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Si tout s’est bien passé pendant trois ans, c’est aussi et surtout grâce aux cobu-
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Résumé

Abstract

Non-invasive spline-based shape optimization strategies development
for experimental mechanics

Keywords: B-spline reduced basis, Free-Form Deformation, Multilevel design, Non-
invasive implementation, Digital Image Correlation, Material constitutive parame-
ters identification.

Digital Image Correlation (DIC) techniques have spread widely over the last
few decades. They allow performing full-field measurements, which serves several
purposes in the experimental mechanics domain, typically to measure shapes, dis-
placement fields or to identify material constitutive parameters on mechanical spec-
imens. However, obtaining an accurate measured field is not straightforward, as
it comes from the resolution of an ill-posed inverse problem. Setting an approxi-
mation subspace for the solution field is thus necessary. Among other choices, the
Finite Element (FE) space allows for a direct coupling between the measured field
and the simulated one, by using the same mesh for both fields. Yet, fine meshes,
which ensure good simulation results, may lead to irregular noisy measured fields
because of the ill-posedness of the problem. Generally, a Tikhonov regularization,
based on the addition of a penalization term, is used, but this technique tends to
alter parts of the true solution. Interestingly, structural shape optimization brings
comparable concerns. To avoid getting unrealistic geometries, the use of FE degrees
of freedom as design variables for shape optimization has soon been replaced with
the use of coarser, smoother tools such as CAD models, which imply the use of
spline functions. Several methods, such as multilevel strategies, or the use of Free-
Form Deformation (FFD) spline morphing boxes, have been developed in the shape
optimization domain to improve the optimization process. In this work, we draw
inspiration from shape optimization to regularize several optimization problems in
experimental mechanics, such as displacement measurement, shape measurement
and also the improvement of the specimen shape to minimize identification uncer-
tainties. Linking the FE space to the spline space, we propose a non-invasive regu-
larization for DIC problems, based on the use of a well-chosen projection, first on a
boundary-fitted (analysis-suitable) CAD model of the specimen, then extending the
method to any geometry described with an arbitrary FE mesh thanks to a morphing
box. A multilevel procedure is used by coupling coarse graining in DIC with the
refinement properties of splines functions. Solutions are proposed to tackle condi-
tioning issues occurring with the FFD method by handling non-influential control
points, and a novel procedure based on additional projections over local directions
complements the FFD method for full efficiency in 3D mesh-based shape measure-
ment. The proposed method was successfully applied to real images coming from
experimental tests and compared to the commonly used Tikhonov regularization.
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The developed tools are then used to optimize the fine (FE) description of the ge-
ometry of a pre-existing specimen with very few design variables in order to improve
the identification of constitutive parameters. Morphing boxes are adapted to ensure
that all design variables are useful, and mesh deformation propagation is carried
out to avoid remeshing at each geometry update. A specific care is taken to define
a cost function and constraint functions guaranteeing that the improved specimen
geometry is physically sound and adapted to the associated mechanical experiment.
Attention is also paid to the effect of boundary conditions on the constitutive pa-
rameters sensitivity. Eventually, the developed algorithm is validated on a simple
traction beam and then applied to a more complex specimen to identify several pa-
rameters at once, leading to a significant reduction of the identification uncertainty.

Résumé court

Développement de stratégies d’optimisation de forme non-intrusives
basées sur les splines pour la mécanique expérimentale

Mots-clés : Base réduite B-spline, Free-Form Deformation, Design multiniveaux,
Implémentation non-intrusive, Corrélation d’Images Numériques, Identification de
paramètres matériau.

Les techniques de Corrélation d’Image Numérique (CIN) se sont largement ré-
pandues ces dernières décennies. Elles permettent de réaliser des mesures de champs
complets, et ont diverses utilisations en mécanique expérimentale, par exemple pour
la mesure de forme, de champ de déplacement, ou l’identification de paramètres de
comportement de matériaux sur des éprouvettes mécaniques. Cependant, l’obtention
du champ mesuré n’est pas immédiate et vient de la résolution d’un problème in-
verse. Il est alors nécessaire de choisir l’espace de recherche du champ solution.
Entre autres, le sous-espace vectoriel des champs Eléments Finis (EF) permet un
couplage direct entre un champ mesuré et un champ simulé, grâce à l’utilisation
du même maillage pour les deux champs. Toutefois, les maillages de simulation,
assez fins, peuvent conduire à la mesure de champs irréguliers à cause du car-
actère mal-posé du problème à résoudre. En général, une régularisation de Tikhonov
est utilisée (ajout d’un terme de pénalisation), mais cette technique a tendance à
altérer certaines parties de la vraie solution. Il est intéressant de constater que
le domaine de l’optimisation de forme traite de préoccupations similaires. En ef-
fet, pour éviter d’obtenir des géométries non réalistes, l’utilisation de degrés de
liberté (ddl) EF a rapidement fait place à l’utilisation d’outils plus réguliers avec
moins de ddl, comme les modèles CAO, qui font intervenir des fonctions splines.
Différentes méthodes ont ensuite été développées dans la communauté d’optimisation
de forme pour améliorer le processus d’optimisation, comme des stratégies multi-
niveaux, ou l’utilisation d’enveloppes splines FFD (de l’anglais Free-Form Deforma-
tion). Dans cette thèse, nous nous inspirons des stratégies d’optimisation de forme
pour régulariser trois problèmes d’optimisation en mécanique expérimentale : la
mesure de champ de déplacement, de forme, et l’amélioration de la forme d’une
éprouvette mécanique pour minimiser des incertitudes d’identification. En CIN,
un lien entre l’espace EF et l’espace spline permet de proposer une régularisation
non-intrusive basée sur une projection bien choisie, d’abord sur un modèle CAO
de l’éprouvette, adapté à l’analyse, puis en généralisant la méthode à n’importe
quelle géométrie décrite par un maillage EF quelconque, grâce à une enveloppe
FFD. Une procédure multiniveau couplant une stratégie d’agrégation de pixels avec
les propriétés de raffinement des fonctions splines est utilisée. Des solutions sont pro-
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posées pour résoudre les problèmes de conditionnement survenant avec la méthode
FFD en gérant les points de contrôle non influents, et une nouvelle procédure de
projections supplémentaires sur des directions locales complète avantageusement
la méthode FFD pour la mesure de forme sur un maillage 3D. La méthode pro-
posée a été appliquée avec succès à des images réelles issues d’essais expérimentaux
et comparée à la régularisation de Tikhonov, qui est la plus couramment utilisée.
Les outils développés sont ensuite utilisés pour optimiser la description fine (EF)
de la géométrie d’une éprouvette préexistante, avec peu de variables de design
afin d’améliorer l’identification des paramètres matériau. Les enveloppes FFD sont
adaptées pour que toutes les variables de design soient utiles, et une propagation de
la déformation du maillage permet d’éviter le remaillage à chaque itération. Un soin
particulier est apporté à la définition de la fonction coût et des fonctions contraintes,
garantissant que la géométrie finale de l’éprouvette est physiquement acceptable et
est adaptée à l’essai mécanique associé. L’effet des conditions aux limites sur la sen-
sibilité aux paramètres matériau est également traité. Enfin, l’algorithme développé
est validé sur une poutre simple en traction, puis appliqué à une éprouvette plus com-
plexe dans le but d’identifier plusieurs paramètres à la fois, menant à une réduction
significative de l’incertitude sur les paramètres identifiés.

Résumé long en français

La langue choisie pour la rédaction de ce manuscrit étant l’anglais, voici un résumé
plus long, en langue française, de son contenu. Ce résumé vient compléter le résumé
court.

Dans ce manuscrit, nous montrons le potentiel des fonctions splines dans le cadre
de trois problèmes d’optimisation : la mesure de champs de déplacement Eléments
Finis (EF) par Corrélation d’Images Numériques (CIN), la mesure de forme 3D
basée sur des maillages EF par stéréo-CIN, ainsi que l’optimisation de forme d’une
éprouvette mécanique vis-à-vis de l’identification de paramètres de comportement
de matériaux.

Le premier chapitre, à travers une revue de la littérature, présente les trois
problèmes d’optimisation et identifie certains de leurs verrous. Pour la CIN basée
sur les EF (CIN-EF), l’utilisation de maillages EF adaptés à l’analyse (analysis-
suitable FE meshes en anglais), nécessaire pour le couplage direct avec des logiciels
de simulation EF, génère des résultats bruités, autant pour la mesure de forme que
de champs de déplacement. Ce bruit vient du trop grand nombre de nœuds EF
(et donc de variables de design) par rapport à la quantité de données, et de la
faible régularité entre éléments EF. Pour le problème d’optimisation de forme de
l’éprouvette mécanique, l’optimisation paramétrique n’offre qu’un faible éventail de
géométries. De l’autre côté, l’optimisation topologique (en particulier celle basée
sur la méthode SIMP) nécessite de faire un choix (fastidieux) de paramètres de
pénalisation, et de procéder à une étape de post-traitement avant d’obtenir une
géométrie qui ait un sens physique, et ce à cause d’un trop grand nombre de vari-
ables de design et de la faible régularité des bords obtenus. Dans tous les cas
étudiés, les défauts rencontrés viennent de la trop grande dimension de l’espace de
recherche, ainsi que des fonctions de base de cet espace qui ne sont pas suffisam-
ment régulières. Les fonctions splines sont parfaitement appropriées pour résoudre
ces problèmes. Leur grande régularité, ainsi que leurs autres propriétés comme leur
support local et leurs procédures automatiques de raffinement, sont idéales dans
le cadre de l’optimisation de forme, et de manière générale dans tout problème
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d’optimisation régulier. De plus, elles forment un sous-espace vectoriel de l’espace
vectoriel EF, ce qui fait des fonctions splines d’excellentes candidates pour une ap-
proche CAO non-intrusive. Une approche plus générale basée sur le concept FFD
(de Free-Form Deformation) permet d’étendre l’utilisation de variables de design
spline à des champs définis en des points physiques quelconques.

Dans le second chapitre, la stratégie CAO non-intrusive que nous avons développée
est présentée, et appliquée au problème de mesure de forme 3D EF. L’extracteur de
Lagrange (ou son approximation dans le cas des NURBS) est exprimé sous forme
d’une matrice globale, puis appliqué aux opérateurs CIN de mesure de forme, après
une étape de projection selon la normale exprimée elle aussi sous forme matricielle,
et qui permet d’éviter des corrections de forme qui ne modifient pas la géométrie.
Une approche multiniveaux couplant les étapes d’agrégation des pixels dans les im-
ages avec différents niveaux de raffinement des splines permet d’obtenir une conver-
gence plus rapide de l’algorithme de mesure de forme. Une attention particulière est
portée aux conditions lumineuses pour prendre en compte des réflexions spéculaires
sur l’éprouvette. La méthode est ensuite validée sur des images réelles d’une plaque
trouée dans deux configurations : une configuration où l’éprouvette subit une légère
torsion, et une configuration plane. La stratégie CAO non-intrusive multiniveaux
convient au cas où un maillage CAO adapté à l’analyse est disponible, et elle fournit
à la fois un champ CAO et son expression comme un champ EF. Elle permet donc
de réaliser une vraie mesure de forme CAO, et ce uniquement grâce aux logiciels EF
classiques. Cependant, d’un point de vue champ EF, la méthode est restreinte aux
maillages EF qui sont inclus dans l’espace vectoriel CAO. Ils sont donc obligatoire-
ment composés d’éléments quadrangles Q9 (et non Q8) lorsqu’on travaille en degré
2.

Le troisième chapitre ouvre la possibilité d’utiliser une plus grande variété de
maillages EF (géométrie et type d’éléments quelconques), et plus seulement des mail-
lages EF qui découlent de modèles CAO adaptés à l’analyse. L’approche développée,
basée sur le concept FFD, consiste à immerger la description EF de la géométrie
dans une enveloppe spline (spline morphing box en anglais). L’enveloppe est choisie
comme un hyperrectangle de dimension δ (segment si δ = 1, rectangle si δ = 2,
parallélépipède rectangle si δ = 3), de telle sorte que le mapping entre le domaine
paramétrique et le domaine physique soit l’identité. Cette approche peut être vue
comme une généralisation de l’approche CAO, et nous montrons qu’elle aboutit à
un schéma non-intrusif similaire, basé sur une projection sur un espace plus régulier
(spline) grâce à un opérateur creux. Un parallèle est tiré entre la méthode proposée
et les approches de type domaine fictif, puis avec les approches modèles réduits. De
façon similaire à ce qui est fait dans la communauté domaine fictif, nous proposons
un critère pour éliminer les variables de design non influentes qui détériorent le con-
ditionnement du problème. Le critère proposé est simple et rapide à calculer car il
dépend uniquement de sommes sur les lignes de l’opérateur creux déjà créé. Notre
stratégie FFD est appliquée au problème de mesure de champ de déplacement CIN-
EF, puis au problème de mesure de forme en stéréo-CIN-EF. Une comparaison avec
la régularisation de Tikhonov, assez répandue dans ce domaine, est effectuée sur la
mesure du champ de déplacement d’une poutre en flexion. Cet exemple montre le
potentiel de la stratégie FFD pour régulariser sans ajouter d’artefacts, et la facilité
de définir une longueur de régularisation. Notre stratégie FFD est ensuite appliquée
à la plaque trouée déjà étudiée lors de l’approche CAO, dans la configuration en
torsion, et cette stratégie améliore encore plus la régularité de l’espace de recherche
grâce à l’absence des lignes C0 (qui étaient nécessaires pour créer une CAO adaptée
à l’analyse). Enfin, une preuve de concept sur une structure 3D plus complexe est
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présentée : la mesure de forme d’une calotte sphérique. Plusieurs verrous propres à
ce problème de mesure de forme ont alors dû être traités :

• Des images ont été prises à 360◦ tout autour de la structure, et donc la fonction-
nelle à minimiser doit prendre toutes ces images en compte. En conséquence,
une somme sur toutes les paires de caméras est réalisée.

• Chaque caméra ne voit qu’une partie de la structure. Un masque a donc
été ajouté pour ne sélectionner que les éléments visibles par chaque caméra
indépendamment, et le produit de deux masques permet de sélectionner les
éléments visibles par une paire de caméras.

• Sur une structure initialement plane, bouger les nœuds EF selon la normale est
équivalent à bouger les points de contrôle FFD dans cette même direction. Sur
des structures 3D plus complexes, définir une normale aux points de contrôle
n’est pas évident car ils ne sont pas situés sur le maillage, et surtout, les
directions définies sur le maillage spline le plus grossier fixent les directions
pour tous les niveaux de raffinement de ce maillage spline (car on utilise les
procédures de raffinement spline exactes). Ainsi, nous proposons de définir un
champ de ”normales” aux nœuds EF, et les points de contrôle FFD définissent
un champ scalaire qui représente la norme du champ de correction de forme.

• Pour définir un champ de ”normales” aux nœuds EF, l’utilisateur peut choisir
d’imposer des directions ”globales” ou ”locales”, dépendant du type de correc-
tion de forme recherché. Il est courant de chercher des corrections ”globales”
dans un premier temps, puis de chercher des corrections de plus en plus ”lo-
cales”. Quelques exemples de champs sont donnés, qui peuvent également être
utilisés conjointement à une approche multiniveaux.

Un petit exemple numérique simple sur la mesure d’un champ de déplacement moins
régulier, et où l’enveloppe FFD est raffinée en tenant compte de la carte des résidus
CIN, montre le potentiel de l’approche FFD à être appliquée à des cas plus com-
plexes. Notre approche FFD offre la possibilité de régulariser un champ mesuré
sur n’importe quel maillage EF, ce qui est particulièrement intéressant pour le
mécanicien expérimental qui aurait en sa possession uniquement un maillage EF
pour faire ses mesures.

Le dernier chapitre applique l’approche FFD au problème d’optimisation de
forme d’une éprouvette mécanique vis-à-vis de l’identification de paramètres de
comportement de matériaux. Dans ce cas, nous choisissons l’enveloppe FFD de
telle sorte que tous les points de contrôle soient influents. Pour cela, nous créons
des enveloppes qui épousent les bords de la géométrie, quitte à en créer plusieurs et
à utiliser des splines périodiques. Un opérateur, composé du lien FFD non-intrusif,
d’un opérateur de symétrie, et d’une matrice de réduction de Guyan, lie la posi-
tion des points de contrôle à la position des nœuds EF. Cet opérateur global est
utilisé tout au long de la procédure d’optimisation et évite des étapes de remaillage.
Une attention particulière a également été portée à la modélisation du problème
d’optimisation :

• La fonction coût est basée sur la matrice de covariance des paramètres à identi-
fier (qui est aussi la hessienne du problème d’identification), et des approxima-
tions ayant du sens physique sont proposées pour prendre en compte la taille
de l’éprouvette et le fait que cette matrice de covariance doit être calculée sans
images (puisque cette optimisation s’effectue en amont des essais).

• Les champs de sensibilité sont calculés analytiquement.
• Une expression semi-analytique du gradient est proposée pour la fonction coût

dans le cas de l’identification d’un seul paramètre matériau.
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• Une fonction contrainte qui prend en compte le déterminant du jacobien de la
transformation EF permet d’assurer que le maillage EF obtenu est toujours
adapté pour l’analyse.

• Une fonction contrainte basée sur une contrainte mécanique équivalente maxi-
male évite d’obtenir une éprouvette qui serait endommagée pendant l’essai, et
surtout, cette fonction garantit que les gains obtenus en termes de sensibilité
aux paramètres ne pourraient pas être surpassés par une simple augmentation
de l’intensité des conditions limites appliquées.

La stratégie d’optimisation proposée est validée sur une poutre pleine en traction,
puis la forme de trous dans une autre éprouvette en traction a été améliorée vis-à-vis
de l’identification de paramètres de comportement élastique linéaire orthotrope, ce
qui a mené à une division par 30 de l’incertitude maximale sur les paramètres à
identifier.

Les résultats obtenus sur les trois problèmes d’optimisation considérés confirment
la capacité des splines à être utilisées de manière non-intrusive pour régulariser
l’espace de recherche. Dans le cas de la mesure de champs par CIN, l’avantage
de l’utilisation des splines par rapport à d’autres techniques de régularisation est
souligné, en particulier le lien direct entre le niveau de raffinement d’un maillage
spline et la définition d’une longueur caractéristique de régularisation, et la possi-
bilité de réaliser des mesures par CIN lorsque les maillages EF sont trop fins pour
permettre de telles mesures dans l’espace de recherche EF. Dans les trois problèmes
étudiés, une méthode CAO, et plus généralement, FFD, peut être utilisée pour rem-
placer un espace de recherche trop grand et irrégulier par un espace de recherche
plus régulier, grâce à une matrice de projection creuse et simple à implémenter, et
qui fait le lien entre le formalisme spline et les routines EF. Enfin, une approche
multiniveaux peut être facilement adoptée grâce aux propriétés de raffinement exact
des fonctions spline.
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Résumé v
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INTRODUCTION

Introduction

The growing capacities of our computers in terms of computing power over the past
decades paved the way to the use of increasingly efficient tools in many areas, es-
pecially in the mechanical engineering field. These tools are all the more essential
today with the pressing need to reduce carbon dioxide emissions and rely less on fos-
sil energies. The environmental situation, together with the current socioeconomic
context and the competitive global market, call for constant innovation from com-
panies, in the final product design as well as in every step of the engineering process,
and particularly in the test and certification phases. Among others, these tools al-
low processing and analyzing massive amounts of data, extracting more information
from it, or designing systems that are optimized with respect to desired behavior
and constraints. It has direct applications in experimental solid mechanics, where
more complex tests can be numerically designed and optimized, and where full-field
measurements can be derived from the resolution of inverse problems thanks to the
fusion of data coming from a set of sensors (acoustic holography, digital image cor-
relation, tomography, thermography, etc). These tools provide all sorts of valuable
information (localization of sound source, displacement field or shape measurement,
cracks and damage monitoring, constitutive parameters identification for material
characterization, non-destructive testing, microstructure analysis, etc), which, for
instance, help characterize new materials, validate the often nonlinear mechanical
behavior of complex structures that have been optimized, or control structure in-
tegrity all along their life-cycle.

Digital Image Correlation (DIC), which is also referred to as image registration
in the computer vision and applied mathematics communities, is one of these tools.
It has become one of the most commonly used techniques to obtain full-field mea-
surements on structures, because of its simplicity (it is noncontact and makes use
of multipurpose reusable hardware) and its modularity (no intrinsic physical scale),
which are huge advantages compared to standard mechanical gauges. Depending on
the imaging devices, it is possible to derive 2D surface, 3D surface, or even 3D vol-
ume displacement fields by taking pictures of a structure at different loading states
and solving an inverse problem. The associated method can be classified as 2D-DIC
(or simply DIC) [Lucas and Kanade, 1981,Sutton et al., 1983,Sun et al., 2005,Hild
and Roux, 2012, Fedele et al., 2013, Wittevrongel et al., 2015], stereo-DIC [Sutton
et al., 2000,Garcia and Orteu, 2001,Dufour et al., 2015a,Pierré et al., 2017,Balcaen
et al., 2017] and Digital Volume Correlation (DVC) [Bay et al., 1999, Roux et al.,
2008, Gomes Perini et al., 2014], respectively. In the case of stereo-DIC, a similar
set up allows to measure the shape of a 3D mechanical surface [Beaubier et al.,
2014, Dufour et al., 2016, Pierré et al., 2017, Colantonio et al., 2020], which is actu-
ally a fundamental step prior to any experiment for 3D surface displacement field
measurements.

Among multiple variants of the method, Finite-Element (FE) mesh-based tech-
niques (also named global- or FE-DIC) [Sun et al., 2005, Besnard et al., 2006, Hild
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and Roux, 2012, Fedele et al., 2013, Wittevrongel et al., 2015, Pierré et al., 2017,
Passieux et al., 2018b] have widely spread because of their ability to be directly cou-
pled with simulation software in view of performing data assimilation [Périé et al.,
2009, Réthoré, 2010, Mathieu et al., 2015], and they pave the way to a better inte-
gration of models and experiments in solid mechanics [Réthoré et al., 2013, Dufour
et al., 2015b,Pierré et al., 2017,Serra et al., 2017,Passieux et al., 2018b]. The inter-
action of measurement and simulation becomes fast and friendly, as both kinematic
fields are defined at the nodes of the same mesh. The measured field is sought in
the space generated by the FE functions associated with the FE mesh that is used
for computational mechanics.

More precisely, this direct coupling is of great interest when characterizing a
material constitutive law thanks to mechanical experiments. This characterization
comes with the identification of the constitutive parameters of a chosen law, which
is carried out through the optimization of these parameters with respect to certain
quantities. One of the well-known identification procedure, which benefits from
the FE direct coupling, is the Finite Element Model Updating method (FEMU),
which consists in comparing the measured displacement field with the simulated
displacement field obtained on a virtual twin with the same FE mesh and the chosen
constitutive law. The (properly weighted) squared difference between these two fields
is then minimized by adjusting the constitutive parameters values. The FEMU
method can be easily applied to a large variety of constitutive laws, and allows for
the identification of several parameters at the same time.

Yet, an experiment is generally not sensitive enough to all parameters of a chosen
constitutive law (or at least not equally sensitive to all parameters), which explains
the use of several different experiments used for different parameters of the same
constitutive law nowadays [D3518/D3518M, 1994]. These numerous experiments,
though, are costly and time consuming. This observation led to the development
of more complex specimen shapes to improve the sensitivity to all constitutive pa-
rameters, and thus reduce the number of needed experimental tests [Pottier et al.,
2012, Schmaltz and Willner, 2014, Mitukiewicz and G logowski, 2016, Schemmann
et al., 2018]. More recently, a few works were carried out to optimize the specimen
geometry with respect to quantities that aim at solving two issues: being sensi-
tive to all sought constitutive parameters, and improving the sensitivity to each
parameter [Feld et al., 2015, Bertin et al., 2016, Chamoin et al., 2020, Conde et al.,
2021,Zhang et al., 2021]. In particular, the quantity to minimize chosen by Feld et
al., Bertin et al. and Chamoin et al. is well adapted when the constitutive law, and
therefore the set of sought parameters, is chosen. However, this optimization prob-
lem can contain several local minima, especially if several constitutive parameters
are to be identified, and this issue is compounded by the use of search spaces of high
dimension for the design variables that define the specimen shape.

Interestingly, displacement measurement and shape measurement via FE-DIC
also suffer from the high dimension of the search space because of too many degrees
of freedom to describe a field. Simulation FE meshes are generally quite fine, since
they need to accurately capture the numerical solution over structures of potentially
complex geometries. In this work, such meshes that are designed for accurate simu-
lation results will be referred to as analysis-suitable meshes. When directly used to
describe the kinematic measured field in DIC, they may lead to ill-posed problems
since the meshes contain too many degrees of freedom (dof) to optimize compared to
the data provided by the experimental instrumentation (camera resolution, speckle
pattern resolution, etc). Such a problematic is even more exacerbated in case of
mesh-based shape measurement since the shape of the specimen is generally rather
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smooth and regular, and thus should require less dof than the corresponding sim-
ulated displacement field. To tackle this issue in FE-DIC, the common practice
consists in resorting to what is referred to as the Tikhonov regularization technique
in the field, i.e. to add a specific term to the initial DIC objective function that
penalizes a norm of each component of the measured field or its derivatives (typically
the L2-norm of the gradient [Passieux and Périé, 2012, Pierré et al., 2017, Dufour
et al., 2016]). Yet, this treatment may create important artifacts, especially when
the kinematic transformation involves global rotations, as will be shown in this work
(see, for instance, Section 2.3.2.2 or Section 3.2.2).

Therefore, there is a need for a regularization method that would allow
working with FE meshes while keeping a low number of design variables.
A desirable feature of this method would be its non-invasiveness with
respect to the standard FE approach so that all operators could be com-
puted using usual FE routines.

In the structural shape optimization community, a way of reducing the number
of design variables together with enforcing the regularity of the optimized shape
is the use of spline functions. These functions are very common in Computer-
Aided Design (CAD) to describe geometries, and therefore offer a relevant basis
in the context of shape optimization [Braibant and Fleury, 1984, Wall et al., 2008,
Hirschler et al., 2019b] or to measure a shape or a shape correction [Beaubier et al.,
2014, Dufour et al., 2016, Jiang et al., 2015, Jiang et al., 2019]. Furthermore, their
regularity properties make them appropriate to define search spaces for more general
optimization problems, in particular when the optimized quantity is a field defined
in a given domain. Typically, displacement field measurement can also benefit from
spline functions properties [Elguedj et al., 2011, Réthoré et al., 2010, Dufour et al.,
2015a,Kleinendorst et al., 2015].

In this context, we propose to draw inspiration from the shape optimization com-
munity and to use spline functions to define the search space in three optimization
problems that arise in experimental mechanics:

• FE-DIC displacement field measurement, where the displacement field on a
structure is sought through the minimization of differences between images
taken of the same structure at two different load states;

• FE-DIC shape measurement, where a shape correction field is sought through
the minimization of a graylevel mismatch between images taken of the same
structure at the same load state (usually the initial load state) from different
viewpoints;

• shape optimization of a mechanical test specimen with regard to constitutive
parameters identifiability, where a shape modification is sought through the
minimization of an appropriate quantity.

Several approaches will be presented, which all allow non-invasive coupling with
FE software. By non-invasive, we mean that the FE routines can be used as black
boxes. It allows using the advantages of spline functions while relying on standard,
widely-used, robust FE software, and without recoding equivalent spline software.
When working on these three optimization problems, particular attention will also
be paid to the specificity of each problem, through the handling of special and real
test-cases designed to show the potential offered by spline functions.

Following these opening remarks, this manuscript is made of four chapters.
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The first chapter details the issues encountered in the three optimization prob-
lems, and some spline tools that may be of high interest to tackle these issues. First,
general optimization problems are briefly presented and the mathematical expres-
sion is given, together with basic vocabulary that will be used in the rest of the
manuscript. Then, each problem is illustrated thanks to the literature and the reg-
ularity issues are pointed out. For FE-DIC problems, the commonly used Tikhonov
regularization method and associated artifacts are presented. Then, the issues are
explained in the light of what is done in the shape optimization community.

In the second section, spline functions are presented and a focus is made on their
interesting properties (smoothness, exact refinement, finite support). An interesting
use of refinement in IGA (IsoGeometric Analysis) shape optimization procedure is
shown, in which different refinement levels are associated to different models of the
exact same structure, with different purposes. Then, two approaches that can help
link spline functions to FE functions, namely the CAD-based and the FFD-based
(Free-Form Deformation) approaches, are briefly presented with the help of litera-
ture and first tests and examples.

The second chapter focuses on the developed modern CAD-based approach, ap-
plied to FE-DIC shape measurement. After a short introduction, the basics of
mesh-based shape measurement are given, and the chosen coupled calibration and
shape measurement procedure are explained.

Then, the proposed CAD-based approach is fully detailed. The used Lagrange
extractor is presented in the case of B-splines and NURBS, and its implementation
in a non-invasive way with the standard FE-DIC software is presented. A multilevel
scheme based on both coarse graining and spline refinement is built.

Finally, results on a plate with a hole are shown in two configurations. First,
pictures of the plate installed in the clamping jaws of a tensile testing machine allow
measuring a twisted configuration with shape corrections up to the tenth of a mil-
limeter. Particular attention is paid to contrast correction as it affects the solution
on the center part of the specimen. Then, the same specimen is studied unclamped,
in a flat configuration, with corrections of the order of a hundredth of a millimeter.
In both cases, the results are validated with subset-based-DIC shape measurement
results.

The third chapter presents our developed FFD-based regularization scheme for
FE-DIC problems, which can be seen as a generalization of the CAD-based approach
established in the second chapter. A full understanding of FFD is given, from the
creation of the morphing box to its non-invasive implementation, and parallels were
made with the fictitious domain and reduced basis classes of methods. A criterion
is then proposed to deal with problematic degrees of freedom.

A multilevel scheme is also proposed and the method is applied the case of FE-
DIC displacement field measurement. After some theoretical aspects on this method
are given, our approach is validated on real images of a bending beam, and compared
to a classic regularization method. A numerical example also shows the potential of
the method to be used on a less regular displacement field.

Then, we apply our FFD-based approach to FE-DIC shape measurement prob-
lems. First, a generalization of the stereo-DIC problem to ncam cameras is made,
and a specific care is paid to the projection of the sought field along the normal
in this multilevel context. The method is validated on the same twisted plate as
earlier but we show that the mesh does not have to derive from a spline mesh and
can be chosen arbitrarily. Finally, our method is applied to a more complex 3D
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structure with pictures taken at 360◦, and we show that it both efficiently smooths
the measured shape and makes the problem more robust to initialization.

The fourth chapter deals with the third optimization problem, namely the shape
optimization of mechanical specimen with regard to constitutive parameters iden-
tifiability. First, essential concepts related to constitutive parameter identification
and identification quality, in particular the covariance matrix, are explained.

Then, all choices that we have performed to define the optimization problem
are given. The cost function is constructed in the case of one or several sought
constitutive parameters, based on the literature. Physical observation help us finely
enrich the cost function formulation, define adequate constraint functions and adjust
thresholds for the inequality constraints. The problem definition is validated on a
simple tension beam.

Finally, the choices regarding the shape handling through FFD are explained,
and its non-invasive implementation which allows the use of FE routines is described.
For validation purposes, the complete framework is applied to the shape optimization
of holes in a tension beam to identify the constitutive parameters of an orthotropic
linear elastic law.
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Chapter 1

The power of splines for
numerical optimization in
experimental mechanics

Introduction

Our work aims at improving the resolution of optimization problems in experimental
mechanics, thanks to spline functions.

In this chapter, we focus on and explicit three different optimization problems
that occur in experimental mechanics, namely FE-DIC (Finite Element Digital Im-
age Correlation) displacement field measurement, FE-DIC shape measurement and
shape optimization of a mechanical specimen with regard to constitutive parameter
identification. Note that these three optimization problems can be part of one single
experiment, in which a material constitutive law has to be characterized. In this
case, a specimen shape would be optimized to improve the experiment sensitivity
to the sought constitutive parameters, and then, DIC would be used during the
experiment to carry out full-field measurement of the shape if needed, and the dis-
placement field required to identify the constitutive parameters. After these three
optimization problems and their issues are presented through a literature review,
spline basics are given to start understanding what their advantages are with re-
spect to these issues, and how they could be used in a non-invasive way. This
non-invasive property is desirable so that the usual FE software can be used. FE
software is omnipresent in the mechanical engineering domain and is still very pow-
erful thanks to decades of research and developments. A spline-based non-invasive
scheme seems to be a beneficial way of introducing splines and their advantages into
the engineering community.

1.1 Some optimization problems in experimental me-
chanics

Optimization problems arise at various levels in experimental mechanics. In our case
for instance, full-field measurement such as shape or displacement field measurement
involve solving inverse problems, which is achieved through the minimization of a
functional thanks to optimization algorithms. Optimization tools also typically help
designing complex experiments that offer more sensitivity to one or several measured
quantities.

In this section, we focus on three continuous optimization problems related to the
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process of characterizing a material using full-field measurement, namely FE-DIC
displacement field measurement, FE stereo-DIC shape measurement and the design
of a test specimen for constitutive parameter identification via FEMU-DIC (Finite
Element Model Updating method based on Digital Image Correlation measurement).

