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Notations

General notations

nth-order tensors are underlined with n lines.

·T Transpose operator
Ω Region of Interest defined here as the physical surface over which

measurements are performed
S Silhouette of the Region of Interest in the considered image (global ap-

proaches) or Zone of Interest (local approaches)
φ· Transformation. (e.g. mechanical transformation φ

u
(x) = x+ u(x))

∇· Gradient operator
◦ Function composition operation
u Two-dimensional displacement vector field
u Discretisation of u collecting the values at degrees of freedom
〈·, ·〉 Scalar product
〈·〉 Expectancy operator (in the sense of a mean for different noises)

Camera model and photogrammetric calibration

For all point M of the three-dimensional space we will denote m the point defined as the
intersection of the considered camera retinal plane and the ray going from the camera optical
centre Oc toM . As m is a projection ofM , it will be considered as a point of a two-dimensional
space, and thus described thanks to two coordinates. Other notations are inspired to a large
extent from previous works [Garcia 2001].

M Vector of the three-dimensional space, e.g. Mw

m Vector of the two-dimensional space, e.g. mpix

Mw M coordinates in the world coordinate system Rw:
Mw = OwM = (Xw Yw Zw)T

M c M coordinates in the camera coordinate system Rc:
M c = OcM = (Xc Yc Zc)T

mr m coordinates in the retinal coordinate system Rr:
mr = Orm = (xr yr)T

mpix m coordinates in the picture coordinate system Rpix :
mpix = Opixm = (u v)T

m̃pix Homogeneous coordinates of m in the picture coordinate system Rpix :
m̃pix = Õpixm = (su sv s)T

R Rotation matrix
T Homogeneous rigid body matrix
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p Camera model parameters


pext Extrinsics (tx ty tz αβ γ)T

pint Intrinsics (fx fy u0 v0)T

d Distortions (δθ r1 r2 r3 d1 d2 p1 p2)T
W Physical space
P Camera parameter space
Π Image plane
I Domain of Π corresponding to the picture
P Camera projection model
1 Identity matrix
Np Number of points (calibration target)
Ni Number of images
Nc Number of cameras
x̂ij Detected pixel position of point j in picture i
θ Unknown vector associated with a single camera calibration
Θ Unknown vector associated with a multiple camera calibration

Full-field measurements in Digital Image Correlation

x Pixel coordinates of a point M (x = mpix)
X World coordinates of a point M (X = Mw)
f Reference state image
g Deformed state image
u Two-dimensional displacement vector
U Three-dimensional displacement vector
N j Shape function associated with the jth degree of freedom
N Matrix collecting the shape functions, such that, for instance, u(x) =

N(x) u

M
(i)
S 2D Digital Image Correlation Gauss-Newton algorithm Hessian matrix

at iteration i, for the functional defined over S
b Right-hand side in Gauss-Newton minimisation schemes
f Mean value of f
∆f Standard deviation of f
Itc Image taken at time t by camera c
Nt Number of time steps
S Three-dimensional shape correction field
Vh Finite-dimensional subspace for the Ritz-Galerkin method
H Stereo Digital Image Correlation Hessian matrix
R
shape

Reduction matrix for the shape measurement step
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Multiscale approaches in Digital Image Correlation

s Scale in multigrid or pyramidal schemes
Ns Number of levels of the multigrid or pyramidal scheme
h Discrete quantised pattern
n 2n+ 2 is the number of pixels in each direction of h
Ngl Number of quantisation levels (grey levels)
τ Shift (or translation) vector (τx τy)
Ah h auto-correlation
FT Fourier Transform
FT−1 Inverse Fourier Transform
H Hurst exponent
ε Stretch strain value

Photometric Digital Image Correlation (PhDIC) formulation

Most quantities in this section may depend on the considered camera (often denoted with a
subscript c) and time step (superscript t). Cameras may be indexed with a subscript i to avoid
misleading notations (e.g. Ztc,i is the unit Z vector associated to the camera reference frame of
camera i at time t).

Le Emitted radiance
Lf Falling radiance
Φr or E Irradiance
α Camera throughput
Ωf Solid angle of the falling light
θf Colatitude associated with the direction of the falling light
ϕf Azimuth associated with the direction of the falling light
r(X) Unit vector going from X to the considered camera optical centre
n Normal vector to Ω
ne(θe, ϕe) Unit vector pointing the direction (θe, ϕe) (light emitted)
nf (θf , ϕf ) Unit vector pointing the direction (θf , ϕf ) (light falling)
f(θf , ϕf , X, θe, ϕe) Bidirectional Reflectance-Distribution Function at point X and for direc-

tions (θf , ϕf ) (falling) and (θe, ϕe) (emitted)
ρ Albedo
Î Substitute image (= αL0

fρ in the case of an ambient lighting of uniform
radiance L0

f )
Ω̃ Deformed state of Ω
Ω̃vis Visible part of Ω̃ in the considered image
β Backprojection operator
J Determinant of the Jacobian matrix of P (absolute value)
V Visibility function
D Discrepancy map (indifferently shape correction or displacement)
ρ̃ Albedo in the deformed state
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ω Weighting in the functional
I Identity matrix (as a function of X)

Theoretical developments

∇Ω· Surface gradient operator
Nm Number of measures
γ Noise
γ Noise vector
N Normal law

Application on a real test case

As camera positions are completely different between the shape measurement step and the dis-
placement measurement one, pictures associated with the first step are denoted Ii and deformed
state ones Jj . This is to avoid misleading the reader with previous notations, as they might
assume that I0

i and I1
i correspond to the camera i lying at the same place between t = 0 and

t = 1. This is not the case here.
For the same reason, quantities such as visibility, camera projection model... are denoted

with a ′ (e.g. V ′j , P ′j).



General introduction

Context

Taking all sectors into consideration, the global aircraft industry generates about 2-3% of all
carbon gas emissions [Becken & Mackey 2017]. Concurrently, and despite the ongoing sanitary
and economic crisis, the long term aircraft industry growth is expected to average 5% a year until
2030 [European Commission 2020]. This trend has been observed over the last decades and, as
shown in Figure 1, air traffic has proven itself to be relatively resilient throughout the crises that
it has faced. Based on these considerations, the question is not whether air traffic will recover
from COVID 19 pandemic but when it will recover. To mitigate the impact of aircraft industry
on carbon gas emissions associated with this exponential growth, public authorities defined
ambitious road maps. For instance, by 2050, a 75% reduction in CO2 emissions compared to
2000 levels stands for one of the most challenging goals [European Commission 2015, Part 2
“The Rationale for CleanSky 2”]. To achieve these goals, ground-breaking innovations in aircraft
design cycles are needed, including in terms of weight and structural mechanics [ACARE 2017,
“Fostering implementation”].

Scheduled commercial traffic 
Total (international and domestic) services 2 Source: ICAO Annual Report of the Council 

Air traffic has been vulnerable to external factors 
including disease outbreaks  

Figure 1: Revenue Passenger-Kilometres (thick line) and Freight Tonne-Kilometres (thin line).
Reproduced from [OACI 2020].

Currently, aircraft design cycles are based on the pyramid of tests [Rouchon 1990]. Such a
pyramid is sketched in Figure 2. It relies on the matching of data from tests (left hand side)
together with data from models (right hand side). This matching is performed at different scales,
from coupon tests (bottom of the pyramid) up to full scale tests (top). It should be noted that
as scale increases (from bottom to top), the number of tests performed and models available
shrinks, resulting in the pyramidal shape. The reasons for that are simple: as scale increases,
costs associated with tests soar and, typically, only one full-scale test will be performed for a
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Figure 2: Testing pyramid in aeronautics. Increasing test scale goes hand in hand with increas-
ing costs, thus the number of tests decreases as the test scale increases. Regarding modelling,
the greater the scale, the wider the gap between predictions and tests. As a result, the num-
ber of available models decreases as scale increases. Based on [Rouchon 1990] and [Passieux
et al. 2015a, Figure 1]. Pictures are courtesy of DGA Aeronautical Systems.

given aircraft. At the same time, the number of available models decreases at an even faster
rate, because of the lack of predictability at the largest scales.

Most, if not all, mechanical models rely on a set of parameters describing the behaviour
of a material under given conditions (geometry, loads, boundary conditions...) and at a given
scale. The knowledge of these parameters and of the associated uncertainties allows one to
predict the response of a system within a margin of error. When this margin becomes too wide,
tests need to be performed in order to adjust the model. That is to say identify more precisely
the model parameters. However, uncertainty on the identified parameters is closely related
to the amount of available relevant data - without any data, there is no chance to retrieve
the associated parameters. As scale increases the number of parameters to identify increases as
well, because geometries, loadings, anisotropy and/or inhomogeneities, and boundary conditions
become more complex to represent. For instance, the geometry, or shape, of a part in an
assembly may substantially differ from its geometry when considered alone, because of the
mechanical loading resulting from the weight of other parts in the assembly. Also, this shape in
a complex environment may depend on the manufacturing process or on the way in which the
system was assembled. For two full-scale tests, this may result in two different initial geometries
for a same model. But as already explained, the greater the scale, the smaller the number of
tests. And here arises our main concern: the number of parameters to identify is greater at the
largest scales, while the amount of potentially available data shrinks because of the scarcer tests.
There is also another issue which is linked to the measurement point density. Instrumenting tests
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accounts indeed for a significant portion of costs, because of the unit cost of sensors together
with the time spent by operators to set them up. Hence, the measurement point density may
be reduced at the top of the testing pyramid (see Figure 3). This results in an imbalance at the
largest scales between the amounts of available data and parameters to identify. This is a major
issue in the aircraft design cycles because increasingly large uncertainties tend to propagate in
the upscaling process. On top of that, aircraft structures are based on thin, lightweight, slender
parts which are much more prone to local non-linear phenomena (see Figure 4). Unfortunately,
non-linearities appear to be particularly sensitive to uncertainties and associated structures
mechanical responses may vary dramatically [Stanley 1985]. These two aspects, uncertainty
propagation together with non-linearities, explain the current lack of predictability at the largest
scales provided by the models. Hence, empirical manufacturing knockdown factors are defined to
account for the uncertainty on the structures response. This can result in the best-case scenario
in oversized designs (which is detrimental to the environment), and in the worst-case scenario
in unpredicted mechanical failures. Thus, although the testing pyramid has been the source of
countless successful designs, it can be seen, in its current form, as a barrier to innovative and
more efficient concepts [Certest 2018]. As explained earlier, ground-breaking innovations are
needed to meet the targets defined in terms of CO2 emissions for the aircraft industry, making
the reshaping of the testing pyramid necessary.

Figure 3: Dynamic strain sensors on the ground vibration testing of an F-16 aircraft, illustrat-
ing the coarse measurement point density on a large-scale test. Extracted from [dos Santos
et al. 2015].

Indubitably, what comes out of previous considerations is that a better understanding of
aircraft structures mechanical behaviour is needed to be able to keep on designing ever more
efficient concepts. In order to achieve this goal, two main issues should be tackled. First,
tests should not be considered only as a way to validate predictions made by "perfect" models
anymore. Instead, a true test-simulation dialogue should be aimed for. A dialogue where models
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Figure 4: Falcon 7X fuselage local buckling during static tests. Figure reproduced from [Bar-
rière 2014].

provide mid-scale tests with data such as boundary conditions and mechanical loading stemming
from full-scale loads. But most importantly, a dialogue where similar data acquired during tests
are, in turn, used to enrich models by accounting for aforementioned uncertainties. Second, a
way to reduce costs associated with data acquisition on large and complex geometries should
be found so as to increase the measurement point density.

Of course, the first identified issue is closely related to the second one, as extracting enough
data from tests is a prerequisite to the test-simulation dialogue. However there is also an
organisational reluctance which is beyond the scope of the present manuscript but that we wish
to briefly discuss. As explained earlier, people are used to a one-way test-simulation matching,
where tests are performed according to the assumption that, for instance, the "perfect" CAD
model is a good approximation of the true geometry. Thus, there is a lack of feedback loop and
associated processes to include information coming from tests in simulations. Also, relying on
sparse information stemming from tests is actually somewhat comfortable for (some) people in
charge of explaining discrepancies between tests and simulations. Even though the model used
does not account for the observed mechanical behaviour, it is indeed possible, when relying on
sparse measurements, to adjust model parameters to fit test data.

Measurement method specifications and choice

In order to increase measurement point density, using full-field measurement methods [Grédiac
& Hild 2013] stand for an interesting strategy. Compared to punctual measurements, it is
indeed possible to increase the total number of measurement points by up to a factor 100
while decreasing costs associated with measurement device setup and consumable items. From
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previous considerations, a flexible measurement technique capable of operating at a
broad range of scales, on complex geometries while remaining as inexpensive as
possible is desirable. Also, the measurement method should be able to facilitate test-simulation
dialogue, as it is one of the two main identified issues of the previous section. Of course, the
measurement data should provide relevant information with respect to the models, in order to
reduce uncertainties listed above.

Regarding mechanical tests, a wide variety of full-field measurement methods exist [Gré-
diac 2004,Grédiac & Hild 2013]. Some allow to retrieve an in-plane displacement field (Digital
Image Correlation (DIC) [Horn & Schunck 1981, Lucas & Kanade 1981, Sutton et al. 1983],
Localized Spectrum Analysis (LSA) [Grédiac et al. 2019] which is a grid method improve-
ment [Grédiac et al. 2016,Parks 1969], Moiré interferometry [Post et al. 1997]), an out-of-plane
displacement field (Moiré interferometry [Asundi et al. 1989]), a three-dimensional displace-
ment field over a surface (Stereo Digital Image Correlation (SDIC) [Lucas & Kanade 1981,
Sutton et al. 2009]), or even over a whole 3D volume (Digital Volume Correlation (DVC)
[Bay et al. 1999]). Shapes of specimens can also be extracted (X-ray tomography [Desrues
et al. 1996], Fringe projection [Zhang 2010], SDIC [Sutton et al. 2009], Deflectometry [Nguyen
et al. 2019]). Others provide a strain field as Photoelasticity [Ramesh & Sasikumar 2020,
Germaneau et al. 2008] or (commonly out-of-plane) displacement gradients as Shearography
[Hung 1982]. Even temperature can be obtained by the mean of thermal paints [Lempereur
et al. 2008] or InfraRed Thermography (IRT) [Gilblas et al. 2014].

In this context, DIC and its three-dimensional1 extension, SDIC, stand for interesting can-
didates2. These are indeed contact-free, popular, fast, and easy-to-setup measurement tech-
niques, which require only lights and cameras together with an optical path to the Region Of
Interest (ROI) (which may have an arbitrary complex shape) to operate. Moreover and as
presented in the last paragraph, two quantities relevant in the test-simulation dialogue perspec-
tive can be obtained: displacements as well as specimen shapes (SDIC only) over the whole
ROI. These measurements are performed by relying on the matching of features contained in
different pictures. On top of that, the DIC variational formulation [Fedele et al. 2013] allows
the identification of shapes and displacements on an arbitrary kinematic basis. This is of great
interest for test-simulation dialogue as the same basis as the one used for solving the mechan-
ical problem associated with the model can be used (see Figure 5). The comparison between
measurements and simulations is then straightforward, as defining an error requires only to sub-
tract corresponding degrees of freedom. This naturally leads to frameworks allowing to retrieve
quantities of interest either by minimising such an error (e.g. Finite Element Method Updat-
ing (FEMU) [Kavanagh & Clough 1971, Kim et al. 2007, Lecompte et al. 2007]) or by direct
identification (e.g. Integrated Digital Image Correlation (IDIC) [Leclerc et al. 2009, Réthoré

1By three-dimensional, we mean that the displacement field identified with SDIC is a 3D one and that it is
measured over a (possibly) non-planar surface. It should not be mistaken with Digital Volume Correlation which
extracts a displacement field over a whole volume. In the remainder of the manuscript, we thus consider surface
measurements only.

2We wish to make clear here that we do not pretend that DIC should not be coupled with other full-field
measurement techniques or even punctual measurements to address the data issue in mechanical tests. We
even less pretend that it is the only possible way to better understand phenomena occurring during tests. This
overview should rather be taken as an introduction to the motivations for keeping on developing tools in this
research field.
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Figure 5: Illustration of the test-simulation dialogue allowed by DIC in the context of an impact
on a panel. Images are courtesy of DGA Aeronautical Systems.

et al. 2009, Roux & Hild 2006]). Eventually, by its optical nature, DIC appears to be well
suited for performing measurements over large areas and at different resolutions. This kind of
measurements should be able to provide enough data to obtain a digital representation of the
particular test which is considered, a digital twin. By the expression "digital twin", we adopt
a broad definition. That is, the extraction from measurements of information relevant either
for the modelling (e.g. geometry, displacements, model parameters) or for the measurement
itself (e.g. in DIC camera positions, focals), that allows in turn to generate data to compare
simulations with.

Research outline

In this work, we would like to present and focus on some of the remaining technical obstacles
preventing DIC from fully operating at larger scales, on complex geometries, and to provide
more data in the test-simulation dialogue perspective:

• Obtaining more data from tests is in fact something easy to achieve by simply increasing
the number of cameras in the experimental setup. However, ensuring consistency of the
whole dataset in a test-simulation dialogue perspective is an open problem. Here arises
the (sometimes hackneyed) topic of data assimilation or data fusion.

• A related issue is to perform measurements over a wide range of scales (or multiscale
measurements). Merging measurements from different scales over the same regions and
taking advantage of all available information is indeed not straightforward.

• Features (speckle patterns) used to perform image registration in DIC are often adapted
to a single scale. This can lead to inhomogeneous measurement precision across cameras.

• The wider the structure, the larger the displacements for a given strain magnitude. Hence,
DIC in its current form is not perfectly suitable to address multiscale measurement, as
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features used to perform image registration may disappear from view between two time
steps, especially at the most revolved scales.

• Ensuring a homogeneous scene lighting, as required by DIC implicit assumptions, be-
comes harder as scale increases. This is even more true on complex geometries and/or
when considering large deformations. In this context, lighting issues may result in poor
measurement accuracy, or may even incapacitate DIC from operating.

This manuscript is broken down into 7 chapters. Chapter 1 presents a very condensed in-
troduction to ill-posedness and inverse problems. As these topics will be encountered all along
the present work, we wanted the reader to be familiar with them beforehand. Then, Chapters 2
and 3 deal with the photogrammetric camera calibration process and frameworks used in DIC
and SDIC, especially for global approaches, and even more specifically, for Finite-Element (FE)
ones. This allows to show very precisely where current limitations come from, while introducing
some tools that are used later in the manuscript. In Chapter 4, multiscale approaches in DIC
are presented. It encompasses two different but strongly related views: initialisation of the
measurement problems and multiscale measurements, that is cameras observing the structure
at different resolutions. As explained earlier, there is a current lack of patterns able to provide
homogeneous measurement accuracy over a wide range of scale. For this reason, we investigate
the use of fractal (or self-affine) patterns which deal for interesting candidates thanks to their
statistical scale invariance properties. We show for one of them that it does result in a mea-
surement accuracy independent of the scale [Fouque et al. 2021c]. This was an important point,
before starting the development of numerical methods related to multiscale measurements, to
ensure that such patterns existed. Chapter 5 stands for the main contribution of the present
work. Based on Computer Vision (CV) research works, a formulation allowing to address the
different identified issues such as lighting and visibility is proposed. It relies on a physical
modelling of the scene and the irradiance equation as in [Fouque et al. 2021a]. However, we
go a step further as we provide here a way to make use of all available information. This is a
clear breakthrough compared to usual frameworks which are based on the matching of features
in some of the available data and the grey level conservation equation. Then, a theoretical
viewpoint is adopted, and justifications of the proposed formulation are presented in Chapter 6.
There are three main arguments. The two firsts justify a posteriori the use of the formulation,
as a link with usual frameworks is established. It is shown that the proposed formalism encom-
passes usual ones while being able to perform on a wider variety of tests [Fouque et al. 2021b].
Also, a sensitivity analysis is performed and significant improvements in terms of measurement
precision compared to classical approaches is demonstrated. Finally a third a priori argument is
provided based on estimation theory. We show that this formulation is optimal, provided that
some assumptions, that we make explicitly, are met. Finally, a practical test case is proposed
in Chapter 7 [Fouque et al. 2021a]. This brings us to the Conclusion and Perspectives.





Chapter 1

A brief introduction to ill-posedness
and inverse problems

From camera calibration to displacement measurement, DIC is rich with ill-posed inverse
problems. This kind of problems will be encountered all along the present manuscript
and this is the reason for this short introductory chapter.
By definition, ill-posed problems require special treatments. They often push towards a
better understanding and modelling of the physical phenomena at stake, as this approach
may be the key to obtain reliable results [Horn 1986,Tarantola 2005].

Contents
1.1 Well-posed problems . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1.1 Well-posed problems

A model relies on different elements of which we will try to provide a general definition [Al-
laire 2005]. x will denote the data (e.g. right-hand side, geometry, initial/boundary conditions),
y the solution sought (or output) and A, the operator acting on y. In a partial differential equa-
tion, for instance, A would refer to the equation itself. Hence, it may depend on some model
parameters as well (denoted p). With these notations (summarised in Figure 1.1), the problem
is to find y such that:

A(y, p) = x (1.1)

In the Hadamard sense, a problem is well-posed when each of the three following conditions
are met:

1. for all x a solution y exists

2. for all x the existing solution y is unique

3. the solution y depends continuously on the data x

Conversely, a problem is ill-posed if one (or more) of the three previous points is not satisfied.

1.2 Inverse problems

An inverse problem assumes a direct well-posed problem [Isakov 2006]. This direct well-posed
problem defines the data x, output y and model A (see Section 1.1). An inverse problem
associated to this direct one would not consider the solution y as an unknown anymore. Instead,
y would be considered as conditions to meet to obtain the data x (first kind inverse problem, see
Figure 1.2a) or to identify the set of parameters p (second kind inverse problem, see Figure 1.2b)
that would have generated the solution y in the direct problem [Weisz-Patrault 2012, 1.4.
Capteurs et méthodes inverses].

Remark It is convenient to distinguish two kinds of inverse problems but note that hybrid
problems exist (see Chapter 2 for instance).

Most inverse problems are ill-posed. As a result, it may be difficult to obtain a solution, as
the existence is not guaranteed. Thus, it is often obtained by relying on a regularisation step1

that may be based on optimisation methods. If a set of parameters p (or data x) is obtained,
it might not be unique, but, most importantly, it might not be continuous with respect to the
measured "solution" y. Heuristically, it means that a small error in the measurement of y can
lead to tremendous discrepancies between the "true" p (or x) and the estimated one.

After these brief theoretical prerequisites, we can move on to the first practical inverse
problem of this manuscript, that is camera calibration.

1where the devil is usually hidden
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Figure 1.1: Direct problem.

(a) First kind inverse problem also called data in-
version

(b) Second kind inverse problem also called model
identification

Figure 1.2: Inverse problems classification illustration.





Chapter 2

Camera model and photogrammetric
calibration

Camera models are an elementary tool in DIC and SDIC allowing to describe how a point
of the three-dimensional space is captured by a camera in a two-dimensional picture. In
this chapter, we provide a general overview regarding this topic, as the different steps
to fully implement a photogrammetric stereo calibration process were not available in a
single document in the literature reviewed. Practically, by the end of the chapter, the
interested reader should be able to implement their own photogrammetric calibration
process. To do so, we will first focus on a simple, distortion-free model, allowing us to
go through the important steps of the transition from the world reference frame to the
picture one in an easy way. Then, more evolved parameters accounting for optical system
flaws (e.g. optical axis misalignment, non-coincident focal points) will be presented.
Eventually, the photogrammetric calibration process is introduced and details regarding
its application on real images are provided for better understanding. This allows to show
that some parameters (position of the rig with respect to the target) are usually discarded,
whereas we found a way to make use of them in a practical test case in Chapter 7.
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2.1 Camera modelling

Because, among others, it allows to write translations, rotations, scalings and projections as
matrix operations, homogeneous coordinates will be of great help in this chapter [Garcia 2001].
For instance, the affine transformation M c = RMw + t, can simply be written as M̃ c = T M̃w

(see Equation (2.1)) which makes it more compact and reduces the amount of notations in what
follows. A significant part of notations used in this chapter are presented in Figure 2.1.
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Figure 2.1: Schematic drawing of the different coordinate systems introduced in the pinhole
model.

2.1.1 The pinhole model

From the world coordinate system to the camera coordinate system Let M be a
point of the three-dimensional space. We will denote Mw = (Xw Yw Zw)T the coordinates of
M relative to Rw coordinate system. Typically, in our calibration process, Rw will be the same
as the target or the ROI one. In order to easily do the calculations in the following subsection,
we will express M coordinates in the camera coordinate system Rc (M c = (Xc Yc Zc)T ) with
respect to Mw:

M̃ c = T M̃w

with M̃ c = (Xc Yc Zc 1)T , M̃w = (Xw Yw Zw 1)T and T =
(

R t

0T 1

)
.

(2.1)
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Remark From a more practical viewpoint t stands for the translation vector going from Rc
reference point Oc to Rw reference point Ow expressed in the camera coordinate system Rc
(t = (OcOw)c).

In the following, we will note t = (tx ty tz)T and for R, rotation matrix of T :

R = (Rij)(i,j)∈[[1,3]]2 = R
z
(γ)R

y
(β)R

x
(α), (2.2)

where:

R
x
(α) =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 ; R
y
(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 ;

R
z
(γ) =

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 .
(2.3)
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Figure 2.2: Schematic drawing showing the two green triangles in which Thales’ theorem will
be used.

From the camera coordinate system to the retinal plane Once M c is known, it is
possible to express its projection on the retinal plane by assuming a perfect optical system.
This process is shown in Figure 2.2.

Remark Contrary to what is suggested in Figure 2.2, we will assume f � |Zc|. As a result,
we will make no difference between focal and retinal planes, and assume that the projection m
of a point M is always located at a distance f from Rc reference point Oc along Zc.
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Applying Thales’ theorem in the two green triangles in Figure 2.2, we get:
xr
f

= −Xc

Zc
yr
f

= −Yc
Zc

, (2.4)

with the convention f > 0, Zc < 0. As a result, we get in homogeneous coordinates:

m̃r =

 −f 0 0 0
0 −f 0 0
0 0 1 0


︸ ︷︷ ︸

M̃ c.

P
f

(2.5)

Remark Note that, here, homogeneous coordinates require a renormalisation to actually get xr
and yr from Equation (2.5).

From the retinal plane to the picture coordinate system This step describes the way
the camera photosensor samples the image located in the retinal plane and makes it a picture.
Note that, in the retinal plane, mr coordinates are in meters, whereas in the picture they are
in pixels. Therefore we need to introduce two sampling coefficients, αu and αv, allowing to get
image coordinates along u and v directions respectively (see Figure 2.1 again). Their dimension
is in pixels per meter, and αu samples the xr direction while αv samples the y

r
direction. With

these conventions it is quite straightforward to write the relation between m̃r and m̃pix. But first
two other parameters (whose dimension is in pixels) have to be introduced to the reader: u0 and
v0, the optical centre pixel coordinates. They stand for the coordinates of the two-dimensional
translation vector going from Rpix reference point Opix to Rr one Or, expressed in Rpix:

m̃pix =

 αu 0 u0
0 αv v0
0 0 1


︸ ︷︷ ︸

m̃r.

A

(2.6)

The projection matrix As explained in [Garcia 2001], the product AP
f
can be rewritten:

AP
f

=

 αu 0 u0
0 αv v0
0 0 1


 −f 0 0 0

0 −f 0 0
0 0 1 0


=

 −αuf 0 u0 0
0 −αvf v0 0
0 0 1 0



=

 −αuf 0 u0
0 −αvf v0
0 0 1


︸ ︷︷ ︸

 1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

A P

.

(2.7)
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This algebra shows that it is not possible to differentiate a camera with a focal length f and
sampling parameters αu and αv from a camera of focal length 1 and sampling parameters αuf
and αvf . Since the triplet (1/f, αu, αv) is defined up to a scale factor, we are only able to
identify two parameters out of the three initial ones. We choose to keep the products αuf
and αvf that we will denote respectively fx and fy. Also, since there is an infinity of pairs
(A,P

f
) for a same camera, it does not make sense to keep on distinguishing them. Therefore,

we consider in the following K = AP
f

= AP =

 −fx 0 u0 0
0 −fy v0 0
0 0 1 0

, the projection matrix.

Finally, the product of K and T allows to write:
u = −fx

Xc

Zc
+ u0 = −fx

R11Xw +R12Yw +R13Zw + tx
R31Xw +R32Yw +R33Zw + tz

+ u0

v = −fy
Yc
Zc

+ v0 = −fy
R21Xw +R22Yw +R23Zw + ty
R31Xw +R32Yw +R33Zw + tz

+ v0

, (2.8)

where the components of the rotation matrix R (see Equation (2.2)) are (Rij)(i,j). Figure 2.3
sums up previous notations and steps as a block diagram.

Remark From Equation (2.8), a physical meaning can be given to fx (resp. fy): it stands for
the number of pixels taken in the u direction (resp. v direction) by an object measuring one
meter in the Xc direction (resp. Y c direction) located at a distance of one meter of the camera
centre Oc along Zc.

Mw

Mc mr
mpixT

K

tx ty tz

� β γ
( )

( f )

u0 v0

αu αv

( )

Figure 2.3: "Block diagram" of the pinhole model.

2.1.2 Distortion models

In this section two different types of distortions will be presented: linear and non-linear ones.
By distortions, we mean sensor geometrical imperfections resulting in discrepancies with respect
to the pinhole model.

Linear distortion or skew The skew distortion is associated with a flaw in the photosensor
array. It results in a grid of photosensors forming a parallelogram instead of a rectangle. Based
on Figure 2.4, and by writing mpix = uu + vv = u′u′ + v′v′ we will express u′ and v′ the new
coordinates of mpix with respect to u and v:



18 Chapter 2. Camera model and photogrammetric calibration

u=u'

v

v'
θ

Figure 2.4: Definition of the skew angle, accounting for the non-orthogonality of pixel lines.

{
u′ = u

v′ = cos(θ)u+ sin(θ)v .

By substituting u′ and v′ in mpix expression and identifying u and v, we get:{
u = u′ + v′ cos(θ)
v = v′ sin(θ) .

Finally, expressing u′ and v′ with respect to u and v:{
u′ = u− v cot(θ)
v′ = v/ sin(θ) . (2.9)

Using Equation (2.8) in Equation (2.9), we can now obtain the new expression of the projection
matrix K: 

u′ = −fx
Xc

Zc
+ fy cot(θ)Yc

Zc
+ u0 − v0 cot(θ)

v′ = −fy/ sin(θ)Yc
Zc

+ v0/ sin(θ)
. (2.10)

It holds that:

K =

 −fx fy cot(θ) u0 − v0 cot(θ) 0
0 −fy/ sin(θ) v0/ sin(θ) 0
0 0 1 0

 . (2.11)

Practically, we often have θ ∼ π
2 . Therefore it is relevant to linearise the expression of K. With

θ = π
2 + δθ, δθ � 1, we then get:

K ∼

 −fx −fyδθ u0 + v0δθ 0
0 −fy v0 0
0 0 1 0

 . (2.12)

Remark δθ is often called the skew parameter.
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Non-linear distortions This section will be based to a large extent on the corresponding
section of [Garcia 2001]. Here non-linear distortions are meant to describe the different types of
geometrical aberrations arising from camera optical system flaws. Therefore the modification
in the process described in Section 2.1.1 will take place in the retinal coordinate system, before
the camera sensor sampling. As a result, we define md = mr + δ(mr) given that m̃pix = Am̃d.

δx(mr) = xr
(
r1ρ

2 + r2ρ
4 + r3ρ

6) + 2d1xryr + d2
(
3x2

r + y2
r

)
+ p1ρ

2

δy(mr) = yr
(
r1ρ

2 + r2ρ
4 + r3ρ

6
)

︸ ︷︷ ︸ + 2d2xryr + d1
(
x2
r + 3y2

r

)
︸ ︷︷ ︸ + p2ρ

2︸︷︷︸
Radial Decentering Prismatic

with ρ2 = x2
r + y2

r .

(2.13)

The effect on the pictures of previous parameters can be seen in Figure 2.5. Non-parametric
approaches allowing to account for distortions also exist [Cornille 2005]. An interpolation of
remaining reprojection errors is performed to recover the distortion shape. However, as we will
emphasise in the present manuscript, we believe that relying on physical approaches, such as
the parametric one presented previously, is more satisfying. Admittedly, this viewpoint is not
very fashionable at the moment, but we believe that relying on a modelling step, when possible,
makes explicit model validity domains, allows to criticise the assumptions made, and enables us
to derive uncertainties. To qualify previous statement, it may be hard in some cases (e.g. non-
optical methods, complex image formation process) to derive a parametric model. However, it
is important to take into account the image formation process and include the non-parametric
model at a relevant position in the block model.

Remark Even though this is a non-linear operation, we can write this step:

m̃d = ∆(mr) m̃r with ∆(mr) =

 1 0 δx(mr)
0 1 δy(mr)
0 0 1

 . (2.14)

With such notations, m̃pix can be retrieved:

m̃pix = A∆P
f
T M̃w,

where the projection matrix K can be identified. Noting indeed that

P
f
P T1

f

=

 1 0 0
0 1 0
0 0 1

 = 1, (2.15)

we have:

m̃pix = K

(
P T1

f

∆P
f

)
︸ ︷︷ ︸T M̃w

∆
with ∆ =


1 0 −δx/f 0
0 1 −δy/f 0
0 0 1 0
0 0 0 0

 . (2.16)

Figure 2.6 sums up previous notations and steps.



20 Chapter 2. Camera model and photogrammetric calibration

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.5: Pictures of a chessboard without distortions (a), with δθ 6= 0 (b), r1 6= 0 (c), r2 6= 0
(d), r3 6= 0 (e), d1 6= 0 (f), d2 6= 0 (g), p1 6= 0 (h), p2 6= 0 (i).
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Remark As expected, taking ∆(mr) = 1 leads us to a real linear model.

δ

Figure 2.6: "Block diagram" of a camera model accounting for distortions.

In the end, we built a camera model in which different kind of parameters need to be
identified:

• Six extrinsic parameters: pext = (tx ty tz α β γ)T .

• Four intrinsic parameters: pint = (fx fy u0 v0)T .

• Up to eight distortion parameters: d = (δθ r1 r2 r3 d1 d2 p1 p2)T .

These parameters are collected in a camera model parameter vector p =
((
pext

)T (
pint

)T
dT
)T

,
and the whole process described above, can be summed up by the camera model P :

P : W ×P → Π
(Mw, p) 7→ mpix

,

where W and Π denote respectively the physical space and the image plane. P stands for the
camera parameter space and 10 ≤ dimP ≤ 18 (dimP = 10 with no distortion and dimP = 18
for the full distortion model).

Remark In what follows, making the distinction between all these reference frames is not
relevant anymore, we will thus simply denote Mw and mpix respectively by X and x.

2.2 Photogrammetric calibration process

As explained in Section 2.1, a camera model relies on different kind of parameters that we
need to identify. This identification problem is an inverse problem (which may not be classified
as first nor second kind). If we know the intrinsic parameters (and possible distortions) of a
camera (pint, d) as well as its position (pext) with respect to a set of points, it is straightforward,
thanks to Section 2.1, to compute, for each position (X), the associated projection (x) in the
corresponding picture. It is much more difficult though, from a set of pictures of the same set of
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points, to get the parameters (extrinsics, intrinsics and possible distortions) that generated these
pictures. Given its inverse nature, this problem is an ill-posed one (for different reasons, e.g.
inability of the camera model to account for the whole physics, picture noise or deformation of
the set of points between picture captures, point detection precision). As a result, the existence
of a parameter set allowing to obtain the exact same projections is not guaranteed.

To circumvent these issues, the problem will be formulated as a minimisation. That is,
instead of looking for the parameter set allowing to obtain the exact same projections, we will
look for the set generating the projections which are as close as possible to the detected ones.
A functional standing for the distance between the detected points and the generated ones
will be minimised using an iterative, gradient-based, optimisation algorithm. It will require an
initialisation (first set of parameters) leading to a low value of the functional (in order to benefit
from the local convergence of the algorithm).

What is rather surprising is that parameters of interest (intrinsics and distortions) are quite
easy to initialise in a first approach. On the contrary, it is rather difficult to estimate extrinsic
parameters from a target picture, while we do not particularly want to know them precisely at
this stage.

2.2.1 Parameters initialisation

Intrinsic parameters and distortions As mentioned before, we can easily estimate intrinsic
parameters, with a single picture:

• u0 and v0, respectively, with the half-height and half-width of the image (in pixels).

• Knowing approximately the target size and its distance with respect to the camera allows
to get fx from a cross-multiplication (see Equation (2.4)) ; then, one can assume in
addition fx = fy. Alternatively, it can be obtained by dividing the focal length f of the
optical system by the size of a pixel (on the image sensor).

