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Introduction

A molecule, a social network, a road network, the internet, all these objects can
be modelled as attributed graphs: a collection of identifiable objects (atoms,
persons, towns, IPv4/6 addresses), some being linked to others. An attributed
graph combines two modalities of information: structure and feature. Struc-
ture is a set of links between nodes, also called a graph. For instance the
atoms are linked by covalent bounds in a molecule, people by willingly linking
themselves in a social network, towns by roads, IPv4/6 addresses by cables.
Feature is a description of each node. For instance an atom in a molecule has a
weight, a charge, a boiling point, etc; a person has an age, a gender, a height,
a self-description, interests, etc; a town has a number of inhabitants, an entry
speed limit, etc; an IPv4/6 address has an ISP, an associated terminal, etc.
Examples of attributed graphs are given in Figure 1.

Studying attributed graphs is a hard task. Because they lack regularity in
their description, they have been the topic of less study than other structured
data. In comparison, images are almost figured out nowadays for instance.
While they can be seen through the prism of attributed graphs (an image is
a set of pixels, linked together in a grid fashion, each pixel being described
by a RGB triplet), specific methods can take advantage of their regularity,
namely a rectangular grid shape, with close pixels expected to be often similar.
Powerful image-specific methods include SIFT descriptors [1] or convolutional
neural networks [2, 3], and very large datasets [4, 5] have been created.

Sadly a large variety of data simply does not possess such regularity that
images can display. But this lack of regularity does not prevent examination.
The study of graphs by themselves is a whole active field of study [6]. For
attributed graphs, one of the main theoretical framework is Graph Signal Pro-
cessing [7]. Indeed, an attributed graph can be seen as a signal on a graph, i.e.
a function defined on each node of a graph. This framework is especially rel-
evant considering that the features can vary: for instance people change with
time. So it makes sense to detach the attributes from the graph and regard
them as a signal.

One of the challenges in handling attributed graphs is comparing them,
measuring their (dis-)similarity. Comparing graphs allows plugging them in a
lot of machine learning algorithms, thus enabling easy classification, regression,
clustering, etc. Comparisons can be direct, or indirect through kernel-based
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Introduction

(a) The caffeine molecule: nodes are
atoms, links are covalent bounds, atoms
are described by their name, atomic
number, etc. Image from Encyclopedia
Britannica, Inc.

(b) The Tokyo subway map: nodes are
stations, links are railways, stations are
described by their name, frequentation,
etc. Image from Bureau of Transporta-
tion, Tokyo Metropolitan Government.

(c) The ORBIS model (the Standford
Geospatial Network Model of the Ro-
man World): nodes are cities, links are
roads, river sections and naval connec-
tions, cities are described by their num-
ber of inhabitants, their production, etc.

(d) The AS Core graph 2020: nodes
are IPv6 addresses, links encode connec-
tivity between addresses; addresses are
ranked by their transit degree, ISP, pre-
fix, etc. Image from Center for Applied
Internet Data Analysis

Figure 1: Examples of attributed graphs.
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Introduction

metrics or euclidean embeddings for instance. Numerous distances between
simple graphs have been proposed: for instance the Graph Edit Distance [8]
counts the number of modifications required to transform a graph into an-
other. The Graph Diffusion Distance [9] looks at the maximum of difference
between the diffusion operators of two graphs of the same sizes, or the Graph
Spectral Distance [10] that computes the L1 distance between the graph’s
spectra. Graphs kernels that take into account both structural and feature
informations have achieved a tremendous success during the past years to ad-
dress graph classification tasks (see the most recent survey [11]), e.g. using
Support Vector Machines. As an example, the Weisfeiler-Lehman kernel and
its variations [12–14] works repeatedly aggregating and compressing features
around each node. Finally, the Fused Gromov-Wasserstein distance [15] works
by merging two transport distances on graphs and vector-valued data; because
the information it provides is much richer than a distance, and because it re-
lates to our work, it will be studied later in this manuscript (see Section 2.2.2).

In our work, we looked at a more detailed way of comparing attributed
graphs. More than a single number (to get a notion of distance or similarity),
we considered the notion of mapping: a node-to-node relation between two
such objects. A mapping gives insights as to which nodes are similar between
the two graphs. It can also be used to transport a quantity from one graph
to another. For instance, a classification of the nodes of one graph could be
transported to the other. This would save the task of labelling from scratch
the nodes of the other graph; this has applications in situations when, for
instance, a graph changes with time, as a new classification of the nodes could
be produced automatically from a previous one. Such graphs include the
Wikipedia encyclopedia, a country’s road network or a scientific paper citation
network for instance.

We studied this problem through the lens of Transportation Theory [16],
the study of optimally moving distributions onto others. Attributed graphs
are considered as discrete distributions, each node being given a weight or
probability.

Our contributions cover the following algorithmic, theoretical and experi-
mental aspects:

• We introduce the notion of Diffusion-Wasserstein Distance (DW), a mod-
ification of the standard transport distance that incorporates structure
information.

• We discuss the implementation of the diffusion procedure, including a
new bound on the approximation error of real functions by Chebychev
polynomials.

• We present and analyse a scheme to optimise the hyper-parameter of DW,
inspired by the notion of triplet-loss.

• We perform an extensive comparison of transport methods that can han-
dle attributed graphs.
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The rest of this manuscript is organised as follows:
• In Chapter 1, we lay down the theoretical foundations necessary for the

understanding of the contributions.

• In Chapter 2, we review the literature on distances for (attributed)
graphs, mostly transport-based ones.

• In Chapter 3, we define the Diffusion-Wasserstein Distance (DW), dis-
cuss its theoretical properties and variants. This chapter corresponds
to works published at the CAP conference [17] and the ECML/PKDD
conference [18].

• In Chapter 4, we detail the implementation of DW. More precisely, we
detail a Chebychev approximation of the Diffusion process, and a proce-
dure to select the diffusion time. This chapter corresponds to two papers:
one written with the help of Sibylle Marcotte during her internship cur-
rently at the submission stage [19], and one accepted at the ICTAI’21
conference [20].

• In Chapter 5, we perform various experiments to study DW, and compare
it to other methods.

Publications
[21] D. Barbe, P. Borgnat, P. Gonçalves, and M. Sebban, “Transport optimal

sous contrainte de régularité pour l’adaptation de domaines entre graphes avec
attributs,” inGRETSI 2019-XXVIIème Colloque francophone de traitement du
signal et des images, pp. 1–4, 2019, held from August 23 to 26 in 2019.

[17] A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat, and R. Gribonval,
“Transport Optimal entre Graphes exploitant la Diffusion de la Chaleur,” in
CAP 2020-Conférence sur l’Apprentissage Automatique, 2020, held from June
23 to 26 in 2020.

[18] A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat, and R. Gribonval,
“Graph diffusion Wasserstein distances,” in ECML/PKDD (2), vol. 12458 of
Lecture Notes in Computer Science, pp. 577–592, Springer, 2020, held from
September 14 to 18 in 2020.

[19] S. Marcotte, A. Barbe, R. Gribonval, T. Vayer, M. Sebban, P. Borgnat,
and P. Gonçalves, “Fast multiscale diffusion on graphs,” in CoRR, ArXiV
preprint, vol. abs/2104.14652, 2021.

[20] A. Barbe, P. Gonçalves, M. Sebban, P. Borgnat, R. Gribonval, and
T. Vayer, “Optimization of the Diffusion Time in Graph Diffused-Wasserstein
Distances: Application to Domain Adaptation,” in IEEE International Con-
ference on Tools with Artificial Intelligence, 2021.
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Introduction

Notations
For attributed graphs:

• G is a graph.

• V is the (finite) set of vertices (also called nodes) of a graph.

• E ∈ P(V 2) is the set of edges (also called links) of a graph.

• A ∈ {0, 1}N×N is the adjacency matrix of a graph of size N .

• D ∈ NN×N is the degree matrix of a graph of size N .

• L ∈ RN×N is the Laplacian matrix of a graph of size N .

• C ∈ RN×N+ is the shortest-path matrix of a graph of size N .

• X ∈ RN×r is the matrix representation of the r-dimensional feature vec-
tors of a graph of size N .

• l ∈ [1, K]N is a vector containing one of K possible labels (or class) for
each node of a graph of size N .

• Any mathematical quantity related to a graph can be superscripted to
denote the specific graph they refer to. In particular, .s and .t are used
to denote respectively the source and target graph.

For Optimal Transport:

• δx is the Dirac function in x.

• µ and ν are discrete probability distributions.

• X and Y are the feature spaces where the distributions µ and ν are
supported on.

• a ∈ Rm+ and b ∈ Rn+ are the weights of the points µ and ν are supported
on.

• M ∈ Rm×n+ is the matrix representation of the pairwise distances between
any two sets of points {xi} and {yj}: ∀i ∈ J1,mK,∀j ∈ J1, nK,Mi,j =
‖xi − yj‖.

• γ ∈ Rm×n+ is a transport map between two discrete distributions of re-
spective sizes m and n.

• Π(a, b) is the set of all possible transport maps between two discrete
distributions with point weights a and b.

• W is the Wasserstein distance.

• GW is the Gromov-Wasserstein distance.

5
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• FGW is the Fused-Gromov-Wasserstein distance.

• DW is the Diffusion-Wasserstein distance.

Others:

• 1n is a vector of size n where every coordinate is 1.

• τ ∈ R+ is the diffusion time of a diffusion process.

• 〈·|·〉F is the Frobenius inner product: ∀x ∈ Rr, ∀y ∈ Rr, 〈x|y〉F =∑r
i=1 xiyi. This notation naturally extends to matrices, by considering

the sum along all possible dimensions.

6



Chapter 1
Preliminaries

Read the label before use. Keep
close of reach of children.

In this chapter, we lay down the theoretical foundations related to our
contributions and required for the remainder of this manuscript. Section 1.1
describes attributed graphs. They are a very generic model of data that cap-
tures a lot of different items. We also give a short introduction to Graph Signal
Processing, the common theoretical framework used to study these data. Sec-
tion 1.2 describes the Heat Diffusion process in graphs. Section 1.3 gives a
simple overview of the field of Optimal Transport.

1.1 Graphs, Attributed Graphs, Graph Signal
Processing

1.1.1 Graphs
A graph G is a model to represent structured data. It is a collection of vertices
V and edges E ⊂ V 2 between them (also called nodes and links).

A graph of size N nodes can be conveniently represented by its adjacency
matrix A ∈ {0, 1}N×N . Its elements Ai,j indicates the presence (≥ 0) or
absence (= 0) of a link from node i to node j. A graph is said to by undirected
if its adjacency matrix is symmetric, i.e. if for every link from node i to j
there is also a link from node j to i, directed otherwise. A graph is said to be
unweighted if its adjacency matrix is made of only 0 or 1 elements, weighted
otherwise. In the following, we will only look at unweighted, undirected graphs.

From the adjacency matrix, the degree matrix D can be derived. It counts
the number of edges adjacent to each vertex. It has value 0 outside the main
diagonal, and each diagonal element Di,i = di is the sum of the i-th row (or
equivalently column if undirected) of A.

Finally the combinatorial Laplacian Matrix L of a graph is defined by
L = D−A. It is a central tool in graph study, especially in the case of graph

7



Chapter 1. Preliminaries

Figure 1.1: A simple graph, consisting of 4 nodes and 5 links.

signal processing as we will see in Section 1.1.3. Note that there exist other
notions of Laplacian, such as the normalized Laplacian Lsym = D−1/2LD−1/2

or the random walk Laplacian Lrw = D−1L. They can also be used to find
useful properties of a given graph.

As an illustration, a toy graph is represented in Figure 1.1. Its associated
matrices are:

A =


0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0

 D =


3 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2

 L =


3 −1 −1 −1
−1 2 −1 −1
−1 −1 2 0
−1 −1 0 2

 (1.1)

1.1.2 Attributed Graphs
A signal x on a graph is a function defined on the nodes of a graph [7, 22].
A pair consisting of a graph and a signal is called an attributed graph [23],
and in this case the value of the signal at a node is called the attribute of the
node. These two terms, graph signal and attributed graphs, are two different
sides of the same coin. The term signal tends to be used more when multiple
signals on the same graph will be considered, like time-dependent signals; the
term attributes tends to be used more when this function on nodes is fixed.
For instance, when considering the Wikipedia encyclopedia as a graph, with
vertices being pages and edges hyperlinks, the text content of a page can
be viewed as a signal on the graph. This model is appropriate because the
text content of a webpage changes over time (especially with the Wikipedia
project!).

In the following, we will only consider scalar or vector-valued signals, but
in practice signals can be defined on any space. It is also possible to consider
signals defined on edges, but this falls outside the scope of this manuscript.

1.1.3 Graph Signal Processing
Graph Signal Processing [7, 22] is a recent field of study. As graphs are not
regular domains, standard signal processing techniques cannot be employed
directly on the graph signals, and basic operations have to be redefined: how

8



1.1. Graphs, Attributed Graphs, Graph Signal Processing

=c0 +c1 +c2 +· · ·

(a) Fourier decomposition of a 1d signal.

=x̂0 +x̂1 +x̂2 +· · ·

(b) Fourier decomposition of a graph signal. The signal’s value at each node is
color-coded.

Figure 1.2: Comparison of 1d Fourier transform and graph Fourier transform.

to shift, dilate or subsample a signal? What does it mean for a signal to be
smooth, localized or noisy?

An important tool in the study of graph signals is the graph’s Laplacian.
It is used to extend the notion of Fourier basis, frequencies on graphs.

Let G be a graph of size N nodes, represented by its Laplacian matrix L.
As we are only considering undirected graph, L is a real symmetric matrix,
and thus can be diagonalized L = UΛUT , where Λ = diag(λi)1≤i≤N are the
eigenvalues of L, and the columns of U = (u1 · · ·uN) are its eigenvectors. The
first eigenvector u0 is constant, the second one u1 varies slowly (positive on one
"block", negative on the other), and the next ones vary quicker and quicker.
Thus, these eigenvectors mimic the trigonometric functions that form the usual
Fourier basis. The eigenvalues are then the analogous of the frequencies [24].

The eigenvalues verify a number of properties [24]. They are all nonneg-
ative: ∀i ∈ J1, nKλi ≥ 0. The first K eigenvalues are zero, where K is the
number of connected components in the graph (so a connected graph has ex-
actly 1 null eigenvalue). For the specific case of the normalised Laplacian
Lsym = D−1/2LD−1/2, the largest eigenvalue is always 2: λn = 2.

Let x ∈ RN be a real-valued signal on that graph; its graph Fourier trans-
form is the projection of x on the eigenbasis of L:

x̂ = UTx =
(

N∑
i=1

Ui,jxi

)
1≤j≤N

(1.2)

Figure 1.2 illustrates this concept of graph Fourier transform: like 1d-
signals, graph signals are expressed as a linear combination in the (graph)
Fourier basis.

Likewise, the inverse graph Fourier transform of x̂ reconstructs the signal:

x = Ux̂ =
 N∑
j=1

Ui,jx̂j


1≤i≤N

= (〈u∗i |x̂〉)1≤i≤N . (1.3)

Graph filters can be defined by lifting real functions f : R→ R to symmetric
matrices through the eigen-decomposition: f(L) := Udiag(f(λi))UT . When

9



Chapter 1. Preliminaries

f(t) = tk for some integer k, this yields f(L) = Lk, hence the definition
matches with the intuition when f is polynomial or analytic.

1.1.4 Graph Convolutional Neural Networks
Graph Convolutional Neural Networks (abbreviated GCN) are a set of methods
that try to adapt standard convolutional neural networks architectures on
attributed graphs. Butt while traditional media enjoy a very regular structure
(an image can be represented as a grid, and sound as a 1D signal for instance),
graphs do not. The difficulty therefore lies in the definition of a meaningful
convolution operator, capable of aggregating features in a meaningful fashion.

Most GCN follow the same general structure [25–29]. A single layer of
the networks takes as input the node features X ∈ Rn×d

in (where Xi is the
attribute of node i) and a structural representation of the graph G (such
as the Laplacian) used to aggregate the features in a proper neighbourhood
around each node. It outputs new features Y ∈ Rn×d

out :

Y = f(X,G). (1.4)

A multi-layer GCN simply composes such layers:

HL = f(HL−1,G) = · · · = f(f(...f(H0,G),G),G) (1.5)

An example of layer is the following one, introduced in [25]:

Y = σ(D̄− 1
2 ĀD̄−

1
2XW), (1.6)

where σ is an activation function such as ReLU = max(·, 0), Ā = A + In is
the adjacency matrix of the graph augmented with self-loops, D̄ is the corre-
sponding degree matrix and W ∈ Rd

in×dout are the layer’s trainable weights.
The node-level information produced by a GCN can be used to perform a

variety of tasks, such as node classification by trying to predict node labels [25–
29]. Alternatively, the features for all nodes from all layers can be combined
with a pooling/readout operation to produce a new information at the graph
level (or graph embedding) that can be used for other tasks, such as graph
classification [27,28,30,31].

1.2 The Heat Diffusion in Graphs
At the core of our work is the heat diffusion process in graphs [32]. It is
an analogous of the heat diffusion process in a physical system, where heat
transfers over time from high temperature to low temperature points. It has
application in a very wide array of domains, from materials physics [33] or
economics [34] to quantum mechanic [35]. It has also found uses in computer
science. In image analysis, it can be used to perform edge detection [36], and
is one of the building blocks of the scale space theory [37] that handles images
at multiple scales. In machine learning, it can be used to improved Graph

10



1.2. The Heat Diffusion in Graphs

Neural Networks [38], or to learn an underlying graph structure that explains
well a dataset [39] for instance.

Consider a graph G = (V,E) of laplacian L, and a 1-d signal x defined on
its nodes. Diffusion is a dynamical process by which information travels in
the graph by following its structure. The heat diffusion process of x in G is
described by the following first-order homogeneous differential equation:

∀i, dxi
dt

=
∑

js.t.(i,j)∈E
(xi − xj) (rate of change) (1.7)

x(0) = v (initial condition) (1.8)

The rate of change at a node is equal to the sum for every adjacent node of
the difference between the node’s values. That is "colder" nodes (lower value
than their neighbours) will be "filled in" (the signal’s value will increase) and
vice-versa. The speed of diffusion at a node being proportional to the difference
with its neighbours, it slows down over time.

