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Résumé

En théorie des représentations, de nombreuses familles de catégories sont définies par générateurs et relations diagrammatiques. Une des questions principales dans l'étude de ces catégories est le calcul de bases linéaires des espaces de morphismes. Ces calculs de bases sont en général très difficiles en raison de la complexité combinatoire des relations. Cette thèse introduit une approche constructive permettant de calculer ces bases avec des méthodes issues de la théorie de la réécriture.

Nous introduisons un cadre catégorique de réécriture modulo, qui décrit le calcul dans une structure algébrique par application de relations orientées modulo les axiomes de la structure. Ce cadre nous permet de développer des outils pour réécrire dans des algèbres et catégories diagrammatiques admettant une structure inhérente complexe, telles que la structure de catégorie pivotale dans laquelle les diagrammes sont représentés à isotopie planaire près.

Nous définissons la notion de système de réécriture de dimension supérieure modulo, appelés polygraphes modulo, dans un contexte ensembliste et linéaire. Ces structures polygraphiques fournissent un cadre pour les preuves de cohérence modulo ainsi que le calcul de bases linéaires. En particulier, nous démontrons que des bases linéaires pour les espaces de 2-cellules de 2-catégories pivotales peuvent être obtenues à partir de présentations dont les relations forment un système de réécriture terminant, ou quasi-terminant, et confluent modulo les relations disotopie planaire. Nous étudions via ces méthodes la catégorie définie par Khovanov, Lauda et Rouquier pour catégorifier le groupe quantique associé à une algèbre de Kac-Moody symétrisable simplement lacée. Nous calculons des bases explicites des espaces de 2-cellules de cette catégorie, et montrons ainsi la non-dégénérescence du calcul diagrammatique introduit par Khovanov et Lauda, prouvant dans ce cas le théorème de catégorification du groupe quantique associé. Enfin, nous étendons la structure de polygraphe modulo au contexte de la réécriture modulo les axiomes décrits par une théorie algébrique de Lawvere. Nous démontrons un lemme des paires critiques algébrique basé sur une notion de stratégie de réécriture adaptée au contexte algébrique.
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Calcul formel en théorie des représentations

Le calcul formel est une branche des mathématiques et de l'informatique fondamentale qui vise à développer et implémenter des algorithmes manipulant et analysant des expressions mathématiques. De nombreux algorithmes effectifs ont été développés afin de résoudre des problèmes potentiellement difficiles dans de nombreux domaines en mathématiques. Par exemple, des outils ont vu le jour afin de simplifier des expressions structurelles, de factoriser des polynômes, de calculer des plus grands communs diviseurs etc. En algèbre, et en particulier en théorie des représentations, de tels outils sont nécessaires pour calculer dans des présentations de structures algébriques par générateurs et relations. En particulier, les questions principales sur ces présentations concernent le calcul de syzygies, c'est-à-dire relations entre les relations, ou le calcul de bases linéaires. Ce travail s'incrit dans un projet visant à développer de tels outils constructifs, à partir de la théorie de la réécriture, pour étudier des présentations d'algèbres et de catégories diagrammatiques qui apparaissent dans divers domaines en mathématiques, et notamment en théorie des représentations.

Calcul dans des structures linéaires. En général, étant donnée une algèbre admettant une présentation par générateurs et relations, il n'est pas facile de quantifier le nombre d'éléments contenus dans cette algèbre. En effet, il peut s'avérer qu'il y ait trop de relations définissant l'algèbre, impliquant que tous les éléments sont finalement égaux à zéro. Souvent, il est faisable de déterminer un ensemble de mots en les générateurs qui engendrent l'algèbre, et que nous conjecturons en être une base. Cependant, prouver l'indépendance linéaire de cet ensemble de monômes peut être difficile, voir [START_REF] Elias | A diamond lemma for Hecke-type algebras[END_REF] pour des exemples. Dans la plupart des cas, la preuve de l'indépendance linéaire consiste à définir une action de l'algèbre sur un anneau de polynômes sur lequel les éléments de la base candidate agissent comme des opérateurs linéairement indépendants, d'où nous déduisons que l'un ensemble fixé d'expressions réduites de ces éléments forme une base. Toutefois, la définition d'une telle action et la preuve de l'indépendance linéaire des opérateurs induits peut être compliquée, voir see [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF] pour des exemples tels que les algèbres de Hecke à 2 paramètres ou encore les algèbres de Khovanov-Lauda-Rouquier. Nous montrons que ces questions peuvent être abordées par des outils provenant de la théorie de la réécriture algébrique.

De nombreuses théories du calcul basées sur le principe de la théorie de la réécriture sont apparues dans divers travaux en algèbre linéaire. En particulier, de nombreux outils ont été développés afin de calculer des formes normales pour différents types d'algèbres présentées par générateurs et relations, avec des applications dans la décidabilité du problème d'appartenance à un idéal et le calcul de bases telles que des bases de type Poincaré-Birkhoff-Witt. Par exemple, Shirshov a introduit dans [START_REF] Illarionovich | Some algorithmic problems for Lie algebras[END_REF] un algorithme permettant de calculer une base linéaire d'une algèbre de Lie présentée par générateurs et relations, et en a déduit une preuve constructive du théorème de Poincaré-Birkhoff-Witt. La théorie des bases de Gröbner a été introduite pour calculer dans des idéaux d'anneaux de polynômes et d'algèbres commutatives, [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF] Buchberger | History and basic features of the critical-pair/completion procedure[END_REF][START_REF] Buchberger | An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[END_REF]. Buchberger a décrit un algorithme permettant de calculer des bases de Gröbner, à partir de la notion de S-polynôme, comme un analogue de la complétion de Knuth-Bendix et du lemme des branchements critiques linéaires en réécriture, décrits dans la suite. Bokut and Bergman ont ensuite indépendamment étendu les bases de Gröbner pour des algèbres associatives, avec les preuves du lemme de composition et du lemme du diamant de Bergman [START_REF] Bokut | Imbeddings into simple associative algebras[END_REF][START_REF] Bergman | The diamond lemma for ring theory[END_REF]. Ces résultats ont par la suite été instanciés comme des résultats de réécriture. L'approche des bases de Gröbner et de l'algorithme de Buchberger ont mené au développement d'une approche basée sur la théorie de la réécriture afin de calculer dans des algèbres associatives, tout en s'affranchissant de l'hypothèse de compatibilité des règles de réécriture avec un ordre monomial, voir [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF].

Algèbres diagrammatiques. L'un des objectifs principaux de cette thèse est de développer des outils pour calculer dans des algèbres diagrammatiques, c'est-à-dire des algèbres admettant des présentations par générateurs et relations qui sont représentés par des diagrammes. De nombreuses familles de telles algèbres sont apparues dans plusieurs domaines en mathématiques, par exemple les algèbres de Temperley-Lieb [START_REF] Temperley | Relations between the 'percolation' and 'colouring' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the 'percolation' problem[END_REF] en mécanique quantique, les algèbres de Brauer [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF] en théorie des représentations des groupes orthogonaux, les algèbres de Birman-Wenzl [START_REF] Birman | Braids, link polynomials and a new algebra[END_REF] ou les algèbres planaires de Jones [START_REF] Jones | Planar algebras[END_REF] en théorie des noeuds, ou encore les algèbres de Khovanov-Lauda-Rouquier en théorie des représentations de groupes quantiques, [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF][START_REF] Rouquier | 2-Kac-Moody algebras[END_REF].

Par exemple, pour un corps K fixé, considérons la K-algèbre du groupe symétrique S n sur n lettres, notée K[S n ]. Rappelons que S n admet une présentation de groupe de Coxeter sur n -1 générateurs s i pour 1 ≤ i ≤ n -1, correspondant à la transposition (i i + 1). Ces générateurs sont sujets aux relations suivantes:

i) s 2 i = 1 pour 1 ≤ i ≤ n -1,
ii) s i s j = s j s i pour tous i, j tels que |i -j| > 1,

iii) s i s i-1 s i = s i-1 s i s i-1 pour tout 2 ≤ i ≤ n -1.

Il existe une manière classique de représenter une permutation w de S n par un diagramme de tresse. C'est un diagramme, dessiné dans la bande du plan R × [0, 1], composé de 2n points répartis en deux lignes, avec n points sur la ligne R × {0} et n points sur la ligne R × {1}, et dans lequel un point de la ligne du haut est relié par un brin à un et un seul point de la ligne du bas. Dans cette représentation graphique, le générateur s i correspond à un croisement local entre le brun numéroté i (en numérotant les brins de 1 à n de la droite vers la gauche) et le brin numéroté i + 1, comme ci-dessous: 2) Pour l'algèbre K[S n ], il y a un grand nombre de relations dans la présentation, plus grand que n 2 .

Il existe en général une approche plus efficace pour étudier une telle famille dénombrable d'algèbres: les réaliser comme des espaces de morphismes d'une catégorie monoïdale K-linéaire, ou comme espaces de 2-cellules d'une 2-catégorie linéaire comme suit. Considérons la catégorie monoïdale K-linéaire Sym avec un unique objet générateur noté 1, de telle sorte que les objets de Sym sont de la forme 1 ⊗n , dénotant le produit ⊗ de 1 avec lui-même n fois pour tout n ∈ ◆, 1 ⊗0 étant l'objet unité, et une unique 1-cellule génératrice s : 1 ⊗ 1 → 1 ⊗ 1, soumise aux relations suivantes:

s • s = 1 ⊗ 1, (s ⊗ 1) • (1 ⊗ s) • (s ⊗ 1) = (1 ⊗ s) • (s ⊗ 1) • (1 ⊗ s). (1) 
où par 1 nous notons également la 1-cellule identité sur 1. L'ensemble End Sym (1 ⊗n ) est muni d'une structure de K-algèbre, et est isomorphe à K[S n ], de telle sorte que nous retrouvons toutes les algèbres de groupes symétriques dans la catégorie monoïdale K-linéaire Sym. Cette présentation est beaucoup plus économique, puisqu'il ne reste à étudier qu'une présentation d'une catégorie monoïdale admettant trois relations. Notons que les algèbres diagrammatiques admettent en général une interprétation en tant que catégorie par elle-même, où peuvent être réalisées comme des espaces de morphismes de catégories linéaires de cette manière. En particulier, nous allons étudier une structure de catégories appelées (2, 2)-catégories linéaires, qui sont des 2-catégories telles que chaque ensemble de 2-cellules entre des 1-cellules parallèles admet une structure de K-espace vectoriel pour un certain corps K. Lorsque ces (2, 2)-catégories linéaires admettent une unique 0-cellule, cette structure coïncide avec la structure de catégorie monoïdale K-linéaire. Les 2-cellules d'une telle catégorie admettent une représentation diagrammatique donnée par des diagrammes de cordes, définis comme suit: , utilisant la convention qu'un diagramme de corde se lit de droite à gauche, et de bas en haut. Ceci nous permet de considérer une théorie du calcul sur des diagrammes construits à partir de diagrammes générateurs. Dans l'example ci-dessus, en interprétant Sym comme une (2, 2)-catégorie linéaire avec une seule 0-cellule, la 2-cellule génératrice s peut se représenter par un diagramme de corde de 1 ⊗ 1 vers 1 ⊗ 1, par exemple un croisement comme ci-dessous:

• s 1 1 1 1 (2)
Quand il n'y a pas d'ambiguité, nous pouvons omettre les points et les étiquettes des 2-cellules et des 1-cellules source et but, de telle sorte que la 2-cellule (2) est juste représentée par un croisement. Les relations (1) sont alors représentées par

= , = . (3) 
La catégorie Sym admet seulement 2 relations et sa structure est simple à étudier. En général cependant, des présentations d'algèbres et catégories diagrammatiques peuvent admettre un grand nombre de relations, certaines d'entre elles étant potentiellement induites par la structure algébrique, nécessitant des outils de calcul appropriés.

Catégorification. Le terme de catégorification a été introduit par Crane dans [START_REF] Crane | Clock and category: is quantum gravity algebraic?[END_REF], suivant un précédent travail avec Frenkel [START_REF] Crane | Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases[END_REF]. Ce nom réfère au processus de remplacer toutes les notions ensemblistes par des notions catégoriques correspondantes. Afin d'étudier une structure donnée, l'idée est alors de définir une catégorie de dimension supérieure correspondant d'une certaine manière à l'objet de départ via son groupe de Grothendieck, mais admettant une structure plus riche permettant de l'étudier via l'apparition de nouveaux phénomènes. En effet, l'objectif est d'être capable d'obtenir de nouvelles informations sur l'objet original à partir de cette structure plus riche. Par exemple, afin d'étudier les représentations d'une algèbre, nous étudions des actions de cette algèbre sur des espaces vectoriel, via des applications linéaires. Dans le processus de catégorification en théorie des représentations de dimension supérieure, les espaces vectoriels sont remplacés par des catégories linéaires de dimension supérieure, les applications linéaires par des foncteurs linéaires, et les équations entre applications par des transformations naturelles de foncteurs, qui sont soumis à des relations de cohérence supplémentaires. Par conséquent, les éléments de l'algèbre sont alors considérés comme des classes d'isomorphismes d'objets d'une certaine catégorie, fournissant une structure à partir de laquelle nous souhaitons obtenir plus d'informations sur l'algèbre originale. Par exemple, considérons l'ensemble ◆ des entiers naturels. Cet ensemble peut être catégorifié par la catégorie FinSet admettant pour objets les ensembles finis et pour morphismes les fonctions ensemblistes via le cardinal, puisque deux ensembles finis de même cardinal sont en bijection. La somme et le produit de ◆ correspondent alors respectivement à l'union disjointe et le produit cartésien dans FinSet. Tandis que l'addition et la multiplication dans ◆ satisfont de nombreuses propriétés algébriques telles que la commutativité, l'associativité et la distributivité, l'union disjointe et le produit cartésien dans FinSet ne satisfont de telles lois qu'à isomorphisme près. Depuis les travaux pioniers de Crane et Frenkel, beaucoup de travaux sur la catégorification sont apparus dans divers contextes, et ont aidé à résoudre de nombreux problèmes compliqués. Par exemple, la catégorification du polynôme de Jones par Khovanov [START_REF] Khovanov | A categorification of the Jones polynomial[END_REF] utilisant la théorie des catégories et l'algèbre homologique a mené à de nouvelles directions de recherche en topologie, basées sur la catégorification. Cette théorie a permis d'éclaircir de nombreux problèmes et mené à de nouveaux résultats. De nombreuses algèbres étudiées en mathématiques ont à ce jour une version catégorifiée, par exemple les algèbres de Heisenberg [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF], les algèbres de Weyl [START_REF] Khovanov | Nilcoxeter algebras categorify the Weyl algebra[END_REF], les algèbres de polynômes [START_REF] Khovanov | Categorifications of the polynomial ring[END_REF], les algèbres de Hecke avec la catégorie des bimodules de Soergel [START_REF] Soergel | Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen[END_REF], ou les groupes quantiques [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF]. En théorie des représentations, de nombreuses représentations ont également été catégorifiées, telles que les représentations des algèbres de Lie semi-simples et certaines représentations des groupes de Weyl associés avec ls catégories O [START_REF] Bernšteȋn | A certain category of S(g)-modules[END_REF][START_REF] Bernstein | Tensor products of finite-and infinite-dimensional representations of semisimple Lie algebras[END_REF], les représentations irréductibles de dimension finie des algèbres de Lie sl m [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF], ou encore des produits tensoriels de représentations fondamentales de sl m [START_REF] Sussan | Category O and sl(k) link invariants[END_REF], pour m ∈ ◆. De plus, de nombreuses catégorifications sont apparues pour d'autres concepts mathématiques, telles que les actions de groupes de tresses, ou encore les invariants d'enchevêtrements [START_REF] Cautis | Knot homology via derived categories of coherent sheaves. I. The sl(2)case[END_REF]. Nous référons à [START_REF] Khovanov | A brief review of abelian categorifications[END_REF][START_REF] Mazorchuk | Lectures on algebraic categorification. QGM Master Class Series[END_REF][START_REF] Savage | Introduction to categorification[END_REF] pour d'autres exemples de résultats nouveaux provenant de cette théorie. La plupart des catégorifications mentionnées ci-dessus ont été définies par présentation par générateurs et relations définies par des diagrammes qui sont représentés à isotopie planaire près. Par conséquent, les (2, 2)-catégories linéaires étudiées dans ce travail sont en général enrichies d'une structure additionnelle, celle de (2, 2)-catégorie linéaire pivotale. Une telle structure est définie à partir de l'existence d'adjonctions sur les 1-cellules, impliquant l'existence de 2-cellules unité et counité, diagrammatiquement représentées par des cups et des caps, et satisfaisant des relations d'isotopie. Dans cette structure, deux diagrammes de cordes égaux à isotopie près représentent la même 2-cellule [START_REF] Cockett | Introduction to linear bicategories[END_REF], de telle sorte que les calculs sont compliqués à implémenter. La plupart des catégorifications définies dans la littérature admettent une structure pivotale, ou quasi-pivotale, telles que la catégorie des gl n -webs encodant la théorie des représentations de l'algèbre de Lie gl n [START_REF] Cautis | Webs and quantum skew howe duality[END_REF][START_REF] Elias | Light ladders and clasp conjectures[END_REF], la 2-categorification d'un groupe quantique de Khovanov-Lauda et Rouquier [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF][START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] ou encore les catégories de Heisenberg catégorifiant les algèbres de Heisenberg [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF].

La réécriture algébrique

Systèmes de réécriture abstraits. La notion sous-jacente derrière la théorie des bases de Gröbner et les travaux de Buchberger, Bergman, Bokut and Shirshov est la notion de présentation d'une algèbre par un système de réécriture convergent. La théorie de la réécriture est une théorie combinatoire des classes d'équivalence, [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF]. La première notion de système de réécriture a été introduite par Thue en 1914 afin d'étudier le problème du mot dans des semi-groupes, c'est à dire de décider si deux mots en les générateurs sont égaux ou non modulo les relations de la présentation du semi-groupe. Cette méthode consiste à orienter les relations et à étudier les expressions irreductibles, ou formes normales. Par ailleurs, le problème du mot a été étudié dans de nombreux contextes en algèbre et en informatique. D'autre part, la réécriture a été grandement développée en informatique fondamentale, produisant de nombreuses variantes dépendant de la nature des objets étant transformés, par exemple: des mots dans des monoïdes [START_REF] Book | String-rewriting systems[END_REF][START_REF] Guiraud | Polygraphs of finite derivation type[END_REF], des termes dans des théories algébriques [START_REF] Willem | Term rewriting systems[END_REF][START_REF] Baader | Term Rewriting and All That[END_REF][START_REF]Term rewriting systems[END_REF], des λ-termes, des circuits booléens [START_REF] Lafont | Towards an algebraic theory of boolean circuits[END_REF], etc.

Une classe d'équivalence pour une relation donnée est composée d'objets qui peuvent être obtenus l'un à partir de l'autre par une suite d'application de transformations non-orientées. La réécriture consiste à orienter ces transformations. De manière explicite, un système de réécriture abstrait est la donnée d'un ensemble X d'objet, ainsi que d'un sous ensemble R de X × X dont les éléments (x, y) sont notés par x → y. Dans ce cas, nous disons que x se réécrit en y, ou que x → y est une étape de réécriture, ou réduction de x vers y. Une suite x 1 → x 2 → . . . → x n → x n+1 → . . . de telles étapes de réécriture est appelée un chemin de réécriture. A un tel système, nous associons deux propriétés fondamentales: la terminaison et la confluence. Un système de réécriture abstrait (X, R) termine si il n'existe pas de suite infinie de réécriture pour R. Il est dit confluent si pour tout branchement, c'est à dire une paire de chemins provenant du même élément, il existe des chemins de réécriture donnant le même résultat final, comme résumé dans le diagramme suivant:

x 1 * 2 2 x
Réécriture algébrique et polygraphes. La réécriture algébrique consiste à développer des méthodes constructives basées sur la théorie de la réécriture abstraite pour obtenir des propriétés de structures algébriques présentées par générateurs et relations. Cela consiste à orienter les relation de la présentations, et à appliquer la théorie de la réécriture en prenant en compte les axiomes de la structure inhérente. Dans ce contexte, il existe un critère local afin de déterminer la confluence locale en fonction de la confluence des chevauchements entre deux relations minimaux par rapport à la structure sous-jacente. Ces chevauchements sont appelés branchements critiques, [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF]. Avec le lemme de Newman, ces deux résultats permettent, sous l'hypothèse de terminaison, de déduire la confluence à partir d'une analyse locale et en général finie des branchements critiques. Par exemple, dans le cas de la catégorie monoïdale Sym, si nous orientons les relations (3) de la gauche vers la droite, nous avons à examiner tous les chevauchements possibles entre les sources des deux réductions, par exemple:

. La notion de présentation convergente a été très utilisée afin d'obtenir des approches calculatoires pour déduire des invariants homologiques par le calcul d'une base des syzygies [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF] Anick | On monomial algebras of finite global dimension[END_REF][START_REF] Kobayashi | Complete rewriting systems and homology of monoid algebras[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF], où des bases linéaires de formes normales dans des structires linéaires [START_REF] Illarionovich | Some algorithmic problems for Lie algebras[END_REF][START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF] Bokut | Imbeddings into simple associative algebras[END_REF][START_REF] Bergman | The diamond lemma for ring theory[END_REF][START_REF] Mora | An introduction to commutative and noncommutative Gröbner bases[END_REF][START_REF] Buchberger | An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF][START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. Dans cette thèse, nous étudions des présentations de catégories de dimension supérieure par des systèmes générateurs introduits indépendamment par Burroni sous le nom de polygraphes [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF] et par Street sous le nom de computads [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Street | The algebra of oriented simplexes[END_REF], voir [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF] pour plus de détails sur les propriétés de réécriture de ces systèmes. Les polygraphes ont été largement utilisés dans le contexte de la réécriture algébrique, afin de calculer des présentations cohérentes de catégories globulaires strictes de dimension supérieure [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], d'obtenir des propriétés homologiques et homotopiques via les théorèmes de Squier [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Guiraud | Polygraphs of finite derivation type[END_REF], de prouver des propriétés de Koszulité pour des algèbres [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] ou encore pour calculer des bases linéaires explicites d'algèbres [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] ou de catégories linéaires de dimension supérieure [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF].

Cohérence par confluence. La théorie de la réécriture est adaptée au calcul de présentations cohérentes de catégories de dimension supérieure. Une présentation cohérente d'une n-catégorie étend la notion de présentation de cette catégorie par un (n + 1)-polygraphe par ajout d'une extension cellulaire acyclique, c'est à dire un ensemble de cellules en dimension n + 2 qui engendrent toutes les relations entre relations de la présentations de telle sorte que le quotient de cette catégorie par la congruence engendrée par ces cellules est acyclique. Lorsque le n-polygraphe est convergent, le théorème de cohérence de Squier [START_REF] Squier | A finiteness condition for rewriting systems[END_REF][START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] établit qu'il peut être augmenté en une présentation cohérente par adjonction d'une famille de (n + 1)-cellules génératrices dans des diagrammes de confluence de la forme

v f ′ 5 5 A f,g u f H H g E E w v ′ g ′
pour tout branchement critique (f, g) du n-polygraphe P n . Les présentations cohérentes ainsi construites généralisent les sytèmes de réécriture en gardant en mémoire les cellules construites par des diagrammes de confluence. Cette construction a été initiée par Squier dans [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] pour des monoïdes, et généralisée au cadre des n-catégories dans [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. Dans les dimensions supérieures, les polygraphes peuvent être également utilisés pour construire des remplacements cofibrants de catégories globulaires strictes [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], par adjonction à une catégorie libre des sphères correspondant à des diagrammes de confluence de branchements critiques, puis des sphères dans la dimension suprieure correspondant aux diagrammes de confluence de triples branchements critiques, etc., construisant ainsi un ∞-ensemble globulaire qui admet le même type d'homotopie que la catégorie originale.

Réécriture linéaire. Le contexte de réécriture linéaire introduit par Guiraud, Hoffbeck et Malbos dans [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] pour des algèbres associatives dont l'orientation des relations ne dépend pas d'un ordre monomial a été étendu au cadre des catégories linéaires de dimension supérieure par Alleaume [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. Dans [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF], de nombreux résultats de réécriture ont été établis pour des présentations de (2, 2)-catégories linéaires par des systèmes de réécriture appelés (3, 2)-polygraphes linéaires. Il y a deux difficultés principales à la réécriture dans des structures linéaires: tout d'abord, le contexte algébrique impose de spécifier des étapes de réécriture non-autorisées pour éviter des phénomènes de non-terminaison dûs au contexte linéaire, [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. La seconde difficulté est que la preuve de la confluence locale à partir de la confluence des branchements critiques requiert une hypothèse de terminaison supplémentaire n'apparaissant pas dans le cas ensembliste, [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Section 4.2]. En effet, certains branchements locaux qui seraient trivialement confluents si toutes les réécritures étaient autorisées peuvent devenir non confluents à cause de cette restriction, voir Remarque 2.9.3. Plus précisément, la confluence locale d'un polygraphe linéaire terminant peut être obtenue à partir de la confluence de tous ses branchements critiques, [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF].

Extension à la réécriture modulo. La réécriture modulo un ensemble d'équations étend les méthodes constructives mentionnées précédemment en autorisant de réécrire avec un ensemble E de relations nonorientées. Cela apparaît naturellement dans le contexte de la réécriture algébrique, en réécrivant modulo les axiomes de la structure algébrique ambiante, par exemple réécriture dans des structures commutatives, groupoïdales, ou dans des catégories linéaires, non strictes, ou encore pivotales. Dans la littérature, il y a trois paradigmes principaux de réécriture modulo bien connus. La première approche, considérée comme la plus naïve, consiste à considérer le système de réécriture E R E défini par des relations de réécriture sur des classes d'équivalence modulo les relations de E. Cette approche est bien adaptée pour certaines théories équationnelles telles que l'associativité et la commutativité. Cependant, elle est inadaptée en général pour l'analyse de la confluence. En effet, la réductibilité d'une classe d'équivalence requiert de parcourir toute la classe, ce qui est difficilement implémentable si ces classes sont infinies. Une autre approche de réécriture modulo a été introduite par Huet dans [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF], où les chemins de réécriture sont constitués de règles orientées et pas d'axiomes de E, mais la propriété de confluence est formulée modulo E-equivalence. Explicitement, les sources et buts des diagrammes de confluence ne sont pas nécessairement égaux, mais égaux modulo la congruence engendrée par les équations de E, comme dans le diagramme ci-dessous:

x E * G G x ′ * G G x ′′ E y * G G y ′ * G G y ′′ .
Cependant, dans un contexte algébrique, réécrire sans possibilité d'utiliser les axiomes algébriques peut s'avérer trop restrictif pour obtenir la confluence, voir [START_REF] Jouannaud | Church-Rosser properties of normal rewriting[END_REF]. Peterson et Stickel [START_REF] Peterson | Complete sets of reductions for some equational theories[END_REF] ont introduit une extension de la procédure de complétion de Knuth-Bendix, [START_REF] Knuth | Simple word problems in universal algebras[END_REF], pour prouver la confluence d'un système de réécriture modulo une théorie équationnelle pour laquel un algorithme d'unification fini et complet est connu. Ils ont appliqué cette procédure à des systèmes de réécriture modulo des axiomes d'associativité et de commutativité, afin de réécrire dans des groupes abéliens libres, des anneaux commutatifs unitaires et des réseaux distributifs. Jouannaud et Kirchner ont élargi cette approche dans [START_REF] Jouannaud | Completion of a set of rules modulo a set of equations[END_REF] avec la définition de propriétés de réécriture pour un système de réécriture modulo S qui est tel que R ⊆ S ⊆ E R E . Ils ont également prouvé un lemme des branchements critiques dans ce contexte, et développé une procédure de complétion pour le système de réécriture E R, dont les étapes de réécriture consistent en l'application d'une règle de R après une E-équivalence. Leur procédure de complétion est basée sur un algorithme de E-unification fini. Bachmair et Dershowitz [START_REF] Bachmair | Completion for rewriting modulo a congruence[END_REF] ont développé une généralisation de la procédure de complétion de Jouannaud et Kirchner via des règles d'inférence.

De nombreuses autres approches ont également été étudiées pour des systèmes de réécriture de termes modulo certaines théories équationnelles, voir [START_REF] Viry | Rewriting modulo a rewrite system[END_REF][START_REF] Marche | Normalized rewriting: an alternative to rewriting modulo a set of equations[END_REF].

Réécriture modulo dans des 2-catégories pivotales. Dans ce travail, de nombreux exemples sont issus de la réécriture modulo les axiomes d'isotopie de (2, 2)-catégories linéaires pivotales. Dans une telle structure, deux diagrammes de cordes égaux à isotopie près représentent la même 2-cellule, [START_REF] Cockett | Introduction to linear bicategories[END_REF]. De plus, certaines relations peuvent être obtenues à partir d'autres par une simple transformation par isotopie. Nous voulons ainsi traiter ces axiomes structurels séparément des relations définissant la 2-catégorie, en réécrivant modulo ces relations. Cela autorise à déformer un diagramme de corde à isotopie près avant d'appliquer des règles de réécriture, facilitant l'analyse calculatoire de la confluence des branchements critiques.

R ÉSUM É DE LA TH ÈSE ET CONTRIBUTIONS PRINCIPALES

Sujet de la thèse. Cette thèse développe de nouvelles approches pour calculer dans des présentations de diverses structures algébriques par générateurs et relations. En particulier, nous introduisons des outils de réécriture adaptés aux présentations diagrammatiques de (2, 2)-catégories linéaires en utilisant la réécriture modulo, étendant ainsi les constructions polygraphiques bien connues en réécriture non modulo [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF][START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Guiraud | Polygraphs of finite derivation type[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF][START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. Nous autorisons ainsi une part des relations à être considérée comme nonorientée, et à être vue comme des axiomes pouvant être utilisés librement dans les chemins de réécriture. Les objectifs principaux de ces constructions nouvelles sont le calcul de syzygies pour des présentations qui sont confluentes modulo une partie des axiomes algébriques, ou encore principalement le calcul de bases linéaires dans des (2, 2)-catégories linéaires lorsque les méthodes usuelles d'actions polynomiales sont difficilement applicables. Nous utilisons alors ces méthodes pour prouver la bonne définition de certaines catégorifications candidates, en montrant que l'ensemble des relations de la présentation définit bien une catégorie de taille attendue et non-dégénérée.

Structure de la thèse. Ce manuscrit est divisé en huit chapitres comme suit. Les deux premiers chapitres sont des chapitres préliminaires sur la théorie de la réécriture algébrique polygraphique et la catégorification en théorie des représentations. Dans le Chapitre 2, nous présentons la théorie de la réécriture dans un contexte abstrait, puis la réécriture (resp. réécriture linéaire) dans des catégories de dimension supérieure (resp. catégories linéaires de dimension supérieure) avec la structure de polygraphe (resp. polygraphe linéaire), et fournissons les propriétés et résultats de réécriture nécessaires pour la suite. Dans le Chapitre 3, nous rappelons l'idée sous-jacente au processus de catégorification, et expliquons les idées menant à la construction d'un tel objet. Nous mettons l'accent sur la construction de Khovanov, Lauda et Rouquier d'un groupe quantique associé à une algèbre de Kac-Moody symétrisable, menant à la définition de la 2-catégorie KLR, qui est l'un des objets d'étude principaux de ce travail. Les quatre chapitres suivants sont dédiés aux résultats principaux de cette thèse.

Dans le Chapitre 4, nous développons des méthodes de réécriture modulo pour étudier des questions de cohérence, et nous étendons ainsi le théorème de cohérence de Squier afin de calculer des présentations cohérentes de catégories globulaires strictes de dimension supérieure. Nous illustrons les résultats de ce chapitre dans le cas des monoïdes commutatifs et des 2-catégores pivotales. Dans le Chapitre 5, nous prouvons que des bases linéaires de (2, 2)-catégories linéaires peuvent être obtenues à partir d'une présentation satisfaisant une hypothèse de confluence modulo une partie des relations, et des hypothèses de terminaison supplémentaires. Ce résultat étend ainsi le résultat usuel de réécriture linéaire, établissant qu'à partir d'une présentation convergente d'algèbre, les monômes en forme normale forment une base linéaire de cette algèbre. Dans le Chapitre 6, nous illustrons ce résultat avec l'étude de la 2-catégorification du groupe quantique de Khovanov, Lauda et Rouquier, en prouvant que les ensembles conjecturés par Khovanov et Lauda comme étant des bases des espaces de 2-cellules sont en effet des bases linéaires, ce qui implique le théorème de catégorification de [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF]. Dans le Chapitre 7, nous étendons les constructions de réécriture modulo en définissant la notion de polygraphe algébrique, correspondant à des systèmes de réécriture modulo une théorie algébrique de Lawvere. Nous prouvons ainsi que l'hypothèse de terminaison du lemme des paires critiques linéaires provient d'un lemme des branchements critiques modulo dans ce contexte. Dans le Chapitre 8, nous décrivons de nouvelles pistes de recherche suggérées par ces travaux, ainsi que les travaux en cours. Enfin, le Chapitre 9 fournit un catalogue des diverses familles d'algèbres et de 2-catégories diagrammatiques qui ont à ce jour été étudiées via des méthodes de réécriture, ou de réécriture modulo.

Cohérence modulo

Nous conjecturons que les constructions de [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] de remplacements cofibrants de catégories de dimension supérieure peuvent s'étendre au cadre de réécriture modulo. La forme cubique des diagrammes de confluence modulo suggère que les cellules à adjoindre en dimensions supérieures ne sont plus des sphères de dimension supérieure, mais des cubes de dimension supérieure. Ainsi, la structure appropriée pour établir des résultats de confluence et de cohérence est celle de n-catégorie enrichie en p-fold groupoïde, afin de prendre en compte la structure cubique dans la dimension de la réécriture et dans les dimensions supérieures. Le Chapitre 4 présente la première étape de construction d'un tel remplacement cofibrant, par adjonction à une double catégorie enrichie en double groupoïdes libres une famille de cellules carrées correspondant aux diagrammes de confluence de branchements critiques modulo. Dans la dimension supérieure, nous conjecturons que l'adjonction de cubes correspondant aux diagrammes de confluence modulo de triples branchements critiques modulo devrait être l'étape suivante afin de construire une résolution polygraphique modulo d'une catégorie de dimension supérieure, et que des constructions similaires à [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] peuvent être fournies dans toutes les dimensions.

Polygraphes modulo. Dans la Section 4.4, nous introduisons la notion de n-polygraphe modulo comme une donnée (R, E, S) constituée de deux n-polygraphes R et E correspondant respectivement aux règles de réécriture orientées et aux axiomes satisfaisant des conditions de compatibilité sur les cellules de basse dimension, et une extension cellulaire S qui dépend à la fois des extensions cellulaires R n et E n . Nous définissions les propriétés de terminaison et de confluence pour les polygraphes modulo, suivant les approches de Huet et Jouannaud-Kirchner. Nous présentons une procédure de complétion pour le n-polygraphe modulo E R en terme de branchements critiques, qui implémente les règles d'inférence de complétion modulo données par Bachmair et Dershowitz dans [START_REF] Bachmair | Completion for rewriting modulo a congruence[END_REF], suivant la procédure de complétion de Knuth-Bendix [START_REF] Knuth | Simple word problems in universal algebras[END_REF].

Confluence modulo et doubles catégories. Nous étendons la notion de présentation cohérente d'une (n -1)-catégorie, pour n > 1, présentée par un n-polygraphe au contexte des polygraphes modulo. Nous définissons une notion de cohérence modulo dans la structure de (n -1)-catégorie enrichie en doubles groupoïdes. La notion de double catégorie a été initialement introduite par Ehresmann dans [START_REF] Ehresmann | Catégories structurées[END_REF] comme une catégorie interne à la catégorie des petites catégories. Les doubles groupïdes, c'est-à-dire des groupoïdes internes à la catégorie des groupoïdes, et leurs variantes de dimensions supérieures ont été grandement étudiées en théorie de l'homotopie, [START_REF] Brown | Double groupoids and crossed modules[END_REF][START_REF] Brown | On the connection between the second relative homotopy groups of some related spaces[END_REF], voir [START_REF] Brown | Nonabelian algebraic topology[END_REF] et [START_REF] Brown | Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems[END_REF] pour plus de détails. Une double catégorie encode la donnée de quatre catégories liées: une catégorie verticale, une catégorie horizontale, et deux catégories de carrés ayant soit des cellules horizontales soit des cellules verticales pour sources et buts. Une cellule carrée A est ainsi représentée par

u f G G e v e ′ u ′ g G G v ′ A
où f, g sont des cellules horizontales, et e, e ′ sont des cellules verticales. Dans [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], les chemins de réécriture donnés par un n-polygraphe sont interprétés comme des n-cellules da la n-catégorie libre engendrée par ce polygraphe. Suivant cette idée, nous donnons en Section 4.4 une interprétation de la confluence et la cohérence modulo pour des n-polygraphes modulo dans des (n-1)-catégories enrichies en doubles groupoïdes libres, où les cellules horizontales sont des chemins de réécriture pour S, les cellules verticales sont des E-équivalences et les cellules carrées sont des cellules de cohérence modulo.

Confluence modulo cohérente. La notion de double cohérente présentation introduite dans le Chapitre 4 est basée sur une adapation de la structure de polygraphe, bien connue dans le cadre globulaire, [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Power | An n-categorical pasting theorem[END_REF][START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF], à un cadre cubique. Nous définissons ainsi un double (n + 1, n -1)-polygraphe comme une donnée de P = (P v , P h , P s ) composée de deux n-polygraphes P v et P h ayant le même (n-1)-polygraphe sous-jacent, avec une extension cubique P s composée de cellules carrées génératrices de la forme

u f G G e u ′ e ′ v g G G v ′
où f,g sont des n-cellules de la (n, n -1)-catégorie libre (P v ) ⊤ engendrée par P v , et e, e ′ sont des n-cellules de la (n, n -1)-catégorie libre (P h ) ⊤ engendrée par P h . Nous définissons alors une double présentation cohérente d'une (n -1)-catégorie C comme un double (n + 1, n -1)-polygraphe P = (P v , P h , P s ) tel que C est présentée par le polygraphe coproduit P v ∐ P h , et l'extension cubique P s est acyclique, c'est à dire pour tout carré S construit avec des cellules verticales de (P v ) ⊤ et des cellules horizontales de (P h ) ⊤ , il existe une (n + 1)-cellule carrée A dans la (n -1)-catégorie enrichie en doubles groupoïdes P engendrée par P, définie en Section 4.2.7, dont le bord est le carré S.

Dans la Section 4.5, nous définissons la notion de confluence cohérente modulo d'un n-polygraphe modulo (R, E, S) par rapport à une extension cubique Γ du couple de n-catégories (E ⊤ , S * ). De manière explicite, S est appelé Γ -confluent modulo E si pour tout branchement modulo (f, e, g) of S, il existe des n-cellules f ′ , g ′ de S * , e ′ dans E ⊤ et une (n + 1)-cellule carré A comme ci-dessous

u f G G e u ′ f ′ G G A w e ′ v g G G v ′ g ′ G G w ′
dans la (n -1)-catégorie enrichie en doubles catégories définie à partir de Γ comme en Section 4. ) E , dont les n-cellules de cohérence sont définies par quotient des n-cellules cubiques de Γ par la congruence engendrée par E. Enfin, nous illustrons ces méthodes en montrant comment obtenir de telles présentations cohérentes pour des monoïdes commutatifs en Section 4.7.5 et pour des catégories monoïdales pivotales modulo les relations d'isotopie planaire en Section 4.7.7.

u f G G e u ′ f ′ G G w e ′ u g G G v g ′ G G w ′ pour tout branchement critique (f,

Bases linéaires par confluence modulo

Comme mentionné précédemment, de nombreuses relations provenant de la structure inhérente des algèbres diagrammatiques apparaissant en théorie des représentations peuvent être sources d'obstructions pour les preuves de confluence, en créant un grand nombre de branchements critiques à considérer. L'un des objectifs principaux de cette thèse est d'étendre le théorème de base usuel, donné par les monômes en forme normale pour une présentation convergente, au contexte de réécriture modulo. Dans ce cadre, nous voulons affaiblir l'hypothèse de confluence globale incluant toutes les relations orientées, à une hypothèse de confluence modulo une partie non-orientée des règles.

Confluence modulo par décroissance. Le polygraphe modulo E R E peut ne pas terminer, et même lorsqu'il termine prouver la terminaison est en général difficile. En particulier, c'est le cas lors de l'étude de (3, 2)-polygraphes linéaires modulo présentant des (2, 2)-catégories linéaires pivotales, à cause de l'existence de 2-cellules ayant pour source et but la même 1-cellule identité, appelées bulles. En effet, Alleaume a démontré que des (2, 2)-catégories linéaires admettant des relations impliquant que des bulles peuvent traverser des brins de diagrammes ne peuvent être équippées d'un ordre monomial, de telle sorte qu'elles ne preuvent être présentées par des sytèmes de réécriture terminants, voir [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. De plus, la cyclicité d'une 2-cellule par rapport aux biadjonctions données par la structure pivotale implique que le diagramme de corde représentant cette 2-cellule peut être déplacé librement sur les 2-cellules cups et caps, créant ainsi des cycles de réécriture obstruant la terminaison. Cependant, même si E R E n'est pas terminant, dans la plupart des cas considérés il sera quasi-terminant, c'est-à-dire que tous les chemins de réécriture infinis proviennent de cycles de réécriture. Suivant [START_REF] Chenavier | Algebraic polygraphs modulo and linear rewriting[END_REF], l'hypothèse de terminaison de E R E peut être affaiblie en une hypothèse de quasi-terminaison afin de prouver la confluence modulo d'un (3, 2)-polygraphe linéaire modulo à partir de la confluence de ses branchements critiques modulo. En Section 5.2, nous introduisons également une notion de décroissance modulo pour un (3, 2)-polygraphe linéaire, basée sur la propriété de décroissance en réécriture abstraite introduite par Van Oostrom dans [START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF]. Nous démontrons alors le résultat suivant: Théorème 5.2.4. Soit (R, E, S) un (3, 2)-polygraphe linéaire modulo monomial à gauche. Si (R, E, S) est décroissant modulo E, alors S est confluent modulo E.

La propriété de décroissance modulo est donnée par l'existence d'un étiquetage bien fondé sur les étapes de réécriture d'un (3, 2)-polygraphe linéaire (R, E, S), pour lequel nous supposons que toutes les étiquettes sur les règles de E sont triviales, et vérifiant que les étiquettes sont strictement décroissantes sur les diagrammes de confluence modulo. Lorsque E R E quasi-termine, il existe un étiquetage particulier comptant la distance d'une 2-cellule à une quasi-forme normale choisie, c'est-à-dire une 2-cellule à partir de laquelle nous ne pouvons appliquer que des cycles de réécriture. La Proposition 5.4.6, établie dans [START_REF] Chenavier | Algebraic polygraphs modulo and linear rewriting[END_REF], montre que la décroissance modulo ainsi que la confluence locale modulo peuvent être obtenues en prouvant que tous les branchements critiques modulo sont décroissants pour un tel étiquetage à la quasi-forme normale, ce qui revient à prouver leur confluence.

Bases linéaires par confluence modulo. Dans le Chapitre 5, nous prouvons comment obtenir une hom-base d'une (2, 2)-catégorie linéaire C présentée par générateurs et relations, c'est à dire une famille d'ensembles (B p,q ) indexés par les couples (p, q) de 1-cellules de C telle que B p,q est une base linéaire de l'espace vectoriel C 2 (p, q) des 2-cellules de C ayant pour 1-source p et pour 1-but q. Rappelons que Alleaume a prouvé dans [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF] qu'une telle hom-base peut être obtenue à partir d'une présentation finie convergente par un (3, 2)-polygraphe linéaire, en considérant l'ensemble des monômes en forme normale. Dans le cadre de réécriture modulo, il y a deux degrés de formes normales. Tout d'abord, nous supposons que le (3, 2)-polygraphe linéaire modulo (R, E, S) est soit normalisant, soit quasi-terminant, de telle sorte que chaque 2-cellule admette au moins une forme normale ou quasi-normale pour S. Par ailleurs, nous pouvons également considérer des formes normales pour le (3, 2)-polygraphé linéaire E des axiomes modulo, supposé convergent. Nous appelons alors forme normale pour (R, E, S) une 2-cellule apparaissant dans la décomposition monomiale de la forme normale relativement à E d'un monôme en forme normale relativement à S. En Section 5.4, nous prouvons qu'une hom-base peut alors être obtenue à partir d'un (3, 2)-polygraphe linéaire modulo satisfaisant une hypothèse de confluence modulo E. Plus précisément, considérons une (2, 2)-catégorie linéaire pivotale présentée par un (3, 2)polygraphe linéaire P, et considérons un scindage convergent (R, E) de P, tel que défini en Section 5. Ce résultat est par ailleurs étendu dans le cadre quasi-terminant, en définissant une quasi-forme normale pour (R, E, S) comme étant un monôme apparaissant dans la décomposition monomiale de la E-forme normale de u, où u est une quasi-forme normale d'un monôme u fixée. 

Catégorification du groupe quantique de Khovanov, Lauda et Rouquier

Catégorification du groupe quantique. Étant donnée une donnée de racines correspondant à une algèbre de Kac-Moody symétrisable g, Khovanov et Lauda ont défini dans [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF] une 2-catégorie candidate pour catégorifier la version intégrale et idempotente de Lusztig du groupe quantique U q (g) associé à cette donnée de racines. Cette 2-catégorie, notée U (g), est définie par générateurs et relations. Khovanov et Lauda ont prouvé [67, Theorems 1.1 & 1.2] que U (g) est bien une catégorification de U q (g) si le calcul diagrammatique introduit dans [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF] est non-dégénéré, ce qui correspond au fait que chaque espace de 2-cellules dans U (g) admette une base linéaire explicite. Khovanov et Lauda ont prouvé cette non-dégénérescence pour des algèbres de Kac-Moody symétrisables de Type A, en construisant une 2-représentation de U (g) sur l'anneau de cohomologie de variétés de drapeaux, et en montrant que l'ensemble des relations était maximal et qu'il ne trivialisait pas la catégorie. La non-dégénérescence de ce calcul diagrammatique a ensuite été prouvée pour des données de racines de type fini et pour tout corps K indépendamment par Kang et Kashiwara [START_REF] Kang | Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras[END_REF], et par Webster [START_REF] Webster | Knot invariants and higher representation theory[END_REF], via la non-dégénérescence de quotients cyclotimiques des algèbres KLR catégorifiant les modules de plus haut poids de U q (g). Cependant, en type infini il existe des poids hors du cône de Tits pour lesquels les quotients cyclotomiques ne fournissent pas d'informations. Webster a introduit dans [START_REF] Webster | Unfurling Khovanov-Lauda-Rouquier algebras[END_REF] des déploiements des algèbres KLR pour résoudre ce problème, et a ainsi prouvé cette non-dégénérescence dans le cas général. Dans ce travail, nous allons établir ce résultat en utilisant des techniques de réécriture modulo. Nous nous restreignons au cas des algèbres de Kac-Moody simplement lacées, c'est-à-dire des algèbres dont le graphe de Dynkin n'admet pas de boucles ni d'arêtes multiples. Dans le cas non simplement lacé, les relations définissant les algèbres KLR sont plus compliquées, les membres droits étant des polynômes contenant de nombreux monômes. Cependant, nous conjecturons que les méthodes présentées dans le Chapitre 6 s'étendent au cas général. Rouquier a défini dans [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] une 2-catégorie de Kac-Moody A(g), admettant moins de 2-cellules génératrices que U (g), de telle sorte que réécrire dans A(g) est plus adapté. Brundan a prouvé dans [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF] que les deux 2-catégories U (g) et A(g) sont en réalité isomorphes. Ainsi, nous réécrivons dans la 2-catégorie A(g), et translatons les calculs dans U (g) par cet isomorphisme afin de prouver la non-dégénérescence.

