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List of

In particular, our contributions relate to the link between Uncertainty Quantification (UQ) mathematical methods and the physical analysis of accidental nuclear transients. This is done through the research of outliers (i.e., abnormal data in an existing sample that deviate from an expected "normal" behavior) in the set of functional outputs of a systems code simulator, CATHARE, and relating them to specific physical phenomena and events that occur during the transient. This chapter is introductory, and it firstly aims at providing the necessary elements to understand the industrial and scientific context of the works in section 1.1, also giving the main elements of the necessary framework adopted hereafter. Section 1.2 provides a general description of the two main application cases concerning Pressurized Water Reactors (PWR) that have been treated and which have also motivated these works, finishing in Section 1.3 with a brief description of recent works that have been developed in the same context. Section 1.4 describes the organization of the document and a brief description of the treated subjects in each chapter.

Context

These research activities are motivated by the need for constant improvement of techniques and methods as requested by the safety authorities to the nuclear industry.

The history of nuclear science and nuclear energy in France is a vast subject both from a historical and scientific point of view. The contributions of this country to the development of nuclear science dated back to the late 19th century, after the discovery of the first evidence of radioactivity by Henri Becquerel, which launched a whole scientific field that lasts until today. From a purely industrial point of view, several historical landmarks were achieved during the 20th century for the French nuclear industry. For instance, in the French case, one can mention the creation of one of the main research institutions in nuclear energy of the world, the CEA, which was created in 1945. The following decades saw the rising of a dynamic industry with the opening of the first nuclear power plant by EDF in the year 1962, which was followed by the construction of several dozens of new reactors in the country.

Nowadays, EDF operates 56 nuclear reactors, which produced a total of 379.5TWh in 2019 (RTE, 2019), which constituted 70.6% of the total electricity production in the country. These nuclear reactors may be classified into three categories according to their output power (see table 1.1). The strategic, industrial, and environmental importance of this industry cannot be understated. Table 1.1: Number of nuclear reactors in France and their corresponding electrical power outputs.

Nominal output power Number of reactors

900 MW 32 1300 MW 20 1450 MW 4 The relevance of this industry results in the close collaboration of all the most important actors that participate in it. Regarding the safety of the NPP, an independent administrative entity, the ASN (Autorité de Sûreté Nucléaire) ensures the control of nuclear safety and radiation protection in the country, providing the regulatory grounds on which the NPP may be opened, operated and decommissioned in France. It is also charged with the inspection of the installations, being capable of shutting down any one of them whenever the safety conditions are considered not to be fulfilled, also assisting the government in the event of a crisis. Finally, this institution is also responsible for guaranteeing the availability of information to the public regarding its activities and the state of nuclear safety and radiation protection.

In this context, EDF and other major actors of the industry are held accountable for the safety in the operation of their nuclear reactors and must fulfill the regulatory requirements imposed by the ASN, proving the safety of their installations. Originally, engineering studies made use of simplified physical models that were based on penalizing assumptions that provided conservative margins to the safety criteria imposed by the authorities. The advances in the computational modeling of nuclear systems and the increasing availability of data resulted in the development of more realistic numerical simulators that were more representative of the actual behavior of nuclear installations, and this resulted in the widespread use of these Best Estimate (BE) physical models. The use of this kind of tools is nowadays encouraged by the regulatory authorities as a complementary tool in safety studies and safety assessment (IAEA, 2001), and in the French case resulted in the development of the BE code CATHARE (Code Avancé de ThermoHydraulique pour les Accidents de Réacteurs à Eau) started its development in 1979, by the CEA, EDF, Framatome and the IRSN (Institut de Radioprotection et de Sûreté Nucléaire), the French public institute that acts as the technical advisor of the ASN in the radiological protection domain.

These codes allow the simulation of a wide variety of accidental nuclear transients and thermal-hydraulic systems and have opened whole fields of research regarding the use of numerical simulators in the nuclear safety context.

Nuclear transient simulation

The works developed in this document have been largely motivated by its application cases (presented in the next section). Generally speaking, a computer model (CATHARE) is available and capable of simulating specific accidental nuclear transients, i.e., sudden dynamic modifications of the physical state of a NPP that may occur during accidents or abnormal transients. In this case, the nuclear reactor in the NPP deviates from its safe operation domain, and the accidental transient progresses up until a new safe state is reached for the installation.

The CATHARE code, which is in constant improvement, has been developed and validated for a large variety of accidental situations [START_REF] Geffraye | Cathare 2 code validation on HE-FUS3 loop[END_REF] and constitutes a state of the art computer code that allows the estimation of the physical thermal-hydraulic parameters of interest (temperatures, pressures, flows...) during the course of the accident.

In practice, the complexity of the code imposes several limitations when estimating associated mathematical magnitudes. This is why CATHARE2 is frequently treated as a black-box computer model and represented by a mathematical function (in our case, M). The mathematical formulation is then:

X ⊂ R d → F * ⊂ F X → Z = M(X) (1.1)
where X ⊂ R d is the space of variation of the input variables. In many practical cases, and in our context, X may be written as the Cartesian product of the support of the marginal laws of every uncertain input, X = d k=1 X k , ∀X k ⊂ R. The outputs are defined as functional objects Z ∈ F, where F represents a functional space that appropriately models the outputs of the code and F * is the functional subspace on which they are defined. Frequently, F is taken as the space of continuous functions F = C([T ]), or a Hilbertian space, where T ⊂ R represents the time frame of definition of the simulated transient. Nuclear transients may showcase extremely different time frames, ranging from several minutes to hours and even days. Some examples of the kind of outputs that this code produces are provided in Figure Every input variable X k ∈ X k is representative of an uncertain physical parameter susceptible of being relevant for the considered nuclear transient. They model a wide variety of possible parameters, such as the initial pressure and temperature of specific components, constants of physical correlations and models, or certain parameters that define the specific analyzed scenario.

The treatment and physical analysis of the aforementioned output of the CATHARE code is difficult due to their large number and wide variety of shapes, which demands the development of specific techniques related to the Functional Data Analysis (FDA) mathematical framework, presented in detail in the next chapter. Indeed, the outputs generated by the code can be considered to take the form of univariate functions (in the mentioned cases, as functions of time), and thus they are modeled as objects that belong to infinite-dimensional vector spaces. The study of these mathematical objects was originated by the works of [START_REF] Grenander | Stochastic processes and statistical inference[END_REF] and was widely popularized in recent years thanks to the works of [START_REF] Ramsay | Functional Data Analysis[END_REF] as well as other authors such as [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF] and [START_REF] Horváth | Inference for functional data with applications[END_REF].

Uncertainty quantification

As it was mentioned, the use of numerical models or simulators that allow the modeling of complex physical systems is increasingly popular. In certain contexts, the nature (i.e., their economic cost, difficulty to create exact replicas, etc.) of the considered physical problems largely motivates the use of these simulators due to their complexity, their economic cost, or their hazardous nature.

In the specific context of the nuclear industry, real physical experimentation is severely limited by safety regulations, economic costs, and technical difficulties, which has encouraged engineers and researchers to develop Best Estimate (BE) codes such as the aforementioned CATHARE. For instance, an accidental nuclear transient is extremely complex in the sense that it entails the use of hundreds of components, single-phase and two-phase thermalhydraulic phenomena, also coupled with neutronic phenomena during potentially long periods of time (even days). All of these factors cannot be known and described, which implies that the knowledge and quantification of their associated uncertainty are essential in order to reliably use the mentioned numerical simulators, providing the grounds for the Best Estimate Plus Uncertainty (BEPU) framework.

Recalling the notations introduced in the previous section, the followin elements are considered: a numerical simulator M, a set of inputs X ∈ X ⊂ R d , and a set of outputs Z ∈ F * ⊂ F shown in (1.1).

As it was introduced, the uncertainty of each one of the inputs (X 1 , ..., X d ), and the associated uncertainty of the computer model M entail an imperfect knowledge of the outputs provided by M. These uncertainties can have many origins, and there is no indisputable classification available for them. However, it is common practice in engineering studies to consider two main sources of uncertainty (Kiureghian and Ditlevsen, 2009):

• Aleatory uncertainty. It is related to the actual nature of the studied phenomenon.

If a phenomenon is intrinsically random, one cannot expect to know its actual value with precision at all times. For instance, air temperature surrounding a nuclear power plant can play a role in the progression of a nuclear transient. This temperature may present different values that can be modeled as a random variable, which is at the origin of its associated uncertainty. This source of uncertainty is related to the inputs of the computer code but not to the code itself.

• Epistemic uncertainty. This type of uncertainty is related to the limited existing knowledge of a particular phenomenon and may be reduced if it is increased (through research, simulations, or experimentation, for instance). As mentioned above, the temperature in a particular nuclear site may evolve with time (for instance, due to climate change), and a better knowledge of this climatic process through research can help better model the considered random variable.

All in all, regardless of the sources, the fact remains that uncertainty presents itself in In practice, in the BEPU context these codes are usually considered as black-box models, i.e., their analytic form is unknown or too complex to be used, and they are known through their inputs and outputs. Associating the uncertainties of specific outputs of the considered model M as functions of the uncertainties of the inputs X is generally known as uncertainty propagation. The general scheme for uncertainty propagation is presented in Figure 1.2.

Accepting this framework, the inputs of the computer code, the random vector X, belongs to a topological space X ⊂ R d . Let A be the Borel σ-algebra on X , and let P(X ) be the set of all probability measures defined on X . Then, any element P ∈ P(X ) induces the probability space formed by (X , A, P), and the inputs of the code may be modeled as the multivariate random vector X = (X 1 , ..., X d ), which is the measurable function:

X : A → R d ω → X(ω) (1.2)
This probabilistic formalism allows accounting for the associated uncertainty of the inputs via the use of Probability Density Functions (PDF) or their respective Cumulative Density Function (CDF). This way, for any given probability measure P ∈ P(X), and for any given element a ∈ X , a = (a 1 , ..., a d ), the CDF of the random vector X, F X , is expressed as:

F X (a) = P(X ≤ a) = P(X 1 ≤ a 1 , ..., X d ≤ a d ) (1.3)
In practice, the real distribution of the inputs is unknown, and it must be estimated through a model. Engineers may make use of experience, conservative hypotheses, numerical studies, real experiments etc. In order to quantify the uncertainty associated to the elements of (X 1 , ..., X d ). By making use of these pieces of information, they are able to determine estimators of the distributions through parametric models and well known distributions such as the normal or uniform ones. Their respective parameters may be estimated through many different methods such as maximum likelihood [START_REF] Eliason | Maximum Likelihood Estimation: Logic and Practice (Quantitative Applications in the Social Sciences)[END_REF]. It would also be possible to adjust a non-parametric model to the distributions through kernel methods.

Since the considered code M is deterministic, modeling its inputs as random variables implies that its outputs will also be (functional) random variables. In Figure 1.2, however, the output variable of interest Y ∈ Y ⊂ R is scalar (e.g., the maximum value of temperature of the nuclear fuel during the transient), or in certain cases, a random vector. The CDF of the output Y , F Y , which can be estimated via Monte Carlo methods, allows the estimation of the desired derived quantities from Y . This corresponds to the general methodology of uncertainty propagation, where the uncertainty associated to the inputs translates into an uncertainty of a scalar output variable (or several ones) representative of the physical phenomenon under study. For instance, in the aforementioned nuclear simulators, Y may represent the maximum temperature attained by the cladding of the nuclear fuel, where the actual corresponding output of M would then be the evolution of this parameter during the transient. This way, for the considered functional random variable Z whose support is the set T ⊂ R, T = [t 1 , t 2 ], where t 1 , t 2 are instants of time of physical simulation, the relationship between both random variables would be Y = max t∈T (Z(t)) (where Z(t) does not necessarily always account for the temperature at the same point in the fuel). This is just an example of the kind of data that Y may represent in real applications. However, in practice, the actual object of study in UQ studies is often a derived magnitude from Y , which are called Quantities of Interest (QoI). Indeed, the analyst may often be more interested in specific quantities that may be obtained from Y , such as an expectation or a quantile. Following the previous example, an engineer might be more interested in quantifying the number of transients whose maximum temperature surpasses a threshold (i.e., a quantile). These Ph.D. works are concerned with the set of original functional outputs of M, Z, aiming at developing a general methodology that can be applied to nuclear transients regarless of the specifi characteristics of the scenario.

Functional data

The already introduced uncertainty propagation scheme of Figure 1.2 is concerned with specific scalar outputs Y of the numerical code M, as well as a certain number of associated quantities of interest. However, if the direct outputs of M are a set of functional random variables, then the available information that can be provided by the code is much larger than the scalar variable of interest Y .

Naturally, the analysis of outputs such as those presented in Figure 1.1, pertains information concerning the progression of the analyzed transient.

The main difficulty that arises in the UQ context related to functional data is due to their intrinsically infinite-dimensional nature [START_REF] Ramsay | Functional Data Analysis[END_REF]. Indeed, if F is a Hilbert space, any functional random variable Z : A → F of M can be expressed as a linear combination of the functions that span F:

∀Z ∈ F, Z = j∈N ⟨Z, ϕ j ⟩ϕ j (1.4)
where {ϕ j } j∈N is an orthonormal basis that generates the Hilbert space F.

In this case, a major problem that arises when considering the functional outputs of the computer code is that, contrary to the scheme shown in Figure 1.2, the cumulative distribution function of Z, F Z , cannot be uniquely defined, and no available estimator for this notion exists [START_REF] Gasser | Nonparametric estimation of the mode of a distribution of random curves[END_REF][START_REF] Delaigle | Defining probability density for a distribution of random functions[END_REF].

These challenges motivate the use of an alternative approach through the development of dimensionality reduction methods. These methods are reviewed in Chapter 2. Regarding this subject, the seminal works of [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF] propose a wide framework of dimensionality reduction methods based on semimetrics.

In summary, the totality of UQ methods applied to functional data rely on techniques of dimensionality reduction that provide a set of lower dimensional scores in order to be able to profit from the well developed framework proposed in Figure 1.2.

We shall interest ourselves to the detection of outliers in the sets of functional outputs of CATHARE2. The main hypothesis being that the detection of outliers through techniques that take into account the whole transient can prove to be useful in order to automatically detect penalizing accidental situations, detect unexpected physical events or phenomena, or perform code validation and debugging. The main objective of these works is to be able to perform the aforementioned analysis of the transients on the basis of the found outliers.

The detection of outliers in sets of functional data does however present difficulties that are not present in the multivariate framework, and whose origin is mostly linked to the fact that functional spaces are intrinsically infinite-dimensional. on top of that, the taxonomy of said outliers is quite large (see Figure 1.3), and the development of general methodologies capable of treating a wide diversity of outliers represents a real scientific challenge. 

Application cases

The work presented in this document was largely influenced by the nature of the considered application cases. Two main applications have been considered and are presented in this document. Their study will constitute the object of Chapters 4 and 5.

Both applications correspond to accidental nuclear transients that are modeled through the CATHARE code. The two transients are originated by a similar initiating event, i.e., a break in the cooling system of the primary circuit of a NPP, which entails a sudden loss of coolant (water in this case), that may represent a risk for nuclear safety. The specific nature of this risk depends on the use-case, and involves very different physical phenomena in each case. In order to understand these use-cases, the main elements of a nuclear power plant are briefly explained here.

The most relevant parts of a NPP of Pressurized Water Reactor (PWR) design are showcased in Figure 1.4. An in-depth explanation of the main systems can be found in Chapter 3 whereas here we will just provide the most basic notions. A PWR nuclear power plant involved in the considered transients consists of two main thermal-hydraulic circuits. Firstly, the primary circuit (I), also sometimes referred to as boiler, is the part of the installation in charge of taking the thermal energy produced in the nuclear core, mostly through convection between the fuel and the coolant fluid, water. The coolant remains in liquid state even at high temperatures due to the high pressure of the boiler, which remains at approximately 155bar and 320°C. This thermal energy is exchanged with the secondary circuit through a set of large heat exchangers called Steam Generators (SG) [START_REF] Aggarwal | Outlier detection for high dimensional data[END_REF] . The primary side of these elements is formed by thousands of small tubes that exchange heat with the secondary side, which contains large amounts of pressurized water, which boils in contact with the tubes of the SG through which the primary coolant flows. The generated steam is then sent to the steam turbine (5), where the mechanical energy is transformed into electrical energy sent into the grid.

As it was mentioned, the two considered application cases share the same initiating event, which is a break in the piping system of the primary circuit. This event entails a depressurization of the primary to the surrounding environment's pressure, as well as a loss of coolant through the break that depends on several parameters but which is largely affected by the size of the break. The consequences of the subsequent may largely differ between the cases. These accidents are classified as Loss of Coolant Accidents (LOCA, Joyce (2018)).

We consider in the following two accidental transients which can be modeled with the CATHARE2 code.

Intermediate Break Loss of Coolant Accident (IBLOCA). Firstly, we consider

the case of a break of 15.4 ′′ (inches) = 39.1cm. A break of this size is frequently considered an intermediate or large one [START_REF] Tarride | Physique, fonctionnement et sûreté des REP. Maîtrise des situations accidentelles du système réacteur[END_REF]. The considered Intermediate Break LOCA (IBLOCA) transient is characterized by the rapid depressurization of the primary circuit and the loss of a large mass of the water inventory in the boiler. Once the pressure in the primary becomes too low, the nuclear fission reactions in the core are automatically stopped thanks to the safety systems. However, the nuclear core continues to generate thermal power even after the shutdown phase, mainly due to the radioactive decays of the fission products that remain in the fuel. This source of heat is non-negligible, reaching several dozens of MW in the moments after the shutdown of the core. In this situation, if the loss of water at the break is not compensated through the Emergency Core Cooling Systems (ECCS), a saturation state can be reached in the primary water through the combined effect of the loss of coolant at the break and the heat release by the fuel. In this situation, if the cooling of the fuel is degraded, its temperature may rise and the main risk of the transient is the possibility of fusion of the nuclear core if a certain threshold of temperature is reached. This transient is analyzed in detail in Chapter 4. An example of several evolutions of the temperature of the fuel and the primary pressure is provided in Figure 1.5. We can appreciate how fast the depressurization is, and the effect of the ECCS once they start injecting cold water into the primary circuit (after about one minute of transient duration). 

Pressurized Thermal Shock (PTS).

The lifespan of NPP can last up to several decades if proper care and maintenance are ensured during its life cycle. In the United States, NPP are allowed by the authorities to extend their life for a total of 80 years [START_REF] Amano | Going long term: US nuclear power plants could extend operating life to 80 years[END_REF]. In France, the current maximum limit is set to 60 years. Since the RPV (c.f.Figure 1.4) is the only component in a nuclear installation that cannot be substituted during its whole lifespan. It is a component that surrounds the nuclear core and also acts as a confinement barrier for the radioactive material and suffers a constant irradiation (in particular, neutron fluence, measured in neutrons/m 2 , of neutrons coming from the core) that entails a progressive modification of its mechanical properties with time. Most notably, this may induce an embrittlement of alloyed steel that composes the RPV, and thus makes it more vulnerable when facing sudden changes in temperature.

In particular, an embrittled RPV may be sensitive to an overcooling of the material that can be caused when the ECCS of a nuclear power plant is activated during a LOCA transient. If this is the case, an existing flaw in the material may become a fracture that can propagate through the component depends on the fracture toughness of the material K IC , which is lowered during the course of the life of the component through the process of radiation embrittlement. The stress intensity at the level of the fracture depends on a number of parameters such as the temperature of the injected water or the pressure. The total stress suffered in this position is assembled into a parameter called stress intensity factor (K I ), such that if K I > K IC , the fracture propagates along the material. If this fracture compromises the integrity of the RPV, the safety of the nuclear installation may also be compromised, which justifies the necessity of the study of this transient. On a side note, it is relevant to note that this transient becomes particularly severe for small break LOCA transients, and therefore the dynamic of the accident and its physical parameters differ greatly with respect to the previously mentioned IBLOCA. In this case, the analysis requires the use of two chained codes, the system code CATHARE and thermal-mechanical one, CUVE1D. The latter provides the necessary thermal-hydraulic functional outputs of interest (i.e. the water temperature of the safety injection coolant, the primary pressure and the water flow in the entrance of the RPV), and former allows the calculation of the safety criteria. An example of one of the three thermal-hydraulic functional outputs of the code CATHARE that allow the mechanical calculation for the PTS case is displayed in Figure 1.6. 

Some related works

Having provided this Ph.D.'s industrial and scientific context, some related research works developed in recent years which represent significant contributions to the UQ domain applied to nuclear transient simulation are included here. More in-depth reviews of the main literature related to each chapter are included in the first sections of each chapter.

As it was mentioned, the functional outlier detection domain is quite recent, and most contributions were made after 2007, with the works of Febrero-Bande et al. (2008) probably being the most impactful. The domain has been highly influenced by the development of depth functions applicable to functional data [START_REF] Cuevas | Robust estimation and classification for functional data via projection-based depth notions[END_REF][START_REF] López-Pintado | On the concept of depth for functional data[END_REF][START_REF] Nagy | Statistical Depth for Functional Data[END_REF] and non-parametric methods [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF], useful to reduce the dimensionality of the problem. There have also been notable contributions that provide visualization tools [START_REF] Hyndman | Rainbow plots , bagplots and boxplots for functional data[END_REF]; Arribas-Gil and Romo, 2014; [START_REF] Dai | Multivariate functional data visualization and outlier detection[END_REF] and, more recently, some work has also been consecrated to the development of methods applicable to multivariate functional data [START_REF] Hubert | Multivariate functional outlier detection[END_REF].

A considerable amount of work has been consecrated to the sensitivity analysis domain, aiming at quantifying how the variability of the output variables of interest Y and quantities of interest may be apportioned to the inputs [START_REF] Saltelli | Global Sensitivity Analysis: The Primer[END_REF]. Some examples are the works of Iooss and Marrel (2019); Marrel and Chabridon (2021) pertaining nuclear applications, as well as the construction of appropriate metamodels for the considered computer code. In Stenger (2020), the author is concerned with the assessment, bounding and optimization of a QoI in a nuclear industrial setting. Accounting for the uncertainty related to the choice of input distributions of the computer model is a subject that has been recently treated in the works of [START_REF] Iooss | BEPU robustness analysis via perturbed law-based sensitivity indices[END_REF]; [START_REF] Sueur | Sensitivity analysis using perturbedlaw based indices for quantiles and application to an industrial case[END_REF]; [START_REF] Gauchy | An Information Geometry Approach to Robustness Analysis for the Uncertainty Quantification of Computer Codes[END_REF]. Regarding the particular subject of FDA, in [START_REF] Auder | Classification and modelling of computer codes functional outputs: application to accidental thermo-hydraulic computations in pressurized water reactors (PWR)[END_REF], the author developed a clustering method for functional outputs of the computer code CATHARE, and in [START_REF] Nanty | Stochastic methods for uncertainty treatment of functional variables in computer codes: application to safety studies[END_REF], the author contributes to the framework of sensitivity analysis for functional data linked to scalar covariables.

Organization of the document

To summarize, this dissertation serves to support engineering studies in the context of nuclear safety assessment. The use of complex numerical simulators requires specialized knowledge of the codes, their inputs, and their outputs, and even then, a vast number of related tasks remain industrially challenging. It is the case, for instance, when functional variables are implicated or when a workflow of chained industrial codes is necessary.

Our contributions aim at facilitating the task of analyzing nuclear transient simulations, dealing with the functional data that may be involved, and providing physical interpretations of the results of the simulations in industrial use-cases, as well as insights regarding penalizing scenarios in a safety assessment context. To do so, we propose to develop the field of functional outlier detection, relating the results of the developed methodology with the inputs of the considered numerical simulator through sensitivity analysis techniques and establishing a general methodology of physical analysis of nuclear transients. The developed methods are confronted with industrial use-cases representative of a wide variety of industrial issues.

The organization of the document is as follows:

Chapter 2, provides an overview of both the domain of functional data analysis, treating the subject of their representation and their reduction of dimension. The subject of outlier
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detection is presented in a generic manner, in order to particularize the framework to the particular case of functional data. A general review of the existing methods to perform functional outlier detection is given, highlighting the main scientific challenges. The chapter finishes with the proposition of a methodology to perform this task, testing it against a number of toy examples and state of the art methods.

Chapter 3 particularizes the aforementioned functional data to the context of nuclear transient simulation. We provide here the essential notions in the analysis of these simulations, as well as an overview of the main components of a NPP, how they are modeled through the CATHARE code, and how the Best Estimate Plus Uncertainty framework can be used to complement the analysis of nuclear transients. Secondly, the chapter deals with the subject of sensitivity analysis and the available methods that can be used in the context of complex black-box industrial codes (such as CATHARE), capable of handling high-dimensional inputs and complex non-linear physical phenomena. Finally, we propose a generic nuclear transient methodology that allows the detection of functional outliers in a particular design of experiments, relates them to the inputs of the code and other physical parameters relevant for the comprehension of the transient through sensitivity analysis techniques and statistical testing, and allows the comparison of the inlying and outlying samples of functional data.

Chapter 4 presents the first relevant use-case, the Intermediate Break Loss of Coolant Accident (IBLOCA). This accidental transient constitutes one of the most commonly analyzed transients in Pressurized Water Reactors, as they constitute one of the dimensioning transients of NPP. Here, the main phases of the accident are presented, as well as how the safety systems of the NPP manage it, including also the CATHARE modeling of both the main components of the NPP and the progression of the transient. We showcase how the methodology of transient analysis is capable of identifying outlying transients in a particular design of experiments, and provided a posterior physical interpretation of the results.

Chapter 5. This chapter constitutes a more exploratory application of the methodology to the PTS transient, and serves a twofold objective. Firstly, it showcases the generality of the methodology and how it may serve as a generic tool of analysis several different nuclear transients; and secondly, it constitutes an example of how outliers may be interpreted in real industrial settings as extreme values of a considered distribution of data, and not only samples that have been generated from a different underlying distribution as the majority of the considered sample of data. Finally, it allows to showcase how the generic score of outlyingness presented in Chapter 2 has statistical and physical significance which can be used to provide an interpretation of the inputs and outputs of both the code M 1 (CATHARE), and the chained code M 2 (CUVE1D).

Finally, Chapter 6 presents the main conclusions of the developed works, assembles the contributions and provides a set of possible perspectives of these works.

Introduction

In this chapter, we will introduce the main mathematical framework of the manuscript. In the previous chapter we gave the main notions of the uncertainty quantification domain, in particular in the context of industrial numerical simulators. Specifically, in the context of nuclear transient simulators we showcased how the domain is closely related to other mathematical and statistical disciplines, including sensitivity analysis [START_REF] Iooss | A Review on Global Sensitivity Analysis Methods[END_REF], quantile estimation [START_REF] Stenger | Optimal uncertainty quantification of a risk measurement from a thermal-hydraulic code using canonical moments[END_REF] or metamodeling [START_REF] Iooss | Advanced methodology for uncertainty propagation in computer experiments with large number of inputs[END_REF].

In particular, we are interested in the study of numerical simulators that produce one dimensional functional outputs, i.e., unidimensional curves that are functions of a unique variable (namely, the time). The study of these mathematical objects has been widely researched in recent years, and is part of a larger domain usually called Functional Data Analysis, term coined by Ramsay [START_REF] Ramsay | When the data are functions[END_REF]. The study of these objects presents a considerable amount of challenges derived from their intrinsically high (or infinite) dimensional nature.

Let us note that, even though these works are largely motivated by their industrial application, as physical time dependent outputs of the system code CATHARE2 [START_REF] Geffraye | CATHARE 2 V2.5_2: A single version for various applications[END_REF], we shall remain as general as possible in this chapter and not make reference to the specific physical nature of our data. The reasoning behind this is that the nature of the usecases that will be analyzed through the document may differ greatly between them even if all of the applications fall into the umbrella of numerical transient simulations. Therefore, it is of great importance to remain as general as possible in the development of the methodologies and conclusions that are extracted from these works, so that they may be applied without adaptations to a wide variety of conceivable use-cases.

The chapter is organized as follows: Section 2.2 details the main mathematical framework of Functional Data Analysis, characterizing the analyzed objects and showcasing the interest of the field. Section 2.3 provides the main elements of the field of outlier detection, with an introduction in the context of multivariate data and the proposed extensions to functional data, showcasing the main challenges and difficulties that arise in this context. Sections 2.3 and 2.4 provide a brief review of the main existing methods in the context of outlier detection, their deficiencies and advantages, as well as the proposed methodology of Functional Outlier Detection (FOD) that we have developed. We finally confront the proposed methodology against analytical toy-examples and other competitors in Section 2.5, and finish with the conclusions of the chapter in Section 2.6.

Basic elements of functional data analysis

First of all, we shall recall the notations of the main mathematical objects that will be relevant throughout the whole manuscript. Let us consider a numerical simulator M (in practice, this will be the aforementioned code CATHARE2 ), which takes a set of uncertain input parameters and provides in turn a functional output:

M : X ⊂ R d → F * ⊂ F X → Z = M(X) (2.1)
where X = (X 1 , X 2 , ..., X d ) is a set of scalar input variables in R d , and Z the functional output defined in a functional space F. To be more specific, we will be interested in one-dimensional functional outputs, i.e., functions of one variable that in practice will represent the physical time of simulation in each experiment.

Functional data

The Functional Data Analysis (FDA) framework deals with objects that present themselves in the form of functions. Although the treatment of this kind of mathematical objects can be dated to the works of [START_REF] Grenander | Stochastic processes and statistical inference[END_REF] and [START_REF] Rao | Some statistical methods for comparison of growth curves[END_REF], it was through the works of [START_REF] Ramsay | When the data are functions[END_REF] and [START_REF] Ramsay | Some tools for functional data analysis[END_REF] that the term was coined and started gaining considerable interest in industrial settings.

A considerable research effort in the treatment of functional data has been developed in recent years, partially motivated by the wide variety of fields in which this kind of data are present, as well as the increasing measuring and storing capacities of high-dimensional data. The groundbreaking works of Ramsay and Silverman (2005) must be mentioned as a major contributor in the popularization of FDA, also providing practical and real life examples and tools for the treatment of functional data. An alternative vision of the subject was presented in the works of [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF] through the use of semimetrics that better describe the data. Horváth and Kokoszka (2012) provide several theoretical insights in functional data inference, as well as useful software and practical examples. Some reviews on FDA can be found in [START_REF] Cuevas | A partial overview of the theory of statistics with functional data[END_REF] and [START_REF] Goia | An introduction to recent advances in high/infinite dimensional statistics[END_REF].

Functional data serves as a term that describes objects of very different natures. In general, we speak of functions, which may represent one-dimensional or multivariate curves, spatial data, etc. It is possible to make use of the probabilistic framework to model this kind of objects. In our case, let us consider the probability measurable space (Ω, A, P) where Ω represents the sample space, A is the event space, and P is a the probability measure over the possible events. Definition 2.1 Functional random variable. A random variable is called functional if it takes its values in an infinite-dimensional vector space. It is then a measurable application Z : Ω → F.

In the case of this manuscript, we will consider the output Z, consisting of real-valued functions defined in a set T ⊂ R, they may be written:

Z 1 , ..., Z S : Ω × T → R (2.2)
In that case, any function

Z s (ω, •) : T → R, ∀ω ∈ Ω is called a trajectory of Z s , and any variable Z s (•, t) : Ω × R, ∀t ∈ T is a real-valued random variable.
Let us mention that, in practice, the abundant literature dedicated to this domain makes use of several terms that refer in essence to the same type of mathematical objects. In particular, the notions of functional data and functional random variable are widely used as synonyms [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF][START_REF] Chagny | Adaptive estimation of the hazard rate with multiplicative censoring[END_REF] although sometimes the term functional data is used in order to refer to specific realizations (samples) of a functional random variable. In similar fashion, the term stochastic process is commonly used to describe the exact same type of objects, as well as the term random function [START_REF] Gusak | Theory of Stochastic Processes With Applications fo Financial Mathematics and Risk Theory[END_REF]. On the other hand, some authors refer to the functional data as the realizations of the underlying stochastic process, which would then be the random physical process that generates the data [START_REF] Ordóñez | Detection of outliers in GPS measurements by using functional-data analysis[END_REF]. Finally, if we restrict ourselves to the case where T ⊂ R, i.e., onedimensional functional data, then the previously explained mathematical formalism overlaps with the time series domain. For instance, in [START_REF] Hamilton | Time Series Analysis[END_REF], the author refers to the time series as a realization of an underlying stochastic process.

As we can see, any of these terms can be interchanged with the others and may be used as synonyms for the most part. In our case, since the functional objects that will be analyzed are generated as outputs of a deterministic physical model M that takes scalar random variables as inputs, it seems appropriate to refer to them as functional random variables or functional data. For the sake of uniformity and clarity, these are the two terms that will be consistently used throughout the manuscript.

As in many industrial cases, we are interested in the framework of these works in functional data whose domain of definition is T ⊂ R, i.e., one-dimensional functional data (also called random curves in this case). If the variations of the analyzed physical process can be rightfully considered to do so in a continuous manner, the functional data can be assumed to belong to the space of continuous functions C(T ). Commonly, the analyzed functional data are assumed to belong to a particular Hilbert space (complete metric space with respect to an inner product) F which are normed, i.e., where ∀f ∈ F, ||f || = ⟨f, f ⟩. A frequent example is the L 2 (T ) space of square-integrable measurable functions. This formalism allows a representation of any element of F in terms of its inner product such that: Theorem 2.1 Let (H, ⟨•, •⟩) be a separable Hilbert space. Then H admits a countable hilbertian basis {ϕ j , j ∈ N} of orthonormal elements, such that any element f ∈ H can be uniquely decomposed in the form:

∀f ∈ H, f = j∈N ⟨f, ϕ j ⟩ϕ j
This framework allows the definition of exploratory statistics for functional random variables such as their expectation and their covariance operator and covariance function.

Definition 2.2

Let Z be a functional random variable defined in a functional space F. If E[||Z||] < ∞, it is possible to define the expectation of Z as:

E[Z] = Ω Z(ω)dP(ω)
where the integral is the Bochner integral [START_REF] Dunford | Linear operators, Part 1, General Theory[END_REF] of Z, and || • || is a norm in F. If F is a Hilbert space, we can also express the expectation as:

E[⟨Z, F⟩] = ⟨E[Z], f ⟩.
Conversely, the notion of covariance may be represented in the functional case by an operator. Again, if we consider that F is a Hilbert space:

Definition 2.3 Assuming that E[||Z|| 2 ] < ∞.
Then the covariance operator κ of Z is defined as:

κ : f ∈ F → κf = E[⟨Z -E[Z], f ⟩(Z -E[Z])]
If these hypotheses are verified, κ is autoadjoint, and diagonalizable in an orthonormal basis. This result yields useful expansions such as the one presented in 2.2.2.

From a practical point of view, it is common to see and express the functional data as a family of real random variables, since it is impossible to dispose of a perfect representation of Z(t), t ∈ T , and functional objects are observed in a discrete grid τ = {t g } p g=1 . For the rest of the chapter, we will assume that a sample of functional variables z i (in minuscule for easiness to the reader) of size N indexed by i is available in a discretization grid τ :

z i : T → R, ∀i ∈ {1, ..., N } (2.3)
whereas specific values of z i in each point of the discretization grid are noted z i,g = z i (t g ).

If the functional data are sampled with a uniform time step, i.e., t g -t g-1 = C, ∀g ≥ 1, where C is a constant (which will be the usual case in this manuscript), empirical estimates for both the mean and covariance function exist such that: μ(t g ) = 1 N N i=1 z i,g , where μ = {μ(t 1 ), ..., μ(t p )} is the empirical functional mean; and Σ(t

l , t v ) = 1 N N i=1 (z i,l , μ(t l ))(z i,v , μ(t v )).
For some insight on the case where data is missing and heterogeneous grids are used the reader can refer to [START_REF] Little | Statistical Analysis with Missing Data[END_REF].

A natural question that arises concerning the grid is the quality of the representation of functional data that can be made depending on the size p of the grid. We usually speak about the density of the data, but no formal definition of this notion exists yet in the literature. A somewhat unified approach is provided in [START_REF] Zhang | From sparse to dense functional data and beyond[END_REF], where they classify functional data into three categories: dense, ultra-dense and sparse functional data. This classification is influenced by the asymptotic properties of certain statistical estimators from the sample of functional data. Anyhow, it is common practice to consider that the considered sample of functional data is dense if the convergence rate of the empirical estimator of the mean µ(t) = E[Z] attains a rate of √ n according to a standard metric (namely, the L 2 norm) when the increase in size of the time grid p diverges to infinity fast enough [START_REF] Wang | Functional data analysis[END_REF].

Representation of functional data on a basis

As we have seen, functional data are generally observed in a finite set. This arises the question of how to find an appropriate representation of the data. This representation depends mainly on the nature of the data, and how they are observed. For instance, if the functional data are observed without error, an appropriate representation of the data should be interpolatory, i.e., the reconstructed functional data must take the exact observed values in the available grid. Otherwise, if they are observed with an error or the data are subject to random noise, then smoothing techniques become necessary. Regarding the nature of the analyzed functional data, if they present specific patterns, are oscillatory. or present some kind of specific characteristic, this should be taken into account when performing the reconstruction.

In practice, the main objective is to find a useful representation of the available functional data that best represents the underlying physical process that generates them. Representing functional data as a linear combination of elemental functions is a practical and valuable way of simulating these data.

Let us consider a sample {z i } N i=1 of a functional random variable defined in F = L 2 (T ), where T ⊂ R. The idea is to approximate any observation z i as a linear combination of functions that form a basis of F. If Z is a functional random variable in F = L 2 (T ), we can express it as:

Z = ∞ k=1 c k ϕ k (t) (2.4)
This representation can be implemented in practice by truncating this expansion and estimate the corresponding coefficients. It is then possible to approximate Z by Ẑ(t) = D k=1 ĉk ϕ k (t), t ∈ T . This procedure allows the obtention of a lower dimensional subspace of dimension D.

We show some of the main approximation basis that are commonly used. It should be noted that they can be classified into two main groups. Firstly, those which are fixed, i.e., they do not depend on the actual data that will be modeled (for instance, the Fourier and wavelet bases), and those which adapt to the specific sample of available data. These representations are also widely used in the FOD domain (see for instance [START_REF] Barreyre | Multiple testing for outlier detection in space telemetries[END_REF]).

Fourier basis

The Fourier basis, also called trigonometric basis is one of the most well known possible bases used to represent random curves with a periodic behavior.

Definition 2.4

Fourier basis. The Fourier basis is defined as:

ϕ 0 (t) = 1; ϕ 2k-1 (t) = sin(kwt); ϕ 2k = cos(kωt), k ∈ N +
where ω is the period. The mathematical theory on the use of the Fourier basis is largely developed, and numerous results on the convergence of this representation exist for functional data.

B-spline basis

Given a set of knots {t 1 , ..., t p } ∈ T ⊂ R, let us define two supplementary boundary knots t 0 < t 1 and t p+1 > t p in which we shall evaluate the spline functions. Let us also define the knot sequence of points τ :

• τ 1 ≤ τ 2 ≤ ... ≤ τ M ≤ t 0 • τ j+M = t j , j ∈ {1, ..., p} • t p+1 ≤ τ p+M +1 ≤ τ p+M +2 ≤ ... ≤ τ p+2M
the additional knots outside of T + {t 0 } + {t p+1 } can have arbitrary values assigned, and are commonly set equal to the values of t 0 and t p+1 . Let B l,m (t) denote the lth B-spline function of order m for the knot sequence τ , with m ≤ M . These basis functions can be recursively defined in terms of divided differences:

B l,1 (t) =    1 if τ l ≤ t ≤ τ l+1 0 otherwise for l = 1, ..., p + 2M -1 B l,m = t -τ l τ l+m-1 B l,m-1 (t) + τ l+m -t τ l+m -τ l+1 B l+1,m-1 (t)
for l ∈ {1, ..., p + 2M -m}.

Wavelet bases. The Haar basis

More recent bases that combine some of the characteristics of the already presented bases can be mentioned. In particular, those based in wavelet systems [START_REF] Daubechies | Ten lectures on wavelets[END_REF][START_REF] Härdle | Wavelets, Approximation, and Statistical Applications[END_REF].

A wavelet system in F = L 2 (T ) is a collection of functions with the form:

{2 l/2 ψ(2 l t -v)} l,v∈Z = {ψ l,v } l,v∈Z (2.5) 
where ψ ∈ L 2 (T ) is a fixed function. Any wavelet system that forms an orthonormal basis in L 2 (T ) is called a wavelet orthonormal basis for L 2 (T ).

There is a particular type of wavelet basis called the Haar [START_REF] Mitteilung | Zur theorie der orthogonalen funktionensysteme[END_REF]) basis of

L 2 (T ). By setting ϕ 0 = 1 T and ψ = 1 [inf(T ),sup(T )/2[ -1 [sup(T )/2,sup(T )[ , for all l ≥ 0, v ∈ Θ(l) = {0, 1, ..., 2 l -1} we write ϕ l,v (t) = 2 l/2 ψ(2 l t-v)
. This way, the set of functions (ϕ 0 , ϕ l,v ) forms the orthonormal Haar basis of F.

This way, any function z ∈ F can be represented by an expansion in the Haar basis:

z(t) = ϕ 0 (t) + l≥0 v∈Θ(l) c l,v ϕ l,v (t) (2.6)

Karhunen-Loève expansion

In the multivariate framework, the Principal Component Analysis (PCA) [START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF][START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF] has proven to be a powerful tool in order to perform dimensionality reduction tasks. It allows to find the orthogonal directions which maximize the projected variance of a sample of points in a space R q .

In the functional case, [START_REF] Ramsay | Functional Data Analysis[END_REF] proposed an evolution of this method called Functional Principal Component Analysis (FPCA).

Recalling the notations used in 2.2.1, we have seen that, given a Hilbert space (F, ⟨•, •⟩) with covariance operator κ, this operator is diagonalizable such that there exists a basis for F formed by the eigenvectors {ψ j } j∈N of κ, associated to the set of eigenvalues {λ j } j∈N , solutions to the problem κψ j = λ j ψ j . In this case, any functional random variable Z can be developed in this hilbertian basis.