This equation can be rewritten in a simpler fashion using the Laplacian
matrix:

dx

dt
= Lx (1.9)

x(0) = x. (1.10)

This formulation mirrors the heat equation in a physical system. Consider
an open subset U ⊂ Rn and a function u : U × R+ 7→ R describing the
temperature at any point in an object (represented by U) at some time t ≥ 0.
We then have that u is a solution of the heat equation if and only if it verifies:

du

dt
= ∆u, (1.11)

where ∆ is the Laplacian of the function u(, t) : U 7→ R.
The heat diffusion equation for graphs 1.9 admits a closed-form solution,

which uses the matrix exponential:

x(τ) = exp(−τL)x. (1.12)

The matrix exponential is defined through the eigen-decomposition like a graph
filter: the signal is multiplied by exp(−τλj) at each frequency. Thus all but
the first frequencies are attenuated as τ increases, with higher frequencies
decaying quicker. The effect of the exponential filter on the frequencies is
visible in Figure 1.3, illustrating this low-pass behaviour. When τ → ∞ the
only frequency remaining is the first one (λ1 = 0), which corresponds to a
constant eigenvector, and is associated to the average signal value (x̂0 = ∑

i xi).
Two illustrations of the diffusion process are given below. Figure 1.4 dis-

plays the diffusion of a Dirac function in a graph. The graph is a road network,
and nodes are positioned according to the geographical positions of the inter-
sections. We can see that with τ increasing, the signal diffuses farther in the
network.
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Figure 1.3: Frequency response of the exponential filter for various values of
τ .

Figure 1.4: Diffusion of a signal centred on two nodes, in the Minnesota Road
Network graph [40].

12
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Figure 1.5 displays diffusion operators as images: for 3 synthetic graphs of
100 nodes, and 3 values of τ , the matrix exp(−τL) is displayed. The graphs
are:

1. an Erdös-Renyi graph: every pair of nodes has a 10% probability of
having an edge between them, and edges are sampled independently.

2. a 10× 10 2D Grid: nodes are arranged in a grid pattern, and connected
with their 4 (or less on the edges) neighbours.

3. a Community graph: nodes belong to one of three groups, supported
on 2D points sampled following a Gaussian distribution whose center
depends on the group. Centres are equidistant on the unit circle. Nodes
have a 50% chance of being connected if they belong to the same group,
1% chance otherwise.

We can see that the scale τ is reflected in the operator exp(−τL). For in-
stance with the 2D grid, as τ increases the entries corresponding to the closest
neighbours increase first, and the farthest neighbours later.

Fast and accurate computation of the diffusion in graphs is studied in
Section 4.1.

1.3 An Introduction to Optimal Transport
Optimal transport [41, 42] (abbreviated OT) is a tool that can be used to
define distances between distributions. It works by computing a joint distri-
bution (or transport map) that minimizes a cost criterion with respect to a
distance between the individual samples. Applications are numerous. Initial
studies have practical concerns with resource allocation [43, 44]. Its capac-
ity to measure a meaningful notion of distance between distributions can be
used for error measurement (for instance with neural network’s resistance to
adversarial attacks [45]). In machine learning, it can be used in Generative
Adversarial Networks [46] to measure the error while training [47], in Domain
Adaptation [48, 49] to correct shifts between the training and test distribu-
tions [50]. Later in Section 2.2, we will introduce various Optimal Transport
methods that extend the basic framework presented here.

1.3.1 A toy example
Optimal transport emerged literally from the question how to transport things
in an optimal fashion [43], and was later extended with a more formal ap-
proach [51]. We illustrate this initial problem with a toy example, reported on
Figure 1.6. On the left, in blue, 10 heaps of size ai and positions xi (regularly
spaced here) are represented; they are called the source (distribution). On the
right, in red, 10 holes of size bj and positions yj are represented; they are called
the target (distribution). Knowing that the cost of moving some material from
a heap to a hole can be defined as the Euclidean distance ‖xi − yj‖2 between

13
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(a) Graphs used to plot diffusion operators.

(b) Diffusion operators for three graphs, for 3 values of t, plotted as images. Darker
values correspond to lower entries in the matrix exp(−tL).

Figure 1.5: Examples of diffusion operators and associated graphs.
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Figure 1.6: A toy optimal transport problem. On the left are blue heaps,
representing the source distribution. On the right are red holes, representing
the target distribution. Solving the corresponding optimal transport problem
consists in finding how to fill the holes with the heaps in a way that minimizes
the total transport cost.

the two, an interesting question is to find the least costly way to do so. This
example uses heaps of material and holes; a more concrete example would be
moving products from factories to warehouses while minimizing fuel cost.

The solution of this discrete problem is called a transport map. It is a matrix
γ∗ (∈ R10×10

+ here) where each entry γi,j indicates the quantity of material
transported from a heap to a hole. A visualisation of this matrix is given on
Figure 1.7. This matrix satisfies the following equation (with n = m = 10):

γ∗ = argmin
γ∈Rn×m+
γ1n=a
γT 1m=b


n∑
i=1

m∑
j=1

γi,j · ‖xi − yj‖2

 . (1.13)

This equation states that the optimal transport map minimizes the total cost
of transport ∑n

i=1
∑m
j=1 γi,j · ‖xi − yj‖2, while conserving the masses (γ1n = a

and γT1m = b).
In this example, some quantity of mass (either present [heaps] or required

[holes]) is present at various points on a 1D line. The OT framework abstracts
this, simply working with distributions in some probability measure space; the
problem remains moving a distribution onto another, while minimizing the
global transportation cost. Of importance is the fact that this minimal cost
defines a distance between distributions, effectively lifting a distance between
points in a given space to distributions in that space.

1.3.2 Definition and properties
We now give a more formal definition of Optimal Transport in the discrete
case, and highlight some interesting properties.

Definition 1.3.1. Let us consider two empirical probability measures µ and
ν, called source and target distributions, and supported on two sample sets
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Figure 1.7: Optimal transport map solving the OT problem of Figure 1.6. Low
matrix entries are lighter, and high matrix entries are darker.

X = {xi}mi=1 and Y = {yj}nj=1, respectively, lying in some feature space X
and with weights a = (ai)mi=1, b = (bj)nj=1 such that µ = ∑m

i=1 aiδxi and ν =∑n
j=1 bjδyj , where δ is the Dirac measure. If X = Rr for some integer r ≥ 1,

a matrix representation of X (resp. of Y ) is the matrix X ∈ Rm×r (resp.
Y ∈ Rn×r) whose rows are x>i , 1 ≤ i ≤ m (resp. y>j , 1 ≤ j ≤ n). Let
M = M(X, Y ) ∈ Rm×n+ be a cost matrix, where Mij

def= [d(xi, yj)]ij is the cost
(w.r.t. to some distance function d) of moving xi on top of yj. Let Π(a, b) be
a transportation polytope defined as the set of admissible coupling matrices γ:

Π(a, b) = {γ ∈ Rm×n+ s.t. γ1n = a, γT1m = b}, (1.14)

where γij is the mass transported from xi to yj and 1k is the vector of dimension
k with all entries equal to one. The p-Wasserstein distance Wpp(µ, ν) between
the source and target distributions is defined as follows:

Wpp(µ, ν) = min
γ∈Π(a,b)

〈γ,Mp(X, Y )〉F , (1.15)

where 〈., .〉F is the Frobenius inner product and Mp(X, Y ) := (Mp
ij)ij is the

entry-wise p-th power of M(X, Y ) with an exponent p ≥ 1.
Theorem 1.3.1. [16] For two empirical probability distributions µ and ν,
supported on sample sets X = {xi}mi=1 and Y = {yj}nj=1 respectively lying in
some feature space X and with weights a = (ai)mi=1, b = (bj)nj=1 such that
µ = ∑m

i=1 aiδxi and ν = ∑n
j=1 bjδyj , Wp defines a distance between a and b.

Remark 1.3.1. The implicit condition for this theorem is that M is itself a
distance matrix. This holds true in our context, because the entries of M come
from a distance on X .

The Wasserstein distance offers a natural and useful way to measure the
discrepancy between two probability distributions on a metric space. It has
applications in content retrieval, for instance in Natural Language Process-
ing where texts are seen as distributions on words [52] or Computer Vision
where images are seen as distributions through their histograms [53]. It has
applications in machine learning too, for instance in generative models [47,54].
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1.3.3 Solving the underlying optimisation problem
Problem 1.15 is a linear constrained optimisation problem. It can easily be
solved with a variety of solvers. But its complexity is polynomial in the sample
set’s sizes (super cubic in practice [55]), and thus is quickly computationally
prohibitive.

There exist many variants of the OT problem. In particular entropic reg-
ularisation helps in solving this scalability issue. It transforms the original
problem, which is ill-defined because of the non-unicity of the solution, in a
well-defined problem thanks to the strongly convex nature of the entropy. De-
fine h : γ → −∑i,j γi,j log(γi,j − 1) the Shannon entropy, and consider the
following problem:

Wpp(µ, ν; ε) = min
γ∈Π(a,b)

〈γ,Mp(X, Y )〉F − εh(γ). (1.16)

The solution of Equation 1.16 is different from the one of Equation 1.15,
but converges to it when ε → 0 [41]. However, the underlying optimisation
problem is much easier to solve, with an iterative scheme that is orders of
magnitude faster than standard constrained linear optimisation solving. It can
be shown that the optimal coupling has the form diag(u)K diag(v) with u ∈ Rn,
v ∈ Rm, K = exp(−1

ε
Mp) the entry-wise exponential of Mp scaled by −1

ε
, and

diag : Rr 7→ Rr×r the operator that builds a diagonal matrix from a vector. The
vectors u and v are found by repeatedly computing the iterations un+1 = a

Kvn

and vn+1 = b
KTun

. Algorithm 1 describes the matrix-scaling algorithm used
to compute the Sinkhorn distance between two distributions. The reader can
refer to [42] or [41] for a detailed analysis of the algorithm and its convergence.

The parameter ε offers a trade-off between closeness to the initial problem,
and computation speed. When ε→ 0, the solution of this problem 1.16 tends
to the one of the initial problem 1.15, while when ε→∞ it tends to the limit
distribution aT b (which is the uniform distribution

(
1

n×m

)
1≤i≤n
1≤j≤m

when a and

b are both uniform too). An illustration is visible on Figure 1.8, where the
effect of increasing the parameter ε is shown: entropic regularisation "blurs"
the original transport map.

Note that transport maps resulting from computing the Sinkhorn distance
are not sparse, which is a direct consequence of the "interpolation" between
the optimal transport map and the uniform map. When ε → 0, the optimal
transport map tends to the (sparse) solution of the original problem. As ε
increases, the transport map becomes a smoother version of the original one,
which can prevent overfitting. At the extreme (ε → ∞), the transport map
tends to the naïve solution aT b, which does not take into account the transport
cost anymore.

1.3.4 Transporting the samples
Once the transport map γ has been computed, it can be used to transport the
source samples into the target domain. One way to do so is to compute the
barycentric mapping of the source samples.
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Input: a ∈ Rm+ and b ∈ Rn+ two histograms, M ∈ Rm×n+ a cost matrix,
ε > 0

Output: γ minimizer of Equation 1.16
// Initialisation
u← a
v ← b

K ← e−
1
ε
M // Entry-wise exponential

// Iterations
while convergence not achieved do

u← a
Kv

// Update left scaling

v ← b
KTu

// Update right scaling

end

// Final value
return diag(u) ·K · diag(v)

Algorithm 1: Matrix scaling algorithm to compute the Sinkhorn distance
between two distributions.

Figure 1.8: Effect of entropic regularisation on transport. Transport maps
are plotted as images, with darker values indicating lower entries (closer to
0). On the left, the original transport map is displayed (i.e. without entropic
regularisation), and following are transport maps with entropic regularisation
(the strength being indicated on top of each image).
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The barycentric mapping [56, 57] of a source sample xsi is defined by:

x̂si = argmin
x∈Rr


n∑
j=1

γi,jd(x, xtj)

 . (1.17)

In other words, x̂si is the barycentre of these points weighted by the mass
transferred to them. When the cost function is the L2 distance, this equation
can be expressed in matrix form for all the source samples:

X̂s = diag(γ1n)−1γX t. (1.18)

Finally, when the weights a and b are uniform, we have:

X̂s = mγX t. (1.19)

Note that it is possible to define a barycentric mapping of the target samples
onto the source domain by considering γT . Following the assumptions for 1.19,
we have X̂ t = nγTXs.

A more general notion of Wasserstein barycentre is:
Definition 1.3.2 ( [58]). Consider N measures µi with respective supports Xi

and weights ai. A barycentre ν with support Y and weights b is a minimizer
of:

f(b, Y ) = 1
N

N∑
i=1

W(µi, ν) = 1
N

N∑
i=1

min
γ∈Π(ai,b)

{〈γ,M(Xi, Y )〉F} (1.20)

over a relevant feasible set for either b or Y (not both).

Remark 1.3.2. There are therefore two types of barycentres: fixed-support
barycentres, where the support Y is fixed and minimization is done on the
weights b, and free-support barycentres, where b is fixed and minimization
is done on Y . If f is minimized on both quantities at the same time, this
minimization problem becomes equivalent to finding the k-means [59].

Remark 1.3.3. One can show that the barycentric mapping is a first-order
approximation of the real Wasserstein barycentre [58]. In fact, minimizing f
over Y can be achieved by alternating between (1) computing the transport
maps γi between the Xi and Y and (2) updating Y by minimizing a local
quadratic approximation approximation of f at Y which yields the iteration
Y ← ∑N

i=1 diag(γi1ni)−1γiXi.

1.4 Domain Adaptation
The contributions of this manuscript have applications in supervised learning,
in particular in Domain Adaptation on graphs, a difficult study topic that
emerged recently [15,60]. In this section we introduce the notion of supervised
learning through the angle of (empirical) risk minimization [61]. We then de-
fine Domain Adaptation, the machine learning scenario studied through this
manuscript. We conclude with theoretical generalization guarantees for Do-
main Adaptation, justifying the use of our approach for graph-structured data.
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1.4.1 Supervised learning
Consider a supervised learning scenario. Let X ⊆ Rd be the input space and
Y = R or Y = J1, KK for some K ∈ N be the output space. Let D be an
unknown distribution on X × Y . The goal is to find a hypothesis h from a
hypothesis space H ⊆ X Y , for instance the parameters of a linear model, that
best predicts the output from the input. Prediction is measured via a loss
function l : Y × Y → [0, 1] that measures for (x, y) ∼ D the deviation of the
output h(x) from y.

Definition 1.4.1. The true risk for a loss function l : Y ×Y → [0, 1], a given
hypothesis h ∈ H and a distribution D over X × Y is defined as:

RDl (h) = E(x,y)∼D l(h(x), y). (1.21)

When dealing with real-world problems, the distribution D is generally not
available. Instead, it is know through a finite number of labelled examples,
pairs (x, y) that are realizations of the distribution. For a given pair x is called
the instance and y the label.

Definition 1.4.2. A training sample of size n is a set of n i.i.d. samples of
a distribution D over X × Y .

Lacking access to the original distribution D prevents the use of the true
risk to select a hypothesis h. Instead, the empirical risk is minimized:

Definition 1.4.3. The empirical risk for a loss function l : Y × Y → [0, 1], a
given hypothesis h ∈ H and a training sample T = {(xi, yi) ∈ X × Y}1≤i≤n of
size n is defined as:

RTl (h) = 1
n

n∑
i=1

l(h(xi), yi). (1.22)

Finding a hypothesis h that minimizes the empirical risk RTl does not
guarantee that this hypothesis minimizes the true risk RDl too. However, with
various assumptions on the hypothesis space H or the distribution D, it is pos-
sible to prove that the true risk does not deviate too much from the empirical
risk on average. These theorems are called generalization guarantees. We give
a simple one for the case where H is finite as an example:

Theorem 1.4.1 ( [62]). Let D be an unknown distribution on X × Y . Let T
be a training sample of size n drawn i.i.d. from D. Let H be a finite hypothesis
space.

Let δ ∈ (0, 1]. For any h ∈ H, with probability 1 − δ over the random
sample T , we have:

RDl (h) ≤ RTl (h) +
√

ln(|H|) + ln(1/δ)
2n . (1.23)
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(a) Distributions before alignment. (b) Distributions after alignment.

Figure 1.9: Example of a toy DA problem. Two point distributions are given:
a source in red circles and a target in blue crosses. Both are similar up to a
displacement, indicated with a black arrow. A DA problem consists in finding
this displacement, looking only at the two distributions.

This theorem states that, provided the training sample is large enough (n
large), the true risk can be bounded arbitrarily close to the empirical risk with
arbitrarily large probability. For a more complete introduction, we refer the
reader to [61].

1.4.2 Definition of Domain Adaptation
A Domain Adaptation (DA) scenario arises in machine learning when we ob-
serve a change of distribution (a.k.a. domain shift) between the training data
(the source distribution) and the samples used at test time with the deployed
model (the target distribution). To cite a few examples, DA can occur in image
processing, when changing the lighting or camera lens while acquiring images,
in demography with social mobility of people or in fraud detection, with fraud-
sters trying to adapt over time to better mimic genuine behaviours. Most of
the time, training a new model from the target distribution is not desirable for
several reasons: (i) the algorithmic complexity required for optimizing from
scratch the parameters of a new model; (ii) the lack of target training exam-
ples; (iii) the lack (or absence) of supervision (i.e. no labelled target data
available), etc. In such a setting, the domain adaptation theory [63, 64] sug-
gests to reduce the divergence between the source and the target distributions
while learning an efficient model from the labelled source data.

A visual illustration of a DA problem is given on Figure 1.9. It features two
similar point clouds. The red one represents the source data; they have to be
re-aligned with the target data. Because the goal is to align the distributions,
there is no one-to-one correspondence between source and target points to be
found; instead, here, a rotation and a translation are used to align them.

One way to solve DA problems is to use Optimal Transport [16, 42] (OT),
as presented earlier in Section 1.3. As illustrated in Figure 1.9, OT provides
a natural geometry for comparing and aligning two distributions in the space
of probability measures. In the discrete case, when dealing with point clouds,
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it looks for the coupling matrix (and its corresponding Wasserstein distance)
that minimizes the global cost of transporting the individual masses from the
source to the target distribution. In [50], the authors introduced OTDA, the
first DA algorithm based on OT which moves the source on the top of the
target by preventing - using a group-sparse regularisation - two source data of
different labels from being transported on the same target example. Once the
alignment is achieved, a model is learned from the labelled source data and
applied on the target distribution. The mathematical formulation of OTDA is
described in Section 2.2.4.