Algèbres KLR. Les algèbres KLR, également appelées algèbres de Hecke carquois, sont apparues dans ce processus de catégorification du groupe quantique. Elles ont été introduites indépendamment par Rouquier [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] et Khovanov et Lauda [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups II[END_REF] puisque la catégorie des modules projectifs finiment engendrés sur ces algèbres catégorifie la moitié négative du groupe quantique associé. De plus, ces algèbres agissent sur certains espaces de 2-cellules de la 2-catégorie U (g), ou A(g), de telle sorte que les relations de ces algèbres se retrouvent dans la 2-catégorie. Nous rappelons suivant [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] Non-dégénérescence du calcul diagrammatique de Khovanov et Lauda. En Section 6.2, nous rappelons le théorème d'isomorphisme entre A(g) et U (g) établi par Brundan, avec la définition de nouveaux générateurs et relations dans A(g) induits par la définition de Rouquier. Nous prouvons ainsi des relations supplémentaires dans A(g), afin d'obtenir des symétries dans l'ensemble de relations. Nous définissons alors une présentation polygraphique KLR de A(g), que nous scindons en deux parties comme dans le Chapitre 5: un (3, 2)-polygraphe linéaire E convergent contenant les 3-cellules d'isotopie et un (3, 2)-polygraphe linéaire R contenant les 3-cellules restantes. Nous prouvons alors le second résultat principal de ce Chapitre: Théorème 6.2.16. Soit (R, E) le scindage convergent de KLR défini en Section 6.2.15.

Alors le (3, 2)-polygraphe modulo E R est quasi-terminant, et E R est confluent modulo E.
En conséquence, pour toutes 1-cellules E i 1 λ et E j 1 λ de U (g), en considérant l'ensemble des monômes en quasi-forme normale, pour un choix de quasi-formes normales préétabli, avec 1-source E i 1 λ et 1but E j 1 λ , et en prenant leurs formes normales relativement à E, nous obtenons une base linéaire de U (g)(E i 1 λ , E j 1 λ ). Par conséquent, nous obtenons le résultat suivant: Théorème 6.2.30. L'ensemble B i,j,λ , défini en Section 6.2.29, est une base linéaire de

U (g)(E i 1 λ , E j 1 λ ).
Nous prouvons alors, pour toutes 1-cellules i,j et pour tout λ dans X, que les ensembles B i,j,λ correspondent à un choix particulier de base candidate conjecturée par Khovanov et Lauda, voir [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF]Section 3.2.3]. Ceci prouve la non-dégénérescence du calcul diagrammatique dans ce cadre, et donc que pour une algèbre de Kac-Moody symétrisable simplement lacée g, la (2, 2)-catégorie linéaire U (g) est une catégorification du groupe quantique intègre et idempotent U q (g) associé à g.

Polygraphes algébriques et lemme des branchements critiques algébrique

Comme mentionné ci-dessus, et comme illustré dans les Chapitres 2, 4 et 5, de nombreux résultats de réécriture sont basés sur la notion de présentation confluente, ou confluente modulo. D'après ce qui précède, l'un des outils principaux pour prouver la confluence de systèmes de réécriture algébrique est le lemme des branchements critiques [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF], établissant que la confluence locale peut être obtenue par vérification (en général) finie de la confluence de chevauchements minimaux entre deux réductions. La notion de complétion par branchements critiques est une approche introduite au milieu des années soixante qui combine la notion de branchement critique avec les procédures de complétion [START_REF] Buchberger | History and basic features of the critical-pair/completion procedure[END_REF]. Cette approche provient de la théorie de la preuve [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF], de la théorie des idéaux dans des anneaux polynomiaux, [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF], et du problème du mot [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF]. Dans les années quatre-vingt, sont apparues de nombreuses applications de ces approches en algèbre pour résoudre des problèmes de cohérence [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], ou encore pour calculer des invariants homologiques [START_REF] Squier | The word problem for finitely presented monoids and finite canonical rewriting systems[END_REF]. Plus récemment, des extensions en dimension supérieure ont été utilisées pour calculer des remplacements cofibrants de structures algébriques et catégoriques [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. Ces constructions basées sur la complétion par branchements critiques sont bien connues pour des monoïdes, des catégories (linéaires) de dimension supérieure, ou encore des algèbres sur un corps. Cependant, les extensions de ces méthodes à un champ de structures algébriques plus large est difficile de par l'intéraction entre les règles du système de réécriture et les axiomes inhérents à la structure. Pour cette raison, les extensions de ces approches pour des structures telles que des groupes, ou des algèbres de Lie, est encore un problème ouvert.

Lemme des branchements critiques. Nivat a prouvé dans [START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF] que la confluence locale d'un système de réécriture de mots est décidable, que ce système soit terminant ou non. La preuve de ce résultat est basée sur la classification des branchements locaux, séparés en des branchements orthogonaux, impliquant deux règles qui ne chevauchent pas, et des chevauchements. Lorsque les branchements orthogonaux sont confluents, la locale confluence est vérifiée si tous les branchements critiques sont confluents. Ainsi, l'argument principal pour obtenir un lemme des branchements critique est de prouver que les branchements orthogonaux sont confluents, puis que les branchements critiques sont confluents. Pour des sytèmes de réécriture de mots et de termes, les branchements orthogonaux sont toujours confluents, et la confluence des branchements critiques implique la confluence des chevauchements. La situation est plus compliquée pour des systèmes de réécriture dans une structure linéaire, comme expliqué dans la Section 2.9.1.

Les approches connues de réécriture dans un contexte linéaire consistent à orienter les règles relativement à un ordre monomial ambiant, et le lemme des branchements critiques est alors connu. Cependant, avec l'approche de réécriture linéaire introduite dans [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], il y a deux conditions supplémentaires à garantir pour obtenir un tel résultat, à savoir une restriction sur les réécritures et la terminaison. Une réduction positive pour un système de réécriture linéaire, telle que définie en Section 2.8.3, consiste en l'application d'une règle de réécriture sur un monôme qui n'apparaît pas dans le contexte polynomial. Par exemple, considérons suivant [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] le système de réécriture linéaire présentant l'algèbre associative sur un corps K par générateurs x,y,z et relations α : xy → xz and β : zt → 2yt. Il n'admet pas de branchement critique, mais il a un branchement orthogonal qui est non-confluent, voir Remarque 2.9.3, prouvant que l'absence de terminaison est une obstruction à la confluence des branchements orthogonaux.

Lemme des branchements critiques algébrique. Dans le Chapitre 7, nous introduisons un cadre catégorique pour réécrire dans des structures algébriques, qui formalise l'interaction entre les règles du système et les axiomes inhérents à la stucture sous-jacente. En Section 7.1, nous rappelons la notion de 2-polygraphe cartésien, introduite dans [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF], correspondant à des sytèmes de réécriture présentant une théorie algébrique de Lawvere. Un 2-polygraphe cartésien définit ainsi une interprétation catégorique d'un système de réécriture de termes. Un tel objet est défini par une signature équationnelle (P 0 , P 1 ) composée de types et d'opérations, et une extension cellulaire de la 1-théorie algébrique libre P × 1 sur (P 0 , P 1 ) Nous définissons en Section 7.3 la structure de polygraphe algébrique comme une donnée comportant un 2-polygraphe cartésien, un ensemble Q de 1-cellules closes génératrices (appelées constantes) et une extension cellulaire R de la 1-sous-théorie des termes clos.

Nous introduisons un cadre algébrique adapté à la formulation d'un lemme des branchements critiques. Nous définissons la structure de polygraphe modulo, formalisant l'intéraction entre les règles de réécriture et les axiomes de la structure, et introduisons des stratégies de réécriture basées sur le choix de certaines cellules admissibles, dont la nature dépend de la théorie algébrique sous-jacente. Nous introduisons ensuite des propriétés de réécriture relativement à ces stratégies, et prouvons une extension du lemme de Newman modulo du Chapitre 4 pour des polyraphes algébriques modulo quasi-terminants. Nous déduisons alors un lemme des branchements critiques sur des structures algébriques dont les axiomes sont spécifiés par des polygraphes cartésiens satisfaisant des hypothèses de confluence modulo associativité et commutativité des opérations. Enfin, nous instancions ces résultats dans le cadre de la réécriture linéaire, et expliquons pourquoi la terminaison est nécessaire pour caractériser la confluence locale dans ce cas.

CHAPTER 1 Introduction

ALGEBRAIC REWRITING AND CATEGORIFICATION

Symbolic computation in representation theory

Symbolic computation is a field of mathematics and computer science that aims at developing and implementing algorithms that manipulate and analyze mathematical expressions. Many effective algorithms have been developed in order to solve complicated problems in numerous domains of mathematics. For instance, some methods have emerged in order to simplify structural expressions, to factorize some polynomials, to compute greatest common divisors and so on. In algebra, and in particular in representation theory, such tools are needed in order to study presentations of algebraic structures by generators and relations. In particular, the main questions about these presentations concern the computation of syzygies, that is relations among relations, or computations of linear bases. This work takes part of a project aiming at developing such constructive rewriting methods in order to study presentations by generators and relations of some algebras and 2-categories appearing in various domains of mathematics, especially in representation theory.

1.1.1. Symbolic computation for linear structures. In general, given an algebra admitting a presentation by generators and relations, it is not obvious to know how large this algebra is. Indeed, it may turn out that there are too many relations defining the algebra, so that it vanishes to zero. We often are able to find a set of words in the generators which span the algebra, and which we expect to be a basis. However, proving the linear independence of this set of monomials can be difficult, see [START_REF] Elias | A diamond lemma for Hecke-type algebras[END_REF] for some examples. In many cases, it is done by defining an action of the algebra on a polynomial ring on which the elements of the candidate basis act by linearly independent operators. For example, consider the standard action of the symmetric group S n on a set of n elements, linearized to obtain a representation of the group algebra. It is clear that the action of distinct permutations is linearly independent, from which we deduce that a chosen set of reduced expression forms a basis. However, in general, defining such an action and proving that the operators obtained in this way are linearly independant may be complicated, see [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF] for some examples with Hecke algebras with 2 parameters or Khovanov-Lauda-Rouquier algebras. We show that this can be done using rewriting theory.

Many symbolic computation theories following the principles of rewriting were developed in numerous works in linear algebra. In particular, methods have been developed in order to compute normal forms for different types of algebras presented by generators and relations, with applications to the decision of the ideal membership problem, and to the construction of linear bases, such as Poincaré-Birkhoff-Witt bases. For example, Shirshov introduced in [START_REF] Illarionovich | Some algorithmic problems for Lie algebras[END_REF] an algorithm to compute a linear basis of a Lie algebra presented by generators and relations, and deduced a constructive proof of the Poincaré-Birkhoff-Witt theorem. Gröbner basis theory was introduced to compute with ideals of commutative polynomial rings [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF] Buchberger | History and basic features of the critical-pair/completion procedure[END_REF][START_REF] Buchberger | An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[END_REF]. Buchberger described an algorithm to compute Gröbner bases from the notion of S-polynomials, using an analogous of Knuth-Bendix completion and the linear critical branching lemma described in this work. Bokut and Bergman have independently extended Gröbner bases to associative algebras with the proof of the composition lemma and the Bergman diamond lemma [START_REF] Bokut | Imbeddings into simple associative algebras[END_REF][START_REF] Bergman | The diamond lemma for ring theory[END_REF]. All these results admit interpretations in the rewriting language developed in this work. The approach of Gröbner bases and Buchberger's algorithm was extended by developing a rewriting theoretical approach to compute bases in associative algebras without any assumption of compatibility with respect to a well-founded total order on the monomials of the algebra, see [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF].

1.1.2. Diagrammatic algebras. The main objective of this work is to develop effective tools to compute in diagrammatic algebras, that is algebras admitting presentations by generators and relations diagrammatically represented. Several families of algebras admitting diagrammatic presentations by generators and relations emerged in various domains of mathematics, such as Temperley-Lieb algebras [START_REF] Temperley | Relations between the 'percolation' and 'colouring' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the 'percolation' problem[END_REF] in quantum mechanics, Brauer algebras [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF] for representation theory of the orthogonal groups, Birman-Wenzl algebras [START_REF] Birman | Braids, link polynomials and a new algebra[END_REF] or Jones' planar algebras [START_REF] Jones | Planar algebras[END_REF] in knot theory, or Khovanov-Lauda-Rouquier algebras [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF][START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] in higher-representation theory.

As an example, let us consider, for a given field K, the K-algebra of the symmetric group S n on n letters, denoted by K[S n ]. Recall that S n admits a Coxeter group presentation on n -1 generators s i , for 1 ≤ i ≤ n -1, standing for the permutation (i i + 1). It is subject to the following relations:

i) s 2 i = 1 for 1 ≤ i ≤ n -1, ii) s i s j = s j s i for any i, j such that |i -j| > 1, iii) s i s i-1 s i = s i-1 s i s i-1 for any 2 ≤ i ≤ n -1.
There is a classical way to represent a permutation w in S n using the notion of braid-like diagram. This is a diagram, drawn in the strip of the plane R × [0, 1], made of 2n points arranged in two rows, n dots being on the line R × {0} and n dots being on the line R × {1}, in which a dot on the top line is linked by a strand to exactly one dot of the bottom line. In such a graphical representation, the generator s i corresponds to a crossing of the strand numerated i from the right and the strand numerated i + 2) for the algebra K[S n ], there are a lot of relations to take into account, more than n 2 .

It appears that there is a more efficient way to study this family of algebras: by realizing them as endomorphism spaces of a K-linear monoidal category as follows. Let us consider the K-linear monoidal category Sym with only one generating objet denoted by 1, so that all the objets of Sym are of the form 1 ⊗n for any n ∈ ◆, with 1 ⊗0 being the unit object, and only one generating 1-cell s :

1 ⊗ 1 → 1 ⊗ 1,
subject to the following relations:

s • s = 1 ⊗ 1, (s ⊗ 1) • (1 ⊗ s) • (s ⊗ 1) = (1 ⊗ s) • (s ⊗ 1) • (1 ⊗ s). (1.1)
where by 1 we also denote the identity 1-cell on 1. Then, note that End Sym (1 ⊗n ) is a K-algebra that is isomorphic to K[S n ], so that we recover all the algebras of the symmetric groups inside the K-linear monoidal category Sym. This presentation is more economical, since we have to study only one object, and this object only admits 3 relations. Note that the diagrammatic algebras that we study either have a categorical structure by themselves, or can be realized as endomorphism spaces of linear categories in this way. In particular, we study a categorical structure called linear (2, 2)-category, that is 2-categories with a structure of vector space over a given field K on each space of 2-cells between two 1-cells. When these categories admit only one 0-cell, this coincides with the notion of K-linear monoidal category. The 2-cells in such a category admit a diagrammatic representation given by string diagram as follows:

y n-1 bn . . . b n-1 o o y 2 b 3 o o y 1 b 2 o o x m x 0 b 1 j j a 1 u u x m-1 am . . . a m-1 o o x 2 a 3 o o x 1 a 2 o o f K f . . . . . . a m b n a 1 b 1 a 2 b 2 x 0 x m y 1 x 1
, using the convention that string diagrams are read from right to left and from bottom to top. This allows us to consider computations on diagrams built from generating pieces. In the example above, the generating 2-cell (when Sym is interpreted as a linear (2, 2)-category with only one object) is diagrammatically represented by the following string diagram:

• s 1 1 1 1 (1.2)
When there is no ambiguity, we may omit dots and labels on 2-cells and on sources and targets, so that the 2-cell (1.2) is simply depicted by a crossing. The relations (1.1) are then depicted by

= , = . 
(1.

3)

The category Sym admits only 2 relations and is relatively easy to study. However, in general, presentations of diagrammatic algebras admit a great number of relations, some of them being induced by the algebraic structure, needing appropriate computational methods.

1.1.3. Categorification. The term categorification was introduced by Crane in [START_REF] Crane | Clock and category: is quantum gravity algebraic?[END_REF], following the ideas of a previous work with Frenkel [START_REF] Crane | Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases[END_REF]. It refers to the process of replacing set-theoretic notions by the corresponding category-theoretic analogues. In order to study a given object, the main objective is to define an higher-dimensional category corresponding in a suited way to this object, but admitting a richer structure, in order to see new phenomena appear. We expect to be able to obtain more information on the original object from this new structure. For instance, when we study the representations of an algebra, we study actions of the algebra on vector spaces via linear maps. In the process of higher-dimensional representation theory and categorification, vector spaces are replaced by higher-dimensional linear categories, linear maps are replaced by linear functors and equations between maps are replaced by natural transformations of functors, which are required to satisfy additional coherence laws. Therefore, elements of the algebra are not seen as elements anymore, but are considered as isomorphism classes of objects in a certain category, providing an additional structure from which we hope to deduce new information on the original algebra. For example, consider the set ◆ of natural numbers. This set can be categorified by the category FinSet of finite sets and functions, using cardinality, since two sets having the same cardinality are in bijection. The sum and product in ◆ then correspond to disjoint union and cartesian product in FinSet respectively. Whereas addition and multiplication in ◆ satisfy various equational laws such as commutativity, associativity and distributivity, disjoint union and cartesian product in FinSet satisfy such laws only up to natural isomorphisms.

Since the pioneering works of Crane and Frenkel, categorification appeared in various contexts, and helped to solve numerous complicated problems. For instance, Khovanov's categorification of the Jones' polynomial [START_REF] Khovanov | A categorification of the Jones polynomial[END_REF] using category theory and homological algebra led to new research directions in topology based on categorification. It completely changed the point of view on many long standing problems and led to new results. Numerous algebras studied in mathematics have been now categorified, for instance the Heisenberg rings [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF], the Weyl algebras [START_REF] Khovanov | Nilcoxeter algebras categorify the Weyl algebra[END_REF], polynomial algebras [START_REF] Khovanov | Categorifications of the polynomial ring[END_REF], the Hecke algebras with the category of Soergel bimodules [START_REF] Soergel | Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen[END_REF], quantum groups [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF]. In representation theory, a lot of representations have also now a categorified version, such as representations of semisimple Lie algebras and some representations of the associated Weyl groups using categories O [START_REF] Bernšteȋn | A certain category of S(g)-modules[END_REF][START_REF] Bernstein | Tensor products of finite-and infinite-dimensional representations of semisimple Lie algebras[END_REF], all finite-dimensional irreducible representations of the Lie algebras sl m [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF], or tensor products of fundamental representations of sl m [START_REF] Sussan | Category O and sl(k) link invariants[END_REF], for m ∈ ◆. Moreover, a lot of categorifications have also emerged for several mathematical concepts, such as braid group actions [START_REF] Rouquier | Categorification of the braid groups[END_REF] or invariants of tangle cobordisms [START_REF] Cautis | Knot homology via derived categories of coherent sheaves. I. The sl(2)case[END_REF]. We refer to [START_REF] Khovanov | A brief review of abelian categorifications[END_REF][START_REF] Mazorchuk | Lectures on algebraic categorification. QGM Master Class Series[END_REF][START_REF] Savage | Introduction to categorification[END_REF] for other examples of new results coming from this area. Many of the categorifications mentioned above have been defined by presentations by generators and relations defined from diagrams that are represented up to planar isotopy. As a consequence, these 2-categories are endowed with an additional pivotal structure. Such a pivotal structure if defined from the existence of adjunctions on 1-cells, implying the existence of unit and counit 2-cells, diagrammatically represented by caps and cups satisfying isotopy relations. In this structure, two isotopic diagrams represent the same 2-cell [START_REF] Cockett | Introduction to linear bicategories[END_REF], so that the computations are even more difficult to achieve. Many categorifications defined in the literature admit a pivotal structure, such as the category of gl n -webs encoding the representation theory of the Lie algebra gl n [START_REF] Cautis | Webs and quantum skew howe duality[END_REF][START_REF] Elias | Light ladders and clasp conjectures[END_REF], the Khovanov-Lauda-Rouquier 2-categorification of a quantum group [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF][START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] and the Heisenberg categories categorifying the Heisenberg algebra [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF].

Rewriting theory

1.1.4. Abstract rewriting systems. The underlying notion beyond the theory of Gröbner bases and the works of Buchberger, Bergman, Bokut and Shirshov is actually the notion of presentation of an algebra by a convergent rewriting system. Rewriting theory is a combinatorial theory of equivalence classes, [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF]. The first notion of abstract rewriting system was introduced by Thue in 1914 [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln[END_REF] to study the word problem in semi-groups, that is to decide whether two words made of the generators are equal or not modulo the relations of the semi-group. This method consists in orienting the relations of the semi-group and to study irreducible expressions, or normal forms. Afterwards, the word problem has been studied in many contexts in algebra and in computer science. On the other hand, rewriting has been mainly developed in theoretical computer science, producing several variants corresponding to different objects being transformed, for instance: words in monoids [START_REF] Book | String-rewriting systems[END_REF][START_REF] Guiraud | Polygraphs of finite derivation type[END_REF], terms in an algebraic theory [START_REF] Willem | Term rewriting systems[END_REF][START_REF] Baader | Term Rewriting and All That[END_REF][START_REF]Term rewriting systems[END_REF], λ-terms, Boolean circuits [START_REF] Lafont | Towards an algebraic theory of boolean circuits[END_REF], etc.

A class with respect to an equivalence relation is composed of pairs of objects that can be transformed one into another using sequences of non-oriented moves. Rewriting consists in orienting these moves. Explicitely, an abstract rewriting system is made of a set X of objects together with a subset R of X × X whose elements (x, y) are denoted by x → y. In that case, we say that x rewrites to y, or that x → y is a rewriting step from x to y. A sequence

x 1 → x 2 → . . . → x n → x n+1 → . . .
of such rewriting steps is called a rewriting sequence. A rewriting system (X, R) is called terminating if there is no infinite rewriting sequence with respect to R. It is said to be confluent if for any branching, that is a pair of rewriting sequences starting from the same element, there exist rewriting sequences giving the same result, as summarized in the following diagram:

x 1 * 2 2 x * b b * 2 2 y x 2 * b b ,
where * → denotes the reflexive and transitive closure of →. When (X, R) is terminating, Newman's lemma [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF] states that confluence can be obtained from local confluence, that is confluence of local branchings of the form x 1 ← x → x 2 . A normal form of (X, R) is an element of X that cannot be reduced by any rewriting step. A rewriting system is called convergent if it is both terminating and confluent. In that case, any element x admits a unique normal form.

1.1.5. Algebraic rewriting and polygraphs. Algebraic rewriting aims at giving constructive methods based on rewriting theory to obtain properties of higher algebraic structures presented by generators and relations. It consists in orienting relations, and applying rewriting theory by taking into account the axioms of the structure. In this context, there exists a local criterion to prove local confluence from confluence of minimal overlappings with respect to the structure between reductions, called critical branchings, [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF]. Together, these two results allow to deduce confluence from a local and finite analysis of branchings. For instance, in the case of the K-linear monoidal category Sym, if we decide to orient the relations (1.3) from left to right, we have to examine all possible overlappings between the sources of the two reductions, such as for instance .

Convergent presentations have been widely used to obtain symbolic computational approaches to deduce homological properties by computing bases of syzygies, [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF] Anick | On monomial algebras of finite global dimension[END_REF][START_REF] Kobayashi | Complete rewriting systems and homology of monoid algebras[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF], or linear bases from normal forms when rewriting in linear structures, [START_REF] Illarionovich | Some algorithmic problems for Lie algebras[END_REF][START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF] Bokut | Imbeddings into simple associative algebras[END_REF][START_REF] Bergman | The diamond lemma for ring theory[END_REF][START_REF] Mora | An introduction to commutative and noncommutative Gröbner bases[END_REF][START_REF] Buchberger | An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF][START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. In many constructions of this work, we study presentations of higher-dimensional categories by generating systems introduced independently by Burroni under the name of polygraphs [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF] and by Street under the name of computads [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Street | The algebra of oriented simplexes[END_REF], see also [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF] for more details on rewriting properties of these presentations. Polygraphs have been used to compute coherent presentations of higher-dimensional categories [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], to obtain homological and homotopical properties using Squier's theorems [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Guiraud | Polygraphs of finite derivation type[END_REF], to prove Koszulness property for algebras [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] or to compute explicit linear bases of algebras [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] or higher-dimensional linear categories [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF].

1.1.6. Coherence by confluence. Rewriting theory is well-suited to compute coherent presentations of higher-dimensional categories. A coherent presentation of a n-category extends the notion of presentation of the n-category by an (n + 1)-polygraph by adding an acyclic cellular extension, that is a set of higher-globular cells that generate all the relations among relations of the presentation, so that the quotient of this category by the congruence generated by these cells is acyclic. When the n-polygraph is convergent, Squier's coherence theorem [START_REF] Squier | A finiteness condition for rewriting systems[END_REF][START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] states that it can be extended into a coherent presentation by adding generating (n + 1)-cells defined by a family of confluence diagrams of the form

v f ′ 5 5 A f,g u f H H g E E w v ′ g ′
for every critical branching (f, g) of the n-polygraph P n . Coherent presentations constructed in this way generalize rewriting systems by keeping track of the cells generated by confluence diagrams. This construction was initiated by Squier in [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] for monoids and generalized to n-categories in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. In the above dimensions, polygraphs can be used to compute cofibrant replacements of globular small strict categories [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], by gluing to a free category some spheres corresponding to diagrams of confluence of critical branchings, and then gluing spheres corresponding to confluence diagrams of triple critical branchings, and so on, constructing an ∞-globular set which admits the same homotopy type than the original category.

1.1.7. Linear rewriting. The context of linear rewriting introduced by Guiraud, Hoffbeck and Malbos in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] for associative algebras has been extended to higher-dimensional linear categories by Alleaume [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. In [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF], many results have been established for linear (2, 2)-categories, admitting presentations by rewriting systems called linear (3, 2)-polygraphs. There are two main difficulties when rewriting in linear structures: first of all, we have to specify allowed rewriting steps in order to avoid non-termination due to the linear context, [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. The second difficulty is that proving local confluence from confluence of critical branchings require a termination assumption, see [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Section 4.2]. Indeed, some branchings that would be trivially confluent if all rewriting steps were allowed may become non-confluent because of this restriction, see Section 1.2.13 and Remark 2.9.3. More precisely, confluence of a terminating linear polygraph can be obtained by proving that all its critical branchings are confluent, see [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF].

1.1.8. Extension to rewriting modulo. Rewriting modulo a set of equations extends these constructive methods by allowing to consider a set E of non-oriented relations in computations. It appears naturally in algebraic rewriting when studied reductions are defined modulo the axioms of an ambiant algebraic structure, e.g. rewriting in commutative, groupoidal, linear, pivotal, weak structures. In the literature, three different paradigms of rewriting modulo are well-known. The most naive approach is to consider the rewriting system E R E consisting in rewriting on congruence classes modulo E. This approach works for some equational theories, such as associative and commutative theory. However, it appears inefficient in general for the analysis of confluence. Indeed, the reducibility of an equivalence class needs to explore all the class, hence it requires all equivalence classes to be finite. Another approach of rewriting modulo has been considered by Huet in [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF], where rewriting sequences involve only oriented rules and no equivalence steps, and the confluence property is formulated modulo equivalence. Explicitely, sources and targets in confluence diagrams are not required to be equal but congruent modulo E, as summarized in the following diagram:

x E * G G x ′ * G G x ′′ E y * G G y ′ * G G y ′′ .
However, in an algebraic context, rewriting without allowing any E-steps in the rewriting paths may be too restrictive for computations, see [START_REF] Jouannaud | Church-Rosser properties of normal rewriting[END_REF]. Peterson and Stickel introduced in [START_REF] Peterson | Complete sets of reductions for some equational theories[END_REF] an extension of Knuth-Bendix's completion procedure, [START_REF] Knuth | Simple word problems in universal algebras[END_REF], to reach confluence of a rewriting system modulo an equational theory, for which a finite, complete unification algorithm is known. They applied their procedure to rewriting systems modulo axioms of associativity and commutativity, in order to rewrite in free commutative groups, commutative unitary rings, and distributive lattices. Jouannaud and Kirchner enlarged this approach in [START_REF] Jouannaud | Completion of a set of rules modulo a set of equations[END_REF] with the definition of rewriting properties for any rewriting system modulo S such that R ⊆ S ⊆ E R E . They also proved a critical branching lemma and developed a completion procedure for a rewriting system modulo E R, whose one-step reductions consist in application of a rule in R using E-matching. Their completion procedure is based on a finite E-unification algorithm. Bachmair and Dershowitz in [START_REF] Bachmair | Completion for rewriting modulo a congruence[END_REF] developed a generalization of Jouannaud-Kirchner's completion procedure using inference rules. Several other approaches have also been studied for term rewriting systems modulo to deal with various equational theories, see [START_REF] Viry | Rewriting modulo a rewrite system[END_REF][START_REF] Marche | Normalized rewriting: an alternative to rewriting modulo a set of equations[END_REF].

1.1.9. Rewriting modulo isotopies in pivotal 2-categories. In this work, many examples are based on rewriting modulo the pivotal axioms of pivotal linear 2-categories. Recall from [START_REF] Cockett | Introduction to linear bicategories[END_REF] that in such a structure, two isotopic string diagrams represents the same 2-cells. We thus want to treat these axioms separately from the defining relations of the 2-category, and rewrite modulo these relations. This allows to deform a diagram up to isotopy in order to apply a rewriting rule on it, facilitating the computation of confluence.

THESIS SUMMARY AND MAIN CONTRIBUTIONS

1.2.1. Subject of the thesis. This thesis presents new effective tools to compute in presentations of various algebraic structures by generators and relations. In particular, we develop some tools to rewrite in string diagrammatic presentations of linear 2-categories using rewriting modulo, which extends the usual constructions in polygraphic rewriting theory [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF][START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Guiraud | Polygraphs of finite derivation type[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF][START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF] by allowing a part of relations to be non-oriented, and to be considered as axioms that we freely use when rewriting. Among these new constructions arise the questions of computing syzygies from presentations which are confluent modulo a part of the axioms of the ambient algebraic structure, and mainly the question of computing linear bases of linear 2-categories when the usual methods of polynomial actions do not apply. We use these methods in order to prove the well-foundedness definition of some candidate categorifications.

1.2.2. Structure of the thesis. This manuscript is divided into eight chapters as follows. The first two chapters are preliminary chapters on rewriting theory and categorification in representation theory. In Chapter 2, we present rewriting theory (resp. linear rewriting theory) in higher dimensional categories (resp. higher-dimensional linear categories) using the notion of polygraphs (resp. linear polygraphs), and provide a state-of-the-art of the known rewriting results that we need in the sequel. In Chapter 3, we recall the idea beyond the process of categorification and how to explicitely construct such an object. We lay the emphasis on the construction of Khovanov-Lauda-Rouquier's categorification of a quantum group, leading to the definition of the KLR 2-category which is one of the main objects studied in this work. The next four chapters are dedicated to the main results of the thesis. In Chapter 4, we introduce a categorical context of rewriting modulo to study coherence problems, and we extend Squier's coherence theorem providing a method to compute coherent presentations of globular strict categories in the context of rewriting modulo. We illustrate the results of this chapter on commutative monoids and pivotal 2-categories. In Chapter 5, we prove that linear bases for the sets of 2-cells in (2, 2) linear categories can be computed from a presentation which satisfies an assumption of confluence modulo a part of the relations together with some termination assumption. This result extends the well-known rewriting result stating that from a convergent presentation of an algebra, monomials in normal form give a basis of the algebra. In Chapter 6, we illustrate this result on the KLR 2-categorification of a quantum group associated with a symmetrizable Kac-Moody algebra, proving that the sets expected by Khovanov and Lauda to be linear bases are indeed bases, implying the categorification theorem. In Chapter 7, we extend the constructions of rewriting modulo by defining algebraic polygraphs, which correspond to rewriting systems modulo the axioms of an algebraic Lawvere theory. We thus prove that the termination assumption in the linear critical pair lemma comes from an algebraic critical branching lemma modulo.

In Chapter 8, we describe the new directions of research suggested by these works and the current work in progress. Finally, Chapter 9 gives a catalogue of the numerous families of diagrammatic algebras and 2-categories that already have been studied using rewriting methods.

Coherence modulo relations

We expect that the methods of [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] to construct cofibrant replacements of higher-dimensional categories can be extended to the context of rewriting modulo. The cubical shape of confluence diagrams suggest that we do not glue higher-dimensional spheres anymore, but higher-dimensional cubes. It turns out that the apropriate structure to present confluence and coherence results is the structure of free n-category enriched in p-fold groupoids, to take into account this cubical structure in the dimension of rewritings and in above dimensions. Chapter 4 presents the first step of such a construction, where we glue to a free double category enriched in double groupoids a family of squares corresponding to diagrams of confluence modulo of critical branchings modulo. We expect that gluing cubes corresponding to diagrams of confluence modulo of triple critical branchings should be the next step to construct a polygraphic modulo resolution of a category, and that similar constructions to [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] can be done in higher dimensions.

1.2.3. Polygraphs modulo. In Section 4.4 we introduce the notion of n-polygraph modulo as a data (R, E, S) made of two n-polygraphs R and E corresponding respectively to rewriting rules and axioms satisfying some compatibility conditions on cells of low dimensions and a cellular extension S depending on both cellular extensions R n and E n . We define termination and confluence properties for polygraphs modulo following Huet and Jouannaud-Kirchner's definitions. We present a completion procedure for the n-polygraph modulo E R in terms of critical branchings that implements inference rules for completion modulo given by Bachmair and Dershowitz in [START_REF] Bachmair | Completion for rewriting modulo a congruence[END_REF], following Knuth-Bendix's completion procedure [START_REF] Knuth | Simple word problems in universal algebras[END_REF].

1.2.4. Confluence modulo and double categories. We extend the notion of coherent presentation of an (n -1)-category, for n > 1, presented by an n-polygraph to the context of polygraphs modulo. We define a notion of coherence modulo using the structure of (n-1)-category enriched in double groupoids. The notion of double category was first introduced by Ehresmann in [START_REF] Ehresmann | Catégories structurées[END_REF] as an internal category in the category of categories. The notion of double groupoids, that is internal groupoids in the category of groupoids, and its higher-dimensional versions have been widely used in homotopy theory, [START_REF] Brown | Double groupoids and crossed modules[END_REF][START_REF] Brown | On the connection between the second relative homotopy groups of some related spaces[END_REF], see [START_REF] Brown | Nonabelian algebraic topology[END_REF] and [START_REF] Brown | Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems[END_REF] for a complete account on the theory. A double category gives four related categories: a vertical category, an horizontal category and two categories of squares with either vertical or horizontal cells as sources and targets. A square cell A is pictured by

u f G G e v e ′ u ′ g G G v ′ A
where f, g are horizontal cells, and e, e ′ are vertical cells. In [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], rewriting sequences with respect to an n-polygraph are interpreted by n-cells in the free category generated by the polygraph. Following this idea, we give in Section 4.4 an interpretation of confluence and coherence modulo for n-polygraphs modulo in free (n -1)-categories enriched in double groupoids, where the horizontal cells are the rewriting sequences with respect to S, the vertical cells are the E-equivalences and the square cells are the coherence cells modulo. 1.2.5. Coherent confluence modulo. The notion of coherent presentation modulo introduced in Chapter 4 is based on an adaptation of the structure of polygraph known in the globular setting, [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Power | An n-categorical pasting theorem[END_REF][START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF], to a cubical setting. We thus define a double (n + 1, n -1)-polygraph as a data P = (P v , P h , P s ) made of two n-polygraphs P v and P h with the same underlying (n -1)-polygraph, together with a square extension P s made of generating square cells of the form

u f G G e u ′ e ′ v g G G v ′
where f, g are n-cells of the free (n, n -1)-category (P v ) ⊤ generated by P v and e, e ′ are n-cells of the free (n, n -1)-category (P h ) ⊤ generated by P h . We define a double coherent presentation of an (n -1)-category C as a double (n + 1, n -1)-polygraph P = (P v , P h , P s ) such that C is presented by the polygraph P v ∐ P h , and the square extension P s is acyclic, that is for any square S constructed with vertical cells in (P v ) ⊤ and horizontal cells in (P h ) ⊤ , there exists a square (n + 1)-cell A in the free (n -1)-category P enriched in double groupoids generated by P, defined in Subsection 4.2.7, whose boundary is S.

In Section 4.5, we define the notion of confluence modulo of an n-polygraph modulo (R, E, S) with respect to a square extension Γ of the pair of n-categories (E ⊤ , S * ). Explicitly, we say that S is Γconfluent modulo E if for any branching (f, e, g) of S modulo E, there exist n-cells f ′ , g ′ in S * , e ′ in E ⊤ and an (n + 1)-cell

u f G G e u ′ f ′ G G A w e ′ v g G G v ′ g ′ G G w ′
in a free (n -1)-category enriched in double categories defined from Γ as in Section 4.5. We deduce coherent confluence of an n-polygraph modulo from local coherent confluence properties. In particular, Theorem 4.5.4 is a formulation of the Newman lemma for confluence modulo, stating that under termination of E R E , Γ -confluence modulo and local Γ -confluence modulo are equivalent properties. Finally, with Theorem 4.5.7 we give a coherent formulation of the critical branching lemma modulo, deducing coherent local confluence from coherent confluence of some critical branchings modulo.

1.2.6. Coherent completion modulo. In Section 4.6, we present several ways to extend a presentation of an (n -1)-category by a polygraph modulo into a double coherent presentation of this category.

Starting with an n-polygraph modulo, we show how to construct a double coherent presentation of the (n-1)-category presented by this polygraph. Theorem 4.6.6 gives conditions for an n-polygraph modulo (R, E, S) to extend a square extension Γ on the vertical and horizontal (n, n -1)-categories E ⊤ and S ⊤ into an acyclic extension. In Section 4.6.1, we define a coherent completion of an n-polygraph modulo (R, E, S) as a square extension of the pair of (n, n -1)-categories (E ⊤ , S ⊤ ) whose elements are the generating square (n + 1)-cells

u f G G e u ′ f ′ G G w e ′ u g G G v g ′ G G w ′
for any critical branchings (f, e, g) of S modulo E. As a consequence of Theorem 4.6.6, we show how to extend a coherent completion Γ of S modulo E and a coherent completion Γ E of E into an acyclic extension. In particular, when E is empty, we recover Squier's coherence theorem for convergent npolygraphs as given in [51, Theorem 5.2.], see also [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]. We prove in Theorem 4.6.12 that an acyclic extension of a pair (E ⊤ , S ⊤ ) of (n, n -1)-categories coming from a polygraph modulo (R, E, S) can also be obtained from an assumption of commuting normalization strategies for the polygraphs S and E.

1.2.7. Globular coherence from double coherence. In Section 4.7, we give a way to deduce a globular coherent presentation for an n-category from a double coherent presentation generated by a polygraph modulo. Our construction is based on the structure of dipolygraph as a presentation by generators and relations for ∞-categories whose underlying k-categories are not necessarily free, see Section 4.2. We define dipolygraphs as variations of polygraphs for which the cellular extensions are defined on quotients of free categories. In Section 4.2.15, we define a quotient functor V : DbPol (n+2,n) → DiPol (n+2,n) from the category of double (n + 2, n)-polygraphs to the category of (n + 2, n)-dipolygraphs.

The last result of Chapter 4 gives the conditions on how to take the quotient of a double coherent presentation generated by a polygraph modulo when the n-polygraph E is convergent, and S is terminating and confluent modulo E. Theorem 4.7.3 shows how to deduce from a coherent completion Γ of S modulo E a globular coherent presentation of the (n -1)-category (R * n-1 ) E , whose generating n-cells are defined by quotienting the n-cells of Γ by the cellular extension E. Finally, we illustrate this method by showing how to construct coherent presentations for commutative monoids in Section 4.7.5 and for pivotal monoidal categories modulo isotopy relations defined by adjunction in Section 4.7.7.

Linear bases from confluence modulo

As mentioned previously, many structural relations coming from the inherent structure of the diagrammatic algebras arising in representation theory may create obstructions to prove confluence, by leading to a huge number of critical branchings. One of the main objective of this work was then to extend the usual basis theorem given my monomials in normal form with respect to a convergent presentation to the context of rewriting modulo. In this setting, we want to weaken the whole confluence property to a property of confluence modulo these chosen axiomatic rules.

1.2.8. Confluence modulo by decreasingness. The polygraph modulo E R E may not terminate, and when it does the termination is in general difficult to prove. In particular, this is the case when considering linear (3, 2)-polygraphs modulo presenting pivotal linear (2, 2)-categories, due to the existence of 2cells with source and target the same identity 1-cell, called bubbles. Indeed, Alleaume enlighted the fact that linear (2, 2)-categories with bubbles that can go through strands can in general not be enriched with a monomial order, so that they can not be presented by terminating rewriting systems, see [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. Moreover, the cyclicity of a 2-cell with respect to the biadjunctions of the pivotal structure implies that the dot picturing this 2-cell can be moved around the cap and cup 2-cells, eventually creating rewriting cycles and making termination fail. However, even if E R E is not terminating, in many cases it will be quasi-terminating, that is all infinite rewriting sequences are generated by cycles. Following [START_REF] Chenavier | Algebraic polygraphs modulo and linear rewriting[END_REF], the termination assumption for E R E can be weakened to a quasi-termination assumption, in order to prove confluence modulo of a linear (3, 2)-polygraph modulo (R, E, S) from confluence of its critical branchings modulo. We introduce in Section 5.2 a notion of decreasingness modulo for a linear (3, 2)polygraph modulo following Van Oostrom's abstract decreasingness property [START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF]. We then establish the following result:

Theorem 5.2.4. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo. If (R, E, S) is decreasing modulo E, then S is confluent modulo E.
The property of decreasingness modulo is defined by the existence of a well-founded labelling on the rewriting steps of a linear (3, 2)-polygraph modulo (R, E, S), for which we require that all labels on the cells of E are trivial, and such that labels are strictly decreasing on confluence modulo diagrams. When E R E is quasi-terminating, there exists a particular labelling counting the distance between a 2-cell and a fixed quasi-normal form, that is a 2-cell from which we can only apply rewriting cycles. Proposition 5.4.6, proved in [START_REF] Chenavier | Algebraic polygraphs modulo and linear rewriting[END_REF], shows that we can obtain decreasingness by proving that all the critical branchings modulo E are decreasing with respect to any such quasi-normal form labelling.

1.2.9. Linear bases from confluence modulo. In Chapter 5, we give a way to compute a hom-basis of a linear (2, 2)-category C presented by generators and relations, that is a family of sets (B p,q ) indexed by pairs (p, q) of 1-cells such that B p,q is a linear basis of the vector space C 2 (p, q) of 2-cells of C with 1-source p and 1-target q. Recall that Alleaume proved that such a basis may be obtained from a finite convergent presentation, considering all the monomials in normal form, [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. In the context of rewriting modulo, there are two different degrees of normal forms. First of all, we require that the linear (3, 2)polygraphs modulo (R, E, S) is either normalizing or quasi-terminating so that one can either consider normal forms or quasi-normal forms with respect to S. Then, one can also consider normal forms with respect to the polygraph E for which we rewrite modulo, that we require to be convergent. We say that a normal form for (R, E, S) is a 2-cell appearing in the monomial decomposition of the E-normal form of a monomial in normal form with respect to S. In Section 5.4, we give a method to compute a hom-basis of a linear (2, 2)-category from an assumption of confluence modulo some relations. More precisely, we consider a pivotal linear (2, 2)-category C presented by a linear (3, 2)-polygraph P, and (R, E) a convergent splitting of P, given by a couple of linear (3, 2)-polygraphs such that E is convergent and contains all the isotopy 3-cells corresponding to the pivotal axioms, and R contains the remaining relations, as defined in Section 5.4.1. This data allows to consider polygraphs modulo (R, E, S), and we prove in Section 5.4 the following result: Theorem 5.4.4. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C, (E, R) a convergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

i) S is normalizing, ii) S is confluent modulo E, then the set of normal forms for (R, E, S) is a hom-basis of C.
This result is extented to the quasi-terminating setting, by defining a quasi-normal form for (R, E, S) as a monomial appearing in the monomial decomposition of the E-normal form of a monomial in the decomposition of u, where u is the fixed quasi-normal form of a monomial 2-cell u. Khovanov-Lauda-Rouquier's categorification of quantum groups 1.2.10. Categorification of quantum groups. Given any root datum corresponding to a symmetrizable Kac-Moody algebra g, Khovanov and Lauda defined in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF] a candidate 2-category to be a categorification of Lusztig's idempotented and integral version of the quantum group U q (g) associated with this root datum. The 2-category U (g) is defined by a presentation by generators and relations. Khovanov and Lauda established [67, Theorems 1.1 & 1.2] that U (g) is a categorification of U q (g) if the diagrammatic calculus they introduce in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF] is non degenerated, which corresponds to the fact that each vector space of 2-cells in U (g) admits an explicit linear basis. They proved the non-degeneracy of their calculus for symmetrizable Kac-Moody algebras of type A by constructing an apropriate 2-representation of U (g) on the cohomology ring of flag varieties, by showing that no more relations can occur, and by proving that this set of relations does not collapse all the elements. The non-degeneracy of this diagrammatic calculus has then been proved for any root datum of finite type and any field K independently by Kang and Kashiwara [START_REF] Kang | Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras[END_REF], and by Webster [START_REF] Webster | Knot invariants and higher representation theory[END_REF], using non-degeneracy of cyclotomic quotients of the KLR algebras categorifying highest-weight modules of U q (g). However, in infinite types there are weights outside the Tits cone for which cyclotomic quotients provide no information. Webster introduced in [START_REF] Webster | Unfurling Khovanov-Lauda-Rouquier algebras[END_REF] unfurlings of the KLR algebras to solve this issue and to prove the non-degeneracy in the general case. In this work, we prove these results using rewriting methods. We restrict our study to the case of simply-laced symmetrizable Kac-Moody algebras, that is Kac-Moody algebras whose Dynkin graph does not admit loops nor multiple edges. In the non simply-laced setting, the relations coming from the KLR algebras are more complicated, their right hand-side being polynomials. However, we expect that these methods extend to the non simply-laced setting. Rouquier defined in [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] a Kac-Moody 2category A(g), which has less generating 2-cells than U (g), so that rewriting in this 2-category is more adapted. Brundan proved in [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF] that the two 2-categories U (g) and A(g) are isomorphic. Therefore, we use rewriting approaches to study A(g) and its diagrammatic presentation given by Brundan, and translate the computations in U (g) through this isomorphism in order to study the non-degeneracy.

1.2.11. Khovanov-Lauda-Rouquier algebras. The family of KLR algebras, also called quiver Hecke algebras, emerged in the process of categorifying quantum groups. These algebras were discovered independently by Rouquier [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF], Khovanov and Lauda [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF] since the category of finitely-generated projective modules over these algebras categorifies the negative part of the associated quantum group, [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups II[END_REF]. Furthermore, these algebras act on some endomorphism spaces of 2-cells of U (g). We recall following [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] the presentation of the KLR algebras (H V (Q)) V∈◆[I] , where I is the set of vertices indexing the Dynkin graph of the Kac-Moody algebra g, and we specialize this definition to Khovanov and Lauda's diagrammatic presentation, denoted by (R(V)) V∈◆[I] in simply-laced type. We also define a linear 2-category C KLR encoding the family of KLR algebras in its spaces of 2-cells, and we construct a polygraphic presentation KLR of C KLR . We then establish the first main result of this Chapter: Theorem 6.1.6. The linear (3, 2)-polygraph KLR is a convergent presentation of the linear 2-category C KLR .

As a consequence, we obtain linear bases for each algebra R(V) by computing monomials in normal form with respect to KLR. In particular, we recover the linear bases described by Khovanov and Lauda in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF]Theorem 2.5]. Following [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF]Theorem 3.7], we prove that these bases are Poincaré-Birkhoff-Witt bases.

