes structures with larger number of parame-
ters Schwarz et al. (1978).

3.3.1.3 Search algorithm

Our implementation is based on the hill-climbing technique, for learning BN struc-
tures. As inputs, this algorithm takes values for the variables in E, O, and A
obtained from robot’s interaction.

3.3. Affordances Learning 23

The procedure EstimatePDFs estimates the parameters of the local pdfs given a
BN structure. Typically, this is a maximum-likelihood estimation of the probability
entries from the data set, which for multinomial local pdfs consists of counting the
number of tuples that fall into each table entry of each multinomial probability
table in the BN. The algorithm’s main loop consists of attempting every possible
single-edge addition, removal, or reversal, making the network that increases the
score the most the current candidate, and iterating. The process stops when there
is no single-edge change that increases the score. There is no guarantee that this
algorithm will settle at a global maximum, but there are techniques to increase its
reaching possibilities, we use simulated annealing Tsamardinos et al. (2006).

3.3.1.4 Motivational system

Interaction is a task that can easily become intractable due to the large number
of interaction possibilities. We need a mechanism that guides this interaction and
promotes the perception learning process based on intrinsic stimuli. Starting with
random exploration, we use a motivational system to focus on object hypotheses
closest to the end effector to generate (object, action) couples.

3.3.2 Experiments and Results

The interest of the experiments is mainly in understanding and relating the effects
generated by the set of basic actions. Our experiments rely on two assumptions.
First, when the robot repeatedly performs a particular action over a particular ob-
ject, the obtained effect is mostly the same. Second, explicit information regarding
the success of an action is not provided; it is obtained through inference over the
learned structure of a BN. Therefore, our experiments are carried in an unsupervised
fashion.

3.3.2.1 Experimental setup

Our Baxter robot (see Figure 3.3) is equipped with 2 arms with 7 degrees of freedom,
a sensor array of one camera in each arm and one on the head. One electrical gripper
is attached to each arm for manipulation purposes. Additionally, a range camera
(Microsoft kinect sensor) captures RGB-D information. For the sensory perception
we use the kinect; for the environment interaction we use the left arm and its
gripper.

Our training set was generated autonomously by the robot’s perception-action
interaction. Several objects were used for dataset generation, highlighting the vari-
ance in their perceptual information and in their effects with relation to the action
set, e.g., objects with different perceptual descriptions and similar expected effects,
different expected effects for similar actions. Learning of affordances, as described
in section 3.3 was done online using data instances obtained periodically.

24 Probabilistic Learning of Affordances through Interaction

Figure 3.3: Experiment setup. Baxter robotics platform (left). Kinect sensor (mid-
dle). Subset of objects of interest (right).

3.3.2.2 Results

In figure 3.4, we present the evolution of the network seen from the point of view of
the log-likelihood loss. This results come from the 10 fold cross validation approach
over the current set of data. We can see how the expected loss is reduced with
the number of interactions. Which means that the learned structure is generalizing
better for related scenarios. Although most of the network relations evolve with
the number of tries, there are some dependency connections that are confirmed in
early stages of the experiment.

Figure 3.5 shows some examples of the relations learned by our approach during
the evolution of the experiment. The first relation was learned from the beginning
of the experiments. It shows a dependency between the variables representing the
perceptual information. The second relation shows a strong casual dependency of
the state of the gripper (g__state) with respect to the actions open and close gripper
(open__g, close__g). Finally, the third relation shows an example of an affordance
relation. It connects the perceptual nodes with the action lean toward(lean_t) and
the effect poi_obj__mov which indicates a movement of a point of interest from an
object perceived by the robot.

Using probabilistic inference over a set of variables in the learned BN, the robot
is able to provide information for effects prediction P(E|O, A), feedback in action se-
lection P(A|O, E) or object recognition given its behavioral description P(O|A, E).
For example, when we fix a set of perceptual evidence to define an object, and a
desired effect, we can obtain a probability distribution of the available actions. The
blue object from figure 3.3, has the highest predicted action probability, for the
effect poi__obj_mov, of P(lean_toward|objpe, poi__objpue__mov) = 0.1577 while
the green object which is fixed to the table has zero probability for either manip-
ulation action, due to its nature. Blue object has also a high probability for poke
action. These results are coherent with the two affordances (or lack thereof) on
these objects: poke-ability and lean-ability.

3.3. Affordances Learning 25

log-likelihood loss

20 50 100 150 200 250 300
Number of interactions

Figure 3.4: 10-fold cross validation evaluation of the learned structure. x-axis
represents the number of instances (robot interactions) and y-axis accounts for the
log-likelihood loss function.

26 Probabilistic Learning of Affordances through Interaction

B—=p—E
i Oiat)
ORO0L0

Figure 3.5: Examples of relations learned with the proposed approach. Left relation
appeared at 30 interactions, middle relation since the iteration 50, right relation
appeared at 150 iterations.

3.3.3 Partial Conclusion

So far in this chapter, we have presented a general architecture for learning proba-
bilistic sensorimotor representations between perception and action from unsuper-
vised interactions. Bayesian framework captures the relation between the three
elements of the affordance definition: effects, objects and actions. Our approach
does not rely on a priori dependencies assumptions between them, although re-
lying on a priori knowledge regarding the descriptors for objects and effects, and
motor primitives. It allows the robot to infer the dependencies between the ele-
ments while interacting and combining perceptual and proprioceptual information.
The learned sensorimotor representation along the Bayesian framework allows the
robot’s motivational system to make predictions about elements in the environment.
Moreover, this inferred information can be used for future planning tasks.

We have shown the connection between the three elements of affordance, which
allows to represent the learned knowledge in a fused feature frame. This architecture
offers a base for further work as will be presented in the next section 3.4 and
chapter 4.

3.4 Composition of Affordances

In this section we try to extend the previously proposed model by considering the
concept of composite objects and the corresponding composition of affordances.
How does the prediction of the affordance of a composite object differs from the
affordance of its components?

3.4. Composition of Affordances 27

3.4.1 Affordances of Composite Objects

Bayesian inference in our discrete BN provides the probability that an affordance
«; is present. However, it does not provide a mechanism to quantify the affordance
with regard to the specific environment situations that triggered it.

We believe that by preserving the continuous aspect of the elements in the
affordance (3.2.1), we also maintain the necessary information for an affordance
quantifying approach, i.e., Bayesian inference over a Gaussian BN (GBN).

Relations in (3.2.1) can be represented as a multivariate normal distribution of
continuous random variables, i.e., the affordances elements.

Continuous variables are modeled as linear regressions in a Gaussian BN, where
the relevant parameters of each local distribution are the regression coefficients (for
each variable parent) and the standard deviation of the residuals.

By preserving continuity we also introduce the possibility of predicting the af-
fordance of composite objects, by trying to learn the model that would explain the
relation between an object’s affordance and it’s components affordances.

3.4.1.1 Affordance Definition

In order to fit the purpose of those new experiments, the definition of affordance is
slightly altered. The whole formalism is recalled here.

We consider an agent (robot) endowed with a set of innate actions A, and a
set of innate feature extractors P, that can be augmented through learning. In
addition, O is the set of all the objects in the environment, and F is the set of all
the possible observable effects. When the agent applies action a € A to an entity
(object) o € O in the environment, a salient change (effect) e € E is generated,
we call this acquired relation an affordance Sahin et al. (2007). From the agent’s
perspective, a resulting affordance is defined as follows:

™" = (e, (0,a)), fore € E,o€ O, and a € A (3.7)

more generally, this agent will gradually build a set of affordances Aff composed
of the affordances «;:

a9 — (e}, (o, @), for e € E o € O, and q; € A (3.8)

)

An object o, is defined as the set of values for the n innate properties extractors
pEeP:
or = pi1(cluster), pa(cluster), ...pn(cluster) (3.9)

where cluster represents the object hypothesis obtained by the visual perception
module.
Actions are a set of motor capabilities A = aq, ..., a;,, defined as:

ak(V*,7,04q,), (3.10)

where V* is the desired value for the robot control variables V', v its proprioceptive
feedback and o,, the particular action parameters.

28 Probabilistic Learning of Affordances through Interaction

Effects are a set of salient changes in the world w detected by robot’s innate
detectors e:
E =e(w),e2(w), ..., eq(w) (3.11)

which means that effects can be related to objects and agents, allowing to detect
exteroceptive and proprioceptive changes.

3.4.2 Loss and Preservation of Affordances

The goal of our experiments is to identify a formalism that could infer the affor-
dances of composite objects, based on prior knowledge about the affordances of the
primary objects that constitute them. We state that Bayesian networks, through
structure learning, can not only discover affordances, but also capture their quan-
titative aspect, by employing continuous variables in the representation of actions
and effects, that are represented as continuous variables.

The experiments will help us demonstrate this. Our experimental procedure is
composed of four steps:

o (1) performing a certain action with a set of objects (separate and composite)
and observing the effects,

o (2) defining the random variables corresponding to the observed objects, ac-
tions, and effects inside the Bayesian network,

o (3) feeding the interaction data to the structure learning algorithm of the
Bayesian network, and

o (4) interpreting the structure of the Bayesian network that best fits the
recorded data according to calculations.

First, we consider the discovery of affordances. From our experiments, we can
interpret the model learned by the discrete Bayesian Network as a qualitative as-
pect of an affordance, regarding the presence or absence of a relation between the
elements of an affordance (e.g. an object is pushable, i.e. it goes a certain distance
from its original location). We further attempt to attach a quantitative dimension
to the learned affordance by representing its elements as continuous random vari-
ables. This allows not only to predict that the affordance is present, but also to infer
the parameter values of its elements that influence this affordance (e.g. the effect
of the push action on the object is a function of the action’s input parameters).

Three experiments are analysed in this section, all related to the inference of
affordances of composite objects: (1) affordance acquisition, (2) affordance mainte-
nance, and (3) affordance loss. Since our experiments focused on the composition
of objects, we performed them on objects specifically designed for that: toys that
can assemble and disassemble. These experiments are detailed in the following sec-
tions, and are illustrated in 3.6, which shows the objects employed, as well as their
composition method.

3.4. Composition of Affordances 29

Experiment 1 Experiment 2 Experiment 3

: a® ' C
top object oo ‘ [‘a
bottom object ﬂqm @ ‘

£
composite object C& Q

observed effect for the affordance affordance
cart acquisition maintenance

affordance loss

Figure 3.6: Objects used in the experiments, and their composition order.

3.4.2.1 Affordance Acquisition

Following the experiment description from figure 3.6, column Experiment 1, each
object is described by two elements: one describing the number of atomic perceptual
properties that forms it, and the other the position of the atomic property inside
it (top or bottom). These properties allow to represent atomic objects (with only
one property) and possible composite objects. In this scenario, we have two atomic
perceptual properties wheel and cartFrame and together they can combine to
form a cart. The robot performed random interactions with the action ap.xe and
the atomic objects wheel, cartFrame and with the composite object cart (50
interactions with each object). The effect detector developed was based on the
distance that an object moves after the action is executed. We use Gaussian random
variables to represent the perceptual properties and the distance effect.

We use nominal variables to represent the action undertaken(poke, no action),
and the objects employed. The object composition was represented using 2 vari-
ables: objectBottom and objectTop, representing respectively the atomic object
at the bottom of the composite object, and the one on top. Figure 3.8 shows
the resulting network after the learning process. We can notice that the param-
eters influencing the distance, over which an object travels after an interaction,
are correctly inferred. The action poke influences this distance, while the action
noAction does not. The object at the bottom also influences this distance: wheels
roll further than the cartFrame after poking. The object at the top is also linked
to the distance variable, since the distance travelled by the cart (i.e. wheels with
cartFrame on top) differs from the one travelled by the individual wheels. Let us
use the relationships learned in this example, to infer the affordances of a similar
composite object.

30 Probabilistic Learning of Affordances through Interaction

sctong

objectBottom

'\L . w
orcs

Figure 3.7: The bayesian network obtained after feeding the interaction data with
the atomic objects cart and blockLoad

3.4.2.2 Affordance Maintenance and Loss

The second and third experiments consist in learning the correct structure of the
Bayesian network, so as to correctly predict the maintenance or loss of affordances
of atomic objects that form the composite object. In this example, we will consider
two new objects: the cart, and the blockLoad that we can put on or under the
cart (see Experiments 2 and 3 in figure 3.6).

We feed the BN the data obtained in the interactions with these new atomic
objects (50 interactions with each object), but not for their composition, and obtain
the BN seen in Figure 3.8.

We stated the acquired nature of an affordance in eq. 2, and for this rea-
son, the inferred affordance will be considered an estimation until the robot,by
interaction, validates it. If we represent the composite object objcomposite =
object ottom = cart, objectry, = blockload, we can obtain an estimation of its af-
fordance by calculating P(distance|object Bottom = cart,objectTop = blockload)
from the learned BN.

In our experiment, the probability distribution for this calculation is similar to
P(distance|object Bottom = cart) showing experimentally that the estimated af-
fordance movable of the composite object is similar to the affordance of one of
its elements.In the BN represented in Figure 4, if the value of the objectBottom
variable is known, the variables distance and the objectTop are conditionally inde-
pendent. This means that the upper part of a composite object does not influence
the distance that this composite object traverses after a poke action. This can be
interpreted as an affordance loss. On the other hand, the bottom part of a compos-
ite object (i.e. objectBottom) does impact the distance it traverses after a poke,
suggesting that its affordance is maintained.

This is confirmed experimentally: after a poke, the atomic objects cart and
blockLoad travel an average distance of 45 centimeters and 9 centimeters, respec-
tively. The composite object with the cart at the bottom travels an average distance

3.4. Composition of Affordances 31

of 28.4 centimeters, while the one with the blockLoad at the bottom travels an
average distance of only 3.8centimeters.

objectBottom

Figure 3.8: Conditional linear Gaussian network obtained after learning process.

3.4.3 Experiments and Results

The goal of our experiments is to infer the relations that exist between affordances,
which would allow to refine the definition and formalization of an affordance.

First, we consider the discovery of affordances. From our experiments, we can
interpret the model learned by the discrete Bayesian Network as a qualitative aspect
of an affordance, regarding the presence or absence of a relation between the ele-
ments of an affordance (e.g. an object is push-able). We further attempt to attach
a quantitative dimension to the learned affordance by representing its elements as
continuous random variables. This allows not only to predict that the affordance
is present, but also to infer the parameter values of its elements that influence this
affordance (e.g. the effect of the push action on the object is a function of the
action’s input parameters).

By decomposing an object offering a specific affordance into its constituent
parts, we may wonder what are the affordances of the obtained parts. Answering
this question requires us to introduce a mathematical operator, which would be
able to estimate the affordances of an object obtained through the decomposition
of an object, or through the composition of objects. It is yet unclear if this mathe-
matical operator would apply to the objects and their properties (identifying their
affordances as a consequence), or if it would apply to the entire affordance relation
(E, (0, A)). This opens a whole new domain of inquiry about the relations between
affordances.

We designed three experiments in order to test our hypothesis.

Following (3.9), we can define a particular affordance for an object o; as a; =
(eka (Oia al))'

Then, we can decompose o; into two new objects o and o] by [nullifying] a
subset of its property values o,.1 € 0,

Of/i = {pzlpz € 0i \ Onutt} U {Py = "U”\Py € Onull};

" (3.12)
0; = {pm’px € Qnull} U {py = nu”|py € 0; \ Qnull}-

32 Probabilistic Learning of Affordances through Interaction

Using the learned model from our proposed architecture, we can infer:

o = (exs (0} ar)), o = (ex, (0]). (3.13)

If the removal of a property does not influence the affordance of an object (o = «;),
then the properties in g,,;; can be considered as non salient for this particular
affordance.

In addition, if we can rewrite «; as:

Q= (617 (0/1 @ 0/1/7 al))u (314)

the computation defined by the operator ® suggest the existence of a combination
of affordances. Experiments can help to discover the properties of this composition
operator.

Let us represent the set of salient features from objects o, and o, for one of
their affordances as salient,, (0;) and salienty; (0,) respectively, where

@ = (ekas (02, a1z))s 5 = (Eny, (0y, ary))- (3.15)

If 0, and o, do not share salient features, salient,, (0;) N salienty;(0,) = 0, and
|salienty, (0z)| + |salientq,(0y)| = n,
we can construct a new object o, by selectively combining the salient properties
of o, and oy,
0zy = salienty, (0,) U salient, (o), (3.16)

which by definition should retain affordances «; and a;. We can empirically
discover the properties of affordances of this new object 0., w.r.t. the properties of
oz and oy.

Through these experiments (decomposition, composition and selective compo-
sition) we will be able to estimate the affordances of combined or de-composed
objects, and verify this estimation empirically, shedding light on the nature of these
affordance operators.

3.5 Conclusion and Discussion

In this chapter we introduced a Bayesian architecture for learning sensorimotor
representations by capturing the relations between objects, robot actions, and the
generated effects.

We further introduced the concept of primary objects to capture prior knowledge
on their affordances.

We later discussed the concept of composite objects, for which we want to
identify a relationship between the objects they are composed of, and the way
they are assembled in order to automatically infer their affordances. We performed
experiments to infer the affordances of composite objects, based on prior knowledge
about the affordances of the primary objects that constitute them. The results

3.5. Conclusion and Discussion 33

from the learned Bayesian network showed information regarding the acquisition,
maintenance, and loss of affordances by the employed primary objects, depending
on their position in the composite object. The obtained results suggest that it may
be possible to define an operator acting on the elements of affordances, which could
predict the affordances of new objects, obtained through the combination of known
objects.

Although our approach is a statistically based learning technique, it would be
interesting to analyse other approaches that could provide statistically similar re-
sults or improvement with fewer interactions. It would be interesting to employ
algorithms that can identify causal relationships between actions, object features
and effects with as few observations as possible (one or two).