The exists other methods to perform Domain Adaptation using Optimal
Transport. The Joint Distribution Optimal Transport framework [65] define a
new minimization problem that yields both a transport map γ and a prediction
function f : X 7→ C that assign to every target point some quantity, such as
labels in the case of Domain Adaptation. Their method covers many families
of prediction functions f such as neural networks or kernel machines. Wasser-
stein Distance Guided Representation Learning [66] is another method inspired
by Generative Adversarial Networks [46]. It alternatively learns three neural
networks: (1) fg : Rd 7→ Rd

′ that extracts features for source and target points,
(2) fw : Rd

′ 7→ R for the domain critic [47] used to minimize the Wasserstein
distance between the source and target data in the extracted features space,
and (3) fc : Rd

′ 7→ C a task-dependant function such as a classifier.

1.4.3 Generalization guarantees in Domain Adaptation
Consider a Domain Adaptation scenario. There are two unknown distributions:
the source distribution and the target distribution. The goal is now to find
how much a hypothesis learned for the source distribution is applicable for the
target distribution. The following theorem relates the true risks Rs and Rt

(for the source and target respectively):

Theorem 1.4.2. ( [49], theorem 33) Let us consider two empirical probability
measures µ and ν supported on two samples sets {xsi}mi=1 and {xtj}nj=1 respec-
tively, lying in some feature space Rd. Consider a loss function with parametric
form lq = |y − h(x)|q for some q > 0. Then for any d′ > d, and ζ ′ <

√
2,

there exists some constant N0 depending on d′ such that for any δ > 0 and
min(m,n) ≥ N0 max(δ−(d′+2), 1) we have with probability of at least 1 − δ for
all h:

Rt
lq(h) ≤ Rs

lq(h) +W1(µ, ν) +
√

2 log(1/δ)/ζ ′ (1/m + 1/n) + λ, (1.24)

where λ is the combined error of the ideal hypothesis h∗ that minimizes the
combined error of Rt

lq(h) and Rs
lq(h).

Theorem 1.4.2 bounds the risk for the target domain with the sum of four
terms: (i) the risk for the source, (ii) the W1 distance between the source and
target distributions, (iii) a term depending on the samples sizes N s and N t

and (iv) the joint error λ. Therefore, provided the joint error is small (i.e.
the distributions are not too different) and the samples numerous enough,
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Optimal Transport is a good method to use an hypothesis h learned on the
source domain to deal with the target domain, as the risks will stay close. This
justifies the use of Optimal Transport for Domain Adaptation, as done in the
rest of this manuscript in the context of graph-structured data.
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Chapter 2
Graph Distances

On est trop souvent imprécis
lorsqu’on fait une citation.

Quelqu’un, un jour.

In this chapter, we present a variety of discrepancy measures between
graphs. A special attention is paid to OT-based graph distances.

2.1 The Graph Diffusion Distance (GDD)
The Graph Diffusion Distance [67] is designed to measure a similarity between
two weighted graphs whose nodes are already in correspondence.

Definition 2.1.1. Given two graphs G1 and G2 with the same n nodes V but
possibly different edges E1 and E2, represented by their respective Laplacian
matrices L1 and L2, and a diffusion time τ > 0, the Graph Diffusion Distance
is:

GDD(G1,G2, τ) = max
τ≥0
{ξ(τ)} = max

τ≥0

{
‖ exp(−τL1)− exp(−τL2)‖2

F

}
. (2.1)

An illustration of the computation of the GDD is given in Figure 2.1. Two
simple graphs are given in Figures 2.1a and 2.1b; the function to maximize to
obtain the GDD is visible on Figure 2.1c.

Complexity Every evaluation of ξ(τ) costs O(n3) (where n is the size of the
graphs in nodes). The maximization of ξ is done with a line-search, using for
instance Brent’s algorithm [68].

Remark 2.1.1. The GDD is restricted to comparing graphs whose nodes have
already been matched (for instance for two algorithms estimating connection
graphs between the same sets of regions in the brain) which is limiting. Addi-
tionally, the need to explicitly compute the exponential of the Laplacian of each
graph prevents its use with large graphs, as such an operation does not scale
well (cubic complexity).
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(a) First graph (b) Second graph

(c) Plot of ξ(τ) = ‖ exp(−τL1) −
exp(−τL2)‖2F in black, and maximum of
the function as a red point.

Figure 2.1: Illustration of the GDD.

Despite its limitations, the GDD does define a distance between graphs (in
the mathematical sense), and has applications in studying edges importance.
Also, the idea of studying diffusion patterns is something we will re-use for our
distance based on Optimal Transport.

2.2 OT-based graph distances
As the optimal transport framework allows lifting distances between points to
distributions, many extensions and variants try to do the same with graphs.
Note that the following methods will not systematically define an actual dis-
tance in the mathematical sense.

In order to be able to apply the OT setting on structured data, we need now
to formally define the notion of probability measure on graphs and adapt the
previous notations. Following [15], let us consider undirected and connected
attributed graphs as tuples of the form G = (V , E ,F ,S), where V and E are the
classic sets of vertices (also called nodes) and edges of the graph, respectively.
F : V → X is a function which assigns a feature vector xi ∈ X (also called a
graph signal in [7]) to each vertex vi of the graph (given an arbitrary ordering
of the vertices). S : V → Z is a function which associates each vertex vi
with some structural representation zi ∈ Z, e.g. a local description of the
graph, the vertex and a list of its neighbours, etc. We can further define a cost
function C : Z × Z → R+ which measures the dissimilarity C(z, z′) between
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Figure 2.2: Example of a structured object. The i-th node has an associated
feature vector xi ∈ X , a structural representation zi ∈ Z and an optional label
li ∈ L. The nodes i and j share an edge Ei,j.

two structural representations z, z′. Typically, C(z, z′) can capture the length
of the shortest path between two nodes. Additionally, if the graph G is labelled,
each vertex vi is also assigned a label from some label space L.

When each vertex of the graph is weighted according to its relative impor-
tance, the source and target graphs can be seen as probability distributions,

µ =
m∑
i=1

aiδ(xi,zi), ν =
n∑
j=1

bjδ(yj ,z′j) (2.2)

where xi, zi are the features / structural representations associated to the ver-
tices of the source graph while yj,z′j are those associated to the target one.

2.2.1 The Gromov-Wasserstein distance GW

The Gromov-Wasserstein distance [60,69] is an extension of the OT framework,
that allows the comparison of distributions living in different spaces. Instead
of minimizing the total transport cost, it tries to preserve distances between
pairs of source points and pairs of target points. It does so by using two cost
matrices instead of one: one for the source, and one for the target.
Definition 2.2.1. Let µ and ν be two discrete distributions of size N s and
N t. Let Cs ∈ RN

s×Ns

+ and Ct ∈ RN
t×Nt

+ be two cost matrices, associated to the
source and the target respectively. Let L be a loss function, typically L(a, b) =
1/2|a− b|2. The Gromov-Wasserstein distance between the two distributions is:

GW2(µ, ν) = min
γ∈Π(a,b)

∑
i,j,k,l

L(Cs
i,k, C

t
j,l)γi,jγk,l


1
2

. (2.3)

Like W, GW2 too defines a distance in the mathematical sense:
Theorem 2.2.1 ( [69]). GW2 defines a distance on the collection of all iso-
morphisms of metric measure spaces, i.e. between triplets (X, dX , µ), where
(X, dX) is a compact metric space and µ a Borel probability measure on X, up
to a permutation. Note that in our context we only look at discrete distribu-
tions.
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The matrices C can be any distance matrices in the source and target
spaces, so it is possible, for instance, to have the source and target data live in
euclidean spaces of different dimensions. In particular for graphs, any notion of
similarity between nodes can be used for this method; the matrices C could be
adjacency matrices, shortest-path matrices or diffusion operators for instance.
However, the design of a cost matrix that could incorporate both structure
and feature information and produce meaningful distances/transport maps is
an open problem. Another drawback of this method is its computational cost.
Entropic regularisation can similarly be used, producing similar results: a
simple iterative scheme, orders of magnitude faster, at the cost of a tradeoff
(between the sparse solution with a risk of overfitting, and a uniform transport
map that doesn’t take into account the transport costs).

Complexity Computing GW requires solving a non-convex problem, which
can be recast as a quadratic assignment problem [70]. It is NP-hard in full
generality. Like W, an entropy-regularized version is possible; it can be solved
in an iterative fashion, where each step requires the computation of a loss in
O(n2m2) (O(n2m+ nm2) with the L2 loss) and a Sinkhorn distance.

2.2.2 The Fused-Gromov-Wasserstein distance FGW

We now present the Fused Gromov-Wasserstein (FGW) distance introduced in
[15] as the first attempt to define a distance that takes into account both
structural and feature information in an OT problem. It is defined via the
minimization of a convex combination between (i) the cost for the Wasserstein
distance (see Definition 1.3.1) which considers the features xi, yj associated
with the nodes and (ii) the cost for the Gromov-Wasserstein distance (see
Definition 2.2.1) which takes into account the structure of both graphs.

Definition 2.2.2. Let Gs (resp. Gt) be a source (resp. target) graph described
by its discrete probability measure µ (resp. ν). Let Xs ∈ Rm×r (resp. X t ∈
Rn×r) be the r-dimensional features associated with the nodes of Gs (resp. Gt).
Let Cs ∈ Rm×m and Ct ∈ Rn×n be the structure matrices associated with
the source and target graphs respectively. For α ∈ [0, 1], the Fused-Gromov-
Wasserstein distance is defined as follows:

FGWpp(µ, ν) = min
γ∈Π(a,b)

∑
i,j,k,l

(
(1− α)Mp

ij + α|Cs
ik − Ct

jl|p
)
γijγkl

 , (2.4)

where the summation indices are 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n, and the depen-
dency on α is omitted from the notation FGWp(µ, ν) for the sake of concision.

Theorem 2.2.2 ( [15]). If Cs and Ct are distance matrices, FGWp defines a
metric for p = 1 and a semi-metric for p ≥ 1.

Remark 2.2.1. For the case p ≥ 1, the triangle inequality is relaxed by a
factor 2p−1.
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Roughly speaking, the optimal coupling matrix γ? will tend to associate two
source and target nodes if both their features and structural representations
are similar. Note that α can be seen as a hyper-parameter which will allow
FGW, given the underlying task and data, to find a good compromise between
the features and the structures of the graphs.

Remark 2.2.2. In the special case α = 0, we recover the Wasserstein distance
FGWp(µ, ν | α = 0) = Wp(µ, ν). In the case α = 1, we recover the Gromov-
Wasserstein distance FGWp(µ, ν | α = 1) = GWp(µ, ν).

Complexity The authors suggest using a Conditional Gradient algorithm.
It alternates between computing a gradient G (in O(n2m + nm2) when p = 2
and O(n2m2) otherwise) and solving an OT problem with cost matrix G.

2.2.3 Laplacian regularisation

The authors of [71] introduce two possible regularisation terms to the optimal
transport problem 1.15. They only consider uniform distributions a = (1/Ns)
and b = (1/Nt).

Both use the barycentric projection of the samples: once a transport map
is computed, the source samples can be transported onto the target domain
(and vice-versa). For a cost using the L2 norm, the barycentric mapping of a
source sample xsi is:

x̃si = argmin
x∈Rr

∑
j

γi,j‖x− xtj‖2
2

 . (2.5)

In other words, x̃si is the barycenter of the target points, weighted with the
mass transported from it. The barycentric mapping of the target points onto
the source domain is defined similarly with γT . When the distributions µ and
ν are uniform, these barycenters can be computed in closed form:

X̃s = mγX t and X̃ t = nγTXs. (2.6)

Their first regularisation term regularizes the transported samples’ posi-
tions: two adjacent nodes should have their transported features close. The
optimisation problem becomes:

min
γ∈Π(a,b)

〈γ,M(Xs,Xt)〉+ λs
N2
s

∑
(i,j)∈Es

‖x̃si − x̃sj‖2 + λt
N2
t

∑
(i,j)∈Et

‖x̃ti − x̃tj‖2

 .
(2.7)

Their second one regularizes the transported sample’s displacements: two
adjacent samples should have a similar displacement. The corresponding op-

29



Chapter 2. Graph Distances

timisation problem is:

min
γ∈Π(a,b)

〈γ,M(Xs,Xt)〉+ λs
N2
s

∑
(i,j)∈Es

‖(x̃si − xsi )− (x̃sj − xsj)‖2

+ λt
N2
t

∑
(i,j)∈Et

‖(x̃ti − xti)− (x̃tj − xtj)‖2

 . (2.8)

Both of these problems can be rewritten as quadratic programs:

min
γ∈Π(a,b)

{
〈γ,M(Xs,Xt)〉+ λsTr(XT

t γ
TLsγXt) + λtTr(XT

s γLtγ
TXs)

}
(2.9)

min
γ∈Π(a,b)

{
〈γ,M(Xs,Xt + λsCs + λtCt)〉+ λsTr(XT

t γ
TLsγXt) + λtTr(XT

s γLtγ
TXs)

}
,

(2.10)

with Cs = −1/Ns(Ls + LT
s )XsXT

t and Ct = −1/NtXsXT
t (Lt + LT

t ). The au-
thors then provide an optimization scheme based on the Frank-Wolfe algo-
rithm [72] (also known as the Conditional Gradient algorithm). The Frank-
Wolfe algorithm can be used to optimize a convex differentiable real func-
tion over a convex compact set, which is the case here. Note f the ob-
jective function to be minimized. The algorithm works by alternating two
steps: (i) find the transport map minimizing a linear approximation of the
problem γ∗ = argmin

γ∈Π(a,b)

{
〈γ,∇γf(γk)〉F

}
, and (ii) find the optimal step size

sk = argmin
0≤s≤1

{f(yk + s(γ∗ − γk))} to update γk+1 = γk + sk(γ∗ − γk). These
two steps are repeated until a convergence criteria is reached.

While this method provides transport maps that take into account both
the features and the structure of the source and target data, it does not yield
a distance between attributed graphs. Nonetheless, it provides insights as to
how to incorporate both modalities into a single optimisation problem.

Complexity Like for FGW, the authors suggest a Conditional Gradient al-
gorithm. The gradient for the first step of the algorithm can be computed in
O(nm).

2.2.4 Label regularisation
A class structure (each data point has an associated label) is more restrictive
than a graph structure. Nevertheless, because we study attributed graphs
that are potentially labelled, it makes sense to review methods that exploit
the attributes. The authors of OTDA [73] present two possibles regularisation
terms to be added to the optimization problem 1.15. The first one is the one
presented in Section 2.2.3, where the Laplacian L relates to a graph encoding
class structure (L = D − A where Ai,j = 1 ⇐⇒ i and j share the same
label). The second one is a `1-`2 group-lasso regularizer, that prevents source
points from different classes to be mapped on the same target point.
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2.2. OT-based graph distances

Assume each source point i has a associated label lsi . Define Icl = {i | lsi = cl}
the set of indexes corresponding to source points of class cl. For a transport
map γ, γ(Icl, j) is then a vector containing the weights transported from class
cl to the sample j. The regularizer is then:

Ωc(γ) =
∑
j

∑
cl

‖γ(Icl, j)‖2. (2.11)

This way of cutting γ into vectors is illustrated in Equation 2.12:

γ =

cl = 1


2


...





I1(0) I1(1) · · · I1(n)

I2(0) I2(1) · · · I2(n)

... ... · · · ...



(2.12)

The goal of this regularisation term is to promote a label-related sparsity
in the transport map. The final optimization problem to solve is then:

min
γ∈Π(a,b)

〈γ,Mp(X, Y )〉F − εh(γ) + ηΩc(γ). (2.13)

The convexity of their terms allows then to design an efficient optimization
algorithm to solve 2.13, with a generalized conditional gradient algorithm [74].
It works by alternating a minimization and a line-search, but here the mini-
mization step requires solving an entropy-regularized optimal transport prob-
lem.
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Chapter 3
The Diffusion-Wasserstein Distance DW

On est trop souvent imprécis
lorsqu’on fait une citation.

Quelqu’un, un jour.

In this chapter, we introduce the Diffusion-Wasserstein distance (DW). We
provide insight into its design and its properties. Its experimental study is
done in Chapter 5. This chapter corresponds to works published in 2020 at
the ECML/PKDD conference [18].

Our goal with the Diffusion-Wasserstein distance was to provide an alter-
native to FGW that would be computationally more efficient, with easier to
interpret hyperparameter(s), and with a wide range of applications. Our de-
sign is related to [67] where the diffusion operator of two graphs is used to
compare them. The key difference is that it is the actions of these diffusion
operators on the graph’s features that are compared, using the OT framework.

In this chapter, we start by giving a formal definition of the DW distance
in section 3.1; we then analyse theoretically its properties in Section 3.2; we
finally discuss various questions raised by this notion.

3.1 Definition
We first give some insight about the design of our method. Lets assume that we
are given two attributed graphs to compare (either via a number (a distance)
or a node-to-node mapping). One could ignore the structure, and simply com-
pare the attributes; for this task, the OT framework is a natural choice. This
measurement is incomplete, but a possible solution could be to represent each
attributed graph by a set of attributes that would merge the information of
the original features and the graphs. This way, the OT framework could still
be leveraged with all its advantages: computing both a distance and a map-
ping, fast computations via entropic regularisation, a theoretical framework
and multiple extensions and regularisation terms for various scenarios. The
goal of our strategy is to let the attributes diffuse in the graph. These diffused
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Y

X

X̃

Ỹ

M̃(τ s, τ t) DWpp(µ, ν)

exp(−τ sLs)·

exp(−τ tLt)·

min
γ∈Π(a,b)

{〈γ, ·〉}

Figure 3.1: Diagram of the steps involved in computing DW.

attributes differ from the original ones in a way unique to each graph, that
hopefully successfully merges the two modalities in a way OT can exploit. We
introduce in the following the Diffusion-Wasserstein distance:

Definition 3.1.1. Consider a source graph Gs, a target graph Gt represented
through two discrete probability measures µ and ν with weights vectors a ∈ Rm,
b ∈ Rn and Laplacian matrices Ls ∈ Rm×m and Lt ∈ Rn×n. Let X ∈ Rm×r,
Y ∈ Rn×r represent the sample sets associated to the features on the vertices
of the two graphs. Note that features for both graphs live in the same space Rr.