Definition 2.5

Karhunen-Loève (KL) expansion. We call KL expansion of a functional random variable Z in a given Hilbert space F such that E[||Z|| 2 ] < ∞ to its projection into the basis of eigenfunctions of its corresponding covariance operator κ:

Z = E[Z] + ∞ j=1 ⟨Z, ψ j ⟩ψ j = E[Z] + ∞ j=1 λ j ξ j ψ j
where ξ j = ⟨Z, ψ j ⟩ λ j .

Outlier Detection

Detecting outliers in datasets is a generic statistical task that lacks a rigorous framework based on mathematical grounds. First of all, there is some uncertainty regarding the terminology. [START_REF] Hawkins | Identification of Outliers. Monographs on applied probability and statistics[END_REF] defines an outlier as an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism. This could be regarded as the most indisputable definition of what constitutes an outlier in a set of data, regarding outliers as realizations of a spurious data generation process different from the one that generates the majority of data.

Outliers may be found in the literature among different names, such as abnormalities, deviants or anomalies, and their detection is often important as a previous step in the analysis of the expected data so as to avoid working with contaminated datasets that may pollute the interpretations that may be extracted from them [START_REF] Aggarwal | Outlier Analysis[END_REF]. Naturally, the main problem that arises in this context is the definition of what constitutes "normal behavior, and how to ensure that the chosen measure (or measures) that quantify this notion can be universally accepted as such.

To add another layer of complexity to the problem, some authors [START_REF] Aggarwal | Outlier detection for high dimensional data[END_REF][START_REF] Knorr | Finding intensional knowledge of distance-based outliers[END_REF]) make the distinction between weak and strong outliers. Weak outliers would be those data points which present a deviation from the normal behavior sufficiently important so as to classify them as outliers, but whose presence may be of no interest to the analyst since it is regarded as noise. On the other hand, strong outliers would be those whose deviation is sufficient, and also may be representative of an important underlying process of interest for the analyst. An example of this situation is presented in Figure 2.1. We can appreciate the existence of two distinct clusters and an isolated point that can be rightfully be considered an anomaly. In other real life situations, outliers can be conceived as extreme values of a unique underlying process. Indeed, it is impossible in practice to differentiate an outlier from an extreme value, even if both data had been generated by different processes. In this setting, detecting strong outliers, weak outliers or extreme values becomes only a matter of semantics. If this is the case, in the univariate setting these extreme values may be identified through well-known statistical tail confidence tests (t-value test, or the sum of squares deviations, which follow a χ 2 distribution), as well as graphical tools such as the boxplot [START_REF] Savage | On the foundations of statistical inference: Discussion[END_REF]. In higher dimensional contexts, it is indeed possible to apply these techniques over scores that allow to perform a dimension reduction. As an example, one could apply these techniques over each individual principal component score shown in 2.2.2.4 in order to identify outliers.

Another important matter to discuss is the fact that, in essence, the domain of outlier detection can be interpreted as purely unsupervised, if we have no prior knowledge of the nature that the outliers may adopt; or supervised, if some prior knowledge exists. As usual, the detection of outliers in the supervised setting becomes a much more simple task, since even though the nature of the outliers may differ considerably in a dataset, the prior knowledge of the existence of outliers largely facilitates the task of rigorously defining the "normal" behavior. In order to remain as general as possible, we will consider in our setting that only a sample of data is available, and no prior knowledge of them exists.

In a very general sense, all (or most) outlier detection techniques aim at modeling a standard or normal pattern in the available data, and estimate outlyingness scores based on the divergence between each individual observation and this pattern. Naturally, modeling the standard nature of the observations is much easier in the supervised setting, but similar techniques may be applied in the unsupervised setting. From Aggarwal (2017), a basic classification of outlier methods in both the supervised and unsupervised context may be established, and is showcased in Table 2 As shown in Table 2.1, detection methods may be separated into explicit generalization and instance-based ones. The former makes reference to models, in which the underlying model that is supposed to represent the normal patterns has to be generated as a previous step to the detection of the desired outliers; whereas the latter simply computes the desired test instances through the available data.

Finally, the subject of the rigorous validation of detection algorithms remains a complex task without a real solution in current literature. Firstly, due to the intrinsic low probability of occurrence of an outlier (they are rare by definition), it is not trivial to evaluate the detection capabilities of any given algorithm over a wide variety of situations so as to estimate reliable false positive and detection rates. On top of that, when applied to real examples, no "indisputable" label of outlier or inlier (i.e. not outlier) can be obtained, and so the results are open for interpretation in an unsupervised scenario. Therefore, most of the research on this field relies on simple toy examples as validation tools to compare these rates of interest. The obvious downside of this procedure is that it is difficult to generalize and extrapolate the results to real examples, and seems to imply that the quality of the procedures can only be evaluated on a case-by-case basis.

Notion of outlier in a functional context

In the functional setting, the detection of outliers becomes even more complex due to the intrinsic infinite-dimensional nature of the data. The first works regarding the FOD domain date from the works of [START_REF] Fraiman | Trimmed means for functional data[END_REF], where they introduced the notion of functional depth as an extension to the same notion of functions in the multivariate setting [START_REF] Mozharovskyi | Tukey depth: linear programming and applications[END_REF][START_REF] Oja | Descriptive statistics for multivariate distributions[END_REF], aiming at providing an ordering in spaces of large dimension. This ordering could be used in order to quantify the centrality of a particular observation in a sample of functional data or, conversely, how extreme it is, providing a center-outward ordering of the sample [START_REF] Febrero-Bande | Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels[END_REF]. This idea also serves as a FOD tool.

The detection of functional outliers presents the same difficulties as in the multivariate setting, plus certain difficulties of its own. Since no natural ordering exists in any given space R d , d ≥ 2, most multivariate methods must rely on notions of distance or density of data in their respective spaces, which are sensitive to the curse of dimensionality. This problem becomes even more relevant in infinite-dimensional vector spaces that model functional data, but other challenges exist. Another very relevant challenge is the broad nature or taxonomy [START_REF] Dai | Functional outlier detection and taxonomy by sequential transformations[END_REF] of possible outliers that may arise when analyzing functional data.

Most authors make the distinction between two main types of functional outliers. Hyndman (2009) defines magnitude outliers as those which are distant from the mean curve, whereas shape outliers would be those which present a different pattern from the bulk of curves. [START_REF] Dai | Functional outlier detection and taxonomy by sequential transformations[END_REF] very generally describes a magnitude outlier as an observation which is outlying in some part or across the whole design domain, whereas shape outliers are those which present a different shape from the bulk of data, even though it may not be outlying throughout the whole domain. In [START_REF] Hubert | Multivariate functional outlier detection[END_REF], the authors prefer the terminology amplitude outliers to refer to magnitude ones, describing them as curves that may have the same shape as the majority but its scale (range, amplitude) differs, and shape outliers being those whose shape differs from the majority without necessarily standing out at any time point. Finally, [START_REF] Dai | Multivariate functional data visualization and outlier detection[END_REF] propose a division of shape outliers between shifted, isolated and pure shape outliers, plus the magnitude ones.

An example of all of these types of outliers can be seen in Figure 2.2. For the remainder of the document, we shall adhere to the classical terminology of the field and consider that shifted and isolated outliers can be seen as combination of magnitude and shape ones, such that we will consider that the outliers may only be considered as such in the magnitude sense, the shape sense, or as a combination of both.

No exhaustive review of functional outlier detection methods has been published up until today. This is due to the fact that the domain is quite recent, with most published methodologies dating after the paper by Febrero-Bande et al. (2008), and presenting a wide diversity and heterogeneity between them. There exists however some work that has been published in the domain of functional data clustering, the reader may refer to the works of Jacques and Preda (2014) and the Ph.D. works of [START_REF] Auder | Classification and modelling of computer codes functional outputs: application to accidental thermo-hydraulic computations in pressurized water reactors (PWR)[END_REF]. As we introduced before, there is a degree of overlapping between the outlier detection domain and the clustering one. If we assume that a sample of functional data {z i } N i=1 , z i ∈ F, where F is a Hilbert space, the clustering task consists in assigning each observation z i to one specific subspace F s in the set {F s } S s=1 , F s ⊂ F. In this case, if we establish S = 2, where one of the subspaces is formed by the samples that present an inlying behavior, and the other is formed by the outliers, both problems (clustering and outlier detection) become equivalent.

In practice, a similar distinction between the existing methods can be made for the FOD domain and the clustering one. From Jacques and Preda (2014), four main families exist:

1. Raw curve classification. If any z i is observed in a discretized grid τ = {t g } p g=1 , it can be considered as a random vector (z i (t 1 ), z i (t 2 ), ..., z i (t p )) ∈ R p . In that case, classical multivariate techniques may be used [START_REF] Bouveyron | Model-based clustering of high-dimensional data: A review[END_REF] without taking into account the functional nature of the sample. This approach is the most simple one, and among its main drawbacks, we can mention the curse of dimensionality problem, since the sample of curves can easily be of the same order of magnitude than the grid size (N ≤ p)), and the fact that it does not take into account the functional nature of the data. In practice, these methods are mostly sensitive to basic types of magnitude outliers.

Two-stage approaches (filtering methods). The sample {z i } N

i=1 is projected onto a basis of functions of F (for instance, one of those presented in 2.2.2), and a second clustering step is performed on the lower dimensional multivariate space of coefficients [START_REF] Abraham | Unsupervised curve clustering using B-splines[END_REF][START_REF] Peng | Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions[END_REF]. See Barreyre et 4. Model-based approaches. These methods rely on the estimation of the underlying probabilistic structure that generates the sample of functional data. Since the notion of density function cannot be uniquely defined in infinite-dimensional spaces, this objective is unfeasible, and in practice this is done by estimating the desired model over a lower-dimensional representation of the data. Regarding this group of methods, in the context of clustering both tasks (the projection and the estimation of the model) are usually made simultaneously, whereas in the outlier detection framework this is not necessarily the case [START_REF] Hyndman | Rainbow plots , bagplots and boxplots for functional data[END_REF].

d l (z i , z j ) = T (z (l) i (t) -z (l) j (t)) 2 dt 1 2 (2.
We will dedicate the next section to explaining several techniques that allow to perform a reduction of the dimensionality of the sample of functional data.

Dimension Reduction

The vast majority of explanatory tools for functional data are based on techniques that allow a lower-dimensional representation of the considered set of functional data, so as to avoid the difficulties that arise when working with infinite-dimensional spaces. The methods that allow a lower-dimensional representation of functional data are diverse and based on very different kinds of measures. We provide in the following sections a comprehensive review of the main possibilities available to perform dimensionality reduction on functional data.

It should be noted that the representation through functional bases presented in Section 2.2.1 could also be included here, since they are also methods that allow to perform dimensionality reduction of the problem. We focus here however in measures aiming at detecting specific features of the analyzed functional data, and not necessarily reconstruct the sample.

Semimetrics

Ferraty and Vieu (2006) provide wide overview of non-parametric methods as exploratory tools for functional data. The authors make the case as to how normed metric spaces can be too restrictive as modeling tools for functional data if the objective is to extract statistical information from them. They briefly showcase how the use of semimetrics can aid in the extraction of information from functional data. Definition 2.6 Pseudometrics (Arkhangel'skii and [START_REF] Arkhangel'skii | General Topology I: Basic Concepts and Constructions Dimension Theory[END_REF]). Let F be some vector space, then any mapping d : F × F → I, I ⊂ R + is a pseudometric on F as soon as:

1. ∀z ∈ F, d(z, z) = 0 2. ∀(z 1 , z 2 ) ∈ F × F, d(z 1 , z 2 ) = d(z 2 , z 1 ) ( symmetry condition) 3. ∀(z 1 , z 2 , z 3 ) ∈ F × F × F, d(z 1 , z 2 ) ≤ d(z 1 , z 3 ) + d(z 3 , z 2 )
In other words, a pseudometric can be seen as a metric that does not satisfy the separation condition, i.e., d(z 1 , z 2 ) = 0 =⇒ z 1 = z 2 . To be precise, the notion of semimetric is relatively ambiguous in the literature, so we shall adhere to the definition provided by [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF], where a semimetric can be seen as a pseudometric which does not satisfy the symmetry condition: Definition 2.7 Semimetric. Let F be some vector space, then any mapping d : F × F → I, I ⊂ R + is a semimetric on F as soon as:

1. ∀z ∈ F, d(z, z) = 0 2. ∀(z 1 , z 2 , z 3 ) ∈ F × F × F, d(z 1 , z 2 ) ≤ d(z 1 , z 3 ) + d(z 3 , z 2 )
They are actually defined in analogy to seminormed spaces.

Three main families of semimetrics are proposed, although no universal classification exists, since there is an infinity of possibilities when it comes to building semimetrics that will be applied to functional data. Let us consider a finite sample of independent and identically distributed observations of functional data {z i } N i=1 from a functional random variable Z in T ⊂ R. The first class of semimetrics are those based in the FPCA presented in 2.2.2.4. Considering that F ⊂ L 2 (T ), and the corresponding functional random variable Z:

Z = ∞ j=1 ⟨Z, ψ j ⟩ψ j = ∞ j=1 λ j ξ j ψ j = ∞ j=1 Z(t)ψ j (t)dt ψ j (2.8)
where {ψ j } ∞ j=1 are the orthonormal eigenfunctions of the covariance operator κ. By truncating the previously defined expansion, we consider: Z(q) = q j=1 Z(t)ψ j (t)dt ψ j , we have an optimal representation of the data in a lower dimensional space in the sense of the L 2 norm. This expansion minimizes E[ (Z(t) -P q Z(t)) 2 dt)] over any given projection P q of Z into this space. It is thus possible to define a whole family of semimetrics based on the norm L 2 :

d F P CA q (z v , z l ) = q j=1 [z v (t) -z l (t)]ψ j (t)dt 2 (2.9)
Since κ is unknown in practice, it may be estimated from its empirical form (for a centered process):

κ N Z (s, t) = 1 N N i=1 z i (s)z i (t)
, whose eigenfunctions are consistent estimator of the eigenfunctions of κ [START_REF] Cardot | Functional linear model[END_REF]. Considering also the discretized versions of the sample of functional data in the grid τ , each individual integral in (2.3.2.1) can be approximated as [START_REF] Castro | Principal modes of variation for processes with continuous sample curves[END_REF]:

[z v (t) -z l (t)]ψ j (t)dt ≈ p g=1 w g (z v (t g ) -z l (t g ))ψ j (t g ) (2.10)
where {w g } p g=1 are the quadrature weights used to approximate the integral (a standard possibility is to simply choose w g = t g -t g-1 ). This way, the empirical version of any semimetric based on a FPCA can be written as:

d F P CA q (z v , z l ) = q j=1 p g=1 w g (z v (t g ) -z l (t g ))ψ j (t g ) 2 (2.11)
A second important family of semimetrics can be built in the context where the functional random variable Z is associated to a scalar (or multivariate) response. This case does not apply here, but there exist well adapted constructions of semimetrics based on the Partial Least Squares (PLS) and Multivariate Partial Least Squares (MPLS) decompositions [START_REF] Wold | Estimation of principal components and related models by iterative least squares[END_REF][START_REF] Frank | A statistical view of some chemometrics regression tools[END_REF][START_REF] Helland | Partial least squares regression and statistical models[END_REF].

Finally, [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF] establish a third family of semimetrics by taking into account notions of distance between derivatives of the observed functions. In general, these semimetrics take the form:

d l (z i , z j ) = T (z (l) i (t) -z (l) j (t)) 2 dt 1 2
(2.12)

The computation of derivatives (and in particular, those of higher order) can be numerically challenging. It is however possible to circumvent this problem by projecting the set of observations onto an analytic functional basis such as the B-splines one, presented in 2.2.2.2. Since the analytical form of the basis functions is known, each z i in the sample can be efficiently approximated and its derivatives can be estimated.

Depth functionals

Generally speaking, depth functions appeared as an attempt to generalize the notions of quantile to multivariate data [START_REF] Mozharovskyi | Tukey depth: linear programming and applications[END_REF], or, equivalently, as tools aiming at providing a center-outward ordering of objects existing in such spaces [START_REF] Zuo | General notions of statistical depth function[END_REF]. Although attempts at providing a sense of ordering in multivariate and functional spaces have been made, it was [START_REF] Zuo | General notions of statistical depth function[END_REF] who made the first comprehensive review of characteristics that are supposed to define what a depth functional is and what their properties are.

Still in the multivariate setting, let us consider a compact set E ⊂ R d , and consider the functions d : E → R. If we denote the set of all Borel probability measures on E as P, and (Ω, A, P) is the probability space on which all multivariate random variables X : Ω → E are defined, a depth function D is a bounded mapping D : E × P → R + ; (x, P) → D(x, P).

Let F x be the cumulative distribution of any given random vector x, realization of the random variable X, then the basic properties of a multivariate depth function would be: Naturally, since the actual analytic form F is seldom available, it is common practice to replace D(x, P) by its sample version, i.e., substituting the considered measure of probability by an empirical one D N (x) = D(x, P N ).

1. D(Ax + b, F Ax+b ) = D(x, F X ) holds for any random vector X in R d ,
Analogously to what we have previously presented, the development of depth functionals for functional data is much more recent than the multivariate one, and the field has experienced considerable development in recent years, with the proposition of many depth functionals adapted to functional data [START_REF] Cuevas | On depth measures and dual statistics. A methodology for dealing with general data[END_REF]; López-Pintado and Romo, 2009; Cuesta-Albertos and Nieto-Reyes, 2008). A natural idea that arises in the definition of depth functionals in this context would be to simply replace the considered compact set E for an equivalent functional space F such that the same aforementioned desired properties are preserved. Some very obvious examples of how this might be challenging can be extracted from looking at the already presented properties. For instance, even in multivariate spaces the notion of symmetry is not uniquely defined, let alone in functional ones, so the actual verification of the second property is almost intractable in practice. Other rather obvious example can be extracted from property number 4. Since there is no equivalence between norms in infinite-dimensional spaces, contrary to finite ones, the extrapolation of this property to the functional setting must be looked upon with attention.

Even though there exist some works in which this approach proves to be of use (see Cuesta-Albertos and Nieto-Reyes (2008) for an example of the generalization of the Tukey depth to infinite-dimensional spaces), a lot of care must be taken in the development of depth functionals and the establishment of their properties in functional spaces. In Nieto-Reyes and Battey (2016) the authors provide a generalization of the desired properties that can be applied to the functional setting.

Following the previous notations, let us consider the probability space (Ω, A, P) on which all the random variables are defined, and the measurable mapping (functional random variable) Z : Ω → F, where F is a Hilbert space. The set of all Borel probability measures on F is P, and so any functional statistical depth functional is a mapping D : F × P → R : D(z, P) → D(z, P), where z ∈ F. The properties of D are: This set of properties is better adapted to the functional context and constitutes the first major attempt at developing a general framework for depth functions in functional data, jointly with the works of [START_REF] Nagy | Statistical Depth for Functional Data[END_REF]. There exist several nuances regarding the actual applicability of all these properties in real functional depths, which are discussed in Gijbels and Nagy (2017). In the FOD setting, let us remark that P2 and P3 are particularly problematic. In both cases, the possible existence of more than one mode in the distribution of Z may imply that a suitable functional depth for FOD may be forced to not verify these conditions in order to be sensitive to possible multimodalities in the distribution.

• P1: Distance invariance. D(f (z 1 ), P f (Z) ) = D(z 1 , P Z ) for any z 1 ∈ F and f : F → F such that for any z 2 ∈ F, d(f (z 1 ), f (z 2 )) = a f d(z 1 , z 2 ) with a f ∈ R/{0}
We shall now define the main depth functionals that will be considered in these works and which will be used further in the document (see section 2.5). [START_REF] Cuevas | Robust estimation and classification for functional data via projection-based depth notions[END_REF] of z ∈ F with respect to

Definition 2.8 Let (F, d) = (L 2 , || • || L 2 ). The h-mode depth
P is: D h (z, P) := E[||K h (z -Z)|| L 2 ] (2.13)
where, for any fixed h > 0, 

K h (•) = 1 h K( • h ) with K(•)
B(z 1 , ..., z J ) = (t, z(t)) T ∈ R 2 : t ∈ T , min i=1,...,J z i (t) ≤ z(t) ≤ max i=1,...,J z i (t) (2.14)
This way, for J = 2, 3, ... and P ∈ P(C(T ), the Band Depth (BD) (López-Pintado and Romo, 2009) of order J of z ∈ C(T ) with respect to P is given by:

D BD (z, P) := 1 J -1 J j=2 P(G(z) ⊂ B(z 1 , ..., z j )) (2.15)
where (t, z(t)) T ∈ B(z 1 , ..., z j ) . The Modified Band Depth (MBD) of order J of z ∈ F is: 

G(z) = {(t, z(t)) T ∈ R 2 : t ∈ T }.
D M BD (z, P) := 1 J -1 J j=2 E[λ t ∈ T : (t, z(t)) T ∈ B(
D S (z, P) := 1 -E z -Z ||z -Z|| L 2 (2.18)
where the convention 0 0 = 0 is adopted.

All in all, all these definitions of functional depth may be used as measures that provide a center-outward ordering of F. Basic criteria or estimations of cutoff values for the set of depths assigned to a set of functional data may be used in order to provide an outlyingness criterion.

Measures from the times series domain

As we have already mentioned, the time series domain is highly related to the FDA one, which is the main reason why it makes sense to consider possible measures coming from this domain in order to perform an efficient dimensionality reduction on the data.

In particular, the Dynamic Time Warping (DTW) [START_REF] Müller | Dynamic Time Warping[END_REF]) is a technique that has been proven to be useful when comparing time series. It provides measures of similarity and, most of all, correspondence between two sequences of data.

It has been vastly explored in the time-series domain, even though most of the efforts of the scientific community seem to have been focused on improving the computational cost of the algorithm, rather than improving its precision or way of working [START_REF] Ratanamahatana | Everything you know about Dynamic Time Warping is wrong[END_REF]).

In the following section we will explain the general algorithm of DTW, which is mostly taken from [START_REF] Müller | Dynamic Time Warping[END_REF], and which will be of use in Section 2.4.

General Algorithm

As it has been said, the general idea behind the DTW algorithm is to be able to compare two sequences of data which are observed in discretized points of a certain grid, which is why most of the modifications of the method have been developed in the time series domain. Fixing two sequences X := (x 1 , x 2 , ..., x N ); N ∈ N and Y := (y 1 , y 2 , ..., y M ); M ∈ N, as well as a feature space S and x n , y m ∈ S for n ∈ [1 : N ] and m ∈ [1 : M ]. Let us also define a local cost measure (sometimes also called local distance measure), which is a function:

c : S × S → R ≥0
In general, it is considered that c(x, y) is low if x and y are similar to each other, and otherwise (high cost), c(x, y) is large. By evaluating each pair of elements of each of the sequences, we obtain the cost matrix

C ∈ N × M, C(n, m) := c(x n , y m ).
The idea is to find the alignment between the points in both sequences which has the lowest overall cost. As it is stated in [START_REF] Müller | Dynamic Time Warping[END_REF], this alignment runs along a "valley" of low cost within the cost matrix C.

The notion of alignment is (more formally) defined a (N, M )-warping path (or warping path if both values of (N, M ) are clear by context), which is a sequence p = (p 1 , ..., p L ) with

p l = (n l , m l ) ∈ [1 : N ] × [1 : M ]; ∀l ∈ [1 : L]
which also satisfies the following conditions:

• Boundary condition:

p 1 = (1, 1) and p L = (N, M ) • Monotonicity condition: n 1 ≤ n 2 ≤ ... ≤ n L and m 1 ≤ m 2 ≤ ... ≤ m L •
Step size condition: p l+1 -p l ∈ (1, 0), (0, 1), (1,1) 

for l ∈ [1 : L -1]
The third condition implies the second, but normally both are shown for the sake of clarity. A warping path p = (p 1 , ..., p L ) defines an alignment between two sequences by assigning the element x n l of X to the element y m l of Y .

Going beyond the formalism, the first condition guarantees that the first and last elements of both sequences will be aligned, whereas the second condition (monotonicity) ensures that if any element of the first sequence comes before another, this will also be true for the corresponding points in the other sequences. Finally, the third condition serves to ensure that all the points in both sequences are aligned with some other element in the other sequence, as well as to ensure that there shall not be any replications of the same alignment.

The total cost c p (X, Y ) of a given warping path is:

c p (X, Y ) := L l=1 c(x n l , y n l )
Finally, an optimal warping path between X and Y is a warping path p * having minimal total cost among all possible warping paths. Having defined this path, DTW distance DT W (X, Y ) between X and Y is defined as the total cost of the optimal warping path.

DT W (X, Y ) = c p * (X, Y ) = min{c p (X, Y )}|p

is an(N, M )warping path}

There are several remarks to make concerning this measure. Firstly, in general, the optimal warping path is not unique, which means that it is up to the user to define which one of the found paths is the optimal depending on the problem. Secondly, the results given by the algorithm depend on the chosen cost function, which is not unique or defined in general when applying the algorithm. Finally, it must also be noted that even if the chosen cost function c is positive definite, this is not necessarily true in general for the DTW distance.

The computation time of the algorithm would be exponential with the sizes of the analyzed sequences if one wanted to test each possible path between X and Y . However, making use of the dynamic programming the overall cost of the algorithm could be reduced to O(N M ).

Computation of the algorithm.

In order to simplify the computation of the optimal path, we can define the sequences X(1

: n) := (x 1 , ..., x n ) for n ∈ [1 : N ] and Y (1 : m) := (y 1 , ..., y n ) for m ∈ [1 : M ]
and set the value:

D(n, m) := DT W (X(1 : n), Y (1 : m))
The corresponding values D(n, m) define a matrix called the accumulated cost matrix (obviously, D(N, M ) = DT W (X, Y )). It can be demonstrated that the matrix D satisfies the identities:

       D(n, 1) = n k=1 c(x k , y 1 ); ∀n ∈ [1 : N ] D(1, m) = m k=1 c(x 1 , y k ); ∀m ∈ [1 : M ] D(n, m) = min D(n -1, m -1), D(n -1, m), D(n, m -1) + c(x n , y m );
In the last case, the calculations are made for the values 1

< n ≤ N & 1 < m ≤ M .
In particular, DT W (X, Y ) = D(N, M ) can be computed with O(N M ) operations. Finally, the optimal warping path algorithm makes use of this matrix to calculate the optimal path p * = (p 1 , ..., p L ), which is computed in reverse of the indices, i.e., by starting in p L = (N, M ). Supposing that we have already computed p l = (n, m), if (n, m) = (1, 1), we then have l = 1 and the procedure is finished. In any other case:

p l-1 :=        (1, m -1) if n = 1 (n -1, 1) if m = 1 arg min D(n -1, m -1), D(n -1, m), D(n, m -1) otherwise 
Even though it is true that by proceeding this way the whole process is accelerated, it is nonetheless true that the computational cost is still of order O(M N ), which is still quite elevated for some applications (when there is a great number of points to be analyzed). This is the reason why there are some quite well known propositions of acceleration methods for the DTW algorithm.

DTW variations

These methods can be explained in depth but here we shall content ourselves with an explanation of the general methodology for each of the modifications.

• Step size condition. The step size conditions assure that each point of every sequence is assigned to one of the other. The main drawback of this condition is the possibility of degeneration, i.e., one point may be assigned many times to a large number of points of the other sequence, which translates by a big horizontal or vertical line in the cost matrix. In order to avoid this problem, it is possible to modify the step condition to constrain the slope of the warping path. For instance, the step condition could be written as:

p l+1 -p l ∈ D(n -1, m -1), D(n -2, m -1), D(n -1, m -2) + c(x n , y m )
• Local Weights. It can sometimes be interesting (due to prior knowledge of the data that is compared) or to avoid degenerations as in the previous case, to favor the horizontal, vertical, or diagonal paths in the alignment. To accomplish this, it is possible to introduce a weight vector (w d , w h , w v ) ∈ R 3 , so that:

D(n, m) = min        D(n -1, m -1) + w d c(x n , y m ) D(n -1, m) + w h c(x n , y m ) D(n, m -1) + w v c(x n , y m )
• Global constraints. It is one of the most common variants. The idea is to constrain the possible warping paths to a certain region in the cost matrix, normally a closed region near the diagonal of the matrix. More precisely, R ⊆ [1 : N ] × [1 : M ], then a warping path relative to R is a warping path that runs entirely on the chosen region R, and the optimal warping path relative to R is denoted p * R . It is the cost-minimizing warping path among all warping paths relative to R.

• Approximations. A very basic idea, it consists in performing the alignment on coarsened versions of the sequences X and Y , effectively reducing the lengths of the sequences.

The obvious drawback of this methodology is that information is lost, and the optimal warping path that is ultimately found may not exactly correspond to the true optimal path that could have been found if we had kept all of the values.

However, there is an interesting modification of this idea called Multiscale DTW, where this approach is taken in order to generate a basic global region which serves to establish a global constraint (described previously) and where in the following step the actual optimal warping path will be searched.

Review of functional outlier detection methods

The development of techniques capable of dealing with outliers in sets of functional data has experienced an important growth since the works of Febrero-Bande et al. (2008), where a technique based on functional depths was successfully used in order to identify anomalous concentrations of pollutants. Since then, considerable work has been consecrated to the study of the nature, taxonomy, identification and explanation of functional data outliers. Nonetheless, no formal review of methods has been made on the subject and the existing techniques remain scattered and diverse.

For instance, [START_REF] Spear | Eutrophication in peel inlet-II. Identification of critical uncertainties via generalized sensitivity analysis[END_REF] propose a methodology based on several different notions of depth by estimating the cutoff value of depth by smooth bootstrapping. In López-Pintado and Romo (2009) the authors presented the notion of band depth and MBD to show how it could be used as tool to identify if different sets of functional data can be considered to have originated from the same distribution. There exist graphical tools such as the rainbow plots, the functional bagplots and HDR boxplots [START_REF] Hyndman | Rainbow plots , bagplots and boxplots for functional data[END_REF], based on the adjustment of probabilistic models over the two main FPCA components. Similarly, Sun and Genton (2011) proposed a non-trivial extension of the univariate boxplot for functional data without relying on the classical boxplots in each of the individual points in the sampling grid thanks to the notions of BD and MBD. In Gervini (2012), the author compared the performances of a number of trimmed estimators in order to capture the outlyingness of more general forms of functional data (not necessarily univariate curves).

After these early attempts, considerable research effort was made in order to improve some of the main problems of the aforementioned methodologies. Most of them were only sensitive to very specific types of outliers, and those which relied on depth notions could not provide robust estimators for the cutoff values from which outliers are considered since its actual distribution impossible to estimate. In Arribas-Gil and Romo (2014), the authors present one of the earliest efficient attempts at detecting shape outliers through the use of both graphical tools and two different depth notions, the MBD and the modified epigraph index (López Pintado and Romo, 2011). In [START_REF] Hubert | Multivariate functional outlier detection[END_REF], the authors developed a new graphical and analytical technique based on depth functionals for multivariate functional data, whereas in Kuhnt and Rehage (2016), the authors focus on shape outliers in the same framework through angle-based data depths (pesudo-depths according to them, since they do not fulfill the criteria presented in 2.3.2.2). [START_REF] Nagy | Depth-based recognition of shape outlying functions[END_REF] showcased how derivative-based depth functions may be used to better identify shape outliers. In [START_REF] Dai | Multivariate functional data visualization and outlier detection[END_REF] the authors make use of the work presented in [START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF], where an outlyingness estimator is developed aiming at quantifying the outlyingness both in magnitude and shape sense. They also provided a visualization tool that facilitates the interpretation.

Finally, in more recent years, novel methodologies have continued to arise, still trying to improve the explicability of the methodologies, and also simplifying them without harming their detection capabilities, while also improving the theoretical framework of the field (Nieto-Reyes and Battey, 2016; Gijbels and Nagy, 2017). We can mention the works of [START_REF] Barreyre | Multiple testing for outlier detection in space telemetries[END_REF], where statistical tests are performed on the coefficients of the projections into the Haar basis (2.2.2.3) of the set of functional data. [START_REF] Dai | Functional outlier detection and taxonomy by sequential transformations[END_REF] proposes another methodology based in rankings of estimators obtained from derivatives for smooth sets of functional data.

Classifying all these methodologies (as well as others that have not been mentioned) can prove to be a complicated task, due to the very different natures of all of the methods, although all of them can be classified according to the framework proposed in Section 2.3. It is however possible to classify them according to their sensitivity to the specific types of outliers that they search to identify:

• Magnitude outliers: Functional boxplots, functional bagplots, HDR plots, smooth bootstrap depth notions, BD, MBD.

• Shape outliers: Angle-based methods, depth notions on derivatives.

• Magnitude and shape outliers: Multiple testing on well chosen coefficients in a basis, Magnitude-Shape plot, outliergram, sequential transformations

We provide now a succinct state of the art of the main methods that are used nowadays for FOD.

Functional boxplot

Given a sample of functional data {z i } N i=1 defined in a univariate domain T ⊂ R indexed by the variable t, it is possible to compute the any α central region [START_REF] Liu | Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh)[END_REF] by considering the band delimited by the proportion of α ∈ (0, 1) deepest curves according to the band depth estimate.

Followin the notations of the authors in Sun and Genton (2011), the 50% central region of the sample can then be defined as:

C 0.5 = (t, z(t)) : min i=1,...,⌈N/2⌉ z [i] (t) ≤ z(t) ≤ max i=1,...,⌈N/2⌉ z [i] (t) . (2.19)
where z [i] (t) represents the sample curve associated with the ith largest band depth value.

This region can be interpreted as an analogous of the inter-quartile range for functional data, and it effectively corresponds to it pointwise. The whiskers of the functional boxplot can be computed by extending 1.5 times the pointwise extremes of the central region, such that the outliers are detected if they surpass the frontiers defined by these whiskers. The extended explanation of the method and some applications can be found in [START_REF] Sun | Functional boxplots[END_REF]. An example of the functional boxplot applied to a set of functional data can be found in 

High-Density Regions (HDR)

In order to compute the bivariate HDR plot [START_REF] Hyndman | Rainbow plots , bagplots and boxplots for functional data[END_REF], the first two principal component scores are computed for each z i in the considered sample. A kernel estimator of the underlying probability density function f (C1, C2) of set of bivariate scores {c 1,i , c 2,i } N i=1 from the bivariate random variable C : F → V ⊂ R 2 can be estimated:

f (c 1 , c 2 ) = 1 N N i=1 K h (c 1,i , c 2,i ) -C
The bandwidth can be estimated by cross-validation, and

K h (•) = 1 h K( • h )
, where K(•) is a given kernel function. This way, a HDR is the set defined by:

R α := {(c 1 , c 2 ) : f (c 1 , c 2 ) ≥ f α } (2.20)
where

f α is chosen such that Rα f (c 1 , c 2 )d(c 1 , c 2 ) = 1 -α, with α ∈ [0, 1]
. Naturally, the detection capabilities of the algorithm depend firstly on the choice of α, and how well variability of the considered functional random variable can be captured by the principal components. An example can be found in 

Outliergram

The outliergram (Arribas-Gil and Romo, 2014) was proposed as a way to tackle the difficulty of identifying shape outliers. It is a graphical tool based on two notions of functional depth, the MBD (see Definition 2.16) and the Modified Epigraph Index (MEI) (López Pintado and Romo, 2011). For the previously defined set of functional data in F = C(T ) defined in T ⊂ R, and let λ be the Lebesgue measure, the MEI is defined as:

D M EI (z) = 1 N N i=1 λ({t ∈ T |z i (t) ≥ z(t)}) λ(T ) (2.21)
which corresponds to the mean proportion of time that the curve z remains below the curves of the sample. A quadratic inequality between the MBD and the MEI can be established as follows:

D M BD (z) ≤ a 0 + a 1 D M EI (z) + a 2 N 2 D 2 M EI (z) (2.22)
where a 0 = a 1 = -2 N (N -1) and a 1 = 2(N +1) N -1 . This way, it is possible to plot the bivariate plane (D M BD , D M EI ) ∈ R 2 and establish a detection criterion based on the vertical distance of each corresponding point in the bivariate plane to the parabola defined in (2.3.3.6). An example of the results in a simple identification case can be found in Figure 2.5. 

Magnitude-shape plot

This method [START_REF] Dai | Multivariate functional data visualization and outlier detection[END_REF]) is also based on the decomposition of the sample's outlyingness into different elements that account for the total outlyingness of a single functional object. First of all, in Dai and Genton (2019), the authors define the directional outlyingness of any given random variable X defined in V ⊂ R d as:

O(X, F X ) := { 1 D(X, F X ) -1 -1} • v, D(X, F X ) > 0 (2.23)
where F X represents the distribution of an arbitrary random variable X and D represents any chosen depth notion. The vector v ∈ V is a unit vector in pointing from the median (i.e., the deepest point of

F X according to D) to X. If this notion of median (m X ) is unique, the authors propose v = (X-m X )
||X-m X || . If we consider now the functional random variable Z defined in T ∈ R, it is possible to decompose the total outlyingness of any object z(t) in the sample in three components.

Definition 2.13

Mean directional outlyingness M O :

M O (Z, F Z ) = T O(Z(t), F Z )w(t)dt (2.24)
Definition 2.14

Variation of directional outlyingness V O :

V O (Z, F Z ) = T ||O(Z(t), F Z ) -M O (Z, F Z || 2 w(t)dt (2.25)

Definition 2.15

Functional directional outlyingness F O :

F O (Z, F Z ) = T ||O(Z(t), F (Z)|| 2 w(t)dt (2.26)
where w(t) is a weight function of T which can be chosen as a constant or proportionally to a local variation measure of the functions (depending on the derivatives for instance). For outlier detection purposes, the authors choose w(t) = {λ(T )} -1 . The three measures can be related through the expression:

F O = ||M O || 2 + V O . The Magnitude-shape plot is a scatter of points of (M T O , V O )
T for a collection of functional data. The inlying points are supposed to remain close to the lower central region, whereas outliers will scatter through the edges depending on their nature (the predominant values of the vector (M T O , V O ) T ).

Sequential transformations

This algorithm from Dai et al. (2020) relies on the transformation of a wide diversity of shape outliers into magnitude outliers, much easier to detect through standard procedures. Given a sequence of operators defined in F (the functional space that generates the considered data) {G k }, k = 0, 1, 2, .. , the method consists in sorting the raw and transformed data into vectors of ranks for each observation. The vectors of ranks are sorted according to a one-side depth notion, such as the extreme rank depth for instance, and a global envelope is constructed, which allows the outlier identification.

Proposed Methodology for Outlier Detection

The aforementioned methodologies constitute a solid foundation of the state of the art in what concerns the detection of outliers in sets of functional data. They also provide an insight as to what the main strengths and weaknesses are currently in this diverse field, and how their applicability, although wide, can be limited depending on the chosen methodology and the taxonomy of the analyzed functional data.

We now address the major existing challenges in the FOD domain taking into account the main existing methodologies:

• Most of the methods are only applicable to specific sets of functional data and lack generality. For instance, the functional boxplots (Sun and Genton, 2011) and HDR plots [START_REF] Hyndman | Rainbow plots , bagplots and boxplots for functional data[END_REF] are apt for detecting magnitude outliers, but are almost incapable of detecting more complex forms of outlyingness. In a similar way, the outliergram seems to be very capable of detecting a wide spectrum of outliers, but according to the examples presented in Arribas-Gil and Romo (2014), this is only the case if the outliers present a very apparent outlying behavior. Similarly, the methods explored in [START_REF] Dai | Functional outlier detection and taxonomy by sequential transformations[END_REF] are apt for cases where the main source of outlyingness is due to the differences in the derivatives of the analyzed objects, which is not necessarily always the case, even for shape outliers.

• The diversity of the existing methods hinders the comparability of the results. As it was mentioned in Section 2. ) but not all, only provide a binary label of inlier or outlier in a set of data. However, in many contexts (e.g., in sensitivity analysis), a quantifiable score of outlyingness is more useful, since there will always exist data whose outlyingness may be considered to be too small to classify them as outliers, but whose score is still sufficient to be relevant when analyzing the taxonomy of outliers.

• Most methods rely on an arbitrary notion. Frequently, an extension to the functional framework of the commonly used heuristic of 1.5 × IQR, where IQR stands for the interquantile range (Sun and Genton, 2011; Arribas-Gil and Romo, 2014; [START_REF] Nagy | Depth-based recognition of shape outlying functions[END_REF]. These kinds of choices are difficult to justify in practice, and are more of a common practice in the literature than a real methodological and rigorous choice.

Finally, it is worth noting that the methods are rarely or almost never tested on sets of functional data generated by numerical simulations. In most cases, the methodologies are tested against the mentioned toy examples or measured data (common data sets come from the environmental sciences field and climatology), but not sets of functional obtained from computer simulators.

As an example, we showcase a set of temperature curves provided by the code CATHARE2 in Figure 2.6. These curves correspond to the evolution of the temperature in a particular point of the primary circuit of a nuclear power plant. As we can see, the density of curves is quite large (specifically, there are 996 curves), and none of them can be easily identified as an outlier to the naked eye. The applicability of functional outlier detection methods on this kind of application (set of similar data, large number of observations, difficult interpretation of the possible flagged outliers) remains to be tested, and is the object of Chapters 4 and 5.

We propose at this stage a detection methodology (Rollón de Pinedo et al., 2021) that aims at addressing these considered problems. 

Probabilistic modeling of features

Firstly, we shall consider that a certain number of features is available to model the considered set of functional data and that they are capable of quantifying their outlyingness both in the magnitude and shape sense. Let us consider the probability space (Ω, A, P) on which all the random variables are defined, and the measurable mapping (functional random variable) Z : Ω → F ⊂ F * , where F * is a Hilbert space. The set of all Borel probability measures on F is P.