1.2.12. Non-degeneracy of Khovanov-Lauda's calculus. In Section 6.2, we recall Brundan's isomorphism between the 2-categories A(g) and U (g) with the definition of the additional generators and relations provided by these. We prove some further relations in A(g) in order to obtain symmetries in the set of relations. We then define a polyraphic presentation KLR of A(g), that we split into two parts following the ideas of Chapter 5: a convergent linear (3, 2)-polygraph E containing all isotopy 3-cells and a linear (3, 2)-polygraph R containing the remaining 3-cells. We then prove the second main result of this Chapter: Theorem 6.2.16. Let (R, E) be the convergent splitting of KLR defined in Section 6.2. [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF].

Then E R is quasi-terminating and E R is confluent modulo E.
As a consequence, for any 1-cells E i 1 λ and E j 1 λ of U (g), fixing a set of monomials in quasi-normal forms with 1-source E i 1 λ and 1-target E j 1 λ , and taking their normal form with respect to E gives a linear basis of U (g)(E i 1 λ , E j 1 λ ). Therefore the following result holds: Theorem 6.2.30. The set B i,j,λ , defined in Section 6.2.29, is a linear basis of U (g)(E i 1 λ , E j 1 λ ).

We prove that these sets B i,j,λ for any 1-cells i,j and any λ in X correspond to a particular choice for Khovanov and Lauda's expected bases, see [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF]Section 3.2.3]. This proves the non-degeneracy of their diagrammatic calculus in that case, and thus that for a simply-laced symmetrizable Kac-Moody algebra g, the linear 2-category U (g) is a categorification of the Lusztig's quantum group U q (g) associated with g.

Algebraic polygraphs and critical branching lemma

As explained above and illustrated in chapters 2, 4 and 5, many rewriting results are based on the notion of confluent (resp. confluent modulo) presentations. We have seen that one of the main tools to reach confluence for algebraic rewriting systems is the critical branching lemma, [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF], stating that local confluence can be obtained by a finite checking of minimal overlappings between two reductions. The critical pair completion (CPC) is an approach developed in the mid sixties that combines completion procedure and the notion of critical pair [START_REF] Buchberger | History and basic features of the critical-pair/completion procedure[END_REF]. It originates from theorem proving [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF], polynomial ideal theory [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF], and the word problem [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF]. In the mid eighties, it has found deep applications in algebra to solve coherence problems [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], or to compute homological invariants [START_REF] Squier | The word problem for finitely presented monoids and finite canonical rewriting systems[END_REF]. More recently, higherdimensional extensions of the CPC approach were used for the computation of cofibrant replacements of algebraic and categorical structures [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. These constructions based on CPC are known for monoids, small categories, and algebras over a field. However, the extension of these methods to a wide range of algebraic structures is made difficult because of the interaction between the rewriting rules and the inherent axioms of the algebraic structure. For this reason, the higher-dimensional extensions of the CPC approach for a wide range of algebraic structures, including groups, Lie algebras, is still an open problem.

1.2.13. Critical branching lemma. Nivat showed in [START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF] that the local confluence of a string rewriting system is decidable, whether it is terminating or not. The proof of this result is based on classification of the local branchings into orthogonal branchings, that involve two rules that do not overlap, and overlapping branchings. When the orthogonal branchings are confluent, if all critical branchings are confluent, then local confluence holds. Thus, the main argument to achieve critical branching lemma is to prove that orthogonal and overlapping branchings are confluent. For string and term rewriting systems, orthogonal branchings are always confluent, and confluence of critical branchings implies confluence of overlapping branchings. The situation is more complicated for rewriting systems on a linear structure, as explained in Section 2.9.1.

The well known approaches of rewriting in the linear context consist in orienting the rules with respect to an ambiant monomial order, and critical branching lemma is well known in this context. However, with approach of linear rewriting where the orientation of rules does not depend of a monomial order introduced in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], there are two conditions to guarantee a critical branching lemma, namely termination and positivity of reductions. A positive reduction for a linear rewriting system, as defined in Section 2.8.3, is the application of a reduction rule on a monomial that does not appear in the polynomial context. For instance, consider the linear rewriting system on an associative algebra over a field K given in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] defined by the rules α : xy → xz and β : zt → 2yt. Following Remark 2.9.3, it has no critical branching, but one non-confluent orthogonal branching, proving that the lack of termination is an obstruction to confluence of orthogonal branchings.

1.2.14. An algebraic critical branching lemma. In Chapter 7, we introduce a categorical model for rewriting in algebraic structures which formalizes the interaction between the rules of the rewriting system and the inherent axioms of the algebraic structure. In Section 7.1, we recall the notion of cartesian 2-dimensional polygraph introduced in [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF], corresponding to rewriting systems that present a Lawvere algebraic theory. A cartesian 2-polygraph defines a categorical interpretation of term rewriting systems. It is defined by an equational signature (P 0 , P 1 ) made of sorts and operations, and a cellular extension of the free algebraic theory P × 1 on (P 0 , P 1 ). One defines in Section 7.3 the structure of algebraic polygraph as a data made of a cartesian 2-polygraph P and a set Q of or generating ground 1-cells (or constants) and a cellular extension R on the set of ground 1-cells.

We introduce an algebraic setting for the formulation of the critical branching lemma. We define the structure of algebraic polygraph modulo which formalizes the interaction between the rules of the rewriting system and the inherent axioms of the algebraic structure. We introduce rewriting strategies based on the choice of only some rewriting steps, depending on whether their source is a normal form or not with respect to the inherent algebraic axioms. We then introduce rewriting properties with respect to these strategies, and prove an extension of the terminating Newman lemma modulo proved in Chapter 4, for quasi-terminating algebraic polygraphs modulo. We then prove a critical branching lemma for algebraic polygraphs modulo. We deduce from this result a critical branching lemma for rewriting systems on algebraic structures whose axioms are specified by term rewriting systems satisfying appropriate convergence relations modulo associativity and commutativity. Finally, we explicit our results in linear rewriting, and explain why termination is a necessary condition to characterize local confluence in that case. Rewriting theory is a combinatorial theory of equivalence classes, [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF], allowing to transform one object into another by successive applications of moves, or oriented relations. It originates from combinatorial algebra, and was introduced by Thue when he considered systems of transformation rules on combinatorial objects such as strings, trees or graphs in order to solve the world problem. Rewriting tools have then been developed in many domains in theoretical computer science, and more recently in various algebraic contexts. Algebraic rewriting consists in studying presentations by generators and relations of algebraic structures by orienting the relations. Many constructions of this thesis are based on the notion of presentations of higher-dimensional globular strict categories (resp. linear categories) by generating systems called polygraphs, or computads, introduced independently by Burroni [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF] and Street [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Street | The algebra of oriented simplexes[END_REF]. This chapter is a preliminary chapter recalling all the rewriting properties of polygraphs and rewriting results that are used in the sequel. At first, we recall the notion of abstract rewriting system, that we see as a 1-polygraph consisting of a set of objects and a set of oriented relations between these objects. We introduce the abstract rewriting properties of termination, confluence, convergence and decreasingness in this context. We extend those definitions to the context of rewriting modulo some non-oriented relations. We then rise in dimensions by giving properties of presentations of higher-dimensional globular strict categories by higher-dimensional polygraphs, and give local criteria to reach confluence of these polygraphs from confluence of minimal overlappings of relations, called critical branchings. We then expand these constructions in the dimensions of string rewriting systems (2-polygraphs) and of 2-categories with string diagrams (3-polygraphs).

CHAPTER 2

In the last part of this Chapter, we recall following [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF][START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF] the linear rewriting theory. In particular, we define the notion of linear polygraphs as a presentation of higher-dimensional linear categories, and expand their rewriting properties, which differ from the non-linear case by the fact that we have to restrict the allowed reductions because of the linear context. We then recall from [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] the linear critical branching lemma.

ABSTRACT REWRITING

2.1.1. Abstract rewriting systems. An abstract rewriting system is a data made of a set X and a relation → on X, that is a subset R of X × X whose elements (x, y) are denoted by x → y. In that case, we say that x → y is a rewriting step from x to y.

Throughout this section, we fix (X, →) an abstract rewriting system. The transitive (resp. transitive reflexive, symmetric transitive) closure of → will be denoted by + → (resp. * →, * ↔). Thus recall that for any x and y in X, we have i) x + → y if and only if there exists n ≥ 1 and a family (x k ) 1≤k≤n of elements of X such that x = x 1 , y = x n and x k → x k+1 for any 0 ≤ k ≤ n -1. If x + → y, we say that there x rewrites to y.

ii) x * → y if and only if x = y or x + → y. If x * → y, we say there there is a rewriting sequence from x to y.

iii) x * ↔ if and only if there exists n ≥ 1 and a family (x k ) 1≤k≤n of elements of X such that

x = x 1 * → x 2 * ← x 3 * → . . . * → x n = y.
2.1.2. 1-polygraphs. The notion of abstract rewriting system can be encapsulated in the terminology of 1-polygraphs. A 1-polygraph is a direct graph P, that is it consists in a diagram of sets and maps

P 0 P 1 s 0 o o t 0 o o
where the set P 0 correspond to the vertices of P and P 1 are edges in P. The maps s 0 and t 0 are source and target maps of edges in P 1 . The elements of P i are called i-cells, for i = 0, 1. A 1-polygraph is said finite if it has finitely many 0-cells. An abstract rewriting system (X, →) can then be seen as a 1-polygraph whose 0-cells are the elements of X and whose 1-cells are edges with 1-source x and target y whenever x → y in (X, →).

Let us now introduce some categorical material needed to introduce rewriting properties of 1-polygraphs that we use in the sequel. These definitions are expanded in the more general context of n-polygraphs in Section 2.4.3. Given a 1-polygraph P = (P 0 , P 1 ), the free (1-)category generated by P is the category denoted by P * 1 and defined as follows: i) the 0-cells of P * 1 are the ones of P, ii) the 1-cells of P * 1 from x to y are the finite paths of P, i.e. the finite sequences

x u 1 G G x 1 u 2 G G x 2 u 3 G G . . . u n-1 G G x n-1 un G G y
of 1-cells of P. Such a path is said to be of length n, and we denote by ℓ the length function.

iii) the composition of 1-cells is given by concatenation of paths, and the identities are the empty paths x → x.

In this interpretation of an abstract rewriting system as a 1-polygraph, we have that x * → y if and only if there exists a 1-cell f : x → y in P * 1 . This will still be denoted by x * → y. Therefore, a rewriting step corresponds to a 1-cell of P * 1 of length 1, we still denote by x → y if there is a rewriting step with 0-source x and 0-target y. Similarly, the free (1, 0)-category generated by P is the 1-category denoted by P ⊤ 1 whose 0-cells are the ones of P, and whose 1-cells with 0-source x and 0-target y are given by P ⊤ 1 (x, y) = (P 1 ∐ P - 1 ) * (x, y)/Inv(P 1 ), where: i) the 1-polygraph P -is defined from P by reversing its 1-cells, that is P - 1 = {t 0 (u) → s 0 (u)|u ∈ P 1 }. ii) Inv(P 1 ) is a cellular extension of (P 1 P - 1 ) * , as defined in Section 2.1.3, that contains the following families of relations for every 1-cell u : x → y of P:

u ⋆ 0 u -⇒ 1 s 0 (u) , u -⋆ 0 u ⇒ 1 t 0 (u) ,
where 1 y denotes the identity 1-cell on the 0-cell y. In the quotient category P ⊤ 1 (x, y), the 1-cells u ⋆ 0 u -(resp. u -⋆ 0 u) and 1 s 0 (u) (resp. 1 t 0 (u) ) are thus equal.

Namely, there is a 1-cell in P ⊤ 1 with 0-source x and 0-target y if and only if there exists a zigzag sequence

x u 1 G G x 1 x 2 u 2 o o u 3 G G . . . x n-2 u n-2 o o u n-1 G G x n-1 un G G y ,
where each u i is a 1-cell of P * 1 for 1 ≤ i ≤ n. We will recall more about (n, p)-categories in the sequel.

Spheres and cellular extensions.

A sphere of a 1-category C is a pair (u, v) of 1-cells u and v of C such that s 0 (u) = s 0 (v) and t 0 (u) = t 0 (v). Such 1-cells are said parallel. We denote by Sph(C) the set of all spheres of C. The 1-cell u (resp. v) is then called the source (resp. target) of the sphere (u, v). A cellular extension of C is a set Γ equipped with a map from Γ to Sph(C). It is equivalent to the data of a set Γ and two maps s 1 , t 1 : Γ → C satisfying the globular relations:

s 0 s 1 = s 0 t 1 , t 0 s 1 = t 0 t 1 .
Note that the elements of such a cellular extension Γ can be seen as formal 2-cells tiling the corresponding spheres of Γ :

x u 1 1 v c c y γ for (u, v) ∈ Γ .
In the sequel, many rewriting properties of a 1-polygraph P are defined in terms of a cellular extension Γ of P ⊤ 1 . We denote by Γ ⊤ 2 the free (2, 1)-category generated by the (2, 1)-polygraph (P 0 , P 1 , Γ ∪ Γ -), as defined in Section 2.4.6. Explicitely, the (2, 1)-category Γ ⊤ 2 is the 2-category defined as follows: i) the 0-cells of Γ ⊤ 2 are the ones of P, ii) for any 0-cells x and y of P, the category Γ ⊤ 2 (x, y) is defined as: • the free (1, 0)-category over the 1-polygraph whose 0-cells are the 1-cells in P * 1 (x, y), and whose 1-cells are elements of the form

x ′ w G G x u 1 1 v c c y w ′ G G y ′ γ with γ : u ⇒ v in Γ and w,w ′ in P * 1
• quotiented by the congruence generated by the cellular extension made of all the relations αwv ⋆ 1 u ′ wβ ∼ = uwβ ⋆ 1 αwv ′ for all α : u ⇒ u ′ and β : v ⇒ v ′ in Γ and w ∈ P * 1 such that both sides are well-defined.

iii) for any 0-cells x, y and z of P, the composition functor ⋆ 0 is given by concatenation on 1-cells and, on 2-cells, as follows:

(u 1 α 1 u ′ 1 ⋆ 1 • • • ⋆ 1 u m α m u ′ m ) ⋆ 0 (v 1 β 1 v ′ 1 ⋆ 1 • • • ⋆ 1 v n β n v ′ n ) =u 1 α 1 u ′ 1 v 1 s 1 (β 1 )v ′ 1 ⋆ 1 • • • ⋆ 1 u m α m u ′ m v 1 s(β 1 )v ′ 1 ⋆ 1 u m t(α m )u ′ m v 1 β 1 v ′ 1 ⋆ 1 • • • ⋆ 1 u m t 1 (α m )u ′ m v n β n v ′ n .
Let us also recall for the purposes of the following definitions that there are two ways to compose 1-cells in a 2-category:

x u ( ( v d d y u ′ ( ( v ′ f f z α β ⋆ 0 x u⋆ 0 u ′ ( ( v⋆ 0 v ′ f f z α⋆ 0 β , x u ( ( v G G w d d y α β ⋆ 1 → x u ( ( w f f z α⋆ 1 β
and that these compositions are required to satisfy the exchange relation, that is

(α ⋆ 1 α ′ ) ⋆ 0 (β ⋆ 1 β ′ ) = (α ⋆ 0 β) ⋆ 1 (α ′ ⋆ 0 β ′ ). (2.1) 
We will give more details about the properties of globular strict n-categories and (n, p)-categories in Sections 2.4.1 and 2.4.5. For the rest of this section, let us fix a 1-polygraph P = (P 0 , P 1 ), and a cellular extension Γ of the free (1, 0)-category P ⊤ 1 .

2.1.4. Normal forms and quasi-normal forms. We say that a 0-cell x of P is a normal form if there does not exist y in X such that x → y. A normal form of a 0-cell x is a normal form x ′ in P such that x * → x ′ . We say that P is normalizing if all 0-cells of P admit a normal form. We say that a 0-cell x in P is a quasi-normal form if for all 0-cell y in P such that x → y, we have y * → x. A quasi-normal form of x in P 0 is a quasi-normal form x ′ ∈ P 0 such that x * → x ′ . We say that P is quasi-normalizing if all the 0-cells of P admit a quasi-normal form.

For instance, the 1-polygraph having P 0 = {a, b} as a set of 0-cells and two 1-cells α : a → b and β : b → a is quasi-normalizing, since a (resp. b) is a quasi-normal form of b (resp. a). However, P is not normalizing since a does not admit any normal form.

2.1.5. Termination and quasi-termination. The 1-polygraph P is said to be terminating if there does not exist any sequence (u k ) k∈◆ such that u k → u k+1 for all k, namely if there does not exist any infinite rewriting sequence in P. It is said to be quasi-terminating if any infinite sequence (u k ) k∈◆ of 0-cells of P such that u k → u k+1 for all k contains infinitely many occurences of the same 0-cell. In particular, a 1-polygraph is quasi-terminating if the only non-terminating derivations are provided by rewriting loops.

2.1.6. Noetherian induction from termination. If the 1-polygraph P is terminating, the relation + → is well-founded, that is there does not exist any infinite strictly decreasing sequence for this relation. So one can use proofs based on induction on this relation. This is called noetherian induction, and has been introduced by Huet in [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF].

Lemma. Any terminating abstract rewriting system is normalizing

Proof. Proof is made using noetherian induction. Assume that P is terminating, and consider a 0-cell x in P 0 . If x is a normal form, it is a normal form of x. Suppose that for any 0-cell x ′ in P 0 such that x + → x ′ , x ′ admits a normal form x′ . Then x′ is also a normal form of x.

2.1.8. Confluence and local confluence. We say that P is Γ -confluent if for any 1-cells f : x * → y and g : x * → z in P * 1 , there exist 1-cells f ′ and g ′ in P * 1 and a 2-cell γ ∈ Γ ⊤ as depicted in the following diagram:

y f ′ ( ( x f H H g G G t z g ′ g g γ .
The pair of rewriting sequences (f, g) with the same 0-source x is called a branching of the 1-polygraph P with source x. Note that when Γ = Sph(P * 1 ) the set of all 1-spheres in P * 1 , the existence of the 2cell γ is trivial so that this property reduces to the existence of two rewriting sequences closing the branching (f, g). The 1-polygraph P is said to be confluent if it is Sph(P * 1 )-confluent. The 1-polygraph P is said to be locally confluent if for rewriting steps f : x → y and g : x → z, there exists rewriting sequences f ′ and g ′ in P * 1 and a 2-cell γ in Γ ⊤ as above. Similarly, the pair of rewriting steps (f, g) is called a local branching is called a local branching, and P is said to be locally confluent if it is locally Sph(P * 1 )-confluent. We say that the triple (f ′ , g ′ , γ) is a Γ -confluence of the branching (f, g).

2.1.9 Remark. In the sequel, we may use the notation (f : x → y, g : x → z) for both branchings and local branchings with source x, and omit the * on the arrows. However, we will precise the nature of the branching when referring to it, so that there is no ambiguity.

2.1.10 Theorem (Coherent Newman's lemma). Consider a terminating 1-polygraph P, and Γ a cellular extension of

P ⊤ 1 . Then P is Γ -confluent if and only if it is locally Γ -confluent. Proof. If P is Γ -confluent, it is locally Γ -confluent.
Conversely, let us assume that it is locally Γ -confluent, and pick a branching (f : x → y, g : x → z) of P. We prove the confluence of P by Noetherian induction. If x is a normal form of P, then x = y = z. Otherwise, choose some decompositions f = f 1 ⋆ 0 f 2 and g = g 1 ⋆ 0 g 2 where f 1 and g 1 are 1-cells of P * 1 of length 1, and f 2 ,g 2 are in P * 1 . By local Γ -confluence of P, there exists a Γ -confluence (f ′ 1 , g ′ 1 , γ 1 ) of the local branching (f 1 , g 1 ). We then have f 1 : x → t 0 (f 1 ) and by induction hypothesis, there exists a Γ -confluence (f 3 , h, γ 2 ) of the branching (f 2 , f ′ 1 ) of P. By another application of the induction hypothesis on the branching (g 1 ⋆ 0 h, g 2 ) of P with source t 0 (g 1 ), there exists a Γ -confluence (h ′ , g 3 , γ 3 ) of this branching. Finally, this yields a Γ -confluence of the branching (f, g) as summarized on the following diagram:

f 3 6 6 y f ′ 1 6 6 f 2 W W h ′ 5 5 x f 1 W W g 1 7 7 h Y Y z g ′ 1 W W g 2 8 8 g 3 X X γ 1 γ 2 γ 3
This theorem was originally proved by Newman in [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF], and states that under a termination assumption, the confluence of an abstract rewriting system is equivalent to its local confluence.

2.1.11. Church-Rosser's property. The 1-polygraph P is said to be Γ -Church-Rosser if for any 1-cell h in P ⊤ 1 with 0-source x and 0-target y, there exists 1-cells f and g in P * 1 and a 2-cell γ in Γ ⊤ as in the following diagram:

x f 1 1 h G G y g z γ (2.2) 2.1.12 Theorem. A 1-polygraph P is Γ -confluent if and only if it is Γ -Church-Rosser. Proof. By definition, if P is Γ -church Rosser, it is Γ -confluent by considering a 1-cell h of the form x h 1 ← x 0 h 2 → y.
Let us now assume that P is Γ -confluent, and consider a 1-cell h in P ⊤ 1 with 0-source x and 0-target y. Let us proceed by induction on the smallest n such that there exists a sequence

(x k ) 1≤k≤n of elements of X such that x = x 1 ↔ x 2 ↔ • • • ↔ x n-1 ↔ x n = y,
where x i ↔ x i+1 means that either x i reduces into x i+1 or x i+1 reduces into x i with respect to P. We show that there exists positive 1-cells f : x → z and g : y → z in P * 1 and a 2-cell γ as in (2.2). If n = 0, then x = y and we can choose identity cells. If n > 0, using induction hypothesis there exists rewriting steps f ′ : x → t and g ′ : x n-1 → t in P * 1 , and a 2-cell δ as below. We then distinguish between two cases: if y h n-1 → x n-1 , then we choose the rewriting steps (f ′ , h n-1 ⋆ 0 g ′ ) and construct the 2-cell γ as in Case 1 below. If x n-1 → y, we use Γ -confluence to prove the Γ -Church-Rosser property as depicted in Case 2 below.

x f ′ 0 0 o o G G x n-1 g ′ } } y h n-1 o o h n-1 g p p t α 1 x f ′ 0 0 o o h G G x n-1 g ′ } } h n-1 G G y g t f ′′ G G z α β Case 1 Case 2
2.1.13. Convergence. We say that a 1-polygraph P is convergent if it is both terminating and confluent. If P is convergent, any 0-cell of P admits a unique normal form. Indeed, it is in particular terminating and thus normalizing by Lemma 2.1.7. Thus, any 0-cell of P admits at least one normal form, and if it admits two normal forms x 1 and x 2 , then confluence imposes that x 1 = x 2 .

CONFLUENCE BY DECREASINGNESS

Labelled polygraphs.

A well-founded labelled 1-polygraph is a data (P, X, <, ψ) made of:

i) a 1-polygraph P;
ii) a set X;

iii) a well-founded order < on X; iv) a map ψ which associates to each rewriting step f of P an element ψ(f) of X called the label of f.

The map ψ is called a well-founded labelling of P. Given a rewriting sequence

f = f 1 ⋆ 1 . . . ⋆ 1 f k , we denote by L X (f) the set {ψ(f 1 ), . . . , ψ(f k )}.
2.2.2. Labelling to the normal form. Let P be a terminating 1-polygraph, then from Lemma 2.1.7 any 0-cell of P admits a normal form with respect to P. For any 0-cell u in P 0 , fix a normal form u of x with respect to P such that d(u, u), denoting the length of the shortest rewriting sequence from u to u, is minimal. The labelling to the normal form is the map that associates to any rewriting step f of P the integer d(t 0 (f), t 0 (f)). Note that all the proofs made using Noetherian induction defined in Section 2.1.6 can be formalized as proofs by induction on the normal form labelling of the 1-polygraph P.

2.2.3. Labelling to the quasi-normal form. Let P be a quasi-terminating 1-polygraph. Then any 0-cell of P admits a quasi-normal form with respect to P. Let us fix a family of quasi-normal forms Q such that any 0-cell in P 0 rewrites into a 0-cell of Q. For each x in P 0 , let us choose u a quasi-normal form of u in Q such that d(u, u) is minimal. The labelling to the quasi-normal form is the map that associates to any rewriting step f of P the integer d(t 0 (f), t 0 (f)).

Multiset ordering.

Recall that a multiset is a collection in which elements are allowed to occur more than once or even infinitely many times, contrary to an usual set. It is called finite when every element appears a finite number of times. These multisets are equipped with three operations: union ∪, intersection ∩ and difference -.

Given a well-founded set of labels (X, <), we denote by ∨x the multiset {y ∈ X | y < x} for any x in X, and by ∨M the multiset x∈M ∨x for any multiset M over X. The order < extend to a partial order < mult on the multisets over X defined by M < mult N if there exists multisets M 1 , M 2 and M 3 such that

i) M = M 1 ∪ M 2 , N = M 1 ∪ M 3 and M 3 is not empty, ii) M 2 ⊆ ∨M 3 , that is for every x 2 in M 2 , there exists x 3 in M 3 such that x 2 < x 3 .
Following [START_REF] Dershowitz | Proving termination with multiset orderings[END_REF], if < is well-founded, then so is < mult . Let us recall the following lemma from [START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF]Lemma A.3.10] establishing the properties of the operations on multisets, needed to prove confluence from decreasingness: 2.2.5 Lemma. For any multisets M, N and S, the following properties hold: i) ∪ is commutative, associative and admits ∅ as unit element,

ii) ∪ is distributive over ∩, iii) S ∩ (M ∪ N) = (S ∩ M) ∪ (S ∩ N), iv) M ∩ (N -S) = (M ∩ N) -(M ∩ S) v) (M ∩ N) -S = (M -S) ∩ (N -S), vi) (S ∪ M) -N = (S -N) ∪ (M -N), vii) (M ∪ N) -S = (M -S) ∪ (N -S), viii) (M -N) -S = M -(N ∪ S), ix) M = (M ∩ N) ∪ (M -N), x) (M -N) ∩ S = (M ∩ S) -N.
2.2.6. Lexicographic maximum measure. Let (P, X, <, ψ) be a well-founded labelled 1-polygraph. Let x = x 1 . . . x n and x ′ = x ′ 1 . . . x ′ m be two elements in the free monoid X * . We denote by x (x ′ ) the 1-cell x 1 . . . x n where each x i is defined as

-1 if x k < x ′ j for some 1 ≤ m; -x k otherwise.
Following [START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF], we consider the measure | • | from X * to the set of multisets over X and defined as follows:

i) for any x in X, the multiset |x| is the singleton {x}.

ii) for any i in X and any element x of X

* , |ix| = |i| ∪ |x (i) |.
This measure is extended to the set of finite rewriting sequences of P by setting for every rewriting sequence

f 1 ⋆ 1 . . . ⋆ 1 f n : |f 1 ⋆ 1 . . . ⋆ 1 f n | = |k 1 . . . k n |
where each f i is labelled by k i and k 1 . . . k n is a product in the monoid X * . Finally, the measure

| • | is extended to the set of finite branchings (f, g) of P be setting|(f, g)| = |f] ∪ |g|.
Recall from [119, Lemma 3.2] that for any elements x 1 and x 2 in X * , we have

|x 1 x 2 | = |x 1 | ∪ |x (x 1 ) 2 |
and as a consequence, for any rewriting sequences f and g of P, the following relations hold: 

|f ⋆ 1 g| = |f| ∪ |k 1 . . . k (l 1 ...ln) m | where f = f 1 ⋆ 0 . . . ⋆ 0 f n (resp. g = g 0 ⋆ 0 . . . ⋆ 0 g m ) and each f i (resp. g j ) is labelled by l i (resp. k j ). 2 
G G g f ′ g ′′ h 1 g ′ G G f ′′ G G h 2 G G
such that the following properties hold:

i) k < ψ(f) for all k in L X (f ′ ). ii) k < ψ(g) for all k in L X (g ′ ).
iii) f ′′ is an identity or a rewriting step labelled by ψ(f).

iv) g ′′ is an identity or a rewriting step labelled by ψ(g).

v) k < ψ(f) or k < ψ(g) for all k in L X (h 1 ) ∪ L X (h 2 ).
Such a 1-polygraph P is said to be decreasing if all its local branchings are decreasing. Following [START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF] and by Lemma 2.2.5, one may prove the following two lemmas needed in order to establish Theorem 2.2.10.

2.2.8

Lemma. Let (P, X, <, ψ) be a decreasing labelled 1-polygraph. For every diagram of the following form

f ′ 1 & & f 2 8 8 f 1 E E g 1 I I g ′ 1 g g
where f 1 is a non trivial rewriting sequence, f 2 and g 1 are rewriting sequences and the confluence diagram

(f 1 ⋆ 0 f ′ 1 , g 1 ⋆ 0 g ′ 1 ) is decreasing, then the inequality |(f ′ 1 , f 2 )| mult |(g 1 , f 1 ⋆ 0 f 2 )| holds.
2.2.9 Lemma. Let (P, X, <, ψ) be a decreasing labelled 1-polygraph. For every diagram of the following form

γ 1 G G δ 0 δ 1 γ 2 G G δ 2 τ 1 G G τ 2 G G
satisfying:

|δ 0 ⋆ 0 τ 1 | mult |(δ 0 , γ 1 )|, |γ 1 ⋆ 0 δ 1 | mult |(δ 0 , γ 1 )|, |δ 1 ⋆ 0 τ 2 | mult |(δ 1 , γ 2 )|, |γ 2 ⋆ 0 δ 2 | mult |(δ 1 , γ 2 )|,
the following inequalities hold:

|δ 0 ⋆ 0 τ 1 ⋆ 0 τ 2 | mult |(δ 0 , γ 1 ⋆ 0 γ 2 )| and |γ 1 ⋆ 0 γ 2 ⋆ 0 δ 2 | mult |(δ 0 , γ 1 ⋆ 0 γ 2 )|.
2.2.10 Theorem (Confluence from decreasingness, Thm 2.3.5 [START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF]). Any decreasing 1-polygraph is confluent.

Proof. Let (P, X, <) be a decreasing labelled 1-polygraph, and let (f, g) be a non trivial branching of P.

We proceed by well-founded induction on the order < mult on the labellings of branchings. Let us prove that (f, g) can be completed into a confluence

(f ′ , g ′ ) such that |f ⋆ 0 f ′ | mult |(f, g)|, |g ⋆ 0 g ′ | mult |(f, g)|. (2.3) 
Let us choose some decompositions f = f 1 ⋆ 0 f 2 and g = g 1 ⋆ 0 g 2 where f 1 and g 1 are rewriting steps of P and f 2 ,g 2 are 1-cells of P * 1 . By decreasingness assumption, there exists a decreasing confluence (f ′ 1 , g ′ 1 ) of the local branching (f 1 , g 1 ). Then, using induction on the branching (f 2 , f ′ 1 ) whose labelling is smaller than |(f 1 , g 1 )| by decreasingness, we construct a decreasing confluence (f 3 , f ′′ 1 ) of the branching

(f ′ 1 , f ′ 2 ). Now, using Lemma 2.2.8, we have |(g 2 , g ′ 1 ⋆ 0 f ′′ 1 )| < mult |(f, g)| so that we can use induction on the branching (g 2 , g ′ 1 ⋆ 0 f ′′ 1 )
to construct a confluence of (f, g), which satisfies some inequalities of the form (2.3) using Lemmas 2.2.8 and 2.2.9. This is summarized in the following picture:

6 6 y f ′ 1 6 6 f 2 W W 5 5 x f 1 W W g 1 7 7 Y Y z g ′ 1 W W g 2 8 8 X X Decr. Ind Ind

ABSTRACT REWRITING MODULO

Let us denote by ∼ the congruence generated by E, that is ∼ = * ↔ E and by ⊢⊣ the one-step congruence of ∼, that is for any x and x ′ in X,

x ⊢⊣ x ′ if and only if x → E x ′ or x ← E x ′ .

Example.

Given a set X and two binary relations → R and → E on X, we consider three prototypical examples of abstract rewriting systems built from this data:

i) The rewriting system E R E that consists in rewriting with → R on E-equivalence classes, that is

x

→ E R E y if and only if ∃ x ′ , y ′ ∈ X such that x ∼ x ′ , y ∼ y ′ and x ′ → R y ′ .
ii) The rewriting system E R that consists in rewriting with → R with E-matching on the sources of reductions:

x → E R y if and only if ∃ x ′ ∈ X such that x ∼ x ′ and x ′ → R y.
iii) The rewriting system R E that consists in rewriting with → R with E-matching on the targets of reductions:

x → R E y if and only if ∃ y ′ ∈ X such that y ∼ y ′ and x → R y ′ .
Following [START_REF] Jouannaud | Completion of a set of rules modulo a set of equations[END_REF], a abstract rewriting system modulo is a quadruple

(X, → R , → E , → S ) satisfying → R ⊆→ S ⊆→ E R E . 2.3.3. 1-polygraphs modulo.
As in Section 2.1.2, the abstract rewriting systems (X, → R ) and (X, → E ) can be considered as 1-polygraphs (X, R) and (X, E) whose respective source and target maps are denoted by s R 0 , t R 0 and s E 0 , t E 0 . We the define the cellular extension E R E on X by the set of spheres (s E 0 (e), t E 0 (e ′ )) where:

i) e and e ′ are 1-cells of the free

(1, 0)-category E ⊤ generated by the 1-polygraph (X, E), ii) there is a rewriting step f in R * such that s R 0 (f) = t E 0 (e) and t R 0 (f) = s E 0 (e ′ ).
Therefore, a rewriting step from u to v in E R E is given by a composite

u e ↔ u ′ f → v ′ e ′ ↔ v
where e and e ′ are 1-cells of E ⊤ and f is a rewriting step of R. A 1-polygraph modulo is then the data of (X, R, E, S) where (X, R) and (X, E) are two 1-polygraphs, and S is a cellular extension on X such that the inclusion R ⊆ S ⊆ E R E holds. When there is no ambiguity, such a 1-polygraph modulo will be denoted by (X, S) or simply by S.

E-equivalence. If (X, E

) is a 1-polygraph as above, we denote by x e ∼ y if there exists a 1-cell e : x → y in the free (1, 0)-category E ⊤ generated by E. If moreover we have that ℓ(e) = 1 in E ⊤ , this is denoted by x e ⊢⊣ y.

Confluence modulo.

A 1-polygraph modulo (X, S) is said to be confluent modulo E if for any x and y in X such that x e ∼ y, and for any rewriting sequences f : x → x ′ and g : y → y ′ in S * , one of them possibly being an identity, there exists rewriting sequences f ′′ : x ′ → x ′′ and g ′′ : y ′ → y ′′ in S * such that x ′′ e ′ ∼ y ′′ , as depicted on the following diagram:

x e f G G x ′ f ′ G G x ′′ e ′ y g G G y ′ g ′ G G y ′′
The triple (f, e, g) is then called a branching modulo of the 1-polygraph modulo (X, S), and the triple (f ′ , e ′ , g ′ ) is called a confluence modulo of this branching. i) y ≺ x, for any x, y ∈ X such that there exists a rewriting sequence x * → R y,

2.3.6. Termination. Given a 1-polygraph modulo (X, R, E, S), if S = R then E R
ii) if y ≺ x for x, y ∈ X, then y ′ ≺ x ′ holds for any x ′ , y ′ ∈ X such that x ∼ x ′ and y ∼ y ′ .

A termination order for R modulo E is a well-founded order relation compatible with R modulo E. Many results of rewriting modulo will need the termination of the rewriting system E R E , which can be proved by constructing a termination order either for E R, R E and E R E , or by constructing a termination order for R compatible with E.

2.3.7. Normal forms. An element x ∈ X is S-reduced if it cannot be reduced by any rewriting step of S. A S-normal form for an element x ∈ X is an S-reduced element y in X such that there is a 1-cell f in S * with 0-source x and 0-target y. We will denote by Irr(S) the set of S-reduced elements of X, and by NF(S, x) the set of S-normal forms of an element x of X. If S is terminating, every element of X admits at least one S-normal form. If moreover S is confluent modulo E, then any x in X may admit manyr normal forms with respect to S, but all these normal forms are E-equivalent. Actually, the following result is proved in [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF]:

2.3.8 Lemma.
Let us denote by ≡ the congruence generated by the coproduct 1-polygraph (X, R ∪ E).

If S is terminating, then S is confluent modulo E if and only if for any x, y ∈ X such that x ≡ y, then x ∼ ŷ for any S-normal form x (resp. ŷ) of x (resp. y).

2.3.9. Double Noetherian induction. Let us recall the double Noetherian induction principle introduced by Huet in [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF] to prove the equivalence between confluence modulo and local confluence modulo under a termination hypothesis. Let us fix a 1-polygraph modulo (X, R, E, S) and construct the auxiliary 1-polygraph (X × X, S ∐ ) as follows: there is a rewriting step (x, y) → (x ′ , y ′ ) in S ∐ in any of the following situations:

i) x * → x ′ with respect to S and y = y ′ ;

ii) x * → x ′ and x * → y ′ with respect to S;

iii) x = x ′ and y * → y ′ with respect to S;

iv) y * → x ′ and y * → y ′ with respect to S; v) x e 1 ∼ y ∼ x ′ e 2 ∼ y ′ with ℓ(e 1 ) > ℓ(e 2 ).
Note that this definition implies that, if u → u ′ and v → v ′ with respect to S, then there is a rewriting sequence (u, v) → (u ′ , v ′ ) in S ∐ given by the following reduction:

(u, v) → (u ′ , v) → (u ′ , v ′ ). 2.3.10 Lemma ([56], Prop. 2.2). If E R E is a terminating 1-polygraph, then so is S ∐ .
2.3.11. Church-Rosser modulo property. We say that a 1-polygraph modulo (X, R, E, S) is Church-Rosser modulo E if for any 0-cells u,v in R 0 such that there exist a zig-zag sequence

u f 1 G G u 1 u 2 f 2 o o f 3 G G . . . f n-2 G G u n-1 u n fn G G f n-1 o o v
where the f i are 1-cells of E ⊤ or R ⊤ , there exist rewriting sequences

f ′ : u → u ′ and g ′ : v → v in S * such that u ′ e ∼ v ′ .
In particular, when S is normalizing, the Church-Rosser modulo property implies that for any 0-cells u and v such that u = v in the category presented by the coproduct 1-polygraph (X, R ∪ E), two normal forms û and v of u and v respectively with respect to S are equivalent modulo E.

2.3.12. Jouannaud-Kirchner confluence modulo. In [START_REF] Jouannaud | Completion of a set of rules modulo a set of equations[END_REF], Jouannaud and Kirchner introduced another notion of confluence modulo E, given by two properties that they call confluence modulo E and coherence modulo E. We say that a

1-polygraph modulo (X, R, E, S) is i) JK confluent modulo E if any branching (f, g) of S is confluent modulo E: u = f G G v f ′ G G v ′ e u g G G w g ′ G G w ′ ii) JK coherent modulo E, if any branching (f, e) : u → (u ′ , v) modulo E is confluent modulo E: u f G G e v f ′ G G v ′ e ′ u ′ g ′ G G w
with g ′ being a non-identity rewriting sequence of S.

However, we prove that this notion of confluence modulo is equivalent to that defined in Section 2.3.5.

Lemma.

For any linear 1-polygraph modulo (X, R, E, S) such that S is terminating, the following assertions are equivalent:

i) S is confluent modulo E.
ii) S is JK confluent modulo E and JK coherent modulo E.

Proof. By definition, the property of confluence modulo E implies both JK confluence modulo E and JK coherence modulo E. Conversely, suppose that the 1-polygraph (X, R, E, S) is JK confluent and JK coherent modulo E and let us consider a branching (f, e, g) of S modulo E. If ℓ(e) = 0, then it is clearly confluent modulo E by JK confluence modulo E so let us assume that ℓ(e) ≥ 1. If g is an identity 1-cell, then the confluence of the branching (f, e) modulo E is given by JK coherence modulo E. Otherwise, by JK coherence modulo E on the branching (f, e), there rewriting sequences f ′ and h in S * with h non trivial and a 1-cell e ′ : t 2 (f ′ ) → t 2 (h) in E ⊤ . Applying JK confluence modulo on the branching (h, g) of S, there exists rewriting sequences g ′ and h ′ in S a st and a 1-cell e ′′ : t 2 (h ′ ) → t 2 (g ′ ) in E ⊤ . By JK coherence modulo E on the branching ((e ′ ) -, h ′ ) modulo E, we get the existence of rewriting sqeucnes f ′′ and h ′′ in S * and a 1-cell e ′′′ : t 2 (f ′′ ) → t 2 (h ′′ ) in E ⊤ as depicted in the following diagram:

u f G G e u ′ f ′ G G u ′′ f ′′ G G e ′ u ′′′ e ′′′ v h G G = w h ′ G G w ′ e ′′ h ′′ G G w ′′ v g G G v ′ g ′ G G v ′′ JK coh. JK confl. JK coh.
At this point, either h ′′ is trivial and thus e ′′′ : u ′′′ → w ′ so that the branching (f, e, g) is confluent modulo, or it is non-trivial and we can apply JK coherence on the branching (h ′′ , e ′′ ). Since S is terminating, this process can not apply infinitely many times, and thus in finitely many steps we prove the confluence modulo of the branching (f, e, g). Now, following [61, Theorem 5] and Lemma 2.3.13, given a linear (3, 2)-polygraph modulo (R, E, S) such that S is terminating, the following properties are equivalent:

i) S is confluent modulo E.
ii) S is Church-Rosser modulo E.

Local confluence modulo.

We say that a branching (f, e, g) of S modulo E is local if f is a rewriting step of S, g is a 1-cell of S * and e is a 1-cell of E ⊤ such that ℓ(g)+ℓ(e) = 1. As a consequence, local branchings are divided into two families:

1. local branchings of the form (f, g), where f and g are rewriting steps of S, 2. local branchings of the form (f, e), where f is a rewriting step of S and e is a one-step Eequivalence.

We say that S is locally confluent modulo E if any of its local branching modulo E is confluent modulo E. Under some termination assumptions, it is proven in Section 4.5 that the set of local branchings that need to be considered to reach local confluence can be reduced: indeed, it suffices to check that the 1-polygraph (X, R, E, S) satisfies the following two properties:

a) for any rewriting steps f : x → y of S and g : x → z of R, there exists a confluence modulo (f ′ , e ′ , g ′ ) of (f, g).

b) for any rewriting step f : x → of S and any 1-cell x e ⊢⊣ x ′ in E ⊤ , there exists a confluence modulo of (f, e). This is depicted in the following diagrams:

a) : x S 1 G G y S * G G y ′ x R 1 G G z S * G G z ′ , b) : x ❴ ❴ S 1 G G x ′ S * G G x ′′ y S * G G y ′ . 2.3.15 Theorem (Newman Lemma modulo). Let (X, R, E, S) be a 1-polygraph modulo such that E R E is terminating, then S is confluent modulo E if and only if it is locally confluent modulo E.
This result was originally proved by Huet in [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF] for the case S = R. In Chapter 4, Section 4.5, this result is proved in the more general setting of Γ -confluence modulo, generalizing Theorem 2.1.10 to this context of cubical confluence diagrams.

HIGHER-DIMENSIONAL POLYGRAPHS

2.4.1. Higher-dimensional categories. If C is a (small, globular, strict) n-category, we denote by C n the set of n-cells in C. For any 0 ≤ k < n and any k-cells p and q in C, we denote by C k+1 (p, q) the set of (k + 1)-cells in C with k-souce p and k-target q. If p is a k-cell of C, we denote respectively by s i (p) and t i (p) the i-source and i-target of p for 0 ≤ i ≤ k -1. These assignments define source and target maps, satisfying the globular relations

s i • s i+1 = s i • t i+1 and t i • s i+1 = t i • t i+1
for any 0 ≤ i ≤ n -2. Two k-cells p and q are i-composable when t i (p) = s i (q). In that case, their i-composition is denoted by p ⋆ i q. The compositions of C satisfy the exchange relations:

(p 1 ⋆ i q 1 ) ⋆ j (p 2 ⋆ i q 2 ) = (p 1 ⋆ j p 2 ) ⋆ i (q 1 ⋆ j q 2 )
for any i < j and for all cells p 1 ,p 2 ,q 1 ,q 2 such that both sides are defined. If p is a k-cell of C, we denote by 1 p its identity (k + 1)-cell. A k-cell p of C is invertible with respect to ⋆ i -composition (i-invertible for short) when there exists a (necessarily unique) k-cell q -in C with i-source t i (p) and i-target s i (p) such that p ⋆ i q = 1 s i (p) and q ⋆ i p = 1 t i (p) (2.4) When i = k -1, we just say that f is invertible and we denote by f -its inverse. Note that if a k-cell f is invertible and if its i-source u and i-target v are invertible, then f is (i-1)-invertible, with (i-1)-inverse given by v

-⋆ i-1 f -⋆ i-1 u -. A 0-sphere of C is a pair γ = (f, g) of 0-cells of C and, for 1 ≤ k ≤ n, a k-sphere of C is a pair S = (f, g) of k-cells of C such that s k-1 (f) = s k-1 (g) and t k-1 (f) = t k-1 (g). The k-cell f (resp. g) is called the source (resp. target) of S denoted by ∂ -(S) (resp. ∂ + (S)). We will denote by Sph k (C) the set of k-spheres of C. If f is a k-cell of C, for 1 ≤ k ≤ n, the boundary of f is the (k -1)-sphere (∂ -(f), ∂ + (f)) denoted by ∂(f). 2.4.2. n-graphs. An n-graph in a category C is a diagram G 0 G 1 s 0 o o t 0 o o . . . s 1 o o t 1 o o G n-1 s n-2 o o t n-2 o o G n s n-1 o o t n-1 o o such that the globular relations s k-1 • s k = s k-1 • t k and t k-1 • s k = t k-1 • t k hold for any 1 ≤ k ≤ n-1.
An n-graph in the category Set is just called an n-graph. The maps s k and t k are respectively called the k-source and k-target maps, for any 0

≤ k ≤ n -1. A morphism of n-graphs F : G → G ′ is a collection (F k : G k → G ′ k )
0≤k≤n of maps such that for all 0 < k ≤ n, the following diagrams commute:

G k-1 F k-1 G k s k-1 o o F k G ′ k-1 G ′ k s ′ k-1 o o G k-1 F k-1 G k t k-1 o o F k G ′ k-1 G ′ k t ′ k-1 o o
We denote by Grph n the category of n-graphs, and by U n the forgetful functor Cat n → Grph n consisting in forgetting the compositions and identities of an n-category C. We also denote by U G n : Grph n+1 → Grph n the forgetful functor consisting in forgetting the elements of G n+1 and the maps s n , t n .

Cellular extensions.