Given parameters 0 ≤ τ s, τ t < ∞, consider the diffused sample sets X̃, Ỹ
represented by the matrices X̃ = exp(−τ sLs)X ∈ Rm×r, Ỹ = exp(−τ tLt)Y ∈
Rn×r and define M̃(τ s, τ t) := M(X̃, Ỹ ) ∈ Rm×n, a cost matrix between features
that takes into account the structure of the graphs through diffusion operators.
We define the Diffusion Wasserstein distance (DW) between µ and ν as:

DWpp(µ, ν | τ s, τ t) = min
γ∈Π(a,b)

{
〈γ, M̃p〉

}
. (3.1)

Here again M̃p is the entrywise p-th power of M̃ . The underlying distance is
implicit in M(·, ·). For the sake of concision, the dependency on τ s and τ t will
be omitted from the notation DWpp(µ, ν) if not specifically required.

Note that the DW distance can be broken down in two parts. A pre-
processing step, in which the graph features are allowed to diffuse for some
time τ , and a distance computation step, which uses the Wasserstein distance
between two distributions supported on those diffused attributes. A diagram
of the computation of DWpp(µ, ν) is given in Figure 3.1.

3.2 Properties

3.2.1 DW limits and bounds
We first study the asymptotic behaviour of DW with respect to the diffusion
times τ s/t.

Denote Ds = exp(−τ sLs) ∈ Rm×m, Dt = exp(−τ tLt) ∈ Rn×n the diffusion
matrices, which depend on the (symmetric) Laplacians Ls ∈ Rm×m, Lt ∈ Rn×n

and the diffusion parameters 0 ≤ τ s, τ t < ∞. Given 1 ≤ i ≤ m, 1 ≤ j ≤ n
let xi, yj ∈ Rr be the features on nodes i on Gs and j on Gt, i.e. respectively
the i-th row of X ∈ Rm×r and the j-th row of Y ∈ Rn×r, and similarly for
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x̃i, ỹj ∈ Rr built from X̃ = DsX and Ỹ = DtY. Observe that M̃(τ s, τ t) and
DWpp(µ, ν | τ s, τ t) depend on the diffusion parameters τ s, τ t.

Limit of DW in 0

Proposition 3.2.1. When τ s = τ t = 0, since Ds = Im and Dt = In we have
M̃(0, 0) = M hence

DWpp(µ, ν | 0, 0) = Wpp(µ, ν), (3.2)

i.e., DW generalizes the Wasserstein distance W.

From now on we focus on DW defined using a cost matrix M̃ based on the
Euclidean distance and p = 2. DenoteM2

ij = ‖xi − yj‖2
2

M̃2
ij = ‖x̃i − ỹj‖2

2
(3.3)

the squared entries of the cost matrices associated to the Wasserstein (W2) and
Diffusion Wasserstein (DW2) distances. The next proposition establishes the
asymptotic behavior of DW2

2(µ, ν) with respect to τ s and τ t as well as an upper
bound expressed in terms of a uniform coupling matrix. Denote γ̄ ∈ Π(a, b) ⊂
Rm×n+ this (uniform) transport plan such that γ̄i,j = 1/nm, ∀i, j.

Limit of DW in ∞

Proposition 3.2.2. Consider Laplacians Ls ∈ Rm×m, Lt ∈ Rn×n associated to
two undirected connected graphs (Gs and Gt) and two matrices X ∈ Rm×r,Y ∈
Rn×r representing the sample sets xi ∈ Rr, 1 ≤ i ≤ m and yj ∈ Rr, 1 ≤ j ≤ n
(associated to their vertices). Consider the associated measures µ, ν with flat
weight vectors a = 1m/m, b = 1n/n. We have

lim
τs,τ t→∞

DW2
2(µ, ν | τ s, τ t) = ‖ 1

m

∑
i

xi −
1
n

∑
j

yj‖2
2. (3.4)

Moreover, the function (τ s, τ t) 7→ 〈γ̄, M̃2(τ s, τ t)〉 is non-increasing with respect
to τ s and with respect to τ t and also satisfies for each 0 ≤ τ s, τ t <∞

‖ 1
m

∑
i

xi −
1
n

∑
j

yj‖2
2 ≤ DW2

2(µ, ν | τ s, τ t) ≤ 〈γ̄, M̃2(τ s, τ t)〉 ≤ 〈γ̄,M2〉 (3.5)

lim
τs,τ t→∞

〈γ̄, M̃2(τ s, τ t)〉 = ‖ 1
m

∑
i

xi −
1
n

∑
j

yj‖2
2. (3.6)

Equation 3.4 formalizes an intuitive behaviour. In a physical system, with-
out border constraints, diffusion happens until a steady-state is reached where
the temperature is constant, equal to the average initial temperature. Here,
if diffusion is arbitrarily long, the graph attributes converge toward their re-
spective average value, and comparing them with OT is just comparing these
averages.
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Proof. Denoting U a matrix associated to an orthonormal basis of eigenvectors
of a Laplacian L of a connected graph, 0 = λ1 < λ2 ≤ . . . the corresponding
eigenvalues, and x̂i ∈ Rr the rows of X̂ = U>X, we have ‖ exp(−τL)X‖2

F =∑
i exp(−2τλi)‖x̂i‖2

2 hence τ 7→ ‖ exp(−τL)X‖2
F is non-increasing w.r.t. τ , and

we have limτ→∞ ‖ exp(−τL)X‖2
F = ‖x̂1‖2

2. Moreover, since D = exp(−τL) is
a diffusion operator, it preserves the mean hence ∑i x̃i = ∑

i xi and
∑
j ỹj =∑

j yj. As a result we have:

〈M̃2, γ̄〉 = 1
nm

m∑
i=1

n∑
j=1

M̃2
ij = 1

nm

m∑
i=1

n∑
j=1

[
‖x̃i‖2

2 + ‖ỹj‖2
2 − 2〈x̃i, ỹj〉

]
(3.7)

= 1
m

m∑
i=1
‖x̃i‖2

2 + 1
n

n∑
j=1
‖ỹj‖2

2 −
2
nm

〈
m∑
i=1

x̃i,
n∑
j=1

ỹj

〉
(3.8)

= 1
m
‖DsX‖2

F + 1
n
‖DtY‖2

F − 2
〈

1
m

m∑
i=1

xi,
1
n

n∑
j=1

yj

〉
. (3.9)

Hence, 〈M̃2(τ s, τ t), γ̄〉 is a non-increasing function of τ s and of τ t, and:

lim
τs,τ t→∞

〈M̃2(τ s, τ t), γ̄〉 = 1
m
‖x̂1‖2

2 + 1
n
‖ŷ1‖2

2 − 2
〈

1
m

m∑
i=1

xi,
1
n

n∑
j=1

yj

〉
(3.10)

= ‖ 1
m

m∑
i=1

xi −
1
n

n∑
j=1

yj‖2
2 (3.11)

where we used that x̂1 = 1√
m

∑m
i=1 xi and similarly for ŷ1. As the weight vectors

a and b are flat, the uniform plan γ̄ is admissible. Since M̃(0, 0) = M it follows
that DW2

2(µ, ν | τ s, τ t) ≤ 〈M̃2(τ s, τ t), γ̄〉 ≤ 〈M2, γ̄〉. Moreover, [42, Remark
2.19] states that:

W2
2(µ, ν) = W2

2(µ̃, ν̃) + ‖ 1
m

m∑
i=1

xi −
1
n

n∑
j=1

yj‖2
2, (3.12)

where µ̃ and ν̃ are the same distributions as µ and ν, but with their support
centred

{
xi − 1

m

∑m
i=1 xi | 1 ≤ i ≤ m

}
and

{
yj − 1

n

∑n
j=1 yi | 1 ≤ j ≤ n

}
. There-

fore, we have:

DW2
2(µ, ν | τ s, τ t) ≥ ‖ 1

m

m∑
i=1

x̃i −
1
n

n∑
j=1

ỹj‖2
2 = ‖ 1

m

m∑
i=1

xi −
1
n

n∑
j=1

yj‖2
2, (3.13)

hence:
lim

τs,τ t→∞
DW2

2(µ, ν | τ s, τ t) = ‖ 1
m

∑
i

xi −
1
n

∑
j

yj‖2
2. (3.14)

Remark 3.2.1. We can also establish that:

〈M̃2(τ s, τ t), γ̄〉 = 〈M2, γ̄〉+
 m∑
i=2

(
e−2τsλsi − 1

)
‖x̂i‖2

2 +
n∑
j=2

(
e−2τ tλtj − 1

)
‖ŷj‖2

2

 .
(3.15)
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Indeed:

〈M̃2(τ s, τ t), γ̄〉 = 1
m
‖DsX‖2

F + 1
n
‖DtY‖2

F − 2
〈

1
m

m∑
i=1

xi,
1
n

n∑
j=1

yj

〉
(3.16)

= 1
m

m∑
i=1

e−2τsλsi ‖x̂i‖2
2 + 1

n

n∑
j=1

e−2τ tλtj‖ŷj‖2
2 −

2
nm

〈
m∑
i=1

xi,
n∑
j=1

yj

〉
(3.17)

= 1
m

m∑
i=1

(e−2τsλsi − 1)‖x̂i‖2
2 + 1

m

m∑
i=1
‖x̂i‖2

2

+ 1
n

n∑
j=1

(e−2τ tλtj − 1)‖ŷj‖2
2 + 1

n

n∑
j=1
‖ŷj‖2

2 −
2
nm

〈
m∑
i=1

xi,
n∑
j=1

yj

〉
(3.18)

=〈M2, γ̄〉+
 m∑
i=2

(
e−2τsλsi − 1

)
‖x̂i‖2

2 +
n∑
j=2

(
e−2τ tλtj − 1

)
‖ŷj‖2

2

 .
(3.19)

Remark 3.2.2. The limit of DW in ∞, given in Equation 3.4, coincides with
the Bures-Wasserstein distance between two Gaussian distributions with same
covariance matrices and respective centres 1

m

∑
i xi and 1

n

∑
j yj.

In the general case, the Bures-Wasserstein distance [75, 76] is the W2 dis-
tance in the space of Gaussian distributions of Rd. For two such distributions,
with respective centres c1 ∈ Rd and c2 ∈ Rd, and respective covariance matrices
U1 ∈ Rd×d and U2 ∈ Rd×d, we have:

W2
2(N (c1, U1),N (c2, U2)) = ‖c1− c2‖2

2 + tr(U) + tr(V )− 2 tr(U 1
2V U

1
2 ) 1

2 (3.20)

Bound on expected value

Contrary to its non-increasing upper bound 〈γ̄, M̃2(τ s, τ t)〉, the squared Diffu-
sion Wasserstein distance DW2

2(µ, ν | τ s, τ t) may not behave monotonically with
τ s, τ t. Even though DW2

2(µ, ν | 0, 0) = W2
2(µ, ν) we may have DW2

2(µ, ν | τ s, τ t) >
W2

2(µ, ν) for some values of τ s, τ t. The following gives a sufficient condition to
ensure that (in expectation) DW2

2(µ, ν | τ s, τ t) does not exceed W2
2(µ, ν).

Proposition 3.2.3. Consider integers m,n, r ≥ 1, a ∈ Rm+ , b ∈ Rn+ such
that ∑i ai = 1 = ∑

j bj, two random Laplacians Ls ∈ Rm×m, Lt ∈ Rn×n

drawn independently according to possibly distinct probability distributions, two
random feature matrices X ∈ Rm×r, Y ∈ Rn×r, and 0 ≤ τ s, τ t <∞.

If E M̃2
ij(τ s, τ t) ≤M2

ij ∀(i, j), then E DW2
2(µ, ν | τ s, τ t) ≤ W2

2(µ, ν).
Remark 3.2.3. The case where the Laplacians and/or the features are deter-
ministic is covered by considering probability distributions that are Diracs.
Proof. For brevity we omit the dependency on µ, ν.

EDW2
2 = E inf

γ∈Π(a,b)
〈M̃2, γ〉 ≤ inf

γ
E〈M̃2, γ〉 = inf

γ
〈EM̃2, γ〉 ≤ inf

γ
〈M2, γ〉 = W2

2.

(3.21)
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Figure 3.2: Numerical illustration of Proposition 3.2.3, with distance DW2
2(µ, ν |

τ s, τ t) defined in Eq. (3.1). E DW2
2(µ, ν | τ s, τ t) is empirically estimated from 2500

independent realisations of source and target graphs drawn from the same stochastic
block model, with p11 = 0.32, p22 = 0.32, p12 = p21 = 0.02 and n = m = 100. The
feature vectors X ∈ Rm and Y ∈ Rn are arbitrarily chosen and remain fixed across all
realisations, to restrict randomness only to the structures. Empirical median (solid
line) and quartiles 1 and 3 (strip) of DW2

2(µ, ν | τ s = τ, τ t = τ) are plotted against τ
and compared to the Wasserstein distance W2

2(µ, ν) = DW2
2(µ, ν | 0, 0) (upper bound)

and to the asymptotic regime given in Eq. (3.4), when τ → +∞ (lower plateau).

Moreover, by [42, Remark 2.19] we have W2
2(µ, ν) ≥ ‖ 1

m

∑m
i=1 xi− 1

n

∑n
j=1 yj‖2

2.
If X and Y are such that in fact W2

2(µ, ν) > ‖ 1
m

∑m
i=1 xi − 1

n

∑n
j=1 yj‖2

2 then for
sufficiently large τ s, τ t we must have DW2

2(µ, ν | τ s, τ t) < W2
2(µ, ν).

However we can find examples such that DW2
2(µ, ν) > W2

2(µ, ν) and EDW2
2(µ, ν) >

W2
2(µ, ν) for all 0 < τ s, τ t < ∞. For this, it is sufficient to choose X = Y, so

that W2
2(µ, ν) = 0, and deterministic or random graphs and parameters τ s, τ t

such that exp(−τ sLs)X is not equal (even up to permutation) to exp(−τ tLt)Y,
so that (almost surely) DW2

2(µ, ν | τ s, τt) > 0.

Figure 3.2 illustrates the results of Propositions 3.2.2 and 3.2.3, where we
empirically estimated E DW2

2(µ, ν | τ s, τ t), and plotted its evolution against
τ = τ s = τ t (experimental conditions are detailed in the legend of Fig. 3.2).
Trivially, we verify that DW2

2(µ, ν | 0, 0) = W2
2(µ, ν). But, more importantly,

we observe that E DW2
2 systematically stands below W2

2, confirming thus the
prediction of Proposition 3.2.3, and converges towards the theoretical bound
given in Eq. (3.4) of Proposition 3.2.2, when τ → ∞. Interestingly also,
although we know from the counter-example X = Y above, that it is not true
in general, the trend of E DW2

2 in Fig. 3.2 seems to validate the conjecture
whereby it is often a non-increasing function of the diffusion scale τ . However,
we still lack the theoretical conditions that warrant the result of Prop. 3.2.2
on (τ s, τ t) 7→ 〈γ̄, M̃2(τ s, τ t)〉 to extend to minγ∈Π(a,b)〈γ, M̃2(τ s, τ t)〉.
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3.2.2 Metric property of DW

Recall that DW can be seen as a generalization of the Wasserstein distance W
which leverages the diffusion operator over the features. Moreover, it is known
that when the cost matrix Mij

def= [d(xi, yj)] is associated to a distance d, the
Wasserstein distance defines a metric. The next proposition shows that the
diffusion does not change this metric property up to a natural condition.

Proposition 3.2.4. Let Gs and Gt be two attributed graphs of respective sizes
m and n nodes. Let Xs = (xsi )1≤i≤m and X t = (xtj)1≤j≤n be the associated
node features. Let Ds and Dt be the associated diffusion operators.

Note x̃si and x̃tj the features of Gs and Gt after time τ s and τ t (the i-th and
j-th rows of DsXs and DtX t). Let Tτ be the operator that maps a distribution
supported on a graph’s node’s features to the same distribution but with support
altered by the diffusion: T (µ) = T (∑ aiδxi) = ∑

aiδx̃i.
For p ∈ [1,∞) and 0 ≤ τ s, τ t < ∞, the Diffusion Wasserstein DWp(·, · |

τ s, τ t) defines a pseudo-metric: it satisfies all the axioms of a metric, except
that DWp(µ, ν) = 0 if, and only if, T (µ) = T (ν).

Proof. According to Definition 3.1.1, DW is defined between two probability
measures µ = ∑m

i=1 aiδ(xi,zi) and ν = ∑n
j=1 bjδ(yj ,z′j) with (xi, zi) and (yj, z′j)

lying in some joint space X × Z encoding both the feature and the structure
information of two source and target vertices, respectively. Since DWp(µ, ν) =
Wp(µ̃, ν̃) = Wp(T (µ), T (ν)), the proposition follows from the metric property of
Wp(·, ·).

Remark 3.2.4. The condition T (µ) = T (ν) almost always implies µ = ν.
Consider the following function:

f(τ s, τ t) =
m∑
i=1

m∑
j=1
‖x̃si − x̃tj‖ (3.22)

=
m∑
i=1

m∑
j=1
‖(exp(−τ sLs)Xs)i − (exp(−τ tLt)X t)j‖ (3.23)

The zeros of f correspond to couples (τ s, τ t) where two atoms δx̃si and δx̃tj
overlap, and M̃ is not a metric anymore (two distinct nodes have the same
features, and therefore distance 0). However f is an analytical function, as
a composition of analytical functions (see Equation 3.23). Therefore, all its
zeros are isolated, i.e. if f(τ s?, τ t?) = 0, then ∃r > 0 such that for all τ s, τ t is
a ball of radius r around τ s?, τ t? where f(τ s, τ t) 6= 0.

3.2.3 Algorithmic complexity
The initial diffusion step can be computed with cubic complexity. Computing
the diffusion operator exp(−τL) is achieved by diagonalizing L (cubic complex-
ity) and exponentiation of the diagonal entries. Then computing the diffusion
is a simple matrix-vector multiplication (quadratic complexity). Therefore,
DW retains the super-cubic complexity of W, as the added diffusion step will
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Chapter 3. The Diffusion-Wasserstein Distance DW

not increase its complexity class. If needed, this complexity can be lowered
by computing an approximation: we presented in Section 1.3.3 how entropic
regularisation can be used for the distance computation step, and we will show
in Section 4.1 a polynomial approximation of the diffusion step.