We can define the multivariate feature random variable U ∈ S ⊂ R R , U = {U 1 , ..., U r , ..., U R }. These functions may take the form of depth functions, or other available semimetrics, and they are mappings U r : F → R.

Let us suppose that a certain number of features are available to describe our functional data and are able to capture the specific characteristics of both central and abnormal observations. If U = {u 1 , ..., u r , ..., u R } represents this set of features, with no imposed a priori restrictions on its size, such that ∀u r ∈ U, u r : F → R.

The extreme nature of any object in the multivariate feature space S can be measured in terms of the subsets of S where U takes its values of higher or lower probability. Let θ ∈ (0, 1), a minimum volume set S θ of mass at least θ is the solution of the constrained optimization problem [START_REF] Polonik | Minimum volume sets and generalized quantile processes[END_REF]:

min S Borelian λ(S)/P(U ∈ S) ≥ θ (2.27)
where the minimum is taken over all measurable subsets of S ∈ R R .

In order to guarantee that this measure is suitable for outlier detection, these sets must be unique. This can be guaranteed as long as the probability density function p with respect to the Lebesgue measure on R R of the random variable U respects the following properties:

• P.1. ||p|| ∞ < +∞, i.e., the function is bounded.

• P.2. P[p(u r ) = c] = 0, ∀c ∈ R
In this case, as long as p belongs to at least C(T ), the set S θ is unique.

We can then define a general quantile function:

∀θ ∈ (0, 1), θ * (θ) := λ(S θ ) (2.28)
where θ * is continuous on (0, 1) and as long as supp(p) is compact. Since p is always unknown, this function may be estimated through the empirical version of its cumulative distribution function

P N = 1 N N i=1 δ U i (δ
represents the Kroneker delta function), solving the optimization problem over all Borelian subsets of R R .

We will address the problem of the estimation of p in the following section.

Estimation of the underlying model

As we mentioned, the estimation of the underling probabilistic model may simply be made through the empirical version of p. It is however desirable to represent p by a smooth function that allows a certain level of control over its form from the user, so that it may be adapted for outlier detection.

It is possible to estimate p through a parametric model, such that p(•, ν) is characterized by the set of parameters ν ∈ V. Let us consider the Gaussian Mixture Model (GMM) here [START_REF] Reynolds | Gaussian Mixture Models[END_REF].

Definition 2.16

Gaussian Mixture Model. The probability density function p of a mixture of K Gaussians with individual densities {f 1 , ..., f K } in the feature space S can be written as the linear combination:

p(u|ν 1 , ..., ν K ) = K k=1 w k f k (u|ν k ), ∀u ∈ S (2.29)
where ν k represents the collection of parameters that describe the kth Gaussian component and {w k } K k=1 are the corresponding weights of each component. They verify as well K k=1 w k = 1, and for any given individual Gaussian f k , the parameters

ν k = {µ k , Σ k }, µ k ∈ S ⊂ R, Σ k ∈ R R × R R
, where µ k represents the average and Σ k is the covariance matrix of f k .

The analytical form of individual Gaussian is given by:

f k (u|µ k , Σ k ) = 1 |2πΣ k | exp - (u -µ k ) T Σ -1 k (u -µ k ) 2 (2.30)
It is then necessary to estimate the collection of parameters {ν k } K k=1 . This can be achieved via the Expectation Maximization algorithm (EM) presented in the following section.

The Expectation Maximization (EM) algorithm

The EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] was introduced as a general method to estimate the parameters of a parametric model by maximum likelihood when the evaluated function is complex, i.e., when the likelihood function of the parameters cannot be computed analytically. It is also an efficient methodology to estimate models which have latent variables. Following the previous notation, if we denote the set of observed multivariate data by u, and the set of latent variables by l, whereas the set of all the parameters of the model is ν, then the log likelihood of the corresponding density function p is given by [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]:

ln p(u|ν) = ln l p(u, l|ν) (2.31)
where we have considered that the latent variables are categorical (as will be the case in the GMM). This is equally applicable to continuous latent variables by substituting the summation by an integral in the continuous case. The set {u, l} is usually called the complete set of data, whereas the set {u} is the incomplete one. In practice, only the incomplete set is available, and we can consider that all the available information concerning the latent variables is given by p(l|u, ν). Basically, the EM algorithm will be divided into two steps. In the E step, we will consider the expected value of the log likelihood under the posterior distribution of the latent variable, whereas in the M step, this quantity will be maximized.

In practice, given an estimated set of parameters ν old a successive set of E and M steps will provide a new set of ν new parameters up until convergence. More formally, both steps can be summarized as:

• E-step. Given ν old , obtain p(l|u, ν old ). This posterior distribution is used in order to evaluate the complete log likelihood evaluated over a generic set of parameters ν. The corresponding expectation Q(ν, ν old ) is given by:

Q(ν, ν old ) = l p(l|u, ν old ) ln p(u, l|ν) (2.32)
• M-step. We obtain the updated set of parameters ν new by maximizing the obtained expectation:

ν new = argmax ν Q(ν, ν old ) (2.33)
The EM algorithm is summarized in Algorithm 1: 

Algorithm 1: Generic EM
ν new = argmax ν Q(ν, ν old ) Q(ν, ν old ) = l p(l|u, ν old ) ln p(u, l|ν) ; 4.
Check for convergence of the log likelihood or the set of parameters. If a convergence criterion is not met, then let:

ν old ← ν new
The adaptation of the algorithm for Gaussian mixtures is straightforward, as we will see in the next section.

EM for Gaussian Mixtures

If we consider the Gaussian mixture model, we can define the set of latent variables as a Kdimensional binary random variable L such that if any particular element l k equals 1 then all the other elements are equal to 0, i.e., l k ∈ {0, 1} and K k=1 l k = 1. The marginal distribution of the latent variable may be expressed in terms of the weights (mixing coefficients) of the GMM, such that p(l k = 1) = w k , and the aforementioned marginal distribution can be written as:

p(l) = K k=1 w l k k (2.34)
Conversely, the conditional distribution of U given a value l for the Gaussian case can be written:

p(u|l) = K k=1 f k (u|µ k , Σ k ) l k (2.35)
In this case, the likelihood function of the complete set of data takes the form:

p(u, l|µ, Σ, w) = N i=1 K k=1 w l ik k f k (u i |µ k , Σ k ) l ik (2.36)
where l ik denotes the kth component of l i (the value of the latent variable for the ith observation). Taking the logarithm of this expression, we obtain the log likelihood function:

ln p(u, l|µ, Σ, w) = N i=1 K k=1 l ik [ln w k + ln f k (u i |µ k , Σ k )] (2.37)
Finally, analogously to the methodological sequence followed in the previous section, the posterior distribution of the complete data log likelihood is:

p(l|u, µ, Σ, w) ∝ p(u, l|µ, Σ, w) = N i=1 K k=1 w l ik k f k (u i |µ k , Σ k ) l ik (2.38)
and hence the expectation of any indicator variable l ik can be written as:

E[l ik ] = l ik l ik [w k f k (u i |µ k , Σ k )] l ik l im [w m f m (u i |µ m , Σ m )] l im = w k f k (u i |µ k , Σ k ) K m=1 w m f m (u i |µ m , Σ m ) = γ(l ik ) (2.39)
where γ(l ik ) is called the responsibility of the component k in the mixture for each point i.

Therefore, the EM algorithm applied to the estimation of the parameters of the Gaussian mixture is finally described in Algorithm 2.

Adapting EM for outlier detection

Although the raw form of the EM algorithm can be used in the general context of functional data analysis, there are several issues concerning the adjustment of the considered parameters in the context of outlier detection. Some of them are addressed in Aggarwal (2017), and they can be summarized as follows:

• If the probabilistic model is adjusted taking into account the presence of outliers, they may bias the estimation of the underlying model. This is especially problematic if the outliers are assumed to be generated by a different distribution than the other data and are no only considered to be extreme realizations of the same underlying process than the others. On top of that, if the sample presents a high degree of contamination or the sample size is small, this bias can greatly influence the detection.

Algorithm 2: EM algorithm for GMM estimation

Result: Set of parameters ν final 1. Choose (manually or randomly) a starting set of parameters

ν old = {µ old k , Σ old k , w old k } K k=1 ; 2. E-step.
Evaluate the corresponding responsibilities γ(l ik ); 3. M-step. Re-estimate the parameters through:

µ new k = 1 N k N i=1 γ(l il )u i Σ new k = 1 N k N i=1 γ(l ik )(u i -µ new k )(u i -µ new k ) T w new k = N k N
where N k represents the number of observations assigned to the kth Gaussian in the mixture, i.e., N k = N i=1 γ(l ik ); 4. Check for convergence.

• If the multivariate sample can be classified in several different clusters but they number of components is not well-chosen, the possibility of overfitting the probabilistic model to the data becomes a real problem. In this case, some small-sized clusters may appear overly adjusted to the outliers, which will not be identified as such.

In order to tackle these issues, we propose the inclusion of two additional steps in the estimation of the GMM in the feature space once the likelihood function is evaluated.

1. The log likelihood function presented in Equation (2.37) is unbounded. This means that, if at any point the estimated mean vector

µ new k = 1 N k N i=1 γ(l il
)u i of one of the components in the mixture were to be estimated to be equal to one of observed points in the sample of the feature space u i (µ new k = u i , then the likelihood function diverges. In other words, it attains a singularity and therefore being interpreted by the algorithm as an optimal point in the estimation of ν. Naturally, this leads to spurious results in which the mixture model adjusts a single Gaussian component to individual points in the sample which are not representative of the standard expected behavior of the sample of functional data. In order to circumvent this problem, if at any point

u i = µ k , ∀i, k ∈ {1, ..., N } × {1, .
., K} then the point is extracted from the sample, as it is an isolated outlier. In practice, the point is extracted if at any point in the procedure

||u i -µ k || 2 < ϵ, where ϵ = inf S ||u i -u j || 2 , ∀i, j ∈ {1, ..., N } × {1, ..., N } and S ⊂ R R
introduced in section 2.4.1 is the lower-dimensional space of features.

2. In each iteration step, w k can be interpreted as the prior probability of l ik = 1, whereas γ(l ik ) is the posterior probability once the sample is observed. If such posterior probability is considered too low (in our applications we shall take a value of 0.1 as the minimum weight of the mixing coefficients), we will consider that the corresponding component is either overfitting the data, or that it has detected a small subset of points which is not representative of the central trend of the data. In this case, the other calculated parameters of the components are kept and the values of means and covariances of the small cluster are reinitialized to a random value in the space.

This procedure yields the algorithm shown in Algorithm 3.

Algorithm 3: EM algorithm for outlier detector GMM

Result: Set of parameters ν final 1. Choose (manually or randomly) a starting set of parameters

ν old = {µ old k , Σ old k , w old k } K k=1 ; 2. E-step.
Evaluate the corresponding responsibilities γ(l ik ); 3. M-step. Re-estimate the parameters through:

µ new k = 1 N k N i=1 γ(l il )u i Σ new k = 1 N k N i=1 γ(l ik )(u i -µ new k )(u i -µ new k ) T w new k = N k N
where N k represents the number of observations assigned to the kth Gaussian in the mixture, i.e., N k = N i=1 γ(l ik ); 4. Check for convergence.;

5. Check ||u i -µ k || 2 < ϵ, ϵ = inf S ||u i -u j || 2 , ∀i, j ∈ {1, ..., N } × {1, ..., N }, ∀k ∈ {1, ..., K}; 6. For the given level α, check w new k < α, ∀k ∈ {1, ..., K}

Testing for outlyingness and ordering score

Now that a probabilistic model adapted for outlier detection is available in the R-dimensional space of features S ⊂ R R , a statistical test for outlyingness may be constructed based on the probability that each point has to have been generated by the components of the constructed GMM. This way, for any u i ∈ S:

H 0 : u i has been generated by f k with probability at least p αk

H 1 : u i is an outlier. (2.40) Under H 0 , p(u i |l k = 1) > p αk , where p αk = f k (u α |µ k , Σ k ) such that P(u α |z k = 1) ≥ α.
The set of data points less likely than u α is determined by the Borelian set in S that verifies:

(u -µ k ) T Σ -1 (u -µ k ) ≥ (u α -µ k ) T Σ -1 (u α -µ k ). (2.41)
And therefore,

P[(u -µ k ) T Σ -1 (u -µ k ) ≥ (u α -µ k ) T Σ -1 (u α -µ k )] = 1 -P[C * ≤ (u α - µ k ) T Σ -1 (u α -µ k )],
where C * follows a Chi-squared distribution, C * ∼ χ 2 (k). By performing this test over all of the points considered in the feature space, a unique criterion for outlier detection is obtained, such that the outlying points will be the ones presenting p-values under a certain threshold α, ∀f k .

Here we have provided a unique detection criterion that allows the comparison to other detection methods that only provide a binary score. However, the interest in the development of a continuous outlier score that can quantitatively assign a degree of outlyingness in amongst the functional observations was already discussed. This can be estimated by measuring the probability mass contained in the corresponding minimum volume level set S θ in S that corresponds to the ith observation. If the underlying probabilisitc model of the functional data in the feature space is denoted by p, and an available estimator p exists, the outlyingness score θ i of the ith observation can be estimated through the expression:

θi = R R p(u)1 {p(u)≥p(u i )} d R u (2.42)
where 1 represents the indicator function.

Finally, let us consider the more realistic case where the availability of data is actually limited, and the sample of functional data is small so that the representation of p is not sufficient to guarantee the adequacy of the estimated function to represent the underlying probability model. This could be for instance the case for expensive industrial simulation codes, such as the mechanical or thermal-hydraulic simulators. In this case, a natural extension of this idea for outlier detection can be implemented via bootstrap resampling, [START_REF] Efron | An Introduction to the Bootstrap[END_REF]. B groups are formed by successively drawn with replacement in the original sample. This way, the absence of data can be mitigated through the re-estimation of the GMM for each bootstrap group. If for B bootstrap groups p b (u) represents the GMM of the bth group, the form of the (bootstrap) estimator of outlyingness would then be:

θi = R R 1 B B b=1 pb (u)1 {p b (u)≥p b (u i )} d R u (2.43)
Throughout this reasoning, the hyperparameter K (the number of components of the mixture model) has been supposed to be fixed, but in practice, this is yet another input parameter of the GMM that must be provided a priori to the EM algorithm. Indeed, the actual form of the model is significantly different depending on the number of components that are considered. If that is the case, the use of an oversimplified mixture when modeling complex multivariate distributions can induce incorrect conclusions about the distribution of data, whereas an unnecessary increase in the number of components may lead to overfitting problems, unacceptable computational costs or imprecise conclusions. This question can be treated as a model-selection problem, and several metrics are available in order to estimate an appropriate number of components depending on the sample. Some examples are the Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF] or the Integrated Completed Likelihood [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood. Pattern Analysis and Machine Intelligence[END_REF]. In this paper, the selection of the number of components is performed by means of the Bayesian Information Criterion:

BIC = 2 log(v) -G log(N ) (2.44)
where v represents the log-likelihood function for the GMM, G is the chosen number of components and N is the sample size used for the estimation. The second term introduces a penalty which depends on the number of components in order to mitigate overfitting effects.

With these elements, the detection methodology is summarized in Algorithm 4.

In the following section, analytical results for the detection methodology considering several sets of features are presented, comparing the results to some existing methodologies.

Numerical Tests

The detection capabilities of the algorithms will be assessed via simulation experiments taken from some common examples that can be found in the literature (López-Pintado and Romo, 2009; Long and Huang, 2015; [START_REF] Dai | Functional outlier detection and taxonomy by sequential transformations[END_REF].

Let us consider a sample of N = 50 functional observations, in a uniformly distributed grid of 30 points in T = [0, 1] and B = 10 bootstrap groups. Let us consider the following four function generators (see Table 2.2 for the specifics in the notations): 

• Model 1. Z(t) = 4t + G(t)
ν old = {µ old k , Σ old k , w old k } K k=1 ;
(b) E-step. Evaluate the corresponding responsibilities γ(l ik );

(c) M-step. Re-estimate the parameters through:

µ new k = 1 N k N i=1 γ(l il )u i Σ new k = 1 N k N i=1 γ(l ik )(u i -µ new k )(u i -µ new k ) T w new k = N k N
where N k represents the number of observations assigned to the kth Gaussian in the mixture, i.e., N k = N i=1 γ(l ik ); 

(d) Check ||u i -µ k || 2 < ϵ, ϵ = inf S ||u i -u j || 2 ,
{(BIC k )} Kmax k=1 ; 5. For a level α, test H 0 , H 1 ∀u i ∈ {u i } N i=1 . Obtain o; 6. Estimate θi = R R 1 B B b=1 pb (u)1 {p b (u)≥p b (u i )} d R u, θ i ∀i ∈ {1, ..., N }
It is important to note that the coefficients (multiplicative factors) of the indicator functions have been reduced in order to make the outliers less apparent. A summary of the notations can be found in Table 2 

Notation Description

G(t)

Centered Gaussian process of covariance function Σ(t

1 , t 2 ) = 0.3 exp -|t 1 -t 2 | 0.3

Z(t)

Functional random variable generating the main model Let us now consider a set of features adapted to perform the dimensionality reduction part of the algorithm:

• The h-mode depth, described in the Equation (2.13).

• The Dynamic Time Warping (DTW), found in Section 2.3.2.3.

• The modified band depth (noted BD), which can be found in Equation (2.16).

• The L 2 norm (noted L2) which is one of the most intuitive and widely used metrics that can be applied to functional data. It takes the form:

||z(t)|| 2 = R |z(t)| 2 dt 1/2 .
The experiments are replicated a total number of n = 100, and the feature space is constructed by using a pair of functional measures. Several reasons justify this choice. Firstly, the estimation of the minimum volume level sets can be computationally expensive in higher dimensions, and the addition of measures in the construction of the underlying model is not necessarily useful, since we aim at identifying the two main types of outliers: magnitude and shape. On top of that, the estimation of p requires a larger number of parameters, and most notably, the computation of the elements in the covariance matrices can become costly.

Two scores are used in order to measure the detection capabilities of the algorithm. The first one is simply the estimated θ (see Equation 2.42) values of the score of outlyingness, for each observation in each replication. It is directly proportional to the outlying nature of each functional observation in the feature space, and quantifies the probability of finding another observation at least as anomalous. The second score is the average ranking of each observation with respect to the whole population of functional data in each replication according to θ i . The score θ i provides a center-outward ordering of the curves according to this metric. In industrial applications, this ranking can be followed by the engineer to analyze particular data (e.g. numerical simulations) from the most suspicious (potentially interesting) observation to less suspicious ones. As one can see from the Table 2.3 and Figure 2.9, the combination of features that show the highest detection capabilities are the ones that include at least the h-Mode depth or the DTW as component of the considered Gaussian mixture model. In the case of the first two models, it is the combination of both features that yields the best detection results, whereas it remains close to the best result for Model 3 and Model 4. This result was expected, since the L 2 norm is a very general non-parametric measure which is probably not well suited for the direct application to the detection of anomalies in functional data, in spite of its usefulness for functional data characterization. The Modified Band Depth appears to be adapted for a quick detection of magnitude outliers, but not such a sensitive measure regarding shape outliers, which are far more complicated to define, identify and detect. That also explains why the scores for the third model (magnitude outlier) are so high with respect to the others.

The presented scores can be used in order to compare different detection methods that could be based on identical features (multiple testing, use of level sets, functional boxplots...) as well as a tool to compare the usefulness of different features for a common detection on the basis of a common detection algorithm.

In both cases (for the boxplots of the θi and the rankings), it is possible to appreciate not only the absolute detection capabilities that were mentioned before, but also the relative dispersion of the data. This can also be interpreted as an indicator of robustness (which depends on the choice of features). When looking at figures 2.8 and 2.9, several aspects can be noted. The first obvious remark is that the detection capabilities for the third model are far superior to those of the others. This is explained by the fact that this is the only one that constitutes both a shape and magnitude outliers, which largely facilitates its detection, even for less sensitive measures such as the L 2 distance. Another interesting point is that for the first model, which is contaminated by a shape outlier, all of the best results are obtained by the combinations that employ the DTW metric. This is also coherent, since it is the feature that best takes into account the shape differences between the curves. Finally, when analyzing the results of the experiments, it can be concluded that the use of a joint model through the h-mode depth and the DTW provide not only the highest detection rates in general, but also the smallest dispersion out of all the possible combinations. This is mostly related to the fact that the DTW is the most sensitive feature when it comes to analyzing shape outliers (it is specifically designed to provide a measure of correspondence between sequences). In conclusion, recommended use for general outlier detection is the couple of measures: h-mode depth and DTW.
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We can also compare the performance of our algorithm considering these 2 measures against other state of the art methods. For that purpose, we retain the previous 4 presented models as test cases, simulating n = 500 replications of the detection experiments with an increased sample of curves N = 100 and different degrees of contamination in the models: 1%, 5% and 10% (i.e., 1, 5 and 10 outliers in the samples).

The results are summarized in Table 2 Firstly, we must note that the identification capabilities and rates are clearly reduced when the size of the outlying sample is increased. This reduction of the performance of any detection algorithm is logical, since higher degrees of contamination naturally pollute the functional sample, which increases the bias of the score that is used for outlier detection. In the same line, if the size of the outlying sample is considerable (10% of outliers for instance), an argument can be made to defend that this sample might not be outlying, and that it simply corresponds to another mode in a hypothetical multimodal functional sample. This kind of phenomenon, as well as masking effects, is described in detail in [START_REF] Aggarwal | Outlier Analysis[END_REF].

Looking at the results, we can appreciate that the performance of our proposed algorithm is indeed competitive when compared with existent methods, even for complex sets of functional data, such as Model 4. In this case, we can clearly appreciate how the inclusion of a measure specifically dedicated to the detection of shape differences allows the consistent detection of the outlier. This capability is especially significant when we compare it with the other methods, which prove to be unable to detect this kind of shape outlier. In the case of the widely used Functional Boxplots, this is to be expected since they are intended to detect magnitude outliers. Regarding the HDR method, its low detection capabilities in this case are due to the fact that the low-dimesional representation through robust Functional Principal Component Analysis is not sufficiently precise to capture the outlying nature of the straight line. It is indeed possible that retaining a higher number of modes in this case could allow better detection capabilities, but this procedure greatly increases the curse of dimensionality problem (even if this subject is not treated in the paper of Hyndman ( 2009)), and it does not allow visualization purposes.

It is clear that Model 3 (being the only pure magnitude outlier amongst the considered models) is the simplest and easy to detect and most methods can consistently detect this kind of outlier when the sample is not overly polluted. Methods which rely the most on the density of curves are more vulnerable to any introduced bias in the sample by the curves if more than one mode exists, as they tend to identify the proportion of curves that behave unusually as belonging to a different modes of curves instead of treating them as genuine outliers. In the case of the functional boxplots, this is to be expected since by construction they are dedicated to the detection of magnitude outliers, which is useful if the contamination of the sample is made by a wide variety of magnitude outliers, but not so much if those outliers have all been generated by a homogeneous family of curves. In the case of the HDR plots, the existence of a homogeneous sample of outliers generates a set of points in their two-dimensional feature space of principal component scores with a high density of data, which prevents them from being identified as outliers.

In Models 1 and 2 the conclusions are similar (both models present a combination of slight magnitude and shape outliers). Most methods do not showcase any robustness for such slight magnitude outliers, contrary our developed algorithm. The main conclusion that can be extracted from these tests is that most methods struggle to find outliers when they are not apparent.

Finally, it must be mentioned that the Directional Detector is the most robust method when it comes to detecting the pure magnitude outlier presented in Model 3, as it is the least sensitive method to more contaminated samples. The main advantage of this methodology is its capability of finding outliers in multivariate functional data sets.

Conclusions

In this chapter, we have provided an overview of the main elements commonly used in the FDA domain. We have shown which are the main elements necessary to represent functional data and perform basic exploratory analysis in this framework.

We have also provided an extensive review on the main challenges that exist currently in the outlier detection domain, both in a general sense and in the particular case of functional data. This domain presents very specific and particular challenges which are rarely addressed.

The representation of functional data in lower dimensional spaces is also presented in detail, providing a practical framework of this representation through the use of semimetrics. A concise review of current methods for functional outlier detection is also presented, which constitutes a first attempt at classifying the existing methodologies.

Finally, we proposed a novel methodology that is competitive to state of the art algorithms, and whose usefulness in industrial context will be showcased in the following chapters. In this chapter we will introduce the industrial context of our work, which is the analysis of accidental nuclear transients in nuclear power plants (NPP). Transients that may occur in French Pressurized Water Reactors (PWR) are simulated using the CATHARE2 code. This requires to model the studied reactor using the functionalities of CATHARE2, and run simulations at the end of which the code provides functional outputs that describe the evolution of thermal-hydraulic (TH) quantities during the transient. The outputs, which are functional by nature, are then analyzed with a specific procedure based on the Functional Outlier Detection (FOD) method presented in Chapter 2. Section 3.1 first presents the basic elements upon the design of PWR that motivate the study of transients for these reactors, as well as a description of the CATHARE2 modeling, and how simulations are conducted with this code. The approach adopted for the analysis of simulation results comes from the domain of Sensitivity Analysis (SA). Section 3.2 provides a brief introduction to SA methods and presents the HSIC indices, which are the main tool used to study the influence of input variables of CATHARE2 on physical parameters of interest (Variables of Interest). The methodological contribution to the study of nuclear transient analysis is then exposed in section 3.3, including the different steps of a study based on our approach. The chapter concludes in Section 3.4 with a brief summary of the framework both in the theoretical and industrial setting, and what the application of the presented methodology aims to achieve in the context of nuclear transient simulation.

Global Nuclear Transient Analysis

The CATHARE2 code in nuclear safety studies

This section gives a general presentation of CATHARE2 and its role in nuclear safety assessments. Some fundamentals about the design of PWR are first provided as well as about the physics of Loss of Coolant Accident (LOCA), which is the main kind of transient targeted by our approach. These general elements are followed by a more detailed description of the CATHARE2 modeling, that is, the set of equations on which the CATHARE2 modeling is based and the basic modeling tools provided by the platform (modules and submodules). Finally the procedure to run CATHARE2 simulations is briefly explained.

General presentation of Pressurized Water Reactors (PWR)

EDF is operating 56 nuclear reactors (since 2020, after the Fessenheim NPP was closed), all being Pressurized Water Reactors deriving from the same initial design. The French fleet of power reactors is hence characterized by its uniformity when it comes to the conception, operating conditions and safety rules of nuclear power plants. The operating principle on which PWR are based (illustrated in Figure 3.1) consists in extracting power from the nuclear core, which lies in a thermal-hydraulic circuit called primary circuit, and transferring it to another circuit, called secondary circuit, to drive the main turbine-generator unit. The nuclear power generated by the core is converted into thermal power of the fluid that flows in the primary circuit. The primary circuit is subdivided into three (or four, depending on the reactor type) cooling loops allowing the primary-secondary power transfer. This power exchange from the core to the secondary circuit through the primary fluid is also essential for safety, as the core keeps on producing power even after a potential emergency shutdown of the reactor. This residual power must be evacuated to prevent an overheating of the core with unacceptable consequences. The safety of the operating process is indeed based on the existence of several confinement barriers that prevent radio-active materials from being released in the environment. The fuel cladding is the first one of this confinement barriers, the second one being the primary circuit itself. This circuit includes five main components which are essential for nominal producing conditions and in case of accidental events. 1. Core. The nuclear core contains the fuel through which the power is generated. This fuel is constituted by pellets of Uranium dioxide (UO 2 ) enriched in the 235 isotope (as opposed to the 92 238 U isotope which is more common), in a proportion that ranges from 3% to 5%. This isotope is a fissile material, i.e., it allows the sustained production of energy so long as the amount of available neutrons allowing the fission of the fuel atoms is guaranteed. This phenomenon releases both energy and neutrons, potentially contributing to a chain reaction. Fuel pellets are embedded in rods with a sheath made of Zircalloy (Zirconium-based alloy). These rods are themselves assembled into a component known as Fuel Element (FE) or fuel bundle. This fuel, thanks to the occurrence of nuclear reactions, produces large quantities of power that are transferred from rods to the surrounding coolant fluid. In this process, the coolant fluid also moderates the nuclear reaction, which means it slows down the neutrons emitted during the fission of uranium atoms. As neutrons collide with the water molecules of the coolant, their overall energy is lowered, considerably increasing the fission probability of 235-uranium nucleii. This way, water fulfills a double role in PWR: in one hand, it is a coolant which allows the extraction of energy from the fuel, and on the other hand, it is a moderator making possible a sustained and controlled chain reaction in the nuclear core.

Reactor Pressure Vessel (RPV) (IAEA, 2009

). The RPV is the component containing the nuclear core and is thus exposed to a high-energy neutron flux. It is constituted of a cylindrical wall of low-alloy carbon steel, whose internal part is usually coated with an austenitic stainless steel layer in order to minimize corrosion. It is closed by a hemispherical bottom head which is welded to the vessel's body and a bolted upper head that can be opened for refueling operations or maintenance.The vessel also contains the support structures that guarantee the mechanical stability of the core in the demanding pressure and temperature conditions in the primary circuit (respectively around 155 bar and 320 °C), and neutron-absorbing control rods which allow controlling the nuclear reactions in the core. As part of the second confinement barrier the RPV plays a major role in nuclear safety, although the radiation flux coming from the core might alter the vessel material and its mechanical properties during the years of operation.

Pressurizer (PZR) (NRC, 2004

). The pressurizer is the element allowing to control the primary pressure, ensuring this way the pressure value remains within standard operation limits (changes of the pressure value are usually caused by changes in temperature of the core). This control is achieved by maintaining a water-steam equilibrium for the fluid contained by the component. The pressure can be raised if necessary through the use of heaters, whereas it can be lowered thanks to a liquid water spray system, as well as valves (operator-controlled relief valves and safety ones).

Reactor Coolant Pumps (RCP) (NRC, 2004

). The RCP, also called primary pumps, provide to the primary coolant the force required to maintain the forced flow of the fluid. This flow is necessary to ensure the extraction of power from the core and the transfer of this power to the secondary circuit. Each loop in the primary circuit is equiped with one pump. Primary pumps are themselves powered by electric generators ranging from 4.5MW to 7.5MW depending on the specific kind of reactor. Their activation at each start of the reactor also provides to the fluid the thermal power required to heat the coolant up to the nominal operating temperature value. It is to be noted that in accidental situations, primary pumps constitute a non-negligible thermal input to the coolant if they are still in motion once the chain reaction is stopped.

Steam Generators (SG).

The steam generators are the components through which the primary/secondary power exchange is performed. The water in the SG at the secondary side (feedwater) is heated on contact with large tubes (in commercial PWR the SG can reach a height up to 20m) through which the primary fluid is flowing. The secondary fluid, which is liquid when entering the steam generator, is vaporized due to its power intake, and redirected to the steam turbine. The steam generators are also essential for safety as they ensure the evacuation of the residual power in case of emergency shutdown of the core.

Nuclear transients in PWR

As the operating principle of PWR is based on the extraction of energy from a source (the core) via heated water, the primary circuit of PWR (with its auxiliary systems) is often called boiler. In normal operating conditions, the reactor is kept in a stable state. To reach such a steady state, for example at the start of a new production cycle, the boiler continuously goes through intermediate states until meeting its nominal operating point. Similarly, the reactor state changes from a nominal power producing state to a cold one when the reactor is stopped (for example to partially renew the fuel in the core). French PWR are also designed to be capable of modulating the produced power level on power grid requirements. This power modulations also impose to operate a transition from a reactor state to another with corresponding power levels to follow the electrical system's demand.

Such dynamical operating phases are called transients as they consist in transitory changes of the reactor's physical parameters. Transient also applies to the dynamic modification of the boiler's state which may occur in case of an accident. The accidental transient starts when the reactor, due to some hazardous event, deviates from its safe operating domain, and lasts until reaching a new safe state. One of the accidental transients which might affect a PWR (although extremely unlikely) is called Loss Of Coolant Accident (LOCA). It is characterized by the opening of a break on the primary circuit, causing a significant diminution of the amount of water available in the boiler to keep cooling the core. A safety injection system is then automatically activated to bring water to the primary circuit and hence compensate the fluid loss. However, some undesirable phenomena, for which regulatory authorities impose strict safety requirements, might also arise during the accident. In particular the coolant loss can cause a partial vaporization of the primary fluid, drastically limiting its cooling power nearby the fuel rods. In all cases the emergency shutdown of the reactor results in a decrease of the coolant flow rate which in turn diminishes its power extraction capacity. Due to this temporary perturbation of the cooling function, fuel rods are subject to a temperature peak (or several ones in some cases). Safety studies are then required to make sure that the fuel rods cladding will resist these solicitations.

Another undesirable consequence of LOCA events is the solicitation of the reactor pressure vessel caused by the injection of water by safety systems. The injected water is indeed pumped from a tank located outside the reactor building. This water, whose temperature is imposed by meteorological conditions (and kept between limits imposed by operating rules), thus causes a thermal shock on the circuit's steel components close to the injection points. In particular, a crack may initiate in the reactor pressure vessel wall, due to the irradiation embrittlement of the component's steel, and the simultaneous potential presence an undetected flaws in the component's steel, which is also embrittled . The impossibility of such a crack initiation event has to be proved by safety studies and is also subject to strict regulatory requirements.

Although many other transients (accidental or not) might occur in PWR, we will focus on LOCA in the following chapters as the main application of this work. LOCA transients will be described in more details further in this document.

Best Estimate codes in the context of nuclear safety

Most nuclear power operators are confronted to a strict licensing process either to validate the reactor's design before its constructions and start-up or during the plant's life in service with periodic reappraisals. This process aims to ensure nuclear installations will be operated safely up to their decommissioning. In this process, operators have to prove that reactors, and in particular their safety systems, do meet regulatory requirements. Such a demonstration implies the examination the consequences of accidental scenarios on the parts of the boiler that are most essential for safety functions. More precisely, this means estimating the value of critical physical parameters throughout the considered scenario. At all times this quantities must remain within limits fixed by the regulatory authority, justifying the absence of risk of unacceptable events (such as the release of radioactive materials in the environment) even in case of accidental transient.

Engineering studies intended for this justification were first based on penalizing assumptions and simplified physical models, hence enabling conservative estimations of quantities of interest while limiting the complexity of the methodology employed. This however provides little insight on the margins actually existing between safety criteria and values representative of the studied reactors. To account for more realistic evaluations of severity levels associated with accidental situations, the use of Best Estimate (BE) models is now widely spread. BE models are defined so as to obtain results as close as possible to real physical values for a given precision level. They were first used in complement to conservative studies to produce validation arguments for the design of nuclear systems. This first approach, based on deterministic calculations, lead to a first rise in importance of BE models as they improve the knowledge upon uncertain key parameters.

Although this option for the incorporation of BE codes in safety reports is mentioned in the Safety Guide on Safety Assessment (IAEA, 2001), this document also stresses on a second possibility. BE codes indeed also support the use of Uncertainty Quantification (UQ) methods in a probabilistic framework, hence allowing a more accurate assessment of the conservatism level of reference calculations. This approach, which combines realistic physical hypothesis (on initial and boundary conditions) and uncertainty treatments is then called Best Estimate Plus Uncertainties (BEPU, see IAEA ( 2008)). It naturally yields less penalizing results, and should be based on statistically likely conditions for both the NPP and the simulator, in such a way that safety requirements are shown to be fulfilled with a sufficiently high probability. In addition to this, probabilistic methods can be used to validate the design of a component with respect to specific probabilistic targets or to search for potential risk outliers.

Nuclear transient analysis with CATHARE2

The main actors of the French nuclear industry (Commissariat à l'Energie Atomique et aux energies alternatives or CEA, French public body dedicated to the study of nuclear physics as well as the development of nuclear reactors and weapons, Electricité de France or EDF, French public company in charge of the operation of nuclear reactors, Framatome, French public company in charge of the design and sale of french PWR and the Institut de Radioprotection et de Sûreté Nucléaire or IRSN, French public lab in charge of the monitoring of nuclear activities as regards safety and radiation protection). have historically dedicated a considerable amount of effort to the development of a Best Estimate code called CATHARE, which stands for Code Avancé de ThermoHydraulique pour les Accidents de Réacteurs à Eau. CATHARE is dedicated to simulation of TH phenomena at the scale of a component or the whole boiler, and hence falls into the so-called category of system codes.

Thanks to long terms efforts for its experimental validation, the CATHARE2 code is now considered as a state-of-the-art computer tool for nuclear transient analysis and is licensed by the French regulatory authority (Autorité de Sûreté Nucléaire or ASN) for this application. It is currently at its third major version [START_REF] Geffraye | CATHARE 2 V2.5_2: A single version for various applications[END_REF]. As a multipurpose system code, CATHARE2 allows simulating TH transients for a large variety of thermal-hydraulic systems and reactor designs. It was initially created as a tool for transient analysis in water-cooled reactors such as PWR or BWR (Boiling Water Reactor). It was also used in more recent research and development works for advanced concepts such as gas-cooled reactors, sodium-cooled reactors, sodium-cooled fast-breeder reactors and supercritical water-cooled reactors. In practice, CATHARE2 is mainly used nowadays in three particular contexts: In validation studies, as a complementary tool in safety studies and transient analysis, and as an uncertainty quantification tool.

The role of validation studies is to quantify modeling errors coming from the numerical code, in order to find the best possible modeling of specific components in nuclear reactors. As a general rule, they consist in comparing experimental datasets to results obtained with numerical simulations. The validation chain of CATHARE2 has been the subject of this kind studies by French organizations for the last decades. Nevertheless, a considerable effort is still currently being made in order to further improve the knowledge and capabilities of the code. As an example, the works presented in [START_REF] Carnevali | Validation of cathare code on the 3d ROSA-LSTF pressure vessel[END_REF], showcase a comparative study of the 3-D and the previous 1-D/0-D modeling of the RPV of the Japanese experimental installation OECD/ROSA-LSTF (Large Scale Test Facility).This is done to validate the simulated 3-D effects observed in experimental tests. The same kind of work is performed in other tests presented in [START_REF] Mazgaj | Comparison of CATHARE results with the experimental results of cold leg intermediate break LOCA obtained during ROSA-2/LSTF test 7[END_REF] and [START_REF] Carnevali | Comparison of CATHARE code using a 3D Reactor Pressure Vessel modelling approach and experimental results on intermediate break LOCAs of ROSA 2 program[END_REF].

In recent years, similar efforts were made in the context of validation studies for Generation IV Advanced Nuclear Reactors. This new generation of advanced reactors looks to improve upon the more classical designs of Nuclear Power Plants according to specific criteria of safety, sustainability, economy and proliferation [START_REF] Forum | A technology roadmap for Generation IV Nuclear Energy Systems[END_REF]. CATHARE2 has provided satisfactory results in the physical modeling of these systems as well. This is shown in [START_REF] Geffraye | Cathare 2 code validation on HE-FUS3 loop[END_REF], in which the results provided by the code were compared to the experimental ones for the HE-FUS3 facility in Italy, or to simulations concerning the Oberhausen I and II NPP in Germany [START_REF] Bentivoglio | Validation of the CATHARE2 code against experimental data from Brayton-cycle plants[END_REF]. The last two examples correspond to gas-cooled GenIV nuclear systems, but as previously mentioned CATHARE2 has already been tested in other types such as sodium-cooled reactors. In particular, [START_REF] Bertrand | Transient analysis of the ASTRID demonstrator including a gas nitrogen power conversion system with the CATHARE2 code[END_REF] applies a CATHARE2 modeling to the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) demonstrator.

As it was introduced in Chapter 1, CATHARE2 has also been used as a Best Estimate (BE) code to support uncertainty quantification studies in several contexts, such as in robust quantile estimation Stenger From now on, and unless otherwise specified, all the physical results, interpretations, figures or tables will be coming from CATHARE simulations.

The CATHARE2 modeling

Basics of TH systems modeling with CATHARE2

As it was previously mentioned, the CATHARE2 code is conceived as a modular code, which allows to represent of a wide variety of flow configurations at a macroscopic (system) level. Modules and specific submodules (see description in Section 3.1.5.2 below) can be combined to reproduce the TH behavior of both experimental facilities and nuclear systems, whether these are components, loops or a whole boiler. CATHARE2 implements a two-fluid modeling with six conservation equations (concerning mass, momentum and energy), plus several optional equations accounting for additional non-condensible gases or chemical elements in some components of TH circuits. For the sake of clarity, the system of equations on which the simulation engine is based is presented in its most simple version, which corresponds to a unidimensional (1D or axial) portion of flow.

The code is capable of simulating the mechanical and thermal-hydraulic non-equilibrium phenomena occurring during nuclear transients. All of the main phases LOCA transient (in particular, the blowdown, refill and reflood phases, see chapter 4 and 5) can be reproduced using a CATHARE2 modeling. Some mechanical phenomena showing relevance for safety studies can be predicted, such as fuel ballooning or rupture of the fuel rods' cladding, although their specific effect on the coolant flow and TH quantities in general cannot be taken into account. This limits the domain of application of CATHARE2 to cases that do not include any severe damage to the fuel rods, which is the case in applications considered in this manuscript.

Uncertainties in CATHARE2 calculations may arise from the lack of knowledge upon physical laws and parameters involved in the system's state equations. Furthermore, several options are usually available to model a same equipment, depending on the targeted realism level and on the phenomena under study. As an example, the core can be modeled using a simple unidimensional module accounting for the overall power discharge in the primary fluid or a three-dimensional one if asymmetrical fluid dynamics and other 3D physical effects within the core have a significant influence on the considered variable of interest. Hence, uncertainties are also induced by user's choices in the modeling of a given system.