However some limitations remains, mostly in the form of the pre-definition of
the descriptors for objects ,effects and actions.

In order for the architecture to capture the correct relations we have to provide
relevant visual features, relevant effects and relevant actions that we know will
produce interesting interactions regarding a given dataset.

o Actions are 'relevant’ if they produce different effects on the object set. There
is virtually no affordances to discover if all objects behave the same. In other
word the environment does not afford anything to the agent if all of its actions
result in the same sensory perception. Which would be equivalent to no
perception at all.

o Objects descriptors are 'relevant’ if they enable the agent to distinguish objects
in regard of effects. If two objects behave differently but have the same de-
scriptors values, the agent cannot learn the relation between descriptors values
and behavior. Hence it cannot properly learn the affordance. Furthermore,
if descriptors are not correlated to the affordance (e.g. size for graspability),
the agent will learn an affordance specific to the explored environment. For
instance: "All graspable objects where red, so i assume red means graspable.".
This knowledge will not be generalisable to new environments.

o Effects detectors are 'relevant’ if they help distinguish the (objects, actions)
pairs. The agent must be able to observe dimensions from the effect space that
are correlated to what the actions actually produce on objects (e.g. distance
traveled for pushing). For instance measuring color change is irrelevant for
grasping behaviors.

What we are trying to emphasis is that there is a circular dependency between
actions, effects and objects descriptors. Obviously, as we are considering the dis-
covery of affordances all three parts are linked. But more importantly we argue
that a given set of descriptors defines a finite subspace, in which and only in which
affordances can be discovered.

So in particular in our experiments we provided a priori information in the form
of, (1) two actions poke and push, (2) selected objects that would react differently

34 Probabilistic Learning of Affordances through Interaction

to them (with or without wheels), (3) descriptive features that can differentiate said
objects (color, size and shapes), and (4) effect detectors based on movement that
distinguish a rolling object from a non-rolling one (distance travelled).

In other words we provided to the agent a set of motor commands (actions) and
descriptors (objects features, effect detectors) that were appropriate for the context
(objects set), so that we knew that certain affordances could be discovered (fixed,
move, roll). It was appropriate in the sense that it enabled and helped the agent
discovering those affordances.

The main problem with that approach is that it limits the pertinence of the
proposed approach to contexts where the prior information is sufficient. The model
will have to be fine-tuned for every environment. Thus the agent will be able to
learn affordances in contexts for which it was designed, but will struggle in others if
they differ too much. However general or multi-purpose the set of [objects / actions
/ effects] - descriptors might seem, it will constrain the environments in which the
agent can learn meaningful affordances.

Therefore this method is impractical for most of the scenarios that we want
autonomous robots to operate in. Scenario where the environment is not, or only
partially, known. Or scenario where the environment might change over time. Such
scenarios requires the agent to be adaptable to the specifics of each environment,
either by adapting current knowledge, or by building new one.

A simple example of such scenarios are kitchen robots. For the robot to cook
using the kitchen tools requires it to have several abilities. Of whom the ability to
recognize the tools (e.g. knife, pot, spoon) and their functionality (e.g. cutting,
heating, scooping), and the ability to manipulate them efficiently (e.g. cut, heat,
scoop). However the large variety of shapes, sizes, colors, in which the different
tools can exist makes the definition of one-fit-all descriptors hard, if not impossible.

Furthermore from a more theoretical point of view, the pre-definition of descrip-
tors and motor commands somewhat contradicts the very notion of affordance. In
this paradigm the agent constructs its own representation of the world based on the
complex formed by its embodiment and the environment. However so far in our
method the agent only learns the relations between pre-existing objects, effects and
actions. Thus the representations built are dependent of (and limited by) a higher
level of abstraction.

We argue that to improve the method we need to reduce the need for a priori
information. The agent must be able to build its own sets of descriptors according
to what the environment could afford it.

In the next chapter we follow this idea and propose a method to remove the
limitation on object descriptors (i.e. removing the need for pre-definition). We
propose to use pretrained Deep Convolutional Neural Network (CNN) for learning
pertinent visual features while simultaneously discovering affordances in order to
remove the limitation on object descriptors.

CHAPTER 4
Ambiguity Reduction and
Features Learning

The results and text of this chapter have been published in the following workshop
articles.

e Luce-Vayrac, P., and Chatila, R. Learning Relevant Features to Learn Affor-
dances, R:SS IWCMAR 2018

e Luce-Vayrac, P., and Chatila, R. Discovering Affordances Through the Re-
duction of Ambiguities, IMOL 2017

Contents
4.1 Imtroduction e 36
4.1.1 The Limits of Predefined Features 36
4.1.2 Related Worko 39
4.2 Revised Model and Ambiguity Definition 40
4.2.1 Ambiguity Definition o000 40
4.2.2 Affordance Revision 41
4.2.3 Sensory Perception oL oL 44
4.2.4 Effect Clustering 44
4.2.5 Features Extraction 44
4.3 Interaction Workflow 51
4.3.1 Object Image Acquisition 51
4.3.2 Action Execution L. 52
4.3.3 Effect Detection and Clustering 52
4.3.4 Ambiguity Detection and Reduction 52
4.4 Experimentsand Results 54
4.4.1 Data Collection 54
4.4.2 Experimental Setups L. 54
4.4.3 Experiment 1: Pushable objects 56
4.4.4 Experiment 2: Rollable objects 65
4.4.5 Experiment 3: No Pretraining 73
4.5 Perceiving Affordances 0000, 74
4.6 Conclusion and Discussion 75
4.6.1 Contributions and Limitations 75

4.6.2 Future Work 76

36 Ambiguity Reduction and Features Learning

4.1 Introduction

4.1.1 The Limits of Predefined Features

Affordances as an approach and framework to autonomous learning is an efficient
way of enabling robots to build relevant knowledge of their environments. By
linking proprioception and exteroception in the learning process the robot builds
representations relative to its own capabilities. And therefore is more able to later
adapt or generalize this learning on new situations and environments.

This concept has gained a lot of interest in the robotic community, and has thus
been studied in a wide variety of contexts and approaches, as the recent summarizing
and analysis work from Zech et al. shows (Zech et al., 2017).

However most authors use predefined features to describe the environment, as
we did in chapter 3. We argue that building affordances on predefined features is
actually defeating their purpose, by limiting them to a given subspace. Therefore
we propose here a method for discovering affordances while simultaneously building
visual features.

Affordances are a mean for an agent to represent its environment through what
it can do with it, by opposition to solely through the environment’s intrinsic prop-
erties (Gibson (1977) Gibson (1979)). They are commonly represented as a triplet
(e, (a,0)) such that the effect e is produced when action a is accomplished on object
o (Sahin et al. (2007)). This definition, although generic, is extremely dependent
on the definitions of those three components. Different ways of describing objects,
effects or actions will dictate the affordances that can be discovered.

To paraphrase the definition from Ruzena Bajcsy in Bajcsy et al. (2018):

“The learning process depends very much on the assumptions/mod-
els of what is innate and what is learned. The theory of the cyber
physical system that I have been pursuing predicts that an agent can
explore and learn about its environment modulo its available sensors,
kinematics and dynamic of its manipulators/end effectors, its degrees of
freedom in mobility and exploratory strategies /attribute extractors. It
can describe its world with an alphabet of set of perceptual and action-
able primitives.”

Indeed, a set of given descriptors will generate only a given subspace of the
affordance space. In other words only the affordances that can be represented using
the given descriptors are discoverable by the agent.

Let us consider for a while what it implies in practice. As we see it, it creates
two distinct problems:

4.1. Introduction 37

e Non Causal Affordance: The agent correctly predicts an affordance in its
environment, but the properties it is based on are non causal. Example:
consider a set of blue cubes and red spheres, a push action, and motion effect
detector. In this case the color property of objects is enough to correctly
predict rollability, in the sense that color discriminates the dataset in regard
of rollability. Therefore in the agent perspective, red affords roll. However this
is only an accidental correlation due to the bias in the environment. It results
in a knowledge that is specific to this environment, hence hardly generalisable.

e Undiscoverable Affordance: The agent cannot predicts an affordance, because
its set of features is not enough to discriminate the environment in regard
of that affordance. Example: We keep the same set as before, but this time
cubes and spheres are both red and blue. Color is no longer a discriminating
feature in regard of the rollability of objects. Thefore the agent cannot learn
the affordance.

Therefore we question the relevance of predefined e, a and o for autonomous open
ended learning systems. It would require a set of features general enough to fit any
environment, which we argue is impossible. Hence the need to build new features
to enrich this initial set.

Now the question is to know which aspect of an affordance should not be prede-
fined. In other words, which part should be learnt alongside the affordance. As we
stated earlier to predefine each aspect leads to limiting the discoverable affordances
to a finite subspace. Subspace that may or may not be suited for the context in
which the agent will operate, or not suited for the motor and / or perceptive capa-
bilities of the agent. Hence it limits the efficiency of any overlaying learning method
to discover affordances. And moreover the ability to discover affordances that are
directly related to the agent’s own physical embodiment.

In this particular work we focus on removing the constraint on o by using Con-
volutional Neural Networks (CNNs) to extract non-predefined visual features on
objects. Our approach is to consider the discovery of affordances through the re-
duction of ambiguities :

the agent executes the same action on objects apparently similar, but it observes
different effects, therefore it has to assume that it does not possess the appropriate
descriptors to distinguish those objects with respect to this action, hence it decides
to learn new descriptors to reduce this ambiguity.

In order to do so we propose a method to detect ambiguities by evaluating the
agent capability to predict an object affordance, and to reduce those ambiguities by
creating new features using a CNN. This method is then used during a perception
/ interaction loop where the robot collects proprioceptive data about objects using
predefined actions and effects. By predefined effects, we mean that we describe the
variation of object’s features to observe during interaction. The discretization of
effects into classes (used as labels for the CNN training) is done during the loop
using an x-means algorithm Pelleg et al. (2000). Thus the whole training process

38 Ambiguity Reduction and Features Learning

is self-supervised since the robot acquires itself the data needed for the affordance
learning an training of the CNN.

This model is building on previous work Chavez-Garcia et al. (2016b) Chavez-
Garcia et al. (2016a), where we considered the acquisition of probabilistic affor-
dances through Bayesian Networks (BN). We use the same global architecture and
actions definitions, but we extend effects and we remove the need for predefined
objects features.

AMBIGUITY

REDUCTION

DESCRIPTORS SET

ACQUIRED
AFFORDANCES

(e,(a,0))]
INTERACTION

LOOP

Figure 4.1: Global workflow of the architecture. The interaction loop gener-
ates (e, (a,0)) triplets using the current effect, action and object descriptors sets
(E,A,0). The triplets are evaluated. If an ambiguity is detected a new object
descriptor is built.

In summary the main contribution of this work is to enable a robot to simulta-
neously discover object affordances and build the relevant features, thus removing
the need to predefine the later. And furthermore it insures that the agent will per-
ceive its environment using features directly related to its capabilities, through the
acquired affordances.

This chapter is organised as follows: in this section 4.1 we briefly summarize
related work along with a short introduction to CNN and a presentation of our
approach, section 4.2 presents the revised version of the model, section 4.3 presents
the interaction workflow, section 4.4 presents the experimental setups and corre-
sponding results, while finally 4.6 draws a partial conclusion regarding the benefits
and limits of the proposed approach.

4.1. Introduction 39

4.1.2 Related Work

Since the introduction of the concept by psychologist J. J. Gibson in 1977 Gibson
(1977) affordances have been gradually extended and redefined. Starting from the
original concept, an intrinsic properties of the environment, directly perceivable
by an agent, to an acquired relation, learned during a sensorimotor exploration.
Affordances have legitimately taken an important place in the robotic community
as they help ground the perception of an agent in terms of its own capabilities,
especially in the developmental approach Lungarella et al. (2003).

Different approaches for learning affordances have been considered. In Ugur
et al. (2011) they firstly discretized the effects space, then use it to learn a mapping
between the object features, the agent’s actions and the categorized effects. In Ugur
and Piater (2016) they consider the relation between affordances, more precisely the
hierarchy in which they could be organised. And therefore discuss the possibility
to acquire complex affordances through simpler ones.

Following the recent development of CNN, and their increasing performance to
extract visual features, many authors applied them to the detection of affordances.
In Nguyen et al. (2016) and Nguyen et al. (2017) they trained in a supervised
manner a network to predict tool affordances, and then used it on a real robotic
platform to plan and execute interactions.

The ever increasing need for data samples motivated the work around AfNet
Varadarajan and Vincze (2012). Which enables researchers to access and share
affordances datasets.

On the contrary, and similar to our approach, in Mahler et al. (2017a) and
Mabhler et al. (2017b) they limit the need for pre-labeled data by training their
model in simulation.

Our method tries to extend that idea by associating pretrained weights and
real robots interactions to quickly learn affordances without the need for human
supervising.

4.1.2.1 Deep Learning Approach to Ambiguity Reduction

As previously explained we believe that any pre-definition on one or several of the
aspects composing an affordance constitute a limitation to the learning capabilities
of the agent. Therefore we need to replace the structures used to represent the a
priori knowledge of the agent with ones that can be somewhat consider agnostic, and
that can learn any relevant features required by the task. In our case we propose to
replace the hand designed features used to extract discrete / continuous properties
values (color, size, shape) with convolutional neural networks.

CNN have shown tremendous capabilities in the field of pattern recognition and
image classification. And are therefore very well suited to be used as visual features.

In the next section 4.2 we will detail the modification applied to our previous
model in order to enable the reduction of ambiguity.

40 Ambiguity Reduction and Features Learning

4.2 Revised Model and Ambiguity Definition

To extend our model to the newly proposed idea of ambiguity some refinement
are required on the architecture and definitions. In this section we firstly present
the concept of ambiguity in 4.2.1, in 4.2.2 we detail the changes to our affordance
formalism, in 4.2.3 we present the proposed approach to integrate CNN into the
model, and finally in 4.2.4 and 4.2.5 we introduce the method to generate training
data and use this data to exctract new features.

4.2.1 Ambiguity Definition

One of the question we are trying to address here is the construction of new features
during affordances discovery.

As we consider the possibility, and we believe the need, to build features relevant
to each action (i.e. affordance), we therefore require a method to evaluate the
training, in order to identify and detect the states which would require such new
features to be built. For this we propose the concept of ambiguity.

We define as an ambiguity the following learning states of the agent, that explicit
the need to learn new features to properly describe the environment.

o (1) When the agent cannot learn to predict the result of an action (an affor-
dance) on a given environment (set of objects). Therefore it has to assume
that its current set of features is not rich enough to discriminate the environ-
ment in regard of this action (figure 4.2).

e (2) When the agent cannot generalise an affordance to a new environment.
Therefore it has to assume that its set of features, although sufficient to dis-
criminate the training environment, does not contain the features relevant for
this affordance, as it cannot correctly predict the behavior of new (unknown)
objects (figure 4.3).

More formally:

@ai (Pe(ai, Oj) = Ge(ai, Oj)|VOj S O) <T (4.1)

With P.(a;,0;) the predicted effect of action a; over object oj, Ge(as,05) the
observed effect, O a set of objects, and T an arbitrary threshold. O being the
training set for definition (1), and a set of unseen objects for definition (2).

Although similar (both ambiguity express the uncertainty in the model) the 2
definitions serve different purposes which are further detailed below.

Definition (1) illustrate that the set of features used does not enable the agent
to properly distinguish the objects composing the current environment. Either
due to a small number of features or similar objects, the features values of those
objects overlap. Objects appear identical to the agent but behave differently when
acted upon. Therefore when exploring its environment the agent will have to cope
with contradictory affordances triplets (e, (a,0)). Which will eventually translate to

4.2. Revised Model and Ambiguity Definition 41

poor affordance prediction. For instance if considering the features set size, colour,
texture, a cube and a sphere could be identical and yet behave differently when
pushed.

The environment is ambiguous because it is insufficiently described (under-
fitting or under-segmentation), thus objects descriptions are overlapping (highly
similar to each others).

Definition (2) however illustrate the lack of relevant features regarding the cur-
rent action. The agent can learn to predict the result on a training set, but cannot
generalise this learning on a new dataset. Which implies that the features used for
the prediction are only relevant to the training set, not to the action.

The environment is ambiguous because it is abundantly described (over-fitting
or over-segmentation), but none of the features are actually pertinent.

‘ Considering discrete features, [color]
‘ and action 'poke'.

Interaction produces following tuples:

- (poke, green, no-roll)
O - (poke, blue, roll)
(poke, blue, no-roll)
- (poke, red, roll)
(
(

poke, red, no-roll)
- (poke, green, roll)

Training Prediction accuracy on training set: 50%

Dataset Learned Affordances

Figure 4.2: Ambiguity 1 Schematic.

Whenever a state of ambiguity is detected, which indicates the lack of relevant
features regarding an action, the construction of a new feature is triggered. There-
fore over the course of learning, the initial feature set will grow as new features are
built, which will reduce the probability of objects having too similar descriptions.
In the long term type (1) ambiguity should become less frequent in favour of type
(2) ambiguity.

Overall, through this process, we aim to improve the learning of affordances by
linking it to the construction of pertinent features, and remowving or limiting the
need for predefined ones.

4.2.2 Affordance Revision

As in chapter 3 we represent affordances using the formalism from Sahin et al.
(2007), where an affordance is represented as a (e, (a,0)) triplet, encapsulating the

42 Ambiguity Reduction and Features Learning

Considering discrete features [size, color]
and action 'poke'.