Notice that compared to FGW, our new distance DW allows us to get free from
the costly term in O(m2n2) corresponding to the Gromov part of FGW (even
though when p = 2 one can compute this term more efficiently inO(m2n+n2m)
[60]), while still accounting for both the structure and the features of the
graphs. Our study on the computational time of the state of the art methods
in Chapter 5 will give evidence that DW is a cheaper way to compute a distance
encompassing both sources of information.

3.3 Variants

3.3.1 A note on going beyond diffusion
The DW distance can be interpreted as a two-steps process: a pre-processing
step (computing a new set of features Y s/t from the graphs Gs/t and their
features Xs/t using a diffusion process) and a distance computation step (using
the W Distance). Sections 3.3.2 and 3.3.3 will look into changing the distance
computation step. But the diffusion process could be swapped for another one
too. In fact, one could define a whole family of distances, using any graph
filter f : (X,G)→ Y to solve:

min
γ∈Π(a,b)

{〈
γ, C̃

〉}
, (3.24)

where C̃i,j = d(f(Xs,Gs)i, f(X t,Gt)j)p. (3.25)

This is similar to the kernel trick.
Overall, this possibility remains open for future research. Nonetheless, it

can be noted that a few other methods fit this paradigm. In particular, the au-
thors of the Wasserstein Weisfeiler-Lehman [14] have a similar approach. They
compute a fixed-size embedding for each node using the Weisfeiler-Lehman
scheme [12], and compare the graphs using the W1 distance between uniform
distributions supported on these embeddings.

This also resembles the general mechanism of Graph Neural Networks (out-
lines in Section 1.1.4). It hints at the possibility of using the diffusion operator
as the feature aggregator in GCN, though the selection of the diffusion time
τ may be a challenge (see Section 4.2 for our approach). To the best of our
knowledge this has not been explicitly tried for GCN. Despite the similar

3.3.2 Using entropy regularisation
It is worth noticing that the heat diffusion operator can be seen as a reweighing
scheme applied over the node features leading to the new cost matrix M̃(τ s, τ t).
Therefore the design of our cost matrix can be used for any optimal transport
method that uses a pairwise distance matrix. This includes any OT method
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that adds a regularizer to the original OT problem (Equation 1.15). In partic-
ular, entropy regularisation can be used: we note DWε the entropy-regularized
version of DW:

DWε(µ, ν | τ s, τ t) = min
γ∈Π(a,b)

〈γ, M̃p〉+ ε
∑
i,j

γi,j log(γi,j)

 . (3.26)

This comes in handy when the task of solving the original transport prob-
lem 1.15 becomes computationally prohibitive.

However, doing so comes at the loss of some properties of the DW distance.
The limit in 0 of DWε coincides with the entropy-regularized Wasserstein dis-
tance between the distributions. Proof of Propositions 3.2.2 and 3.2.3 cannot
be made with entropy regularisation; in particular, we cannot use [42, Remark
2.19] anymore.

Remark 3.3.1. Any regularisation term designed for W can be used for DW
instead, entropic regularisation being just one possible example.

3.3.3 Extending FGW
It is also possible to apply our cost matrix design to FGW. We call this method
the DifFused Gromov Wasserstein distance DFGW:

Definition 3.3.1.

DFGWpp(µ, ν) = min
γ∈Π(a,b)

∑
i,j,k,l

(
(1− α)M̃p

ij + α|Cs
ik − Ct

jl|p
)
γijγkl

 , (3.27)

where the summation indices are 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n for a source
graph Gs (resp. a target graph Gt) of size m (resp. n), and the dependency on
τ s,τ t and the considered distance d is implicit in M̃ .

While this method loses any computational advantage over DW and FGW, it
captures in an additional way the structure.

We recall all OT-based methods presented so far in Table 3.1.
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Table 3.1: List of OT-based DA methods on attributed graphs used in the
manuscript. Also provided are a reference in the bibliography to their defi-
nition, the equation number of their definition in this manuscript, and their
specificities.

Method Reference Eq. Complexity Notes
W [51] 1.15 super-cubic Only considers attributes.
GW [60] 2.3 NP-hard Only considers structure.
FGW [15] 2.4 NP-hard O(n2m2) to compute tensor.

OT_LAPLACE [71] 2.7 NP-hard Does not define a distance.
L1L2_GL [50] 2.13 NP-hard Does not use the structure

but source labels instead.
DW [18] 3.1 super-cubic
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Chapter 4
Algorithmic implementation of DW

Computing the DW distance between two attributed graphs is done in two steps.
First, the attributes are diffused for a given time τ in the graph. Then, these
diffused attributes are used to get a cost matrix to compare the graphs using
the Wasserstein distance. In this Chapter, we examine two key parts of this
process.

In Section 4.1, we look at how to implement efficiently the diffusion process.
It corresponds to work whose ArXiv preprint is available [19]. This work was
done in conjunction with Sybille Marcotte during her internship in the DANTE
team. We worked on a Chebychev approximation of the diffusion process. We
proved a new bound on the approximation error, improving upon the state of
the art. Moreover, we showed how part of the computations can be factorized,
so that computing the diffusion at multiple times τ is almost as fast as for just
one time τ .

In Section 4.2, we look at how to select the hyper-parameter τ . We present
a new method inspired by the notion of triplet-loss, where we compare at-
tributed graph to artificial impostors. We show that this method improves
upon the circular validation criterion usually employed in Domain Adapta-
tion. It corresponds to work that have been accepted to the international
conference ICTAI’21 [20].

4.1 Fast Multiscale Diffusion on Graphs
DW makes heavy use of the diffusion procedure in a graph. We recall that
the latter is described by the equation dw

dτ
= −Lw with w(0) = x [24], and

admits a closed-form solution w(τ) = exp(−τL)x involving the heat kernel
τ → exp(−τL), which features the matrix exponential.

Applying the exponential of a matrix M ∈ Rn×n to a vector x ∈ Rn can be
achieved by computing the matrix B = exp(M) to compute then the matrix-
vector product Bx. However, this becomes quickly computationally prohibitive
in high dimension, as storing and computing B, as well as the matrix-vector
product Bx, have cost at least quadratic in n. However computing a matrix
such as exp(−τL) is rarely required, as one rather needs to compute its action
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on a given vector. Dropping the requirement to compute the exponential
enables faster methods.

Polynomial approximations are a family of methods suited to this task:
given a square symmetric matrix L and a univariate function f , a suitable
univariate polynomial p is used to approximate f(L) with p(L). Such a poly-
nomial can depend on both f and L. When the function f admits a Taylor
expansion, a natural choice for p is a truncated version of the Taylor series [77].
Other polynomial bases can be used, such as the Padé polynomials. We set-
tled on a truncated Chebyshev polynomial approximation [78,79] (see [80] for
a survey), leading to approximation errors that decay exponentially with the
polynomial orderK. We build on the fact that polynomial approximations [81]
can significantly reduce the computational burden of approximating exp(M)x
with good precision when M = −τL where L is sparse positive semi-definite
(PSD); this is often the case when L is the Laplacian of a graph when each
node is connected to a limited number of neighbors.

Here, the principle will be to approximate the exponential as a low-degree
polynomial in M, exp(M) ≈ p(M) := ∑K

k=0 akMk. Note that several methods
use such a decomposition, some requiring the explicit computation of coeffi-
cients associated with a particular choice of polynomial basis, others, including
Krylov-based techniques, not requiring explicit evaluation of the coefficients
but relying on an iterative determination [82] of the polynomial approxima-
tion on the subspace spanned by

{
x,Mx, · · · ,MKx

}
.

In this section, we present the Chebyshev approximation of the diffusion
procedure, and the two improvements we made. First, we devise a new bound
on the approximation error of truncated Chebyshev expansions of the exponen-
tial, that improves upon existing works [78, 83, 84]. This avoids unnecessary
computations by determining a small truncation order K to achieve a pre-
scribed error. Second, we propose to compute exp(−τL) at different scales
τ ∈ R faster, by reusing the calculations of the action of Chebyshev polynomi-
als on x and combining them with adapted coefficients for each scale τ .

Remark 4.1.1. Note that the work presented here has a wider range of appli-
cation than diffusion in a graph. The matrix exponential operator has applica-
tions in numerous domains, ranging from time integration of Ordinary Differ-
ential Equations [85] or network analysis [86] to various simulation problems
(like power grids [87] or nuclear reactions [88]) or machine learning [18, 89].
Moreover, multiscale graph representations such as graph wavelets [90] and
spectral graph wavelets [91], graph-based machine learning methods [18], graph
node embeddings such as GraphWave [92] rely on graph diffusion at different
scales, thus implying applications of the matrix exponential of various multiples
of the graph Laplacian. But in this section, we will keep the focus on graph
diffusion.
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4.1.1 Chebyshev approximation of the exponential func-
tion

Here we define Chebyshev polynomials, series and coefficients. We apply this
to the exponential function, which will be used later for matrix exponentials.

Chebyshev polynomials and series decomposition

The Chebyshev polynomials of the first kind are characterized by the identity
Tk(cos(θ)) = cos(kθ). They can be computed as T0(t) = 1, T1(t) = t and using
the following recurrence relation:

Tk+2(t) = 2tTk+1(t)− Tk(t). (4.1)

The Chebyshev series decomposition of a function f : [−1, 1] 7→ R is: f(t) =
c0
2 +∑

k≥1 ck · Tk(t), where the Chebyshev coefficients are:

ck = 2
π

∫ π

0
cos(kθ) · f(cos(θ))dθ. (4.2)

Truncating this series yields an approximation of f . For theoretical aspects
of the approximation by Chebyshev polynomials (and other polynomial basis)
we refer the reader to [93].

Chebyshev series of the exponential

We focus on approximating the univariate transfer function hτ : λ ∈ [0, 2] 7→
exp(−τλ), which will be useful to obtain low-degree polynomial approxima-
tions of the matrix exponential exp(−τL) for positive semi-definite matrices
whose largest eigenvalue satisfies λmax = 2 (see Section 4.1.2). This condition
is verified for the normalized Laplacian of any graph; in Section 4.1.3 we ex-
plain how to work with the combinatorial Laplacian, or any PSD matrix whose
largest eigenvalue is not 2.

Using a change of variable: t = (λ− 1) ∈ [−1, 1], h̃τ (t) = hτ (t+ 1) and the
Chebyshev series of f := h̃τ yields:

h̃τ (t) = 1
2c0(τ) +

∞∑
k=1

ck(τ)Tk(t),

ck(τ) = 2
π

∫ π

0
cos(kθ) exp(−τ(cos(θ) + 1))dθ. (4.3)

This leads to the following expression for hτ :

hτ (λ) = 1
2c0(τ) +

∞∑
k=1

ck(τ)T̃k(λ), (4.4)

where for any k ∈ N: T̃k(λ) = Tk (λ− 1).
Truncating the series (4.4) to order K yields a polynomial approximation

of hτ of degree K whose quality can be controlled, leading to a control of the
error in approximating the action of exp(−τL) as studied in Section 4.1.2.
First we focus on how to evaluate the coefficients ck defined in Equation (4.3).
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Chebyshev coefficients of the exponential

Evaluating numerically the coefficients using the integral formulation (4.3)
would be computationally costly, fortunately they are expressed using Bessel
functions [94]:

ck(τ) = 2Ik(τ) · exp(−τ) = 2 · Iek(−τ), (4.5)
with Ik(·) the modified Bessel function of the first kind and Iek(·) the expo-
nentially scaled modified Bessel function of the first kind.

An alternative way of evaluating these coefficients (still in the particular
case of the exponential function) makes use of a recurrence relation between
coefficients (not to be confused with the recurrence relation (4.1) between
Chebyshev polynomials). As hτ is C∞, we can write hτ as a Chebyshev series
where the k-th coefficient is function of the k-th derivative of hτ for any x ∈
[0, λmax]. Then it can be proved that for any k ∈ N [93]:

ck(τ) = 2k − 2
τ

ck−1(τ) + ck−2(τ). (4.6)

While this recurrence relation is unstable if used as is (the coefficients decay
exponentially to zero with alternating signs), this stability issue can be solved
by initializing with cK(τ) and cK−1(τ) (computed using the expression (4.5))
for a given order K and working backward [78].

The following lemma applied to f = h̃τ yields another expression of the
coefficients (4.3), which will be used to bound the error of the truncated Cheby-
shev expansion.
Lemma 4.1.1 ( [93], Equation 2.91). Let f be a function expressed as an
infinite power series f(t) = ∑∞

i=0 bit
i and assume that this series is uniformly

convergent on [−1, 1]. Then, we can express the Chebyshev coefficients of f
by:

ck = 1
2k−1

∞∑
i=0

1
22i

(
k + 2i
i

)
bk+2i. (4.7)

Corollary 4.1.1. Consider h̃τ (t) := exp(−τ(t + 1)), t ∈ [−1, 1]. The coeffi-
cients of its Chebyshev expansion satisfy:

ck = (−1)kdkc̄k (4.8)
c̄k = 2 (τ/2)k exp(−τ)(k!)−1 (4.9)

dk =
∞∑
i=0

(τ/2)2i k!
i!(k + i)! . (4.10)

Moreover we have:

1 ≤ dk ≤ min
(

exp
(

(τ/2)2

k + 1

)
, cosh(τ)

)
. (4.11)

Proof. Denoting C = τ/2, we expand f(t) = h̃τ (t) = exp(−2C(t + 1)) =
exp(−2C) exp(−2Ct) into a power series:

f(t) =
∞∑
i=0

exp(−2C)(−2C)i
i! ti.
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Using Lemma 4.1.1, we obtain for each k ∈ N:

ck = (−1)kCk2 exp(−2C)
∞∑
i=0

C2i 1
i!(k + i)! = (−1)kc̄kdk.

For any integers k, i we have k!/(k+i)! ≤ min(1/i!, 1/(k+1)i) and 1/(i!)2 =(
2i
i

)
/(2i)! ≤ 22i/(2i)! hence

dk =
∞∑
i=0

C2i

i!
k!

(k + i)!

≤ min
( ∞∑
i=0

C2i

i!
1

(k + 1)i ,
∞∑
i=0

C2i

i!i!

)

≤ min
(

exp
(
C2/(k + 1)

)
,
∞∑
i=0

C2i22i

(2i)!

)
= min

(
exp

(
C2/(k + 1)

)
, cosh(2C)

)
.

4.1.2 Approximation of the matrix exponential
Chebyshev approximation of the matrix exponential

Consider L any PSD matrix of largest eigenvalue λmax = 2 (adaptations to
matrices with arbitrary largest eigenvalue will be discussed in Section 4.1.3).
To approximate the action of exp(−τL), where τ ≥ 0, we use the matrix
polynomial pK(L) where pK(λ) is the polynomial obtained by truncating the
series (4.4). The truncation order K offers a compromise between computa-
tional speed and numerical accuracy.

The recurrence relations (4.1) on Chebyshev polynomials yields recurrence
relations to compute T̃k(L)x = Tk(L − Id)x. Given a polynomial order K,
computing pK(L)x requiresK matrix-vector products for the polynomials, and
K + 1 Bessel function evaluations for the coefficients. This cost is dominated
by the K matrix-vector products, which can be very efficient if L is a sparse
matrix.

Generic bounds on relative approximation errors

Denote pK the polynomial obtained by truncation at orderK of the Chebyshev
expansion (4.4). For a given input vector x 6= 0, one can measure a relative
error as:

εK(x) := ‖ exp(−τL)x− pK(L)x‖2
2

‖x‖2
2

. (4.12)

Expressing exp(−τL) and pK(L) in an orthonormal eigenbasis of L yields a
worst-case relative error:

εK := sup
x 6=0

εK(x) = max
i
|hτ (λi)− pK(λi)|2 ≤ ‖hτ − pK‖2

∞ (4.13)

with λi ∈ [0, λmax] the eigenvalues of L and ‖g‖∞ := supλ∈[0,λmax] |g(λ)|.
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Lemma 4.1.2. Consider τ ≥ 0, hτ and L a PSD matrix with largest eigenvalue
λmax = 2. Consider pK as above where K > τ/2− 1. With C := τ/2 we have

‖hτ − pK‖∞ ≤ 2e
(τ/2)2
K+2 −τ

(τ/2)K+1

K!(K + 1− τ/2) =: g(K, τ). (4.14)

Proof. Denote C = τ/2. For K > C − 1 we have:

∞∑
k=K+1

Ck

k! ≤
1
K!

∞∑
k=K+1

Ck

(K + 1)k−K = CK

K!

∞∑
`=1

C`

(K + 1)`

= CK+1

K!(K + 1− C) (4.15)

and C2/(K + 1) < C hence for k ≥ K + 1 (4.11) yields:

1 ≤ dk ≤ exp(C2/(K + 2)) ≤ exp(C). (4.16)

Since |Tk(t)| ≤ 1 on [−1, 1] (recall that Tk(cos θ) = cos(kθ)), we obtain using
Corollary 4.1.1:

‖hτ − pK‖∞
(4.4)= sup

λ∈[0,λmax]

∣∣∣∣∣∣
∞∑
k>K

ck(τ)T̃k(λ)

∣∣∣∣∣∣ ≤
∞∑
k>K

|dkc̄k|

(4.9),(4.16)
≤ exp

(
C2

K+2

)
2 exp (−2C)

∞∑
k>K

Ck

k!
(4.15)
≤ 2 exp

(
C2

K+2 − 2C
) CK+1

K!(K + 1− C) .

While (4.12) is the error of approximation of exp(−τL)x, relative to the
input energy ‖x‖2

2, an alternative is to measure this error w.r.t. the output
energy ‖ exp(−τL)x‖2

2:

ηK(x) := ‖ exp(−τL)x− pK(L)x‖2
2

‖ exp(−τL)x‖2
2

. (4.17)

Since ‖ exp(−τL)x‖2 ≥ e−τλmax‖x‖2 = e−2τ‖x‖2 we have ηK(x) ≤ ‖hτ −
pK‖2

∞e
4τ . Using Lemma 4.1.2 we obtain for K > τ/2− 1 and any x:

εK(x) ≤ g2(K, τ); (4.18)
ηK(x) ≤ g2(K, τ)e4τ . (4.19)

Specific bounds on relative approximation errors

As the bounds (4.18)-(4.19) are worst-case estimates, they may be improved
for a specific input signal x by taking into account its properties. To illustrate
this, let us focus on graph diffusion where L is a graph Laplacian, assuming
that a1 := ∑

i xi 6= 0. Since a1/
√
n is the inner product between x and the unit

constant vector (1, . . . , 1)/
√
n, which is an eigenvector of the graph Laplacian L
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associated to the zero eigenvalue λ1 = 0, we have ‖ exp(−τL)x‖2
2 ≥ |a1/

√
n|2.