1.1.1 Optimization problem

Optimization problems consist in making something optimal with regard to certain
quantities and with respect to certain constraints. The standard formulation for
continuous mono-objective optimization problems is the following:

Find s = arg min
s∈D

f(s) , (1.1)

where f : Rndv −→ R is the function to minimize, called cost function (also called
objective function), s ∈ Rndv contains the design variables and D is the search
space (of dimension ndv), sometimes called design space in the context of shape
optimization. Constraint functions can be added to restrain the possible solutions,
which makes the general definition of D as follows:

D = {s ∈ Rndv , gi(s) ≤ 0 and hj(s) = 0,∀i and ∀j} , (1.2)

where gi : Rndv −→ R are inequality constraints and hj(s) : Rndv −→ R are equality
constraints. Bounds on s are also sometimes written separately (e.g. in [Kiendl,
2011, Kiendl et al., 2014]), but they can be written in the form of two inequality
constraints g.

In this work, equality constraints will not be used, and inequality constraints
will only be used in Chapter 4 for the shape optimization of a test specimen with
respect to constitutive parameters identification.

1.1.2 Displacement field measurement

The first optimization problem is the measurement of a displacement field via what
is referred to DIC in the experimental mechanics community. The same problem
is also known as image registration in the Computer Vision, Applied Mathematics
and Biomechanical Engineering communities for image processing [Fehrenbach and
Masmoudi, 2008, Sotiras et al., 2013]. To perform DIC, pictures are taken of a
specimen or structure, generally covered with a contrasted speckle pattern. An
image (or several images in the case of stereo-DIC [Sutton et al., 2000,Garcia, 2001])
is taken in a reference state, when the specimen is in-situ, still, and unloaded. The
same camera (or camera rig) is used to get an image (or several images) in a deformed
state, while the specimen is under load. The displacement field of the surface of
the specimen is then derived from the resolution of an inverse problem based on
the assumption that the graylevel associated with a physical point is the same in
the reference and deformed state images. This inverse problem is ill-posed and is
expressed as the minimization of a functional in order to be solved (see [Passieux,
2015] and Section 3.2.1 for further details).

There are two main ways of performing DIC, namely local and global DIC [Hild
and Roux, 2012]. In local DIC, the displacement field is sought in the search space
defined by elementary deformations of small parts of the region of interest, called
subsets. Historically, it was the first DIC method, developed in the Computer Vi-
sion community [Lucas and Kanade, 1981] and then applied to mechanical problems
by [Sutton et al., 1983, Sutton et al., 2009, Orteu, 2009] and it is well developed
today. Nevertheless, coupling these measurements with simulation results is not
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straightforward and induces errors when expressing this field in a new space, typ-
ically defined by FE functions [Lava et al., 2020]. Conversely, global DIC aims at
directly coupling DIC measurements with simulation results, by using the simulation
(generally FE) mesh and the associated vector space to define the search space for
the inverse problem [Sun et al., 2005, Besnard et al., 2006]. Apart from its great
benefit in hybrid approaches (using FE simulation to regularize measurements, to
estimate boundary conditions or to complete partial measurements for instance),
using the simulation FE mesh for the measurement makes test-simulation dialogue
easier, and is for example particularly useful to identify constitutive parameters via
FEMU (which is detailed Section 4.1.1).

Yet the measured FE displacement fields are often noisy, especially on the edges,
as can be seen on Figure 1.1. This high frequency noise, with a typical wavelength of
two FE elements, disturbs the measurement and makes the strain and stress fields
difficult to derive because of noise propagation when taking the derivative. This
issue comes from the chosen FE meshes, which are very fine as they have to be
analysis-suitable. When directly used to describe the kinematic measured field in
DIC, they usually lead to problems such as Equation (1.1) that are ill-posed since
the meshes contain too many degrees of freedom (dof) to optimize compared to
the data provided by the experimental instrumentation (camera resolution, speckle
pattern resolution, etc).

(a) 2D-DIC: Tension beam with a hole
(figure taken from [Passieux et al., 2015]).

(b) Stereo-DIC: Plate under shear load
(figure taken from [Pierré, 2016]).

(c) DVC: Tensile notched specimen with different regularization
techniques (figure taken from [Mendoza et al., 2019]).

Figure 1.1: Measured displacement fields with global FE-DIC methods. The
results are noisy, especially on the edges.

As a remedy, regularization techniques have been proposed, that incorporate
physical knowledge or assumptions on the sought field. For instance, time regu-
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larity can be taken into account [Passieux et al., 2018a, Berny et al., 2018, Jailin
et al., 2018] (see PGD-DIC regularization shown Figure 1.2), elastic regulariza-
tion adds a mechanical-sound penalization term [Réthoré et al., 2009a,Leclerc et al.,
2011,Mendoza et al., 2019,Rouwane et al., 2021], and Tikhonov regularization shown
Figure 1.3 also adds a penalization term based on the gradient of the sought dis-
placement field [Pierré, 2016].

Figure 1.2: Physical regularization using time regularity knowledge for vibrations.
(figure taken from [Passieux et al., 2018a]).

Among these methods, Tikhonov regularization is widely used because it is non-
invasive with respect to FE-DIC operators computation, it can be adapted to a large
variety of DIC problems, and it does not necessitate a priori mechanical knowledge
on the material behavior. However, this regularization technique has some draw-
backs, namely the handling of global rotations (the method minimizes the gradient,
yet this gradient can be part of the sought solution), the definition of an equivalent
regularization length that is indirect [Leclerc et al., 2012], and the handling of the
edges (for illustration, see Figure 1.3). At this stage, we refer the interested reader
to [Colantonio et al., 2020,Chapelier et al., 2021] and indicate that the problematic
will be deeply tackled in the remaining of the manuscript (see, e.g., Sections 2.3.2.2
and 3.2.2).

1.1.3 Shape measurement

The second optimization problem, which shares similarities with the first one, is
the mesh-based shape measurement procedure occurring in FE-DIC. This step is
essential before performing any experiment with 3D stereo-DIC displacement field
measurement so that the reference FE mesh of the specimen is as close as possible
to the real reference geometry (incorporating manufacturing defects, pre-load or re-
laxation of residual stresses, etc). To this end, several cameras take pictures of the
specimen in the reference state with different points of view. After a calibration pro-
cedure used to characterize the cameras intrinsic parameters (focal length, skew...)
and extrinsic parameters (cameras positions and orientations) [Garcia, 2001], the
shape is sought as a field of FE node positions update. To do so, the assumption
is made that the graylevel associated with a physical point is the same in every
image, from every point of view (see Sections 2.1 and 3.4.1 and [Pierré, 2016] for
more details).

The search space is once again the FE space associated with the FE mesh of the
specimen, and the design variables are position updates for each FE node.

In the case of global shape measurements, additional sources of ill-posedness
occur compared to DIC displacement field measurement. Moving the position of
a node along the surface of the specimen does not modify the geometry [Pierré,
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Figure 1.3: Tikhonov regularization with several penalization coefficient values α.
(figure taken from [Yang, 2021]).
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2016,Dubreuil et al., 2016] (see Figure 1.4), and thus the functional value is almost
the same for all these corrections. This problem comes from the fact that the FE
mesh is not attached to the specimen yet, and the shape correction affects how
both images in each pair are processed (contrary to displacement field measurement
where the displacement field affects how the deformed state image is processed, but
not the reference state image). To tackle this issue, the shape correction is often

Figure 1.4: Sources of ill-posedness for shape measurement. The nodes can move
along the surface without changing the shape. The mesh can ”slide” (the edges do
not match and the measured shape does not correspond to the region of interest
anymore, see the middle figure), or interior nodes can move (see the figure on the

right). (figure taken from [Pierré, 2016]).

measured only along the normal to the surface, which is computed on the initial
uncorrected FE mesh (the measured corrections are supposed to be small) [Dubreuil
et al., 2016, Pierré, 2016]. In this case, a scalar field is sought, and the design
variables are the normal corrections at each FE node.

Yet the other sources of ill-posedness make the measured shape correction noisy,
even when the measured correction is along the normal (see Figure 1.5). One of
them is similar to what makes measured displacement fields noisy. Indeed, the
analysis-suitable FE mesh contains too many design variables compared to available
information. Such a problematic is even more exacerbated in case of mesh-based
shape measurements since the shape of the specimen is generally rather smooth and
regular, and thus should require even less dof than the corresponding simulated dis-
placement field which may comprise important gradients [Colantonio et al., 2020].
Once again, Tikhonov regularization can help regularizing the measured shape cor-
rection field, but it also degrades parts of the true solution, in particular global
rotations (see Figure 1.5 again).

1.1.4 Identification of constitutive parameters

The third optimization problem that we will focus on is the identification of consti-
tutive parameters, and more precisely, how to design the shape of the test specimen
to improve constitutive parameters identification ability.

1.1.4.1 Constitutive parameters identification methods

Knowing the constitutive parameter values is necessary to describe the physical
behaviour of a material, once a constitutive law has been chosen. They are de-
termined by carrying out experimental tests on specimens, and solving an inverse
problem based on the comparison of the measured field with a model. Several dif-
ferent identification methods have been developed over the last decades: the Finite
Element Model Updating (FEMU) method [Kavanagh and Clough, 1971], the con-
stitutive equation error [Ladevèze et al., 1994], the virtual fields method [Grediac,
1989] or the equilibrium gap method [Claire et al., 2004], to name the most common
methods. Recently, Roux and Hild [Roux and Hild, 2020] have shown that all these
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Figure 1.5: Unregularized FE shape measurement (black mesh) and shape
measurement with Tikhonov regularization with increasing penalization coefficients
(gray surfaces). The unregularized measurement is noisy. Tikhonov regularization

smoothes the shape but deteriorates the measured field. (figure taken
from [Colantonio et al., 2020]).

methods actually consist in the minimization of a metric measuring the distance
between the measured and the simulated displacement fields which differ only in
the choice of the quadratic (semi-)norm used. The study concludes that the opti-
mal metric with respect to the identification sensitivity to measurement noise is a
norm associated with the inverse of the measured displacements covariance matrix,
which corresponds, in the literature, to the so-called weighted FEMU method. More
details on the FEMU method are given in Section 4.1.

Note that some more integrated methods also exist [Réthoré, 2010,Leclerc et al.,
2009], that do not require two steps for the displacement field measurement and
the identification of the constitutive parameters, such as, for instance, Integrated
DIC (IDIC) [Leclerc et al., 2009,Mathieu et al., 2015]. Yet, it has been shown that
under the assumption of small noise levels (in particular coming from the FE mesh
refinement level), IDIC and FEMU are equivalent and lead to the same identified
parameters covariance matrix [Mathieu et al., 2015]. Our later developments with
the FEMU method in Chapter 4 can therefore be transposed to IDIC.

1.1.4.2 Improvement of the identification experimental tests

Experimental tests to identify constitutive parameters are generally designed to
calibrate one (or few) parameter at a time. In addition, they are usually quite
basic (simple geometry and loading), which does not guarantee that the constitutive
parameter values are accurately identified, and requires performing several tests
for each constitutive parameter. The FEMU functional often shows a valley, either
because of constitutive parameters that are less identifiable than others or because of
constitutive parameters whose uncertainties are strongly correlated (see Figure 1.6).
This valley causes the identified set of constitutive parameters to highly depend on
the initialization if only few experiments are carried out [Decultot, 2009].

To reduce the costs coming from this identification procedure, specific tests have
been designed for specific needs. For instance, designs for a cruciform specimen
that allow reaching higher plastic strain levels before fracture in the test section
have been proposed [Mitukiewicz and G logowski, 2016, Schemmann et al., 2018].
Other works focused on the heterogeneity of the strain or stress field in order to
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activate the maximum of constitutive parameters in a single test [Pottier et al.,
2012]. Sensitivity studies were also carried out to determine the effect of a geometry
modification of the specimen on a resultant force or displacement field derivative
with respect to the constitutive parameters [Affagard et al., 2017]. Comparisons of
different specimen shapes were made, by juxtaposing the identified model results
with experimental results [Schmaltz and Willner, 2014] or by performing several
identification tests and deriving the standard deviation on the identified parameters
for each geometry [Lecompte et al., 2007]. In all these works, the authors propose
their ideas for better test designs. Conversely, other articles relied on optimization
algorithms to find new designs that improve some quantities linked to the parameters
identifiability. They focus on getting high and homogeneous strain levels where the
gauge is, in the center of cruciform specimens [Demmerle and Boehler, 1993], on
increasing the heterogeneity level of strain or stress fields to improve the mechanical
richness of the test [Conde et al., 2021, Zhang et al., 2021], or on the covariance
matrix of the identified parameters to take into account the metrological chain [Feld
et al., 2015,Bertin et al., 2015,Bertin et al., 2016,Chamoin et al., 2020].

Figure 1.6: FEMU functional for the identification of two isotropic hardening
parameters. A valley is clearly visible and highlighted in gray. (figure taken

from [Robert et al., 2012]).

When comparing two cruciform geometries, Lecompte et al. draw an interesting
conclusion [Lecompte et al., 2007]. The geometry with a hole makes a more hetero-
geneous deformation field but leads to higher standard deviations for the identified
parameter values. They argue that these heterogeneities are possibly harder to mea-
sure correctly with the DIC setup, which causes errors in the measured field. This
observation justifies taking the measurement process into account when designing
an experimental test, rather than relying solely on heterogeneity quantities. In ad-
dition, many of the works that focus on criteria on the strain or stress field do not
incorporate a priori knowledge about the nature of the constitutive parameters to
identify. This approach is suitable to design identification tests when the constitu-
tive law is not known, but does not ensure the sensitivity to specific constitutive
parameters.

In this work, we will suppose that a constitutive law has been chosen a priori.
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Our study thus draws on the articles of Feld et al., Bertin et al. and Chamoin et al.,
which are founded on uncertainty propagation from the camera sensor to the sought
constitutive parameters, and use quantities coming from the constitutive parameters
covariance matrix to define their cost function [Feld et al., 2015,Bertin et al., 2016,
Chamoin et al., 2020]. Feld et al. and Bertin et al. propose methodologies based on
what is generally called parametric optimization. It means that the design variables
are simple geometry parameters that do not fundamentally change the modified
features: circles remain circles, lines remain lines, etc. Feld et al. have two design
variables that represent the position of a hole (and its symmetry) in a tension beam
(see Figure 1.7). Bertin et al. work on fillet radii on a cruciform specimen (see
Figure 1.8). They first make them vary together as one design variable, and in a
second phase, the optimized radii are fixed one by one after four one-design-variable
optimization procedures, which leads to four different radii. These works pave

Figure 1.7: Specimen proposed in [Feld et al., 2015]. x and y are the design
variables. (figure taken from [Feld et al., 2015]).

Figure 1.8: Specimen proposed in [Bertin et al., 2016]. The radii of the four circles
are the design variables. (figure taken from [Bertin et al., 2016]).

the way for optimization of experimental tests with respect to the identifiability of
chosen constitutive parameters. Yet they have few design variables and the latter
are quite restrictive regarding the possible final specimen geometries.

To widen the scope of possible geometries, Chamoin et al. use topology optimiza-
tion, which means that holes can be created or removed throughout the optimization
process [Chamoin et al., 2020]. They apply the SIMP method, where the structure is
divided into elements and the design variables are the densities of each element (see

– 15 –



1.1. SOME OPTIMIZATION PROBLEMS IN EXPERIMENTAL MECHANICS

Figure 1.9(a)). These densities can vary from 0 (void) to 1 (matter) and a penaliza-
tion term in the cost function forces them to be close to 0 or 1. This methodology

(a) SIMP checkerboard initialization. The
squares densities are the design variables.

(b) Raw optimal solution obtained for a
volume fraction of 0.6, before filtering.

(c) Optimized geometry obtained for a
volume fraction of 0.8, after filtering the

raw optimal solution.

(d) Final CAD geometry obtained for a
volume fraction of 0.8.

Non-physically-sound parts have been
removed and edges have been smoothed.

Figure 1.9: Specimen proposed in [Chamoin et al., 2020]. The elements densitites
are the design variables. (figures taken from [Chamoin et al., 2020]).

allows to get various geometries, yet it has several drawbacks. First, penalty factors
in the cost function have to be chosen, which requires running numerical tests, espe-
cially since the choice of these factors may be problem-dependent. Then, a filtering
step is needed (see fig. 1.9) to set low densities at 0 and high densities at 1 (see
Figure 1.9(c)), and the optimized geometry has to be transferred into a physically-
sound CAD model (see Figure 1.9(d)), which can affect the identification properties
of the specimen. In this step, non-physically-sound parts of the specimen, such as
the small part inside the big hole in Figure 1.9(c), are removed. Finally, the high
number of design variables implies high computational costs to compute the cost
function gradient in the optimization process, and above all, makes the search space
dimension high, which generally increases the number of local minima in which we
can end. As a matter of fact, only few developments on topology optimization are
made by Chamoin et al. with the more complex cost function in the case when more
than one constitutive parameter is to be identified.

1.1.5 Issues in common and envisaged routes

1.1.5.1 Sources of irregularity

In the three optimization problems described above, similar issues occur, that lead to
noisy, non-physically-sound results. These issues come from the search space choice.
The chosen search spaces are too rich and lack regularity. In the displacement field
and shape measurement problems, the FE space is used and the number of design
variables is proportional to the number of FE nodes. Since FE meshes are generally
analysis-suitable (i.e. adapted to mechanical analysis problems solving) to make a
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direct coupling between measurement and simulation, these FE meshes can be very
fine and lead to search spaces of large dimension. As a result, the measured fields
contain one-element-wavelength noise that inherits the C0 properties of FE basis
functions (see Figures 1.1 and 1.5). In the shape measurement problem, using the
FE space as a search space is even less physically sound, because the used FE mesh
refinement is adapted to the mechanical analysis, not to the sought shape correction.
The latter has features whose desired typical length is generally greater than a few
FE elements. For this optimization problem and the mechanical one, the natural
roughness of the FE modeling, which is suitable for analysis, is not adapted. Fi-
nally, in the topology optimization for identification problem [Chamoin et al., 2020],
each square element density is a design variable, so the search space dimension is
often several hundreds or more. Additional cumbersome precautions are needed to
generate a smooth, physically sound geometry (see Figure 1.9).

To circumvent these issues, we therefore propose to draw inspiration from the
shape optimization community and to use a more regular spline space as a search
space. Many articles in that community use a spline space for shape optimization,
they only deal with different cost functions, such as, for instance, the minimization
of compliance [Wall et al., 2008,Kiendl et al., 2014,Hirschler et al., 2019b]. We aim
at benefiting from advances made in this field.

1.1.5.2 Solutions to irregularity in structural shape optimization

As we have seen, dealing with a large number of dof causes unrealistic geometries,
especially with FE which are of low regularity (see Figure 1.10). The following
example highlights the main steps of dealing with regularity issues in the shape op-
timization community. Therefore the use of FE dof as design variables is usually

Figure 1.10: Node-based shape optimization of a hole, leading to irregular edges.
(figure taken from [Braibant and Fleury, 1984]).

combined in this field of research with the use of smoothing filters [Le et al., 2011,Firl
et al., 2013, Bletzinger, 2014, Hojjat et al., 2014]. Another classic approach, some-
times referred to as CAD-based approach, consists in considering a CAD model, i.e.
made of spline functions (typically B-splines or NURBS [Cohen et al., 1980, Piegl
and Tiller, 1997]), to define the design variables [Braibant and Fleury, 1984, Olhoff
et al., 1991,Wall et al., 2008,Kiendl, 2011,Kiendl et al., 2014]. The spline functions
are well suited for shape optimization since they have been built for geometric mod-
eling in CAD and computer graphics; they are of higher regularity and thus imply

– 17 –



1.2. SPLINE TOOLS FOR OPTIMIZATION

few dof (mainly associated with the control point positions of the spline entities)
to describe a geometry and, more importantly, a geometry update. They also al-
low reaching a wide variety of different geometries, as long as the topology remains
the same. Shape optimization techniques that rely on them are sometimes referred
to as geometric shape optimization [Dapogny and Frey, 2014], which is richer than
parametric optimization and less complex than topology optimization. Yet, from a
purely mathematical point of view, geometric optimization is just a generalization
of parametric optimization.

Taking the reasoning even further, the spline technology actually provides a natu-
ral regularization framework for general optimization problems since it allows to look
for the solution in a more regular approximation subspace [Bouclier and Hirschler,
2021]. In this respect, some work has been performed to regularize DIC problems
using B-spline and NURBS functions. First, the ability of B-spline functions to
accurately measure displacement fields along with their derivatives in 2D-DIC was
established [Cheng et al., 2002,Elguedj et al., 2011,Kleinendorst et al., 2015]. Then,
B-spline functions were also used for smooth 3D shape measurements [Beaubier
et al., 2014, Dufour et al., 2016, Jiang et al., 2015, Jiang et al., 2019] before being
investigated for real 3D surface displacement measurements [Dufour et al., 2015a]
in the context of stereo-DIC. From a global point of view, all these methods are
similar to FE-DIC, but instead of using FE basis functions, they consider B-spline
functions to describe the specimen geometry, the sought measured fields, and hence
to compute all the operators needed for the resolution. As a result, besides the
effort to implement spline functions in the DIC framework, the user ends up with
an experimental displacement field that is not directly comparable with the output
provided by most of today’s simulation tools, which was the core interest of global
approaches in DIC. Other works on shape optimization for identification of constitu-
tive parameters, such as [Conde et al., 2021], use B-spline to describe the specimen
shape edges and give the obtained spline geometry as an input to Abaqus. The
geometry is then meshed with FE. Such a technique may require a lot a remeshing
steps.

Our goal is to take advantage of the spline properties and use them in a non-
invasive way so that usual FE simulation software can be used, possibly without
remeshing. To this end, we build the spline space so that it is a vector subspace of
the FE vector space (same philosophy as in [Tirvaudey et al., 2019]).

Note that other works propose different smooth FE subspaces, such as [Etievant
et al., 2020], with the use of free vibration modes as a search space basis for shape
measurement. Yet in our case, we aim at benefitting from the finite support of spline
functions, which offers the possibility to modify a field locally. As a consequence,
spline functions lead to a sparse projection matrix with regard to vibration modes,
which reduces computational costs. In addition, we enforce less pronounced a priori
knowledge so as to be able to regularize a large range of FE optimization problems.
Indeed, we only prescribe smoothness of the reduced basis by resorting to spline
functions.

In the next chapters of this manuscript, several approaches will be detailed and
adapted to our three optimization problems.

1.2 Spline tools for optimization

Before entering into the details regarding our developed work for optimization in
experimental mechanics, some necessary ingredients on spline tools are given in this
section.
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B-spline and NURBS functions are well-known to describe geometries and are
classically used to describe CAD models [Cohen et al., 1980,Piegl and Tiller, 1997,
Farin, 2002]. In 2005, they have been reintroduced by Hughes et al. for mechanical
analyses, leading to an active field of research [Hughes et al., 2005]. Some developed
tools, in the mechanical field as well as in other fields where splines are used for
shape optimization or image registration, are briefly presented in this section.

1.2.1 Splines

B-spline functions map a δ-orthotope, called the parametric domain (e.g. a segment
when δ = 1, a rectangle when δ = 2, a parallelepiped when δ = 3, etc), to a
continuous geometry of intrinsic dimension δ that lives in a space of dimension
D (D can be greater than δ, see Figure 1.11). This geometry is usually called a
patch. This mapping is entirely defined thanks to a B-spline function basis and

(a) Univariate 2nd-degree B-spline basis associated with the knot vector
{0, 0, 0, 0.25, 0.5, 0.75, 0.75, 1, 1, 1}. The repeated knot decreases the

regularity at this parameter value.

(b) B-spline curve defined by the basis of Figure 1.11(a) and the given
control point positions.

Figure 1.11: B-spline mapping from the 1D parametric domain to the 2D physical
domain. Each control point in Figure 1.11(b) is associated with a B-spline function

in Figure 1.11(a).

the coefficients associated with each function, which are control points coordinates.
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Mathematically, it reads:

S : I ⊂ Rδ −→ RD

ξ 7−→ S(ξ) =
nIG∑
i=1

Ñi(ξ) X̃i = Ñ
T
X̃ ,

(1.3)

where ξ is a parameter living in I the parametric domain, and (Ñi)i=1..nIG are the pth-

degree δ-variate spline functions associated with the nIG control points (X̃i)i=1..nIG

that have D coordinates in the physical space. Ñ gathers all spline functions (that

depend on ξ) in a DnIG×D matrix and X̃ gathers the positions of all control points
in a vector.

The univariate (δ = 1) B-spline basis is entirely defined by a degree p and a knot
vector. The knot vector divides the parametric domain into knot spans (or elements)
and controls the continuity between the elements (see Figure 1.11(a)). The B-spline
functions are defined recursively and can be evaluated thanks to the Cox-de-Boor
algorithm [Piegl and Tiller, 1997]. The δ-variate B-spline basis is constructed as a
tensor product of several univariate B-spline bases, as shown in Figure 1.12. Note

Figure 1.12: Bivariate B-spline basis, made of two 2-element 2nd-degree univariate
B-spline bases.

that when knots are repeated, they create zero-size knot spans, that will generally
not be counted as elements, as in Figure 1.11(b) description for instance.

B-splines have several interesting properties. The most important for this work
is their smoothness. A pth-degree B-spline curve is Cp−m-continuous on knots that
are repeated m times (see Figure 1.11). Along with their smoothness comes a low
number of degrees of freedom to define or control a geometry [Tirvaudey et al., 2017].
Moreover, the B-spline functions support is finite, of size p + 1 knot spans, as can
be seen in Figure 1.11(a). It means that each control point has a local influence on
the B-spline curve geometry. B-splines can also be degree-elevated (degree elevation
is sometimes referred to as p-refinement), and knots are added to the knot vector
without any modification of the geometry (this is called knot insertion, or sometimes
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h-refinement, see Figure 1.13). k-refinement is used to increase both the number
of spline elements and the degree while ensuring a maximum regularity (degree
elevation is performed before inserting knots) [Hughes et al., 2005, Cottrell et al.,
2007]. The algorithms can be found in [Piegl and Tiller, 1997]. Knots can be

(a) Univariate 2nd-degree B-spline basis
associated with the knot vector

{0, 0, 0, 1, 1, 1}.

(b) B-spline curve defined by the basis of
Figure 1.13(a) and the given control point

positions.

(c) Univariate 2nd-degree B-spline basis
associated with the knot vector

{0, 0, 0, 0.25, 1, 1, 1} (the knot 0.25 has been
inserted).

(d) The B-spline curve geometry is
unchanged after the knot 0.25 has been
inserted. The knot insertion results in a
new set of control point, with one more

control point.

Figure 1.13: Knot insertion to split a 1-element B-spline curve into 2 elements of
different sizes. The basis is modified, a control point is added and the positions of

the control points are modified. The B-spline curve geometry is unchanged.

inserted on pre-existing knots with the same algorithm. In this case, it increases the
multiplicity of the knots. When knot insertion leads to each knot being repeated p
times, the process is called Bézier decomposition [Borden et al., 2011], and it results
in C0 element boundaries. Both knot insertion and degree elevation process can be
implemented as matrices that only depend on knot vectors and degree and then act
on the basis or position of the control points [Piegl and Tiller, 1997, Lee and Park,
2002]:

Ñ
c

= C
ref

Ñ
f

and X̃
f

= CT
ref

X̃
c
, (1.4)

where Ñ
c

(resp. Ñ
f
) are the spline functions associated with the coarse (resp. fine)

spline mesh, X̃
c

(resp. X̃
f
) are the spline control point positions associated with

the coarse (resp. fine) spline mesh, and C
ref

is the refinement matrix.
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NURBS (Non-Uniform Rational B-Spline) functions are built from B-spline func-
tions (they are fractions of B-splines), and they offer an exact representation of conics
(circles, ellipses, etc). Therefore, they share most of their properties with B-spline
functions. An example is given Figure 1.14 and further information can be found
in [Piegl and Tiller, 1997,Cottrell et al., 2007] and in Chapter 2.

Figure 1.14: Comparison of a NURBS curve with circle weights on control points,
and a B-spline curve with the same control points. The weight 1√

2
for the middle

control point allows the NURBS curve to exactly represent a circle.

1.2.2 Isogeometric analysis

Once a geometry is created, it is possible to solve mechanical problems in the spline
vector space defined by the spline mesh, similarly to what is done with FE. This
way of performing the mechanical analysis in the spline space, called IsoGeometric
Analysis (IGA), has been introduced by [Hughes et al., 2005]. It was then applied
to shape optimization by [Wall et al., 2008]. The exact refinement procedures, and
especially knot insertion, were finally used to create several levels of refinement for
different purposes [Nagy et al., 2011,Nagy et al., 2013,Kiendl et al., 2014,Hirschler
et al., 2019b], as can be seen in Figure 1.15.

Creating boundary-fitted analysis-suitable geometries with splines for standard
IGA is not straightforward. Complex CAD models generally imply trimmed curves
or surfaces to describe almost any geometry (see e.g. Figure 1.16) but the link
toward an analysis-suitable model is not automatic and may require defining several
spline patches [Bouclier, 2020].

Yet, with a single patch and a well-chosen parameterization, it is possible to
create geometries with simple topology but complex edges. Figure 1.17 shows an
example with a geometry similar to the specimen of Figure 1.9 but with a single
hole. With this geometry, we obtain sensitivity fields that are close to the ones
of [Chamoin et al., 2020] (see Fig. 1.18).

1.2.3 Non-invasive CAD-based optimization

Another advantage of B-spline functions is that they are naturally part of the FE
vector space and thus generate a vector subspace of the FE space. Splines are
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Figure 1.15: Different models with different levels of refinement. The CAD model
is the coarsest mesh to describe the initial geometry. The optimization model, or

design model is refined at the right level to define a search space with control point
positions. A fine design model allows for more geometry modifications but

regularizes less the optimization problem. The analysis model is refined enough to
get reasonably small errors coming from the discretization space to solve the

mechanical problem. The advantage of spline functions is that the analysis model
and the design model define the exact same geometry thanks to the spline exact
refinement procedures. Furthermore, this refinement can be done with a matrix

that has to be computed only once between two given refinement levels (see
Equation (1.4)). (figure taken from [Kiendl et al., 2014]).

Figure 1.16: Conventional CAD model of an automotive part. The left figure
shows the graphic display and the right figure shows the data structure. The

geometry is made of more than 1200 trimmed surfaces. (figure taken from [Urick
and Marussig, 2017]).
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(a) Patch (the bottom and the top of the
patch are superimposed, see orange line).

(b) Elements, that are of 1st-degree along
the radius and 2nd-degree in the other

direction. There are four C0 lines for the
four corners (orange lines).

Figure 1.17: Boundary-fitted bivariate B-spline geometry for a specimen with a
complex hole.

(a) IGA results. Scale in mm/MPa. The constitutive law is an orthotropic linear
elastic law with E1 = 1 × 105 MPa, E2 = 1.9 × 105 MPa, ν12 = 0.3 and

G12 = 1 × 104 MPa. The boundary conditions are a fixed upper left corner, the
down left corner can move only along y, and a displacement is imposed only along

x on the right edge (it is free along y).

(b) Figure taken from [Chamoin et al., 2020].

Figure 1.18: Sensitivity to the shear modulus dU
dG12

.
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defined piecewise by polynomials of degree p. Therefore, they can be written inside
an element as a linear combination of p+1 Lagrange polynomials of degree p defined
in the same element, i.e. by standard FE functions defined on the same mesh. Note
that a Cp−1 B-spline basis (or even a less regular B-spline basis if knots are repeated)
can be expressed as a linear combination of C0 FE functions, but the reverse is not
true (see Figure 1.19 for an example); the C0 features cannot be obtained without
changing the spline basis to decrease its regularity (by increasing knots multiplicity
thanks to Bézier decomposition [Borden et al., 2011]). The regular spline space is
thus included in the corresponding C0 FE space.

(a) Univariate 2nd-degree B-spline basis
with 4 elements (knot vector:
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}).

(b) 2nd-degree standard FE basis with 4
elements.

(c) B-spline geometry associated with the
basis of Figure 1.19(a) and the given

control point positions.

(d) Exact same geometry as Figure 1.19(c),
described with the FE basis of

Figure 1.19(b).

(e) It is not possible to generate the same
geometry as Figure 1.19(f) with the regular

B-spline basis. Moving just one control
point preserves the C1 continuity.

(f) C0 geometry obtained by moving a FE
node.

Figure 1.19: 2nd-degree example of the link between B-spline basis and FE basis.
The B-spline basis can be constructed from standard FE functions, so a B-spline
geometry can be exactly described by a FE geometry, but the reverse is not true.

The C1 B-spline vector space is contained within the C0 FE vector space.

Hence, a direct link, called Lagrange extractor, exists between the B-spline basis
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and the FE basis. It can be seen as an extraction of the regular part of the FE space,
which is the IGA space. This link can be written in a matrix form [Schillinger et al.,
2016,Tirvaudey et al., 2019]. The same matrix also links the control point positions
to the FE node positions, similarly to Equation (1.4):

Ñ = C
Lag

N and X = CT
Lag

X̃ , (1.5)

where Ñ (resp. N) are the shape functions associated with the spline (resp. FE)

mesh, X̃ are the spline control point positions associated with the spline mesh, X
are the FE nodes positions associated with the FE mesh, and C

Lag
is the Lagrange

extractor matrix.
Note that in the case of rational splines such as NURBS, the spline vector space

is not strictly contained within the FE vector space. However, an approximate
link can still be defined. Further information can be found in [Schillinger et al.,
2016, Tirvaudey et al., 2019] and in Chapter 2. This link makes possible the use of
FE mechanical operators in an IGA framework, and thus eases the coupling of IGA
software with FE software.

Following the idea of several refinement levels for different models proposed
by [Kiendl et al., 2014], it is possible to use this link in a shape optimization pro-
cess, in order to perform the analysis on a FE mesh, which we validated with the
shape optimization of a pinched cylinder with respect to compliance [Hirschler et al.,
2019b], thanks to a coupling between our Python algorithms and Abaqus (see Fig-
ure 1.20 and Appendix A.1). In this work, an analysis-suitable CAD model of a

(a) CAD-based shape optimization framework with Abaqus.