Interaction produces following tuples:
- (poke, (small, green), no-roll)
small, blue), roll)

(.
Training - (poke, (big, red), no-roll)
—> - (poke, (small, red), roll)
(.
(.

big, red), no-roll)
big, green), roll)

Prediction accuracy on training set: 100%
Prediction accuracy on validation set: 0%

Validation

Dataset Learned Affordances

Figure 4.3: Ambiguity 2 Schematic.

relation between an effect, an action and an object. However we know want to learn
the features to describe objects simultaneously to the learning affordances. Thus
the exact implementation changes, these section presents those alterations.

4.2.2.1 Object

Strictly speaking an object in the affordance formalism is the target and/or context
for an action. And it can therefore encapsulate a broad range of definitions. From
physical entities (a door handle, the door itself or even the whole room), to more
abstract concepts (such as the relation between two entities).

In our work we focus on discovering affordances regarding small physical entities,
with which the robot can interact. Therefore we define an object as a discrete area
of the environment, upon which we extract local features. Such that for a given set
of features F', o = {fi(w)|fi € F} with f; the value of feature i for object’s o raw
sensory input w.

As in Chavez-Garcia et al. (2016b) the actual localisation and perception of
objects is achieved with a RGB-D camera. The objects hypotheses are generated
from the perceived point cloud in three steps:

e (1) Remove the background using planar extraction,

e (2) Use an over-segmenting algorithm to create supervozels on the remaining
cloud Papon et al. (2013), and

o (3) Supervoxels are clustered together using meanshift Comaniciu and Meer
(2002) and a locally convex criterion Christoph Stein et al. (2014).

The resulting points clouds and corresponding 2d patches constitute the raw
perception w of objects on which the features are computed (see 3.1).

4.2. Revised Model and Ambiguity Definition 43

Our focus is to create features at the object level, features that would specifically
explain the behaviour of those objects in regard of the action capabilities of the
agent. And enable the agent to better apprehend its environment.

Therefore the previous simplifications (pre-existing concept of objects, segmen-
tation capability and simple setups with no occlusion) do not constitute limitations
for our method.

4.2.2.2 Action

The definition of action remains identical to the previous method presented in
chapter 3 section 3.2.1.2. An action is a parameterized sequence of primitive motor
control commands (such as move the arm forward, open/close the gripper, rotate
joint, etc).

We acknowledge the limitation inherent with such a fixed definition, however we
consider this not to be a limit for the results of the method. In this work we mainly
focus on constructing the features relevant for an action. Therefore we believe it is
enough for the agent to have the knowledge that an effect is possible, rather than
exactly know "how’ to produce the effect.

For the work described here, we predefined two action primitives:

1. "Pushing": approach a target with the end-effector, then move forward to
push target.

2. "Poking": approach a target with the end-effector, then rotate wrist to poke
target.

Each of the previous actions are parameterized by the target position for the
interaction.

4.2.2.3 Effect

In order for the agent to be able to perceive the results or "effects" of its actions,
it has to perceive the changes or variations in its environment. Similarly to the
object representation, descriptors are used to transform raw sensory input into
lower dimension features. We define an effect as a function over the variation of
said features resulting from an action.

Formally, for d € D the ensemble of descriptors, d(t) and d(¢ + 1) the values of
this descriptor at time ¢ and ¢ + 1, we define an effect as a function e(d(t), d(t+1)).

Such that, for example, with d an object’s position, we could define:

e The effect "distance travelled by object" as:
e(d(t),d(t +1)) = [|d(t) —d(t + 1)
e The effect "object has moved" as:

e(d(t), d(t + 1)) = d(t) # d(t + 1)

44 Ambiguity Reduction and Features Learning

4.2.3 Sensory Perception

According to the revision of the model and definitions, the sensory perception ap-
proach presented in 3.2.2 as been slightly adapted.

Planar extraction, objects segmentation and Effect detectors are the same,
see 3.2.2 for details.

What differs is the process of feature extraction. So far all features where
extracted from the point cloud of each object. However the features set now also
include CNN that require 2d images as input. Thus to compute the features value
of an object the agent must also gather 2d images of it.

Furthermore the number of features to extract on objects is no longer fixed, but
it is growing alongside the learning of affordances. More precisely one new feature
is added for each ambiguity reduction. To handle the overgrowth of the feature set,
a selection method is required, to choose which feature to use in a specific context.
This study is out of the spectrum of this particular chapter, but will be discussed
in the conclusion 4.6.

4.2.4 Effect Clustering

As previously stated, the learning of new features revolves around the detection of
an ambiguity.

To detect such ambiguities an agent must be able to discriminate objects in
regards of the effects that its actions produce upon them, rather than by the intrinsic
properties of those objects. In other words two objects 01 and oo are identified as
different because it exists an action a, such that (a,01,e1) and (a,o02,e2), with
e1 # es. Regardless of 0; and oo descriptors values, the agent knows that those
objects differs, as they behave differently in regard of action a.

Therefore the agent needs to be able to compare effects, and differentiate them
qualitatively.

In order to do so without providing too much a priori knowledge to the agent,
we chose to use an unsupervised clustering algorithm (X-means Pelleg et al. (2000))
to discretize continuous effects into classes of effects.

So that if we consider an action a and a set of n objects O, interacting with each
objects will produce a set of tuples {(a, 0;, €;)|Vo; € O}. We can then extract the n
e; effects and create a cluster model €, using X-means, and we define ¢, o, = 6,(e;)
as the class of effect of e; regarding action a.

4.2.5 Features Extraction

In our approach when an ambiguity is detected, we assumes that the reason for this
ambiguity lies in the lack of descriptive features. Or more precisely of adequate
features. The environment is ambiguous from the agent perspective because the
agent lacks the features pertinent for the complex 'motor capabilities / environment’.
In other words, the agent does not possess the features that are relevant to the

4.2. Revised Model and Ambiguity Definition 45

affordances that it could be discovered considering the motor capabilities of the
robot and what the environment offers.

Hence to reduce the ambiguity the agent must construct new features relevant
to what the environment can afford. In order to keep the autonomous aspect the
new feature must be constructed by the agent, using only its available sensors and
no a priori information about the objects or affordance. To do so we propose the
use of a deep convolutional neural network (CNN).

For each ambiguity a new CNN network is instantiated, and trained to predict
the objects’ classes of effects (i.e. learn to predict the result of the action that trig-
gered the ambiguity on objects). Thus the ambiguity is reduced by the construction
of new features in the convolutional layers, and prediction of the affordance in the
dense layers.

We take advantage of three main qualities of CNN to fit our method:

1. High performance to extract features on visual data: CNN have established
the current state of the art in image recognition, mainly due to the capability
of convolutional layers for learning visual features (Krizhevsky et al. (2012)).

2. Generic purpose nature: As the literature shows, CNN have been applied
successfully to very diverse contexts (image classification Rawat and Wang
(2017), natural language processing Kim (2014), etc).

3. Compatibility with transfer learning: An other important advantage of CNN
is the possibility to use weights trained on a task A to initialize a network
for another task B, reducing substantially the training time (Yosinski et al.
(2014)).

Therefore if we consider these advantages in regard of our method we can expect
that:

1. A CNN will be able to extract the pertinent visual features relative to an
action, using only 2d images.

2. We will not be required to design an specific architecture for each task, on
the contrary a single architecture should fit many tasks.

3. We will be able to use a pretrained CNN, which will shortens the training
time, and make the method more resilient to over-fitting (as it often occurs
with small datasets).

Our learning workflow is based on the collection of (e, (a, 0)) triplet through the
interaction of the robot with it’s environment. The action « is implicit (each action
corresponds to a different network). (04, cq0,) pairs, with o; € O, and ¢, 0, the
label of this object such that c,,, = ,(e;). More precisely, the training dataset is
constituted of 2d images from the objects, labeled

Each iteration consists of the following steps:

1. An action a; and object hypothesis o5 are selected.

46 Ambiguity Reduction and Features Learning

2. The robot gather a set . of 2d images of the object.
3. The action is realised, thus generating an (e;, (a;,0x)) tuple.

4. The effect e; is used to update the classes of effects €, for action a; and the
corresponding class ¢ = €, (e;) is returned.

5. Images in .# are labelled with ¢ and added to the samples dataset Z.

6. The network is then trained with 2.

Motor
commands

SELECT ACTION
AND « OBJECT »

Effects

Reiterate

TRAIN NETWORK

Classes of effects
for action push

images / label

Figure 4.4: Workflow for the resolution of ambiguities through self supervised in-
teraction

We tested several different architectures whose structures can be found in the
supplementary material. All networks are based on the same overall structure
derivative from a VGG16 network Simonyan and Zisserman (2014), the details of
the networks can be found in the next section 4.2.5.1

As a mean to limit the need for this pretraining, only the top two convolutional
and dense layers of each networks are specific to each action, the rest is shared.
Therefore the learning of simple affordances can initialize the network and bootstrap
the learning of more complex ones. See 4.5 for details. In an ideal context, the agent
should be able to start building knowledge from very simple interactions. And with
each reduced ambiguity a new feature is added to its descriptors set. Thus allowing
the agent to segment the environment in new ways, which in turns create new
opportunity for interactions.

However our limited number of experimental setups does not allow us a com-
pletely agnostic approach. We have to assume that some knowledge has already

4.2. Revised Model and Ambiguity Definition 47

been acquired. Knowledge that is either the result of previous interactions. Or
knowledge that could have been acquired during an anterior developmental stage.

Effect

CNN
Classes

Actions shared Actions specific
layers layers

Perceptual
Input)
/ Action 2
Action n

descriptors .| predicted
vector | effect

Figure 4.5: Global architecture of the network used to predict objects affordances.
From left to right, the 2d image of an object is processed into effects predictions.
Firstly through shared convolutional layers. Secondly through actions specific con-
volutional and fully connected layers. Finally the resulting labels are the predicted
effects of each action for this object.

4.2.5.1 CNN Architecture

In this section we present the kind of architectures that we used for learning new
visual features. We will describe the types of network and their exact composition,
and the reason behind those choices.

As explained before, the main reason we chose to use Convolutional Neural
Networks is for their potency to extract regularities from a raw input (in our case,
2d images). Which is important for our task, as we want to build features from
images without providing to the agent any insight of what those features might be.

However our approach brings two main constraints:

1. The architecture cannot be task specific, as it would contradict its initial
purpose, which is to enable features learning in unforeseen situations.

2. The architecture must be data-efficient, as the agent must be able to learn a
new feature in a reasonable set up (i.e. a small number of objects).

48 Ambiguity Reduction and Features Learning

Solving (1) is quite straightforward as CNN have proven to be multipurpose, as
many research have shown Canziani et al. (2016) LeCun et al. (2015) Krizhevsky
et al. (2012). CNN architectures have been applied to many different problems,
from image classification to object segmentation, with little to no variation to the
inner layers composition. Furthermore our task is essentially a task of classification,
thus a simple architecture similar to a VGG16 is sufficient.

Solving (2) however requires several workarounds. A high dropout rate certainly
helps Hinton et al. (2012). But that would not be sufficient to train from scratch a
deep network. Therefore we have to use pretraining in order to initialize the net-
work. More precisely we use transfer learning. A network is trained on an unrelated
task beforehand, and the weights of the convolutional layers are transferred to the
actual task network. Lastly we use data-augmentation to increase the size of our
dataset.

With that in mind we chose to test 4 different architectures (and variants of
them), deriving loosely from a VGG16 structure (several convolutional blocks fol-
lowed by a few fully connected layers). The different configurations are composed
of a succession of convolutional blocks, ended by a fully connected block. The con-
volutional blocks are constituted of 2 to 3 convolutional layers (respectively the
Nconv and Neconv3 variants), followed by a max pooling and a dropout layer. The
final fully connected block is constituted of n pair of (fully connected layer, dropout
layer), ended by a final fully connected. See figure 4.6 for a visualisation of the base
structure of those networks.

e VGG16 (see figure A.1b, Simonyan and Zisserman (2014))
e 10conv3, 5 conv blocks (see figure A.6a)

» 8conv3, 4 conv blocks (see figure A.4b)

e 6conv3, 3 conv blocks (see figure A.2b)

We chose to use a VGG16 architecture because of its performance and relative
simplicity. We designed the 10conv3, 8conv3 and 6conv3 derivatives to test
shallower architectures.

4.2.5.2 Pretraining and Transfer Learning

As introduced earlier, the pretraining of the network is one of the possible
workaround to compensate for the small number of objects. The main problem
which arises from this limitation is the possible over-fitting of the dataset. Due to
the small number of objects the network would most likely learn to recognize them
separately, rather than learn what the objects have in common that explains their
behavior. In other words, the network would construct features in order to distin-
guish the objects from one another instead of constructing global features shared
between them.

4.2. Revised Model and Ambiguity Definition 49

j 114

Conv2D Optionnal Conv2D Max Pooling 2D Dropout Fully Connected

Figure 4.6: Modular structure of the CNNs used to learn new features.

The consequence being that the network will reach peak performance on the
training data, but will not be able to generalize the learned model to new objects.
Which means that the constructed features would not be relevant to the affordance.

One possible way of overcoming this limitation is to use pretrained weights. The
central idea is to profit from the relative general-purpose quality of bottom layers
features in a convolutional network. The first layers of a CNN are usually very
similar regardless of the training task. They contains features sensitive to simple
gradients, later combined to form basic shapes.

Therefore in our method we propose to initialise the convolutional layers of the
model with pretrained weights, with two main benefits. Firstly it improves the
network’s generalization capability by setting the bottom convolutional layers to
values that are independent of the objects that will be considered for this task.
Secondly it reduces the time required for the network to converge. Only the top
layers will have to be fully trained, the convolutional layers will only be fine-tuned
to fit the new task.

One could argue that the pretraining of the network is actually defeating the
purpose of this method. pretraining can be considered as giving a priori information
to the agent, and furthermore this information is used to build low levels features in
the convolutional layers of the network. Thus it influences (and more importantly
possibly constrains) the construction of any new features.

To answer, we have to consider that low levels features inside CNNs are very

50 Ambiguity Reduction and Features Learning

similar no matter the classification task. Therefore the risk of constraint is minimal.

To pretrain our networks, we built a custom dataset of images. Composed of 22
classes of objects (flowers, tools, basic shapes), 14000 images in the training set,
4000 in the validation set.

4.2.5.3 Network Training

As presented above, we propose to reduce the ambiguity by creating new features
relevant to the task. To do so for each action a specific network is instantiated and
is trained to predict the result of that action based on 2D images of objects.

More precisely, to train the network we use the labeled data that is produced
during the robot interaction. During each interaction a series of images of the
object is captured, then the object (therefore its images) is labeled by the action’s
resulting effect. The training dataset is composed of all labeled images from all the
interactions with objects.

The network is then trained using a classical supervised learning and stochastic
gradient descent. To cope with the small number of interactions (objects images),
and as presented above, the network is initialised with pretrained weigths, and we
apply data augmentation to the images from the dataset.

Data augmentation consists in applying small variations on the images from the
dataset to generate new ones, slightly different, that can be used to train the model,
while reducing the risk of over-fitting to the initial dataset [useful?]. In our case to
augment the dataset we use the following functions: horizontal shifting, rotation,
vertical flip, horizontal flip.

The transfer learning differs depending on the type of network. The VGG16
versions are initialized with weights from ImageNet Deng et al. (2009) and the
smaller versions (10conv3, 8conv3, 6conv3) are initialized from models pretrained
on a custom task of classification. Both are detailed further in 4.2.5.2.

The specific conditions of the training (learning rates, optimizers, etc) will be
discussed in the experiments and results section 4.4.

4.2.5.4 Network Exploitation

In this section we present how networks can be used once they have been trained
and therefore theoretically contain newly learned features.

As explained in 4.2.5.3, each network is specific to an action a (at least partially).
Fach network is trained to classify images of objects based on the observed effects
that this action a produced upon said objects.

Therefore the result of this training is a network which can be used to predict
an object’s class of effect regarding action a. In other word when given an image
from object o the network predicts the effect e from relation (e, (a,0)).

This network can then be used in two ways. Firstly it can be regarded as a
feature in itself. If we consider a simple example, an action 'push’ and an movement

4.3. Interaction Workflow 51

detector.

From the point of view of the robot, if the model has been trained to distinguish
rollable objects from non-rollable ones, then the network is a feature classifying
objects in terms of 'rollable-ness’ Much like we perceive objects as 'pushable’ or
"graspable’.

Secondly the content of the convolutional layers and especially the higher layers
can be regarded as lower level features specific to the learned affordance. In order
to correctly classify images, the convolutional layers were forced to create features
that would distinguish the objects in regard of their respective classes of effects.
Hence features that are relevant to the learned affordance.

To summarize a high level feature is created in the last layer, and lower level
features are created in the convolutional layers.

4.3 Interaction Workflow

In this section we describe the interaction workflow. The sequence of behaviors that
the agent executes in order to learn affordances and/or reduce ambiguity.
To summarize, the agent will:

1. Observe the environment (sensory data) 4.3.1
2. Execute an action (sensorimotor data) 4.3.2
3. Interpret effect of action 4.3.3

4. Update model of affordances and/or reduce ambiguity 4.3.4

4.3.1 Object Image Acquisition

In order to train a CNN, we need to generate a dataset of images. We do so by
capturing a set of images from each objects that the robot will interact with.

Much like a human or an animal do when confronted with a new or interesting
object. It turns around to see the object from different point of views, go closer or
further to see the details or the context of the object, or pick it up if possible to
observe otherwise inaccessible parts.

In more general terms, the agent uses all its available sensors and motor ca-
pabilities to gather additional sensory information about the object. That raw
information can then be evaluated through the features already available to the
agent, or as in the proposed method here, used to construct new ones.

In our approach we propose to construct new features using the visual appear-
ance of objects (through CNN). Therefore the data that the robot will gather will
only be 2d images.