We extend the notion of a cellular extension defined for a free 1-category in Section 2.1.2 to globular n-categories. A cellular extension of an n-category C is a data made of a set Γ together with two maps s n , t n : Γ → C making the diagram

C 0 C 1 s 0 o o t 0 o o . . . s 1 o o t 1 o o C n-1 s n-2 o o t n-2 o o C n s n-1 o o t n-1 o o Γ sn o o tn o o an (n + 1)-graph in Set.
We define the category Cat + n of globular n-categories with a cellular extension by the following pullback diagram in Cat:

Cat + n Grph n+1 Cat n Grph n U G n Un
As a consequence, there exists a forgetful functor Cat n+1 → Cat + n . This functor has a left adjoint

F W n+1 : Cat + n → Cat n+1
, which is explicitely constructed in [START_REF] Franc | Cofibrant objects among higher-dimensional categories[END_REF], and is the free functor assigning to an n-category C with a cellular extension Γ the free (n + 1)-category generated by Γ over C, denoted by C[Γ ]. Such a category is constructed by considering all the formal compositions of elements of Γ , seen as (n + 1)-cells with source and target in C. We denote by (C) Γ the quotient of the n-category C by the congruence generated by Γ , i.e. the n-category one gets from C by identification of the n-cells s n (f) and t n (f), for all (n + 1)-cell f of Γ . 

f n ⋆ n-1 (f n-1 ⋆ n-2 • • • (f 1 ⋆ 0 S ⋆ 0 g 1 ) • • • ⋆ n-2 g n-1 ) ⋆ n-1 g n ,
where S is an (n -1)-sphere and, for every k in {1, . . . , n}, f k and g k are n-cells of C. Moreover, one can choose these cells so that f k and g k are (the identities of) k-cells. A whisker of C is a context with a decomposition

f n-1 ⋆ n-2 • • • (f 1 ⋆ 0 S ⋆ 0 g 1 ) • • • ⋆ n-2 g n-1
such that, for every k in {1, . . . , n -1}, f k and g k are k-cells.

2.4.5. (n, p)-categories. Let p ≤ n. An (n, p)-category is an n-category such that all the k-cells are invertible for any k > p. The category of (n, p)-categories will be denoted by Cat n,p . There is a forgetful functor U n,p : Cat n,p → Grph n . Similarly, the category Cat + n,p of (n, p)-categories with a globular extension is defined by the following pullback diagram:

Cat + n,p Grph n+1 Cat n,p Grph n U G n Un,p
The functor F W n+1 , defined in Section 2.4.3, restricts to a free functor Cat + n,p → Cat n+1,p , and this restriction is denoted by F W n+1,p .

2.4.6. (n, p)-polygraphs. Polygraphs (or computads) are presentations by generators and relations of some higher-dimensional categories [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF], see also [START_REF] Street | The algebra of oriented simplexes[END_REF][START_REF] Street | Higher categories, strings, cubes and simplex equations[END_REF]. We recall for any n ≥ p ≥ 1 the definition of an n-polygraph and of an (n, p)-polygraph. We recall the presentations of (n, p)-categories by (n + 1, p)-polygraphs.

Let us define the category Pol n,p of (n, p)-polygraphs and the free functor F n,p : Pol n,p → Cat n,p constructing the free (n, p)-category generated by an (n, p)-polygraph by induction on n ≥ p. We first set Pol 0,0 = Set and F 0,0 is the identity functor. Let us assume that Pol n,p and F n,p are defined for some n ≥ p ≥ 0. We define Pol n+1,p as the following pullback diagram in Cat:

Pol n+1,p Grph n+1 Pol n,p Cat n,p Grph n U G n+1,p U P n,p U G n Fn,p Un,p
To define the functor F n+1,p , we consider at first the unique functor F P n+1,p making the following diagrams commute:

Pol n+1,p Cat + n,p Grph n+1 Pol n,p Cat n,p Grph n U P n,p F P n+1,p U P n+1,p U G n

Fn,p Un

and define the functor F n+1,p as the composition Pol n+1,p

F P n+1,p G G Cat + n,p F W n+1,p G G Cat n+1,p .
Given an (n, p)-polygraph P, the (n, p)-category F n,p (P) is called the free (n, p)-category generated by P. The fact that the functor F n,p : Pol n,p → Cat n,p is free is proven in [START_REF] Franc | Cofibrant objects among higher-dimensional categories[END_REF]. For n > p, an (n, p)-polygraph can be defined as a data made of an (n -1, p)-polygraph P together with a cellular extension of P ⊤ n-1 .

2.4.7. n-polygraphs. An n-polygraph is an (n, n)-polygraph. In the original paper of Burroni [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF], n-polygraphs were defined inductively as diagrams

P 0 P 1 s 0 ,t 0 x x x x (• • • ) s 1 ,t 1 x x P n-1 s n-2 ,t n-2 w w w w P n s n-1 ,t n-1 x x P 0 P * 1 s 0 ,t 0 o o (• • • ) s 1 ,t 1 o o P * n-1 s n-2 ,t n-2 o o
in the category Set, where for any 1 ≤ k ≤ n -1, P * k is the free k-category generated by the k-polygraph (P 0 , . . . , P k ) such that, for any k in {0, . . . , n -1}, the following two conditions hold:

• The diagram P * 0 P * 1 s 0 o o t 0 o o (• • • ) s 1 o o t 1 o o P * k s k-1 o o t k-1 o o is a k-category, • The diagram P * 0 P * 1 s 0 o o t 0 o o (• • • ) s 1 o o t 1 o o P * k s k-1 o o t k-1 o o P k+1 s k o o t k o o is a (k + 1)-graph.
For an n-polygraph P = (P 0 , . . . , P n ), for any 0 ≤ k ≤ n, we denote by P ≤k := (P 0 , . . . , P k ) its underlying k-polygraph, and by P ≥k := (P k , . . . , P n ) the (nk)-graph given by considering only the sets of i-cells, for i ≥ k. We denote by P * n (resp. P ⊤ n ) the free n-category F n,n (P) (resp. the free (n, n -1)-category F n,n-1 (P)) generated by P. Recall from [51, Proposition 2.1.5] that every n-cell f in P * with size k ≥ 1 has a decomposition

f = C 1 [γ 1 ] ⋆ n-1 • • • ⋆ n-1 C k [γ k ],
where γ 1 , . . . , γ k are generating n-cells of P and C 1 , . . . , C k are whiskers of P * n . We then say that k is the length of the n-cell f, that we denote by ℓ(f) = k. For any 1 ≤ i ≤ n -1 and for any cellular extension Γ ⊆ P i+1 of P * i , we denote by ||f|| Γ the number of occurences of the (i + 1)-cells of Γ in the (i + 1)-cell f of P * i+1 .

2.4.8. Rewriting steps. From now on, we fix an n-polygraph P = (P 0 , . . . , P n ). A rewriting step of P is an n-cell of the free n-category P * n of length 1. Namely, it is an application of a rule γ of P n inside a context C of P * n-1 . As a consequence, to any n-polygraph P = (P 0 , . . . , P n ), we associate the 1-polygraph P ≥n-1 , which has 0-cells the set of (n -1)-cells in P * n-1 and it admits a 1-cell u → v whenever there exists a rewriting step from u to v in P * n . This is an abstract rewriting system in the sense of Section 2.1.2. We thus say that an n-polygraph satisfies the rewriting property P if this abstract rewriting system satisfies P. In this interpretation, an n-cell of P * n with source u and target v corresponds to a rewriting path u * → v in P ≥n-1 and a rewriting step of P is indeed a rewriting step in P ≥n-1 .

2.4.9. Presentation of an n-category. Let C be an n-category, and P be an (n + 1)-polygraph. We say that P is a presentation of C if C is isomorphic to the quotient of the free n-category P * n by the equivalence relation generated by the cellular extension P n+1 . We will denote by P the n-category presented by the polygraph P, that is P := (P * n ) P n+1 .

2.4.10. Homotopy bases and coherent presentations. Given an n-category C, a homotopy basis of C is a cellular extension Γ of C such that for any pair (α, β) of parallel n-cells of C, there exists an (n + 1)cell from α to β in the free (n + 1)-category generated by

(C, Γ ) ∈ Cat + n . A coherent presentation of C is an (n + 2, n)-polygraph such that:
i) The underlying (n + 1)-polygraph P ≤n+1 is a presentation of C, ii) P n+2 is an homotopy basis of the free (n + 1, n)-category P ⊤ n+1 .

CRITICAL BRANCHING LEMMA

For an n-polygraph P, we want to obtain criteria to prove confluence P from local confluence and confluence of overlappings between rewriting steps of P.

2.5.1. Branchings. Recall from Section 2.1.8 that a branching of P is a pair of n-cells of P * n with the same (n -1)-source. A local branching of P is a pair of rewriting steps (f, g) of P n with the same (n -1)-source. Such a branching is confluent if there exists n-cells f ′ and g ′ in P * n such that f ⋆ n-1 f ′ and g ⋆ n-1 g ′ have the same (n -1)-target. In that case, we say that the pair (f ′ , g ′ ) is a confluence of (f, g). Such a confluence is not unique in general. Similarly, given a cellular extension Γ of P * n , a branching (f, g) is said Γ -confluent is there exists n-cells f ′ and g ′ as above together with an 

(n + 1)-cell γ in Γ ⊤ such that s n (γ) = f ⋆ n-1 f ′ and t n (γ) = g ⋆ n-1 g ′ . The triple (f ′ , g ′ , γ) is called a Γ -confluence of the branching (f, g).
u ′ ⋆ k v u ⋆ i v α⋆ i v Q Q u⋆ i β B B u ⋆ i v ′ iii)
Overlapping branchings, which are all the remaining local branchings.

Critical branchings.

Let ⊏ be the order relation on

P * n-1 defined by u ⊏ v if there exists a context C of P * n-1 such that v = C[u].
A critical branching in P is an overlapping branching of P whose source is a minimal (n -1)-cell for the relation order ⊏.

Theorem (Critical pair lemma). An n-polygraph P is locally confluent if and only if all the critical branchings of P are confluent.

Proof. If P is locally confluent, then the critical branchings of P are confluent by definition. Assume now that all critical branchings of P are confluent, and let us consider a local branching (α, β) of P. We have to distinguish three cases. If (α, β) is an aspherical branching, that is α = β, then it is trivially confluent via the confluence

(1 t n-1 (α) , 1 t n-1 (α) ). If (α, β) = (α ′ ⋆ i v, u ⋆ i β ′ ) is a Peiffer branching, then it is confluent via the confluence (u ′ ⋆ i β ′ , α ′ ⋆ i v ′ ). If (α, β
) is an overlapping branching, there exists a critical branching (α 0 , β 0 ) of P and a context

C of P * n-1 such that α = C[α 0 ] and β = C[β 0 ].
By assumption, the critical branching (α 0 , β 0 ) is confluent, so there exists a confluence (α ′ 0 , β ′ 0 ) of this critical branching, and we then check that

(C[α ′ 0 , β ′ 0 ]
) is a confluence of (α, β).

2.5.5. Coherence from convergence. Let us fix a convergent n-polygraph P = (P 0 , . . . , P n ). Recall following [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF] that a family of generating confluences of P is a cellular extension of P ⊤ n containing exactly one

(n + 1)-cell A f,g of the form v f ′ ( ( u f H H g E E u ′ w g ′ h h A f,g
for any critical branching (f, g) of P and any choice of a confluence (f ′ , g ′ ) of (f, g). Note that an n-polygraph always admits a family of generating confluences, but is it not unique in general since a given critical branching may admit several confluences. In [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], a determinstic way is given to construct a family of generating confluences, using the notion of normalisation strategies.

A Squier's completion of P is the (n + 1, n -1)-polygraph denoted by S(P) defined by S(P) ≤n = P and S(P) n+1 is a choice of a family of generating confluences of P. By the following result, then Squier's completion gives a way to obtain a coherent presentation of a category C from a convergent presentation of C: 2.5.6 Theorem ( [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], Thm 5.2). Let P be a convergent n-polygraph. Every family of generating confluences of P is a homotopy basis of P ⊤ .

Proof. Let us fix a family of generating confluences Γ of P, and denote by S(P) the associated Squier compltion. We proceed in three steps, following [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF].

Step 1. We prove that, for every local branching (f, g) : u → (v, w) of P, there exist a Γ -confluence (f ′ , g ′ , α) of (f, g). If (f, g) is an aspherical or Peiffer branching, we can choose n-cells f ′ and g ′ in P * n such that f⋆ n-1 f ′ = g⋆ n-1 g ′ , and then α is an identity (n+1)-cell. Moreover, if (f, g) is an overlapping branching that is not critical, there exists a context

C of P * n such that (f, g) = (C[f ′ ], C[g ′ ])
, and (f ′ , g ′ ) is a critical branching of P. We consider the chosen confluence (f ′′ , g ′′ ) of the critical branching (f ′ , g ′ ), and the (n + 1)-cell A f ′ ,g ′ of S(P) corresponding to this confluence. We conclude that (f, g) admits the

Γ -confluence (C[f ′′ ], C[g ′′ ], A f ′ ,g ′ ).
Step 2. We prove that, for every parallel n-cells f and g of P * n such that t n-1 (f) = t n-1 (g) is a normal form, there exists an (n + 1)-cell with n-source f and n-target g in S(P) ⊤ . Using the termination of P, we proceed by noetherian induction on the source u of the branching (f, g). If u is a normal form, then both f and g are the identity 1-cell on u, so that 1 1u : 1 u ⇒ 1 u is an (n + 1)-cell of S(P) ⊤ from f to g. Now, assume that for any (n -1)-cell v of P * n-1 such that there is a rewriting step from u to v in P, and for any parallel n-cells f, g : u → v = û of P * n , there exists an (n + 1)-cell with n-source f and n-target g in S(P) ⊤ . Let us consider such n-cells f and g. Since the source u of the branching (f, g) is not a normal form by assumption, we can choose decompositions f = f 1 ⋆ n-1 f 2 and g = g 1 ⋆ n-1 g 2 where f 1 and g 1 are rewriting steps of P, and f 2 ,g 2 are n-cells in P * n . Using Step 1 on the local branching (f 1 , g 1 ), there exists a Γ -confluence

(f ′ 1 , g ′ 1 , γ) of this branching. Then, denote by u ′ = t n-1 (f ′ 1 ) = t n-1 (g ′ 1 )
and consider an n-cell h : u ′ → û in P * n , that must exist by confluence of P. Then, using the induction hypothesis on the confluent branchings

(f ′ 1 ⋆ n-1 h, f 2 ) and (g ′ 1 ⋆ n-1 h, g 2 )
, there exists (n + 1)-cells β 1 and β 2 in S(P) ⊤ as follows:

u 1 f ′ 1 1 1 f 2 5 5 α u f & & g h h f 1 V V g 1 8 8 u ′ h G G u v 1 g ′ 1 c c g 2 Y Y = = β 1 β 2
Step 3. We prove that every n-sphere of P ⊤ n is the boundary of an (n + 1)-cell of S(P) ⊤ . First, let us consider an n-cell f : u → v in P * n . Using the confluence of P, we can choose n-cells σ u : u ⇒ u and

σ v : v ⇒ v = u in P * n .
By construction, the n-cells f ⋆ n-1 σ v and σ u are parallel and their common target u is a normal form. Thus, using Step 2, there exists an (n + 1)-cell with n-source f ⋆ 1 σ v and n-target σ u in S(P) ⊤ . Equivalently, there is an (n + 1)-cell with n-source f and n-target

σ u ⋆ n-1 σ - v in S(P) ⊤ , denoted by σ f . Moreover, the (n + 1, n -1)-category S(P) ⊤ contains an (n + 1)- cell σ f -: f -⇒ σ v ⋆ 1 σ - u ,
given by the following composite:

u σ - v # # v f - G G u f X X σu S S v σv G G u σ - u G G u σ - f Now, let us consider an n-cell f : u → v of P ⊤ n , and consider a decomposition f = f 1 ⋆ n-1 g - 1 ⋆ n-1 f 2 ⋆ n-1 • • • ⋆ n-1 g - n-1 ⋆ n-1 f n ⋆ n-1 g - n into a zigzag of n-cells in P * n .
We define σ f as the following composite (n + 1)-cell of S(P) ⊤ , with source f and target

σ u ⋆ 1 σ - v : u f 1 G G σu @ @ v 1 g - 1 G G σv 1 4 4 
(• • • ) fn G G σu n 4 4 v n g - n G G σv n 4 4 v u σ - v 1 `u σ - u 2 (• • • ) u σ - vn `u σ - v h h σ f 1 σ g - 1 σ fn σ g - n = =
Similarly, for any other n-cell g : u → v of P ⊤ n , there is an

(n + 1)-cell σ g : g ⇒ σ u ⋆ 1 σ - v in S(P) ⊤ . Thus, the composite σ f ⋆ n σ -
g is an (n + 1)-cell with n-source f and n-target g in S(P) ⊤ .

2.5.7. Polygraphic resolutions from convergence. In [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], Guiraud and Malbos give a procedure to compute Squier completions in above dimensions. Explicitely, given a convergent n-polygraph P, one can complete P into an (∞, 1)-polygraph c ∞ (P). The k-cells of c ∞ (P) for k ≤ n are the ones of P, and the (n + 1)-cells of c ∞ (P) are given by a Squier completion of P. To describe the next dimension of c ∞ (P), we consider the critical triple branchings, that is minimal overlappings of three n-cells (f, g, h).

Using a normalisation strategy σ, we build the (n + 2)-cell A f,g,h corresponding to this triple critical branching as follows:

v σv % % α v σv % % γ u f U U g G G h 8 8 w β σw G G u A f,g,h * R u f U U h 8 8 u x σx p p x σx p p
where α, β and γ are (n + 1)-cells in c ∞ (P) ≤n+1 built from a Squier completion of P and the normalisation strategy σ. The next step of the resolution would be to define (n + 3)-cells between parallel (n + 2)-cells in c ∞ (P) ⊤ ≤n+2 by considering critical 4-fold branchings, that is minimal overlappings of four rewriting steps (f, g, h, k). In higher dimensions, we build the (n + l)-cells of the resolution from the critical (l -1)-fold branchings.

Theorem ([53], Thm 4.5.3). If an n-polygraph P is a convergent presentation of an

(n -1)- category C, then c ∞ (P) is a polygraphic resolution of C.
The (∞, 1)-polygraph c ∞ (P) is a polygraphic resolution of the category C in the sense of Métayer [START_REF] Franc | Resolutions by polygraphs[END_REF], since it produces a cofibrant approximation of C, that is a free object which is homotopically equivalent to C in the canonical model structure on ∞-categories [START_REF] Lafont | A folk model structure on omega-cat[END_REF].

2.5.9. Termination orders of n-polygraphs. Given an n-polygraph P, a termination order on P is a strict order relation ≺ on P * n-1 such that:

i) for each parallel (n -2)-cells u and v of P * n-2 , the restriction of ≺ to P * n-1 (u, v) is a well-founded order;

ii) for any (n -1)-cells f and g of P *

n-1 such that g rewrites into f, then f ≺ g.

iii) for any parallel (n -1)-cells f and g such that f ≺ g and any context

C of P * n-1 , we have C[f] ≺ C[g].
Such a termination order is called a total termination order when we require the further assumption that its restriction to P * n-1 (u, v) also is a total order. Note that a total termination order for an n-polygraph P does not always exist, see the example in Section 2.6.4.

2.5.10. Knuth-Bendix completion. Given a terminating and non-confluent n-polygraph P, with a termination order ≺ on P, Knuth-Bendix's procedure [START_REF] Knuth | Simple word problems in universal algebras[END_REF] either does not terminate, or it gives a way to complete P into a convergent n-polygraph KB(P). This procedure is defined as follows:

Input : A terminating n-polygraph P with a termination order ≺ KB(P) n ← P ;

C b := {critical branchings of P} ; while C b = ∅ do Pick a branching (f : u → v, g : u → w) in C b : v u f I I g D D w C b := C b \ {(f, g)} ;
Reduce v into a fixed normal form v with respect to KB(P) n ; Reduce w into a fixed normal form ŵ with respect to KB(P

) n ; v G G v u f P P g D D w G G ŵ if v = ŵ then if ŵ ≺ v then KB(P) n := KB(P) n ∪ {α : v → ŵ} else KB(P) n := KB(P) n ∪ {α : ŵ → v} end else end C b := C b ∪
{New critical branchings generated by α} end 2.5.11 Remark. For this procedure to be implemented, we need to have a way to explicitely describe the set of all critical branchings of a polygraph, which is difficult in higher dimension. For string rewriting systems, see Section 2.6.1 computing the set of critical branchings is easy with a pattern-matching algorithm, and all the shapes of critical branchings are well known. For diagrammatic rewriting systems, see Section 2.6.3, we know all the shapes of critical branching but there does not exist an algorithmic way to provide the exhaustive list of critical branchings, because of the exchange relation which is hard to handle. In this case, we thus have to compute the set of critical branching by hand, by checking all the pairs of relations and see if there is an overlapping between them. In higher dimensions, computing the set of critical branchings is even more difficult, and so Knuth-Bendix procedure can hardly be implemented for n-polygraphs with n ≥ 4.

EXAMPLES

2.6.1. Dimension 2: string rewriting systems. In this Section, we consider the example of string rewriting systems, that is rewriting systems over a set of strings on an alphabet. These rewriting systems originally appeared in formal language theory. They are also used in combinatorial algebra as a tool for presenting semigroups, groups or monoids. In terms of polygraphs, string rewriting systems correspond to 2-polygraphs with only one 0-cell.

Explicitely, a 2-polygraph is a triple P = (P 0 , P 1 , P 2 ) made of a 1-polygraph (P 0 , P 1 ) and a cellular extension of the free 1-category P * 1 . When P has only one 0-cell, then P * 1 is precisely the free monoid on the elements of P 1 . For instance, the string rewriting systems on the alphabet {s, t} with one rewriting rule sts → tst is described by the 2-polygraph P defined by

P 0 = {•}, P 1 = {s, t}, P 2 = {sts α ⇒ tst}.
The rule α ∈ P 2 corresponds to the following globular 2-cell on the free 1-category P * 1 :

• t G G • s $ $ • s Q Q t B B • • s G G • t p p α
Note that this polygraph presents a monoid C which is isomorphic to P * 1 /P 2 , which is the braid monoid on 3-strands, given by generators and relations as follows:

s = , t = , = . 
2.6.2. String diagrams. In free 2-categories, there is a convenient and intuitive way to represent the 2-cells using string diagrams. They were introduced by Feynman [START_REF] Feynman | Space-time approach to quantum electrodynamics[END_REF] and Penrose [START_REF] Penrose | Applications of negative dimensional tensors[END_REF] in physics, and were formally studied by Joyal and Street [START_REF] Joyal | The geometry of tensor calculus[END_REF]. We refer to [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF][START_REF] Savage | String diagrams and categorification[END_REF][START_REF] Selinger | A survey of graphical languages for monoidal categories[END_REF] for complete surveys on the equivalence between 2-cells in free 2-categories and string diagrams. Consider a 2-category C freely generated by a 2-polygraph P. The idea is that a 2-cell f : a 1 . . . a m ⇒ b 1 . . . b n can be thought of as a device having m inputs with types a i and n outputs with types b j . As a consequence, instead of using the usual globular representation for such a 2-cell as shown on the left below, there is a graphical notation adapted to this situation, as depicted on the right below:

y n-1 bn . . . b n-1 o o y 2 b 3 o o y 1 b 2 o o x m x 0 b 1 j j a 1 u u x m-1 am . . . a m-1 o o x 2 a 3 o o x 1 a 2 o o f K f . . . . . . a m b n a 1 b 1 a 2 b 2 x 0 x m y 1 x 1 .
This representation is Poincaré dual to the globular representation since the 0-cells are pictured as 2dimensional regions of the plane, 1-cells are pictured as wires or strands and 2-cells are either pictured as boxes as above, or as dots in many references. String diagrams can be composed in the two different ways expected in a 2-category. The ⋆ 0 -composition of 2-cells f 1 : a 

1 . . . a m ⇒ a ′ 1 . . . a ′ k and f 2 : b 1 . . . b n ⇒ b ′ 1 . . . b ′ l is
f 1 ⋆ 0 f 2 f 2 . . . . . . b n b ′ l b 1 b ′ 1 f 1 . . . . . . a m a ′ m a 1 a ′ 1 s 0 (f 1 ) t 0 (f 2 ) , f ⋆ 1 g f . . . . . . . . . a m a 1 g c k c 1 s 0 (f) t 0 (f) .
Note that by the convention chosen above, we read our diagrams from right to left and from bottom to top. We could have adopted a totally different convention, but we chose this one as it seems to be the mostly used in the literature, and it is coherent with the work of Khovanov and Lauda on the categorification of quantum groups. Another convention that we will use in the sequel is that when the target (or the source) of a 2-cell f is the identity 1 x on a 0-cell x, we omit drawing the wire labeled by 1 x . For instance, if f : a 1 a 2 ⇒ 1 x with a 1 : x → y and a 2 : y → x, then the corresponding string diagram is depicted as:

f a 2 a 1 x y .
2.6.3. Dimension 3: diagrammatic rewriting systems. A 3-polygraph is given by the data of a cellular extension on a free 2-category. As 2-cells in such a category admit a representation by string diagrams, as explained in Section 2.6.2, such a 3-polygraph can be interpreted as a rewriting system on string diagrams, called a diagrammatic rewriting system. In [51, Section 5.1], Guiraud and Malbos classified all the different forms of critical branchings in this dimension, in a non linear case. There are 3 different forms of critical branchings between two rewriting steps α and β of P:

• Regular critical branchings: where g is the normal form of f and F : f ⇛ g is a 3-cell. Actually, the two squares on the left are Peiffer branchings, and thus are trivially confluent, and then the confluence of the whole square is assured by the confluence of the right square.

2.6.4. Termination of 3-polygraphs by derivation. In general, it may be difficult to prove termination of 3-polygraphs, since monomial orders may not exist. For instance, recall from [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF] the 2-polygraph P with only one 0-cell, one 1-cell and the following two generating 2-cells:

, .

If there is a monomial order ≺ on P, one of the following inequalities holds:

≺ or ≺ .
If the first one holds (that we can assume without loss of generality since the other case is symmetric), we have

≺ = ≺ .
As a consequence, a bubble slide 3-cell (that is a 3-cell making an endomorphism of 1 • go through a vertical strand) can not be oriented in a terminating way, as it in the case in the linear (2, 2)-category AOB in Section 9.4. However, in this Section we introduce following Guiraud and Malbos [START_REF] Guiraud | Termination orders for three-dimensional rewriting[END_REF][START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] a way to prove termination of 3-polygraphs in which there are no caps and cups generating 2-cells. This is based on the notion of derivation on a 2-category.

Let us at first recall that the category of contexts of C is the category denoted by Cont(C),whose objects are the 2-cells of C and whose morphisms from f to g are the contexts

C[∂f] of C such that C[f] = g holds. If C : f → g and D : g → h are morphisms of Cont(C), then D • C : f → h is D[C].
The identity context on a 2-cell f of C is the context corresponding to the sphere (s 1 (f), t 1 (f)). When P is a 2-polygraph, one writes Cont(P) instead of Cont(P * ) where P * is the free 2-category generated by P.

2.6.5. Modules over 2-categories. Let C be a 2-category. A C-module is a functor from the category of contexts Cont(C) to the category Ab of abelian groups. Hence, a C-module M is specified by an abelian group M(f) for every 2-cell f ∈ C, and a morphism M(C) : M(f) → M(g) of groups, for every context C : f → g of C.

2.6.6 Prototypical example. Let Ord be the category of partially ordered sets and monotone maps. We will see it as a 2-category with one object, ordered sets as 1-cells and monotone maps as 2-cells. We recall that an internal abelian group in Ord is a partially ordered set equipped with a structure of abelian group whose addition is monotone in both arguments. Let us fix such an internal abelian group G, a 2-category C and a 2-functor X : C → Ord. Following [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], we can define a C-module M X,G as follows:

• Every 2-cell f : u ⇒ v is sent to the abelian group of morphisms M X,G (f) = Ord(X(u), G). • If w and w ′ are 1-cells of C and C = w ⋆ 0 x ⋆ 0 w ′ is a context from f : u ⇒ v to w ⋆ 0 f ⋆ 0 w ′ , then M X,G (C) sends a morphism a : X(u) → G in Ord to: X(w) × X(u) × X(w ′ ) -→ G (x ′ , x, x ′′ ) -→ a(x). • If g : u ′ ⇒ u and h : v ⇒ v ′ are 2-cells of C and C = g ⋆ 1 x ⋆ 1 h is a context from f : u ⇒ v to g ⋆ 1 f ⋆ 1 h, then M X,G (C) sends a morphism a : X(u) → G in Ord to a • X, that is: X(u ′ ) -→ G x -→ a (X(g)(x)) .
By construction, when C is freely generated by a 2-polygraph P, such a C-module is uniquely and entirely determined by the values X(u) for every generating 1-cell u ∈ P 1 and the morphisms X(γ) : X(u) → X(v) for every generating 2-cell γ : u ⇒ v ∈ P 2 . Note that in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], prototypical modules M X,Y,G are constructed from two functors X : C → Ord and Y : C op → Ord, where C op is the 2-category C in which the sources and targets of 2-cells are exchanged. We do not recall the definition of the modules M X,Y,G in full generality here, since in the sequel we consider examples in which the 2-functor Y is trivial.

2.6.7. Derivations of 2-categories. Let C be a 2-category and let M be a C-module. A derivation of C into M is a map sending every 2-cell f of C to an element d(f) ∈ M(f) such that the following relation holds, for every i-composable pair (f, g) of 2-cells of C:

d(f ⋆ i g) = f ⋆ i d(g) + d(f) ⋆ i g.
2.6.8 Theorem ([51], Thm 4.2.1). Let P be a 3-polygraph such that there exist: i) Two 2-functors X : P * 2 → Ord and Y : (P * 2 ) op → Ord such that, for every 1-cell a in P 1 , the sets X(a) and Y(a) are non-empty and, for every 3-cell α in P 3 , the inequalities X(sα) ≥ X(tα) and Y(sα) ≥ Y(tα) hold.

ii) An abelian group G in Ord whose addition is strictly monotone in both arguments and such that every decreasing sequence of non-negative elements of G is stationary.

iii) A derivation d of P * 2 into the module M X,Y,G such that, for every 2-cell f in P * 2 , we have d(f) ≥ 0 and, for every 3-cell α in P 3 , the strict inequality d(sα) > d(tα) holds.

Then the 3-polygraph P terminates.

2.6.9 Remark. This theorem generalizes a process described in [START_REF] Guiraud | Termination orders for three-dimensional rewriting[END_REF] for term rewriting systems and operads. The idea is to see each 2-cell as an electronical circuit whose components are given by the generating 2-cells. Then, we fix a value for each circuit, that can be interpreted as its heat production, and with this value each input and output of the circuit receives a certain intensity of current. There are two types of currents, that is descending and ascending, that are represented by the two functors X and Y. The heat produced by a fixed circuit is calculated this way: an operator is arbitrarily chosen. Then, currents are propagated through the other operators to the chosen one. This requires that choices have been made for each operator: for each one, one must be able to compute the intensities of currents transmitted when he knows the intensities of incoming current. When one knows the intensities of each current coming into the chosen operator, one computes the heat it produces, according to values fixed in advance. Then, one repeats the same procedure for each operator, and sums the results to get the heat produced by the considered circuit, for the chosen current intensities. Two circuits with the same number of inputs and the same number of outputs are compared this way: if, for the current intensity, one produces more heat than the other one, then the first one is said to be greater. The idea to build this reduction order is to compare all the sources and targets of 2-cells following this method. We place all the values for the current intensities in G, so that it has to have an addition monotone in both variables. In a categorical framework, this construction is precisely expressed by the construction of a derivation on a 2-category, yielding Theorem 2.6.8.

LINEAR REWRITING

2.7.1. Linear (n, p)-categories. Linear (n, p)-categories are defined by induction on p n. We denote by Vect the category of vector spaces over a fixed field K. An internal n-category in Vect consists in the data of:

• an n-graph in Vect:

V 0 V 1 s 0 o o t 0 o o . . . s 1 o o t 1 o o V n-1 s n-2 o o t n-2 o o V n s n-1 o o t n-1 o o
• for each 0 k < l n, there is a unit map V k → V k+1 , v → 1 v which is linear, that is:

1 λu+µv = λ1 u + µ1 v
for any scalars λ and µ and any k-cells u and v such that p k < n,

• for each 0 k < l n, there is a composition map ⋆ k : V l × V k V l to V k , which is linear, that is:

(f + g) ⋆ k (f ′ + g ′ ) = f ⋆ k f ′ + g ⋆ k g ′ , λf ⋆ k λf ′ = λ(f ⋆ k f ′ ).
for any scalar λ and any pairs (f, f ′ ) and (g, g ′ ) of k-composable l-cells satisfying the unit and composition axioms of an n-category. A linear (n, 0)-category is an internal ncategory in Vect. Let us assume linear (n, p)-categories are defined for p 0. A linear (n + 1, p + 1)category is the data of a set C 0 of 0-cells together with:

• for any a and b in C 0 , a linear (n, p)-category C(a, b),

• for any a in C 0 , an identity morphism i a from the terminal n-category I n to C(a, a),

• for any a, b and c in C 0 , a bilinear composition morphism ⋆ a,b,c from C(a, b) × C(b, c) to C(a, c).

such that:

i) ⋆ a,c,d • (⋆ a,b,c × id C(c,d) ) = ⋆ a,b,d • (id C(a,b) × ⋆ b,c,d ), ii) ⋆ a,a,b • (i a × id C(a,b) ) • is l = id C(a,b) = ⋆ a,b,b • (id C(a,b) × i q )
• is r where is l and is r respectively denote the canonic isomorphisms from C(a, b) to

I n × C(a, b) and to C(a, b) × I n .
In particular, a linear (n, p)-category is an n-category. A morphism of linear (n, p)-categories from C to C ′ is an n-functor F = (F 0 , . . . , F n ) such that the map F k : C k → C ′ k is linear for any p ≤ k ≤ n and the following diagrams commute:

C 0 F 0 C 1 s 0 o o t 0 o o F 1 . . . s 1 o o t 1 o o C n-1 s n-2 o o t n-2 o o F n-1 C n s n-1 o o t n-1 o o Fn C ′ 0 C ′ 1 s ′ 0 o o t ′ 0 o o . . . s ′ 1 o o t ′ 1 o o C ′ n-1 s ′ n-2 o o t ′ n-2 o o C ′ n s ′ n-1 o o t ′ n-1 o o
We denote by LinCat n,p the category of linear (n, p)-categories, and by U n,p the forgetful functor from LinCat n,p to Grph n . The category LinCat + n,p of linear (n, p)-categories with a globular extension is defined by the following pullback diagram:

LinCat + n,p Grph n+1 Grph n LinCat n,p Grph n U n,p U G n
Similarly, the forgetful functor LinCat n+1,p → LinCat + n,p admits a left adjoint F W n+1,p which is the free functor assigning to a linear (n, p)-category C with a cellular extension Γ the free linear (n + 1, p)category generated by Γ over C. 2.7.2. Free linear (n, p)-categories. Let us define a free functor F c n,p : Cat n → LinCat n,p which constructs a free linear (n, p)-category generated by an n-category. Given an n-category C, we define F c n,0 to be the linear (n, 0)-category such that for any 0 ≤ k ≤ n, F c n,0 (C) is the free K-vector space over C k . Let us now assume that p = 0, we define F c n,p (C) to be the linear (n, p)-category such that:

i) for any 0 ≤ k < p, the linear (n, p)-category F c n,p (C) has the same k-cells than C, ii) for any p ≤ k < n and any parallel (p -1)-cells x and y, F c n,p (C) k (x, y) is the free K-vector space on C k (x, y).

The compositions of F c n,p (C) are defined by:

• for any 0 ≤ k < n, the compositions of k-cells of C remain unchanged,

• for any 0 ≤ k < p, the composition

⋆ k : C k-1 (u, v) ⊗ C k-1 (v, w) → C k-1 (u, w) is K-linear,
• for any parallel (p-1)-cells a and b of C, for any p ≤ i < n, any i < j ≤ n, any scalars λ, µ ∈ K, any i-composable j-cells f and f ′ of C j (a, b) and any i-composable j-cells g and g ′ of C j (a, b), we have

(λf + µg) ⋆ i (λf ′ + µg ′ ) = λ(f ⋆ i f ′ ) + µ(g ⋆ i g ′ ), so that the composition ⋆ i is linear on the set C j (a, b) × C i C j (a, b
) of pairs of i-composable j-cells with source a and target b.

Moreover, these compositions satisfy some exchange relations: for any 0 ≤ i < j < p -1, we have

  x∈X λ x f x ⋆ i   y∈Y µ y g y     ⋆ j   x ′ ∈X ′ λ ′ x ′ f ′ x ′ ⋆ i   y ′ ∈Y ′ µ ′ y ′ g ′ y ′     = x∈X λ x f x ⋆ j x ′ ∈X ′ λ ′ x ′ f ′ x ′ ⋆ i     y∈Y µ y g y   ⋆ j   y ′ ∈Y ′ µ ′ y ′ g ′ y ′    
whenever both sides of this equality are well defined. The functor F c n,p extends n-functors between n-categories by linearity into morphisms of linear (n, p)-categories. Recall from [50, Proposition 1.2.3] that a linear (n, p)-category C admits the structure of a (n, p)-category since for any k-cell f in C, f is (k -1)-invertible and its inverse is given by s k-1 (f) + t k-1 (f)f. 2.7.3. Linear (n, p)-polygraphs. Let us define the category LinPol n,p of linear (n, p)-polygraphs and their morphisms, together with the free functor F ℓ n,p : LinPol n,p → LinCat n,p by induction on n ≥ p. First of all, set LinPol n,n = Pol n,n and

F ℓ n,n = F n • F c n,n
, where F n is the free functor Pol n → Cat n defined in Section 2.4.6. Let us then assume that LinPol n,p and F ℓ n,p are defined for integers n ≥ p. Then, we define LinPol n+1,p by the following pullback diagram in Cat:

LinPol n+1,p Grph n+1 Grph n LinPol n,p LinCat n,p U n,p F ℓ n,p U G n U P n,p U GP n+1,p
The functor F ℓ n+1,p is then defined as follows: first consider the unique functor F Pℓ n+1,p making the following diagram commutative:

LinCat + n,p Grph n+1 Grph n LinCat n,p Grph n U n,p U G n LinPol n+1,p LinPol n,p F Pℓ n+1,p F ℓ n,p U P n,p U GP n+1,p
, and then define F ℓ n+1,p as the following composition:

LinPol n+1,p F Pℓ n+1,p G G LinCat + n,p F W n+1,p G G LinCat n+1,p .
Given a linear (n, p)-polygraph P, the linear (n, p)-category F ℓ n,p (P) is called the free linear (n, p)category generated by P. When n = p, the linear (n, n)-category F ℓ n,n (P) is denoted by P ℓ n . Following this inductive construction, for n > p, a linear (n, p)-polygraph can be defined as a data made of an (n -1, p)-linear polygraph P together with a cellular extension Γ of the linear (n -1, p)-category P ℓ n-1 .

2.7.4. Presentation of a linear (n, p)-category. Let n ≥ p and C be a linear (n, p)-category. We say that a linear (n + 1, p)-polygraph P is a presentation of C, or that P presents C if C is isomorphic to the quotient of the linear (n, p)-category P ℓ n by the congruence generated by the cellular extension P n+1 .

REWRITING IN LINEAR (n + 1, n)-POLYGRAPHS

Let us fix for the rest of this chapter a non-negative integer n and a linear (n + 1, n)-polygraph P.

2.8.1. Monomials. A monomial of P is an n-cell of the n-category P * n . We say that P is left-monomial if for any α ∈ P n+1 , the n-cell s n (α) is a monomial.

Any n-cell f in P * n can be uniquely decomposed into a sum of monomials f = f i , which is called the monomial decomposition of f. The support of f, denoted by Supp(f), is the set {f i } of n-cells that appear in the monomial decomposition of f.

In the sequel, all the linear (n + 1, n)-polygraphs we consider are left-monomial.

2.8.2. Linear contexts. A context of the linear (n, n)-category P ℓ n has the shape λC( ) + h, where λ is a scalar in K, C is a context of the free n-category P * n , as defined in Section 2.4.4, and h is an n-cell of P ℓ n .

2.8.3. Rewriting steps. A rewriting step of P is an (n + 1)-cell of the free (n + 1, n)-category P ℓ n+1 generated by P of the following form:

λC[α] + f : λC[s 2 (α)] + f → C[t 2 (α)] + f
where α is a generating n + 1-cell in P n+1 , C is a context of the free n-category P * n such that the monomial C[s 2 (α)] does not appear in the monomial decomposition of f. We denote by P stp the set of rewriting steps of the linear (n + 1, n)-polygraph P.

We denote by P ℓ n+1 the free linear (n + 1, n)-category generated by P, as defined in Section 2.7.3. The congruence generated by P is the equivalence relation ≡ on P ℓ n defined by u ≡ v if there is an

(n + 1)-cell α in P ℓ n+1 such that s n (α) = u and t n (α) = v. An (n + 1)-cell in P ℓ n+1 is said elementary if it is of the form λC[α] + h where λ is a non zero scalar, α is a generating (n + 1)-cell in P 3 , C is a context of P * n and h is an n-cell in P ℓ n . An (n + 1)-cell α of P ℓ n+1 is called positive if it is a ⋆ n -composition α = α 1 ⋆ 2 • • • ⋆ 2 α n of rewriting steps of P. The length of a positive (n + 1)-cell α in P ℓ
n+1 is the number of rewriting steps of P needed to write α as a ⋆ n -composition of rewriting steps. We denote by P ℓ [START_REF] Alleaume | Higher-dimensional linear rewriting and coherence in categorification and representation theory[END_REF] n+1 the set of positive (n + 1)-cells of P of length 1.

Lemma ([50]

, Lemma 3.1.3). Let α be an elementary (n + 1)-cell in P ℓ n+1 , then there exist two rewriting sequences β and γ of P of length at most 1 such that α = β ⋆ n γ -. 2.8.5. 1-polygraph of rewritings. From this definition of rewriting step, to any linear (n + 1, n)polygraph P = (P 0 , . . . , P n , P n+1 ), we associate as in Section 2.4.8 the 1-polygraph P ≥n , which has 0-cells the set of n-cells in the free linear (n, n)-category P ℓ n , and has a 1-cell u → v whenever there exists a rewriting step from u to v in P ℓ n+1 . This is an abstract rewriting system in the sense of Section 2.1.2. We thus say that a linear (n + 1, n)-polygraph satisfies the rewriting property P if P ≥n satisfies the property P. In this interpretation, a positive (n + 1)-cell of P ℓ n+1 with n-source u and n-target v corresponds to a rewriting path u * → v in P ≥n .

2.8.6. Rewriting order. The rewrite order of a linear (n + 1, n)-polygraph P is the relations P on P ℓ n defined by: i) if u and v are monomials in P ℓ n , then v P u if u = v or there is a rewriting sequence in from u to v with respect to P, ii) if for any y ∈ Supp(v) such that y / ∈ Supp(u), there is an n-cell x ∈ Supp(u) with x / ∈ Supp(v) such that y P x, then v P u.

The strict rewrite order of P is the strict order relation ≺ P on P ℓ n defined by v ≺ P u if v P u but not u P v. Note that when the linear (n + 1, n)-polygraph P is terminating, this relation is well-founded. Moreover, proofs by Noetherian induction on P correspond to proofs by induction on the well-founded relation ≺ P .

2.8.7. Linear monoidal categories and linear (2, 2)-categories. A (strict) monoidal category is a category A equipped with a tensor product ⊗ : A × A → A which is associative, a unit object 1 in A such that 1 ⊗ A = A = A ⊗ 1 for all object of A. Such a category A is K-linear if for any 0-cells A and B in A, the space A 1 (A, B) is a K-vector space. Moreover, composition and tensor product of 1-cells are K-bilinear.

A linear (2, 2)-category is a 2-category C such that:

i) for any p and q in C 1 , the set C 2 (p, q) is a K-vector space.

ii) for any p, q, r in C 1 , the map

⋆ 1 : C 2 (p, q) ⊗ C 2 (q, r) → C 2 (p, r) is K-linear.
When the set C 0 of 0-cells of a linear (2, 2)-category is a singleton, then C can be interpreted as a linear monoidal category A whose 0-cells are the 1-cells of C and whose 1-cells are the 2-cells of C. The tensor product in A is given by the ⋆ 0 -composition of C, and the composition of 1-cells in A is given by the ⋆ 2 -composition in C.

In the sequel, we consider linear (2, 2)-categories that admit presentations by generators and relations by linear (3, 2)-polygraphs, as defined in Section 2.8.8. In such a presentation, there are generating 1cells, and generating 2-cells that are represented by string diagrams as in Section 2.6.2. A monomial in C is a 2-cell that can be obtained from ⋆ 0 and ⋆ 1 -compositions of the generating 2-cells. Given a linear (2, 2)-category C, a hom-basis of C is a family of sets (B p,q ) p,q∈C 1 indexed by pairs (p, q) of 1-cells of C such that for any 1-cells p and q, the set B p,q is a linear basis of C 2 (p, q). Following Section 2.8.2, a context of a linear (2, 2)-category C has the shape

C = λm 1 ⋆ 1 (m 2 ⋆ 0 ⋆ 0 m 3 ) ⋆ 1 m 4 + u,
where the m i are monomials in C, λ is a scalar in K and u is a 2-cell in C.

2.8.8. Linear (3, 2)-polygraphs. Explicitely, a linear (3, 2)-polygraph is made of a data (P 0 , P 1 , P 2 , P 3 ) where: i) (P 0 , P 1 , P 2 ) is a 2-polygraph, on which we construct the free linear (2, 2)-category P ℓ 2 whose set of 0-cells is given by P 0 , whose 1-cells are the 1-cells elements of P * 1 and for any p, q in P * 1 , P ℓ 2 (p, q) is the free K-vector space on P * 2 (p, q), where P * 2 if the free 2-category generated by (P 0 , P 1 , P 2 ).

ii) P 3 is a cellular extension of P ℓ 2 .

2.8.9. Termination of linear (3, 2)-polygraphs. We extend the derivation method to prove termination of 3-polygraphs from Theorem 2.6.8 in the linear setting. Given a linear (3, 2)-polygraph P, proving termination of P by derivation consists in constructing 2-functors X : P ℓ 2 → Ord and Y : (P ℓ 2 ) op → Ord and a derivation d : P ℓ 2 → M X,Y,G as in Theorem 2.6.8. To take into account the linear structure, this data is required to satisfy the following conditions to ensure termination of P: i) For any 1-cell a in P 1 , the sets X(a) and Y(a) are non-empty and, for any generating 3-cell α in P 3 , the inequalities X(s(α)) ≥ X(h) and Y(s(α)) ≥ Y(h) hold for any h in Supp(t(α)).

ii) The addition in G is strictly monotone in both arguments and every decreasing sequence of nonnegative elements of G is stationary.

iii) For any monomial f in P ℓ 2 , we have d(f) ≥ 0 and, for every 3-cell α in P 3 , the strict inequality d(s(α)) > d(h) holds for any h in Supp(t(α)). A Peiffer branching is a branching formed with two rules which does not overlap:

LINEAR CRITICAL BRANCHING LEMMA

t 2 (α) ⋆ 1 s 2 (β) + h ← s 2 (α) ⋆ 1 s 2 (β) + h → s 2 (α) ⋆ 1 t 2 (β) + h.
An additive branching is a branching of the form

t 2 (α) + s 2 (β) ← s 2 (α) + s 2 (β) → s 2 (α) + t 2 (β).
Overlapping branchings are all the remaining local branchings. In the case of left-monomial linear (3, 2)-polygraphs, the classification of overlapping branchings is the same than in the case of nonlinear 3-polygraphs, given in Section 2.6.3. We define an order on monomials of P ℓ 2 by f ⊑ g if there exists a context C of P * 2 such that g = C[f]. A critical branching of P is an overlapping branching of P which is minimal for ⊑.

2.9.2 Theorem ([2], Thm 4.2.13). Let P be a terminating linear (3, 2)-polygraph. Then P is locally confluent if and only if its critical branchings are confluent.

2.9.3 Remark. Note that if P is not terminating, this result may fail. Indeed, because of the restriction of rewriting steps to the set of positive 3-cells in P ℓ 3 , some Peiffer or additive branchings may not be confluent. For instance, consider following [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] the following example of a linear (2, 1)-polygraph 

(P 0 = { * }, P 1 = {x, y, z,
4xyt 4αt G G 4xzt 4xβ G G • • • 2xzt 2xβ H H xzt + xβ B B xyt + xzt αt + xzt H H xyt + xβ E E xzt + 2xyt 3xyt αt + 2xyt R R 3αt E E 3xzt 3xβ G G 6xyt 6αt G G • • • 2.9.4. Exponentiation freedom.
Let n be a non-negative integer and P be a linear (n+1, n)-polygraph.