(b) Shape optimization process for the pinched cylinder.

Figure 1.20: CAD-based shape optimization. Results shown in [Bouclier et al.,
2019].

cylinder has been created with Python. Thanks to symmetries in loading, geom-
etry and boundary conditions, only one eighth of the cylinder has been modeled,
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with a single 2nd-degree one-element B-spline patch (see Figure 1.20(b) on the left).
This CAD model has then been refined into a 3×4-element design (or optimization)
model, and 12 control points have been selected to define 6 design variables. Some
control points have been grouped in order to preserve G1 continuity at symmetry
boundaries (see Figure 1.20(b) in the middle). Then, a refinement level for the
analysis model is chosen and the refinement operator C

ref
is computed (see Equa-

tion (1.4)). The matrix form of the Lagrange extractor C
Lag

can also be computed

at this time.

After this initialization phase, the optimization phase starts. At each iteration,
the IGA analysis model is created thanks to C

ref
, then the Lagrange extractor C

Lag

gives the FE nodes positions that define the exact same geometry with Q9 FE ele-
ments (2nd-degree quadrangles with 9 nodes). Note that these two steps can be done
at once by multiplying the two matrix operators C

ref
and C

Lag
. The FE analysis

model is given to Abaqus to compute the desired mechanical quantities (stiffness
matrix, mass matrix, force or displacement vectors for instance), that are then read
by a Python script to calculate the cost and constraint functions values. These
values are taken into account by a chosen optimization algorithm that either pro-
poses a new set of values for the design variables for the next iteration, or ends the
optimization phase if a given criterion is met. The final design is expressed on the
IGA design model. It can also easily be expressed on the analysis FE mesh thanks
to the refinement operator and the Lagrange extractor.

This approach is therefore different from isogeometric shape optimization, in the
sense that no routines have been developed to compute the spline shell mechanical
quantities. We used the exact link between B-spline functions and FE functions,
which means that the FE mechanical operators such as the stiffness matrix and the
mass matrix could then be projected exactly in the IGA space [Schillinger et al.,
2016,Tirvaudey et al., 2019], and the only requirement to get these matrices was to
provide the right FE node positions as an input. This non-invasive approach allows
using FE software for IGA purposes, and in the context of shape optimization, this
non-invasive CAD-based optimization method takes advantage of spline properties
and of all complex mechanical behaviors that are already implemented in industrial
FE software.

This non-invasive CAD-based approach will be used in Chapter 2. However, the
cost function is different and other mechanical operators are involved. The Python
framework that has been developed here for the minimization of compliance on
a pinched cylinder and shown Figure 1.20(a) in the blue frame will be used with
another FE software dedicated to digital image correlation instead of Abaqus.

Remark 1 The cylinder has been described by B-spline functions to get an exact
link with Q9 FE functions but NURBS functions would have been more adapted to
describe an exact circle. As we have seen earlier, using NURBS functions stops
us from having an exact link with FE standard functions. Yet the quality of the
approximated link to go from a NURBS geometry to a FE geometry increases as the
mesh is refined [Tirvaudey et al., 2019], which makes it acceptable in this case where
the link is used for the fine analysis model.

Remark 2 Q9 elements could not be used with Abaqus. Thus, we performed an
additional approximation by removing the center node of each FE element to get a
Q8 FE mesh (2nd-degree quadrangles with 8 nodes). The FE mesh was supposed to
be fine enough so that it would not affect the results too much.

– 27 –



1.2. SPLINE TOOLS FOR OPTIMIZATION

1.2.4 FFD-based optimization

To modify complex geometries without creating a boundary-fitted spline model of
the initial geometry, the Computer Graphics field has introduced the Free-Form De-
formation (FFD) concept [Sederberg and Parry, 1986]. It consists in embedding the
initial geometry, which can be defined by a set of points for instance, into a morph-
ing box. Then, the user deforms the morphing box, and the embedded geometry is
deformed accordingly (see Figure 1.21 and Figure 3.1). A spline basis is generally
chosen to describe the morphing box deformation, because of their smoothness and
the low number of dof needed to describe geometries. This tool has also been used in

(a) Undeformed geometry and morphing
box.

(b) Deformed geometry and morphing box
(trivariate Bernstein polynomials, degree 1
along the depth axis, degree 2 horizontally,

and degree 3 vertically.

Figure 1.21: Free-Form Deformation. (figure taken from [Sederberg and Parry,
1986]).

the mechanical engineering field for the shape optimization of plane wings [Kenway
et al., 2010, Lassila and Rozza, 2010]. In the aeronautical industry, FE meshes of
structures are often given a priori and using FFD allows to slightly update the ge-
ometry without modifying the mesh and its connectivity, typically while optimizing
the wing shape with respect to aerodynamics quantities.

A FFD-based approach is interesting because it decouples the design space from
that of the geometry description. For instance, the geometry can be described by
an analysis-suitable FE mesh (arbitrarily defined, which means that it does not
necessarily comes from an analysis-suitable CAD mesh) and the design space can be
a smooth spline space with much less dof than the FE mesh. The spline functions
are thus not defined on the same mesh as the FE functions and the defined spline
vector space is not necessarily contained within the FE vector space. It gives the
opportunity to work with possibly any structure geometry and any FE mesh with
spline design variables.

Still in the case when a FE mesh is embedded, we can apply the morphing box
deformation to the FE nodes (it could also be applied to any point of the FE mesh,
see Section 3.1.2 for more details). Each FE node position is defined as a linear
combination of the morphing box control point positions, and moving a control
point deforms the FE mesh accordingly. This linear combination can be written in
a matrix form:

X = CT
FFD

X̃mb , (1.6)

where X are the FE node positions associated with the FE mesh, X̃mb are the spline
control point positions associated with the spline mesh of the morphing box, and
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C
FFD

is the FFD matrix.

Note that we do not have the same relation on the shape functions N and Ñ
mb

.
In fact, C

FFD
N provides a restriction and a discretization of spline functions (see

Figure 1.22).

(a) A bivariate 2nd-degree B-spline shape function for a 2 × 2-element patch, in
the spline morphing box parametric domain.

(b) Coarse FE mesh of a disk, in the spline
morphing box parametric domain.

(c) Result of C
FFD

N for the spline
function of Figure 1.22(a) and the coarse

FE mesh, in the spline morphing box
parametric domain.

(d) Fine FE mesh of a disk, in the spline
morphing box parametric domain.

(e) Result of C
FFD

N for the spline
function of Figure 1.22(a) and the fine FE

mesh, in the spline morphing box
parametric domain.

Figure 1.22: Illustration of the restriction and discretization resulting from
C

FFD
N on a bivariate quadratic B-spline function. This figure clearly shows that

Ñ
mb

̸= C
FFD

N.

Yet the matrix formulation allows for a non-invasive approach thanks to a pro-
jection on the smoother space defined by the set of discretized spline functions that
can be seen as smooth modes. This approach will be further detailed in Chapter 3.
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Note that in the case when the morphing box and the FE mesh describe the
same domain (within the accuracy due to facetization), C

FFD
N provides a dis-

cretization only of spline functions, and the geometry of the morphing box becomes
the geometry of interest. This approach will be used in Chapter 4 to describe the
geometry of a specimen hole edges.

Conclusion

We have seen that the three studied optimization problems share similar issues,
caused by the choice of a search space that is both too large and not regular enough.
To tackle these issues, we propose to use spline functions, typically B-spline and
NURBS functions. They present some interesting properties, for instance their high
regularity, their finite support and their capacity to be exactly refined or degree-
elevated. Thanks to the Lagrange extractor, an exact link can be created between
a spline description and a standard FE description of a structure. This link will
be studied in the next chapter in the context of FE-DIC shape measurement, and
a non-invasive implementation will be proposed. An FFD-based generalization will
then be used in Chapters 3 and 4.
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Chapter 2

CAD-based regularization of
DIC problems

This chapter is extracted from [Colantonio et al., 2020].

Introduction

When carrying out experiments to measure 3D displacement fields on structure
surfaces, a first calibration step is necessary. This step consists in determining the
camera parameters and the actual shape of the structure. For the latter, an analysis-
suitable FE mesh has to be used to get a direct coupling between the measured
fields and FE simulation results. In FE simulations, and thus in FE stereo-DIC (FE-
SDIC), a unique interpolation subspace is generally used for both the approximation
of the geometry and of the displacement (basic principle of isoparametric finite
elements), and the associated unique mesh that describes the geometry has to be
corrected to take into account the real structure shape. However, the shape of the
specimen is generally rather smooth and regular and it should require less degrees
of freedom than the displacement field which may comprise important gradients.

As has been seen in the previous chapter, the shape measurement problem shares
similarities with standard shape optimization problems. Indeed, the shape measure-
ment problem consists in finding a shape correction that minimizes a functional
based on the graylevel mismatch between several images (see Section 2.1.2). This
functional can be understood as the cost function of an optimization problem. There-
fore, we draw inspiration from techniques that have been developed in the shape
optimization community. Among them, the computer-aided-design (CAD)-based
approach relies on the same spline-based functions as in CAD software to describe
the geometry [Cohen et al., 1980, Piegl and Tiller, 1997, Farin, 2002]. The design
variables are this time the spatial location of the control points of the spline enti-
ties, which allows to get a light and smooth parametrization of the geometry and
of its update [Braibant and Fleury, 1984, Olhoff et al., 1991]. The difficulty in this
second family of methods is then transferred to the connection of the (spline-based)
geometric and (FE-based) analysis models [Hasan Imam, 1982, Bletzinger et al.,
1992]. To answer this issue, one way to naturally proceed is to use the isogeometric
analysis (IGA) framework [Hughes et al., 2005, Cottrell et al., 2009] which allows
to discretize the structure with its intrinsic, spline-based, CAD geometric defini-
tion. Isogeometric (IG) shape optimization has thus been successfully applied to a
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wide range of applications (see [Nagy et al., 2011, Nagy et al., 2013, Kiendl et al.,
2014,Hirschler et al., 2019b,Wang et al., 2018] among others). More precisely, it is
based on a multilevel design concept offered by the spline technology in which one
can refine the geometry without altering its initial shape and regularity [Cottrell
et al., 2007]. As a consequence, different refinement levels of the same spline-based
geometry are considered to define both design and analysis spaces. The coarser level
is dedicated to the parametrization of the shape to get ”realistic” structures while
the finer level defines the analysis model and is set to ensure good quality of the
mechanical solution (see Figure 1.15).

A first attempt in applying IGA to shape measurement has been recently per-
formed by Dufour et al. [Beaubier et al., 2014, Dufour et al., 2015a, Dufour et al.,
2016]. In these pioneering works, the authors considered a higher-order B-spline
(monolevel) parametrization of the surface (thereby acting on a geometrical object
which is consistent with CAD) both for shape and displacement measurements. The
authors also went towards the identification of mechanical models by comparing the
measured IG displacement field with a computed one using a dedicated IG code [Du-
four et al., 2015b]. However, besides the effort to implement spline functions in the
SDIC framework, the problem is that the user ends up with an experimental dis-
placement field that is expressed on a spline basis, whereas most simulation tools are
based on finite elements. Splines clearly provide flexibility for shape and displace-
ment measurements but make connection with most of today’s numerical models
more complex, which is the key advantage of global approaches in DIC.

In this chapter, we build a hybrid IG-FE methodology for mesh-based shape
measurement that draws up the best of each technology. On the one hand, we
consider as input and output the FE mesh that is fine enough to properly describe
the underlying mechanics. In the second step, the FE mesh will thus be suitable
for displacement measurement using stereo-correlation and this resulting kinematic
field will be easily compared to a computed one obtained from existing, standard
FE codes. On the other hand, we undertake to use the splines along with the
IG multilevel design concept (performed in shape optimization, see Figure 1.15)
for the description of the geometry and of its update in the shape measurement
process. The idea here is to couple the multilevel optimization process [Kiendl et al.,
2014] with the multiscale initialization of shape measurement [Pierré, 2016] to get
different approximation spaces which naturally follow, at each level, the resolution
of the image. The regularization level is thus given by the refinement of the spline
spaces which is chosen in accordance with the coarsening of the images (no needs
of additional regularization terms). Since it is based on functions coming from
the geometric design community, the proposed regularization scheme has a strong
geometrical meaning, that is why we refer to geometric regularization to characterize
the technique.

The additional ingredient of our approach is to make use of a recently developed
global bridge between IGA and FE analysis (FEA) [Tirvaudey et al., 2019] to be
able to communicate between the different approximation subspaces for the geom-
etry (multilevel spline-based parametrizations) and for the displacement (analysis-
suitable FE mesh). Based on the original idea behind Bézier extraction [Borden
et al., 2011] and on more recent Lagrange extraction [Schillinger et al., 2016], this
global transformation goes from Lagrange polynomials to (possibly rational) spline
basis, thus allowing to recover an IG operator without implementing IGA but simply
by projecting an FE operator onto the reduced, more regular, IG basis. As a re-
sult, besides its attractive regularizing features, the implementation of the proposed
strategy is non-invasive with respect to FE-SDIC (as has been seen in Section 1.2.3).
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The chapter is organized as follows: after this introduction, Section 2.1 specifies
the calibration phase occurring in FE-SDIC with a particular emphasis on the shape
measurement problem. Then, Section 2.2 is devoted to the development of the
proposed geometric regularization scheme while Section 2.3 assesses the performance
of the methodology through the analysis of several real images and comparisons
with other published techniques. This brings us to the last section where concluding
remarks are drawn.

2.1 Mesh-based shape measurement

Let us assume that we have an existing description (say a CAD model) of the
nominal geometry of the specimen. Let Ωs be a surface domain referred to as
Region of Interest (ROI) and such that Ωs ⊂ R3 corresponds to the visible surface
of the theoretical shape. This representation does not correspond exactly to the
actual shape of the specimen, because of surface roughness, manufacturing defects,
pre-load or relaxation of residual stresses, to name a few. In SDIC, the estimation
of the real surface is of the utmost importance because it is an essential prerequisite
for 3D surface displacement measurement. It may also be used to update the model
geometry in validation and/or identification procedures, since kinematic fields may
significantly depend on it.

2.1.1 Camera model

As classically done in SDIC [Sutton et al., 1999], each camera c is equipped with a
camera model P c that maps any 3D point X ∈ Ωs expressed in the world reference
system Rw to the corresponding coordinates in pixels xc in the image frame and is
written as:

P c : R3 → R2, X 7→ xc = P c(X, p
c
), ∀X ∈ Ωs, (2.1)

where p
c

is a vector collecting the model parameters. More precisely, camera mod-
els P c can be either linear (in homogeneous coordinates) or non-linear to take into
account lens distortions. It depends on two sets of parameters: the intrinsic param-
eters (focal length, image center, horizontal/vertical aspect ratio, skew and possible
distortion parameters) and the extrinsic parameters (3 rotations and 3 translations
that map the reference frame of the specimen Rw to that of the imaging sensor Rc).
The calibration of these parameters must be conducted prior to any measurement.
In this study, intrinsic parameters are calibrated using calibration targets and a clas-
sic photogrammetric technique as described in [Lavest et al., 1998,Garcia, 2001]. In
the remainder of this chapter, the intrinsic parameters will be assumed to be known
and only the extrinsic parameters will be considered, such that for each camera c,
the camera model P c will be entirely defined by p

c
∈ R6.

2.1.2 Coupled calibration and shape measurement problem

As depicted in Figure 2.1, the graylevel conservation assumption [Horn and Schunck,
1981] supposes that the graylevel value Ic(xc) of the projections xc in each image
Ic of any 3D point X should be equal: I0(x0) = I1(x1). Since both the actual
shape and position of the specimen (with respect to the stereo rig) are not known
exactly, the graylevel conservation is not fulfilled. The calibration of the stereo
rig thus consists in a coupled problem aiming at finding the extrinsic parameters
p = [p

0
, p

1
] in addition to a shape correction field S(X),∀X ∈ Ωs, such that the

advection of the nominal surface Ωs by the correction field S(X) corresponds to the
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Figure 2.1: Principle of the formulation of the SDIC problem in the reference
frame of the FE model. A 3D point X and its projections x0 and x1 onto the

image planes.

actual surface. More precisely, shape correction and camera parameters minimize
the graylevel mismatch:

S⋆, p⋆ = arg min
S∈L2(Ωs),p∈R12

FS(S(X), p)

with FS(S(X), p) =
1

2

∫
ΩS

(
r
(
S(X), p

))2

dX, (2.2)

and where the graylevel residual r(S(X), p) is defined ∀X ∈ Ωs as:

r
(
S(X), p

)
= I0

(
P 0(X + S(X), p

0
)
)
− I1

(
P 1(X + S(X), p

1
)
)
. (2.3)

Let us highlight, at this stage, that the graylevel residual is defined in Ωs in the
reference system of the model, which differs from subset based SDIC, where it is
written in the image frames.

The unknown vector p gathering the extrinsic parameters is already discrete,
but the shape correction field S lies in an infinite space. To solve Problem (2.2) an
approximation subspace for S must be defined. To be consistent with the description
of the geometry and displacements in FE simulations, S is searched for in an analysis-
suitable FE subspace [Pierré et al., 2017]:

S(X) =

nFE∑
i=1

Ni(X) Si = NT (X) S, (2.4)

where N is a (3nFE × 3) matrix gathering the nFE Lagrange shape functions Ni

– 34 –



2.1. MESH-BASED SHAPE MEASUREMENT

and S is a vector that collects the 3nFE corresponding degrees of freedom (DOF):

N =



N1 0 0
...

...
...

NnFE 0 0

0 N1 0
...

...
...

0 NnFE 0

0 0 N1

...
...

...

0 0 NnFE



and S =



S1
1

...

S1
nFE

S2
1

...

S2
nFE

S3
1

...

S3
nFE



, (2.5)

In addition, note that Si in (2.4) is the subset of S gathering the three components
{S1

i , S
2
i , S

3
i } of the field S(X) associated with shape function Ni. Problem (2.2) is

a non-linear least-square problem. Its resolution is based on a fixed point algorithm
which consists in alternatively minimizing the graylevel functional FS with respect
to p (calibration) and to S (shape measurement).

Minimization with respect to camera parameters. The shape correction
field S(X) being fixed, the set of parameters p is the solution of the calibration
problem:

p⋆ = arg min
p∈R12

FS(S(X), p) (2.6)

Such a non-linear least-square problem is efficiently solved using a Gauss-Newton
[Passieux and Bouclier, 2019], see [Pierré et al., 2017] for details.

Minimization with respect to shape correction field. The extrinsic cam-
era parameters p being fixed, the DOF vector S is the solution of the shape mea-
surement problem:

S⋆ = arg min
S∈R3nFE

FS(NT (X) S, p) (2.7)

This non-linear least-square problem is also solved using a Gauss-Newton algorithm.
At iteration k, the solution is sought as S(k) = S(k−1) + δS(k), where the descent
direction δS(k) is the solution of the following linear system [Pierré et al., 2017]:

H(k)
S

δS(k) = b
(k)
S with (2.8)

H(k)
S

=

∫
Ωs

N (J (k)
0

T∇I(k)
0 − J (k)

1

T∇I(k)
1 ) (J (k)

0

T∇I(k)
0 − J (k)

1

T∇I(k)
1 )TNTdX

b
(k)
S = −

∫
Ωs

N (J (k)
0

T∇I(k)
0 − J (k)

1

T∇I(k)
1 ) r(NT S(k−1), p) dX ,

∇I(k)
c = ∇Ic(P c(X + NT S(k−1))) with ∇Ic defining the gradient of the graylevel

image Ic and J (k)
c

= J
c
(X +NT S(k−1)) with J

c
being the Jacobian of Projector P c

with respect to X, i.e. such that (Jc)ij = ∂(Pc)i/∂Xj . The so-called DIC operator
H(k)

S
is actually an approximation of the Hessian of FS (using first-order derivatives

only) and −b
(k)
S corresponds to its gradient with respect to S. A generalization to

the case of ncam cameras is proposed in Section 3.4.1.
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Remark 3 Up to now, the shape correction field was defined as homogeneous to a
displacement field, with one component along each three dimension of space. But
since a shape correction field tangent to the surface does not actually modify the
geometry, Problem (2.8) is solved in projection onto the normal of the nominal
surface. The shape correction field becomes a scalar field. The operator and right-

hand side become ΠT
Z
H(k)

S
Π

Z
and ΠT

Z
b
(k)
S respectively, with Π

Z
being a 3nFE×nFE

operator representing the normal.

Remark 4 During an experiment, change in illumination may occur, which may
change locally the graylevel values of images. In DIC which is based on a comparison
of graylevel values, such modulations can be taken into account by an affine correction
in graylevels:

r̃(S, p) = α r(S, p) + β, (2.9)

where α and β are adjusted to account for contrast and brightness modulations respec-
tively. These values have to be considered as additional unknowns of the DIC prob-
lem. Shape and calibration rely on a measure of the discrepancy between graylevels of
images taken by different cameras from different view angles. The issue of brightness
and contrast modulation is much more acute. Choosing α and β as constants may be
insufficient. In [Dufour et al., 2015b], α and β are sought as low order polynomials,
but specular reflections may not be well described by low frequency corrections. In
this chapter, such as what has been proposed by Colantonio et al., an elementary
brightness and contrast adjustment is performed, considering α and β as piecewise
constants [Colantonio et al., 2020,Colantonio, 2020]. Images I0 and I1 are modified
at each iteration such that their average is zero and their standard deviation is one,
on each finite element.

Remark 5 As any Newton type algorithm, the question of the initial guess of p and
S is crucial. On the one hand, as stated above, the theoretical shape is supposed to be
a good approximation of the actual shape in experimental mechanics, therefore S = 0
is a good initialization. On the other hand, the extrinsic parameters are not known.
It is usually initialized by picking manually some (at least 4) points on the mesh and
on each image. However, even under these conditions, and particularly when the
discrepancy between theoretical and real shape is significant, a pyramidal multiscale
initialization technique may be relevant to improve convergence. In FE-SDIC, the
idea consists in filtering images and regularizing the shape simultaneously. Instead
of filtering images, pixel aggregation (to generate low-definition images) is probably
the best idea because of computational speedup. More precisely, starting with coarse
images and a high level of regularization, the process consists in decreasingly filtering
the images while reducing the regularization level at each considered scale to reach
the fine images. A classic way of regularizing is to resort to Tikhonov regularization
technique, i.e. to complement system (2.8) as follows:

(H(k)
S

+ λ A) δS(k) = b
(k)
S − λ A S(k−1), (2.10)

where A is a linear operator such that AS expresses the gradient of S(X) and λ is
a penalization parameter whose value can be interpreted as the filter cutoff frequency
(see, e.g., [Dufour et al., 2016,Pierré et al., 2017] for more details). The larger λ,
the higher the regularization level.
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2.2 Geometric regularization based on Bézier extrac-
tion

We now propose to geometrically regularize the FE mesh-based shape measurement
problem (2.7) by projecting it onto more regular spline-based subspaces. We notice
that spline functions have already been successfully used in DIC given their high
degree of regularity (see, e.g., [Cheng et al., 2002, Xie and Farin, 2004, Elguedj
et al., 2011, Réthoré et al., 2010, Kleinendorst et al., 2015]). In the context of
shape measurement, their interest is expected to be even more important since
these functions are particularly adapted to optimize free-from surfaces [Kiendl et al.,
2014, Hirschler et al., 2019b]. In this section, we detail the CAD-based approach
presented in Section 1.2.3.

2.2.1 Splines: basics and shape modification

The spline technology, which has become a standard over the years for geometric
modelling in CAD and computer graphics, relies on the use of non-uniform rational
B-spline (NURBS) functions [Cohen et al., 1980,Piegl and Tiller, 1997,Farin, 2002].
Only basic precisions on NURBS are given in the following to complete the funda-
mentals on B-splines given in Section 1.2.1. For further details, the interested reader
is referred to the references cited therein. The NURBS functions lend themselves to
an exact representation of many shapes used in engineering, such as conical sections
(circle, ellipse, etc). NURBS are a generalization of B-splines: they can be viewed as
rational projections of B-splines. Therefore, they possess many of the properties of
B-splines, the most interesting one being their increased smoothness, thus implying
few degrees of freedom.

A general expression for a NURBS geometry with parameter ξ ∈ Rδ (δ being the
dimension of the parametric space) is written as:

S(ξ) =

nIG∑
i=1

R̃i(ξ) X̃i = R̃
T

(ξ) X̃ , (2.11)

where R̃ and X̃ denote the matrix of the nIG NURBS basis functions and the vector
collecting the location of the associated control points, respectively. Note that the
same convention as in Equations (1.3) and (2.4) is used here for the notation. The
multivariate NURBS basis functions are obtained from the multivariate B-spline
functions Ñi as follows:

R̃i(ξ) =
w̃iÑi(ξ)

W̃ (ξ)
with W̃ (ξ) =

nIG∑
k=1

w̃kÑk(ξ), (2.12)

and where w̃i denotes the weight of the ith control point. Given Eq. (2.12) (and
verifying that the B-spline functions satisfy the partition of unity), it may be noticed
that if all weights are equal, the NURBS entity turns out to be a B-spline entity.

An interesting feature of splines is their high degree of regularity. If m is the
multiplicity of a given knot, the functions are Cp−m continuous at that location,
which is in contrast with standard FE where only a C0 regularity is encountered on
the element boundaries. This property is very appealing from the design point of
view since it allows to define smooth free-form shapes using few degrees of freedom.
Considering Figs 2.2(a) and 2.3(a), which show geometries associated with the knot
vector {0, 0, 0, 0.5, 1, 1, 1}, it means that the regularity of the curve between the two
elements is C1. To modify the shape of the spline entities, one may thus simply
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regularity

Spline curve
Control mesh

1C

(a) Initial B-spline model (the control
mesh is the linear interpolation of the

control points).

0 2 4 6 8 10
− 1

0

1

2

3

4

moving
control point

(b) Modification of the shape by moving
vertically the third control point.

Figure 2.2: Spline generation and shape modification: example of a two-element
quadratic C1 B-spline curve.

need to move the control points, which results in a natural smooth modification of
the geometry (see Fig 2.2(b) for illustration).

Furthermore, as explained in Section 1.2, spline functions present refinement
procedures that allow to enhance the design space (used for updating the shape)
without changing the geometry. In particular, one may refine the spline mesh by in-
serting knots (knot-insertion technique) while maintaining the initial smooth shape
(see Fig 2.3(b) for illustration). As a result, starting with a coarse spline model,
the refinement of the design space can be chosen in accordance with the desired
complexity of the final shape. Even more importantly, the modification of the shape
can be performed using a multilevel strategy as in IG shape optimization (see Fig-
ure 1.15 and [Nagy et al., 2011, Kiendl et al., 2014]), or in other fields such as the
biomedical community for organ detection [Jiang et al., 2015]: one may begin with
a coarse design model to fit the major tendencies of the surface and then refine the
spline model to get the sharper variations. Similarly to Equation (1.4), the exact
refinement procedure can be written for NURBS functions in matrix form (note that
this refinement procedure also acts on the weights w̃i):

R̃
c

= Cc,f
ref

R̃
f

(nc
IG ≤ nf

IG). (2.13)

Such a relation offers a simple way to build the refined spline mesh from the coarse

one. Denoting by X̃
c

and X̃
f

the location of the control points associated with
the coarse and fine description, respectively, and asserting that the geometry (see
Eq. (2.11)) is not modified through the refinement, we can write the following equal-
ity: (

R̃
c
(ξ)
)T

X̃
c

=
(
R̃

f
(ξ)
)T (

Cc,f
ref

)T
X̃

c
, ∀ξ ; (2.14)

which simply leads to:

X̃
f

=
(
Cc,f

ref

)T
X̃

c
. (2.15)

For more details on refinement strategies of splines and their matrix representations,
reference is made to [Piegl and Tiller, 1997,Cottrell et al., 2007,Lee and Park, 2002].

Remark 6 NURBS also offer the opportunity to apply shape variation by modi-
fying the control point weights. However, unless a very coarse NURBS model is
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considered [Qian, 2010,Nagy et al., 2013], it appears from the IG shape optimiza-
tion community that it is generally sufficient for free-form surfaces to only use the
control point coordinates (see, e.g., [Kiendl et al., 2014]). We perform similarly in
this work (as [Dufour et al., 2016]).

Remark 7 In a general context, additional attention may be required when updating
the shape for a rather fine spline geometric model. If the control points are allowed to
independently move in every spatial direction, fold-overs may appear. However, as
noted in Remark 3, only the normal component of the displacement is considered for
the update of the geometry in this study, which naturally circumvents the problem.

Element 1 Element 2

regularityC1

Nc

(a) Coarse B-spline model (p = 2, 2
elements, 4 control points, C1 regularity

at ξ = 0.5).

regularityC1

Elements  1              2          3          4

Nf

(b) Refined B-spline model (insertion of
knots ξ = 0.25 and 0.75 so that: p = 2, 4
elements, 6 control points, C1 regularity

at ξ = 0.25, 0.5 and 0.75).

Elements  1              2          3          4

regularityC0

L

(c) Finite element model (p = 2, 4
standard C0 − C0 elements, 9 nodes)

Figure 2.3: Going from a coarse spline representation to a fine (analysis-suitable)
FE mesh without modifying the initial geometry.

2.2.2 IG-FE bridge

Recalling that the desired input and output in our methodology is the fine (analysis-
suitable) FE mesh, it is now required to establish a link between this FE mesh and
the different (multilevel) spline-based descriptions introduced in previous section.
In this section, the properties of the C

Lag
operator (see Equation (1.5)) are first

recalled, and then its construction in the case of B-spline and NURBS is detailed.
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2.2.2.1 Principle

The ultimate objective is to be able to build, in an explicit and non-invasive manner,
the different Hessian and gradient operators, associated with the different spline
approximation subspaces, from their fine FE counterparts computed using our FE-
SDIC code (see Eqs. (2.8)). Since it is already possible to communicate between the
different spline models (see Eqs. (2.13) and (2.15)), the goal here is to relate a fine
FE and a fine spline discretization (i.e., with same number of elements and same
polynomial degree). In order to do so, we make use of previous work [Tirvaudey
et al., 2019] in which a global algebraic bridge between IGA and FEA is constructed
by resorting to Bézier-based operators [Borden et al., 2011,Schillinger et al., 2016].
More precisely, an operator that maps a C0 FE basis onto a smooth spline basis can
be formulated. Details regarding the construction of this operator are given in the
forthcoming Sections 2.2.2.2 and 2.2.2.3.

This operator has been briefly introduced in Section 1.2.3, and Equation (1.5)
can be applied in the case of a fine, analysis-suitable spline mesh:

R̃
f

= C
Lag

N, and thus X = CT
Lag

X̃
f
, (2.16)

N being the standard nodal Lagrange basis functions of Eq. (2.4), and C
Lag

being

the Lagrange extractor or its approximation in the case of NURBS (its construction
is detailed in the next sections).

As an example, this treatment has been performed to obtain the FE model
of Fig. 2.3(c) starting with the spline model of Fig. 2.3(b). From the resulting
FE mesh, we then have the opportunity to recover the refined spline Hessian and
gradient operators without implementing IGA but simply by projecting the related
FE operators onto the reduced, spline basis. From Eq. (2.8), we can compute the

associated spline operator H̃
f

S
such that (superscript (k) omitted):

H̃
f

S
=

∫
Ωs

R̃
f
(J

0
T∇I0 − J

1
T∇I1) (J

0
T∇I0 − J

1
T∇I1)

T R̃
f T

dX

=

∫
Ωs

C
Lag

N (J
0
T∇I0 − J

1
T∇I1) (J

0
T∇I0 − J

1
T∇I1)

TNTCT
Lag

dX

= C
Lag

H
S
CT

Lag
. (2.17)

As well, the spline gradient operator b̃
f
S can be obtained from its FE counterpart

bS (see Eq. (2.8)) as follows:

b̃
f
S = C

Lag
bS . (2.18)

Furthermore, the same procedure can be applied to recover the coarse spline oper-
ators from the fine FE ones:

H̃
c

S
= Cc,f

ref
H̃

f

S

(
Cc,f

ref

)T
= Cc,f

ref
C

Lag
H

S
CT

Lag

(
Cc,f

ref

)T
b̃
c
S = Cc,f

ref
b̃
f
S = Cc,f

ref
C

Lag
bS

. (2.19)

Consequently, the IG regularized shape measurement systems of form H̃
c

S
δ̃S

c
= b̃

c
S

and H̃
f

S
δ̃S

f
= b̃

f
S can be solved instead of the ill-posed fine FE shape measurement

systems (2.8). Finally, note that the resulting IG DOF vectors, denoted by S̃
c

or

S̃
f
, can be back-converted in terms of nodal FE shape update S:

S = CT
Lag

(
Cc,f

ref

)T
S̃
c

or S = CT
Lag

S̃
f
, (2.20)
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so that a unique basis is used for the representation of the surface at each multilevel
step. An overview of the different transformations is given in Figure 2.4.

Figure 2.4: Overview of the different transformations allowing to communicate
between the fine (analysis-suitable) FE mesh and the different (multilevel)

spline-based discretizations.

2.2.2.2 Construction: case of B-splines

In case of a B-spline geometric model, constructing C
Lag

appears quite straight-

forward since both spline and FE discretizations rely on polynomials. Since the
space generated by the B-Spline functions (smooth polynomials) is included in the
one generated by the Lagrange functions (C0 polynomials), the process consists in
extracting the smooth part of C0 functions.