• Distortion vector d = 0 is often a good first guess.

Extrinsic parameters To estimate the extrinsic parameters, our approach will be based on
the method developed by [Ravn et al. 1994]. As we need to establish the equations of this paper
for our choice of reference frames, we will use the same steps as in [Horaud & Monga 1995].

Equations establishment Denoting, for the rotation matrix, the line vectorsRi = (Rij)j∈[[1,3]]
= (Ri1, Ri2, Ri3), we have thanks to Equation (2.8):

 su

sv

s

 =

 −fxR1 + u0R3 −fxtx + u0tz
−fyR2 + v0R3 −fyty + v0tz

R3 tz



Xw

Yw
Zw
1

 , (2.17)

which is consistent with d = 0 as first guess. Since our target can be considered as a plane in
(Xw, Y w), we will assume Zw = 0 in the following (and we change T accordingly). As a result,
Equation (2.17) can be rewritten (considering s′ = s

tz
):
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 s′u

s′v

s′

 =


−fxR11+u0R31

tz
−fxR12+u0R32

tz
−fxtx+u0tz

tz
−fyR21+v0R31

tz

−fyR22+v0R32
tz

−fyty+v0tz
tz

R31
tz

R32
tz

1


 Xw

Yw
1

 . (2.18)

From the last line of Equation (2.18), we get s′ = R31
tz
Xw + R32

tz
Yw + 1 which can be first

multiplied by u and also by v. This yields two equations:


u = s′u− R31

tz
Xwu−

R32
tz
Ywu

v = s′v − R31
tz
Xwv −

R32
tz
Ywv

. (2.19)

Finally, thanks to Equations (2.18) and (2.19) and by denoting

κ = (κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8)T =



−fxtx+u0tz
tz

−fyty+v0tz
tz

−fxR11+u0R31
tz

−fxR12+u0R32
tz

−fyR21+v0R31
tz

−fyR22+v0R32
tz
R31
tz
R32
tz


, we can write in the same way as in [Ravn

et al. 1994]:

(
u

v

)
=
(

1 0 Xw Yw 0 0 −Xwu −Ywu
0 1 0 0 Xw Yw −Xwv −Ywv

)
κ. (2.20)

From at least four points of which both positions in the world coordinate system (Xw, Yw)
and in the picture (u, v) one are known, we can get all eight κ components. With four well-
chosen points it is possible to invert the resulting 8 × 8 matrix. With more than four points,
different methods for solving overdetermined linear systems can be used (e.g. Singular Value
Decomposition, least squares).

Remark As the method with only four points produced satisfactory results as an initialisation,
we did not implement more sophisticated strategies in the present work.

Remark Because close points or nearly-aligned points can lead to ill-conditioned 8×8 matrices,
the four points which we chose were the four target corner points.

Parameters estimation Knowing approximately intrinsic parameters (typically from an a
priori estimation as in Section 2.2.1), [Garcia 2001] provides an effective manner to obtain T

from κ. Using R orthonormality properties, we can write:
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(
R2

11 +R2
21 +R2

31

)
+
(
R2

12 +R2
22 +R2

32

)
= 2.

Substituting κ components and intrinsic parameters for Rij :

tz = −
√√√√ 2(

κ3−u0κ7
fx

)2
+
(
κ5−v0κ7

fy

)2
+
(
κ4−u0κ8

fx

)2
+
(
κ6−v0κ8

fy

)2
+ κ2

7 + κ2
8

.

(2.21)

Remark Writing tz < 0, we implicitly made the assumption the object was in front of the
camera, according to Figure 2.1, which seems reasonable.

Then, all other values can be computed from κ and Equation (2.21):

tx = u0tz − κ1tz
fx

ty = v0tz − κ2tz
fy

R11 = tz
u0κ7 − κ3

fx

R12 = tz
u0κ8 − κ4

fx

R21 = tz
v0κ7 − κ5

fy

R22 = tz
v0κ8 − κ6

fy

R31 = tzκ7

R32 = tzκ8

. (2.22)

Denoting, for the rotation matrix, the row vectors Ri = (R1i R2i R3i)T , i ∈ [[1, 3]], we finally
get R3 = R1 ∧ R2. But as explained in [Garcia 2001], Ravn’s method does not guarantee the
orthonormality of R. Therefore, it can be a good idea to compute its projection on the set of
matrices ofM3,3 (R) of which the determinant equals one. This can easily be done by computing
the Singular Value Decomposition (SVD): it allows to write R = U ΛV T . Substituting the
identity matrix 1 to Λ is equivalent to computing the aforementioned projection.

Finally, we need to compute α, β and γ from R. Denoting, for instance, sin(α) = sα and
cos(β) = cβ, from Equations (2.2) and (2.3), we can write:

R (α, β, γ) =

 cβcγ sαsβcγ − cαsγ cαsβcγ + sαsγ
cβsγ sαsβsγ + cαcγ cαsβsγ − sαcγ
−sβ sαcβ cαcβ

 . (2.23)

Since for every (α, β, γ) , R (α, β, γ) = R (π + α, π − β, π + γ), in order to guarantee the exis-
tence of a unique set α, β, γ for every rotation, we adopt the convention (α, β, γ) ∈ [−π, π] ×
[0, π]× [−π, π]. Thus, from Equation (2.23), we have:
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β = − arcsin(R31)

sβ = −R31

cβ =
√

1−R2
31

. (2.24)

From Equations (2.23) and (2.24), we then get:


cγ = R11

cβ

sγ = R21
cβ

, (2.25)

and 
cα = R33

cβ

sα = R32
cβ

. (2.26)

Finally, from Equations (2.25) and (2.26) it is easy to compute α and γ.

Point positions Considering point space positions as unknowns will allow us to use rather
imprecise targets, printed ones for instance. This kind of targets is much more flexible and
cheaper than those where the point relative positions must be precisely known.

As soon as the target can be considered as rigid the whole time between the first and the
last picture, the implemented algorithm will be able to reevaluate point relative positions from
an initial one. In order to initialise these positions, we can simply measure them approximately
in the chosen target reference frame.

Now we will present the framework allowing to refine all previous initialisations at once, the
photogrammetric calibration process. This may also be called bundle adjustment1.

2.2.2 Process for a single camera

As explained before, the calibration process will be based on the minimisation of a functional.
More precisely, the idea is to minimise the error between the measured pixel coordinates of

1“Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal 3D structure
and viewing parameter (camera pose and/or calibration) estimates. Optimal means that the parameter estimates
are found by minimizing some cost function that quantifies the model fitting error, and jointly that the solution
is simultaneously optimal with respect to both structure and camera variations. The name refers to the ‘bundles’
of light rays leaving each 3D feature and converging on each camera centre, which are ‘adjusted’ optimally with
respect to both feature and camera positions. Equivalently — unlike independent model methods, which merge
partial reconstructions without updating their internal structure — all of the structure and camera parameters are
adjusted together ‘in one bundle’. Bundle adjustment is really just a large sparse geometric parameter estimation
problem, the parameters being the combined 3D feature coordinates, camera poses and calibrations.” Citation
from [Triggs et al. 2000]
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points in a picture and the estimated pixel coordinates through the camera model. In practice,
a target with Np points will be used. Ni pictures of this target will be taken by the camera. As
a result, as introduced in [Garcia 2001], 2NiNp equations will be available. At the same time,
there are 4 intrinsic unknowns, 8 distortion parameters (at most), 6Ni extrinsic unknowns, and
3Np unknown tridimensional coordinates.

However, in order to reduce functional kernel dimension, rigid body motions of the {camera
+ target} system should be avoided. To do so, the easiest way is to prescribe the tridimensional
position of 2 points in the world coordinate system as well as one of the three coordinates of
a third point. Without loss of generality, we can assume that the first point coordinates are
(0 0 0)T . Rigid translations of the system are now forbidden. Then, a second point coordinates
can be enforced as follows: (L 0 0). Obviously if there are points in the target of which the
distance uncertainty is minimal, it would make sense to choose among these points, as the
precision on L measurement drives the entire calibration process precision. The only remaining
rigid body motion is the rotation about the axis defined by the two previous points. Finally,
and again without loss of generality, since three points are always coplanar, assuming Zw = 0
for a third point allows to prevent any rigid body motion of the {camera + target} system.
Obviously, this point should not belong to the line defined by the first two points. Eventually,
this leads to 12 unknown intrinsic parameters, 6Ni extrinsic unknowns and 3Np − 7 unknown
tridimensional coordinates together with 2NiNp equations, Ni ≥ 1, Np ≥ 3. In order to have at
least an overdetermined set of equations, we will need:

2NiNp ≥ 5 + 6Ni + 3Np,

or equivalently:

Np (2Ni − 3) ≥ 5 + 6Ni.

(2.27)

From Equation (2.27), we get that:

Ni ≥ 2⇔ ∃Np ∈ N, 3 ≤ Np ≤ 17, 2NiNp ≥ 5 + 6Ni + 3Np.

Image points detection In our framework, we used a target made of a coding system
(allowing to know the orientation of the target) and circular holes. The library opencv (or
more precisely its Python binding) provides the method findCirclesGrid which allowed us to
detect the subpixel coordinates of target holes in the picture. Using then the coding system to
make sure that for every point j ∈ [[0, Np− 1]], the index j referred always to the same physical
point in the target for every picture, we obtained

(
x̂ij

)
(i,j)∈[[0,Ni−1]]×[[0,Np−1]]

, the table of the
measured coordinates for every point and every picture in the picture coordinate system.

Functional construction The residual for picture i and point j reads:

rij = x̂ij − P
(

(Xj Yj Zj)T ,
((
pext

i

)T (
pint

)T
dT
)T)

. (2.28)
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with, for instance, X = (Xj)j∈[[0,Np−1]] the vector containing the coordinates in the Xw direction
of every point. pext

i
is the vector of extrinsic parameters of the world coordinate system with

respect to the camera for picture i. Then, the picture i residual can be recast as:

F i =
(
rTi0 r

T
i1 . . . rTi(Np−1)

)T
. (2.29)

Finally the total residual reads:

F =
(
F T0 F T1 . . . F TNi−1

)T
. (2.30)

In the end the functional minimised by Levenberg-Marquardt algorithm is [Garcia 2001]:

J = F T F . (2.31)

Remark Because of the implementation of the optimisation algorithm (Levenberg-Marquardt),
we considered a functional whose physical meaning is not obvious. However if we consider:

σ =
√

1
NiNp − 1F

TF =

√√√√√ 1
NiNp − 1

Ni−1∑
i=0

Np−1∑
j=0

rTijrij . (2.32)

σ can be seen as the error standard deviation, in pixel.

Functional argument We wish to formulate our problem as follows:

Find θ? such that, θ? = arg min
θ

F (θ)T F (θ) . (2.33)

Genuinely, we would define

θ =
(
tx
T ty

T tz
T αT βT γT

(
pint

)T
dT XT Y T ZT

)T
(2.34)

with, for instance, tx = (tx,i)i∈[[0,Ni−1]] the vector collecting the N extrinsic parameters of
translation in the Xc direction corresponding to the Ni pictures.

Now, as mentioned in the introduction of this section, in order to avoid rigid body motion,
we will prescribe 7 coordinates among the 3Np coordinates of the Np target points. We will
denote respectively X ,Y and Z the set of points whose X, Y or Z coordinate is constrained.
And we will recall:

θ′ =
(
tx
T ty

T tz
T αT βT γT

(
pint

)T
dT X ′T Y ′T Z ′T

)T
(2.35)

with X ′ = (Xj)j∈[[0,Np−1]]\X , Y
′ = (Yj)j∈[[0,Np−1]]\Y and Z ′ = (Zj)j∈[[0,Np−1]]\Z .

To make it more practical, using a 9 × 12-hole target, we chose to have X = {0, 11},
Y = {0, 11} and Z = {0, 11, 99}, and we looked for:

θ′? = arg min
θ′

F TF
(
θ′, X0 = Y0 = Z0 = Y11 = Z11 = Z99 = 0, X11 = L

)T
. (2.36)
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2.2.3 Multiple-camera setup

In the following, we will denote Nc the number of cameras of the considered setup.
When dealing with several cameras, with a stereo-rig for instance, there are a few modifi-

cations to implement compared to the previous framework. First, when counting the number
of unknowns and number of available equations, we have, at most 12Nc intrinsic unknowns
(with distortions) and still 3Np unknown tridimensional coordinates. However, if we consider
a rigid setup, there are 6Ni extrinsic unknowns for the position of the world reference frame
with respect to a reference camera and 6(Nc− 1) extrinsic unknowns (relative position of other
cameras with respect to a reference one). With notations of Figure 2.7, it means that if we
know T (for a given picture or, equivalently, target position) and T

s
(which does not depend

on the considered picture), we can get T ′ = T
s
T . It should not be forgotten that 7 points

coordinates must be constrained to avoid rigid body motions of the {camera+target} system.
In total, there are thus 12Nc + 6Ni + 3Np + 6(Nc − 1)− 7 = 18Nc + 6Ni + 3Np − 13 unknowns.
At the same time, the number of equations is 2NiNpNc. It means that with a given number
of cameras, an additional camera increases the number of unknowns by 18 (12 intrinsic and 6
extrinsic parameters) while providing at the same time 2NiNp new equations. Therefore, as
soon as NiNp > 9, it helps regularising the problem.

Remark Even in the case Ni = 1, the condition NiNp > 9 is easily met and thus adding
cameras generally provides a strong regularisation.

T

R
w

R
c

R'
c

T'

Ts

Figure 2.7: Schematic drawing and notations for a stereo rig

Functional construction We will denote
(
x̂cij

)
(i,j)∈[[0,Ni−1]]×[[0,Np−1]]

the table of the mea-
sured coordinates for every point and every picture in the picture coordinate system of camera
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c.
Analogously to Section 2.2.2, we define rcij the vectorial pixel residual of camera c, point j,

image i:

rcij = x̂cij − P
(((

pext
c

i

)T (
pint

c
)T

(dc)T
)T

, (Xj Yj Zj)T
)
. (2.37)

We will denote F c the vectorial residual of camera c (see Equation (2.30)). With this
convention the total residual reads:

F =
(
F 0T F 1T . . . FNc

T
)T

. (2.38)

And the functional minimised by the optimisation algorithm is:

J = F T F (2.39)

Remark As in Section 2.2.2, we can then define:

σ =
√

1
NiNpNc − 1F

TF =

√√√√√ 1
NiNpNc − 1

Ni−1∑
i=0

Np−1∑
j=0

Nc−1∑
c=0

rcij
T rcij (2.40)

Functional argument In the following, we will denote the functional argument Θ. Genuinely,
we would define Θ as

(
θ′0 θ′1 . . . θ′Nc

)
, with θ′c the argument of F c for camera c as defined in

Equation (2.35). But as mentioned before, we do not need T ′ transformation for every single
picture as soon as c > 0. That is the reason why we define:

θ′′c =
((
tx

0)T (
ty

0
)T (

tz
0)T (

α0)T (
β0
)T (

γ0
)T (

pint
0)T (

d0
)T)T

if c = 0(
tcx,s t

c
y,s t

c
z,s α

c
s β

c
s γ

c
s

(
pint

c
)T

(dc)T
)T

if c > 0
(2.41)

Remark Note that extrinsic parameters are vectors (containing parameter values for every pic-
ture) only if c = 0. As a result, for every camera residual F c, c > 0, we need to compute θ′c
from θ′′c. In order to reconstruct extrinsic vectors for every picture i, we can use the iden-
tity T ′

i
= T

s
T
i
, with T

s
parameters contained in θ′′c extrinsic parameters and T

i
parameters

contained in θ′′0 = θ′0 ith component of extrinsic parameters. It can also be written:

R′
i

= R
s
R
i
and t′i = R

s
ti + ts (2.42)

Remark The initialisation process described in Section 2.2.1 does not apply for
(
tcx,s t

c
y,s t

c
z,s α

c
s

βcs γ
c
s) , c > 0 because it represents extrinsic parameters for the transformation between the

reference camera and camera number c (not between the target and camera number c). In
order to estimate these parameters, one can derive from Equation (2.42) that R

s
= R′

i
RT
i
and

ts = t′i −Rs ti. With i = 0 for instance, we can estimate T 0 and T ′0 with the same procedure as
in Section 2.2.1 and then get an initialisation for T

s
.
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And the optimisation parameter is:

Θ =
(
θ′′0 θ′′1 . . . θ′′Nc X ′ Y ′ Z ′

)
. (2.43)

It allows to write the final form of the calibration problem:

Θ? = arg min
Θ

F TF (Θ, X0 = Y0 = Z0 = Y11 = Z11 = Z99 = 0, X11 = L) . (2.44)

Remark As explained in the beginning of this section, from this optimisation process, we get
useful optimised values for each camera intrinsics as well as relative camera positions. The
relative position of the target with respect to the camera rig (or the camera) is usually discarded.

2.3 Example on an actual stereo rig

This section aims at illustrating and validating the process described above. To do so, two
five-megapixel cameras and a 9 × 12-hole target were used. A set of 16 target positions was
captured by both cameras.

2.3.1 Initialisation

Using the method introduced in Section 2.2.1 and in Section 2.2.3, we were able to initialise
extrinsic and intrinsic parameters for both cameras. The first step consists in detecting points
in every picture and associate for every physical point an integer p. One can see in Figure 2.8
the detection of the target reference frame that allows to know the target orientation and to
implement this association.

Figure 2.8: Target picture and detected target reference frame axis.

In Figures 2.9 and 2.10, the initialisation is shown. It means that with the parameters
estimated with Section 2.2.1 and Section 2.2.3, we were able to evaluate points positions in the
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Figure 2.9: Initialisation for camera 0. On the Figure are shown the 16 pictures that have been
taken by camera 0 of the target. We superimposed the evaluated positions of the target points
on the picture as the yellow dots. σ0 = 1.22 pixels (error standard deviation).
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Figure 2.10: Initialisation for camera 1. On the Figure are shown the 16 pictures that have
been taken by camera 1 of the target. We superimposed the evaluated positions of the target
points on the picture as the yellow dots. σ1 = 4.07 pixels (error standard deviation).
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picture as the yellow dots. As a result, we got an error standard deviation a bit above one pixel
for camera 0 (see Figure 2.9) as well as about 4 pixels for camera 1 (see Figure 2.10). These
results show that the initialisation method is very efficient.

Remark We expected σ1 > σ0 since the extrinsics initialisation spanning all pictures is per-
formed only for camera 0 and since only one picture was used to estimate T

s
.

2.3.2 Results

In this section, from previous initialisation, we apply the photogrammetric calibration process
in two different ways:

• process applied to each camera independently, that is two different optimisations,

• multicamera calibration process, that is only one optimisation.

As expected, Table 2.1 shows that error standard deviations are greater when less degrees of
freedom are available (with Ni pictures and Nc cameras, for a method with Nc independent
calibrations there are 6(Nc − 1)(Ni − 1) additional unknowns compared to a method with a
single optimisation). However, as already discussed, it shows the benefit to regularise the
calibration process, and thus reduces the uncertainties associated with the identified parameters
[Garcia 2001].

Remark 17 pictures were actually available for the calibration procedure. However, the target
detection step failed for one of them and 2 pictures were excluded because they exhibited large
residuals compared to the others. This explains why in Figure 2.11, no point is associated with
picture indices 2, 12 and 13 and why 16 pictures are shown in Figures 2.9 and 2.10.

Method σ0 σ1 σ

Two optimisations 0.06891 0.08572 0.07778
One optimisation 0.07837 0.09332 0.08617

Table 2.1: Error standard deviation for two different methods : two independent optimisation
processes (one for each camera) as described in Section 2.2.2 and a single process as in Sec-
tion 2.2.3. Error standard deviation is presented for each camera (σ0 and σ1) as well as for the
whole system (σ).

2.4 Conclusion

This chapter has provided the opportunity to detail how we implemented an in-house calibra-
tion software. We have carefully gone through the different steps of stereo photogrammetric
calibration and have presented it as fully as possible, so that a similar implementation may
be performed. These developments, made in an early phase of this thesis, turned out to be
extremely useful in the practical application proposed in Chapter 7. Of course, more sophisti-
cated processes could be derived, accounting for target point visibility or allowing to calibrate
a virtual rig made of a single camera at different positions for instance.
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Figure 2.11: σci (error standard deviation in pixels for picture i, camera c) at two different
stage of the calibration process, before and after optimisation. Error standard deviations are
also presented for two independent optimisation processes (one for each camera) as described
in Section 2.2.2 and for a single optimisation process as described in Section 2.2.3.
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Eventually, it was important to present camera models, before diving into full-field mea-
surements in the next chapter. Cameras stand indeed for a key element in the DIC and SDIC
frameworks, as they are used to generate data stemming from tests.





Chapter 3

Full-field measurements in Digital
Image Correlation

The DIC and SDIC frameworks are presented. First, the two-dimensional one (DIC) is
introduced. It is explained to which extent retrieving a displacement field from pictures at
various levels of deformation stands for an ill-posed inverse problem. The Ritz-Galerkin
method used to circumvent this issue is detailed and the use of camera models from
Chapter 2 is included. Details regarding the implementation are provided. Then, the
extension of this framework to the SDIC one, which allows to obtain a three-dimensional
surface displacement field, is presented. This allows to start discussions regarding the
soundness of this extension and the use of SDIC on large-scale applications.
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In the context of mechanical tests, DIC is a method allowing to identify a two-dimensional
displacement field. This identification is performed over a planar surface, the ROI, from fronto-
parallel pictures. The knowledge of this displacement field allows then to derive quantities of
interest (e.g. strains, displacement maximum amplitude or stress if a model is available) or to
adjust for material parameters in a second step by relying on FEMU [Kavanagh & Clough 1971,
Kim et al. 2007, Lecompte et al. 2007], or even directly, thanks to IDIC [Leclerc et al. 2009,
Réthoré et al. 2009, Roux & Hild 2006]. A more exhaustive list of identification methods is
presented in [Colantonio 2020,Grédiac 2004].

Typically, one would consider two pictures of a same object at different levels of deformation:
a reference state one and a deformed state one. They are often respectively denoted by f and g.
Based on the matching of features in the images, the idea is then to find the displacement field
u allowing to recover f from g (see Figure 3.1). Because of homogeneous reflectance properties
of materials used in structural mechanics (e.g. aluminium, steel) patterns are often deposited
on test sample surfaces to facilitate this matching.

Compared to standard measurement devices, such as strain gauges for instance, DIC exhibits
features that makes it belong to a separate sort of measurement techniques. The main drawbacks
associated with this technique is that, depending on a wide variety of causes (e.g. operator, test
setup, patterns) measurement uncertainty can be strongly affected. For this reason, guidelines
have been defined to help standardise the measurement process [International DIC Society
et al. 2018]. However DIC has also some strong advantages provided that an optical path to the
ROI can be guaranteed all along the experiments. The first advantages can be expressed in terms
of cost, as strain gauges are consumable items, and time, as each gauge requires to be precisely
glued and connected to the acquisition system. In addition, strain gauges obviously give only
access to sparse information. Also, depending on the targeted measurement point density, and
test setups, the additional mass associated with strain gauges may affect the structural dynamic
response (see for instance the number of cables in Figure 3). Eventually, a typical length scale
is introduced by the size of strain gauges, which averages the strain measurement over a small
surface patch.

In contrast, DIC makes use of cameras and associated optical systems together with lights,
which can be depreciated over the periods they are used and require a shorter setup time.
This optical nature provides a much greater measurement point density and does not interfere
with test setups. Also, the measurement uncertainty is strongly related to the physical length
corresponding to one pixel and, depending on the optical system magnification, a range of scales
as wide as imaginable may be instrumented. This makes DIC a scale-free measurement method.
For this reason, DIC is used, for instance, from sub-grain measurements in polycrystalline
materials [Stinville et al. 2016] to earth surface measurements [Bickel et al. 2018].

3.1 Two-dimensional Digital Image Correlation

3.1.1 Grey level conservation or strong formulation

DIC is based on the grey level conservation hypothesis [Horn & Schunck 1981]. Over a domain
S in the image f , the problem writes:
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Figure 3.1: Left, reference state image f and considered point x. Right, deformed state image g
and identified displacement u(x) associated to the point x. Pattern from [Fouque et al. 2021c].

∀x ∈ S, f(x) = g(x+ u(x)), (3.1)

where the sought displacement field is u = (u v)T and S is a subset of the image plane I of f .
This is an ill-posed inverse problem [Besnard et al. 2006]. The main reason is that for each x,

there is only one equation for two unknowns (u components). Therefore, only the projection of
u along the image gradient may be recovered locally. But the problem is even more pathological
as pictures f and g are taken with a digital sensor. This results in a discrete set of data, the
pixels, when the sought field u is defined at each point of the ROI. Moreover, these data do
not vary continuously as they are encoded (e.g. 8-bit encoding corresponding to 256 values).
Eventually, the pictures are corrupted by noise during the acquisition process. Hence, given f
and g, the existence of a displacement field u satisfying Equation (3.1) is not guaranteed.

3.1.2 Variational formulation

To relax the problem, it is possible to reformulate it as a least-squares problem. That is,
minimising the integral of squared residuals of Equation (3.1):

Find u? ∈
(
L2(S)

)2
, u? = arg min

u
F (u), F (u) =

∫
S

[
f(x)− g (x+ u(x))

]2
dx. (3.2)

This allows to address noise issues, as Equation (3.1) is not enforced in a strong way any-
more. However, Equation (3.2) is a non-linear least-squares minimisation. To solve it, [Fedele
et al. 2013] suggests proceeding iteratively, namely by defining u(i+1)(x) = u(i)(x) + du(i)(x)
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and developing F around u(i). In order to reduce the amount of notation du(i), for instance,
will stand for du(i)(x) in the following. Also, we define:

φ
u(i) : x ∈ S 7→ x+ u(i)(x). (3.3)

In this case, we can write:

F (u(i+1)) = F (u(i))− 2
∫
S

[
f − g ◦ φ

u(i)

]
du(i)T∇g ◦ φ

u(i)

+
∫
S
du(i)T

{(
∇g ◦ φ

u(i)

) (
∇gT ◦ φ

u(i)

)
−
[
f − g ◦ φ

u(i)

] (
H
g
◦ φ

u(i)

)}
du(i)

+o
(∥∥∥du(i)

∥∥∥2
)
,

(3.4)

where, for instance, ∇g and H
g
respectively denotes the gradient and the Hessian matrix of g,

and ◦ denotes the usual function composition.
As we want to minimise F , the stationarity condition around du(i) at the second order writes(
dF (u(i) + du(i) + tdv)

dt

∣∣∣∣∣
t=0

= 0
)
:

∀ dv ∈
(
L2(S)

)2
,

∫
S

{
dvT

{(
∇g ◦ φ

u(i)

) (
∇gT ◦ φ

u(i)

)
−
[
f − g ◦ φ

u(i)

] (
H
g
◦ φ

u(i)

)}
du(i)

−
[
f − g ◦ φ

u(i)

]
dvT

(
∇g ◦ φ

u(i)

)}
= 0.

(3.5)

Remark The exact same formulation as Equation (3.5) can be obtained by writing a Newton
scheme for ∇F = 0 [Passieux & Bouclier 2019].

Because the Hessian term in the second order development is multiplied by the residual
[
f −

g ◦φ
u(i)

]
, which is assumed to be small, one can neglect it in the iteration scheme. In this case,

the problem can be rewritten as a linear least-squares minimisation:

Find du(i)
? ∈

(
L2(S)

)2
, du

(i)
? = arg min

du(i)
F

(i)
lin(du(i)),

with F (i)
lin(du(i)) =

∫
S

[
f − g ◦ φ

u(i) − du(i)T
(
∇g ◦ φ

u(i)

) ]2
.

(3.6)

The stationarity condition around du(i) writes
(
dF

(i)
lin(du(i) + tdv)

dt

∣∣∣∣∣
t=0

= 0
)
:

∀ dv ∈
(
L2(S)

)2
,

∫
S

{
−2
[
f − g ◦ φ

u(i)

]
dvT

(
∇g ◦ φ

u(i)

)
+2dvT

(
∇g ◦ φ

u(i)

) (
∇gT ◦ φ

u(i)

)
du(i)

}
= 0. (3.7)



3.2. Ritz-Galerkin method 41

Finally the DIC variational formulation can be expressed as follows, which exactly yields to
neglecting the Hessian term in the second order development of Equation (3.5):

Find du(i) ∈
(
L2(S)

)2
, ∀ dv ∈

(
L2(S)

)2
, a

(i)
S (du(i), dv) = l

(i)
S (dv) (3.8)

with 
a

(i)
S (du(i), dv) =

∫
S
dvT

(
∇g ◦ φ

u(i)

) (
∇gT ◦ φ

u(i)

)
du(i)

l
(i)
S (dv) =

∫
S

[
f − g ◦ φ

u(i)

]
dvT

(
∇g ◦ φ

u(i)

) . (3.9)

Note that a(i)
S is a positive symmetric bilinear form, provided that the images possess a regular

texture (i.e. the gradient may vanish exclusively over a null measure subset [Fedele et al. 2013]),
and l(i)S a linear one.

Remark Previous equation may be obtained from the usual Gauss-Newton scheme which is
almost always used in case of non-linear least-squares minimisation (see Equation (3.2) for
instance) [Passieux & Bouclier 2019].

3.2 Ritz-Galerkin method

3.2.1 General formulation

As mentioned earlier, Equation (3.1) locally provides information about u only along the image
gradient direction. Previous developments did not tackle this issue.

Heuristically, to solve Problem (3.1), u cannot be defined at each position x ∈ S but it can
be for subdomains of S, aggregating multiple positions. Mathematically, this idea is achieved by
looking for an approximation du(i)

h of the displacement field sought du(i) in a finite dimensional
subspace Vh ⊂

(
L2(S)

)2 such that u(i+1)
h = u

(i)
h + du

(i)
h . In Vh, starting from u(0) = u

(0)
h ∈ Vh,

equation (3.8) reads:

Find du(i)
h ∈ Vh, ∀ dvh ∈ Vh, a

(i)
S (du(i)

h , dvh) = l
(i)
S (dvh) (3.10)

Let
(
N j

)
j∈[[1;Ndof ]]

be a basis of Vh. du(i)
h can then be expressed as follows:

du
(i)
h =

Ndof∑
k=1

du
(i)
S,kNk = N du

(i)
S , with du

(i)
S =

(
du

(i)
S,k

)
k∈[[1;Ndof ]]

. (3.11)

Then, writing Equation (3.10) for dvh = N j yields:

∀j ∈ [[1;Ndof ]],
Ndof∑
k=1

du
(i)
S,ka

(i)
S (Nk, N j) = l

(i)
S (N j)

Previous equation can be rewritten as a linear system:
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M
(i)
S du

(i)
S = b

(i)
S , (3.12)

with ∀i ∈ [[0; imax]], 
M

(i)
S =

(
a

(i)
S (N j , Nk)

)
(j,k)∈[[1;Ndof ]]2

b
(i)
S =

(
l
(i)
S (N j)

)
j∈[[1;Ndof ]]

. (3.13)

One should note that at each step of the iteration process the problem is changed. Indeed
both M (i)

S and b(i)S depend on the current estimation u(i). This Gauss-Newton scheme is thus
computationally expensive since matrix M (i)

S has to be reassembled and refactored at each step
i. In order to reduce computational costs, ∇g ◦ φ

u(i) is often replaced by ∇f in (3.8) [Besnard
et al. 2006] and as a result in (3.12):

M
S
du

(i)
S = b

(i)
S,f , (3.14)

with ∀i ∈ [[0; imax]],
M

S
=

(
aS,f (N j , Nk)

)
(j,k)∈[[1;Ndof ]]2

=
∫
S
NT∇f ∇fTN

b
(i)
S,f =

(
l
(i)
S,f (N j)

)
j∈[[1;Ndof ]]

=
∫
S

[
f − g ◦ φ

u(i)

]
NT∇f

, (3.15)

which is the usual Quasi-Gauss-Newton (QGN) scheme implemented in DIC.

Remark By taking u(0) ∈ Vh, ∀i ∈ [[0; imax]], u(i) ∈ Vh.

Remark BecauseM
S
involves two shape functions in the integral, it can be seen as a (weighted)

mass matrix.

Remark [Passieux & Bouclier 2019] explain that the condition to be met so that the iteration
process still converges after ∇f was substituted to ∇g ◦ φ

u(i) is:

−
(
b
(i)
S

)T (
M

S

)−1
b
(i)
S,f < 0 (3.16)

which is a more general case than the small deformation condition (
∥∥∥∇u∥∥∥ � 1) usually raised

to justify this QGN implementation [Neggers et al. 2016,Passieux et al. 2018]. Typically, it is
shown that the QGN scheme converges for large rotations below 90◦, provided that an appropriate
step size is used.

This QGN implementation is particularly interesting from an algorithmic viewpoint, as the
correlation matrix M

S
is assembled and factorised once and for all in the beginning of the

optimisation process. Also, it should be noted that vector ∇fTN , once computed, may be used
for both matrix M

S
assembly and vector b(i)S,f , and only the residual

[
f − g ◦ φ

u(i)

]
needs to be

updated.
The considered domain S has not been clearly defined yet. Its definition actually depends

on whether a local or global approach is implemented.



3.3. Including camera models 43

We defined the ROI as the planar surface over which the displacement measurement is
performed. It should be noted that this definition may raise some semantic issues with the
community of local DIC. In this community, the ROI is indeed understood as the domain in the
reference image corresponding to the planar surface (see for instance [Pan 2009, Introduction]),
not as the planar surface itself. In local approaches, this is a very subtle difference. In global
approaches, where a model of the surface is available, it actually makes sense to distinguish
these two concepts.

3.2.2 Local approaches

In the first case, S stands for a particular subset of pixels: the Zone Of Interest (ZOI). It
is included in a wider area, the domain corresponding to the ROI in the reference image (see
Figure 3.2). In that case, shape functions are the same for all ZOIs, and their support is
included in the associated ZOI. Hence, the iteration process (3.14) is performed for each ZOI
independently. ZOIs can be contiguous, overlapping, separated [Hild & Roux 2012], they may
even contain discontinuities [Bourdin et al. 2018].

ZOIs are typically square groups of pixels, called subsets, from the reference picture f and
shape functions are low-order polynomials. The first coefficients of the polynomial allow to
retrieve the displacement field as well as the strain over a set of points corresponding to the
ZOI centres.

As ZOIs are independent from one another, local approaches exhibit high performance
through parallelisation and seed techniques [Pan 2009].

3.2.3 Global approaches

In the second case, S stands for the whole domain corresponding to the ROI in the reference
image. It means that the iteration process has to be performed once and for all, allowing to
recover the displacement field directly. Shape functions

(
N j

)
j∈[[1;Ndof ]]

support can also be the
whole domain S.

An important asset of global approaches compared to the local ones is the opportunity
to enforce regularisation on the displacement field based on numerical and/or experimental
measurements [Pierré et al. 2017] because shape functions may be the exact same ones as in
numerical simulations. However, these methods require a model of the planar surface (e.g. a
FE mesh).

Remark The distinction between local and global approaches is somewhat artificial as one could
argue that global approaches encompass local ones when choosing the same discontinuous shape
functions.

3.3 Including camera models

In this section, we assume that a model of the surface is available, so that we can
adopt a global approach.