For K > τ/2− 1 this leads to the bound:

ηK(x) ≤ εK(x)‖x‖
2
2

a2
1/n
≤ g2(K, τ)n‖x‖

2
2

a2
1

. (4.20)

This bound improves upon (4.19) if e4τ ≥ n‖x‖2
2

a2
1

, i.e. when

τ ≥ 1
4 log n‖x‖

2
2

a2
1

. (4.21)

Considering a graph with Laplacian L, the diffusion of a graph signal x
at scale τ is obtained by computing exp(−τL)x. In the general case, the
largest eigenvalue of L is not necessarily λmax = 2 (except for example if L
is a so-called normalized graph Laplacian, instead of a combinatorial graph
Laplacian). To handle this case with the polynomial approximations studied
in the previous section, we first observe that exp(−τL) = exp(−τ ′L′) where
L′ = 1/ΦL, τ ′ = Φτ and Φ = λmax/2. Using Equation (4.21) with scale τ ′
allows to select which of the two bounds (4.19) or (4.20) is the sharpest. The
selected bound is then used to find a polynomial order K that satisfies a given
precision criterion. Then, we can use the recurrence relations (4.2) to compute
the action of the polynomials T̃k(L′) = Tk(L′ − Id) on x [79], and combine
them with the coefficients ck(τ ′) given by (4.5).

The complete procedure is presented in Algorithm 2 in pseudo-code.

4.1.3 Experiments
We perform four experiments, to highlight the interest of our approach and
bounds, and to discuss implementation details.

Bound tightness

Our new bounds can be illustrated by plotting the minimum truncated order
K required to achieve a given precision. The new bounds can be compared to
the tightest bound we could find in the literature [78]:

ηK(x) ≤ 4E(K)2n‖x‖2
2

a2
1

(4.22)

where a1 = ∑
i xi, and:

E(K) =

e
−b(K+1)2

2τ

(
1 +

√
πτ/2
b

)
+ d2τ

1−d if K ≤ 2τ
dK

1−d if K > 2τ
(4.23)

with b = 2
1+
√

5 and d = exp(b)
2+
√

5 . This bound can be made independent of x by
using the same procedure as that of used to establish (4.19):

ηK(x) ≤ 4E(K)2 exp(4τ). (4.24)
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Input: L ∈ Rn×n a PSD matrix, x ∈ Rn×d a vector, T ∈ Rm+ a set of
diffusion times, err a target maximum approximation error.

Output: Approximation of exp(−τL)x for all τ ∈ T

// Define useful quantities
Φ← λmax/2

a1 ←
∑
i xi

n← length(x)
m← length(T )
τmax ← max(T )
C ← τmax/2

// Compute order K

K ← min
{
K > C − 1 | g2(K, τmaxΦ

2 )n‖x‖
2
2

a2
1
− err ≤ 0

}
// Compute coefficients
for i← 0 to K do

for j ← 1 to m do
c[i][j]← 2 · Iei(−T [j]Φ)

end
end

// Compute first two polynomials
P [0]← x
P [1]← 1/ΦLx− P [0]
for j ← 1 to m do

y[j]← 1/2 · c[0][j] + c[1][j] · P [1]
end

// Compute approximation
for i← 2 to K do

P [i]← 2/ΦLP [i− 1]− 2P [i− 1]− P [i− 2]
for j ← 1 to m do

y[j]← y[j] + c[i[[j] · P [i]
end

end
return y

Algorithm 2: How to compute the diffusion for a matrix, a vector and a
set of τ values at a given precision.
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Figure 4.1: Minimum order K to achieve an error ηK(x) below 10−5, either real
or according to each bound. Median values taken for 100 Erdos-Reyni graphs
of size 200 with 5% connection probability, and a centered standard normal
distributed signal.

An experiment was performed over 25 values of τ ranging from 10−2 to 102,
100 samplings of Erdos-Reyni graphs of size n = 200, with connection proba-
bility p = 5% (which yields λmax ' 20), and coupled with a random signal with
entries drawn i.i.d. from a centered standard normal distribution. For each
set of experiment parameters, for each bound, generically noted B(K, τ, x),
the minimum order K ensuring ηK(x) ≤ B(K, τ, x) ≤ 10−5 was computed, as
well as the oracle minimum degree K guaranteeing MSE ηK(x) ≤ 10−5. The
median values over graph generations are plotted on Fig 4.1 against τ , with
errorbars using quartiles.

We observe that our new bounds (blue) follow more closely the true min-
imum K (black) achieving the targeted precision, up to τ ' 10, thus saving
computations over the one of [78] (red). Also of interest is the fact that the
bounds (4.20)-(4.22) specific to the input signal are much tighter than their
respective generic counterparts (4.19)-(4.24).

Comparing the coefficients formulas for speed

Through this section, we devised several ways to compute the Chebyshev co-
efficients, which we recall here:

• Integral formulation: (Eq. 4.3) ck(τ) = 2
π

∫ π
0 cos(kθ) exp(−τΦ(cos(θ) +

1))dθ.
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• Recurrence relation: (Eq. 4.6) ck(τ) = 2k−2
τΦ ck−1(τ)+ck−2(τ), whose back-

ward version is ck(τ) = −2k+2
τΦ ck+1(τ) + ck+2(τ).

• Bessel functions:(Eq. 4.5) ck(τ) = 2Ik(τ) · exp(−τ) = 2 · Iek(−τΦ).

Each of these formulations has only 3 parameters: the order K (the highest
k), the diffusion time τ and Φ = λmax/2. We will settle by default for K = 20,
τ = 0.1 and Φ = 50, which are rather typical values for the experiments we
performed. Then we will have each parameter vary in a range around these
values, to determine which method performs faster. The results are visible on
Figure 4.2.

This experiment produces unstable results. Still, we can see that the inte-
gral formulation is the slowest one, by a large margin. The two other methods
can perform similarly; in the end we settled for the formula using Bessel func-
tions, based on this experiment and others realized earlier.

Comparing each step of the algorithm for speed

In its current version, the diffusion algorithm devised earlier (Algorithm 2)
has 3 main steps: computing the minimal order K to achieve a desired error,
computing the Chebyshev coefficients, and computing recursively the polyno-
mials to combine them. Here we perform an experiment to have a sense of
which of these 3 steps takes most of the computation time. We sample 100
Erdös-Reyni graphs of size 1000 nodes with connection probability 2%, and
for each sample we perform the diffusion at scale τ = 0.1 and for a relative
error ηK ≤ err ∈ [2−16, 2−3], recording the time taken by each of these 3 steps.

The results are visible on Figure 4.3. We can see that computing the
coefficients takes a negligible amount of time compared to the other steps.
Reversing the bounds to get an order K sufficient to achieve an error takes a
small portion of the time of the algorithm. Computing the polynomials and
combining them to get the final values takes most of the time; as expected, this
part grows as the desired error goes down, as higher orders K are necessary
to ensure smaller errors.

Acceleration of multiscale diffusion

When diffusing at multiple scales {τ1 · · · τm}, it is worth noting that compu-
tations can be factorized. The order K can be computed only once (using the
largest τ ′i), as well as T̃k(L′)x. Eventually, the coefficients can be evaluated for
all values τi to generate the needed linear combinations of T̃k(L′)x, 0 ≤ k ≤ K.
In order to illustrate this speeding-up phenomenon, our method is compared
to scipy.sparse.linalg.expm_multiply, from the standard SciPy Python
package, which uses a Taylor approximation combined with a squaring-and-
scaling method. See [77] for details.

For a first experiment, we take the Standford bunny [95], a graph built from
a rabbit ceramic scanning (2503 nodes and 65.490 edges, with λmax ' 78).
For the signal, we choose a Dirac located at a random node. We compute
repeatedly the diffusion from 2 to 20 scales τ sampled in [10−3, 101]. Our
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Figure 4.2: Computation time of each method to compute the coefficients,
with varying parameters. For fixed parameters, we use K = 20, τ = 0.1 and
Φ = 50

53



Chapter 4. Algorithmic implementation of DW

2 15 2 13 2 11 2 9 2 7 2 5 2 3

Target error

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ti
m

e 
(s

)

Bound reversal
Coefficients computation
Polynomials computation

Figure 4.3: Time required to perform the diffusion in a graph, broken down
into the three main steps, against the desired approximation error. Median and
quartile times are reported. The graph is Erdös-Reyni with 1000 nodes, a 2%
connection probability. The diffusion time is τ = 0.1, and the approximation
order K is decided by the desired error.

method is set with a target error ηK ≤ 10−5. When the τ values are linearly
spaced, both methods can make use of their respective multiscale acceleration.
In this context, our method is about twice faster than Scipy’s; indeed, it takes
0.36 s plus 6.1×10−3 s per scale, while Scipy’s takes 0.74 s plus 2.4×10−3 s per
scale. On the other hand, when the τ values are uniformly sampled at random,
SciPy cannot make use of its multiscale acceleration. Indeed, its computation
cost increases linearly with the number of τ ’s, with an average cost of 0.39 s per
scale. Whereas, the additional cost for repeating our method for each new τ
is negligible (0.0094 s on average) compared to the necessary time to initialize
once and for all, the T̃k(L′)x (0.30 s).

Figure 4.4 offers a visualization of the experimental setup. A Dirac centered
on the bunny’s back is diffused according to Scipy’s method (top row) and ours
with a target precision ηK ≤ 10−2 (bottom row), with τ ′ ∈ {0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}.
Both methods are indistinguishable to the eye, yet our method executes 60%
faster in this context (0.0778s versus 0.220s).

The trend observed here holds for larger graphs as well. We run a simi-
lar experiment on the ogbn-arxiv graph from the OGB datasets [96]. Nodes
correspond to ArXiV papers published; the structure correspond to citations,
i.e. two nodes are linked if one of the articles cite the other; the features are
128-dimensional embeddings of the article’s titles and abstracts. We take uni-
formly sampled scales in [7.6 × 10−2, 2.4 × 10−1] (following recommendations
of [97]), and set our method for ηK ≤ 10−3. We observe an average compu-
tation time of 504 s per scale (i.e. 1 hr and 24min for 10 scales) for Scipy’s
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4.2. Hyper-parameter τ selection of DW

Figure 4.4: Diffusion of a Dirac in the Standford Bunny graph. Our method
is set with an error ηK ≤ 10−2; diffusion scale τ ′, computed order K and error
εK are reported on top of each subfigure.

method, and 87 s plus 50 s per scale for our method (i.e. around 9min for
10 scales). If we impose a value ηK ≤ 2−24, comparable to the floating point
precision achieved by Scipy, the necessary polynomial order K only increases
by 6%, which does not jeopardise the computational gain of our method. This
behavior gives insight into the advantage of using our fast approximation for
addressing the multiscale diffusion on very large graphs.

In this Section 4.1, we presented a method to accelerate the computation of
exp(−τL). We showed that a factorization of the computation was possible,
which allows getting the diffusion at additional scales τ ′ much faster. This
property makes it possible to solve the optimization problem of finding the
optimal τ for DW, where diffusion would have to be repeatedly computed at
multiple scales. This is the subject of the next Section 4.2.

4.2 Hyper-parameter τ selection of DW
In this section, we present our strategy to select the hyper-parameter τ in
DW. We address this task in the complex setting of unsupervised Domain
Adaptation, where we do not have access to labelled target data. This work
corresponds to a paper accepted to the international conference ICTAI’21 [20].
We recall the definition of DW:

DWpp(µ, ν | τ s, τ t) = min
γ∈Π(a,b)

{
〈γ, M̃p〉

}
. (4.25)

Unlike the circular validation [98] that aims at tuning hyper-parameters in
unsupervised Domain Adaptation by benefiting from pseudo-target labels, we
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suggest here to directly optimize the diffusion time τ in a self-supervised way.
In this section, we restrict ourselves to τ s = τ t. We propose two possible

loss functions of τ , whose minimization yields a suitable parameter τ ?. They
are based around the notion of "impostor", inspired by triplet-based loss func-
tions (used in metric learning, SVM training [99] or image retrieval [100] for
instance).

4.2.1 Circular validation

One peculiarity of unsupervised domain adaptation comes from the absence of
target labels. In such a setting, a standard method to tune hyper-parameters
is the circular validation [98], largely used in the past 10 years (see for in-
stance [65,101,102] for examples of applications). The “circular” aspect is due
to the fact that the labels go back-and-forth between the source and the target
data. Let us detail the underlying principle in the context of an OT-based
graph domain adaptation task. Given a transport map γ and a set of labels
ls ∈ C for the source graph, one can define pseudo-labels l̃t for the target graph
by choosing, for each node, the label from which the maximum weight comes
from:

l̃tj = lsargmax
1≤i≤Ns

{γi,j}. (4.26)

Note that Like-wise, pseudo-labels for the source graph can be re-inferred in a
similar fashion:

l̃si = l̃targmax
1≤j≤Nt

{γi,j}. (4.27)

It is now possible to define an unsupervised score for ranking the transport
maps obtained by different sets of hyper-parameters. This score measures the
level of agreement between the original and pseudo source labels:

s(γ) =
|
{
i | lsi = l̃si

}
|

N s
. (4.28)

It is important to note that while a low score of s(γ) is an evidence that the
considered hyper-parameter does not lead to a good model, a high score would
not allow us to definitely conclude. Indeed, for two graphs of the same size,
any permutation matrix γ would produce a perfect score of 1, that can make
the circular validation unstable.

The procedure presented here to transport labels from the source domain
to target one is not the only one possible. In [103] the authors compute a
probability distribution on the target labels by defining D1 ∈ {0, 1}K×m, where
D1(c, i) = 1 iff lsi = c. They can then compute a probability vector on the
target labels D1γ that gives at each target node the proportion of mass coming
from each class. Pseudo-labels could then be defined as the most likely label
(as opposed to the one corresponding to the source point with the most mass
transmitted as we do here).
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Figure 4.5: Illustration of the construction of the impostor (in grey) of two
graphs (in red and blue). Features correspond to the 2D coordinates of the
nodes. Impostor nodes are supported on the Wasserstein barycenter (eq. 4.29)
of the original graphs’ features. Impostor edges are drawn uniformly with
probability equal to the average connection probability of the two original
graphs.

4.2.2 A triplet-based loss function to learn τ

To address the limitation of the circular validation, we propose in the following
to learn the diffusion time by minimizing a loss function that considers impos-
tors attributed graphs. Inspired from the triplet-based constraints used, e.g.,
in metric learning [104,105], the impostor facilitates the choice of the diffusion
time τ that brings Gs and Gt close together without suffering from degenerate
phenomena.
Definition 4.2.1. Let Gs and Gt be two source and target graphs of size m
and n nodes respectively, with their associated probability distributions µ and ν
over the nodes. The impostor G0 with respect to Gs and Gt is a graph with k =
dm+n

2 e nodes whose features X0 are defined as the minimizer of the following
Wasserstein barycenter problem:

X0 = argmin
X∈Rk×r

{1
2
(
W(Xs, X) + W(X t, X)

)}
. (4.29)

The adjacency matrix A0 of G0 is sampled according to an Erdös-Rényi model
[106], with connection probability p0 = ps+pt

2 the average connection probability
of the two graphs.

The solution of the Wasserstein barycenter problem (Equation 1.3.2) is
difficult in practice and is the subject of a rich literature (see [107]). Our
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problem is a free-support barycenter problem where the main obstacle is that
we have to optimize on the support X of the barycenter [58, 108]. It has
been recently proved that this problem can be solved in polynomial time when
the number of points of each measure is fixed [1]. In our case, we chose to
rely on the heuristic proposed in [107] which is reasonable as there are only
2 distributions involved and the weights of the barycenter are considered as
fixed (uniform in our case). Overall it boils down to iterating over 1) solving
two linear OT problems W(Xs, X) and W(X t, X) 2) updating the support X
which can be done in closed-form as detailed in [58] (Equation 8):

X ← (1− θ)X + θ1/2
(
XsγsT +X tγtT

)
diag(a−1), (4.30)

where θ ∈ (0, 1) is fixed or chosen with a line search, γs and γt are the two
transport maps computed at the first step, and a = (1/k)1≤ are the (uniform)
weights of the impostor. The procedure for generating the impostor is illus-
trated in Figure 4.5 for two toy graphs with 2D features.

We now define a triplet-based loss function that uses the notion of impostor
given in Definition 4.2.1.

Definition 4.2.2. Let Gs and Gt be two attributed graphs. Define:

L1(τ) = DWp(Gs,Gt | τ)−
(
DWp(Gs,G0 | τ) + DWp(Gt,G0 | τ)

)
. (4.31)

The diffusion parameter can be now defined as the solution of the following
optimization problem:

τ ∗ = argmin
τ≥0

{L1(τ)} , (4.32)

Intuitively, like in metric learning, the idea is to learn the parameters of a
model (here, a unique diffusion time τ) that (i) constrains Gs and Gt to get
closer while (ii) preventing a scenario facilitating the bringing together of Gs
and Gt with a “different” graph. However, unlike supervised metric learning
where the impostors of a pair of points of the same class can be defined as the
training samples of the opposite label in the close neighbourhood, the notion
of “different” is here ill-defined because of the absence of target labels in DA
tasks. By using G0 as defined above, we generate an impostor sufficiently close
in terms of features (defined as the Wasserstein barycenter) and structure
(mean structure of Gs and Gt in terms of vertices) forcing the identification
of a parameter τ which aligns as well as possible Gs and Gt while ensuring a
certain “margin” to a different but related graph.

4.2.3 A quadruplet-based loss function to learn τ

We introduce a second loss function, with a similar design to L1. Two impos-
tors are used instead of one. Theoretical and practical comparison of these
two losses is done in Section 4.2.4.
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Definition 4.2.3. Let G be a graph of size n nodes, with node features X
and associated probability distributions µ over the nodes. The impostor G†
with respect to G is a graph with n† = n nodes. Its features are equal to the
original graph X† = X. The adjacency matrix A† of G† is sampled according
to an Erdös-Rényi model [106], with connection probability p† = p the average
connection probability of G.