The Modules of CATHARE2

A CATHAREmodule is a basic numerical model implementing a meshing of the flow geometry, for which a set of conservation equations can be established (see 3.1.5.4). The meshing of the overall model with this set of equation define a numerical scheme for which equations are solved for each module's individual mesh as well as for junctions between modules. CATHARE2 provides four main kinds of module to represent TH components and systems. These modules are:

1. 1-D module (also called pipe or axial). It is adapted to the representation of elements in which one of the three spatial dimensions is preponderant over the others, and is formed by a succession of truncated cones capable of representing evolving flow sections in a duct. The fair use of this module justifies certain simplifying assumptions in the resolution of the conservation equations. For instance, in this elements the axial components of the viscous stress tensor and the work are neglected, as well as the axial heat conduction and the mass diffusion.

2. 0-D module (also called volume or capacity). This element aims to represent a capacity with connections to other elements. It is designed to model large volumes (especially compared to the diameters of the connections to other elements, with certain thermalhydraulic assumptions). It is assumed that all thermal-hydraulic parameters are uniform in any horizontal plane, and velocities inside of the module will be much smaller than those in the junctions. Due to these assumptions, any inertial forces are supposed to be negligible inside 0-D modules compared to gravity forces, such that the momentum equations finds simplified too, resulting in a usual hydrostatic pressure field.

3. 3-D module. This module allows the modeling of volumes for which no dimension can be rightfully neglected with regard to the values taken by TH quantities. In general, 3-D modules are used to model the RPV of Pressurized Water Reactors (where 3D effects can be of interest for the study of accidental transients), as well as any eventual solid structure.

4. Boundary Conditions. This module can be set in the extremity of the previously mentioned modules (1-D, 0-D and 3-D), such that they impose specific values to the considered thermal-hydraulic parameters (flows, pressures, temperatures ...). There are two main ways of implementing such restrictions. CATHARE2 allows the imposition of the boundary conditions as internal variables, i.e., they are defined as functions of time and their values evolve during the transient; or as external variables, in which case the the variables are constant over time.

The submodules of CATHARE2

The submodules of CATHARE2 are more specific and allow the modeling of special components of the reactor. In general, submodules are elements that are connected to the main modules and usually modify their thermal-hydraulic behavior such that their variables are coupled with those of neighboring common modules. They can be seen as a set of subroutines that influence the aforementioned conservation equations, calculating supplementary equations or terms.

Some examples of submodules are: thermal structures, such as walls, heat exchangers, fuel rods etc.; the reflood submodule, which models the heat exchange between the fuel and the steam-water mixture in certain transients; or certain modelings of the primary pumps, like the one-node pump or the one-node electromagnetic pump.

The CATHARE2 set of equations

The conservation equations used by CATHARE2 [START_REF] Bestion | The physical closure laws in the CATHARE code[END_REF] to compute the physical state of the overall modeled system are presented below for a 1-D module:

• Conservation of mass:

∂ ∂t (Aα k ρ k ) + ∂ ∂z (Aα k ρ k V k ) = (-1) k AΓ + S k (3.1)
The index k represents the considered phase in the equation (k = -1 for the liquid phase and k = 1 for the gas), whereas Γ represents the transfer of mass in the interface between the liquid and the gas. The term S k is an added term that includes any source or sink of mass that may exist in the considered mesh. The term α k represents the title of the considered phase in the two-phase mixture, i.e., the proportion of steam contained in the steam-water,

α k = u k u k +(-1) k u L
, where u k is the volume occupied by phase k. The term ρ k represents the density of the phase k, ρ k = m k u k , where m k is the mass of the considered phase. We have included here the one-dimensional representation of the mass transfer equation.

• Conservation of momentum

Aα k ρ k ∂V k ∂t + V k ∂V k ∂z + Aα k ∂P ∂z + AP i ∂α k ∂z + +(-1) k Aβα(1 -α)ρ m ∂V G ∂t - ∂V L ∂t + V G ∂V G ∂z -V L ∂V L ∂z = = (-1) k AΓ(W i -V G ) -(-1) k Aτ i -χ f C k ρ k 2 V k |V k |- -A K 2∆Z α k ρ k V k |V k | + Aα k ρ k g z + R(1 -α k ) 4 P i ∂A ∂z (3.2)
In this equation, τ i represents the stationary component of the interfacial stress between the two phases (this will also be called interfacial friction during the document). β is an added mass term linked to inertial effects, and the terms P i P i ∂A ∂z describe the distribution of pressure if the duct is of variable diameter. This term is usually neglected in the case of non-stratified flows [START_REF] Bestion | The physical closure laws in the CATHARE code[END_REF]. The term (-1) k Aτ i represents the interfacial friction. The terms α k , A, ρ k have the same meaning as in Equation (3.1).

• Conservation of energy

A ∂ ∂t α k ρ k H k + V 2 k 2 + ∂ ∂z Aα k ρ k V k H k + V 2 k 2 -Aα k ∂P ∂t = = Aq ke + χ c q pk + (-1) k AΓ H k + W 2 i 2 + Aα k ρ k V k g z + SE k (3.3)
The energy equation is written in with respect to the enthalpy instead of internal energy of the system through the terms h k , specific enthalpies of phase k. There exist several new terms. q ke () represents the thermal exchange between the liquid and gas phases, whereas q pk represents the thermal exchange between each one of the phases and the corresponding walls. Finally,the term SE k represents any additional energy source that may be taken into account.

Running a CATHARE2 simulation

As explained above, a CATHARE2 model is defined by adding together modules and submodules with appropriate connections, boundary conditions and parameters settings. It is specified by the user in a input file through a dedicated language derived from FORTRAN. Any CATHARE2 calculation can be divided into two main steps:

1. Steady State Calculation. The calculation of any transient with CATHARE2 requires the previous establishment of a steady state which shall serve as initial state from which the transient calculation will start. This state acts as the reference from which all thermal-hydraulic variables will have a particular value. In general, CATHARE2 provides a state that will be stationary, i.e., where the variables are the solutions of the conservation equations without the derivative terms.

2. Transient Calculation. This phase can be divided into two main subsets. Firstly, the fluid thermal-hydraulic equations are solved for the primary circuit taking into account the connected submodules; in the second step, the same equations are solved for the secondary circuit and their °submodules.

The CATHARE2 simulation engine computes the values of all the physical parameters that characterize the system during the simulation. It implements an iterative algorithm, which includes the following operations at each time step of the numerical resolution scheme:

1. Determination of the system of equations using the conservation equations of mass, momentum and energy for each mesh in all the different modules the overall model comprises. This depends on both the physical properties of the liquid and gas phases, and the closure relations between the fluids and surrounding walls.

2. Determination of additional contributions of submodules to this system of equations.

3. Resolution of the whole system of equations.

4.

Convergence tests for the solution of the system of equations, i.e., the all the determined thermal-hydraulic values for the variables.

If convergence of the thermal-hydraulic values is reached, then CATHARE proceeds to the calculation of parameters belonging to the secondary circuit. If this is not the case, then the last iteration is restarted with a modified time step and all the previously explained stages are calculated again. In the next section, we present some elements regarding the subject of global and target sensitivity analysis, which will be an important step in the analysis of transients with CATHARE2.

Sensitivity Analysis

In Chapter 1, we introduced the framework of uncertainty quantification and propagation of uncertainty in computer models, as well as its interest in the particular context of the nuclear industry and nuclear transient simulation. The field has proved its relevance in recent years through the development of numerous tools that have vastly improved the knowledge of the associated uncertainty of complex physical phenomena that are modeled by the Best Estimate (BE) computer codes. As a reminder, the general mathematical setting that has been retained for our studies is the following:

X ⊂ R d → F * ⊂ F X → Z = M(X) (3.4)
where, following the notation introduced in 2, Z represents the functional random variable that acts as the outputs of the numerical simulator M, whereas X represents the measurable space to which the input parameters belong. They are the set of input random variables

X = (X 1 , ..., X d ) of dimension d such that X = d k=1 X k ⊂ R d
, and modeled by the probability density functions. F represents the functional space to which the outputs belong, usually a Hilbert space of continuous functions, since in general we can consider that the evolution of the physical parameters vary continuously at the observation scale, so in general F * will be at least C([0, T ]), where T represents the final physical time of the simulation.

Again, following the notation presented in the first chapter, we consider that the outputs of our computer code (M) are functional random variables defined in the probability space (Ω, A, P), where T ⊂ R is time domain of definition of the considered functional random variables:

Z 1 , ..., Z S : Ω × T → R (3.5) 
where S represents the total number of possible functional outputs, i.e., the possible timedependent physical variables that constitute the outputs of CATHARE2. This way, a realization Z s (ω, t) = z s (t) : T → R, with s ∈ {1, ..., S} is a function of time. In nuclear safety studies, these outputs are linked to a safety criterion via a simple mathematical function (for instance, the maximum value of temperature attained during the transient) or another chained computer code.

As it was previously mentioned, these safety criteria are scalar parameters representative of the severity of a nuclear transient, which justify why most of the research effort in the domain has been dedicated to scalar outputs of code. This way, instead of considering the whole functional space of outputs of CATHARE2, researchers focus on these scalar outputs of interest Y ∈ Y, with Y being the possible set of values of the variable of interest.

Generally speaking, Sensitivity Analysis (SA) techniques serve as tools to quantify how uncertainty in the output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model input [START_REF] Saltelli | Global Sensitivity Analysis: The Primer[END_REF][START_REF] Iooss | A Review on Global Sensitivity Analysis Methods[END_REF]. The output of the model (which may or not be numerical), Y , is a variable of interest in the considered study. We may classify SA methods into two main families: Local Sensitivity Analysis (LSA) and Global Sensitivity Analysis (GSA).

In the first case, LSA focuses on how small variations (usually around their nominal or purposely penalized values) of the values of the input parameters may affect the output quantity of interest. Depending on the nature of the considered model, different approaches can be retained. For instance, in the case where an analytical formulation of the considered model is available, approaches based on adjoint modeling [START_REF] Cacuci | Sensitivity theory for nonlinear systems I. Nonlinear functional analysis approach[END_REF]) can be retained, even in the case of a large number of inputs. In a more industrial setting where the model is treated as a black box, approaches based on One At a Time experiments have been developed. In this case, the effect that a single variation of each input has on the output is quantified through individual small variations of the inputs around the nominal values without changing the nominal values of the others. In practice, the variations are made on the partial derivatives of the inputs and outputs, so as to quantify how perturbations of the inputs affect the outputs [START_REF] Alam | Using Morris' randomized OAT designs a factor screening method for developing simulation metamodels[END_REF].

In numerous real industrial applications, it is necessary to consider the whole domain of variation of the input parameters of the computer model. For instance, in a risk analysis framework, the most penalizing values of the inputs may differ by a large margin from their nominal values, which justifies the interest in GSA. In the following sections we will provide the main elements to perform sensitivity analysis, in particular when the analyzed variable of interest is scalar, as well as the main aspects of the issue when the considered data are functional.

Global and Target Sensitivity Analysis

Two main families of methods to perform SA, variance-based methods, and those based on dependence measures will be detailed in this sections. Variance-based ones are included since they constitute one of the main tools available to perform this task, and methods based on dependence measures have already proved their usefulness both in general settings and in the industrial context.

Variance-based methods. The Sobol' indices

Quantifying the influence that a set of inputs of a physical model may have on an output of interest may obey to different objectives, such as identifying the most influential inputs on the output uncertainty (screening), prioritize the inputs by order of importance or simply fixing the non-influential ones to their nominal values. Since the works of [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF], variancebased methods have been precious tools in order to analyze complex physical phenomena through numerical simulations. [START_REF] Saltelli | Global Sensitivity Analysis: The Primer[END_REF] describes how variance is a legitimate sensitivity measure, and even goes to the extreme of recommending its use whenever the computational cost allows it (this being the main drawback of such methods). Nonetheless, these methods remain independent from the numerical model that is analyzed and their use is allowed in the context of complex black box computer codes.

Sobol' indices [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] are based on the ANOVA (ANalysis Of VAriance) decomposition of a function (namely, a numerical simulator M : R d → R) based on the functional decomposition proposed by [START_REF] Hoeffding | Class of statistics with asymptotically normal distributions[END_REF]:

M(x) = Y = M 0 + d i=1 M i (x i ) + d 1≤i<j<d M i,j (x i , x j ) + • • • + M 1,...,d (x) (3.6)
which is unique as long as :

1 0 M i 1 ...is (x i 1 , ..., x is )dx i k = 0 (3.7)
where 1 ≤ k ≤ s, {i 1 , ..., i s } ⊆ {1, ..., d}, from which we conclude that M 0 is constant, and all the summands in (3.6) are orthogonal. The elements in the form M i : [0, 1] → R, i ∈ {1, ..., d} are called main effects and quantify how the individual variance of one input affects the variance of the considered output Y = M(x). On the other hand, the terms in the form M i,j : [0, 1] 2 → R; i, j ∈ {1, ..., d}, i ̸ = j are the second order interactions or effects.

Considering that the input vector X = (X 1 , X 2 , ..., X d ) is formed by independent random variables, one can express the variance of the output quantity of interest Y as a function of the variance of the inputs and their interactions:

Var(Y ) = d i=1 Var(M i (x i )) + d 1≤i<j≤d Var(M i,j (x i , x j )) + • • • + Var(M 1,...,d (x)) (3.8)
The elements of the form Var(M i (x i )) correspond formally to the variance of the conditional expectations of the output

Y given x i , i.e. Var[E(Y |x i )]. Analogously, the elements Var(M i,j (x i , x j )) = Var[E(Y |x i , x j )] -Var[E(Y |x i )] -Var[E(Y |x j )],
as well as for any other interactions. Let L = {1, ..., d}, and let P L denote the powerset (the set of all possible subsets) of L, then: Definition 3.1 Sobol' Index: The Sobol' index or variance-based sensitivity index [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]) associated to K ∈ P L is defined as:

S K = Var(M K (X K ) V ar(Y ) S K = + L⊂K (-1) |K|-|L| Var(E(Y |X L )) Var(Y ) (3.9)
where |K| is the cardinality of K.

Definition 3.2

Order 1 Sobol' Index: Let us consider the singleton {l}, with l ∈ {1, ..., d}, then the Sobol' index of order 1 or main effect for the input X l writes:

S I l = Var[E(Y |X l )] Var(Y ) (3.10)

Definition 3.3

Total Sobol' Index: Let us consider the input parameter X l of the model M, l ∈ {1, ..., d}, then the Total Sobol' index or total effect for l writes:

S T l = E ~l[Var(Y |X ~l)] V ar(Y ) (3.11)
where ~l represents the set of all inputs of the numerical model M except the lth input. This expressions allow to apportion the total variance of Y as a fraction of the variance of each input and their interactions.

Regarding their properties, the Sobol' indices verify:

Proposition 3.1 LetL = {1, ..., d} , the Sobol' index S l verifies:

0 ≤ S l ≤ 1 l∈P L S l = 1 (3.12)
In total, the number of Sobol' indices increases exponentially in a progression of order 2 d-1 with d, which imposes limitations to the number of indices that are estimated in practice. If d is large, the computational cost of the estimation of the Sobol' indices usually only allows the estimation of the main effects and the total effects or second order indices.

In practice, if the analytic form of M is usually unknown, such as in the case of expensive numerical simulators and therefore the estimation of the Sobol' indices relies on the results provided by a design of experiments. Several estimation schemes for the Sobol' indices have been proposed throughout the years. Some relevant methodologies include the pick-freeze estimators introduced by Sobol [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] or Monte-Carlo methods for the first-order indices such as those presented in [START_REF] Monod | Uncertainty and sensitivity analysis for crop models[END_REF], and whose asymptotic properties are studied in [START_REF] Janon | Asymptotic normality and efficiency of two sobol index estimators[END_REF]. Improvements in the definition of the designs of experiments leading to the estimation of the indices through Random Balance Designs(RBD) are proposed in [START_REF] Tissot | A randomized orthogonal array-based procedure for the estimation of first-and second-order sobol' indices[END_REF]. Spectral approaches that allow the estimation of the Sobol' indices at a reduced cost relies on the FAST (Fourier Amplitude Sensitivity Test, [START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF]), which allows the decomposition of the considered computer code into a Fourier basis (if regularity conditions of M are met). Other alternatives (da Veiga et al., 2021) repose on the use of metamodels, i.e., mathematical approximations of the code M whose evaluation is cheaper. They allow increasing the size of the designs of experiments and, therefore, better estimations of the indices (albeit they introduce an uncertainty themselves).

Sensitivity analysis with dependence measures

The aforementioned limits of more traditional methods to quantify the dependence between random variables has motivated the development of SA techniques more computationally efficient and capable of capturing a wider range of types of dependence. The use of similarity measures between random variables in the context of sensitivity analysis and risk analysis was introduced in Baucells and Borgonovo (2013), where an intuitive framework on the use of dissimilarity measures is proposed. Recalling the previous notation, let us consider a scalar output Y = M(X 1 , X 2 , ..., X d ), with M : R d → R a continuous numerical simulator, where out objective is to quantify the influence of each input X j , j ∈ {1, ..., d} on the output Y .

A natural way of quantifying the dependence between X j and Y is to provide a function capable of measuring the similarity between the distributions of Y and the conditional distribution of the output, i.e., Y |X j . The relationship between these inputs and outputs can be written:

S X j = E X j (d(Y, Y |X j )) (3.13)
where d(•, •) represents a similarity measure between the considered variables. More generally, da Veiga, Sébastien (2015) shows how a broad number of common similarity measures between probability measures can be conceived as particular cases of the so called f-divergence [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observations[END_REF], including the Kullback-Leibler divergence [START_REF] Kullback | On Information and Sufficiency[END_REF] or the Hellinger distance [START_REF] Hellinger | Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderliche[END_REF]. They also highlight how there is a link between the f-divergence and other measures coming from the information theory domain, such as the mutual information of Shannon (1948).

The HSIC indices

The research for adequate similarity measures that are tractable from a computer cost point of view, sensitive to a wide range of dependence structures and capable of tackling the curse of dimensionality has lead to the consideration of the dependence measure called distance correlation or distance covariance [START_REF] Székely | Measuring and testing dependence bycorrelation of distances[END_REF] as a tool to construct sensitivity indices. This measure performs well in the context of high-dimensional data (in our case, codes with a large number of inputs, d) and can be seen as a particular case of characteristic kernels [START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF]. Amongst these measures, the Hilbert-Schmidt Independence Criterion (from now on, HSIC) [START_REF] Gretton | Kernel methods for measuring independence[END_REF] serves as a generalization of the notion of covariance between random variables, which is the reason why a notable amount of work has been developed around them as a sensitivity measure, especially as a suitable competitor to the Sobol' indices in an industrial setting (da Veiga, Sébastien, 2015; de Lozzo and Marrel, 2016a).

The HSIC belong to the family of dependence measures based on Reproducing Kernel Hilbert Spaces (RKHS, [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]). If we consider the random vector X ∈ X = d j=1 X j , each X j having probability distribution P X j , let us introduce the RKHS H j of functions X j → R with kernel k X j and inner product ⟨•, •⟩ H j . Conversely, let us consider a second RKHS, H Y of functions Y → R with kernel k Y associated to Y ∈ Y and with distribution P Y .

Definition 3.4

Cross-covariance operator. The covariance operator (C X j ,Y ) of the joint distribution of the considered random variables, P X j ,Y , is a linear operator between the spaces H j → H Y for each function h j ∈ H j and h Y ∈ H Y such that:

⟨h j , C X j ,Y h Y ⟩ H j = E X j ,Y [h j (X j )h Y (Y )] -E X j h j (X j )E Y h Y (Y ) (3.14)
This is defined as an analogously to the standard notion of covariance through the use of the tensor product:

C X j ,Y := E[h j ⊗ h Y ] -E[h j ] ⊗ E[h Y ] (3.15)
The cross-covariance operator generalizes the notion of covariance matrix between random variables (in this case X j and Y ) by making use of nonlinear kernels. The HSIC definition makes use of the notion of the Hilbert-Schmidt norm of the cross-covariance operator (Marrel and Chabridon, 2021):

||C|| 2 HS = k,p ⟨u k , Cv p ⟩ 2 H j (3.16)
where u k and v p represent the respective orthonormal bases of the spaces H j and H Y . This notion allows the definition of the HSIC criterion:

Definition 3.5 HSIC(X j , Y ) H j ,H Y = ||C X j ,Y || 2 HS = E[k X j (X j , X ′ j )k Y (Y, Y ′ )] -E[k X j (X j , X ′ j )]E[k Y (Y, Y ′ )] -2E[E[k X j (X j , X ′ j )|X j ]E[k Y (Y, Y ′ )|Y ]] (3.17) 
where all the elements (X ′ j , Y ′ ) are independently and identically distributed (i.i.d.) copies of (X j , Y ). The main interest of the use of HSIC is that, as long as the considered RKHS spaces are universal, i.e., dense within the space of continuous functions with respect to the || • || ∞ norm, the nullity of HSIC(X k , Y ) is equivalent to the independence of the variables (X j , Y ).

Remark 3.1

As it was mentioned, the HSIC serves as a tool to quantify independence between random variables depending on their associated RKHS. In practice, the universality condition of the kernels is quite restrictive (for instance, Gaussian kernels are universal only on compact subsets of R d ). To circumvent this problem, weaker assumption may be made over the properties of the kernels that still preserves the condition of independence between (X j , Y ) if and only if HSIC(X j , Y ) = 0. From Gretton (2015); Szabo and Sriperumbudur (2018) we see that the condition of universality is not actually required, and that characteristic kernels are sufficient to guarantee the desired notion of independence.

Taking this condition into account, the use of Gaussian kernels is common. We recall the expression:

k h (x 1 , x 2 ) = exp(- h 2 ||x 1 -x 2 || 2 2 ), ∀(x 1 , x 2 ) ∈ R d × R d (3.18)
This expression still relies on the value of h (the bandwidth parameter). Although optimal values of h are unknown, since they depend on the joint distribution of (X j , Y ), heuristic approaches exist, as well as estimation methods based on cross-validation methods (Sugiyama and Yamada, 2012), or aggregation tests [START_REF] Meynaoui | New developments around dependence measures for sensitivity analysis : application to severe accident studies for generation IV reactors[END_REF].

Finally, in the context of global sensitivity analysis, sensitivity indices have been developed based on the aforementioned HSIC measures: [START_REF] Da Veiga | Global sensitivity analysis with dependence measures[END_REF]. For any j in {1, ..., d}, the sensitivity index that quantifies the influence of the input X j on the output Y can be expressed by the normalized index:

Definition 3.6 HSIC sensitivity indices(da

R 2 HSIC,j = HSIC(X j , Y ) HSIC(X j , X j )HSIC(Y, Y ) (3.19)
This index is bounded in the range [0, 1], which allows an easy interpretation of the dependence between each input of the considered computer code M and the output of interest Y .

The estimation of these indices can be performed through their plug-in estimator:

R2 HSIC,k = HSIC(X k , Y ) HSIC(X k , X k ) HSIC(Y, Y ) (3.20) 
Finally, regarding the estimation of the HSIC indices themselves that appear in Equation (3.20), [START_REF] Gretton | Kernel methods for measuring independence[END_REF] proposes the following estimator when a design of experiments is available:

HSIC(X j , Y ) = 1 n 2 Tr(L j HLH) (3.21)
where Tr represents the trace of a matrix.

Several elements appear in the equality shown in 3.21. Let us consider the design of experiments E = {(X i,j ), i ∈ {1, ..., n}, j ∈ {1, ..., d}}, with the corresponding outputs

{(Y i ), i ∈ {1, ..., n}}. H = (δ l,m -1 n ) 1≤l,m≤n
, where δ l,m is the Kronecker operator, and the matrices L j and L correspond to the Gram matrices defined in the following:

L j = (k X j (X l,j , X m,j )) 1≤l,m≤n L = (k Y (Y l , Y m )) 1≤l,m≤n (3.22) 

Testing independence through HSIC measures

As it was explained in the previous sections, the HSIC is a dependence measure from which sensitivity indices can be inferred. If used as a ranking tool, the raw indices can serve to rank the influence of every individual input variable of the considered computer code. However, if a cutoff criterion that serves as a decision making tool to separate the set of inputs between influential and non-influential ones is to be defined, a more rigorous approach is necessary.

In this context, the Statistical Independence Tests framework is relevant, and provides tools that help quantify the probability of misjudging the influence of each variable on the output, while also serving as screening and ranking tools. Two main cases can be differentiated: First, the case when a large sample (namely, n ≫ 1000)) of realizations of the inputs and their corresponding outputs is available; and secondly, the case where only a limited sample (in our case, due to the relatively expensive nature of CATHARE2 ).

In any of the cases, several general points can be raised. Firstly, let us consider the inputoutput vector (X j , Y ), such that the input is characterized by its marginal density p X j and the outputs by theirs, p Y . If the joint probability density of the variables can be written as p X j ,Y , then testing independence between the considered variables is equivalent to testing

that p X j ,Y ̸ = p X j ⊗ p Y .
Taking this into account it is possible to write the generic test: H 0 : X j and Y are independent H 1 : X j and Y are dependent (3.23) where H 0 represents the null hypothesis and H 1 is the alternative hypothesis. Naturally, the actual densities p X j , p Y , p X j ,Y are unknown beforehand in most real applications, and therefore a test statistic must be estimated in practice from the available observations. In that case, the H 0 is rejected any time that the statistic belongs to a certain rejection domain with a specified probability. More precisely, if an available test statistic τ = τ (X 1,j , Y ), ..., (X n,j , Y n ) , ∀j ∈ {1, ..., d} representative of the dependence between (X j , Y ), then a test function ∆ can be defined such that:

∆ = 1 τ >C (3.24)
where C is the critical value from which the dependence (or independence) can be assured with a certain probability. If this is the case H 0 is rejected any time that ∆ = 1.

In this case, the independence between the variables can be inferred through the nullity (or lack of) the HSIC measure, such that the test presented in 3.23 is rewritten as:

H 0 : HSIC(X j , Y ) = 0 H 1 : HSIC(X j , Y ) > 0 (3.25)
The natural estimator of the statistic of this test would then be HSIC(X j , Y ), such that the null hypothesis is rejected whenever the statistic is sufficiently large. This is equivalent to saying that H 0 is rejected whenever the estimator of the statistic surpasses a specified quantile of its distribution under the null hypothesis.

In practice, if we aim at testing independence between the couple (X j , Y ), the statistic estimator τj = n × HSIC(X j , Y ) is a natural choice, and the aforementioned test can be rewritten in terms of the p-values. The p-value is defined as the probability that the considered test statistic τ j surpasses the observed value of τj = n× HSIC(X j , Y ), i.e., p-value= P H 0 (τ j > τj ). If a significance level α ∈ [0, 1] is chosen, the null hypothesis H 0 is rejected (i.e., there is not sufficient evidence that supports independence between the variables) any time that p-value< α.

Having introduced the main elements of independence testing through HSIC measures, two main ways of performing the test are possible depending on the value of n.

Firstly, if n is sufficiently large, it is possible to make use of the asymptotic framework in order to estimate the quantile that will serve as threshold of the acceptance region, which we will denote q. [START_REF] Gretton | A Kernel Statistical Test of Independence[END_REF] shows how it is possible to approximate the distribution of HSIC(X, Y ) under H 0 through a Gamma law, which allows itself the estimation of the desired p-value such that:

p-value ≈ 1 -F Γ n × HSIC(X j , Y ) (3.26) 
where F Γ is the cumulative distribution function of the Gamma distribution.

Outside of the asymptotic framework, when a more restricted number of observations of (X, Y ) is available, the desired quantile may be estimated through permutation tests (de Lozzo and Marrel, 2016a). In this case, by making use of the E design of experiments, we can consider B independent and uniformly distributed permutations of the experiments ({1, ..., n}), denoted {π 1 , ..., π B }, such that every individual permuted sample is written E π b . In this case, the test statistic is:

Pb = HSIC(E π b ), b ∈ {1, ..., B} (3.27) 
All the variables Pb have the same original distribution as the HSIC estimator as long as the null hypothesis is acceptable. If this is true, the searched quantile q may be estimated by q (with a significance level α) defined as the same quantile of the order statistic of P1 , ..., PB , or: q = P⌈B(1-α)⌉ (3.28)

Finally, the p-value of the test may be calculated through the expression:

p-value = 1 B B b=1 1 Pb > HSIC(X j ,Y ) (3.29)
There exist further examples of tests of independence through HSIC measures, both in the asymptotic and permutation-based frameworks. In particular, we can mention the works of [START_REF] Meynaoui | New developments around dependence measures for sensitivity analysis : application to severe accident studies for generation IV reactors[END_REF], where a novel version of the permutations tests is developed such that the level of the test α may be controlled.

Target Sensitivity Analysis

As it was stated before, the main objective of global sensitivity analysis (as introduced in section 3.2) is to quantify the influence of the inputs of a model onto its output in its whole variation domain (Iooss and Lemaître, 2015)). It is however logical in certain contexts (such as risk analysis) to focus the interest on the influence of said inputs the occurrence of specific subsets of the set of possible values of the output. In other words, given the aforementioned set of inputs and outputs (X, Y ), with Y ∈ Y ⊂ R d , one may want to quantify how each individual input X j affects the probability that the output Y takes values on a specific subset of values Y ′ ⊂ Y.

Generally speaking, this domain is usually referred to as Target Sensitivity Analysis (TSA), as opposed to GSA. The strict term of TSA is indeed recent Marrel and Chabridon (2021), but similar work has been performed in other fields, such as environmental science [START_REF] Spear | Eutrophication in peel inlet-II. Identification of critical uncertainties via generalized sensitivity analysis[END_REF], reliability engineering (in particular, structure reliability engineering) such as in Au and Beck (2001); Lemaître (2014); Perrin and Defaux (2019) or in the so called Quantile-oriented sensitivity analysis [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF].

In practice, TSA can be achieved for scalar random variables through indicator functions that allow to transform the output of the considered model to restrict its values to the considered subset of interest (following the previous notation, we could call this subset Y ′ ⊂ Y). To be precise, it is possible to extend the notions presented in the previous sections to the couple (X,

1 Y ∈Y ′ • Y ).
This approach, although feasible, presents some major disadvantages, especially in the case where the analyzed model (in our case, M) is expensive and the total simulations budget is limited. For instance, the total available information is not totally exploited when this approach is retained. Indeed, the values of Y close to the domain of interest Y ′ can very well be informative of the process that is studied, in particular when the output of interest is represented by a physical variable that may vary continuously. As an example, if we focus on a nuclear transient application and we are interested in analyzing the critical values of temperature of the fuel over a particular threshold, then the simulations that lead to temperatures close to said threshold can also be of use in an eventual analysis methodology of the associated phenomena.

In order to overcome this issue, [START_REF] Marrel | Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor[END_REF] propose to use a transformation that provides a smoother threshold of the frontier of the considered subset of interest

Y

′ . They propose the use of the weight function:

w Y ′ (Y ) = exp - max(q 1-α -Y, 0) sσ Y (3.30)
where s represents a tuning parameter that represents the smoothness of the function (which regulates how much close values of Y to Y ′ will be taken into account for TSA purposes), and σY is the estimated standard deviation of the output of interest from the available sample of size N . q1-α is an estimator of the empirical α quantile of the distribution of Y . The use of the empirical quantile q1-α comes from the fact that the proposed methodology is guided by a nuclear safety application, in which the region of interest Y ′ is characterized by the higher values of the safety parameter (The maximum cladding temperature of the fuel attained during the transient). The first-order Sobol' indices in the proposed TSA framework take the form:

S T,w (X j , Y ) = Var[E[w Y ′ (Y )|X j ]] Var[w Y ′ (Y )] (3.31) 
whereas the target HSIC sensitivity indices (expressed both in terms of the HSIC indices themselves or the associated R 2 HSIC from 3.20) can be written:

HSIC T,w Y ′ (X j , Y ) = HSIC(X j , w Y ′ (Y )) R 2 HSIC,w Y ′ = HSIC(X j , w Y ′ (Y )) HSIC(X j , X j )HSIC(w Y ′ (Y ), w Y ′ (Y )) (3.32)

Sensitivity analysis with functional outputs

Although we do not aim at making an extensive review of methodologies of sensitivity analysis in the framework of the study of functional data, since the works presented in this manuscript are largely motivated by the study of these mathematical objects, it is worth mentioning some of the most recent and notable works regarding this domain.

The domain of sensitivity analysis, and in particular, of global sensitivity analysis, is quite recent when it comes to functional data Hsieh and Huang (2021). As we have seen, most of the development in the domain of functional data analysis was done from the 1980s [START_REF] Ramsay | When the data are functions[END_REF], and the SA domain is also relatively recent.

Let us consider a similar model from the one presented previously, but which provides functional outputs in a finite grid of points:

Y = M(X), (X, Y ) ∈ X × Y, X ⊂ R d , Y ⊂ R q .
If this is the case, two natural families of methods can be mentioned: those which rely on the estimation of sensitivity indices between the input variables of the model and each point in the multivariate output grid; and those which rely on projections of the data into lower-dimensional spaces such that GSA indices may be obtained between the inputs and an appropriate set of features. We speak then of ubiquitous or aggregated sensitivity indices (da Veiga et al., 2021) (these are sometimes referred to as point and block sensitivity indices de Lozzo and Marrel (2016b)).

The first approach presents relevant disadvantages when it comes to GSA. Amongst them, we can mention: the computational cost of estimating sensitivity indices for each point in the considered grid; the redundancies in the information that may be extracted from sensitivity indices calculated in adjacent of close points; the loss of information as a consequence of not taking into account the underlying dependence structure of the functional data when they are considered as an output multivariate object without dependence between its elements. This is the reason why most methodologies rely on functional decompositions of the outputs of the code onto a predefined basis (namely, the mentioned wavelet basis, the Fourier basis, or the Principal Components one mentioned in Chapter 2).

One of the first mentions to this field can be traced back to the works of [START_REF] Yamanishi | Sensitivity analysis in functional principal component analysis[END_REF], in which rather than investigating the impact of input parameters into the output distribution of functional data, they focus on the influence of specific individuals of the population on the chosen coefficients of the basis. The first real mention to the SA domain in computer simulations where the outputs are functions can be found, to the best of our knowledge, in [START_REF] Campbell | Sensitivity analysis when model outputs are functions[END_REF], where the authors apply GSA techniques between the inputs of their numerical model and the coefficients of a functional PCA basis. Other works that improve upon the same notions are those of Lamboni et 2019), where FDA techniques such as landmark registration are applied as a previous step of GSA on the first components of the PCA. da Veiga, Sébastien (2015) also proposes an adaptation for GSA making use of dependence measures by applying semimetrics to functional data such as those presented in [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF]. This approach is challenging nonetheless, since the universality of the kernels associated to said semi-metrics cannot be guaranteed, which as it was mentioned in Section 3. Finally, Hsieh and Huang (2021) made use of the concept of influence functions in order to quantify the impact of variations of the inputs of a numerical model into the cumulative distribution of a scalar outputs of interest. In their case, they apply this notion to the functional PCA coefficients of the analyzed curves.

Methodology for nuclear transient simulations

In this section we propose a methodology of analysis of nuclear transients through the code CATHARE2. Making use of the notation presented in Chapter 2, we consider the numerical simulator (representing the code CATHARE2 ) M in (3.4), that we reproduce here:

X ⊂ R d → F * ⊂ F X → Z s = M(X) (3.33)
We consider that the input space of parameters X is formed by the product of the individual spaces of each independent input parameter of the computer code X = d k=1 X k . The condition of independence comes from the fact that the input parameters of the code can each be sampled from independent one dimensional probability density functions, which is not always the case in industrial simulation experiments. The outputs of the code consist of one dimensional functions F * living in C([0, T ]), where T is the total physical time of simulation. Depending on the analyzed nuclear transient, T can differ by several orders of magnitude, from minutes to several hours. These functional output are represented by functional random variables in the considered probability space of 3.2, such that:

Z 1 , ..., Z S : Ω × T → R (3.34)
In this expression, all the realizations Z s (ω, t), s ∈ {1, ..., S} (whose notation is simplified to Z s (t) to express our outputs only as time-dependent functions) correspond to all the possible outputs of interest provided by the code CATHARE2. There are numerous possibilities to the outputs that the code can provide, but frequently these are limited by the actual parameters of interest for nuclear safety. Examples of these output variables can be: Maximum cladding temperatures of the nuclear fuel, cold water injection flows from the safety injection system, swollen level of water in the nuclear core etc. An example of these outputs is provided in Figures 3. As it was introduced in Chapter 1, the main objective of these works is to be able to provide insights and interpretations between the mathematical and statistical analysis of the input/output chain of a nuclear accidental transient modeled with CATHARE2 and the phenomena that impacts the most nuclear safety. In order to achieve this objective, we have developed a methodology consisting of different steps that allow a synthetic interpretation of As it can be seen in Figure 3.5, the methodology may be divided into 4 main parts, which will be further detailed in the subsequent sections. They are:

1. Definition of relevant physical parameters and breakpoint events in the analyzed transient.

2. Design of experiments and calculation of the outlying scores θ for each individual functional output in the considered design.

3. Global and Target sensitivity analysis between the inputs and θ.

4. Statistical and graphical analysis between the inlying and outlying samples of inputs variables and intermediate parameters.

Definition of relevant physical parameters

This stage aims at producing a set of relevant outputs from CATHARE2, a set of intermediate parameters and a set of breakpoint events that allow a systematic study of the analyzed transient. First of all, let us define these notions; these terms will be consistently mentioned along the manuscript and always make reference to the same notions. The variety of possible outputs provided by the code is considerable. One could imagine hundreds of possible physical variables along all the meshes of the specific CATHARE modeling, such as temperatures, pressures, void fractions etc. In an in-depth analysis of the unfolding of the transient, it is necessary to identify which time-dependent outputs are relevant to the phenomenology of interest.

Definition 3.9 Intermediate Parameter. Let

h : F * s → R ⊂ R

be an injective application between the functional space of interest of one considered output of the code and R, a real-valued compact subset of possible physical values of Z s . Then, h(•) is called Intermediate Parameter of the functional output Z s .

As an example, h(•) could be h(z s ) = max(z s ), such that the intermediate parameter would be the maximum value amongst the possible set of values of a particular output of interest. In this example, this could for instance be the maximum of the cladding temperature of the nuclear fuel in a certain time interval of the transient.

Definition 3.10

Breakpoint event. Event occurring in a specific moment t τ ∈ [0, T ] susceptible of having a major impact on the progress of the nuclear transient.

What constitutes a major impact on the progress of the transient is obviously a subjective notion. In practice, the selection of these breakpoint events is chosen on the basis of expert judgement of the specific nuclear transient, previous studies performed on the same or similar CATHARE modeling, or simply taking into account the activation of any system classified as relevant for nuclear safety (IAEA, 2014).

All in all, there are three main outputs in this stage that will be used afterwards. Firstly, this study must provide the set of functional outputs of interest, and especially those more closely related to nuclear safety, and on which the FOD methodology shall be applied so as to detect the searched anomalous behavior. The second is the set of intermediate variables which will serve as auxiliary parameters in the physical analysis. Finally, the set of breakpoint events t k , k ∈ {1, ..., K} is also obtained.

Design experiments and functional outlier detection

The objectives of this stage are: i) to produce design of experiments E presented in 3.2.1.2.1 that will be used along the whole physical study of the considered transient; ii) to launch the simulations corresponding to the considered design of experiments E presented in 3.2; iii) to calculate the outlyingness score θ i ∈ [0, 1]∀i ∈ {1, ..., N } of the functional outputs of interest.

In the following paragraphs of the section we will focus on stage i). This is because ii) consists in handling the CATHARE2 simulations launching in High Performance Computing (HPC) systems, which, although crucial in the generation of the data for this Ph.D. and which required considerable effort, is of no specific interest here; iii) the Functional Outlier Detection methodology that has been used here has been extensively explained in Chapter 2.

We present below two common sampling strategies for scalar random variables, which constitute the inputs of our numerical simulator.

Let us assume that we have d input parameters of our computer code whose values may be sampled from an a priori defined probability density functions (p X j , j ∈ {1, ..., d}) that verify independence between them, i.e., p

X 1 ,X 2 ,...,X d = p X 1 p X 2 • • • p X d .
As a general rule, these laws will be bounded so as to guarantee that the variables always vary in the desired domain.

Without loss of generality, let us consider a unitary hypercube that constitutes the sampling space of the input variables [0, 1] d . The main objective here is to produce a sample of points in this space (a design of experiments) that has minimal size but is nonetheless capable of capturing the desired information of the output of interest. In da Veiga et al. (2021), the authors mention the most important properties of a design of experiments. Firstly, the spacefilling properties in the d-dimensional space, both upon criteria regarding the uniformity of the distribution of points and the geometrical distance between them. A second requirement is related to the same properties but in the lower dimensional subprojection spaces. This is necessary in order to capture potential interactions between the considered variables.

Among the existing methods, we can mention Standard Random Sampling strategies, i.e., Monte Carlo [START_REF] Lemieux | Monte Carlo and Quasi-Monte Carlo Sampling[END_REF] ones. These algorithms search to randomly sample values from a considered distribution without establishing filling criteria for the considered space through (pseudo)random number generator algorithms. There exist several well established algorithms to achieve this goal, among which we can mention: Random number generators, Direct Sampling, Rejection Sampling or Importance Sampling [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. Other sampling strategies have been developed in the same framework, such as Markov Chain Monte Carlo (MCMC) algorithms. Besides their simplicity one of the main advantages of Monte Carlo (MC) algorithms is that they also provide the convergence rates of estimated quantities of the outputs of the computer code [START_REF] Lemieux | Monte Carlo and Quasi-Monte Carlo Sampling[END_REF], whose rate is 1 √ n . If d is large, these rates can prove to be too slow and require an intractable amount of simulations (depending on the computational cost of the considered simulator). An improvement of the method is the use of Latin Hypercube designs, which guarantee a better coverage of the d-dimensional space, offering a better chance of no undersampling certain regions of the space.

The second main strategy is to follow space-filling designs that look to optimally (in the sense of a specific predefined criterion) sample the considered hypercube so as to guarantee an exploration as efficient as possible. In particular, we focus here on the so-called Latin Hypercubes Sampling (LHS from now on). Introduced by [START_REF] Mckay | A comparison of three methods for selecting vales of input variables in the analysis of output from a computer code[END_REF], these sampling strategy aim at providing a good exploration of the domain of each input variable of the computer code (taking into account their probability density functions).