Until now, the domain S has been defined in the reference picture f and the displacement
field u as well. This results in a displacement field which is expressed in terms of pixels over



44 Chapter 3. Full-field measurements in Digital Image Correlation

Figure 3.2: Displacement tracking strategy of local DIC (top) and global DIC (bottom). Ex-
tracted from [Wang & Pan 2016].
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a domain parameterised with pixel coordinates. When considering a perfect pinhole model
(see Section 2.1.1), it is straightforward to convert pixels in terms of physical length (simple
scaling in each direction of the planar surface). However adopting such an approach may result
in a displacement misevaluation because of geometrical flaws in the camera optical system
(see Section 2.1.2). To circumvent these issues, the camera model P from Chapter 2 may be
introduced in the grey level conservation equation as follows [Pierré et al. 2016]:

∀X ∈ Ω, f ◦ P (X, p) = g ◦ P (X + U(X), p), (3.17)

where U = (U V )T is the sought displacement field defined over Ω which denotes the model
corresponding to the ROI (S = P (Ω)). Note that, unlike u from Equation (3.1) which is
expressed in pixels, the dimension of U is a physical length (e.g. expressed in meters). In the
following, to reduce the amount of notation, we will simply denote P (X) instead of P (X, p).
With such notations the variational formulation associated with Equation (3.17) is:

Find U? ∈
(
L2(Ω)

)2
, U? = arg min

U
F (U), F (U) =

∫
Ω

[
f◦P (X)−g◦P (X+U(X))

]2
dX. (3.18)

To derive the QGN scheme associated with Equation (3.18), the same steps as in Sections 3.1
and 3.2 can be followed and it all comes down to replace f (resp. g) by f ◦ P (resp. g ◦ P ).
Noting that, for instance, ∇ (f ◦ P ) = ∇P ∇f ◦ P , the Gauss-Newton scheme writes:

M
(i)
Ω dU (i) = b

(i)
Ω , (3.19)

with ∀i ∈ [[0; imax]],
M

(i)
Ω =

∫
ΩN

T

[(
∇P

(
∇g ◦ P

)) (
∇P

(
∇g ◦ P

))T ]
◦ φ

U(i) N

b
(i)
Ω =

∫
Ω

[
f ◦ P − g ◦ P ◦ φ

U(i)

]
NT

(
∇P

(
∇g ◦ P

))
◦ φ

U(i)

, (3.20)

where
φ
U(i) : Ω ⊂ W → W

X 7→ X + U (i)(X) . (3.21)

Eventually, using ∇P ∇f ◦ P instead of
(
∇P ∇g ◦ P

)
◦ φ

U(i) (that is substituting ∇ (f ◦ P ) to
(∇ (g ◦ P )) ◦ φ

U(i)) yields the associated QGN scheme:

MΩ dU (i) = b
(i)
Ω,f , (3.22)

with ∀i ∈ [[0; imax]],
MΩ =

∫
Ω
NT

(
∇P

(
∇f ◦ P

)) (
∇P

(
∇f ◦ P

))T
N

b
(i)
Ω,f =

∫
Ω

[
f ◦ P − g ◦ P ◦ φ

U(i)

]
NT

(
∇P

(
∇f ◦ P

)) . (3.23)

This last QGN scheme is used in Section 4.2.
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Remark We would like to stress that there is something unsatisfying with Equations (3.2) and
(3.18). It seems indeed equivalent to integrate the residual squared of Equation (3.1) over S or
to integrate the one of Equation (3.17) over Ω, which is not. This issue will be addressed later
on in Chapter 5, especially in Section 5.2.

3.4 Numerical implementation

In previous developments, only mathematical and algorithmic aspects have been discussed.
However to solve the DIC problem, we will implement the algorithms on a computer. This re-
quires to address two different topics. First, strategies to numerically compute integrals should
be defined. Also, images are acquired and stored in a digital way, meaning that, images corre-
spond to pixel arrays and associated grey level values are defined at pixel centres only. Hence,
evaluating, for instance, g ◦ φ

u
for subpixel values of the displacement is not straightforward.

This requires interpolation procedures.

3.4.1 Integration schemes

The algorithms (3.14) and (3.22) will be numerically implemented. That is the reason why we
need a quadrature rule in order to respectively estimate

∫
S · dx and

∫
Ω · dX.

Pixel centres as integration points Classically, a sum over the pixels in the reference
image f is used to evaluate

∫
S · dx from Equation (3.14). This exhibits an interesting feature:

raw data from f may be used. However, the projection of an element of the FE mesh (when
considering FE-DIC for instance) in f may not correspond exactly to a set of pixels and thus
may intersect some (see Figure 3.3). Hence even constant functions cannot be integrated exactly
(meaning that the area of an element can be miscalculated) and it implicitly assumes that the
projection of a line of the physical space in the image is a line, which is not necessarily the case
as soon as distortions occur in the optical system (see Figure 3.3).

Remark There is also an unsatisfactory dissymmetry between f and g with this quadrature
rule: every data from f is a raw grey level, while almost every data from g is an interpolated
one (see next section).

FE integration scheme We consider that a FE model of the surface is available and that
N collects the shape functions associated to the mesh. In this case, the aforementioned issues
may be tackled by relying on the approach described in Section 3.3. By denoting Ne the set of
mesh elements and

(
Xk
e

)
k∈[[1,Nk

e ]]
the integration points of element e, we can approximate the

integral of a function h defined over Ω:

∫
Ω
h(X) dX ≈

∑
e∈Ne

Nk
e∑

k=1
ωkeh(Xk

e), (3.24)

where ωke is the weight associated to the integration point Xk
e . There are various ways to

define the integrations points and their respective weights [Pierré 2016]. One efficient way is
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Figure 3.3: With the classical method, the computed area, in red, is not exact. Extracted and
modified from [Pierré et al. 2016].

described in Figure 3.4. For a triangular element, the idea is to look for the number of pixels
intersected by each edge of the triangle projection in the image f . Then, these numbers of
pixels along each direction are used to define the integration points in the isoparametric domain
together with the elementary area that they represent. This allows to assign the weight values
ωke based on the area of each elementary area in the physical space. Compared to classical
pixel integration, this integration scheme reduces biases in displacement measurements [Pierré
et al. 2016]. Besides some specific features discussed later in Chapter 7 on a practical application,
this is the integration scheme used in this work (in particular in Section 4.2).

Remark This process is easily extended to quadrangles [Pierré 2016]. It may also be applied
to other global approaches.

3.4.2 Subpixel image evaluation and image gradient

There are two final aspects that have not been tackled yet to allow for a numerical implemen-
tation of the discussed algorithms. First, the need for a method allowing to evaluate images at
subpixel positions. Even though f may be evaluated only at pixel centres, which is straightfor-
ward, g may not if a subpixel accuracy on the displacement is aimed for. Second, the image
gradient should be evaluated as well. To address these two points, a bicubic B-Spline interpo-
lation of images is used (the reader can refer to [Bornert et al. 2009, Schreier et al. 2000,Zhou
et al. 2015] for more precisions on the effects of interpolation methods).

3.4.3 Correlation criteria

Practically, there is another issue that we will discuss in detail in this manuscript, particularly
in the SDIC case. It is linked to differences in lighting between reference state image f and
deformed state one g which result in measurement errors. These differences may be due to
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Projection

in the image

Isoparametric

coordinate

system

Figure 3.4: Integration points definition for a triangular mesh element. They are positioned
so that a density of one point per pixel is reached. The weights ωke are assigned so that they
correspond to each elementary area defined in the top schematic drawing. Hence, their sum
equals the triangle area. Extracted from [Pierré 2016].

limitation of the imaging hardware (e.g. scanning electron microscope) or surface degradation
[Tong 2005]. To account for these effects, corrections of f and g may be introduced. This results
in a correlation criterion (or functional) different from a simple L2-norm of the residual. Many
different DIC criteria exist and have been evaluated. In [Tong 2005], it is shown that the most
robust and reliable criterion is the Zero-mean Normalised Sum of Squared Difference (ZNSSD),
with:

CZNSSD = 1
|S|

∫
S

f − f
∆f −

g ◦ φ
u
− g ◦ φ

u

∆
(
g ◦ φ

u

)
2

, (3.25)

where f and g ◦ φ
u
denote, respectively, the mean value of f and g ◦ φ

u
, ∆f and ∆

(
g ◦ φ

u

)
denote f and g ◦ φ

u
standard deviation, and |S| stands for the ROI projection area. It is also

expressed in [Tong 2005] the relation between this criterion and the Zero-mean Normalised
Cross-Correlation (ZNCC) defined as:

CZNCC = 1
|S|

∫
S

(
f − f
∆f

)g ◦ φu − g ◦ φu
∆
(
g ◦ φ

u

)
 . (3.26)

Since we can write:

CZNSSD = 2(1− CZNCC). (3.27)
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It is worth pointing out that, for whole-pixel translations, computing CZNCC or the pattern
auto-correlation function at the corresponding point would yield the same results. Hence, it is
consistent to assess pattern quality by means of criteria based on the auto-correlation function
for the ZNCC (or ZNSSD) cost function, as done in Section 4.2.

Remark The ZNCC and ZNSSD correlation criteria have been presented for Equation (3.2)
(without camera model) but similar criteria may be written for Equation (3.18) (with camera
model).

In Section 3.5.2 is discussed the use of such criteria in a SDIC context.

3.5 Extension to Stereo Digital Image Correlation

Pieces of this section are adapted from [Fouque et al. 2021a, Introduction].

The main features of SDIC compared to DIC are its ability to perform a three-dimensional
displacement field measurement on a possibly non-planar surface Ω. To do so, at least two
cameras are needed (see Figure 3.5). In this section, we present two different frameworks used
in SDIC. First, the subset-based and then the FE-based ones are introduced. This allows to
show the main differences between these two approaches as well as their common characteristics.
One of their common traits is the need to calibrate the stereo rig. This can be done (or refined) at
various steps but, for the sake of simplicity, we will assume it is the first step of each framework.

For each approach, its extension to multiview pictures of the ROI is introduced (see Fig-
ure 3.10 that is presented in the next paragraphs). By multiview pictures we mean that for
each state more than two pictures are available, allowing to observe a large part of the structure
surface. Note that, with the approaches presented in this section, there are as many reference
state images as deformed state ones, which naturally leads to setups where there are as many
cameras as there are pictures at each state.
3.5.1 Subset-based Stereo Digital Image Correlation

Case of a single camera pair Considering only two cameras, in Subset-based SDIC [Jones
et al. 2020,Lucas & Kanade 1981,Luo et al. 1993,Sutton et al. 2009,Synnergren & Sjödahl 1999],
a master camera is chosen (the left one in Figure 3.6) and the subsets are defined in the reference
state picture of this camera (fL). Basically, each subset of the left image is sought in the right
image thanks to standard 2D DIC technique. The knowledge of the positions of the cameras
with respect to each other allows then to obtain the position of each subset centre in the world
reference frame (triangulation). A 3D representation of the reference state of the whole ROI as
a point cloud is then generated. We denote it S. Regarding the deformed state, the procedure
is the same, except that the subsets remain defined in the reference state left image fL. Thus
additional 2D DIC procedures are used to obtain the position of each subset in both left and
right deformed state images gL and gR. Then, thanks again to triangulation, the position of the
subset centres in the deformed state S′ are retrieved. Finally, the displacement U is obtained
as a difference between the two point clouds: U = S′ − S. Let us stress that, consequently, U

is not a field strictly speaking, and is the result of several (five) nested optimisation problems.
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Figure 3.5: Two points M1 and M2 lying on a line passing through camera centre Oc have the
same projection m1. The use of another camera allows to distinguish M1 from M2 thanks to
the two different projections m′1 and m′2. Inspired from [Garcia 2001, Figure 1.10].

Remark In the previous paragraph and in Figure 3.6, a specific strategy regarding temporal
matching has been presented but others exist (see Figure 3.7).

Extension to multiview Stereo Digital Image Correlation The process associated with
multiview subset-based SDIC is mapped in Figure 3.10a. Cameras are paired and, for each
reference state image pair (fi,L, fi,R), the point cloud Si corresponding to the projection of the
ROI in the image fi,L is retrieved according to the same steps as in the previous section. The
different point clouds are then stitched together to obtain the whole shape S of the ROI [Solav
et al. 2018]. To perform displacement measurements, the deformed state images (gi,L, gi,R) are
considered and similarly allow, after stitching the results S′i, to recover the whole deformed
shape S′ of the ROI. Again, the displacement is evaluated as U = S′ − S.

3.5.2 Finite-Element-based Stereo Digital Image Correlation

In contrast, in the case of FE-SDIC (see Figure 3.10b), no so-called master camera is defined.
Instead, pictures are interrogated at pixel positions corresponding to physical points defined on a
FE mesh of the ROI [Réthoré et al. 2013] (see Figure 3.10b), as described in Section 3.4.1. Note
that, apart from specific points that will be discussed later on, the extension of FE-SDIC from
only two cameras to multiview setups is straightforward. We will thus present the multiview
case directly. To do so, we consider a set of Nc cameras, each of which took a reference state
image of the ROI Ω. The associated set of reference state images and camera models are
respectively denoted

(
I0
c

)
c and (P c)c.

Classically, global SDIC frameworks rely on the steps described in Figure 3.8. As already
explained, cameras are first calibrated. Then the relative position of the cameras with respect to
the model is searched, which corresponds to the extrinsic calibration. And, before displacements
can eventually be measured, a shape correction is introduced to account for small defects of the
true geometry with respect to the model.
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t0 + Δt

fL fR

gL gR

U=S'-S

S'

S
t0

Figure 3.6: Subset SDIC framework: pixel subsets are defined in the master (left) reference
state (t0) image fL and their coordinates are sought in the slave (right) reference state image
(fR) based on standard two-dimensional DIC processes. The knowledge of the camera relative
positions allows then to triangulate the position of each subset centre in the world reference
frame Rw and obtain the shape S of the specimen. In the deformed state (t0 + ∆t), the
procedure is the same except that subsets remain defined in the master reference state image
(fL). A temporal matching is thus performed with the left deformed state image (gL) and with
the right one (gR). Again, a triangulation allows to obtain the position of subset centres in the
deformed state (S′). The displacement field is retrieved by subtraction: U = S′ −S. Modified
from [Pierré et al. 2017].
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Figure 3.7: Three major strategies for the stereo-correlations in stereo-DIC: (a) stereo matching
for initial left and right images, and temporal matching for subsequent left and right image
series; (b) temporal matching for left image series and stereo matching for all the right images
using the original left image as the reference image (same strategy as Figure 3.6), and; (c)
temporal matching for the left images and stereo matching for all the right images, using the
current left image as the reference image. Extracted from [Pan 2018].
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Figure 3.8: SDIC framework. Modified from [Pierré et al. 2017].
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Calibration procedure In the extrinsics calibration and shape measurement steps based
on reference state images (I0

c )c, the position of each physical point is adjusted so that the
different grey levels associated to the projection of this point in each picture match. The best
camera parameters

(
pext
c

)
c
(extrinsics only) and shape S minimising the discrepancies over

all reference state image pairs is sought. This allows to ensure another kind of grey level
conservation assuming that the grey level associated to a physical point should be the same for
all cameras:

∀c ∈ [[1, Nc]], ∀i ∈ [[1, c− 1]], ∀X ∈ Ω, I0
c ◦ P c

(
X + S(X), pext

c

)
= I0

i ◦ P i
(
X + S(X), pext

i

)
(3.28)

Based on the same reasoning as the one presented in Section 3.1, the calibration procedure
relies on a variational formulation. The associated functional reads:

Find
(
S?, pext

?
)
∈
(
L2(Ω)

)3
× R6Nc ,

(
S?pext

?
)

= arg min
(Spext)

F
(
S, pext

)

F
(
S, pext

)
=

Nc∑
c=1

c−1∑
i=1

∫
Ω

(
I0
i ◦ P i(X + S(X), pext)− I0

c ◦ P c(X + S(X), pext)
)2
dX,

(3.29)

where, for instance, P c is the camera model associated to camera c. pext is the vector collecting
extrinsic parameters of all cameras. Note that we generalised the definition of the projector P
to reduce the amount of notation in what follows (we omitted the intrinsic parameters which
were calibrated in a prior step and P c is a function of the vector of all extrinsics pext instead of
simply pext

c
).

Remark Note that, as the camera rig is assumed to be calibrated, the relative position of each
camera with respect to c = 0 is known (see Chapter 2). Thus it is also possible to formulate
a problem where pext = pext0 , that is the rig moves as a whole in the extrinsic calibration step.
This is what is done in Chapter 7 (with a virtual rig).

However, Equation (3.29) happens to be ill-posed because of the solution non-uniqueness.
For instance, grey level discrepancies resulting from rigid-body motion of the camera rig may
be accounted for either by a shape correction field if the space in which the shape is sought
contains rigid-body modes, or by a correction in the extrinsic parameters. As it is difficult to
ensure that shape space does not encompass (even infinitesimal) rigid-body modes, extrinsics
are usually calibrated before shape is measured. Similarly to what is presented in Section 3.1 a
Gauss-Newton algorithm may be implemented to minimise Equation (3.29).

• Extrinsics calibration: The Gauss-Newton algorithm corresponding to the minimisation
of Equation (3.29) with respect to pext is:

H(i),ext dp(i),ext = b(i),ext, (3.30)
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with

H(i),ext =
Nc∑
c=1

c−1∑
i=1

∫
Ω

[(
∇pP

i

(
∇I0

i ◦ P i
)
−∇pP

c

(
∇I0

c ◦ P c
))

×
(
∇pP

i

(
∇I0

i ◦ P i
)
−∇pP

c

(
∇I0

c ◦ P c
))T ] (

X + S(X), p(i),ext
)
dX

b(i),ext = −
Nc∑
c=1

c−1∑
i=1

∫
Ω

[ (
I0
i ◦ P i − I0

c ◦ P c
)

×
(
∇pP

i

(
∇I0

i ◦ P i
)
−∇pP

c

(
∇I0

c ◦ P c
))](

X + S(X), p(i),ext
)
dX

,

(3.31)
where p(i+1),ext = p(i),ext + dp(i),ext and, for instance, ∇pP

c
= ∂P c
∂pext

.

• Shape measurement: The Gauss-Newton algorithm corresponding to shape measurement
is:

H(i),shape dS(i) = b(i),shape, (3.32)

with

H(i),shape =
Nc∑
c=1

c−1∑
i=1

∫
Ω
NT (X)

[ (
∇P

i

(
∇I0

i ◦ P i
)
−∇P

c

(
∇I0

c ◦ P c
))

×
(
∇P

i

(
∇I0

i ◦ P i
)
−∇P

c

(
∇I0

c ◦ P c
))T ] (

X + S(i)(X), pext
)

×N(X)dX

b(i),shape = −
Nc∑
c=1

c−1∑
i=1

∫
Ω
NT (X)

[ (
I0
i ◦ P i − I0

c ◦ P c
)

×
(
∇P

i

(
∇I0

i ◦ P i
)
−∇P

c

(
∇I0

c ◦ P c
)) ] (

X + S(i)(X), pext
)
dX

,

(3.33)
where S(i+1) = S(i) + dS(i) and S(i)(X) = N(X) S(i).
At this point, shape measurement remains extremely ill-posed, as the mesh may slide on
the object (see Figure 3.9). The cause is that the texture and the mesh are not attached
to one another. To regularise the problem, a strategy consists in constraining the shape
measurement along the normal to the model. Practically, the normal at each point of the
FE mesh is measured by averaging the normals of neighbouring elements. Then a matrix
R
shape

is assembled such that the normal component s(X) = 〈S(X), n(X)〉 of the shape
at the nodes of the mesh, denoted s, gives S = R s. This allows to write a Gauss-Newton
minimisation scheme for the reduced variable s:

RT
shape

H(i),shapeR
shape

ds(i) = RT
shape

b(i),shape. (3.34)

It simply consists of projecting System (3.32) onto the normal directions to the surface.
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Figure 3.9: Illustration of the shape measurement ill-posedness. (a) Theoretical position of the
mesh after extrinsics calibration and shape measurement. (b) Global or (c) Local sliding during
the shape measurement. Extracted from [Pierré et al. 2017].

Remark Iterations between these two steps (extrinsics calibration and shape measurement)
may be performed so as to obtain both faster and better convergence [Colantonio et al. 2020,
Colantonio 2020].

Remark When cameras c and i do not observe the exact same zones in the ROI (e.g. strongly
curved surface), a weight may be assigned to the associated residual so that only the area shared
by both cameras is considered in the functional (3.29) [Chapelier et al. 2021]. However this
remains unclear how to consistently define this weight and details are provided regarding this
matter in Section 6.1.

Remark Another strategy to perform the shape and extrinsic measurement relies on the defi-
nition of an ‘intrinsic texture’ [Dufour et al. 2015b]. Details regarding this concept are provided
in Chapter 5 and Section 6.1.1.

Remark Defining normals at mesh nodes is not straightforward, in particular in the case of
sharp edges. A practical way to proceed, more satisfying than averaging the normals of neigh-
bouring elements, is proposed in Section 7.1.4.

Displacement measurement Then, the displacement measurement step is performed by
adjusting the new position of physical points so that the grey levels in the deformed state
pictures (Ic)c associated to this point match the reference state ones (I0

c )c. However, and unlike
the previous step, the minimisation of grey level discrepancy is performed on a camera by camera
basis only (i.e. registration between images Ic and I0

c ):

∀c ∈ [[1, Nc]], ∀X ∈ Ω, I0
c ◦ P c (X) = Ic ◦ P c (X + U(X)) . (3.35)

Again, a variational formulation is used to solve this ill-posed problem:

Find U? ∈
(
L2(Ω)

)3
, U? = arg min

U
F (U)

F (U) =
Nc∑
c=1

∫
Ω

(
I0
c ◦ P c(X)− Ic ◦ P c(X + U(X))

)2
dX.

(3.36)
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And the associated QGN scheme writes:

H dU (i) = b(i), (3.37)
with 

H =
Nc∑
c=1

∫
Ω
NT

(
∇P

c

(
∇I0

c ◦ P c
)) (
∇P

c

(
∇I0

c ◦ P c
))T

N

b(i) =
Nc∑
c=1

∫
Ω

(
I0
c ◦ P c − Ic ◦ P c ◦ φU(i)

)
NT

(
∇P

c

(
∇I0

c ◦ P c
)) . (3.38)

Note that H and b(i) are very close to simple additions of the respective two-dimensional cor-
relation terms MΩ and b(i)Ω,f of Equation (3.22).

Remark The grey level conservation is not enforced over all camera pairs any longer (compared
to the calibration step). This allows to reduce computational costs and ill-posedness. Also, as
the point of view remains the same a lot of issues associated with light are simply avoided.
However it comes at the cost that stereo correspondence may be lost (i.e. ∃(c, i) ∈ [[1, Nc]]2, ∃X ∈
Ω, Ic ◦P c(X) 6= Ii ◦P i(X) even in the least-squares sense). This also implies that the same area
should be followed, and thus visible, by a given camera at all times and it may become an issue
when considering large displacements, especially in a multiscale context for near-field cameras.

When considering many time steps (Nt > 2 time steps for instance) and associated pictures(
Itc
)
(c,t)∈[[1,Nc]]×[[0,Nt−1]], the displacement measurement procedure is exactly the same except

that Ic from Equation (3.37) is replaced by Itc. This allows to measure a displacement with
respect to the reference state (captured by

(
I0
c

)
c) at all times.

Correlation criteria In subset-based SDIC, the measurement process relies on the correla-
tion of independent small patches in pictures. Correlation criteria introduced in Equations (3.25)
and (3.26) are thus equivalent to the application of corrections to each subset. This makes this
approach very robust to local illumination differences in images which may be caused by surface
normal orientation variations for instance.

In FE-SDIC, and generally in global approaches, the minimisation is performed over the
whole ROI Ω. Thus it makes it harder to account for these effects, even when relying on
a ZNSSD correlation criterion for instance. However, it is possible to mitigate the impact of
illumination changes by distorting the functional and applying a ZNSSD criterion on an element
basis for instance [Colantonio et al. 2020,Colantonio 2020]. Note that in this case, a continuous
formulation becomes harder, if not impossible, to write. Another approach (Brightness and
Contrast Corrections (BCC)) consists in using two low-order polynomials (ac, bc) and replacing
I0
c by acI0

c + bc [Charbal et al. 2020].

Remark Note that these three methods, namely ZNSSD in subset-based SDIC, ZNSSD on an
element basis in FE-SDIC and BCC, are a brightness and contrast adjustment. The difference
being that when using a ZNSSD criterion, one implicitly assumes that the subset (in the case of
subset-based SDIC) or the element (in the case of FE-SDIC) stands for a larger surface than
the representative elementary surface. Hence coefficients corresponding to ac and bc in BCC
are directly computed from the mean and standard deviation of the considered image portion.
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(a) Subset-based Stereo Digital Image Correlation (b) Finite-Element Stereo Digital Image Correla-
tion (FE-SDIC)

Figure 3.10: Diagrams introducing in a graphical manner the current Subset-based and Finite-
Element Multiview Stereo Digital Image Correlation frameworks.

3.6 Discussions

Subset-based SDIC is a very robust and fast measurement method as it relies on well-studied
two-dimensional image registration techniques. This is made possible by the independent sub-
sets which (a) do not interfere with one another in the case of mismatch and (b) allow high
performance through parallelisation. Yet, the measurement process is not focused on the dis-
placement field itself, as it is computed in a post-processing step using outputs of several minimi-
sation problems. In comparison, FE-SDIC (and global approaches in general) is more expensive
computationally speaking and requires a model prior to any measurements. However, in a
test-simulation dialogue perspective, as the same kinematic basis as simulations may be cho-
sen, the comparison between data from tests and simulations is made much easier. Also, the
displacement field U is directly the solution of a minimisation problem, which allows to make
use of a priori knowledge of the sought displacement field [Bouclier & Passieux 2017,Passieux
et al. 2018,Pierré et al. 2017,Réthoré et al. 2009,Rouwane et al. 2021a]. With such data, a wide
variety of powerful algorithms allows to adjust physical parameters associated with numerical
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models (e.g. FEMU, IDIC) [Hild & Roux 2006, Lecompte et al. 2007, Passieux et al. 2015a,
Réthoré 2010], densely measure shapes [Colantonio et al. 2020, Dufour et al. 2015b, Etievant
et al. 2020] or even identify mode shapes during dynamic tests [Berny et al. 2018b, Passieux
et al. 2018].

3.6.1 Stereo Digital Image Correlation and large-scale applications

Performing multiscale measurements using SDIC is not straightforward [Passieux et al. 2015a,
Serra et al. 2017]. The formulation (3.36) does not provide a satisfactory way to merge results
from pictures taken at various scales. Currently, only data from the most resolved pictures
of a zone are considered to perform the associated displacement field measurements [Passieux
et al. 2015a,Pierré 2016].

A major issue that we identified with these SDIC methods is that the objective to pro-
vide algorithms as efficient as possible might have taken precedence over more essential topics,
especially concerning global approaches. As shown above in this chapter, both subset-based
and global SDIC displacement measurement algorithms are based on their respective two-
dimensional counterparts. In other words, assumptions which were justifiable in the case of
two-dimensional DIC became questionable. For instance, it is relevant in case of a planar sur-
face, as done in Equations (3.1) and (3.17), to assume that the grey level of a physical point
remains constant in pictures taken at different levels of deformation (as long as the texture
remains attached to the surface and does not "fade" because of high strain levels and as long
as the mechanical deformation does not change the orientation of the local normal vector with
respect to the lighting too much). The normal at each point of the ROI can indeed be taken
equal to Zc at all times, resulting in the same amount of light energy falling on each point of
the surface, at all times. Conversely, if the object geometry is complex, the grey level value may
strongly depend on the position on the object as shown in Figure 3.11.

Another example is the same weight assigned in Equation (3.17) for all point of the surface,
which is consistent for a planar object located on a plane of normal Zc. However, as shown in
Figure 3.12, the same level of confidence cannot be assigned to all unit physical surface patch.
The confidence should depend, among others, on the surface normal n orientation.

Eventually, points of the ROI are assumed to be visible, or at least remain visible by a same
camera all the time. Of course, fulfilling these assumptions in the case of SDIC is a complex task.
It is even more complex in the case of multiview pictures and let us not speak of large structural
tests. For these reasons, use cases of SDIC are seriously limited. To clarify this point, we will
distinguish the case of small deformations (displacements, rotations and strains are assumed to
be small) and the small-strain or large-deformation one (only strains are small). The matching
of surface areas that were not visible in previous pictures from the exact same camera is not
possible in current SDIC frameworks, thus it is limited to a certain class of large deformations.
Also, effects associated with light and surface pixel sampling (which are not accounted for) are
strongly related to the local normal vector to the surface [Delaunoy & Pollefeys 2014,Tsiminaki
et al. 2019], hence the current framework is rather limited to small-strain contexts. Overall,
this results in the use of SDIC only in small-deformation cases. We believe this is related to the
fact that grey level conservation equations (3.1) and (3.17) can be seen as a way to inverse a
forward problem consisting in warping a flat picture with a given displacement field. Yet, in the
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Figure 3.11: Depending on the light position and the surface normal vector, an object of uniform
color may not appear uniform in a picture, as illustrated by this sphere. Extracted from
[Wehrwein 2015].

Figure 3.12: The sampling performed by a camera of a surface is strongly related to the orien-
tation of the normal vector n.

current state-of-the-art of SDIC, there is no so-called ‘forward problem’ allowing to generate
virtual images at various deformation states under given lighting conditions of structural tests
integrated in a framework (yet methods to generate virtual images to compare measures to a
so-called ‘ground truth’ do exist [Balcaen et al. 2017,Garcia et al. 2013,Lava et al. 2020,Rohe
& Jones 2021]). Thus, we cannot compare these predictions with the observations in actual
pictures. As explained by [Tarantola 2005], “the comparison of the predicted outcome and the
observed outcome allows us to ameliorate the theory”.
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3.6.2 Deposited patterns

As suggested by the different Gauss-Newton algorithms ((3.12), (3.14), (3.19), (3.22), (3.30),
(3.32) and (3.37)) measurement accuracy in DIC greatly relies on the image gradient which
is included in both the matrix that should be inversed in the left-hand side (tensor product
with itself) and in the vector of the right-hand side. Note that we already mentioned that,
in the strong sense, only the component along the image gradient of the displacement field
may be recovered. Hence, the image gradient should exhibit properties allowing to perform
measurements as reliable as possible. For that, in the context of mechanical tests, patterns are
deposited on measurement surfaces, often by the mean of a paint spray.

As discussed later on, a lot of criteria exist to assess the quality of a pattern [Fouque
et al. 2021c], however they are often adapted to a single scale or a discrete set of scales. Hence,
before developing numerical methods to extend the use of SDIC to larger scales (which we do
in Chapters 5 and 6), the possibility to rely on patterns which could be used in a multiscale
context should be assessed. We thus present in the next chapter (namely Chapter 4) multiscale
approaches in DIC. Then the use of a fractal pattern for multiscale measurements is introduced.

In the remainder of the manuscript, unless otherwise stated, we consider that
we are using a FE-SDIC framework, or at least a global approach.



Chapter 4

Multiscale approaches in Digital
Image Correlation

The multiscale aspects in DIC are introduced. They encompass two different but strongly
intertwined topics. The first one concerns the displacement measurement initialisation, as
multigrid schemes are often used. These schemes rely on a coarse-graining process which
generates low-resolution pictures, at various scales, from an initial one. It shows the
benefit to both reduce computational costs associated with one iteration of the optimi-
sation algorithms, and smooth the DIC functional to avoid convergence to local minima.
The second topic is related to multiscale measurements. In this context, cameras with
different levels of resolution are used to observe the ROI. The pattern deposited on the
surface should thus allow measurements as accurate as possible at all scales, and facilitate
the initialisation at a scale as coarse as possible. In both cases, it comes down to define
a pattern with multiscale properties. However, this is not straightforward as shown by
the literature review. The method that we developed to achieve this goal is presented.
It stands for one of the contributions made during our PhD thesis [Fouque et al. 2021c].
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4.1 Pyramidal approach for initialisation

The algorithms used in DIC have been presented in Chapter 3. They rely on the premise that
a satisfactory initial displacement guess is available, so as to benefit from the local convergence
of the used minimisation schemes.

Practically, it may be hard to directly find a good initialisation for the displacement field
and, to circumvent this issue, a pyramidal approach is often used.

4.1.1 Coarse-graining process

Basically, the idea of coarse graining is to aggregate pixels 4 by 4 by averaging their associated
grey levels (subsampling), in order to produce a coarser image with a smaller number of pixels.
This process can be repeated Ns times and produces an Ns-level multigrid or pyramidal scheme
(see Figure 4.1). A DIC problem is solved at each level by a top-down approach, resulting in
a coarse-to-fine search strategy [Hild et al. 2002, Réthoré et al. 2007]. This strategy exhibits
many advantages [Burt 1984]. First, iteration costs of QGN algorithms are drastically reduced
at the coarsest scales which will then provide a good initialisation for the finest ones. Then,
most iterations are performed at the coarsest levels which are the cheapest ones computationally
speaking. Eventually, a much greater robustness is achieved when relying on such a pyramidal
scheme. The reason for this last asset is the low-pass filtering provided by the grey level
averaging that allows to avoid undesirable convergence to local minima.

Figure 4.1: Ns-level multigrid or pyramidal scheme with Ns = 3.

Remark It is common in image processing to convolute the image with a kernel (e.g. Gaussian)
before subsampling.

It should be noted that the amount of available data decreases as the level in the multigrid
scheme increases (at the level s, the number of pixels is divided by a factor 4s compared to the
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initial pictures). At the same time, the number of unknowns (degrees of freedom) remains the
same. As a result, the DIC problem becomes more and more ill-posed. Yet, it is very convenient
to keep the same degrees of freedom from one level of the pyramid to another, as the expression
of the sought field also remains the same. To prevent the ill-posedness to grow with the level,
regularisation methods may be useful [Luettgen et al. 1994].

Remark The use of such methods does not limit to pyramidal approaches. They are often
implemented when the strong regularisation allowed by the choice of the initial subspace Vh (see
Section 3.2) is not sufficient.

4.1.2 Regularisation methods in Digital Image Correlation

One may split regularisation methods into two classes, as evoked in [Dufour et al. 2015a]. An
instance of the first class has already been presented in Section 3.2, that is a strong regu-
larisation. In this case, the field is sought in a smaller space (e.g. Vh) embedded in the first
one [Chapelier et al. 2021,Colantonio et al. 2020,Etievant et al. 2020,Passieux et al. 2018,Réthoré
et al. 2009,Serra et al. 2017]. The second class may be referred to as weak regularisation meth-
ods. It consists in "twisting" the variational formulation by adding a term to the functional.
This term penalises the distance to an a priori knowledge on the solution. Yet, at least in some
cases, it may be seen as a restriction of the space to a compact set in some topology [Benning
& Burger 2018]. This approach is also widely known as Tikhonov regularisation [Benning &
Burger 2018,Dufour et al. 2015a].

Strong regularisation As mentioned above, we have already presented the outline of a strong
regularisation when considering the displacement field u in Vh ⊂ (L2(S))2 in Section 3.2. But
this process can be repeated if the problem remains ill-posed as done in Section 3.5.2 concerning
the shape measurement step for instance. In the following, we give two other examples of such
strong regularisations.

In [Colantonio et al. 2020], the shape measurement problem remained extremely ill-posed
even when relying on measurements only along the normal to the FE mesh. As a remedy, a
subspace of the shape functions associated to the FE mesh is chosen. This subspace is composed
of Non-Uniform Rational B-Spline (NURBS) functions which smoothly vary in space, making
the problem much less ill-posed. A pyramidal approach is adopted, and the strong regularisation
of the shape measurement problem, based on the NURBS functions, relies on a multilevel
strategy as well. That is, the number of degrees of freedom decreases as the level in the pyramid
increases (see Figure 4.2). The interesting feature of this being that shape measurement is
regularised, but more importantly, it is possible to compute the shape correction at the node of
the FE mesh exactly.

However, this approach requires an analysis-suitable Computer-Aided Design (CAD) model,
and such a model may not be available. Another similar strategy is to immerse the FE mesh
in a morphing box [Chapelier et al. 2021]. This box may be refined, following a pyramidal
approach in the same way as previously presented, but this methodology applies to any mesh.
One should also note that both approaches may also be applied, besides shape measurements,
to regularise displacement measurements.



64 Chapter 4. Multiscale approaches in Digital Image Correlation

Figure 4.2: Principle of the geometric regularisation: the multilevel spline optimisation process
is coupled with the multiscale initialisation of shape measurement. Extracted from [Colantonio
et al. 2020].

Weak regularisation In the case of weak regularisation, the number of degrees of freedom
of the DIC problem remains the same, instead, as explain earlier, a distance between the sought
field and a point in the subspace, symbolising a prior knowledge, is penalised. The functional
to be minimised writes:

Freg = F + wR
F̃

R̃
R, (4.1)

where F is one of the functionals of Chapter 3, R is the regularisation functional, F̃ and R̃ are
typical values taken respectively by F and R, and wR is a regularisation parameter.

Many different kinds of regularisation functionals exist. We introduce only a few of them
below in the two-dimensional case, for displacement measurements, but they may be gener-
alised to three dimensions, and other quantities of interest. Matrix M

S
and Vector b(i)S,f from
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Equation (3.14) are respectively replaced by M
S

+ wR
F̃

R̃
Γ and b(i)S,f − wR

F̃

R̃
Γ ν. Depending on

the chosen R, we will give the corresponding Γ and ν:

• Distance to a prior displacement field u0:

R(u) = 1
2

∫
S
‖u− u0‖

2
2 , (4.2)

yields:  Γ =
∫
S
NTN

ν = u(i) − u0

(4.3)

Remark This regularisation is often used for material property identification.

• Gradient L2-norm squared: It corresponds to the elastic energy minimisation (in the case
of plane-stress state and if Poisson ratio equals −1, ∆u = 0, see Appendix A):

R(u) = 1
2

∫
S

∥∥∥∇u∥∥∥2

F
= 1

2

∫
S
∇uT : ∇u, (4.4)

leads to following values for Γ and ν: Γ =
∫
S
GTG

ν = u(i)
, (4.5)

where Gu is the representation of ∇u consistent with the choice of shape functions N
(see Section 3.2). Note that ∇u is simply ∇u where columns are appended to one another
as a vector.