In order to form a multivariate C0 mesh from a multivariate smooth B-spline
mesh, the starting point consists in repeating all the inside knots of the knot-vectors
until they reach a p multiplicity. A specific knot-insertion process is thus performed,
which allows to get the famous Bézier extraction operator whose interest to relate
IGA and FEA has been intensely demonstrated (see [Borden et al., 2011,Scott et al.,
2011,Evans et al., 2015,D’Angella et al., 2018] to name a few). More precisely, the
Bézier extraction operator maps a Bernstein basis onto a B-Spline basis. Bernstein
and Lagrange polynomials generates the same approximation subspace. Therefore,
the second step consists in moving from the Lagrange basis to the Bernstein basis,
which can be easily performed by evaluating the Bernstein functions at the nodal
points associated with the Lagrange basis. The succession of these two steps leads to
the construction of the Lagrange extraction operator C

Lag
[Schillinger et al., 2016]

in case of B-splines. For more details regarding these transformations, the interested
reader is advised to consult [Borden et al., 2011, Schillinger et al., 2016, Tirvaudey
et al., 2019].

Remark 8 Note that for better numerical efficiency, the Lagrange extraction opera-
tor can be directly computed from the B-spline and Lagrange basis. It merely requires
to evaluate the B-spline basis functions at the nodal points of the Lagrange basis.

Remark 9 The present work is restricted to quadratic functions since almost all
standard FE codes do not go beyond second-order Lagrange finite elements (the fa-
mous 9-node quadrilateral element in 2D, or the 27-node cubic element in 3D).
However, we emphasize that the proposed methodology could be directly applied to
higher-order spline-based discretization, provided that the corresponding higher-order
FE are available in a FE-SDIC environment.

2.2.2.3 Construction: case of NURBS

In this section and in this section only, C
Lag

will only refer to the exact Lagrange

extractor. Its approximation will be denoted CW
Lag

. In this chapter, we undertake
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to also consider NURBS (and not just B-splines) to exactly represent conic sections.
The Lagrange extraction can be extended to the case of NURBS, but it cannot
directly go from a Lagrange basis to a NURBS basis since the first one is based on
polynomials while the other one relies on rational functions. The NURBS version of
the Lagrange extraction actually consists in mapping a rational Lagrange basis onto
a NURBS basis, as detailed in [Schillinger et al., 2016]. To truly start with Lagrange
polynomials, the construction of an additional mapping going from polynomials to
rational functions is required. Such a transformation cannot be exact since this is
the space of the rational functions that includes the associated polynomials and not
the other way around. A projection thus needs to be performed. In order to do
so, we propose to proceed as in [Tirvaudey et al., 2019]; that is, we start with the
NURBS version of the Lagrange extraction and then perform the projection at the
Lagrange level. This choice offers the opportunity to follow a pragmatic yet accurate
strategy.

More precisely, using the B-spline version of the Lagrange extraction operator
and returning to (2.12), we can write:

R̃
f
(ξ) =

W̃
f
C

Lag
N(ξ)

W̃ f (ξ)
, (2.21)

where W̃
f

is the diagonal matrix collecting the weights of the refined NURBS dis-

cretization and W̃ f (ξ) =
∑nf

IG
k=1 w̃

f
k Ñ

f
k (ξ) is the associated NURBS weight function.

Omitting dependency on ξ, the NURBS weight function can be rewritten using the
Lagrange basis as:

W̃ f =

nf
IG∑

k=1

w̃f
k Ñ

f
k = (w̃f )T Ñ

f
= (w̃f )T C

Lag
N

= (CT
Lag

w̃f )T N = (w)T N = W,

(2.22)

where the weights associated with the rational Lagrange control points are:

w = CT
Lag

w̃f . (2.23)

Note here that N is only the vector [N1...NnFE ] (it is different from N from Equa-
tion (2.4)), so C

Lag
is in its smallest form (in other equations, C

Lag
takes into

account the number of dof per node by appropriately repeating the matrix coeffi-
cients). The rational Lagrange functions are then defined as follows:

R =
W N

W
, (2.24)

where W is the diagonal matrix of the Lagrange weights. The link between NURBS
functions and rational Lagrange functions is finally made using Eqs. (2.24) and
(2.22) in Eq. (2.21). Consequently, a new extraction operator CW

Lag
is created as

described below:
R̃

f
= W̃

f
C

Lag
(W)−1R = CW

Lag
R. (2.25)

Then, going from N to R or, in other words, from XW (the location of the rational
Lagrange control points) to X, can be achieved very simply. Noticing that the
control points of the rational Lagrange discretization interpolates the geometry, it
appears possible to consider that the position of the FE nodes X is exactly the same
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as the position of the rational Lagrange control points XW . Following this strategy,
we end up with:

X ≈
(
CW

Lag

)T
X̃

f
and R̃

f ≈ CW
Lag

N . (2.26)

The above approximations get more accurate with the refinement of the NURBS
mesh, which is assumed to be the case here since it is related to the last-level
NURBS model. As demonstrated in [Tirvaudey et al., 2019], this process provides
sufficient accuracy with already rather coarse NURBS meshes for typical engineering
geometries.

In the remainder of this work, the notation C
Lag

will refer to both C
Lag

or CW
Lag

depending on the case (B-splines or NURBS).

2.2.3 Proposed methodology

We now have all the ingredients in hand to present the proposed methodology. We
remind here that the objective is to improve the mesh-based shape measurement
occurring in FE-SDIC by using, in a non-invasive manner, a geometrically sound
regularization. In order to do so, the main idea is to relate the multilevel spline
parameterizations of the geometry (and of its update) with the multiscale images
used for the initialization of the shape measurement (see Remark 5). The principle
is illustrated in Fig. 2.5. The different approximation subspaces that describe the
geometry are chosen in accordance with the resolution of the images so that the
shape measurement problem is regularized at each scale (number of DOF versus
number of pixels). The coarse scales allow to fit the major tendencies of the surface
while the finer ones allow the representation of sharper variations. Moving from
scale s to finer scale s − 1, the spline design space is enhanced while keeping the
same geometry, and the initial solution for the shape measurement problem of scale
s− 1 is taken as the final solution of scale s.

Remark 10 In practice, the method starts from a sufficiently coarse representation
of the nominal geometry. So far, in experimental mechanics, specimen shape is
relatively smooth such that very compact spline representations with very few DOF
are generally sufficient. In a situation where the initial CAD representation should
be too fine to effectively regularize the problem, it would be possible to either reduce
the number of scales or resort to additional Tikhonov-type regularization techniques.
Note that even in such a case, although insufficient, a certain amount of geometric
regularization is expected. The level of Tikhonov regularization should presumably
be lower than the one which would be required with an analysis-suitable FE mesh.

More precisely, an overview of the proposed regularization scheme included in the
calibration of the whole stereo rig is given in Fig. 2.6. For simplicity, we denote by
C

s
the extraction operator that maps the fine FE space onto the spline discretization

of scale s, i.e. C
s

is defined such that:

C
0

= C
Lag

and C
s

=

(
s−1∏
i=0

C(s−i),(s−i−1)
ref

)
C

Lag
, ∀s ∈ {1, .., ns} , (2.27)

where ns is the number of scales (for initialization purposes) and s = 0 corresponds
to the finest scale while s = ns refers to the coarsest scale. As can be observed,
making use of the IG-FE bridge of previous section, the implementation is performed
from standard FE-SDIC routines with minimal effort. Summarizing, we proceed as
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initial coarse spline model

optimized coarse spline model

refined spline model

updated refined spline model

    mesh 
refinement by
knot insertion

image filtering by
  coarse graining

        multilevel
spline discretizations

multi-scale
  images

s = 1

s = 0

Figure 2.5: Principle of the geometric regularization: the multilevel spline
optimization process is coupled with the multiscale initialization of shape

measurement.

follows for the regularization. From the initial CAD representation of the theoretical
surface, we build in the pre-processing step a fine analysis-suitable FE mesh and
the different multilevel spline discretizations through their corresponding extraction
operators C

s
. Then, entering into the shape measurement loop and beginning with

the coarsest scale, we project, at each iteration of the Gauss-Newton solver, the
FE hessian and gradient onto the first-level spline space and solve the associated
regularized IG system. We thus end up with the IG shape update that can be
converted in terms of nodal FE shape update so that the FE hessian and gradient
can be updated for the next iteration. Going to the finest scale, we finally repeat
the previous procedure with the different refined spline spaces to regularize at each
scale. The final shape can be given either in terms of splines (thereby directly
compatible with CAD environments) or in terms of finite elements (thus facilitating
the communication with numerical simulations).

2.3 Examples

In this section, the proposed regularization technique for mesh-based shape mea-
surement is applied to a real experiment. A steel open-hole tensile specimen of size
180 × 50 × 2 mm and hole diameter 28 mm was considered. A dedicated speckle
pattern was laser printed over a layer of uniform white paint. A pair of 5 Mpx CCD
cameras and 50 mm lenses was used to capture the 8bit 2452 × 2052 digital images
presented in Figure 2.1. The stereo-angle was set around 25◦ which represents a
good compromise between in-plane and out-of-plane uncertainties [Balcaen et al.,
2017]. The intrinsic parameters of the nonlinear camera models (first order radial
distortions) were calibrated prior to the experiment using a series of digital images
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Figure 2.6: Overview of the proposed regularization scheme included in the
calibration of a stereo rig.

of a calibration target made of a grid of 12x9 dots with a step size of 3 mm. The
obtained intrinsic parameters are considered fixed in the remainder of the study.
More precisely, two configurations were considered for the study:

• In a chronological order, the specimen was first clamped in the lower jaw of
an electro-mechanical tensile testing machine. The upper part of the specimen
was left free. In this first configuration, a set of images was taken and is
referred to as the flat configuration, as the observed surface of the specimen
was almost plane. This configuration is used to analyze the robustness of the
method to a reasonably complex shape.

• The specimen was then clamped in the upper jaw. Since the jaws are slightly
misaligned, the statically indeterminate clamping generated a torsional mo-
ment and the specimen twisted. The misalignment was around 2 or 3◦, which
should generate significant waviness. The corresponding set of images is re-
ferred to as the twisted configuration. With this case study, it is possible to
analyze the method in a configuration where the difference between the theo-
retical (considered flat) and real (twisted) shapes is significantly greater than
in standard mechanical experiments.

For a clear understanding of the results, we choose in the following to start with
the twisted configuration and then turn to the flat configuration. The two pairs
of digital images are analyzed by (a) the proposed geometric, Bézier-based, regu-
larized shape measurement method, (b) a standard FE-based shape measurement
possibly considering Tikhonov regularization and (c) a more standard subset-based
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DIC method. It must be mentioned, at this stage, that the regions of interest of
the FE-based and subset DIC are not equal. The FE (or IG) meshes do conform
to the edges of the specimen, whereas subset DIC was not able to perform shape
measurement too close to the boundaries. This point should be kept in mind when
comparing global and local DIC solutions.

2.3.1 Pre-processing: construction of the geometric model and FE
mesh

The nominal geometry of the sample consists in a plate with a circular hole. As
a result, its exact representation in CAD requires the use of NURBS (rational B-
splines). It is common to proceed as in Figure 2.7(a) for the building of the first
NURBS model of such a geometry. Given that the four vertices of the plate imply a
C0 regularity of the geometry at those points, the coarsest NURBS model necessarily
involves 4 C0-C0 elements. More precisely, denoting by ξ the parameter describing
the circumferential direction, we needed to start with degree p = 2 in that direction
with knot-vector Ξ = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1} (for more details
on NURBS constructions, see, e.g., [Cottrell et al., 2009]). Along the other direc-
tion, even if degree 1 would be sufficient, we also took degree 2 so as to be consistent
with the final FE-mesh that is made of standard 9-node (i.e. bi-quadratic) elements.
Starting with the NURBS model composed of 4 quadratic elements, we thus only
performed knot-insertion (inserting one knot at a time) to get the different (multi-
level) NURBS parametrizations (see Figs 2.7(b) and (c)). We finally further carried
out knot-insertion and applied the IG-FE mapping of Section 2.2.2 (see Eq. (2.16))
to obtain the analysis-suitable FE-mesh (see Figure 2.7(d)).

Figure 2.7: Initial CAD parametrization, mutli-level NURBS meshes and final fine
FE mesh. The C0 lines are orange. The final FE mesh is composed of 1000

elements.

2.3.2 Results: twisted configuration

Let us recall that, because of the misalignment of the grips, in this clamped-clamped
configuration, the specimen underwent significant twist. Note that these images were
not analyzed for displacement measurement using FE-SDIC with respect to the flat
configuration images. They were used for shape measurement independently as if
this configuration was the initial state of the specimen.

2.3.2.1 Classic FE-based shape measurement without any regularization

A first classic FE shape measurement (using Pyxel [Passieux, 2018]) was performed
using the FE mesh given in Figure 2.7(d) without any regularization. The obtained
shape is represented in Figure 2.8. In order to compare the shape measurements ob-
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Figure 2.8: Twisted specimen: shape obtained with classic FE-SDIC without
regularization (def. scale fact. ×30).

tained with the different considered techniques, we chose the color data to represent
the distance to the best fitting plane (BFP) instead of directly plotting the shape
correction field S(X), which would not be available using the subset approach. The
shape is typical of a twist test. The waviness is around one millimeter, which, at the
scale of this specimen, is large. In addition, the resulting shape is relatively noisy.
Even though the noise is one order of magnitude smaller than the artificially large
shape correction field, it still seems large and unphysical.

2.3.2.2 Use of standard Tikhonov regularization

In order to regularize this noise, a classic Tikhonov regularization technique was
first considered. The shape obtained for three different regularization lengths is
given in Figure 2.9. As expected, using Tikhonov regularization, the shape mea-

Figure 2.9: Twisted specimen: shape obtained using a classic FE-SDIC with
Tikhonov regularization for different values of the regularization length: decreasing

values of the regularization length from (a) to (c) respectively (def. scale fact.
×30).

surements appeared smoother, especially for large values of the regularization length
(see Figs. 2.9(a) and (b)). It can be seen that such high levels of regularization may
also affect the shape. In Figure 2.9(d), the influence of the regularization length
on the shape is depicted, with the subset approach as the reference. Using a too
large regularization length reduces the displacement magnitudes and underestimates
the shape waviness. Asymptotically, using very large values of regularization would
lead to an almost constant correction field, which would correspond to a rigid body
translation of the observed surface with respect to the theoretical CAD.

Conversely, for lower values of the regularization length, the solution looks more
like the shape obtained without regularization. For instance Shape 2.9(c) is less
noisy than the one illustrated in Figure 2.8, but high frequency noise is still present,
which means that the regularization was still not sufficient. Even in this case, where
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the regularization level was insufficient to get completely rid of noise, it can be
observed in Figure 2.9(d) that the correction field at the top corner was already
underestimated because of the differential nature of the chosen regularization term.
As shown in this example, choosing the correct regularization length may become a
tricky trade-off. In other words, a satisfying value of the regularization length may
not exist, as it seems to be the case here.

2.3.2.3 Use of the proposed geometric regularization

Next, the proposed geometric regularization scheme was considered with the same
image set. The multiscale initialization technique described in Section 2.2.3 was
applied with three scales using the three NURBS meshes of Figure 2.7. The corre-
sponding shapes obtained at each scale are given in Figure 2.10.

Figure 2.10: Twisted specimen with the proposed geometric regularization (def.
scale fact. ×30).

Figure 2.11: Unregularized FE shape measurement (black mesh) and different
scales with different spline refinements with our CAD-based approach (gray

surfaces) (def. scale fact. ×30). This figure should be compared to Figure 1.5.

First, it can be observed that the shapes obtained at the three scales are very
smooth. The very low-dimensional spline approximation subspace indeed acts as a
very strong regularization technique. Each of the three shapes are very similar to
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each other and also in good agreement with the shape provided by the subset DIC
method. In addition, the reduction in the correction field magnitude observed when
using the Tikhonov regularization did not occur here (see Figure 2.11). Even at
the highest scale, where the spline representation is particularly coarse, a very good
approximation of the shape was already obtained. This property of the geomet-
ric regularization is particularly interesting for the highest scales of the multiscale
approach, since they are associated with high regularization levels.

Figure 2.12(left) presents the evolution of the standard deviation of the graylevel
residual field in percent of the reference image dynamics (later denoted relative
residual) as a function of the iteration number. It compares the convergence of the

Figure 2.12: Convergence of the algorithm on the twisted use case: (left)
convergence (vs iterations) of the relative residual with (black) and without (blue)
the fixed point iterations and (right) convergence speed (vs dimensionless time) for

the monoscale and multiscale approaches.

problem with and without iterating between calibration of extrinsic parameters (•
symbols) and shape correction problems (× symbols). It can be seen that, at least on
this case, converging the fixed point algorithm (by alternating between calibration
and shape problems) is mandatory to converge towards an accurate solution. It
is the case here because the actual shape is significantly different from the initial
CAD. On the (right) side of the same figure, the relative residual is plotted as a
function of CPU time normalized by the CPU time taken by one iteration at scale
0, for the monoscale (only scale 0) and multiscale approaches. It can be seen that,
although the number of iterations may increase, the computational time is clearly
reduced (divided by 2 in this case), since the higher scales are associated with low
definition images whose interpolation is far cheaper. Note also, that when using
the multiscale approach, the value of the relative residual was lower than that of
the monoscale alternative. Lower relative residual emerges from the fact that the
multiscale initialization, in addition to convergence acceleration, was designed to
avoid local minima. In this example, the solutions seem to be similar, but the
multiscale approach, by avoiding local minima, may allow to reduce significantly
the relative residual and therefore improve the measurement accuracy.

Remark 11 Note that the residual at scale s > 0 was estimated using the coarsened
images and not with the full resolution (scale 0) images, for efficiency. This explains
why the estimated residual at scale s > 0 is sometimes a little smaller than the one
at scale 0 after convergence on Figure 2.12(right).
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2.3.2.4 A note regarding brightness and contrast correction

Another interesting point with this test case and that has been studied in [Colantonio
et al., 2020,Colantonio, 2020] is the analysis of the graylevel residual field r(S(X), p)
at scale s = 0 before and after convergence, with and without elementary brightness
and contrast correction. First, the initial graylevel map, obtained with the initial
CAD (flat) shape and the initial set of extrinsic parameters, is depicted in Figure
2.13. Its value is about 70% of the dynamic of the image which means that the

(a) (b) (c)

Figure 2.13: Graylevel residual r(S(X), p) in percent of the dynamic of the images
with (a) the initial CAD shape and after convergence (b) without and (c) with

elementary brightness and contrast correction (def. scale fact. ×30).

graylevels do not correspond at all. After 8 iterations of the fixed point algorithm,
the graylevel residual dropped to less than 10% of the images dynamic. It can be
seen in Figure 2.13(b) that the residual map presents a band of higher value located
around the hole when using a global brightness/contrast correction. This localized
worse verification of the graylevel conservation was attributed to the presence of
a specular reflection of the light, which seems consistent with the twisting of the
specimen. This phenomenon locally modifies the brightness and contrast (B/C).
As shown here, global B/C correction methods cannot take this into account. The
proposed elementary B/C correction method (see Remark 4) was applied and the
resulting graylevel residual is depicted on Figure 2.13(c). It presents a homogeneous
value around 2% of the dynamic in all the region of interest. This elementary
correction technique is very simple but generic, and it can efficiently account for a
complex local B/C variations (such as specular reflection), which would be difficult
using a global descriptor.

2.3.3 Results: flat configuration

In this section, the so-called flat configuration where the specimen is clamped at
the bottom end only is being analyzed. Since here the specimen is nearly flat, the
shape correction field is expected to be of lower magnitude, but less regular than
the twist of the previous section. Only the final shape measurements are plotted
in this section to study the robustness of the geometric regularization method with
respect to a more complex shape with lower signal to noise ratio. Figure 2.14
presents the shape measurement and distance to BFP when using (a) the FE-SDIC
approach without regularization, (b) the local SDIC method and (c) the geometric
regularization technique. First it can be noticed that all the shapes are in good
agreement with each other. Note that the waviness is one order of magnitude smaller
than in the twist case. The FE and local SDIC measurements are clearly affected
by acquisition noise. The geometric regularization technique efficiently manages to
extract a regular shape from the images. From this measurement, which provides
the NURBS parametrization of the optimal shape, and using the IG-FE bridge of
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Figure 2.14: Flat specimen shapes with distance to best fitting plane (BFP) in
mm: (a) measured by the FE-SDIC without regularization, (b) measured using the
subset based SDIC and measured using the proposed geometric regularization: (c)
Spline parametrization of the optimal shape and (d) corresponding measured finite

element mesh (def. scale fact. ×300).

Section 2.2.2, it is possible to build directly the FE mesh (see Figure 2.8(d)), which
exactly corresponds to the same shape. Such an output may be convenient to be used
for FE-SDIC displacement measurements in the context of validation/identification
of FE models.

Conclusion

In this chapter, we developed a hybrid IG-FE strategy for the regularization of
the mesh-based shape measurement occurring in FE-SDIC. From a regularization
point of view, the proposed strategy draws inspiration from the techniques devel-
oped recently in the isogeometric shape optimization community, especially with the
multilevel design concept [Kiendl et al., 2014, Hirschler et al., 2019b, Wang et al.,
2018]. By making use of the advanced spline refinement procedures and of adequate
Bézier-based operators, the main idea here was to extract, from the initial FE sub-
space, smoother multilevel spline parametrizations of the geometry and to relate
them with the multiscale images used for the initialization of shape measurement.
This treatment allowed to efficiently regularize, with a geometrical meaning, the
problem at each scale. From a practical point of view, the proposed approach con-
sists of nothing more than projecting the ill-posed FE shape measurement problem
onto more regular spline subspaces by using appropriate operators. As a result, we
ended up with a technique that draws up the best of IG and FE technologies. On
the one hand, we benefit from the increased smoothness of spline functions for the
description of the geometry and of its update. On the other hand, we can perform
the resolution in a non-invasive manner from an existing FE-SDIC code and, we are
able to describe the final shape using the same fine FE mesh as the one which could
be used for displacement measurement and identification of mechanical models.

– 51 –



2.3. EXAMPLES

The performance of the developed methodology over existing strategies was
demonstrated through the analysis of real images coming from different experi-
ments. For each experiment, multilevel NURBS parametrizations of the geometry
were built in accordance with the multiscale images used for the initialization of the
shape measurement. The method was implemented from existing FE-SDIC routines
with minimal efforts. Our results clearly indicated the superiority of the proposed
geometric regularization, especially as the real and the theoretical shapes are far
from each other. We always managed to obtain a consistent smooth final shape
within a limited number of iterations, while the standard Tikhonov regularization
appeared to fail when rotations were expected.

Additionally, the proposed approach allows performing a spline field measure-
ment (such as what has been carried out by Dufour et al. [Dufour et al., 2015a,Dufour
et al., 2016]) without using a dedicated spline software. Only a standard FE-DIC
software is required, in addition to an analysis-suitable CAD description of the stud-
ied structure and the easy-to-compute Lagrange extractor (or its approximation in
the case of NURBS).

Yet the CAD-based approach may seem limited in the case when an analysis-
suitable CAD model is not available. Splines can describe a large variety of edges
geometries, but they are not adapted to simply describe holes since they provide a
continuous mapping between a δ-orthotope and the physical geometry. In the case of
the plate with a hole, we had to define three C0 lines to exactly create the circle, and
we had to ”glue” two sides of the patch together by pairing control points to close the
geometry (instead, we could have used periodic B-splines along one direction, but we
would have had to create C0 lines or superimpose control points for the four corners).
For a mechanical engineer who would like to regularize shape measurement on a very
complex geometry, a CAD-based method may be too complicated to use, because
it requires creating a CAD model with an analysis-suitable mesh. Moreover, the
FE mesh thus obtained completely depends on this CAD model and on the chosen
discretization and degree. In the experimental mechanics field, a FE mesh is often
chosen a priori. It is not necessarily a structured quadrangular mesh, and it can
have higher levels of refinement locally to better represent geometrical details and
also displacement field variations, because the same mesh is then used to measure
a displacement field. In the next chapter, we present a method that generalizes the
spline-based regularization concept to possibly any arbitrary FE meshes, without
limitations regarding geometry complexity or elements type.
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Chapter 3

FFD-based regularization of
DIC problems

This chapter is extracted from [Chapelier et al., 2021].

Introduction

The CAD-based technique developed in the previous chapter is interesting because
it allows to measure a 3D spline shape while using a standard FE-DIC software in a
non-invasive way. However, it is restricted to input FE meshes whose approximation
subspaces include the initial CAD space. In practice, this means that the FE mesh
needs to be at least quadratic and even made of elements exhibiting a tensor product
structure, which is usually not the case for any arbitrary analysis-suitable mesh.
Another issue with all the previously mentioned strategies is the construction of the
input proper boundary-fitted spline parametrization of the specimen geometry from
CAD data, which is not a trivial task as demonstrated by the recent developments
in isogeometric analysis [Marussig and Hughes, 2018, Teschemacher et al., 2018].
Here, we place ourselves from the experimental mechanics engineer point of view
who needs to perform a relevant field measurement starting from a given FE mesh
coming from a simulation software. In other words, the objective is to develop a new
non-invasive regularization scheme that can be applied to any FE mesh, regardless
of the element size, type or spatial density.

In order to do so, we propose in this chapter to make use of the Free-Form De-
formation (FFD) concept that was first introduced by Sederberg and Parry in the
field of computer graphics [Sederberg and Parry, 1986] and later applied in engi-
neering fields, in particular for the aerodynamic design of structures [Andreoli et al.,
2003, Duvigneau, 2006, Kenway et al., 2010, Lassila and Rozza, 2010, Hojjat et al.,
2014, Kenway and Martins, 2014, Lyu and Martins, 2015] or to more general shape
optimization problems [Bletzinger, 2017,Hirschler et al., 2019a], to make structures
fit given data points in mechanical and biomedical engineering [Bardinet et al.,
1998,Sacharow et al., 2011,Sacharow et al., 2013], and for non-rigid image registra-
tion in medical imaging [Rueckert et al., 1999,Xie and Farin, 2004,Wang and Jiang,
2007, Sotiras et al., 2013, Jorge-Peñas et al., 2015]. The FFD approach consists in
embedding an object – respectively, a CAD geometric model in computer graph-
ics, a mechanical structure in shape optimization or in data fitting, or an image in
medical imaging – into a morphing box (usually made of splines). Any deformation
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inside the morphing box is then only described by the deformation of the morph-
ing box itself. In this respect, note that what is classified as the FFD approach in
medical imaging is actually very similar to the direct spline DIC method discussed
previously [Elguedj et al., 2011, Kleinendorst et al., 2015] in the sense that both
techniques seek to find a spline displacement field that matches different images.
In contrast, we have to consider in this study, as embedded object, a mechanical
structure that is described by its analysis-suitable FE mesh. Thus our situation is
closer to what is encountered in FFD shape optimization [Kenway et al., 2010,Lyu
and Martins, 2015,Bletzinger, 2017] in terms of definition of the design space. The
FFD concept offers the opportunity to decouple the design space from that of the
actual geometry to be updated. As a result, even if the geometry is not regular
(e.g., C0 across elements in case of a FE mesh), the deformation of the geometry
can be considered of increased smoothness so as to regularize the corresponding op-
timization problem. The key idea here is just to link each FE nodal dof of the field
of interest to another, more regular field discretized by the morphing box. As such,
the initial structure of the FE mesh is kept during the whole process and we end
up with a conventional measured FE field. Furthermore, the method is non-invasive
with respect to a standard FE code (classic quadrature rules, element connectivi-
ties, etc). The strategy can ultimately be interpreted as a projection on a reduced,
smooth basis and actually consists in a generalization of the technique introduced
in [Colantonio et al., 2020]. Any FE mesh can indeed be embedded in a morphing
box and thus any FE field dof can be controlled by the deformation of the morphing
box.

The presented work is organized as follows: after this introduction, Section 3.1
dwells on theoretical and numerical aspects of the proposed FFD scheme. The
adopted choices and innovative treatments with respect to the general field of FFD
to build the morphing box and to relate the FE field of interest to the deformation
of the box are clearly accounted for and highlighted. In particular, we consider a
simple cuboid spline box and thus need to develop a specific strategy to handle con-
ditioning problems caused by non-influential control points. In addition, we provide
an original point of view on the developed FFD method and discuss its connection
with other existing techniques, namely projection methods [Réthoré, 2015,Tirvaudey
et al., 2019, Colantonio et al., 2020, Etievant et al., 2020] and fictitious domain ap-
proaches [Rank et al., 2012,Legrain, 2013,Schillinger and Ruess, 2015,Hansbo et al.,
2017]. Then, our FFD method is applied in Section 3.2 to regularize 2D-DIC for FE
displacement field measurements. Note as of now that the extension to DVC could
be straightforwardly performed. The minimization problem and the associated reso-
lution are detailed before the performances of the method are demonstrated on real
images taken to observe the bending of a 2D beam. Then, Section 3.4 is devoted
to the delicate problem of FE mesh shape measurement. Innovative developments
based on additional projections over local directions are performed to adapt to com-
plex geometries. The results coming from real images of a twisted plate and of a
spherical cap are given to assess the methodology. Finally, concluding remarks are
drawn in the last section.

3.1 Free-Form Deformation projection

As most of the works dealing with FFD, we use B-spline functions to create the
morphing box. NURBS functions could also be considered [Wang and Jiang, 2007].
Yet the B-spline technology is the easiest and most encountered one and appears
sufficient for the applications carried out in this work. The analysis-suitable FE
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mesh will thus be controlled by a simple embedding B-spline box deformation. One
can already see that this method is of great interest when the structure geometry
is complex, described by a fine and possibly unstructured FE mesh, since the box
geometry can be chosen very simply and with a number of dof adapted to the
deformation to describe.

B-spline basics have been seen in Sections 1.2.1 and 2.2. Similarly to what has
been developed in the previous chapter, a refinement procedure of the morphing
box will be used in a simple and flexible multilevel approach. This approach has
been initially developed for shape optimization (see, e.g., [Nagy et al., 2013,Kiendl,
2011,Kiendl et al., 2014,Hirschler et al., 2019b]) and it is therefore adapted to FE-
DIC displacement field measurement and FE-DIC shape measurement that both
aim to find a field that minimizes a certain quantity (see Sections 3.2 and 3.4).

In the following, the creation of the morphing box is outlined, before the link
between the deformation of the FE mesh and the one of the morphing box is properly
derived. Then, some insights regarding the implementation are given along with a
discussion on good practices to avoid bad conditioning.

3.1.1 Creating the morphing box

In the remainder of the chapter, the morphing box geometry was chosen to be a
one-patch B-spline δ-orthotope entity (see Equation (1.3)), i.e. a rectangle if δ = 2
or a rectangular parallelepiped if δ = 3. The choice of δ will depend on the structure
geometry, and we have δ ⩽ D, where D is the dimension of the physical domain
(see Fig. 3.1 that will be further explained in the following). These geometries are
particularly easy to create because the parametric domain I can be chosen so that
the mapping from I to the physical domain is the identity function [Sacharow et al.,
2013]. To do so, the parametric space I is defined as I = [0, λl]

δ, where (λl)l=1..δ are
being directly chosen as characteristic lengths in the physical space. This is what is
performed in this work, and one of the reasons that led us to use B-splines rather
than NURBS. However, the defect with such a simple geometric modeling is that
some morphing box control points may not have an influence on the embedded FE
mesh because they are too far from the latter, in other words, because the support
of the corresponding basis function does not, or only slightly, intersect the FE mesh.
This issue, which is expected to lead to ill-conditioning, will be addressed in Sec-
tion 3.1.4. To circumvent the problematic, most of other works preferred morphing
boxes that are closer to the structure, but therefore have a mapping that is not the
identity function [Andreoli et al., 2003, Duvigneau, 2006, Kenway et al., 2010, Lyu
and Martins, 2015]. In this case, a step is needed to determine the position of the
embedded geometry in the parametric domain of the box (inversion of a possibly
non-linear mapping).
The dimensions of the morphing box (λl)l=1..δ are defined by the embedded struc-
ture geometry so that it is tangent to some parts of the structure (see Fig. 3.1 (left)
for illustration). To construct the morphing box, a simple one-element B-spline box
is first created and then, automatic refinement procedures are used to get to the
desired degree and number of elements in each dimension. The morphing box is fi-
nally deformed by modifying the control points locations X̃ (the mb subscript used
in Section 1.2.4 is not used here for simplicity as the spline quantities always refer
to the morphing box in this chapter) in the physical domain of dimension D (see
Fig. 3.1 (right)). In this chapter, we work with 2nd-degree B-spline functions. In
the following, the link between the deformation of the morphing box and that of the
embedded FE mesh will be explained.
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(a) Initial FE mesh and control points of
the morphing box. d = 2, δ = 2, D = 2.

(b) Deformed FE mesh resulting from
some control points displacement.

(c) Initial FE mesh and control points of
the morphing box. d = 2, δ = 2, D = 3.

(d) Deformed FE mesh resulting from
some control points displacement.

(e) Initial FE mesh and control points of
the morphing box. d = 2, δ = 3, D = 3.

(f) Deformed FE mesh resulting from
some control points displacement.

Figure 3.1: Deformation of a FE mesh using FFD. The blue dots are the control
points of the morphing box. Moving these points (yellow dots, images on the right)

results in a displacement of the FE mesh nodes. d is the topology of the FE
elements (1: wire, 2: surface, 3: volume), δ is the dimension of the patch for the

morphing box parametric domain, and D is the dimension of the physical domain.
Note that the generalization to d = 3, δ = 3 and D = 3 is straightforward (in this

case, the surface hemisphere at the bottom just has to be viewed as a volume
hemisphere).
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3.1.2 Linking the deformation of the FE mesh to that of the mor-
phing box

The FE mesh deformation is completely driven by the morphing box deformation.
As stated previously, the morphing box is defined by B-spline functions and thus
verifies Eq. (1.3). Let us denote by nFFD the number of control points of the
morphing box. In this chapter, we recall that the embedded structure is described
by a FE mesh, denoted M(η), and defined by FE nodes and shape functions such
that:

M(η) =

nFE∑
j=1

Nj(η) Xj , (3.1)

where nFE is the number of FE nodes and Nj(η) is the FE basis function associated

with the jth FE node (η is a parameter that lives in the space where FE shape

functions are defined). This jth node location is denoted Xj and has D coordinates
in the physical domain. For our application, the considered FE mesh is of dimension
d = 2, which means that we only work with surface elements. Note, however, that
the method easily applies in the case of a volume mesh (simple extension of Fig.
3.1(e)).