In practice, in order to generate the basic version of a LHS, the generic [0, 1] domain of each variable is divided into a number N of equally sized (probable) intervals: I ν = ν-1 N , ν N , ν ∈ {1, ..., N }. Let us also define d permutations π j of the set {1, ..., N } that will be randomly chosen such that the jth component x l j of the lth draw from the LHS can be obtained by randomly chosen vales of the domain partition I π l j [START_REF] Damblin | Numerical studies of space-filling designs: Optimization of Latin Hypercube Samples and subprojection properties[END_REF].

Finally, since this basic form of LHS designs cannot ensure that the target input space will be appropriately sampled [START_REF] Iooss | Numerical studies of the metamodel fitting and validation processes[END_REF], there exist optimized versions of the LHS sampling (Damblin et al., 2013) that will be presented when used in this manuscript.

To conclude this stage of the methodology, once an appropriate design of experiments has been sampled, the CATHARE2 simulations will be launched and the corresponding outlyingness score θ i of each simulations are estimated following the methodology presented in Chapter 2.

Target sensitivity analysis

In this section, Target sensitivity analysis through HSIC measures based on permutation tests (de Lozzo and Marrel, 2016a) will be applied between the input variables in the design of experiments (X i,j ), j ∈ {1, ..., d}; i ∈ {1, ..., n} and the corresponding values θ i of each func-tional output that corresponds to every input in the design of experiments. These measures are retained instead of more classical variance-based sensitivity indices such as the Sobol' indices 3.2 [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF] since they are capable of capturing the dependence between the inputs and the scalar output of interest (in this case, θ i ) even when the total number of runs of CATHARE2 is very limited. This analysis will provide a set of inputs variables that present a quantifiable dependence with the outlyingness score, and that can be rightfully associated with anomalous or atypical behavior (in the sense of θ) in the outputs of the simulations. Once all the aforementioned parameters are obtained, and three types of analysis are performed via several comparison techniques which, in essence, consist in comparing the distributions of the considered parameters between the inlying sample and the outlying one. The main objective of this final stage is the extensive characterization of the outlyingness and the detection of possible non-physical values or trends amongst the variables. Several comparison techniques (two graphical and one analytical) will be used.

Comparison between inlying and outlying samples

1. For each considered subdomain [t k , t k+1 ], compare the distributions of the samples of intermediate parameters through the Kruskal-Wallis test (See detailed explanation on Annex A). This step allows the detection of the most relevant time frames of the nuclear transient that explain the differences between the inlying and outlying samples. It is also useful in order to quantify which physical events present a higher impact on the progress of the transient.

Scatter plots between the relevant input parameters and the intermediate ones, show-

casing the bivariate domain which present higher probabilities of being associated to outlying simulations. This provides considerable insight about the interactions between the considered physical parameters and most of all, it allows the comparison of the trends of the inlying and outlying samples. If those two trends present opposing tendencies, it can be interpreted as considerable evidence for the existence of non-physical values in the simulations.

3. Graphical comparisons between the distributions of influential input variables and intermediate parameters in each considered time subdomain. This can be done through the use of classical histograms or violin plots (See Annex B or C). This is an important step in order to identify the subsets of values of the input variables that actually lead to the generation of outlying transients, which is closely linked to the physical phenomena that take place in said simulations.

Conclusions

This Chapter has been dedicated to the presentation of the main tool of nuclear transient analysis that has directed these Ph.D. works, the code CATHARE2. Firstly, we introduced the basic elements that constitute a Nuclear Power Plant (in particular, a Pressurized Water Reactor) and how its most important elements can be modeled through the already existing modules and submodules of CATHARE2. We also presented the basic workflow of the code and how steady-state calculations are achieved in order to solve the balance thermal-hydraulic equations of mass, momentum and energy amongst the possible meshes and modules of the code. We also mentioned how this code has been successfully used in industrial contexts in order to validate its calculations when compared to real experiments, and how can be used in uncertainty quantification contexts as a physical analysis tool.

Secondly, we introduced the domain of sensitivity analysis in simulation codes. This is a wide domain but we provided the essential notions that allow the quantification of the influence that specific sets of inputs have over a desired output of the considered code. We provided a systematic classification of the main methods that are used nowadays in the SA domain, in particular in what concerns the analysis of nuclear transients, mentioning their advantages and disadvantages, in order to justify the choice of methods that have been used in our context.

Finally, we provided a methodological analysis technique of nuclear transients aiming at increasing the comprehension of the physical phenomena that intervene during the simulation of accidental nuclear transients through black-box simulators. The methodology can be separated into four main stages that help characterize the outlyingness of specific sets of output simulations so as to provide an interpretation for them. This serves as a complement physical analysis tool that can also be useful in validation settings.

In the following chapters we shall showcase how the application of this methodology has been useful in real industrial applications. In this chapter we will detail the main application that has directed the works presented in this manuscript. The application belongs to the domain of nuclear transient simulation.

We focus here on accidental transients in NPP that result in an industrial risk for the system.

In particular, the analyzed transient belongs to one of the main failure modes of accidental nuclear transients, the Loss of Coolant Accident (LOCA). In this transient, a break in the primary system of the NPP decreases the amount of total coolant in the system, which hinders the evacuation of the thermal power produced by the nuclear core. This process can result in the fusion of the nuclear fuel, which characterizes a severe accident, if no countermeasures take place.

The chapter is divided as follows: firstly, we shall describe the generalities of the usecase, detailing the CATHARE2 modeling of the transient, as well as the expected inputs and functional outputs of the code. Secondly, we will apply the generic methodology of analysis explained in the previous chapters, provide an interpretation of the results and an explanation for the existence of outliers in the simulation results. We will finish with the conclusions.

Presentation of the use-case

In this section we provide a detailed description of the analyzed transient, the main components of the NPP, its influence, the progress of the transient, as well as the main physical phenomena of interest and their modeling made with CATHARE2.

The Loss of Coolant Accident (LOCA)

The considered NPP is a Pressurized Water Reactor (PWR) of 900MW of nominal electrical power. In a general sense, a LOCA is defined as an accident in which some point of the primary system of PWR loses its integrity, most commonly due to a break in its piping. The main consequences (Tarride, 2013) of this event are: i) a mechanical stress on the internal structures of the Reactor Pressure Vessel (RPV), on the components of the primary circuit and support structures of its elements; ii) mechanical and thermal effects on the containment building ; iii) radiation consequences inside the building, and potentially to the environment and people in severe cases.

Generally speaking, a LOCA transient is caused by the apparition of a break in the primary circuit that provokes the depressurization of the primary through a loss of water (the coolant) inventory that cannot be compensated by the Chemical and Volume Control System (CVCS), which usually controls all the parameters linked to the state of the coolant in the primary circuit (chemical concentration of elements, total mass, level of water...). If this happens, the reactor is automatically shutdown, the turbine is isolated from the Steam Generators (SG) and the Emergency FeedWater System (EFWS) guarantees the flow of coolant to the SG. The loss of coolant at the break must be compensated by the Safety Injection System (SIS) of the NPP so as to avoid an excessive increase in fuel temperature.

The actual effects of a LOCA transient on an NPP depend largely on the characteristics of the considered transient, such as the size of the break, the number of loops of the primary circuit, the nominal power of the NPP, or the available safety systems for instance.

In our particular use-case (provided by the EDF engineering division so as to penalize the consequences of the accident) the transient is characterized by the parameters presented in Table 4.1. The break size corresponds to the equivalent diameter of the break (diameter of the circular break). Comparatively, the diameter of the corresponding cold leg is 89.46cm, allowing a section of passage of 6285.61cm 2 for the coolant. Regarding the position of the break, it is located between the annular collector and the safety injection system on a cold leg. This configuration is penalizing for water reactors with the safety injection system located in the cold leg (much of the cooling water from the SIS is lost at the beak before cooling the core). The LOOP (Table 4.1) implies the loss of redundant systems implicated in nuclear safety. This loss is partially or completely compensated by the EDG, which is the reason why the loss of one of diesel generators constitutes an aggravating factor.

The break size corresponds to an intermediate break according to Tarride (2013), although historically these breaks have sometimes been considered as large ones (U.S. Department of Energy, 1975). In practice, a break of 39cm of diameter in this specific NPP presents physical characteristics of both an intermediate and large break. On a side note, the consideration of the aggravated scenario in safety studies has lead to the implementation of redundancies (at least two independent trains for each one of them), where each one must be capable of ensuring the water injection individually and through independent activation and management systems, so as to avoid the possibility of a Common Cause Failure (CCF), i.e., an event that may lead to the failure of all the redundancies of an ISS (Important System for Safety).

The management of this accidental transient requires the use of several specific systems important for nuclear safety. They are detailed in the following section.

Important systems for nuclear safety (in LOCA transients)

The main safety systems of protection and safeguards of a NPP are deemed Important Systems for Safety (ISS), and constitute one the main lines of defense in the event of an accidental transient. They intervene automatically and their role is to lead the reactor to a safe state from the beginning of the transient, or at least to a manageable state by the operators of the NPP.

For these systems, the Single Failure Criterion (SFC) is applied. It means that these systems must remain available in the event of a nuclear transient even if one of its individual components fails to work. These failures can be active (e.g., a pump failure) or passive (e.g., a primary break).

There are several systems in the NPP susceptible of being relevant (intervene) during the nuclear transient. They are:

• Automatic shutdown of the reactor (reactor trip). The system in charge of stopping the fission reactions in the core. It is formed by neutron absorbing control rods that are passively (without the need of external electric power) inserted into the core. It activates on the Low Pressure (LP) signal of the pressurizer.

• Automatic shutdown of the primary reactor coolant pumps. The pumps automatically stop if the LOOP hypothesis is considered.

• Emergency Core Cooling System (ECCS). This system is charged with guaranteeing the cooling of the core if the primary pressure falls below a certain threshold. It consists of a high pressure train system, a low pressure one, and a set of accumulators. The latter are reservoirs of water with a discharge line that injects directly into the boiler.

• The electrical components that allow the isolation of the SG.

• Aspersion system. Its main function is to lower the pressure and temperature of the containment building in the case of an abnormal increase (such as in an accidental transient).

• Emergency feedWater system of the SG. Its role is to guarantee the flow of liquid water to the SG, which continues to evacuate the residual thermal power of the core. Including the LOOP assumption, one motopump and turbopump are available. The former activates on the signal of the activation of the ECCS, and the latter only intervenes on the Very Low Level (VLL) signal of the SG.

• The steam generators relief valves. They open if the pressure inside the SG reaches a certain pressure once they are isolated from the turbine. They ensure a minimal mass flow of 362 t/h, and their set pressure is taken as 77.6 bar.

• Steam bypass system of the turbine to the atmosphere. Its role is to evacuate the steam contained in the secondary circuit to the atmosphere, both in normal operation conditions, incidental and in accidental ones. They ensure a minimal mass flow of 195 t/h at 70.3 bar. They open automatically if the pressure decreases below 72.7 bar.

• Relief lines (pressurizer). They are formed by three tandems of relief valves, of which only one is available in the LOOP scenario.

• Emergency Diesel Generators (EDG). Only one of the two is available in the assumed scenario. In order to further penalize the scenario, it is considered that the lost diesel is the one that leads to the loss of 2 out of 3 relief lines of the pressurizer.

Phases of the transient

An In intermediate breaks of large size, or in large breaks, the duration of phases II and III is reduced in favor of phases IV and V. A brief description of these phases is provided below:

• Phase I: Single-phase depressurization. It is expected to last only several seconds in the case of large intermediate breaks. Signals for the ECCS and automatic shutdown of the core are sent during this phase. It lasts until the saturation conditions are reached in the primary circuit, which are governed by the single-phase flow at the break, i.e., the loss of coolant mass entails a fast decrease in the primary pressure. During this phase, the cooling of the fuel is guaranteed by the (still) single-phase coolant, or two-phase with very low void fraction (α = u G u Total = u G u G +u L , where u G and u L represent the volumes occupied by the gas and liquid phases in a considered component, respectively). For large breaks, the vaporization may begin even before the automatic shutdown.

• Phase II: Void formation and stratification. For the small or intermediate breaks, the generation of steam slows the depressurization of the primary circuit, and all the residual power that cannot be evacuated through the break is evacuated thanks to the SG. The Example of a closed loop in which natural circulation may be created. In this case, the heat sink would correspond to the SG, whereas the heat source is the nuclear core, so the closed loop is composed by the elements in the boiler. ρ cold : average density of the fluid in the cold leg; ρ hot : average density of the coolant in the hot leg; g acceleration of gravity. Other head losses (friction with pipe walls, singular head losses, blocked tubes in the SG, etc.) exist in the circuit and must also be compensated.

ECCS trains of high and low pressure are activated, but they cannot compensate the flow of coolant at the break. Once the primary pumps stop, the natural circulation of the fluid in the primary begins, and a stratified regime starts (two-phase flow). In the case of large IB, the void is formed much faster and there is a risk of total uncovery of some fuel elements. A natural circulation (IAEA, 2005) regime in a closed loop (in this case, in the primary loops) can be formed when a heat sink located at higher elevation than the heat source (c.f. Figure 4.1), such that the considered fluid reduces its density when it is in contact to the heat source, and its density increases by circulating through the heat sink. This difference of density is acted upon by gravity over the elevation difference which, if it is sufficiently important, can compensate the head losses in the thermal-hydraulic circuit and naturally evacuate part of the residual thermal power.

• Phase III: During this phase, the decrease of the level of water is governed by differences of static pressures in the primary. The level decreases and reaches the U -legs, and if the level in the core continues to be reduced, the temperature of the fuel may increase notably, and a cross-flow may be established towards the hot leg from the vessel. If the break is large enough, the evolution of the pressure in the primary circuit is independent from the pressure in the secondary, and the conditions of activation of the accumulators and the low pressure ECCS are reached earlier. In the uncovered parts of the core, the heat exchange is produced through steam convection and radiation, and the overheated steam, as well as the parts of the cladding that continue to increase their temperature, induce mechanical stresses on the fuel cladding, which might end up deforming. The exothermic oxidation of the Zr might also become relevant if the temperatures reach sufficiently high levels.

• Phase IV: This phase is characterized by the decrease in the level of the vessel by reduction of the total water mass. The liquid mass of the primary is the result of the injection flows and the flow at the break. For large IB, there is a large production of steam caused by the flashing phenomenon. Due to the rapid decrease in pressure in the primary at the beginning of the transient, saturation conditions are rapidly reached for the coolant, and therefore, the vessel might reach a wholly emptied state at the beginning of this phase. If this state is reached, there will be an excursion of temperature in the fuel even in the case of small and intermediate breaks.

• Phase V: Injection by the accumulators at the bottom of the RPV through the downcomer and reflood: the almost immediate reflood of the primary circuit implies that, despite the fast vaporization at the quenching front, the fluid around the fuel will reach saturation levels again. This means that the core is refilled with liquid water once again, and a steady (safe) state is expected to be reached.

An illustration of these phases can be found in Figure 4.2, where phases II and III are almost non-existent, and the passage between phases I and IV is done in less than a minute of physical time.

Physical phenomena of interest

It is clear that the studied nuclear transient entails a large number of physical phenomena that are susceptible of having an impact over its course. A common way of identifying which phenomena may have a major impact over the physical parameters of interest is to construct a PIRT (Phenomena Identification and Ranking Table, (NEA/CSNI/R, 2018)). This method is useful as a tool that provides insight over the variables of interest for an analyst, although it is generally constructed through the subjective analysis and judgment of experts of the domain. Nonetheless, it is a useful preliminary stage that allows to list the main physical phenomena, classify them by importance, knowledge and uncertainty. The classification of the phenomena that may potentially be relevant was made by an expert committee as an answer to the question: Is this physical phenomenon that intervenes during this phase of the transient influential and well-known?. The importance and the degree of knowledge of each phenomenon were quantified and evaluated giving each phenomenon a score between 1 and 5 according to a pre-established rating scale [START_REF] Boyack | Quantifying reactor safety margins: Application of code scaling, applicability, and uncertainty evaluation methodology to a large-break, Loss-Of-Coolant Accident[END_REF]. The full PIRT of this use case is not shown here, but the main physical phenomena of interest and conclusions are listed in Table 4.3.

Safety criteria

In the context of a deterministic risk analysis, the safety requirements of a NPP translate into the respect of safety criteria. They constitute the threshold values of limiting characteristic physical phenomena that must be respected at all times, including accidental transients. In the case of an IBLOCA transient, the objective of the criteria is to avoid an important degradation of the nuclear core, aiming at limiting the radiological consequences for the environment. The safety criteria that must be respected are presented in Table 4.4.

The maximum cladding temperature is usually referred to as Peak Cladding Temperature (PCT from now on), and represents the maximum local temperature at any instant and any location of the core cladding of the nuclear fuel.

Regarding the oxidation of the cladding, this is a widely studied process in the nuclear industry [START_REF] Baker | Studies Of Metal-Water Reactions At High Temperatures III. Experimental And Theoretical Studies Of The Zirconium-Water Reaction[END_REF], and addresses the chemical interaction between the zirconium (Zr) present in the cladding of the nuclear fuel and the eventual surrounding steam during a nuclear accident. Zirconium oxidizes through the following reaction with steam: 

Zr + 2 H 2 O --→ ZrO 2 + 2 H 2

Mechanical deformation of fuel elements

This reaction is exothermic. Both the total hydrogen generation during the transient and the Effective Cladding Reacted (ECR) can be estimated thanks to the Baker-Just correlation [START_REF] Baker | Studies Of Metal-Water Reactions At High Temperatures III. Experimental And Theoretical Studies Of The Zirconium-Water Reaction[END_REF]. According to this correlation, the mass/surface area of Zr consumed during steam oxidation (noted w) is given by the Arrhenius-type Equation (4.1):

w 2 = 33.3 × 10 6 t exp - 45500 RT , (mg/cm 2 ) 2 (4.1)
where t is the time in seconds, T is the temperature in K and R = 1.987 (universal gas Table 4.4: Safety criteria to be respected in an IBLOCA transient [START_REF] Tarride | Physique, fonctionnement et sûreté des REP. Maîtrise des situations accidentelles du système réacteur[END_REF].

Criterion Description

Maximum cladding temperature

The maximum temperature attained by the fuel cladding at any point of the transient must remain below 1204°C.

Maximum hydrogen production

The total quantity of hydrogen produced by the chemical reaction between the cladding and the surrounding steam must not surpass 1% of the total quantity that would be produced if all the material that surrounds the fuel pellets had reacted.

Maximum oxidation of the cladding

The maximum cladding oxidation must remain below 17% of the original thickness of the cladding .

Core geometry

Any geometric core deformation must still allow the cooling of the fuel during the transient and afterwards. constant). The equation is valid for an isothermal oxidation in a steam environment, and it is the implemented correlation in the CATHARE2 code for the calculation of the ECR. The ECR (as a fraction) can be estimated by dividing w by the density of Zr (ρ Zr = 6.5g/cm 3 ) and the reference cladding thickness h Zr measured in cm:

ECR = w ρ Zr h Zr (4.2)
This physical correlation overpredicts the total hydrogen produced and ECR during an accidental transient in high temperatures (USNRC, 1989), but this safety criterion is retained as a conservative hypothesis. Finally, the total allowed ECR also depends on the original concentration of hydrogen present in the cladding pre-accident. This is given by Table 4.5 [START_REF] Tarride | Physique, fonctionnement et sûreté des REP. Maîtrise des situations accidentelles du système réacteur[END_REF].

CATHARE2 modeling

The CATHARE2 modeling of the systems of the represented nuclear power plant (900MW and three loops) can be divided into three main parts: the modeling of the Reactor Pressure Vessel (RPV), the primary circuit and the secondary circuit. This model is based on the reference meshing for safety studies in IBLOCA transients, and has been validated on numerous applications [START_REF] Charignon | CathSBI, a new methodology for the revised French LOCA rules[END_REF][START_REF] Larget | How to bring conservatism to a BEPU analysis[END_REF][START_REF] Marrel | Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor[END_REF]. 

The reactor pressure vessel

The modeling of the RPV can be divided into several individual parts as well:

• Core and fuel. They are represented by a 3D module in a cylindrical coordinate system, degenerated in the azimuthal component. It is then composed of one azimuthal mesh, three radial meshes and a series of equally spaced meshes along the vertical axis. The central radial mesh (representative of 9 fuel assemblies) gathers the hot assembly (HA, where the highest temperatures will be reached), the intermediate mesh (comprising 60 assemblies) is called the Mean assembly (MA, representative of the expected average behavior of the fuel) and the exterior mesh represents the remaining 88 fuel assemblies, which attain lower average temperatures during operation and the transient. In the longitudinal dimension, the core is formed by 50 vertical axial meshes.

The physical characteristics of each assembly and their thermal power are considered uniform in the meshes.

• Lower plenum. It is formed by a sequence of three elements: 1 volume (0D) element, 1 axial (1D) element, and another volume element. The first volume represents the lower part of the RPV up until the supporting structure of the core; the axial element is representative of both the supporting structure of the core and the volume between this element and the lower part of the core. The final 0D element is used to connect the axial element to the core.

• Upper plenum. Formed by a volume element (0D), it represents the volume between the upper support structure of the core and the guiding tubes for the control rods. The junctions of the hot leg to the RPV are located in the upper plenum.

• Bypass of the core. This 1D element allows the modeling of the coolant flow through the guiding tubes for the control rods and the flow between the fuel assemblies and the core walls. It has the same height as the nuclear core and is parallel to it. It has junctions to the lower and upper plenums.

• Downcomer. It is the annular space between the walls of the core and the RPV walls.

It is modeled through a 3D element that can be divided into: 1 radial mesh (the module degenerates to two dimensions), an axial mesh divided into 17 individual cells, and 6 azimuthal sectors. The junctions to the cold leg are connected to the upper part of this element.

• Dome. Modeled by a 0D module, it represents the volume between the vessel head and the supporting plaque of the rods. It is linked to the downcomer through 6 junctions (one for each azimuthal mesh).

• Control rods guides. Also modeled through a 0D module, they are connected to the dome and the upper plenum.

The modeling of the elements of the RPV is summarized in 

.6 The primary circuit

The primary circuit is composed by three different loops. The two intact loops are modeled by a unique axial element (1D), which represents the fluid volumes that flow sequentially through the hot leg, the primary side of the SG, the U leg, and the cold leg, which is connected to the downcomer. Regarding the broken loop, we can distinguish four main parts in its modeling:

• Primary pumps. They are modeled thanks to the one-node pump submodule of CATHARE2. It describes the interaction between the pump and the one-phase or twophase flow that can be located into a node of an axial 1D element. This model allows the calculation of the head of the pump, its rotation speed and the heating of the fluid that goes through it by means of its nominal head and torque, also taking into account a possible degradation due to a two-phase flow. It is located in the penultimate mesh of the U branches of the cold leg.

• Pressurizer. The pressurizer itself is modeled by means of a volume (0D) element and its discharge line by an axial element, which is itself connected to the axial that represents the broken loop.

• Break. The break is modeled by a 1D axial module in vertical position whose section corresponds to that of the break (39.1cm). It is connected to the generatrix of the axial module that represents the cold leg and its connection to the exterior of the primary circuit is made by a specific boundary condition of CATHARE2 which imposes a pressure value and calculates the critical flow.

• ECCS. The accumulators are represented by a 0D volume, an axial module that represents the discharge line of the accumulators, plus the junctions between them and to the broken loop, plus the corresponding valves. Regarding the high pressure and low pressure injection pumps, they are modeled by a specific CATHARE2 submodule.

The modeling of the aforementioned parts of the primary circuit is showcased in 

The secondary circuit

The CATHARE2 modeling of the secondary circuit is divided into three main parts:

• Secondary parts of the SG. It is divided into three parts. Firstly, the injection by the EFWS is done through the use of two specific CATHARE2 elements, which are connected to the axial (1D) module that represents the secondary part of the modeled steam generator. Finally, the upper part of the SG is modeled by a volume module that is connected to both the axial body of the SG and the steam line.

• Steam line. The steam produced in the SG through the thermal exchange between the primary and secondary circuits is evacuated through the steam lines. Each of the three SG possesses a steam line that links it to the steam drum, where the flows coming from each loop are mixed. These lines are modeled by means of an axial module with several nozzles and valves with imposed boundary conditions corresponding to the discharge lines to the surrounding environment.

• Steam drum. This volume element allows the mixture of the steam flows coming from the steam lines, i.e., the steam lines of each SG. It is connected to the turbine through a CATHARE2 boundary condition that imposes the admission pressure to the turbine.

The secondary circuit is summarized in Figure 4.5.

Inputs and outputs of the code

The space defined by the input data of the CATHARE2 code for this case is high-dimensional, with an original amount of 97 input variables. These variables can be separated into three main categories:

• Type 1: Initial conditions or limit conditions for the thermal-hydraulic circuits and the nuclear fuel. Some examples are the inertia of the primary pumps (RCP), the initial pressure of the accumulators, the initial primary pressure, the initial total thermal power produced by the core... .

• Type 2 Parameters for physical models and physical correlations. Some examples are the heat exchange coefficients between elements in different thermal-hydraulic conditions or the interfacial friction between phases. They can also be related to neutronic parameters, such as the fraction of delayed neutrons.

• Type 3: Scenario parameters. They define the main characteristics of the actual analyzed transient. Some examples can be: size of the break, the burn-up of the fuel at the beginning of the transient, the percentage of blocked tubes in each steam generator when the transient occurs... Again, these input variables correspond to a CATHARE2 modeling commonly used in safety studies, and their probabilistic laws that model their corresponding uncertainty have been established [START_REF] Larget | How to bring conservatism to a BEPU analysis[END_REF]. Each law is presented in Tables 4.6 to 4.10. • Primary pressure (Pa), measured in the pressurizer

• Total liquid mass in the Downcomer (kg)

• Total liquid mass in the core (kg)

• Swollen level of water in the core (m).

Examples of the evolution of parameters are provided in Figure 4.5. 

Application of the methodology

In the following sections we will show how the functional outlier detection methodology presented in Chapter 2 can provide a set of outliers in this application that can be related to specific physical phenomena which provide their interpretation.

Preliminary considerations

Firstly, let us recall the physical phenomena of interest presented in Table 4.3. Amongst the six dominant phenomena, four of them are directly linked to the total water mass present in the core (water inventory in the primary circuit, distribution of water mass in the primary, swollen level of water in the core, and reflood dynamic by the accumulators), whereas the remaining two are related to the evacuation of the thermal power produced in the core and the maintaining of the geometry required for the long-term cooling of the core.

Within the perimeter of this study, we are interested in the short-term effects of the IBLOCA transient and the respect of the safety criteria. Amongst the 4 mentioned safety criteria in Section 4.4, we can show that the main criterion that must be respected in the short-term is the PCT threshold of 1204°C [START_REF] Charignon | CathSBI, a new methodology for the revised French LOCA rules[END_REF]. This short term transient is simulated during 367.00 s of physical time, so we are not focused on the long-term cooling safety criterion. Regarding the production of hydrogen safety criterion (second criterion in Table 4.4), it is less penalizing than the PCT in the considered time frame (IRSN, 2008). This means that the production of hydrogen may not be considered for the studied transient. A similar conclusion may be obtained regarding the oxidation of the cladding. A numerical application application for the estimation of the maximum ECR presented in Table 4.4 is given below. Since the ECR is a monotonically increasing function of the fuel temperature (see equations (4.1) and (4.2)), it is possible to define an envelope penalizing scenario in which, during the whole transient, the fuel temperature remains at 1477.15K. If the temperature were higher, the safety criterion of temperature would already not be respected and the transient would already be qualified as severe even without checking the ECR criterion. Let us therefore consider this envelope transient of a duration of 367.00 s, R = 1.987cal/(K • mol) and 1204°C = 1477.15K:

w 2 = 33.3 • 10 6 • 360 • exp - 45500 1.987 • 1477.15 = 2262.87 (mg/cm 2 ) 2 =⇒ w = 47.57 (mg/cm 2 ) (4.3)
Therefore, considering a density for the Zr of 6.5 g/cm 3 = 6500 mg/cm 3 and a reference thickness for the cladding of 4 mm [START_REF] Deckers | Minimum cladding thickness of material test reactor fuel plates[END_REF]:

ECR = 42.999 6500 • 0.4 = 0.018 (4.4)
which is well below the maximum acceptable values of ECR shown in Table 4.5 for this penalized calculation. Therefore, we shall focus exclusively on the PCT as safety criterion for the analyzed transient, since it is the enveloping safety criterion in the framework of the use-case.

This also means that the natural set of functional outputs to which the FOD methodology will be applied to is restricted to the evolution of the maximum local cladding temperature (see Figure 4.5 (k)).

Finally, let us establish the breakpoint events of interest and the intermediate parameters that will be considered. We consider the activation of specific critical systems or signals (automatic shutdown of the core, ECCS, start of reflooding by the accumulators...) as well as the aforementioned phases in Section 4.2, which divide the transient into time intervals where differentiated physical phenomena take place or any combination of them.

In practice, due to the fast progression of the transient, there is an overlap between the frontiers of the phases I to V of the transient (see Table 4.2) and other important events that affect the phenomena showcased in Table 4.3. This is for instance the case for the activation of the accumulators, which demarcates the beginning of phase V, and whose activation strongly impacts the aforementioned phenomena.

A conservative approach is to retain as many events as possible, taking into account the events that will have an impact on the phenomena presented in Table 4.3.

Taking these elements into account, the selected breakpoint events in the transient are those displayed in Table 4.12. Table 4.12: Considered breakpoint events for the IBLOCA transient. We provide orders of magnitude of their time of occurrence because they depend on each individual transient.

Event Order of magnitude (s) Notation

Automatic shutdown of the core 5 t 1

ECCS activation 32 t 2

Start of the accumulators discharge 48 t 3

First uncovery of the core 55 t 4

Second uncovery of the core 100 t 5

For the purposes of this chapter, we shall name T ⊂ R the physical time interval in which the simulations take place, that is T := [0, T ]s, T = 367 (s). The set of breakpoint events is denoted

τ b ∈ T , τ b = {t 1 , t 2 , t 3 , t 4 , t 5 }.
We shall focus on the CATHARE2 outputs impacting the most the aforementioned physical phenomena of interest. These outputs are the evolution of the maximum cladding temperature, the swollen level of water in the core, as well as the masses of coolant in both the core and the downcomer.

The considered intermediate parameters of interest through which the inlying and outlying samples will be compared are, for a given functional output z s (see section 3.3.1):

h 1 (z s )| t i+1 t i = max(z s )| t i+1 t i , h 2 (z s )| t i+1 t i = min(z s )| t i t i+1 , h 3 (z s )| t i+1 t i = E[z s ]| t i+1 t i .

Design of experiments and functional outlier detection

Let us now consider the set of computer experiments to launch. The provided modeling of the IBLOCA in the considered NPP requires an input vector of d = 97 parameters, and the following step is to create a design of experiments, i.e., a set of scalar inputs {X i,1 , ..., X i,d } N i=1 and functional outputs {z i,1 , ..., z i,S } N i=1 (where N is the size of the considered sample, and S is the total number of available functional random variables).

In this application case, the inputs will be sampled through a random Monte Carlo design. There are two main reasons for doing this. Firstly, as it was mentioned in Chapter 2, the use of the HSIC indices as a screening tool requires independence between the considered experiments, and therefore a Monte Carlo design or LHS is appropriate. It is also to be noted that, for very large input spaces (namely, d > 20), even space-filling designs also rapidly struggle against the curse of dimensionality [START_REF] Damblin | Numerical studies of space-filling designs: Optimization of Latin Hypercube Samples and subprojection properties[END_REF]. Another less important point, but relevant nonetheless, is the fact that we wish to explore how the application of this methodology can prove to be useful in real use cases with commonly used tools by engineers, and Monte Carlo designs of experiments remain a widely used sampling method.

Finally, the size N of the design of experiments must be established. As a general rule, the total number of required simulations depends on the purpose of the experiments (the statistical quantities that we wish to estimate), the total CPU time that is required for each individual simulation and the total number d of input parameters. Several heuristics that propose a value of N equal to ten times the dimension d of the input space [START_REF] Loeppky | Choosing the sample size of a computer experiment: A practical guide[END_REF] in the context of uncertainty propagation. For this particular use-case, we have chosen N = 1000.

As it was mentioned, the FOD method presented in Chapter 2 is applied to the subset of N = 1000 maximum local cladding temperature evolutions corresponding to each transient in the design of experiments that converged in their calculation.

The resulting set of outlyingness scores {θ i } N i=1 , each one associated to its corresponding simulation, will be used as a tool for sensitivity analysis, and the results on the corresponding set of functional outputs is showcased in Figure 4.6.

The associated score θ i to each curve (see Figure 4.6) has been calculated considering the h-mode depth and the DTW as detection features, with the outlying set of curves being formed by the α = 10% more outlying transients, providing a total of 3.8% outlying transients. More restricting criteria would naturally provide smaller sets of outliers, but without large differences over the more outlying curves due to the shape of the distribution of θ i values (see . For α = 5%, the set of outliers is composed by the 3.1% more outlying curves, and for α = 1%, the set is reduced to 2.5%.

We showcase the histogram of PCT, i.e. the maximum value of temperature attained during the accidental transient for the maximum cladding temperature functional output, whose values range in the [620. 37, 939.31]°C interval. The empirical estimator of the 90% quantile of PCT is shown in red in the Figure 4.7, and is equal to 779.59°C. No simulations surpass the threshold of temperature of the safety criterion (1204°C). Finally, we showcase the corresponding histogram for the values of {θ i } N i=1 , θ i ∈ [0, 1] in Figure 4.8. The y-axis represents the total number of curves in the corresponding bin. There exists a set of simulations of with high associated values of outlyingness (θ i ∈ [0.9, 1]), which correspond to the strict outliers detected through the chosen criteria. Although it will be explained in more detail afterwards, for the sake of clarity, we showcase here the distribution of local PCT for both the inlying and outlying samples (Figure 4.9). It can be appreciated how the automatic outlying detection procedure has been capable of extracting a sample of transients whose PCT significantly diverges from those in the inlying one. In particular, the distribution of outliers is skewed towards the more penalizing scenarios, with higher PCT values. 

Sensitivity analysis

We perform now the Target Sensitivity Analysis (TSA, Marrel and Chabridon (2021), see Section 3.2) of the input parameters and the considered score of outlyingness θ ∈ Θ, Θ = [0, 1]. We will consider the critical domain {S ⊂ Θ|θ > 0.9} and the TSA is performed through permutation tests (non-asymptotic framework) and HSIC measures.

The resulting influential variables are presented in Table 4.13.

Looking at Table 4.13, it is clear that, as it was intended, the variables that have been identified as influential over the extreme values of θ are closely related to the physical parameters of interest showcased in Table 4.3.

In the following, we provide a more detailed explanation of the corresponding physical meaning of these inputs, necessary for the interpretation of their impact during the transient.

• X 51 : This parameter corresponds to the global heat transfer coefficient between the • X 52 : for turbulent flows (such as during the reflood phase of the transient), the general form of the interfacial friction between the steam and liquid phases is:

τ i = 1 2 a i f i ρ∆V 2 k(α) (4.5)
where f i is a friction coefficient; ∆V 2 is the square of a velocity difference; a i represents the interfacial area; k(α) is a numerical smoothing function.

∆V 2 =    (∆V 2 + V 2 0 )sign(∆V ) if |∆V | > V 0 2V 0 ∆V if |∆V | ≤ V 0
During reflood, the value V 0 = 0.2m/s is used by CATHARE2 for all geometries. Finally, the component k(α) is calculated differently depending on the side of the quench front that is taken into account:

-Upstream of the quench front:

k(α) = 1 + 10 -7 α 3 + 3 • 10 -15 (1 -α) 3
-Downstream of the quench front:

k(α) = 1 + 10 -7 α 3 + 3 • 10 -18 (1 -α) 3
The difference of velocities between the steam and liquid phases, ∆V , writes:

∆V = u G -C k u L
where u L and u G correspond to the liquid and gas velocities at the interface, respectively. The coefficient C k accounts for the effect of the distribution of void fraction. It derives from the Wallis Drift Flux model [START_REF] Wallis | One-dimensional two-phase flow[END_REF], and writes:

C k = 1 + 1.6α 1.5 (1 -α) 1.5
The interfacial friction intervenes in the resolution of the momentum equations presented in Chapter 3, which corresponds to the force per unit volume arising from the action of tangential stresses between the phases in the core during the reflood phase.

• X 70 : in this transient, the elevation of temperature of the fuel can induce the dilatation of the cladding in the hottest areas of the fuel in a process known as ballooning.

CATHARE2 is capable of modeling this effect and its thermal-mechanical influence on the thermal-hydraulic parameters during the transient. In particular, during the reflood phase, the code adds singular pressure drops at the locations of the balloons, and variable X 70 represents a multiplicative coefficient to this axial head loss.

The constrained flow also induces a modification in the heat transfer laws due to the increase of velocities of the phases. This translates into an increase in the wall-to-steam heat transfer in the case of forced convection and an increase of the wall-to-fluid transfer in film boiling caused by droplet impacts.

K = -0.4026 + 0.0779 1 -B + 0.4805 (1 -B) 2 (4.6)
where B is a blockage correlation that was established on the basis of experiments on single-rod burst strains which were compared to the available NUREG database (Claude [START_REF] Grandjean | A State-of-the-Art Review of past programs devoted to fuel behavior under LOCA conditions[END_REF]. The correlation for the blockage writes:

B = ψ • f (K nc • ϵ)
where ψ is a coefficient that takes into account the presence of undeformable meshes (due to the presence of instrument tubes and structures), and K nv is the parameter that takes into account the fact that the ballons are not coplanar. ϵ corresponds to the burst strain of the rods, and is calculated by CATHARE2.

• X 86 : it represents the τ i interfacial friction between steam and water in the downcomer, following equation (4.5). This variable is sampled independently from X 52 and also follows a different distribution.

• X 91 : it represents a multiplicative coefficient for the heat flux between the phases in the downcomer due to condensation. During the refill phase, the injected water from the ECCS provokes the condensation of the steam phase present in the downcomer before arriving to the core. In its most general form, the heat flux due to condensation is written:

q cond = R • q st + (1 -R)[C S • q Chen + (1 -C S )q Shah + E • q d ]
This correlation integrates itself several different correlations that model the heat transfer depending on the flow regime in the downcomer. q st represents the correlation of heat flux in the case of a stratified flow; q d is the correlation for droplet flow; q Shah is the Shah correlation [START_REF] Shah | A general correlation for heat transfer during film condensation inside pipes[END_REF]) and q Chen is the Chen correlation [START_REF] Chen | General film condensation correlations[END_REF]. R represents the rate of stratification in the downcomer and E is the entrainment fraction, i.e., the ratio of droplet flow rate to the total liquid flow rate. Finally, the coefficient C S is a continuous function that ensures a smooth transition between the Chen and Shah correlations.

Originally, if the flow is non-stratified, the condensation heat flux was calculated thanks to the Shah correlation, but the results were not sufficiently satisfactory in the case of high steam quality and in the presence of non-condensible gases. The Chen correlation was implemented in CATHARE2 as an improvement to better model the heat transfer.

• X 97 : friction coefficient between the water and the pipe walls in the discharge line of the accumulator. The wall friction terms for the liquid phase (subindex L) can be written as:

χ f c L f L ρ 2 u L |u L | (4.7)
where u l represents the longitudinal velocity along the pipe, and f L is a friction coefficient which depends on the Reynolds number of the corresponding phase:

f L = max 16 Re L , 0.079 Re 0.25 L , 0.003 (4.8) 
and this Reynolds number (Re L ) is:

Re L = α L ρ L (|V L | + 10 -8 )D h µ L + 20
ρ L is the corresponding density of the fluid, D h is the hydraulic diameter, µ L is the dynamic viscosity of the liquid. Finally, the function g(α) is a smoothing function that cancels the contribution of the liquid to the wall friction whenever the steam quality (the mass fraction of steam in the saturated mixture) is close to 1, and α L is the liquid fraction.

c L is a two-phase multiplier that depends on the flow regime in the discharge line and writes:

c L = [R • c Lst + (1 -R)• Lnst ] • g(α) c G = R • c Gst + (1 -R) • c Gnst (4.9)
where the multipliers c Lst , c Lnst , c Gst and c Gnst serve to approximate the ratio of the perimeter in the pipe occupied by each phase, taking into account if the two-phase flow is stratified or not. For stratified flows, the multipliers simply take the form:

c Lst = 1 π • arccos(2α -1) c Gst = 1 -c Lst (4.10)
In non-stratified flows, the coefficients c Lnst and c Gnst take more complex forms not specified here.

Although their impact will be explained in more detail in the following section, a brief explanation of how the identified variables impact the safety criterion is showcased in Table 4.14. Let us recall however that the selected variables have been chosen taking the outlyingness score into account, and not the PCT, which means that some of them may be related to other physical parameters and not have a direct link with the PCT.

In summary, it is expected that the multiplicative coefficients of the HTC both between the fuel and coolant, and the liquid-gas interface (variables X 51 and X 91 ), help lower the PCT for their higher values. An increased heat transfer between the fuel and the surrounding coolant helps lower the cladding temperature, and a higher heat exchange between the phases in the downcomer helps to increase the amount of condensed steam, which will increase the amount of coolant entering the core in the bottom-up reflooding. Regarding variable X 70 , the increase of head loss due to the ballooning of the fuel hinders the reflood of the core, globally increasing the PCT in the transient. Regarding the interface friction between the steam and liquid (τ i ) in the core (variable X 52 ), it is expected that higher values would increase the swollen level of water in the core, thanks to the rising bubbles generated through the contact between coolant and fuel in the reflood, which would help increase the surface of the core in contact with the injection water, lowering the PCT. Conversely, in the case of the interface friction but in the downcomer (variable X 86 ), the opposite effect is expected, and the rising steam in this part of the RPV should hinder the entrance of the liquid water in the core injected by the ECCS. The formed steam should then decrease the momentum of the injected water, hindering the reflood, and increasing the PCT. Finally, high values for variable X 97 would also hinder the injection of liquid water through the reduction of momentum of the coolant in contact with the walls of the discharge line of the accumulators. High values of friction in this component are expected to increase the PCT values in the transient.