Remark As
∫
S
∇uT : ∇u = uT

(∫
S
GTG

)
u = −

∫
S
uT∆u, L =

∫
S
GTG is sometimes

referred to as the discrete Laplacian operator.

Remark This gradient-based regularisation functional is often used even in plane-strain
state and even though the Poisson’s ratio differs from −1.

• Laplacian L2-norm squared: In the context of shape measurement, the gradient-based reg-
ularisation tends to flatten the solution too much [Colantonio et al. 2020,Horn 1986]. An-
other choice for the regularisation may be a functional based on the Laplacian [Horn 1986].
Physically, it corresponds to the bending energy of a plate:

R(u) = 1
2

∫
S
‖∆u‖22 , (4.6)

which is often approximated by R(u) ' 1
2uTLTLu [Rouwane et al. 2021b] for the practi-

cal reason that shape functions N are often polynomials of degree 1 [Mendoza et al. 2019].
This results in:
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{
Γ = LTL

ν = u(i) . (4.7)

Remark A strong regularisation may be ‘weakened’ simply by defining R as the distance be-
tween the identified field and its projection on the subspace associated with the considered strong
regularisation.

Remark Of course, several regularisation functionals may be used at once. For instance in
[Leclerc et al. 2011,Mendoza et al. 2019,Rouwane et al. 2021a], an elastic regularisation is used
in the bulk while a Laplacian-based one is used at the non-free domain boundaries.

4.2 Fractal pattern for Multiscale Digital Image Correlation

A significant amount of the work presented in this section has been published
in [Fouque et al. 2021c].

As explained earlier, one of the most important elements in Digital Image Correlation
(DIC) is the pattern deposited on test sample surfaces, as measurement accuracy depends
strongly on specific features of this pattern [Crammond et al. 2013,Lecompte et al. 2006,Pan
et al. 2008,Yaofeng & Pang 2007]. Depending on the application, suitable speckles can be gen-
erated on specimen surfaces using a wide variety of experimental methods. For instance, for
large scale applications, an airbrush or marker pen may be useful [LePage et al. 2017,Lionello
& Cristofolini 2014] while, for small scale applications, the focused ion beam (FIB) technique
or spin coating can be used [Kammers & Daly 2011,Wang et al. 2012,Winiarski et al. 2012].
However, for many of these methods, the operator’s experience may greatly influence the mea-
surement accuracy obtained [Pan 2018]. Concurrently, test standardisation and robust mea-
surement methods are needed in the industrial context. This need raises demand for methods
that are able to generate patterns with high reproducibility [Chen et al. 2015,Zhang et al. 2018].

Consequently, research has sought to define relevant pattern quality criteria. Some re-
searchers have investigated the effect of speckle characteristics in detail [Lecompte et al. 2006,
Reu 2014a,Reu 2014b,Reu 2015a,Reu 2015b,Reu 2015c], leading to the definition of an optimal
speckle size of 3 to 5 pixels [Lionello & Cristofolini 2014]. We wish to point out here that
this optimality criterion relates only to certain pattern generation techniques (e.g. airbrush and
marker pen). For example, it relies on the assumption that a typical speckle size can be defined.

Increasing interest is concomitantly being shown in full-field measurement techniques that
are able to operate at various scales [Bomarito et al. 2018,Mathew et al. 2018,Passieux et al. 2015a,
Serra et al. 2017,Tanaka et al. 2011,Wang et al. 2008]. These techniques dramatically reduce
both computational time and hardware requirements. However, in these conditions, it becomes
questionable to define an optimal speckle size in pixels (since cameras with different magnifica-
tion levels are considered). Hence, in some works, zones with different speckle sizes have been
defined [Pierré et al. 2017] (see Figure 4.3). However, zones with smaller speckle sizes may
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appear uniformly grey for far-field cameras or at least generate very noisy results as the speckle
size may be much less than 3 pixels.

Figure 4.3: Plate of the VERTEX project [Serra et al. 2017]. Two different speckle sizes have
been defined. Most of the speckle pattern is adapted to far-field cameras which observe the
whole plate. For near-field cameras, observing crack propagation, the speckle size is much
smaller which results in a better measurement accuracy.

Some other works have adopted a different approach and assessed pattern quality on the
basis of global parameters [Bomarito et al. 2017, Bossuyt 2013, Pan et al. 2010]. To date,
patterns described as multiscale have been designed for only two different scales [Bomarito
et al. 2018,Mathew et al. 2018] and it is therefore more appropriate to call them biscale pat-
terns (see Figure 4.4). Unfortunately, this kind of pattern does not completely fulfil industrial
needs. There is little chance that only two scales would be enough and that these two partic-
ular scales would be known precisely before the start of experiments. In this context, a truly
multiscale pattern would prove particularly useful. Also, for DIC displacement measurements,
its multiscale features would make it easier to use initialisation processes based on a pyramidal
(or multigrid) approach [Anandan 1989,Hild et al. 2002,Pierré et al. 2017] (see Section 4.1).

In this section, for the sake of simplicity, neither the process of image capture nor associated
problems, such as scene lighting, will be investigated. These topics will be treated carefully
later on (see Chapter 5). We will focus rather on the generation of a scale-free pattern for
texturing objects. This work thus appears as a necessary prerequisite to the development of
numerical methods in DIC for large scale applications in a multiscale context, that we present
in the remainder of this manuscript.
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(a) Biscale optimised pattern. Extracted from [Bo-
marito et al. 2018].

(b) Biscale multispectral pattern. Ex-
tracted from [Mathew et al. 2018].

Figure 4.4: Biscale patterns defined for multiscale DIC.

4.2.1 Pattern quality criteria

We have seen in Section 3.4.3 that the CZNSSD criterion (see Equation (3.25)) is widely used in
DIC. Also, a link has been established with the CZNCC one (see Equations (3.26) and (3.27)).
Eventually, we pointed out that, for whole-pixel translations, computing CZNCC or the pattern
auto-correlation function at the corresponding point would yield the same results. For this
reason, we investigate pattern quality criteria based on the pattern auto-correlation function.
A supplementary criterion, the Mean Intensity Gradient (MIG) is also introduced.

Criteria based on auto-correlation function [Bossuyt 2013] suggested quality criteria
based on pattern auto-correlation. From physical considerations on properties that an ideal
pattern should have (Sensitivity and Robustness), he deduced the corresponding features of the
pattern auto-correlation function. In the following, the interesting features of auto-correlation
are reviewed.

• Main auto-correlation peak sharpness radius: First, the pattern sensitivity needs to be
assessed. For that purpose, [Triconnet et al. 2009] defined the main auto-correlation
peak sharpness radii as the principal axes of the ellipse formed by the intersection of the
osculating elliptic paraboloid in (0, 0) and the zero-height plane. The half-sum of these
radii was then used as a quality criterion. [Bossuyt 2013] assumes that this criterion is
closely related to the pattern displacement sensitivity. It may appear logical that, the
smaller the radius, the greater the change in the auto-correlation function for a given
subpixel translation.

• Watershed radius: Then, a good pattern should allow initialisation as far as possible from
the displacement to be measured. To this end, [Bossuyt 2013] introduced a criterion based
on the primary auto-correlation peak width to take the pattern robustness into account.
The broader the peak the further the initialisation may be from the actual displacement
and still avoid undesirable convergence towards local minima of the cost function. This
criterion is the watershed radius and it represents the radius of a circle with the same area
as the projection of the main auto-correlation peak on a plane. The interested reader is
invited to refer to [Bomarito et al. 2017] for more information.
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• Secondary auto-correlation peak height: Later on, [Bomarito et al. 2017] suggested taking
possible mismatches or convergence in local minima into account by considering displace-
ment fields associated with a stretch deformation. As these displacement fields can lead
to primary correlation peaks that are actually lower than secondary correlation peaks in
a ZNCC criterion (see Figure 4.5), [Bomarito et al. 2017] introduced a metric based on
the height of the secondary auto-correlation peak.

Figure 4.5: Deformation test example. Lines of each color represent a cross section of the
correlation surface at a given stretch. Extracted from [Bomarito et al. 2017].

Mean Intensity Gradient In subset-based DIC, a link has been established theoretically and
numerically [Pan et al. 2008,Wang et al. 2009] between the Sum of Square of Subset Intensity
Gradients (SSSIG) and random error. Additionally, a global parameter based on SSSIG was
elaborated: the MIG, and numerical experiments [Pan et al. 2010] showed improvements in
both systematic and random errors for higher values of MIG. In the context of global DIC,
such as FE-DIC, [Roux & Hild 2006] established the same kind of relationship between MIG
and error standard deviation theoretically.

The best possible values for SSSIG or MIG are achieved for checkerboard patterns [Bomarito
et al. 2017]. Some works followed this path [Grédiac et al. 2019] and it led to a method called
LSA. However, in a general DIC context, according to [Bomarito et al. 2017], these parameters
alone cannot be considered as proper pattern quality criteria because of the non-uniqueness of
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the identified displacement (up to a translation of a whole number of squares). These patterns
cannot be used in a multiscale DIC framework either as the dynamic range of checkerboard
pattern pictures taken by far-field cameras is drastically reduced.

For these reasons, both MIG-based and auto-correlation-function-based criteria will be con-
sidered here to generate a suitable multiscale pattern for DIC, as described below.

4.2.2 Multiscale pattern generation from auto-correlation function

Based on the auto-correlation criteria mentioned above, [Bomarito et al. 2017] developed an op-
timisation metric and a framework to generate an optimal pattern. A Boolean parameterisation
of the pattern was considered for this, i.e., each pixel could be given the value 0 or Ngl − 1 by
the optimisation algorithm (where Ngl is the number of quantisation levels). For each pattern,
the auto-correlation function was computed in order to evaluate the metric. Thanks to this
first step, [Bomarito et al. 2018] were able to create a method to generate an optimal biscale
pattern in which two pixel sizes were defined, one for each camera magnification. However, the
generalisation of this process to more than two different scales does not appear straightforward,
particularly when a reasonable dynamic range must be obtained at all scales.

In this work, an alternative approach is suggested. We do not parameterise a pattern and
then optimise the associated auto-correlation function quality criteria, nor do we define a set of
magnification scales. Instead, a suitable auto-correlation function with appropriate multiscale
properties is taken as an input. Then the associated pattern is generated directly. This section
presents the method used to generate a fractal speckle pattern with respect to a priori criteria.
The very same method could be employed to define patterns with user-defined auto-correlation
functions.

Auto-correlation function and Fourier Transform Let us consider a sampled and quan-
tised pattern:

h : x ∈ [[0; 2n+ 1]]2 → h(x) ∈ [[0;Ngl − 1]], (4.8)

where Ngl is the number of quantisation levels (256 levels with 8 bits), 2n + 2 the number of
pixels in both dimensions and x the pixel centre. h auto-correlation function Ah is defined as:

Ah : τ ∈ [[−n;n+ 1]]2 → Ah(τ) ∈ [−1; 1], (4.9)

where τ = (τx, τy) is the shift (or translation) vector. FT (h) denotes h Fourier transform. The
inverse Fourier transform will be denoted by FT−1(·). With such notations, we can compute
the auto-correlation, up to a multiplicative constant, using the Wiener-Kinchin theorem [Scar-
gle 1989] as follows:

Ah = FT−1(|FT (h)|2), (4.10)

where |FT (h)|2 is called h power spectrum. The pattern Fourier Transform modulus can easily
be derived from Equation (4.10):

|FT (h)| = FT (Ah)
1
2 . (4.11)
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At this point, it may be noted from Equation (4.11) that the amplitude of the pattern Fourier
transform is known at each point of the frequency domain. However, the phase information
cannot be recovered in the process. In the generation of fractal surfaces, a uniform [0; 2π] random
phase ψ is often used at each point of the frequency domain [Feder 1988,Saupe 1988,Voss 1988].
For this reason, we decided to use such a random phase ψ:

FT (h) = FT (Ah)
1
2 ejψ with j2 = −1. (4.12)

For a thorough analysis on the influence of phase on the pattern obtained, we refer to [de Cas-
tro et al. 2017]. Ultimately, the pattern can be generated from the auto-correlation function
by applying the inverse Fourier transform and discarding the imaginary part in the previous
equation:

h = Re
(
FT−1

(
FT (Ah)

1
2 ejψ

))
. (4.13)

In the remainder of this chapter, unless otherwise stated, h will stand for the redistributed (in
[0;Ngl]) and quantised version of h of Equation (4.13).

Similarities can be found between this numerical way of generating patterns and the method
defined in [Funamizu et al. 2013], which optically generates fractal laser speckles. Very similar
algorithms for generating fractal surfaces can also be found in the corresponding literature
[Feder 1988, Saupe 1988, Voss 1988]. Additionally, a random modulus can also be used in
Equation (4.13). That is, FT (Ah) 1

2 can be multiplied in Equation (4.13) by a Gaussian random
variable of zero mean (and possibly, unit variance) as in [Saupe 1988,Voss 1988].

In previous works [Bomarito et al. 2017,Bomarito et al. 2018,Bossuyt 2013,Stoilov et al. 2012],
the pattern (or its Fourier Transform) was parameterised in order to optimise criteria based on
the auto-correlation function. Hence, a computationally expensive inverse problem had to be
solved to generate a pattern from these criteria. In contrast, this method is a direct way to
obtain a pattern from its auto-correlation features thanks to Fourier Transform properties.

Pattern generation

• Auto-correlation function choice: First, it has to be noted that there are necessary condi-
tions for a function A to be an auto-correlation function. A non-exhaustive list of required
properties is given below:

• the image of A should be included in [−1; 1];
• A(0) = 1;
• ∀τ , A(τ) = A(−τ).

According to these conditions and the criteria defined in Section 4.2.1, we choose a corre-
lation function with circular symmetry, which can thus be captured by a unidimensional
function. Some kind of power law (e.g. an nth root function) seems to be an interesting
candidate in terms of primary peak sharpness radius, watershed radius and secondary
auto-correlation peak height. It is indeed ideally sharp (infinite derivative at the origin)
and has no secondary peak. In this work, we choose to use a power type distribution:

A(τ) = 1−
(‖τ‖
n

)2H
, (4.14)
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where H < 1/2 in order to keep an ideally sharp main auto-correlation peak and 0 < H

in order to have A(0) = 1.
This choice for the auto-correlation function has a direct implication on the nature of the
pattern that we will obtain. By considering a fractal surface (more specifically a self-affine
surface), it is shown in [Shepard et al. 1995] that the auto-correlation function is given
by the same kind of function as Equation (4.14), where H denotes the Hurst exponent
and 0 < H < 1 [Feder 1988,Shepard et al. 1995]. Reciprocally, the power spectrum of a
surface is given by the Fourier transform of its auto-correlation function Equation (4.10).
Hence, the surface associated with A exhibits the same power spectrum as that of a
fractal surface. Thus, by using Equation (4.13) with Ah = A we would obtain a fractal
pattern of Hurst exponent H [Feder 1988, Saupe 1988,Voss 1988]. Such self-affine pat-
terns show some kind of statistical scale invariance: magnifying space coordinates x and
y by a factor r (x and y become respectively rx and ry) requires the grey level value to
be scaled by a factor rH to remain statistically identical [Shepard et al. 1995,Voss 1991].
Concurrently, these surfaces are not stationary [Shepard et al. 1995]. Nonstationary
surfaces have auto-correlation lengths (usually defined as the distance required for the
auto-correlation function to drop from 1 to 1/e ' 0.37) that depend on the profile or
surface area considered. It is therefore irrelevant to associate a correlation length with
such patterns, unless it is, for instance, the characteristic length of the profile or sur-
face used to compute the auto-correlation (this characteristic length was introduced in
Equation (4.14) via the parameter n, which ensures that the auto-correlation function
belongs to [−1; 1]). We expect a scale-invariant, correlation-length-free pattern to exhibit
interesting properties in the context of multiscale DIC. Let us finally point out to the
interested reader that some of these multiscale properties for such patterns have already
been evoked in [Wagne et al. 2002].
Also, from [Shepard et al. 1995] and Equation (4.13), it is possible to show that the Root
Mean Square (RMS) grey level difference between consecutive pixels is proportional to
n−H . This demonstrates, in this particular case, that the local gradient is linked to the
main auto-correlation peak sharpness radius defined in Section 4.2.1. As H decreases,
the sharpness radius decreases and the local gradient increases, which results in better
measurement accuracy.
Conversely, as H decreases, the slope of the auto-correlation function far from the origin
also decreases, making it more difficult to converge far away from the optimum. For
0 < H < 1/2, the fractal field is said to be antipersistent. For 1/2 < H < 1 it is said to
be persistent. In the latter case, this means that an increase of grey level value over an
arbitrary distance along a profile of h is likely to continue to increase for a comparable
distance. In contrast, in the former case, an increase of grey level value is expected to be
followed by a decrease [Feder 1988].
Therefore, there is an interesting trade-off between measurement accuracy and robustness
depending on the value that is chosen for H.
Figure 4.6 shows slices of different auto-correlation functions. The solid blue line repre-
sents the desired auto-correlation function A of Equation (4.14) for n = 127, H = 1/22
and τx = 0.
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Figure 4.6: Comparison between desired (solid blue line, A) and actual (dashed orange line,
Ah) auto-correlation functions for n = 127, H = 1/22 and τx = 0. The green dash-dotted line
is the auto-correlation function of Fµ,0.3σgl

(h), a MIG-improved version of h.

Then, from A(τ), with H = 1/22, the pattern h is generated using Equation (4.13), and
its actual auto-correlation function Ah is computed with Equation (4.10) after having
subtracted h mean grey level value. In the following, h only stands for the pattern
generated for H = 1/22. Ah(0, τy), symbolised by the orange dashed curve in Figure 4.6,
can be compared to the solid blue line of the desired auto-correlation A.

• MIG improvement method: Since the focus has been placed on the auto-correlation
function, MIG improvements have not been investigated so far. To remedy this, Figure 4.7
shows the histogram of the grey level distribution for different patterns and the MIG
value computed for each of them. More specifically, Figure 4.7a shows the grey level
distribution of h (the pattern that we generated in Section 4.2.2), for which a classical
bell shape can be observed. This kind of grey level distribution is not optimal in terms
of MIG. Heuristically, a way of increasing the MIG value would be to change the shape
of the grey level distribution so that a greater number of pixels reached extreme values.
To do this in practice, we make use of the inverse method [Devroye 1986]. Starting with
the distribution plotted on Figure 4.7a, a normal cumulative distribution function:

Fµ,σ : x→ Ngl

2

(
1 + erf

(
x− µ√

2σ

))
, (4.15)
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was applied to obtain the uniformly distributed pattern of Figure 4.7b. In all that follows,
unless otherwise stated, µ is set to the grey level mean value of image h (before quanti-
sation), σ is a parameter to be chosen, and the grey level standard deviation of image h
(before quantisation) is denoted by σgl. More precisely, it can be seen in Figure 4.7b that
a nearly uniform distribution is obtained by applying Fµ,σ to h (before quantisation) for
σ = σgl, and a significant increase in the MIG value, from 23.3 to 58 is achieved. For the
sake of simplicity, the redistributed (in [0;Ngl− 1]) and quantised version of Fµ,σ applied
to h (before h has been quantised) will be denoted Fµ,σ(h). The Python script allowing
both h and Fµ,σ(h) to be generated is included as supplementary material of [Fouque
et al. 2021c] for better understanding.
So as to spread grey levels even more towards extreme values and improve the MIG of
the pattern, we now set σ equal to 0.3σgl when applying Fµ,σ to the pattern h (this choice
for the value of σ will be explained in Section 4.2.3). Thus, as σ < σgl, extreme values
are more represented than values in the middle of the distribution. It can be seen, by
observing Figures 4.6 and 4.7c, that this value for σ gives an even better MIG value, and
sharpens the main auto-correlation peak. At the same time - although the possibility
existed of this not being the case - the auto-correlation function keeps the same global
shape.

Remark Another path could be followed in order to obtain any grey level distribution
function. From the uniform grey level distribution of Figure 4.7b and by making use of
the inverse method [Devroye 1986] a second time, the desired grey level distribution could
be generated from the pattern h as long as its inverse cumulative distribution function was
known. However, in this case, it cannot be guaranteed that the pattern auto-correlation
function would remain practically unchanged.

4.2.3 Pattern performance evaluation

This section evaluates the suitability of the developed patterns a posteriori. To do this, we
compare one of the proposed patterns with two others. As in [Bomarito et al. 2017], a random
black and white pattern is taken as a reference. In addition, some numerical experiments are
performed on a Perlin noise pattern for a deeper analysis.

Multiscale properties − Coarse graining As expected from previous discussions, the
patterns generated exhibit interesting multiscale properties. Figure 4.8 illustrates this statement
by comparing one of the patterns developed (Fµ,0.3σgl

(h)) with two other patterns, namely a
randomly generated one (where each pixel can be equal to either 0 or 255 with a 50% chance) and
a Perlin noise based one with speckles of 3 pixels. For these three patterns, a 32×32 subsampling
was computed from the original 16384 × 16384 pictures. This meant that the subsampling
required a 9-step coarse graining process (much greater than usual) of the corresponding original
picture. As a result, each pixel in the coarse image was the integer part of a mean over more
than 260,000 pixels from the original. Unsurprisingly, it led to an almost uniform grey picture
for the random and the Perlin noise patterns, as shown in Figures 4.8h, 4.8i, 4.8k and 4.8l.
However, for our correlation-length-free pattern, the subsampled picture dynamic range was
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(a) h, MIG= 23.3.
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(b) Fµ,σ(h), σ = σgl, MIG= 58.0.
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(c) Fµ,σ(h), σ = 0.3σgl, MIG= 84.6.
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(d) Randomly generated pattern (each pixel can be
equal to either 0 or 255 with a 50% chance), MIG=
109.9.

Figure 4.7: Grey level distributions of h and Fµ,σ(h) for different values of σ and grey level
distribution of a randomly generated pattern. MIG is also given for each pattern. Histograms
and MIG values are given for n = 127.
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still greater than 200 grey levels (see Figures 4.8g and 4.8j). A file is included as supplementary
material of [Fouque et al. 2021c]. It contains a picture of each pattern and the corresponding
grey level distribution along the coarse graining process described here. This suggests that
prospects are good in a multiscale context where cameras with different levels of magnification
operate simultaneously [Passieux et al. 2015a], or in the context of large deformations.

Monoscale displacement-field measurements In order to further evaluate the perfor-
mance of one of the generated patterns (Fµ,0.3σgl

(h)), it is now compared with the random and
the Perlin noise patterns for two different kinds of displacement fields. The first kind of dis-
placement field addressed corresponds to subpixel translations and the second one to stretches.
These displacement fields were chosen because they are exactly represented by the FE shape
functions and do not require any specific care from an algorithmic standpoint (as opposed to
large rotations for instance [Neggers et al. 2016,Passieux & Bouclier 2019]). This reduces mesh-
dependent and algorithm-dependent effects as much as possible, the idea being that similar
results may be expected for subset-based DIC.

From a reference state image f (i.e. one of the three patterns considered), we generated
a deformed state image g. The process for this generation will be described more in detail in
each corresponding subsection. Then, in order to account for image noise acquisition, images
were assumed to be polluted by a Gaussian noise [Blaysat et al. 2016]. Finally, each picture
was quantified and grey level values above 255 and below 0 were set to 255 and 0 respectively
(i.e. Ngl = 256).

Adding Gaussian noise of variance σ2
noise to both images f and g is equivalent to corrupting

only g with a Gaussian noise of variance 2σ2
noise [Roux & Hild 2006]. Consequently, we only

generated noise for g and set the σnoise value to 3 grey levels, which is a conservative approach
regarding the 2 grey levels evaluated in [Roux & Hild 2006]. From a practical point of view, for
each measurement, 3 different noises were drawn, and the 3 corresponding displacement fields
were measured using a FE-DIC algorithm [Besnard et al. 2006,Passieux 2018,Sun et al. 2005].
For the initialisation, a coarse-graining approach with a decreasing gradient-based Tikhonov
regularisation was used (see Section 4.1).

The discrepancy between the measured displacement um and the imposed one uimp was
evaluated at each node of the mesh for the 3 measurements corresponding to each noise. Two
quantities of interest were extracted:

1. The systematic error expectancy

eu =
〈

1
2Nn

Nn∑
k=1

∑
α∈{x,y}

(
umαk − u

imp
αk

)〉
, (4.16)

2. The random error expectancy

σe =
〈√√√√√ 1

2Nn − 1

Nn∑
k=1

∑
α∈{x,y}

(umαk − u
imp
αk − eu)2

〉
, (4.17)
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0 100 200
Grey level value

0

250

500

750

1000

Nu
m
be

r o
f p

ix
el
s

(l) Grey level distribution
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Figure 4.8: The first column is for a pattern generated using the proposed technique, Fµ,0.3σgl
(h).

The second one shows a randomly generated pattern where each pixel has a one-half chance
of being equal to 0 or 255. The last column concerns a pattern based on a Perlin noise with
a speckle size of approximately 3 pixels. For each column, the first figure is a picture of the
pattern considered for n = 8191. The second picture is a zoom on a 100×100-pixel square of the
16384×16384 pattern. The third one is a subsampling of the pattern considered (each grey level
value is equal to the integer part of the mean over the corresponding 512×512-pixel square).
The last picture is the grey level distribution of the subsampling. Colour scale for pictures goes
from 0 (black) to 255 (white).
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Figure 4.9: Mesh used for the FE-DIC measurements superimposed on h (n = 127).

where Nn denotes the number of nodes of the mesh, umαk the measured displacement for node k
and direction α ∈ {x, y}, uimpαk the corresponding imposed displacement and 〈·〉 the expectancy,
in the sense of the mean over the different noises.

Finally, picture size was set to 256×256 pixels (i.e. n = 127) and an unstructured triangular
mesh, containing 132 nodes and 222 elements, was generated (see Figure 4.9). The mesh was
located in the centre of f so that high levels of strain (up to 25%) could be reached without
having pixels initially contained in the mesh moved out of the picture.

• Subpixel translations: The generation of g from f for subpixel translations was achieved
by a phase shift in the Fourier space [Périé et al. 2002]. In our framework, 21 subpixel
translations ranging from 0 to 1 pixel in the {x}-direction were imposed by steps of 0.05
pixel. At the same time, the {y}-component of the imposed displacement was kept equal
to 0. The multigrid level was set to 1 for the initialisation step.
In order to choose the value for σ, the influence of this parameter was studied as shown in
Figure 4.10. We can observe a smooth decrease of the curve representing the systematic
error expectancy as σ decreases until the curve reaches a minimum for σ = 0.3σgl.
Table 4.1 sums up the performance achieved by Fµ,0.3σgl

(h) with respect to the random
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Figure 4.10: Systematic and random error expectancies for sub-pixel translations. Results are
presented for the random pattern, the initial pattern h, Fµ,σ(h) for five different values of σ
ranging from 0.2σgl to σgl, and the Perlin noise pattern.

pattern and the Perlin noise pattern in terms of systematic and random error expectan-
cies. In order to conveniently compare all three patterns, for each expectancy, a scalar
value is derived from the 21 measurements as in [Bomarito et al. 2017]. These values
are the mean of the systematic error expectancy absolute value and the mean of the
random error expectancy over the 21 subpixel translations respectively. Thus, using the
proposed pattern generation technique, an 18.9% improvement for random error and a
95.1% improvement for systematic error can be obtained with respect to the random
pattern. Compared to the Perlin noise pattern, the random error of the proposed pattern
increases by 1.52% while, at the same time, its systematic error decreases by 77.9%.

In what follows, only Fµ,0.3σgl
(h), the random and the Perlin noise patterns are considered.

• Stretches: Regarding stretch deformation, we decided to generate image g from a reference
state image f such that g represented a symmetric stretch along the {x}-direction. It
was performed via an inversion of the transformation φ. More precisely, the relation
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Pattern Fµ,0.3σgl
(h) Random pattern Perlin noise

(3 pix/speckle)
Mean of the systematic

error expectancy
absolute value (pixel)

4.19× 10−4 8.60× 10−3 1.89× 10−3

Mean of the random
error expectancy (pixel) 1.29× 10−2 1.59× 10−2 1.27× 10−2

Table 4.1: Comparison of the pattern Fµ,0.3σgl
(h) with the random and the Perlin noise patterns.

Each line represents the mean over the 21 translations of Figure 4.10, for systematic error
expectancy absolute value and for random error expectancy.

f(x) = g ◦ φ(x) with φ(x) = (x + ε(x − n), y)T had to be inversed. It yielded g(x̃) =
f ◦ φ−1(x̃) with φ−1(x̃) = ( x̃−n1+ε + n, ỹ)T , where ε denotes the tensile strain and n has
been defined in Section 4.2.2. Finally, g was generated by evaluating f at non-integer
pixel positions thanks to a bivariate spline approximation. Since expected values for
the displacement were much higher than for subpixel translations, we used a two-level
multigrid initialisation. Values for ε ranged from 1% to 20% by steps of 1 percentage
point.

Figure 4.11 shows both systematic and random errors for Fµ,0.3σgl
(h) (orange diamonds),

the random pattern (blue circles) and the Perlin noise pattern (green triangles) for the
stretch displacement field. For each curve in Figures 4.11a and 4.11b, two different regimes
are exhibited. A part where subpixel accuracy for systematic and random error expectan-
cies is achieved (below 9% stretch for the random and the Perlin noise patterns, and 18%
stretch for our pattern) and another part where the algorithm obviously converged to
a local minimum since errors are about a pixel or above. Table 4.2 is composed in the
same way as Table 4.1 except that averages for systematic and random error expectan-
cies were not taken over the whole measurement range but only over the values where
all the curves converged (i.e. for the stretch strain value ε ∈ {0.01, 0.02...0.09}). The
pattern developed in this work is outperformed by 15.0% and 33.2% in terms of random
and systematic error expectancies, respectively, by the Perlin noise pattern for average
values of Table 4.2 and by 13.3% in terms of systematic error expectancy absolute value
by the random pattern. However, it should be pointed out that a 35.4% improvement
compared to a random pattern is obtained for the random error expectancy. But most
importantly, the multiscale property and large watershed radius of the generated pattern
result in its capability to converge to the global minimum for higher levels of deformation
than either the random or Perlin ones; a 100% improvement in these levels is achieved by
Fµ,0.3σgl

(h) compared to these patterns. This robustness property should be of particular
interest for large deformation applications [Chevalier & Marco 2002] and, most interest-
ingly, in applications like metal forming, where intermediate images between a reference
and significantly deformed images cannot be obtained [Genovese & Sorgente 2018].
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Figure 4.11: Systematic error expectancy absolute value and random error expectancy for
stretches. Results are presented for Fµ,0.3σgl

(h), the random and the Perlin noise patterns.

Pattern Fµ,0.3σgl
(h) Random pattern Perlin noise

(3 pix/speckle)
Mean of the systematic

error expectancy
absolute value (pixel)

2.70× 10−4 2.39× 10−4 2.03× 10−4

Mean of the random
error expectancy (pixel) 1.37× 10−2 2.12× 10−2 1.19× 10−2

Table 4.2: Comparison of the pattern Fµ,0.3σgl
(h) with the random and the Perlin noise patterns.

Each line reports the mean over the first 9 measurements of Figure 4.11 (ε ∈ {0.01, 0.02...0.09}),
for either systematic (upper line) or random (lower line) error expectancies.
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Multiscale displacement-field measurements This section aims to demonstrate the suit-
ability of one of the proposed patterns in a multiscale DIC setup in terms of expected errors
on displacement field measurements. The process used for this purpose was similar to that
described in Section 4.2.3 and thus generated a 16384×16384-pixel picture for each of the three
patterns considered (i.e. Fµ,0.3σgl

(h) for n = 8191, the random pattern and the Perlin noise
pattern with 3-pixel-wide speckles, see Figures 4.8a to 4.8c). For each pattern and for every
scale s ∈ [[0; 6]], we generated a 16384

2s × 16384
2s -pixel image via s steps of the coarse graining

process used in Section 4.2.3. Then from this aggregated picture only a 256× 256-pixel portion
located in the centre was considered and extracted. Finally, exactly the same displacement
measurements as in Section 4.2.3 were performed, the only difference being that, here, ε could
reach 25% (instead of 20% in Section 4.2.3).

At this point, for each scale s and each pattern, only five scalar values assessing the corre-
sponding measurement accuracy are derived:

• the mean over the 21 sub-pixel translations of the:

– systematic error expectancy absolute value,
– random error expectancy,

• the convergence robustness defined as the highest stretch strain value where the pattern
managed to converge,

• the mean over the stretch strain values such that all three patterns managed to converge
for the:

– systematic error expectancy absolute value,
– random error expectancy.

Remark For stretches, if a pattern at a given scale did not manage to converge (even for the
smallest stretch strain value considered ε = 0.01), we did not include it.

Figure 4.12 shows corresponding results with respect to the scale s for the three patterns.
For scales 5 and 6, the Perlin noise pattern could not converge, even for the smallest stretch
strain value (ε = 0.01). This can be seen in Figure 4.12e, where the value plotted for the
convergence robustness is 0. Strictly speaking, for these scales, the convergence robustness of
the Perlin noise pattern is not 0 but is less than 0.01. As a result, and as shown in Figures 4.12c
and 4.12d, the Perlin noise pattern was discarded for scales 5 and 6.

Relatively to the random and the Perlin noise patterns, and for the range of scales considered,
the DIC errors associated with the pattern proposed in this work do not depend on the scale
s. Except for the steep increase of the mean of the systematic error expectancy absolute value
between scales 0 and 1 for translations (see Figure 4.12a), our pattern shows stable error values.
Regarding the convergence robustness in Figure 4.12e, this output tends to improve as the scale
increases for the proposed pattern while the opposite trend can be observed for the other two
patterns.

Figures 4.12c and 4.12d show the mean of the systematic error expectancy absolute value
and of the random error expectancy for stretches for the three patterns considered. For each
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Figure 4.12: Top, results for the sub-pixel translations; means are computed over the 21 trans-
lations considered. Middle, results for the stretches; means are computed only over the stretch
strain values where all three patterns managed to converge (except for scales 5 and 6 where the
Perlin noise pattern was discarded): {s = 0, ε ≤ 0.08}, {s = 1, ε ≤ 0.04},{s = 2, ε ≤ 0.05},{s =
3, ε ≤ 0.04},{s = 4, ε ≤ 0.04},{s = 5, ε ≤ 0.06},{ s = 6, ε ≤ 0.04}. Bottom, convergence
robustness and legend. Left, mean of the systematic error expectancy absolute value. Right,
mean of the random error expectancy. Results are presented for Fµ,0.3σgl

(h), the random and
the Perlin noise patterns.
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Scale s
Mean of the systematic

error expectancy
absolute value (pixel)

Mean of the random
error expectancy (pixel)

0 4.98× 10−4 1.67× 10−2

1 2.26× 10−4 1.32× 10−2

2 3.05× 10−4 1.48× 10−2

3 4.80× 10−4 1.64× 10−2

4 3.44× 10−4 1.49× 10−2

5 2.74× 10−4 1.60× 10−2

6 3.48× 10−4 1.40× 10−2

Table 4.3: Fµ,0.3σgl
(h) results for stretches and the scales considered. For each scale, means are

computed over the whole range of convergence of this pattern.

scale, these means were computed over the range of ε where all three patterns converged.
Additionally, Table 4.3 gives the mean of the absolute value of the systematic error expectancy
and the mean of the random error expectancy over the whole range of convergence of our pattern
for stretches (i.e. {s = 0, ε ≤ 0.17}, {s = 1, ε ≤ 0.16},{s = 2, ε ≤ 0.20},{s = 3, ε ≤ 0.20},
{s = 4, ε ≤ 0.25},{s = 5, ε ≤ 0.22},{ s = 6, ε ≤ 0.25}). This shows that the errors for the
highest strain rates are similar to those for the smallest ones. If this was not the case, the
values of Table 4.3 would not be so close to the values shown in Figures 4.12c and 4.12d for
Fµ,0.3σgl

(h).

Remark Error values for Fµ,0.3σgl
(h) at the scale s = 0 differ quite a bit from the values of

Section 4.2.3 (see Tables 4.2 and 4.3 for instance). This can be explained by the fact that the
patterns considered are not exactly the same. In Section 4.2.3, the pattern was generated with
n = 127 to produce a 256 × 256-pixel picture. In this section it was generated with n = 8191
and then a 256× 256-pixel picture was extracted.

4.3 Conclusion and outlook

In this chapter, the pyramidal approach on which global DIC relies as an initialisation method
has been presented. Some of the regularisation functionals encountered in this context, and
others, have also been introduced. It allowed us to make a link with multiscale measurements
in DIC, as these two topics are closely related. There is indeed an analogy between the pyramid
levels and the levels of magnification of the cameras. In both cases, the pattern deposited on
test sample surfaces plays an important role in the measurement accuracy and in the range of
scales at which measurements may be performed.