The FE structure (3.1) thus needs to be deformed according to the deformation
of the morphing box, or more precisely according to the displacement of its control
points. A first way of doing so would be to take every physical point in the FE
mesh M(η), to find its equivalent in the morphing box parametric domain (here,
we recall that we have an identity mapping, so ξ = M(η) directly), and to compute
the B-spline functions at these points:

S ◦M(η) =

nFFD∑
i=1

Ñi(M(η)) X̃i , (3.2)

and thus for any other field of interest U(η) living in the structure:

U(η) =

nFFD∑
i=1

Ñi(M(η)) Ũ i , (3.3)

with Ũ i the value of the field of interest at the ith control point of the morphing
box. This approach is very similar to the standard practice in the fictitious domain
community where a mechanical domain with complex geometry is not meshed but
embedded in a grid used for field representation, while the immersed geometry is
accurately captured by means of specific quadrature rules for cut grid elements (see,
e.g., [Rank et al., 2012, Legrain, 2013, Schillinger and Ruess, 2015, Hansbo et al.,
2017]) However, for our purposes, this method appears to be complex (sophisticated
quadrature rules, specific treatment to counterbalance the ill-conditioning of the
resulting system), and, more importantly, is highly invasive w.r.t. standard FE (see
Figure 3.2(b)) so we decided to use another approach.
The aim of our work concerning data assimilation is to keep for the field description a
FE mesh coming from the analysis so that a direct comparison between the measured
field and a FE simulated field is possible. To this end, we apply the morphing
box deformation (i.e. composition (3.2)) only to the nodes of the FE mesh (i.e.
pointwise, see Figure 3.2(c)):

M(η) =

nFE∑
j=1

Nj(η)

nFFD∑
i=1

Ñi(ξ
FE
j

) X̃i , (3.4)
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with ξFE
j

the position of the jth FE node in the spline parametric domain I. We

can then write Equation (3.4) in a matrix form:

M(η) = NT (η) CT
FFD

X̃ , (3.5)

where C
FFD

is a (DnFFD × DnFE) matrix such that has its coefficients equal to

Ñi(ξ
FE
j

). Note that (ξFE
j

)j=1..nFE is equal to the initial position of the FE nodes

(Xj)j=1..nFE (as a consequence of the identity mapping).
The same applies to any field of interest U(η) =

∑nFE
j=1 Nj(η) U j , where U j is the

value of the field at the jth FE node. Since this field is defined at the nodes of the FE
mesh, the FE nodes value can be controlled by the control variables (Ũ i)i=1..nFFD

attached to the morphing box, similarly to (3.4):

U(η) =

nFE∑
j=1

Nj(η)

nFFD∑
i=1

Ñi(ξ
FE
j

) Ũ i . (3.6)

The above relation reads in matrix form:

U(η) = NT (η) CT
FFD

Ũ . (3.7)

It results in a conventional FE field, but where the dof are controlled by the morphing
box. This approach can thus be seen as a kind of discretization of the (pure) fictitious
domain approach (3.2)-(3.3) (for an illustration, see Figure 3.2). Unlike the latter,
it has the strong interest of being non-invasive w.r.t. a standard FE code in the
sense that classic FE quadrature rules can be applied and the element connectivities
remain the same. This also enables to straightforwardly reconstruct the mesh after
deformation (see again Fig. 3.1 for illustration). The non-invasive aspect of the
method will be further accounted for in next section. Note finally that if the FE
mesh is infinitely fine, the present approach is equivalent to the fictitious domain
approach.

At this point, we can see that this work is a generalization of what has been
proposed in Chapter 2 and [Colantonio et al., 2020]. It encompasses the CAD-
based approach and offers more possibilities. As pointed out in [Bletzinger, 2017],
in general, a CAD patch can be seen as a morphing box. Eq. (3.4) reads:

M(η) =

nFFD∑
i=1

nFE∑
j=1

Nj(η) Ñi(ξ
FE
j

)

 X̃i . (3.8)

In the case when the morphing box fits the CAD geometry (without being necessarily
a rectangle, and in the general case when the identity mapping is not ensured), and
when lower-regular lines created by knots coincide with FE element edges, a B-spline
function can be expressed as a linear combination of Lagrange polynomials of same
degree ( [Schillinger et al., 2016,Tirvaudey et al., 2019]) as:

Ñi(x) =

nFE∑
j=1

Nj(η) Ñi(ξ
FE
j

) , ∀i ∈ {1, ..., nFFD} , (3.9)

or, in matrix form,

Ñ = C
FFD

N , (3.10)
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(a) FE mesh (in black) made of a single T3 element embedded in a morphing box
(in gray).

(b) Deformation of the FE element
according to the morphing box deformation
with a (pure) fictitious domain approach.

Every point in the element follow the
deformation. The FE element is not a T3
triangle in the physical domain anymore.

(c) Deformation of the FE element
according to the morphing box deformation
with our FFD-based approach, which can
be seen as a kind of discretization of the
(pure) fictitious domain approach. Only

the FE nodes follow the deformation. The
FE element remains a T3 triangle in the

physical domain.

Figure 3.2: Comparison of a (pure) fictitious domain approach with our
FFD-based approach on a FE mesh made of a single T3 element (1st-degree

triangular element), in the physical domain.
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where C
FFD

becomes the Lagrange extraction operator here. Equation (3.9) makes
a linear combination of Lagrange functions appear, in which the coefficients are the
spline functions evaluated in specific points (see the first remark in Section 2.2.2.2).

The main advantage of the general FFD approach in this work is that any FE
mesh can be embedded in an FFD morphing box, while in the CAD-based approach,
the FE space needed to include the CAD space. The FE mesh can now be made of
low-order elements, triangles and quadrangles, and can be refined, either globally or
locally, allowing for instance the integration of small geometry features (holes, etc)
and accurate representation of the solution close to these areas. All information is
described by the control points, thus only the morphing box refinement level matters
for problem solving.

Remark 12 For a geometry that is initially a plane, we choose the morphing box
to be a bivariate patch (δ = 2), and the geometry can then be deformed in a space of
dimension D = 3 (see Figs. 3.1(c) and 3.1(d)). The geometry thus obtained is not
a plane anymore. One may wonder whether a non-planar surface FE mesh, which
could however be described using B-splines, could be embedded in a bivariate patch
(δ = 2) with a 3D mapping. If the B-spline description is known, it is possible to do
so but that means the mapping is no longer the identity function (see Section 3.1.1).
In our work, in this case, we will rather create a trivariate patch (δ = 3) morphing
box (see Figs. 3.1(e) and 3.1(f)).

3.1.3 Implementation: projection over the morphing box

The implementation of the FFD method mainly consists in implementing the matrix
C

FFD
as described in Equation (3.5). As we have seen, this matrix makes the link

between the FE nodes position and the morphing box control points position.

The (DnFE ×DnFFD) CT
FFD

matrix can be seen as a collection of modes, each
mode being a column of the matrix [Lassila and Rozza, 2010]. For instance, if the
field of interest is a displacement field, each of these modes is the displacement of
all FE nodes caused by a unitary displacement of a control point. This collection
of modes is a basis for a vector subspace of the vector space generated by the FE
functions. We use this basis for model reduction in Sections 3.2 and 3.4 where
equations of the following form, emanating from the FE discretization of variational
formulations, appear:

Find U ∈ RDnFE such that H U = b , (3.11)

where H comes from a positive symmetric bilinear form and b comes from a linear
form. U will either gather FE displacement or FE shape correction dof in this
chapter.

From Equation (3.7), we have:

U = CT
FFD

Ũ. (3.12)

In accordance with the Ritz-Galerkin method, the reduced-order problem thus
writes:

Find Ũ ∈ RDnFFD such that C
FFD

H CT
FFD

Ũ = C
FFD

b. (3.13)

Ũ is then back converted in terms of FE dof using (3.12). At this stage, the
non-invasiveness feature of the method clearly appears: it does not require any
modifications in how H and b are computed from a standard FE code. Similarly
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to Chapter 2, the developed method consists in nothing more than projecting the
(expected ill-posed) FE problem onto a more regular vector subspace made of spline
functions. In this sense, the proposed approach may also be related to other current
reduced order techniques encountered in the broad field of DIC (which will constitute
our application, see Sections 3.2 and 3.4). In particular, one can mention [Réthoré,
2015] where Williams’ modes are used to predict crack propagation, and [Etievant
et al., 2020] where free vibrations modes are used to quantify the shape defects of
machined surfaces. Here, we enforce less pronounced a priori knowledge so as to
be able to regularize a large range of FE optimization problems: we only prescribe
some regularity of the reduced basis by resorting to the family of B-spline functions.
An associated interest is that it leads to a projection matrix that is very sparse.
B-spline functions have local supports and for a patch of parametric dimension δ
and of degree p, the maximum number of non-zero functions at a given point ξ is

(p + 1)δ. It means that for each column of C
FFD

, only (p + 1)δ values or less are
non-zero values.

3.1.4 Conditioning concerns

As in any immersed-like method, it may be necessary to make some corrections
before getting a proper basis in C

FFD
. In some cases, especially when the morphing

box is very finely discretized, some control points may not have an influence on the
embedded FE mesh, because no FE node intersects its associated B-spline support.
In other words, if ∀j, Ñi(ξ

FE
j

) = 0, then the control point in X̃i is non-influential

(see Fig. 3.3). The basis is therefore corrected by removing the columns that
are full of zeros in CT

FFD
, i.e. removing the non-influential control points. The

Figure 3.3: Non-influential points in a 2D structure with a hole.
FE structure of size 60 × 50 with hole of diameter 28. Nodes: 503. Elements: 884.

Element type: T3.
Morphing box degree: 2, 2. Morphing box elements: 11 × 11.

obtained basis may still not be optimal, since some control points may have very little
influence on the FE mesh, even though it is not strictly zero. It has consequences
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on the C
FFD

H CT
FFD

condition number as will be seen in Section 3.4.4. For that
reason, we decided to use a criterion on the influence of a control point (through its
corresponding function) derived from criteria that are used by the fictitious domain
community [Schillinger and Ruess, 2015,Verhoosel et al., 2015,Rouwane et al., 2021].
The idea is to see what proportion of a function support actually overlaps with
the embedded structure. When the structure and the morphing box are of same
dimension (d = δ), we propose the following criterion for a control point in X̃i:

Qi =

∫
M Ñi(ξ)dξ∫
I Ñi(ξ)dξ

, (3.14)

where Qi is the influence of the control point in X̃i. However, when the structure
and the morphing box are of different dimensions (d ̸= δ), as in Section 3.4.4 and
Figs. 3.1(c) and 3.1(d) where d = 2 and δ = 3, we need to define an equivalent
surface from the integral along the volume, by raising it to the power d/δ. Our
criterion is thus generalized as follows:

Qi =

∫
M Ñi(ξ)dξ(∫
I Ñi(ξ)dξ

)d/δ . (3.15)

This criterion could be directly coupled with the choice of a threshold to remove
control points that do not have enough influence on the FE geometry. In Section
3.4.4, we chose to use this criterion to only sort the points by increasing influence
and then we removed the minimum of points so as to lower the C

FFD
H CT

FFD
condition number below a chosen value.

Finally, note that for the sake of simplicity, we numerically compute Qi as:

Qi =

∑
j Ñi(ξj)(∫

I Ñi(ξ)dξ
)d/δ . (3.16)

The numerator is not exactly an integral (at least a mean element size is needed
to get an integral approximation), but with FE elements sizes that are comparable
with one another, as is the case in this chapter, this criterion allows us to compare
control points influences. The interest is that the numerator is also easily accessible
because it is the sum of coefficients in the ith line of C

FFD
. This sum is zero for

non-influential control points, as explained above. Moreover, considering the value
of B-spline functions Ñi at the nodes of the FE mesh makes sense, because they
are the only points of the mesh that exactly follow the deformation of the morphing
box. For instance, in the case where δ = 2 and D = 3 (see Figs. 3.1(c) and 3.1(d)),
Gauss points are not a priori in the morphing box, due to tessellation. To the best of
our knowledge, this is the first time that such a treatment is applied in the general
field of FFD.

3.2 Digital Image Correlation (DIC)

As a first application of our FFD approach, we investigate the measurement of FE
displacement fields carried out by Digital Image Correlation (DIC). As mentioned
in the introduction, spline functions have shown their potential for regularization in
the broad field of image registration (see, e.g., [Jorge-Peñas et al., 2015,Sotiras et al.,
2013] related to the biomedical area and [Elguedj et al., 2011, Kleinendorst et al.,
2015,Dufour et al., 2015a] in the experimental solid mechanics community). Unlike
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these works, we aim here at taking advantage of spline properties, while obtaining
as an output a FE displacement field, which simplifies the communication with a
simulation software in view of performing data assimilation. A first approach in this
direction was proposed in Chapter 2 and [Colantonio et al., 2020]. Here we extend
this work to any FE mesh, regardless of the element size or type. The developed
technique is particularly adapted for mechanical solutions over complex geometries
that necessitate very fine FE meshes, thereby making the corresponding inverse DIC
problems highly ill-posed.

3.2.1 Mesh-based DIC

Measuring a displacement field with DIC requires taking pictures of a specimen
before and after deformation. The specimen is covered with a black and white
speckle pattern in order to correlate the images of the deformed and reference state.
More precisely, we seek to measure at the surface of the specimen the displacement
field u(x) related to any pixel position x of the region of interest ωs in the reference
image. The graylevel conservation at each pixel states [Horn and Schunck, 1981]:

∀x ∈ ωs, I(x) = J (x + u(x)) , (3.17)

with I the reference stage image and J the deformed state image. This equal-
ity cannot generally be satisfied (due to noise, brightness, speckle choice, graylevel
quantization...). Thus the problem is classically reformulated as the minimization
of a least-square functional:

u⋆ = arg min
u∈(L2(ωs))

D

Fu(u(x)) with Fu(u(x)) =
1

2

∫
ωs

[I(x)−J (x+u(x))]2dx . (3.18)

The problem can be discretized using a FE basis (leading to so-called FE-
DIC [Sun et al., 2005, Besnard et al., 2006, Fedele et al., 2013, Wittevrongel et al.,
2015,Passieux et al., 2018b]), which means that the displacement field is constructed
thanks to standard nodal Lagrange polynomial functions: u(x) = NT (x) u. In the
case of 2D-DIC, we have D = d = 2 (see Figs. 3.1(a) and 3.1(b)). Note however
that the developed FFD-based methodology could be straightforwardly applied to
DVC [Leclerc et al., 2012,Gomes Perini et al., 2014]. These functions are linked to a
FE mesh that we suppose to have a priori. It usually comes from FE simulations to
then faster the dialog between measured and simulated fields for data assimilation
in experimental mechanics [Périé et al., 2009, Réthoré, 2010, Mathieu et al., 2015].
We recall that the proposed FFD approach does not prescribe any constraint on the
FE mesh construction (see Section 3.1).

The FE-DIC problem writes:

u⋆ = arg min
u∈RDnFE

Fu(NT (x) u) . (3.19)

This problem is solved using a modified Gauss-Newton algorithm [Passieux and
Bouclier, 2019]. An initialization of the displacement u(0) at each dof is chosen (see
discussion at the end of the section), and at each iteration k, a correction δu(k) is
sought so that u(k) = u(k−1) + δu(k). The descent direction δu(k) is the solution of

– 63 –



3.2. DIGITAL IMAGE CORRELATION (DIC)

the following linear system:

H
u
δu(k) = b(k)

u with (3.20)
H

u
=

∫
ωs

N(x) ∇I(x) ∇IT (x)NT (x)dx

b(k)
u =

∫
ωs

N(x) ∇I(x)
[
I(x) − J

(
x + NT (x) u(k−1)

)]
dx

,

where ∇I(x) is the gradient of image I evaluated at position x. A brightness cor-
rection is applied at the element level so that the graylevel values in each element
have the same mean and standard deviation [Colantonio et al., 2020]. In case of a
too fine mesh compared to the data provided by the experimental instrumentation,
the FE-DIC problem (3.19) is highly ill-posed. As a strong regularization, we apply
the FFD projection strategy described in Section 3.1. More precisely, we seek the
displacement field in the reduced basis coming from a morphing box; that is, we ex-
press the unknown field as in (3.7) which leads to modify, at each iteration, system
(3.20) by the one given in (3.13).

For the initialization, we use a multiscale approach, inspired from [Colantonio
et al., 2020], which combines coarse graining techniques used in DIC and multilevel
properties of splines. Coarse graining [Hild et al., 2002, Besnard et al., 2006, Pierré
et al., 2017] is a well-known tool in DIC to avoid local minima when solving the
problem. It consists in aggregating pixels in the images f and g to create images
with lower resolution, and consider them to run the DIC algorithm first. The solution
is then used as an initialization of the DIC problem on the well-resolved images. This
process can be repeated several times (see Fig. 3.4). In our approach, since splines
can be refined automatically and efficiently, it is interesting to couple the morphing
box refinement with the coarse graining procedure. When the images resolution is
low, we need a spline box with few elements to regularize the corresponding coarse

DIC problem. More precisely, at each scale s, the final coarse spline dof ũ
(n)
scale s is

back converted in terms of FE dof u
(n)
scale s following (3.12), and then taken as the

initialization for the finer scale s− 1, such as u
(n)
scale s = u

(0)
scale s−1 (see Fig. 3.4).

The multilevel properties of B-splines avoid computing the FFD matrix at each
scale. Only the computation of C

FFD
at the finest scale, namely scale 0, as described

in Section 3.1.2, is needed. Then, similarly to Equation (2.27), we can write:

C
0

= C
FFD

and C
s

=

(
s−1∏
i=0

C(s−i),(s−i−1)
ref

)
C

FFD
, ∀s ∈ {1, .., ns} , (3.21)

where C
s

is the FFD projection operator at scale s. In the end, the resolution of the
regularized DIC problem at each scale simply consists in modifying system (3.20)
by the one given in (3.13) with C

FFD
replaced by C

s
.

3.2.2 2D digital image correlation: Bending of a beam

In order to validate our method for mesh-based DIC, we applied it on a bending
beam, using Pyxel as a FE-DIC software [Passieux, 2018]. A 2D simply supported
horizontal PMMA beam is subjected to vertical loads on two points (see Fig. 3.5(a)).
The displacement field is then measured on a 1006 × 5500-pixel region of interest.
The chosen FE discretization is a structured quadrangular mesh (20 × 110 4-node
elements) but could be any mesh. Each FE node can move along the two planar
directions. A 3-scale initialization is chosen, which means that the pixels of images
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Figure 3.4: Example of a multiscale approach. At scale 0, the images I and J are
used with their initial resolution, and a number of spline elements is chosen for the

FFD morphing box. For each scale, the pixels in I and J are aggregated by
22×scale, and similarly, the number of spline elements is reduced to achieve a

sufficient regularization level. The number of scales can be chosen freely, but the
images must still contain enough graylevel gradient (contrast).

I and J are aggregated 8 by 8 at the coarsest scale. This initialization was carried
out using FFD regularization with a single 2-dimensional quadratic patch of 1 × 1,
2 × 2 and 4 × 4 spline elements at scale 3, 2 and 1 respectively.

The deformed configuration eventually obtained at scale 0 is shown in Fig. 3.5(b).
The final displacement field was computed with the proposed FFD regularization
technique with 8 × 8 spline elements. We compared our results with two classical
solutions obtained with the same initialization, only changing the way of solving
the problem at scale 0: (i) what is commonly called Tikhonov regularization in the
field of DIC [Passieux and Périé, 2012, Dufour et al., 2016, Pierré et al., 2017] and
(ii) no regularization. Tikhonov regularization consists here in a penalization of
the L2-norm of the gradient of each component of the displacement field. In this
case, the penalization coefficient was chosen so as to obtain a characteristic regu-
larization length comparable to the smallest regularization length that we get with
the FFD regularization at scale 0. The smallest FFD regularization length is set
along y because the FFD spline elements are smaller in that direction. This choice
comes from the fact that the variations of the sought displacement field are known
to be greater along y. The FFD characteristic regularization length in that direc-
tion is thus 2 times the size of the spline elements in the y direction. In order to
set the Tikhonov penalization coefficient, the procedure described in [Leclerc et al.,
2012] was followed, with the choice of a reference displacement field in the form of
a plane wave. Note here that defining a physical regularization length is intuitive
and straightforward with the FFD method, whereas additional computations are
required for its estimation with the Tikhonov regularization.

The FFD regularization shows great potential for reducing the noise impact on
the result. The obtained displacement field with FFD regularization is consistent
and very smooth, as shown in Fig. 3.6. Two harmful effects can be reported with
the standard alternatives to solve the problem (see the region within the dotted and
solid circles in Fig. 3.6). The dotted circle indicates the impact of dust on the cam-
era. A speck of dust creates a small black spot in the images, and that spot remains
stationary relatively to the images. Thus it does not follow the displacement of the
specimen. This explains why a node of the FE mesh has a smaller displacement
than its neighbors when no regularization is applied (black mesh). Tikhonov regu-
larization (red mesh) smooths this impact, and the chosen FFD regularization (blue
mesh) completely removes the problem. The solid circle shows Tikhonov defects on
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(a) Experimental set-up. Yellow arrows
and blue triangles represent respectively

applied loads in the y direction and points
where the beam is simply supported.

(b) Gray and blue meshes represent
respectively the undeformed FE mesh and
its deformed configuration after running

DIC with our FFD regularization.
Amplification factor: ×30.

Figure 3.5: Experimental application: bending beam.

Figure 3.6: Zoom on defects that are not part of the displacement field. The black
mesh results from the unregularized problem, the red mesh is obtained using

Tikhonov regularization, and the blue mesh shows the deformed configuration with
FFD regularization. The dotted circle shows the impact on the results of dust on

the camera, which affects the black and red meshes. The solid circle shows
artifacts inherent to the standard Tikhonov regularization.

the curved edges of the specimen. It reduces a part of the rotations that is relevant,
which creates artifacts on the edges. This harmful effect of the standard Tikhonov
regularization has already been underlined in [Colantonio et al., 2020] for the specific
case of mesh-based shape measurement.

The differences between FFD regularization, Tikhonov regularization and no reg-
ularization are all more noticeable when displaying the strain field, since the impact
of noise tends to be increased when taking a derivative. Fig. 3.7 shows the strain
fields obtained with no regularization, Tikhonov regularization, FFD regularization
and an idealized analytical solution obtained with a standard beam model and sim-
ple boundary conditions. Clearly, using no regularization gives noisy results (see
Figs. 3.7(a) to 3.7(c)). Color scales have been adjusted in order to see the relevant
components of the strain field. The edges of the region of interest and the region
where there is the dust spot are undergoing unrealistic off-scale values. For example,
the top right corner of the region of interest has values of εyy up to 1.3e − 2, that
is 10 times higher than expected. Tikhonov regularization reduces the impact of
the noise, makes the edges much less erratic and smooths the impact of dust on the
result. However, as pointed out in Fig. 3.6, the rotations of the edges are dampened,
and that leads to measuring some spurious shear (see near to the top and bottom
boundaries of the region of interest in Fig. 3.7(f) in comparison to the reference in
Fig. 3.7(l)). The FFD regularization gives smooth results thanks to the projection
of the DIC problem onto a smaller, more regular, spline basis. It gives satisfying
results compared to the idealized analytical solution. This result appears totally
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(a) No regularization, εxx (b) No regularization, εyy (c) No regularization, εxy

(d) Tikhonov
regularization, εxx

(e) Tikhonov
regularization, εyy

(f) Tikhonov
regularization, εxy

(g) FFD regularization, εxx (h) FFD regularization,
εyy

(i) FFD regularization, εxy

(j) Analytical solution, εxx (k) Analytical solution, εyy (l) Analytical solution, εxy

Figure 3.7: Comparison of our regularization method (third line, FFD
regularization) with the results obtained with no regularization (first line), with

Tikhonov regularization (second line) and with an idealized beam solution (fourth
line) for the measured strain coming from DIC on the bending beam shown in

Figure 3.5(a). The beam for the analytical solution is longer because it represents
the whole beam while the other figures only represent the region of interest. The

impact of dust has been circled.

relevant since the aim of the experiment was to measure a global displacement field,
in accordance with Saint Venant’s principle.

Remark 13 Here we used FFD regularization for the initialization in each case
(process illustrated in Fig. 3.4). Note that in case another regularization technique

is chosen to compute an initialization u
(0)
scale 0 (such as Tikhonov regularization as is

often done in the field [Passieux and Périé, 2012,Dufour et al., 2016,Pierré et al.,
2017]), a projection is needed before starting the developed FFD-DIC resolution pro-
cess at scale 0. When performing an optimization, it is indeed essential to start
with the initialization in the research space. In other words, we have to make sure
that the initialization performed is not adding features that cannot be modified in the

FFD subspace. In this case, the projection of u
(n)
scale 1 consists in finding ũ

(0)
scale 0 that

minimizes the L2-error
∥∥∥u(n)

scale 1 −CT
FFD

ũ
(0)
scale 0

∥∥∥2. The resulting FE field used for

initialization is finally u
(0)
scale 0 = CT

FFD
ũ
(0)
scale 0.

Remark 14 Note that other types of regularization techniques exist, such as me-
chanical regularization [Réthoré et al., 2009b,Tomičevć et al., 2013]. This technique
is not detailed in this manuscript as we mainly consider shape measurement prob-
lems.

3.3 A less regular case

In order to demonstrate the regularizing potential of splines even in cases when
an irregular feature has to be measured, the following numerical example shows
how to apply the method in the case of a less regular displacement field in 2D

– 67 –



3.3. A LESS REGULAR CASE

DIC. For this purpose, a pair of synthetic images was generated. They represent a
specimen containing a bi-material interface before and after applying a tension in the
horizontal direction. The Young modulus ratio was 10 and the Poisson’s ratio was
chosen to be zero. Across this interface, the displacement field is C0 and thus the
strain field is discontinuous, see Fig. 3.8(b). A structured finite element mesh made
of 4-node linear quadrilaterals was constructed, see Fig. 3.8(a). The size of the finite
elements was chosen to be small enough to well represent the strain discontinuity,
but not large enough to allow for direct measurement without regularization.

(a) Reference image and FE mesh (b) Strain map with discontinuity obtained
with the FFD method.

Figure 3.8: Virtual test showing the ability of the method to describe a less regular
displacement field. More details are shown in Figure 3.9

An initial morphing box of 1 quadratic element was built around the FE mesh.
A first FFD measurement with this morphing box has been performed. Not sur-
prisingly, it is not at all adapted to the irregularity of the field to be measured,
see Figure 3.9(top). This results in a particularly high correlation residual which
reflects the fact that the (regular) kinematics chosen is not sufficient to represent
the complexity of the field. This residual provides extremely valuable information
for enriching the approximation space, since it is possible to locate areas where the
approximation is insufficient.

As an illustration, we performed a naive technique, which consists in locating the
abscissa corresponding to the maximum of the residual function and adding a knot
in the knot vector at this very same place. The measurement was then performed
once again with the new spline parametrization of the FFD morphing box. The
corresponding spline mesh is depicted in Figure 3.9 (middle-left). It is still C1

which means that it is not surprising to find again high residual levels although they
are reduced compared to the first measurement. The same adaptive knot-insertion
procedure is performed once more. As the maximum of the residual is located at
the same point, the new knot is duplicated in the knot vector, which reduces the
regularity of the space and allows to represent C0 line in the morphing box. This
time the displacement is perfectly measured with its C0 line and the residual map
is homogeneous, at a level comparable to noise. It is possible to generalize such a
procedure to create C0 or discontinuous lines in the morphing box, either a priori,
or during the refinement phase. As illustrated here, criteria such as the graylevel
residual value can help identify the regions that should be refined [Kleinendorst
et al., 2015].
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Figure 3.9: The first line shows an initial morphing box of 1 × 1 quadratic element,
the measured displacement along x (mean over y) compared to the exact one, and
the residual map resulting from the FFD-DIC problem in this case (which shows a

maximum for x = 259.15). In the second line, a knot has been added in the
morphing box for x = 259.15. The residual is still maximum for this value. In the
third line, a second knot has been added for x = 259.15, creating a C0 line, which

enables us to properly capture the irregular solution.

3.4 Shape measurement

As seen in the previous chapter, spline-based regularization is particularly well
adapted when the measured field is expected to be smooth [Dufour et al., 2016].
It is the case when measuring a shape before performing 3D displacement field mea-
surement. In this chapter, the context is slightly different from that of Chapter 2.
In the last chapter, the measured shape correction was expressed on a CAD model
of the structure, and a FE software could be used thanks to the non-invasive imple-
mentation of the exact link between B-spline functions and FE standard functions.
The core, the starting point of the CAD-based method is an analysis-suitable CAD
model, which makes sense for shape correction since a structure geometry model
often starts with a CAD description. In this chapter, the proposed FFD-based
approach does not offer a CAD description of the shape correction, but it allows
working with any arbitrary FE mesh. This approach is thus perfectly adapted to
experimental mechanics engineers who are given a FE mesh as a starting point.

This section aims at showing the potential of the FFD-based approach on pos-
sibly complex geometries. To do so, an example on a non-planar specimen with
pictures taken at 360◦ is presented. Therefore, the theoretical aspects of shape
measurement with ncam cameras (with ncam ≥ 2) are first given. Then, the FFD
projection is detailed, and finally, the method is validated on two examples: the
twisted specimen from Chapter 2 and a spherical cap.
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3.4.1 Mesh-based shape measurement: generalization to ncam cam-
eras

As we have seen in Section 2.1.2, mesh-based shape measurement consists in correct-
ing the theoretical geometry of a structure using its FE mesh by analyzing several
pictures of the structure taken from different points of view [Pierré et al., 2017].
These corrections are needed because the real geometry may slightly differ from the
nominal geometry, due to machining imperfections or to the experimental set-up
that can induce small deformations. This mismatch between the idealized CAD and
the actual specimen shape may be detrimental to the displacement measurement.

We now generalize the shape measurement problem and consider that the spec-
imen is observed with ncam cameras (which may correspond to the same physical
sensor in different positions and/or orientations). Each camera c is modelled by
a mapping xc = P c(X) from any point X of the physical space Ωs ∈ R3 to the
coordinate in pixels xc ∈ R2 of its projection in the image plane [Sutton et al.,
2000] (see Section 2.1). Such models depend on a number of parameters that are
considered to be determined in a photogrammetric calibration phase carried out
beforehand [Garcia, 2001].

The goal of shape measurement is to find a geometry correction field S(X) such
that the projection of a physical point X + S(X) of the structure has the same
graylevel in all images taken pair by pair. The problem thus writes:

S⋆ = arg min
S∈(L2(Ωs))

D

ncam∑
i=1

ncam∑
j=i+1

∫
Ωs

Vi(X)Vj(X) r2ij (S(X)) dX , (3.22)

with rij the graylevel residual fields between images Ii of camera i and image Ij of
camera j:

rij (S(X)) =
[
Ii ◦ P i (X + S(X)) − Ij ◦ P j (X + S(X))

]
. (3.23)

Function Vc(X) is a mask associated with camera c, such that Vc(X) = 1 if a point
on the FE model X is correctly seen by the camera c and Vc(X) = 0 otherwise. With
3D structures, a given camera may indeed not see the whole region of interest at
once (see Section 3.4.4). Moreover, when measuring the shape from several points
of view, two cameras are very unlikely to have equal visible structure parts. For
that reason, the contribution of a pair of cameras is restricted to the intersection
of visible regions of each camera. αij(X) = Vi(X)Vj(X) is thus a mask associated
with the pair of cameras i and j.

As for DIC (see Section 3.2), we discretized the problem using a FE basis and
solved it with a modified Gauss-Newton algorithm. An initialization of the shape
correction at each degree of freedom S(0) is set (often to zero since the discrepancy
between theoretical and actual shape is usually small) and the shape correction at

each iteration, δ̃S
(k)

such that S(k) = S(k−1) + δ̃S
(k)

, is computed by solving the
following linear system (X-dependence omitted for clarity):
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H(k)
S

δS(k) = b
(k)
S with (3.24)

H(k)
S

=

ncam∑
i=1

ncam∑
j=i+1

∫
Ωs

αij N (J (k)
i

T∇I(k)
i − J (k)

j

T∇I(k)
j )

×(J (k)
i

T∇I(k)
i − J (k)

j

T∇I(k)
j )TNT dX

b
(k)
S = −

ncam∑
i=1

ncam∑
j=i+1

∫
Ωs

αij N (J (k)
i

T∇I(k)
i − J (k)

j

T∇I(k)
j )

×r(NT S(k−1), p) dX

,

where J (k)
c

is the jacobian matrix of the mapping P c with respect to X, calculated at

the physical point X + NT (X) S(k−1), and ∇I(k)
c = ∇Ic ◦ P c

(
X + NT (X) S(k−1)

)
defines the gradient of the graylevel image.

It can be seen that the computation of the matrix H(k)
S

and the vector b
(k)
S

involves a sum of all pair contribution. It is worth noting that for many pairs of
cameras, Vi(X)Vj(X) = 0, ∀X, because both cameras see different regions of the
structure. This significantly reduces the number of terms in the double sum.