In our experimental setup the Baxter robot uses a wrist mounted 2d camera to
capture images from various orientations around the objects. Thus we emulate a

52 Ambiguity Reduction and Features Learning

pick and observe behavior without requiring the robot to move. And most impor-
tantly we avoid to actually have to pick the object, which remains a complex task
in robotics.

The object is detected using the method described in 3.2.2.1, then the robot
captures images of it using the following steps:

1. Locate object’s centroid c.

2. Compute the coordinates of a 25cm diameter semi-sphere, centered on the
object.

3. Select a position p on that semi-sphere,
4. Move the camera to this position, and align it with the axis [, p).
5. Capture an image.

6. Iterate through (3), (4) and (5) for n different positions on the semi-sphere.

4.3.2 Action Execution

To physically interact with the environment we provide the robot with predefined
actions primitives. The actions consists in a sequence of motor controls commands.
Approach the target (selected object). Interact with the object (for instance wrist
rotation for poke primitive). Then retract to the initial position.

4.3.3 Effect Detection and Clustering

As presented in 4.2.2.3 in our approach we use predefined effect detectors. That
means that we provide for the robot the dimension in its perceptive domain that it
needs to observe. In other words, we provide to the robot the part of the environ-
ment that it needs to take into consideration for computing effects.

4.3.4 Ambiguity Detection and Reduction

The main incentive of our work is in the ambiguity detection and reduction. This
concept of ambiguity is the drive of our approach, by enabling an agent to recognize
that its set of features is too limited to effectively describe the environment in terms
of its own capabilities.

As described earlier we identified two main cases of ambiguity 4.2.1:

e When the agent cannot properly learn to predict an affordance on a given set
of objects,

e Or when this predictive model cannot be generalized to new objects.

4.3. Interaction Workflow 53

Those definitions corresponds to a static vision of the agent-environment com-
plex. Given a certain set of objects, actions and effects, is the environment ambigu-
ous to the agent? Therefore using the proposed method an agent would eventually
reduce all ambiguities by creating enough relevant features.

In a dynamic case an ambiguity can appear with a change in the environment
(i.e. nmew context), in the motor capabilities of the agent (new action) or in the
perceptive capabilities (for instance effect perception).

Evidently when the environment changes new possibilities of interactions are
introduced. Among those new possibilities some objects may behave in a way that
was not seen before or that contradicts the predictive model. Therefore one or
more actions that was previously non-ambiguous can become so, and requires the
construction of new features to explain the behavior of those new objects.

Similarly, when a new action is introduced it creates a new way to segment
the environment. Each action being in itself a way of distinguishing objects based
on the effects that it will produce upon them. Therefore new distinctions between
objects might appear that might not be explained by the current set of features,
hence resulting in an ambiguity.

Lastly, adding a new perceptive ability to the agent means to change the way
it describes the environment. Let’s put aside the consideration on new sensors as
we consider the agent to possess all knowledge about it’s motor and sensors from
the start, and only consider new effect detectors. Each effect detector allows the
agent to evaluate the result of its actions along certain dimensions of the effect
space. Therefore a new effect detector corresponds to a new combination of said
dimensions, i.e. a new way of measuring the result of an action. Consequently
objects or actions that were similar regarding effects so far may differ now.

To summarize, any changes to one or more of the main aspects of affordances
(namely effects, actions, objects) should be considered as potentially introducing
new ambiguities.

For all the above reasons, we need to define a method to evaluate that a model
is ambiguous, and a set of triggers to decide when to evaluate the model.

For the evaluation, we propose to use the prediction accuracy of the model. If
an agent is not capable to correctly predict the result of an action after training,
then it has to assume that its current descriptive features are not relevant for the
task.

To trigger an evaluation we need to consider the cases where the prediction
accuracy might change, and thus possibly go under the accuracy threshold. We
identified two cases, (1) if the model is modified or (2) if the evaluation dataset
changes.

The model is only modified during training, and the evaluation dataset changes if
new tuples (data, labels) are added/removed. In our case both only occurs during
an interaction. Therefore we chose to trigger an evaluation at the end of each
interaction cycles.

In the case where the evaluation does not meet the required threshold, an am-
biguity is raised.

54 Ambiguity Reduction and Features Learning

4.4 Experiments and Results

In this section we present the experimental approaches and setups that we used
to test our method, along with the results. In 4.4.2 we present the global setup
we used, and the motivation behind the experiments. Then in 4.4.3 and 4.4.4 we
present two experiments conducted on a real robot. While in 4.4.5 we present the
results of a more thorough investigation of the limits of our approach to features
extraction.

4.4.1 Data Collection

The principle of IP methods Bohg et al. (2017) applied to affordances learning is to
enable an agent to gather sensorimotor information about its environment. In our
case the information is collected under the (e, (a,0)) formalism.

The action a is the one used for interaction.

The effect e and object o are captured through the kinect camera (point cloud),
and baxter wrist mounted camera (2d images). We use the point clouds to compute
the predefined features values of objects (size, color) as well as tracking the object
to compute the effect. We use the 2d images to compute the new features values,
as well as learning those features in the first place during the ambiguity reduction
process.

The collection of images is done through a predefined behavior. The wrist
mounted camera of the baxter is used to gather images of the object from various
position around it. The effect information is computed using the predefined effect
detectors and the corresponding sensors (e.g. RGBD camera for movement).

See section 4.4.1 and section 4.3.3 for more details.

4.4.2 Experimental Setups

To test our approach we used a similar setup to the one employed in chapter 3.
Namely a Baxter robot and a set of RGB-D cameras (Kinect V2) on a tabletop
scenario where the robot has to interact with various objects in an uncluttered
environment. The objects are presented sequentially, the robot executes the inter-
action protocol (see figure 4.4), then an other object is presented.

The goal of these experiments is triple. Test the ambiguity criterion to detect
the situations of ambiguities. Test the ability to reduce an ambiguity by learning
new features in a pretrained CNN. And finally validate the newly built features as
relevant for the agent by correctly predicting the affordance.

The robot uses prior information:

o An initial feature set to describe objects (color, size, position)
o Action primitives (push, poke, observe)

o Effect detectors (movement)

4.4. Experiments and Results 55

The goal of those experiments is to place the agent in a context where the initial
descriptor set is insufficient. So that ambiguities will arise, thus the agent will have
to construct new features, relevant to the task, in order to reduce the ambiguities.

We tested two different scenario:

o A = push, objects are either movable / unmovable (fixed to the table).
o A = poke, objects are either rollable (wheeled or spherical) / unrollable.

We use the Movelt algorithms and library to plan the movements of the robot
(Sucan et al. (2012), Sucan and Chitta (2015)).

In both scenario the idea is to construct sets of objects that differs in physical
properties (and therefore effects) but for which the corresponding visual features
is non-trivial. By non-trivial, we mean that it would be hard both for a human
to engineer a feature detector and for a CNN to learn it. The goal is to show
the interest of proposed method precisely in cases where we need the agent to
autonomously build features and where said features are not oblivious.

56 Ambiguity Reduction and Features Learning

4.4.3 Experiment 1: Pushable objects
4.4.3.1 Setup

In this first experiment the agent has to learn the pushability affordance of a set of
objects.

Objects Dataset The set is constituted of 46 objects. 28 of them are ’textured’,
the remaining 18 are 'smooth’ (see figure 4.7 for examples objects from the dataset).
Objects are otherwise similar from the agent perspective (i.e. considering the agent’s
initial set of features), similar colors, similar sizes.

Figure 4.7: Examples of objects from experiment 1, movable / non-movable dataset.
On the left are 4 'textured’ objects, on the right 4 'smooth’ objects.

The ’smooth’ objects are made unmovable (bricks are hollow, and fixed to the
table using a screw), thus creating a difference in physical property between the
two sets. The ’smooth’ ones are unmovable, the 'textured’ ones are movable.

Push Primitive To interact with the objects the agent is given an action primi-
tive push. The push primitive consists in the following sequence of motor commands:

1. Approach: move the end-effector 5 cm away from the target object. The
end-effector is placed perpendicular to the axis between the object’s center
and the robot base.

2. Push: move the end-effector forward in a straight line toward target for 15
cm.

3. Retract: return end-effector to the starting position.

Movement Detector To detect the results of the push primitive we use a pre-
defined movement detector. The target object is tracked during the experiment, its
centroid position is registered before and after the interaction. We then compute
the euclidean distance between those two points as the object’s distance traveled.

4.4. Experiments and Results 57

Initial Features The initial features set contains a color and size descriptors
(see 3.2.2.2). Considering this initial set of features, objects will appear similar to
the robot, while still behaving differently. Hence it will result in an ambiguity that
the robot must reduce by constructing a feature relevant to the push affordance, in
this case the 'texture’ property.

CNN Architectures We selected 4 different architectures, 6conv3, 8conv3,
10conv3 and VGG16, and their variants. Which respectively contains 7, 10, 13

and 13 convolutional layers. The exact composition of all 4 architectures is detailed
below in the annexes A.2b, A.4b, A.6a and A.la.

4.4.3.2 Results

For this experiment each iteration consists in the robot interacting once with all
objects. The objects are presented in a pseudo random manner (i.e. selected by
the operator). In our current approach the agent does not takes into account the
knowledge already accumulated to select the next target for interaction. Therefore
we can execute all interactions, and then train the model offline.

During each interaction a maximum of 10 images of the object are captured
(some configurations might not be reachable for the robot). Thus each experiment
produces a set of roughly 460 (10 * 46) images.

We use X-means to cluster the dataset composed of the distance traveled by the
objects into n classes. Each class is an effect label. In this case we set the number
of clusters to be between 2 and 46 (number of objects).

The ambiguity detection lies on the accuracy of the model to predict an object’s
affordance. We evaluate the model both on the training set (objects used to build
the BN), and on the validation set (remaining objects). As described before we
already have the interaction information for all objects, so we can train offline,
steps by steps.

The threshold is placed at 1.2 times the performance of a random classifier.
Which in our case with two identified classes is 60%(1.2 x 50). If the prediction
accuracy (either on training or validation sets) remains under this threshold for 5
consecutive interactions, then an ambiguity is raised.

We kept the threshold quite low to allow space for uncertainty in the model.
And the 5 consecutive trigger constraint is there to smooth the randomness of the
picking order.

The CNN are trained in 3 steps, each step enabling the training of a one more
block from the overall structure. In the first step only the fully connected layers
are trained. Afterwards each step enables the training of one more convolutional
block, starting from the top. Thus the network is progressively trained, avoiding

58 Ambiguity Reduction and Features Learning

critical gradient propagation during the training of the first layers, while enabling
the fine-tuning of the inner convolutional layers.

The training is done on a Titan Xp, and takes an average of 90 seconds, de-
pending of the size of the dataset and the depth of the architecture. Between 40
sec for 6conv3 architecture with 30% of the dataset, and 120 seconds for VGG16
with 90% the dataset.

Each interaction lasts about 1 minute, it takes approximately one hour to com-
plete a whole experiment.
We repeated the experiment 10 times, and the results are presented below.
We will focus the results on the clustering, ambiguity detection and CNN per-
formance. And we will leave aside the BN as there is no difference regarding the
method presented in chapter 3.

Clustering In figure 4.8 we plotted the number of clusters predicted at each step
for each run. In figure 4.9 we plotted an example of effect distribution, in this case
the run 1.

As we can see in figure 4.9 the 2 classes of effect are quite distinct, with one
cluster around Ocm and the other around 10cm. Thus it takes a maximum of 4
objects to stabilise the number of clusters and reach a 100% correct labels. This
value depends on the order in which the objects are selected. As soon as at least
one object of each class is selected the number of clusters stabilises to 2. This is
due to the fact that the two classes of our dataset are very distinct and thus easily
linearly separated as we can see in figure 4.9.

Run 12 (34|56 |7|8]9]|10
Train Trigger | 11 [13 | 9 | 17 [17 | 13|19 | 12 | 13 | 16
Val Trigger 719 |75]109 | 8| 8] 6|8

Table 4.1: Expl - Movable: Ambiguity Detection Results for run nb 1. The first
line is the run ID, second and third lines indicate the step at which the ambiguity
was triggered respectively while evaluating the training and validation sets.

Ambiguity Detection We see in table 4.1 that in our scenario, it requires a
maximum of 19 steps to trigger an ambiguity. And a maximum of 10 steps if the
agent has access to the validation data. As expected it takes more samples to detect
an ambiguity when using only the training dataset. In which case the BN model
overfits, and learns to predict affordances based on incidentals correlations.

Ambiguity Reduction: CNN Training Following the detection of an ambi-
guity, a new CNN is instantiated. As we are training offline, we have access to all
images and labels from all objects. However we want to emulate the condition of

4.4. Experiments and Results 59

Expl - Movable: nb of effect clusters

5
— runl
—— run2
—— run3
47 — runé4
n —— runs
b —— runé6
5
2 3 run 7
k=] —— run 8
L
= run 9
k5 — run 10
a 24
© S
o iy
= /
9/‘
’
1
0 T T T T T
1 2 3 4 5 6 7

Nb of objects in dataset

Figure 4.8: Expl - Movable: Results of clustering process, in nb of clusters by nb
of objects used for the clustering.

Expl - Movable: Distance traveled run 1

0.40 4

0.35 1

0.30 A

0.25 A

0.20 4

0.15 A

Percentage of objects

0.10 A

0.05 A

Tl

T
0 2 4 6 8 10
Distance traveled in centimeters

0.00 -

Figure 4.9: Expl - Movable: Effects observed in run nb 1, the histogram plots the
ratio of objects by distance traveled. We can observe the two distinct population,
the non-movable around 0 cm and the movable around 10 cm.

60 Ambiguity Reduction and Features Learning

an online learning. Which means that whenever an ambiguity is raised, the agent
can only use the data that lead to the ambiguity.

Therefore in a first time, the CNNs were trained with the n first objects, n being
the step at which the ambiguity was detected. In a second time, to compare, we
also trained the CNNs with 50%, 70% and 90% of the dataset.

To summarise, for each of the 10 runs, we train each architecture, once with n
objects, and once with 50%, 70% and 90% of the objects.

The validation performance of the network during training are presented in
the following figures 4.10, 4.12, 4.14, 4.16. Each figures contains 4 subfigures,
each subfigure plots the results for a different dataset size. The results are the
validation performances of the networks for each runs. The validation dataset
being composed of the remaining objects unused for training. Thus they contains
respectively (46 — n) objects and 50%, 30% and 10% of the dataset.

Similarly the final performances of the networks are presented in the following
figures 4.11, 4.13, 4.15, 4.17. Each figures contains 2 subfigures, the top one presents
the validation accuracy while the bottom one presents the training accuracy. The
histograms show on the x-axis the finale validation accuracy, and on the y-axis the
percentage of networks that reached that performance.

The first observation is the overall good performance of the VGG16 network. As
we can see in figure 4.10 for all 10 runs the network reach above 90% validation
accuracy. In this case it means that the network successfully captured the relevant
feature for the task (i.e. the 'texture’ of objects). In other terms the ambiguity is
correctly reduced, and the agent can know correctly learn the push affordance of
these objects.

However the same cannot be said for the 10conv3, 8conv3 and 6conv3 architec-
tures, for which the performances are much more unstable:

1. The performance are overall lower, averaging to 70%.

2. We observe that while the VGG16 performed similarly for all 4 datasets sizes,
here the network performance is highly dependent of it. The networks per-
forming overall better with a larger dataset as we can see in figure 4.12.

3. The variability between each run is much greater. Which means that the net-
works are more sensible to bias induced by the randomisation of the training
dataset. As we can see in figure 4.16 where the performance for the 70% set
vary between 30% and 80%.

Considering that the architectures of the 10conv3 and VGG16 are almost iden-
tical, we can safely hypothesize that the difference in performance comes from the
pretraining. Appart from the structure the VGG16 differs from the others by the
pretrained weights (1000 classes on ImageNet vs 22 classes in custom dataset). Bet-
ter pretraining means better features in the lower layers. The network converges
faster and generalises better (comments 1 and 2), and is more resilient to bias in
the training dataset (comment 3).

4.4. Experiments and Results 61

An other interesting observation concerns the evolution of performance over
training epochs. Let us consider figures 4.14 and 4.14. If we take a closer look at
the performance for the 90% set, we can see that several runs have a performance
drop after 10 epochs, and then again after 30 epochs. This can be analysed in
regards of our 3-step training method. After each step a new (deeper) block of the
network is made trainable, thus the features in this block that were frozen before
are now alterable. Although enabling the model to learn lower level features it also
increases the risks of over-fitting, even more so if the training dataset is biased.

That is why we observe this phenomenom for the 6conv3 and 8conv3 networks
(shallow, respectively 2 out of 3 and 2 out 4 conv blocks trained). While the 10conv3
and VGG16 remain more resilient (deeper, 2 out of 5 conv blocks trained).

1.0 4 10

0.8 0.8 4

o
o
e
o

accuracy
accuracy

o
s
o
s

0.2 0.2

0.0 T T T T T T T 0.0 T T T T T
o 20 40 60 80 100 120 o 20 40 60 80
epoch epoch

(a) Initial Set (b) 50% Set

1.0 10

0.8 4 0.8 4

o
o
4
=

accuracy
accuracy

=
S
=
e

0.21 0.21

0.0 T T T T T T T 0.0 T T T T T T T
o 10 20 30 40 50 60 o 10 20 30 40 50 60
epoch epoch

(c) 70% Set (d) 90% Set

Figure 4.10: Validation performance of the VGG16 architecture over the movable dataset.

62 Ambiguity Reduction and Features Learning

1.0

0.8

0.6

0.4 4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

val_acc

0.8

0.6

0.4 4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

acc

Figure 4.11: Final performance of vggl6 variants on Movable dataset.