We say that P is exponentiation free if there is no rewriting sequence in P ℓ of the form

m → λm + f,
where m is a monomial in P ℓ , λ is a non zero scalar in K, and f is a non-zero n-cell of P ℓ which does not contain m in its monomial decomposition. Note that if P is quasi-terminating, then exponentiation freedom is equivalent to the fact that for every monomial m rewriting into a n-cell f such that m ∈ Supp(f), we have f = m. With the terminology of Dershowitz [START_REF] Dershowitz | Termination of rewriting[END_REF], when P is quasi-terminating and exponentiation free, then any infinite rewriting sequence contains cycles of the form

u 1 → u 2 → . . . → u k = u 1 ,
and no infinite rewriting sequence of the form

u (1) 1 → u (2) 1 → . . . → u (n) 1
where for any k ∈ ◆, u (k+1)

1 is a "term" containing u (k)
1 as a "subterm", which in the polygraphic context means that u (k)

1 rewrites to u (k+1) 1 = C[u (k) 1 ]
, where C is a context. In other words, if P is quasi-terminating and exponentiation free, then the only obstructions to termination of P are created by cycles.

2.9.5. Quasi-terminating linear critical branching lemma. Following [START_REF] Alleaume | Higher-dimensional linear rewriting and coherence in categorification and representation theory[END_REF], we prove the following result: 2.9.6 Theorem. Let P be a quasi-terminating and exponentiation free linear (n + 1, n)-polygraph. If al critical branchings of P are confluent, then P is locally confluent.

Proof. Let us at first prove that, under these assumptions, all additive branchings of P are confluent. Let f (resp. g) be be a rewriting step of P monomial source u (resp. v) and target u ′ (resp. v ′ ), λ and µ non zero scalars in K and h a n-cell of P ℓ n which does not contain u or v in its monomial decomposition. We prove that the additive branching (λf + µv + h, λu + µg + h) is confluent by considering four cases. Case 1. If u / ∈ Supp(v ′ ) and v / ∈ Supp(u ′ ), the (n + 1)-cells λu ′ + µg + h and λf + µv ′ + h are rewriting steps and make the branching confluent. Case 2. If u ∈ Supp(v ′ ) and v / ∈ Supp(u ′ ), let us write λu + µv ′ = γu + k, where u / ∈ Supp(k). As a consequence, γf + k + h is a rewriting step with source γu + k + h and target γu ′ + k + h. On the other side, the n-cell λu

′ + µv + h reduces via λu ′ + µg + h into λu ′ + µv ′ + h = λu ′ + h + (γ -λ)u + k + h. Since u /
∈ Supp(u ′ ), this n-cell reduces into γu ′ + k + h, proving the confluence of the branching. This is summarized in the following diagram:

λu ′ + µv + h G G λu ′ + µv ′ + k + h = λu ′ + (γ -λ)u + k + h λu ′ +(γ-λ)f+k+h C C λu + µv + h λf+µv+h P P λu+µg+h F F γu ′ + k + h λu + µv ′ + h = γu + k + h y y Q Q Case 3. If u / ∈ Supp(v ′ ) and v ∈ Supp(u ′ ), the proof is symmetric to Case 2. Case 4. If u ∈ Supp(v ′ ) and v ∈ Supp(u ′ ), we can write decompositions u ′ = γ v v + k 1 , v ′ = γ u u + k 2
where k 1 and k 2 are n-cells such that u / ∈ Supp(k 2 ) and v / ∈ Supp(k 1 ), and γ v , σ u are non zero scalars. Because P is exponentiation free, we can also assume that v / ∈ Supp(k 2 ) and u / ∈ Supp(k 1 ). Therefore, we have the following rewriting sequence in P * :

u f G G u ′ = γ v v + k 1 γvg+k 1 G G γ v v ′ + k 1 = γ v γ u u + γ v k 2 + k 1 .
The scalar γ v γ u being non zero, by exponentiation free assumption we get that γ v k 2 + k 1 = 0, and since P is quasi-terminating we thus necessarily obtain that γ v γ u = 1. Thus, we have

v ′ = γ u u + k 2 , u ′ = γ v (v -k 2 ). Now, the n-cell λu + µv + h rewrites via f into λu ′ + µv + h = (λγ v + µ)v -λγ v k 2 + h on the one side.
On the other side, by applying g, we have the following rewriting sequence in P * :

λu + µv + h λu+µg+h G G λu + µv ′ + h = (λ + µγ u )u + µk 2 + h (λ+µγu)f+µk 2 +h G G (λ + µγ u )u ′ + µk 2 + h
and the last term is equal to (λγ v +µ)v+µk 2 +h using the relations satisfied by γ u , γ v , k 1 and k 2 , proving the confluence of this branching. Now, in order to prove the theorem, it remains to prove that Peiffer and overlapping local branchings are confluent. We proceed by well-founded induction on the rewriting order ≺ P defined in Section 2.8.6. If (f, g) is an overlapping branching, we can write (f, g) = (λf ′ +h, λg ′ +h) where (f ′ , g ′ ) is a critical branching. By assumption, there exists a confluence (f ′′ , g ′′ ) of the critical branching (f ′ , g ′ ). However, the (n + 1)-cells λf ′′ + h and λg ′′ + h may not be positive, for instance if

t n (f ′ ) ∈ Supp(h) or if t n (g ′ ) ∈ Supp(h).
However, if they are not positive, according to Lemma 2.8.4, there exists positive (n + 1)-cells f 1 , f 2 , g 1 , g 2 in P ℓ n+1 of length at most 1 as in the following diagram:

λt n (f ′ ) + h λf ′′ +h 4 4 f 2 7 7 λu + h f Q Q g B B v f 1 q q g 1 " " λt n (g ′ ) + h λg ′′ +h g2 W W
Now, if f 1 and g 1 are both of length 0, then the pair (f 2 , g 2 ) is a confluence of the branching (f, g). If ℓ(f 1 ) = 1 and ℓ(g 1 ) = 0 (the other case being symmetric), then the pair (f 2 , g 2 ⋆ n g 1 ) is a confluence of the branching (f, g). Otherwhise, we have that v ≺ P λu + h, and thus by induction assumption the local branching (f 1 , g 1 ) is confluent, which proves the confluence of the branching (f, g). The case of local Peiffer branchings of the form λu

′ ⋆ n-1 v + h ← λu ⋆ n-1 v + h → λu ⋆ n-1 v ′ + h is treated in a similar fashion.
This result fails without the assumption of exponentiation freedom. Indeed, consider the linear (2, 1)-

polygraph P = (P = 0 = {•}, P 1 = {x, y}, P 2 = {x ⇒ y, y ⇒ -x}).
It is quasi-terminating, but not exponentiation free, and has a non-confluent local additive branching 2y ⇐ x + y ⇒ 0.

2.9.7. Linear bases from confluence. Following [START_REF] Alleaume | Higher-dimensional linear rewriting and coherence in categorification and representation theory[END_REF], there are two different situations in which we can compute hom-bases of linear (n, n)-categories from presentations by linear (n + 1, n)-polygraphs: a) Given a convergent presentation of a linear (n, n)-category C by a linear (n + 1, n)-polygraph P, for any (n -1)-cells p and q in C n-1 , the set of monomial n-cells with source p and target q in normal form with respect to P form a linear basis of the vector space C n (p, q), [2, Proposition 4.2.15]. As a consequence, the set of all monomials in normal form with respect to P forms a hom-basis of C.

b) Given a presentation of a linear (n, n)-category C by a quasi-terminating and confluent linear (n + 1, n)-polygraph P, fix for any n-cell u of C a choice of a quasi-normal form u of u with respect to P.

Then, for any n-cell u in C, reduce u into u and consider all the elements in Supp( u). This gives a set of monomials, which are in quasi-normal form since P is left-monomial, and the reunion of these sets over all the n-cells u ∈ C gives a hom-basis of C.

CHAPTER 3 The term categorification refers to the process of replacing set-theoretic notions by the corresponding category-theoretic analogues, in order to study a given algebraic structure. The objective of this process is to define an higher-dimensional category, related to the original object in the way that this object is isomorphic to the Grothendieck group of this category, in order to have a richer structure making new phenomena appear. Since the pioneer works and categorification by Crane and Frenkel [START_REF] Crane | Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases[END_REF], this idea has been used in various contexts, and helped to solve numerous complicated problems.

In this Chapter, we recall the general notions of Grothendieck groups, decategorification and weak categorification. As we are interested in categorifying objects that already admit a categorical structure, we also expand on the notion of strong categorification, and how to construct such an object. In the last part of this chapter, we illustrate these definitions and ideas by recalling Khovanov and Lauda's construction of a candidate categorification for a quantum groups associated with a symmetrizable Kac-Moody algebra. We start by recalling notions about quantum groups and root data needed in the sequel, and then recall following [START_REF] Lauda | A categorification of quantum sl(2)[END_REF][START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF] the various steps in order to define the candidate 2-category.

GROTHENDIECK GROUPS

In this section, we recall the general notions on decategorification and Grothendieck groups for additive and abelian categories as in [START_REF] Mazorchuk | Lectures on algebraic categorification. QGM Master Class Series[END_REF][START_REF] Savage | Introduction to categorification[END_REF].

3.1.1. Idea of the categorification process. The idea of categorification, coming from works of Crane and Frenkel [START_REF] Crane | Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases[END_REF], refers to the process of replacing set-theoretic notions by the corresponding categorytheoretic analogues. For instance, a set should be replaced by a category, an element of this set by a 0-cell in the category, a map by a functor, a relation between elements by a 1-cell and so on. The general idea for doing this is that, replacing a "simpler" object by something "more complicated", one gets a bonus in the form of some extra structure which may be used to study the original object. However, the difficulty of the process is that there are no explicit rules how to categorify an algebraic object and the answer might depend on what kind of extra structure and properties one expects.

3.1.2. Grothendieck group of a monoid. The idea of Grothedieck group is originally defined for commutative monoids: it provides the universal way of making a monoid into an abelian group. Let M = (M, +, 0) be a commutative monoid. The Grothendieck group of M is a pair (G, ϕ), where G is a commutative group and ϕ : M → G is a homomorphism of monoids, such that for every monoid homomorphism ψ : M → A, where A is a commutative group, there is a unique group homomorphism Ψ : G → A making the following diagram commutative:

M ϕ G G ψ 2 2 G Ψ A .
The functor that sends a commutative monoid M to its Grothendieck group G is left adjoint to the forgetful functor from the category of abelian groups to the category of commutative monoids. The idea can be easily generalized to small categories with some additional structure, for instance abelian, triangulated, derived categories.

Grothendieck group of additive categories.

Recall that an additive category is a category satsfying the two following properties:

i) It is enriched in abelian groups, that is the space of morphisms between two given objects is an abelian group. (Sometimes, such a category is called a pre-additive category.)

ii) It admits finite coproducts, and thus finite biproducts.

Let F(A) be the free abelian group with basis the isomorphism classes [M] of 0-cells M in A, and let N split (A) be the subgroup generated by the elements 

[A 1 ] -[A 2 ] + [A 3 ] for every 0-cells of A such that A 2 ≃ A 1 ⊕ A 3 .
: A → A, that is χ(Y) = χ(X) + χ(Z) if Y = X ⊕ Z, there is a unique group homomorphism χ : K split 0 (A) → A making the following diagram commute: A (•) G G χ 0 0 K split 0 (A) χ { { A .
3.1.4. Grothendieck group of abelian categories. Let us recall that an abelian category A is an additive category in which every morphism f : A → B in A admits a kernel and a cokernel, yielding the following exact sequence:

A p G G Coker Ker(f)) f G G Ker Coker(f)) i G G B ,
and satisfying moreover that the arrow f above is an isomorphism, and that every monomorphism is a kernel and every epimorphism is a cokernel. Let us assume that A is a small abelian category. We still denote by F(A) the free abelian group with basis the isomorphism classes [M] of 0-cells M in A. Let N(A) be the subgroup of F(A) generated by the elements

[A 1 ] -[A 2 ] + [A 3 ] for every exact sequence 0 → A 1 → A 2 → A 3 → 0 in A. The Grothendieck group of A, denoted K 0 (A), is the quotient group F(A)/N(A). We still denote the image of [A] in K 0 (A) by [A].
For instance, if K is a field and A = Amod the category of finite-dimensional left modules over some finite dimensional K-algebra A, the group [A] is isomorphic to the free abelian group with the basis given by classes of simple A-modules. Note that any abelian category is additive. However, if A is abelian, then K split 0 (A) can be bigger than K 0 (A) if there are exact sequences which do not slit. In the sequel, we will only be interested in Grothendieck groups of additive categories, and thus we will only consider split Grothendieck groups. As a consequence, the split Grothendieck group of an additive category A will be denoted by K 0 (A).

3.1.5. Decategorification. Let A be an additive category. The decategorification of A is the abelian group K 0 (A). Note that this is one method of decategorification that can be found in the literature, but there exist other ways of decategorifying an algebraic structure, for instance with the trace map, see [START_REF] Savage | Introduction to categorification[END_REF]. In what follows, we would like to categorify algebras over some base ring, so that we have to extend the notion of decategorification to allow base rings. Let us consider a commutative ring F, with unit 1. The F-decategorification of A is the F-module

K 0 (A) F := F ⊗ Z K 0 (A).
The element 1 ⊗ [M] of some F-decategorification will be denoted by [M] for simplicity.

3.1.6. Graded setup. Let R be a Z-graded ring. Consider the category R-gMod of all graded R-modules and denote by 1 the shift of grading autoequivalence of R-gMod normalized as follows: for a graded module M = ⊕ i∈Z M i one has (M 1 ) j = M j+1 . Assume that A is a category of graded R-modules closed under ±1 , then the group

[A] becomes a Z[v, v -1 ]-module via v i [M] = [M -i ] for any M ∈ A, i ∈ Z.
To extend the notion of decategorification to a category of graded modules, let F be a unitary commutative ring and ι : Z[q, q -1 ] → F be a homomorphism of unitary rings. This defined a right Z[q, q -1 ]module structure on F. The ι-decategorification of A is the F-module

[A] (F,ι) := F ⊗ Z[q,q -1 ] [A].

NAIVE AND WEAK CATEGORIFICATION

In this section, we fix a commutative ring with unit F.

3.2.1.

Categorification of an F-module. An F-categorification of an F-module V is a pair (A, ϕ) made of an additive category A and an isomorphism ϕ from V to the F-decategorification of A. Whereas the decategorification of a category is uniquely defined, there are usually many different categorifications of an F-module V.

3.2.2.

Example: categorification of Z. Consider the category Vect K of all finite-dimensional K-vector spaces and linear maps over a base field K. Then K split 0 (Vect K ) ≃ Z. Indeed, consider the surjective homomorphism f :

Vect K → Z, V → dim(V) Since dim(V ⊕ W) = dim(V) + dim(W), we have N(Vect K ) ⊆ Ker(f). Now, let us consider an element n i=1 c i [V i ] of Ker(f). We have n i=1 c i dim(V i ) = f ( n i=1 c i [V i ]) = 0 so in K 0 (Vect K ), since [V i ] = dim(V i )[K], we have n i=1 c i [V i ] = n i=1 (c i dim(V i ))[K] = 0,
so that Ker(f) = N(Vect K ) and by the first isomorphism theorem, we get that K 0 (Vect K ) ∼ Z, so that Vect K is a categorification of Z. 

M i of M. A naive categorification of (B, {b i } i∈I , M) is a tuple (M, {F i } i∈I , ϕ)
where M is an abelian category, ϕ : K 0 (M) ⊗ Z R → M is an isomorphism, and for each i ∈ I, F i : M → M is an exact endofunctor of M such that the following diagram is commutative:

K 0 (M) ⊗ Z R ϕ [F i ]⊗id G G K 0 (M) ⊗ Z R ϕ M b M i G G M .
We refer the reader to [START_REF] Mazorchuk | Lectures on algebraic categorification. QGM Master Class Series[END_REF][START_REF] Savage | Introduction to categorification[END_REF] for details on why this is a naive concept of categorification. In this definition, we only require that the functors F i induce the right maps on the level of the Grothendieck group. A stronger notion would be to categorify the relations amongst the generators b i : that is, given a set of relations of B generating all the relations in B, we want isomorphism of functors that descend to these relations in the Grothendieck group. A weak categorification (M, {F i } i∈I , ϕ) of (B, {b i } i∈I , M) is a naive categorification that satisfies more conditions given by isomorphisms of functors descending in the Grothendieck group of M on the defining relations of B. 

F, G : M → M by F = 0, G(V))V ⊕ V, for all V ∈ M. Define ϕ : K 0 (M) ⊗ Z C → M and ψ : K 0 (M) ⊗ Z C → N by z[C] → z, where [C]
denotes the class of the simple one-dimensional C-module. For all z ∈ C, we have

ϕ • [F](z[C]) = 0 = b • ϕ(z[C]), ψ • [G](z[C])) = ψ(z[G(C)]) = ψ(z[C ⊕ C]) = ψ(2z[C]) = 2z = b • z = b • ψ(z[C]),
so that that (M, ψ, F) and (M, ϕ, G) are naive categorifications of (B, {b}, M) and (B, {b}, N) respectively. Moreover, there are isomorphism of functors

F • F ≃ F ⊕ F and G • G ≃ G ⊕ G so that in K 0 (M) the relations [F] 2 = 2[F] and [G] 2 = 2[G]
hold. So these isomorphisms lift the relation b 2 = 2b, and these categorifications are weak categorifications.

STRONG CATEGORIFICATION

We have defined the notion of weak categorification, allowing to categorify an algebra presented by generators and relations. However, we would like to categorify richer structures. In order to categorify something which already has the structure of a category, the categorification will be a 2-category, and we will define its Grothendieck group as the direct sum of the Grothendieck groups of the hom-categories.

3.3.1. Grothendieck group of a 2-category. A 2-category is said to be additive (resp. abelian, Rlinear) if it is a 1-category enriched in additive (resp. abelian, R-linear) categories. Given an additive 2-category A, the (split) Grothendieck group of A is the 1-category K 0 (A) whose:

i) 0-cells are the 0-cells of A,

ii) set of 1-cells with 0-source A and 0-target B is given by K 0 (A 1 (A, B)), the split Grothendieck group of the additive category A 1 (A, B). The composition of 1-cells in K 0 (A) is defined by 

[f] • [g] = [f ⋆ 0 g] for all f ∈ A 1 (B, C), g ∈ A 1 (A, B).
K 0 (C)⊗ Z R → C is an isomorphism.
Here, the operation of tensoring the morphisms with R is realized in order to turn the additive category K 0 (C) into an R-linear category.

In particular, when C has only one 0-cell, C is a unital and associative R-algebra and thus this definition encodes the notion of weak categorification for such R-algebras. In that case, the 2-category C also has only one 0-cell, and thus can be seen as a monoidal category.

Karoubian envelope.

As illustrated in [START_REF] Mazorchuk | Lectures on algebraic categorification. QGM Master Class Series[END_REF], one can require when defining a strong categorification to have a 2-category C wither further properties such as the Krull-Schmidt property of unique decomposition of any 1-cell into a direct sum of indecomposable 1-cells. However, there can exist in this 2-category some idempotent elements that does not split, making this property fail. A natural idea in that process is thus to take the Karoubian envelope (also called idempotent completion) of C, which is in fact a category associated with C in which all idempotents split. An idempotent e : x → x in a category C is a morphism such that e • e = e. The idempotent is said to split if there exist morphisms g : x → x ′ and h : x ′ → x such that e = g ⋆ 0 h and h ⋆ 0 g = 1 x ′ . In an additive category we can write b ′ = Im(e) so that the idempotent e can be viewed as the projection onto a summand b ∼ = Im(e) ⊕ Im(1e). For a category C the Karoubi envelope Kar(C) is a minimal enlargement of the category C in which all idempotents split, see [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF]. For a 2-category C, its Karoubi envelope Kar(C) is defined as follows 

→ b ′ is a 1-cell in C such that e ⋆ 0 f ⋆ 0 e ′ = f and β : f ⇒ f is an idempotent 2-cell in C such that µ ⋆ 0 β ⋆ 0 µ ′ = β.
iii) the 2-cells between parallel 1-cells (f, β), (g, γ) : (x, e, µ)

→ (x ′ , e ′ , µ ′ ) are 2-cells α : f ⇒ g in C such that γ • α • β = α.
There is a natural inclusion of C into Kar(C) sending a 0-cell x to the triple (x, 1 x , 1 1x ) and the 1-cell f to (f, 1 f ). The 2-category C admits the universal property that any 2-functor C → D to a 2-category D in which all idempotent 1-cells and 2-cells split factors through a 2-functor Kar(C) → D. Note that if C is an additive 2-category, we can also define an idempotent completion of C by gluing the Karoubi envelopes of all the additive categories C(x, y) for any 0-cells x and y in C as in [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF]. The notion of Karoubi envelope defined above is in general bigger than the one obtained with this construction.

QUANTUM GROUPS

We introduce all the required material about Kac-Moody algebras and quantum groups. We recall from [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF] the definitions of symmetrizable Cartan matrices, Cartan data and root data needed in the sequel. In this section, we fix a ground field K.

Cartan matrices.

A matrix A = (a i,j ) ∈ M n (K) is a generalized Cartan matrix if it satisfies the following conditions:

i) for any 1 ≤ i ≤ n, a i,i = 2, ii) for any 1 ≤ i < j ≤ n, a i,j ∈ Z <0 ,
iii) for any 1 ≤ i, j ≤ n, a i,j = 0 if and only if a j,i = 0.

3.4.2. Realization of a matrix. Let A = (a i,j ) 1≤i,j≤n a matrix of rank l with coefficients in K. A realization of A is the data of a triple (h, Π, Π ∨ ) where h is a K-space and Π = {α 1 , . . . , α n } ⊂ h * , Π ∨ = {α ∨ 1 , . . . , α ∨ n } ⊂ h satisfying:

• Π and Π ∨ are free,

• For all 1 ≤ i, j ≤ n, α ∨ i , α j = a i,j , where α ∨ i , α j stands for the quantity α ∨ i (α j ),

• dim (h) = 2nl.

The elements of Π and Π ∨ are respectively called simple roots and simple co-roots. Recall from [64, Proposition 1.1] that any complex matrix A admits up to isomorphism a unique realization.

The Kac-Moody algebra g(A)

. Let A = (a i,j ) 1≤i,j≤n a complex matrix of rank l and (h, Π, Π ∨ ) a realization of A. We introduce an auxiliary Lie algebra g(A) given by generators e i , f i for 1 ≤ i ≤ n and h modulo the following relations:

         [e i , f j ] = δ i,j α ∨ i (1 ≤ i, j ≤ n) [h, h ′ ] = 0 (h, h ′ ∈ h) [h, e i ] = α i , h e i (1 ≤ i ≤ n, h ∈ h) [h, f i ] = -α i , h f i (1 ≤ i ≤ n, h ∈ h) (3.1) 
The unicity of the realization of A implies that g(A) only depends on A. We denote ñ+ (resp. ñ-) the subalgebra of g(A) generated by the e i (resp. the f i ). We also set

Q = n i=1 Zα i and Q + = n i=1 ◆α i . Let
τ be the unique maximal ideal that intersects h trivially, and consider the algebra g(A) = g(A)/τ. It is a Lie algebra, called the Kac-Moody algebra associated with the generalized Cartan matrix A. We will keep the same notation for the images of the generators e i , f i and h ∈ h in g(A). The subalgebra h of g(A) is called the Cartan subalgebra. The e i and f i are called Chevalley generators.

Example.

For instance, the Lie algebra of 2 × 2 traceless matrices sl 2 is given by the generators

E = 0 1 0 0 , F = 0 0 1 0 , H = 1 0 0 -1 , so that sl 2 = CE ⊕ CH ⊕ F modulo the relations[E, F] = H, [H, E] = 2E, [H, F] = -2F.
Therefore, sl 2 is a Kac-Moody algebra corresponding to the Cartan Matrix A = (2), and the ideal τ is trivial. ii) -d i,j := 2 i.j i.i ∈ {0, -1, -2, . . . } for any i = j ∈ I.

We say that such a Cartan datum is simply-laced if the two following conditions hold:

i ′ ) For any i ∈ I, i • i = 2;
ii ′ ) For any i, j ∈ I, i • j ∈ {0, -1}. ii

) inclusions I ⊂ X (i → α i ) and I ⊂ Y (i → h i ) such that i, α j = 2 i•j i•i = -d ij for all i, j ∈ I.
This implies h i , α i = 2 for all i.

3.4.8. Quantum groups. The quantum group U associated to a root datum as above is the unital associative ◗(q)-algebra given by generators E i , F i , K µ for i ∈ I and µ ∈ Y, subject to the relations:

i) K 0 = 1, K µ K µ ′ = K µ+µ ′ for all µ, µ ′ ∈ Y, ii) K µ E i = q µ,α i E i K µ for all i ∈ I, µ ∈ Y, iii) K µ F i = q -µ,α i F i K µ for all i ∈ I, µ ∈ Y, iv) E i F j -F j E i = δ ij Ki -K-i q i -q -1 i , where K±i = K ±(i•i/2)i , v) For all i = j, a+b=-h i ,α J +1 (-1) a E (a) i E j E (b) i = 0 and a+b=-h i ,α J +1 (-1) a F (a) i F j F (b) i = 0.

KHOVANOV AND LAUDA'S CATEGORIFICATION OF QUANTUM GROUPS

In this section, we explain the main ideas beyond Khovanov and Lauda's construction of a strong categorification of Lusztig's idempotent and integral form U(g) of a quantum group associated to a symmetrizable Kac-Moody algebra g.

3.

5.1. The quantum group U q (sl 2 ). The universal enveloping algebra U(sl 2 ) of the Lie algebra sl 2 is the associative algebra given by generators E, F and H modulo the relations

HE -EH = 2E, HF -FH = -2F, EF -FE = H.
The quantum group (or quantum deformation) U q (sl 2 ) of U(sl 2 ) is an algebra over the ring ◗(q) of rational functions in the indeterminate q given by generators E, F, K, K -1 and relations

• KK -1 = K -1 K = 1,
• KE = q 2 EK,

• KF = q -2 FK,

• EF -FE = K-K -1 q-q -1 .

3.5.2. Representations of sl 2 and U q (sl 2 ). Let W be a finite dimensional representation of sl 2 . As it is a semi-simple Lie algebra, such a representation admits a decomposition

W = W α where W α = {w ∈ C; H • w = αw}
There is an action of E and F on the W α 's given by H(E(w)) = E(H(w)) + [H, E](w) = E(αw) + 2E(w) = (α + 2)E(w) and similarly, H(F(w)) = (α -2)F(w). Therefore, the matrix E (resp. F) sends an element of V α to an element of V α+2 (resp. V α-2 ). One can show that if W is irreducible, all the α that appears in the decomposition have to be congruent modulo 2, so that one has W = n∈Z W α 0 +2n = n∈Z W n . Here, W n is called the n-th weight space and X = Z is said to be the weight lattice of the Lie algebra.

Similarly, any finite-dimensional representation V of U q (sl 2 ) can be decomposed into eigenspaces V n for the action of K, with v ∈ V n if and only if K • v = q n v. We are in particular interested in representations that admit a decomposition

V = n∈Z V n
into weight spaces. Given a weight vector v ∈ V n the weights of Ev and Fv are determined using the relations K(Ev) = q 2 EKv = q n+2 (Ev), K(Fv) = q -2 FKv = q n-2 (Fv),

so that E: V n → V n+2 and F: V n → V n-2
. Therefore, such a representation of U q (sl 2 ) can be thought of as a collection of vector spaces V n for n ∈ Z where E maps the nth weight space to the n + 2 weight space and F maps the nth weight space to the n -2 weight space such that the main sl 2 relation EF -FE = K-K -1 q-q -1 holds. Note that on a weight vector v ∈ V n this relation takes the form

(EF -FE)v = K -K -1 q -q -1 v = Kv -K -1 v q -q -1 = q n -q -n q -q -1 v = [n]v.
where [n] := q n -q -n q-q -1 = q n-1 + q n-3 + • • • + q 1-n is called the n-quantum number.

3.5.3. Lusztig's idempotent and integral quantum group. Let us fix a Cartan datum (I, •) and a root datum associated with it. In [START_REF] Lusztig | Introduction to quantum groups[END_REF], Lusztig defined an integral and idempotented version U(g) of a quantum group U q (g) associated with a symmetrizable Kac-Moody algebra g. This version admits interesting features to study its representations. It is defined as the algebra U q (sl 2 ) in which the unit element is substituted by a collection of mutually orthogonal idempotents 1 λ projecting on the λ weight space for any λ ∈ X the weight lattice of g, and satisfying 1 λ 1 λ ′ = δ λ,λ ′ 1 λ . In the sequel, when there is no ambiguity we simply denote the algebra U(g) by U. It does not generally have a unit, since the infinite sum x∈X 1 λ does not belong to U. As a consequence of the relations in U q (g), the following identities have to be satisfied in U:

E i 1 λ = 1 λ+ix E i , F i 1 λ = 1 λ-ix F i , (E i F j -F j E i )1 λ = δ i,j [ h i , λ ] i 1 λ ,
where

[ h i , λ ] i is the quantum number q h i ,λ -1 i + • • • + q 1-h i ,λ i , with q i = q i•i 2 .
There are also further relations corresponding to Serre relations, see [START_REF] Lusztig | Introduction to quantum groups[END_REF].

For g = sl 2 (and sl n in general), the algebra U(sl 2 ) was at first introduced by Beilinson, Lusztig and MacPherson, [START_REF] Beilinson | A geometric setting for the quantum deformation of GL n[END_REF]. In that case, the weight lattice X is Z, so we add a collection of idempotents 1 n for n ∈ Z, and we require the following relations:

K1 n = q n 1 n , E1 n = 1 n+2 E = 1 n+2 E1 n , F1 n = 1 n-2 F = 1 n-2 F1 n .
The main sl 2 relation becomes

EF1 n -FE1 n = [n]1 n . (3.2)
3.5.4. The 0-cells and 1-cells of U (sl 2 ). The idempotented completion U(sl 2 ) can be interpreted as a K-linear monoidal category whose 0-cells are the elements of X and whose 1-cells from n to m are linear combinations of elements 1 m E ε 1 . . . E εs 1 n where (ε 1 , . . . , ε s ) is a sequence of signs, E + := E, E -:= F and mn = 2 s i=1 ε 1 . For a general Kac-Moody algebra g associated with a root datum (I, •), U is interpreted as a K-linear monoidal category whose 0-cells are elements of the weight lattice X of g, and whose 1-cells are linear combinations of elements of the form 1 ′ λ E ε 1 i 1 . . . E εsis 1 λ where i 1 , . . . , i m are elements of I, (ε 1 , . . . , ε s ) is a sequence of signs, E +i := E i , E -i := F i and λ ′ = λ + s i=1 ε 1 (i s ) X . The identity 1-cell on the 0cell λ ∈ X is the idempotent 1 λ , and composition of 1-cells is given by multiplication of the algebra U(λ, µ) ⊗ U(µ, ν) → U(λ, ν).

We want to define a strong categorification of U as an additive 2-category U . Following [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF], we sketch the various steps to define the 1-cells and 2-cells in this category for g = sl 2 so as the relations that the 2-cells should satisfy in order to construct a categorification. The 0-cells of U are given by the elements of X = Z. Moreover, given two weights n, n ′ ∈ X, U (n, n ′ ) has to be an additive category. The generating 1-cells E + and E -of U q (sl 2 ) should be lifted as 1-cells E -and E + in U . In order to define actions of E -and E + , vector spaces should be replaced by additive categories V n for any n ∈ Z, and in order to preserve the graded structure on the weight spaces V n , these categories are required to be equipped with an autoequivelance {1} : V λ → V λ corresponding to the grading shift functor. We denote by {s} the auto-equivalence obtained by applying {1} s times. All the linear maps in U are replaced by functors, and we impose that there are functors

1 n : V n → V n , E1 n : V n → V n+2 , F1 n : V n → V n-2
, that commute with the grading shift functor. We then lift the relations of U as natural isomorphisms of 1-cells in U . For instance, the relation (3.2) is lifted to

EF1 n ∼ = FE1 n ⊕ 1 ⊕ [n] n for n ≥ 0, FE1 n ∼ = EF1 n ⊕ 1 ⊕ [-n] n
for n ≤ 0,

where we write 1

⊕ [n] n := 1 n {n -1} ⊕ 1 n {n -3} ⊕ • • • ⊕ 1 n {1 -n}. Note that U (n, n ′
) has the structure of a ◗(q)-module. Following 3.1.6, we need to have a structure of Z[q, q -1 ]-module to be able to lift the action of q, and we thus consider an integral version of U, defined in [START_REF] Lusztig | Introduction to quantum groups[END_REF], as the Z[q, q -1 ]-algebra A U spanned by products of divided powers of the generators E + and E -, that is by the elements

E (a) 1 n := E a [a]! 1 n , F (b) 1 n := F b [b]! 1 n .
for any a ∈ ◆. However, we still denote this algebra by U. We also want to identify the space 1 n U1 n ′ with the split Grothendieck group of an additive category denoted by U(n, n ′ ). We further require that the 1-cells in U lift the Z[q, q -1 ]-module structure on 1 n U1 n ′ by requiring that [x{t}] = q t [x], so that multiplication by q lifts to the invertible functor {1} of shifting the grading by 1. Recall from Section 3.3.1 that the split Grothendieck group K 0 ( U) of the additive 2-category U is defined by

K 0 ( U ) = n,n ′ ∈Z K 0 ( U(n, n ′ ), with the requirement that [x] = [x 1 ][x 2 ] if x = x 1 ⋆ 0 x 2 .
In this way, the composition of 1-cells in the 2-category U corresponds to the multiplication in U. Note that this can be done since Lusztig established in [START_REF] Lusztig | Introduction to quantum groups[END_REF] that the algebra U has a canonical basis Ḃ which has the property that

[b x ][b y ] = z m z x,y [b z ] for [b x ], [b y ], [b z ] ∈ Ḃ,
where the structure coefficients m z

x,y are elements of ◆[q,q -1 ]. As isomorphisms classes of indecomposables 1-morphisms in U , up to grading shift, give a basis in the split Grothendieck ring K 0 ( U ), the positivity of these strucure coefficients suggests that it is possible to define U such that its indecomposable 1-cells correspond up to grading shift to elements in Lusztig's canonical basis Ḃ.

To sum up, the 2-category U (sl 2 ) has for 0-cells the set X = Z of weights of sl 2 , and as 1-cells all the formal direct sums (since we want any category U (n, n ′ ) to be additive) of elements of the form

1 n ′ E ǫ 1 n = E ǫ 1 . . . E ǫm 1 n {t} where ε 1 , . . . , ε m are signs, E + = E, E - = F, n ′ = n + 1≤k≤m
2ε k , and t ∈ Z is a grading shift. These 1-cells can be interpreted as sequences ε = (ε 1 , . . . , ε m ) of signs, together with the shift t ∈ Z.

3.5.5. Extension to the general case. Using similar arguments, for a Kac-Moody algebra g associated with a root datum of type (I, •), the 2-category U (g) has for 0-cells the weight lattice X, for 1-cells the linear combinations of elements of the form 1 µ E ε 1 i 1 . . . E εmim 1 λ {t} where i 1 , . . . , i m are elements of I, ε 1 , . . . , ε m are signs and

E +i = E i , E -i = F i with µ = λ + 1≤k≤m (i k ) X ,
and where t ∈ Z is a grading shift. Similarly, these 1-cells can be interpreted as signed sequences of elements of I, together with the shift t ∈ Z.

3.5.6. Expected dimensions of the spaces of 2-cells. In order to construct the 2-cells in U , we could expect to consider only degree preserving maps, that is the space of 2-cells U (x, y) between two 1-cells x and y should form a K-vector space of degree preserving 2-cells. However, it is a classical argument in the theory of graded vector spaces to consider decompositions of these vector spaces into spaces of degree homogeneous 2-cells, that is

U (x, y) := t∈Z U (x{t}, y).
As a consequence, there is a map

U (•, •) : U 1 × U 1 GrVect K (x, y) U (x, y) G G ✤ G G
assigning to 1-cells x and y in U 1 the graded vector space of all 2-cells with 1-source x and 1-target y. If the 1-cells of U correspond to elements of U, then descending this map through the Grothendieck group gives a pairing on U:

U (•, •) : U 1 × U 1 K 0 K 0 G G GrVect K gdim •, • : U × U G G Z[[q, q -1 ]] That is, [x], [y] := gdim HOM U (x, y) = t∈Z q t dim Hom U (x{t}, y), (3.3) 
where dim Hom U (x{t}, y) is the usual dimension of the graded vector space U (x{t}, y) of degree zero 2-morphisms. Hence, any choice of 2-morphisms in Hom U (x, y) gives rise to a pairing [x], [y] on U given by taking the graded dimension gdim of the graded vector space Hom U (x, y). Therefore we know that the graded Hom on the 2-category U must categorify that semilinear form on U.

Actually, there is a well known candidate for such a semilinear form , : U × U → Z[q, q -1 ], that is Luzstig's pairing on the quantum group [START_REF] Lusztig | Introduction to quantum groups[END_REF]. This map arises as the graded dimension of a certain Ext algebra between sheaves on quiver varieties in Lusztig's geometric realization of U. It has a lot of defining properties, see [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF], implying that one may compute any value of this bilinear pairing. As a consequence, Khovanov and Lauda constructed the 2-cells in U so that

gdim HOM U (1 λ E ǫ 1 λ , 1 λ E ǫ ′ 1 λ ) = 1 µ E ǫ 1 λ , 1 µ E ǫ ′ 1 λ . (3.4)
This means that each term aq t appearing in 1 µ E ǫ 1 λ , 1 µ E ǫ ′ 1 λ is the dimension of the a-dimensional homogeneous space of 2-cells in degree t. If the coefficient a is zero for a term aq t , this means that there are no 2-cells in degree t. When a is nonzero we add new graded 2-cells as basis vectors for the space of 2-cells in that degree.

3.5.7. The 2-cells in U . There are only two types of generating 1-cells E i and F i , so we introduce following [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF] a suited string diagrammatic representation for the identity 2-cells on E i 1 λ {t} and F i 1 λ {t}: they are respectively represented by

y y λ λ + i x i λ λ -i x i
in string notation. The grading shift is omitted from the string diagram so that the same diagrams corresponds to the identity 2-morphisms of E i 1 λ {t} and F i 1 λ {t} for any shift {t}. Now, we construct the remaining generating 2-cells using Section 3.5.6. Let us focus on the case g = sl 2 , and expand on some examples of generating 2-cells. Ona may check that E1 n , E1 n = 1 1q 2 = 1 + q 2 + q 4 + q 6 + . . .

(3.5)

The coefficient of q t for t < 0 being always zero, this imply that U (E1 n {t}, E1 n ) = {0} for t < 0.

The identity 2-cell of E1 n must be of degree zero, and we interpret the 1 = q 0 appearing above as the dimension of the 1-dimensional K-vector space spanned by linear combinations of the identity 2-cell on E1 n . Because the coefficient of q 0 is 1 all degree zero endomorphisms of E1 n should be equal to multiple of this identity 2-cell. The term q 2 suggests that there should be an additional 2-morphism from E1 n to itself in degree 2. We formally add such a generating 2-cell that we represent by:

y y • n n + 2 .
The coefficients in (3.5) impose to define a new generator in all positive even degree, but this is not needed since one can vertically compose this degree two 2-cell with itself to get a 2-cell in every degree 2k for k ≥ 1. Another example is given by the computation

EE1 n , EE1 n = (1 + q -2 ) 1 1 -q 2 2
imposing to define an additional generating 2-cell of degree -2, represented by n .

As a consequence, the vertical composition of this 2-cell with itself is a 2-cell of degree -4. However, the coefficient of q -4 in (3.6) is 0, so this forces to introduce a relation of the form n = 0.

One can then repeat this process by computing different values of Lusztig's pairing to define new generating 2-cells and identify some relations between their composites. In order to see that all the needed generating 2-cells are defined, one could either show that with the appropriate relations the indecomposable 1-cells of U corresponds bijectively with Lusztig's canonical basis as it was done in [START_REF] Lauda | A categorification of quantum sl(2)[END_REF], or give a purely diagrammatric interpretation of the semilinear form and argue that these generators can account for all the diagrams, as it was done in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF].

For the general case of a symmetrizable Kac-Moody algebra g with weight lattice X and Dynkin diagram Γ with set of vertices I, the 2-category U admits the following generating 2-cells for any i, j ∈ I and any λ ∈ X:

• i λ , i j λ , • i λ , i j λ , i λ , i λ , i λ , i λ . (3.6) 
3.5.8. Lift of the relations of U. All the 2-cells of U are now defined, and some relations that they have to satisfy have been identified. However, it remains to lift the defining relations of U to explicit isomorphisms. In the case of sl 2 , we have to obtain the following isomorphisms:

EF1 n ∼ = FE1 n ⊕ 1 ⊕ [n] n for n ≥ 0, FE1 n ∼ = EF1 n ⊕ 1 ⊕ [-n] n
for n ≤ 0.

Following [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF], for n ≥ 0 there is a natural map FE1 n ⊕ 1

⊕ [n] n
→ EF1 n given by the direct sum of maps:

EF1 n FE1 n ⊕ 1 n {n -1} ⊕ • • • ⊕ ⊕ • • • ⊕ 1 n {n -1 -2ℓ} 1 n {1 -n} y y n H H • n-1 X X • n-1-ℓ n n
and likewise there is a similar map for n ≤ 0. It then remains to define an inverse for this map, which as a component for each summand. To ensure the condition (3.3), one can explicitely compute the summands of the inverses, as in [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF]. Finally, lifting all the relations of U give rise to all the missing relations between 2-cells in U (g). As a consequence, we obtain a presentation by generators and relations of the candidate 2-categorification of U, which is the Karoubi envelope of the 2-category U given in Section 6.2 of Chapter 6.

CHAPTER 4

Coherent confluence modulo Squier's coherence theorem [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] states that a convergent presentation of a category can be extended into a coherent presentation of this category by gluing 3-cells corresponding to confluence diagrams of critical branchings of the presentations. These constructions have been extended for higher-dimensional globular strict categories [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF], associative algebras [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] and higher-dimensional linear categories [START_REF] Alleaume | Higher-dimensional linear rewriting and coherence in categorification and representation theory[END_REF]. In this Chapter, we give a coherence result based on Squier's constructions in the context of rewriting modulo. This Chapter recalls the results of [START_REF] Dupont | Coherent confluence modulo relations and double groupoids[END_REF].

Following the rewriting modulo approach developed by Huet [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF] and Jouannaud and Kirchner [START_REF] Jouannaud | Completion of a set of rules modulo a set of equations[END_REF], confluence modulo diagrams do not admit a globular shape anymore, but a cubical shape. This suggests that coherence modulo should not be defined in higher-dimensional globular strict categories anymore, but in a categorical structure adapted to these cubical shapes, that is higher-dimensional categories enriched in double groupoids. At first, we define a notion of double coherent presentation, as an adaptation of the notion of globular coherent presentation to this cubical setting. We then define the notion of higher-dimensional polygraphs modulo based on the extension of the notion of an higher-dimensional polygraph, made of oriented rules and denoted by R, by another polygraph denoted by E made of rules that are not oriented in rewriting paths. We then introduce following [START_REF] Jouannaud | Completion of a set of rules modulo a set of equations[END_REF] rewriting properties of termination and confluence modulo of these polygraphs, and prove a Newman lemma and a critical branching lemma for polygraphs modulo, under an additional termination assumption. Then, we extend Squier's coherence theorem by proving that a double coherent presentation can be obtained from a presentation that is confluent modulo by gluing a square cell for each confluence modulo diagram of critical branching modulo.

We then give a way to take the quotient of a double coherent presentation by the congruence generated by the relations in E, in order to obtain coherent presentations of categories that are not necessarily free in low dimensions. This quotient functor, with values in the category of dipolygraphs, seen as generating objects of these categories in which cellular extensions are defined categories that may not be free, gives a way to obtain a coherent presentation of a category by splitting the relations into two parts and applying these constructions of rewriting modulo one part of the rules.

Notations:. For simplicity in the cubical relations for source and target maps, if f is a k-cell of an ncategory C, we denote by ∂ -,i (f) and ∂ +,i (f) respectively denote the i-source and i-target of f, while (k -1)-source and (k -1)-target will be denoted by ∂ -(f) and ∂ + (f) respectively.

DOUBLE GROUPOIDS

4.1.1. Internal categories. The notion of double category was introduced by Ehresmann in [START_REF] Ehresmann | Catégories structurées[END_REF] as an internal category in the category Cat of all (small) categories and functors. Recall that given V be a category with finite limits, an internal category

C in V is a data (C 1 , C 0 , ∂ C -, ∂ C + , • C , i C ), where ∂ C -, ∂ C + : C 1 -→ C 0 , i C : C 0 -→ C 1 , • C : C 1 × C 0 C 1 -→ C 1
are morphisms of V satisfying the usual axioms of a category, that is

C 0 i C G G 1 1 1 C 1 ∂ C - C 0 C 0 i C G G 1 1 1 
C 1 ∂ C + C 0 C 1 × C 0 C 1 • C G G π 1 C 1 ∂ C - C 1 ∂ C - G G C 0 C 1 × C 0 C 1 c G G π 2 C 1 ∂ C + C 1 ∂ C + G G C 0 C 1 × C 0 C 1 • C × C 0 1 G G 1× C 0 C 1 × C 0 C 1 • C C 1 × C 0 C 1 • C G G C 1 C 1 × C 0 C 1 i C × C 0 G G π 2 9 9 C 1 × C 0 C 1 • C C 1 × C 0 C 1 1× C 0 i C o o π 1 w w C 1 where C 1 × C 0 C 1 denotes the pullback in V over morphisms ∂ C -and ∂ C + .
An internal functor from C to D is a pair of morphisms C 1 → D 1 and C 0 → D 0 in V making the following diagrams commute:

C 1 ∂ C -G G F 1 C 0 F 0 D 1 ∂ D - G G D 0 C 1 ∂ C + G G F 1 C 0 F 0 D 1 ∂ D + G G D 0 C 0 i C G G F 0 C 1 F 1 D 0 i D G G D 1 C 1 × C 0 C 1 • C G G F 1 ×F 1 C 1 F 1 D 1 × D 0 D 1 • D G G D 1
We denote by Cat(V) the category of internal categories in V and their functors. In the same way, we define an internal groupoid G in V as an internal category

(G 1 , G 0 , ∂ G -, ∂ G + , • G , i G ) with an additional morphism (•) - G : G 1 → G 1 satisfying the axioms of groups, that is ∂ G -• (•) - G = ∂ G + , ∂ G + • (•) - G = ∂ G -, (4.1) 
i G • ∂ G -= • G • (id × (•) - G ) • ∆, i G • ∂ G + = • G • ((•) - G × id) • ∆, (4.2) 
where ∆ : G 1 → G 1 × G 1 is the diagonal functor. We denote by Grpd(V) the category of internal groupoids in V and their functors.