A method based on the literature on fractal surface generation has been proposed to generate
patterns directly from a desired auto-correlation function. Unlike the methods used so far, this
generation process does not require any optimisation loop. This way of generating patterns has
offered the opportunity to clarify what a good pattern is in a multiscale DIC context thanks
to a priori quality criteria. One of the main unprecedented ideas that has arisen from these
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discussions is that a correlation-length-free pattern, i.e. a pattern with no typical speckle size,
should exhibit interesting multiscale properties. This new way of considering patterns enables a
family of truly multiscale patterns (and not only biscale or n-scale patterns) to be defined, based
on fractal (self-affine) statistical scale-invariance. Also, it helps overcome some limitations linked
to defining speckle sizes when different levels of magnification are involved (usually, a speckle size
of 3 to 5 pixels is recommended). At this point, a complementary process could be implemented
based on image filtering [Pan 2013, Zhou et al. 2015] with parameters set accordingly to each
camera zoom level in order to increase measurement accuracy at each scale considered. In
the present work, a way has also been found to use the inverse method [Devroye 1986] to
redistribute grey levels for patterns that we generated in order to improve their MIG value.
For the distribution function used and these patterns specifically, this process kept their auto-
correlation function practically unchanged.

Numerical experiments have been performed for two different displacement fields in order
to assess a posteriori the quality of one of the patterns generated compared to a random black
and white pattern and a Perlin noise pattern. These experiments were first performed at a
single scale, and then for multiple magnification up to a factor 64 (26). They corroborated
the expectations formulated beforehand. The pattern considered showed DIC errors compa-
rable to those of the other two patterns for the first scales, but a much greater robustness.
Most importantly, it showed errors and robustness that were stable with respect to the scale
whereas these two outputs became significantly degraded for the other two patterns as the scale
increased. Making use of the framework developed here, one may think of performing a closed-
loop optimisation [Lavatelli et al. 2019]. By considering the auto-correlation function shape
(with Equation (4.14) parameterised by H or even with a different parameterisation) and the
grey level distribution as input parameters, it would be possible to fine-tune them and optimise
error expectancies for specific displacement fields.

The practical question of the best way to deposit such a pattern on test sample surfaces
is still open. At Institut Clément Ader (ICA), it has been printed on plates for the VIRTUal
testing of aerOnautical compoSite structurEs (VIRTUOSE) project [Serra 2019]. This will allow
to assess the use of such a pattern on an experimental setup and in a multiscale SDIC context.

It is now established that multiscale patterns, able to operate at a wide range of scale, may
be defined. The next step now consists in developing DIC formulations in a multiscale context,
which is the object of the remaining of the manuscript.





Chapter 5

Photometric Digital Image
Correlation (PhDIC) formulation

Machine vision should be based on a
thorough understanding of image
formation.

[Horn 1986]

We present a framework to fill the gap of an inexistent so-called ‘forward problem’ allow-
ing to generate virtual images to compare actual ones with, in DIC. To do so, we intro-
duce existing approaches from CV, in a condensed and comprehensive manner, and adapt
them to bring novel and significant capabilities for full-field measurements in experimen-
tal solid mechanics. This results in the development of a general multiview formulation
for SDIC, that allows, in particular, to account for surface curvature and lighting effects.
More precisely, a test Digital Twin is defined, which makes it possible to compare a model
with different observations (real images taken from different viewpoints). We believe that
these developments, together with the associated justifications in Chapter 6, stand for
the main contribution of the present manuscript.
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As explained earlier, serious limitations in SDIC arise from strong implicit assumptions in
the current frameworks. Among others, this results in the need for different functionals to be
minimised in the global frameworks (i.e. one functional for extrinsics calibration and shape
measurements and another one for displacement measurements), but most importantly in the
lack of physical understanding. Therefore, we believe a unified framework including a rendering
model, mapping an ‘intrinsic texture’ (further details are provided regarding this expression
in Section 5.1) to a grey level is needed in SDIC. This would allow to rely on an explicit
physical modelling that could be further improved instead of on implicit assumptions. Another
benefit from this approach is to take advantage of grey level variations associated with lighting
effects and extract information from it, instead of arbitrary correcting images to obtain a better
matching. As shown in Figure 5.1, assuming an infinitely distant light source and the heater
‘intrinsic texture’ to be uniform, we can obtain a strong prior knowledge on the considered
shape.

Figure 5.1: White heater. This picture illustrates that some information regarding the shape
of a surface may be extracted from its shading. Courtesy of Jean-Charles Passieux.

Interestingly, formulations including rendering models already exist in the CV Community.
They are very similar to those used in DIC (probably because DIC emerged from CV in the 80’s).
Not only do they propose a physical model, but they come up with astonishing results. Among
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others, these CV formulations encompass multiview picture frameworks accounting for simple
lighting effects [Birkbeck et al. 2006], frameworks accounting for spatial sampling [Goldlücke
et al. 2014] or even frameworks allowing to retrieve shape, texture and camera poses without
any prior knowledge [Jancosek & Pajdla 2011, Mes 2020, Moulon et al. 2012]. Surprisingly,
such recent works are almost never included as references in related DIC research works. Here,
we modestly aim at introducing such formulations to the DIC community while showing the
benefits it could yield for performing data assimilation from structural tests [Wang et al. 2015].

The idea is to extend the Global SDIC framework, in which a model of the structure is
available (e.g. a FE mesh) while taking advantage of the strong regularisation allowed by
the knowledge of the initial object texture, such as the one provided by the master reference
state image in Subset-based SDIC. To achieve this goal, we propose in the present work a
framework relying on a Textured Digital Twin of the ROI constituted thanks to a physical
modelling of the scene (see Figure 7.1) and call this framework Photometric Stereo Digital
Image Correlation (PhDIC) as it relies on a photometric error. This allows to elaborate a
refined model of the considered test, the Digital Twin, encompassing information regarding
the structure shape, surface reflectance properties and scene lighting. Note that, within this
framework, data are not compared to one another anymore. Instead, the Digital Twin is used as
a common thread to compare pictures with. In this sense, a parallel can be drawn with the work
proposed in Digital Volume Correlation by [Leclerc et al. 2015] or in Virtual Image Correlation
by [Réthoré & François 2014, Semin et al. 2011]. Note that this would be delicate, if not
impossible, to implement when relying on local approaches. However, a slightly different path
may be adopted as in [Lava et al. 2020], where virtual images of the model are generated. Then,
local SDIC is run on these virtual images and results are compared with actual measurements.
Another proposal of [Rohe & Jones 2021] is to generate synthetic images from image rendering
tools (namely Blender) to assess subset-based DIC frameworks performance. In these two cases,
one should keep in mind that biases are expected from the image generation process associated
with the comparison of two different displacement fields.

To build the above-mentioned physical modelling of the scene, we propose to consider the
camera as a sensor converting a surface power density into grey levels (in the same way as
it is usually considered as a projector mapping a 3D point in the scene to a 2D point in
the image). This offers the opportunity to provide a general framework and to show that
further assumptions regarding surface response to lighting and light distribution are needed.
Especially, simple models relevant in the DIC context can be introduced (e.g. the Lambertian
- surface response - and distant point light source - light distribution - ones). This allows to
build a general unified photometric functional. Then the Lambertian and distant point light
source models are plugged into this functional. A particular care is also taken to review some
important and delicate points discussed in CV in a condensed and comprehensible manner for
their significance in the experimental mechanics community.

5.1 From the light source to the grey level value

Here below, we present the irradiance equation and the associated physical considerations. We
first intend to put forward some challenges in computer graphics and rendering (among others).
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This general overview is then progressively simplified by explicitly making assumptions that are
commonly implicitly adopted in the DIC community.

5.1.1 A general overview

As explained earlier, we wish here to describe a general unified framework for SDIC, based on
a photometric error. By photometric error we mean an error thought as a distance between
a prediction from a model and an observation in a picture. This kind of error can be based
on the image irradiance equation [Horn 1986]. Irradiance I (or E) is the amount of light
falling on a surface (power per unit area) while radiance L is the amount of light radiated from
a surface (power per unit area per unit solid angle). As discussed by [Horn 1986], the slightly
more intricate unit for radiance comes from the fact that a surface can emit different amounts
of light depending on the emission directions. The image irradiance equation states that the
radiance Le coming from a point on an object (what we want to model) is proportional to the
irradiance I at the corresponding point in the image (what we observe).

To formalise this equation, we denote x the pixel coordinates in the image of the associated
3D point X in the world reference frame. In this case the image irradiance equation writes:

I(x) = αLe(X, r), (5.1)

r is the unit vector pointing from X to the optical centre of the camera (see Figure 5.2), and α
(called the throughput [Cohen et al. 1993]) depends on the f-number and the angle formed by
r and the optical axis of the camera. However, this dependency of α on the angle formed by r
and the optical axis is usually neglected [Horn 1986] so that α is considered constant. In the
following, we will not distinguish the image irradiance from the corresponding grey level value, as
we assume the camera sensor to provide a linear relationship between these two quantities. The
multiplicative constant is thus included in α. We refer the reader to [Durou 2007, 1.2 Optique
photographique] for a more detailed explanation. Note that Equation (5.1) is fundamentally
different from the grey level conservation equation [Horn & Schunck 1981,Lucas & Kanade 1981].

Remark This model assumes a homogeneous and transparent medium. Hence the distance
from X to the viewpoint was omitted in Equation (5.1). The dependency with respect to light
frequency was also omitted, as we usually deal with monochrome cameras in DIC.

Before choosing a simplified model for the radiance emitted by a surface under given lighting
conditions (model Le(X, r)), we will first introduce a more general framework. In the general
case, [Horn 1986] explains that the radiance dLe emitted from a point depends on the amount of
light falling on it, the irradiance dEf , as well as on the irradiance fraction which is reflected per
unit solid angle. The radiance dLe also depends on the geometry and light position, as illustrated
by specular reflections. Thus, we can locally parameterise the problem thanks to 4 degrees of
freedom: 2 for the incident light direction (the incident polar and azimuth angle - respectively θf
and ϕf ) which allow to define a unit incident vector nf (θf , ϕf ) and 2 for the emission direction
(respectively θe and ϕe) which allow to define a unit emission vector ne(θe, ϕe). The definition of
these angles with respect to the local normal vector n(X) and an arbitrary vector belonging to
the tangent plane to the surface can be seen in Figure 5.2. The fraction of incident light coming
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from the direction (θf , ϕf ) reflected in the direction (θe, ϕe) is usually denoted f(θf , ϕf , θe, ϕe)
(per unit solid angle) and is called the Bidirectional Reflectance-Distribution Function (BRDF).
For the sake of simplicity, we omit, in f and in following developments, the space dependency
of each quantity (with respect to X), even though we consider a spatially varying BRDF.

θ
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,φ )n

f f
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n(  )X

X

(θr
,φ )n

f r
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Figure 5.2: Bidirectional Reflectance Distribution Function (BRDF) parameterisation.

Remark Since we assume that the only way out for incoming energy is to be reflected, and
since the incident light should come from the outside of the surface, both θe and θf belong to
[0, π/2], as shown in Figure 5.2. Thus, effects such as transmission and subsurface scattering are
not accounted for. For an even more general concept than BRDF which is called Bidirectional
Scattering-Surface Reflectance-Distribution Function (BSSRDF), we refer the interested reader
to [Nicodemus et al. 1977].

Hence, the radiance can be written as a function of the irradiance and the BRDF:

dLe(θe, ϕe) = f(θf , ϕf , θe, ϕe)dEf (θf , ϕf ), (5.2)

with

dEf (θf , ϕf ) = Lf (θf , ϕf )
〈
nf (θf , ϕf ), n

〉
︸ ︷︷ ︸

Normal component of the radiance

dΩf = Lf (θf , ϕf ) cos θf sin θfdϕfdθf︸ ︷︷ ︸
dΩf

, (5.3)

where Lf (θf , ϕf ) denotes the incident radiance coming from the direction −nf (θf , ϕf ) and dΩf

the solid angle delimited by [θf , θf + dθf ] and [ϕf , ϕf + dϕf ]. Thus, the total radiance emitted
by the surface in direction ne is given by the integral over all elementary contributions coming
from every single direction:

Le(θe, ϕe) =
∫ π/2

θf =0

∫ 2π

ϕf =0
f(θf , ϕf , θe, ϕe)Lf (θf , ϕf ) cos θf sin θfdϕfdθf . (5.4)

Remark Equation (5.4) is called the reflection equation. In computer graphics, it is called the
rendering equation and a second term in the right-hand side may be included. The latter is an
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outgoing radiance in the case where the surface emits light by itself, in addition to the reflec-
tion from incident light. We chose to discard this term as, in structural mechanics, materials
generally do not act as light sources.

At this point, we can observe that the emitted radiance coming from (θe, ϕe) depends on
the contributions of all incident radiances Lf (θf , ϕf ). Each of these incident radiances is in
turn the solution of the same kind of equation as Equation (5.4) and so on. This is an infinite-
dimensional problem and further assumptions are needed to be able to model this radiance.
The path that we follow is first to model the surface response to light, that is the BRDF f , and
then to model the scene lighting, that is Lf .

Remark Note the difficulty to define an ‘intrinsic’ texture. The albedo ρ is defined as the ratio
of emitted irradiance over incident irradiance and depends in general on the incident radiance
distribution:

ρ(Ωf ,Ωe, Lf ) =
∫
Ωf

∫
Ωe
f(θf , ϕf , θe, ϕe)Lf (θf , ϕf ) cos θf cos θedΩfdΩe∫

Ωf
Lf (θf , ϕf ) cos θfdΩf

, 0 ≤ ρ ≤ 1. (5.5)

5.1.2 Lambertian model

Most of the time in SDIC, the grey level conservation equation is used. In Global SDIC, whether
it be for shape measurement, where the grey level associated to a physical point is assumed to
be the same in each camera, or for displacement measurement, where the grey level associated
to a physical point is assumed to remain constant in time for a given camera, it relies on a
Lambertian assumption. That is, the incoming light is assumed to be reflected with equal
intensity Le in all directions (θe, φe) (i.e. ∀(X, θe, φe), Le(X, θe, φe) = Le(X)). Obviously, this
assumption is not correct if the light field does not meet some strong assumptions or if the
motion/rotation of the object is significant for the displacement measurement step (e.g. if the
surface orientation with respect to the light changes). Regarding the shape measurement one,
the grey level conservation equation Equation (3.28) assumes that the throughput α is the same
for all cameras, which may not be the case.

As explained earlier, some works tried to account for surface illumination changes and optical
system differences in cameras. The first step toward this goal in DIC was to use a Zero-
mean Normalised Sum of Squared Differences cost function as a matching criterion between
pictures [Tong 2005]. The same idea was introduced earlier by [Faugeras & Keriven 1998] in CV.
Because a correction on the whole ROI was not always sufficient to explain higher residual values
in some areas, local corrections were introduced in SDIC on a finite-element basis [Colantonio
et al. 2020] for instance, or thanks to low-order polynomials [Dufour et al. 2015b, Charbal
et al. 2020] (see Section 3.4.3).

Instead of a Lambertian assumption, or unphysical corrections, we use here a Lambertian
model. It follows that f(θf , ϕf , X, θe, ϕe) = f(X) = ρ(X)/π [Nicodemus et al. 1977, Appendix
C]. From Equation (5.4), we get:

Le(X) = ρ(X)
π

∫ π/2

θf =0

∫ 2π

ϕf =0
Lf (θf , ϕf , X) cos θf sin θfdϕfdθf . (5.6)
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Note that ρ is independent of the viewpoint and light direction in the Lambertian model. Thus,
we could refer to it as the intrinsic texture, but we prefer a physical designation: the albedo.

From Equation (5.6), we can see that further assumptions are required to model the radiance
Le. Naturally, the knowledge of how the scene is lit (Lf ) is also an important thing to compute
it.

5.1.3 Lighting models

Ambient lighting The grey level conservation equations (3.28) and (3.35) also rely on the
assumption that the same amount of light falls from every single direction: ∀(X, θf , ϕf ),
Lf (X, θf , ϕf ) = L0

f . In CV, it is referred to as ambient lighting but often as a component
of a more complex model. Yet, in the case of SDIC, it is assumed to be the only source of
light. For this reason, we prefer the denomination diffuse lighting, not to be confused with the
Lambertian (or diffuse) model. In this case, together with the Lambertian model, the image
irradiance equation (5.1) writes:

I(x) = αLe(X) = αL0
fρ(X). (5.7)

Remark When relying on a ZNSSD correlation criterion, previous equation is equivalent to
grey level conservation equations and a (Zero-Mean Normalised) substitute image may be defined
such that ∀X, Î(X) = αL0

fρ(X) = I(x). In the shape measurement step, if several pictures
are at stake (e.g. I0

1 and I0
2 ), we obtain Equation (3.28), as I0

1 = Î = I0
2 .

Remark Diffuse lighting is a very strong assumption which may be met only by restricting
SDIC to operate on certain types of tests and/or with specific lighting equipments.

The distant point light source Infinitely distant point light sources offer the advantage
that neither the surface power, nor the direction of the light depend on the position in the
scene. These light sources are parameterised by r ∈ [[1, Nr]]. It is also assumed that indirect
illumination (contribution of the radiance emitted by all other points in the scene to the incident
radiance to a point) is negligible compared to the direct illumination from the light sources. In

this case, Lf does not depend on X and Lf (θf , ϕf ) =
Nr∑
r=1

Φr
δ(θf − θr)δ(ϕf − ϕr)

sin θr
[Horn 1986],

where Φr denotes the irradiance and (θr, ϕr) the direction associated to the rays of light source
r (see again Figure 5.2). Finally, we get:

Le(X) = ρ(X)
π

Nr∑
r=1

Φr cos θr = ρ(X)
π

Nr∑
r=1

Φr

〈
nf (θr, ϕr), n(X)

〉
. (5.8)

Hence, the image irradiance equation (5.1) becomes:

I(x) = αLe(X) = ρ(X)
Nr∑
r=1

lr
〈
nf (θr, ϕr), n(X)

〉
, with lr = αΦr

π
. (5.9)
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Remark From Equation (5.9), [Horn 1986, Lightness & Color] and [Woodham 1980] it is
possible to identify ρ(X)l1 with one single light (l1) but at least three different non-coplanar
lighting conditions (three non-coplanar vectors nf ). An object in the scene of which the albedo
is known allows to evaluate l1 and thus to retrieve ρ(X). It is important to stress that varying
lighting conditions is essential to estimate the albedo [Mélou et al. 2018], since papers in SDIC
pretend that it is possible to recover a so-called intrinsic texture, independent of the experimental
setup, with one single light position [Dufour et al. 2015b,Vitse et al. 2021].

Remark Thanks to Equation (5.9), we can make explicit the assumptions on which grey level
conservation equation in DIC relies. In the displacement measurement step, it assumes that the
scalar product

〈
nf (θr, ϕr), n(X)

〉
remains constant over time. This results in constraining DIC

to operate in setups where displacements and strains are rather small.

Of course, more sophisticated parametric models can be derived in the same way, accounting
for an ambient lighting term, together with a Lambertian model and/or specular reflections
[Birkbeck et al. 2006,Tianli Yu et al. 2004].

Now that both a substitute to the grey level conservation equation and a way to model the
scene radiance have been introduced, the corresponding framework developed for SDIC can be
presented.

5.2 The photometric functional

Based on the work by [Goldlücke et al. 2014], we consider a set of Nc cameras. Each camera
takes Nt images of the ROI Ω (typically a surface of R3). As previously, the image taken by
the camera c ∈ [[1, Nc]] at time t ∈ [[0, Nt − 1]] is denoted:

Itc : Πt
c → R
x 7→ Itc(x) , (5.10)

where Πt
c stands for the image plane. Note that Πt

c depends on t, as we adopt a general
formulation where camera positions may change. Some of the introduced notations are presented
in Figure 5.3 for better understanding. P tc is the camera model associated to Πt

c and depends
on camera parameters pt

c
. The notation Ω̃t is used to refer to the deformed state of the ROI Ω

at time t. We also define the silhouettes Stc = P tc(Ω̃t) ∩ Itc = P tc(Ω̃t
c vis) where Itc(⊂ Πt

c) stands
for the bounded domain of Πt

c corresponding to the image. Ω̃t
c vis denotes the visible part of

Ω̃t in the picture taken by camera c at time t such that there is a one-to-one relation between
Ω̃t
c vis and Stc thanks to the projection map P tc.

Remark Strictly speaking, in Equation (5.10), Itc is defined over Itc. Yet, as images are usually
interpolated, this makes it possible to define Itc over the whole image plane Πt

c.

Finally, we need to introduce theoretically the backprojection operator:

βt
c

: Stc → Ω̃t
c vis ⊂ Ω̃t

x 7→ X
, (5.11)
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Figure 5.3: Diagram introducing different applications and notations used herein.

which denotes the inverse function of the restriction of P tc to Ω̃t
c vis. As of now, we note that

this operator is only introduced for the sake of consistency in our theoretical developments but
will not be used in our implementation.

Retrieving deformed states
(
Ω̃t
)
t
on the sole basis of Equation (5.1) constitutes ill-posed

problems, similar to the measurement of a displacement field based on the grey level conservation
equation between a reference and a deformed state image. Equation (5.1) does not account
indeed for spatial averaging (pixelation), that is we have a finite set of equations. On top of
that, grey level values, which are the result of the sum of an integral of the irradiance over
each photosensor together with noise, are quantised. The existence of a solution is thus not
guaranteed. The usual way to deal with these issues is to reformulate the problem (whether it be
shape measurement or displacement measurement) as a functional minimisation (see Chapter 3).
Thus, a norm of the residual associated to Equation (5.1) is integrated and the functional is
built up by adding the integrals of all images together. Finally, the configurations Ω̃t are
sought in a smaller space (finite dimension because of the finite set of equations). Based on CV
literature [Faugeras & Keriven 1998,Soatto et al. 2003,Goldlücke et al. 2014], we pretend that
the right place to compute these integrals are the silhouettes Stc. The idea is that the relevant
quantum of information is the pixel. Let us assume that we can assign, at all times, the same
level of confidence to two pixels coming from a same picture taken by camera c and, without
loss of generality, to two pixels coming from different pictures. Hence, we may assign a unit
weight in every image plane (if our last assumption is not fulfilled, we may assign the weight
1/σ2

c to the image plane corresponding to camera c by assuming a Gaussian white uniform noise
of variance σc in images shot by c as in [Hild & Roux 2020]). The unit weight associated to the
residual norm should thus be assigned in the image plane. We will discuss that later on (see
Section 5.3). According to these considerations, the photometric functional, suitable for data
assimilation as it relies on every piece of available information [Tsiminaki et al. 2019] reads:
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F =
Nc∑
c=1

Nt−1∑
t=0

∫
St

c

(
Itc(x)− αtcLe

(
βt
c
(x), rtc

))2
dx. (5.12)

Here, data assimilation should be understood as a general method to take advantage of all
available observations to evaluate quantities of interest. In our case (DIC), these quantities are
typically displacements, camera parameters or the albedo for instance.

Remark As will be shown in Chapter 7, this formulation is easily extended to setups where the
number of cameras is not the same at all times (by substituting N t

c to Nc) and where cameras
extrinsic and/or intrinsic parameters may change.

Since Stc = P tc(Ω̃t
c vis), we can then express this functional over the visible parts of the ROI

Ω̃t
c vis thanks to integrations by substitutions, in the same way as [Goldlücke et al. 2014]:

F =
Nc∑
c=1

Nt−1∑
t=0

∫
Ω̃t

c vis

(
J tc ◦ P tc(X)

) (
Itc ◦ P tc(X)− αtcLe(X, rtc)

)2
dX, (5.13)

where J tc =
∣∣∣det

(
∇P tc

)∣∣∣ ◦ βt
c

=
∣∣∣det

(
∇βtc

)∣∣∣−1
=
∥∥∥∥∥∂β

t
c

∂u
×
∂βtc
∂v

∥∥∥∥∥
−1

2
and x = (u, v)T . det

(
∇P tc

)
and det

(
∇βtc

)
denote the area elements of the corresponding projection maps. Note that, as

in [Goldlücke et al. 2014], we denoted here the differential (Jacobian matrix) in the same way
as the gradient operator, to reduce the amount of notation.

In a general framework, computing J tc is complex and costly. For this reason, and by
assuming a pinhole camera model without distortions, we give an analytical expression for this
area element:

J ti =
fx
t
ify

t
i

(Ztc,i)2

‖Otc,iM‖2
|Ztc,i|

|
〈
n, rti

〉
|, (5.14)

where X = OwM , Ow and Otc,i respectively denote the world reference frame origin and the
camera reference frame origin associated to the picture taken by camera i at time t, Ztc,i stands
for the Z coordinate of point X in the camera reference frame associated to the picture taken by
camera i at time t, and rti = −Otc,iM/

∥∥∥Otc,iM∥∥∥
2
(see Figure 5.3 again). Be careful that, to avoid

misunderstandings between indices and reference frames, we indexed cameras with i (instead
of c) in previous expressions. Expression (5.14) can be found in the CV literature [Soatto
et al. 2003,Delaunoy & Pollefeys 2014]. However, no proof is given in the literature reviewed.
For this reason, a detailed demonstration and physical interpretation of this equation are given
in Appendix B.

We can then integrate over the whole observed region Ω̃t introducing a visibility function
V t
c :

F =
Nc∑
c=1

Nt−1∑
t=0

∫
Ω̃t

(
J tc ◦ P tc(X)

)
V t
c (X)

(
Itc ◦ P tc(X)− αtcLe(X, rtc)

)2
dX, (5.15)

with:
V t
c (X) =

{
1 if P tc(X) ∈ Stc and βtc ◦ P

t
c(X) = X

0 elsewhere . (5.16)
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The condition P tc(X) ∈ Stc makes sure that the projection of X lies in the image frame Itc
while the condition βt

c
◦ P tc(X) = X ensures that the considered point is not hidden due to

self-occlusion for instance.

Remark J tc and V t
c naturally appear when the residual is defined with unit weight in the images,

no further assumptions are needed for this weighting scheme. This is a direct consequence of
the adopted variational formulation [Goldlücke et al. 2014]. Further discussions regarding this
matter are presented in Section 5.3.

At this point, we should note that the residual is computed over what is observed in the
images. Thus, what is observed is a deformed (or uncalibrated) state Ω̃t in Equation (5.15). Yet,
Ω̃t is one of the unknowns which should be described. Considering that a model is available, a
simple way to do so is to introduce the discrepancy map Dt. In the standard SDIC framework
[Pierré et al. 2017], Dt stands for either a shape correction field S (D0), or a displacement field U
defined on the configuration Ω standing for the nominal geometry (which may not be perfectly
consistent with the solid mechanics formalism, see next remark). Usually, this discrepancy map
belongs to the linear span of a set of chosen shape functions (e.g. FE shape functions [Pierré
et al. 2017], splines [Dufour et al. 2015b]), but it should be stressed that no prior assumptions
are needed regarding the discrepancy maps which still belong to an infinite-dimensional space
at this point. We define:

φ
Dt : Ω ⊂ W → Ω̃t ⊂ W

X 7→ X +Dt(X) , (5.17)

in this case Ω̃t = φ
Dt(Ω), where Ω stands for the ROI nominal geometry (where shape correction

S = D0 is not accounted for).

Remark With such notations, the displacement field associated to the deformation of Ω between
the reference state and the deformed state at time t is Dt − D0. Ω corresponds indeed to an
uncalibrated or nominal state before correcting the shape with S = D0.

Finally, we can express the functional over the nominal state Ω:

F =
∑
t,c

∫
Ω

[ ∣∣∣det
(
∇φ

Dt

)∣∣∣ ((J tc ◦ P tc)V t
c

)
◦ φ

Dt

]
(X)

×
(
Itc ◦ P tc ◦ φDt(X)− αtcLe(φDt(X), rtc ◦ φDt(X))

)2
dX,

(5.18)

Note that with this method, the functional used to identify a shape correction S (D0)
and a displacement field U (Dt, t > 0) is exactly the same. This offers a consistent, unified
formalism throughout the entire framework. Usually in Global SDIC, the functional associated
to the extrinsics and shape measurement problem enforces in a weak way that the grey level
associated to a physical point should be the same for all cameras (see Figure 3.10b). Thus,
it consists of a sum over all camera pairs of the residual norm squared (see Equation (3.29)),
while the functional associated to the displacement measurement is built as a sum of another
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kind of residual norm squared. This other residual is based on the conservation over time of
the grey level associated to a given point on a camera by camera basis only [Pierré et al. 2017]
(see Equation (3.36)).

Introducing the Lambertian reflectance and the distant point light source models from Equa-
tion (5.6) in Equation (5.18) allows finally to write a functional F taking into account a Lam-
bertian model:

F =
∑
t,c

∫
Ω

[ ∣∣∣det
(
∇φ

Dt

)∣∣∣ ((J tc ◦ P tc)V t
c

)
◦ φ

Dt

]
(X)

(
Itc ◦ P tc(X +Dt(X))

− ρ̃t
(
X +Dt(X)

) Ns∑
s=1

lts,c

〈
nf (θts, ϕts), n(X +Dt(X))

〉 )2
dX. (5.19)

It also offers the possibility to make explicit an often implicit assumption in DIC. If the
pattern deposited on the ROI is assumed to exactly follow the deformation of the specimen,
and does not depend on the displacement or strain level, we can write:

∀X ∈ Ω, ∀t ∈ [[0, Nt − 1]], ρ̃t(X +Dt(X)) = ρ(X), (5.20)

where ρ and ρ̃t respectively stand for the albedos in the reference and deformed states. Even-
tually the PhDIC functional reads, in the case of a Lambertian BRDF, with distant point light
sources:

F =
∑
t,c

∫
Ω
ωtc(X)

(
Itc ◦ P tc(X +Dt(X))− ρ (X)

Ns∑
s=1

lts,c

〈
nf (θts, ϕts), n(X +Dt(X))

〉 )2
dX,

(5.21)

where

ωtc =
[ ∣∣∣det

(
∇φ

Dt

)∣∣∣ ((J tc ◦ P tc)V t
c

)
◦ φ

Dt

]
. (5.22)

5.3 Discussions

As already evoked, it seems logical to compute the discrepancy between images and the model
in the image domain, as the pixel stands for the elementary unit of information. Besides this
heuristic justification, the weighting term J tc , that naturally arises when substituting Ω̃t for Stc
between Equation (5.12) and Equation (5.15), is a key driver for defining F with unit weight
in the images. It accounts for the foreshortening of the surface in input views (e.g. a surface
is well described in a picture when viewed straight on). Hence, this term acts as an automatic
regularisation of the variational problem while making the problem intrinsic, i.e. independent
of the parameterisation chosen for the ROI. This is clearly established in CV [Faugeras &
Keriven 1998,Goldlücke et al. 2014,Soatto et al. 2003].

Also, the weighting term J ti would allow to define a consistent framework with multiple
cameras with different resolutions and distances with respect to the specimen since it accounts
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for the spatial sampling of the surface (as shown in Appendix B with the distance Ztc,i and the
focal lengths fxti and fyti in the case of a pinhole camera model). No arbitrary relative weights
would be needed for more resolved or near-field cameras as this formulation intrinsically defines
a weighting scheme through J ti . This is of particular interest in a multiscale context.

The weighting term in Equation (5.21)
[∣∣∣det

(
∇φ

D

)∣∣∣ ((J tc ◦ P tc)V t
c

)
◦ φ

Dt

]
alone explains

why SDIC is restricted to a certain class of displacements and strains. Indeed, in most SDIC
framework, both terms are assumed to be the same for all pictures and to remain constant
over time. Thus, it means

∣∣∣det
(
∇φ

Dt

)∣∣∣ ∼ 1 and
((
J tc ◦ P tc

)
V t
c

)
◦ φ

Dt ∼
(
J tc ◦ P tc

)
V t
c (i.e.

X +Dt(X) ∼ X or equivalently φ
Dt ∼ I where I denotes the identity function).

Regarding the last remark of Section 3.3, the soundness of integrating the residual squared
of Equation (3.1) over S or to integrate the one of Equation (3.17) over Ω indifferently may now
be discussed. In the light of Equation (5.14), we can justify it in a two-dimensional framework,
and by assuming a pinhole camera without distortions together with

∥∥OcM∥∥
2 ∼ Zc, as the two

functionals Equation (3.2) and Equation (3.18) are the same up to a factor fxfy

Z2
c
.

As stated above, the use of a model enables us to define a functional based on the sum of
actual errors, that is the difference between a model and an observation. Thus the uncertainty
associated to the identified discrepancy map Dt (standing equivalently for a displacement field
U or a shape correction field S) in PhDIC would be reduced compared to the usual SDIC
framework (see Section 6.2). This explains why some authors aimed at forming a substitute
reference state image, in applications where the level of confidence in this reference is low for
instance, by taking a mean over all available pictures [Berny et al. 2018a].

Finally, in the present work, and contrarily to the usual DIC framework, the camera model
encompasses not only a projection model, but also a model to define the grey level value de-
pending on the amount of energy received by the camera sensor. This requires the definition
of a radiance model for the experimental setup encompassing both a light model and a Digital
Twin of the structure, that is a test Digital Twin. The photometric functional is thus based
on the comparison between a prediction (or a model) and an observation, instead of arbitrar-
ily correcting observations to make them match, as done in classic DIC for instance. Thus,
information is extracted from these discrepancies and it helps regularise the problem. This is
the exact opposite from BCC, for instance, which makes the problem even more ill-posed by
increasing the number of unknowns instead. In addition, grey scale residuals are considered the
most objective way to probe the ability of a model to reproduce an experiment from images in
DIC [Neggers et al. 2017] or to determine areas where the geometry should be refined [Kleinen-
dorst et al. 2015]. It is therefore extremely important to analyse and model finely the different
sources of grey level variation during an experiment. These variations cannot always be re-
lated to displacement alone, especially in stereo where light-geometry interaction effects can be
substantial.





Chapter 6

Theoretical developments

The use of the PhDIC framework and of Digital Twins of experimental setups is justified
from different viewpoints in this chapter. First, we show the improvements it could yield
by establishing the link with usual frameworks. The PhDIC methodology is indeed a
general framework as it encompasses usual ones and offers the opportunity to extend
the scope of existing schemes. Then, we show by a sensitivity analysis, with weaker
assumptions, that the measurement uncertainty is expected to be reduced compared to
usual methods. Eventually, the PhDIC approach is justified a priori thanks to arguments
stemming from estimation theory.

Contents
6.1 Link between PhDIC and usual multiview frameworks . . . . . . 102

6.1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1.2 Shape measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.3 Displacement measurements . . . . . . . . . . . . . . . . . . . . . . . 106
6.1.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Estimation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.2 Prior models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



102 Chapter 6. Theoretical developments

6.1 Link between PhDIC and usual multiview frameworks

The work presented in this section has been published in [Fouque et al. 2021b].

The aim of this section is to clearly establish the link between the PhDIC formulation and
usual SDIC ones. We also show that this topic is closely related to the weighting schemes in
functionals. In particular, this allows to give the appropriate weight to use in (more standard)
SDIC.

6.1.1 State of the Art

We revisit the usual SDIC multiview frameworks with an increasing complexity. That is, we
begin this state of the art by recalling the functionals presented in Chapter 3 on simple SDIC
setups. For planar or near-planar test samples, every single point of the ROI can be seen at all
times by each camera. Yet, when considering more complex geometries, visibility issues arise
and the way to deal with these problems is presented. Eventually, the link between the photo-
metric functional (5.12) and usual SDIC frameworks, when relying on the same assumptions is
demonstrated. It is shown that the photometric functional encompasses usual frameworks.

Shape measurements When considering planar (or near-planar) surfaces, it is possible to
ensure that every single point of the ROI Ω remains visible by all cameras at all times. In
this case, the functional associated to the shape measurement step reads [Pierré et al. 2017,
Colantonio et al. 2020] (see Equation (3.29)):

F1
(
D0,

(
p
c

)
c

)
=

Nc∑
c=1

c−1∑
i=1

∫
Ω

(
I0
i ◦ P i ◦ φD0(X)− I0

c ◦ P c ◦ φD0(X)
)2
dX, (6.1)

where D0 is the shape correction field and ∀X ∈ Ω, φ
D0(X) = X+D0(X). There are two main

drawbacks to this formulation. First, computational costs associated to the problem scale as
N2
c which is not ideal in a multi-camera setup. Second, the problem is extremely ill-posed as

shown in Figure 3.9.
In order to cope with the aforementioned problem ill-posedness but also to account for

the surface sampling performed by each camera sensor, a shape measurement functional based
on a residual thought as the difference between a substitute image and actual images was
built [Dufour et al. 2015b]. In this case, Equation (6.1) becomes:

F ′1

(
D0,

(
p
c

)
c
, Î
)

=
Nc∑
c=1

∫
Ω

(
I0
c ◦ P c ◦ φD0(X)− Î(X)

)2
dX. (6.2)

The required assumptions to define a substitute image have been defined in Section 5.1. This
formulation shows the benefit to tackle the two main issues identified previously. The problem



6.1. Link between PhDIC and usual multiview frameworks 103

scales as Nc (like the displacement measurement one, see Equation (3.36)), and the optimisa-
tion procedure relies on an alternating optimisation (fixed-point algorithm) between the shape
correction field, extrinsics and the substitute image. This last point (looking for shape and
texture, and not only the shape) makes the formulation much less ill-posed than in [Pierré
et al. 2017,Colantonio et al. 2020] as it discards the functional kernel directions such as local
and global slidings (again see Figure 3.9).