Comparison of samples

In this section we compare the obtained inlying and outlying samples with regard to the selected intermediate parameters and the influential inputs established in the previous section. The comparisons are made by means of the Kruskal-Wallis H-test (KW) [START_REF] Kruskal | Use of ranks in one-criterion variance analysis[END_REF]. This test is an efficient way of comparing if two samples can be objectively be consid-ered to have been drawn from the same distribution. The test is non-parametric, and does not assume an underlying Gaussian distribution of the samples. Other reason that makes it practical in this context is the fact that it allows the comparison of statistical samples of different sizes, which is a basic requirement when comparing inlying and outlying samples, the second being always much smaller by definition. The details of the test can be found in Appendix A.

At this stage the available information is: a set of breakpoint events, a set of intermediate parameters over the relevant outputs of CATHARE2 directly linked to the relevant phenomena, a scalar safety criterion and a set of outlying scores associated to the output transients of the numerical simulator.

The results of the comparisons can be found in Appendix B. In this appendix, we show which phases of the transient present quantifiable differences between the inlying and outlying sample, through Tables B.1 to B.9 for significance levels of α = 10%. These differences are visualized via their corresponding boxplots and violin plots from Visualizing the data not only helps to validate the objective conclusions of the KW test, but also help in the interpretation of the results, since the KW test only provides an objective test of the equality of distributions, but not of the reasons behind it or how these differences translate into a specific physical meaning.

We have found in the previous section that the most relevant inputs that explain the outlyingness are all related to the reflood of the core, through heat transfer coefficients, interfacial frictions between the steam and liquid phases, as well as the coolant in the discharge line of the accumulators. These variables intervene in three of the main components that influence the reflood, i.e., the core, the downcomer (which links the core with the ECCS systems and loops, including the one where the break is located) and the accumulators. As a complement to Figure 4.9, it is clear in Figure 4.11 how higher values of θ are related in most cases to more penalizing scenarios, which supports the analysis that is presented below. The link between inputs and outlyingness score θ is complex, in the sense that their relationship is highly non-linear, and depends on more than a hundred parameters (all of the inputs plus the hyperparameters necessary for the FOD computation). It is however possible to analyze graphically the link between the subspace of of influential inputs (those deemed relevant during the TSA step) X influential := X 51 ×X 52 ×X 70 ×X 86 ×X 91 ×X 97 ×, X influential ⊂ X and Θ, as shown in Figure 4.12. The only two input variables that showcase a clear link between the outlyingness score θ are X 86 and X 91 , which are the one related to the downcomer. We see that the outliers are mostly restricted to the subdomain where they present their lower values. Specifically, outliers have a higher chance to occur for X 86 ∈ [0, 5] and X 91 ∈ [0, 2], i.e., when moment transfer between steam and liquid in the downcomer and the heat exchange between the phases are minimized. Knowing that outlying transients are related to more penalizing scenarios, it makes sense that when the heat transfer between the phases is minimized, it will take longer to refill the core. The condensation of the steam present in the downcomer is minimized, and the bottom to top reflood of the core is delayed. It is however more difficult to justify how a lower interfacial friction between the phases could be related to more penalizing scenarios, since the ascending steam would hinder less the injection of water in the downcomer, and subsequently in the core.

A similar analysis may be performed between the inputs and the safety criterion, i.e., the maximum PCT of each transient (as a reminder, it must not surpass the threshold of 1204°C to avoid a severe accidental transient). This link is presented in Figure 4.13.

First of all, we can see that outlying transients present higher values of maximum PCT for their whole range of variation for all the variables in X influential . Again, it is difficult to establish a clear relationship between the inputs and the PCT due to the high dimensional dimension of the statistical problem and the fact that the sensitivity analysis is performed between X and Θ. The clearest trend is shown again for variable X 86 . For the inlying sample, the general trend suggests that the observed influence of X 86 over the reflood is as we expected. Higher friction values between the phases in the downcomer lead to higher maximum PCT since they hinder the injection of cold water into the core. Conversely, the outlying sample showcases a clear opposite trend, which is not consistent with the expected physical influence of the variable. In particular, whether or not they relate to outlying transients, it is clear that most of the outliers presenting the lowest values of X 86 lead to the highest maximum PCT values. A similar conclusion is obtained when looking at variable X 51 , i.e., the multiplicative factor of HTC downstream of the quench front during reflood in the core. This influence is expected, since we observe that lower HTC values lead to higher peaks of temperature due to the reduced heat evacuation in the core. Figure 4.13 also shows how θ and the temperatures are linked. It is clear that the outlyingness score relates to higher average temperatures of the fuel during the transient, and therefore it is linked to more penalizing scenarios.

It is however clear that these relationships are not indisputable and that they are subject to interpretation, since there is a considerable overlap between the influential variables and the outlyingness score, although the trends are clearer for the parameters related to the downcomer.

However, as it was mentioned earlier in the chapter, another output of interest related to safety in this transient is the amount of coolant present in the core and the RPV, as well as the total uncovered height of fuel in the core during the injection. water in the core, the total mass of water in the downcomer and the points which correspond to the respective outlying transients.

The most noticeable difference between these figures and the previous ones is how the separation between inlying and outlying transients is much more apparent, suggesting that the physical parameters that better explain the outliers are more linked to the coolant mass in the core that to the fuel temperature. This comes as an advantage of the methodology, which, by taking into account the whole transients, and not only the safety criteria, is capable of capturing deeper physical insights than scalar outputs. In this case, outliers found in the set of transients of temperature are better explained by the swollen level of coolant in phase V of the IBLOCA transient.

In the case of the swollen level, not only do inlying and outlying observations present a more clear separation, but the trends of the outlying samples are also more clearly displayed. In particular, variable X 70 , i.e., the multiplicative coefficient of axial losses due to the ballooning of the fuel rods seems to present an expected behavior in outlying transients. The trend shows how higher values of head losses largely decrease the average level of water during phase V, hindering the reflood.

In the case of variables X 86 and X 91 , the interpretation of their influence is similar to that of their effect on the PCT. X 91 presents a logical trend in which the increase in thermal transfer between the phases in the downcomer favors in the injection of cold coolant in the core, whereas X 86 clearly correlates in its lower values (X 86 ∈ [0, 4]) to larger average times of uncovery of the core during phase V, which is not consistent with the fact that the ascending steam in the downcomer should hinder less the bottom-up reflood of the core for this set of values.

Finally, these interpretations become even more apparent when analyzing the evolution of mass in the downcomer during the transients (see Figure 4. [START_REF] Bentivoglio | Validation of the CATHARE2 code against experimental data from Brayton-cycle plants[END_REF], where again the opposing trends between the inlying and outlying sample are even more obvious, with the inlying sample showcasing its expected physical behavior, and the outlying one presenting a non-expected, perhaps non-physical one, since its impact does not follow the expected one presented in Table 4.14.

Finding out which phases of the transient are more influential when analyzing the inlying and outlying transients is far from obvious, although a subsample of outliers are clear magnitude ones. However, the methodological analysis of the intervals through the KW test (see tables B.1 to B.10) clearly showcases that the intervals that better characterize the outliers are those between [t 4 , 367]s, i.e., after the first uncovery of the core and not during phases I to IV of the transient. An example of these tables is given in Table 4.15 to illustrate this statement. Table 4.15: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the

h 3 (z s )| t i+1 t i = E[z s ]| t i+1 t i
intermediate parameter applied to the maximum cladding temperature. S: same distributions, D: different distributions. This is however not always the case for all intermediate parameters, in particular in what concerns the water mass in the downcomer, where the statistical evidence of disparity between the inlying and outlying samples is mostly apparent in the early stages of the transient. In particular, this is the case in the interval between the activation of the ECCS and the first uncovery of the core, as shown in Tables B.8 and B.9. This is natural since it is during these stages that void is formed in the downcomer.

The other major difference is found not to be specifically linked to a particular time frame, but to a physical event. This is the case of the existence of a second uncovery of the nuclear core, as shown by Table B.10, or below in Table 4.16.

Finally, these results can be visualized through Figures B.1 to B.10. In particular, the approximate distributions (through violin plots) and boxplots of θ, as well as the existence of a second uncovery of the core during the transient are shown here (see Figure 4.16).

This figure shows how the existence of a second uncovery of the core is mostly an outlying . The accumulators are designed to be able to compensate the loss of coolant at the break during the reflood phase by injecting large amounts of pressurized water into the boiler, and therefore a second uncovery of the nuclear fuel during this phase is not supposed to occur.

More insights on the subject are provided in the following section.

Characterization of the outlying transients

Taking all of these parameters into account, we can characterize the outlying transients by specific physical phenomena and events that occur during the related transients.

Outlying transients correlate with higher temperatures of the nuclear fuel, both on average during the reflood phase and regarding the PCT (see Figure 4.11). This effect is related to smaller quantities of water in the nuclear core during reflood, as well as a lower swollen level of water in the core, and longer uncovery periods of time. We can also see that the outlying transients showcase a non-physical trend when comparing the effect that the interfacial friction between the phases has over the refill dynamic of the core. This is also showcased in Figure 4.16, where it is clear that the simulations presenting a second uncovery of the nuclear core systematically present higher values of the outlying score θ.

Explaining the second uncovery of the nuclear core and its outlying nature is far from obvious. Indeed, this event occurs (in the outlying transients) during the phase V (reflood), and corresponds precisely to the time frame in which the core must be refilled thanks to the coolant injected by the accumulators. In Figure 4.17, we can appreciate the differences between two selected transients, an outlying one and an inlying one. Here we can clearly see how the outlying transient is characterized by a slower blowdown phase (the short stage in which there is a single-phase depressurization of the boiler), in which the emptying dynamic of the core is slower than in the inlying case, followed by a rapid reflood phase after the activation of the accumulators (see Figure 4.17 b). Initially, this could correspond to a nonpenalizing scenario in which there is an efficient reflood phase by the accumulators. However, looking at phase V of the transient (which starts around 100s after the beginning), we can easily appreciate the almost instantaneous loss of liquid mass in the core that entails a second uncovery of the nuclear core. This effect is not physically expected for two main reasons. Firstly, the accumulators continue injecting cold coolant after this outlying event (see for instance Figure 4.5 (f)), since there still exists a reflood phase in which the nuclear fuel in the core is rewetted, so it cannot be theorized that the accumulators have simply stopped injected water. Secondly, it is necessary This instantaneous vaporization of a large amount of water (around 7000 kg), which is much faster than during the blowdown phase, made at low pressure and with a slight spike of pressure (c.f. Figure 4.18) cannot have a physical origin, since there is no additional heat source, the temperature of the fuel is lowering at this stage, and the accumulators are still injecting cold coolant in the RPV. As a summary of these considerations, Figure 4.19 showcases the differences of distributions between the samples in a more visual way. We can appreciate the differences between the samples that have already been mentioned, and confirm that at least one of the main physical events that characterize the outlying transients is the existence of a second uncovery of the core. That is not to say that there exist no inlying transients that present a second uncovery as well, but their probability of occurrence is much lower. In the following section, we shall explain which was the origin of these outlying transients that present a second reflood phase.

Origin of outlying transients

In this application, the outlying event has been shown to be linked to the emptying and refilling dynamic of the core during the reflood phase. It has also been underlined that the origin of the outliers mainly lies in the reflood phase of the transient (phase V). The analysis of the CATHARE2 modeling of the transient shows that the outlying simulations are actually caused by an incorrect activation of the CATHARE2 submodule that manages the reflood phase of the transient.

Reflood modeling

The thermal-hydraulic modeling of the heat transfer during the reflood phase entails the intervention of complex physical phenomena that determine the total energy that is exchanged between the fuel walls and the two-phase fluid and its regime. Before the nuclear core is rewetted, the fuel attains high temperatures and rewetting the surfaces of the fuel rods requires the arrival of large quantities of coolant [START_REF] Kelly | Reflood modelling under oscillatory flow conditions with CATHARE[END_REF]. CATHARE2 is capable of simulating this process [START_REF] Lutsanych | Validation of CATHARE TH-SYS code against experimental reflood tests[END_REF]. The CATHARE2 modeling of the reflood of the core occurs in several steps. Firstly, the core is cooled in gas convection conditions (core completely uncovered), and once the coolant water is injected, a film boiling (FB) transfer regime [START_REF] Tong | Heat-transfer mechanisms in nucleate and film boiling[END_REF] is established. This heat transfer regime, inefficient compared to liquid convection or nucleate boiling, is characterized by the formation of a thin layer of steam between the walls and the coolant, which isolates the rods from the coolant and the thermal exchange is performed through conduction and convection. The heat transfer conditions in these situations is still a subject of extensive research and are not completely understood even today [START_REF] Su | Transient boiling of water under exponentially escalating heat inputs. Part II: Flow boiling[END_REF]. Finally, once the wall's temperature becomes lower than the minimum stable film temperature (T msf ), the liquid rewets the cladding, and the heat transfer increases.

In the case of large IBLOCA accidental transients or Large Break LOCA (LBLOCA) ones, the standard laws of CATHARE2 don't predict accurately the quenching of the core in the bottom-up reflooding phase, which requires the use of a specific submodule of the code in order to compensate this underestimation. This is due to two main factors:

• The axial conduction within the fuel rods is non-negligible and helps the quenching.

During the reflood phase, the cooler segments of the fuel rod can be found in the lower part of the core (they are the first to be reached by the injection of water), and the axial conduction of heat from the hotter zones in the upper zones of the fuel rods to the lower ones favors the evacuation of power and the rewetting temperature is reached earlier. This is not configured by default in the CATHARE2 code and thus requires the use of this additional submodule.

• In the meshes located close to the quenching front, violent vaporization and droplet generation occur and the induced turbulence increases the total heat transfer. Much like in the previous process, this is not taken into account by default.

The impact of the activation the reflood submodule impacts the heat transfer laws through two main modifications:

• A local 2D mesh is superimposed to the considered original 1D mesh that progresses alongside the quench front in order to model the 2D conduction of heat.

• A specific heat flux is added to the heat transfer equation to model the augmented heat transfer thanks to the turbulent flow along the quench front. This term is taken proportional to the axial wall gradient of temperature. It is then of the form f = K T W d Z , where K is a constant, T W represents the local wall temperature, and Z is the vertical axis that defined the axial meshes of the core.

The last term may be the preponderant term in the heat transfer alongside the quench front, inducing an accelerated cooling of the system when compared to the original transfer laws.

The aforementioned reflood submodule can be used in the following conditions:

• There exist vertical axial elements in the modeling. If the modeling of the system is 3D, then the submodule is only defined in a vertical zone.

• The temperature of the component is at least T msf .

• The rewetting is sufficiently slow for the axial conduction of to play a role. In practice, this translates in a high initial temperature during the reflood, and a limited flowrate of water entering the considered element.

• The quenching is progressive.

Causes of outlyingness and correction

The conditions of the use of the submodule limit the range in which it might be used, and translate into specific physical conditions that must be verified at any point in the transient.

For bottom-up reflooding transients, these physical conditions are:

1. Primary pressure. The pressure in the primary must remain below 6bar during the reflooding phase.

2. Liquid mass flux velocity. This condition ensures that the quenching is sufficiently slow for the axial conduction in the mesh to be relevant. The flowrate of the quenching front must remain below 200kg/m 2 /s.

3. The power generated in the cladding must remain below 6W/cm -2 .

If these conditions are met, the submodule is activated, and the quenching front is defined in the mesh in which the wall is dry in one side and wet in the other. The origin of the outlying transients has been found to be an incorrect activation of the submodule due to an incorrect coding of the aforementioned conditions. The main differences introduced between the original modeling of the transient and the corrected one are shown in Table 4.17. Table 4.17: Differences in the activation conditions of the reflood submodule between the original and corrected modeling of the considered IBLOCA transient. The liquid mass flow in the lower mesh of the core is not null

Original modeling

The void fraction in the lower part of the core is > 0.9

An example of how the changes introduced regarding the activation conditions of the CATHARE2 quenching modeling have impacted the outlying outputs is showcased in Figure 4.20.

As it can be seen, the beginning of the transient progresses in the exact same manner for both simulations, but they diverge slightly after the start of the reflood phase (at around 60s). The introduced modifications in the modeling have translated into the disappearance of the second uncovery of the core, the activation of the submodule only when the necessary physical conditions are met (most notably, when there is a quench front to model, and not when the core is fully filled), as well as lower PCT values attained during the transient due to the sudden loss of coolant in the core.

Conclusions

In this chapter we have presented how the developed methodology of analysis can be successfully applied to real industrial use-cases, and constitutes a systematic aid in the comprehension of the progress of nuclear transients. We have described how one of the most widely studied nuclear transients, an Intermediate Break Loss of Coolant Accident can be modeled through CATHARE2, and the main intervening physical phenomena of interest that affect nuclear safety beyond the safety margins for this transient.

Several points regarding the contributions of the study must be highlighted:

• The used modeling of the IBLOCA transient represents a real use-case used by EDF, but it was preliminary and did not constitute a basis for the development of safety reports up until after the identified problems with the modeling were corrected by the engineers. Having said that, the whole research work presented in this study was performed with absolutely no prior knowledge about the validity of the modeling. We have proven how the presented methodology does not require any prior information about the analyzed transient and how it was capable of highlighting inconsistencies in the simulations.

• The conclusions that have been extracted could not have only been obtained through the close analysis of the safety criterion. Analyzing the safety criterion is the primary way of evaluating the respect of the safety margins in accidental nuclear transients. However, the simulator CATHARE2 provides a much larger and richer amount of physical information that can be exploited and used in order to improve the knowledge of the analyzed transient.

• The outliers have been linked to both penalizing scenarios (in the sense of the safety criterion, the PCT in this case), and non-physical events in the set of simulations.

Recalling the definitions provided in Chapter 2, the former is related to the outliers understood as extreme events of an underlying stochastic process, whereas the second is related to the more strict definition, as realizations of a different underlying process.

In real applications such as this one, both notions cannot be separated since the whole set of simulations is produced by the same numerical model. Nonetheless, this work showcases how both notions can be identified. In this chapter, we shall make use of the methodologies presented in previous chapters to analyze Pressurized Thermal Shock (PTS) transients. PTS studies aim to evaluate the risk of failure of some structures the primary circuit due to their sudden cooling by the safety injection water jet injected in the reactor pressure vessel. Although they are studied here for the same kind of initiating transient studied in 4, i.e., Loss of Coolant Accidents (LOCA), PTS events considerably differ from those referred to as IBLOCA in Chapter 4, both regarding the physical phenomena and timeframes at stake. As a consequence, they involve different safety criteria and modeling of the transient, leading to a specific engineering approach different from the one implicating IBLOCA transients. As such, PTS safety assessments offer a complementary illustration of the potential usefulness of the developed methods in this Ph.D.

The chapter is divided as follows: The first section is consecrated to the description of the origin of the transient, the main physical phenomena that impact the progression (and the existence) of the transient, and finally the modeling by CATHARE2. Section 5.2 presents the application of the analysis methodology, whereas Section 5.3 relates the found outliers to penalizing scenarios in relation to the safety margins presented in Section 5.1. Finally, the main conclusions are presented in Section 5.4.

Throughout this chapter, it is assumed that the reader is already familiar with the basic components of a PWR NPP, and therefore the main components of the installation (such as the steam generators or the downcomer of the reactor) are not explained once again. Any new element that had not been introduced before will be thoroughly described.

Presentation of the use-case

In this section the most important elements regarding the physics of the PTS transients are presented, including the main causes of the transient, how the nuclear installation manages the transients, and how it is modeled through CATHARE2.

Industrial issue

Nature of the risk in case of PTS

The PTS is a widely researched nuclear transient [START_REF] Mukin | Pressurized Thermal Shock (PTS) Transient Scenarios Screening Analysis With TRACE[END_REF][START_REF] Ruan | Pressurized thermal shock analysis of a reactor pressure vessel for optimizing the maintenance strategy: Effect of asymmetric reactor cooling[END_REF][START_REF] Trampus | Pressurized thermal shock analysis of the reactor pressure vessel[END_REF] since it affects one of the most important components of a NPP, the reactor pressure vessel (RPV). Apart from containing the nuclear fuel, thus being one of the main confinement barriers for radioactive material, it represents the main limiting factor in the lifespan of a nuclear power plant. This is due to the fact that it is the only element that is impossible or economically infeasible to replace (IAEA, 2010). Therefore, it is subject to numerous studies aiming to understand its aging process better and preserve its mechanical properties. The analysis of the PTS is hence an essential part of the licensing of nuclear power plants, especially if they are to be operated beyond their design life limits.

The risk, in the case of a PTS event, comes from the fact that it corresponds to a situation in which the integrity of the RPV might not be guaranteed. It is caused by the existence of three specific physical conditions (shown in yellow in Figure 5.1). Regarding the thermal-hydraulic (TH) parameters, this accident is characterized by a rapid overcooling of the downcomer wall at high primary loop pressure. This situation may happen in several specific scenarios, including LOCAs, which is studied in the following. These TH conditions induce intense mechanical solicitations in the primary loop structures, among which the RPV is the critical one as it suffers an exposure to the radiation emitted by the nuclear core during the whole lifespan of the NPP. This exposure leads to a shift of the brittle-ductile transition temperature of the RPV steel and a subsequent embrittlement which reduces the component's capacity to withstand a thermal shock. Taking into consideration the potential presence in the RPV structure of undetected flaws generated at the component's manufacturing stage, a PTS event could lead to the initiation of a crack at a flaw tip if the mechanical solicitation comes to exceed the material's resistance. As part of the overall licensing process of PWR, PTS studies aim to justify the innocuity of flaws in the RPV wall by proving the existence of sufficient safety margins as regards the risk of crack initiation.

Objectives of PTS studies

When conducting safety studies, the role of the operator of nuclear facilities is not only to exhibit to authorities the numbers and calculation results justifying how these facilities comply with regulatory requirements. They must also show their understanding of the problem at study to prove that they have sufficient knowledge to manage and prevent risks with the highest possible standards in a continuous improvement process. This implies a fine comprehension of the behavior of nuclear systems, both in operation and for potential accidental situations. In the case of PTS studies, some assumptions are usually considered penalizing and thus commonly used in safety assessments. For example, the maximum possible flow rate of ECCS is often supposed to be part of a worst case PTS scenario as it maximizes the quantity of cold water injected. However, this simple reasoning does not take into account potential complex phenomena, including interaction with other parameters implicated in the transient dynamic, such as the effect of the injected flow rate on the depressurization pace during the transient. It is hence necessary, in order to support the line of arguments on which the safety demonstration is based, to support the influence of these assumptions on some key parameters of the scenario. This is even more essential when transient simulations use refined thermal-hydraulic modelings, allowing to represent many physical effects and potentially interacting ones.

Statistical methods allow to explore a whole domain of values for the physical thermalhydraulic parameters considered uncertain and observe the influence of these parameters on the transients without postulating any prior penalizing values. As it will be shown, the outlier detection algorithm presented in Chapter 2 provides valuable insights to determine the actual effect of uncertain inputs of the model on the seriousness of the scenario and confirm the predominance of some variables over others.

PTS risk assessment methodology

The main elements leading to a PTS scenario can be seen on Figure 5.1, where the causes and the initial and final consequences of the accident are marked. These different elements are detailed in this section as well as the way they are modeled to perform PTS studies.

Transient leading to PTS events

The initiating events that may lead to a PTS can be classified into two main groups depending on the frequency of the events. The first group is includes scenarios called anticipated transients, e.g., those whose occurrence can be expected during the life in operation of the NPP (namely, with a frequency of more than 10 -2 per reactor year), and which must not represent an actual danger for the safety of the NPP. These transients do not challenge the integrity of the RPV. Transients of the second type are the so-called postulated transients. These transients are not expected to happen during the whole lifespan of the installation (frequency below 10 -2 per reactor year), but they are considered in the design, maintenance and operation of the NPP, or in the subsequent improvements in the safety of the nuclear power plant thanks to safety reassessment studies. These transients, that may generate a PTS and that are to be examined in the licensing process, are the following (IAEA, 2006):

• Loss of Coolant Accidents (LOCA). As it was shown in the previous chapter, these transients cause an activation of the ECCS systems, which are designed to inject large amounts of cold water in the boiler. Transients for different sizes of breaks and locations in the primary circuit can cause the walls of the RPV to overcool and initiate a PTS.

In particular, scenarios that lead to a flow stagnation of the injected water (such as in the case of small breaks) can be penalizing due to the large plumes of cold coolant that originate in the downcomer.

• Stuck open valves in the boiler. There exist several valves in the primary circuit of a NPP. Specifically, those existing in the pressurizer may be particularly sensitive due to the steam-water two-phase equilibrium that exists in the component, which have been known to be able to cause opening and closing cycles of their relief valves as a way of regulating the primary pressure. If one of those valves is stuck open at some point, it will cause a pressurized overcooling of the system.

• Primary to secondary leakage accidents . These transients refer to those in which a number of tubes in the Steam Generators (SG) rupture, causing a rapid overcooling of the primary and a depressurization. In this case, there exists a risk of repressurization of the primary if the management of the transient requires the isolation of the damaged SG.

• Large secondary leaks. As with LOCA transients that affect the piping in the primary system, losses of coolant in the secondary can also represent a risk to the stability of pressure and temperature of the secondary, reducing the pressure in the secondary side of the SG and, consequently, the saturation temperature of the water-steam equilibrium. This can also cause an overcooling of the primary, since during the transient the total heat transfer between both systems will increase. A common cause for this transient can be the existence of a stuck-open valve in the secondary.

• Actuation of high pressure injection systems. This is a particular transient that can only arrive in nuclear power plants whose ECCS presents high pressure pumps that can inject cold water into the boiler at a higher pressure than the normal operation pressure of the system. Older NPP can possess this kind of pumps and, if they activate inadvertently, they can entail the injection of plumes of cold water in the walls of the downcomer during normal operation, also increasing the primary pressure in the process and the risk of a PTS.

• Accidents resulting in a cooling of the RPV from outside. Although unlikely, there exist some possible origins for a reactor cavity flooding, causing an overcooling of the RPV. For instance, through the activation of the containment spray system.

As it is one of the most critical scenarios regarding the integrity of the primary loop components, the LOCA transient is often the one studied the most in-depth. For this reason, we will focus on this particular scenario for the study of the PTS.

Mechanical loading

As already mentioned, a hypothetical PTS transient implies a risk for the irradiated areas of the RPV because of the potential presence of manufacturing defects. Several factors contribute to the formation of flaws in the vessel's steel, including the alloying elements content and values of physical parameters at the successive steps of the manufacturing process (casting, forging, cladding laying ...). In practice, calculations are performed for a semi-elliptical underclad flaw, which is a penalizing scenario [START_REF] Leilei | Fracture mechanics analysis for reactor pressure vessel under pressurized thermal shock[END_REF]. This configuration is shown in Figure 5.2, where a and c represent the geometric parameters of the preexisting crack.

In case of a PTS event, the sudden cooling of the vessel by the ECCS generates a important temperature gradient in the radial direction which results in a transitory increase of tensile stress in the RPV wall. To provide a tentative visual representation of this thermal-mechanical phenomenon, one can imagine the downcomer of the RPV as two concentric cylinders, such that when the inner walls cool down due to the effect of the injected cold water by the ECCS, it contracts and pulls the outer wall, whereas the outer wall does the opposite, as illustrated in Figure 5.3. The induced stress tends to fracture the steel and open a crack at the flaw tip, as represented in Figure 5.4. The figure showcases the mode I failure in fracture mechanics caused by tensile forces only as it is the relevant one for the kind of flaw considered in this chapter. For the sake of completeness, other failure modes include Mode II, caused by shear stress parallel to the plane of the crack and perpendicular to the crack front, and Mode III, where the shear stress is parallel to the front.

The exact physical modeling of the phenomenon is inferred through the fracture mechanics theory (yun Fu et al., 2019), which allows to calculate the magnitude of the mechanical loading at the fault's location. The relevant quantity to represent this solicitation of the material is called stress intensity factor, noted K I [START_REF] Irwin | Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate[END_REF]. The mathematical formulation of the stress intensity factor is not unique, and may be written in different forms depending on the modeling of the stress field surrounding the crack [START_REF] Janssen | Fracture Mechanics -2nd Edition[END_REF]. A typical approach [START_REF] Jhung | Structural integrity assessment of reactor pressure vessels during pressurized thermal shock[END_REF] is to consider the solution of the J-integral (a method of calculation of the energy release rate in a crak, see [START_REF] Cherepanov | Crack propagation in continuous media[END_REF] for reference) for the failure mode I:

K I = JE 1 -ν 2 (5.1)
where J represents the value of the integral, E is the Young's modulus of the material, and ν represents its Poisson ratio.

Resistance of the RPV material

To each thermal-hydraulic transient in the primary loop corresponds a K I transient (an evolution of the K I ) in the vessel at the flaw tip, which also depends on the flaw dimensions and on the mechanical characteristics of the component's material. A RPV is mainly composed of ferritic iron that guarantees the necessary ductility in order to withstand the demanding conditions of the boiler (around 320 this solicitation with the material resistance, the innocuity of the flaw being proved whenever the calculated loading remains below the resistance of the component's steel. This resistance is given by the fracture toughness of the material, noted K IC , which is defined as the critical value of stress intensity factor above which a fracture may occur. It can be experimentally established by applying a mechanical loading to a material sample with an increasing strength until a crack initiates at the notch tip. As an intrinsically aleatory phenomenon, the fracture may occur at different strength levels. However, the material's temperature during the experiments strongly impacts the observed K IC value, so that K IC can be modeled by an increasing function of T . For french facilities, the calculation methodology is based on K IC curves provided by the ZG annex of the RCC-M code, which writes 

Embrittlement of the RPV material

Several degradation mechanisms can be postulated for the primary circuit structures due to the highly demanding physical conditions above mentioned, such as thermal aging or corrosion. However, as regards the specific risk arising from a potential PTS scenario, the predominant degradation effect comes from the high energy neutron (> 1 MeV) flux generated by the core. This exposure of the parts of the RPV surrounding the core causes several irradiation effects resulting in a global degradation of the steel's resistance to fracture.

As an example, some of the neutrons emitted by the core are absorbed by the iron crystal lattice of the RPV and transfer their kinetic energy to the atoms of the RPV steel. The absorption of a neutron may cause the displacement of an atom in the lattice (neutronic scattering), which will embed itself somewhere else in the crystal, normally in an interstitial site, creating a vacancy in the material where this atom used to be located. In practice, the kinetic energy of the initial neutron is sufficiently large to provoke a cascade of displacement, meaning that the initial atom displaced will likely displace other ones which will in turn displace more atoms and so on until a complete discharge of the kinetic energy. This embrittlement results in a diminution of the fracture toughness at a given temperature of the material, which is reflected by a shift of the critical toughness curve in the transition domain. This temperature shift of the reference temperature to characterize the brittle-to-ductile transition hence summarizes the effect of irradiation as regards the component's ability to withstand a mechanical loading. For practical reasons, this temperature shift is measured through Charpy impact tests using V-notched specimens.

The Charpy V-notch (CVN) test is a standardized industrial procedure [START_REF] Saba | An overview of mechanical and physical testing of composite materials[END_REF], commonly used because of its easiness to implement. The test measures the total energy needed to fracture a material (also called resilience) in standardized conditions. Charpy tests are done at different temperatures, showing a transition zone between brittle (low resilience) and ductile (higher resilience) behaviors. A reference energy level is then chosen to establish the temperature shift between unirradiated and irradiated materials. This procedure is illustrated in Figure 5.5, on which one can see an estimation of the results of a set of CVN experiments performed by the Oak Ridge National Laboratory (ORNL). 

Margins and safety criteria

The effect of the embrittlement phenomenon described in the previous section can be visualized on the fracture toughness (K IC ) curve in the (T,K) domain, where T is the temperature of the steel (in • C) and K the stress intensity factor (in MPa √ m). On Figure 5.6, one can see the RCC-M curve for K IC (see formula at the end of section 5.1.2.5) in this domain, as well as the effect of the embrittlement induced by the material irradiation. This irradiation causes a shift of the reference temperature, and hence of the K IC curve, leading to a diminished resistance to mechanical solicitations.

As already exposed, the possibility of a crack initiation at the tip of the postulated flaw corresponds to transients for which the loading (stress intensity factor K I (t)) comes to exceed the resistance of the RPV material (K IC ). In the same (T,K) space, we can represent the path followed by the steel during the transient (see Figure 5.7). It starts at a high temperature, before the thermal shock as such and the subsequent increase in K I , and ends with the stabilization of the RPV structure temperature at a constant and low value. Throughout the transient and the progressive cooling of the steel, the stress intensity factor strongly increases until reaching one or several peaks, and might cross the K IC curve at some point.

The risk criterion which is most commonly used in PTS studies to summarize the severity of a transient, which is called margin factor (MF), is the minimal value of the ratio K IC (t)/K I (t) over the time frame of the simulation. The risk of a crack initiation is proved to be null whenever the MF value remains above 1, the margin being the smallest gap between K IC and K I during the transient, or more rarely the gap between the MF and the critical threshold 1.

An alternative criterion to the MF, which consists in comparing the loading to the resis- tance at each time step, is the temperature margin (TM), which is defined as the minimal value of the T F T (t) -T C (t) difference, where T F T is the temperature of the steel at the flaw tip and T C is the (virtual) critical temperature for which K IC would equal the K I (t) value at time t. The interest for this criterion comes from that it can be easily converted into a remaining operating time, as the aging of the RPV material, which is the main limiting factor of the reactor's lifespan, is directly linked to the reference temperature shift. Now that the fundamentals of the physical origin of the PTS risk have been established, the following section will describe the transient itself.

Simulation of PTS transients

Thermal-hydraulic phenomenology

As it is natural, the main phases in which the transient may be divided largely depend on the initiating event that is considered among those presented in the previous section. In the present study, we consider a LOCA transient that largely differs from the one presented in Chapter 4. The interest of doing this is twofold. Firstly, there is an intrinsic interest in testing the methodology against a new application case whose physical phenomena are noticeably different, and second, in this case the safety criterion may not be directly calculated from the Some comments can be made regarding these characteristics. Firstly, note that the 900MWe nuclear reactor corresponds to the oldest ones currently existing in the French nuclear fleet, and they are the ones which have been exposed to a higher neutron fluency during their years of operation. More recent systems (such as 1300MWe and 1450MWe reactors), have been exposed to the irradiation for a shorter period of time, and also have implemented systems that protect the RPV from neutron fluence in advance during their lifespan. The break size of 3 inches classifies this transient as an small break LOCA (SBLOCA), unlike the one presented in Chapter 4. Therefore, we shall observe important differences in the progress of the transient, most notably in the depressurization rate of the boiler.

The other conditions (maximized residual power and break in the hot leg) are chosen since, in other exploratory studies (not referenced here due to confidentiality issues), they have shown to lead to the most penalizing scenarios. We will see how, conversely to the use-case of the previous chapter, a number of simulations do not respect the safety criterion in this chosen transient.

The transient may be divided into three main parts, showcased in Table 5.2. 

Phase Description

A

This phase covers the time frame between the opening of the break in the hot leg of one of the primary loops and the automatic shutdown of the reactor.

B

It corresponds to the period between the automatic shutdown of the reactor and the intervention of the operators of the NPP.

C

It comprises the instants after the intervention of the operators up until the reactor is led to a safe state.

The first main difference between this application case and the one presented in Chapter 4 is the fact that the automatic shutdown of the reactor is not as instantaneous after the opening of the break in the piping. The automatic shutdown occurs on the low pressure signal in the primary, which is reached close to 23 seconds after the beginning of the transient. The other main difference is the fact that the operators of the NPP can intervene in the progress of the transient, which was not possible in the previous case, where it had to be dealt with in the short term through the automatic mechanisms and systems of the plant. Operators are considered to begin their intervention so as to lead the reactor to a safe state exactly 20 minutes after the shutdown signal, and the whole phase C is influenced by their actions.

CATHARE modeling

The CATHARE modeling of the nuclear power plant used to simulate the LOCA that originates the PTS risk is similar to the one presented in Chapter 4, albeit one notable difference.

The modeling of the both the primary and secondary side of the NPP are showcased in Figures 5.8 and 5.9.

The CATHARE2 modeling of the LOCA transient that originates the PTS is a somewhat simplified version of the one presented in the previous chapter. In essence, all systems present in both the primary and secondary circuits remain the same. The reader can find a detailed explanation in Section 4.1.2 of Chapter 4. The main difference with respect to the aforementioned modeling is the treatment that is made of the nuclear core. In this application, the severity of the transient is characterized by the thermalhydraulic parameters in the downcomer, conversely to the previous use-case, in which the phenomena that took place in the nuclear core were the ones that established the boundaries of the safety margins through the peak cladding temperature of the fuel.

Here the nuclear core is simply modeled through a 1D axial element, such that possible 2D or 3D phenomena occurring in the core are not represented. This simplified version of the core still allows to simulate the general thermalhydraulic parameters and the thermal exchange between the fuel and the coolant thanks to corresponding CATHARE2 modules.

The modeling of the downcomer is divided into two parts. Firstly, there exists a 0D volume element in the higher part of the downcomer modeling the annular collector in which the mixture of the coolant coming from the three loops is made. In particular, it is connected to the cold legs of the circuit. The junction between the loop in which the ECCS inject the cold water in case of accident is assumed to be the penalizing place of the circuit regarding the PTS, which is the reason why the mechanical calculation of margins is generally performed here, thus assuming that the preexisting flaw in the material is located precisely at this point.

The annular collector is connected to the annular space, which is modeled in the same way as the downcomer presented in the previous chapter. This cylindrical element receives the mixed coolant from the annular collector and links to the lower plenum of the RPV, from which the coolant ascends to the nuclear fuel. The evaluation of the risk associated with a PTS transient involves two different calculation steps each one using a specific software. The first step consists in simulating the thermalhydraulics of the reactor during the accident. This is done via the CATHARE2 modeling presented in the previous section, which implements a 3 inch break LOCA. At the end of the transient simulation, the CATHARE2 code provides the values of all the necessary thermalhydraulic quantities for the ulterior computation of the safety criteria, namely the primary pressure, the water mass flow in the downcomer and the fluid temperature in the downcomer. Safety criteria are calculated through a thermal-mechanical model allowing to solve the heat equation within the RPV wall and the strain and stress fields, depending on the thermalhydraulic conditions imposed to the structure during the transient as well as the characteristics of the flaw and the parameters of the RPV material. This part of the workflow is performed thanks to the CUVE1D code which also implements a calculation of the fracture toughness, to finally deliver the margin factor (MF) values.

Making use of the notations of previous chapters, the mathematical formulation of the 

X ⊂ R d → F * ⊂ F X → Z = M 1 (X) (5.2) 
F * ⊂ F → Y ⊂ R q Z → Y = M 2 (Z) (5.3)
where X = d j=1 X j represents the space of input parameters of the numerical simulator M 1 , i.e., CATHARE2, and the elements Z ∈ F correspond to the multivariate functional output belonging to the Hilbert space F that serves as input to the second simulator. This second simulator, i.e., CUVE1D and noted M 2 is fed the multivariate functional sample Z and provides the corresponding safety criteria introduced in Section 5.1.2.7.

Specifically, for this exploratory study with a simplified CATHARE2 modeling of the transient, we consider d = 6 input parameters for M 1 (detailed the following section), 3 thermalhydraulic functional outputs of the simulator, and q = 2 outputs indicators of the transient severity. The overall calculation workflow is illustrated in Figure 5.10.

Uncertain inputs

The present modeling of the transient corresponds to a preliminary study that searches to analyze the effect of the safety injection systems on the severity of the thermal shock. The uncertain parameters considered are hence those concerning the characteristics of safety in-jection pumps, the temperature of the injection water and the characteristics of accumulators.

The ECCS comprises two different safety injection systems. The first one is a bench of two high pressure pumps which is automatically started as soon as the reactor shutdown signal is triggered. High pressure pumps allow injecting water in the primary loop from the early instants of the LOCA transients when the primary pressure falls rapidly but is still close to its nominal value ( 155 bar). They deliver a rather constant flow rate -although increasing with the pressure decrease -until reaching the conditions allowing to switch from high pressure to low pressure injection means. Low pressure pumps present a rather different behavior as the flow rate they deliver strongly depends the pressure at the spouting point, such that flow rate increases steadily with the decrease in pressure.

The injection yield of the pumps, as a function of the output pressure, is inferred from design requirements of the ECCS and periodic tests realized on the pumps. However, the exact characteristics of both high pressure and low pressure injection systems cannot be accurately known and the flow rate of the pumps can be considered as one of the uncertain parameters of the scenario. To account for this uncertainty, for each injection configuration defined in operating the rules, min and max laws are set as lower and upper bounds for the ECCS injection flow rate (see Figure 5.11). Coefficients ranging from 0 to 1 are introduced, allowing the exploration of all intermediate laws between the envelope min and max ones. To account for the existence of two different injection systems (high and low pressure) two independent coefficients are used for the laws corresponding to each of the two systems. For each combination of values for these two coefficients (α HP and α LP ), the corresponding laws are merged by a specific routine so as to obtain a physically realistic characteristic of the overall ECCS.

The injected water is taped from a water tank located outside the main nuclear building, which is connected to other hydraulic systems of the reactor. Consequently, its temperature is subject to constant variations depending on meteorological and operating conditions, within bounds defined by the design and licensing requirements of the reactor.