4.1.2. Double categories and double groupoids. The category of double categories is defined as the category Cat(Cat), and the category of double groupoids is defined as the category Grpd(Grpd) of internal groupoids in the category Grpd of groupoids and their functors. Explicitly, a double category is an internal category

(C 1 , C 0 , ∂ C -, ∂ C + , • C , i C )
in Cat, that gives four related categories:

C sv := (C s , C v , ∂ v -,1 , ∂ v +,1 , ⋄ v , i v 1 ), C sh := (C s , C h , ∂ h -,1 , ∂ h +,1 , ⋄ h , i h 1 ), C vo := (C v , C o , ∂ v -,0 , ∂ v +,0 , • v , i v 0 ), C ho := (C h , C o , ∂ h -,0 , ∂ h +,0 , • h , i h 0 ),
where C sh is the category C 1 and C vo is the category C 0 . The sources, target and identity maps pictured in the following diagram

C s ∂ h +,1 4 
4 ∂ h -,1 4 
4 ∂ v -,1 } } ∂ v +,1 } } C v ∂ v +,0 3 3 ∂ v -,0 3 3 i v 1 a a C h ∂ h -,0 | | ∂ h +,0 | | i h 1 C o i h 0 ìv 0 satisfy the following relations: i) ∂ h α,0 ∂ h β,1 = ∂ v β,0 ∂ v α,1 , for all α, β in {-, +}, ii) ∂ µ α,1 i η 1 = i µ 0 ∂ η α,0 , for all α in {-, +} and µ, η in {v, h}, iii) i v 1 i v 0 = i h 1 i h 0 , iv) ∂ µ α,1 (A ⋄ µ B) = ∂ µ α,1 (A) • µ ∂ µ α,1 (B)
, for all α ∈ {-, +}, µ ∈ {v, h} and any squares A, B such that both sides are defined, v) middle four interchange law :

(A ⋄ v A ′ ) ⋄ h (B ⋄ h B ′ ) = (A ⋄ h B) ⋄ v (A ′ ⋄ h B ′ ), (4.3) 
for any cells A, A ′ , B, B ′ in C s such that both sides are defined.

Elements of C o are called point cells, the elements of C h and C v are respectively called horizontal cells and vertical cells and pictured by

x 1 f G G x 2 x 1 e x 2
Following relations i), the elements of C s are called square cells and can be pictured by squares as follows:

• ∂ h -,1 (A) G G ∂ v -,1 (A) • ∂ v +,1 (A) • ∂ h +,1 (A) G G • A
and by the followings squares for identities

x 1 f G G i v 0 (x 1 ) x 2 i v 0 (x 2 ) x 1 f G G x 2 i h 1 (f) x i h 0 (x) G G e x e y i h 0 (y) G G y i v 1 (e)
or simply by

x 1 f G G = x 2 = x 1 f G G x 2 i h 1 (f) x = G G e x e y = G G y i v 1 (e)
The compositions ⋄ v (resp. ⋄ h ) are called respectively vertical and horizontal compositions, and can be pictured as follows

x 1 f 1 G G e 1 x 2 e 2 f 2 G G x 3 e 3 y 1 g 1 G G y 2 A g 2 G G y 3 B x 1 f 1 • h f 2 G G e 1
x 3 e 3 y 1

g 1 • h g 2 G G y 3 A⋄ v B for all x i , y i in C o , f i , g i in C h , e i in C v and A, B in C s , x 1 f G G e 1 x 2 e 2 y 1 g G G e ′ 1 y 2 e ′ 2 A z 1 h G G z 2 A ′ x 1 f G G e 1 • v e ′ 1 x 2 e 2 • v e ′ 2 z 1 h G G z 2 A⋄ h A ′ for all x i , y i , z i in C o , f, g, h in C h , e i , e ′ i in C v and A, A ′ in C s .
Similarly a double groupoid is given by the same data

(G 1 , G 0 , ∂ G -, ∂ G + , • G , i G )
, with an inverse operation (•) - G : G 1 → G 1 satisfying the relations (4.1) and (4.2). As a consequence the four related categories G sv , G sh , G vo and G ho are groupoids. For any square cell

• f G G e • e ′ • g G G • A in G s
, the inverse square cell with respect to ⋄ µ , for µ ∈ {v, h}, is denoted by A -,µ and satisfy the following relations

A ⋄ µ (A -,µ ) = i µ 1 (∂ µ -,1 (A)), (A -,µ ) ⋄ µ A = i µ 1 (∂ µ +,1 (A)). (4.4)
The sources and targets of these inverse are given as follows

• f - G G e ′ • e • g - G G • A -,v • g G G e - • (e ′ ) - • f G G • A -,h
4.1.3. Squares. A square of a double category C is a quadruple (f, g, e, e ′ ) such that f, g are horizontal cells and e, e ′ are vertical cells that compose as follows:

u f G G e v e ′ u ′ g G G v ′
The boundary of a square cell A in C is the square (∂ -,h (A), ∂ +,h (A), ∂ -,v (A), ∂ +,v (A)), denoted by ∂(A). We will denote by Sqr(C) the set of square cells of C. 

u f G G g u ′ k v h G G v ′ A in Q(C) whenever there is a 2-cell A : f ⋆ 1 k ⇒ g ⋆ 1 h in C. This defines a functor Q : Cat 2 → DbCat.
Similarly, for n ≥ 2 one can associate to an n-category an (n-2)-category enriched in double categories by a quintet construction. 4.1.5. n-categories enriched in double categories. The coherence results for rewriting systems modulo presented in this article are formulated using the notion of n-categories enriched in double categories and double groupoids. Let us expand the latter notion for n > 0. Consider the category Cat(Grpd) equipped with the cartesian product defined by

C × D = (C 1 × D 1 , C 0 × D 0 , s C × t C , c C × c D , i C × i D ),
for any double groupoids C and D. The terminal double groupoid T has only one point cell, denoted by •, and identities

i v 0 (•), i h 0 (•), i v 1 i h 0 (•) = i h 1 i v 0 (•).
An n-category enriched in double groupoids is an n-category C such that for any x, y in C n-1 the homset C n (x, y) has a double groupoid structure, whose point cells are the n-cells in C n (x, y). We will denote by

C v n+1 (resp. C h n+1 , C s n+2 ) the union of sets C n (x, y) v (resp. C n (x, y) h , C n (x, y) s ) for all x, y in C n-1 . An (n + 2)-cell A in C s
n+2 can be represented by the following diagrams:

u f G G e v e ′ u ′ g G G v ′ A with u, u ′ , v, v ′ in C n , f, g in C h
n+1 and e, e ′ in C v n+1 . The compositions of the (n + 2)-cells and the identities (n + 2)-cells are induced by the functors of double categories

⋆ x,y,z n-1 : C n (x, y) × C n (y, z) → C n (x, z), 1 x : T → C n (x, x),
for all (n-1)-cells x, y, z. The (n-1)-composite of an (n+2)-cell A in C n (x, y) with an (n+2)-cell B in C n (y, z) of the form

u 1 f 1 G G e 1 v 1 e ′ 1 u ′ 1 g 1 G G v ′ 1 A u 2 f 2 G G e 2 v 2 e ′ 2 u ′ 2 g 2 G G v ′ 2 B
is defined by ⋆ n-1 compositions of n-cells, vertical (n+1)-cells and horizontal (n+1)-cells and denoted by:

u 1 ⋆ n-1 u 2 f 1 ⋆ n-1 f 2 G G e 1 ⋆ n-1 e 2 v 1 ⋆ n-1 v 2 e ′ 1 ⋆ n-1 e ′ 2 u ′ 1 ⋆ n-1 u ′ 2 g 1 ⋆ n-1 g 2 G G v ′ 1 ⋆ n-1 v ′ 2 A⋆ n-1 B
By functoriality, the (n -1)-composition satisfies the following exchange relations:

(A ⋄ µ A ′ ) ⋆ n-1 (B ⋄ µ B ′ ) = (A ⋆ n-1 B) ⋄ µ (A ′ ⋆ n-1 B ′ ), (4.5) 
(A ⋄ µ A ′ ) ⋆ n-1 (B ⋄ η B ′ ) = ((A ⋆ n-1 B) ⋄ µ (A ′ ⋆ n-1 B)) ⋄ η ((A ⋆ n-1 B ′ ) ⋄ µ (A ′ ⋆ n-1 B ′ )). (4.6)
Using middle four interchange law (4.3), the identity (4.6) is equivalent to the following identity

(A ⋄ µ A ′ ) ⋆ n-1 (B ⋄ η B ′ ) = ((A ⋆ n-1 B) ⋄ η (A ⋆ n-1 B ′ )) ⋄ µ ((A ′ ⋆ n-1 B) ⋄ η (A ′ ⋆ n-1 B ′ ))
for all µ = η in {v, h} and any (n + 2)-cells A, A ′ , B, B ′ such that both sides are defined. We will denote by Cat n (DbCat) (resp. Cat n (DbGrpd)) the category of n-categories enriched in double categories (resp. double groupoids) and enriched n-functors.

DOUBLE COHERENT PRESENTATIONS

Recall from Section 2.4.10 that a coherent presentation of an n-category C is an (n + 2, n)-polygraph P such that the underlying (n + 1)-polygraph P ≤(n+1) is a presentation of C and P n+2 is an acyclic extension of the free (n + 1, n)-category generated by P. In Section 4.2.4, we introduce dipolygraphs in order to extend the notion of coherent presentation to n-categories whose underlying (n -1)-category is not free. We also introduce the notion of double n-polygraph generating n-categories enriched in double groupoids. In Section 4.5, we will formulate coherence results modulo using the structure of double n-polygraph. Finally, we introduce in Subsection 4.2.7 double coherent presentations of n-categories. This notion allows us to obtain coherent presentations from polygraphs modulo as it will be explained in 4.7.

4.2.1. Square extensions. Let (C v , C h ) be a pair of n-categories with the same underlying (n -1)category Ḃ. A square extension of the pair (C v , C h ) is a set Γ equipped with four maps ∂ µ α,n , with α ∈ {-, +}, µ ∈ {1, 2}, as depicted by the following diagram:

Γ ∂ h +,n 6 6 ∂ h -,n 6 6 ∂ v -,n z z ∂ v +,n z z C v ∂ v +,n-1 5 5 ∂ v -,n-1 5 5 C h ∂ h -,n-1 { { ∂ h +,n-1 { { Ḃ
and satisfying the following relations:

∂ v α,n-1 ∂ v β,n = ∂ h β,n-1 ∂ h α,n ,
for all α, β in {-, +}. The point cells of a square A in Γ are the (n -1)-cells of Ḃ of the form

∂ µ α,n-1 ∂ η β,n (A)
with α, β in {-, +}, and η, µ in {h, v}. Note that by construction these four (n -1)-cells have the same (n -2)-source and (n -2)-target in Ḃ respectively denoted by ∂ -,n-2 (A) and ∂ +,n-2 (A).

A pair of n-categories (C v , C h ) has two canonical square extensions, the empty one, and the full one that contains all squares on (C v , C h ), denoted by Sqr(C v , C h ). We will write Sph(C v , 1) (resp. Sph(1, C h )) the square extension of (C v , C h ) made of all squares of the form

u = G G e u e ′ v = G G v resp. u f G G = u ′ = u g G G u ′
for all n-cells e, e ′ in C v (resp. n-cells in f, g in C h ). The Peiffer square extension of the pair (C v , C h ) is the square extension of (C v , C h ), denoted by Peiff(C v , C h ), containing the squares of the form

u ⋆ i v f⋆ i v G G u⋆ i e u ′ ⋆ i v u ′ ⋆ i e u ⋆ i v ′ f⋆ i v ′ G G u ′ ⋆ i v ′ w ⋆ i u w⋆ i f G G e ′ ⋆ i u w ⋆ i u ′ e ′ ⋆ i u ′ w ′ ⋆ i u w ′ ⋆ i f G G w ′ ⋆ i u ′
for all n-cells e, e ′ in C v and n-cell f in C h . 4.2.2. Double polygraphs. We define a double n-polygraph as a data P = (P v , P h , P s ) made of 1. two (n + 1)-polygraphs P v and P h such that P v ≤n = P h ≤n , 2. a square extension P s of the pair of free (n + 1)-categories ((P v ) * , (P h ) * ).

Such a data can be pictured by the following diagram

P s ∂ h +,n+1 4 
4 ∂ h -,n+1 4 
4 ∂ v -,n+1 | | ∂ v +,n+1 | | (P v ) * ∂ v -,n 4 4 ∂ v +,n 4 4 
(P h ) * ∂ h +,n | | ∂ h -,n | | P v ∂ v +,n G G ∂ v -,n G G ι v n+1 y y P * n+1 ∂ -,n-1 ∂ +,n-1 P h ∂ h -,n o o ∂ h +,n o o ι h n+1 y y P * n
For 0 ≤ k ≤ n, the k-cells of the (n + 1)-polygraphs P v and P h are called generating k-cells of P. The (n + 1)-cells of P v (resp. P h ) are called generating vertical (n + 1)-cells of P (resp. generating horizontal (n + 1)-cells of P), and the elements of P s are called generating square (n + 2)-cells of P. 4.2.3. The category of double n-polygraphs. Given two double n-polygraphs P = (P v , P h , P s ) and

Q = (Q v , Q h , Q s ), a morphism of double n-polygraphs from P to Q is a triple (f v , f h , f s ) made of two morphisms of (n + 1)-polygraphs f v : P v → Q v , f h : P h → Q h ,
and a map f s : P s → Q s such that the following diagrams commute:

P µ n+1 f µ n+1 P s ∂ µ,P -,n-1 o o f s Q µ n+1 Q s ∂ µ,Q -,n-1 o o P µ n+1 f µ n+1 P s ∂ µ,P +,n-1 o o f s Q µ n+1 Q s ∂ µ,Q +,n-1 o o
for µ in {v, h}. We will denote by DbPol n the category of double n-polygraphs and their morphisms.

Let us explicit two full subcategories of DbPol n used in the sequel to formulate coherence and confluence results for polygraphs modulo. We define a double (n + 2, n)-polygraph as a double npolygraph whose square extension P s is defined on the pair of (n + 1, n)-categories ((P v ) ⊤ , (P h ) ⊤ ). We denote by DbPol (n+2,n) the category of double (n + 2, n)-polygraphs. In some situations, we will also consider double n-polygraphs whose square extension is defined on the pair of (n + 1)-categories ((P v ) ⊤ , (P h ) * ) (resp. ((P v ) * , (P h ) ⊤ )). We will respectively denote by DbPol v n (resp. DbPol h n ) the full subcategories of DbPol n they form.

Dipolygraphs.

We define the structure of dipolygraph as presentation by generators and relations for ∞-categories whose underlying k-categories are not necessarily free. Note that a similar notion was introduced by Burroni in [START_REF] Burroni | Une autre approche des orientaux[END_REF]. Let us define the notion of n-dipolygraph by induction on n ≥ 0. A 0-dipolygraph is a set. A 1-dipolygraph is a triple ((P 0 , P 1 ), Q 1 ), where (P 0 , Q 1 ) is a 1-polygraph and P 1 is a cellular extension of the quotient category (P * 0 ) Q 1 . For n ≥ 2, an n-dipolygraph is a data (P, Q) = ((P i ) 0≤i≤n , (Q i ) 1≤i≤n ) made of i) a 1-dipolygraph ((P 0 , P 1 ), Q 1 ), ii) for every 2 ≤ k ≤ n, a cellular extension Q k of the (k -1)-category

[P k-2 ] Q k-1 [P k-1 ],
where

[P k-2 ] Q k-1 denotes the (k -2)-category ((((P * 0 ) Q 1 [P 1 ]) Q 2 [P 2 ]) Q 3 . . . [P k-2 ]) Q k-1 ,
iii) for every 2 ≤ k ≤ n, a cellular extension P k of the (k -1)-category

[P k-1 ] Q k .
For 0 ≤ k ≤ n -1, we will denote by (P, Q) ≤k the underlying k-dipolygraph ((P i ) 0≤i≤k , (Q i ) 1≤i≤k ).

4.2.5. Dipolygraphs. For 0 ≤ p ≤ n, an (n, p)-dipolygraph is a data

((P i ) 0≤i≤n , (Q i ) 1≤i≤n ) such that: i) ((P i ) 0≤i≤p+1 , (Q i ) 1≤i≤p+1 ) is a (p + 1)-dipolygraph,
ii) for every p + 2 ≤ k ≤ n, Q k is a cellular extension of the (k -1, p)-category

([P p ] Q p+1 )(P p+1 ) Q p+2 . . . (P k-1 ),
iii) for every p + 2 ≤ k ≤ n, P k is a cellular extension of the (k -1, p)-category

((([P p ] Q p+1 )(P p+1 )) Q p+2 . . . (P k-1 )) Q k .
We define a morphism of (n, p)-dipolygraphs

((P i ) 0≤i≤n , (Q i ) 1≤i≤n ) → ((P ′ i ) 0≤i≤n , (Q ′ i ) 1≤i≤n )
as a family of pairs ((f k , g k )) 1≤k≤n , where f k :

P k → P ′ k and g k : Q k → Q ′ k are maps such that the following diagram commute Q k G G G G g k [P k-2 ] Q k-1 [P k-1 ] f k-1 Q ′ k G G G G [P ′ k-2 ] Q ′ k-1 [P ′ k-1 ] P k G G G G f k [P k-1 ] Q k [f k-1 ]g k P ′ k G G G G [P ′ k-1 ] Q ′ k
for any 1 ≤ k ≤ p + 1, and such that the following diagrams commute

Q k G G G G g k ([P p ] Qp )(P p+1 ) Q p+2 . . . (P k-1 ) f k-1 Q ′ k G G G G ([P ′ p ] Q ′ p )(P ′ p+1 ) Q ′ p+2 . . . (P ′ k-1 ) P k G G G G f k ((([P p ] Q p+1 )(P p+1 )) Q p+2 . . . (P k-1 )) Q k [f k-1 ]g k P ′ k G G G G ((([P ′ p ] Q ′ p+1 )(P ′ p+1 )) Q ′ p+2 . . . (P ′ k-1 )) Q ′ k for any p + 2 ≤ k ≤ n,
where the map f k-1 is induced by the map f k-1 and the map [f k-1 ] g k is defined by the following commutative diagram:

(([P p ] Q p+1 )(P p+1 )) Q p+2 . . . (P k-1 ) π G G f k-1 ((([P p ] Q p+1 )(P p+1 )) Q p+2 . . . (P k-1 )) Q k [f k-1 ]g k (([P ′ p ] Q ′ p+1 )(P ′ p+1 )) Q ′ p+2 . . . (P ′ k-1 ) π ′ G G ((([P ′ p ] Q ′ p+1 )(P ′ p+1 )) Q ′ p+2 . . . (P ′ k-1 )) Q ′ k
We will denote by DiPol (n,p) the category of (n, p)-dipolygraphs and their morphisms.

4.2.6. Presentations by dipolygraphs. The (n -1)-category presented by an n-dipolygraph (P, Q) is defined by

(P, Q) := ([P n-1 ] Qn ) Pn .
Let C be an (n -1)-category. A presentation of C is an n-dipolygraph (P, Q) whose presented category

(P, Q) is isomorphic to C. A coherent presentation of C is an (n+1, n-1)-dipolygraph (P, Q) satisfying the following conditions i) the underlying n-dipolygraph (P, Q) ≤n is a presentation of C,
ii) the cellular extension P n+1 is acyclic, iii) the cellular extension Q n+1 is empty.

Double coherent presentations.

In this subsection, we introduce the notion of double coherent presentation of an n-category, defined using the structure of double n-polygraph. Let us first explicit the construction of a free n-category enriched in double categories generated by a double n-polygraph.

4.2.8. Construction of free double categories. The question of the construction of free double categories was considered in several works, [START_REF] Dawson | General associativity and general composition for double categories[END_REF][START_REF] Dawson | A forbidden-suborder characterization of binarily-composable diagrams in double categories[END_REF][START_REF] Dawson | What is a free double category like?[END_REF][START_REF] Dawson | Free extensions of double categories[END_REF]. In particular, Dawson and Pare gave in [START_REF] Dawson | What is a free double category like?[END_REF] constructions of free double categories generated by double graphs and double reflexive graphs. Such free double categories always exist, and they show how to describe their cells explicitly in geometrical terms. However, they show that free double categories generated by double graphs cannot describe many of the possible compositions in free double categories. They fixed this problem by considering double reflexive graphs as generators.

The coherence results that we will state in Section 4.6 are formulated in free n-categories enriched in double categories generated by double n-polygraphs. For every n ≥ 0, let us consider the forgetful functor

W n : Cat n (DbCat) → DbPol n (4.7)
that sends an n-category enriched in double categories C on the double n-polygraph, denoted by

W n (C) = (W v n+1 (C), W h n+1 (C), W s n+2 (C)),
where

W v n+1 (C) (resp. W h n+1 (C))
is the underlying (n + 1)-polygraph of the (n + 1)-category obtained as the extension of the underlying n-category of C by the vertical (resp. horizontal) (n + 1)-cells and W s n+2 (C) is the square extension generated by all squares of C. Explicitly, for µ ∈ {v, h}, consider C µ n+1 the (n + 1)-category whose 1. underlying (n -1)-category coincides with the underlying (n -1)-category of C,

set of n-cells is given by

(C µ n+1 ) n := x,y∈C n-1 (C n (x, y)) o ,
3. set of (n + 1)-cells is given by

(C µ n+1 ) n+1 := x,y∈C n-1 (C n (x, y)) µ .
The (n -1)-composition of n-cells and (n + 1)-cells of C µ n+1 are defined by enrichment. The ncomposition of (n + 1)-cells of C µ n+1 are induced by the composition • µ . We define W µ n+1 (C) as the underlying (n + 1)-polygraph of the (n + 1)-category C µ n+1 :

W µ n+1 (C) := U Pol n+1 (C µ n+1 ).
Finally, the square extension W s n+2 (C) is defined on the pair of (n + 1)-categories

(C v n+1 , C h n+1 ) by W s n+2 (C) := x,y∈C n-1 C n (x, y) s .
4.2.9 Proposition. For every n ≥ 0, the forgetful functor W n defined in (4.7) admits a left adjoint functor F n .

The proof of this result consists in constructing explicitly in 4.2.10 the free n-category enriched in double categories generated by a double n-polygraph and the proof in 4.2.11 of universal property of free object. 4.2.10. Free n-category enriched in double categories. Consider a double n-polygraph P = (P v , P h , P s ). We construct the free n-category enriched in double categories on P, denoted by P , as follows: i) the underlying n-category of P is the free n-category P * n ,

ii) for all (n -1)-cells x and y of P * n-1 , the hom-double category P (x, y) is constructed as follows a) the point cells of P (x, y) are the n-cells in P * n (x, y), b) the vertical cells of P (x, y) are the (n+1)-cells of the free (n+1)-category (P v ) * with (n-1)source x and (n -1)-target y, c) the horizontal cells of P (x, y) are the (n + 1)-cells of the free (n + 1)-category (P h ) * with (n -1)-source x and (n -1)-target y, d) the set of square cells of P (x, y) is defined recursively and contains

• the square cells A of P s such that ∂ -,n-1 (A) = x and ∂ +,n-1 (A) = y,

• the square cells C[A] for any context C of the n-category P * n and A in P s , such that

∂ -,n-1 (C[A]) = x and ∂ +,n-1 (C[A]) = y,
• identities square cells i h 1 (f) and i v 1 (e), for any (n + 1)-cells f in (P h ) * and (n + 1)-cell e in (P v ) * whose (n -1)-source (resp. (n -1)-target) in P * n-1 is x (resp. y), • all formal pastings of these elements with respect to ⋄ h -composition and ⋄ v -composition. e) two square cells constructed as such formal pastings are identified by the associativity, and identity axioms of compositions ⋄ v and ⋄ h and middle four interchange law given in (4.3),

iii) for all (n -1)-cells x, y, z of P * n-1 , the composition functor ⋆ n-1 : P (x, y) × P (y, z) -→ P (x, z) is defined for any

u 1 f 1 G G e 1 v 1 e ′ 1 u ′ 1 g 1 G G v ′ 1 A 1 in P (x, y), and u 2 f 2 G G e 2 v 2 e ′ 2 u ′ 2 g 2 G G v ′ 2 A 2 in P (y, z), by u 1 ⋆ n-1 u 2 f 1 ⋆ n-1 f 2 G G e 1 ⋆ n-1 e 2 v 1 ⋆ n-1 v 2 e ′ 1 ⋆ n-1 e ′ 2 u ′ 1 ⋆ n-1 u ′ 2 g 1 ⋆ n-1 g 2 G G v ′ 1 ⋆ n-1 v ′ 2 A 1 ⋆ n-1 A 2
where the square cell A 1 ⋆ n-1 A 2 is defined recursively using exchanges relations (4.5-4.6) from functoriality of the composition ⋆ n-1 , and the middle four identities (4.3), iv) for all (n -1)-cell x of P * n-1 , the identity map T -→ P (x, x), where T is the terminal double groupoid, sends the one point cell • on x and the identity i µ α (•) on i µ α (x) for all µ ∈ {v, h} and α ∈ {0, 1}. 4.2.11. Universal property of a free object. The functor F n : DbPol n → Cat n (DbCat) defined by F n (P) = P for any double n-polygraph P satisfies the universal property of a free object in Cat n (DbCat). Indeed, given a double n-polygraph P = (P v , P h , P s ), a morphism η P : P → W n (F n (P)) of double n-polygraphs, an n-category enriched in double categories C, and a morphism ϕ : P → W n (C) of double n-polygraphs, there exists a unique enriched morphism ϕ : F n (P) → C such that the following diagram commutes

P η P G G ϕ 7 7 W n (F n (P)) Wn( ϕ) W n (C)
The functor ϕ = ( ϕ k ) 0≤k≤n+2 is defined as follows.

i) By construction, the morphism ϕ induces morphisms of (n + 1)-polygraphs ϕ µ : P µ → W µ n+1 (C), for µ ∈ {v, h}. The morphism ϕ µ extends by universal property of free (n + 1)-categories into a functor ϕ µ : (P µ ) * → C µ n+1 . We set

ϕ k = ϕ v k = ϕ h k for 0 ≤ k ≤ n, and 
ϕ n+1 (f) = ϕ h (f), ϕ n+1 (e) = ϕ v (e),
for every horizontal (n + 1)-cell f and every vertical (n + 1)-cell e.

ii) By construction, any square (n + 2)-cell A in F n (P) is a composite of generating square (n + 2)cells in P s with respect to the compositions ⋄ v , ⋄ h and ⋆ n-1 . Moreover, following [38, Theorem 1.2], if a compatible arrangement of square cells in a double category is composable in two different ways, the results are equal modulo the associativity, identity axioms of compositions ⋄ v and ⋄ h , and middle four interchange law (4.3). We extend the functor ϕ to the functor ϕ by setting

ϕ(A ⋄ µ B) = ϕ(A) ⋄ µ ϕ(B), ϕ(A ⋆ n-1 B) = ϕ(A) ⋆ n-1 ϕ(B),
for every µ ∈ {v, h} and all square generating (n + 2)-cells A, B in P s whenever the composites are defined.

4.2.12. Free n-categories enriched in double groupoids. By a similar construction to the free ncategory enriched in double categories on a double n-polygraph P = (P v , P h , P s ) given in 4.2.10, we construct the free n-category enriched in double groupoids generated by a double (n + 2, n)-polygraph P = (P v , P h , P s ), that we denote by P . It is obtained as the free n-category enriched in double categories P having in addition

• inverse vertical (n + 1)-cells e -for any generating vertical (n + 1)-cell e,

• inverse horizontal (n + 1)-cells f -for any generating vertical (n + 1)-cell f,

• inverse square (n + 2)-cells A -,µ for any generating square (n + 2)-cell A in P s , that satisfy the inverses axioms of groupoids for vertical and horizontal cells and the relations (4.4) for square cells. Finally, we will also consider the free n-category enriched in double categories, whose vertical category is a groupoid, generated by a double n-polygraph P = (P v , P h , P s ) in DbPol v , that we denote by P ,v . In that case, we only require the invertibility of vertical (n + 1)-cells and the invertibility of square (n + 2)-cells with respect to ⋄ h -composition. 4.2.13. Acyclicity. Let P = (P v , P h , P s ) be a double (n + 2, n)-polygraph. The square extension P s of the pair of (n + 1, n)-categories ((P v ) ⊤ , (P h ) ⊤ ) is acyclic if for any square S over ((P v ) ⊤ , (P h ) ⊤ ) there exists a square (n + 2)-cell A in the free n-category enriched in double groupoids P such that ∂(A) = S. For example, the set of squares over ((P v ) ⊤ , (P h ) ⊤ ) forms an acyclic extension.

4.2.14. Double coherent presentations of n-categories. Recall that a presentation of an n-category C is an (n + 1)-polygraph P whose presented category P is isomorphic to C. We define a double coherent presentation of C as a double (n + 2, n)-polygraph (P v , P h , P s ) satisfying the two following conditions: i) the (n + 1)-polygraph (P n , P v n+1 ∪ P h n+1 ) is a presentation of C, where P n is the underlying npolygraph of P v and P h , ii) the square extension P s is acyclic. 4.2.15. Globular coherent presentations from double coherent presentations. We define a quotient functor V :

DbPol (n+2,n) → DiPol (n+2,n) (4.8)
that sends a double (n + 2, n)-polygraph P = (P v , P h , P s ) to the (n + 2, n)-dipolygraph V(P) = ((P 0 , . . . , P n+2 ), (Q 1 , . . . , Q n+2 )) (4.9) defined as follows:

i) (P 0 , . . . , P n ) is the underlying n-polygraph P v ≤n = P h ≤n := P n , ii) for every

1 ≤ i ≤ n, the cellular extension Q i is empty, iii) Q n+1 is the cellular extension P v n+1 ∂ v -,n G G ∂ v +,n G G P * n , iv) P n+1 is the cellular extension P h n+1 ∂ h -,n G G ∂ h +,n G G (P * n ) P v n+1
, where the maps ∂ h -,n and ∂ h +,n are defined by

∂ h µ,n = ∂ h µ,n • π,
for any µ in {-, +}, where π : P * n ։ (P * n ) P v n+1 denotes the canonical projection sending an n-cell u in P * n on its class, denoted by [u] v , modulo P v n+1 . Moreover, for any f : u → v in P h n+1 , we will denote by

[f] v : [u] v → [v] v the corresponding element in P n+1 , v) the cellular extension Q n+2 is empty, vi) P n+2 is defined as the cellular extension P s š G G ť G G (P * n ) P v n+1 (P h n+1 )
, where the maps š and ť are defined by the following commutative diagrams:

P s ∂ h -,n+1 ∂ h +,n+1 š 8 8 ť 8 8 (P h n+1 ) ⊤ F G G ∂ h -,n ∂ h +,n (P * n ) P v n+1 (P h n+1 ) ∂ h -,n ∂ h +,n P * n π G G (P * n ) P v n+1
where the maps ∂ h -,n and ∂ h +,n are induced from ∂ h -,n and ∂ h +,n , and the (n + 1)-functor F is defined by: a) F is the identity functor on the underlying (n -1)-category P

* n-1 , b) F sends an n-cell u in P * n to its equivalence class [u] v modulo P v n+1 , c) F sends an (n + 1)-cell f : u → v in (P h n+1 ) ⊤ to the (n + 1)-cell [f] v : [u] v → [v] v in (P * n ) P v n+1 (P h n+1
) defined as follows -for any f in P h n+1 , [f] v is defined by iv), -F is extended to the (n + 1)-cells of (P h n+1 ) ⊤ by functoriality by setting

[x n ⋆ n . . . (x 1 ⋆ 0 g ⋆ 0 y 1 ) . . . ⋆ n y n ] v = [x n ] v ⋆ n x n-1 ⋆ n . . . (x 1 ⋆ 0 [g] v ⋆ 0 y 1 ) . . . ⋆ n y n-1 ⋆ n [y n ] v
for all whisker x n ⋆ n . . . (x 1 ⋆ 0 -⋆ 0 y 1 ) . . . ⋆ n y n of (P h n+1 ) ⊤ and (n + 1)-cell g in (P h n+1 ) ⊤ , and

[f 1 ⋆ n f 2 ] v = [f 1 ] v ⋆ n [f 2 ] v , for all (n + 1)-cells f 1 , f 2 in (P h n+1 ) ⊤ .
4.2.16. Quotient of a square extension. Given a generating square

(n + 2)-cell u f G G g u ′ k v h G G v ′ A of P s ,
we denote by [A] v the generating (n+2)-cell of the globular cellular extension P n+2 on (P * n ) P v n+1 (P h n+1 ) defined in (4.9) as follows:

[u] v = [u ′ ] v [f] v 6 6 [g] v X X [v] v = [v ′ ] v [A] v
Note that by construction in the (n + 2, n)-category ((P * n ) P v n+1 (P h n+1 ))(P n+2 ) the following relations hold

[A] v ⋆ n [A ′ ] v = [A ⋄ v A ′ ] v , [A] v ⋆ n+1 [A ′ ] v = [A ⋄ h A ′ ] v ,
for all generating square (n + 2)-cells A and A ′ in P s such that these compositions make sense.

4.2.17 Proposition. Let P = (P v , P h , P s ) be a double (n + 2, n)-polygraph. If the square extension P s is acyclic then the cellular extension P n+2 of the (n + 1)-category (P * n ) P v n+1 (P h n+1 ) defined in (4.9) is acyclic.

In particular, if P is a double coherent presentation of an n-category C. Then, the (n + 2, n)dipolygraph V(P) is a globular coherent presentation of the quotient n-category (P * n ) P v n+1 , that is the n-category is isomorphic to V(P) ≤(n+1) and P n+2 is an acyclic extension of (P * n ) P v n+1 (P h n+1 ).

Proof. Given an (n + 1)-sphere γ :

= ([f] v , [g] v ) in (P * n ) P v n+1 (P h n+1 )
, by definition of the functor V defined in (4.8), there exists an (n + 1)-square

S := u f G G e u ′ e ′ v g G G v ′ in ((P v n+1 ) ⊤ , (P h n+1 ) ⊤ ), such that F(f) = [f] v and F(g) = [g] v and V(S) = γ.
By acyclicity assumption, there exists a square (n + 2)-cell A in the free n-category enriched in double groupoids (P v , P h , P s ) such that ∂

(A) = S. Then [A] v is an (n + 2)-cell in (P * n ) P v n+1 (P h n+1 ))(P n+2 ) such that ∂([A] v ) = γ.
Finally, the fact that V(P) ≤(n+1) is a presentation of the quotient n-category (P * n ) P v n+1 follows from the definition of the functor V and the fact that the (n + 1)-polygraph (P n , P v n+1 ∪ P h n+1 ) is a presentation of C.

EXAMPLES

We illustrate how to define coherent presentations of algebraic structures in terms of dipolygraphs on the cases of groups, commutative monoids and pivotal categories.

Coherent presentations of groups.

A presentation of a group G is defined by a set X of generators and a set R of relations equipped with a map from R to the free group F(X) on X such that G is isomorphic to the quotient of F(X) by the normal subgroup generated by R. The free group F(X) can be presented by the 2-polygraph, denoted by Gp 2 (X), with only one 0-cell, its set of generating 1-cells is X ∪ X -, where X -:= {x -| x ∈ X} and its generating 2-cells are

xx -⇒ 1, x -x ⇒ 1,
for any x in X. A coherent presentation of the group G is a (3, 1)-dipolygraph (P, Q) such that:

i) (P 0 , P 1 , Q 2 ) is the 2-polygraph Gp 2 (X), and the cellular extension Q 1 is empty, ii) the cellular extension P 2 of F(X) has for generating set R, its source map is the identity and its target is constant equal to 1, iii) the cellular extension Q 3 is empty, and P 3 is an acyclic extension of the 2-group (F(X))(R).

Coherent presentation of commutative monoids. A presentation of a commutative monoid

M is defined by a set X of generators and a cellular extension R of relations on the free commutative monoid X on X such that M is isomorphic to the quotient of X by the congruence generated by R.

The free commutative monoid X on X can be defined by the 2-polygraph, denoted by Com 2 (X), with only one 0-cell, its set of generating 1-cells is X, and the generating 2-cells are

x i x j ⇒ x j x i for any x i , x j in X, such that x i > x j for a given total order > on X. A coherent presentation of the commutative monoid M is a (3, 1)-dipolygraph (P, Q) such that:

i) (P 0 , P 1 , Q 2 ) is the 2-polygraph Com 2 (X)
, and the cellular extension Q 1 is empty, ii) P 2 = R, Q 3 is empty, and P 3 is an acyclic extension of the 2-category X (R).

Coherent presentation of monoidal pivotal categories.

Recall that a (strict monoidal) pivotal category C is a monoidal category, seen as 2-category with only one 0-cell, in which every 1-cell p has a right dual 1-cell p, which is also a left-dual, that is there are 2-cells 

η - p : 1 ⇒ p ⋆ 0 p, η + p : 1 ⇒ p ⋆ 0 p, ε - p : p ⋆ 0 p ⇒ 1,
(ε + p ⋆ 0 1 p ) ⋆ 1 (1 p ⋆ 0 η - p ) = 1 p = (1 p ⋆ 0 ε - p ) ⋆ 1 (η + p ⋆ 0 1 p ) (ε - p ⋆ 0 1 p) ⋆ 1 (1 p ⋆ 0 η + p ), = 1 p = (1 p ⋆ 0 η + p ) ⋆ 1 (η - p ⋆ 0 1 p),
that can be diagrammatically depicted as follows

ε + p η - p p = p = η + p ε - p p ε - p η + p p = p = η - p ε + q p
Any 2-cell f : p ⇒ q in C is cyclic with respect to the biadjunctions p ⊢ p ⊢ p and q ⊢ q ⊢ q defined respectively by the family of 2-cells (η - p , η + p , ε - p , ε + p ) and (η - q , η + q , ε - q , ε + q ), that is f * = * f, where f * and * f are respectively the right and left duals of f, defined using the right and left adjunction as follows:

* f := ε - q η + p •f p q f * := • f pη - p ε + q q
A 2-category in which all the 2-cells are cyclic with respect to some biadjunction is called a pivotal 2-category. In this structure, it is proved in [START_REF] Cockett | Introduction to linear bicategories[END_REF] that given a string diagram representing a cyclic 2-cell, between 1-cells with chosen biadjoints, then any isotopy of the diagram represents the same 2-cell.

Example.

We consider a 2-category with only one 0-cell, two 1-cells E and F whose identites are respectively represented by upward and downward arrows and such that E ⊣ F ⊣ E, that is E and F are biadjoint. We denote respectively by , , , the units and counits for these adjunctions. Assume that this category has 2-cells given by • , • , , Then, requiring that the 2-cells are cyclic in this 2-category are made by the following equalities:

• = • = • , y y y y = = y y y y .
and their mirror image through a reflection by a vertical axis.

We refer the reader to [START_REF] Joyal | The geometry of tensor calculus[END_REF][START_REF] Cockett | Introduction to linear bicategories[END_REF] for more details about the notion of pivotal monoidal category. The cyclic relations also imply relations of the form

• f p q η + p = • * f p q η + q , and •f p q ε - p = • * f p q ε - q
and the same relations for cap 2-cells. A presentation of a pivotal category C is defined by a set X 1 of generating 1-cells, a set X 2 of generating cyclic 2-cells, and a cellular extension R on the free pivotal category P(X 1 , X 2 ) on the data (X 1 , X 2 ), such that C is isomorphic to the quotient of P(X 1 , X 2 ) by the congruence generated by R. The free pivotal category P(X 1 , X 2 ) can be presented by the 3-polygraph Piv 3 (X 1 , X 2 ) defined as follows i) it has only one 0-cell, ii) its set of generating 1-cells is X 1 ∪ X 1 , where

X 1 := {p | p ∈ X 1 }, iii) its set of generating 2-cells is X 2 ∪ {η - p , η + p , ǫ - p , ǫ + p | p ∈ X 1 },
where the 2-cells η - p , η + p , ǫ - p , ǫ + p are defined by (4.10), iv) its generating 3-cells are

ε - q η + p •f p q ⇛ q p * f • • f pη - p ε + q q ⇛ q pf *
• for any generating 2-cell f in X 2 or f is an identity cell.

A coherent presentation of the pivotal category C is a (4, 2)-dipolygrah (P, Q) such that:

i) (P 0 , P 1 , P 2 , Q 3 ) is the 3-polygraph Piv 3 (X 1 , X 2 ) and the cellular extensions Q 1 and Q 2 are empty, ii) P 3 = R, Q 4 is empty and P 4 is an acyclic extension of the 2-category P(X 1 , X 2 )(R).

POLYGRAPHS MODULO

In this section, we introduce the notion of polygraph modulo and we define the rewriting properties of termination, confluence and local confluence for these polygraphs. 

γ E R : E R → Sph n-1 (R * n-1 ),
where the set E R is defined by the following pullback in Set:

E ⊤ n × R * n-1 R * (1) n π 1 π 2 G G R * (1) n ∂ -,n-1 E ⊤ n ∂ +,n-1 G G R * n-1 and the map γ E R is defined by γ E R (e, f) = (∂ -,n-1 (e), ∂ +,n-1 (f)) for all e in E ⊤ and f in R * (1)
n . Similarly, one defines the cellular extension

γ R E : R E → Sph n-1 (R * n-1 ),
where the set R E is defined by the following pullback in Set:

R * (1) n × R * n-1 E ⊤ n π 1 π 2 G G E ⊤ n ∂ -,n-1 R * (1) n ∂ +,n-1 G G R * n-1 103 
and the map γ R E is defined by γ R E (f, e) = (∂ -,n-1 (f), ∂ +,n-1 (e)) for all e in E ⊤ and f in R * (1)

n . Finally, one defines the cellular extension

γ E R E : E R E → Sph n-1 (R * n-1 ),
where the set E R E is defined by the following composition of pullbacks in Set:

E ⊤ n × R * n-1 R * (1) n × R * n-1 E ⊤ n (π 2 ,π 3 ) G G (π 1 ,π 2 ) R * (1) n × R * n-1 E ⊤ n π 1 π 2 G G E ⊤ n ∂ -,n-1 E ⊤ n × R * n-1 R * (1) n π 1 π 2 G G R * (1) n ∂ +,n-1 G G ∂ -,n-1 R * n-1 E ⊤ n ∂ +,n-1 G G R * n-1
and the map γ E R E is defined by γ E R E (e, f, e ′ ) = (∂ -,n-1 (e), ∂ +,n-1 (e ′ )).

Polygraphs modulo.

A n-polygraph modulo is a data (R, E, S) made of i) an n-polygraph R, whose generating n-cells are called primary rules,

ii) an n-polygraph E such that E ≤(n-2) = R ≤(n-2) and E n-1 ⊆ R n-1 , whose generating n-cells are called modulo rules, iii) S is a cellular extension of R * n-1 such that the inclusions of cellular extensions R ⊆ S ⊆ E R E holds.
If no confusion may occur, an n-polygraph modulo (R, E, S) will be simply denoted by S. For simplicity of notation, the n-polygraphs modulo (R, E, E R), (R, E, R E ) and (R, E, E R E ) will be denoted by E R, R E and E R E respectively. Given an n-polygraph modulo (R, E, S), we will consider in the sequel the following categories:

-the free n-category R * n-1 [R n , E n E -1 n ]/Inv(E n , E -1 n ), denoted by R * (E).
the free n-category generated by S, denoted by S * , the free (n, n -1)-category generated by S, denoted by S ⊤ .

Branchings modulo and confluence.

Recall that a branching of S modulo E is a triple (f, e, g) where f and g are n-cells of S * with f non trivial and e is an n-cell of E ⊤ . Such a branching is depicted by

u f G G e u ′ v g G G v ′ (4.12)
and is denoted by (f, e, g) : (u, v) ⇒ (u ′ , v ′ ). The pair of (n -1)-cells (u, v) (resp. (u, u)) is called the source of this branching modulo E. Note that any branching (f, g) of S is also a branching modulo E of the form (f, e, g) where

e = i v 1 (∂ h -,(n-1) (f)) = i v 1 (∂ h -,(n-1) (g)).
4.4.4. Confluence and confluence modulo. A confluence modulo E of the n-polygraph modulo S is a triple (f ′ , e ′ , g ′ ), where f ′ , g ′ are n-cells of S * and e ′ is an n-cell of E ⊤ such that ∂ h +,(n-1) (f ′ ) = ∂ v -,(n-1) (e ′ ) and ∂ h +,(n-1) (g ′ ) = ∂ v +,(n-1) (e ′ ). Such a confluence is denoted by (f ′ , e ′ , g ′ ) : (u ′ , v ′ ) ⇒ (w, w ′ ). A branching modulo E as in (4.12) is confluent modulo E if there exist n-cells f ′ , g ′ in S * and e ′ in E ⊤ as in the following diagram:

u f G G e u ′ f ′ G G w e ′ v g G G v ′ g ′ G G w ′ .
We say that the n-polygraph modulo S is confluent (resp. confluent modulo E) if all of its branchings (resp. branchings modulo E) are confluent (resp. confluent modulo E). 

u f G G = v = u f G G v
where f is an n-cell of S * (1) ; ii) local Peiffer branchings of the form:

u ⋆ i v f⋆ i v G G = u ′ ⋆ i v u ⋆ i v u⋆ i g G G u ⋆ i v ′
where 0 ≤ i ≤ n -2, f and g are n-cells of S * (1) , iii) local Peiffer modulo of the forms:

u ⋆ i v f⋆ i v G G u⋆ i e u ′ ⋆ i v u ⋆ i v ′ w ⋆ i u w⋆ i f G G e ′ ⋆ i u w ⋆ i u ′ w ′ ⋆ i u (4.13)
where 0 ≤ i ≤ n -2, where f is an n-cell of S * (1) and e, e ′ are n-cells of E ⊤(1) ; iv) overlapping branchings are the remaining local branchings:

u f G G = v u g G G v ′
where f and g are n-cells of S * (1) , v) overlapping branchings modulo are the remaining local branchings modulo:

u f G G e v v ′ (4.14)
where f is an n-cell of S * (1) and e is an n-cell of E ⊤(1) .

4.4.7. Critical branchings modulo. Let (f, e, g) be a branching of S modulo E with source (u, v) and a whisker C[∂u] of R * n-1 composable with u and v, the triple

(C[f], C[e], C[g]) is a branching of S modulo E of the n-polygraph modulo S. If (f, e, g) is local, then (C[f], C[e], C[g]
) is local. We denote by ⊑ the order relation on branchings modulo E of S defined by (f, e, g) ⊑ (f ′ , e ′ , g ′ ) when there exists a whisker

C of R * n-1 such that (C[f], C[e], C[g]) = (f ′ , e ′ , g ′ ) hold.
A branching (resp. branching modulo E) is minimal if it is minimal for the order relation ⊑. A branching (resp. branching modulo E) is critical if it is an overlapping branching or an overlapping branching modulo that is minimal for the relation ⊑.

4.4.8. Completion procedure for E R. We give a completion procedure for an n-polygraph modulo (R, E, E R), when E R is not confluent modulo E, following the idea of Knuth-Bendix's completion procedure. Either it does not terminate, or it computes an n-polygraph Ř such that E Ř is confluent modulo E. Note that the property of JK coherence is trivially satisfied for E R. Indeed, any branching (f, e) of E R modulo E is trivially confluent modulo E as follows:

u f G G e v = v ′ e -•f G G v (4.15)
where e -• f is a rewriting step of E R. Following the critical branching lemma modulo, Theorem 4.5.7 given in the next section, we describe a completion procedure for confluence of E R modulo E in terms of critical branchings, similar to the Knuth-Bendix completion. From (4.15) and Theorem 4.5.7, when E R is terminating, E R is confluent modulo E if and only if all critical branchings (f, g) of E R modulo E with f in ( E R) * (1) and g in R * (1) are confluent modulo E, as depicted by:

u f∈( E R) * (1) G G = v f ′ ∈( E R) * G G v ′ e ′ u g∈R * (1) G G w g ′ ∈( E R) * G G w ′
We denote by CP( E R, R) the set of such critical branchings. 4.4.9. Completion procedure for E R. Let us consider R and E two n-polygraphs such that E ≤n-2 = R ≤n-2 and E n-1 ⊆ R n-1 , and ≺ a termination order compatible with R modulo E. In this paragraph, we describe a procedure to compute a completion Ř of the n-polygraph R such that E Ř is confluent modulo E. We denote by û E R a normal form of an element u in R * n-1 with respect to E R. To simplify the notations, for any (n -1)-cells u and v in R * n-1 , we denote u ≈ E v if there exists an n-cell e : u → v in E ⊤ .