Then, authors explicitly dealt with visibility issues by relying on a weighting term based on
visibility [Chapelier et al. 2021]:

F ′′1

(
D0,

(
p
c

)
c

)
=

Nc∑
c=1

c−1∑
i=1

∫
Ω
Vc(X)Vi(X)

(
I0
i ◦ P i ◦ φD0(X)− I0

c ◦ P c ◦ φD0(X)
)2
dX, (6.3)

where ∀c ∈ [[1, Nc]], Vc is the visibility function associated to camera c, simply defined as:

Vc : Ω→ {0, 1}

X 7→
{

1 if X is visible by camera c
0 otherwise.

Note that the previous definition is less precise than Equation (5.16).

Displacement measurements To engage in displacement measurements, we consider a de-
formed state of which the same Nc cameras shoot the associated pictures

(
I1
c

)
c. The displace-

ment measurement functional is then given by [Pierré et al. 2017] (see Equation (3.36)):

F2(D1) =
Nc∑
c=1

∫
Ω

(
I1
c ◦ P c ◦ φD1(X)− I0

c ◦ P c ◦ φD0(X)
)2
dX. (6.4)

Visibility issues in the displacement measurement step were addressed by resorting on the
assumption that a point visible by a camera in the reference state remains visible by this camera
at all times, [Hild & Roux 2020]:

F ′2(D1) =
Nc∑
c=1

∫
Ω
Vc(X)

(
I1
c ◦ P c ◦ φD1(X)− I0

c ◦ P c ◦ φD0(X)
)2
dX. (6.5)

However, no clear justification for the weighting terms associated to the visibility is given,
neither for Equation (6.3) [Chapelier et al. 2021] nor for Equation (6.5) [Hild & Roux 2020].
Also, the general case, where the displacement field is such that a part of the structure may
disappear from view, is not tackled.

Proposed functional In this section, we wish to thoroughly establish weighting schemes
for both shape and displacement measurements in Global SDIC frameworks. To this end, we
establish the link between PhDIC and usual SDIC frameworks by explicitly adopting the same
assumptions, that is a Lambertian reflectance model and an ambient lighting. In this case, the
irradiance equation (5.1) takes the form of Equation (5.7) and a substitute image Î may be
defined (see Section 5.1.3). The photometric functional then writes:



104 Chapter 6. Theoretical developments

F
((
Dt
)
t
,
(
p
c

)
c
, Î
)

=
Nt−1∑
t=0

Nc∑
c=1

∫
Ω
ωtc(X)

(
Itc ◦ P c ◦ φDt(X)− Î(X)

)2
dX, (6.6)

where ωtc is defined in Equation (5.22).

Remark ∀(X, c, t), ωtc(X) ≥ 0.

Remark Let us stress once again that with such notations, the displacement field associated
to time t is Dt − D0. Usually, after the shape measurement step, Ω is updated such that
Ω̃ = φ

D0(Ω). However, if we want to be able to efficiently perform a minimisation with respect
to all arguments of F (that is

(
Dt
)
t ,
(
p
c

)
c
and Î), constantly updating the integration domain

of all integrals may not be the most effective minimisation strategy. Keeping that in mind,
defining the displacement on the nominal shape Ω as D̃t = Dt −D0 is a small price to pay.

6.1.2 Shape measurements

In this subsection, we develop F from Equation (6.6) so as to establish the link between this
formulation and the usual SDIC shape measurement functionals (see Equation (6.1) and Equa-
tion (6.3)). For that, we consider Nt = 1, that is only reference pictures I0

c are available. Note
that with such considerations, F is very close to F ′1 in Equation (6.2):

F
(
D0,

(
p
c

)
c
, Î
)

=
Nc∑
c=1

∫
Ω
ω0
c (X)

(
I0
c ◦ P c ◦ φD0(X)− Î(X)

)2
dX. (6.7)

As in [Dufour et al. 2015b], Î is obtained by minimising F , that is directly (least-squares solution
of F minimisation):

∀X ∈ Ω,
Nc∑
c=1

ω0
c (X) 6= 0, Î(X) =

Nc∑
c=1

ω0
c I

0
c ◦ P c ◦ φD0(X)

Nc∑
c′=1

ω0
c′(X)

. (6.8)

Remark If ∃X ∈ Ω,
Nc∑
c=1

ω0
c (X) = 0, then ∀c ∈ [[1, Nc]], ω0

c (X) = 0 as ∀ (X, c) , ω0
c (X) ≥ 0.

Practically, it means that the point X cannot be seen by any camera. Hence Î(X) can be set to
any arbitrary real number without affecting the value of F . Thus, in what follows, we do not
consider this case any longer.

To reduce the amount of notation, we denote fc = I0
c ◦ P c ◦ φD0 and develop Equation (6.7)

(Equation (6.6) with Nt = 1):

F =
∫

Ω

(
Nc∑
c=1

ω0
cf

2
c − 2Î

Nc∑
c=1

ω0
cfc + Î2

Nc∑
c=1

ω0
c

)
,
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using the identity (6.8), it follows:

F =
∫

Ω

(
Nc∑
c=1

ω0
cf

2
c − Î2

Nc∑
c=1

ω0
c

)
.

Making use a second time of (6.8):

F =
∫

Ω

1∑
k ω

0
k

(∑
i

∑
c

ω0
i ω

0
cf

2
c −

∑
i

∑
c

ω0
i ω

0
cfifc

)
.

As ∑i

∑
c ω

0
i ω

0
cf

2
c = ∑

i

∑
c ω

0
i ω

0
cf

2
i :

F = 1
2

∫
Ω

1∑
k ω

0
k

(∑
i

∑
c

ω0
i ω

0
cf

2
c − 2

∑
i

∑
c

ω0
i ω

0
cfifc +

∑
i

∑
c

ω0
i ω

0
cf

2
i

)
.

We can factor this expression:

F = 1
2
∑
i

∑
c

∫
Ω

ω0
i ω

0
c∑

k ω
0
k

(
f2
c − 2fifc + f2

i

)
,

which can finally be rewritten:

F =
∑
c

∑
i<c

∫
Ω

ω0
cω

0
i∑

k ω
0
k

(fc − fi)2 .

This last equation is very close to the functionals F1 (6.1) and F ′′1 (6.3) used in a standard
Global SDIC framework for the shape measurement step (see Section 6.1.1). These developments
allow to establish a link between a weight assigned to each observation fc, namely ω0

c , and the

associated weight in the usual framework, which should be ω0
cω

0
i∑

k ω
0
k

when comparing fc to fi.

In F1 (6.1) [Pierré et al. 2017], it is (implicitly) assumed that:

ω0
c =

∣∣∣det
(
∇φ

D0

)∣∣∣ ((Jc ◦ Pc)Vc) ◦ φD0 ∼ 1,

because (near) planar surfaces are considered. In this case, considering the correct weighting

scheme does not change much the functional expression, as ω0
cω

0
i∑

k ω
0
k

∼ 1
Nc

. Note that we just

showed that, according to previous assumptions:

F1/Nc = F ′1.

However, in F ′′1 (6.3) [Chapelier et al. 2021], ω0
c ∼ Vc is assumed. Hence, when considering

more complex geometries, the correct weight when comparing fc to fi should be VcVi∑
k Vk

, instead
of VcVi.
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6.1.3 Displacement measurements

Let us now consider the displacement measurement step. Before getting into the general case
Nt > 2, we establish the link between F (6.6) and usual frameworks considering only two time
steps (Nt = 2). It is done first by relying on a substitute image Î given by Equation (6.8) (only
reference state images are used to build Î), and then by updating Î thanks to data provided by
deformed state images.

Incremental displacement measurements Since Nt = 2, the functional F from Equa-
tion (6.6) writes as follows:

F
(
D0, D1,

(
p
c

)
c
, Î
)

=
Nc∑
c=1

∫
Ω
ω0
c (X)

(
I0
c ◦ P c ◦ φD0(X)− Î(X)

)2

+ω1
c (X)

(
I1
c ◦ P c ◦ φD1(X)− Î(X)

)2
dX

=
Nc∑
c=1

∫
Ω
ω0
c

(
fc − Î

)2
+ ω1

c

(
gc − Î

)2
,

(6.9)

where gc = I1
c ◦ P c ◦ φD1 .

• Substitute image based on reference state images only: Here, as in [Dufour et al. 2015b]
we keep on using the same substitute image based on Equation (6.8). In this case, the
functional is minimised with respect to D1 only and reads:

F =
Nc∑
c=1

∫
Ω
ω0
c

(
fc − Î

)2

︸ ︷︷ ︸
Constant=F0

+
Nc∑
c=1

∫
Ω
ω1
c

(
gc − Î

)2

F = F0 +
Nc∑
c=1

∫
Ω
ω1
c

(
g2
c − 2Îgc + Î2

)

We can then make use of Equation (6.8):
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F = F0 +
∫

Ω

1∑Nc
k=1 ω

0
k

Nc∑
c=1

Nc∑
i=1

ω0
i ω

1
cg

2
c − 2

Nc∑
c=1

Nc∑
i=1

ω0
i ω

1
cgcfi +

∑Nc
c=1 ω

1
c∑Nc

k=1 ω
0
k

Nc∑
i=1

Nc∑
j=1

ω0
jω

0
i fifj


= F0 +

∑
i

∑
c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(
g2
c − 2gcfi +

∑
j ω

0
j fifj∑
k ω

0
k

)

= F0 +
∑
i

∑
c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(
(gc − fi)2 − f2

i +
∑
j ω

0
j fifj∑
k ω

0
k

)

= F0 +
∑
i

∑
c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(
(gc − fi)2 − f2

i + fiÎ
)

= F0 +
∑
i

∑
c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(
(gc − fi)2 −

(
fi − Î

)2
+ Î(Î − fi)

)

= F0 +
∑
i

∑
c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(
(gc − fi)2 −

(
fi − Î

)2
)

+
∑
c

∫
Ω
ω1
c Î

(
Î −

∑
i ω

0
i fi∑

k ω
0
k

)
.

The last sum equals 0 by definition of Î (6.8):

F = F0 +
∑
i

∑
c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(
(gc − fi)2 −

(
fi − Î

)2
)

=
∑
c

∫
Ω
ω0
c

(
fc − Î

)2
+
∑
i

∑
c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(gc − fi)2 −
∑
c

∑
j

∫
Ω

ω0
cω

1
j∑

k ω
0
k

(
fc − Î

)2

=
∑
i

∑
c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(gc − fi)2 +
∑
c

∫
Ω
ω0
c (fc − Î)2

(
1−

∑
j ω

1
j∑

k ω
0
k

)

=
∑
c

∫
Ω

ω0
cω

1
c∑

k ω
0
k

(gc − fc)2 +
∑
c

∑
i 6=c

∫
Ω

ω0
i ω

1
c∑

k ω
0
k

(gc − fi)2

+
∑
c

∫
Ω
ω0
c (fc − Î)2

(
1−

∑
j ω

1
j∑

k ω
0
k

)
. (6.10)

At this point, let us point out that relying on a substitute image for the displacement
measurement step exhibits some interesting properties. First, it encompasses usual for-
mulations of the shape measurement step (Equation (6.4) or Equation (6.5)) thanks to the
first sum in Equation (6.10) that are, this time, complemented by every spatio-temporal
cross-correlations gc − fi, with cameras i 6= c, which are usually not included. Also,
as Equation (6.2) compared to Equation (6.1), Equation (6.6) scales linearly with the
number of cameras, unlike Equation (6.10) which scales quadratically. Finally, note
that the last term in Equation (6.10) may be neglected if for every point X of Ω,∑
j

ω1
j (X) '

∑
k

ω0
k(X), that is if every point X is equally well observed in the pictures(

I0
c

)
c and in the pictures

(
I1
c

)
c.

Again, these developments establish a link between a weight associated to a given observa-
tion and the consistent weighting scheme that should be adopted in the usual framework.
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In F2 (6.4) [Pierré et al. 2017], it is assumed that ω0
c ∼ ω1

c ∼ 1 (which makes sense for

near-planar surfaces only) and again, considering a consistent weighting scheme ω0
cω

1
c∑

k ω
0
k

when comparing fc to gc only scales F2 by a constant factor 1
Nc

. However, when intro-
ducing a visibility function such that ω0

c ∼ ω1
c ∼ Vc as in F ′2 (6.5) [Hild & Roux 2020],

the consistent weight when comparing fc to gc should be ω0
cω

1
c∑

k ω
0
k

∼ Vc∑
k Vk

instead of Vc.

• Substitute image updating: Here, we perform data assimilation in the sense that F
from Equation (6.9) (Equation (6.6) with Nt = 2) is minimised with respect to all argu-
ments (that is, D0, D1,

(
p
c

)
c
and Î), unlike the previous subsection. For this reason, Î

is updated by minimising F :

Î =

Nc∑
c=1

ω0
cfc + ω1

cgc

Nc∑
k=1

ω0
k + ω1

k

. (6.11)

Hence, we can develop:

F =
∫

Ω

(
Nc∑
c=1

ω0
cf

2
c − 2Î

Nc∑
c=1

ω0
cfc + Î2

Nc∑
c=1

ω0
c

)
+
(
Nc∑
c=1

ω1
cg

2
c − 2Î

Nc∑
c=1

ω1
cgc + Î2

Nc∑
c=1

ω1
c

)

=
∫

Ω

(∑
c

(
ω0
cf

2
c + ω1

cg
2
c

)
− 2Î

∑
c

(
ω0
cfc + ω1

cgc
)

+ Î2∑
c

(
ω0
c + ω1

c

))
.

Making use of the expression of Î (6.11) a first time:

F =
∫

Ω

(∑
c

(
ω0
cf

2
c + ω1

cg
2
c

)
− Î2∑

c

(
ω0
c + ω1

c

))
,

and a second time after factoring by 1/∑k

(
ω0
k + ω1

k

)
in the integral:

F =
∫

Ω

1∑
k

(
ω0
k + ω1

k

) [∑
i

∑
c

(
ω0
i + ω1

i

) (
ω0
cf

2
c + ω1

cg
2
c

)
−
∑
i

∑
c

(
ω0
cfc + ω1

cgc
) (
ω0
i fi + ω1

i gi
)]

=
∑
i

∑
c

∫
Ω

ω0
i ω

0
c

(
f2
c − fifc

)
+ ω0

i ω
1
cg

2
c + ω0

cω
1
i f

2
c + ω1

i ω
1
c

(
g2
c − gigc

)
− 2ω0

i ω
1
cfigc∑

k

(
ω0
k + ω1

k

) .

Again as, for instance, ∑i

∑
c ω

0
cω

1
i f

2
c = ∑

i

∑
c ω

0
i ω

1
cf

2
i :
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F =
∑
i

∑
c

∫
Ω

1∑
k

(
ω0
k + ω1

k

) [ω0
i ω

1
c (gc − fi)2 + 1

2ω
0
i ω

0
c (fc − fi)2 + 1

2ω
1
i ω

1
c (gc − gi)2

]

=
∑
c

∫
Ω

ω0
cω

1
c∑

k

(
ω0
k + ω1

k

) (gc − fc)2 +
∑
c

∑
i 6=c

∫
Ω

ω1
cω

0
i∑

k

(
ω0
k + ω1

k

) (gc − fi)2

+
∑
c

∑
i<c

∫
Ω

ω0
i ω

0
c∑

k

(
ω0
k + ω1

k

) (fc − fi)2 +
∑
c

∑
i<c

∫
Ω

ω1
i ω

1
c∑

k

(
ω0
k + ω1

k

) (gc − gi)2 .

(6.12)

Considering only the terms such that i = c in the previous expression of F (first term)
allows to retrieve a functional similar to the one used in the usual frameworks for the
displacement measurement step (see Equation (6.4) and Equation (6.5)).
Let us stress again that relying on a substitute image Î in a displacement measurement
perspective shows the benefit to have a much richer functional than the usual ones. In
Equation (6.12), there are indeed terms proportional to (fc − fi)2 and (gc − gi)2 which
are similar to a shape measurement (see Section 6.1.2). The stereo correspondence is
thus preserved. There are also terms proportional to (gc − fi)2 , i 6= c (spatio-temporal
cross-correlations) which have no counterparts in the usual frameworks.

Data assimilation displacement measurements In this subsection, we investigate the
possibility to minimise the functional F defined in Equation (6.6) with respect to every argument
(i.e.

(
Dt
)
0≤t≤Nt−1 ,

(
p
c

)
1≤c≤Nc

, Î) and show to which extent this functional is suitable for
performing data assimilation by, once again, establishing the link with usual frameworks. Here,
by data assimilation, we mean benefiting from all available observations to evaluate quantities
of interest (that is, for instance in DIC, displacements, shape, camera parameters, substitute
image). A key element in such an approach is the level of confidence associated to observations
that we have already discussed.

In what follows, to reduce the amount of notation, we will simply write Itc instead of Itc ◦
P c ◦ φDt . With such notations, the expression of Î is simply (least-squares solution of F
minimisation):

Î =

Nt−1∑
t=0

Nc∑
c=1

ωtcI
t
c

Nt−1∑
s=0

Nc∑
i=1

ωsi

.

Note that this expression for Î, stemming from the minimisation of F , is very close to the
heuristic approach used in [Berny et al. 2018a]. In the context of heat haze effects [Jones
& Reu 2017], relying on a substitute image based on all available pictures is essential as the
confidence associated to the reference picture is low. Then we can develop F from Equation (6.6)
(similar treatment as in Section 6.1.3):
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F =
Nt−1∑
t=0

Nc∑
c=1

∫
Ω
ωtc

((
Itc

)2
− 2Itc Î + Î2

)
=

∫
Ω

∑
t

∑
c

ωtc

(
Itc

)2
− Î2∑

t

∑
c

ωtc

=
∫

Ω

1∑
r

∑
j ω

r
j

(∑
t

∑
c

∑
s

∑
i

ωsiω
t
c

(
Itc

)2
−
∑
t

∑
c

∑
s

∑
i

ωsiω
t
cI
t
cI
s
i

)

= 1
2
∑
t

∑
c

∑
s

∑
i

∫
Ω

ωsiω
t
c∑

r

∑
j ω

r
j

(
Itc − Isi

)2
.

Finally, F can be split in different parts (s 6= t and s = t):

F =
∑
t

∑
s<t

∑
c

∫
Ω

ωscω
t
c∑

r

∑
j ω

r
j

(
Itc − Isc

)2

︸ ︷︷ ︸
Similar to a displacement
measurement functional

+
∑
c

∑
i 6=c

∫
Ω

ωsiω
t
c∑

r

∑
j ω

r
j

(
Itc − Isi

)2

︸ ︷︷ ︸
Spatio-temporal
cross-correlations



+
∑
c

∑
i<c

∫
Ω

ωtiω
t
c∑

r

∑
j ω

r
j

(
Itc − Iti

)2

︸ ︷︷ ︸
Similar to a shape

measurement functional

 .

(6.13)

This final expression for F , obtained when minimising with respect to every single argument
of the functional, clearly establishes the link with usual frameworks. We can see that it includes
usual shape measurements (see Equation (6.1)) at all times, together with terms similar to
displacement measurements (see Equation (6.4) or Equation (6.5)) for all pairs of times, as well
as spatio-temporal cross-correlations (comparing Itc to Isi , with cameras i 6= c, (spatial) and
times s 6= t (temporal)). Once again, it is much richer than the usual functionals.

6.1.4 Discussions

In order to establish the links above between F (6.6) and usual frameworks, we had to adopt
the same experimental setups. That is, at all times, the number of cameras Nc is the same and
the cameras are assumed to remain in a fixed position all along the experiment. Let us stress
that it does not have to be the case, and that the formulation proposed (6.6) is easily extended
to arbitrary number of pictures at each time (N t

c), with moving cameras (pt
c
). This would allow

to consider experimental setups with cameras supported by robotic arms or even drones, for
instance. For these reasons and others that we wish to illustrate in what follows, the functional
proposed (6.6) opens up new perspectives in terms of experimental setups. It offers much more
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flexibility to the experimenter, while providing a much greater robustness, as it increases the
amount of data for each problem (camera calibration, shape, displacement).

First, as already evoked, when considering reference state images fc and deformed ones gc
that see totally disjoint regions of the ROI, the first term in Equation (6.10), equivalent to
usual SDIC frameworks, becomes zero, as the product ω0

cω
1
c equals zero. This kind of situation

totally incapacitates all DIC software (including SDIC and 2D-DIC). This may arise in the case
of large rotations as described in Chapter 7. Yet, the Functional F (6.6) allows to naturally
address this issue, thanks to the cross-correlation terms.

Also, when considering large strains, relying on all available pictures with a weight ωtc
depending on the displacement fieldDt, would be particularly helpful to perform a finer sampling
of the substitute image [Goldlücke et al. 2014,Tsiminaki et al. 2019]. For large positive strains,∣∣∣det∇φDt

∣∣∣ =
∣∣∣det

(
I +∇Dt

)∣∣∣ > 1. This assigns a greater level of confidence to the image Itc,
which is consistent with the better sampling achieved by the pixels in Itc of the ROI. In other
words, in the case of large (positive) strains, it is unfortunate, in the current frameworks, to
identify the substitute image in the reference state images only, as the information in deformed
state ones is much more reliable.

On top of that, note that the weighting scheme together with the construction of the Func-
tional (6.6) naturally provide a way to merge results from different times and different view-
points in order to perform multiscale substitute image identification and, most importantly,
multiscale displacement measurements. That is, cameras with different resolutions imaging the
ROI [Passieux et al. 2015a]. Currently, the dialogue between measurements performed at two
different resolutions is still an open problem.

Then, regarding camera calibration, some research works identify projection parameters on
the sole basis of reference state images [Dufour et al. 2015b]. This camera calibration process,
while convenient from an experimenter perspective, has the major drawback not to calibrate
the whole volume spanned by the object which can result in a stereo correspondence loss.
Identifying camera parameters based on the minimisation of Equation (6.6) would allow to
calibrate the whole volume spanned by the ROI, precisely because the minimisation would be
performed on all positions occupied by the object. Also, this would allow to avoid calibrating
the stereo rig at different times (based on targets), as done to prevent temporal drift during
long experiments. Regarding this matter, the last terms in Equation (6.13), similar to shape
measurement functionals, turns out to be useful.

Finally, this formulation is particularly suitable for spatio-temporal regularisation and one
could imagine making use of it to perform SDIC measurements during tests with a single moving
camera, or a rotating object (in a tomograph for instance) in front of the fixed camera, relying
on similar techniques as in [Jailin et al. 2017].

6.1.5 Conclusion

There are two main results associated to the developments presented herein. First, we estab-
lished a link between functionals on which global SDIC usually relies and a functional based on
the sum of errors between a substitute image and observations from all cameras, at all times:
Functional F (6.6). We showed that the latter is much richer than the formers in a displacement
measurement context. Based on the consideration of large displacements, camera calibration
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and stereo correspondence issues, we illustrated that all the terms usually discarded in SDIC
frameworks are actually extremely useful. For this reason, Functional F (6.6) appears to (a) be
well-suited to perform data assimilation in SDIC, as expected from the construction of this func-
tional based on all available data, (b) stand for an interesting perspective in the formulation of
the Stereo Digital Image Correlation problem, as it can be seen as a dense counterpart of bundle
adjustment methods [Delaunoy & Pollefeys 2014,Goldlücke et al. 2014,Sutton et al. 2009].

6.2 Sensitivity analysis

We wish to also discuss the use of a model. In Chapter 5, we based our approach on the
sole basis of the understanding of the underlying physical principles and involved phenomena,
which is an extremely important point to us. But there is another interesting outcome that
we can now explain based on our previous developments. To do so, we will rely on the same
assumptions and method as [Roux & Hild 2006, Appendix A]. Each image Itc is polluted by a
random white noise γtc, of zero mean, and variance σ2 (same variance for all cameras at all times
but the generalisation to different variances is straightforward and requires to normalise the
functional F accordingly). In order to rely on a QGN scheme, the surface gradient [Goldlücke
et al. 2014] of the radiance model ∇ΩLe is required. In usual frameworks, ∇Pc

(
∇I0

c ◦ P c
)

is indeed substituted to
(
∇Pc

(
∇Ic ◦ P c

))
◦ φ

D
based on the grey level conservation equation

(3.35). In the PhDIC one, we may substitute (at least in the case of a good initialisation)
αtc∇ΩLe to

(
∇Pc

(
∇Ic ◦ P c

))
◦ φ

D
. The QGN scheme writes:

HPhDIC dD = bPhDIC, (6.14)

where dD collects all degrees of freedom (including with respect to time) and

HPhDIC =

Nc∑
c=1

Nt−1∑
t=0

∫
Ω
ωtcN

T
(
αtc∇ΩLe

) (
αtc∇ΩLe

)T
N

bPhDIC =
Nc∑
c=1

Nt−1∑
t=0

∫
Ω
ωtcN

T
(
αtc∇ΩLe

) (
Le − Itc ◦ P tc ◦ φDt

) . (6.15)

∇ΩLe is considered to be unaffected by noise. Note that, as Le is a model, this assumption
is not as strong as the counterpart in [Roux & Hild 2006], where the same assumption is applied
to the image gradient ∇I0

c . In this case, bPhDIC is changed by a quantity:

δbPhDIC = −
Nc∑
c=1

Nt−1∑
t=0

∫
Ω
ωtcN

Tαtc∇ΩLe
(
γtc ◦ P tc ◦ φDt

)
︸ ︷︷ ︸

δRt
cPhDIC

. (6.16)

In the following, we assume that ωtc does not depend on noise. This may be true in some
cases (e.g. 2D-DIC and

∣∣∣det∇Dt
∣∣∣ � 1). This results in an expectancy 〈δD〉 = 0 (where

〈·〉 denotes the expectancy, in the sense of the mean over different noises). The measurement
covariance matrix is given by

〈
δD δDT

〉
= (HPhDIC)−1

〈
δbPhDIC δb

T
PhDIC

〉
(HPhDIC)−1. We can
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then compute
〈
δb δbT

〉
in our case:

〈
δbPhDIC δb

T
PhDIC

〉
=

〈∑
c

∑
t

∑
i

∑
s

∫
Ω

∫
Ω

[
ωtcN

Tαtc∇ΩLeδR
t
cPhDIC

]
(X)

×
[
ωsiN

Tαsi∇ΩLeδR
s
iPhDIC

]T
(X ′) dX dX ′

〉
=

∑
c

∑
t

∑
i

∑
s

∫
Ω

[
ωtcN

Tαtc∇ΩLe
]

(X)

×
(∫

Ω

[
ωsiN

Tαsi∇ΩLe
]T
(X ′)

〈
δRtc(X)δRsi (X ′)

〉
dX ′

)
︸ ︷︷ ︸

At,s
c,i(X)

dX.

(6.17)

And 〈
δRtcPhDIC(X)δRsiPhDIC(X ′)

〉
= σ2δciδst

(
δ
(
P si ◦ φDs(X ′)− P tc ◦ φDt(X)

))
.

Thus

At,sc,i(X) = σ2δciδst

∫
Ω

[
ωtcN

Tαtc∇ΩLe
]T
(X ′)

(
δ
(
P tc ◦ φDt(X ′)− P tc ◦ φDt(X)

))
dX ′

= σ2δciδst

∫
St

c

[
NTαtc∇ΩLe

]T
◦ φ−1

Dt ◦ βtc(x
′)δ
(
x′ − P tc ◦ φDt(X)

)
dx′

= σ2δciδst
[
NTαtc∇ΩLe

]T
◦ φ−1

Dt ◦ βtc ◦ P
t
c ◦ φDt(X).

Using this expression for At,sc,i in Equation (6.17) yields:

〈
δbPhDIC δb

T
PhDIC

〉
= σ2∑

c

∑
t

∫
Ω
ωtcN

T
(
αtc∇ΩLe

) [(
αtc∇ΩLe

)T
N

]
◦φ−1

Dt ◦βtc◦P
t
c◦φDt . (6.18)

As ωtc includes V t
c ◦ φDt , we have βt

c
◦ P tc = I in the previous integral and it may be simplified

as: 〈
δbPhDIC δb

T
PhDIC

〉
= σ2∑

c

∑
t

∫
Ω
ωtcN

T
(
αtc∇ΩLe

) (
αtc∇ΩLe

)T
N.

= σ2HPhDIC.
(6.19)

Finally the displacement covariance matrix is given by:〈
δD δDT

〉
= σ2H−1

PhDIC. (6.20)

When considering only one time step (Nt = 1), and thus only one displacement measurement
for instance, it is worth pointing out that relying on a model exhibits a strong advantage.
Besides the possibility not to differentiate pictures, the measurement uncertainty is divided by
a factor

√
2 when compared to usual frameworks [Roux et al. 2009, Eq. (12)], or close to such

a factor [Blaysat et al. 2016].
Let us stress however that noise in the images is not the only source of measurement error.

Besides the already discussed issues associated with light, pattern induced bias (or fattening
effect) and interpolation schemes also stand for sources of error [Sur et al. 2021].
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6.3 Estimation theory

In this work, the functionals used to estimate parameters in the different inverse problems
encountered (e.g. camera calibration, displacement measurements) have been presented only as
a least-squares minimisation of the residual. Also, regularisation terms have been introduced as
a way to increase the knowledge on the solution when the ratio available data over unknowns
became too low. However, both may be justified from a mathematical viewpoint, provided
that some assumptions are met. In the same way as [Szeliski 2010, Appendix B], we consider
a general set of measurement equations (e.g. position of target points in pictures, grey level
values). Assuming Nm different measurements have been performed, the mth measurement
vector is modelled:

∀m ∈ [[1, Nm]], y
m

= f(x, p
m

) + γ
m
, (6.21)

where y
m

is the measurement vector corrupted by the noise γ
m
. f is the measurement model

associated with a set of parameters x that does not depend on the measurement number m
while p

m
does. Note that, by definition, f(x, p

m
) is uncontaminated (or unbiased).

Typically in Chapter 2, y
m

collects the positions of target points detected in picture m(
x̂mj

)
j
(see Equation (2.28)), the camera model P stands for the model f , the vector x collects

the target point positions X, Y and Z together with the camera intrinsic parameters (pint and
d), and p

m
is the extrinsic parameter vector pext.

The main idea is then to maximise the conditional probability or likelihood L = p
(
x | y

)
(with y = (yT

m
)Tm) of x as values for the sought parameters given the observations y.

Remark We implicitly assumed p
m

was known in the previous paragraph. If it is not the case
(like for the photogrammetric calibration) replacing x by

(
x, p

)
(with p = (pT

m
)Tm) in what follows

allows to circumvent the issue.

In the following, we assume that the noise vector γ
m

is a zero-mean multi-dimensional normal
(Gaussian) random variable with covariance matrix Σm:

γ
m
∼ N

(
0,Σm

)
. (6.22)

We also assume that noise vectors are independent.
For a more general framework, the interested reader is referred to [Benning & Burger 2018, 3

Variational Modelling].
At this point, the problem is that Equations (6.21) allow, given x and the noise model, to

access y. In other words, we can easily model the conditional probability p
(
y |x

)
. Hence we

can make use of the Bayes’ rule:

p
(
x | y

)
=
p
(
y |x

)
p(x)

p(y) . (6.23)

Based on aforementioned assumptions on noise vectors (zero-mean normal random variables
and independence), it is indeed possible to compute p

(
y |x

)
[Szeliski 2010]:
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p
(
y |x

)
=
∏
m

p
(
y
m
|x
)

=
∏
m

p
(
y
m
| f(x, p

m
)
)

=
∏
m

p(γ
m

), (6.24)

where the probability p(γ
m

) is simply:

p(γ
m

) = 1

(2π)Nd,m/2 det
(
Σm

)1/2 exp
(
−1

2(y
m
− f(x, p

m
))TΣm

−1(y
m
− f(x, p

m
))
)
, (6.25)

and Nd,m is the length of the measurement vector y
m
.

6.3.1 Maximum likelihood

Without any prior knowledge on x, a possibility is to maximise p
(
y |x

)
directly as we may

write:

p
(
y |x

)
= p(x, y) = p

(
x | y

)
= L. (6.26)

Hence we look for:

x? = arg max
x

L

= arg max
x

Nm∏
i=1

1

(2π)Nd,m/2 det
(
Σm

)1/2 exp
(
−1

2(y
m
− f(x, p

m
))TΣm

−1(y
m
− f(x, p

m
))
)

= arg max
x

Nm∏
i=1

1

(2π)Nd,m/2 det
(
Σm

)1/2 exp
(
−1

2‖ym − f(x, p
m

)‖2Σ−1
m

)
,

(6.27)
where ‖y

m
− f(x, p

m
)‖Σ−1

m
=
√

(y
m
− f(x, p

m
))TΣm

−1(y
m
− f(x, p

m
)) is the Mahalanobis dis-

tance [Szeliski 2010]. But it is also possible to minimise the negative log-likelihood:

x? = arg min
x

(− logL)

= arg min
x

E

= arg min
x

1
2

Nm∑
i=1
‖y

m
− f(x, p

m
)‖2Σ−1

m
+ 1

2

Nm∑
i=1

log
(
(2π)Nd,m det

(
Σm

))
︸ ︷︷ ︸

Constant k

= arg min
x

1
2

Nm∑
i=1
‖y

m
− f(x, p

m
)‖2Σ−1

m
,

(6.28)

with E = − log p
(
y |x

)
the cost or energy [Szeliski 2010].

Note that the matrix Σm
−1 plays the role of a weight for each measurement error residual

[Szeliski 2010]. For this reason, it is often called the information matrix as it allows to define a
level of confidence to each measurement.
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Camera calibration When using cameras with the same noise levels and the same algorithms
to detect target points in pictures, each covariance matrix Σm may be assumed equal to σ2

d1.
This justifies the framework adopted in Chapter 2, where a least-squares minimisation was used.

PhDIC Here comes our final argument to first define residuals in the image planes. In Chap-
ter 5, we justified it indeed first heuristically (pixels are the information quantum) and then
mathematically, a posteriori, thanks to the consistent weighting term that appeared when inte-
grating by substitution. Based on the image irradiance equation Equation (5.1), y

m
corresponds

to the set of pixels corresponding to the ROI in a picture Im, the model f is αmLe◦βm, x encom-
passes the BRDF parametrisation and lighting model, and p

m
includes the camera thoughtput

αm together with the camera model parameters (see Chapter 2). Hence, the functional to
minimise based on the negative log-likelihood is:

F =
Nt−1∑
t=0

Nc∑
c=1

∑
x∈St

c

∥∥∥Itc(x)− αtcLe ◦ βtc(x)
∥∥∥2

(Σt
c)−1 . (6.29)

Assuming a spatially uncorrelated noise, that is Σt
c =

(
σtc
)2 1, yields:

F =
Nt−1∑
t=0

Nc∑
c=1

∑
x∈St

c

(
Itc(x)− αtcLe ◦ βtc(x)

)2

(σtc)2 . (6.30)

If the same cameras are used (which is usually the case) and noise levels do not depend on time
(which may correspond to camera temperature equilibrium throughout the experiment) we may
assume ∀(c, t), σtc = σ and thus we may simply use a least-squares minimisation:

F =
Nt−1∑
t=0

Nc∑
c=1

∑
x∈St

c

(
Itc(x)− αtcLe ◦ βtc(x)

)2
(6.31)

Eventually, a continuous formulation may be adopted [Delaunoy & Pollefeys 2014,Goldlücke
et al. 2014], as only such a framework allows to rigorously account for surface foreshortening
for instance (see Chapter 5):

F =
Nt−1∑
t=0

Nc∑
c=1

∫
St

c

(
Itc(x)− αtcLe ◦ βtc(x)

)2
dx. (6.32)

This justifies a priori the approach developed in Chapter 3 as we obtain the exact same expres-
sion as Equation (5.12).

6.3.2 Prior models

In some cases, a strong prior knowledge on the solution is available and may be formalised as
a probability p(x) in Equation (6.23). We may then write the negative logarithm:

− logL = − log p
(
x | y

)
= − log p

(
y |x

)
− log p(x) + log p(y)︸ ︷︷ ︸

Constant

, (6.33)
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and x is sought as:
x? = arg min

x
E − log p(x). (6.34)

This is called Maximum A Posteriori (MAP) and we may identify the same kind of structure
as Tikhonov regularisation [Benning & Burger 2018] (see Section 4.1.2).