During the transient, the compensation of water leakage due to the break on the primary circuit is supported by the discharge of boroned water by accumulators. Accumulators are pressurized reservoirs from which this additional amount of water is pushed in the primary loop as soon as the primary pressure falls below the initial conditioning pressure in the accumulators. Both the initial enthalpy of the water contained by the accumulators and the pressure within are uncertain quantities. These accumulators are connected to the safety injection pipe through a discharge line in which the water is also subject to a pressure loss, which is itself uncertain. This last uncertainty is accounted for in the considered CATHARE2 modeling through a friction coefficient in the discharge line of the accumulators.

The six uncertain input variables considered in the exploratory study are summarized in Table 5.3. 

Application of the methodology

In this section we shall make use of the developed methodologies presented in the document to the use-case presented in this chapter. 

Preliminary considerations

As with the previous chapter, some preliminary elements must be considered in the analysis. First of all, the functional outputs of interest in this case, and the ones more closely linked to the safety criteria (the margins), are the liquid temperature in the annular collector (in the downcomer), the water mass flow, and the primary pressure. These are the outputs that are taken as inputs of the code CUVE1D and which more closely impact the nature of the PTS.

Other essential elements in the analysis are selecting the breakpoint events in which we shall divide the transient. We can recall the phases of the initiating LOCA presented in Section 5.1.3.8, considering the reactor shutdown, as well as the starting instant of operator's actions. These events delimit the basic frontiers of the transient in engineering studies, but the phases present very different intervening physical phenomena. In order to retrieve more homogeneous time sub-domains regarding the thermalhydraulic parameters of interest (liquid temperature, mass flow and pressure), we shall add two breakpoint events to the analysis. They are the loss of natural circulation (LNC), which was introduced in Section 4.1.1.2 of Chapter 4, and the possible existence of a late PTS, which may occur in the late stages of the transient through a late overcooling while the boiler is still pressurized.

The breakpoint events are summarized in Table 5.4.

As before, we denote T ⊂ R the physical time interval in which the simulations take place, that is T := [0, T ]s, T = 3700 (s). The set of breakpoint events writes τ b ∈ T , τ b = {t 1 , t 2 , t 3 , t 4 }. They are illustrated in Figure 5.12. Finally, similarly to the previous chapter, we consider the intermediate variables : 

h 1 (z s )| t i+1 t i = max(z s )| t i+1 t i , h 2 (z s )| t i+1 t i = min(z s )| t i t i+1 , h 3 (z s )| t i+1 t i = E[z s ]| t i+1 t i .

Design of experiments and functional outlier detection

In this exploratory analysis, we aim at optimally exploring the space of input variables, X , in order to better capture the space of possible functional outputs provided by CATHARE2. This is done through a LHS design (see section 3.3.2 of Chapter 3). The d = 6 input variables are sampled and considered to be independent in order to generate the design of experiments, E = {X i,1 , ..., X i,d } N i=1 , for N = 1000, as in the analyzed use-case of Chapter 4. We use the L 2 discrepancy (Damblin et al., 2013) as space-filling criterion, which allows to quantify how a given distribution associated to a set of points deviates from a perfectly uniform one. The centered L 2 discrepancy writes:

C 2 (E) = 13 12 2 - 2 N N i=1 d k=1 1 + 1 2 |X (i) k -0.5| - 1 2 |X (i) k -0.5| 2 + 1 N 2 N i,j=1 d k=1 1 + 1 2 |X (i) k -0.5| + 1 2 |X (j) k -0.5| - 1 2 |X (i) k -X (j) k | (5.4)
which must be minimized in order to obtain the desired optimal design.

The quality of the exploration of the space can be seen through the pairwise 2D projections of E, which are illustrated in Figure 5.13. As we can see, there exists a good coverage of the input space without any appreciable spurious patterns in the design.

The application of the FOD methodology has been restricted to the set of outputs of CATHARE2. Since the temperature of the injected water is known to be the most influential with regard to the severity of the PTS transient, the methodology is applied to to the set of liquid temperature in the downcomer as outputs of the design of experiments, E. This yields the set of curves presented in Figure 5.14. We also obtain the set of estimators of θ ∈ Θ, Θ = [0, 1], represented as {θ i } N i=1 .

It can be appreciated that, much more than in the IBLOCA case of Chapter 4, this application represents a true challenge of functional data interpretation and visualization. The preliminary inspection of Figure 5.14 (top) shows a set of curves difficult to analyze and interpret by itself. The detection of any potential outliers is impossible without dedicated tools for two reasons. Firstly, the curves are numerous and close to each other, restricting the possible outliers to purely shape ones, and preventing their detection through visual inspection. Secondly, the absence of any magnitude outliers does not allow the selection of a subsample amongst the curves that could be analyzed independently by experts on the transient that could provide insights that explains the outlyingness.

It will be shown how the transient may be analyzed and linked to the safety criteria through the use of the outlyingness score θ. The histogram of values of θ is shown in Figure 5.15. We can appreciate how it is skewed to the right, due to the calculation procedure, which subtracts the more outlying curves from the sample and will assign them a higher outlyingness value since they are not taken into account in the modeling of the underlying distribution.

Sensitivity Analysis

The TSA analysis (TSA, Marrel and Chabridon (2021) of the input parameters over the considered scalar output θ ∈ Θ, Θ = [0, 1] is performed through the permutation tests of the HSIC measures [START_REF] Meynaoui | New developments around dependence measures for sensitivity analysis : application to severe accident studies for generation IV reactors[END_REF] in the critical domain {S ⊂ Θ|θ > 0.9}.

The influential variables are presented in Table 5.5.

There is a clear distinction here. We see that the variables related to the injection of cold water by the accumulators do not present a relevant influence over the outlyingness of the transient. This is especially relevant if we consider that they were precisely the parameters related to this systems that lead to more outlying transients in the previous IBLOCA case. In fact, the variable X 1 had been fixed in the previous modeling of the transient to a penalizing value, since it was already known that it had an influence over the PCT (safety criterion).

Analysis of the Pressurized Thermal Shock

In this case, the three parameters related to the ECCS system that inject cold water before the primary pressure falls below the threshold of the accumulators are the ones that lead to more outlying transients. All these variables, X 4 , X 5 & X 6 . define the cooling dynamic of the primary system (the boiler) during the majority of the transient, where X 4 describes the temperature of the tank of water that feed the pumps of high and low pressure ECCS. Naturally, this largely influence the temperature of the plumes of water that arrive to the downcomer before they are mixed in the collector and descend to the core. Variables X 5 and X 6 determine the regime of injection of the ECCS pumps, in that they fix the pressure and volumetric flow of both trains of pumps.

Finally, as showcased in Figure 5.16, it can be seen that there exists a clear separation between the inlying and outlying samples when considering their associated safety margins. There is a very clear correlation between the penalizing scenarios (those whose margin falls below 1) and the outlying transients. There also exists a minor number of simulations whose outlying nature is linked to particularly safe transients. This is due to the generality of the detection methodology, which is not designed to specifically identify penalizing situations, but outlying ones. Nonetheless, the link between outliers and penalized configurations is clear. 

Comparison of samples

The results of the comparisons between inlying and outlying samples for the relevant functional outputs of CATHARE2 can be found in Appendix C.

The first thing to notice is that the inlying and outlying samples for each physical parameter can be considered to present different distributions in each time interval considered after the reactor trip. This proves that the bulk of outlying thermalhydraulic transients (the initiating SBLOCA ones) are actually outlying in the whole time domain. This is coherent considering that the variables that have been shown to present the highest influence of all are those related to the activation of the ECCS (X 4 , X 5 and X 6 ). This occurs approximately 30 seconds after the break in the primary opens in the hot leg, so their influence is felt throughout the whole transient. Another important remark concerning the outlying samples is their degree of outlyingness. In the KW test, the value of the test statistic (or, analogously its corresponding p-value), is representative of how much the samples differ, and therefore p-values that differ in several orders of magnitude imply that the compared samples are more different in certain cases. This question arises since most of the p-values in the compared samples are present values below 10 -7 , and the differences may be judged to not be significant. However, looking for instance at Table C.3, we see that although the mean temperature of the outlying transients is significantly different from the inlying ones throughout the whole transient, it is in the late stages of the transient (most notably, after the eventual late PTS arrives), that these temperatures are shown to diverge the most. This is confirmed looking at the corresponding violin plots in Figure C.2, where it is clearly shown how around the 2400s of transient (approximate instant of the late PTS), the temperatures between the samples largely diverge, whereas the differences in [t 1 , t 4 ], although existing, are much less obvious. This was simply an example of how even though the samples are quantitatively judged to differ during the whole transient for all the functional outputs and the intermediate parameters, they still showcase it in different degrees, which is important when analyzing the origin of the outlying samples.

For this application, we can quantitatively appreciate that outlying samples are characterized by lower minimum temperatures, especially in the range of time around the occurrence of the PTS (Figure C.1). This is penalizing from the overcooling point of view, but this factor also depends on the overcooling rates, not only the absolute values of temperature. Conversely, outlying transient showcase higher maximum and mean temperatures (Figure C.2) in the interval between the start of the operators' actions and the possible PTS. This translates to a higher risk of PTS due to the more rapid cooling rate necessary to attain these temperatures.

Regarding the primary pressure, higher values during the transient, and especially in the second half of the thermalhydraulic transient, when the PTS is more likely due to the overall temperature of the water in the primary and the plumes of cold water, are penalizing when considering the PTS. Higher primary pressures favor higher tension stresses over the RPV wall (see Figure 5.3), and Figure C.4 shows how these pressures are particularly higher in the outlying sample precisely in the time frame of the PTS.

Finally, we observe that outliers are related to higher rates of water flow in the collector (Figures C. 5 and C.6). This element relates to higher convection coefficient between the coolant and the wall of the RPV, which can be penalizing if it occurs at the more sensitive point in the transient regarding the PTS (already low temperatures and sufficient pressure).

All in all, the results seem to indicate that the outlying samples present on average more penalizing physical values regarding the PTS, and that the most influential variables are those concerning the injection temperature of the water of the ECCS, as well as the flow regimes imposed by the high and low pressure pumps of the same system.

As a visual aid to help understand the influence of the variables over the analyzed functional outputs, we showcase in Figure 5.17 the relationship between the input variables of the CATHARE2 modeling of the transient and the corresponding outputs.

On this figure the set of curves for the fluid temperature in the downcomer is plotted using a colormap related to input values. Each curve's color becomes closer to the red when the input value is closer to the postulated critical value. On the one hand, we can hardly observe any trend on this figure for the three upper graphs dedicated the three uncertain characteristics of accumulators (mass enthalpy of water within accumulators, X 1 ; initial pressure within accumulators, X 2 and friction coefficient in the discharge line, X 3 ). This suggests a weak influence of the accumulators on the phenomena at stake during the PTS. On the other hand, the three variables linked to the functioning of ECCS show some quite clear trends. First of all the injected water temperature seems to have a strong influence on the temperature of the primary fluid in the vessel as the lowest curves of the bundle are colored in red, e.g. are associated with the lowest values for the temperature in the water tank. Then, it can be seen that the highest values for the flow rate delivered by high pressure pumps, which are supposed to be penalizing regarding the PTS, lead to low temperatures of the fluid in the vessel up to the beginning of the late PTS phase, with little influence afterwards. The opposite can be observed for the influence of the flow rate coefficient of low pressure pumps, namely a null influence until approximately 2400 seconds of simulated time and a major influence after this Figure 5.17: Graphical representation of the influence of the input parameters over the injected water in the downcomer through a colormap. DL: discharge line of the accumulators; HP: high pressure; LP: low pressure. The curves are showcased greener for the values of each input which would be postulated to lead to less penalizing scenarios, and the red ones correspond to values of the inputs which would be supposed to lead to more penalizing transients.

instant, with all the lowest curves for the fluid temperature colored in red (highest flow rate) on the graph at the bottom right. This is logical as the high pressure trains are in use from the early moments of the transient until reaching the pressure value that allows to switch over to the low pressure trains which allow a complete water refill of the primary circuit but in turn causes the late PTS event.

Characterization of outlyingness

Here, we will discuss the implications of the characteristics of the outlying transients and how they relate to specific physical phenomena and the severity of PTS transients.

On the Figure 5.17 in the previous section, we saw the curve bundle for the fluid temperature in the downcomer with curves colored in relationship with the outlyingness score of the corresponding simulation. On this graph, one can hardly infer any typical pattern for the outliers, which seem to be rather shape outliers than magnitude ones. This is confirmed by the examination of the primary pressure curves as well as the flow rate in the downcomer (Figure 5.19) which are the other two input quantities required for CUVE1D calculations, and as such, the most relevant variables for the physical analysis. On this figure, we see once again that outliers (in red) do not seem to present any typical characteristics that could clearly distinguish them from other cases. We can only notice that for most outliers, the primary loop pressure is among the lowest ones throughout the transient, especially around the beginning of operators actions (between 1000 s and 1500 s).

On the flow rates in the DC we also can hardly recognize any special pattern for outliers. Still, we can note that, for outlying transients, the flow rate in the DC are not the strongest ones but each sequence seem to be starting at an early instant in comparison with the rest of the curves, especially the triggering of low pressure injection pumps at the beginning of the late PTS phase (∼ 2400 s). This shows anyways that the outlier detection algorithm, when applied to the fluid temperature curves in the DC, puts forward transients which dynamic cannot be detected with the naked eye by looking at the graphs of TH outputs of CATHARE2.

In spite of this acknowledgment, the observation of CUVE1D outputs, e.g. stress intensity factor and temperature of the RPV steel at the flaw tip, reveals that most outliers feature some penalizing aspects as regards the PTS. On Figure 5.20 (middle graph), we see that up to ∼ 2400 s the temperature of the steel for the outliers is never among the highest but rather in the middle of the bundle and sometimes lower. After this moment, the temperature of the RPV material falls more rapidly and with a higher intensity for most outliers than for the rest of the simulations. This leads to rather moderate mechanical loadings until reaching the late PTS phase, but with a main loading peak, provoked by the switching to low pressure injection means, starting at an early instant (before t = 2500 s vs. 2700 -3000 s for the rest of the cases) and with a higher peak for outlying transients than for the other ones (see bottom graph of Figure 5.20). This is typically the kind of dynamic leading to severe PTS. Indeed, we see on the top graph of the same figure that critical cases are those showing a loading pattern in the temperature vs. loading domain with a peak of high intensity at a low temperature of the steel, meaning close to the brittle domain of the material. Moreover, let us remind that the loading peak is caused by a strong temperature gradient within the RPV wall, which is maximized by a strong and fast temperature drop during the late PTS phase. It is however most critical when this peak is combined with a temperature of the steel (which is representative of its fracture toughness) which is already low at this time, thus minimizing the steel's resistance. Critical cases will hence be those combining a sufficiently low temperature value throughout the first stages of the transient, but with a temperature drop starting among the earliest and with a high intensity.

Another noticeable phenomenon which can be seen on loading curves, concerns the existence of a first thermal shock of a lower intensity than the main one. This occurs at around the same time as the beginning of operators' actions (1200s) and of the emptying of accumulators in the primary loop. This first rapid overcooling is clearly seen in Figure 5.12 after around 1250s, and actually benefits from higher pressures that slow down the injection, with a slower emptying dynamic of the accumulators due to the smaller difference of pressures between the boiler and them. In this case, one parameter (the higher pressure) favors the PTS, whereas the other two, i.e., the water flow and the liquid temperature can mitigate the PTS magnitude. On figure 5.20 we see that outlying transients show a rather small first peak at this point which confirms that a slow depressurization dynamic tends to prevent from a serious late PTS although leading to a stronger first one. This raises the question of the influence of the residual power of the core, which uncertainty is not taken into account here but follows a max decay law. A maximized thermal residual power has several implications in the considered LOCA. Firstly, it slows the depressurization rate due to the maximized steam production of the primary. The stop of the natural circulation (which occurs after around 300s of transient) is also slowed by this factor, since the hydraulic force provided by the difference of densities will be larger (the steam has more time to overheat in contact with the fuel rods) due to the more important heat source.

All in all, when analyzing the outliers, the effect which can be expected from the uncertain inputs is coherent with the results displayed by the sensitivity analysis method (see 5.5 in the previous section). The penalizing flow rates for the high pressure pumps will be those weakest, leading to the fastest depressurization of the boiler by a weak compensation the water lost at the breach. This fact is of major importance since maximal flow rates for ECCS pumps are usually considered penalizing as they lead to a maximized cooling of the vessel, which is actually not critical at this stage of the transient. On the contrary, an early depressurization in comparison with average transients will lead to an early starting of the low pressure trains of the ECCS provoking the thermal shock itself which is maximized when the flow rate of low pressure pumps is maximized. Both phenomena are still maximized when the injected water temperature is low, as the cold water brought by the ECCS tends to contract the primary loop fluid and thus enhances the pressure decrease, in addition to favoring the cooling of the steel. Accumulators have a rather negligible role in this dynamic as their working principle consists in passively injecting water when the pressure is below a certain threshold. The injection time as well as the quantity injected is then controlled by the overall dynamic of the boiler. These interpretations are validated when establishing the link between inputs parameters of CATHARE2, inlying and outlying samples, and the safety margin. This is illustrated in Figure 5.18.

Figure 5.18 shows how, indeed, the conclusions that we have extracted for this application case are correct. Firstly, the correlation between X 4 , i.e., the injection temperature of the ECCS system is obvious, and shows how low values of the variable are penalizing regarding the PTS. This is logical since lower injection temperatures favor the overcooling.

The other major correlation is found between the low pressure ECCS and the margins, which characterizes the aforementioned late PTS, whereas we can see that, as expected, the variables concerning the accumulators are not so obviously related to the margins, even if a PTS would be possible after the injection at around 1200s of transient.

We also showcase how there is a clear correlation between the outlyingness score θ and the safety margins. We see that the score is capable of capturing the trend of penalizing scenarios. 

Conclusions

This simpler application case has served to illustrate several aspects of our methodology complementary to those shown in Chapter 4. We verified that the score θ is capable of relating outlying transient identified as outputs of a computer code, CATHARE2, and the outputs of a chained mechanical code CUVE1D. Indeed, we observed that the θ score is strongly correlated with final safety criteria, most outliers being critical cases when it comes to the risk of PTS. In addition to this, the chapter shows how the sensitivity analysis method used in the study makes possible a robust screening of influential versus non-influential inputs, coherently with the postulated effects of uncertain variables, and through the use of the outlyingness score.

These two assets of the methodology allow several foreseeable benefits in its potential industrial use for PTS studies.

Firstly, as the methodology allows detecting shape outliers as well as magnitude ones, it is able to select atypical dynamics of fluid temperature combining low average temperature values during the whole transient, in comparison with other cases, with an early and strong temperature drop during the late PTS phase. This detection of atypical cases without any a priori selection criterion tends to rule out the hypothesis of a non anticipated specific behavior that might lead to a severe case with qualitatively different phenomena from those already known penalizing as regards the PTS. Conversely, this confirms, in a completely automated manner, the analysis which can be made with the conventional methodology based on expert knowledge, engineering physical reasoning and targeted simulations using only min and max values for uncertain inputs. This strengthens the line of arguments on which the safety demonstration is built.

Secondly, the methodology provides a reliable screening tool to select the most impactful uncertain parameters of the problem. This aspect is of significant interest for a potential broader exploration of physical uncertainties, e.g., studies including a larger number of input variables in the scope of uncertain ones. Some examples are the uncertainties on the residual power delivered by the core or those concerning the characteristics of the secondary loop. In such studies taking more uncertain inputs into account, it becomes very hard or even impossible to postulate or determine before looking at simulation results a worst-case scenario for the studied transient, since all inputs may interact with each other or involve feedback and mitigation effects, potentially modifying the influence of a quantity when considered isolated from the others. When the input dimension is large, it is also complex to exhibit the main effects of the most impactful inputs based on visual analysis with a graphical representation of results, especially when the design of experiments yields a set of functional outputs that do not showcase any obvious outliers to the naked eye. The sensitivity analysis method tested here, which is based on the outlyingness score, is a valuable alternative to already existing ones, as well as to the visual interpretation of the set of output curves, since it quantitatively exploits the available information of the functional outputs without restricting it to the sole final safety criterion.

A feasible perspective of these works would be to test how the methodology would perform if the outliers were to be identified in the outputs of the final chained code (CUVE1D). These outputs also present a functional nature, and are directly related to the thermal-hydraulic aspects of the transient and the safety criteria, so they also represent good candidates on which to apply the methodology. Since one of the objectives of this application case to showcase how the methods remain useful even when applied to outputs that will act as inputs of another chained code, this perspective would be the next natural step of the research works.

Conclusions and perspectives

These Ph.D. works are contextualized in the intersection of several different scientific and industrial domains that are the object of profound research efforts by the main actors of the French nuclear R&D field. The increasing reliance of the nuclear industry on numerical system codes such as CATHARE2 has allowed the development of pieces of research related to the analysis of nuclear transients, nuclear safety, and uncertainty quantification. These codes have also proved to be a valuable tool to complement safety studies in nuclear power plants.

In particular, in this document, we have developed a series of general methods that are applicable to the analysis of a wide variety of nuclear transients. The methods are concerned with the detection of outliers in sets of functional outputs of CATHARE2, as well as the analysis of accidental nuclear transients. Their industrial applicability has been showcased through two very different application cases.

The first contributions are related to the domain of functional data analysis. In particular, we have treated the domain of functional outlier detection, providing a systematic and general description of what constitutes an outlier in both a set of multivariate and functional data, the intrinsic difficulty in their definition, and how the problem is treated nowadays by the state of the art methods. We have justified and developed a description of the possible approaches to perform dimensionality reduction in sets of functional data, and how those measures can be useful descriptors of the considered samples. Finally, we have developed a functional outlier detection technique sensitive to the main types of considered outliers and which also deals with some of the most relevant challenges when tackling the subject of the modeling of the underlying structure that generates the data in a lower-dimensional space. The considered procedure allows the obtention of an outlyingness score for each observation of the considered sample that provides both a unique detection criterion and a continuous measure that serves as a tool to perform sensitivity analysis in industrial applications.

The second contribution is related to the analysis of nuclear transient simulations. We propose a generic methodology that allows the interpretation of the functional outputs of a system computer code, a characterization of the outlying nature of specific observations in the sample according to a general detection criterion, and the detection of the most relevant breakpoint events according to the outlyingness measure. Nuclear transients involve a wide variety of physical phenomena that require specialized knowledge of the field, which is why the methodology relies on advanced statistical tools and integrates prior knowledge of the progression of the analyzed transient. The approach is valuable in the verification, validation, and uncertainty quantification fields and provides valuable insights regarding the detection of penalizing scenarios. This methodology makes use of the outlyingness score proposed in Chapter 2, which makes few assumptions about the nature of the analyzed data. On top of that, we propose visualization tools that help understand the origin of the outlyingness in functional data.

Finally, we have put into effect the proposed elements in a real industrial context. We have showcased how the explained methods have performed in a challenging setting. The code CATHARE2 is an excellent example of an actual industrial code that models complex (non-linear) physical phenomena. The potential size of its input space represents a crucial challenge in determining which input parameters are relevant when analyzing specific output parameters, most notably, the safety margins related to particular safety criteria for each considered nuclear transient, as well as the introduced outlyingness score. Another major challenge is the quantification of the different types of uncertainties associated with this application, as well as their propagation over the considered output variables of interest and quantities of interest, also taking into account the computer cost that each simulation requires, and that severely limits the available methods in this context. Two use-cases have been considered. Firstly, an Intermediate Break Loss of Coolant Accident (IBLOCA) was treated. This application entails a high-dimensional set of inputs, a very fast dynamic of physical phenomena (in the order of seconds), and complex modeling of the components of the NPP. The second application case, a Pressurized Thermal Shock (PTS), constitutes a very different application. This transient is simulated through the use of a simplified modeling of the nuclear core and relies on the chained code CUVE1D to perform the estimation of the safety margins for the transient by making use of the functional outputs provided by CATHARE2. Furthermore, the input space has a lower dimension in this case, with only six input parameters and a separated modeling of the laws of the high and low-pressure pumps of the ECCS.

The successful application of these works to the considered IBLOCA transient was a major objective of the Ph.D. . This document details all the main aspects of the transient, including its phases, the main events that occur during its progression, the systems that are activated, the dominant physical phenomena and its modeling. A design of experiments has been developed, and its corresponding functional outliers have been detected in a completely automatized manner. These outliers were interpreted and associated with specific physical phenomena and events. We have identified how, in this application, they relate to faulty modeling of the progression of the transient, i.e., how these are real outliers, in the sense that they are generated by an incorrect modeling of the physics of the transient. Finally, we have also showcased how a different modeling of the transient that modifies the origin of the detected outliers allows its physically coherent simulation.

The other treated case, the PTS, aims at showing how the generality of the proposed methods proves its value in a wide variety of transients since this one is remarkably different from the IBLOCA. This case is related to the fact that the outliers are highly correlated to penalizing scenarios (those for which the safety margins surpass the considered thresholds), which is an argument in favor of the chosen score θ as an integrating measure that provides relevant insights into the physical analysis of transients.

It must also be highlighted that the computation of the outliers and their association with specific input parameters, the separation between the inlying and outlying samples, and the definition of the relevant breakpoint events can be computed in a reasonable amount of time (less than one minute).

Regarding the perspectives, several points of improvement can be mentioned. Since these works are separated into two main parts, the mathematical analysis of functional data and the physical analysis of nuclear transient simulations, the perspectives are also separated into two parts.

• Regarding the detection of functional outliers, it would be relevant to account for the uncertainty in the estimation of the underlying probability density function in the space of features. Accounting for this uncertainty will improve the quality of the estimators of the outlyingness score, robustifying them. Another issue, shared with other detection methodologies, is selecting an appropriate value of the significance level of the test of outlyingness. Indeed, this level plays a significant role in the total amount of outliers that will be identified. However, since simply increasing it will also increase the false positive rate, hindering the possible interpretations obtained in real applications, finding optimality criteria for its values would be helpful.

Furthermore, an improved estimation scheme for the parameters in the GMM should be considered. The EM algorithm, although useful, still presents some drawbacks. Although the overfitting issue presented in Chapter 2 is dealt with in the outlier detection setting, there still exist open issues in the literature. One of them is the algorithm's sensitivity to the choice of initial values for the estimated parameters. Some recent propositions that tackle this problem are presented in Panić et al. (2020) through the so-called REBMIX algorithm.

Another axis of research concerns the quality of the estimation of the corresponding minimum volume level sets in the case of the estimation of the associated θ value for each observation in the sample of functional data. This problem is well known, especially in the context of high-dimensional density estimation, and is related to other statistical problems. Firstly, the quality of the corresponding probability density function associated with the sample of data naturally adds to the uncertainty on any estimator coming from it. Secondly, the research of the set that minimizes the volume of the level set associated to a given probability mass is a complex optimization problem that requires non-negligible computational time compared to the other stages of the detection algorithm. There exist faster plug-in estimators for level sets assuming mild assumptions on the underlying probability density functions (see Di Bernardino et al. (2013) for an example).

Finally, another possible improvement of the methodology would be to take into account the multivariate nature of the outputs provided by CATHARE. Although it is not guaranteed, detecting the desired outliers in a particular design of experiments could be a simplified task if a larger number of physical outputs is considered in the process. Some works related to this field can be found in [START_REF] Hubert | Multivariate functional outlier detection[END_REF]; Lejeune et al.

(2020); [START_REF] Dai | Multivariate functional data visualization and outlier detection[END_REF]. This possibility must be studied with care since the addition of data not directly linked to the safety criterion might pollute the sample rather than adding useful information to characterize the outlyingness. Moreover, some of these methods have already been tested against rather simple toy examples but are yet to be validated more complex sets of data. Nonetheless, this can be an important path to be explored in complex physical systems.

• Incorporating prior knowledge about the transients' progression to interpret the outlyingness is both an advantage and a disadvantage. Including this information in the analysis' procedure allows a better definition of the actual events that take place during the transient and a more coherent division into intervals that share specific characteristics (such as the primary physical phenomena that occur or the activated systems). This largely facilitates the interpretation of the results and the association of the outlying samples to real events in the transients. However, the approach can be challenging if this prior knowledge is not available or is limited (for instance, in an exploratory study for which a PIRT is not available). The physical analysis of the transients could be more generally applied through the use of landmark registration techniques, aiming at detecting specific influential events without prior physical knowledge of the transient.

It could be argued that imposing the subsets of time in which the outlyingness is characterized might not take into account all the possible combinations of physical events that occur in the different phases during a transient. A possible improvement of the methodology would be not to impose the analyzed subsets of time and consider all the possible permutations (within reasonable limits depending on the density of points in the mathematical support of all the functional outputs) of its elements. This might help characterize how events that occur at specific points in time can have a relevant impact much later in the transient. Nonetheless, the interpretation of the results would be more complex.

Finally, analyzing the results provided in Chapter 4 demonstrates that taking the parameters of the numerical modeling of the transient can provide valuable information concerning transient analysis. In that case, it was shown that the outlying nature of specific transients was linked to the activation of a specific CATHARE2 module. Adding the activation of particular modules of the simulators to the list of analyzed intermediate parameters should be considered as an axis of research to improve the physical 

t i+1 t i = E[z s ]| t i+1 t i intermediate parameter
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Statistical Analysis of the results of numerical simulations of accidental situations in Pressurized Water Reactors

Abstract -Nuclear safety studies rely increasingly upon the use of numerical simulators (namely, the French thermal-hydraulic code CATHARE2 ) capable of providing the best possible estimation of the physical variables relevant in the safety assessment of nuclear power plants. In this context, the use of these codes presents scientific challenges related to the computational cost of each simulation, the complex (non-linear) physical phenomena that intervene in accidental nuclear transients, as well as the associated uncertainty of the inputs, the physical models of the code, and its outputs. All in all, the in-depth analysis of accidental nuclear transients requires advanced knowledge of the domain by specialized engineers, and the estimation of relevant statistical Quantities of Interest (QoI) related to nuclear safety depends upon advanced Uncertainty Quantification (UQ) tools. We propose to extend the methodology to improve the existing knowledge related to the analysis of nuclear accident simulations. Since the considered numerical simulator outputs take the form of functional objects, usually a one-dimensional mathematical field, they provide rich information when performing safety studies. Finding outliers in the available sets of outputs provides insights regarding the detection of penalizing configurations in nuclear accidents, allows to perform validation studies, and facilitates the task of analyzing the most relevant transients. The first main contribution of these works is related to the functional outlier detection domain. We present a methodology allowing the detection of functional outliers of different types (magnitude, shape), with no prior assumptions of the generating process of the data. This method is compared to available state-of-the-art techniques in order to justify its use when analyzing the complex outputs provided by the CATHARE2 code. Secondly, we propose a systematic physical analysis methodology based on advanced Sensitivity Analysis (SA) tools, simplifying the analysis of nuclear transients by comparing the inlying and outlying samples of outputs. Finally, the developed methodologies are successfully applied to two use-cases of accidental nuclear transients. On the one hand, we analyze a reactor-scale Intermediate Break Loss of Coolant Accident (IBLOCA), fully showcasing how the proposed methodologies have been capable of identifying physical inconsistencies in the set of outputs of the code. On the other hand, an exploratory use-case of Pressurized Thermal Shock (PTS) transients demonstrates how the methodology remains helpful in cases where the safety margins are obtained as the result of a sequence of chained thermal-hydraulic and mechanical computer codes.

Keywords: Functional data, Functional outlier detection, Nuclear safety, Nuclear transient simulation.

Análisis estadístico de los resultados de simulaciones numéricas de situaciones accidentales en reactores de agua a presión

Resumen -Los estudios de seguridad nuclear se basan cada vez más en el uso de simuladores numéricos (por ejemplo, el código termohidráulico francés CATHARE2 ) capaces de proporcionar la mejor estimación posible de las variables físicas relevantes en la evaluación de la seguridad de las centrales nucleares. La utilización de dichos códigos presenta retos científicos relacionados con el coste computacional de cada simulación, los complejos fenómenos físicos (no lineales) que intervienen en los transitorios nucleares accidentales, así como la incertidumbre asociada de las variables de entrada, los modelos físicos del código y sus salidas. En definitiva, el análisis en profundidad de los transitorios nucleares accidentales requiere un conocimiento avanzado del dominio por parte de ingenieros especializados, y la estimación de las Cantidades de Interés (QoI ) estadísticas relevantes relacionadas con la seguridad nuclear depende de herramientas avanzadas de Cuantificación de la Incertidumbre (UQ). La presente tesis propone ampliar las metodologías para mejorar los conocimientos existentes relacionados con el análisis de simulaciones de accidentes nucleares. Dado que los resultados de los simuladores numéricos considerados adoptan la forma de objetos funcionales, normalmente un cuerpo matemático unidimensional, ellos proporcionan una gran cantidad de información a la hora de realizar estudios de seguridad. La identificación de outliers en los conjuntos de salidas disponibles proporciona información sobre la detección de configuraciones penalizadoras en accidentes nucleares, permite realizar estudios de validación y facilita la tarea de analizar los transitorios más relevantes. La primera contribución principal de este trabajo está relacionada con el ámbito de la detección de outliers funcionales. Presentamos una metodología que permite la detección de outliers funcionales de diferentes tipos (magnitud, forma), sin suposiciones previas sobre proceso de generación de los datos. Este método es comparado con las técnicas disponibles en el estado del arte con el fin de justificar su uso al analizar las complejas salidas proporcionadas por el código CATHARE2. En segundo lugar, proponemos una metodología sistemática de análisis físico basada en herramientas avanzadas de Análisis de Sensibilidad (SA), simplificando el análisis de los transitorios nucleares mediante la comparación de las muestras de salidas inlier y outlier. Por último, las metodologías desarrolladas se aplican con éxito a dos casos de aplicación de transitorios nucleares accidentales. Por un lado, analizamos un transitorio de Pérdida Accidental de Refrigerante (IBLOCA) a escala de reactor, mostrando cómo las metodologías propuestas han sido capaces de identificar inconsistencias físicas en el conjunto de salidas del código. Por otro lado, un caso de uso exploratorio de los transitorios de Choque Térmico Presurizado (PTS) demuestra cómo la metodología sigue siendo útil en los casos en que los márgenes de seguridad se obtienen como resultado de una secuencia de códigos informáticos termohidráulicos y mecánicos encadenados.

Palabras clave: Datos funcionales, Detección de outliers funcionales, Seguridad nuclear, Simulaciones de transitorios nucleares.
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 11 (a) Examples of the evolution of the fuel temperature in a set of nuclear transients. (b) Examples of the evolution of two physical parameters in a set of nuclear transients.
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 11 Figure 1.1: Examples of the evolution of two physical parameters in a set of nuclear transients.

Figure 1 . 2 :

 12 Figure 1.2: General scheme for uncertainty propagation

  (a) Example of a pure magnitude outlier. (b) Example of a pure shape outlier.
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 13 Figure 1.3: Examples of functional outliers (in color Red).
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 14 Figure 1.4: Basic thermal-hydraulic diagram of a NPP. I: Primary circuit; II: Secondary circuit. (1): Reactor pressure vessel (RPV); (2): Nuclear core; (3): Steam Generator (SG); (4): Primary pump; (5): Steam turbine; (6): Electrical generator (alternator). (7): Possible break in the primary circuit.
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 15 Figure 1.5: Examples of different possible evolutions of the maximum temperature of the nuclear fuel and the primary pressure in the case of an IBLOCA.

Figure 1 . 6 :

 16 Figure 1.6: Examples of outputs of CATHARE2 that allow the calculation of safety margins in a PTS transient through the use of a chained mechanical code, CUVE1D.

  Example of strong outlier (in red).

  Example of weak outliers. Amongst the two main groups of samples, we can see a set of points whose nature is much more subjective.
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 21 Figure 2.1: Examples of strong and weak outliers.

  (a) Example of a pure magnitude outlier. (b) Example of a pure shape outlier. (c) Example of an isolated outlier. (d) Example of a shifted outlier .
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 22 Figure 2.2: Main types of outliers. Red: outlying observation in the sample of functional data, generated by a different underlying process. Blue: bulk of normal curves generated by the standard underlying process.
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 7 where z(l) represents the lth derivative of the observation z. Examples of this procedure can be found in[START_REF] Ieva | Multivariate functional clustering for the morphological analysis of electrocardiograph curves[END_REF];[START_REF] Tokushige | Crisp and fuzzy k-means clustering algorithms for multivariate functional data[END_REF].
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 29 being a Gaussian kernel. Let (F, d) = (C(T ), || • || ∞ ), for a given J = 2, 3, ... a band delimited by z 1 , ..., z J ∈ C(T ) is defined as:
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 10 Let (F, d) = (C(T ), || • || ∞ ), by considering the Lebesgue measure λ of the set t ∈ T :
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 2 Example of functional boxplot showcasing the central envelope C 0.5 in pink.
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 23 Figure 2.3: Example of an application of the functional boxplot.

  Figure 2.4.(a) Example of set of functional data with one outlier (b) Example of functional HDR plot showcasing the α = 10% more outlying curves according to this criterion in red.
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 24 Figure 2.4: Example of an application of the HDR plot.
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 25 Figure 2.5: Example of an application of the outliergram. The numbers represent the index of the corresponding outlying curves.
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 26 Figure 2.6: Example of a set of curves generated as output of the numerical code CATHARE2.
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 027 Figure 2.7: Toy examples of functional data. Blue: Standard curves. Red: outlier.
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 12328 Figure 2.8: Boxplots of the outlyingness score for all combinations of features in each model in the n = 100 replications. The boxplot takes into account the whole distribution of θ i for all the replications of each experiment.

Figure 2 . 9 :

 29 Figure 2.9: Boxplots of the ranking score of the outlier for all models over the n = 100 replications.
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 31 Figure 3.1: Illustration of the main basic elements of a PWR nuclear power plant. Taken from: Nuclear Regulatory Commision (NRC) (2015) (url: https://www.nrc.gov/reactors/ pwrs.html)

  et al. (2020); Stenger (2020), functional outputs clustering Auder (2011), metamodeling Iooss and Marrel (2019) or sensitivity analysis Iooss (2018).

  ∂α k ∂z and P i ∂(1-α k ) ∂z are due to the heterogeneity of the pressure field in the transverse direction of the interface, especially relevant in stratified flows. (-1) k AΓ(W i -V G ) is the interfacial momentum transfer, whereas Γ(W i -u G ) is the momentum transfer due to phase change and the generic term χ f C k ρ k 2 u k |u k | models the wall friction. Any singular head losses assemble in the term -K 2∆Z α k ρ k u k |u k |,and the final terms Rα k 4 P i ∂A ∂z and R(1-α k ) 4

Figure 3 . 2 :

 32 Figure 3.2: Diagram of the main methods available to perform global sensitivity analysis. Taken from Iooss and Saltelli (2017). The showcased model G is equivalent to the denoted numerical simulator M in this document.

Figure 3 .

 3 Figure 3.2 showcases the main families of methods.

Finally, consistent estimators

  for sensitivity indices based on both the Sobol' indices (see 3.2) and the HSIC indices (see 3.2.1.2.1) are proposed in Marrel and Chabridon (2021) based on the weight function w Y ′ (•) through the study of the couple (X j , w Y ′ (Y )).

  al. (2011), and Wicaksono et al. (2015); Perret et al. (

  2.1.2.1 is a necessary (and sufficient) condition of independence. Other authors propose extensions to the more classical variance-based methodologies. For instance, Gamboa et al. (2014) present a rigorous extension of the Sobol' sensitivity indices for multivariate and functional outputs. In de Lozzo and Marrel (2016b), the authors showcase several sensitivity indices adapted to multivariate (spatial) outputs, making use of both the Sobol' indices and the HSIC measures. Several graphical techniques have also been successfully applied in the context of SA for functional data (Ribés et al., 2020), while Francom et al. (2018) make use of the bayesian framework in order perform this task on one dimensional functional data.
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 3334 Figure 3.3: Example of the evolution of the PCT in a nuclear transient
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 35 Figure 3.5: Synthetic diagram of the physical analysis methodology of outlying transients with CATHARE2.
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 36 Figure 3.6: Differences of distributions between the inlying and outlying sample of PCT for a LOCA case.
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Figure 4 . 1 :

 41 Figure 4.1:Example of a closed loop in which natural circulation may be created. In this case, the heat sink would correspond to the SG, whereas the heat source is the nuclear core, so the closed loop is composed by the elements in the boiler. ρ cold : average density of the fluid in the cold leg; ρ hot : average density of the coolant in the hot leg; g acceleration of gravity. Other head losses (friction with pipe walls, singular head losses, blocked tubes in the SG, etc.) exist in the circuit and must also be compensated.
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 42 Figure 4.2: Evolution of the maximum cladding temperature during the nuclear transient. As it was explained, phases II and III are reduced in large intermediate breaks in favor of phases IV and V. Phases II and III take place in the interval (29, 33) (in s) of the physical simulation.
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 43 Dominant physical phenomena and elemental phenomena related to them in an IBLOCA transient (Martin and O'Dell, 2005) of water in Lower plenum Interface friction core / higher plenum Counter flow from the SG Emptying and reflood of the downcomer Reflood of the core Heat transfer in the core Swelling of fuel rods 3D effects: two-phase cross flows / Stack (chimney effect) Blocking pass section between fuel assemblies Heat transfer in the uncovered part Oxidation of cladding
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 43 Figure 4.3: CATHARE2 modeling of the reactor pressure vessel
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 444 Figure 4.4: CATHARE2 modeling of the cold leg of the primary circuit presenting a break.
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 45 Figure 4.5: CATHARE2 modeling of the secondary circuit
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 45 Figure 4.5: Examples of outputs provided by CATHARE2
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 94648 Figure 4.6: Results of the application of the FOD methodology to the set of maximum cladding temperatures in the design of experiments. Top: Raw set of functional outputs. Bottom: same set of curves but associated to four main groups, θ i ∈ [0, 0.5]; θ i ∈
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 4347 Figure 4.7: Distribution of local PCT across the design of experiments. Red: empirical 90% quantile of the distribution.