Practically speaking, Vc is defined for each FE element. Elements whose outward
normal unit vector ne is pointing to the background are not visible. As a result, the
value of Vc is set to 0 for any FE elements that meet the criterion zc · ne < 0, where
−zc is the unit direction the camera c is looking at.

We also did not consider surfaces that are seen too inclined by the camera,
because the speckle pattern is not accurately captured due to a too small pixel size
to structure surface ratio. When this criterion is below a given threshold ϵn, the
element e is considered not correctly visible for the camera c, and Vc(X) = 0 on this
element. In other terms:

Vc(X) =

{
1 if zc · ne(X) > ϵn ,
0 otherwise.

(3.25)

Note here that the greater we choose the threshold ϵn, the more elements are
”correctly” seen by each camera, and the more cameras see a given element. The
minimum number of cameras that are needed for shape measurement is thus defined
by this threshold, since each FE element should be seen by at least two cameras for
the FE problem to be solvable if not regularized.

Note also that all elements are not seen by the same number of cameras (zones
that are seen by a given camera overlap), which means some dof have more weight
than others by construction of H(k)

S
. We decided to normalize each element con-

tribution by the number of pairs of cameras that can see it, such that no dof
is predominant in the minimization of the functional. Note that an appropriate,
physically-based weighting has been proposed in [Fouque et al., 2021b].

Similarly to Section 3.2, the matrix H(k)
S

and the vector b
(k)
S being computed by

any pre-existing FE-SDIC software, we regularize the problem by projecting it on
the smoother FFD space thanks to the matrix C

FFD
.

The multiscale initialization approach as described in the previous chapter and
[Colantonio et al., 2020] was also used for shape measurement.

3.4.2 FFD projection of the shape measurement problem

So far shape correction consists in moving nodes (or control points) in the 3 dimen-
sions of space. However, moving a node/control point in the direction tangent to
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(a) (b) (c)

Figure 3.10: Examples of normal direction fields defined on the FE mesh for shape
measurement.

the surface does not change the geometry and thus makes the shape measurement
problem ill-posed. To avoid mesh distortion or elements overlapping and to improve
the spectral properties of the Hessian, the shape correction is sought in one single
direction, usually the normal to the surface [Dubreuil et al., 2016,Pierré et al., 2017].
As such, we end up with a scalar problem, namely, with only one dof per node. In
FFD-based 3D shape optimization, the usual practice consists in proceeding in two
successive steps: (i) first the 3D FE optimization problem is projected onto the 3D
Spline shape functions, then (ii) the control points are constrained to move in one
direction only [Kenway et al., 2010].

Defining a direction vector field at the FFD control points is not completely
satisfactory in our context because of the multiscale process. To prevent the final
result from depending on the minimization algorithm, it is important to ensure that
each research space is included in the next one. This condition implies that the
direction field variations in each scale are given by the coarsest FFD direction field.
This constraint may be restrictive especially when dealing with complex geometries.

In the spirit of the approach developed from the finite element mesh point of
view, we propose to define a local normal direction field n defined at the nodes of
the FE mesh and along which the nodes will be moved to update the geometry. It
means we look for a shape correction written S = Π

n
Sn, where Sn contains dofs

in the chosen direction and Π
n

is the corresponding extraction DnFE ×nFE matrix
gathering the components of unit normal vectors n at each node, nFE being the
number of FE nodes as introduced in (3.1). The 3D FE optimization problem is
then first projected according to this normal field so that the operator and right-

hand side become ΠT
n

H(k)
S

Π
n

and ΠT
n

b
(k)
S , respectively. Hence, the FE shape

correction field becomes a scalar problem (one dof per node). Only then is this
scalar problem projected onto the FFD space, which means we look for a shape
correction Sn = CT

FFD
S̃n. The FFD projected problem eventually writes:

C
FFD

ΠT
n
H(k)

S
Π

n
CT

FFD
δ̃S

(k)
n = C

FFD
ΠT

n
b
(k)
S . (3.26)

The corresponding dofs S̃n do no longer correspond to displacements of the
control points, but to magnitudes of the correction along the FE nodes normals.
This choice makes it possible to keep a normal that is constant throughout the
scales but not constrained by the coarsest length scale. The method is general, since
the normals can be defined in many different ways, see Fig. 3.10: for instance a field
of local normals (nodes by nodes) (Fig. 3.10(b)), a field of non-local normals taking
into account the geometry of the neighborhood (Fig. 3.10(a)) or even user-defined
normals (Fig. 3.10(c)).

To the best of our knowledge, such an approach is original in the general field
of FFD, since in our work the direction of the correction is defined on the FE mesh
and only the magnitude of the correction field is defined by the FFD control points.

Remark 15 In this chapter, we used the regularity properties of spline functions
to regularize the FE-DIC and FE shape measurement problems. However, we may
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sometimes face situations where the measured quantity is not regular. Firstly, for
the shape measurement problem, it must be emphasized that the regularity is imposed
on the shape correction field and not on the shape itself. The basic assumption of
this work is that we have a theoretical CAD shape representative of the object. An
initial CAD containing sharp edges can be used without limitations with the pro-
posed regularization method. Only the construction of the local normal field needs
special attention, see Fig. 3.10. Conversely, there is no reason for a sharp edge to
exist in the object shape (before mechanical loading) without existing in the CAD.
Under these conditions, the shape correction field will always be regular. Secondly,
for displacement measurement, the appearance of a discontinuity in the strain or
displacement fields can occur during a test (bi-material interface, crack, etc.). If
the morphing box is regular, this will result in locally high residuals near the dis-
continuity. In such situation, it is possible to adapt the morphing box using spline
reparametrization from the residual map. A very simplified illustrative example is
provided in 3.3 to show the potential of the method in this situation.

3.4.3 Twisted plate with a hole

We applied the proposed regularization method to the shape measurement of a set
of real images already studied in Chapter 2.

In this example, the initial FE mesh is flat. Consequently, a bivariate patch is
chosen for the morphing box. Since the outer shape of the structure is a rectangle,
we choose a FFD morphing box that coincides with the structure on the edges.
The high resolution of our images allows to use 4 scales for the shape measurement
problem resolution. We chose to start at the coarsest scale with a 1-element FFD
morphing box, and then subdivide each spline element into 4 elements at each finer
scale, so that the finest scale has a 64-element FFD morphing box. In practice,
the number of scales should be chosen in accordance with the desired regularization
length.

The problem to solve is the one given in Equation (3.26). In the case of an
initial flat configuration, the obvious choice for n at each FE node is the normal to
the surface, which is the same direction for all nodes. In this special case where all
nodes can be corrected in the same direction, it is possible to see the correction as a
displacement of the FFD control points along that same direction, which made the
visualization of the deformed FFD morphing box possible in Fig. 3.11.

The results are shown Fig. 3.11. As expected, we observe very smooth results
with the FFD regularization, because we benefit from the regularity of spline func-
tions and the very low number of dof in the regularized problem. The coarsest scale
already gives satisfying results and finer scales slightly improve this shape correction
field. Results are in good agreement with the shape correction field obtained with
subset DIC. Here, VIC 3D software was used.

On the right, Fig. 3.11 shows the shape correction field expressed in each point
of the FFD morphing box, using 2nd-degree B-spline functions. Higher values in
the center can be noticed at the finest scale. This feature results from the too little
influence that control points inside the center hole have on the FE mesh. It can be
interpreted as a fictitious extension of the shape correction field outside the region
of interest, i.e. outside the FE mesh, that inevitably exists when the mesh does not
occupy the whole morphing box. It does not have a physical meaning, but it does
not affect the solution if the problem is not ill-conditioned. For this example, it does
not negatively impact the results.

An advantage of this method compared to a standard CAD-based method as in
Chapter 2 is the absence of C0 lines that appear when creating a boundary-fitted
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(a) Sz field, scale 3. (b) FE mesh, scale 3. (c) FFD morphing box,
scale 3.

(d) Sz field, scale 2. (e) FE mesh, scale 2. (f) FFD morphing box,
scale 2.

(g) Sz field, scale 1. (h) FE mesh, scale 1. (i) FFD morphing box,
scale 1.

(j) Sz field, scale 0. (k) FE mesh, scale 0. (l) FFD morphing box,
scale 0.

(m) Sz field, subset-DIC. (n) Subset-DIC
measurement.

(o) Color scale:
displacement in mm.

Figure 3.11: Experimental application: Twisted plate with a hole. We compare the
shape measured with our method using a 3-scale initialization with the shape

measured thanks to the industrial software VIC. Sz is the shape correction along
the normal direction z.
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patch. The FFD regularization is a generalization of the CAD-based regulariza-
tion proposed in Chapter 2, where we eliminated the need for an analysis-suitable
boundary-fitted spline mesh. As a result, the FFD regularization can be applied to
any geometry. Another advantage coming from the fact that the FE mesh does not
have to derive from a spline mesh is that any type of FE element can be chosen, and
not only 9-node quadrilaterals ( Q9 elements), that are not implemented in all FE
softwares. The next example illustrates a case on an initially non-planar geometry.

3.4.4 Spherical cap

The proposed FFD approach offers great possibilities to regularize shape measure-
ment on complex 3D shapes. In this section, we apply this method to a spherical cap
(see Fig. 3.12). The initial mesh for the spherical cap is 35.45 mm large and 77.10
mm high. This FE mesh was constructed as a part of a sphere with a 38.686-mm
radius.

(a) Image taken from the side. (b) Image taken from above.

(c) In red, visible mesh for the
camera that took picture (a).

(d) In blue, visible mesh for the
camera that took picture (b).

(e) In black, elements that are
considered for the functional

term associated with the pair of
cameras presented above.

Figure 3.12: Spherical cap and chosen FE mesh. Visible parts of the mesh for 2 of
the 14 cameras are red and blue, the intersection is black, and the rest of the mesh

is yellow.

A set of 14 images of size 2560 × 2048-pixels was taken, including 11 from dif-
ferent sides of the spherical cap (Fig. 3.12(a)), with view points placed all over
the structure, and 3 from above (Fig. 3.12(b)), with different view angles. On the
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images, on the ”correctly visible” part of the sphere, one pixel represents approx-
imately 0.125mm. Because each camera cannot correctly see the whole region of
interest, we applied the mask Vc defined in (3.25) with an ϵn value of 0.6. Examples
of the elements that are correctly seen by a given camera are shown in Figs. 3.12(c)
and 3.12(d), and an example of the elements that are correctly seen by a pair of
cameras is given in Fig. 3.12(e).

We used a total of three scales, with three image resolutions from 640 × 512 to
2560×2048 pixels using coarse graining and three refinements for the morphing box
from 1 × 1 × 1 element to 4 × 4 × 4 elements. 2nd-degree B-splines were chosen.
As explained previously, the FE-mesh number of elements and connectivity remain
unchanged. A 6571-element triangular FE mesh with first-degree FE basis is used,
shown in Fig. 3.12. For numerical integration, we use Gauss points that are uni-
formly distributed on the sphere, so that there is at least one Gauss point per pixel
(Gauss points are defined in the 3D physical space).

As explained in Section 3.4.2, the correction is sought along a normal direction.
In this example, the surface normal vectors at each FE node are computed as the
mean of outward-pointing normal vectors ne of the adjacent elements, which is a
good approximation of the normal direction at the FE node for regular shapes with
fine FE meshes. It is important to note here that unlike in the previous example,
S̃n cannot be seen as a displacement of the morphing box control points. S̃n depicts
a scalar field inside the morphing box that is the magnitude of the shape correction,
and the direction of this correction is only defined at the FE nodes. The same scalar
field applied to a different structure would not result in the same shape correction
field.

The spherical cap is a surface FE mesh (d = 2) embedded in a trivariate patch
(δ = 3). As explained in Section 3.1.4, some morphing box control points may not
have – or may not have enough – influence on the FE mesh. Therefore, we used
the criterion Qi defined in (3.16) to determine the influence of each control point,
and considered the condition number of C

FFD
ΠT

n
H(k)

S
Π

n
CT

FFD
as described

in Section 3.1.4 to spot the less influential control points that make this condition
number greater than 108. We then removed the corresponding lines of C

FFD
as

follows:

• 1 removed line over 27 for scale 2
• 1 removed line over 64 for scale 1
• 37 removed lines over 216 for scale 0 (see Fig. 3.13)

We obtained the results shown in Fig. 3.14. More precisely, Fig. 3.14(d) shows
the results with no regularization at scale 0. One-element-wavelength noise appears
in this case, with unrealistic values at some FE nodes. We observe in Figs. 3.14(a),
3.14(b) and 3.14(c) that the FFD regularization successfully smooths the shape
correction field.

All tested image sets give similar results. The correction on the top of the
spherical cap is small, but the size of the spherical cap base seems to be initially
underestimated (about 0.27 mm on the base radius). This result is validated by a
shape measurement with the laser scanner Handyscan developed by Creaform3D. A
sphere is well fitted by the points measured by the laser scan, and the radius of the
least-square best fitting sphere on the laser scan data points is slightly greater than
the radius used for our initial FE mesh. The correction we measure in Fig. 3.14 is
schematized in Fig. 3.15.

The laser scan measured points best fitting sphere has a radius of 38.885 mm. We
also calculated the least-square best fitting sphere to our measured shape (showed
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Figure 3.13: FE mesh embedded in the FFD morphing box at the finest scale, with
4 × 4 × 4 spline elements. The dots are the control points of the morphing box.

The red dots are the 37 control points that do not have enough influence, and the
blue dots are the remaining dofs.

(a) Results with a first set of 14 images. (b) Results with a second similar set of
14 images.

(c) Results with all 50 images. (d) Results with a first set of 14 images,
no regularization at scale 0.

(e) Color scale for the shape correction
along the outer-pointing normal (in m).

Figure 3.14: Shape measurement on the spherical cap presented in Figure 3.12.
The normal correction fields are shown with the spherical cap seen from below.
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Figure 3.15: Measured shape correction schematization.

Fig. 3.14(a)) by considering the Gauss points, which are the points where graylevel
is measured to correct the shape in the modified Gauss-Newton procedure. This
sphere has a radius of 38.873 mm, which corresponds to a 0.012mm (i.e. a 0.03%
error) on the radius if we take the laser measure as a reference. We also compared
the sphericity defects of the FFD-measured shape and the laser-measured shape (see
Table 3.1). For each Gaussian point M i (resp. measured point for the laser scan), we
defined this sphericity defect as d(M i, O) −R with O the center of the least-square
best-fitting sphere, R its radius and d(M i, O) the distance between M i and O. We
obtained the mean and standard deviation values given table 3.1, which shows that
our method gives a correct measure of the shape.

DIC with FFD regularization laser scan

LS radius 38.873 mm 38.885 mm

Mean of
sphericity defects

2.126 × 10−5 mm −1.720 × 10−7 mm

Standard deviation of
sphericity defects

0.02934 mm 0.02760 mm

Table 3.1: Comparison of sphere shape measurement with the FFD method (with
14 images) and with the laser scan.

Another shape measurement was carried out with a initial finite element mesh
whose geometry is taken a little farther from the actual shape. The initial FE mesh
is chosen with the same center as the previous initial FE mesh, but its radius is
decreased by 1 mm, so this spherical cap is a part of a 37.686-mm radius sphere.
Figure 3.16 shows the results after the modified Gauss-Newton minimization. FFD
regularization allows finding the right correction, with a 1-mm correction on all the
spherical cap and the expected additional 0.27-mm correction near the base of the
structure (see Fig. 3.16(b)). Without regularization, some FE nodes fail to measure
the shape correctly and even take unrealistic correction values.

These results show the capacity of the multiscale FFD regularization to be ap-
plied, not only to 2D initial FE meshes, but meshes of any dimension, and with any
type of FE elements. Using splines helps obtaining smooth, more realistic shapes,
and the proposed regularization method appears robust to initialization compared
to a result without regularization (see Fig. 3.16 where it is clear that smoothing the
FE field a posteriori would not lead to the right shape correction).
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(a) No regularization at scale 0. (b) FFD regularization at scale 0.

(c) Color scale for the shape correction
along the outer-pointing normal (in m).

Figure 3.16: Shape correction field (along the normal) for the spherical cap of
Figure 3.12, for an initialization with a radius that is 1 mm smaller than in the

first experience (Figure 3.14).

Conclusion

A non-invasive FFD-based regularization method has been proposed for general
full-field measurement in experimental solid mechanics. FE meshes that are used in
FE-DIC for easy comparison with simulation results are usually very fine and thus
contain too many dof compared to the available amount of data, which makes the
corresponding inverse problems highly ill-posed. Embedding the mesh into a cuboid
spline morphing box, similarly as in shape optimization for instance [Kenway et al.,
2010,Lyu and Martins, 2015,Bletzinger, 2017], offered a way of decoupling the design
space from that of the input FE mesh. Each nodal FE dof of the measured field is
controlled by a spline field that is defined over much less control points. In other
words, the deformation of the FE mesh follows the smooth spline deformation of the
morphing box. This regularization method showed competitive advantages in the
experimental mechanics community compared to other published methods.

First, the regularization length directly derives from the morphing box refine-
ment, which can easily be set to a desired value thanks to the multilevel properties
of B-splines. Then, it can be adapted to any kind of measured fields, without any
a priori physical knowledge. In this chapter, applications to a displacement field
measurement and to shape measurements have been shown. Moreover, the FFD
regularization method released the constraints imposed by a CAD-based method,
which are the need of an input boundary-fitted spline mesh and, in case it is made
non-invasive from standard FE following [Colantonio et al., 2020], of an input FE
mesh that has to encompass a spline parametrization. The proposed FFD regular-
ization allows to deal with any structure topology and any FE element type or size.
The choice of the FE mesh is independent of the FFD regularization method. The
method can also be applied to structures and fields of any dimension, as has been
shown in the three given examples with 2D and 3D fields.

Formally, the FFD regularization can be seen as a discretization of a fictitious
domain approach [Schillinger and Ruess, 2015,Verhoosel et al., 2015,Rouwane et al.,
2021]. Consequently, it has similar problems to address, as the handling of condi-
tioning problems caused by non-influential control points over the region of interest,
which led us to the definition of a criterion to quantify the influence of a control
variable. For this purpose, we extended the criteria emanating from the current
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practice in fictitious domain methods to be adapted to the discretized aspect of our
method and to the possible dimension differences between the studied FE-meshed
structure and the morphing box. To the best of our knowledge, this is the first time
that such a treatment is applied in the general field of FFD.

From a practical point of view, the proposed FFD regularization method can
be seen as the projection of the DIC problem, which is originally solved in a FE
space, onto a reduced, smoother space. We gave the matrix form of the projection
from the FE space to the spline-controlled space. Its computation is easy and it has
the advantage of being sparse. This explicit projection matrix allows the use of a
standard FE-DIC software in a non-invasive way, which makes this method easily
applicable. For shape measurement, we proposed a novel double projection approach
to avoid undesired tangential corrections and help the algorithm convergence. In this
case, the morphing box controls a scalar field, and the correction direction is defined
at the FE nodes and freely chosen, thus widening the range of possible corrections.

We illustrated our method with the analysis of real images coming from three
different experiments. The first one consisted in measuring a 2D displacement field
on a planar bending beam. A comparison with the standard Tikhonov regulariza-
tion showed the high potential of the FFD method to strongly regularize without
adding artifacts on the resulting measured field. The second example validated the
hybridation of a 3D shape measurement problem with a bivariate FFD morphing
box. The superiority of the proposed method over standard CAD-based method
was highlighted. The last example showed the capacity of the FFD method to be
applied for the shape measurement of a more complex 3D geometry. Results of a
quality comparable to that of a laser scanner were presented. The robustness to
initialization was also demonstrated.

The developed method proved its efficiency for the measurement of relatively
regular fields and shapes. It may be easily applied to less regular shapes and ex-
tended to less regular fields by defining C0 lines in the FFD patch, or by creating
a multi-patch FFD morphing box with potentially C−1 lines between them, which
could be adapted to measuring the propagation of cracks [Réthoré, 2015]. Hierar-
chical splines [Kleinendorst et al., 2015,Verhoosel et al., 2015] could also be used to
allow for local refinement, which would be particularly adapted to multiscale DIC
experiment [Passieux et al., 2015].

Chapter 2 and this chapter demonstrate the ability of splines to regularize mea-
sured fields that are still expressed on possibly very fine, analysis-suitable FE meshes.
In particular, this chapter shows that any FE mesh of any geometry can be used for
displacement field or shape measurement. With this result, it is now possible to deal
with the third optimization problem, namely the shape optimization of mechanical
specimen for constitutive parameters identification. The constitutive parameters
identification procedure requires performing FE-DIC displacement field measure-
ment, and the shape optimization process may create specimens that necessitate a
locally fine FE mesh for an accurate description of the geometry. Yet, in order to
get relatively smooth specimen edges and guarantee that the specimen geometry is
physically-sound, we develop in the next chapter a FFD-based shape optimization
strategy.
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Chapter 4

Shape optimization for
constitutive parameters
identification

Introduction

Along with the creation of new materials, such as new alloys (with new forming
and additive manufacturing techniques) or composite materials, comes the need to
characterize them. It is necessary to know how they behave so they can be modeled
and used for simulation on complex structures, such as airplanes or satellites.

Nowadays, identifying several constitutive parameters requires designing several
different experiments, and identifying a single parameter requires carrying out up
to dozens of experiments, which makes the overall process very costly and time
consuming [D3518/D3518M, 1994]. It is therefore an impediment to innovation,
especially in some fields which have rigorous certification procedures and need to
know precisely the behavior of the materials they use.

As explained in Section 1.1.4, a way of reducing the costs is to design an ex-
periment that allows identifying several parameters at once with the lowest possible
uncertainty. To do so, several articles have focused on designing dedicated speci-
mens to improve their identification ability, either by choosing shapes that widen the
range of obtained stress states in the specimens (no a priori material model) [Pot-
tier et al., 2012,Conde et al., 2021], or by choosing shapes that make the specimens
more sensitive to given constitutive parameters (a material model is chosen a pri-
ori) [Feld et al., 2015, Bertin et al., 2016, Chamoin et al., 2020]. A few works, in
particular [Bertin et al., 2015, Bertin et al., 2016], [Feld et al., 2015] and more re-
cently [Chamoin et al., 2020] proposed to optimize the shape of the specimen to
minimize the uncertainties coming from the whole metrological chain, using the co-
variance matrix of the identified material parameters. All these works are based
on (variants of) the Finite Element Model Updating (FEMU) method, which is
widely used coupled to DIC for measurement to identify the parameters of a chosen
constitutive law [Robert et al., 2012,Gras et al., 2013].

As has been seen in Section 1.1.4, proposed optimizations by Feld et al., Bertin
et al. and Chamoin et al. are either carried out in very small spaces, where only
geometrical parameters such as radiuses and hole positions are modified – this is
generally known as parametric optimization – [Feld et al., 2015,Bertin et al., 2016],
or in very large spaces – for topology optimization – [Chamoin et al., 2020], but in
that case, the shape specimen was optimized to identify only one parameter (no
physically sound final specimen design is proposed in the case of topology optimiza-
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tion for several parameters). We propose here to use geometric shape optimization
because it allows free form geometry modifications, as long as the topology remains
unchanged, and it is possible to keep a low number of design variables thanks to
B-spline functions. Moreover, we aim at improving the sensitivity to several consti-
tutive parameters, for the purposes of identifying several parameters at once.

In this chapter, we make use of the FFD tools developed in the previous chapter
to control a FE mesh with splines, and we extend this non-invasive FFD approach
to a larger range of morphing boxes. This chapter is organized as follows: the first
section quickly describes the process of parameter identification, namely the FEMU
method and its functional, and the covariance matrix that comes from coupling
FEMU to DIC and that gives a representation of the uncertainty over the iden-
tified constitutive parameters. The second section details the proposed modeling
of the specimen shape optimization problem. In particular, we explain our choices
regarding cost function and constraint functions so that the optimization results are
physically meaningful and the obtained geometry is adapted to the associated test.
These choices are illustrated and validated with a simple beam example. Finally,
the third section focuses on the development of a proper resolution strategy and
applies it to a more complex structure. A specific handling of the geometry, based
on FFD, is proposed, in order make the method suitable to any possible geometry.

4.1 Parameter identification

In this work, we consider the FEMU method for material constitutive parameter
identification, in the context of 2D-DIC. However, note again that under certain
conditions detailed in [Mathieu et al., 2015], this work can be extended to IDIC.

4.1.1 FEMU method

Similarly to other constitutive parameters identification methods such as those men-
tioned in Section 1.1.4.1, the FEMU method consists in comparing a measured
quantity to a simulated one, typically a measured displacement field on a specimen
obtained with DIC to a simulated displacement field obtained with similar bound-
ary conditions and the chosen material constitutive law [Kavanagh and Clough,
1971, Collins et al., 1974]. The aim is to find constitutive parameters values that
minimize the discrepancy between the simulated field v and the measured field u.
The functional to minimize thus reads:

Fp(p) = ∥v(x, p) − u(x)∥2 , (4.1)

where p is the set of sought constitutive parameters. One can see that the quality of
the method depends on the quality of the measurement. A consequence is that there
exists a ”best” norm to choose in order to quantify the discrepancy between the two
fields, that takes into account some information about the measurement quality: the
H

u
-norm, denoted ∥ · ∥H

u
, where H

u
is the hessian matrix of the DIC problem and

more importantly, the inverse of the covariance matrix of the noise on measured
displacements coming from Gaussian noise in the images, as will be detailed in
Section 4.1.2. This metric, which is the Mahalanobis distance, was shown to be
optimal with respect to sensitivity to measurement noise [Roux and Hild, 2020]. This
norm gives to each dof a weight that is linked to local quality of the measurement due
to the speckle pattern quality. With continuous fields, this norm translates into an
approximation of the hessian of the image I, denoted HI in Equation (4.2). In our
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work, we thus considered this weighted FEMU functional [Réthoré, 2010, Mathieu
et al., 2015,Roux and Hild, 2020]:

Fp(p) = ∥v(x, p) − u(x)∥2H
I
, (4.2)

which can be written thanks to the 2D-DIC developments in Section 3.2.1:

Fp(p) =

∫
ωs

(
u(x) − v(x, p)

)T ∇I(x) ∇IT (x)
(
u(x) − v(x, p)

)
dx , (4.3)

where ωs is the region of interest in the images, and I is the reference image of the
DIC measurement.

To find p that minimizes Fp(p), we perform a Gauss-Newton optimization. Start-

ing from an initial set p(0), each Gauss-Newton iteration k updates the values of the
constitutive parameters as follows:

∀k ∈ N, p(k+1) = p(k) + δp(k) . (4.4)

δp(k) is computed as the solution of a linear system:∫
ωs

∇pv
(k) ∇I ∇IT

(
∇pv

(k)
)T

δp(k) dx =

∫
ωs

∇pv
(k) ∇I ∇IT (u− v(k)) dx ,

(4.5)
where ∇p is the gradient with respect to the sought constitutive parameters, i.e.
line i is ∂

∂pi
, the sensitivity field to parameter pi. For example, with a set of two

constitutive parameters and a 2D displacement field:

∇pv =


∂vx
∂p1

∂vy
∂p1

∂vx
∂p2

∂vy
∂p2

∂vx
∂p3

∂vy
∂p3

 (4.6)

Equation (4.5) can also read:

H(k)
FEMU

δp(k) = b
(k)
FEMU . (4.7)

Simulated displacement fields generally come from FE software and therefore
are expressed at the nodes of a FE mesh. An easy way to compare a measured
displacement field with a simulated one is to seek the measured displacement field in
the same FE space as used for the simulation. This is the idea of FE-DIC described in
Section 3.2.1. Note that thanks to the FFD-DIC technique developed in Chapter 3,
it is possible to perform FE-DIC on arbitrarily fine FE meshes, which removes any
limitation for element size in the simulation. Using the same FE basis for u and v

leads to the following expressions for H
(k)
FEMU and b

(k)
FEMU :H(k)

FEMU
= ∇pv

(k) H
u
∇pv

(k)T

b
(k)
FEMU = ∇pv

(k) H
u

(
u− v(p(k))

) , (4.8)

where v and u represent the FE values of the displacement field at the nodes of the
FE mesh, and H

u
is first described in Section 3.2.1 and will be further developed in

Section 4.2.2. In this manuscript, H
FEMU

will not be written in bold because its
size is independent of mesh refinement, in accordance with notation choices, even if
the mesh is used to compute its values.
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4.1.2 Covariance matrix

To quantify how well a set of constitutive parameters is identified thanks to the
FEMU method, in the sense that the identified values are precise, we rely on the
covariance matrix of the sought constitutive parameters, which characterizes the
uncertainty on these parameters. Errors can arise from any step of the whole DIC
and FEMU procedure. Here is a non-exhaustive list:

• speckle pattern quality,
• ambient noise (light, air temperature gradient, ...),
• camera resolution,
• camera noise,
• camera calibration,
• sub-pixel interpolation algorithm (nearest, bilinear, bicubic, splines),
• interpolation functions and research space for the displacement field,
• numerical approximation,
• choice of constitutive law.

Considering that the main contribution to errors comes from camera noise, it is
possible to derive the covariance of the measured displacements at each FE node,
thanks to the DIC problem resolution detailed in Section 3.2.1, and then derive
the covariance of the identified parameters with FEMU method, thanks to Equa-
tions (4.7) and (4.8).

4.1.2.1 Noise modeling in the images

We can assume that the reference image I and the deformed image J are indepen-
dently affected by Gaussian white noise of:

• zero-mean,
• variance γ2.

Hence, we can consider that only J is affected by white noise εJ of zero-mean and
variance 2γ2 [Besnard et al., 2006,Réthoré, 2010,Hild and Roux, 2012,Bertin et al.,
2016], i.e. J (x) is actually J (x) + εJ (x) with:

• ⟨εJ (x)⟩ = 0 (zero-mean),
• ⟨εJ (x)εJ (x′)⟩ = 2γ2δ(x− x′) (variance 2γ2),

where δ(x−x′) is the Dirac delta function (noise is supposed spatially uncorrelated).

4.1.2.2 Noise impact on the measured displacement field

Let εu be the impact of that noise on the measured displacements at each FE
node, so that u is actually u + εu. From Equation (3.20), we get that the noise on
u follows [Besnard et al., 2006, Réthoré, 2010, Hild and Roux, 2012, Bertin et al.,
2016]:

• ⟨εu⟩ = 0 (zero-mean),
• ⟨εuεTu⟩ = 2γ2H−1

u
.

Note that to get this result, in addition to considering all the noise on the image
J , the impact of the noise is not considered on ∇I even though its presence in
H

u
expression initially comes from an approximation of ∇J used in the modified

Gauss-Newton algorithm for computational cost reduction purposes.

4.1.2.3 Noise impact on the identified constitutive parameters

From Equations (4.7) and (4.8), and with εp being the noise on the identified param-
eters coming from the noise in the images, we get that this noise follows [Réthoré,
2010,Bertin et al., 2016]:
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• ⟨εp⟩ = 0 (zero-mean),

• ⟨εpεTp ⟩ = 2γ2H−1
FEMU

.

The covariance matrix ⟨εpεTp ⟩ has a size np × np with np the number of sought

constitutive parameters. It contains helpful information in order to derive a repre-
sentative criterion of a ”good” constitutive parameter identification.

4.2 Appropriate modeling of the specimen shape opti-
mization problem

Based on this knowledge, we can define a cost function for the purposes of optimizing
the shape of a specimen to minimize the identification ability of several constitutive
parameters. This section details our choices for the cost function with respect to
what has been proposed in [Feld et al., 2015, Bertin et al., 2016, Chamoin et al.,
2020], and we then propose to complete the optimization problem with constraint
functions in order to get a physically sound geometry. In this section, s will denote
the design variables, which are quantities that modify the shape of the specimen.
They will be further detailed in Section 4.3.1. Note also that for simplicity, we place
ourselves in the linear elastic context for 2D static tests only. When appropriate and
to improve understandability, examples will be given on a simple tension sample.
Its shape will be modified thanks to a rectangle FFD morphing box (see Chapter 3
for details on the FFD method).

4.2.1 Cost function

As explained in Section 4.1.2, as well as in [Feld et al., 2015, Bertin et al., 2016,
Chamoin et al., 2020], the covariance matrix provides an estimation of the quality
of the identified parameters. Improving the quality of the identification can thus be
achieved by ”minimizing” this covariance matrix that expresses the uncertainty on
the constitutive parameter values, i.e. by ”minimizing” H−1

FEMU
(s) with respect to

design variables s that modify the geometry of the specimen. We will later specify
what ”minimize” can mean for a matrix (see Section 4.2.1.3).

This section is divided as follows: first, preliminary explanations on how to com-
pute the covariance matrix are given. Then, we explicit the cost function formulation
in the single-parameter case where HFEMU is simply a scalar, and in the case where
several constitutive parameters are sought. Finally, we propose the addition of a
physically sound coefficient to take into account the size of the specimen.