0.8 4 0.8 4

accuracy
< =
o
accuracy
o
o

°
S
=3
S

0.2 02
0.0 T T T T T T T 0.0 T T T T T T T T T
0 20 40 60 80 100 120 o 10 20 30 40 50 60 70 80
epoch epoch
(a) Initial Set (b) 50% Set
Lo 10
0.8 - 0.8 4
0.6 4 0.6
2 g
g g
® o4 ® o4
0.2 021
0.0 T T T T T T T 0.0 T T T T T
o 20 40 60 80 100 120 0 20 40 60 80
epoch epoch
(c) 7T0% Set (d) 90% Set

Figure 4.12: Validation performance of the 10conv3 architecture over the movable dataset.

4.4. Experiments and Results 63

0.20
0.15
0.10
0.05
0.00 T
X 0.4 0.6 0.8 L

val_acc

0.3 1
0.2 1
0.1+
0.0 T T T
0.8 L

0.0 0.2 0.4 0.6

0

0

Figure 4.13: Final performance of 10conv3 variants on Movable dataset.

1.0 10

0.8 0.8

0.6 4 0.6 4
¢ = g
3 3
04 ® 0ad

~
0.2 02
0.0 T T T T T T 0.0 T T T T T T
0 20 40 60 80 100 0 10 20 30 40 50 60
epoch epoch
(a) Initial Set (b) 50% Set
Lo 10

0.8 4

accuracy
°)
S >
accuracy
o ° o °
9 = > &
ﬁ %;

0.24

T o 20 w0 t::cCh 80 100 120 S0 10 20 e 30 a0 50
(c) 70% Set (d) 90% Set

Figure 4.14: Validation performance of the 8conv3 architecture over the movable dataset.

64

Ambiguity Reduction

and Features Learning

0.15 A

0.10

0.05

0.00

0.2 0.4 0.6

val_acc

1.0

0.8

0.6

0.4 1

0.2 1

0.0 T T T
0.0 0.2 0.4 0.6

acc

0.8 10

Figure 4.15: Final performance of 8conv3 variants on Movable dataset.

0.8 4

accuracy
=
o

b
S

0.2

0.8 4

accuracy
4
o

L

o
S
L

0.2

0.0

0.0

20 40 60 80
epoch

(a) Initial Set

20 40 60
epoch

(b) 50% Set

10

Lo

0.8 4

accuracy
o
o

o
=

0.24

0.8 q

accuracy
e
o

o
=

0.21

0.0

0.0

60 80 100

epoch

20

(c) 70% Set

30 60
epoch

(d) 90% Set

Figure 4.16: Validation performance of the 6conv3 architecture over the movable dataset.

4.4. Experiments and Results 65

0.20

0.15

0.10

0.05

0.00
0.0 0.2 0.4 0.6 0.8 10

val_acc

1.0

0.8

0.6

0.4 1

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

Figure 4.17: Final performance of 6conv3 variants on Movable dataset.

4.4.4 Experiment 2: Rollable objects
4.4.4.1 Setup

In this second experiment the agent has to learn the rollability of a set of objects.

Objects Dataset The set is constituted of 37 objects, of whom 18 are non-
rollable, and 19 rollable. The rolling objects either possess wheels or are of round
shapes. The non-rolling ones are a variety of common items. See figure 4.18 for
objects examples.

Figure 4.18: Examples of objects from experiment 2, rollable / non-rollable dataset.

66 Ambiguity Reduction and Features Learning

Poke Primitive To interact with the objects the agent is given a poke action
primitive. This primitive is similar to the push primitive described in section 4.4.3,
to the exception of move forward which is replaced by a quick rotation of the wrist.
Thus the robot transmits more kinetic energy to the object, which enables it to
separate rolling from non-rolling ones.

The poke action consists in the following sequence of motor commands:

e Approach: move the end-effector 5 cm away from the target object. The
end-effector is placed aligned to the axis formed the object’s center and the
robot base.

o Poke: rotate the wrist joint upward by 40 degrees (increased velocity com-
pared to previous push action).

e Retract: return end-effector to the starting position.
Movement Detector Identical movement effect detector as in 4.4.3.
Initial Features Identical Initial Features as in 4.4.3.

CNN Architectures Identical CNN architectures as in 4.4.3.

4.4.4.2 Results

The results that follow have been produced with the same meta parameters as
experiment 1, see 4.4.3.2 for details.

Effect Clustering Similarly to the first experiment (4.4.3),

Run 112 (3|4|5|6 |7 |8|9]|10
Train Trigger | 14 | 13 |11 | 14 | 12 | 19 | 14 15 | 12
Val Trigger 9 (11| 7|8 |8 |10 6 |7]10

Ne}

Table 4.2: Exp2 - Rollable: Ambiguity Detection Results

Ambiguity Detection

Ambiguity reduction The validation performance of the network during train-
ing are presented in the following figures 4.21, 4.23, 4.25, 4.27. Identically to 4.4.3.2,
each figures contains 4 subfigures, each subfigure plots the results for a different
dataset size. The results are the validation performances of the networks for each
runs. The validation dataset being composed of the remaining objects unused for
training. Thus they contains respectively (37 — n) objects and 50%, 30% and 10%
of the dataset.

4.4. Experiments and Results

67

Exp2 - Rollable: nb of effect clusters

5
— runl
—— run2
—— run 3
41 — run4
n —— runs
z — runé
5
=2 31 run 7
k=] —— run 8
L
= run 9
E \ —— run 10
a 24
—
(=]
e
=2
l_
0 T T T T T
1 2 3 4 5 6

Nb of objects in dataset

Figure 4.19: Exp2 - Rollable: results of the clustering process, in nb of clusters by

nb of objects used for the clustering.

Exp2 - Rollable: Distance traveled run 1

0.20

0.15 A

0.10 A

Percentage of objects

0.05 4

0. 0 0 T T T T
0 10 20 30 40 50

Distance traveled in centimeters

60

Figure 4.20: Exp2 - Rollable: Effects observed in run nb 1, the histogram plots the
ratio of objects by distance traveled. We can observe the two distinct population,

the non-rollable around 10cm and the rollable around 50 cm.

68 Ambiguity Reduction and Features Learning

The final performances of the network are presented in the following figures 4.22,
4.24, 4.26, 4.28. Each figures contains 2 subfigures, the top one presents the valida-
tion accuracy while the bottom one presents the training accuracy. The histograms
show on the x-axis the finale validation accuracy, and on the y-axis the percentage
of networks that reached that performance.

We can observe that the remarks regarding the first experiment (see sec-
tion 4.4.3.2) are overall still relevant here. The VGG16 network outperforms the
other architectures due to the better pretraining.

Therefore we will focus on the differences between both experiments.
Firstly we can observe that the average performances of all networks are lower
than for experiment 1. We can hypothesize 2 reasons for this:

1. The features required to predict rollability are more complex than the 'texture’
feature.

2. The dataset is composed of different kinds of "rollable’ objects (namely, sphere,
toy cars and cylinders). Furthermore it is smaller (37 objects instead of 46).
Which increases the probability for a biased training dataset. This is partic-
ularly clear in figure 4.21 where 3 runs have critically low performances.

4.4. Experiments and Results 69

10 10
0.8 0.8 4
0.6 0.6
> >
g g
3 3
© &
0.4 0.4
0.2 0.2+
0.0 T T T T T T T T T 0.0 T T T T T T T
o} 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60
epoch epoch
(a) Initial Set (b) 50% Set
10 10
0.8 4 0.8 4
0.6 - 0.6
= >
g g
3 3
® "
0.44 0.4 4
0.24 0.2
0.0 T T T T T 0.0 T T T T T T T T
0 20 40 60 80 o 10 20 30 40 50 60 70
epoch epoch
(c) 70% Set (d) 90% Set

Figure 4.21: Validation performance of the VGG16 architecture over the rollable dataset.

0.20
0.15
0.10
0.05
0.00 T ‘ T

0.0 0.2 0.4 0.6 0.8 1.0
val_acc

0.8 1
0.6 1
0.4 1
0.2 4
0.0 T T T p—
0.8 1.0

0.0 0.2 0.4 0.6

Figure 4.22: Final performance of vggl6 variants on Rollable dataset.

70 Ambiguity Reduction and Features Learning

10 10
0.8 0.8 4
0.6 0.6 4
> e >
3 — 3
3 3
© &
0.4 0.4
0.2 0.2+
0.0 T T T T T T T T 0.0 T T T T T T T
0 10 20 30 40 50 60 70 0 20 40 60 80 100 120
epoch epoch
(a) Initial Set (b) 50% Set
10 10
0.8 4 0.8 4
0.6 1 p Ao 0.6
= e ~— >
g — g
g - 3
® “ "
0.44 0.4
I
0.24 0.2
~——
0.0 T T T T T 0.0 T T T T T T T T T
0 20 40 60 80 100 o 10 20 30 40 50 60 70 80
epoch epoch
(c) 70% Set (d) 90% Set

Figure 4.23: Validation performance of the 10conv3 architecture over the rollable dataset.

0.20

0.15

0.10

0.05

0.00
0.0 0.2 0.4 0.6 0.8 10

val_acc

0.4 1

0.3

0.2 1

0.1+

0.0 T T T
0.0 0.2 0.4 0.6

acc

Figure 4.24: Final performance of 10conv3 variants on Rollable dataset.

71

.
4.4. Experiments and Results
1.0 10
0.8 4 0.8
0.6 0.6 4
5 >
g g
3 3
& &
0.4 0.4
0.21 0.2
0.0 T T T T T T 0.0 T T T T T T T
) 10 20 30 40 50 0 20 40 60 80 100 120
epoch epoch
(a) Initial Set (b) 50% Set
1.0 10
0.8 0.8 4
0.6 4 0.6
» >
g g
3 g
8 g =
0.44 0.4
0.21 0.21
0.0 T T T T T T T T 0.0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
epoch epoch

(c) 70% Set

(d) 90% Set

Figure 4.25: Validation performance of the 8conv3 architecture over the rollable dataset.

0.20

0.15

0.10

0.05

0.00 T T

0.0 0.2 0.4

0.6 0.8 10

val_acc

0.6 1

0.4 1

0.2

0.0 T

0.0 0.2 0.4

0.6 0.8 1.0
acc

Figure 4.26: Final performance of 8conv3 variants on Rollable dataset.

72 Ambiguity Reduction and Features Learning

0.8 4

0.8
0.6 t S\E ; 0.6 4
Y " 0.4
N —
0.2 0.2
0.0-1— r r r r r r r r 0.0-1— - T T v
0 10 20 30 40 50 60 70 80 0 20 40 60 80
epoch epoch
(a) Initial Set (b) 50% Set

10

1.0

0.8 4 0.8 4

o

o
4
=

accuracy

accuracy
o
kS
Y
o
=

0.21 0.21

0.0

epoch epoch
(c) 70% Set (d) 90% Set

Figure 4.27: Validation performance of the 6conv3 architecture over the rollable dataset.

0.20

0.15

0.10

0.05

0.00
0.0 0.2 0.4 0.6 0.8 10

val_acc

0.8 1

0.6

0.4 1

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

acc

Figure 4.28: Final performance of 6conv3 variants on Rollable dataset.

4.4. Experiments and Results 73

4.4.5 Experiment 3: No Pretraining
4.4.5.1 Setup

In this third experiment we wanted to validate the importance of pretraining the
network (as was hypothesized in both previous experiments 4.4.3.2 and 4.4.4.2). So
we trained variants from the 6conv3, 8conv3 and 10conv3 networks with random
initial weights. We did not test the VGG16 variant as it is identical to the 10conv3
variant. The exact grid search parameters are detailed in the annexes (A.1.2.2).

4.4.5.2 Results

The overall results are presented in the following figures: Figure 4.29 and 4.30 plot
the final performance of each network respectively on the rollable dataset and on
the movable dataset.

As expected, the performances are no better than random (2 classes, thus 50%
correct prediction) for all architectures, confirming the importance of pretraining.
Even the training accuracy is substantially lower, close to randomness while it was
reaching over 90% with pretrained networks.

We can notice however that the performances with the rollable dataset is better,
which can be explained by the smaller size of the dataset, and the overall greater
diversity of appearances of objects. Thus it is easier for the network to over-fit and
simply learn to distinguish objects.

800

600

400 +

200

=
o

800

600

400

200 -

0 -
0.0 0.2 0.4 0.6 0.8 1.0
val_acc

Figure 4.29: Final performance of all models on rollable dataset without pretraining.
Top and bottom figure plot respectively the accuracy on training and validation sets.

74 Ambiguity Reduction and Features Learning

1000 ~

750 A

500 -

250

0.8 10

1000
800
600
400

200 -

0.0 0.2 0.4 0.6 0.8 1.0
val_acc

Figure 4.30: Final performance of all models on movable dataset without pretrain-
ing. Top and bottom figure plot respectively the accuracy on training and validation
sets.

4.5 Perceiving Affordances

The main incentive of this work is to enable a robot to better comprehend its
environment by using Affordance theory Gibson (1977). That is to enable a robot
to perceive its environment in terms of action possibilities.

To do so we proposed to use IP Bohg et al. (2017) to collect sensorimotor data,
then CNN and BN to learn the underlying representations (i.e. affordances). The
presented results, although limited to simple tasks, hinted that our method can
successfully enable a robot to learn the affordances of objects by re-purposing the
convolutional layers of a pretrained CNN.

However learning an affordance and perceiving it are two different things. To
learn an affordance is to discover the existing relations between action capabilities
and sensory inputs. Which in the formalism from Sahin et al. (2007) consists
in learning the relations between objects, actions and effects. While to perceive
affordances is to infer the action possibilities offered by a scene. Which, respectively,
consists in inferring the effects that the actions available to the agent could produce
on the objects from the scene.

Therefore how can our method be used in that aspect ? In our approach this
can be done in two ways:

e Segment the environment into objects hypothesis according to the method
presented in 4.2.3. Then compute their features (both predefined and newly
trained CNN). Finally infer the affordances through the BN.

e Convert a trained CNN into a fully convolutional network FCN, then directly

4.6. Conclusion and Discussion 75

compute a 2D heatmap of the environment.

The first method is straight forward considering our overall model. Through our
segmentation method the agent can create hypothesis of objects, extract 2d images
of them, and then finally classify the hypothesis using the trained CNNs.

The second method however requires to firstly convert a trained network into a
FCN. However it has the noticeable advantage of not requiring any a priori knowl-
edge of the structure of the environment. Once the FCN is created, it can be used
as it is, to compute a heatmap of the scene. Furthermore in our approach each CNN
is partially specific to an action. Thus, without any prior information of the envi-
ronment, the agent can use a FCN to detect the interesting parts of its environment
in regard of the associated affordance.

4.6 Conclusion and Discussion

4.6.1 Contributions and Limitations

In this chapter we proposed a method to discover affordances while learning the
corresponding pertinent visual features. Overall the presented method is able to
correctly re-purpose a pretrained CNN to learn features relevant to an affordance
with some promising properties:

e The architecture and meta-parameters of the CNNs are not crucial in these
tasks of features extraction. Thus a single network architecture will fit dif-
ferent tasks, which is a required property of the model in order to allow for
open-ended learning.

e An ambiguity can be reduced in a small number of objects. Hence in a real
robotic setup the agent can learn an affordance without requiring to interact
with thousands of objects. Which is necessary if we expect the agent to learn
or at least adapt a pre-existing affordance in a real environment.

However as the results have shown, some strong limitations also remains:

e The quality of the pretraining is crucial. There is a significant gap in per-
formance between the CNNs trained on our custom dataset (containing 22
classes), and the CNNs trained on a dataset containing a thousand classes.
This means that this method cannot be done in a completely agnostic ap-
proach, and requires some pre-existing knowledge about the structure of the
environment in the form of pretrained weights. However the honorable per-
formance of the lesser network such as the 10conv3 iteration see figure 4.23
and 4.12, especially when training with 50% or 70% of the dataset indicates
that this pretraining gap is reachable. By reachable we refer to the initial
intention of this approach, which is to enable a life-long learning of visual fea-
tures by incorporating this method in a developmental learning framework.

76 Ambiguity Reduction and Features Learning

e The picking order is critical. Random sampling results in a high variance of
the validation performance of the networks. This however can be dampened
by pretraining, as the results of VGG16 variant network have shown. This
means that a meta-learning controller must be added in order to evenly pick
objects from the dataset, and furthermore, a motivational system to guide the
agent interactions.

It is noticeable that the way the features are learned fit well with the paradigm of
active perception and affordances. The features are directly linked to the affordance,
therefore to the corresponding effect and action. Which mean that our method
enable the system to build representation that will let it perceive the world in term
of actions and motivations.

More precisely, when converting a trained CNN to a FCN, the agent can inter-
pret images in terms of actions results. Thus it can be used by a motivation system
to directly perceive interesting area of the environment for a specific interaction.

If the agent wishes to look for a hammer, it needs only using the corresponding
FCN. Furthermore the processing of one image through the FCN is one degree of
magnitude faster than the segmentation appraoch. Thus it is usable in real time
without impeding the responsiveness of the agent.

In a way, the ability for the agent to ’directly’ perceive the affordance through
the FCN could be related to the original view of Gibson on affordances.

4.6.2 Future Work

As mentioned above, the proposed approach remains preliminary by some aspects,
and the results need to be extended to more real robotic setup to better outline the
contribution of this method.

We are considering several directions for future work:

e FCN: The perspective of using the trained CNNs to directly perceive affor-
dances should be studied more. Combined with a motivational system to
select which set of features to use at a given time, combining heatmap could
enable the agent to directly perceive in its environment objects that fits its
current goal. For instance combining graspable with heavy when looking for
a hammer.