6)

Simplifying the left-hand side of a rule:

(A, R ∪ {s → t}) (A ∪ {u = t}, R) if s E R → u.
The soundness of Procedure 4.4.9 is a consequence of the following arguments:

i) For any critical branching (f : u → v, g : u → w) in CP( E R, R), we can add an equation v = w using the rule Adding an equational consequence, and simplify it to v E R = ŵ E R using the rule Symplifying an equation.

ii

) If v E R ≈ E ŵ E R
, we can delete the equation using the rule Deleting an equation.

iii) Otherwise, we can always orient it using the rule Orienting an equation.

Thus, each step of this completion procedure comes from one of the inference rules given by Bachmair and Dershowitz. Following [START_REF] Bachmair | Completion for rewriting modulo a congruence[END_REF], it returns a set R of rules so that E R is confluent modulo E. and e in E ⊤ (1) are still trivially confluent. Let us denote by CP( E R E , R) the set of critical branchings of E R E modulo R. All these critical branchings can be written as a pair (f • e, g), where (f, g) is a critical branching in CP( E R, R) and e is an n-cell in E ⊤ .

As a consequence, the completion procedure for E R given in 4.4.9 can be adapted for the polygraph modulo E R E . In that case, the procedure differs from 4.4.9 by the fact that when adding a rule α : u ⇒ v in R, one can choose as target of α any element of the equivalence class of v with respect to E. We prove in the same way than when it terminates, this completion procedure returns an n-polygraph Ř such that E R E is confluent modulo E.

COHERENT CONFLUENCE MODULO

In this section, we introduce the property of coherent confluence modulo defined by the adjunction of a square cell for each confluence diagram modulo. Under a termination hypothesis, Theorem 4.5.4 shows how to deduce coherent confluence modulo for a polygraph modulo from coherent local confluence modulo. This result is a coherent version of Newman's lemma that states the equivalence between local confluence and confluence under a termination hypothesis, [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF]. Theorem 4.5.7 formulates a coherent version of the critical branching lemma, it shows how to deduce local coherent confluence modulo from the coherent confluence modulo of critical branchings. 4.5.1. Biaction of E ⊤ on Sqr(E ⊤ , S * ). Let (R, E, S) be an n-polygraph modulo. Let Γ be a square extension of the pair of n-categories (E ⊤ , S * ). As the inclusions R ⊆ S ⊆ E R E of cellular extensions hold, any n-cell f in S * can be decomposed in f = e 1 ⋆ n-1 f 1 ⋆ n-1 e 2 ⋆ n-1 f 2 with f 1 in R * (1) , f 2 in S * such that ℓ(f 2 ) = ℓ(f) -1, e 1 and e 2 are n-cells in E ⊤ possibly identities, and ⋆ n-1 denoting for the composition along (n -1)-cells in the free n-category generated by R ∪ E.

Thus, a branching (f, e, g) of S modulo E with a choice of a generating confluence (f ′ , e ′ , g ′ ) may correspond to different squares in Sqr(E ⊤ , S * ). For instance, if g can be decomposed g = e 1 ⋆ n-1 g 1 ⋆ n-1 e 2 , the following squares in Sqr(E ⊤ , S * ) correspond to the same branching of S modulo E:

u f G G e v f ′ G G v ′ e ′ u g G G w g ′ G G w ′ and u f G G e⋆ n-1 e 1 v f ′ G G v ′ e ′ u 1 g 1 e 2 G G w g ′ G G w ′
When computing a coherent presentation of S modulo E, one does not want to consider two different elements in a coherent completion of S modulo E, as defined in 4.6.1, to tile these squares which are not equal in the free n-category enriched in double category generated by the double (n -1)-polygraph (E, S, Γ ∪ Peiff(E ⊤ , S * )).

In order to avoid these redundant squares, we define a biaction of E ⊤ on Sqr(E ⊤ , S * ). For any n-cells e 1 and e 2 in E ⊤ and any (n + 1)-cell

u f G G e u ′ e ′ u g G G v ′ A in Sqr(E ⊤ , S * ) satisfying the following conditions i) ∂ +,n-1 (e 1 ) = ∂ h -,n-1 ∂ v -,n (A), ii) ∂ -,n-1 (e 2 ) = ∂ h +,n-1 ∂ v -,n (A), iii) e 1 ∂ h -,n (A) ∈ S, iv) e - 2 ∂ h +,n (A) ∈ S,
we define the square (n + 1)-cell e 1 e 2 A as follows:

u 1 e 1 f G G e 1 ee 2 u ′ e ′ u 2 e - 2 g G G v ′ e 1 e 2 A
where u 1 = ∂ -,n-1 (e 1 ) and u 2 = ∂ +,n-1 (e 2 ). For a square extension Γ of (E ⊤ , S * ), we denote by E ⋊ Γ the set containing all elements e 1 e 2 A with A in Γ and e 1 , e 2 in E ⊤ , whenever it is well defined. For any e 1 ,e 2 in E ⊤ and A,A ′ in Γ , the following equalities hold whenever both sides are defined:

i) e ′ 1 e ′ 2 ( e 1 e 2 A) = e ′ 1 e 1 e 2 e ′ 2 A; ii) e 1 e 2 (A ⋄ v A ′ ) = ( e 1 e 2 A) ⋄ v A ′ ; iii) e 1 e 2 (A ⋄ h A ′ ) = ( e 1 1 A) ⋄ h ( 1 e 2 A ′ ).
4.5.2. Coherent confluence modulo. Let (R, E, S) be an n-polygraph modulo. Let Γ be a square extension of the pair of n-categories (E ⊤ , S * ). Let us denote

Γ := (E, S, E ⋊ Γ ∪ Peiff(E ⊤ , S * )) ,v
the free (n -1)-category enriched in double categories, whose vertical n-cells are invertible, generated by the double (n -1)-polygraph

(E, S, E ⋊ Γ ∪ Peiff(E ⊤ , S * )) in DbPol v n-1 .
A branching modulo E as in (4.12) is Γ -confluent modulo E if there exist n-cells f ′ , g ′ in S * , e ′ in E ⊤ and an (n + 1)-cell A in Γ as in the following diagram:

u f G G e u ′ f ′ G G A w e ′ v g G G v ′ g ′ G G w ′ .
We say that S is Γ -confluent (resp. locally Γ -confluent, resp. critically Γ -confluent) modulo E if every branching (resp. local branching, resp. critical branching) modulo E is Γ -confluent modulo E, and that S is Γ -convergent if it is Γ -confluent modulo E and E R E is terminating. The polygraph modulo S is called Γ -diconvergent, when it is Γ -convergent and E is convergent. Note that when Γ = Sqr(E ⊤ , S * ) (resp. Γ = Sph(S * )), the property of Γ -confluence modulo E corresponds to the property of confluence modulo E (resp. confluence) given in 2.3.5.

In the sequel, proofs of confluence modulo results will be based on Huet's double Noetherian induction principle on the rewriting system S ∐ defined in 2.3.9 and the property P on R * n-1 × R * n-1 defined, for any u, v in R * n-1 , by P(u, v) : any branching (f, e, g) of S modulo E with source (u, v) is Γ -confluent modulo E.

Proposition (Coherent half Newman's modulo lemma)

. Let (R, E, S) be an n-polygraph modulo such that E R E is terminating, and Γ be a square extension of (E ⊤ , S * ). If S is locally Γ -confluent modulo E then the two following conditions hold i) any branching (f, e) of S modulo E with f in S * (1) and e in E ⊤ is Γ -confluent modulo E, ii) any branching (f, e) of S modulo E with f in S * and e in E ⊤ (1) is Γ -confluent modulo E, Proof. We prove condition i), the proof of condition ii) is similar. Let us assume that S is locally Γconfluent modulo E, we proceed by double induction.

We denote by u the source of the branching (f, e). If u is irreducible with respect to S, then f is an identity n-cell, and the branching is trivially Γ -confluent. Suppose that f is not an identity and assume that for any pair

(u ′ , v ′ ) of (n -1)-cells in R * n-1 such that there is an n-cell (u, u) → (u ′ , v ′ ) in S ∐ , any branching (f ′ , e ′ , g ′ ) of source (u ′ , v ′ ) is Γ -confluent modulo E. Prove that the branching (f, e) is Γ -confluent modulo E.
We proceed by induction on ℓ(e) ≥ 1. If ℓ(e) = 1, (f, e) is a local branching of S modulo E and it is Γ -confluent modulo E by local Γ -confluence of S modulo E. Now, let us assume that for k ≥ 1, any branching (f ′′ , e ′′ ) of S modulo E such that ℓ(e ′′ ) = k is Γ -confluent modulo E, and let us consider a branching (f, e) of S modulo E such that ℓ(e) = k + 1, with source u. We choose a decomposition e = e 1 ⋆ n-1 e 2 with e 1 in E ⊤( 1) and e 2 in E ⊤ . Using local Γ -confluence on the branching (f, e 1 ) of source u, there exist n-cells f ′ and f 1 in S * , an n-cell e ′ 1 : 1) and f 2 1 in S * . Using the induction hypothesis on the branching (f 1 1 , e 2 ) of S modulo E of source u 1 := t n-1 (e 1 ) = s n-1 (e 2 ), there exist n-cells f ′ 1 and g in S * , an n-cell e 2 : t n-1 (f ′ 1 ) → t n-1 (g) in E ⊤ and an

t n-1 (f ′ ) → t n-1 (f 1 ) in E ⊤ and an (n + 1)-cell A in Γ such that ∂ h -,n (A) = f ⋆ n-1 f ′ and ∂ h +,n (A) = f 1 . Then, we choose a decomposition f 1 = f 1 1 ⋆ n-1 f 2 1 with f 1 1 in S * (
(n + 1)-cell B in Γ such that ∂ h -,n (B) = f 1 1 ⋆ n-1 f ′ 1 and ∂ h +,n (B) = g.
This can be represented by the following diagram:

u e 1 f G G u ′ f ′ G G u ′′ e ′ 1 u 1 = f 1 1 G G u ′ 1 = f 2 1 G G u ′′ 1 u 1 f 1 1 G G e 2 u ′ 1 f ′ 1 G G u ′ 2 e ′ 2 v g G G v ′ Local Γ -conf mod E Induction on ℓ(e) i h 1 (f 1 1 )
Now, there is an n-cell (u, u) → (u ′ 1 , u ′ 1 ) in S ∐ given by the composition

(u, u) → (u 1 , u 1 ) → (u 1 , u ′ 1 ) → (u ′ 1 , u ′ 1 )
where the first step exists because ℓ(e 1 ) > 0 and the remaining composition is as in 2.3.9. Then, we apply double induction on the branching (f 2 1 , f ′ 1 ) of S modulo E of source (u ′ 1 , u ′ 1 ): there exist n-cells f 2 and f ′ 2 in S * and an n-cell e 3 :

t n-1 (f 2 ) → t n-1 (f ′ 2 ) in E ⊤
. By a similar argument, we can apply double induction on the branchings (f 2 , (e ′ 1 ) -) and (f ′ 2 , e ′ 2 ) of S modulo E, so that there exist n-cells f ′′ ,f 3 , f ′ 3 and g ′ in S * and n-cells e ′′ 1 :

t n-1 (f ′′ ) → t n-1 (f 3 ) and e ′′ 2 : t n-1 (f ′ 3 ) → t n-1 (g ′ ) as in the following diagram: u e 1 f G G u ′ f ′ G G u ′′ e ′ 1 f ′′ G G u ′′′ e ′′ 1 u 1 = f 1 1 G G u ′ 1 = f 2 1 G G u ′′ 1 f 2 G G w 1 f 3 G G e 3 w ′ 1 u 1 f 1 1 G G e 2 u ′ 1 f ′ 1 G G u ′ 2 e ′ 2 f ′ 2 G G w 2 f ′ 3 G G w ′ 2 e ′′ 2 v g G G v ′ g ′ G G v ′′ Local Γ -conf mod E Induction on ℓ(e) i h 1 (f 1 1 ) Db Ind.
Db Ind.

Db Ind.

We can then repeat the same process using double induction on the branching (f 3 , e 3 , f ′ 3 ) of S modulo E of source (w 1 , w 2 ) and so on, and this process terminates in finitely many steps, otherwise it leads to an infinite rewriting sequence wrt S starting from u 1 , which is not possible since E R E , and thus S, is terminating. This yields the Γ -confluence of the branching (f, e).

Theorem (Coherent Newman's lemma modulo). Let (R, E, S) be an n-polygraph modulo such that

E R E is terminating, and Γ be a square extension of (E ⊤ , S * ). If S is locally Γ -confluent modulo E then it is Γ -confluent modulo E.

Proof. Prove that any branching (f, e, g) of S modulo E is Γ -confluent modulo E. Let us choose such a branching and denote by (u, v) its source. We assume that any branching (f ′ , e ′ , g ′ ) of S modulo E of source (u ′ , v ′ ) such that there is an n-cell (u, v) → (u ′ , v ′ ) in S ∐ is Γ -confluent modulo E. We follow the proof scheme used by Huet in [56, Lemma 2.7]. Let us denote by n := ℓ(f) and m := ℓ(g). We assume without loss of generality that n > 0 and we fix a decomposition f = f 1 ⋆ n-1 f 2 with f 1 in S * (1) and f 2 in S * .

If m = 0, by Proposition 4.5.3 on the branching (f 1 , e) of S modulo E, there exist n-cells f ′ 1 and g ′ in S * , an n-cell e ′ : t n-1 (f ′ 1 ) → t n-1 (g ′ ) and an

(n + 1)-cell A in Γ such that ∂ h -,n (A) = f 1 ⋆ n-1 f ′ 1 and ∂ h +,n (A) = g ′ .
Then, since there is an n-cell (u, u) → (u 1 , u 1 ) in S ∐ with u 1 := t n-1 (f 1 ), we can apply double induction on the branching (f 2 , f ′ 1 ) of S modulo E as in the following diagram:

u f 1 G G = u 1 f 2 G G = u 2 f ′ 2 G G u ′ 2 u e f 1 G G u 1 f ′ 1 G G u 2 f ′′ 1 G G e ′ u ′ 2 v g ′ G G v ′ Prop. 4.5.3 i h 1 (f 1 )
Db Ind.

We finish the proof of this case with a similar argument than in 4.5.3, using repeated double inductions that can not occur infinitely many times since S is terminating. Now, assume that m > 0 and fix a decomposition g = g 1 ⋆ n-1 g 2 of g with g 1 in S * (1) and g 2 in S * . By Step 1 on the branching (f 1 , e) of S modulo E, there exist n-cells f ′ 1 and h 1 in S * , an n-cell e 1 :

t n-1 (f ′ 1 ) → t n-1 (h 1 ) in E ⊤ and an (n + 1)-cell A in Γ such that ∂ h -,n (A) = f 1 ⋆ n-1 f ′ 1 and ∂ h +,n (A) = h 1 .
We distinguish two cases whether h 1 is trivial or not.

If h 1 is trivial, the Γ -confluence of the branching (f, e, g) of S modulo E is given by the following diagram

u = f 1 G G u 1 = f 2 G G u 2 f ′ 2 G G u ′ 2 u f 1 G G e u 1 f ′ 1 G G u ′ 1 f 3 G G e ′ u 3 e 1 f 4 G G u 4 f 5 G G u 5 v = 1v G G v = g 1 G G v ′ 1 = g ′ 1 G G v ′′ 1 g ′′ 1 G G w 1 g 3 G G w 3 v 1v G G v g 1 G G v ′ 1 g 2 G G v 2 g ′ 2 G G w 2 Prop. 4.5.3 Prop. 4.5.3 i h 1 (f 1 ) i h 1 (1v) i h 1 (g 1 )
Db Ind.

Db Ind.

Db Ind.

where the branchings (f 1 , e) and (g 1 , e ′ ) of S modulo E are Γ -confluent by Proposition 4.5.3, double induction applies on the branchings (f 2 , f ′ 1 ⋆ n-1 f 3 ), (g ′ 1 , g 2 ) and (f 4 , e 1 , g ′′ 1 ) since there are n-cells

(u, v) → (u, u) → (u 1 , u 1 ) , (u, v) → (v, v) → (v, v ′ 1 ) → (v ′ 1 , v ′ 1 ) and (u, v) → (u 3 , v) → (u 3 , v ′′ 1 )
in S ∐ and one can check that this process of double induction can be repeated, terminating in a finite number of steps since S is terminating and yields a Γ -confluence of the branching (f, e, g) modulo E. 1) and h 2 1 in S * . The Γ -confluence of the branching (f, e, g) of S modulo E is given by the following diagram:

If h 1 is not trivial, let us fix a decomposition h 1 = h 1 1 ⋆ n-1 h 2 1 with h 1 1 in S * (
u = f 1 G G u 1 = f 2 G G u 2 f ′ 2 G G u ′ 2 u e f 1 G G u 1 f ′ 1 G G u ′ 1 f 3 G G u 3 f 4 G G u 4 v = h 1 1 G G v 1 = h 2 1 G G w 1 h 2 G G w 2 h ′ 2 G G w ′ 2 v = h 1 1 G G v 1 h ′ 1 G G w ′ 1 h 3 G G w 3 h ′ 3 G G w ′ 3 v = g 1 G G v ′ = g ′ 1 G G v ′ 1 g ′ 2 G G v ′ 2 g ′ 3 G G v ′ 3 v g 1 G G v ′ g 2 G G v 2 g 3 G G v 3 i h 1 (f 1 ) i h 1 (g 1 ) i h 1 (h 1 1 )
Prop. 4.5.3

Local Γ -conf mod E Db Ind.

Db Ind.

Db Ind.

Db Ind.

Db Ind.

where the branching (f 1 , e) modulo E is Γ -confluent by Proposition 4.5.3, the branching (h 1 1 , g 1 ) is Γconfluent by assumption of local Γ -confluence of S, and one can check that double induction applies on the branchings

(f 2 , f ′ 1 ), (h 2 1 , h ′ 1 ), (g ′ 1 , g 2 ), (f 3 , h 2 ) and (h 3 , g ′ 2 )
. This process of double induction can be repeated, terminating in a finite number of steps since S is terminating and yields a Γ -confluence of the branching (f, e, g) modulo E. 4.5.5. Coherent critical branching lemma modulo. In this subsection, we show how to prove coherent local confluence of an n-polygraph modulo from coherent confluence of some critical branchings. In particular, we show that we do not need to consider all the local branchings. 4.5.6 Proposition. Let (R, E, S) be an n-polygraph modulo such that E R E is terminating, and Γ be a square extension of (E ⊤ , S * ). Then S is Γ -locally confluent modulo E, if and only if the two following conditions hold: 1) and e in E ⊤ (1) is Γ -confluent modulo E:

a) any local branching (f, g) : u ⇒ (v, w) with f in S * (1) and g in R * (1) is Γ -confluent modulo E: u f G G = v f ′ G G v ′ e ′ u g G G w G G w ′ A b) any local branching (f, e) : u ⇒ (v, u ′ ) modulo E with f in S * (
u f G G e v f ′ G G v ′ e ′ u ′ g ′ G G w B
Proof. We prove this result using Huet's double Noetherian induction principle on S ∐ and the property P on R * n-1 × R * n-1 defined by: for any u, v in R * n-1 , P(u, v) : any branching (f, e, g) of S modulo E of source (u, v) is Γ -confluent modulo E.

The only part is trivial because properties a) and b) correspond to Γ -confluence of some local branchings of S modulo E. Conversely, assume that S satisfy properties a) and b) and let us prove that any local branching is Γ -confluent modulo E. We consider a local branching (f, e, g) of S modulo E, and assume without loss of generality that f is a non-trivial n-cell in S * (1) . There are two cases: either g is trivial, and the local branching (f, e) of S modulo E is Γ -confluent by b), or e is trivial. In that case, if g is in R * (1) , then Γ -confluence of the branching (f, g) is given by a). Otherwise, let us choose a decomposition g = e 1 ⋆ n-1 g ′ ⋆ n-1 e 2 with e 1 ,e 2 in E ⊤ and g ′ in R * (1) . Now, let us prove the confluence of the branching

u f G G e 1 v u ′ g ′ e 2 G G v ′
of S modulo E, where g ′ e 2 is an n-cell in S * (1) . We will then prove the Γ -confluence of the branching (f, g) using the biaction of E ⊤ on Sqr(E ⊤ , S * ). Using Proposition 4.5.3 on the branching (f, e 1 ) of S modulo E, there exist n-cells f ′ and f 1 in S * , an n-cell e ′ : t n-1 (f ′ ) → t n-1 (f 1 ) and an

(n + 1)-cell A in Γ such that ∂ h -,n (A) = f ⋆ n-1 f ′ and ∂ h +,n (A) = f 1 .
Using property a) on the local branching (g ′ , g ′ e 2 ) ∈ R * (1) × S * (1) and the trivial confluence given by the right vertical cell e 2 , there exists an

(n + 1)-cell B in Γ such that ∂ h -,n (B) = g ′ and ∂ h +,n (B) = g ′ e 2 .
Let us choose a decomposition 1) and f 2 1 . By property a) on the local branching

f 1 = f 1 1 ⋆ n-1 f 2 1 with f 1 1 in S * (
(f 1 1 , g ′ ), there exist n-cells f ′ 1 and g ′ 1 in S * , an n-cell e ′′ : t n-1 (f ′ 1 ) → t n-1 (g ′ 1 ) and an (n + 1)-cell C in Γ such that ∂ h -,n (C) = f 1 1 ⋆ n-1 f ′ 1 and ∂ h +,n (C) = g ′ ⋆ n-1 g ′ 1 as depicted on the following diagram: u e 1 f G G u ′ f ′ G G u ′′ e ′ 1 u 1 = f 1 1 G G u ′ 1 = f 2 1 G G u ′′ 1 u 1 f 1 1 G G = u ′ 1 f ′ 1 G G u ′ 2 e ′ 2 v g ′ G G = v 1 g ′ 2 G G e 2 v 2 v g ′ e 2 G G v ′ A C B i h 1 (f 1 1 )
There are n-cells (u, u) → (u ′ 1 , u ′ 1 ) and (u, u) → (v 1 , v 1 ) in S ∐ given by the following compositions

(u, u) → (u 1 , u 1 ) → (u 1 , u ′ 1 ) → (u ′ 1 , u ′ 1 ) (u, u) → (u 1 , u 1 ) → (u 1 , v) → (v, v) → (v, v 1 ) → (v 1 , v 1 )
so that we can apply double induction on the branchings (f 2 1 , f ′ 1 ) and (g ′ 2 , e 2 ) of S modulo E, and we finish the proof of Γ -confluence of the branching (f, e 1 , g ′ e 2 ) using repeated double inductions, terminating in a finite number of steps since S is terminating. Now, we get the Γ -confluence of the branching (f, g) of S by the following diagram: 4.5.7 Theorem (Coherent critical branching lemma modulo). Let (R, E, S) be an n-polygraph modulo such that E R E is terminating, and Γ be a square extension of (E ⊤ , S * ). Then S is Γ -locally confluent modulo E, if and only if the two following conditions hold a 0 ) any critical branching (f, g) : u ⇒ (v, w) with f in S * (1) and g in R * (1) is Γ -confluent modulo E:

u = f G G u ′ f ′ G G u ′′ e ′ 1 u 1 = e 1 f 1 1 G G u ′ 1 = f 2 1 G G u ′′ 1 u 1 e 1 f 1 1 G G = u ′ 1 f ′ 1 G G u ′ 2 e ′ 2 v e 1 g ′ G G = v 1 g ′ 2 G G e 2 v 2 v e 1 g ′ e 2 G G v ′ i h 1 (e 1 f 1 1 ) 1 
u f G G = v f ′ G G v ′ e ′ u g G G w G G w ′ A b 0 ) any critical branching (f, e) : u ⇒ (v, u ′ ) modulo E with f in S * (1) and e in E ⊤(1) is Γ -confluent modulo E: u f G G e v f ′ G G v ′ e ′ u ′ g ′ G G w B
Proof. By Proposition 4.5.6, the local Γ -confluence is equivalent to both conditions a) and b). Let us prove that the condition a) (resp. b)) holds if and only if the condition a 0 ) (resp. b 0 )) holds. One implication is trivial. Suppose that condition b 0 ) holds and prove condition b). The proof of the other implication is similar. We examine all the possible forms of local branchings modulo given in 4.4.6. Local aspherical branchings modulo and local Peiffer branchings modulo of the forms (4.13) are trivially confluent modulo:

u ⋆ i v f⋆ i v G G u⋆ i e u ′ ⋆ i v u ′ ⋆ i e u ⋆ i v ′ f⋆ i v ′ G G u ′ ⋆ i v ′ w ⋆ i u w⋆ i f G G e ′ ⋆ i u w ⋆ i u ′ e ′ ⋆ i u ′ w ′ ⋆ i u w ′ ⋆ i f G G w ′ ⋆ i u ′
and Γ -confluent modulo by definition of Γ -confluence. The other local branchings modulo are overlapping branchings modulo (f, e) : u ⇒ (u ′ , v) of the form (4.14), where f is an n-cell of S * (1) and e is an n-cell of E ⊤ (1) . By definition, there exists a whisker C on R * n-1 and a critical branching

(f ′ , e ′ ) : u 0 ⇒ (u ′ 0 , v 0 ) such that f = C[f ′ ] and e = C[e ′ ]. Following condition b 0 ) the branching (f ′ , e ′ ) is Γ -confluent, that is there exists a Γ -confluence modulo E: u f ′ G G e ′ v f ′′ G G v ′ e ′′ u ′ g ′ G G w A inducing a Γ -confluence for (f, e): C[u] C[f ′ ] G G C[e ′ ] C[v] C[f ′′ ] G G v ′ C[e ′′ ] C[u ′ ] C[g ′ ] G G w C[A]
This proves the condition b).

COHERENT COMPLETION MODULO

In this section, we show how to construct a double coherent presentation of an (n-1)-category C starting with a presentation of this (n -1)-category by an n-polygraph modulo. We explain how the results presented in this section generalize to n-polygraphs modulo the coherence results from n-polygraphs as given in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF][START_REF] Guiraud | Coherence in monoidal track categories[END_REF]. 4.6.1. Coherent completion modulo. We recall the notion of coherent completion of a convergent npolygraph and introduce the notion of coherent completion modulo for polygraphs modulo, given by adjunction of a square cell for any confluence diagram of critical branching modulo. 4.6.2. Coherent completion. Recall from Section 2.5.5 that a convergent n-polygraph can be extended into a coherent globular presentation of the category it presents. Explicitly, given a convergent npolygraph E, we consider a family of generating confluences of E as a cellular extension of the free (n, n -1)-category E ⊤ that contains exactly one globular for every critical branching (e, e ′ ) of E, where (e 1 , e ′ 1 ) is a chosen confluence. Any (n + 1, n)-polygraph obtained from E by adjunction of a chosen family of generating confluences of E is a globular coherent presentation of the (n -1)-category E, [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. This result was originally proved by Squier in [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] for n = 2. From such an (n + 1, n)-polygraph we will consider a double (n + 1, n -1)-polygraph (E, ∅, Γ E ), where Γ E is a square extension of the (n, n -1)-categories (E ⊤ , 1) seen as an n-category enriched in double groupoids that contains exactly one square

(n + 1)-cell v e 1 2 2 E e,e ′
(n + 1)-cell u e = G G u e ′ v e 1 v ′ e ′ 1 w = G G w E e,e ′
for every critical branching (e, e ′ ) of E, where (e 1 , e ′ 1 ) is a chosen confluence.

4.6.3. Coherent completion modulo. Let (R, E, S) be an n-polygraph modulo. A coherent completion modulo E of S is a square extension of the pair of (n + 1, n)-categories (E ⊤ , S ⊤ ) whose elements are the square (n + 1)-cells A f,g and B f,e of the following form:

u f G G = u ′ f ′ G G A f,g w e ′ u g G G v g ′ G G w ′ u f G G e u ′ f ′ G G B f,e w e ′ v g ′ G G w ′ (4.16)
for any critical branchings (f, g) and (f, e) of S modulo E, where f, g and e are n-cells of S * (1) , R * (1) and E ⊤ (1) respectively. Note that such completion is not unique in general and depends on the ncells f ′ , g ′ , e ′ chosen to obtain the confluence of the critical branchings.

4.6.4.

Coherence by E-normalization. In this subsection, we show how to obtain an acyclic square extension of a pair of categories (E ⊤ , S ⊤ ) coming from a polygraph modulo (R, E, S), under an assumption of confluence modulo E and of normalization of S with respect to E. Let (R, E, S) be an n-polygraph modulo. The n-polygraph modulo S is normalizing if any (n -1)cell u admits at least one normal with respect to S, that is NF(S, u) is not empty.

A set X of (n -1)-cells in R * n-1 is E-normalizing with respect to S if for any u in X, the set NF(S, u) ∩ Irr(E) is not empty. The n-polygraph modulo S is E-normalizing if it normalizing and R * n-1 is E-normalizing. When S is E-normalizing, a E-normalization strategy σ for S, associates to each (n -1)-cell u in R * n-1 an n-cell σ u : u → û in S * , where û belongs to NF(S, u) ∩ Irr(E). Note that a normalizing cellular extension modulo E R E is E-normalizing. 4.6.6 Theorem. Let (R, E, S) be an n-polygraph modulo, and Γ be a square extension of the pair of

(n + 1, n)-categories (E ⊤ , S ⊤ ) such that S is Γ -diconvergent. If Irr(E) is E-normalizing with respect to S, then the square extension E ⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E is acyclic.
Proof. Let Γ be a square extension of (E ⊤ , S ⊤ ). We will denote by C the free n-category enriched in double groupoid (E, S, E ⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E ) generated by the double (n + 1, n -1)-polygraph (E, S, E ⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E ). We will denote by u the unique normal form of an (n -1)-cell u in R * n-1 with respect to E and we fix a normalization strategy ρ u : u → u for E.

By termination of E R E , the n-polygraph modulo S is normalizing. Let us fix a E-normalization strategy σ u : u → û for S. Let us consider a square

u f G G e v e ′ u ′ g G G v ′ (4.17)
in C. By definition the n-cell f in S ⊤ can be decomposed (in general in a non unique way) into a zigzag sequence

f 0 ⋆ n-1 f - 1 ⋆ n-1 • • • ⋆ n-1 f 2n ⋆ n-1 f - 2n+1
with source u and target v where the f 2k : u 2k → u 2k+1 and f 2k+1 : u 2k+2 → u 2k+1 , for all 0 ≤ k ≤ n are n-cell of S * , with u 0 = u and u 2n+2 = v.

By Γ -confluence modulo E there exist n-cells e f i in E ⊤ and (n + 1)-cells σ f i in C as in the following diagrams:

u 2k f 2k G G ρu 2k u 2k+1 σu 2k+1 G G û2k+1 e f 2k u 2k σ u 2k G G u 2k σ f 2k u 2k+2 f 2k+1 G G ρu u 2k+1 σu 2k+1 G G û2k+1 e f 2k+1 u 2k+2 σ u 2k+2 G G u 2k+2 σ f 2k+1
for all 0 ≤ k ≤ n. By definition of the normalization strategy σ, for any 0 ≤ i ≤ 2n + 1, the (n -1)-cell u is a normal form with respect to E, and by convergence of the n-polygraph E it follows that u i = u i+1 .

Moreover, for any 1 ≤ i ≤ 2n + 1, there exists a square (n + 1)-cell in C as in the following diagram:

û i+1 = G G e f i û i+1 e f i+1 u i = G G u i+2 E i+1
We define a square (n + 1)-cell σ f in C as the following ⋄ v -composition:

σ f 0 ⋄ v E 1 ⋄ v σ f 1 ⋄ v σ f 2 ⋄ v . . . ⋄ v σ f 2n ⋄ v E 2n+1 ⋄ v σ f 2n+1
For an even integer i ≥ 0

u i ρu i f i G G u i+1 σu i+1 G G u i+1 = G G e f i u i+1 e f i+1 u i+1 σu i+1 o o u i+2 f i+1 o o f i+2 G G ρu 2 u i+3 σu i+3 G G û i+3 = G G e f i+2 û i+3 e f i+3
. .

u i σ u i G G u i = G G u i+2 u i+2 σ u i+2 o o σ u i+2 G G u i+2 = G G u i+4 . . σ f i σ f i+1 σ f i+2 E i+1 E i+3
In this way, we have constructed a square (n + 1)-cell

u f G G ρu v ρv u σ u σ - v G G v σ f
Similarly, we construct a square (n + 1)-cell σ g as follows:

u σ u σ - v G G v u ′ g G G ρ u ′ y y v ′ ρ v ′ y y K σg using that u = u ′ and v = v ′ by convergence of E. We obtain a square (n+1)-cell E e ⋄ v (σ f ⋄ h σ - g )⋄ v E e ′
filling the square (4.17), as in the following diagram: 4.6.8. Decreasing orders for E-normalization. Let (R, E, S) be an n-polygraph modulo. We describe a way to prove that the set Irr(E) is E-normalizing, laying on the definition of a termination order for R.

u = G G e u ρu f G G v ρv = G G v e ′ u σ u G G u = v v σ v o o u ′ = G G u ′ g G G ρ u ′ y y v ′ = G G ρ v ′ y y v ′ σ f σg K Ee E e ′ 4.
Given an n-polygraph P, one defines a decreasing order operator for P as a family of functions

Φ p,q : P * n-1 (p, q) → ◆ m(p,q)
indexed by pairs of (n -2)-cells p and q in P * n-2 satisfying the following conditions:

i) For any (n -1)-cells u and v in P * n-1 (p, q) such that there exists an n-cell f : u → v in P * , the function Φ p,q satisfy Φ p,q (u) > Φ p,q (v), where > is the lexicographic order on ◆ m(p,q) . We denote by > lex the partial order on P * n-1 defined by u > lex v if and only if u and v have same source p and target q and Φ p,q (u) > Φ p,q (v).

ii) For any u and v in P * n-1 and any whisker C on

P * n-1 , u > lex v implies that C[u] > lex C[v].
iii) The normal forms in P * n-1 (p, q) with respect to P are sent to the tuple (0, . . . , 0) in N m(p,q) . Note that if an n-polygraph P admits a decreasing order operator, it is terminating. Actually, such a decreasing order is a terminating order for P which is similar to a monomial order, but that we do not require to be total. 4.6.9. Proving coherence modulo using a decreasing order. Consider an n-polygraph modulo (R, E, S) such that E is terminating. A decreasing order operator Φ for E is compatible with R if for any n-cell f : u → v in R * , then Φ p,q (u) ≥ Φ p,q (v).

In that case, the set Irr(E) is E-normalizing with respect to R, since if u in R * n-1 is a normal form with respect to E, Φ p,q (u) = (0, . . . , 0) in ◆ m(p,q) and by compatibility with R, for any n-cell f : u → v in R * , we get Φ p,q (v) = (0, . . . , 0) so v is still a normal form with respect to E. We can also prove that Irr(E) is E-normalizing with respect to E R using this method, provided for any (n -1)-cell u in Irr(E) irreducible by R, any (n -1)-cell u ′ such that there is an n-cell u → u ′ in E ⊤ is also irreducible by R. This is for instance the case if R is left-disjoint from E, that is for any (n -1)-cell u in s(R), we have G R (u) ∩ E n-1 = ∅ where:

• s(R) is the set of (n -1)-sources in R * n-1 of generating n-cells in R n , • for any u in R * n-1 , G R (u) is the set of generating (n -1)-cells in R n-1 contained in u.
With these conditions, we can apply Theorem 4.6.6 to obtain acyclic extensions of R or E R.

4.6.10. Coherence by commutation. In this subsection, we prove that an acyclic extension of a pair (E ⊤ , S ⊤ ) coming from a polygraph modulo (R, E, S) can be obtained from an assumption of commuting normalization strategies for the polygraphs S and E. In particular, with further assumptions about this commutation we show how to prove E-normalization.

4.6.11. Commuting normalization strategies. Let (R, E, S) be an n-polygraph modulo. Let σ (resp. ρ) a normalization strategy with respect to S (resp. with respect to E). The normalization strategies σ and ρ are weakly commuting if for any u in R * n-1 , there exists an n-cell η u in S * as in the following diagram:

u σu G G ρu ûρ û u ηu G G u (4.18)
Given weakly commuting normalization strategies σ and ρ, we will denote by N(σ, ρ) the square extension of the pair (E ⊤ , S ⊤ ) made of squares of the form (4.18), for every (n -1)-cell u in R * n-1 . The normalization strategies σ and ρ are said to be commuting if η u = σ u holds for all (n -1)cell u in R * n-1 . Note that, by definition σ and ρ commute if and only if the equality u = u hold for all (n -1)-cells of R * n-1 .

4.6.12 Theorem. Let (R, E, S) be an n-polygraph modulo, and Γ be a square extension of the pair of (n + 1, n)-categories (E ⊤ , S ⊤ ) such that S is Γ -diconvergent. If σ and ρ are weakly commuting normalization strategies for S and E respectively, then the square extension

E ⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E ∪ N(σ, ρ) is acyclic.
Proof. Denote by C the free n-category enriched in double groupoids

(E, S, E ⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E ∪ N(σ, ρ)) . For u in R * n-1
, we denote by N u the square (n + 1)-cell in C corresponding to the square (4.18).

We prove that for any n-cell f : u → v in S * , there exists a square (n + 1)-cell σ f in C of the following form

u ρ u u f G G σu o o v σv G G v ρ v u = G G v σ f
The square (n + 1)-cell σ f is obtained as the following composition:

u ρ u u f G G σu o o ρu v σv G G v = G G v = G G eη u v e v = G G v ρ v u u ηu o o ηu G G v σ v G G v = G G v v σ v o o Nu η f Ee ηu ,e v γv
where the n-cell e ηu and the square (n + 1)-cell η f (resp. the n-cell e v and the square (n + 1)-cell γ v ) belong to C by Γ -confluence modulo E of S, and the square (n + 1)-cell E eη u ,e v belongs to Γ E . Now, let consider a square

u f G G e v e ′ u ′ g G G v ′ (4.19)
in C. By definition the n-cell f in S ⊤ can be decomposed (in general in a non unique way) into a zigzag sequence

f 0 ⋆ n-1 f - 1 ⋆ n-1 • • • ⋆ n-1 f 2n ⋆ n-1 f - 2n+1
with source u and target v where the f 2k : u 2k → u 2k+1 and f 2k+1 : u 2k+2 → u 2k+1 , for all 0 ≤ k ≤ n are n-cell of S * , with u 0 = u and u 2n+2 = v. We define a square (n+1)-cell σ f as the following vertical composition:

N u ⋄ v σ f 0 ⋄ v σ f 1 ⋄ v . . . ⋄ v σ f 2n+1 ⋄ v N v
as depicted on the following diagram

u 0 σu 0 G G ρu 0 û0 ρ u 0 u 0 σu 0 o o f 0 G G u 1 σu 1 G G u 1 ρ û1 u 1 σu 1 o o u 2 f 1 o o σu 2 G G u 2 σu 2 G G ρ u 2 u 2 f 2 G G u 3 σu 3 G G û3 ρ u 3 • • • u 0 ηu 0 G G u 0 = G G u 1 = G G u 2 = G G u 3 • • • Nu 0 σ f 0 σ f 1 σ f 2
In this way, we have constructed a square (n + 1)-cell

u f G G ρu v ρv u ηuη - v G G v σ f
Similarly, we construct a square (n + 1)-cell σ g as follows:

u ηuη - v G G v u ′ g G G ρ u ′ y y v ′ ρ v ′ y y K σg using that u = u ′ and v = v ′
by convergence of E. We obtain a square (n + 1)-cell filling the square (4.19), as in the proof of Theorem 4.6.6. 4.6.13. Remarks. Note that when σ and ρ are commuting, Irr(E) is E-normalizing with respect to S since u = u implies that the normal form u with respect to S also is a normal form with respect to E. Then Theorem 4.6.6 applies, to prove that E ⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E is acyclic.

One can recover the fact that with the hypothesis of Theorem 4.6.12 and the assumption that the equality η u = σ u holds for any u in R * n-1 , we do not need the square (n + 1)-cells N u in the coherent extension, using the following lemma on the square (4.18). 4.6.14 Lemma. Let S be an n-polygraph modulo such that E R E is terminating, and Γ be a square extension of the pair of (n + 1, n)-categories (E ⊤ , S ⊤ ) such that S is Γ -confluent modulo E. Then any square in Γ of the form

u f G G e v f ′ G G w e ′ u ′ g G G v ′ g ′ G G w ′ (4.20)
such that w and w ′ are normal forms with respect to S is the boundary of a square (n + 1)-cell in Γ .

Proof. Let us consider a square as in (4.20). By Γ -confluence of S modulo E on the branching (f, e, g), there exists a Γ -confluence as in the following diagram:

u f G G e v f 1 G G v 1 e ′′ u ′ g G G v ′ g 1 G G v ′ 1 A
By Γ -confluence on the branchings (f ′ , f 1 ) and (g 1 , g ′ ) of S, there exist square (n + 1)-cells B and B ′ as follows:

u = f G G v = f ′ G G w e 1 u e f G G v f 1 G G v 1 e 2 f 2 G G v 2 u ′ = g G G v ′ = g 1 G G v ′ 1 g 2 G G v ′ 2 e 3 u ′ g G G v ′ g ′ G G w ′ i h 1 (f) i h 1 (g) A B B ′
Then, we use Huet's double induction as in Section 4.5 to prove that the square

v 1 e 2 f 2 G G v 2 e - 1 e ′ e 2 v ′ 1 g 2 G G v ′ 2
is the boundary of a square (n + 1)-cell in Γ .

GLOBULAR COHERENCE FROM DOUBLE COHERENCE

In this section we explain how to deduce a globular coherent presentation for an n-category from a double coherent presentation generated by a polygraph modulo. We apply this construction in the situation of commutative monoids in Subsection 4.7.5 and to pivotal monoidal categories in Subsection 4.7.7. 4.7.1. Globular coherence by convergence modulo. Let (R, E, S) be an n-polygraph modulo and Γ be a square extension on (E ⊤ , S ⊤ ). Consider the double (n + 1, n -1)-polygraph given by (E, S, E ⋊ Γ ∪ Peiff(E ⊤ , S * )∪Γ E ), where Γ E is the square extension defined in 4.6.2. Let us denote by

((P i ) 0≤i≤n+1 , (Q i ) 1≤i≤n+1 ) the associated (n + 1, n -1)-dipolygraph V(E, S, E ⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E )
given by the functor V defined in 4.8. The cellular extension S being defined modulo the cellular extension E in the sense of 4.4.1, we adapt the construction of the n-functor F in the quotient functor V defined in Section 4.2.15-vi) as follows.

a) F is the identity functor on the underlying (n -2)-category R * n-2 , that coincides with

E * n-2 , b) F sends an (n -1)-cell u in R * n-1 to its equivalence class [u] v modulo E n , c) F sends an n-cell f : u → v in S ⊤ to the n-cell [f] v : [u] v → [v] v in (R * n-1
) En (P n ) defined as in Section 4.2.15, iv)-c), but by setting

[f] v = [f 1 ] v ⋆ n-1 [f 2 ] v ⋆ n-1 . . . ⋆ n-1 [f k ] v , for any decomposition of f = e 1 ⋆ n-1 f 1 ⋆ n-1 e 2 ⋆ n-1 f 2 ⋆ n-1 . . . ⋆ n-1 e k ⋆ n-1 f k in S ⊤
, where the n-cells e i and f i are in E ⊤ and R ⊤ respectively and may be identity cells.

As a consequence of Proposition 4.2.17 and Corollary 4.6.7, we get the following result: 

[Γ ] v := {[A] v | A ∈ Γ } extends the n-category (R * n-1 ) En (R n ) into a globular coherent presentation of the (n -1)-category (R * n-1 ) E .
Proof. The quotient functor V sends the cellular extension

E ⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E to [Γ ] v . Indeed, any square (n+1)-cell E e,e ′ in Γ E yields an identity (n+1)-cell in the (n+1)-category (R * n-1 ) En (S n )(P n+1 ): u e = G G u e ′ v e 1 v ′ e ′ 1 w = G G w E e,e ′ [u] v = [w] v [i h 0 (u)] v 6 6 [i h 0 (w)] v X X [u] v = [w] v
Similarly, any (n + 1)-cell in Peiff(E ⊤ , S * ) yields an identity (n + 1)-cell in the (n + 1)-category (R * n-1 ) En (S n )(P n+1 ). Finally, two square (n+1)-cells in the same orbit for the biaction of the (n, n-1)category E ⊤ on Sqr(E ⊤ , S * ) are sent on the same globular (n + 1)-cell in (R * n-1 ) En (S n )(P n+1 ).

4.7.4. Gobular coherent completion procedure for E R. Given a diconvergent n-polygraph modulo (R, E, S), Corollary 4.6.7 gives a method to construct an acyclic square extension of the pair of (n, n -1)-categories (E ⊤ , S ⊤ ). In many applications, this result is applied with S = E R and in situations where E R is not confluent modulo E. When E R is equipped with a termination order compatible with R modulo E, one can apply the completion procedure of Subsection 4.4.9 to obtain an n-polygraph Ř such that E Ř is confluent modulo E. Moreover, following Corollary 4.7.3 the only square cells that we have to consider in the construction of the globular coherent presentation through the quotient functor V are the square cells A f,g and B f,e of (4.16) of a coherent completion of S modulo E. In the particular case of E R, we do not have to consider square cells of the form B f,e . Indeed, the critical branchings (f, e) where f is an n-cell in S * (1) and e is an n-cell in E ⊤ (1) are trivially confluent from Section 4.4.9, and the square (n + 1)-cell B f,e obtained by the following choice of a confluence modulo E:

u f G G e B f,e v = u ′ e -•f G G v yields an identity (n + 1)-cell [u] v = [u ′ ] v [f] v 7 7 [e -•f] v =[f] v W W [v] v i [f] v in the (n + 1)-category ((R * n-1 ) En (P n ))(P n+1 ).
As a consequence, one only needs to choose a family of square (n + 1)-cells

u f G G = u ′ f ′ G G A f,g w e ′ u g G G v g ′ G G w ′
for a choice of confluence modulo E of any critical branching (f, g) of S modulo E, where f is an n-cell of E R * (1) and g is an n-cell of R * (1) . Applying the quotient functor V of 4.8 on the set of square (n + 1)cells A f,g , following Theorem 4.7.2, we obtain an acyclic extension of the n-category (R * n-1 ) En (P n ) given by It is also confluent by confluence of any critical branching depicted as follows:

{ [A f,g ] v | (f,
x i x k x j α i,k x j + Q x k x i x j x k α i,j % E x i x j x k x i α j,k 1 W α i,j x k % E x k x j x i x j x i x k x j α i,k + Q x j x k x i α j,k x i 1 W
for any x i , x j , x k in X such that x i > x j > x k , and the 2-cells α -,-are the generating 2-cell of Com 2 (X).