4.2.1.1 Preliminaries

4.2.1.1.1 Approximating the unknown DIC matrix The optimization of
the specimen geometry is intended to be carried out before any experiment. It means
that neither images nor information on their gradient are available. Furthermore,
the speckle pattern is generally not known a priori. Hence the H

u
matrix cannot

be computed as such, because I and thus ∇I does not exist yet. To circumvent
this issue, Feld et al. [Feld et al., 2015] propose to replace H

u
with an identity

matrix. [Bertin et al., 2016] and [Chamoin et al., 2020] recommend the use of a
mean-field assumption. This assumption consists in considering that the graylevel
gradient ∇I varies a lot more than the shape functions N in the following expression:

H
u

=

∫
ωs

NT ∇I ∇IT Ndx . (4.9)
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As a consequence, we can make the following approximation:

H
u
≈
∫
ωs

NT


〈 (

∂I
∂x

)2 〉 〈
∂I
∂x

∂I
∂y

〉
〈
∂I
∂x

∂I
∂y

〉 〈(
∂I
∂y

)2 〉
N dx , (4.10)

where ⟨·⟩ is the mean operator, such that ⟨·⟩ = 1
|ωs|
∫
ωs

· dx, with |ωs| =
∫
ωs

dx the

size of the ROI in the image. We also consider that ∂I
∂x and ∂I

∂y are independent,

which gives
〈
∂I
∂x

∂I
∂y

〉
= 0. Finally, we suppose that

〈 (
∂I
∂x

)2 〉
=
〈(

∂I
∂y

)2 〉
=

G2
I
2 ,

where:

G2
I = ⟨∥∇I∥2⟩ =

1

|I|

∫
I

(
∂I
∂x

)2

+

(
∂I
∂y

)2

dx , (4.11)

which gives:

H
u
≈

G2
I

2

∫
ωs

NT Ndx . (4.12)

As a result, H
u

can be replaced by a pseudo-mass matrix (no density parameter)

in this case, the
G2

I
2 factor being ignored for two reasons: its value is unknown because

it only depends on a speckle we do not have, and this factor does not influence the
minimization result, because it is constant with respect to the design variables s.

We also chose the mean-field assumption, that leads to the following approxima-
tion:

H
FEMU

(s) ≈ ∇pv(s) M(s) ∇pv
T (s) , (4.13)

which only involves a mass matrix and the derivatives of a simulated displacement
field with respect to the sought constitutive parameters, which are all quantities
that can be computed with a FE software program.

The addition of a normalizing coefficient will be described in Section 4.2.2 but
is not necessary for the following developments.

4.2.1.1.2 Choosing numerical constitutive parameter values In order to
compute H

FEMU
, it is necessary to choose values for the different constitutive pa-

rameters of the selected constitutive law, because of the need to know v. These
parameters are defined numerically before the optimization process. They are not
modified during or after the process, since they are considered as the exact param-
eter values throughout the process. Hence, it may be preferable to choose values
that are not too different than those expected, as these values can impact the cost
function and thus the optimized final geometry.

4.2.1.1.3 Computing parameter sensitivities analytically Because we aim
at identifying linear elastic constitutive parameters, it is possible to compute the
analytical derivative of the simulated field with respect to a given parameter p. v
comes from a FE static problem resolution Kv = F, where the stiffness matrix K
depends on the constitutive parameter p and the applied load F does not. The
derivative reads:

K,p v + Kv,p = 0 , (4.14)

which leads to:
v,p = −K−1K,p v . (4.15)

Since the FE basis functions do not depend on p, only the Hooke matrix derivative
is needed to compute K,p. This derivative can be computed exactly when the
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constitutive law is linear. K,p can then be assembled with the same routines as
for the stiffness matrix K, the only difference being the use of the Hooke matrix
derivative instead of the Hooke matrix.

Naturally, for numerical concerns (balance of the sensitivities of different pa-
rameters), each parameter p is normalized with its chosen initial value p0 in the
FEMU minimization process. Let us denote by p̄ the normalized parameter such
that p = p0 p̄. p̄ is 1 at the beginning of the FEMU process. As a result, we use ∂v

∂p̄

instead of ∂v
∂p , and we have the following relation:

∂v

∂p̄
= p0

∂v

∂p
. (4.16)

4.2.1.2 For a single parameter

4.2.1.2.1 Expression When only one parameter is to be identified, ∇pv is a

vector equal to ∂v
∂p

T
and HFEMU is a scalar. In this case, the cost function can

simply read [Bertin et al., 2016,Chamoin et al., 2020]:

fcost(s) =
1

HFEMU (s)
=

1

∂v
∂p

T
(s) M(s) ∂v

∂p (s)
. (4.17)

Note that with the choice H
u

= M, the denominator term is equivalent to
integrating the sensitivity field over the region of interest ωs:

∂v

∂p

T

M
∂v

∂p
=

∫
ωs

∂v

∂p

T ∂v

∂p
dx =

∫
ωs

∥∥∥∥∂v∂p
∥∥∥∥2 dx . (4.18)

This observation justifies the choice of M as a weighting matrix for the scalar
product with ∇pv. Sensitivity values at nodes that are in fine regions of the FE mesh
have a smaller weight because the elements in the region are smaller, which compen-
sates for the high number of contributing nodes in that region, and conversely, higher
weights are applied to nodes in coarse regions of the FE mesh. Equation (4.18) also
gives another physical meaning to our cost function. By minimizing fcost, we maxi-
mize the mean sensitivity to the sought parameter over the whole region of interest.

4.2.1.2.2 Semi-analytical sensitivity To reduce computational time and er-
rors, and in the case of a single parameter to identify, it is possible to perform
a semi-analytical gradient of the cost function, similarly to what is called semi-
analytical sensitivity analysis in structural shape optimization [Kiendl et al., 2014],
but adapted to our cost function. An advantage of this method lies in that instead
of using Finite Difference Methods (FDM) on quantities that come from system
solving (such as v), we first use FDM on quantities obtained directly (such as K, M
or F) and then solve a system. Errors coming from solving the system are thus not
aggravated by the finite difference process and many computational time savings
can be reported since it avoids numerous system resolutions.

Taking the derivative with respect to one design variable si, we get:

fcost,si (s) = − (fcost(s))
2 (2 v,Tpsi M v,p +v,Tp M,si v,p

)
. (4.19)

v,p can be computed thanks to Equation (4.15), M,si derives from FDM, and v,psi
can be determined as follows:

v,psi = K−1
(
K,p K−1 K,si +(K,p K−1 K,si )T −K,psi

)
v −K−1 K,p K−1 F,si ,

(4.20)
with K,si , K,psi and F,si computed thanks to FDM.
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4.2.1.3 For several parameters

When several constitutive parameters are to be identified, H
FEMU

is no longer a
scalar. ”Minimizing” its inverse is then not straightforward. The idea proposed
in [Feld et al., 2015, Bertin et al., 2016, Chamoin et al., 2020] is to work on the
eigenvalues of this matrix.

4.2.1.3.1 Physical meaning of the eigenvalues These eigenvalues have a
physical meaning when looking at the multivariate normal distribution associated
with the covariance matrix H−1

FEMU
. In fact, the isosurface where pT H

FEMU
p

equals 1 is an ellipsoid where each principal semi-axe direction is given by an H−1
FEMU

eigenvector, and their size squared is the associated eigenvalue. An illustration is
shown with 2 variables on Figure 4.1.

Figure 4.1: Bivariate normal distribution associated with variances 1. and 2. and
covariance 0.5. Eigenvalues are Λ1 = 0.79 and Λ2 = 2.21, associated with

eigenvectors [−0.92, 0.38] and [0.38, 0.92]. In black, the ellipse with semi-axes of
lengths

√
Λ1 and

√
Λ2.

To minimize the uncertainty on the identified constitutive parameters, this el-
lipse should be as small as possible, meaning that H−1

FEMU
eigenvalues should be

as small as possible. These eigenvalues also correspond to the FEMU functional
curvature near the optimum set of constitutive parameters, since H

FEMU
is an ap-

proximation of the hessian matrix. With this point of view, decreasing H−1
FEMU

eigenvalues improves the FEMU functional convexity, which also translates into a
better confidence in the identified constitutive parameters.

4.2.1.3.2 Defining a criterion over eigenvalues In order to perform an op-
timization of the constitutive parameter identification procedure, we need to derive
a unique scalar criterion from H−1

FEMU
eigenvalues. Several choices exist.

[Feld et al., 2015] minimize the ratio of the largest eigenvalue over the lowest.
This choice improves the conditioning of H

FEMU
. Hence, the numerical errors are

reduced during the Gauss-Newton minimization performed in FEMU. However, it
does not necessarily enhance the sensitivity to the sought parameters. An increase of
both eigenvalues can lead to a decrease of this ratio, which means that the optimized
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experiment may be less sensitive to the sought constitutive parameters. Graphically,
with the example of Figure 4.1, this criterion leads to an ellipse looking more like
a circle (because at a minimum, Λmax

Λmin
= 1), but it does not affect the size of that

circle.

[Bertin et al., 2016] and [Chamoin et al., 2020] suggest that the determinant
of H−1

FEMU
can be used as a criterion – they call it the uncertainty volume. In

this case, all eigenvalues are contained equally in the criterion. But once again, it
does not necessarily enhance the sensitivity to all constitutive parameters. As a
matter of fact, the optimization procedure can lead to decreasing some eigenvalues
and increasing others at the same time. In this case, parameters that were not well
identified with the initial experiment can be even less well identified in the optimized
experiment. Graphically, with the example of Figure 4.1, this choice results in an
ellipse with a smaller surface. Yet it does not prevent the ellipse from getting thinner
and longer.

[Bertin et al., 2016] and [Chamoin et al., 2020] minimize the largest H−1
FEMU

eigenvalue. In this case, only the worst parameter sensitivity matters (or the worst
correlation between parameters). This choice assures that each constitutive param-
eter will be identified with an uncertainty that will not be greater than the initial
maximum uncertainty. Graphically, this choice makes the circumscribed circle of
the ellipse smaller. The shape of the ellipse can vary but its largest semi-axis is
necessarily smaller at the end of the optimization than the largest initial semi-axis.

Note that normalizing the constitutive parameters allows comparing the given
uncertainties because they are all expressed in percentage of the chosen p0 value.

It is interesting to mention that none of these criteria take the orientation of
the ellipse into account (they only consider the sizes of its axes), and hence they
do not consider separately variances on each parameter and correlation between
parameters. This correlation is visible in the non-diagonal terms of the covariance
matrix, as illustrated in Figure 4.2. Nonetheless, the variance values of the different
constitutive parameters cannot be greater than the largest eigenvalue.

(a) Covariance matrix:

[
1 0
0 5

]
. (b) Covariance matrix:

[
3 2
2 3

]
.

Eigenvalues are 1 and 5 and the ellipse
makes a 45◦ angle.

Figure 4.2: Parameter correlation impact on covariance matrices and covariance
ellipse.

Of course, the result of the optimization procedure depends on the choice of the
cost function. In the light of the above, we chose to minimize the largest eigenvalue
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of the covariance matrix. Our cost function is therefore:

fcost(s) = max
i

Λi , (4.21)

where Λi are the eigenvalues of
(
∇pv(s) M(s) ∇pv

T (s)
)−1

.

4.2.2 Normalizing coefficient

Since we aim at optimizing the shape of the specimen, its size may change. Con-
sequently, the experimental set-up may have to be adapted, especially the camera
position. If the specimen is larger, the camera has to be placed farther away in order
to capture the whole region of interest. By doing so, a given physical displacement
will lead to a smaller displacement in pixels in the deformed state image. To take
this effect into account, we write the H

u
matrix by considering physical fields. This

novel approach with respect to the literature [Bertin et al., 2016, Chamoin et al.,
2020] avoids obtaining a geometry with a greater area to minimize fcost. A greater
area indeed affects M without necessarily improving the sensitivity to the sought
parameters. To this end, we make the change of variables ωs = P (Ωs), where Ωs is
the physical region of interest on the specimen, and P is the camera projector model
(see Equation (4.23) below). To improve readability, we redefine N to be FE shape

functions in the physical ROI Ωs, as if we had written N ◦ P−1 instead of N in all
the previous equations where quantities are defined in the image. H

u
becomes:

H
u
≈

G2
I

2

∫
Ωs

| det(∇P )| NTN dX . (4.22)

Considering a pin-hole camera model (see, e.g., page 10 of [Garcia, 2001]), which
is a low order camera model, it is possible to express ∇P . The pinhole model states:

P : X,Y 7→ x = −fx
X

Z
+ x0, y = −fy

Y

Z
+ y0 , (4.23)

where fx and fy, in pixels, are the camera focal sampling parameters along the 2
image directions, Z is the distance between the specimen and the camera, and x0
and y0 are the center of the image (in pixels). The projector gradient can then be
obtained:

∇P =

[
−fx

Z 0

0 −fy
Z

]
. (4.24)

H
u

thus reads:

H
u
≈ fxfy

Z2

∫
Ωs

NTNdX . (4.25)

We get the mass matrix with a weighting coefficient. fx and fy depend on the
focal length F with a parameter kx (resp. ky) that is intrinsic to the camera (it
corresponds to a number of pixels per meter on the sensor), such that fx = kxF
(resp. fy = kyF ) (see again page 10 of [Garcia, 2001]).

By application of Thales theorem (see Figure 4.3), and assuming that (i) pictures
are always taken so as to maximize the images resolution on the ROI and (ii) kx = ky,

the coefficient f2

Z2 can be linked to the surface S of the ROI thanks to the camera
sensor surface S0:

fxfy
Z2

=
k2F 2

Z2
= k2

S0

S
. (4.26)
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Figure 4.3: Camera sensor (surface S0) at a distance F (focal length) from the
camera reference origin, and pictured surface (surface S) at a distance Z of the

camera reference origin. Inspired from [Garcia, 2001]

S depends on the specimen geometry. Therefore, we add it in our cost function,
in the form of the surface of the rectangle that is tangent to the region of inter-
est. In other words, the Λi in Equation (4.21) now becomes the eigenvalues of(

1
S(s)∇pv(s) M(s) ∇pv

T (s)
)−1

. This rectangle choice could be improved by adding

knowledge on the sensor dimension ratio. For a single parameter, it reads:

fcost(s) = S(s)
1

HFEMU (s)
= S(s)

1

∂v
∂p

T
(s) M(s) ∂v

∂p (s)
. (4.27)

This normalizing coefficient has its importance. Some geometries minimize the
cost function better than others without this coefficient, but worse with the coeffi-
cient. Figures 4.4 and 4.5 show an example, on a tension beam, of two geometries
that lead to different results when using the normalizing coefficient or not. The
material is isotropic linear elastic and symmetry Dirichlet boundary conditions are
applied on the right and bottom edges. A uniformly distributed tensile load is ap-
plied on the left edge (the resultant force is the same in each case). The top edge
remains free.

The cost function is defined so as to improve the sensitivity to Young’s modulus
E, and we used the value of the cost function on the reference geometry shown
in Figure 4.4 to normalize the value of the cost function on the two geometries
shown Figure 4.5, so its value is around 1. Results with or without the normalizing
coefficient are gathered in Table 4.1.

Without 1
S With 1

S

Rectangle geometry 0.667 0.444

Butterfly geometry 0.345 0.518

Table 4.1: Cost function values for the geometries shown Figure 4.5, with or
without 1

S normalizing coefficient.

Without the normalizing coefficient, the rectangle geometry (Figure 4.5(a)) mini-
mizes less the cost function than the butterfly geometry (Figure 4.5(b)). The regions
that are more sensitive to Young’s modulus, namely the left part of the specimen
whose displacement is the greatest, are larger than for the rectangular geometry.
Yet, the butterfly geometry is higher than the rectangular geometry and would re-
quire taking pictures from farther away. Hence, with the normalizing coefficient, the
rectangular geometry minimizes more the cost function than the butterfly geometry,
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Figure 4.4: Reference geometry (to normalize the cost function so that its value is
around 1), and boundary conditions. The material is isotropic linear elastic with

Poisson’s ratio equal to zero.

(a) Rectangle geometry. (b) Butterfly geometry.

Figure 4.5: Different tension beam geometries. Their performance with respect to
Young’s modulus sensitivity depends on the normalizing coefficient S in the cost

function.
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which is in accordance with the classic specimen shape choice to identify Young’s
modulus. This simple example indicates that the normalizing coefficient may appear
necessary to avoid obtaining large, unadapted geometries.

4.2.3 Restricting to permissible geometries

Although the cost function is now properly determined (see Equations (4.21) and (4.27)),
non-physically sound geometry can still appear because of a too large design space.
In order to forbid non permissible geometries, we add constraints to our optimization
problem.

4.2.3.1 Transformation Jacobian determinant

A typical issue that we want to avoid is the intersection of an edge with itself or
another edge (see Figure 4.6). This issue can happen if control points (of the FFD
box), whose positions are design variables, cross each other. It results in geometries
that have no physical meaning, and some mesh elements can be totally or partially
flipped.

Figure 4.6: Non permissible geometry, due to the loop made by the upper edge.

Flipped elements lead to a transformation Jacobian determinant – transforma-
tion that links the reference element to the physical one – that is negative. Therefore,
we make use of it to define a constraint function that helps keep this quantity posi-
tive at each Gauss point throughout the optimization process. Besides, this quantity
is already computed to obtain the stiffness matrix needed for the cost function, so
it is possible to benefit from that. Another advantage of this constraint function is
that we can set a threshold above zero if we also want to avoid distorted elements.
In other words, this constraint also allows ensuring the quality of the mesh. For
computation purposes, we normalized the constraint function with the initial values
of the transformation Jacobian determinant. The constraint reads:

∀k ∈ [1..npg],

(
det(J(s))

)
k(

det(J (0))
)
k

≥ ϵJac , (4.28)
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where npg is the number of Gauss points in the FE model,
(
det(J)

)
k

is the trans-

formation Jacobian determinant at Gauss point k,
(
det(J (0))

)
k

is the initial trans-

formation Jacobian determinant at Gauss point k, and ϵJac is the chosen threshold.

4.2.3.2 Specimen integrity

We consider tests for the identification of elastic constitutive law parameters. In
this work, only the shape is optimized. Boundary conditions are fixed during the
optimization process. In order to get a geometry that will not cause the specimen
to break during the experiment, we have to set a maximum equivalent stress that
should not be outreached. This equivalent stress can be computed thanks to the
displacement field v that can be retrieved from the cost function sensitivity field
computations (see Equation (4.15) where v also has to be computed to get v,p).
Hence, the second constraint function takes into account the equivalent stress values
on the specimen under load, and these values should remain below a given threshold
σmax. Once again, we normalize the studied quantity with its initial value. The
constraint thus reads:

∀k ∈ [1..npg],
(σeq)k(s)

(σ(0))k
≤ (ϵσ)k , (4.29)

where (σeq)k is the equivalent stress value at the Gauss point k, (σ(0))k is the initial
equivalent stress value at the Gauss point k, and (ϵσ)k = σmax

(σ(0))k
. Here, the threshold

is noted ϵσ to make a parallel with the other constraint function, but it is not
meant to be small. In this work, we use the Von Mises equivalent stress (with plane
stress assumption, see Equation (4.30) below), but other equivalent stresses could
be chosen:

σeq =
√
σ2
xx + σ2

yy − σxxσyy + 3 σ2
xy (4.30)

4.2.3.3 Constraint function formulations

For these constraint functions, several formulations are possible. In the Scipy
module of Python, constraint functions are defined to remain positive throughout
the optimization procedure:

g(s) ≥ 0 . (4.31)

Note that it is possible to collect values for all Gauss points in a single vector. In
that case, there is no ambiguity and all components of the vector must be positive.
The simplest formulation is therefore the following:

gJac(s) =
det(J(s))

det(J (0))
− ϵJac for Jacobian determinant, (4.32)

gσ(s) = ϵσ − σeq(s)

σ(0)
for the maximum stress. (4.33)

This formulation is the one used in Section 4.2.4. However, with the case studied in
Section 4.3.2, this formulation for gσ leads to results that are not compatible with
the constraint function. This issue was solved by replacing the expression of gσ with
the following:

gσ(s) =
σ(0)

σeq(s)
− 1

ϵσ
. (4.34)

The formulation of Equation (4.34) does not yet give consistent results with the
following example, which explains that we keep the one of Equation (4.33) for Sec-
tion 4.2.4. The causes for this issue are not well known. They can come from the
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dependence of constraint functions on the design variable (this dependence is dif-
ficult to predict in our case), the boundary conditions (Neumann in Section 4.2.4,
Dirichlet in Section 4.3.2), or the choice of the geometry part that is being opti-
mized (exterior edges, holes), and they certainly depend on the chosen optimization
algorithm. In this work, we used the built-in SLSQP function from Scipy.

4.2.4 Validation on a beam

In order to validate our modeling choices of the optimization problem, we first
consider the simple tension beam presented in Figure 4.4. In this case, an analytical
solution can be found when only the height of the rectangle is a design variable.
An isotropic linear elastic material is chosen, with two parameters: the Young’s
modulus E and the Poisson’s ratio ν. Only the sensitivity to the Young’s modulus
is optimized here.

4.2.4.1 Analytical developments

The beam has a given length L and the design variable is its height h. Symmetry
conditions are applied at the bottom and right edges, the upper edge remains free,
and the left edge is under uniformly distributed load. We denote by F the resultant
force, which is kept constant. The resulting displacement field is the following:

ux(x, y) =
F

hE
x , (4.35)

uy(x, y) = −νF

hE
y . (4.36)

The normalized sensitivity field to the Young’s modulus reads:

E
∂ux
∂E

= − F

hE
x , (4.37)

E
∂uy
∂E

=
νF

hE
y . (4.38)

Finally, and according to Equations (4.18) and (4.27), the cost function is defined
as follows:

fcost(h) =
Lh∫ 0

x=−L

∫ h
y=0

F 2x2

h2E2 + ν2F 2y2

h2E2 dy dx
=

3E2h2

F 2(L2 + ν2h2)
, (4.39)

which we can write, using the initialization value h = L
2 :

fcost(h) = fcost

(
L

2

)
(4 + ν2)

L2 + ν2h2
h2 . (4.40)

In practice, we use fcost(h)
fcost(L/2)

as a cost function, to normalize it, and so that the
initial value is one.

In the following optimization test, we use ν = 0, which simplifies the cost function
since in this case:

fcost(h)

fcost(L/2)
= 4

h2

L2
. (4.41)

If we impose that the stress value should remain below σmax, i.e. F
h ≤ σmax, we

get the following constraint:

h ≥ F

σmax
. (4.42)

– 95 –



4.2. APPROPRIATE MODELING OF THE SPECIMEN SHAPE
OPTIMIZATION PROBLEM

4.2.4.2 Numerical test

Figure 4.7 shows the optimization result on the tension beam with 1 design variable.
The finite difference method was used to compute the different derivatives, but in
this case where only one constitutive parameter is to be identified, semi-analytical
derivatives could be used as well (see Section 4.2.1.2). The design variable used here
is not exactly h but the equivalent vertical displacement of upper control points
of a one-element, 1st-degree FFD morphing box, normalized by the initial beam
height (which is L/2 in our case, with L = 0.2 m). The resultant of the applied
force is 5 × 104 N and the maximum admissible stress is 3 × 106 Pa. The SLSQP
minimization algorithm from scipy.minimize is used.

Figure 4.7: Tension beam with a single design variable. Initial geometry in light
gray (that normalizes the cost function so that its value starts at 1), and optimized

geometry (in gray) with the associated morphing box (colored edges and black
control points).

The evolution of the cost function and constraint functions is shown in Figure 4.8.
In this example, the final value for the design variable is −0.8333 which leads to an
optimal height of 0.01667 (the single design variable controls all upper points). As
expected, the cost function is minimized (h is decreased, which is in accordance with
Equation (4.41)), and the beam could not be thinner because this height corresponds
to the lower bound due to the maximum stress constraint (see Equation (4.42)). The
stress state in the beam is now uniform and its value is σmax.

4.2.4.3 Example with more design variables

Figures 4.9 and 4.10 show the results with the same algorithm with more design
variables. These design variables were chosen so as to keep the left part upper edge
horizontal (to describe the tip of the specimen, see Figure 4.9). To do so, a C0

line was added at x = −0.1 by repeating a knot. C1-continuity was then enforced
by imposing some control points to move like their neighbors (see Fig. 4.9), hence
enforcing tangential directions [Kiendl et al., 2009,Hirschler et al., 2019b].

4.2.5 Influence of boundary conditions

When setting a maximum stress σmax that is greater than the initial maximum
stress (i.e. when choosing ϵσ > 1), as has been done in the previous example, an
important issue remains. The cost function is not only dependent on shape, but
also on boundary conditions (BC), via the ∂v

∂p term. In a linear elastic context,
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(a) Cost function.

(b) Transformation Jacobian constraint. (c) Maximum stress constraint.

Figure 4.8: Cost and constraint functions evolution throughout the optimization
process for the tension beam with a single design variable.
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Figure 4.9: Same tension beam optimization problem, two design variables. First
design variable: four upper left control points, along y. Second design variable:

two upper right control points, along y.

Figure 4.10: Evolution of cost function and geometry throughout the optimization
process for the tension beam with two design variables.
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multiplying the BC (applied load or prescribed displacement) intensity by a factor
α also multiplies v, and thus ∂v

∂p , by α. For a given geometry, the cost function

value is divided by α2. This observation is particularly relevant for the initial ge-
ometry in the optimization process, with regard to the chosen BC. If the maximum
initial equivalent stress value max

k∈[1..npg ]
(σ(0))k is strictly smaller than σmax, a simple

modification of the BC would lead to a cost function value that is

(
max

k∈[1..npg ]
(σ(0))k

σmax

)2

smaller, and the whole mechanical problem would still meet the maximum stress
constraint. The issue comes from the fact that this cost function value on the initial
geometry could be smaller than the one obtained with the unmodified BC on the
final geometry, hence questioning the relevance of performing such an optimization.

To remove the influence of boundary conditions and solve this issue, we chose
σmax = max

k∈[1..npg ]
(σ(0))k. As stated above, with this choice, the initial geometry meets

the maximum stress constraint. This choice can also be understood as follows: the
initial geometry is the one of an existing specimen that is adapted to an experimental
set-up, including chosen boundary conditions. Therefore, the optimized specimen
should not reach stress values that are greater than those of the initial specimen. In
other words, the goal of the optimization process is to improve the geometry with
regard to constitutive parameters sensitivity without the material taking a higher
amount of stress. As a consequence, ϵσ does no longer depend on the Gauss point k
and its value is 1.

Applying this choice to the simple tension beam mentioned above with two design
variables causes the optimized geometry to be identical to the initial geometry, as
expected.

(a) Final geometry (identical to the
initial geometry) and FFD morphing

box.

(b) Evolution of the cost function. Only
one iteration is performed and the

geometry is unchanged.

Figure 4.11: Optimization results when setting the maximum admissible equivalent
stress equal to the initial one (ϵσ = 1).

Remark 16 From our experience, if no other constraint has been reached, the stress
constraint is the one that stops the optimization. This could be explained by the fact
that making geometries thinner causes displacements to be larger, which reduces the
cost function value.

– 99 –



4.3. IMPROVING A SPECIMEN SHAPE WITH A ROBUST FFD-BASED
OPTIMIZATION STRATEGY

4.3 Improving a specimen shape with a robust FFD-
based optimization strategy

The methodology developed in the previous section for the optimization process can
be applied to a more complex specimen. However, the choice of the FFD morphing
box may not be as simple as with the rectangular plain beam shown in Figure 4.4. In
this section, we propose a way of performing FFD on such more complex specimens,
knowing the issues that typically arise in optimization processes. Then, the geometry
of holes in a tension beam, inspired from [Feld et al., 2015] (see Figure 4.12), is
improved with respect to the sensitivity to orthotropic linear elastic constitutive
parameters.

Figure 4.12: Geometry to improve (inspired from [Feld et al., 2015]).

4.3.1 Shape modification with FFD

4.3.1.1 Choice of the FFD morphing box

4.3.1.1.1 Solution 1 The simplest idea, illustrated in Figure 4.13, is to embed
the whole specimen FE mesh (or at least, the central part, without the tips) into a
single bivariate FFD morphing box, and define which control points are the design
variables. The main advantage is that it is possible to deform the whole FE mesh
directly with control points, as has been presented in Chapter 3. This choice is well
adapted when only the edges of the morphing box matter, typically when they fit the
specimen edges (see the rectangular plain beam in Figure 4.7 or the yellow control
points in Figure 4.13), or when almost all control points are design variables (as it
was the case in Chapter 3). However, for geometrical features that are strictly inside
the morphing box, choosing the relevant design variables can be difficult. Some B-
spline functions indeed have a support that intersects the feature to be modified, yet
without having a significant influence on it. To keep a reasonable number of design
variables, it is necessary to select just a few. Since geometry modifications can be
important, other control points, which are not design variables, need to be handled
as well so they do not interfere with the control points of the (spline) mesh morphing
that are design variables. A simple way of doing so is by considering a mechanical
problem K v = 0 to modify the spline mesh with respect to imposed displacement
applied on the design control points [Andreoli et al., 2003]. Yet when features are
too close from one another, the embedded FE mesh can be severely deteriorated
because the morphing box is not refined enough in the in-between region to allow
for a nice distribution of FE nodes (see Figure 4.14(a)).

Refining the morphing box can also be an issue because it affects the number of
knot spans, and thus control points, on a whole row or column, due to the tensor
product that creates the bivariate B-spline functions. Refining the morphing box for
a specific feature could affect the morphing box refinement near another feature, and
would increase the number of control points. Even though solutions can be found
to tackle these issues, such as the use of hierarchical B-spline functions to perform
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local refinement [Kleinendorst et al., 2015, D’Angella et al., 2018], these solutions
require additional, potentially long and costly programming.

Figure 4.13: FFD morphing box on the whole specimen (except tips). Red dots
and stars are the design variables for the holes shape, and yellow dots and stars for
the edges. Black dots are the other control points, and small black dots show the

spline elements (or knot spans).

4.3.1.1.2 Solution 2 We thus propose to create one morphing box per geomet-
rical feature (see Figure 4.14(b)). First, we considered bivariate rectangle morphing
boxes, so as to create an identity mapping between their parametric space and the
physical space. However, some of the issues mentioned above still occur in this case,
namely the choice of design variables and the handling of other control points. A
solution is to consider only 1-element FFD morphing box of low order, which is quite
restrictive.

(a) 2D-FFD on the whole specimen. (b) 2D-FFD on the holes.

Figure 4.14: Comparing the effect on the FE mesh of (a) 2D-FFD on the whole
specimen and (b) 2D-FFD on the holes only, for an imposed vertical displacement
of the holes. In the first case, the FE mesh is very distorted because the K v = 0
mesh modification is performed on the spline mesh and very few dof control the
region between the holes because the control points around the holes are not dof
(their displacement is fixed as they are the design variables that control the holes
shapes). In the second case, the K v = 0 mesh modification is performed on the

FE mesh (richer space, only the FE nodes of the holes edges have their
displacement fixed), which allows for a better distribution of FE nodes between the

holes.

4.3.1.1.3 Solution 3 To avoid any issue coming from control points that are
not design variables, we create a univariate morphing box for each feature. Unlike
the two other proposed solutions, and unlike Chapter 3, the FE mesh is not created
a priori in this case. It is created from the initial morphing box geometry to get
the parametric coordinates of FE nodes directly, by setting them first, and avoid
solving a possibly non-linear system to find both the morphing box control points
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position and FE nodes parametric coordinates (this problem has been mentioned
in Section 3.1.1). Therefore, the morphing box, which is a line, defines the initial
geometry for the feature it controls, which is not an issue because in this case the
geometry of the specimen is not fixed and neither is the FE mesh.

More precisely, to create the initial geometry, we first determine the position and
shape of the 1D morphing boxes, that can be periodic in the case of holes. Then, we
discretize the parametric domain of each morphing box and compute their images in
the physical domain to create FE nodes (see Figure 4.15(a)). A FFD matrix C

FFD
can be derived from this step, linking the FE nodes physical coordinates to the FFD
control points, knowing the FE nodes parametric coordinates:

X = C
FFD

T (ξFE)X̃ , (4.43)

where X and ξFE collect respectively all FE nodes physical and parametric coor-

dinates, and X̃ gathers control points coordinates. These FE nodes are given as
boundary inputs to GMSH [Geuzaine and Remacle, 2009] to get the FE mesh of
the initial geometry (see Figures 4.15(b) and 4.16). With this technique, all control
points have the same influence on the edges they control, which eliminates the issues
coming from the choice of design variables and the handling of other control points.
Moreover, refinement is easy if needed.

(a) 1D-FFD morphing box control points (4 large points) and position of the
controlled FE nodes (small points), which come from the discretization of the

B-spline curve.

(b) In black, FE nodes position that are given to GMSH to create the complete FE
mesh. In gray, loops that are given as input to GMSH.

Figure 4.15: Construction steps of the mesh. The complete mesh is shown
in Figure 4.16.

4.3.1.2 Link between design variables and complete mesh

In some cases, typically to enforce C1-continuity where the morphing box is C0, it
can be necessary to impose that some control point coordinates should vary together
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(see e.g. Figure 4.9). In this case, there are less design variables than expected, and

we can define a matrix C
dv

that links the design variables of a morphing box X̃
dv
hole

(attached to master control points) to all control points X̃hole of the considered

morphing box: X̃hole = C
dv

X̃
dv
hole.

Similarly to [Feld et al., 2015] and to reduce the number of design variables,
the specimen geometry is treated so as to keep the central symmetry, which divides
the number of design variables by a factor 2. This symmetry can be expressed in a
sparse matrix form C

Sym
such that X̃ = C

Sym
X̃hole.

Then, once the edges are deformed thanks to the design variables and the sym-
metry, the whole mesh has to be modified in accordance with this deformation. This
procedure is sometimes referred to as mesh morphing [Galland et al., 2011]. To do
so, as mentioned above, we solve an isotropic linear elastic problem K v = 0 on the
FE mesh [Belegundu and Rajan, 1988] A simple orthotropic linear elastic model is
chosen with a unitary Young’s modulus (E = 1) and a Poisson’s ratio equal to zero
(ν = 0). The deformation of the edges is considered as an imposed displacement
on the corresponding dof, and the goal is to obtain the resulting displacement of all
FE nodes, which is the sought mesh modification. This mesh modification can be
written in a matrix form, similarly to Guyan reduction in dynamics [Guyan, 1965].
If we note v = [vm,vr]

T with vm the imposed shape modification on the edges and

vr the displacement of the remaining dof, and K =

[
K

mm
K

mr
K

rm
K

rr

]
, it is possible to

link vr to vm as follows:

vr = −K−1
rr

K
rm

vm . (4.44)

Therefore, we denote the associated matrix C
Guyan

such that v = C
Guyan

vm:

C
Guyan

=

[
I

−K−1
rr

K
rm

]
, (4.45)

and we have Xall = C
Guyan

X.