6.3.3 Discussions

The same kind of functionals as Equation (6.28) is sometimes called optimal in the usual DIC
frameworks (see for instance [Hild & Roux 2020]). However, it is worth remembering that
optimality should be understood in the sense of previous developments (maximum likelihood or
MAP) which required numerous assumptions. All of them may not be fulfilled. Typically, noise
in pictures may not exactly follow a Gaussian distribution and/or be spatially uncorrelated. One
of the strongest assumptions is the possibility for the model to exactly explain observations, as
the only source of error is assumed to be the Gaussian noise. Practically, it is rarely the case as,
for instance, there may be outliers such as specular reflections. But most importantly, in usual
DIC frameworks, no unbiased model was available until now, as measurements were performed
based on image registrations.

6.4 Conclusion

This chapter allowed us to justify the use of the PhDIC framework. First we showed the im-
provements it could yield by establishing the link with usual frameworks. The PhDIC framework
is indeed a general framework as it encompasses usual ones and offers the perspective to extend
the scope of existing schemes. Then, we showed by a sensitivity analysis, with weaker assump-
tions, that the measurement uncertainty is expected to be divided by a factor

√
2 compared

to usual methods. Eventually, the PhDIC approach was justified a priori, and we showed that
it was optimal, provided that some assumptions are met, thanks to arguments stemming from
estimation theory.

After these justifications from a theoretical viewpoint, we propose to apply this framework
on a practical test case in the following chapter.





Chapter 7

Application on a real test case

We now propose a practical application of PhDIC on real images of an open-hole speci-
men. Only two time steps are considered, the reference and the deformed ones. As a first
proof of concept, a framework slightly downgraded compared to the one of Chapter 5 is
proposed, as, for reasons that will be explained later on, the whole Functional (5.18) is not
minimised. Instead, it is minimised in the reference state to calibrate the extrinsics, the
shape and the reflectance model (in the same way as the shape measurement step). Then
the part of the functional associated with the deformed state is minimised considering
only the displacement as a variable (in the same way as the displacement measurement
step in usual frameworks). The associated results are presented successively.
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In this practical application of the PhDIC framework, the object is first ‘scanned’ thanks to
numerous multiview pictures (Ii)i allowing to elaborate the test Digital Twin. In the Lamber-
tian, distant point light source assumptions, it includes a shape correction field S, an albedo
ρ (or intrinsic texture) together with light intensity and direction. Then, in the displacement
measurement step t1, the deformed state images (Jj)j are compared to the model and the
sought displacement field is identified. Note that both the number of deformed state pictures
and the associated viewpoints may be different from the reference ones. These considerations
are summed up in an illustration in Figure 7.1. We denoted the time associated to the displace-
ment measurement step t1 instead of t0 + ∆t as in Figure 3.10. There are two reasons for that.
First, time t0 may correspond to a scan of the structure without mechanical loading. Second,
the displacement measurement step t1 can also stand for the positioning of the specimen in the
test setup (which may apply loads that are usually neglected) and camera removal.

Figure 7.1: Illustration of the practical use made of the Photometric Stereo Digital Image
Correlation (PhDIC) in this chapter.

7.1 Intrinsics, extrinsics, shape and albedo measurements

In the present section, we showcase the calibration procedure prior to displacement measure-
ment, the latter being, in turn, described in Section 7.2.
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Before being able to perform a displacement measurement thanks to SDIC, several prereq-
uisites must first be fulfilled (see Figure 3.8). The cameras should be calibrated (intrinsics and
positions relative to one another), and the extrinsics and shape should be measured (position of
the model with respect to the camera rig and corrections between nominal and actual shape).
The difficulty in this prior phase concerns the shape measurement problem which is extremely
ill-posed (see Figure 3.9). Regularisation strategies must therefore be adopted to circumvent
this issue. They usually consist in restricting the subspace in which the shape is sought (whether
it be in a strong or a weak sense) (see Section 4.1.2).

Another path that could be followed is an increase of the amount of available data [Passieux
et al. 2015a], but as detailed by [Goldlücke et al. 2014], obtaining numerical schemes which
scale favourably with the number of cameras is not straightforward (in the case of FE-SDIC, it
scales as N2

c as each picture has to be compared with every other one, see Section 6.1.1). This
may explain why this possibility has not been fully investigated in SDIC yet.

7.1.1 Setup

In the present work, a single camera (Nc = 1) was used to take multiview pictures of a rect-
angular plate with a circular hole (see Figure 7.2a) in the reference state (t0). For this reason,
we use the letter i to index the pictures (Ii)i taken by a same camera in the reference state.
Ni denotes the number of multiview pictures. The specimen was 20 cm long, 2.35 cm wide
and 6 mm thick, while the diameter of the bore was 7 mm. A classic black and white pattern
was created by spraying paint on the surface of the sample. A Jai GO-5000C-USB 5 Megapixel
camera and a 25 mm macro lens were used. The distance between the sample and the camera
was about 1m. The spatial sampling provided by the pictures was about 8 pixels per mm. Also,
a single halogen light was placed right behind the camera so that a point visible by the camera
was lit as well. The beam was attached on a custom calibration target composed of 8 points
printed on an A4 sheet. The target was then fixed on a turntable allowing to take 360-degree
pictures of the coupon, as indicated in Figure 7.2b. Let us stress that, with such a setup, the
direction of the light with respect to the beam changes for each picture, while remaining the
same in the camera reference frames. Also, the turntable was only a convenient way to take
multiview pictures of the specimen. It served no metrological purpose. As described below,
camera poses were rather identified thanks to the target.

A classic photogrammetric calibration [Garcia 2001] was performed on the pictures contain-
ing both the coupon and the target thanks to the in-house calibration software presented in
Chapter 2. Usually, at the end of this step, the camera intrinsic parameters are identified and
saved but the relative position of the target with respect to the camera, which is also one of the
identified quantities, is discarded. Here, we use this knowledge to initialise the extrinsics and
shape measurement procedure since it allows to directly estimate the pose of the images with
respect to the coupon which is assumed to be fixed in the target reference frame.

We now place ourselves in a FE-SDIC framework [Passieux 2018]. A perfect CAD model
of the specimen is first meshed using T3 elements (see Figure 7.2b again). The typical size for
elements was 5mm but 2mm elements were used for mesh refinement care around the hole. The
hole inner surface was not meshed.
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(a) Example of an input image used for the
shape and albedo scan. Superimposed blue
dots stand for the light calibration points. The
world reference frame is shown in orange. Both
were not present in the original picture.

(b) Image positions relatively to the coupon.
The mesh has been enlarged for reasons of vis-
ibility and thus sizes and distances are not to
scale.

Figure 7.2: Calibration, shape and albedo measurement setup.

7.1.2 Assumptions

We assume a Lambertian reflectance model for the beam surface. On top of that, we will assume
that the only light contribution comes from the light source mentioned in Section 7.1.1 (thus,
Nr = 1 and we omit the index r in the following). We further consider that for each picture
i ∈ [[1, Ni]], the light can be modelled thanks to an infinitely distant point light source with a
vector nf (θi, ϕi) given by the z-vector of the camera reference frame associated to picture i:
Zc,i (in our convention Zc,i is the unit vector collinear with the optical axis and pointing from
the scene towards the camera, see Figure 5.3). Hence, for image i, Equation (5.9) becomes:

Ii(x) = ρ(X)li
〈
Zc,i, n(X)

〉
. (7.1)

This infinitely distant point light source assumption is valid if the size of the coupon is negligible
with respect to the distance between the coupon and the light, which was the case here (ratio
of approximately one order of magnitude).

Since here we only focus on shape measurement, we assume that the available FE model
allows to consider only slight corrections D0 (see Equation (5.17)); in other words, the true
shape is expected to be close to the nominal shape of the specimen. In this case, quantities
in Equation (5.21) can be computed on the reference state geometry: n(X + D0(X)) ∼ n(X),
det

(
∇φ

D0

)
∼ 1 and ((Ji ◦ P i)Vi) ◦ φD0 ∼ (Ji ◦ P i)Vi. This simplifies the formulation and

allows to compute once and for all the normal field and the weighting term on the reference
geometry.

We further assume that the camera can be well described by a pinhole camera model,
without distortions. This assumption, which is practically true with the optical system used in
this work, comes with the benefit to have an analytical expression for Ji (see Equation (5.14))

which can be computed exactly (see Appendix B) and Ji = fxfy
Z2
c,i

‖Oc,iM‖2
|Zc,i|

|〈n, ri〉|.
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Remark Another benefit associated with the pinhole camera model is the smaller number of
parameters and thus the need for a smaller number of calibration pictures.

As the light and camera are close to each other, the size of the coupon is also negligible with
respect to the distance between the coupon and the camera. We can thus further simplify the
weight Ji. Indeed ∀(X,X0) ∈

(
Ω̃i vis

)2
, ‖Oc,iM(X)‖2 ∼ |Zc,i(X)| ∼ |Zc,i(X0)| and since there

is only one camera we do not need to consider the factor fxfy
Z2
c,i

and may take Ji = |〈n, ri〉|, as

in [Birkbeck et al. 2006].
Probably the most challenging concept in this framework is the visibility function since its

value at a point X depends on the camera position and orientation but also on the model
geometry. To deal with this issue, we take advantage of the fact that the coupon, notwith-
standing the hole, is a convex shape. Hence we can assess the value of Vi(X) based on the
sign of 〈n(X), ri(X)〉 whose absolute value is equal to Ji ◦P i(X). Thus we use in the following
[(Ji◦P i)Vi](X) = (〈n(X), ri(X)〉)+, where (·)+ denotes the positive part function [Horn 1986, 16
Extended Gaussian Images].

Since the camera extrinsics (with respect to the coupon) have already been calibrated, we
know the positions of the images relative to one another. Thus we can consider that we do not
need to estimate each image pose with respect to the coupon but rather the position of the
coupon (only 6 parameters) with respect to the virtual camera rig formed by the pictures (see
Figure 7.2b). Ultimately the functional to be minimised writes:

F
(
pext0 , S, ρ, (li)i

)
=

Ni∑
i=1

∫
Ω

(〈n, ri〉)+ (X)
(
Ii◦P i(X+D0(X))−ρ(X)li

〈
Zc,i, n(X)

〉 )2
dX, (7.2)

which is very close to the functional used by [Birkbeck et al. 2006]. pext0 denotes here the extrinsic
parameters of image 0 with respect to the coupon (all other images are then positioned thanks
to the photogrammetric calibration). Here D0 is the sum of the shape correction field S and
the rigid-body displacement U ext associated to pext0 (D0 = S + U ext).

Now that all required assumptions have been clearly stated and expressed in mathematical
terms, it is possible to define the process used to minimise this functional.

7.1.3 Discretisation and interpolation

In order to compute the integrals in Equation (7.2) for instance, the specimen surface is discre-
tised thanks to integration points and the integral over the physical domain is rewritten as a
sum over all these integration points. The idea is to define integration points once and for all
in the physical domain following the same strategy as in Figure 3.4, where as many integration
points as the number of pixels in a finite-element are used. There is however a slight difference
because of our multiview setup. Depending on the image used to observe it, the number of
pixels in an element can be very different. For this reason, we decided to define an integration
point density d in points/mm. The number of points along each direction of our T3 elements
was then defined as the product of the density with the associated edge length. To choose the
value for the density, we used the pictures where the greatest number of pixels was reached for
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a given physical area. That is, we made the opposite choice to [Dufour et al. 2015b] where the
coarsest mapping is used. In our case, this led us to choose d = 8 points/mm.

To avoid undesirable oscillations at the free edges of the specimen (edges that belong to only
one element), we removed integration points closer than ε to these edges [Baconnais et al. 2020].
In this work the chosen distance was ε = 0.5mm.

Regarding both picture subpixel interpolation and gradient computation, a regular bi-cubic
spline interpolation was used.

Remark An important speed-up was obtained by computing the integrals only over Ωivis (making
use of the visibility function to exclude the integration points with zero weight).

7.1.4 Minimisation strategy

The process that we used to minimise (7.2) was a fixed-point algorithm consisting in an alter-
nating optimisation algorithm. The reason for that is the problem ill-posedness. In addition
to the usual sliding modes [Pierré et al. 2017], one should also be aware of the bas-relief ambi-
guities. We refer the interested reader to [Belhumeur et al. 1999] explaining (for orthographic
projection models though) that a surface object is indistinguishable from a generalised bas-relief
transformation of the geometry and an appropriate scaling of the albedo.

Before describing in detail the way it was implemented, we describe the search directions
we used and how we managed to minimise with respect to each of these directions.

Extrinsics and shape To minimise F with respect to extrinsics and shape, the extrinsic
displacement field U ext and the shape correction field S were sought in subspaces of lower
dimension than the linear span of the shape functions associated to the FE mesh. A Gauss-
Newton iterative minimisation scheme together with a Ritz-Galerkin reduced order method,
similar to those presented in Chapter 3, were used. Both S and U ext were written as a linear
combination of elementary displacement fields (similar treatment as in [Colantonio et al. 2020,
Equations (4) and (5)]).

• Extrinsics: One difficulty with this approach is that it is not straightforward to write
the coupon rigid-body displacement as a linear combination, as rotations involve sine
and cosine functions of rotation angles. To circumvent this issue, we used infinitesimal
rotations around the centre of the coupon (the position is assumed to be well initialised).
The exact position of the hole was not known prior to experiment and is hard to measure
experimentally, thus 2 additional degrees of freedom (translations) were added to be able
to precisely measure its position. This step was needed to avoid nodes at the boundary
of the hole to ‘fall’ into the void.
According to these considerations, we can denote U ext = N R

ext
pext0 where pext0 collects

now both the extrinsics and the 2 additional degrees of freedom associated to the hole
position.

• Shape: It is common to measure the shape correction along the normal at the nodes
of the mesh [Colantonio et al. 2020, Pierré et al. 2017, Chapelier et al. 2021]. Defining
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the normal at a node is not straightforward, and it is usually done by computing the
mean over the normals of neighbouring elements. This definition is satisfactory for nodes
located in the bulk of the surface, it is not when considering nodes located on an edge
or a corner. In this work, we used a k-means clustering algorithm [Jiawei et al. 2000] to
be able to detect nodes where 2 (edge) or even 3 (corner) different degrees of freedom
were needed to consistently measure the shape. We defined a maximum value for the
half-angle of the cone circumscribed to all the normals of a cluster. For each node, a
k-means clustering algorithm was called with only one cluster over the set of normals of
neighbouring elements. Then the number of clusters was increased until either there were
3 clusters or in each cluster the angle formed by all normals and the cluster centre was less
than the maximum defined half angle. Finally, the node was affected the cluster centres
as degrees of freedom. For instance, for a node located on an edge of our beam, this
allows to measure a shape correction along both relevant directions, namely the normals
of the planes intersecting in the edge. We can write S = N R

shape
s.

• Gauss-Newton algorithm: To minimise F with respect to extrinsics and shape, a Gauss-
Newton algorithm was used [Pierré et al. 2017]. The Gauss-Newton update at each
iteration results from the following linear system:

H
D0dD0 = bD0 ; (7.3)

with:
H
D0 =

Ni∑
i=1

∫
Ω

(〈n, ri〉)+NT
[(
∇Pi

(
∇Ii ◦ P i

)) (
∇Pi

(
∇Ii ◦ P i

))T ]
◦ φ

D0N

bD0 =
Ni∑
i=1

∫
Ω

(〈n, ri〉)+NT
(
∇Pi

(
∇Ii ◦ P i

))
◦ φ

D0

(
ρ li

〈
Zc,i, n

〉
− Ii ◦ P i ◦ φD0

) ,

(7.4)
where ∇Ii denotes the image gradient. The Ritz-Galerkin method then writes:

(
RTH

D0R
)
dq = RT bD0 , (7.5)

in the case of extrinsics, R = R
ext

and dq = dpext0 , in the case of shape, R = R
shape

and
dq = ds.

Remark Compared to the usual framework [Pierré et al. 2017] (see Section 3.5.2), con-
sidering only pext0 as parameter and not every single pext

i
allows to use the exact same

algorithm as for the shape measurement to calibrate the extrinsics.

Remark Practically, we used a slightly different visibility function V̂i, as in [Birkbeck
et al. 2006]. We considered that a point was visible not only when 〈n(X), ri(X)〉 > 0 but
when 〈n(X), ri(X)〉 > V isionThre > 0. Because we found that results tend to be more
accurate when increasing V isionThre, the value V isionThre = 0.4 was determined as
the greatest possible value leading to a non-singular matrix H

D
(the top face of the beam

was not ‘seen’ for higher values of V isionThre). Thus, in the following, (〈n(X), ri(X)〉)+



126 Chapter 7. Application on a real test case

will rather stand for the product of (Ji ◦ P i) and V̂i. An interesting outlook here could
be to compare the optimal value of V isionThre (when there are enough observations to
ensure that the matrix H

D
does not become singular) with the value corresponding to the

optimal Stereo-angle found in [Balcaen et al. 2017].

Light intensity We chose to calibrate the light once and for all. To do so, we arbitrarily set
the value for the albedo of the white sheet standing for the target to 1. We then considered
4 points located on the sheet (see the blue dots in Figure 7.2a). These points are denoted by(
X light
p

)
p
. An overdetermined system was solved in the least-squares sense for each picture i to

retrieve li thanks to Equation (7.1) by taking n(X light
p ) = −Zw:

∀p ∈ [[1, 4]], Ii ◦ P i(X light
p ) = −li

〈
Zc,i, Zw

〉
. (7.6)

Remark We tried to use the same framework as [Birkbeck et al. 2006] where spheres are used
to calibrate both the light intensity and light direction. This has the benefit to allow the iden-
tification of an ambient term, which is not the case here because the normals n(X light

p ) are all
the same (the matrix associated to the overdetermined system would not have full rank). The
specular reflection can easily be detected and allows to obtain the direction of the source while
the Lambertian part of the surface allows to get the other parameters. However, in our case
this yielded poorer results than the method described above. We believe that this is because the
infinitely distant point light source assumption was not completely valid. There was only one
sphere and thus the light intensity information was only valid around the sphere. The 4 points
used above allowed to obtain a less accurate but more general value for li.

Albedo estimation This part is probably the easiest one since a closed-form solution for the
albedo ρ minimising (7.2) can be derived (standard linear least-squares problem):

∀X ∈ Ω, ρ(X) =

Ni∑
i=1

[
(〈n, ri〉)+ li

〈
Zc,i, n

〉]
(X)Ii ◦ P i(X +D0(X))

Ni∑
j=1

[(〈
n, rj

〉)+
l2j

〈
Zc,j , n

〉2
]

(X)
. (7.7)

Remark This definition for ρ(X) is in some sort a weighted average of all available observa-
tions of the physical point X. In this sense, it makes it similar to the definition of Î in [Dufour
et al. 2015b] (actually denoted f̂ in the cited work). However, considering both foreshortening
and lighting effects shows the benefit to obtain a much sharper albedo, see Figure 7.3.

Remark In order to obtain a speed-up in computation time, no interpolation scheme was used
to evaluate the numerator in Equation (7.7), that is the nearest neighbour pixel was used to
evaluate Ii ◦ P i(X + D0(X)). No significant changes in the identified shape nor albedo were
observed regardless of the interpolation scheme.
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(a) Texture identified at initialisation without ac-
counting for lighting effects (similar to f̂ in [Dufour
et al. 2015b]). Results are presented in grey levels.

(b) Albedo (dimensionless) identified at initialisa-
tion accounting for lighting effects.

Figure 7.3: Texture and albedo identified at the initialisation step. Note that the units are
different: we make a distinction between the texture (in grey levels) and the albedo (dimension-
less). To avoid bias, the scale chosen is the amplitude of each data set. Accounting for lighting
effects clearly results in a much sharper gradient for the albedo.

Alternating optimisations The structure of the iterative algorithm used herein to minimise
the functional is presented in Figure 7.4.

On top of the procedure detailed above consisting in minimising with respect to different
variables, we also made use of a multiscale (or coarse-graining) initialisation process (see Sec-
tion 4.1.1). At the beginning, the discrepancy map D0 was initialised to 0 and pictures were
considered at a scale s = Ns = 3. At the scale s, pixels in the initial pictures were aggregated by
groups of 2s×2s resulting in coarser images. The density of points d introduced in Section 7.1.3
was set accordingly (d/2s). A Tikhonov regularisation term [Pierré et al. 2017] was added to
the functional (gradient L2-norm squared). This term had a decreasing amplitude with the
scale, until no regularisation was used for s = 0.

Two different values were used as stopping criteria, namely stagnation with respect to the
discrepancy map and with respect to the functional, defined respectively by ResD = 10−5 and
ResF = LoopResF /4s with LoopResF = 10−3 in Figure 7.4. Dividing LoopResF by 4s for
each scale allows to demand a better precision at the fast-to-compute coarsest scales which are
known to be less accurate.

7.1.5 Results

In Figure 7.5 are shown the initialisation and convergence states with the mesh superimposed
on pictures. We can see that our method allows to recover the specimen shape even though
the object size was overestimated. Note that, in this framework, there is neither a need for
selecting points ‘by hand’ or automatically [Passieux et al. 2015a, Pierré et al. 2017] nor for
fiducial marks in the pattern on the object. The regularisation of the extrinsics and shape
measurement problem was rather obtained thanks to much more images than usual and the
multiview setup associated to the 3D mesh which allow to measure the specimen edges.

The total number of available pictures of the specimen was 72 (approximately 5◦ between
each pose). To evaluate the methodology described herein, we decided to form two different
disjoint sets of pictures. Each of them contained 36 pictures with approximately 10◦ between
each pose (see again Figure 7.2b). This allowed us to apply independently our method on these
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Figure 7.4: Structure of the algorithm used for the functional alternating optimisations.
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(a) Initialisation state at one end of the beam (b) Convergence state at one end of the beam

(c) Initialisation state around the hole (d) Convergence state around the hole

Figure 7.5: Comparison between initialisation and convergence states of the specimen shape.
The mesh is superimposed on pictures.
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two sets to compare the identified shapes and albedos. The results presented in Figure 7.5 were
obtained thanks to one of these two sets.

Camera calibration In Figure 7.6 is shown the reprojection error standard deviation asso-
ciated to the calibration step described in Section 7.1.1, for one of the 36-picture sets. These
results are satisfactory since the total reprojection error standard deviation is equal to 0.18
pixel.

Figure 7.6: Target point reprojection error standard deviation for each picture of one of the
considered image sets. The total reprojection error standard deviation across all pictures is
equal to 0.18 pixel.

Albedo In order to compare the retrieved albedos between the two different 36-picture image
sets, we decided to compute the normalised albedo difference, defined as follows: 2(ρ1−ρ2)

ρ1+ρ2
, where

ρ1 and ρ2 stand for the albedo associated to each image set, and ρ1 and ρ2 denote their mean
values. The distribution of this quantity is plotted in Figure 7.7. The difference mean value
(0.004) is small compared to the difference standard deviation (2.7%). We chose to compare this
last quantity to the normalised camera noise level, since we believe it is the relevant quantity to
compare the normalised albedo to, in the same way as we will compare the shape measurement
error to the calibration reprojection error (see Section 7.1.5). We estimated the camera noise
thanks to 9 pictures taken for 6 different poses (54 pictures in total) and obtained a normalised
camera noise mean and a normalised camera noise standard deviation respectively equal to
1.9× 10−16 and 1.3%. We can see that the standard deviations of the normalised camera noise
and normalised albedo differences are of the same order of magnitude. However, we will see
later on, that the camera noise is not the only error source that we identified.

Shape In Figure 7.8 are shown the projections of the integration points coordinates difference
along each direction of the world reference frame (see Figure 7.2a). For the X and Z direction, the
mean value is small compared to the standard deviation associated to the projected coordinates
difference. Distinguishing the 3 directions allow to see a particularity in the Y direction since
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Figure 7.7: Distribution of the normalised albedo difference (defined at integration points) for
the two different sets of pictures at convergence state. The mean value is small compared to
the standard deviation. It should be noted that camera noise is of the same order of magnitude
as the albedo difference standard deviation.

in this case the mean is much greater than the standard deviation. We interpreted these results
based on the solution non-uniqueness and an illustration is shown in Figure 7.9. Basically,
the idea is that the framework described herein does not prevent from converging to different
parameterisations of a same geometry. Thus, integration points can describe the same geometry
and lie at different places on the surface of the object, even though they were defined at the
exact same place on the initialisation mesh. This can also partly explain the slightly larger
standard deviation associated to normalised albedo difference than the one associated to the
normalised camera noise. Each integration points stands for an albedo at a slightly different
place in each one of the considered image set. The reason we do not end up with odd results in
Figure 7.7 is thanks to the pattern which smoothly varies in space.

7.2 Displacement measurement

In this section, we aim to show, through an easy-to-setup test case, the potential of the developed
PhDIC methodology to measure displacement fields that would be extremely delicate, if not
impossible, to capture with the usual SDIC framework. Before really entering into the details of
the specific test case, let us present the general way to use this framework to perform arbitrary
displacement measurements.

7.2.1 Ground-breaking methodology for displacement measurement

To underline the novelty of the approach, we will denote the deformed state images by (Jj)j .
Note that since we are almost able to generate virtual images (with the digital twin) to compare
our observations to, they do not need to be associated to so-called reference state images Ii (see
Figure 7.1 as a reminder). Among others, this implies that the number of deformed state images
Nj does not have to be equal to the number of reference state images Ni and can be greater or
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vergence state.
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nates difference projected along Y-direction at con-
vergence state.
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vergence state.

Figure 7.8: Distribution of the coordinates difference (defined at the integration points) for the
two different sets of pictures at convergence state. Each direction is plotted on a different graph
and the reference frame chosen to define X, Y and Z is the beam (or world) reference frame.
The unit chosen for measuring a distance is the pixel in order to compare it to the calibration
reprojection error. One should keep in mind that it makes only little sense to measure distances
in pixels, as in a general multiview setup it is not straightforward to convert a distance from
mm to pixels. Here, because the camera stood always about the same distance from the beam,
an 8 pixels/mm constant of proportionality was used to convert the measures. For X and Z
directions, the mean value is smaller than the standard deviation. This last quantity is of the
same order of magnitude as the calibration reprojection error (0.18 pixel). Regarding the Y
direction, we can clearly see a bias (∼ -0.15 pixel), much larger than the standard deviation,
corresponding to a shift along the Y direction. We suggest an interpretation of this bias in the
measurements in Figure 7.9 based on the solution non-uniqueness.
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Figure 7.9: From a same mesh (black one), one can obtain two different parameterisations of the
surface. We can interpret that by the coupling between shape and extrinsics measurement. The
black mesh, corresponding to the initialisation step, is slightly larger than the real object. During
the extrinsics calibration step, the mesh can slide indifferently in one direction or another, which
is represented respectively by the yellow and purple mesh. Finally, the same shape is measured,
but integration points lie at different positions. It is due to the problem ill-posedness (solution
non-uniqueness). The crosses stand for the integration points.
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smaller, and also can correspond to different camera poses.

Remark This is what was suggested in Section 6.1.4: N0
c = Ni and N1

c = Nj.

For the displacement measurement, the associated part of Functional (5.18) (generalised
with different number of cameras per time step N t

c) writes (Lambertian model and distant
point light sources):

F =
Nj∑
j=1

∫
Ω

[ ∣∣∣det
(
∇φ

D1

)∣∣∣ ((J ′j ◦ P ′j)V ′j ) ◦ φD1

]
(X)

×
(
Jj ◦ P ′j(X +D1(X))− ρ(X)

Nr∑
r=1

l′r

〈
nf (θr, ϕr), n(X +D1(X))

〉 )2
dX. (7.8)

Remark We chose to update all variables identified in the previous section. More precisely, in
the equation above, Ω stands for an update of Ω by φD0, and ρ together with n for the associated
albedo and normal vector field. This allows to obtain the usual definition for the displacement
D1 (that is on the reference geometry, not on the nominal one).

Remark As we consider D0 to be identified in the previous step (see Section 7.1), the above
equation discards t = 0 compared to the whole functional Equation (5.18).

With the same assumptions as in Section 7.1 regarding the weights Ji and the light model,
we can simplify Functional (7.8). We also make explicit the variables with respect to which F
will be minimised:

F

(
D1,

(
l′j

)
j

)
=

Nj∑
j=1

∫
Ω

[ ∣∣∣det
(
∇φ

D1

)∣∣∣ (〈n, r′j〉)+
◦ φ

D1

](
Jj ◦P ′j ◦ φD1 − ρl′j

〈
Z ′c,j , n ◦ φD1

〉 )2
.

(7.9)

Remark In this proposed implementation, ρ is no longer an unknown since we consider it has
been identified in previous Section 7.1.

At this point, we suggest two ways to proceed. Either the integral is rewritten on an initial Ω̂,
which is very close to the actual deformed geometry, and the same assumptions as in Section 7.1
apply (n(X+D1(X)) ∼ n(X), det

(
∇φ

D1

)
∼ 1 and

(〈
n, r′j

〉)+
◦φ

D1 ∼
(〈
n, r′j

〉)+
) or we keep

integrating on the reference geometry Ω as in Equation (5.21). Choosing the first approach
may lead to two main benefits. First, the very same Gauss-Newton minimisation scheme as in
Section 7.1.4 can be employed because a satisfactory initialisation does require to be built as it is
a prerequisite for any gradient-based iterative minimisation scheme. Second, choosing the second
approach is extremely costly computationally speaking, since, for instance, the normals and the
visibility function should be constantly updated. However, this allows to obtain discrepancy
maps

(
Dt
)
t with consistent definitions as their definition domain remains the same (that is Ω).

Also, assuming D1
0 is a first good guess, we may approximate n(X +D1(X)) ∼ n(X +D1

0(X)),
for instance, and thus compute the normal vector field once and for all, instead of constantly
updating it.
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Remark Note that in both cases, the functional is unchanged. What changes is the integration
domain.

Remark The two proposed resolution procedures can be viewed as the counterparts of the two
main variants in computational solid mechanics to perform geometrically non-linear analysis,
i.e. the updated Lagrangian (first method) and the total Lagrangian (second method) strategies
[Bouclier et al. 2015, ten Thije et al. 2007,Oliver & Oñate 1984].

However, for the sake of pedagogy, we chose to follow the second approach, that is integrating
over the reference domain Ω, as it allows to showcase a slightly different minimisation algorithm.

7.2.2 Example of a large rigid-body displacement measurement

The simple but illustrative test case that we considered was a large rotation (90◦). In a usual
SDIC framework, this would yield to two whole faces from the reference image replaced by
two others as shown in Figure 7.10a and Figure 7.10b, and thus would make the usual SDIC
framework fail. We can further simplify Equation (7.9). As we want to measure a rigid-body
rotation, we have

∣∣∣det
(
∇φ

D1

)∣∣∣ = 1. Also, the light intensity l′j is obtained in the same way as
in Section 7.1.4. Finally, we used only one picture (Nj = 1), since we theoretically have only 6
degrees of freedom, a single image should yield enough information.

Remark This is because we used only one picture for the deformed state that we performed
the minimisation on parts of the whole Functional Equation (5.18). One more picture does not
yield a lot more information than already available. Note that this process (Sections 7.1 and 7.2)
could be used as an initialisation for the minimisation of the whole Functional (5.18).

Once again, a Gauss-Newton minimisation algorithm is used:

H
D1dD1 = bD1 , (7.10)

with:

H
D1 =

Nj∑
j=1

∫
Ω
NT

[(〈
n, r′j

〉)+
(
∇P ′j

(
∇Jj ◦ P ′j

))(
∇P ′j

(
∇Jj ◦ P ′j

))T]
◦ φ

D1N

bD1 =
Nj∑
j=1

∫
Ω
NT

[(〈
n, r′j

〉)+
(
∇P ′j

(
∇Jj ◦ P ′j

))]
◦ φ

D1

×
(
ρ l′j

〈
Z ′c,j , n ◦ φD1

〉
− Jj ◦ P ′j ◦ φD1

)
.

(7.11)
Since an acceptable initialisation is needed for the Gauss-Newton minimisation algorithm to
work, we kept on using the same linearisation for the extrinsics measurement (R

ext
) as in

Section 7.1.4. For initialisation purposes, we computed the position of the camera relatively to
the target thanks to the same kind of algorithm as the calibration one. At each step (each time
a new dD1 was computed), both n and r′j were updated. The algorithm successfully converged
with a single picture as long as we initialised with a displacement field D1

0 corresponding to a
position of the mesh not further away than 4◦ from the actual specimen (see Figure 7.10c).
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Remark This rigid-body rotation measurement can also be seen as a repositioning of the camera
with respect to the object. Thus, it opens the possibility of experimental setups where (some)
cameras move around the object during tests.

(a) One of the multiview pic-
tures used for the extrinsics, shape
and albedo calibration. Above is
shown the position of all these
multiview pictures with respect to
the beam. In a usual SDIC frame-
work, this picture would stand for
the reference state image I0

i for
displacement measurement.

(b) One of the multiview pictures
taken for the displacement mea-
surement of a 90◦ rotation. We
chose this picture (instead of the
actual picture used) for illustra-
tion purposes: it is really close to
Figure 7.10a. The actual position
of the only picture used to per-
form the displacement measure-
ment is shown above. The mesh
superimposed on the picture is the
initialisation used (94◦ rotation).
In a usual SDIC framework, this
picture would stand for the de-
formed state image Ii correspond-
ing to I0

i in Figure 7.10a.

(c) Position of the mesh superim-
posed on a deformed state image
at convergence state.

Figure 7.10: This Figure allows to explain the approach followed and how difficult it would be
to measure this 90◦ rotation in a usual SDIC framework. As the displacement measurement
step in classic SDIC would be based on the comparison between reference state images I0

i 7.10a
and deformed state ones Ii 7.10b that observe different faces of the specimen.
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7.3 Conclusion

A downgraded version of the PhDIC framework (in the sense that a minimisation is performed
for each time step, independently as in usual frameworks, and not for the whole functional),
in the case of a Lambertian model and a single distant point light source, was described and
applied to a parallelepiped beam with an open hole. A turn table was used to scan the object
thanks to 360◦ multiview pictures. This allowed to recover both the shape and albedo of the
beam. For this step, the in-house calibration software that we implemented, and of which
details are provided in Chapter 2, turned out to be particularly useful. The results between
two completely different sets of input images were compared, demonstrating the accuracy and
robustness of the approach.

Of course, building a textured digital twin comes at a price, but this price is related to the
increase in the amount of available data. In return, associated data assimilation allows a strong
regularisation of the shape measurement step. This step, which may be very delicate in usual
Global SDIC frameworks, is critical for performing accurate displacement measurements.





Conclusion and Perspectives

In this last chapter, we recall the main points and results of the present manuscript as well
as the perspectives that have been brought. The future works that will be engaged during the
Photometric stereo Digital Image Correlation and full-field measurement Techniques (PreDICT)
project are also introduced.

In a few words, I wrote the PreDICT project during the final year of this PhD thesis for
several reasons. First, I realised the vast potential of the PhDIC framework, while at the same
time being perfectly aware that this final year was far too short to engage in all the paths that
I wanted to explore. Second, the price for all these possibilities is that the present research
work is still a proof of concept, quite far from a demonstrator able to operate in an industrial
context. That is why I took my chance and applied to the Price of the ‘Fondation Jean-Jacques
et Felicia Lopez-Loreta pour l’excellence académique’, in the hope that the time invested could
generate even more time in the future to work, with a project team, on these fascinating topics.
I am particularly grateful to the ‘Conseil de la Fondation’, which decided to give this Price to,
and thus funded, the PreDICT project.

Summary

In this manuscript, we presented DIC as a measurement method allowing to extract more data
from large-scale tests than usual strain gauges for instance (see General introduction). After
having introduced some prerequisites (Chapters 1 to 3), we have underlined that making DIC
operate on such cases with complex geometries is a challenging task (see Chapter 3).

There are two main identified issues. First, complex geometries are associated with inhomo-
geneous strain states and thus may require multiscale measurements, that is cameras observing
the ROI with different resolutions. This allows to obtain both local data in high-strain zones
and global data regarding the boundary conditions. However, we showed that available patterns
could compromise the use of a multiscale approach, given the fact that they are often adapted
to a single scale (or, at best, two scales). Also, using multiple cameras and making images from
different resolution levels contribute appropriately to measurements was still an open problem.
Usually, measurements were performed on a scale by scale basis (that is constituting differ-
ent functionals, one for each scale), and then, for all points, only the most resolved available
scale was considered. In such a process, a lot of information is basically thrown away, which is
unfortunate regarding the low number of tests performed at the largest scales.