Similarly to L1, we define L2 with the second definition of impostor.

Definition 4.2.4. Let G1 and G2 be two attributed graphs. Define:

L2(τ) = DWp(Gs,Gt | τ)− 1
2
(
DWp(Gs,Gt† | τ) + DWp(Gt,Gs† | τ)

)
. (4.33)

The diffusion time τ can be defined as the solution of the following opti-
mization problem:

τ ∗ = argmin
τ≥0

{L2(τ)} , (4.34)

Remark 4.2.1. With the two definitions of impostor, we defined two possible
losses: L1 (in Equation 4.31) that uses 1 impostor, and L2 (in Equation 4.33)
that uses 2 impostors. Note that their mathematical definitions have a similar
shape, but use different definitions of impostor and L2 has a factor 1/2.

The intuition behind L2 is the same as L1. Minimizing this loss promotes
closeness between Gs and Gt, while keeping Gs away from a "false" version of
Gt (and vice-versa). Because an impostor is a copy of a graph with "shuffled"
links, minimizing the loss prevents ignoring the structure, as Gs has to get
close to Gt but far from its copy with no underlying structure (random edges).

4.2.4 Analysis of the loss functions
In this section, we provide a thorough analysis of our loss functions. First,
we illustrate the correlation between the minimizer of Equations 4.31 and 4.33
and the corresponding accuracy on a DA task. Then, after the derivation of
some theoretical properties, we give evidence that they are very robust to some
approximations aiming at reducing their algorithmic complexity.

Correlation between minimum of the loss and DA accuracy

The coupling matrix γ resulting from the calculation of DWp(Gs,Gt | τ) with
τ the solution of Problems 4.31 or 4.33 can be directly used for addressing a
graph DA task. Given γ, each target node is assigned the class corresponding
to the most mass transported to it: argmax

cl∈[1,K]
{∑i γi,j|li = cl}. According to this

classification rule, one can compute the DA accuracy measuring the level of
agreement between the predicted and the expected labels.

In Figure 4.6, we illustrate the correlation between L1(τ) and L2(τ) and the
DA accuracy from two source and target synthetic community graphs, made of
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200 nodes and 3 classes. A community graph is built by (i) assigning a random
class to each node, (ii) generating 2D features using a Gaussian distribution
with a different center for each class, (iii) connecting all points of the same class
that are closer than some radius r, and (iv) linking points of different classes
at random with a small connection probability. The two resulting source and
target graphs are presented in Figure 4.6a. In Figure 4.6b and Figure 4.6c, we
plot the losses L1(τ) and L2(τ), and the accuracy obtained from a large range
of τ . The most interesting point is that the global minimum of the losses (which
are not convex in general with potentially several local minima) corresponds
to the parameter τ yielding the maximum accuracy. On the other hand, the
global maximum of L1(τ) and L2(τ) matches with the worst behaviour in DA.
Therefore, this correlation between loss and accuracy confirms the interest of
our losses for addressing graph-based optimal transport tasks with Diffusion
Wasserstein distances.

Theoretical properties

Given the definition of the loss functions L1(τ) and L2(τ), we can derive the
following properties.

Theorem 4.2.1. Let Gs and Gt be two connected attributed graphs. The loss
function L1(τ) of Eq. (4.31) is continuous, negative, and its limits are:

lim
τ→0
L1(τ) = lim

τ→∞
L1(τ) = 0. (4.35)

Proof. Continuity stems from continuity of all the functions involved.
Then, writing Xu

τ the distribution of the features of a graph Gu diffused for
a time τ (u ∈ {0, s, t}), we have:

L1(τ) = DWp(Gs,Gt | τ)−
(
DWp(Gs,G0 | τ) + DWp(Gt,G0 | τ)

)
(4.36)

= W(Xs
τ , X

t
τ )− (W(Xs

τ , X
0
τ ) + W(X0

τ , X
t
τ )). (4.37)

W being a distance, negativity follows from triangle inequality.
Now, denote Xs and X t the features of Gs and Gt, and X0 the features of

the impostor G0. By definition of X0 as a minimizer:

W(Xs, X0) + W(X t, X0) ≤ W(Xs, X t) + W(X t, X t) (4.38)
≤ W(Xs, X t), (4.39)

and by triangle inequality we have:

W(Xs, X0) + W(X t, X0) ≥ W(Xs, X t). (4.40)

By combining Eq.(4.38) and (4.40), we get:

L1(0) = W(Xs, X t)− (W(Xs, X0) + W(X t, X0)) = 0. (4.41)
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(a) Source (left) and target (right) community graphs

(b) L1(τ) and DA accuracy as a function of τ .

(c) L2(τ) and DA accuracy as a function of τ .

Figure 4.6: Correlation between L1(τ) and L2(τ) and the DA accuracy: (a)
source and target community graphs Gs and Gt; (b) the global minimum of
L1(τ) corresponds to the maximum accuracy reachable in a DA task; (c) the
global minimum of L2(τ) corresponds to the maximum accuracy reachable in
a DA task.
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Finally, [42], Remark 9.1, states that the expected value of the Wasserstein
barycenter is the barycenter of the expected values, so we get:

E[X0] = 1
2
(
E[Xs] + E[X t]

)
. (4.42)

From [18], Proposition 1, we have the limit of DW2:

lim
τ→∞

DW2(Gs,Gt) = ‖E[Xs]− E[X t]‖2. (4.43)

Therefore, we know that the limit of L1(τ) exists and is:

lim
τ→∞
L1(τ) = ‖E[Xs]− E[X t]‖2

− ‖E[Xs]− E[X0]‖2 − ‖E[X t]− E[X0]‖2

= ‖E[Xs]− E[X t]‖2

− 1/2‖E[Xs]− E[X t]‖2 − 1/2‖E[Xs]− E[X t]‖2

= 0. (4.44)

Theorem 4.2.2. Let Gs and Gt be two connected attributed graphs. The loss
function L2(τ) of Eq. (4.33) is continuous, and its limits are:

lim
τ→0
L2(τ) = lim

τ→∞
L2(τ) = 0. (4.45)

Proof. Like L1, continuity stems from the continuity of all the functions in-
volved.

Next, denotes Xs, X t, Xs† and X t† the features of Gs, Gt, Gs† and Gt†
respectively. By unrolling the definition of L2 in 0 we have:

L2(0) = W(Xs, X t)− 1/2(W(Xs, X t†) + W(X t, Xs†)) (4.46)
= W(Xs, X t)− 1/2(W(Xs, X t) + W(X t, Xs)) (4.47)
= 0. (4.48)

Finally, by writing xs = 1/m
∑
iX

s
i = 1/m

∑
iX

s†
i and xt = 1/n

∑
iX

t
i =

1/n
∑
iX

t†
i we have:

lim
τ→∞
L2(τ) = d(xs, xt)− 1/2(d(xs, xt) + d(xt, xs)) (4.49)

= 0. (4.50)

Thanks to Theorems 4.2.1 and 4.2.2, the proposed losses prevent the trivial
values τ = 0 or τ →∞ from being chosen.
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Approximations of L1(τ) and L2(τ)

The algorithmic complexity of the losses L1 and L2 depends on three main
elements: (i) the exponential of the graph Laplacians, (ii) the Wasserstein
distance W on the diffused source and target features and (iii) the size of the
impostor. Different strategies can be used to simplify the overall complexity,
including (but not exhaustively) the entropic regularisation [41], the reduction
of the impostor sizes, or a Chebychev approximation of the diffusion [19] (see
also Section 4.1). In the following, we study the capacity of our losses to resist
these approximations and thus to provide a similar global minimum.

Entropic regularisation The entropic regularisation of W [41], as defined
in Eq. (1.16), allows to overcome the limitations of the original problem due
to the super-cubic complexity, the instability and the non uniqueness of the
solution. The entropy-regularized version is several orders of magnitude faster
(an η-approximation is computed in O(n2 log(n)η−3) [100]). Using the same
graphs as those of Figure 4.6a, Figures 4.7a and 4.7b show the magnitude of
the losses L1 and L2 for different values of the regularisation parameter ε. We
can see that whatever the value of ε the shape of the resulting loss does not
change much, meaning that the global minimum stays very close to the one
corresponding to the maximum accuracy (see the dashed-line in Fig. 4.6).

Chebychev approximation of the diffusion. Instead of calculating the
exact heat kernel applied to the features, one can resort to polynomial approx-
imations [93] of the diffusion. Following [19], and benefiting from our contri-
butions detailed in Section 4.1, we applied a Chebychev approximation of the
exponential operator where the truncation order (degree of the final approx-
imating polynomial) offers a trade-off between accuracy and computational
speed. An illustration of the effect of various truncation orders on the losses
L1 and L2 is given in Figures 4.7c and 4.7d. Once again, the global minimum
appears to be very robust to changes in the degree of the approximation.

Note that contrary to what was done in Section 4.1, we do not aim a good
approximation by defining a reasonable approximation error, but instead show
that even an aggressively low degree can still be enough to select τ .

Size of the impostor for L1. While Def. 4.2.1 suggests to set the size of
G0 to dm+n

2 e, we study here the impact of reducing the number of nodes of
G0 before computing the Wasserstein barycenter. The behaviour of the loss
L1(τ) is reported in Figure 4.7e for different reduction ratios (from 2 to 10).
Interestingly, we can observe that even though the curves get smoother as the
size of the impostor decreases, the global minimum changes very little, pointing
to a relatively stable value for τ . Note that the connection probability of G0

has to adapt to the reduction ratio. For instance, if the size is reduced by a
factor of 2, p0 must be doubled.
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Size of the impostor for L2. In Definition 4.2.3, the impostors have the
same size as the initial graphs, as they are defined as copies with shuffled links.
While the impostor construction procedure is not as time consuming as for L1,
computing the loss L2 itself repeatedly may still be too computationally heavy.
Similarly to L1, the impostor sizes can be decreased, by subsampling the nodes
and increasing the connection probability proportionally. The behaviour of the
loss L2(τ) is reported in Figure 4.7e for different reduction ratios (from 2 to
10). We observe again that the global minimum is not affected much by this
technique, unless the reduction factor is too high. Note that an alternative
technique is to compute the impostors at full size, and subsample nodes at
computation time after diffusion. Computing a transport distance with a re-
duced randomized sample of the available points have been shown to yield
good approximations for any transport distance [109].

Using two values of τ

While the definition of DW allows two diffusion times, τ s for the source and τ t
for the target, both our losses L1 and L2 assume τ s = τ t. There are multiple
ways to extend L1 and L2 to R2

+ 7→ R such that minimizing them yields one
value of τ per graph. We explored 5 variations of our losses, that diffuse for
some time τ s on Gs and τ t on Gt, and some combination/permutation of τ s
and τ t for the impostors. They are:

DWp(Gs,Gt | τ s, τ t)−
(

DWp(Gs,G0 | τ s, τ
s + τ t

2 ) + DWp(Gt,G0 | τ t, τ
s + τ t

2 )
)

(4.51)
DWp(Gs,Gt | τ s, τ t)−

(
DWp(Gs,G0 | τ s, τ s) + DWp(Gt,G0 | τ t, τ t)

)
(4.52)

DWp(Gs,Gt | τ s, τ t)−
(
DWp(Gs,G0 | τ s, τ t) + DWp(Gt,G0 | τ t, τ s)

)
(4.53)

DWp(Gs,Gt | τ s, τ t)−
1
2
(
DWp(Gs,Gt† | τ s, τ s) + DWp(Gt,Gs† | τ t, τ t)

)
(4.54)

DWp(Gs,Gt | τ s, τ t)−
1
2
(
DWp(Gs,Gt† | τ s, τ t) + DWp(Gt,Gs† | τ s, τ t)

)
(4.55)

However, we are not able to conclude at this time if any of these methods are
a reliable way to select τ s and τ t. When plotting these functions on synthetic
data, most of them do not present a clear global minimum that correlates with
the maximum of DA accuracy.

4.3 Conclusion
Computing DW is costly, as it inherits the super-cubic complexity of W and the
cubic complexity of the diffusion process. It also introduces a new hyperpa-
rameter τ to control the trade-off between the features and the structure. In
this chapter, we presented two contributions:

1. We proposed a Chebychev approximation of the diffusion process. We
proved a new bound on the approximation error that improves upon
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(a) Entropy regularisation for L1. (b) Entropy regularisation for L2.

(c) Chebychev polynomials for L1. (d) Chebychev polynomials for L2.

(e) Impostor downsizing for L1. (f) Impostor downsizing for L2.

Figure 4.7: Behavior of the losses L1 and L2 computed from the two source
and target Community Graphs of Fig. 4.6a in three approximation scenarios:
(a) effect of the entropic regularisation used in the inner DW distance for various
values of the regularisation parameter ε; (b) effect of downsizing the number
of nodes of the impostor; (c) effect of approximating the diffusion process with
different Chebychev polynomials. The dashed line represents the exact L1 or
L2.
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the state of the art, allowing to select a smaller polynomial order and
thus saving more computation time. We also showed how part of the
computations can be reused when computing the diffusion for the same
attributed graph at different diffusion times. This factorization enables
optimizing DW over τ , which is crucial for the next contribution.

2. We designed a new scheme to select the hyperparameter τ in a Domain
Adaptation context. It is based on the notion of impostor, and consists in
minimizing a triplet-based or quadruplet-based loss function. We showed
on synthetic data how the proposed losses coincide with the maximum
of the DA accuracy. We also proposed various methods to alleviate the
additional cost of having to repeatedly compute DW distances to minimize
the proposed losses.
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On est trop souvent imprécis
lorsqu’on fait une citation.

Quelqu’un, un jour.

This chapter gathers most of the experimental studies we performed. In
Section 5.1 we present the synthetic data model often used in our experiments
(the Contextual Stochastic Block Model), and analyse the circular validation
criterion to show its limits. In Section 5.2, we perform Domain Adaption
experiments on synthetic and real data, comparing a wide variety of OT-based
methods. We show that DW outperforms the other OT-based methods when
using our heuristics to select the hyperparameter τ (defined in Section 4.2).

5.1 Preliminary analysis

5.1.1 Synthetic Data: Contextual Stochastic Block Model
In the following experiments, we use a Contextual Stochastic Block Model [110]
(CSBM) for both the source and target data. These graphs have an underlying
block structure: at generation, each node is assigned a label, and the labels are
only used to generate connections and attributes. This way, nodes in the same
block (with the same underlying label) are statistically more closely related
that nodes in different blocks.

We describe how these graphs are generated. The first step is to generate
the labels. In practice we only use 2 labels +1 and −1, sampled with proba-
bility 1/2 each. But any number of labels K is possible, and label distribution
is not necessarily uniform.

The structure of these graphs follows a Stochastic Blockk Model [111]
(SBM). Edges are sampled at random using a matrix M ∈ [0, 1]K×K : the
probability of two nodes ni and nj of labels li and lj being connected is Mli,lj .

We use M =
(
c+1 c0
c0 c−1

)
/N , where c+1, c−1 and c0 are constants and N is the
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Figure 5.1: Example of a CSBM graph

graph’s size. The 1/N factor is used to control the edge’s density regardless of
the graph’s size.

The attributes are sampled according to a d-dimensional Gaussian model,
where the Gaussian’s center depends on the label l of a node. We adopt a
slightly simpler approach than the original CSBM model with 1d attributes
for ease of visualisation and analysis (later on in Sections 5.2.2, real data will
possess multi-dimensional features). Attributes are sampled according to the
law N (l, σ), where l is the node’s label and σ a parameter of the experiment.

An example of a CSBM graph is plotted in Figure 5.1. The node’s positions
in the figure are arbitrary: they are chosen to separate the two blocks in space.
The features are represented by the color of the nodes: darker nodes have a
higher associated feature (we use 1-dimensional features). The labels are not
represented, but the two groups are still clearly visually separable in the figure.

5.1.2 Limit of Circular Validation
In this section, we perform a simple experiment to highlight how the circular
validation criterion [98] can fail to properly assess the quality of a transport
map.

We recall the definition of the circular validation score from Section 4.2.1.
From the source labels ls and a transport map γ, the pseudo-labels for the
target l̃tj are:

l̃tj = lsargmax
1≤i≤Ns

{γi,j}. (5.1)

Then, the pseudo-labels for the source l̃si are:

l̃si = l̃targmax
1≤j≤Nt

{γi,j}. (5.2)
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(a) Score comparison for DW against
hyper-parameter τ .

(b) Score comparison for FGW against
hyper-parameter α.

Figure 5.2: Comparison of the (unsupervised) circular validation score and
the (supervised) target graph labelling accuracy of two OT-based methods for
CSBM data. Graphs are generated following the same CSBM block model; its
default parameters are N = 200, p+1,+1 = p−1.−1 = 0.4, p+1,−1 = p−1,+1 = 0.1
and σ = 2.

Finally, the score is defined as the accuracy between the pseudo and the real
source labels:

s(γ) =
|
{
i | lsi = l̃si

}
|

N s
. (5.3)

The experiment setup is the following. Two CSBM graphs are sampled
following the same distribution. For DW and FGW we compute a transport map
between the two graphs with varying hyper-parameters τ and α respectively.
Transport maps are then evaluated according to two criteria: the (unsuper-
vised) circular validation score, and the (supervised) target graph labelling
accuracy |{j | l

t
j=l̃

t
j}|

Nt .
The results are visible on Figure 5.2. In the first subfigure 5.2a we can

see that the circular validation score is constant equal to 1, while the accuracy
varies up and down with τ . Therefore, this unsupervised score can not be used
to select this hyper-parameter in this scenario. The same can be seen in the
second subfigure 5.2b, with FGW and its hyper-parameter α.

This behaviour may be due to the fact that the transport maps produced
by both DW and FGW are sparse, and therefore the source labels are perfectly.
For instance, any transport map that is a permutation matrix will always have
the highest circular validation score, regardless of the original data. This ex-
periment highlights the need of a better hyper-parameter selection procedure,
such as the one we proposed in Section 4.2.

5.2 Domain Adaptation tasks
In this section we look at DA problems where source and target data are
attributed, possibly labelled graphs (see Section 1.4.2 for an introduction). A

69



Chapter 5. Experimental study

concrete application would be for instance transporting an analysis made on
a specific timestamp of the Wikipedia encyclopedia to other versions of it. A
similar idea is to transfer models learned on one social graph to another (say
from one social network to another).