From all these steps, we can define a unique matrix C
modif

that links the design
variables to the modification of all FE nodes position:

C
modif

= C
Guyan

CT
FFD

C
Sym

C
dv

. (4.46)

4.3.2 Optimizing hole shapes

We now apply the developed procedure to the specimen shown in Figure 4.12. To
create two 1D FFD morphing box (one for each hole, but only one is used for
design variables, the other one is determined thanks to symmetry), we use a B-
spline description of the holes geometry (see Figure 4.16). The hole shape is thus
not exactly a circle, thus the initialization geometry is slightly different from the
geometry that we aim to improve, but the cost function value and the maximum
equivalent stress have similar values in both geometries, which justifies the choice of
this geometry as an initial geometry.

The goal is to improve this geometry with respect to its sensitivity to the four
orthotropic linear elastic constitutive parameters, namely the longitudinal Young’s
modulus E1, the transverse Young’s modulus E2, the shear modulus G12 and the
Poisson’s ratio ν12. Similarly to [Feld et al., 2015], we impose Dirichlet boundary
conditions and do not use information other than the displacement field. As a
consequence, the Young’s moduli and the shear modulus cannot be identified as
such (a simple example on a rectangular plain beam where ux = x uimp/L and
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Figure 4.16: Initial geometry with B-spline description of the holes geometry.

therefore is independent of any Young’s modulus can help understand the problem).
Therefore, the ratios E2

E1
, G12

E1
are used, together with ν12, as constitutive parameters

of interest in this example.

As explained in Section 4.2.3.3, the stress constraint function is expressed as
in Equation (4.34). Since the initial geometry, with a B-spline description of the
holes, is different (even slightly) from the initial geometry with round holes, we take
as references for the cost function and the equivalent stress constraint the values
coming from the geometry to improve (i.e. the one with exact circles), so that the
final geometry can effectively be compared to the geometry with circle holes.

4.3.2.1 First optimization phase

The optimization leads to the geometry shown in Figure 4.17, and the deformed
morphing box is shown in Figure 4.18. Figure 4.19 shows the evolution of the cost
and constraint function. We can see that it is possible to improve the cost function
value by a factor 10 without reaching higher equivalent stress values. That means
the uncertainty on the worst identified parameters is lowered by approximately 3
and that the same experimental set-up than with the initial specimen can be used,
which is of great interest to make the most out of the experiment with regard to
constitutive parameters identification.

Figure 4.17: Improved geometry after the shape optimization of the holes.

Figure 4.18: Improved geometry (in black) compared to the initial geometry (in
gray), and 1D FFD morphing box and its control points position at the end (in red)
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(a) Cost function.

(b) Transformation Jacobian constraint. (c) Maximum stress constraint.

Figure 4.19: Cost and constraint functions evolution throughout the optimization
process to improve sensitivity to orthotropic linear elastic constitutive parameters

by modifying hole shapes.
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4.3.2.2 Second optimization phase

We noticed that at the end of the optimization process, the Jacobian constraint is
reached (see Figure 4.19). However, this is not due to purely geometrical issues such
as loops on the edges, but it comes from the mesh modification that propagates
the edges deformation to the rest of the FE nodes. When the edge deformation
is too large, solving a K v = 0 problem can lead to flipped elements, even if the
specimen edges remain physically sound (see Figure 4.20). A solution is then to

Figure 4.20: Flipped elements when the deformation of the edges is too important
(circled in blue).

remesh the interior of the specimen at the end of the optimization process, and to
launch another shape optimization on this new mesh. By keeping the same nodes
as the old mesh on the edges, in particular for the optimized holes, we can keep the
same FFD matrix C

FFD
than for the first optimization process. Hence, only C

Guyan

is to be recomputed. The results obtained after the second optimization step are
shown in Figures 4.21 to 4.23. With the new mesh, it is possible to reach higher
deformations and obtain bigger holes. What stops the optimization are bounds that
were arbitrarily chosen for the design variables. During this step, the cost function
value is reduced by a factor 3, which brings the overall reduction factor up to 30.

Figure 4.21: Improved geometry after the shape optimization of the holes.

Figure 4.22: Improved geometry (in black) compared to the initial geometry (in
gray), and 1D FFD morphing box and its control points position at the end (in red)
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(a) Cost function.

(b) Transformation Jacobian constraint. (c) Maximum stress constraint.

Figure 4.23: Cost and constraint functions evolution throughout the second
optimization process to improve sensitivity to orthotropic linear elastic constitutive

parameters by modifying hole shapes.
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4.3.2.3 Overview of the results

To have an overview of how all three parameters sensitivity have been impacted
by the optimization process, looking at H−1

FEMU
and its eigenvalues is convenient

(see Table 4.2). Here, the parameters are rather decoupled (covariance values are
small compared to variance values), and the worst initially identifiable parameter
is E2

E1
. At the end of the first optimization step, its variance is divided by 10 and

parameters are still rather decoupled. At the end of the second optimization step,
its variance decreases again. We note that some parameters are now coupled (E2

E1

and ν12). We also observe that G12
E1

variance decreases at each step, and ν12 variance
slightly increases, in such a way that the eigenvector associated with the greatest
eigenvalue at the last step has its larger component on this constitutive parameter.

Initial geometry End of 1st optim. step End of 2nd optim. step 27 −0.50 −0.047
−0.50 1.6 0.0072
−0.047 0.0072 0.31

  2.6 −0.28 0.24
−0.28 0.29 −0.020
0.24 −0.020 0.47

  0.63 −0.050 0.14
−0.050 0.14 −0.017

0.14 −0.017 0.67


0.31
1.5
27

0.26
0.45
2.7

0.14
0.51
0.80 0.0017 0.020 −1.0

−0.0051 1.0 0.020
1.0 0.0051 0.0018

  0.12 0.10 −0.99
0.99 −0.058 0.12

−0.046 −0.99 −0.11

  0.099 0.74 −0.66
1.0 −0.070 0.070

0.0056 −0.67 −0.74


Table 4.2: The first line gives H−1

FEMU
matrix at each optimization step (the three

parameters are in the following order: E2
E1

, G12
E1

, ν12). The second line gives H−1
FEMU

eigenvalues, and the third line the associated eigenvectors (matrix columns, in the
same order the eigenvalues above). (values rounded to 2 digits).

These observations can also be made by looking at the sensitivity fields for each
constitutive parameter. Indeed, Figure 4.24 shows that the sensitivity magnitude
increase for E2

E1
and G12

E1
, and slightly decrease for ν12.

(a) Initial sensitivity to E2

E1
. (b) Initial sensitivity to G12

E1
. (c) Initial sensitivity to ν12.

(d) Step 1 sensitivity to E2

E1
. (e) Step 1 sensitivity to G12

E1
. (f) Step 1 sensitivity to ν12.

(g) Step 2 sensitivity to E2

E1
. (h) Step 2 sensitivity to G12

E1
. (i) Step 2 sensitivity to ν12.

Figure 4.24: Sensitivity fields magnitude for each constitutive parameter, initially
and at each optimization step (in mm).

Finally, to visualize the FEMU functional aspect near the exact values of the con-

stitutive parameters, we compute, for a given geometry, (v(p
ex

)−v(p))T
M

S (v(p
ex

)−
v(p)), where p

ex
is the set of exact parameter values (that were chosen to compute

all mechanical quantities in the optimization process). The results are shown in
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Figure 4.25. An improvement of the FEMU functional convexity is observed.

(a) Initial FEMU functional. (b) Step 1 FEMU functional.

(c) Step 2 FEMU functional.

Figure 4.25: FEMU functional improvement after the optimization steps. It is
plotted for all parameters that vary between 80% to 120% of their exact value. A
greater convexity of the FEMU functional is reached with the optimized geometry.

4.3.3 An ill-posed problem

Despite the use of splines to regularize the optimization problem, its ill-posedness
makes the result still very sensitive to initialization (see Figure 4.26), demonstrating
the presence of several local minima of comparable objective function values.

To a lesser extent, the results may also depend on other variables such as the FE
mesh (especially its discretization size near the holes). Furthermore, the cost func-
tion could depend on the choice of the exact constitutive parameter values that we
set before the shape optimization. It is therefore recommended to choose numerical
exact values close to what we think are the real values.

These observations justify our choice to improve an existing specimen rather
than finding the optimal geometry to identify a given set of constitutive parameters.
In this respect, we recall that we were able to decrease the uncertainty on the
identified constitutive parameters by a factor of 6, which appears of interest for
practical applications. In this problem where the evolution of the cost and constraint
functions with respect to design variables are very complex (several local minima,
high computational costs on fine FE meshes), one could also prefer using other
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Figure 4.26: Cost function and geometries for a 2-step optimization, for 2 different
initializations (initial position of the holes). 2D FFD was used with bivariate

1st-degree morphing boxes.

approaches, such as the use of kriging and surrogate models [Bouhlel et al., 2016]
or other optimization algorithms, for instance a genetic algorithm, to avoid being
trapped in a local minimum.

Conclusion

In this chapter, a methodology has been proposed to improve the sensitivity of a test
to chosen constitutive parameters through shape optimization of the specimen. Our
approach relies on the non-invasive spline tools developed in the previous sections
and is meant to fill the gap between the existing approaches in terms of design space
used in shape optimization problems with regard to constitutive parameters identi-
fication. Our FFD-based approach indeed allows working with few design variables,
yet keeping a search space that leads to a vast range of geometries, provided that
their topology is the same. We placed ourselves in the case where a pre-design of
the specimen is available and the goal is to improve its geometry, with respect to
the sensitivity to constitutive parameters for given boundary conditions.

For the modeling of the optimization problem, we relied on the cost function
formulation of [Bertin et al., 2016] and [Chamoin et al., 2020], which makes sense
from an experimental point of view, because the covariance matrix comes from noise
propagation through the whole metrological chain, but also from a physical point
of view, because for a single parameter we have shown that the cost function is
directly linked to the sensitivity field integral to that parameter, and finally from
a mathematical point of view, because the FEMU Hessian eigenvalues contain in-
formation on the convexity of the FEMU functional. We then added information
coming from the camera modeling to that cost function, in order to tackle possible
size changes throughout the optimization process. Furthermore, sensitivity fields,
which are the derivatives of the displacement field with respect to constitutive pa-
rameters, were computed analytically, i.e. without using Finite Differences methods.
Constraint functions were also added to ensure that the obtained geometry was phys-
ically sound. The first one involved the Jacobian of the FE mesh transformation
from the reference elements to the physical element and ensured that no element
flipped. The second one set a maximum equivalent stress, which was kept equal to
the initial maximum equivalent stress in order to guarantee that the cost function
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decrease could not be impacted by the boundary conditions values. Let us notice
at this stage that these modeling ingredients could be applied to other optimization
resolution strategies (independently of the design variables definition).

The resolution was then carried out on a tension beam with two holes thanks
to our non-invasive FFD-based approach enhanced from Chapter 3 and [Chapelier
et al., 2021]. C1-continuous periodic B-splines were used to create univariate morph-
ing boxes that control the FE nodes on the edge of each hole. The edge deformation
then propagates to the rest of the mesh via the resolution of a K v = 0 morphing
problem so that no remeshing is necessary during the optimization process. The cost
function value was reduced by a factor 10. However, this propagation had its limi-
tations, so a second step of optimization was carried out after remeshing to reach a
lower cost function value, reducing the cost function value by a factor 3, leading to an
overall reduction by a factor 30. Overall, the developed resolution strategy consisted
in a CAD-based shape optimization strategy that was weakly invasive with respect
to FE method and allowed for considerable geometry deformation. Such a strategy
could be applied to other optimization problems (such as structural optimization).

This work offers many opportunities for future investigations. Considering only
the resolution of the optimization problem, a multilevel optimization of the shape
could be performed, similarly to what has been presented in the previous chapters.
Other algorithms or multi-start procedures could also be employed to avoid being
too dependent on initialization [Bartoli et al., 2019]. From the problem modeling
point of view, a first improvement could consist in making a difference between the
region of interest (where a good sensitivity is needed) and the whole structure (on
which the mechanical problem is solved). The position and size of the ROI could also
be defined as design variables. Boundary conditions could be considered as design
variables as well (which is also a perspective from [Bertin et al., 2016]). Finally,
more complex constitutive laws could be tested.
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General conclusion

Spline functions have shown their potential in the context of the three studied op-
timization problems, namely FE displacement field measurement using DIC, FE
mesh-based 3D shape measurement with stereo-correlation and shape optimization
of a mechanical specimen with regard to constitutive parameters identification.

The first chapter has introduced the three problems through the review of recent
articles, and highlighted some of their issues. For FE-DIC, the use of what we refer
to as analysis-suitable FE meshes, which is necessary for the direct coupling with FE
simulation software, leads to noisy results, both for displacement field measurement
and shape measurement. The noise comes from the high number of nodes and thus
design variables, and from the low regularity between FE elements. In the shape
optimization of specimen, parametric optimization does not offer a large variety of
geometries, but topology optimization (in particular based on the SIMP method)
requires setting cumbersome penalty factors value and proceeding to a tedious post-
processing step to get a physically-sound specimen geometry, because there are too
many design variables and the edges are not smooth. In all cases, the issues come
from the high dimension of the search space together with basis functions that are
not regular enough. Spline functions appear to be convenient to tackle these issues.
Their high regularity and their other properties such as their local support and their
efficient and robust refinement procedures are ideal in a shape optimization context,
and more broadly in any regular optimization problem. Furthermore, they are part
of the FE vector subspace, which makes the spline basis an excellent candidate for a
non-invasive CAD-based approach (we remind here that pth-degree spline functions
are Cp−1 and thus C0 and not the other way round, which explains that spline
functions describe a vector subspace of the FE vector space). A more general FFD-
approach is also a useful tool to parameterize fields defined in physical points with
splines.

In the second chapter, the developed non-invasive CAD-based strategy is pre-
sented and applied to mesh-based 3D shape measurement. The Lagrange extractor
(or its approximation in the case of NURBS) is expressed in a global matrix form
and applied to DIC shape measurement operators, together with a projection matrix
along the normal to avoid shape corrections that do not have a real influence on the
geometry. A multilevel approach, which couples coarse graining on images with ex-
act refinement of splines, has led to a faster convergence of the shape measurement
algorithm. A specific care has been taken regarding brightness and contrast correc-
tion so as to take into account specular reflection on the specimen. The method has
been validated on real images of a plate with a hole in two configurations, namely a
twisted and a flat configuration. The proposed non-invasive multilevel CAD-based
strategy is well suited when a boundary-fitted analysis-suitable CAD description of
the structure is available, and has the advantage of providing both the FE solution
field and the CAD solution field. It allows performing a true CAD shape measure-
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ment simply from the use of classic FE routines. Yet the method is restricted to
FE meshes of which the associated vector space is contained within the CAD vec-
tor space. Consequently, they have Q9 quadrangular elements (and not Q8) when
2nd-degree is used.

The third chapter widens the range of possible handled FE meshes to any geom-
etry and element type, and not only FE meshes that come from a boundary-fitted
analysis-suitable CAD model. The developed approach, based on the Free-Form De-
formation concept, consists in embedding the FE description of the geometry into
a spline morphing box. The box has been chosen to be a δ-orthotope, so that the
spline mapping from the parametric domain to the physical domain is the identity.
This approach can be seen as a generalization of the CAD-based approach and we
have shown that it leads to a similar non-invasive scheme, based on a projection onto
a smooth space defined by spline functions thanks to a sparse operator. A parallel
between the proposed method and a fictitious domain approach, and then with a
model reduction approach, has been drawn. Similarly to what is done in the ficti-
tious domain community, we have proposed a criterion to eliminate non-influential
design variables that deteriorate the problem conditioning. The proposed criterion
is easy and fast to compute because it only depends on sums on the sparse operator
coefficients. The FFD-based strategy has been applied both on the displacement
field measurement and on the shape measurement with stereo-correlation problems.
A comparison with common Tikhonov regularization on the displacement field mea-
surement of a bending beam has shown the FFD strategy potential to avoid adding
artifacts, and the simplicity of a regularization length definition. The FFD strat-
egy has then been successfully applied to the plate with a hole of Chapter 2 in the
twisted configuration, improving even further the smoothness of the search space
thanks to the absence of C0 lines. Finally, a proof of concept on a more complex 3D
structure has been presented, via the shape measurement of a spherical cap. Several
significant issues have been addressed on this specific example:

• Images have been taken at 360◦ all around the structure and thus the functional
must take all the images into account. Therefore, a sum over all camera pairs
has been done.

• Each camera can only see a part of the structure. A mask has been added to
select visible elements for each camera, and the product of these masks selects
elements seen by a pair of cameras.

• On an initially planar structure, moving the FE nodes along the normal to the
structure is equivalent to moving the FFD control points in the same direction.
In the case of more complex 3D structures, defining a normal direction at a
control point that is not physically on the surface is not straightforward, and,
more importantly, defining these direction on the control points of the coarsest
spline model sets the directions on the finest spline model (since we use exact
spline refinement). Hence, the normal field has been defined on FE nodes and
the control points define a scalar field that is the norm of the shape correction
field.

• To define the normal field on the FE nodes, the user can choose to impose
”global” or ”local” normal directions, depending on the typical sought shape
correction length. It is common to seek ”global” shape corrections first and
then to seek more and more ”local” corrections. Here again, a multilevel
approach could be carried out in the choice of the normal field (first ”global”
normal and then ”local” normal field).

A final numerical example on an irregular displacement field measurement and based
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on DIC residual analysis to refine the morphing box shows the potential of the
method to be used on more complex problems. This FFD approach offers the pos-
sibility to regularize a field measurement on any arbitrary FE mesh, which is of
interest for experimental mechanics engineers that are given a FE mesh to perform
the measurement.

The last chapter applied the FFD approach to the shape optimization of a me-
chanical specimen with regard to constitutive parameters identification. In this case,
the morphing box was chosen so that all control points were equally influential. We
made it fit the geometry boundaries, and created several, possibly periodic morphing
boxes if necessary. An operator that links the control points position to the position
of all FE nodes was created, composed of the FFD non-invasive link, a symmetry
operator and a Guyan reduction matrix. This global operator was used throughout
the optimization procedure and avoids remeshing. Specific care has also been paid
to the modeling of the optimization problem:

• The cost function is based on the constitutive parameters covariance matrix
(and thus the FEMU hessian), and physically sound approximation have been
proposed to take into account the size of the specimen and the fact that the
covariance matrix is computed before a specimen and a speckle are defined.

• The sensitivity fields to constitutive parameters are computed analytically.
• A semi-analytical gradient is proposed for the cost function in the case of the

identification of a single parameter.
• A constraint function that takes the transformation Jacobian determinant en-

sures that the FE mesh is still analysis-suitable.
• A constraint function based on maximum equivalent stress values prevents the

specimen from being damaged during the experiment and, more importantly,
guarantees that the gains in term of constitutive parameters identifiability
could not be outperformed by a simple increase in the boundary conditions
intensity.

The proposed optimization strategy has been validated on a tension beam and then
the shape of holes in an orthotropic linear elastic tension beam has been improved
with regard to constitutive parameters identification, leading to a maximum uncer-
tainty on the constitutive parameters values divided by 6.

The obtained results on the three studied optimization problems confirm the
ability of splines to be used as a non-invasive regularization method. A CAD-based,
or in more general cases, a FFD-based method can be used to replace a too large
and irregular search space by a reduced, smooth search space, thanks to an easily
built and sparse projection matrix that makes the link between the spline frame-
work and FE software. A multilevel approach can be adopted by simply relying on
the exact refinement properties of spline functions. Advantages over other regular-
ization techniques have also been underlined, in particular the direct link between
the refinement of a spline mesh and a characteristic regularization length, and the
possibility to perform DIC on FE meshes with elements that are too small to allow
the measurement with the standard FE functions basis.

This work brings many interesting perspectives for future investigations. In the
short term, the developed non-invasive spline-based optimization strategies could
be applied to regularize stereo-DIC displacement field measurement and also DVC
(Digital Volume Correlation) displacement field measurement. It could also be used
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in all FE-DIC problems as an initialization method if another, more problem spe-
cific method is preferred to get the final solution. In the longer term, the developed
strategies could benefit from hierarchical splines. In FE-DIC displacement field
measurement, it would allow measurement of locally richer or less regular deforma-
tions [Kleinendorst et al., 2015]. In shape measurement, it could be used on smaller
parts or details of the structure that are of interest for the experiment. In both
DIC problems, hierarchical splines could be used together with a set of cameras
that have different resolutions in order to accurately take into account the higher
density of information in some regions of the structure. Regarding the FFD-based
approach with the identity mapping, the question could be raised of the orientation
of the structure with respect to the morphing box, and its impact on the number of
influential control points and on the obtained measured field, especially for complex
geometries. Finally, in the three studied optimization problems, a comparison with
a RBF-based method (Radial Basis Functions), that can be found in the Computer
Graphics Community in the context of shape modification, could be of interest [Ko-
jekine et al., 2002].

Other aspects of the developed optimization strategies that are not related to
splines may also provide relevant perspectives. In FE-DIC displacement field and
shape measurement, the used brightness and contrast correction becomes less effi-
cient if the FE mesh is fine and cannot be used if the elements are too small. A
more physical lighting model could solve this issue [Fouque et al., 2021a]. A second
issue encountered during this work was the non-unique solution to the shape mea-
surement / extrinsic calibration problem, which, in some cases, led the edges of the
spherical cap to slide on the surface. Hence the resulting shape correction did not
take the edges into account. Adding a constraint to keep the FE mesh edges on the
structure edges could help solve this issue. The shape optimization problem also
raised interesting questions that could not be explored in this work. Since the cost
function often contains several local minima, using a minimization algorithm that
is not gradient-based could increase the chances of improving the experiment sen-
sitivity to the sought constitutive parameters (see for instance the work of [Bartoli
et al., 2019] who developed a constrained gradient-free optimization methodology).
Furthermore, other constitutive laws could be tested, potentially non-linear and de-
pendent on load history. Eventually, boundary conditions could be considered as
design variables, especially in the case when load histories influence the material
response [Bertin et al., 2016].
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Appendix

A.1 Interactions between Python and Abaqus

Some details on how we interacted with Abaqus from a Python script are given
here. It completes Figure 1.20(a) that gives a global overview of a non-invasive
implementation of spline-based shape optimization using Abaqus.

A.1.1 Abaqus job creation

In Abaqus, a job associates loads and boundary conditions to a mesh-material pair.
When defining this job on the Abaqus user interface, a text file with the .inp
extension is generated. This text file can also be directly written with Python and
given as input to Abaqus.

We give here an example of such a file. The ** sign indicates comments. After a
small heading, the mesh is defined, with nodes coordinates and elements connectivity
(in this example, 971 nodes and 300 elements were used so we use [...] to indicate
that the rest of the data is also written in the file). The element type is also given
(SR8 for Q8 elements, i.e. 2nd-degree quandrangle FE elements with 8 nodes).
The shell thickness is written (0.1), as well as the orientation of the reference axes.
Groups of nodes and elements are created for the definition of boundary conditions
later in the file.

*Heading

** Job name: Job-1 Model name: Model-1

** Generated by: authorName

*Preprint, echo=NO, model=NO, history=NO, contact=NO

*Node
1, 1.200000000000000e+02, 0.000000000000000e+00,

0.000000000000000e+00
2, 1.197888888888889e+02, 6.555555555555554e+00,

0.000000000000000e+00
[...]

*Element, type=S8R
1, 1, 3, 50, 48, 2, 33, 49, 32
2, 3, 5, 52, 50, 4, 34, 51, 33
[...]

*Nset, nset=Set-1, generate
1, 971, 1

*Elset, elset=Set-1, generate
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1, 300, 1

*Orientation, name=Ori-1
1., 0., 0., 0., 1., 0.
1, 0.

** Section: Section-1

*Shell General Section, elset=Set-1, material=Material-1,
orientation=Ori-1

0.1,

*Nset, nset=Set-2
941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952,

953, 954, 955, 956
957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968,

969, 970, 971

Now that the mesh is described, a material can be defined, thanks to its associ-
ated mechanical properties. The following example is for a orthotropic linear elastic
behavior (values of E1, E2, ν12, G12, G13, G23 are given).

** MATERIALS

*Material, name=Material-1

*Density
1600.,

*Elastic, type=LAMINA
230e+9, 15e+09, 0.166, 6432e+06, 6432e+06, 5357e+06

The next phase is the definition of Dirichlet boundary conditions. Here, symme-
try and anti-symmetry conditions are imposed on two different sets of nodes.

** BOUNDARY CONDITIONS

** Name: BC-1 Type: Asym

*Boundary
Set-2, ZASYMM

** Name: BC-2 Type: Sym

*Boundary
Set-3, ZSYMM

The final phase consists in defining the loads (and if needed, the loading history)
and the requested calculations. Here, two steps are created: one for the generation
of the stiffness matrix, the mass matrix and the load vector, and the other for the
displacement vector U . All the data are written by Abaqus in different text files (see
Appendix A.1.3).

** STEP: Step-1

*STEP

*MATRIX GENERATE, STIFFNESS, MASS, LOAD

*MATRIX OUTPUT, STIFFNESS, MASS, LOAD

*INCLUDE, INPUT=Example_load.inp

*END STEP

*STEP

*STATIC

*INCLUDE, INPUT=Example_load.inp

** OUTPUT REQUESTS

** FIELD OUTPUT: F-Output-1
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*Output, field, variable=PRESELECT

** HISTORY OUTPUT: H-Output-1

*Output, history, variable=PRESELECT

*FILE FORMAT, ASCII

*NODE FILE
U

*END STEP

The line that starts with INCLUDE calls another .inp file. When reading this
line, Abaqus goes to the called file. In this example, Neumann boundary conditions
are defined in this other file. This file does not need a heading and looks like the
following:

** LOADS

** Name: Load-1 Type: Ponct

*Cload
Set-6, 1, -1000.0

Note that a first test case can be created in Abaqus user interface to generate
an example of .inp file and use this file as a base to fill some of the items with a
correct syntax, typically the reference orientation, the material description or the
boundary conditions definition.

A.1.2 Calling Abaqus from Python

To make Abaqus run without manually opening the software, we use the Python
os library. The command we write in the script is the following:
os.system(’call abaqus job=%s output precision=full
double=both ask delete=OFF’% filename)

To speed up the computation of the gradient with finite differences, we can
compute the numerical derivative of each design variable independently and simul-
taneously (parallel computing). To do so, a batch file (which is a text file with the
.bat extension) can be written. It collects the different command lines to execute
simultaneously. In our example, one of these lines is similar to the following:
call abaqus job=filename output_precision=full double=both
ask_delete=OFF\n

When calling Abaqus repeatedly, one should pay attention to the time taken by
Abaqus to run the files. Files cannot be read if their creation is not complete and it
may cause errors. Adding a condition to check the existence of a file before reading
it solves this issue. The condition can also rely on .lck files, that only exist when
Abaqus is running, or .odb files, that are the last created Abaqus results files.

A.1.3 Reading Abaqus data

The stiffness matrix, the mass matrix and the load vector are written in .mtx
files with STIF, MASS, and LOAD respectively in the files names. These files allow
creating easily sparse matrices with Python.

The displacement vector U can be read from a .fil file where the relevant lines
start with given characters (for example, I19I3101I in our case). If a greater
numerical precision is desired, another method consists in writing an Abaqus python
script to create a file that contains U , (i.e. by using Python inside the Abaqus
software).
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Finally, the total mass of the model can be read in a .dat file. We used this total
mass to add a constraint in the compliance minimization problem of Figures 1.20(a)
and 1.20(b).
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Notations

Except for a few exceptions, the main notations have been chosen as follows:

• Capital letters for quantities that live in the physical domain;
• Small letters for quantities that live in the images (for DIC);
• Greek letters for the spline parametric domain.

Moreover, quantities that result from a discretization (FE or spline) and that
gather many degrees of freedom are generally in bold, and spline quantities written
with a tilde.

Finally, all quantities have been underlined with respect to their dimension:

• no line: scalar;
• 1 line: vector;
• 2 lines: matrix.

List of the main notations

p Spline degree (parts 1, 2, 3)

p or p Constitutive parameters (part 4)

δ Dimension of the spline parametric domain

D Dimension of the physical domain

I Spline parametric domain

m knot multiplicity

N FE standard functions (Lagrange functions)

Ñ B-spline functions

R Rational Lagrange functions

R̃ NURBS functions

X FE nodes positions

X̃ Spline control points positions

XW Rational Lagrange nodes positions

ξFE Positions of FE nodes in the spline parametric domain

U Any field defined at FE nodes

Ũ Any field defined at spline control points
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S Shape correction field defined at the FE nodes

δS Descent direction in the FE shape measurement problem

S̃ Shape correction field defined at the control points

δ̃S Descent direction in the spline shape measurement problem

u Displacement field defined at the FE nodes

δu Descent direction in the FE displacement field measurement prob-
lem

H
S

Hessian approximation of the FE shape measurement problem

bS Right-hand side of the FE shape measurement problem

H̃
S

Hessian approximation of the spline shape measurement problem

b̃S Right-hand side of the spline shape measurement problem

H
u

Hessian approximation of the FE displacement field measurement
problem

bu Right-hand side of the FE displacement field measurement prob-
lem

C
ref

Spline refinement operator (exponents can be added to indicate
the refinement levels)

C
Lag

Lagrange extractor

C
FFD

FFD projector

C
s

Combined operator (refinement and FE-spline link) at scale s

Qi Criterion to determine the non-influential control points

Π
Z

Restriction matrix to vertical displacements or shape corrections

Π
n

Restriction matrix to normal displacements or shape corrections

Fu Functional to minimize in the displacement field measurement
problem

FS Functional to minimize in the shape measurement problem

Fp Functional to minimize in the FEMU problem

fcost Cost function to minimize in the shape optimization problem

g Inequality constraint functions (e.g. gσ and gJac)

s Design variables

P c Camera c model (projector from physical space to 2D image)

J
c

Jacobian of the projector P c

p
c

Camera c parameters

I Reference state image (a subscript is added to indicate the camera
if needed)

J Deformed state image
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Vc Mask associated to camera c

H
FEMU

Hessian approximation of the FEMU problem

K Stiffness matrix

M Mass matrix

v FE simulated displacement field
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Sabatier. Cited on page 13

[Demmerle and Boehler, 1993] Demmerle, S. and Boehler, J. (1993). Optimal design
of biaxial tensile cruciform specimens. Journal of the Mechanics and Physics of
Solids, 41(1):143–181. Cited on page 14

[Dubreuil et al., 2016] Dubreuil, L., Dufour, J.-E., Quinsat, Y., and Hild, F. (2016).
Mesh-based shape measurements with stereocorrelation. Experimental Mechanics,
56(7):1231–1242. Cited on pages 10, 12, and 72

[Dufour et al., 2015a] Dufour, J.-E., Beaubier, B., Hild, F., and Roux, S. (2015a).
CAD-based displacement measurements with stereo-DIC. Experimental Mechan-
ics, 55(9):1657–1668. Cited on pages 1, 3, 18, 32, 52, and 62

[Dufour et al., 2015b] Dufour, J.-E., Hild, F., and Roux, S. (2015b). Shape, dis-
placement and mechanical properties from isogeometric multiview stereocorre-
lation. The Journal of Strain Analysis for Engineering Design, 50(7):470–487.

Cited on pages 2, 32, and 36

[Dufour et al., 2016] Dufour, J.-E., Leclercq, S., Schneider, J., Roux, S., and
Hild, F. (2016). 3D surface measurements with isogeometric stereocorrela-
tion—application to complex shapes. Optics and Lasers in Engineering, 87:146–
155. Cited on pages 1, 3, 18, 32, 36, 39, 52, 65, 67, and 69

[Duvigneau, 2006] Duvigneau, R. (2006). Adaptive parameterization using free-
form deformation for aerodynamic shape optimization. Research Report INRIA.

Cited on pages 53 and 55

[D’Angella et al., 2018] D’Angella, D., Kollmannsberger, S., Rank, E., and Reali,
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adaptive basis for isogeometric analysis. Computer Methods in Applied Mechanics
and Engineering, 284:1–20. Cited on page 41

[Farin, 2002] Farin, G. (2002). Curves and surfaces for CAGD: a practical guide.
Morgan Kaufmann Publishers Inc., San Francisco. Cited on pages 19, 31, and 37

[Fedele et al., 2013] Fedele, R., Galantucci, L., and Ciani, A. (2013). Global 2D
digital image correlation for motion estimation in a finite element framework:
a variational formulation and a regularized, pyramidal, multi-grid implementa-
tion. International Journal for Numerical Methods in Engineering, 96(12):739–
762. Cited on pages 1 and 63

– 128 –



BIBLIOGRAPHY

[Fehrenbach and Masmoudi, 2008] Fehrenbach, J. and Masmoudi, M. (2008). A fast
algorithm for image registration. Comptes Rendus Mathématique, 346(9-10):593–
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[Jorge-Peñas et al., 2015] Jorge-Peñas, A., Izquierdo-Alvarez, A., Aguilar-Cuenca,
R., Vicente-Manzanares, M., Garcia-Aznar, J. M., Van Oosterwyck, H., de Juan-
Pardo, E. M., Ortiz-de Solorzano, C., and Muñoz-Barrutia, A. (2015). Free
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space-time PGD-DIC algorithm: Application to 3D mode shapes measurements.
Experimental Mechanics, 58(7):1195–1206. Cited on pages 1, 2, and 63

[Passieux et al., 2015] Passieux, J.-C., Bugarin, F., David, C., Périé, J.-N., and
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