« More Robotic Setup: So far we only tested our methods in 2 scenario, a
significant improvement would be to test it with several others, more complex
ones.

o Different Agents: One fundamental aspect of affordances is that the relata
learn by an agent are directly correlated to its perceptive and motor capa-
bilities. Therefore, 2 different agents in an identical environment should not
build the same affordances representations. We could explore that aspect by
implementing our model on different robotic setup. This could be done for

4.6. Conclusion and Discussion 77

instance simply by altering the sensor capabilities of the agent (e.g. by chang-
ing color images to grey images) or motor capabilities (smaller gripper, wider
grip, etc). Or by using a whole different platform, for instance a turtle bot.

e Removing Action Predefinition: In this work we focus on removing the
predefinition of object’s features on the assumption that they limit the space
of discoverable affordances. And we proposed the concept of ambiguity to
do so. An interesting perspective could be to remove the predefinition of
actions using the same concept. The agent creates sensorimotor data by
exploring its motor space, at which point it can discover an action that results
in an ambiguity, i.e., this action produces different effects on otherwise similar
objects. In other words we could use the ambiguity detection to drive a motor
control exploration.

CHAPTER 5

Conclusion and Discussion

Contents
5.1 Contributions ¢« i i i i e e e e e e e e e e e e e 79
5.2 Discussion and Future Work 79

5.1 Contributions

In this thesis we have proposed a framework for learning affordances while simul-
taneously learning the corresponding pertinent visual features. The main goal was
to enable life-long learning by avoiding the predefinition of visual features.

The methods relies on a few assumptions:

1. The extraction of features is only visual, thus it limits the nature of the
discoverable affordances.

2. The clustering is based on the ability of the agent to perceive the adequate
environmental features.

3. The agent requires prior knowledge in order to act (action primitive) and to
segment the environment (objects segmentation).

5.2 Discussion and Future Work

In the proposed approach, when encountering an ambiguity the proposed solution
is to create a new visual feature to reduce it. However the actual required feature
might not be visual, but haptic, or proprioceptive, an extension to our method
could be to integrate a broader sensory spectrum.

However it could be related to a more global problem of perception. The inherent
limits of sensors. Each agent is in fine limited by its own embodiment.

We do not use the time component to understand the environment. However
many approaches proposes to integrate signals over time to construct better rep-
resentations. For instance perceiving a round is the continuity of sensory input
through movement. Rather than actually perceiving a "circle".

The main limitation of our method lies in the pretraining. In this study we
proposed two different set of pretrained weights. And the results have demonstrated

80 Conclusion and Discussion

the gap between the two. It was to be expected, and furthermore it was our intention
to test the limits of the approach. In terms of applications it is not a problem
as weights are now easily available, as well as large datasets. So the method is
applicable in many contexts and with various input shape for the CNNs.

However it raises a question regarding our approach, can the features really be
trained in such a small number of interactions? In other words, if the features were
not already pre-existent in the network could they be built by our method? We
argued in section 4.2 that we intend the framework to be used as life-long learning
method. Thus each new ambiguity reduction contributes to building robust and
more general features in the lower layers of the CNNs.

But remains the problem of the bootstrap. Our method relies on a few hypoth-
esis, objects segmentation, effect detectors and primitives of actions.

As an extension and future work, we intend to include our method in a devel-
opmental learning framework.

An important advantage of our approach is that the built features are directly
linked to goals trough actions-effects, therefore they can be easily selected with
a focus or motivation system. In a broader aspect this question of whether an
affordance should be linked to a motivation is very interesting. In our opinion a
system only building affordances without motivation (i.e. using affordances as a
hierarchical evaluation of the environment for decision making) would not be useful
except for reactive agents. In the other hand a fully motivated system does not
really require affordances. More precisely in a fully motivated system, affordances
will most likely be limited to reinforcement learning. Or more precisely they will
not distinguish themselves from it. Therefore we believe that a good approach
could be to settle in the middle. Affordances bring a very good explanation of
what ’intuitive’ perception could be, and therefore enable the agent to perceive
the environment in an uncostly manner. Add a touch of motivation or state mind
to select which affordances to use at a current state and you get a good way of
trading off between computer cost and a qualitative perception of the environment
for predicting objects behavior.

Bibliography

Bajcsy, R. (1988). Active perception. (Cité en page 7.)

Bajcsy, R., Aloimonos, Y., and Tsotsos, J. K. (2018). Revisiting active perception.
Autonomous Robots, 42(2):177-196. (Cité en pages 7, 8 et 36.)

Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., et al. (2016). Interaction
networks for learning about objects, relations and physics. In Advances in neural
information processing systems, pages 4502-4510. (Cité en page 8.)

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., and
Sukhatme, G. S. (2017). Interactive perception: Leveraging action in percep-
tion and perception in action. IEEE Transactions on Robotics, 33(6):1273-1291.
(Cité en pages 3, 8,9, 14, 54 et 74.)

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep blue. Artificial intel-
ligence, 134(1-2):57-83. (Cité en page 2.)

Canziani, A., Paszke, A., and Culurciello, E. (2016). An analysis of deep neural
network models for practical applications. arXiv preprint arXiv:1605.07678. (Cité
en page 48.)

Chatila, R., Renaudo, E., Andries, M., Chavez-Garcia, R. O., Luce-Vayrac, P.,
Gottstein, R., Alami, R., Clodic, A., Devin, S., Girard, B., and Khamassi, M.
(2018). Toward Self-Aware Robots. Frontiers in Robotics and Al 5:88. (Cité en
page 14.)

Chavez-Garcia, R. O., Andries, M., Luce-Vayrac, P., and Chatila, R. (2016a). Dis-
covering and manipulating affordances. In 2016 International Symposium on
Ezperimental Robotics (ISER). (Cité en pages 14 et 38.)

Chavez-Garcia, R. O., Luce-Vayrac, P., and Chatila, R. (2016b). Discovering affor-
dances through perception and manipulation. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3959-3964. IEEE.
(Cité en pages 14, 38 et 42.)

Christoph Stein, S., Schoeler, M., Papon, J., and Worgotter, F. (2014). Object
partitioning using local convexity. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). (Cité en pages 19 et 42.)

Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on pattern analysis and machine intelligence,
24(5):603-619. (Cité en pages 19 et 42.)

82 Bibliography

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In 2009 IEEFE conference on computer
vision and pattern recognition, pages 248-255. Teee. (Cité en page 50.)

Dotov, D. G., Nie, L., and De Wit, M. M. (2012). Understanding affordances:
history and contemporary development of gibson’s central concept. Awvant: the
Journal of the Philosophical-Interdisciplinary Vanguard. (Cité en page 11.)

Gibson, J. J. (1966). The senses considered as perceptual systems. (Cité en page 10.)

Gibson, J. J. (1977). Perceiving, acting, and knowing: Toward an ecological psy-
chology. The Theory of Affordances, pages 67-82. (Cité en pages 3, 6, 8, 15, 36,
39 et 74.)

Gibson, J. J. (1979). The ecological approach to human perception. (Cité en pages 6,
10, 15 et 36.)

Hanson, A. (1978). Computer vision systems. Elsevier. (Cité en page 2.)

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, 1., and Salakhutdinov,
R. R. (2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580. (Cité en page 48.)

Hogman, V., Bjorkman, M., Maki, A., and Kragic, D. (2016). A sensorimotor
learning framework for object categorization. IEEFE Transactions on Cognitive
and Developmental Systems, 8(1):15-25. (Cité en page 8.)

Jones, K. S. (2003). What is an affordance? Ecological psychology, 15(2):107-114.
(Cité en page 11.)

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882. (Cité en page 45.)

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097-1105. (Cité en pages 45 et 48.)

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,
521(7553):436. (Cité en page 48.)

Li, K. and Meng, M. Q.-H. (2015). Learn like infants: A strategy for developmental
learning of symbolic skills using humanoid robots. International Journal of Social
Robotics, 7(4):439-450. (Cité en page 17.)

Lopes, M. and Santos-Victor, J. (2007). A developmental roadmap for learning by
imitation in robots. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 37(2):308-321. (Cité en page 14.)

Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G. (2003). Developmental
robotics: a survey. Connection science, 15(4):151-190. (Cité en page 39.)

Bibliography 83

Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J. A., and
Goldberg, K. (2017a). Dex-net 2.0: Deep learning to plan robust grasps with syn-
thetic point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312.
(Cité en page 39.)

Mabhler, J., Matl, M., Liu, X., Li, A., Gealy, D., and Goldberg, K. (2017b). Dex-net
3.0: Computing robust robot suction grasp targets in point clouds using a new
analytic model and deep learning. arXiv preprint arXiv:1709.06670. (Cité en
page 39.)

Nguyen, A., Kanoulas, D., Caldwell, D. G., and Tsagarakis, N. G. (2016). Detecting
object affordances with convolutional neural networks. In Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on, pages 2765-2770.
IEEE. (Cité en page 39.)

Nguyen, A., Kanoulas, D., Caldwell, D. G., and Tsagarakis, N. G. (2017). Object-
based affordances detection with convolutional neural networks and dense con-
ditional random fields. In International Conference on Intelligent Robots and

Systems (IROS). (Cité en page 39.)

Nilsson, H., Courtney, A., and Peterson, J. (2002). Functional reactive program-
ming, continued. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell, pages 51-64. ACM. (Cité en page 6.)

Oliva, A. (2005). Gist of the scene. In Neurobiology of attention, pages 251-256.
Elsevier. (Cité en page 2.)

O’Regan, J. K. and Noé, A. (2001). A sensorimotor account of vision and visual
consciousness. Behavioral and brain sciences, 24(5):939-973. (Cité en page 15.)

Papon, J., Abramov, A., Schoeler, M., and Worgotter, F. (2013). Voxel cloud
connectivity segmentation-supervoxels for point clouds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2027-2034.
(Cité en pages 18, 19 et 42.)

Pastore, N. (1974). Selective history of theories of visual perception: 1650-1950.
(Cité en page 7.)

Pelleg, D., Moore, A. W., et al. (2000). X-means: Extending k-means with efficient
estimation of the number of clusters. In Ieml, volume 1, pages 727-734. (Cité en
pages 37 et 44.)

Rawat, W. and Wang, Z. (2017). Deep convolutional neural networks for image
classification: A comprehensive review. Neural computation, 29(9):2352-2449.
(Cité en page 45.)

Sahin, E., Cakmak, M., Dogar, M. R., Ugur, E., and Ucoluk, G. (2007). To afford or
not to afford: A new formalization of affordances toward affordance-based robot

84 Bibliography

control. Adaptive Behavior, 15(4):447-472. (Cité en pages 15, 16, 17, 21, 27, 36,
A1 et 74.)

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of
statistics, 6(2):461-464. (Cité en page 22.)

Shannon, C. E. (1948). A mathematical theory of communication. Bell system
technical journal, 27(3):379-423. (Cité en page 22.)

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation
and support inference from rgbd images. In Furopean Conference on Computer
Vision, pages 746-760. Springer. (Cité en page 18.)

Simons, D. (2010). The monkey business illusion. Retrieved June, 12:2015. (Cité
en page 7.)

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556. (Cité en pages 46
et 48.)

Sucan, I. A. and Chitta, S. (2015). Moveit!(2015). (Cité en page 55.)

Sucan, I. A.,; Moll, M., and Kavraki, L. E. (2012). The open motion planning
library. IEEE Robotics & Automation Magazine, 19(4):72-82. (Cité en page 55.)

Tenenbaum, J. M. (1970). Accommodation in computer vision. Technical report,
Stanford Univ Ca Dept of Computer Science. (Cité en page 7.)

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing
bayesian network structure learning algorithm. Machine learning, 65(1):31-78.
(Cité en page 23.)

Ugur, E., Nagai, Y., Sahin, E., and Oztop, E. (2015). Staged development of robot
skills: Behavior formation, affordance learning and imitation with motionese.
IEEE Transactions on Autonomous Mental Development, 7(2):119-139. (Cité en
page 14.)

Ugur, E., Oztop, E., and Sahin, E. (2011). Goal emulation and planning in percep-
tual space using learned affordances. Robotics and Autonomous Systems, 59(7-
8):580-595. (Cité en page 39.)

Ugur, E. and Piater, J. (2016). Emergent structuring of interdependent affordance
learning tasks using intrinsic motivation and empirical feature selection. IEEFE
Transactions on Cognitive and Developmental Systems. (Cité en page 39.)

Van Hoof, H., Kroemer, O., and Peters, J. (2014). Probabilistic segmentation and
targeted exploration of objects in cluttered environments. IEEE Transactions on
Robotics, 30(5):1198-1209. (Cité en page 18.)

Bibliography 85

Varadarajan, K. M. and Vincze, M. (2012). Afnet: The affordance network. In Asian
Conference on Computer Vision, pages 512-523. Springer. (Cité en page 39.)

Wade, N. J. (2000). A natural history of vision. MIT press. (Cité en page 7.)

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? In Advances in neural information processing
systems, pages 3320-3328. (Cité en page 45.)

Zech, P., Haller, S., Lakani, S. R., Ridge, B., Ugur, E., and Piater, J. (2017).
Computational models of affordance in robotics: a taxonomy and systematic
classification. Adaptive Behavior, 25(5):235-271. (Cité en pages 11, 14 et 36.)

APPENDIX A

Annexes

In these annexes we present detailed versions of the methods that are used through-
out the manuscript (see section A.1). Along with supplementary results (see section
?7) and experiments details (see section A.1.1 and A.1.2).

A.1 Methods

This section presents supplementary details regarding the methods that we proposed
and their implementations.

A.1.1 CNNs Architectures

88

Annexes

input: | (None, 128, 128, 3)
output: | (None, 128, 128, 3)

input: | (None, 128, 128, 3)
input_2: InputLayer

input_1: InputL
Pt dnputLayer I put: | (None, 128, 128, 3)

input: | (None, 128, 128, 3)

input: | (None, 128, 128, 3)
output: | (None, 128, 128, 64)

block1_convl: Conv2D
output: | (None, 128, 128, 64)

‘ block1_convl: Conv2D

input: | (None, 128, 128, 64)
output: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)
block1_conv2: Conv2D

output: | (None, 128, 128, 64)

block1_conv2: Conv2D

input: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)
output: | (None, 64, 64, 64)

block1_pool: MaxPooling2D
‘ ock1_pool: MaxPooling! output: | (None, 64, 64, 64)

‘ block1_pool: MaxPooling2D

input: | (None, 64, 64, 64)
output: | (None, 64, 64, 128)

input: | (None, 64, 64, 64)
block2_convl: Conv2D

output: | (None, 64, 64, 128)

block2_convl: Conv2D

input: | (None, 64, 64, 128)

input: | (None, 64, 64, 128)
output: | (None, 64, 64, 128)

block2_conv2: Conv2D
- output: | (None, 64, 64, 128)

‘ block2_conv2: Conv2D

input: | (None, 64, 64, 128)

input: | (None, 64, 64, 128)
block2_pool: MaxPooling2D
output: | (None, 32, 32, 128)

block2_pool: MaxPooling2D
output: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)

block3_conv1: Conv2D input: | (None, 32, 32, 128)
- output: | (None, 32, 32, 256)

block3_conv1: Conv2D
- output: | (None, 32, 32, 256)

input: | (None, 32, 32, 256)

input: | (None, 32, 32, 256)
output: | (None, 32, 32, 256)

block3 2: Conv2D
‘ ock3_conv2: Conv! output: | (None, 32, 32, 256)

’ block3_conv2: Conv2D

input: | (None, 32, 32, 256)

input: | (None, 32, 32, 256)
output: | (None, 32, 32, 256)

block3_conv3: Conv2D
- output: | (None, 32, 32, 256)

’ block3_conv3: Conv2D

input: | (None, 32, 32, 256)

input: | (None, 32, 32, 256)
output: | (None, 16, 16, 256)

block3_pool: MaxPooling2D
output: | (None, 16, 16, 256)

‘ block3_pool: MaxPooling2D

input: | (None, 16, 16, 256)
output: | (None, 16, 16, 512)

input: | (None, 16, 16, 256)
block4_convl: Conv2D

output: | (None, 16, 16, 512)

block4_convl: Conv2D

input: | (None, 16, 16, 512)

input: | (None, 16, 16, 512)
output: | (None, 16, 16, 512)

block4. 2: Conv2D
‘ ock4_conv2: Conv! output: | (None, 16, 16, 512)

’ block4_conv2: Conv2D

input: | (None, 16, 16, 512)
output: | (None, 16, 16, 512)

block4_conv3: Conv2D

input: | (None, 16, 16, 512)
output: | (None, 16, 16, 512)

block4_conv3: Conv2D

input: | (None, 16, 16, 512)

input: | (None, 16, 16, 512)
output: (None, 8, 8, 512)

block4_pool: MaxPooling2D
output: [(None, 8, 8, 512)

‘ block4_pool: MaxPooling2D

input: | (None, 8, 8, 512)
output: | (None, 8, 8, 512)

input: | (None, 8, 8, 512)
block5_convl: Conv2D

output: | (None, 8, 8, 512)

block5_convl: Conv2D

input: | (None, 8, 8, 512)
output: | (None, 8, 8, 512)

block5_conv2: Conv2D input: | (None, 8, 8, 512)

output: | (None, 8, 8, 512)

‘ block5_conv2: Conv2D

input: | (None, 8, 8, 512)

input: | (None, 8, 8, 512)
output: | (None, 8, 8, 512)

block5 3: Conv2D
‘ lockS_conv onv. output: | (None, 8, 8, 512)

‘ block5_conv3: Conv2D

input: | (None, 8, 8, 512)

block5_pool: MaxPooling2D
output: [(None, 4, 4, 512)

block5_pool: MaxPooling2D [Linput: [(None, 8,8, 512) |
- | output: | (None, 4, 4, 512) |

input: | (None, 4, 4, 512)
output: [(None, 8192)

flatten: Flatten

input: | (None, 4, 4, 512)
output: | (None, 8192)

flatten: Flatten

input: | (None, 8192) LD input: | (None, 8192)
c1: Dense
output: | (None, 256) output: | (None, 256)

}

input: | (None, 256)
output: | (None, 256)

fcl: Dense

input: | (None, 256)

dropout_3: Dropout
output: | (None, 256)

dropout_1: Dropout

fe—
fe

input: | (None, 256)
output: | (None, 128)

input: | (None, 256
fc2: Dense input: | (None, 256)

utput: | (None, 128)

fc2: Dense

le—

g

input: | (None, 128) input: | (None, 128)
dropout_2: Dropout

output: | (None, 128) output: | (None, 128)

input: | (None, 128)

output: | (None, 2)

dropout_4: Dropout

input: . 128
fc3: Dense put: | (None, 128)

output: | (None, 2)

fc3: Dense

(a) VGG16__K Structure, 256x128 top block (b) VGG16 Structure, 256x128 top block

layers. layers.