Second, much greater displacements are expected at a given strain on large structures.
It results in assumptions of the usual frameworks becoming harder and harder to meet as the
scale increases. For instance, the assumption that a point may remain visible all the time by the
same camera strongly restricts DIC operation domain. Another aspect of large displacements
is associated with severe changes in the surface normal orientation as time goes on. Depending
on the light distribution, this may result in grey level variations over time of a same point, but
most importantly in changes in the surface sampling performed by cameras and thus of the level
of confidence that can be assigned at the different time steps considered.
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Working on DIC formulation in a multiscale context was thus a necessary long-term ob-
jective. But before following it, we first ensured that these possible theoretical developments
were not pointless by defining multiscale patterns able to operate at a wide range of scales (see
Chapter 4). For one of them, we showed that its intrinsic statistical scale invariance results in
a measurement error independent of the considered scale as well, which was not the case for
usual patterns.

Then, by a thorough physical modelling and explicit assumptions, a general DIC formulation
has been proposed (see Chapter 5). It is based on CV and the definition of a Digital Twin of
tests. This Digital Twin includes a refined geometric model of the structure together with its
albedo (or a parametrisation of the BRDF, in a more general framework), and a light model.
It shows the benefit to naturally tackle the issues of visibility, weighting of observations (scale,
foreshortening, surface pixel sampling) and thus of data assimilation. Another benefit is the
possibility to develop new formulations based on this work by questioning the soundness of
some assumptions, that is to be able to model physical phenomena.

In Chapter 6, we justified the wording ‘general’ of the proposed formulation as we showed
that it not only encompasses usual frameworks but also allows, in particular, to perform mea-
surements when the reference and deformed state images are totally disjoint regions, thanks to
spatio-temporal cross-correlation terms, and prevents temporal drift, or stereo correspondence
loss. Also, as a dense counterpart of Bundle Adjustment, it would allow to reduce the uncer-
tainty associated to the framework by considering one single problem instead of several nested
problems (see Figure 3.8) where uncertainties accumulate. Thanks to a sensitivity analysis
based only on displacement measurement, it was demonstrated that a reduction in the mea-
surement uncertainty is expected when relying on a Digital Twin (or model). The possibility
to differentiate this model instead of pictures was also discussed, as usual sensitivity analysis of
QGN schemes based on the image gradients do not address this issue. Eventually, the choice
for the functional definition to integrate first in the images was justified from the estimation
theory viewpoint. It allowed to discuss the conditions of validity regarding the optimality of this
definition (e.g. model that perfectly fits data up to noise level, Gaussian noise distribution).

In the last chapter (Chapter 7) a practical test case following the shape measurement and
displacement measurement steps was presented. Results regarding shape, albedo and displace-
ment measurement have been presented and discussed. This allowed to show practically that
light and visibility issues are naturally addressed with the proposed formulation. Typically, it
was demonstrated that this methodology allows to measure a (rigid-body) motion that totally
incapacitates existing SDIC frameworks.

Perspectives

Test cases

Regarding the choice of the large 90◦ rotation as a displacement to measure: it was convenient
in the context of the COVID-19 lockdown as it did not require any testing machine, and as I
could set the experiment in my living room. However, a more industrial test case would allow
to better showcase our work. First, one could think of tackling large deformations with large
strains that incapacitate usual frameworks or require special treatments because reference state



Conclusion and Perspectives 141

images do not sample the initial surface in the same way as the most deformed ones (e.g. tire
sidewall correlation in the context of impact on panels, elastomer traction). Another possibility
is to tackle large deformations in a test case where visibility becomes the main issue (for instance
Carpentier Joint based hinges [Pellerin et al. 2002], or buckling modes [Jacquet et al. 2021]).

Clearly, PhDIC is based on radiometric principles like IRT. Coupling both measurement
methods in one framework could be interesting [Jones & Reu 2017]. Usually, IRT assumes a test
surface of uniform emissivity, however DIC requires a pattern to provide reliable measurements.
Hence, depositing a pattern in the infrared spectrum and then characterising the emissivity at
each surface measurement point in the same way that we measured the albedo in Chapter 7
may allow to both measure a displacement field and a temperature one, using only infrared
cameras.

DIC, as an optical measurement method, is subject to physical phenomena which may
lead to large measurement biases or even may prohibit its use in challenging experiments
[Jones et al. 2020] (e.g. fluid-structure interaction applications because of refraction, or high-
temperature mechanical tests because of heat haze effects [Berny et al. 2018a,Jones & Reu 2017]),
taking into account these effects in the DIC framework by identifying them could allow to over-
come the issues faced. For instance, following the steps of [Cassidy et al. 2020] would enable
the experimenter to identify the interface and follow an underwater test. Following a method
similar to [Nicolas et al. 2016] would make it possible to identify refractive index gradients and
be able to cope with heat waves in DIC.

Of course, as the PhDIC formulation is well-suited to address camera repositioning (see
Chapter 7), having drones or robotic arms equipped with cameras [Ben Abdallah et al. 2019,
Kalaitzakis et al. 2021] stands for the next step in DIC. This would allow, coupled with
multiscale processes, to sweep the test surface, prior to tests, to scan it and measure its shape
and reflectance properties. During tests, some cameras may carry on skimming the surface,
looking for hot spots that could be focused on. Yet, this scan prior to tests might not be
very practical for the experimenter and using different light positions while keeping cameras at
the same position instead, as done in Shape-from-Shading [Mélou et al. 2018], could be more
relevant depending on the experimental setup.

In some cases, the assumption that the pattern is expected to exactly follow the deformation
of the specimen and that its texture does not depend on the displacement or strain level (5.20)
is not valid. In large strain contexts, the texture of a point may indeed depend on the strain
level. For instance, measuring displacements on lumbar belts [Molimard et al. 2019] is complex
because of such effects. Developing a law for ρ̃t depending on the strain level is an interesting
outlook that could help regularising the displacement measurement problem.

Digital Twin of tests

Concerning the Digital Twin, a lot of work remains to be done. As explained earlier, in the
context of large-scale tests, issues associated with light may become important (see Figure 7.11)
thus it could be interesting to integrate a BRDF parametrisation including not only a diffuse (or
Lambertian) component but also a specular one as in [Birkbeck et al. 2006] for instance. Other
light models may also be used. The ultimate goal being to find reflectance and light models
suitable to a wide variety of large-scale tests. However, this may not be the only way to deal with
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light problems. By keeping a Lambertian model for instance, in the context of light issues, the
assumptions of Section 6.3 fall apart, as the model does not perfectly explain the observations
and it may be relevant to consider other residual norms (e.g. L1) less sensitive to outliers.
Another benefit associated with changing the residual norm used from L2 to L1 would be the

Figure 7.11: Specular reflection appearing on SDIC images of an airplane tyre sidewall during
experiments mimicking the tyre/runway interaction. Courtesy of DGA Aeronautical Systems.

better performance of a super-resolution framework [Mitzel et al. 2009, Figure 7]. Besides the
fact that it is a beautiful application of inverse problems, it opens up perspectives to extract even
more information from pictures [Goldlücke et al. 2014]. Also, it could be interesting to evaluate
whether a super-resolved texture allows to obtain a super-resolved displacement measurement
as well.

In the present work, no multiscale Digital Twin of tests has been defined, as pictures were
all taken at the same resolution. It could thus be interesting to use this framework in a test
involving a multiscale aspect. A lot of questions would require to be answered such as the
efficient dialogue between data and the Digital Twin. We believe this would find an answer
by being able not only to compare integration points grey level value with a prediction, but
to generate virtual images (see [Balcaen et al. 2017, Lava et al. 2020,Rohe & Jones 2021] for
the generation of virtual images in DIC) to directly compare, pixelwise, actual ones with.
Carefully addressing the integration performed by a photosensor (and more generally by the
optical system) to give a pixel is probably a key element regarding these questions. For instance,
issues like unfocusing could be addressed and, again, more information could be extracted from
pictures, as it has been shown that accounting for these effects allowed robust displacement
measurements for low depth of field systems [Réthoré et al. 2014]. Typically, the transition in
Section 6.3 between the discrete functional, optimal in the sense of the estimation theory, and
the continuous one, used herein, neglected these aspects. The generation of virtual pictures of
a scene would also allow to define a multiscale pattern in the physical space instead of in the
image one, to be able to print it easily. In Chapter 4, we discarded indeed the process associated
with image acquisition.
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Algorithms

Obviously, the proposed test case is still too close to usual frameworks and does not take full
advantage of the proposed formulation. A lot could still be done and the perspective to see
Chapter 7 as an initialisation for the whole PhDIC functional minimisation is promising. As
already discussed, it should be possible to calibrate cameras on the object (including intrinsics,
and possibly distortions) [Dufour et al. 2016] as well as light model parameters and identify the
shape and displacements by resorting on only one functional and thus one final minimisation.
This would allow to reduce measurement uncertainties compared to those associated to nested
optimisation problems. Investigating the possibility to derive the model instead of pictures in
the minimisation schemes is also an interesting associated perspective to reduce uncertainties.

There is an important aspect that we did not discuss yet, the computational cost. As
explained in the General introduction, we believe that DIC, and especially local approaches,
focused on developing fast running algorithms. Here, we based the developed approach on
physical considerations which may drastically increase computational costs (bear in mind that,
ultimately, quantities stemming from Chapter 7 would only be an initialisation for the whole
Functional (5.18) minimisation). Hence, we adopt here an orthogonal viewpoint where opposing
local and global approaches makes little sense for they should rather be seen as complementary
tools. For instance, local approaches speed and robustness [Le Besnerais et al. 2016] could be
used to initialise the PhDIC framework on small patches of a large structure that could not be
instrumented by standard DIC procedures (because of light and/or visibility issues). A parallel
may be drawn here with [Yang & Bhattacharya 2019]. Another possibility is to couple the
PhDIC framework with High Performance Computing (HPC) tools in order to obtain results
faster [Bouclier & Passieux 2017,Bouclier 2020,Merta et al. 2014,Passieux et al. 2015b,Ronovskỳ
& Vašatová 2017,Tournier et al. 2019,Wang & Kemao 2018].

PreDICT

Eventually, the PreDICT project is probably the most exciting perspective of this work, as it
will strive for developing a large number of the aforementioned points. During this five-year
project three different PhD thesis topics will be proposed. They break down as follows:

• visibility function, large-deformation/large-strain test cases and whole PhDIC functional
minimisation,

• light model and BRDF parameterisations, IRT-DIC coupling,

• super-resolution and investigations regarding residual norms.

Also two research engineers will complement the project team all along the five years. The first
one, will support the PhD students research work while at the same time develop algorithmic
strategies to allow moving cameras during tests. The second one will provide support regarding
numerical efficiency and software development, as a final demonstrator able to operate on large-
scale applications should be implemented by the end of the project. Personally, I will lead
this project towards its final objective, that is the demonstrator, while obviously relying on the
experience and expertise of those who helped me go further than I could imagine.
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Appendix A

Plane-stress state and elastic energy
minimisation

In the plane-stress state assumption, the displacement u = (u, v)T is a function of only two
spatial coordinates, say x and y. Also, using the Voigt notation:

σ =

 σx
σy√
2σxy

 = C ε = C

 εx
εy√
2εxy

 with C = E

1− ν2

 1 ν 0
ν 1 0
0 0 1− ν

 . (A.1)

We also assume no dynamic effect and the absence of volume force, thus:

∇.σ = 0. (A.2)

Using Equation (A.1) in previous equation yields: εx,x + νεy,x + (1− ν)εxy,y
(1− ν)εxy,x + εy,y + νεx,y

0

 = 0. (A.3)

And by substituting ε =
(
∂u
∂x ,

∂v
∂y ,

1√
2

(
∂u
∂y + ∂v

∂x

))T
, we obtain:

∂2u

∂x2 + ν
∂2v

∂x∂y
+ 1− ν

2

(
∂2v

∂x∂y
+ ∂2u

∂y2

)
= 0

1− ν
2

(
∂2v

∂x2 + ∂2u

∂x∂y

)
+ ∂2v

∂y2 + ν
∂2u

∂x∂y
= 0

. (A.4)

We can rewrite it so as to reveal the displacement Laplacian:
∆u+ 1 + ν

2

(
∂2v

∂x∂y
− ∂2u

∂y2

)
= 0

∆v + 1 + ν

2

(
∂2u

∂x∂y
− ∂2v

∂x2

)
= 0

(A.5)

In the case where ν = −1, we thus have ∆u = 0 over S which is the strong formulation
associated with minimising 1

2
∫
S

∥∥∥∇u∥∥∥2

F
.





Appendix B

Pinhole model functional weighting
term

This appendix originates from [Fouque et al. 2021a].

We have the identity J =
∥∥∥∥∂β∂u × ∂β

∂v

∥∥∥∥−1

2
. However, the backprojection operator is very costly

to evaluate for a camera model accounting for distortions, and its gradient even more. Instead,
we propose an approximation of J assuming a pinhole camera model. In this case we can write:

u = −fx
Xc

Zc
+ u0

v = −fy
Yc
Zc

+ v0

(B.1)

where u0 and v0 denote the optical centre pixel coordinates, fx and fy the product of the focal
length and the camera sampling parameter along each direction, (Xc, Yc, Zc) the coordinates of
a point M in the camera reference frame (denoted Rc), and u and v the pixel coordinates of M
in the image.

We also introduce a world reference frame (denoted Rw). A rigid-body transformation
makes the link between the coordinates of M in the different reference frames:

Xc = R11Xw +R12Yw +R13Zw + tx
Yc = R21Xw +R22Yw +R23Zw + ty
Zc = R31Xw +R32Yw +R33Zw + tz

(B.2)

which will alternatively be written:

Mc = (OcM)c = R (OwM)w + (OcOw)c = RMw + (OcOw)c, (B.3)

(with Oc and Ow the origin of Rc and Rw respectively), R is a rotation matrix. We also consider
that the surface to which M belongs can be parameterised as:

g(Xw, Yw, Zw) = 0 (B.4)

To evaluate J , we first compute both
∂Mc

∂u
= Mc,u

and
∂Mc

∂v
= Mc,v

. For that, we can
derive Equation (B.1) with respect to u and v. Since the algebra is very similar, we will present
only the detailed steps for Mc,u

:
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Xc,u = −Zc + Zc,u(u− u0)

fx
= −Zc

fx
+ Zc,u

Xc

Zc

Yc,u = −Zc,u(v − v0)
fy

= Zc,u
Yc
Zc

(B.5)

We have two equations but three unknowns (Xc,u, Yc,u and Zc,u). To obtain a third equation,
we can derive Equation (B.4) with respect to u:

Xw,u
∂g

∂Xw
+ Yw,u

∂g

∂Yw
+ Zw,u

∂g

∂Zw
= 0 (B.6)

This equation can be rewritten
〈
n,OwM ,u

〉
= 0 with n = ∇g/‖∇g‖2. Also we know that

OwM = OwOc + OcM . Making use of both yields
〈
n,OcM ,u

〉
= 0 which is the third equa-

tion. By decomposing OcM ,u
as Xc,ue

c
x +Yc,ue

c
y +Zc,ue

c
z with (ecx, ecy, ecz) the orthonormal basis

associated with the camera reference frame, we obtain:

〈
n,OcM ,u

〉
=
〈
n, ecx

〉
Xc,u +

〈
n, ecy

〉
Yc,u +

〈
n, ecz

〉
Zc,u = 0. (B.7)

By using Equation (B.5) in Equation (B.7), we can get an expression of Zc,u. And Zc,u allows
then to retrieve Xc,u and Yc,u thanks to Equation (B.5):



Xc,u = Zc
fx


〈
n, ecx

〉
〈
n,OcM

〉Xc − 1


Yc,u = Zc

fx

〈
n, ecx

〉
〈
n,OcM

〉Yc
Zc,u = Zc

fx

〈
n, ecx

〉
〈
n,OcM

〉Zc
or OcM ,u

= Zc
fx


〈
n, ecx

〉
〈
n,OcM

〉OcM − ecx
 (B.8)

Following the exact same steps for the derivatives along the v-direction we obtain:



Xc,v = Zc
fy

〈
n, ecy

〉
〈
n,OcM

〉Xc

Yc,v = Zc
fy


〈
n, ecy

〉
〈
n,OcM

〉Yc − 1


Zc,v = Zc

fy

〈
n, ecy

〉
〈
n,OcM

〉Zc
or OcM ,v

= Zc
fy


〈
n, ecy

〉
〈
n,OcM

〉OcM − ecy
 (B.9)
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At this point, we can compute:

β
,u
× β

,v
= OwM ,u

×OwM ,v
= OcM ,u

×OcM ,v

= Z2
c

fxfy


〈
n, ecx

〉
〈
n,OcM

〉OcM − ecx
×


〈
n, ecy

〉
〈
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〉OcM − ecy


= Z2
c

fxfy
〈
n,OcM
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n,OcM

〉
ecz

)

= Z2
c

fxfy
〈
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Zc
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Zc
〈
n, ecy

〉
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n,OcM

〉
−Xc

〈
n, ecx

〉
− Yc

〈
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= Z3
c

fxfy
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n,OcM
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= Z3
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(B.10)

Since, by construction, ‖n‖2 = 1, we finally obtain:

J = ‖β
,u
× β

,v
‖−1

2 = fxfy
Z2
c

‖OcM‖2
|Zc|

|〈n, r〉| (B.11)

where r = −
OcM

‖OcM‖2
.

We illustrated each identified contribution of the weighting term J ( fZc
, |〈n, r〉| and ‖OcM‖2

Zc
)

in Figure B.1. In each Sub-figure, the dependency of the physical length corresponding to a
given pixel length in the image plane on one of the contributions is illustrated. For this, the
orange dash-dotted line and the green dashed line have the exact same values for all parameters
except those from the considered contribution, also both correspond to the same length in
pixel in the image plane. The orange dash-dotted line stands for a unit contribution. Thus,
the ratio of the orange dash-dotted line to the green dashed line lengths allows to retrieve the
contribution.

In Figure B.1a, we have similar triangles and thus the ratio of the orange dash-dotted line
to the green dashed line lengths is f

Zc
.

In Figure B.1b and Figure B.1c, one must recall that J is defined locally. Hence, both the
orange dash-dotted line and the green dashed line should be considered as infinitesimal and
the solid blue rays going from the optical centre to the edges of these lines can be considered
parallel, although it is obviously not the case in the illustrations. For this reason, the ratio of
the orange dash-dotted line to the green dashed line lengths is |〈n, r〉| in Figure B.1b. Similarly,
in Figure B.1c this ratio equals (sinα)−1 = ‖OcM‖2

Zc
.
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(a) f
Zc

(b) |〈n, r〉| (c) ‖OcM‖2
Zc

Figure B.1: Illustration of each identified contribution in the weighting term J .
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Abstracts

Formulation Générale de la Stéréo Corrélation d’Images Numériques Multi-vues:
vers des jumeaux numériques multi-échelles d’essais complexes.

Résumé long

Nous avons choisi d’inscrire ce travail dans le contexte aéronautique et celui de la pyramide
des essais. Les cycles de conception aéronautiques sont en effet basés sur de nombreux essais aux
plus basses échelles (par exemple, caractérisation d’éprouvettes élémentaires), et leur nombre
diminue à mesure que l’échelle considérée augmente, jusqu’à n’avoir quasiment plus qu’un seul
essai à l’échelle d’un avion complet (d’où la forme de pyramide). En raison de ce nombre d’essais
qui diminue et d’une densité de mesure faible (du fait des coûts et du temps d’instrumentation),
les modèles deviennent de moins en moins représentatifs des structures réelles au fur et à mesure
de la montée dans les échelles. Des coefficients de sécurité sont donc régulièrement introduits, ce
qui peut être vu à la fois comme un frein à l’innovation mais aussi comme un risque potentiel de
sécurité. Nous présentons la Corrélation d’Images Numériques (CIN) comme une méthode de
mesure permettant d’extraire davantage d’informations des essais aux plus grandes échelles par
rapport à des mesures ponctuelles comme des jauges de déformations par exemple. Il s’agit d’une
méthode de mesure optique, peu coûteuse. Elle repose sur la mise en correspondance d’images
de la région d’intérêt dans un état de référence avec des images déformées dans le but d’extraire
le champ de déplacement. Cette opération est facilitée par un mouchetis déposé sur la surface
de mesure. Lorsque plusieurs caméras sont disponibles, des surfaces éventuellement non planes
peuvent être considérées et un champ de déplacement tridimensionnel peut être mesuré. On
parle alors de Stéréo Corrélation d’Images Numériques (SCIN). L’intérêt d’utiliser ces mesures
surfaciques denses est de pouvoir mieux alimenter les modèles numériques et d’améliorer leur
capacité à prédire le comportement des structures aux grandes échelles. Toutefois, un certain
nombre de limitations de ces méthodes et notamment de la SCIN entravent l’extension de leur
utilisation sur des essais aux géométries complexes.

Dans un premier temps, nous présentons dans ce manuscrit l’état de l’art dans les domaines
de la CIN et de la SCIN, en particulier par le prisme des méthodes globales, et plus spécifique-
ment celui de la SCIN éléments finis. Cela nous permet de détailler les modèles de caméras
utilisés, et qui sont présents dans bon nombre d’implémentations de ces méthodes car ils perme-
ttent de relier la position d’un point dans l’espace physique à la position qu’il occupe dans les
images considérées. Cela offre ensuite la possibilité de retrouver le déplacement d’un point par
la mise en correspondance des images. Nous détaillons l’implémentation, réalisée au cours de
cette thèse, du procédé de calibration photogrammétrique et utilisée dans l’application pratique
finale de scan multi-vues. Ensuite, les méthodes CIN et SCIN classiques sont progressivement
exposées. Cela permet de faire apparaître dans le détail les deux limitations principales identi-
fiées.

La première d’entre elles est liée au fait que les structures complexes sont souvent associées
à des états de déformations hétérogènes. Il en résulte que des instrumentations multi-échelles,
c’est-à-dire des caméras qui observent la région d’intérêt à différents niveaux de résolution,



deviennent pertinentes. Cela permet en effet d’obtenir à la fois des informations locales pré-
cises dans les zones de fortes déformations et des informations globales sur la géométrie et les
conditions aux limites. Cependant, nous montrons que les mouchetis usuels peuvent compro-
mettre l’utilisation de méthodes multi-échelles car ils ne sont bien souvent adaptés qu’à une
seule échelle (ou, dans le meilleur des cas, à deux échelles). En outre, parvenir à fusionner les
données issues d’images prises à différentes échelles en une unique mesure de manière adéquate
constitue une question ouverte dans le formalisme actuel. En règle générale, les mesures sont
réalisées à chaque échelle indépendamment, puis, pour chaque point, seule la mesure la plus
résolue est conservée. En pareil cas, une grande quantité d’information est tout simplement
ignorée, ce qui est fâcheux étant donné le peu de tests réalisés aux grandes échelles.

La seconde limitation principale identifiée est liée aux plus grands déplacements attendus, à
déformation donnée, sur de grandes structures. Cela peut en effet se traduire en des hypothèses
(des approches usuelles) devenant de plus en plus dures à satisfaire à mesure que l’échelle
augmente. Par exemple, garantir qu’un point de mesure reste visible à tout moment par une
même caméra restreint grandement le domaine d’utilisation de la CIN. Un autre aspect des
grands déplacements est lié à d’importantes variations de la normale à la région d’intérêt au
cours du temps. Dépendant de la distribution de lumière incidente, cela peut se traduire en
des variations de niveaux de gris dans les images d’un même point au cours du temps, et, plus
important encore, en une modification de l’échantillonnage de la surface réalisé par les caméras
et donc du niveau de confiance que l’on peut attribuer à cette observation au cours du temps.

Travailler sur la formulation du problème de CIN dans un contexte multi-échelle était donc
un objectif à long terme de cette thèse. Mais avant de s’y employer, nous nous sommes d’abord
assurés que ces éventuels développements théoriques n’étaient pas vains en définissant des
mouchetis multi-échelles capable d’opérer sur une large gamme d’échelles. Pour l’un d’entre
eux, nous montrons que ses propriétés statistiques intrinsèques d’invariance par changement
d’échelle se traduisent en une erreur de mesure indépendante de l’échelle considérée. Cela n’est
pas le cas des mouchetis usuels.

Ensuite, par une modélisation physique rigoureuse et grâce à des hypothèses explicites,
une formulation CIN générale est proposée. Elle est basée sur des outils issus de la vision
par ordinateur, une approche photométrique, raison pour laquelle nous l’appelons CIN pho-
tométrique (PhDIC, de l’anglais Photometric Digital Image Correlation), et la définition d’un
jumeau numérique des essais. Ce jumeau numérique comprend un modèle géométrique raffiné
de la structure incluant son albedo (ou une paramétrisation de la fonction de réflectivité bidi-
rectionnelle, dans une approche plus générale), et un modèle d’éclairage. Cela offre l’avantage
de naturellement prendre en compte les problèmes de visibilité, pondération des observations
entre elles (échelles, échantillonnage en pixel des surfaces) et donc de l’assimilation de données.
Un autre bénéfice est la possibilité de développer de nouvelles formulations basées sur ce travail
par la remise en question du bien-fondé de certaines hypothèses, ou autrement dit la capacité à
modéliser des phénomènes physiques.

L’emploi du terme "général" pour qualifier la formulation proposée est justifié par la démon-
stration du fait que, non seulement, elle englobe les approches usuelles mais qu’elle permet aussi,
en particulier, de réaliser des mesures quand les images de référence et déformée représentent des
zones complétement disjointes, grâce aux termes d’intercorrélation spatio-temporels, et prévient
la dérive temporelle, ou perte de stéréo-correspondance. En plus, en tant que pendant dense de



l’ajustement de faisceaux (‘Bundle Adjustment’), elle permettrait de réduire les incertitudes de
mesure associées aux approches SCIN en ne considérant qu’un seul problème de minimisation
au lieu de plusieurs problèmes les uns à la suite des autres où les incertitudes s’accumulent tout
au long de la chaîne. Grâce à une analyse de sensibilité, basée uniquement sur la mesure en dé-
placement, nous montrons qu’une réduction importante de l’incertitude de mesure est attendue
du simple fait de se baser sur un jumeau numérique (ou modèle). La possibilité de différencier
ce modèle au lieu des images est également examinée, car les analyses habituelles évacuent ce
problème. Enfin, le choix, dans la définition de la fonctionnelle, d’intégrer en premier lieu dans
les images est justifié du point de vue de la théorie de l’estimation statistique. Cela permet
de discuter des conditions de validité du caractère optimal de cette définition (par exemple, un
modèle qui explique parfaitement les données au bruit près ou encore une distribution de bruit
Gaussienne).

Un cas test suivant les étapes de mesure de forme et de déplacement sur une éprouvette
trouée est proposé. Les résultats concernant la forme, l’albedo, la mesure de déplacement sont
présentés et critiqués. Cela permet de montrer, en pratique, que les problèmes de lumière et
visibilité sont naturellement traités par la formulation proposée. Il est notamment démontré
que cette méthodologie permet de mesurer un déplacement (de corps rigide, en l’occurrence)
mettant complètement en défaut les approches SCIN conventionnelles.

De nombreuses perspectives sont suggérées à ce travail. Il est question de cas d’essais qui
permettraient de mettre davantage en valeur la formulation, par un intérêt industriel et une
difficulté à instrumenter avec les méthodes classiques de SCIN. On peut penser, par exemple, à
de grandes transformations avec de grandes déformations nécessitant des traitements particuliers
dans les approches conventionnelles du fait que l’image de référence n’a plus rien à voir avec
l’image déformée (essais d’impact de pneus sur un panneau aéronautique, traction d’élastomère).
Une autre possibilité est celle des grandes transformations qui induisent une perte de visibilité
(modes de flambement).

De toute évidence, la PhDIC est basée sur des principes radiométriques, de la même manière
que la Thermographie Infra-Rouge (TIR). Coupler les deux méthodes de mesure en une seule
et même approche pourrait être intéressant. Habituellement, la TIR suppose une surface
d’émissivité uniforme, alors que la CIN requiert un mouchetis pour produire des mesures fi-
ables. Ainsi, déposer un mouchetis dans le spectre infra-rouge, puis caractériser l’émissivité en
chaque point de mesure, de la même manière que nous avons mesuré l’albedo dans notre dernière
application pratique, pourrait permettre de mesurer à la fois un champ de déplacements et un
champ thermique, à l’aide d’une seule caméra infra-rouge.

Aussi, nous avons montré dans ce travail que la PhDIC permettait le repositionnement de
caméras en cours d’essais. Dès lors, des essais où tout ou partie des caméras sont montées sur
des drones et/ou des bras robotiques semble être la prochaine étape à franchir pour la SCIN.
Cela permettrait, couplé à des processus multi-échelles, de balayer les surfaces d’essais, avant
les essais, pour les scanner et mesurer leurs formes et propriétés de réflectance. Au cours des
essais, certaines caméras pourraient continuer à parcourir les surfaces à la recherche de points
chauds sur lesquels se focaliser ensuite. Cependant, la phase de scan préalable ne semble pas
forcément être des plus pratiques pour l’expérimentateur, et utiliser différentes positions de
l’éclairage à la place, tout en conservant les caméras aux mêmes positions, à la manière du
Shape-from-Shading, pourrait s’avérer plus pertinent dépendant de la configuration d’essai.



Concernant le jumeau numérique, beaucoup reste à faire. Comme expliqué précédemment,
dans le contexte des grandes transformations, les problèmes associés à la lumière peuvent de-
venir difficiles à traiter, il pourrait donc être intéressant d’intégrer une paramétrisation de la
fonction de réflectivité bidirectionnelle incluant non seulement une composante diffuse (ou Lam-
bertienne), mais également une composante spéculaire. D’autres modèles d’éclairage, que celui
de la lumière située à l’infini, pourraient également être utilisés. L’objectif ultime serait de
pouvoir trouver des modèles de réflectance et de lumière adaptés à une large gamme d’essais
aux grandes échelles. Cependant, cela ne constitue pas l’unique manière de procéder. En con-
servant un modèle Lambertien malgré des problèmes liés à l’éclairage (réflexions spéculaires par
exemple), les hypothèses liées au caractère optimal de la formulation deviennent caduques car
le modèle n’explique plus les données au bruit près. Il peut donc devenir pertinent d’étudier
l’utilisation d’autres normes de résidus moins sensibles aux données aberrantes.



General Multiview Stereo Digital Image Correlation Formulation:
towards multiscale digital twins of complex experimental setups

Keywords: Data assimilation, Photometric Digital Image Correlation, Fractal pattern, Structure scan,
Large Deformations, Physically based model
Abstract: To meet the future aircraft energy efficiency requirements, breakthrough innovations will be
needed, including in structural mechanics. Currently, aircraft design cycles rely on a large number of tests
performed at the smallest scales. At the same time, measurement point densities tend to be smaller at
the largest scales because of costs and time associated with setting up sensors. This results in a lack of
predictability of the associated models. Based on these observations, extending the operability of full-field
measurement techniques to larger scales stands for a relevant way to increase the amount of available data
and thus address the aforementioned predictability issue.

In this work, we present the main challenges associated with this upscaling to complex structures when
considering the Stereo Digital Image Correlation (SDIC) measurement technique. SDIC is a popular, contact-
free, optical measurement method. It relies on the matching in pictures taken by cameras of features
contained in patterns deposited on possibly non-planar test sample surfaces. This allows then to measure
the three-dimensional displacement field on these surfaces.

The first identified issue when considering larger scales is the need for cameras observing tests at different
levels of resolution. For instance, it is clear that, for efficiency purposes, regions associated with high strain
gradients should be more resolved than those with lower ones. However, patterns are usually designed so as
to reach an optimum value of 3 to 5 pixels per speckle. This guideline is not relevant in a multiscale context,
where cameras with different pixel sizes are used. The use of fractal (self-affine) patterns with intrinsic
multiscale properties is thus investigated. It is shown that for one of the proposed patterns and two different
displacement fields, the associated scale invariances result in measurement uncertainties independent of the
scale at which the pattern is considered, which is not the case for usual patterns.

Then, when considering complex structures, questions are raised such as lighting or visibility which
are often addressed on a case-by-case basis in current SDIC frameworks. Here, we draw inspiration from
Computer Vision developments and propose a general SDIC formulation based on a physical modelling of the
image formation process and photometry. For this reason we call it Photometric DIC (PhDIC). It addresses
all of the aforementioned issues at once, by relying on a digital twin of the experimental setup. In addition,
this digital twin allows the generation of virtual pictures to compare directly actual data with. Thus, PhDIC
is not based on the comparison between reference pictures and deformed ones. This offers the possibility to
intrinsically account for complex deformations that totally incapacitates usual DIC frameworks.

A theoretical justification of the PhDIC formulation is proposed. Its general features are exhibited
by showing that this formulation encompasses the usual SDIC frameworks, while being able to operate
over a wider range of cases. Also, a sensitivity analysis demonstrates that measurement uncertainties are
expected to be reduced compared to usual SDIC. Finally, based on estimation theory, we make explicit the
assumptions under which the formulation is optimal.

A practical test case on 360-degree multiview pictures is investigated and a large rotation which inca-
pacitates usual approaches is measured over the considered surface.

Finally, a broader vision is adopted, and unprecedented perspectives made possible by PhDIC are sug-
gested.



Formulation Générale de la Stéréo Corrélation d’Images Numériques Multi-vues:
vers des jumeaux numériques multi-échelles d’essais complexes.

Mots-clés: Assimilation de données, Corrélation Photométrique d’Images Numériques, Mouchetis fractal,
Scan de structure, Grandes transformations, Modèle basé sur la physique
Résumé: Afin d’atteindre les futurs objectifs d’efficacité énergétique du secteur aéronautique, des innovations
de rupture seront nécessaires, y compris en mécanique des structures. Actuellement, les cycles de conception
aéronautiques reposent sur un grand nombre d’essais aux plus basses échelles. Aussi, les densités de mesure
ont tendance à être plus faibles aux grandes échelles à cause des coûts et du temps associés à la mise en place
des capteurs. Cela résulte en une faible prédictibilité des modèles associés. Partant de ce constat, il paraît
judicieux d’étendre le domaine d’application des méthodes de mesure de champs à des échelles plus importantes
afin d’y accroître la quantité de données disponibles et de s’attaquer ainsi à ces problèmes de prédictibilité.

Dans ce travail, nous présentons les principaux verrous liés à la mesure aux grandes échelles sur structure
complexe par des méthodes de Stéréo Corrélation d’Images Numériques (SCIN). La SCIN est une méthode de
mesure optique, peu coûteuse. Elle repose sur la mise en correspondance d’images de la surface de mesure,
éventuellement non plane, prises par différentes caméras, à différents instants. Cette mise en correspondance,
facilitée par le dépôt d’un mouchetis, permet la mesure d’un champ de déplacement tridimensionnel.

Aux grandes échelles, le premier verrou identifié est lié au besoin d’avoir des caméras dont les résolutions
sont différentes. Par exemple, pour des raisons d’efficacité, les régions aux grands gradients de déformations
doivent être mieux résolues que celles où ils sont plus faibles. Cependant, les mouchetis sont généralement
déposés de sorte que la valeur optimale de 3 à 5 pixels par tache soit atteinte. Cette règle perd de son sens
dans un contexte multi-échelle, puisque la taille des taches dépend de la caméra. Dans ce contexte, l’utilisation
de mouchetis fractals (auto-affines) aux propriétés intrinsèquement multi-échelles est étudiée. Nous montrons,
pour un tel mouchetis et deux champs de déplacement différents, que les invariances par changement d’échelles
associées se traduisent en des incertitudes de mesure indépendantes de l’échelle à laquelle le mouchetis est
considéré, ce qui n’est pas le cas des mouchetis usuels.

Ensuite, lorsque l’on s’intéresse à des structures complexes, des problématiques telles que l’éclairage ou la
visibilité émergent. Elles sont habituellement traitées au cas par cas. Dans ce travail, nous nous inspirons de
travaux issus de la Vision par Ordinateur et proposons une formulation SCIN générale basée sur une approche
photométrique. Nous l’appelons donc CIN Photométrique (PhDIC, de l’anglais Photometric Digital Image
Correlation). Elle répond à toutes les problématiques précédentes à la fois, en s’appuyant sur un jumeau
numérique de l’essai. La PhDIC n’est donc pas basée sur la comparaison d’images de référence à des images
déformées mais d’images réelles à un jumeau numérique. Cela offre la possibilité d’intrinsèquement prendre en
compte des transformations complexes mettant en échec les méthodes conventionnelles.

Une justification théorique de la formulation PhDIC est proposée. Son caractère général est justifié en
montrant que cette formulation englobe les approches SCIN classiques, tout en étant capable d’opérer sur une
plus large gamme d’essais. Aussi, une analyse de sensibilité établit qu’une réduction des incertitudes de mesure
par rapport à la SCIN classique est attendue. Enfin, à partir de la théorie de l’estimation statistique, nous
justifions l’optimalité de cette formulation, tout en explicitant les hypothèses nécessaires.

Un cas d’application sur des images multi-vues à 360 degrés est étudié. Une grande rotation mettant en
défaut les méthodes classiques y est mesurée.

Enfin, une vision plus large est adoptée, et des perspectives inédites rendues possibles par la PhDIC sont
suggérées.
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