Figure 4 . 8 :

 48 Figure 4.8: Distribution of θ i across the design of experiments.
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 49 Figure 4.9: Distribution of PCT for both the inlying and outlying samples.
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 2410 Figure 4.10: Cross-section of a fuel pellet
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 411 Figure 4.11: Scatter plots showcasing the relationship between the PCT and the average temperature of each transient and θ.
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 412 Figure 4.12: Scatter plots of the influential inputs and their corresponding values of θ during the reflood phase. The outliers are marked in red and the lines correspond to a polynomial regression model across the set of inliers and outliers. The outlying points are shown bigger to facilitate visibility.
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 14 Figures 4.14and 4.15 illustrate the relationship between inputs, the (swollen) level of
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 413 Figures 4.14and 4.15 illustrate the relationship between inputs, the (swollen) level of
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 414 Figure 4.14: Scatter plots of the influential inputs and their corresponding values of swollen level during the reflood phase. The outliers are marked in red and the lines correspond to a polynomial regression model across the set of inliers and outliers. The outlying points are shown bigger to facilitate visibility.
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 415 Figure 4.15: Scatter plots of the influential inputs and their corresponding values of water mass in the downcomer during the reflood phase. The outliers are marked in red and the lines correspond to a polynomial regression model across the set of inliers and outliers. The outlying points are shown bigger to facilitate visibility.
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 416 Figure 4.16: Values of θ for the simulations that do or do not present a second uncovery of the nuclear core after the activation of the accumulators.
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 417 Figure 4.17: Examples inlying and an outlying transient. Red: Outlying transient. Blue: Inlying transient
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 418 Figure 4.18: Examples of an inlying and an outlying transient. Red: Outlying transient. Blue: Inlying transient.
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 419 Figure 4.19: Examples of differences of distributions of intermediate parameters the inlying and outlying samples.

  simulation > 30 s At least one accumulator has already started the injection of coolant
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 420 Figure 4.20: Examples of the original (Red) and modified (Blue) transients for a set of inputs that induced an outlying simulation in our first analysis.
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 51 Figure 5.1: Diagram of the main physical phenomena and events leading to the propagation of a fissure on the RPV due to a PTS. Based on Trampus (2018).
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 52 Figure 5.2: Preexisting semielliptical undercladding crack in a RPV.
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 5354 Figure 5.3: Illustration of the mechanical stresses in the event of an overcooling of the RPV.

K

  IC (T ) = 40 + 0.09(T -T ref ) + 20 exp[0.038(T -T ref )] in the brittle domain 240.93MPa • √ m otherwise where T ref corresponds to an experimental baseline temperature used in the definition of the law.
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 55 Figure 5.5: Schematic effect of radiation damage in a ferritic steel, such as the ones used in RPV. Results for Charpy Impact Test (CIT). Approximated curves from the experimental ones showcased in Araneo and D'Auria (2012).
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 56 Figure 5.6: Effect of the embrittlement on the fracture toughness curve.
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 57 Figure 5.7: Representation of safety criteria and margins in K and in T in the (T,K) domain.
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 58 Figure 5.8: CATHARE2 modeling of the primary circuit of the NPP for the PTS transient system-scale analysis
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 59 Figure 5.9: CATHARE2 modeling of the secondary circuit of the NPP for the PTS transient system-scale analysis
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 510 Figure 5.10: Workflow for the PTS margins calculation
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 511 Figure 5.11: Min and Max laws for the ECCS with two instances of intermediate laws. Dashed line: α HP = 0.15 and α LP = 0.7; Dotted line: α HP = 0.8 α LP = 0.2.
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 512 Figure 5.12: Illustration of the considered breakpoint events for the PTS transient over the liquid temperature in the collector of the downcomer.
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 513 Figure 5.13: Pairwise bivariate projections of the d = 6 input variables.
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 5 Figure 5.14: Top: set of outputs of liquid temperature in the collector for the design of experiments E. Bottom: Application of the FOD methodology to this set of functional outputs, showcasing different levels of outlyingness measured by θ.
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 515 Figure 5.15: Histogram of {θ i } N i=1 for the PTS application.
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 516 Figure 5.16: Distribution of margin factors for the inlying and outlying samples.
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 518 Figure 5.18: Scatter plots between the input parameters and the safety margins calculated conventionally with CUVE1D. Red: Outlying transients. Blue: Inlying transients.
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 519 Figure 5.19: CATHARE2 outputs: water flow in the downcomer and primary pressure. Red: Curves whose score of outlyingness surpasses the 0.9 threshold.
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 520 Figure 5.20: CUVE1D outputs: Stress intensity factor compared to the temperature and as a function of time with their corresponding temperature transients. Red: Curves whose score of outlyingness surpasses the 0.9 threshold.

  Violin plot. Minimum cladding temperature in [t 4 , t 5 ]. Boxplot. Minimum cladding temperature in [t 5 , ∞). Violin plot. Minimum cladding temperature in [t 5 , ∞).
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 1 Figure B.1: Minimum cladding temperature. Comparison between inlying and outlying samples for the h 1 (z s )|t i+1 t i = min(z s )| t i t i+1 intermediate parameter.
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 2 Figure B.2: Maximum cladding temperature. Comparison between inlying and outlying samples for the h 2 (z s )|t i+1 t i = max(z s )| t i+1 t i intermediate parameter.
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 3 Figure B.3: Average cladding temperature. Comparison between inlying and outlying samples for the h 3 (z s )|t i+1 t i = E[z s ]| t i+1 t i intermediate parameter.
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 4 Figure B.4: Swollen level of water in the core. Comparison between inlying and outlying samples for the h 3 (z s )|t i+1 t i = E[z s ]| t i+1 t i intermediate parameter.
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 5 Figure B.5: Minimum mass of water in the core. Comparison between inlying and outlying samples for the h 1 (z s )| t i+1 t i = min(z s )| t i t i+1 intermediate parameter.
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 6 Figure B.6: Mass of water in the core. Comparison between inlying and outlying samples for the h 2 (z s )|t i+1 t i = max(z s )| t i+1 t i intermediate parameter in the [t 5 , ∞) interval.
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 7 Figure B.7: Mass of water in the core. Comparison between inlying and outlying samples for the h 3 (z s )|t i+1 t i = E[z s ]| t i+1 t i intermediate parameter in the [t 5 , ∞) interval.
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 8 Figure B.8: Mass of water in the core. Comparison between inlying and outlying samples for the h 2 (z s )|t i+1 t i = max(z s )| t i+1 t i intermediate parameter
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 9 Figure B.9: Mass of water in the core. Comparison between inlying and outlying samples for the h 3 (z s )|

  Maximum water temperature in the collector in [t 3 , t 4 ]. Maximum water temperature in the collector in [t 4 , ∞). Mean water temperature in the collector in [t 1 , t 2 ]. Mean water temperature in the collector in [t 2 , t 3 . Mean water temperature in the collector in [t 3 , t 4 ]. Mean water temperature in the collector in [t 4 , ∞).
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 2 Figure C.2: Water temperature in the collector for the h 3 (z s )|
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  .1.

	Table 2.1: Basic classification of outlier detection methods for both the supervised and unsu-
	pervised setting.		
	Supervised model	Unsupervised equivalent	Type of model
	k-nearest neighbor	k-NN distance, LOF, LOCI	Instance based
	Linear Regression	Principal Component Analysis	Explicit
			generalization
	Naive Bayes	Expectation-maximization	Explicit
			generalization
	Rocchio	Mahalanobis method, Clustering	Explicit
			generalization
	Decision Trees, Random	Isolation Trees, Isolation Forests	Explicit
	Forests		generalization
	Rule-based	FP-Outlier	Explicit
			generalization
	Support Vector Machines One-class support-vector machines	Explicit
			generalization
	Neural Networks	Replicator neural networks	Explicit
			generalization
	Matrix factorization	Principal component analysis, Matrix	Explicit
		factorization	generalization

  where A is any non-singular matrix of dimension d × d, and b is any given vector in R d . In other words, a depth function D should be affine invariant and not depend on the coordinate system.

	2. D(ξ, F ) = sup	D(x, F ) hold for any distribution F in the class of distributions on the
	x∈R d	
	Borel sets of R d whose center is ξ. The term center is loosely defined in Zuo and Sering
	(2000) as a point of symmetry according with respect to any notion of symmetry (in R d ),
	such that D attains its maximum there.
	3. For any F whose deepest point is ξ, D(x, F ) ≤ D(ξ + α(x -ξ), F ), ∀α ∈ [0, 1], i.e., D
	decreases monotonically with respect to the deepest point in the considered sample.

4. D(x, F

) → 0 as ||x|| → ∞ for any given F . Depth functions must vanish at infinity.

Strictly decreasing with respect to the deepest point. For

  

	• P5:		
				and where d is
	any metric defined in F.	
	• P2: Maximality at centre. For any P ∈ P with a unique center of symmetry ξ ∈ F
	with respect to any notion of functional symmetry, D(ξ, P) = sup	D(z, P).
				z∈F
	• P3: any P ∈ P, if
	D(z 3 , P) = max z∈F	D(z 1 , P) exists, D(z 1 , P) < D(z 2 , P) < D(z 3 , P) holds for any z 1 , z 2 ∈ F
	such that min{d(z 2 , z 3 ), d(z 2 , z 1 )} > 0 and max{d(z 2 , z 3 ), d(z 2 , z 1 )} < d(z 1 , z 3 ).
	• P4: Upper semi-continuity in z. D(z, P) is upper semi-continuous. ∀z ∈ F and
	∀ϵ > 0, ∃δ > 0 such that:	sup	D(z 2 , P) ≤ D(z 1 , P) + ϵ.
			d(z 1 ,z 2 )<δ

Receptivity to convex hull width across the domain. D

  (z, P) < D(f (z), P f (Z) ) for any z ∈ H(F, P), where H is the convex hull of F with respect to P.

	• P6: Continuity in P. ∀z ∈ F and ∀P, Q ∈ P and ∀ϵ > 0, ∃d(ϵ) > 0 such that
	|D(z, P) -D(z, Q)| < ϵ almost surely, with d P (Q, P) < δ.

  is the function generator for the reference set of curves. In this case the outliers follow the distribution Z Set of outlyingness scores {θ i } N i=1 , and set of outliers o ⊂ {z i } N Check if the sample of functional data is uniformly sampled. Otherwise, Project the data onto a basis shown in 2.2.2 until a desired level of error ||ẑ i -z i ||, where ẑi are the projected samples, is reached.Uniformly resample in this grid; 2. Choose a family of R semimetrics and project {z i } N i=1 into the feature space S; 3. for K ∈ {1, ..., K max } do (a) Choose (manually or randomly) a starting set of parameters

	Algorithm 4: FOD algorithm
	Result:

o (t) = 4t + G(t) + 21 {(t I <t)} . • Model 2. The reference model for the curve generation remains Z(t) = 4t + G(t), whereas the outliers are now generated from the distribution Z o (t) = 4t + G(t) + 21 {(t I <t<t I +3)} . • Model 3. Here the reference model becomes Z(t) = 30t(1 -t) 3/2 + G(t). The outliers are generated from Z o (t) = 30(1 -t)t 3/2 + G(t). • Model 4. For this last case, we keep the reference model as it is for Model 1 and Model 2, but the outliers simply consist of the sole deterministic part Z o (t) = 4t (the Gaussian component is removed).

i=1 1.

Table 2 . 2 :

 22 .2. Description of the common parameters of the models.

Table 2 . 3 :

 23 The results of these tests are summarized in Figures 2.9 and 2.8, as well as in Table2.3. Average rankings of the outlier for each analytical model and combination of features.

	Pairs

of features Model 1 Model 2 Model 3 Model 4

  

	BD-DTW	48.663	41.272	49.621	42.376
	BD-hM	41.342	39.067	49.833	43.643
	DTW-L2	44.551	42.660	50	43.842
	hM-L2	48.937	44.133	49.968	41.929
	hM-DTW	49.225	45.154	49.852	42.343
	BD-L2	44.254	41.418	49.944	43.672

Table 2 . 4 :

 24 .4. Performances of the different algorithms on the test models. The results are expressed as a percentage (detection rates). Algorithm: our proposed algorithm; DO: Directional Detector; FB: Functional Boxplots; HDR: High-Density Regions. N : total sample size. p: proportion of outliers in the sample.

	N=100, p=1%	Model 1 Model 2 Model 3 Model 4
	Algorithm	100.00	96.94	100.00	100.00
	DO	59.26	39.51	100.00	0.00
	FB	2.33	0.00	100.00	0.00
	HDR	89.47	69.64	100.00	0.00
	N=100, p=5%				
	Algorithm	91.14	96.79	99.17	97.50
	DO	58.23	54.40	100.00	0.00
	FB	2.53	4.18	11.95	0.00
	HDR	48.35	44.8	49.48	0.00
	N=100, p=10%				
	Algorithm	81.50	75.49	86.67	92.37
	DO	47.25	45.97	99.63	0.00
	FB	0.75	1.71	7.41	0.00
	HDR	22.25	23.41	14.07	0.00

Table 4 .

 4 1: Basic characteristics of the considered LOCA scenario.

	Characteristic of scenario Physical value
	Break size	15.4 ′′ = 39.1 cm
	Location of break	Cold leg
	Penalizing hypothesis	Loss Of Offsite Power (LOOP)
	Aggravated scenario	Loss of Emergency Diesel Generators (EDG)

Table 4 .

 4 Intermediate Break LOCA (from now on, IBLOCA) transient with the intermediate break located in the cold leg of the primary of a PWR with instantaneous shutdown of the primary pumps due to a LOOP assumption could be decomposed into five main phases, which are summarized in Table4.2. 2: Main phases of the IBLOCA transient.

	Phase Description
	I	Single-phase depressurization of the primary circuit
	II	Void formation and stratification
	III	Drop of water level due to differences of static pressure effects
	IV	Drop of water level due to the loss of water inventory
	V	Injection of water by the accumulators and reflood

Table 4 .

 4 5: Maximum ECR (in %) allowed depending on the initial concentration of hydrogen (H) in the cladding.

	H (ppm) ECR max (%)
	0	17.9
	300	15.4
	600	13.2
	800	11.8
	1040	10.2

Table 4 .

 4 6: Type 1 input parameters (a). HS: Hot Spot, HR: Hot Rod, HA: Hot Assembly, MC: Mean Core, MA: Mean Assembly, MR: Mean Rod, ERF: Enthalpy Rise Factor, HTC: Heat Transfer Coefficient, τ i : Steam/water interface friction multiplicative coefficient, CHF: Critical Heat Flux.

	Variable	Physical meaning	Units Law
	X 1	Total initial thermal power	MWth U
	X 2	Life time of prompt neutrons	s	C
	X 3	Fraction of delayed neutrons	-	C
	X 4	Doppler coefficient of temperature	$/K	C
	X 5	Moderator coefficient parameter	$/K	C
	X 6	Residual power coefficient	-	N
	X 7	Initial primary pressure	Pa	U
	X 8	Average primary temperature	°C	C
	X 9	Average temperature fuel pellets	°C	C
	X 10	Primary flow per loop	m 3 /h U
	X 11	Pressurizer level of water	-	U
	X 12	Low pressure signal	Pa	U
	X 13	Very low pressure signal	Pa	U
	X 14	Multiplicative coefficient of head loss of the pressurizer expansion	-	U
		line		
	X 15	Multiplicative coefficient of axial head loss of the HA	-	U
	X 16	Multiplicative coefficient of radial head loss between HA and MA	-	S
	X 17	Multiplicative coefficient of radial head loss between MA and	-	S
		outer radial mesh		
	X 18	Multiplicative coefficient of head loss of the junction between	-	U
		downcomer and dome		
	X 19	Multiplicative coefficient of nominal primary pump height	m 2 /s 2 U
		multiplied by gravity acceleration		
	X 20	Primary pumps inertia	kg • m 2 U
	X 21	Pressure of the accumulators	Pa	U
	X 22	Initial volume of each accumulator	m 3	U
	X 23	Height of the connection between HR and HA	m	U
	X 24	Height of the connection between MR and HA	m	U
	X 25	Power axial offset in the core for MR	-	U
	X 26	Power axial offset in the core for HR	-	U
	X 27			

HS: technological uncertainty of thermal deformation of the fuel -N

Table 4 . 7

 47 Heat Transfer Coefficient, τ i : Steam/water interface friction multiplicative coefficient, CHF: Critical Heat Flux.

	Variable	Physical meaning

: Type 1 input parameters (b). HS: Hot Spot, HR: Hot Rod, HA: Hot Assembly, MC: Mean Core, MA: Average Assembly, AR: Average Rod, ERF: Enthalpy Rise Factor, HTC:

Table 4 . 8

 48 Heat Transfer Coefficient, τ i : Steam/water interface friction multiplicative coefficient, CHF: Critical Heat Flux.

	Variable	Physical meaning

: Type 2 input parameters (a). HS: Hot Spot, HR:Hot Rod, HA: Hot Assembly, MC: Mean Core, MA: Average Assembly, MR: Average Rod, ERF: Enthalpy Rise Factor, HTC:

Table 4 . 9

 49 Heat Transfer Coefficient τ i : Steam/water interface friction multiplicative coefficient, CHF: Critical Heat Flux.

	Variable	Physical meaning

: Type 2 input parameters (b). HS: Hot Spot, HR: Hot Rod, HA: Hot Assembly, MC: Mean Core, MA: Average Assembly, MR: Average Rod, ERF: Enthalpy Rise Factor, HTC: 92 Condensation in safety injection jet located in intact loops -U X 93 Condensation in stratified flow in intact loops -S

Table 4 .

 4 11: Fixed penalized input variables for the IBLOCA transient.

	Variable	Physical meaning	Units	Value
	X 94	Break size	cm	39
	X 95	Fuel Burn-up in the HR and HA	MWday/ton	34000
	X 96	Axial offset of nuclear power in the AR	-	0
	X 98	Liquid enthalpy of the water of the accumulators	J/kg	33500
	X 99	Initial temperature of water in ECCS	°C	20.657
	X 102	Multiplicative coefficient of water mass flow in the	-	0.0409
		auxiliary water system		
	X 103	Temperature of water in the emergency feedwater system	°C	17.410
		of the SG		
	• Liquid flow (kg/s) at the top of the core		
	(MC)			

Table 4 .

 4 [START_REF] Barreyre | Multiple testing for outlier detection in space telemetries[END_REF]: Identified influential variables according to the TSA through HSIC measures in the S domain.

	Variable	Physical meaning	Units	Law	p-value	in-
					dependence
					test	
	X 86	τ i in the downcomer during the reflood phase J/m 3	LN	0.0236	
	X 51	Multiplicative factor for HTC between fuel	-	LN	0.024	
		rods and coolant in HA and MC downstream				
		of the quenching front				
	X 70	Multiplicative factor of axial head loss coeffi-	-	U	0.0251	
		cient due to fuel ballooning				
	X 91	HTC interface steam and liquid in the down-	-	LN	0.062	
		comer				
	X 52	τ i in core during the reflood phase	J/m 3	LN	0.0623	

Table 4 .

 4 14: Effect of increasing the values of the relevant inputs on the safety criterion, the peak cladding temperature.

	Variable	Physical meaning	Trend	Impact on
				PCT
	X 86	τ i in the downcomer during the reflood phase	↑	↑
	X 51	Multiplicative factor for HTC between fuel rods	↑	↓
		and coolant in HA and MC downstream of the		
		quenching front		
	X 70	Multiplicative factor of axial head loss coefficient	↑	↑
		due to fuel ballooning		
	X 91	HTC interface steam and liquid in the downcomer	↑	↓
	X 52	τ i in core during the reflood phase	↑	↓
	X 97	k/A 2 (friction between water and pipe walls) in	↑	↑
		the discharge line of the accumulators		

Table 4 .

 4 [START_REF] Bertrand | Transient analysis of the ASTRID demonstrator including a gas nitrogen power conversion system with the CATHARE2 code[END_REF]: KW tests for equality of distributions regarding the uncovery of the core. S: same distributions, D: different distributions.

		Analyzed parameter	Statistic p-value Conclusion
		Moment first uncovery	0.77815	0.37732	S
		Existence of second uncovery 7.62700 0.00575 D
	Second Unc.	No Second Unc.		

  • C and 155 bar), with the associated mechanical stresses involved in operation. The assessment of the risk of crack initiation consists in comparing

		C o m p r e s s i o n	
	Interior wall, it tends to stretch	T e n s i o n	Exterior wall, it tends to shrink

Table 5 . 1 :

 51 Basic characteristics of the considered PTS scenario.

Characteristic of scenario Physical value

  

	Reactor	900MWe
	Break size	3 ′′ = 7.62 cm
	Position of break	Hot leg
	Penalizing hypothesis	Maximized residual power
	Aggravated scenario	Loss of Emergency Diesel Generators (EDG)

Table 5 .

 5 2: Main phases of the LOCA transient leading to a PTS risk.

Table 5 .

 5 3: Uncertain input parameters of the CATHARE2 modeling of the LOCA transient susceptible of originating the PTS.

	Variable	Physical meaning	Units Law
	X 1	Initial enthalpy of the accumulators' water	J/kg	U[33740, 108880]
	X 2	Initial pressure in the accumulators	bar	U[41.37, 43.85]
	X 3	K/A 2 friction in the discharge line of	m -4	U[800, 1900]
		accumulators		
	X 4	Initial temperature water reservoir for ECCS	°C	U[7, 60]
	X 5	Water flow coefficient high pressure ECCS (α HP ) -	U[0, 1]
	X 6	Water flow coefficient low pressure ECCS (α LP )	-	U[0, 1]

Table 5 .

 5 4: Considered breakpoint events for the LOCA transient leading up to a PTS. The provided times of occurrence are approximated and depend on the individual progression of the transient in each case.

	Event

Table 5 .

 5 5: Identified influential variables according to the TSA through HSIC measures in the S domain. The influential variables are clearly distinguished, and do not depend on the choice of the significance level α for the test. Any standard choice of α = 0.01, 0.05 or 0.1 yields the same set of influential variables.

	Variable Physical meaning	Units	p-value	in-
				dependence
				test
	X 1	Initial enthalpy of the accumulators' water	J/kg	0.68
	X 2	Initial pressure in the accumulators	bar	0.32
	X 3	K/A 2 friction in the discharge line of accumu-	m -4	0.45
		lators		
	X 4	Initial temperature water reservoir for ECCS °C	0.0000
	X 5	Water flow coefficient high pressure ECCS	-	0.0000043
	X 6	Water flow coefficient low pressure ECCS	-	3 × 10 -11

Table B .

 B 2: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 2 (z s )| intermediate parameter applied to the maximum cladding temperature. S: same distributions, D: different distributions.

	t i+1 t i	t i+1 = max(z s )| t i		
		Interval Statistic p-value	Conclusion
		[t 1 , t 2 ]	1.13243	0.28725	S
		[t 2 , t 3 ]	1.33762	0.24745	S
		[t 3 , t 4 ]	0.88694	0.34630	S
		[t 4 , t 5 ]	5.79816	0.016042 D
		[t 5 , ∞)	45.86510 0.00000	D
				187

Table B .

 B 3: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 3 (z s )| intermediate parameter applied to the maximum cladding temperature. S: same distributions, D: different distributions.Table B.4: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 3 (z s )| intermediate parameter applied to the swollen level of water in the core. S: same distributions, D: different distributions. Table B.5: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 1 (z s )| intermediate parameter applied to the total water mass in the core. S: same distributions, D: different distributions. Table B.6: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 2 (z s )| intermediate parameter applied to the total water mass in the core. S: same distributions, D: different distributions. Table B.7: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 3 (z s )| intermediate parameter applied to the total water mass in the core. S: same distributions, D: different distributions. Table B.8: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 2 (z s )| intermediate parameter applied to the total water mass in the downcomer. S: same distributions, D: different distributions.

	t i+1 t i t i+1 t i	= E[z s ]| t i+1 t i = max(z s )| t i+1 t i		
		Interval Statistic p-value Conclusion Interval Statistic p-value Conclusion
		[t 1 , t 2 ] [t 1 , t 2 ]	1.27647 0.00340	0.25855 0.95346	S S
		[t 2 , t 3 ] [t 2 , t 3 ]	0.90844 0.00000	0.34052 0.99935	S S
		[t 3 , t 4 ] [t 3 , t 4 ]	0.876293 1.10500	0.34921 0.29316	S S
		[t 4 , t 5 ] [t 4 , t 5 ]	11.9712 0.17219	0.00054 D 0.67816 S
		[t 5 , ∞) [t 5 , ∞)	42.95961 0.00000 D 39.19967 0.00000 D
	t i+1 t i t i+1 t i	= E[z s ]| t i+1 t i t i+1 = E[z s ]| t i		
		Interval Statistic p-value Conclusion Interval Statistic p-value Conclusion
		[t 1 , t 2 ] [t 1 , t 2 ]	3.23287 0.418303	0.07217 D 0.51778 S
		[t 2 , t 3 ] [t 2 , t 3 ]	0.87553 0.00945	0.34942 0.92252	S S
		[t 3 , t 4 ] [t 3 , t 4 ]	0.42832 0.71732	0.51281 0.39702	S S
		[t 4 , t 5 ] [t 4 , t 5 ]	0.14020 0.76902	0.70807 0.38051	S S
		[t 5 , ∞) [t 5 , ∞)	47.94558 0.00000 D 38.07125 0.00000 D
	t i+1 t i t i+1 t i	= min(z s )| t i+1 t i t i+1 = max(z s )| t i		
		Interval Statistic p-value Conclusion Interval Statistic p-value Conclusion
		[t 1 , t 2 ] [t 1 , t 2 ]	0.32555 0.00696	0.56828 0.93347	S S
		[t 2 , t 3 ] [t 2 , t 3 ]	2.94392 8.00085 0.00467 D 0.08620 D
		[t 3 , t 4 ] [t 3 , t 4 ]	0.30553 6.84467 0.00889 D 0.58043 S
		[t 4 , t 5 ] [t 4 , t 5 ]	3.15621 1.00838	0.07563 D 0.31528 S
		[t 5 , ∞) [t 5 , ∞)	40.78851 0.00000 D 2.26033 0.13272 S

Table B .

 B 9: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 3 (z s )| intermediate parameter applied to the total water mass in the Downcomer. S: same distributions, D: different distributions. Table B.10: KW tests for equality of distributions regarding the uncovery of the core. S: same distributions, D: different distributions.

		t i+1 t i	t i+1 = E[z s ]| t i		
		700		Interval Statistic p-value Conclusion
	Min temperature (°C)	300 400 500 600		[t 1 , t 2 ] [t 2 , t 3 ] [t 3 , t 4 ]	7.60245 7.25784 4.64432	0.00582 D 0.00705 D 0.03115 D
				[t 4 , t 5 ]	1.35266	0.24481	S
		200			
		Inliers	[t 5 , ∞)	31.30121 0.00000 D Outliers
			Analyzed parameter	Statistic p-value Conclusion
			Moment first uncovery	0.77815	0.37732	S
			Existence of second uncovery 7.62700 0.00575 D

(a) Boxplot. Minimum cladding temperature in [t 4 , t 5 ].

Table C .

 C 1: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 1 (z s )| applied to the liquid temperature in the collector. S: same distributions, D: different distributions.

	t i+1		
	t Interval Statistic p-value	Conclusion
	[t 1 , t 2 ]	25.06476 5.54365 × 10 -7	D
	[t 2 , t 3 ]	31.23626 2.28458 × 10 -8	D
	[t 3 , t 4 ]	36.22641 1.75672 × 10 -9	D
	[t 4 , ∞)	51.52518 7.06845 × 10 -11 D

i = min(z s )| t i t i+1 intermediate parameter

Table C .

 C 2: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 2 (z s )| applied to the liquid temperature in the collector. S: same distributions, D: different distributions.

	t i+1 t i	= max(z s )| t i	t i+1 intermediate parameter Interval Statistic p-value	Conclusion
			[t 1 , t 2 ]	28.84936	7.82314 × 10 -8 D
			[t 2 , t 3 ]	27.622552 1.47449 × 10 -7 D
			[t 3 , t 4 ]	29.83075	4.71453 × 10 -8 D
			[t 4 , ∞)	34.49552	4.27232 × 10 -9 D
					201

Table C .

 C 3: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 3 (z s )| intermediate parameter applied to the liquid temperature in the collector. S: same distributions, D: different distributions. , ∞) 86.46078 1.42535 × 10 -20 D Table C.4: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 1 (z s )| = min(z s )| t i t i+1 intermediate parameter applied to the primary pressure. S: same distributions, D: different distributions.

	t i+1 t i	= E[z s ]|	t i+1 t i	
			Interval Statistic p-value	Conclusion
			[t 1 , t 2 ]	28.81307 7.97111 × 10 -8	D
			[t 2 , t 3 ]	31.17290 2.36037 × 10 -8	D
			[t 3 , t 4 ]	33.12639 8.63584 × 10 -9	D
	[t 4 t i+1	
	t i			
			Interval Statistic p-value	Conclusion
			[t 1 , t 2 ]	27.40726 1.6481 × 10 -7	D
			[t 2 , t 3 ]	48.7868	2.8534 × 10 -12	D
			[t 3 , t 4 ]	47.23391 6.30008 × 10 -12 D
			[t 4 , ∞)	4.97092	0.02577	D

Table C .

 C 5: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 2 (z s )| , t 3 ] 23.89051 1.019729 × 10 -6 D [t 3 , t 4 ] 48.76799 2.88103 × 10 -12 D [t 4 , ∞) 47.34161 5.96325 × 10 -12 D Table C.6: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 3 (z s )| intermediate parameter applied to the primary pressure. S: same distributions, D: different distributions.

	t i+1 t i	= max(z s )| t i	t i+1 intermediate parameter applied to the primary pressure. S: same
	distributions, D: different distributions.
			Interval Statistic p-value	Conclusion
			[t 1 , t 2 ]	0.01780	0.89384	S
	[t 2 t i+1 t i t i+1 = E[z s ]| t i	
			Interval Statistic p-value	Conclusion
			[t 1 , t 2 ]	34.48283 4.30026 × 10 -9	D
			[t 2 , t 3 ]	46.02064 1.17013 × 10 -11 D
			[t 3 , t 4 ]	53.80216 2.21728 × 10 -13 D
			[t 4 , ∞)	11.84469 0.00057	D

Table C .

 C 7: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 2 (z s )| = max(z s )| t i t i+1 intermediate parameter applied to the mass flow of water in the collector of the downcomer. S: same distributions, D: different distributions.

	t i+1			
	t i			
	Interval Statistic p-value	Conclusion
	[t 1 , t 2 ]	14.96037 0.00011	D
	[t 2 , t 3 ]	23.28591 1.39618 × 10 -6	D
	[t 3 , t 4 ]	42.11727 8.59606 × 10 -11 D
	[t 4 , ∞)	4.25183	0.03920	D

Table C .

 C 8: KW tests for equality of distributions in each time interval defined by the breakpoint events between the samples of outlying transients and inlying ones for the h 3 (z s )| intermediate parameter applied to the mass flow of water in the collector of the downcomer. S: same distributions, D: different distributions. Minimum water temperature in the collector in [t 1 , t 2 ]. Minimum water temperature in the collector in [t 2 , t 3 ]. Water temperature in the collector for the h 1 (z s )|

	278 280 282 284 Min temperature (°C)						260 210 220 230 240 250 Min temperature (°C)
	Inliers (a) Inliers Outliers 276 200 170 70 (b) Inliers Outliers 110 Inliers 10 120 130 140 150 160 Min temperature (°C) 20 30 40 50 60 Min temperature (°C)	Outliers Outliers
	(c) Minimum water temperature in the	(d) Minimum water temperature in the
	collector in [t 3 , t 4 ].				collector in [t 4 , ∞).
	t i+1 t i 294.0 294.1 294.2 294.3 294.4 294.6 294.5 Max temperature (°C)	= E[z s ]| t i+1 t i	Interval Statistic p-value	285 281 282 283 284 Max temperature (°C)	Conclusion
	293.9	Inliers	[t 1 , t 2 ] [t 2 , t 3 ]	33.44733 10.78052 Outliers	7.32200 × 10 -9 0.00102 280	D D Inliers	Outliers
	[t 3 , t 4 ] (e) Maximum water temperature in the 10.461955 0.0012188 (f) Maximum water temperature in the D
	collector in [t 1 , t 2 ].	[t 4 , ∞)	24.20434	8.663664 × 10 -11 D collector in [t 2 , t 3 ].
	Figure C.1: t i+1 t i h 2 (z s )| t i+1 t i = max(z s )| t i+1 t i intermediate parameter.	= min(z s )| t i+1 t i	and

Analyse statistique des résultats de simulations numériques de situations accidentelles sur les réacteurs à eau pressurisée Résumé -

  Minimum primary pressure in [t 1 , t 2 ]. Minimum primary pressure in [t 2 , t 3 ]. Primary pressure for the h 1 (z s )| Maximum primary pressure in [t 3 , t 4 ]. Mean primary pressure in [t 3 , t 4 ]. Mean primary pressure in [t 4 , ∞). Figure C.4: Primary pressure for the h 3 (z s )| Mean water flow in the collector in [t 3 , t 4 ]. Figure C.6: Water flow in the collector for the h 3 (z s )| Les études de sûreté nucléaire reposent de plus en plus sur l'utilisation de simulateurs numériques (notamment le code français thermohydraulique CATHARE2 ) capables de fournir la meilleure estimation possible des grandeurs physiques pertinentes pour l'évaluation de la sûreté des centrales nucléaires. Dans ce contexte, l'utilisation de ces codes présente des défis scientifiques liés au coût de calcul de chaque simulation, aux phénomènes physiques complexes (non linéaires) qui interviennent dans les transitoires nucléaires accidentels, ainsi qu'à l'incertitude associée des données d'entrée, des modèles physiques du code et de ses sorties. Dans l'ensemble, l'analyse approfondie des transitoires nucléaires accidentels nécessite une connaissance du domaine par des ingénieurs spécialisés, et l'estimation des Quantités d'Intérêt (QoI) statistiques pertinentes liées à la sûreté nucléaire dépend d'outils avancés de Quantification des Incertitudes (UQ). Cette thèse développe des méthodes statistiques d'analyse des sorties de simulations d'accident nucléaires. La recherche d'outliers dans les ensembles de données de sortie disponibles fournit des informations concernant la détection de configurations pénalisantes dans les accidents nucléaires. Elle permet également d'effectuer des études de validation et facilite la tâche d'analyse des transitoires les plus pertinents. La première contribution principale de ces travaux est liée au domaine de la détection d'outliers fonctionnels. Nous présentons une méthodologie permettant la détection d'outliers fonctionnels de différents types (magnitude, forme), sans hypothèses préalables sur le processus de génération des données. Cette méthode est comparée à d'autres techniques existantes afin de justifier son utilisation dans l'analyse des sorties complexes fournies par le code CATHARE2. Nous proposons une méthodologie d'analyse physique systématique basée sur des outils avancés d'analyse de sensibilité (SA), simplifiant l'analyse des transitoires nucléaires en comparant les échantillons de sortie outlier et inlier. Enfin, les méthodologies développées sont appliquées avec succès à deux cas d'application de transitoires nucléaires accidentels. D'une part, nous analysons un Accident de Perte de Réfrigérant Primaire (APRP), démontrant comment les méthodologies proposées ont été capables d'identifier les incohérences physiques dans l'ensemble des sorties du code. D'autre part, une étude sur un transitoire nucléaire pouvant conduire à un choc thermique préssurisé (PTS) montre l'intérêt de la méthodologie dans les cas où les marges de sécurité sont obtenues comme résultat d'un chaînage de codes thermo-hydraulique et mécanique. Données fonctionnelles, Détection d'outliers fonctionnels, Sûreté nucléaire, Simulations de transitoires nucléaires.

	Inliers (a) Inliers Outliers 72.50 72.75 73.00 73.25 73.50 73.75 74.25 52 12.0 52 74.00 Min. pressure (bar) 47 48 49 50 51 Min. pressure (bar) 12.0 6.6 Inliers Outliers 49 50 51 Max. pressure (bar) 10.5 11.0 11.5 Max. pressure (bar) 48 10.0 38 47 (a) Inliers (b) Maximum primary pressure in Outliers Outliers [t 4 , ∞). Mean Flow (kg/s) 30 32 34 36 Mean Flow (kg/s) (b) Inliers Outliers 9.5 10.0 10.5 11.0 11.5 Min. pressure (bar) Inliers Outliers 5.4 5.6 5.8 6.0 6.2 6.4 Min. pressure (bar) Inliers Outliers 0.010 0.015 0.020 0.025 0.030 0.035 Max. pressure (bar) +1.18e2 Inliers Outliers 72.50 72.75 73.00 73.25 73.50 73.75 74.00 74.50 Inliers Outliers 79.0 79.4 79.6 79.8 66.5 Inliers Outliers Inliers Outliers 28 80.0 Mean pressure (bar) 64.0 64.5 65.0 65.5 66.0 Mean pressure (bar) 79.2 Inliers Outliers 63.5 110 63.0 Mean Flow (kg/s) 70 80 90 100 Mean Flow (kg/s) 60 74.25 24.00 8.50 50 Max. pressure (bar) 22.25 22.50 22.75 23.00 23.25 23.50 23.75 Mean pressure (bar) 7.00 7.25 7.50 7.75 8.00 8.25 Inliers Outliers (c) Inliers Outliers (d) Mean water flow in the collector in [t 4 , ∞). Mean pressure (bar) t i+1 t i = E[z s ]| t i+1 t i intermediate parameter.
	t i+1 t i (f) Maximum primary pressure in in = E[z s ]| t i+1 t i and h 2 (z s )| t i+1 [t 2 , t 3 ]. = min(z s )| t i+1 t i and h 2 (z s )| t i+1 t i = max(z s )| t i+1 t i Outliers (e) Inliers (e) Maximum primary pressure in in [t 1 , t 2 ]. Figure C.3: t i+1 t i Inliers Outliers (f) t i+1 t i = E[z s ]| t i+1 t i and h 2 (z s )| t i+1 t i t i+1 = max(z s )| t i = intermediate parameter. intermediate parameter. t i max(z s )| t i+1 t i intermediate parameter. Mots clés :

(c) Minimum primary pressure in [t 3 , t 4 ]. (d) Minimum primary pressure in [t 4 , ∞). (c) Mean primary pressure in [t 1 , t 2 ]. (d) Mean primary pressure in [t 2 , t 3 ]. (a) Mean water flow in the collector in [t 1 , t 2 ]. (b) Mean water flow in the collector in [t 2 , t 3 ].

i ∈ [0.9, 1].
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The uncertainty of the input variables is modeled through their probability density laws, which will be Normal (N ), Log-Normal (LN ), Uniform (U), Log-Uniform (LU), Specific (S) and Constant (C), where the Normal and Log-Normal laws are truncated to the [-3σ, +3σ] domain, where σ is the standard deviation of the law. Amongst all these possible physical variables, several of them have been fixed to penalizing values in current safety analyses [START_REF] Marrel | Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor[END_REF] (values that lead to closer values of physical quantities of interest to the safety criteria). In particular, the scenario variables, especially those that present a higher impact over the PCT. The fixed variables are presented in Table 4.11.

Concerning the outputs of CATHARE2, the chosen functional outputs provided by the code are:

• Gas mass flow (kg/s) at the break.

• Liquid mass flow (kg/s) at the break • Gas flow (kg/s) at the bottom of the core (MC)

• Gas flow (kg/s) at the top of the core (MC)

• Liquid flow (kg/s) at the bottom of the core (MC) analysis methodology.

Appendix A Kruskal-Wallis H-test

The H-test of Kruskal-Wallis [START_REF] Kruskal | Use of ranks in one-criterion variance analysis[END_REF] aims at identifying two or more statistical samples have been generated by the same distribution. In order to tackle this problem, the authors propose to substitute the original data of the sample with their ranks, i.e., to sequentially assemble the data by order of magnitude and assign a value of 1 to the smallest, of 2 to the second smallest and so on. The largest value among the samples will a rank of N , where N corresponds to the size of the sample that combines the whole set of data.

Let us denote by C the total number of samples that are analyzed, and let n i , i ∈ {1, ..., C} be the number of observations in each one of those samples. The test writes: H 0 : The C samples have been generated by the same distribution.

The considered test is usually called the H-test, the Kruskal-Wallis test or the one-way analysis of variance. It relies upon the calculation of the following test statistic:

where C is the number of samples, n i corresponds to the number of observations in the ith sample, N = i = 1 C n i the total number of observations, i.e., if all samples are combined, and R i corresponds to the sum of the ranks in the ith sample.

Whenever the samples come from identical continuous distributions the test statistic follows a χ 2 (C -1) distribution, and its values may be obtained through the use of the χ 2 tables.
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In practice, if the samples differ by more factors than only their medians, this remains an approximation of the distribution, but the associated error is still small according to [START_REF] Kruskal | Use of ranks in one-criterion variance analysis[END_REF] whenever the samples are not very small (namely, below 5 observations).

The null hypothesis is rejected for large values of H, i.e., it is rejected on the right-hand tail of the χ 2 (C -1) distribution.

In the case where ties may exist between the observations, the authors propose a correction to the test. In this case, tied observations is given the mean of the ranks for which it is tied, and the test statistic H is divided by:

where the summation is made over all the groups that present ties and T = (t -1)t(t + 1) = t 3 -t for every group of ties. The variable t represents the total number of tied observations in every group. The general form of the test statistic H is then written:

As we can see, in the case where there are no ties T = 0 and the expression in (A.4) becomes (A.2). In practice, whenever the compared samples do not actually follow the same distributions albeit they may present a shift or translation with respect to each other, then the test can only rightfully assume that the considered distributions are different, but not how, and care must be taken when analyzing the causes of these differences. In practice, knowledge about the nature of the samples is necessary to provide a deeper insight in that regard.

All in all, the H-test is a practical and useful way of analyzing if two or more samples of data haven generated by the same process for several reasons. Firstly, it does not make any strong assumptions over the nature of the analyzed data, such as normality, or equality of sizes of the samples. It does not require homogeneity of group variance either, thus making it a fast and flexible tool to tackle the presented problem.

Appendix B

Comparison of samples IBLOCA