Figure A.1: VGG16 Variants Architectures

A.1. Methods 89
X £ 1.1 i input: | (None, 128, 128, 3) . b3 L input: | (None, 128, 128, 3)
input_1: InputLayer input_3: InputLayer

put_ P v output: | (None, 128, 128, 3) output: | (None, 128, 128, 3)
i . i t: N , 128, 128, 3
blockl convl: Conv2D input: (None, 128, 128, 3) blockl_convl: Conv2D 1npu (None)
- ' output: | (None, 128, 128, 64) output: | (None, 128, 128, 64)
Plock] conva. Comvaly | 1mPUt: | (None, 128, 128, 64) blockl_convz: Conyzp | PuL_| (None, 128,128, 64) |
ockl_conv2: Conv output. | (None, 128, 128, 64) ‘ output: | (None, 128, 128, 64) ‘
l N 126,128 61 blockl 1: MaxPooling2D input: | (None, 128, 128, 64)
input: one, , , ockl_pool: MaxPooling:
block] pool: MaxPooling2D P | ¢) output: | (None, 64, 64, 64)
output: (None, 64, 64, 64) l
. l dropout_12: Dropout input: | (None, 64, 64, 64)
dropout_1: Dropout input: | (None, 64, 64, 64) - output: | (None, 64, 64, 64)
- output: | (None, 64, 64, 64)
l block2 convl: Conv2D ‘ input: | (None, 64, 64, 64) |
input: | (None, 64, 64, 64) - \ output: | (None, 64, 64, 128) |
block2_convl: Conv2D
- output: | (None, 64, 64, 128)
l block2_conv2: Conv2D input: | (None, 64, 64, 128)
input: | (None, 64, 64, 128) - ’ output: | (None, 64, 64, 128)
block2_conv2: Conv2D
output: | (None, 64, 64, 128) l

|

block2_pool: MaxPooling2D

input:

(None, 64, 64, 128)

input: | (None, 64, 64, 128)

block2_pool: MaxPooling2D

output: | (None, 32, 32, 128)

output:

(None, 32, 32, 128)

)

[input: | (None, 32, 32, 128) |
dropout_13: Dropout
- \ output: | (None, 32, 32, 128) |

input: | (None, 32, 32, 128)

block3_convl: Conv2D
- output: | (None, 32, 32, 256)
input: | (None, 32, 32, 256)

block3_conv2: Conv2D
- output: | (None, 32, 32, 256)

input: | (None, 32, 32, 128)
dropout_2: Dropout
output: | (None, 32, 32, 128)
input: | (None, 32, 32, 128)
block3_convl: Conv2D
- output: | (None, 32, 32, 256)
input: | (None, 32, 32, 256)
block3_convZ: Conv2D
- output: | (None, 32, 32, 256)

|

block3_pool: MaxPooling2D

input:

(None, 32, 32, 256)

output:

(None, 16, 16, 256)

\ input: | (None, 32, 32, 256) |
\ output: | (None, 32, 32, 256) |

block3_conv3: Conv2D

)

input: | (None, 16, 16, 256)
dropout_3: Dropout
output: | (None, 16, 16, 256)
input: | (None, 16, 16, 256)
flatten_1: Flatten
- output: (None, 65536)
input: | (None, 65536)
fcO: Dense
output: (None, 256)

)

dropout_4: Dropout

input:

output:

(None, 256)
(None, 256)

)

input:
fcl: Dense

(None, 256)

output:

(None, 128)

I

dropout_5: Dropout

input:

(None, 128)

output:

(None, 128)

|

input:
fc2: Dense

(None, 128)

output:

(None, 2)

input:

(None, 32, 32, 256)

block3_pool: MaxPooling2D

output:

(None, 16, 16, 256)

!

input: | (

None, 16, 16, 256)

dropout_14: Dropout

output: | (

None, 16, 16, 256)

| input: | (None, 16, 16, 256) \

flatten_3: Flatten |

output: | (None, 65536) \
input: | (None, 65536)
fc0: Dense
output: (None, 256)
input: | (None, 256)

dropout_15: Dropout

output

: | (None, 256)

input:
fcl: Dense

output:

(None, 256)
(None, 128)

input:

(None, 128)

dropout_16: Dropout

output

: | (None, 128)

!

input: | (Ni

one, 128)

fc2: Dense

output:

(None, 2)

(a) 6conv Structure, 256x128 top block lay- (b) 6conv3 Structure, 256x128 top block lay-

ers.

ers.

Figure A.2: 6conv and 6conv3 Variants Architectures

90

Annexes

input: | (None, 128, 128, 3)
input_7: InputLayer
output: | (None, 128, 128, 3)
input: (None, 128, 128, 3)
blockl_convl: Conv2D
- output: | (None, 128, 128, 32)

blockl_conv2: Conv2D

[input: [(None, 128, 128, 32) |

\ output: | (None, 128, 128, 32) \

input: | (None, 128, 128, 32)
blockl1_pool: MaxPooling2D
output: (None, 64, 64, 32)
input: | (None, 64, 64, 32)
dropout_34: Dropout
output: | (None, 64, 64, 32)
[input: | (None, 64, 64, 32) |
block2_convl: Conv2D
\ output: | (None, 64, 64, 64) \
input: | (None, 64, 64, 64)
block2_conv2: Conv2D
output: | (None, 64, 64, 64)
. input: | (None, 64, 64, 64)
block2_pool: MaxPooling2D
output: | (None, 32, 32, 64)

dropout_35: Dropout

[input: | (None, 32, 32, 64) |

\ output: | (None, 32, 32, 64) \

input: | (None, 32, 32, 64)

block3_convl: Conv2D
- output: | (None, 32, 32, 64)
input: | (None, 32, 32, 64)

block3_conv2: Conv2D
- output: | (None, 32, 32, 64)

block3_conv3: Conv2D

\ input: | (None, 32, 32, 64) \
\ output: | (None, 32, 32, 64) \

input: | (None, 32, 32, 64)
block3_pool: MaxPooling2D
output: | (None, 16, 16, 64)
input: | (None, 16, 16, 64)

dropout_36: Dropout

output: | (None, 16, 16, 64)

| input: \ (None, 16, 16, 64) \

flatten_7: Flatten |

output: ‘

(None, 16384) \

)

in
fcO: Dense

put: | (None, 16384)

oul

tput: (None, 256)

dropout_37: Dropout

input: | (None, 256)

(None, 256)

output:

fcl: Dense

input:

output:

(None, 256)
(None, 128)

dropout_38: Dropout

input: | (None, 128)

(None, 128)

output:

fc2: Dense

input:

(None, 128)

output:

(None, 2)

input: | (None, 128, 128, 3)
input_5: InputLayer
output: | (None, 128, 128, 3)
input: (None, 128, 128, 3)
blockl_convl: Conv2D
- output: | (None, 128, 128, 64)

[input: | (None, 128, 128, 64) |

blockl_conv2: Conv2D

\ output: | (None, 128, 128, 64) \

block1_pool: MaxPooling2D

input:

(None, 128, 128, 64)

output:

(None, 64, 64, 64)

)

input: | (None, 64, 64, 64)
dropout_23: Dropout
output: | (None, 64, 64, 64)
[input: | (None, 64, 64, 64) |
block2_convl: Conv2D
\ output: | (None, 64, 64, 128) |
input: | (None, 64, 64, 128)
block2_conv2: Conv2D
- output: | (None, 64, 64, 128)

|

block2_pool: MaxPooling2D

input

- | (None, 64, 64, 128)

output:

(None, 32, 32, 128)

[input: | (None, 32, 32, 128) |

dropout_24: Dropout ‘

output: | (None, 32, 32, 128) |
input: | (None, 32, 32, 128)

block3_convl: Conv2D
- output: | (None, 32, 32, 128)
input: | (None, 32, 32, 128)

block3_conv2: Conv2D
- output: | (None, 32, 32, 128)

input: | (None, 32, 32, 128) |

block3_conv3: Conv2D

output: | (None, 32, 32, 128) |

block3_pool: MaxPooling2D

input: | (None, 32, 32, 128)

(None, 16, 16, 128)

output:

!

input: | (None, 16, 16, 128)

dropout_25: Dropout

output:

(None, 16, 16, 128)

| input: | (None, 16, 16, 128) \

flatten_5: Flatten |

dropout_26: Dropout

output: | (None, 32768) \
input: | (None, 32768)
fc0: Dense
output: (None, 256)
input: | (None, 256)

output: | (None, 256)

fcl: Dense

input:

output:

(None, 256)
(None, 128)

dropout_27: Dropout

input: | (None, 128)

(None, 128)

output:

!

fc2: Dense

input:

(None, 128)

output:

(None, 2)

(a) 6conv3_s Structure, 256x128 top block (b) 6conv3_1 Structure, 256x128 top block

layers.

layers.

Figure A.3: 6conv3__s and 6conv3__1 Variants Architectures

A.1. Methods

91

] 2 TnputL. [input: [(None, 128, 128, 3) |
input_2: InputLayer [‘output: | (None, 128, 128, 3) |

[input: [(None, 128,128, 3) |
[output: | (None, 128, 128, 64) |

|

[input: [(None, 128, 128, 64) |
| output: | (None, 128, 128, 64) |

blockl_convl: Conv2D

blockl_conv2: Conv2D

] [input: | (None, 128, 128, 64) |
block1_pool: MaxPooling2D Foutput: | None, 64, 64, 69 |

input: | (None, 64, 64, 64)

dropout_6: Dropout
output: | (None, 64, 64, 64)

[input: | (None, 64, 64, 64) |
\ output: | (None, 64, 64, 128) \

|

block2_conv2: Conv2D ‘ input: | (None, 64, 64, 128) ‘
- | output: [(None, 64, 64, 128) |

‘ block2_convl: Conv2D

] [input: | (None, 64, 64, 128) |
block2_pool: MaxPooling2D
| output: | (None, 32, 32, 128) |

)

[input: [(None, 32, 32, 128) |
| output: | (None, 32,32,128) |

!

block3_convl: Convzp | 2Pt | (None,32,32,128) |
- | output: [(None, 32, 32, 256) |

|

} input: | (None, 32, 32, 256) \
| output: | (None, 32, 32, 256) |

dropout_7: Dropout

‘ block3_conv2: Conv2D

[input: | (None, 32, 32, 256) |
| output: \ (None, 16, 16, 256) \

‘ block3_pool: MaxPooling2D

4 D [input: [(None, 16, 16, 256) |
ropout_8: Dropout [‘output: | (None, 16, 16, 256) |

[input: [(None, 16, 16, 256) |
| output: | (None, 16, 16, 512) |

)

[input: [(None, 16, 16, 512) |
| output: | (None, 16, 16, 512) |

| input: \ (None, 16, 16, 512) \
| output: | (None, 8 8,512) |

block4 convl: Conv2D

block4_conv2: Conv2D

block4_pool: MaxPooling2D

input: | (None, 8, 8, 512)

dropout_9: Dropout
output: | (None, 8, 8, 512)

input: | (None, 8, 8, 512)

flatten_2: Flatten
- output: (None, 32768)

input: | (None, 32768)
output: | (None, 256)

fcO: Dense

input: | (None, 256)

dropout_10: Dropout
output: | (None, 256)

input: | (None, 256)
output: | (None, 128)

fc1: Dense

input: | (None, 128)

dropout_11: Dropout
output: | (None, 128)

input: | (None, 128)
output: | (None, 2)

fc2: Dense

input: | (None, 128, 128, 3)
output: | (None, 128, 128, 3)

input_4: InputLayer

input: | (None, 128, 128, 3)

block1_convl: Conv2D
output: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)

block1_conv2: Conv2D
- output: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)

block1_pool: MaxPooling2D
‘ ockl_pook: MaxFooling2h o tput: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)

dropout_17: Dropout
output: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)

block2_conv1: Conv2D
- output: | (None, 64, 64, 128)

input: | (None, 64, 64, 128)

block2_conv2: Conv2D
- output: | (None, 64, 64, 128)

input: | (None, 64, 64, 128)

block2_pool: MaxPooling2D
output: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)

di t_18: D t
ropout_tE: Bropout T tput: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)

block3_conv1: Conv2D
- output: | (None, 32, 32, 256)

input: | (None, 32, 32, 256)

block3_conv2: Conv2D
output: | (None, 32, 32, 256)

input: | (None, 32, 32, 256)

block3_conv3: Conv2D
- output: | (None, 32, 32, 256)

input: | (None, 32, 32, 256)

block3_pool: MaxPooling2D
‘ ©0CKS_Ppook MaxFoolingaY I utput: | (None, 16, 16, 256)

input: | (None, 16, 16, 256)

dropout_19: Dropout
output: | (None, 16, 16, 256)

input: | (None, 16, 16, 256)

block4_conv1: Conv2D
- output: | (None, 16, 16, 512)

input: | (None, 16, 16, 512)

block4_conv2: Conv2D
- output: | (None, 16, 16, 512)

input: | (None, 16, 16, 512)
output: | (None, 16, 16, 512)

block4_conv3: Conv2D

input: | (None, 16, 16, 512)

block4_pool: MaxPooling2D
‘ ockApook MaxTooling2h I tput: | (None, 8, 8, 512)

input: | (None, 8, 8, 512)

dropout_20: Dropout
sutput: | (None, 8, 8, 512)

input: | (None, 8, 8, 512)

flatten_4: Flatten
- output: | (None, 32768)

input: | (None, 32768)
output: | (None, 256)

fcO: Dense

input: | (None, 256)

dropout_21: Dropout
output: | (None, 256)

e

input: | (None, 256)
output: | (None, 128)

fcl: Dense

te—i

input: | (None, 128)

dropout_22: Dropout
output: | (None, 128)

f—

input: | (None, 128)
output: | (None, 2)

fc2: Dense

(a) 8conv Structure, 256x128 top block layers. (b) 8conv3 Structure, 256x128 top block lay-

ers.

Figure A.4: 8conv and 8conv3 Variants Architectures

92

input: | (None, 128, 128, 3)

t_8: InputL.
IPUL_E: dnputLayer I put: | (None, 128, 128, 3)

input: | (None, 128, 128, 3)

block1_convl: Conv2D
output: | (None, 128, 128, 32)

input: | (None, 128, 128, 32)

block1_conv2: Conv2D
- output: | (None, 128, 128, 32)

input: | (None, 128, 128, 32)

block1_pool: MaxPooling2D
‘ ock_pook MaxTooling< o tput: | (None, 64, 64, 32)

input: | (None, 64, 64, 32)
dropout_39: Dropout
output: | (None, 64, 64, 32)

input: | (None, 64, 64, 32)

block2_convl: Conv2D
- output: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)

block2_conv2: Conv2D
- output: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)

block2_pool: MaxPooling2D
output: | (None, 32, 32, 64)

input: | (None, 32, 32, 64)

dropout_40: Dropout
‘ ropout_Sh: Bropott I put: | (None, 32, 32, 64)

input: | (None, 32, 32, 64)

block3_convl: Conv2D
- output: | (None, 32, 32, 64)

input: | (None, 32, 32, 64)

block3_conv2: Conv2D
output: | (None, 32, 32, 64)

input: | (None, 32, 32, 64)

block3_conv3: Conv2D
- output: | (None, 32, 32, 64)

input: | (None, 32, 32, 64)

block3_pool: MaxPooling2D
‘ ockSpook Maxtoolng e I tput: | (None, 16, 16, 64)

input: | (None, 16, 16, 64)
dropout_41: Dropout
output: | (None, 16, 16, 64)

input: | (None, 16, 16, 64)

block4_conv1: Conv2D
- output: | (None, 16, 16, 128)

input: | (None, 16, 16, 128)
block4_conv2: Conv2D
- output: | (None, 16, 16, 128)

input: | (None, 16, 16, 128)

block4_conv3: Conv2D
- output: | (None, 16, 16, 128)

input: | (None, 16, 16, 128)

block4_pool: MaxPooling2D
’ ockApook Maxtooling2h I itput: | (None, 8, 8, 128)

input: | (None, 8, 8, 128)

dropout_42: Dropout
output: | (None, 8, 8, 128)

input: | (None, 8, 8, 128)

flatten_8: Flatten
- output: | (None, 8192)

input: | (None, 8192)
output: | (None, 256)

fcO: Dense

i

input: | (None, 256)

dropout_43: Dropout
output: | (None, 256)

f—

input: | (None, 256)
output: | (None, 128)

fcl: Dense

—|

input: | (None, 128)

dropout_44: Dropout
output: | (None, 128)

-~

input: | (None, 128)
fc2: Dense
output: | (None, 2)

) input: | (None, 128, 128, 3)
input_6: InputLayer
output: | (None, 128, 128, 3)

input: | (None, 128, 128, 3)

block1_convl: Conv2D
output: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)
block1_conv2: Conv2D
- output: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)

block1_pool: MaxPooling2D
‘ ockl_pool: MaxFoolingeh o tput: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)
dropout_28: Dropout
output: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)

block2_conv1: Conv2D
- output: | (None, 64, 64, 128)

input: | (None, 64, 64, 128)

block2_conv2: Conv2D
- output: | (None, 64, 64, 128)

input: | (None, 64, 64, 128)

block2_pool: MaxPooling2D
output: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)

dropout_29: Dropout
ropout_£5: Bropout 1= tput: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)

block3_conv1: Conv2D
- output: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)

block3_conv2: Conv2D
output: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)

block3_conv3: Conv2D
- output: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)

block3_pool: MaxPooling2D
‘ ocks_pook Maxtoolingeh o tput: | (None, 16, 16, 128)

input: | (None, 16, 16, 128)

dropout_30: Dropout
output: | (None, 16, 16, 128)

input: | (None, 16, 16, 128)

block4_convl: Conv2D
- output: | (None, 16, 16, 256)

input: | (None, 16, 16, 256)

block4_conv2: Conv2D
- output: | (None, 16, 16, 256)

input: | (None, 16, 16, 256)

block4_conv3: Conv2D
- output: | (None, 16, 16, 256)

input: | (None, 16, 16, 256)

block4_pool: MaxPooling2D
‘ ockApook MaxTooling2h I itput: | (None, 8, 8, 256)

input: | (None, 8, 8, 256)

dropout_31: Dropout
output: | (None, 8, 8, 256)

input: | (None, 8, 8, 256)

flatten_6: Flatten
- output: | (None, 16384)

input: | (None, 16384)
output: | (None, 256)

fcO: Dense

input: | (None, 256)

dropout_32: Dropout
output: | (None, 256)

e

input: | (None, 256)
output: | (None, 128)

fcl: Dense

te—i

input: | (None, 128)

dropout_33: Dropout
output: | (None, 128)

f—

input: 128
£c2: Dense |nPut: | (None, 128)
output: | (None, 2)

(a) 8conv3_s Structure, 256x128 top block (b) 8conv3_1 Structure, 256x128 top block
layers. layers.