We address the most complicated DA scenario where source and target
domains are considered and labels are only available in the former. Data from
the two domains are supposedly drawn from different but related distributions
and the goal is to reduce this distribution discrepancy while benefiting from
the supervised information from the source [64]. Note that when dealing with
a DA task between attributed graphs, the divergence can come from three
situations: (i) a shift in the feature representation of the source/target nodes;
(ii) a difference in the graph structures; (iii) both of them. In this section, we
study these three settings.

We perform two series of experiments dedicated to compare several optimal
transport methods on graph Domain Adaptation tasks. In the first one, we
use Contextual Stochastic Block Models [110] to generate synthetic data. The
second one concerns the ogbn-arxiv graph [112] and aims at classifying papers
published in a given year from articles published before.

OT-based DA methods

Under different experimental conditions, we compare in DA tasks the relevance
of our diffusion distances DW (3.1), to state-of-the-art OT-based distances. All
these OT methods from the literature have been presented in Section 2.2. We
recall them here.

Let Gs and Gt be two attributed graphs of size m and n nodes, with node
distributions µ and ν. Let Xs and X t be the associated node features. Let Cs

and Ct be an associated structure matrix; we use the shortest-path matrix. Let
Ls and Lt be the associated graph Laplacians. Let ls and lt be the associated
node labels.

The Wasserstein distance [51] (W) compares distributions via a pair-wise
cost of moving samples onto another (represented by a cost matrix in the dis-
crete case). Here it is computed by solving the following optimisation problem:

W(µ, ν) = argmin
γ∈Π(a,b)


m∑
i=1

n∑
j=1

γi,j · ‖Xs
i −X t

j‖2

 . (5.4)

The Gromov-Wasserstein distance [60] (GW) has been originally defined for
comparing two distributions that do not necessarily lie in the same feature
space. Based on intra-distribution pairwise distances/costs, GW provides a nice
framework for computing a distance between two graphs by encoding some
structure, like the shortest path between two vertices. Here it is computed by
solving:

GW(µ, ν) = min
γ∈Π(a,b)

∑
i,j,k,l

|(Cs
i,k, C

t
j,l|2γi,jγk,l.

 , (5.5)

In order to consider both the features associated to the nodes and the
structure of the graphs, the Fused-Gromov-Wasserstein (FGW) distance has
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been recently introduced in [15]. FGW acts as a combination of the Wasserstein
distance (focusing only on the features) and the GW distance (considering only
the structure). It is computed by solving for some α ∈ [0, 1]:

FGWpp(µ, ν) = min
γ∈Π(a,b)

∑
i,j,k,l

(
(1− α)Mp

ij + α|Cs
ik − Ct

jl|p
)
γijγkl

 . (5.6)

In the presence of labels (which is the case in our context), the authors
of [71] introduce two possible regularisation terms, based on the Laplacian
of a graph encoding the class structure. Here, we use it with the Laplacians
of the graphs themselves, because this structure information is available in
the context we consider. Later in the experiments, this method is named
OT_LAPLACE. For this method, we solve:

min
γ∈Π(a,b)

{
〈γ,M(Xs,Xt)〉+ λsTr(XT

t γ
TLsγXt) + λtTr(XT

s γLtγ
TXs)

}
(5.7)

min
γ∈Π(a,b)

{
〈γ,M(Xs,Xt + λsBs + λtBt)〉+ λsTr(XT

t γ
TLsγXt) + λtTr(XT

s γLtγ
TXs)

}
,

(5.8)

with Bs = −1/Ns(Ls + LT
s )XsXT

t and Bt = −1/NtXsXT
t (Lt + LT

t ).
The OTDA [50] algorithm is based on the Wasserstein distance, but uses

a group-lasso regularisation term on the labels, to prevent points of different
labels from being mapped together. Later in the experiments, this method is
named L1L2_GL. It is computed by solving:

argmin
γ∈Π(a,b)


m∑
i=1

n∑
j=1

γi,j · ‖Xs
i −X t

j‖2 +
∑
j

∑
cl

‖γ(Icl, j)‖2.

 (5.9)

All these methods are compared with ours, the DW distance, for which we
distinguish 5 variations:

• DW_CV, where τ is tuned using a circular validation criterion.

• DWL1, where τ is the minimizer of our loss function L1.

• DWL2, where τ is the minimizer of our loss function L2.

• DWL1,ε, which uses entropic regularisation and τ selected by minimizing
L1.

• DWL2,ε, which uses entropic regularisation and τ selected by minimizing
L2.

Tuning hyper-parameters

When no other heuristic is explicitly used, we resort to the circular validation
procedure derived in [98] to select hyper-parameters (see Section 4.2.1). Al-
though both source and target graphs are labelled, the ground truth on the
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vertices of Gt is hidden until the final evaluation. Therefore, only the ground
truth labels on the vertices of Gs are used for the tuning procedure.

For DW we managed to design others unsupervised criterion that yield con-
sistently better results (see Section 4.2). But for other methods such as FGW, in
the absence of a better alternative, we resorted to this method for the domain
adaptation tasks.

5.2.1 Domain adaptation on synthetic data
To compare all OT based methods on a DA task, CSBM are generated, and
each method is used to predict the target graph’s labels.

For this experiment, 50 pairs of graphs are generated. The model parame-

ters, described in Section 5.1.1, are N s = N t = 240, M s =
(

0.2 0.05
0.05 0.2

)
and

M t =
(

0.2 0.05
0.05 0.2/3

)
, σs = 2 and σt = 4. These parameters were chosen after

some trials and errors to be challenging but not impossible.
OT methods are evaluated on their capacity to predict the target labels.

Using the same procedure as earlier (see Equation 4.26), pseudo-labels are
computed for target nodes, and compared with the ground truth, yielding an
accuracy score.

When applicable, each method has 35 attempts to tune its hyper-parameters
using the circular validation procedure described in Section 4.2.1.

The results are reported in Figure 5.3. The accuracy scores of each method
over the 50 graph pairs are plotted as a boxplot, displaying the median perfor-
mance, the quartiles and the 10th and 90th percentiles as well as the outliers
(i.e. out of the 10th and 90th percentiles). We can make the following com-
ments. First, we can note that the Gromov Wasserstein distance is worse than
random guessing. This behaviour can probably be explained by a coupling
matrix that permutes the classes. Second, the approaches that take into ac-
count both the feature and the structural information (i.e. FGW and DW-based
methods) outperform the competitors. Third, DW-based methods are better
than any other method in this context, with a more stable behaviour for the
regularized version of our loss function. Finally, as expected, learning τ yields
a significant improvement compared to DW_CV based on the circular validation.

5.2.2 Domain Adaptation on real data
This second series of experiments concerns the real ogbn-arxiv graph [112].
Although originally designed for node classification, we cast the problem as a
Domain Adaptation task and we address it using the same methods as in the
previous section. Each node of the graph represents a paper published in Arxiv.
A link from one node to another indicates that this later is cited by the former.
The feature of a node is an embedding of the paper’s title and abstract, and it
lies in R128. Nodes are labelled according to their corresponding subject area
among 40 possible labels. Finally, each node is associated with a publication
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Figure 5.3: Median, quartile and decile accuracy of various OT methods on the
task of transferring the labels of Gs to Gt, over 50 sampling of source/target
graph pairs.
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(a) Year 2006 (b) Year 2007

Figure 5.4: Structure of the ogbn-arxiv graph, restricted to two different time
periods. Node positions are for readability of the structure, and do not relate
to the node labels or features.

year. In Figure 5.4 two sub-graphs are represented, restricted to nodes of year
≤ 2006 (Figure 5.4a) and year ≤ 2007 (Figure 5.4b).

In our setting, the source graph corresponds to the papers published before
2006. Its size is m = 3678. The target graph contains the articles published
before 2007 (n = 4980 nodes). This makes the source graph a sub-graph of
the target one and therefore, the DA accuracy is measured only on nodes of
year 2007:

acc(γ) = 1
1302

4980∑
j=3679

δl̂tj=ltj
. (5.10)

For GW, the source and target cost matrices are built from the shortest-
distances in the graph. Because the graph is not connected and the solver
cannot handle infinite costs between two nodes, infinite values are replaced
by twice the longest length path. For FGW, the same cost matrices are used,
along with the pairwise Euclidean distance between the features. For the
hyper-parameter α, 10 values are sampled uniformly in [0, 1] and the best one
is selected using circular validation. For DW, the hyper-parameter τ is either
determined by circular validation among 10 logarithmically spaced values in
[10−3, 101], or chosen by minimizing L1 and L2. Finally, the size of the impostor
graph G0 is set to 500 nodes.

The test accuracies are reported in Table 5.1 as well as the computation
times. Hyper-parameter tuning is included is the computation time, but cost
matrix computation is excluded for FGW and GW as they are constant and as-
sumed pre-computed. We can note that DW outperforms the competitors in
terms of accuracy and remains much cheaper than FGW from a computational
angle. The results also confirm that learning τ by minimizing the triplet loss
L yields much better results than the circular validation.

All experiments are written in Python and use the libraries POT [113] for
optimal transport methods, PyGSP [114] for graph generation, OGB [112] for cor-
responding graph dataset and NumPy and SciPy for other computations. The
code is available at the following address: https://gitlab.aliens-lyon.fr/
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Table 5.1: Computation time and test accuracy of various OT-based DA meth-
ods on the ogbn-arxiv graph restricted to years ≤ 2006 (for the source) and
≤ 2007 (for the target) with 3678 and 4980 nodes respectively.

Method Computation time Test accuracy
DWL1,ε=0.1 105s 54%
DWL2,ε=0.1 117s 54%

DWL1 92s 41%
DWL2 124s 41%

L2L1_GL 1502s 34%
DW_CV 69s 35%

FGW 1489s 35%
OT_LAPLACE 4472s 25%

W 4s 30%
GW 393s 17%

dbarbe/manuscript-experiments.
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Conclusion

The contribution of this manuscript takes the form of the definition and
the analysis, both theoretical and algorithmic, of a new family of Diffusion-
Wasserstein distances (DW). DW lies at the intersection of Graph Signal Pro-
cessing [7] and Optimal Transport [42]. It generalizes the Wasserstein distance
by offering a way to compare attributed graphs, and behaves very efficiently
when used for addressing Domain Adaptation tasks.

In Chapter 1, we laid down the theoretical notions and tools required for
our contributions. We defined the kind of data that we manipulate: attributed
graphs [23]. These objects combine two modalities: (i) a graph, a set of nodes
and link between them, that represents the structure of the object, and (ii)
attributes, a fixed-sized real-valued vector for each node, that represent a de-
scription of the individual nodes. They are very generic data models that
encompass a lot of objects. They are difficult to study, because of their intrin-
sic non-linearity and the fact that they combine multiple modalities. Then,
we recalled some notions of Graph Signal Processing, a field dedicated to the
study of signals defined on graphs. In particular, we studied a specific graph
filter: the heat diffusion in graphs [32]. It is a dynamical process on graphs
that mimics the physical process of heat diffusing in a material. This tool is
one of the building blocks of DW; we use it to merge the structure information
and the feature information. Finally, we gave an introduction to the field of
Optimal Transport. We gave the definition of the Wasserstein distance [51], a
tool that both defines a distance between distributions, and a joint distribution
between them that allows mapping sampled from one to the other.

In Chapter 2, we recalled various distances and OT methods between at-
tributed graphs and similar objects. All of them were selected because of their
relevance to DW: they either served as inspiration, or can be used to perform
the same task. We recalled their formal definitions, mathematical complexity,
and gave the pros and cons of each method. The Graph Diffusion Distance [67]
simply measures a similarity between graphs of the same size; its use of the dif-
fusion operator served as inspiration. The Gromov-Wasserstein distance [60] is
a variant of the Wasserstein distance used to compare distributions supported
on different spaces. The Fused-Gromov-Wasserstein distance [15] was intro-
duced to define a distance between distributions on attributed graphs; it is the
tool closest to our method. Laplacian regularization [71] is a term that can
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be added to the existing Wasserstein distance to take into account labels or a
graph structure. Finally, the `1-`2 group-lasso regularizer [73] can be added to
the existing Wasserstein distance too to take into account labels.

In Chapter 3, we gave the formal definition of our new distance, the
Diffusion-Wasserstein distance. We proved several theoretical properties, namely
that (i) it generalizes the Wasserstein distance, (ii) its limit when the diffu-
sion time goes to infinity is the difference of the means of the features (iii)
bounds on its expected value and (iv) conditions for it to define a metric. We
also introduced variants: adding regularization, modifying other methods with
diffusion and using other filters than diffusion.

In Chapter 4, we discussed specific points about the implementation and
the use of DW. We first discussed a fast implementation of the diffusion process
based on Chebyshev polynomials [79]. We detail the approximation process,
and devise new bounds on the approximation error that improve upon the liter-
ature, allowing to choose a smaller truncation order to get below a given error.
The complete algorithm is detailed, and experiments support this approach.
Then, we discussed the choice of the hyper-parameter τ , the diffusion time,
in a Domain Adaptation context. We devised a method to select this hyper-
parameter tailored to DW, which involves the minimization of two possible loss
functions, inspired by the existing notion of triplet loss.

Finally, in Chapter 5 we performed various experiments in Domain Adap-
tation to validate our design of DW. Our new method outperforms others OT-
based methods both on synthetic and real data. This experiment also validates
the use of our new loss functions to choose the hyper-parameter τ . On top of
getting the best performances in the contexts studied, these experiments also
show that our method runs faster than almost all methods we studied.

Perspectives The research work presented in this manuscript opens the
following research directions:

• Our approach to optimising the hyper-parameter τ by minimising a
triplet-based (or quadruplet) loss function proved to be successful com-
pared to the use of the circular validation criterion. We think this ap-
proach has potential for other families of distances indexed by one or
more hyper-parameters. Applying this method in other contexts requires
to design a suitable notion of impostor, and the corresponding loss, and
find a suitable loss optimisation algorithm (as not all distances are C1.

• In Section 3.3.1 we hinted at the possibility of going beyond diffusion, by
using graph filters other than the diffusion filter studied in this manuscript.
We believe the study of different graph filters to merge the feature and
structure information is promising, as suggested by our results here with
the diffusion. These methods would be able to leverage the existing
body of work on Graph Signal Processing, and retain the computational
advantage and all the variants of Optimal Transport.

• Our Diffusion-Wasserstein Distance was studied in the context of Domain
Adaptation. As computing DW defines both a distance and a transport
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map, future research directions include trying to use it for other Machine
Learning tasks on attributed graphs, like as a kernel for classification.
The main difficulty will come from the definition of impostors in these
new contexts. In the case of classification for instance they could be
picked from the dataset rather than synthesized, and the loss could be
averaged over multiple pairs.

• The losses we defined to select DW’s hyper-parameters assume that τ s
and τ t are equal. Designing an improved method that do not rely on
this assumption is necessary, as there will be cases where having them
different is necessary for optimal performances. We hinted at a few
possibilities in Section 4.2.4, but did not find a definitive answer yet, so
this possibility remains open for future research.

• Privacy is a huge concerns for some attributed graphs (such as social
graphs). All the distance computation methods presented here assume a
perfect knowledge of the data, which may not be desirable in some cases.
Therefore, another possible research direction is the design of privacy-
preserving distances between attributed graphs. This topic that have
been addressed on some distances (see [115] for instance) but not on this
type of data yet.
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Abstract:
This thesis is about the definition and study of the Diffusion-Wasserstein

distances between attributed graphs.
An attributed graph is a collection of points with individual descriptions

(features) and links between them (structure), like molecules or a social net-
work. The Diffusion-Wasserstein distance is a generalization of the Wasserstein
distance. It defines a metric for attributed graphs, and allow the computation
of a transport map between them. It exploits the graph diffusion process to
define new features for the nodes, and compare them. The diffusion time τ acts
as a hyper-parameter, weighting the relative importance of the features and
the structure. Compared to other transport distances that take into account
features and a graph structure, the Diffusion-Wasserstein distance is faster to
compute and yields better results in Domain Adaptation tasks.

The computational side of the diffusion process received special attention.
We used polynomial approximation using a Chebychev basis to accelerate these
computations. We proved a new bound for the approximation error of the
exponential operator, and showed how parts of the computation can be re-
used for new diffusion times τ .

A specific heuristic was developed to choose the diffusion time τ . It works
by minimizing a function akin to a triplet-loss. I uses impostors, synthetic
graphs built to be dissimilar in specific ways to the original attributed graphs
whose distance is required. This heuristic yields better results for our method
than the circular validation criterion used in Domain Adaptation.

Résumé :
Ces travaux portent sur la définition et l’étude de la distance de Diffusion-

Wasserstein entre graphes attribués.
Les graphes attribués sont des collections de points avec une description

individuelle (attributs) et des liens entre eux (structure de graphe), comme
une molécule ou un réseau social. La distance de Diffusion-Wasserstein est
une généralisation de la distance de Wasserstein ; elle permet de définir une
distance entre des graphes attribués, et de calculer un plan de transport en-
tre eux. Son fonctionnement exploite la diffusion dans le graphe pour définir
de nouveaux attributs et les comparer. Le temps de diffusion τ joue le rôle
d’hyper-paramètre, contrôlant l’importance donnée aux attributs et à la struc-
ture. Comparée à d’autres distances de transport qui prennent en compte
attributs et structure de graphe, la distance de Diffusion-Wasserstein est plus
rapide à calculer, et donne les meilleures performances dans plusieurs tâches
d’apprentissage.

Le calcul du processus de diffusion a reçu une attention particulière. Ces
travaux ont porté sur une approximation à base de polynômes de Tchebychev.
Cette approximation permet d’accélérer le calcul de la diffusion. Une nouvelle
borne de l’erreur d’approximation qui améliore l’état de l’art a été prouvée, et
une méthode pour réutiliser une partie des calculs pour de nouveaux temps de
diffusion τ a été montrée.

Un heuristique spéciale pour le choix du temps de diffusion τ a été définie.
Celle-ci se base sur la minimisation d’une fonction, semblable à une triplet-loss,
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qui utilise des imposteurs, des graphes attribués construits pour être dissim-
ilaires aux données initiales. Cette heuristique obtient de meilleurs résultats
que le critère de validation circulaire utilisé jusqu’ici.
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