Figure A.5: 8conv3__s and 8conv3__1 Variants Architectures

A.1. Methods

input: | (None, 128, 128, 3)
input_9: InputLayer
output: | (None, 128, 128, 3)

input: | (None, 128, 128, 3)
input_11: InputLayer
output: | (None, 128, 128, 3)

input: | (None, 128, 128, 3) input: | (None, 128, 128, 3)
blockl_convl: Conv2D block1_conv1: Conv2D
output: | (None, 128, 128, 64) output: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)
block1_convZ: Conv2D
= output: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)
block1_conv2: Conv2D
= output: [(None, 128, 128, 64)

blockl 1: MaxPooling2D input: | (None, 128, 128, 64) block1 1
ockl_pook Maxtooling 2 I tput: | (None, 64, 64, 64) ockl_poo

[input: [None, 128,128, 64) |
[output: | (None, 64, 64, 64) |

g’

input: | (None, 64, 64, 61
dropout_45: Dropout |nPut | (None)
output: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)
dropout_59: Dropout
output: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)
block2_convl: Conv2D
- output: | (None, 64, 64, 128)

input: | (None, 64, 64, 64)
block2_conv1: Conv2D
- output: | (None, 64, 64, 64)

input: | (None, 64, 64, 128)
block2_conv2: Conv2D
- output: | (None, 64, 64, 128)

input: | (None, 64, 64, 64)
block2_conv2: Conv2D
~ output: | (None, 64, 64, 64)

[input: | None, 64, 64, 128) |
block2_pool: D
- |"output: | (None, 32,32, 128) |

block2_pool:

S}

input: | (None, 64, 64, 64) |
output: | (None, 32, 32, 64) |

input: | (None, 32, 32, 128) input: | (None, 32, 32, 64)
dropout_46: Dropout dropout_60: Dropout
| ropout_46: Dropout |- 198 | ropout_b0: Dropout It | (None, 32, 32, 64)

input: | (None, 32, 32, 128)
block3_conv1: Conv2D
- output: | (None, 32, 32, 256)

input: | (None, 32, 32, 64)
block3_conv1: Conv2D
- output: | (None, 32, 32, 64)

block3 conv2: Conv2D input: | (None, 32, 32, 256)
- output: | (None, 32, 32, 256)

block3 conv2: ConvaD |_MPuti_| Mone, 32, 32, 64)
- output: | (None, 32, 32, 64)

input: | (None, 32, 32, 256)
block3_conv3: Conv2D
- output: | (None, 32, 32, 256)

input: | (None, 32, 32, 64)
block3_conv3: Conv2D
-~ output: | (None, 32, 32, 64)

blocks N q\ input: ‘(Nane, 32,32, 256)\
ockSpot ["output: | (None, 16, 16, 256) |

block3_pool:

o

input:_| (None, 32, 32, 64) |
output: | (None, 16, 16, 64) |

input: | (None, 16, 16, 256)
dropout_47: Dropout
output: | (None, 16, 16, 256)

input: | (None, 16, 16, 64)
dropout_61: Dropout
output: | (None, 16, 16, 64)

input: | (None, 16, 16, 256)
block4_convl: Conv2D output: | (None, 16, 16, 512)

input: | (None, 16, 16, 64)
blockd_conv1: Comv2D -

input: | (None, 16, 16, 512)
block4_conv2: Conv2D
- output: | (None, 16, 16, 512)

input: | (None, 16, 16, 128)
block4_conv2: Conv2D
~ output: | (None, 16, 16, 128)

input: | (None, 16, 16, 512)
block4_conv3: Conv2D
- output: | (None, 16, 16, 512)

input: | (None, 16, 16, 128)
block4_conv3: Conv2D
- output: | (None, 16, 16, 128)

blockd pool b | input: [None, 16, 16,512) |
0CkApoot [output: | (None, 8,8,512)_|

input: | (None, 16, 16, 128)
block4_pool: MaxPooling2D
output: | (None, 8, 8, 128)

oot 46 Dromom | Pt | (Nene 6,6, 512) dropout_62: Dropout |Puti | (Yone. 8, 8, 126)
ropout_48: Dropout [ropout_ba: Dropout o ut: | (Nome, 8, 8, 128)

t: (None, 8, 8, 512
block5_convl: ConvzD |2Pus: | (one,)
output: | (None, 8, 8, 512)

i t: (None, 8, 8, 128)
blockS_conv1: ConyzD |1iPut: | (None,)
output: | (None, 8, 8, 128)

block5_conv2: ConvzD [nPUt_| (None, 8, 8, 512) blockS conv2: ConvzD | "PUE_| (None, 8,8, 128)
- output: | (None, 8, 8, 512) - output: | (None, 8, 8, 128)

input: | (None, 8, 8, 512) input: | (None, 8, 8, 128)
block5_conv3: Conv2D block5_conv3: Conv2D
output: | (None, 8, 8, 512)

output: | (None, 8, 8, 128)

input: | (None, 8, 8, 512) \ input: | (None, 8, 8, 128) j
blockS_pool: MaxPooling2D blockS5_pool 2D
output: | (None, 4, 4, 512) | output: [(None, 4, 4, 128) |

d ¢ 49: D ¢ input: | (None, 4, 4, 512) & t 63: D v input: (None, 4, 4, 128)
ropout_25: Bropout i put: | (None, 4, 4, 512) Fopout_ba: Dropout [out: | (None, 4, 4, 128)

otton o Flateen | PUL | None, 4 4,512) flatton_11: Flatten |20t | one, 4, 4, 128)
atten_9: Flatten (- latten_ e I tput: | (None, 2048)

(None, 8192)

£0: D (None, 2048)
0: Dense
(None, 256)

(None, 256)

input: | (None, 256)
dropout_50: Dropout
output: | (None, 256)

input: | (None, 256)
dropout_64: Dropout ,
output: | (None, 256)

(None, 256)

ense |22]
(None, 128)

(None, 256)

fcl: Dense
(None, 128)

input: | (None, 128)
dropout_51: Dropout

input:_| (None, 128)
dropout_65: Dropout
output: | (None, 128) output: | (None, 128)

(None, 128)

(None, 128)

fc2: Donso
None,

(a) 10conv3 Structure, 256x128 top block lay- (b) 10conv3_s Structure, 256x128 top block
ers.

layers.

Figure A.6: 10conv3 and 10conv3__s Variants Architectures

94

Annexes

input: | (None, 128, 128, 3)
input_10: InputLayer
output: | (None, 128, 128, 3)

input: | (None, 128, 128, 3)
block1_convl: Conv2D
= output: | (None, 128, 128, 64)

input: | (None, 128, 128, 64)
block1_conv2: Conv2D
= output: [(None, 128, 128, 64)

[input: [None, 128,128, 64) |

‘ block1_pool g

[output: | (None, 64, 64, 64) |

input: | (None, 64, 64, 64)
dropout_52: Dropout
output: | (None, 64, 64, 64)

input: | (None, 64, 64, 64)
block2_convl: Conv2D
- output: | (None, 64, 64, 128)

input: | (None, 64, 64, 128)
block2_conv2: Conv2D
- output: | (None, 64, 64, 128)

input: | (None, 64, 64, 128)
block2_pool: MaxPooling2D
output: | (None, 32, 32, 128)

. input: | (None, 32, 32, 128)
dropout_53: Dropout
ropout_v3: Dropoul L ut: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)
block3_convl: Conv2D
- output: | (None, 32, 32, 128)

block3 conv2: Conv2D input: | (None, 32, 32, 128)
- output: | (None, 32, 32, 128)

input: | (None, 32, 32, 128)
block3_conv3: Conv2D
- output: | (None, 32, 32, 128)

ook oot MaxPoomazp | P | (Vone, 32,32, 128)
Ok POt X Oong D I itput: | (None, 16, 16, 128)

input: | (None, 16, 16, 128)
dropout_54: Dropout
output: | (None, 16, 16, 128)

input:_| (Nono, 16, 16, 128)
blockd:_conv1: Conv2D S

input: | (None, 16, 16, 256)
block4_conv2: Conv2D
~ output: | (None, 16, 16, 256)

input: | (None, 16, 16, 256)
block4_conv3: Conv2D
- output: | (None, 16, 16, 256)

input: | (None, 16, 16, 256)
block4_pool: MaxPooling2D
output: | (None, 8, 8, 256)

input: | (None, 8, 8, 256)

dropout_55: Dropout
‘ ropout_95: Bropout I ut | (None, 8, 8, 256)

i L (None, 8, 8, 256)
block5_conv1: ConyzD |1iPut: | (None,)
output: | (None, 8, 8, 256)

blocks_conv2: ConvzD | mPut:_| (None, 5, 8, 256)
- output: | (Non, 8, 8, 256)

input: | (None, 8, 8, 256)
block5_conv3: Conv2D
- output: | (None, 8, 8, 256)

blockS pool “\ input: | (None, 8, 8, 256) |
> [‘output: | (None, 4, 4, 256) |

romout 56: Dronout | 1PU | (Yone, 4 4 256)
ropout_sb: Dropout o ut: | (None, 4, 4, 256)

otton 10 Fration | Ut | Mone, 4,4, 256)
atten 2 e put: | (None, 4096)

None, 10967

(None, 256)

input: | (None, 256)
output: | (None, 256)

dropout_57: Dropout

(None, 256)

fcl: Dense
(None, 128)

input:_| (None, 128)
dropout_58: Dropout
output: | (None, 128)

(None, 128)

fc2: Donso
None,

Figure A.7: 10conv3_ 1 Structure, 256x128 top block layers.

A.1. Methods

95

A.1.2 Grid Search Parameters

A.1.2.1 Experiment 1 and

2: Movable and Rollable Objects

Grid search meta-parameters for experiment 1 and 2 :

Define grid

grid__params ['range_input_shape’]

grid__params | 'range_lbl_shape’]
grid__params ['range_1lbl_type’]

grid__params | ’'range_last_layers__

grid_params|’range_ split_ratio’]

grid__params | ’range_nb_ classes’]
grid__params | ’range_batch_ size’]
grid__params |’ ’range_optimizers’]

{ type’:’SGD’, ’1r’:0.0
{ type’:’SGD’, ’1r’:0.0
{ type’:’SGD’, ’l1r’:0.0

]

grid__params | ’range_callbacks’]

[

None,

[early stopping, reduce

early__sto ing , reduce
y pping

]

grid__params | 'range_fine__tuning’
grid__params ['range__model__type’]
dl_models.DL_MODEL_6CONV3,
dl_models .DL_MODEL_8CONV3,
dl_models .DL_MODEL_10CONV3,
dl_models .DL_MODEL VGG16_K
]

= [(128,128,3),
[(1,)]

(224,224,3)]

[int]

sizes’] = [[128, 32]]

= [n,0.5,0.7,0.9]

= [2]

= [32]

=1
01, ’decay’:1e—6, ’'nb_epoch’:10},
005, ’decay’:l1e—6, ’'nb_epoch’:100},
001, ’decay’:1e—6, ’'nb_epoch’:100}

[

_Ir_on_plateau],
_Ir_on_plateau]

] = [’by_block’]
=
dl_models .DL_MODEL_ 6CONV3_S, dl_models.DL_MODEL_6CONV3_L,
dl_models .DL_MODEL 8CONV3_S, dl_models.DL_ MODEL_ 8CONV3_ L,
dl_models .DL_MODEL _ 10CONV3_S, dl_models.DL MODEL_ 10CONV3_L,

datagen = Image.ImageDataGenerator (

rescale=1./255,
rotation__range=90,
width__shift_range=0.2,
height__shift_range=0.2,
horizontal__flip=True,
vertical_flip=True)
grid__params ['range_datagen’]

grid__params | ’nb_run’] = [5]

A.1.2.2 Experiment 4: No

[datagen]

Pretraining

Grid search meta-parameters for experiment 4:

Define grid
grid__params | 'range_input_shape’
grid__params | 'range_lbl_shape’]
grid__params | 'range_lbl_type’]

grid__params|[’range_last_layers__

(64,
[256,

32],
64,

[128,
32],

32],
(512,

[128,
128,

]

grid_params|’range_split_ratio’
grid__params | ’range_nb_ classes’]
grid__params | ’range_batch_size’]
grid__params|’range_optimizers’]
: ’: ’SGD’

’SGD’ ,
’SGD”’,

Plr 7
711‘7:
Plr 7

{’ type
{ type
{ type

s

s

]

grid__params | ’range_ callbacks’]
[

[early stopping],

[early__stopping,

[early stopping,

0.001,
0.0005,
0.0001,

reduce__
reduce__

] =

[(128,
[(1,)]
[int]
sizes]
64], [25

128, 3), (224, 224, 3)]

=
6, 64], [256, 128], [512, 128], [512, 256],

64]

]

.3,

]

0.5, 0.7, 0.9]

[
2
3

N— O

[
=
=1
decay ’:

‘decay ’:

’decay ’:

le—6,
le—6,
le—6,

’nb__epoch ’:
'nb__epoch ’:
’nb__epoch ’:

30},
100},
100}

[

Ir_on_plateau],
Ir_on__plateau]

96

Annexes

]

grid__params | 'range_pretrained_weights’] = [None]

grid__params | ’range_fine_tuning’] = [’by_block’, ’whole’]

grid__params | 'range__model type’] = [
dl_models.DL_MODEL VGGI6,
dl_models.DL_MODEL 6CONV3, dl_models.DL MODEL 6CONV3 S, dl_models.DL MODEL 6CONV3 L,
dl_models .DL_MODEL_8CONV3, dl_models.DL_MODEL_8CONV3_S, dl_models.DL_ MODEL 8CONV3_ L,

dl_models.DL_MODEL_10CONV3, dl_models.DL_MODEL_10CONV3_S, dl_models.DL_ MODEL_10CONV3_L,

]

datagen = Image.ImageDataGenerator (
rescale=1. / 255,
rotation__range=90,
width__shift_range=0.2,
height__shift_range=0.2,
horizontal__flip=True,
vertical_ flip=True)

grid__params ['range_datagen’] = [datagen]

grid__params [’'nb_run’] = [2]

	Introduction
	The Problem of Scene Understanding
	Features Learning through Ambiguity Reduction
	Contributions
	Thesis Structure

	Context: From Perception to Affordance
	Introduction
	Passive Perception
	Active Perception
	Interactive Perception
	Affordances

	Probabilistic Learning of Affordances through Interaction
	Introduction
	Affordance Model and Definitions
	Affordance Definition
	Sensory Perception

	Affordances Learning
	Proposed Method
	Experiments and Results
	Partial Conclusion

	Composition of Affordances
	Affordances of Composite Objects
	Loss and Preservation of Affordances
	Experiments and Results

	Conclusion and Discussion

	Ambiguity Reduction and Features Learning
	Introduction
	The Limits of Predefined Features
	Related Work

	Revised Model and Ambiguity Definition
	Ambiguity Definition
	Affordance Revision
	Sensory Perception
	Effect Clustering
	Features Extraction

	Interaction Workflow
	Object Image Acquisition
	Action Execution
	Effect Detection and Clustering
	Ambiguity Detection and Reduction

	Experiments and Results
	Data Collection
	Experimental Setups
	Experiment 1: Pushable objects
	Experiment 2: Rollable objects
	Experiment 3: No Pretraining

	Perceiving Affordances
	Conclusion and Discussion
	Contributions and Limitations
	Future Work

	Conclusion and Discussion
	Contributions
	Discussion and Future Work

	Bibliography
	Annexes
	Methods
	CNNs Architectures
	Grid Search Parameters