4.7.6. Example. Consider such a 2-polygraph modulo with X = {x 1 , x 2 , x 3 , x 4 }, and

R 2 = {x 1 x 3 β ⇒ x 2 x 4 , x 1 x 2 γ ⇒ x 1 }.
There is a critical branching of E R E modulo E given by

x 1 x 2 x 3 α - 2,3 •β + Q = x 2 x 4 x 2 x 1 x 2 x 3 γ + Q x 1 x 3 β + Q x 2 x 4 (4.21)
where 

α - 2,3 • β is the rewriting step of E R E defined by x 1 x 2 x 3 α - 2,3 + Q x 1 x 3 x 2 βx 2 + Q x 2 x
+ Q = x 2 x 4 x 2 α - 2,4 •δ + Q x 2 x 4 = x 1 x 2 x 3 γ + Q x 1 x 3 β + Q x 2 x 4 A x 2 x 2 x 4 x 1 α 2,4 •γ + Q = x 2 x 4 x 1 α - 1,4 α - 1,2 •γ + Q x 2 x 4 = x 2 x 2 x 4 x 1 δx 1 + Q x 2 x 4 x 1 α - 1,4 α - 1,2 •γ + Q x 2 x 4 B (4.22) x 2 x 4 x 2 x 4 x 2 α - 2,4 •δ + Q = x 2 x 4 x 4 x 2 (α - 2,4 ) 2 •δ + Q x 2 x 4 x 4 = x 2 x 4 x 2 x 4 x 2 α - 2,4 •δ + Q x 2 x 4 x 2 x 4 α - 2,4 •δ + Q x 2 x 4 x 4 C (4.23)
Following procedure 4.7.4, one shows that an acyclic extension of the commutative monoid generated by X and submitted to relations in R 2 can be computed from the the square extension {A, B, C} of (E ⊤ , E R ⊤ E ). This acyclic extension is made of the following 3-cells.

[x 1 x 2 x 3 ] [β]⋆ 1 [δ] 7 [γ]⋆ 1 [β] 9 e [x 2 x 4 ] [A] [x 1 x 2 x 2 x 4 ] [δ]⋆ 1 [γ] 8 [δ]⋆ 1 [γ] 8 d [x 2 x 4 ] [B] [x 2 x 2 x 2 x 4 x 4 ] [δ]⋆ 1 [δ] 9 [δ]⋆ 1 [δ] 7 c [x 2 x 4 x 4 ] [C]
Note that if we take the commutation 2-cells as rewriting rules, the Knuth-Bendix completion is infinite, requiring to add a 2-cell ε n : x 4 x n 3 x 2 x 2 ⇒ x 4 x n 3 x 2 for any n ≥ 0. This yields acyclic extension made of an infinite set of 3-cells We present an application of the coherence Theorem 4.6.6 on a toy example in the context of diagrammatic rewriting. We consider a presentation of a pivotal monoidal category, seen as a pivotal 2-category with only one 0-cell presented by a 3-polygraph. In general, such isotopy relations produce many critical branching with primary rules of the presentation. In this example, we show how to compute a coherent presentation of a monoidal pivotal category using rewriting modulo the isotopy axioms. We consider the 3-polygraph P defined by the following data:

i) only one generating 0-cell, ii) two generating 1-cells and ,

iii) eight generating 2-cells pictured by

• , , • , , , , , , (4.24) 
iv) the generating 3-cells of P are given by: a) the three families of generating isotopy 3-cells:

⇛ , ⇛ , ⇛ , ⇛ (4.25) • ⇛ • , • ⇛ • , • ⇛ • , • ⇛ • , (4.26) 
• ⇛ • , • ⇛ • , • ⇛ • , • ⇛ • (4.27)
b) the generating 3-cells of the 3-polygraph of permutations for both upward and downward orientations of strands:

α+ ⇛ α- ⇛ β+ ⇛ β- ⇛ (4.28) c) a generating 3-cell γ ⇛ (4.29)
Note that the relations (4.25 -4.27) correspond to the fact that the generating 1-cells and are biadjoints in the 2-category P presented by P, and cups and caps 2-cells are units and counits for these adjunctions. Relations implying dots also ensure that the dot 2-cell is a cyclic 2-morphism in the sense of [START_REF] Cockett | Introduction to linear bicategories[END_REF] for the biadjunction ⊢ ⊢ , making P into a pivotal 2-category. We consider the 3-polygraph E defined by the following data

i) E ≤1 = P ≤1 ,
ii) it has six 2-cells given in (4.24) minus the two crossing 2-cells, iii) the isotopy 3-cells (4. 25 -4.27).

Note that this polygraph E is a non-linear instance of the polygraph E I defined in Section 5.3.1 in the case where I is a singleton. Let R be a 3-polygraph such that R ≤2 = P ≤2 and whose 3-cells are given by (α ± , β ± , γ) of (4. 28 -4.29), and let us consider the 3-polygraph modulo E R. Following 4.4.8, the only critical branchings we have to consider are those of the form (f, g) with f in E R * (1) and g in R * (1) . The branching (4.31) is not such a branching because the top 3-cell belongs to E ⊤ , and the top-right 2-cell is not reducible by R. The branchings of the form (f, g) with both f and g in R * (1) are given by the critical branchings of the polygraph of permutations in [51, 5.4.4], together with an additional inclusion branching given by (α + , γ). We also check that there is no other form of critical branchings. 4.7.8. Decreasing order operator for E-normalization. The 3-polygraph R ′ is left-disjoint from E, since no caps and cups 2-cells appear in the sources of the generating 3-cells of R. Following 4.6.9, we prove that Irr(E) is E-normalizing with respect to E R using a decreasing order operator Φ for E compatible with R. 4.7.9 Lemma. Let E and R be the 3-polygraphs defined above. There exists a decreasing operator order Φ for E compatible with R.

Proof. For any 1-cells p and q in R * 1 , we set m(p, q) = 2 and for any 2-cell u of source p and target q in R * 2 , Φ p,q (u) = (ldot(u), I(u)) where: i) ldot(u) counts the number of left-dotted caps and cups, adding for such cap and cup the number of dots on it. In particular, for any n in ◆ * , we have ldot

• n = ldot • n := n + 1
for both orientations of strands.

ii) I(u) counts the number of instances of one of the following 2-cells of R * 2 in u:

For any 3-cell u ⇛ v in E, we have Φ(u) > Φ(v) and that Φ(u, u) = (0, 0) for any u in Irr(E). Moreover, Φ is compatible with R because rewritings with respect to R do not make the dot 2-cell move around a cup or a cap, or create sources of isotopies.

4.7.10. Acyclic square extension. As a consequence of Theorem 4.6.6, we deduce an acyclic square extension of the pair of (3, 2)-categories (E ⊤ , E R ⊤ ). This square extension is made of: i) the 16 elements given by the diagrams of the homotopy basis or the 3-polygraph of pearls in [51, Section 5.5.3] for both orientations of strands,

ii) the ten elements A ± -E ± given by the diagrams of the homotopy basis for the 3-polygraph of permutations from [51, Section 5.4.4] for both upward and downward orientations of strands, as depicted below,

iii) the square cell Γ corresponding to the choice of confluence modulo for the branching (α, γ), depicted below. which is relation arising in many presentations of monoidal categories appearing in representation category, see for instance Khovanov-Lauda's 2-category introduced in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF], defined in Section 6.2, the affine oriented Brauer 2-category AOB defined in Section 9.4, or in the Heisenberg categories defined by Khovanov in [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF], and extended by Brundan in [START_REF] Brundan | On the definition of Heisenberg category[END_REF]. Note that with this new relation creating branchings with the isotopy relations, the 3-polygraph P ′ is not confluent. Indeed, the branching

α ± * R = = α ± * R A ± = α ± * R = β ± * R β ± * R B ± α ± * R β ± * R = β ± * R α ± * R = α ± * R C ± β ± * R = α ± * R α ± * R = β ± * R α ± * R α ± * R D ± = β ± * R β ± * R β ± * R β ± * R = β ± * R β ± * R β ± * R β ± * R E ± γ * R = = α + * R
. V ) Q (4.31)
is not confluent. Moreover, solving this obstruction to confluence using Knuth-Bendix completion may lead to adding a great number of relations, making analysis of confluence from critical branchings inefficient. To tackle this issue, this is convenient to rewrite modulo the isotopy relations. In that case, there are critical branchings modulo isotopy (of the form (R * (1) , E R * (1) )) between γ and α (resp. β) with respective source

∼ , ∼ , (4.32) 
and to get confluence of these branchings, we have to add a bubble slide relation in R of the form:

s 0 0 ⇛
As a consequence, following Section 2.6.4, E R is not terminating anymore, but we prove in a similar fashion than for the linear (2, 2)-category AOB in Section 9.4 that it is quasi-terminating. As a consequence, in order to compute coherent presentations for the various pivotal linear (2, 2)-categories arising in representation theory, we need to generalize Theorems 4.6.6 and 4.6.12 to the quasi-terminating setting.

As explained in [START_REF] Alleaume | Coherence of string rewriting systems by decreasingness[END_REF], coherent presentations from quasi-convergent presentations are more complicated to compute, since they need to take into account coherence cells in loops created by rewriting cycles. In any case, we expect to have an homotopy basis in more elements than the square cells given in Section 4.7.10, i) and ii) and the square cells coming from the confluences modulo of the branchings described in (4.32).

CHAPTER 5

Bases in linear categories from confluence modulo One of the main objectives of this work is to develop effective methods in order to compute linear bases of higher-dimensional linear categories, and in particular for linear (2, 2)-categories, that are 2categories in which for any 1-cells u and v, the set of 2-cells with 1-source u and 1-target v admits the structure of a K-vector space for some field K. In [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF], Alleaume proved that a basis for each space of 2-cells for such a 2-category can be obtained from a convergent presentation of this category, by taking all the irreducible monomials with respect to the presentation. However, many structural relations coming from the inherent structure of the diagrammatic algebras arising in categorification problems may make confluence difficult to check or even create obstructions to confluence. However, these relations being structural should be considered from another perspective than the relations defining the category, and thus we want to rewrite modulo these relations. In particular, we are interested in the case of rewriting in pivotal linear (2, 2)-categories, which are 2-categories satisfying additional adjunctions and duality properties such that all 2-cells are represented by string diagrams that can be drawn up to isotopy. We introduce a formalism of rewriting modulo the isotopy relations provided by this structure.

In this Chapter, we extend Alleaume's basis result to presentations that are splitted into two parts R and E, satisfying that E is convergent and additional termination and confluence modulo properties. In particular, we prove that under the assumptions of Theorem 5.4.4, taking the monomials in normal form with respect to R, and then taking their E-normal forms (or all the monomials that appear in their E-normal forms) yields a basis of each space of 2-cells in the category presented by the rules in R and E.

Moreover, we give in this Chapter a first way to reach confluence modulo for presentations such that the polygraph modulo E R E , as defined in Chapter 4, is not terminating but quasi-terminating. This is based on the adaptation of the abstract notion of decreasingness introduced by Van Oostrom [START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF] to the context of abstract rewriting modulo. In particular, we prove that any decreasing polygraph modulo is confluent modulo, and that decreasingness in the quasi-terminating setting can be proved by checking that all critical branchings modulo of the presentation are decreasingly confluent with respect to the quasinormal form labelling. We then extend the basis result to the quasi-terminating setting by considering, instead of monomials in normal forms with respect to R, fixed monomials in quasi-normal form with respect to R and applying the same procedure. This result gives all the results of the paper [START_REF] Dupont | Rewriting modulo isotopies in pivotal linear (2, 2)-categories[END_REF].

LINEAR CRITICAL BRANCHING LEMMA MODULO

5.1.1. Linear polygraphs modulo. A linear (n + 1, n)-polygraph modulo is a data (R, E, S) made of i) a linear (n + 1, n)-polygraph R and a linear (n + 1, n)-polygraph E such that E ≤(n-1) = R ≤(n-1)
and

E n ⊆ R n , ii) a cellular extension S of R ℓ n such that R ⊆ S ⊆ E R E holds
, where the cellular extension E R E is defined in a similar way than in Section 4.4.1, but the pullbacks are made on the set of positive

(n + 1)-cells of length 1 in R ℓ n+1 . Explicitely, the elements of E R E correspond to n-spheres (u, v) ∈ R ℓ n such that (u, v) is the boundary of an (n + 1)-cell f in R ℓ n [R n+1 , E n+1 , E - n+1 ]/Inv(E 3 , E - 3 )
, the free linear (n, n)-category generated by R ≤n augmented by the cellular extensions R, E and the formal inverses E -of E modulo the corresponding inverse relations (2.4), with the following shape

u ! !1 1 c c s s v e f e ′
for some (n + 1)-cells e and e ′ in E ℓ n+1 and a rewriting step f of R. This data defines a linear (n + 1, n)-polygraph (R ≤n , S), that we denote by S when there is no ambiguity.

Confluence and branchings modulo.

A branching of S is a pair (f, g) of positive 3-cells of S ℓ with the same n-source. A branching modulo E of the linear (3, 2)-polygraph modulo S is a triple (f, e, g) where f is a positive 3-cell of S ℓ , g is either a positive 3-cell of S ℓ or an identity 3-cell, and e is a 3-cell of E ℓ . A branching modulo (f, e, g) is local if f is a 3-cell of S ℓ (1) , g is either a positive 3-cell of S ℓ or an identity and e a 3-cell ofE ℓ such that ℓ(g) + ℓ(e) = 1. Local branchings of linear polygraphs modulo are divided into the four following families:

Aspherical branchings

Peiffer Peiffer modulo

u f G G = v = u f G G v u ⋆ i v + w f⋆ i v G G = u ′ ⋆ i v + w u ⋆ i v + w u⋆ i g G G u ⋆ i v ′ + w u ⋆ i v + w f⋆ i v G G u⋆ i e u ′ ⋆ i v + w u ⋆ i v ′ + w Additive Additive modulo Overlappings u + v f+v G G = u ′ + v u + v u+g G G u + v ′ u + v f+v G G u+e u ′ + v u + v ′ . . .
where u, v, w are n-cells in R ℓ n , f ang g are positive (n + 1)-cells in S ℓ n+1 , and e is an (n + 1)-cell in E ℓ n+1 .

Critical branchings.

Let ⊑ be the order on monomials of the linear

(n + 1, n)-polygraph S defined by u ⊑ v if there exists a context C of R * n such that v = C[u]
, a critical branching modulo E is an overlapping local branching modulo that is minimal for the order ⊑.

5.1.4 Theorem (Linear critical branching lemma modulo). Let (R, E, S) be a linear [START_REF] Alleaume | Coherence of string rewriting systems by decreasingness[END_REF][START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]-polygraph modulo such that E R E is terminating. Then S is locally confluent modulo E if and only if the two following conditions hold a 0 ) any critical branching (f, g) with f positive 3-cell in S ℓ (1) and g positive 3-cell in R ℓ (1) (1) and e in E ℓ of length 1 is confluent modulo E:

is confluent modulo E: u f G G = v f ′ G G v ′ e ′ u g G G w G G w ′ b 0 ) any critical branching (f, e) modulo E with f in S ℓ
u f G G e v f ′ G G v ′ e ′ u ′ g ′ G G w
Proof. By Theorem 4.5.4, the local confluence of S modulo E is equivalent to both conditions a) and b). Let us prove that the condition a) (resp. b)) holds if and only if the condition a 0 ) (resp. b 0 )) holds. One implication is trivial, let us prove the converse implication. To do so, let us proceed by Huet's double noetherian induction as introduced in [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF] on the polygraph modulo S ∐ defined in [START_REF] Dupont | Coherent confluence modulo relations and double groupoids[END_REF] which is terminating since E R E is assumed terminating. We refer to [START_REF] Dupont | Coherent confluence modulo relations and double groupoids[END_REF] for further details on this double induction.

Following the proof of the linear critical pair lemma in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], we assume that condition a 0 ) holds and prove condition a). Let us consider a local branching (f, g) of S modulo E of source (u, v) with f and g positive 3-cells in S ℓ (1) and R ℓ (1) respectively. Let us assume that any local branching of source (u ′ , v ′ ) such that there is a 3-cell (u, v) → (u ′ , v ′ ) in S ∐ is confluent modulo E. The local branching (f, g) is either a local Peiffer branching, an additive branching or an ovelapping branching. We prove that for each case, (f, g) is confluent modulo 1) and g is a positive 3-cell in R ℓ (1) , there exist elementary 3-cells in S ℓ as follows:

E. i) If (f, g) is a Peiffer branching of the form u ⋆ i v + w f⋆ i v G G = u ′ ⋆ i v + w u ⋆ i v + w u⋆ i g G G u ⋆ i v ′ + w where 0 ≤ i ≤ n -2, w is a 2-cell of R ℓ 2 , f is a positive 3-cell in S ℓ(
u ⋆ i v + w f⋆ i v G G = u ′ ⋆ i v + w u ′ ⋆ i g+w G G u ′ ⋆ i v ′ + w = u ⋆ i v + w u⋆ i g G G u ⋆ i v ′ + w f⋆ i v ′ +w G G u ′ ⋆ i v ′ + w
However, these 3-cells are not necessarily positive, for instance if u ′ v ∈ Supp(w) or uv ′ ∈ Supp(w). By Lemma 2.8.4, there exist positive 3-cells f 1 , f 2 , g 1 , g 2 in S ℓ of length at most

1 such that f ⋆ i v ′ + w = f 1 ⋆ 2 f - 2 and u ′ ⋆ i g + w = g 1 ⋆ 2 g - 2 .
Then, the 3-cells f 2 and g 2 of S ℓ have the same 2-source and by assumption, the branching (f 2 , g 2 ) is confluent modulo E, so there exist positive 3-cells f ′ and g ′ in S ℓ and a 3-cell e in E ℓ as follows:

u ⋆ i v + w f⋆ i v+w G G = u ′ ⋆ i v + w = f 1 G G = f ′ G G e ′ u ⋆ i v + w f⋆ i v+w G G = u ′ ⋆ i v + w u ′ ⋆ i g+w G G u ′ ⋆ i v ′ + w = f 2 G G u ⋆ i v + w u⋆ i g+w G G = u ⋆ i v ′ + w f⋆ i v ′ +w G G = u ′ ⋆ i v ′ + w g 2 G G = u ⋆ i v + w u⋆ i g+w G G u ⋆ i v ′ + w g 1 G G g ′ G G
which proves the confluence modulo of the branching (f, g).

ii) If (f, g) is an additive branching of the form

u + v f+v G G = u ′ + v u + v u+g G G u + v ′
where f is positive 3-cells of S ℓ (1) and g is a positive 3-cell of R ℓ (1) , there exist elementary 3-cells in S ℓ as follows:

u + v f+v G G = u ′ + v u ′ +g G G u ′ + v ′ = u + v u+g G G u + v ′ f+v ′ G G u ′ + v ′
However, these 3-cells are not necessarily positive, for instance if u ∈ Supp(v) or u ∈ Supp(v ′ ). By Lemma 2.8.4, there exist positive 3-cells f 1 , f 2 , g 1 , g 2 in S ℓ of length at most

1 such that f⋆ i v ′ +w = f 1 ⋆ 2 f - 2 and u ′ ⋆ i g + w = g 1 ⋆ 2 g - 2 .
We then prove the confluence modulo of (f, g) in a same fashion as for case i).

iii) If (f, g) is an overlapping branching of S with f in S ℓ (1) and g in R ℓ (1) that is not critical, then by definition there exists a context

C = m 1 ⋆ 1 (m 2 ⋆ 0 ⋆ 0 m 3 ) ⋆ 1 m 4 of R * 2 and positive 3-cells f ′ and g ′ in S ℓ and R ℓ respectively such that f = C[f ′ ] and g = C[g ′ ],
and the branching (f ′ , g ′ ) is critical. By property a 0 ), the branching (f ′ , g ′ ) is confluent modulo E, so that there exist positive 3-cells f 1 and g 1 in S ℓ and a 3-cell e in E ℓ as follows:

u f ′ G G = u ′ f 1 G G w e u g ′ G G v ′ g 1 G G w ′
inducing a confluence modulo of the branching (f, g):

C[u] f G G = C[u ′ ] C[f 1 ] G G C[w] C[e] C[u] g G G C[v ′ ] C[g 1 ] G G C[w ′ ] iii') If (f, e
) is an overlapping modulo, the proof is similar to the proof for property a 0 ).

CONFLUENCE MODULO BY DECREASINGNESS MODULO

5.2.1. Well-founded labelling modulo. Given a linear (3, 2)-polygraph modulo (R, E, S), a well-founded labelling modulo of S is a well-founded labelling ψ of R extended to E R E by setting ψ(e) = 1 the trivial word in X * for any e in E. The lexicographic maximum measure defined in Section 2.2.6 then extends to the rewriting steps of S as follows:

|e 1 ⋆ 1 f ⋆ 1 e 2 | = |f|
for any 3-cells e 1 and e 2 in E ℓ and rewriting step f of R. It then extends to the rewriting sequences of S and E R E , and to the finite branchings (f, e, g) of S modulo E. 

f G G = f ′ G G g ′′ G G h 1 G G e ′ g G G g ′ G G f ′′ G G h 2 G G , (resp. 
f G G e f ′ G G h 1 G G e ′ h 2 G G
) such that the following properties hold:

i) k < ψ(f) for all k in L X (f ′ ).
ii) k < ψ(g) for all k in L X (g ′ ).

iii) f ′′ is an identity or a rewriting step labelled by ψ(f).

iv) g ′′ is an identity or a rewriting step labelled by ψ(g).

v) k < ψ(f) or k < ψ(g) for all k in L X (h 1 ) ∪ L X (h 2 ) (resp. k ≤ ψ(f) for any k in L X (h 2 ) and k ′ < ψ(f) for any k ′ in L X (h 1 )).

Remark.

Note that the definition of decreasingness for a local branching (f, g) where f and g are positive 3-cells in S ℓ (1) is the same than decreasigness of a local branching in Section 2.2.7. This definition is enlarged for a local branching (f, e) where f is a positive 3-cell in S ℓ (1) and E is a 3-cell in E ℓ of length 1 with the large inequality k ≤ ψ(f) in order to make sure that critical branchings of the form (f, e) are decreasing with respect to the quasi-normal form labelling ψ QNF defined in Section 2.2.3 when rewriting with a linear (3, 2)-polygraph modulo (R, E, S) such that E R ⊆ S. Indeed, recall from [43, Section 3.1] that in this case these critical branchings are trivially confluent from (4.15). In that case, h 2 := e -• f has the same label than f for ψ QNF , but we require that this confluence diagram is decreasing.

Such a diagram is called a decreasing confluence diagram of the branching modulo (f, e, g). A linear (3, 2)-polygrah modulo (R, E, S) is decreasing is there exists a well-founded labelling (X, <, ψ) of R making all the local branchings (f, e, g) of S modulo E decreasing. It was proven in [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]Theorem 4.3.3], following the original proof by Van Oostrom for an abstract rewriting system [START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF], that any decreasing left-monomial linear (3, 2)-polygraph P is confluent. We adapt these proofs to establish the following result:

5.2.4 Theorem. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo. If (R, E, S) is decreas- ing, then S is confluent modulo E.
Let us at first prove the following two lemmas: 5.2.5 Lemma. Let (R, E, S, X, <, ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For every diagram of the following form

f 1 G G = f 2 G G = f 1 G G e 1 f ′ 1 G G e ′ 1 g 1 G G g ′ 1 G G such that the confluence modulo (f 1 ⋆ 2 f ′ 1 , g 1 ⋆ 2 g ′ 1 )
is decreasing, the inequality

|(f ′ 1 , f 2 )| mult |(g 1 , f 1 ⋆ 2 f 2 )| holds.
Proof. By Lemma 2.2.5 ix), we get the following inequality:

|(f ′ 1 , f 2 )| = |(f ′ 1 , f 2 )| ∩ ∨|f 1 | ∪ |(f ′ 1 , f 2 )| -∨|f 1 |. Since ∨|f 1 | < mult |f 1 |, we get that |(f ′ 1 , f 2 )| < mult |f 1 | ∪ |((f ′ 1 ) (f 1 ) , f (f 1 ) 2 )| = |f 1 ⋆ 2 f ′ 1 | ∪ |f (f 1 ) 2 |.
Finally, we get from the decreasingness assumption that

|f 1 ⋆ 2 f ′ 1 | ∪ |f (f 1 ) 2 | mult |(f 1 , e 1 , g 1 )|| ∪ |f (f 1 ) 2 | = |(g 1 , f 1 ⋆ 2 f 2 )|.
5.2.6 Lemma. Let (R, E, S, X, <, ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For every diagram of the following form

f 1 G G = f 2 G G = h G G e 2 f 1 G G e 1 f ′ 1 G G e ′ 1 g 1 G G g ′ 1 G G g 2 G G such that the confluence (f ′ 1 , e ′ 1 , g ′ 1 )
and (f 2 ⋆ 2 h, e 2 , g 2 ) are decreasing, i.e. the following inequalities hold:

a) |g 1 ⋆ 2 g ′ 1 | mult |(f 1 , e 1 , g 1 )| and |f 1 ⋆ 2 f ′ 1 | mult |(f 1 , e 1 , g 1 )|, b) |f ′ 1 ⋆ 2 e ′ 1 ⋆ 2 g 2 | mult |(f ′ 1 , f 2 )| and |f 2 ⋆ 2 h| mult |(f ′ 1 , f 2 )|
Then the following inequalities hold:

|g 1 ⋆ 2 g ′ 1 ⋆ 2 g 2 | mult |(f 1 ⋆ 2 f 2 , e 1 , g 1 )| and |f 1 ⋆ 2 f 2 ⋆ 2 h| mult |(f 1 ⋆ 2 f 2 , e 1 , g 1 )|
Proof. To shorten the notations in this proof, we will denote the 2-cell f ⋆ 2 g by simply fg. For the second inequality, we get that

|f 1 f 2 h| = |f 1 f 2 | ∪ |h (f 1 f 2 ) | = |f 1 f 2 | ∪ |h (f 1 )(f 2 ) | mult |f 1 f 2 | ∪ |(f ′ 1 ) (f 1 ) | since |h (f 2 ) | mult |f ′ 1 | and |f 1 f ′ 1 | mult |f 1 | ∪ |g 1 |
respectively by properties b) and a). For the first inequality, we have by Lemma 2.2.5 ix) that

|g 1 g ′ 1 g 2 | = |g 1 g ′ 1 | ∪ |g (g 1 g ′ 1 ) 2 | = |g 1 g ′ 1 | ∪ |g (g 1 g ′ 1 ) 2 | ∩ ∨f 1 ∪ |g (g 1 g ′ 1 ) 2 | -∨f 1 .
We deduce from [119, Claim in Lemma 3.5] the following two inequalities, that we do not detail here:

|g 1 g ′ 1 g 2 | mult |g 1 | ∪ |f 1 | ∪ |g (g 1 g ′ 1 )(f 1 ) 2 | mult |g 1 | ∪ |f 1 | ∪ |g (f ′ 1 )(f 1 ) 2 |. Since |g (f ′ 1 ) 2 | mult |f 2 | by b), we finally get that |g 1 g ′ 1 g 2 | mult |g 1 | ∪ |f 1 | ∪ |f (f 1 ) 2 | = |g 1 | ∪ |f 1 f 2 | = |(f 1 f 2 , e 1 , g 1 )|.
Before proving Theorem 5.2.4, let us also establish the following preliminary lemma:

5.2.7 Lemma. Let (R, E, S, X, <, ψ) be a decreasing labelled linear (3, 2)-polygraph modulo. For any branching (f, e, g) of S modulo E with f and g positive 3-cells in S ℓ (1) and e a 3-cell in E ℓ of length 1, there exist a confluence (f ′ , e ′ , g ′ ) of this branching such that

|f ⋆ 2 f ′ | mult |(f, e, g)| and |g ⋆ 2 g ′ | mult |(f, e, g)|
Proof. Let us denote by (X, <, ψ) the well-founded labelling on S making it decreasing. We consider such a branching (f, e, g) of S modulo E, and we prove this result by well-founded induction, assuming that it is true for any branching (f ′′ , e ′′ , g ′′ ) of S modulo E such that |(f ′′ , e ′′ , g ′′ )| < mult |(f, e, g)|.

The local branching (f, e) of S modulo E being decreasing by assumption, there exist positive 3-

cells f ′ , f ′ 1 and h 2 in S ℓ such that k ≤ ψ((f) for any k in L X (h 2 ). Let us fix a decomposition h 2 = h 1 2 ⋆ 2 h 2 2
where h 2 is a positive 3-cell in S ℓ (1) . Then (h 1 1 , g 1 ) is a local branching of S modulo E and by decreasingness, there exist a decreasing confluence of this local branching, as depicted in the following diagram:

f 1 G G e 1 f ′ G G f ′ 1 G G e ′ 1 = h 1 2 G G = h 2 2 G G = h 1 2 G G k 1 G G e 2 g 1 G G g ′ 1 G G
By decreasingness of (f, e), we have that |h 2 2 | mult |f 1 | and by decreasingness of (h 1 2 , g), we have that

|k 1 | < mult [g 1 | so that |(f, e, g)| < mult |(h 2 2 , k 1 )
| and by induction, this branching admits a confluence (h 3 , e 3 , k 2 ) satisfying

|h 2 2 ⋆ 2 h 3 | mult |(h 2 2 , k 1 )| and |k 1 ⋆ 3 k 2 | mult |(h 2 2 , k 1 )|
We can now repeat the same process on the branchings ((e ′ 1 ) -, h 3 ) and (e 2 , k 2 ) to obtain a confluence modulo of these branchings as follows:

f 1 G G e 1 f ′ G G f ′ 1 G G e ′ 1 f 2 G G e ′′ 1 = h 1 2 G G = h 2 2 G G h 3 G G h 4 G G e 3 = h 1 2 G G k 1 G G e 2 k 2 G G k 3 G G e ′ 2 g 1 G G g ′ 1 G G g 2 G G
One can repeat this process, however it terminates in finitely many steps, otherwise this would lead to infinite sequences (h n ) n∈◆ and (k n ) n∈◆ satsifying

|f| mult |h 2 | < mult |h 3 | mult |h 4 | < mult |h 5 | . . . , |g| < mult |k 1 | < mult |k 2 | . . .
yielding two infinite strictly decreasing sequences for < mult , which is impossible since by assumption, < is well-founded and then so is < mult as explained in section 2.2.4.

Let us now prove Theorem 5.2.4:

Proof. Let us denote by (X, <, ψ) the well-founded labelling on S making it decreasing. We consider a branching (f, e, g) of S modulo E such that f and g are positive 3-cells of S ℓ . We prove by well-founded induction on the labels that (f, e, g) can be completed into a confluence modulo diagram with positive 3-cells f ′ , g ′ in S ℓ and a 3-cell e ′ in E ℓ such that

|f ⋆ 2 f ′ | mult |(f, e, g)|, and |g ⋆ 2 g ′ | mult |(f, e , g)| (5.1) 
We assume that for any branching (f ′′ , e ′′ , g ′′ ) of S modulo E such that |(f ′′ , e ′′ , g ′′ )| < mult |(f, e, g)|, there exists a decreasing confluence modulo of the branching (f ′′ , e ′′ , g ′′ ). Let us choose decompositions f = f 1 ⋆ 2 f 2 and g = g 1 ⋆ 2 g 2 where f 1 , g 1 belong to S ℓ (1) and f 2 and g 2 are in S ℓ . By Lemma 5.2.7, the branching (f 1 , e, g 1 ) admits a confluence modulo (f ′ 1 , e 1 , g ′ 1 ) satsifying the conditions of (5.1), as depicted on the following diagram:

f G G = f 1 G G e 1 f ′ 1 G G e ′ 1 g 1 G G = g ′ 1 G G g G G Using Lemma 5.2.5, we get that |f 2 | ∪ |f ′ 1 | < mult |(f, e, g)| and |g 2 | ∪ |g ′ 1 | < mult |(f, e, g)
| so that by induction on the branchings (f 2 , f ′ 1 ) and (g ′ 1 , g 2 ), there exist positive 3-cells f 3 , f ′ 2 , g 3 , g ′ 2 in S ℓ satisfying the conditions of (5.1) and 3-cells e 2 , e ′ 2 in E ℓ as in the following diagram:

f 1 G G = = f 2 G G f 3 G G e 2 f 1 G G e 1 f ′ 1 G G e ′ 1 f ′ 2 G G g 1 G G = g ′ 1 G G = g ′ 2 G G e ′ 2 g 1 G G g 2 G G g 3 G G 138
Now, either there is a 2-cell e ′′′ : t 2 (e 2 ) → s 2 (e ′

2 ) in E ℓ , and the confluence diagram obtained satisfy the conditions of (5.1) using Lemma 5.2.6 on the top part of the diagram and decreasingness of the confluence modulo (g ′ 2 , e ′ 2 , g 3 ). Otherwise, the branching

(f ′ 2 , e ′ 1 , g ′ 2 )
is a branching of S modulo E whose label is strictly smaller than |(f, e, g)| with respect to < mult by construction. Applying induction on this branching, there exists a confluence modulo (f ′ 3 , e 3 , g ′ 3 ) of this branching satisfying the conditions of (5.1). Then, we may still apply induction on the branchings (e 2 , f ′ 3 ) and (e ′ 2 , g ′ 3 ) of S modulo E, whose respective multisets |f ′ 3 | and |g ′ 3 | are strictly smaller than |(f, e, g)| with respect to < mult by construction. We get the following situation:

f 1 G G = = f 2 G G f 3 G G e 2 f 4 G G e 3 f 1 G G e 1 f ′ 1 G G e ′ 1 f ′ 2 G G f ′ 3 G G e 3 f ′ 4 G G g 1 G G = g ′ 1 G G = g ′ 2 G G e ′ 2 g ′ 3 G G g ′ 4 G G e ′ 3 g 1 G G g 2 G G g 3 G G g 4 G G
This process can be repeated, however it terminates in finitely many steps to reach a confluence modulo of the branching (f, e, g), using a similar argument than in the proof of Lemma 5.2.7. This confluence modulo satisty the properties of (5.1) from successive use of Lemmas 5.2.5 and 5.2.6.

REWRITING MODULO ISOTOPIES IN PIVOTAL LINEAR

Example: Convergent Linear (3, 2)-polygraphs of isotopies. We define a linear (3, 2)-polygraph whose 3-cells correspond of the isotopy axioms of a pivotal 2-category, with respect to a set I labelling the strands of the string diagrams, and cyclic 2-cells. Following Section 4.3.3, this is a prototypical example of polygraph for which we will rewrite modulo in order to present pivotal linear (2, 2)-categories. Let C I be the pivotal linear (2, 2)-category defined by -a set C 0 of 0-cells denoted by x, y, . . .

-two families of 1-cells E i : x i → y i and F i : y i → x i indexed by I such that E i ⊢ F i ⊢ E i . Note that the identity 2-cells on E i and F i are respectively diagrammatically depicted by:

1 E i := i y i x i 1 F i := i x i y i -units and counits 2-cells ε + i : E i ⋆ 0 F i ⇒ 1, η + i : 1 ⇒ E i ⋆ 0 F i , ε - i : F i ⋆ 0 E i ⇒ 1 and η - i : 1 ⇒ F i ⋆ 0 E i
satisfying the biadjunction relations, where the labels of regions are easily deduced and omitted:

ε + i η - i i = i = ε - i η + i i ε - i η + i i = i = ε - i η + i i -cyclic 2-cells α i : E i ⇒ E i and β i : F i ⇒ F i with respect to the biadjunction E i ⊢ F i ⊢ E i ,
respectively represented by a dot on an upward strand or on a downward strand labelled by i. By definition, cyclicity yields the following relations:

• β i i = i • α i = • β i i • α i i = i • β i = • α i i
Note that we can omit the labels α i and β i on the dots, since the label on a dot is uniquely determined by the label of the strand and the orientation of the segment of strand on which the dot is placed. We define the 3-polygraph of isotopies E I presenting the category C I as follows:

-the 0-cells of E I are the 0-cells of C 0 .

-the generating 1-cells of E I are the E i and F i for i ∈ I, and the 1-cells of E I are given by sequences

(E ± i , E ± j , E ± k , . . . ) with E + = E and E -= F.
-the generating 2-cells of E I are given by cup and cap 2-cells ε + i , η + i , ε - i , η - i , and cyclic 2-cells α i depicted by an upward strand decorated by a dot and labelled by i, and its bidual β i represented by a downward strand decorated by a dot and labelled by i.

-the 3-cells of E I are given by:

i i 0 1 → i i 0 4 ← i i i 0 2 → i i 0 3 ← i • i i 1 1 → i • i 1 4 ← • i • i i 1 2 → i • i 1 3 ← • i i • i 2 4 → • i i • i 2 3 → • i • i i 2 2 → i • • i i 2 1 → i •
Note that the last family of relations (dot moves on caps and cups) are direct consequences of the first families of relations. However, without these 3-cells the linear (3, 2)-polygraph would not be convergent. With these 3-cells, the linear (3, 2)-polygraph E I is confluent, the proof being similar to the proof of confluence of the 3-polygraph of pearls in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. Indeed, the 3-polygraph Pearl of pearls of [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] is actually an instance of E I where the set I is the singleton. As the critical branchings are considered on diagrams with the same label on each strand, there is a family of critical branchings given by Pearl for any i ∈ I, and they are all proved confluent in the same way.

5.3.2.

Termination of E I . For instance, following the proof of termination for the 3-polygraphs of pearls in [51, Section 5.5.1], one proves that the linear (3, 2)-polygraph E I of isotopies defined Section in 5.3.1 is terminating, in two steps: i) At first, if we consider the derivation

d(•) = || • || {ε - i ,ε + i ,η - i ,η + i }
into the trivial module M * , * ,Z counting the number of oriented caps and cups of a diagram. This enables to reduce the termination of E I to the termination of the linear

(3, 2)-polygraph E ′ I having for 3-cells the i 2 k for 1 ≤ k ≤ 4.
ii) The polygraph E ′ I terminates, using the 2-functors X and Y and the derivation d into the (E I ) * 2module M X,Y,Z given by:

X     = ◆, X (i, j) = (0, 0), X   •   (i) = i + 1 Y     = ◆, Y (i, j) = (0, 0), Y   •   (i) = i + 1 d (i, j) = i, d (i, j) = i, d   •   (i, j) = 0
for any orientation of the strands and any label on it. The required inequalities of Section 2.8.9 are proved in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF].

LINEAR BASES FROM CONFLUENCE MODULO

We give a method to compute a hom-basis for a linear (2, 2)-category C from a presentation of C by a linear (3, 2)-polygraph P admitting a convergent subpolygraph E such that the polygraph with set of 3-cells R 3 = P 3 \E 3 is confluent modulo E, and E R E is terminating, or quasi-terminating.

5.4.1. Splitting of a polygraph. Given a linear (3, 2)-polygraph P, recall that a subpolygraph of P is a linear (3, 2)-polygraph P ′ such that P ′ i ⊆ P i for any 0 ≤ i ≤ 3. A splitting of P is a pair (E, R) of linear (3, 2)-polygraphs such that:

i) E is a subpolygraph of P such that E ≤1 = P ≤1 , ii) R is a linear (3, 2)-polygraph such that R ≤2 = P ≤2 and P 3 = R 3 E 3 .
Such a splitting is called convergent if we require that E is convergent. Note that any linear (3, 2)polygraph P admits a convergent splitting given by (P 0 , P 1 , P 2 , ∅) and (P 0 , P 1 , P 2 , P 3 ). It is not unique in general. The data of a convergent splitting of a linear (3, 2)-polygraph P gives two distinct linear (3, 2)polygraphs R = (P 0 , P 1 , P 2 , R 3 ) and E = (P 0 , P 1 , E 2 , E 3 ) satisfying R ≤1 = E ≤1 and E 2 ⊆ P 2 , so that we can construct a linear (3, 2)-polygraph modulo from R and E. Note that when P is left-monomial, if (E, R) is a splitting of P, then both E and R are left-monomial.

Normal forms modulo.

Let us consider a linear (3, 2)-polygraph P presenting a linear (2, 2)category C, (E, R) a convergent splitting of P and (R, E, S) a normalizing linear (3, 2)-polygraph modulo such that S is confluent modulo E.

S being normalizing, each 2-cell u of R ℓ 2 admits at least one normal form with respect to E, and all these normal forms are congruent with respect to E. We fix such a normal form that we denote by u, with the convention that if u is already a normal form with respect to E, then u = u. By convergence of E, any 2-cell u of R ℓ 2 admits a unique normal form with respect to E, that we denote by u. Note that when S is confluent modulo E, the element u does not depend on the chosen normal form u for u with respect to S, since two normal forms of u being equivalent with respect to E, they have the same normal form with respect to E. A normal form for (R, E, S) of a 2-cell u in R ℓ 2 is a 2-cell v such that v appears in the monomial decomposition of w where w is a monomial in the support of u. Given a 2-cell u in R ℓ 2 , we denote by NF (R,E,S) (u) the set of all normal forms of u for (R, E, S). Such a set is obtained by reducing u into its chosen normal form with respect to S, then taking all the monomials appearing in the E-normal form of each element in Supp( u). Note that when E is also right-monomial, the E-normal form of a monomial in normal form with respect to S already is a monomial. In particular, this is the case when E is the polygraph of isotopies described in 5.3.1.

Lemma.

Let P be a left-monomial linear (3, 2)-polygraph, (E, R) be a convergent splitting of P and (R, E, S) be a normalizing left-monomial linear (3, 2)-polygraph modulo such that S is confluent modulo E, and let C be the category presented by P. Then, for any parallel 1-cells x and y in R * 1 , the map γ x,y : R ℓ 2 (x, y) → C(x, y) sending each 2-cell to its congruence class in C has for kernel the subspace of R ℓ 2 made of 2-cells u such that u = 0.

Proof. Let us denote by N the set {u ∈ R ℓ 2 ; u = 0}. Then N ⊆ Ker(γ) since if u ∈ N, there exist positive 3-cells f in E ℓ and e in E ℓ such that

u f G G û e G G u = 0
Thus by definition of S there exist a zig-zag sequence of rewriting steps either of R or E between u and 0, so that u = 0 in C and u belongs to Ker(γ). Conversely, if u belongs to Ker(γ), that is π(u) = 0 where π : R ℓ 2 → C is the canonical projection, there is a zig-zag sequence of rewriting steps (f i ) for 0 ≤ i ≤ n with f i being either a rewriting step of R or a rewriting step of E such that

u f 1 G G u 1 u 2 f 2 o o . . . f n-2 G G u n-1 u n fn G G f n-1 o o v S being confluent modulo E, it is Church-Rosser modulo E from 2.
3.12, and then by 2.3.11, we get that there exist rewriting sequences f : u → û and g : 0 → 0 in S ℓ and a 3-cell e : v → 0 in E ℓ . As S is left-monomial, 0 is a normal form with respect to S so that 0 = 0. Then û and 0 are equivalent with respect to E so that, by convergence of the linear (3, 2)-polygraph E, we get that u = 0, and similarly 0 = 0 since E is left-monomial and 0 is a normal form with respect to E. This finishes the proof.

We then obtain the following result:

5.4.4 Theorem. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C, (E, R) a convergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

i) S is normalizing, ii) S is confluent modulo E,
then the set of all normal forms for (R, E, S) is a hom-basis of C.

Proof. Let us denote by B the set of E-normal forms of all monomials in normal forms with respect to S, and let B Mon be the set of all normal forms for (R, E, S). Note that by definition, B Mon is obtained by considering all the 2-cells in the support of the elements of B. Since S is left-monomial, each normal form in R ℓ 2 can be decomposed into a linear combination of monomials in normal form with respect to S, and by left-monomiality of E, we get that an element of B is a linear combination of monomials in B Mon , so that B Mon is a basis of B. For any 1-cells p and q of C, the map γ x,y : R ℓ 2 (p, q) → C 2 (p, q) is surjective by definition, each 2-cell of C 2 (p, q) having at least one representative in R ℓ 2 (p, q). Moreover, the restriction of γ p,q to the subvector space B of R ℓ 2 has for kernel B ∩ Ker(γ p,q ), which is reduced to {0} by confluence modulo E of S, using Lemma 5.4.3. This proves that (γ p,q ) |B is a bijection between B and C 2 (p, q), and so B Mon is a linear basis of C 2 (p, q). 5.4.5. Proving confluence modulo under quasi-termination. Recall from Section 2.9.5 that if P is a quasi-terminating and exponentiation free linear (3, 2)-polygraph, then it is locally confluent if and only if all its critical branchings are confluent. This result is extended to the context of rewriting modulo in [START_REF] Chenavier | Algebraic polygraphs modulo and linear rewriting[END_REF], where a quasi-terminating Newman lemma modulo and a quasi-terminating critical branching lemma is proved, see Theorem 7.4.3 and Proposition 7.4.7 in Chapter 7, in the context of algebraic polygraphs. Moreover, following the proof of [2, Theorem 5.2.5], we can prove the following condition for decreasingness with respect to a quasi-normal form labelling: 5.4.6 Proposition. Let (R, E, S) be a left-monomial linear (3, 2)-polygraph modulo such that E R E is quasi-terminating and exponentiation free. If all critical branchings of S modulo E are decreasing with respect to the quasi-normal form ψ QNF , then S is decreasing.

Khovanov and Lauda's diagrammatic calculus in the simply-laced setting. This Chapter gives all the results of [START_REF] Dupont | Rewriting modulo isotopies in pivotal linear (2, 2)-categories[END_REF]. V i . We consider the set Seq(V) which consists of all sequences of vertices of Γ with length m in which the vertex i appears exactly V i times. For instance, Seq(3i + j) = {iiij, iiji, ijii, jiii}. There is an action of the symmetric group S m on the set Seq(V) defined by

A CONVERGENT PRESENTATION OF THE SIMPLY-LACED KLR

s k • i 1 . . . i m = i 1 . . . i k+1 i k . . . i m for any 1 ≤ k ≤ m -1
, where s k denotes the permutation (k k + 1) of S m . We will also consider in Section 6.2 a signed version of this set, with signed sequences of vertices of Γ :

i = (ǫ 1 i 1 , ǫ 2 i 2 , . . . , ǫ m i m )
, where ǫ 1 , . . . , ǫ m ∈ {+, -} and i 1 , . . . , i m ∈ I.

We define SSeq(V) to be the set of all such signed sequences. We say that a sequence is positive (resp. negative) if all signs ǫ i are positive (resp. negative).

6.1.2. The KLR algebras. We recall here Rouquier's algebraic definition of the KLR algebras [102, Def 3.2.1] and their diagrammatic interpretation provided by Khovanov and Lauda in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF].

Let Q = (Q i,j ) i,j∈I a matrix with coefficients in K[u, v],
where u and v are indeterminates, such that Q i,i = 0 for any i in I. For any V in ◆[I], we define a (possibly non-unitary) K-algebra H V (Q) by generators and relations. It is generated by elements 1 i , x k,i for k ∈ {1, . . . , n} and τ k,i for k ∈ {1, . . . , n -1} and i ∈ Seq(V). The relations are:

i) 1 i 1 j = δ i,j 1 i ii) τ k,i = 1 s k (i) τ k,i 1 i iii) x k,i = 1 i x k,i 1 i iv) x k,i x l,i = x l,i x k,i v) τ k,s k (i) τ k,i = Q i k ,i k+1 (x k,i , x k+1,i ) vi) τ k,s l (i) τ l,i = τ l,s k (i) τ k,i if |k -l| > 1 vii) τ k,i x l,i -x s k (l),s k (i) τ k,i =    -1 i if l = k and i k = i k+1 1 i if l = k + 1 and i k = i k+1 0 otherwise. viii) τ k+1,s k s k+1 (i) τ k,s k+1 (i) τ k+1,i -τ k,s k+1 s k (i) τ k+1,s k (i) τ k,i = (x k+2,i -x k,i ) -1 (Q i k ,i k+1 (x k+2,i , x k+1,i ) -Q i k ,i k+1 (x k,i , x k+1,i )) if i k = i k+2 0 otherwise
Khovanov and Lauda gave in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF] a definition of a ring associated with an element V ∈ ◆[I], denoted in the sequel by R(V), which is a specialization of Rouquier's algebra

H V (Q) in which Q i,j (u, v) = u d i,j + v d j,i , ∀ i, j ∈ I, where d i,j = -2 i • j i • i .
In the simply-laced setting, these coefficients are equal to 0 when i and j are not linked by an edge in Γ , and to 1 when they are. Moreover, they provide a diagrammatic interpretation for these algebras: for i = i 1 . . . i m ∈ Seq(V), the generators are pictured by the diagrams

x k,i = i 1 i k im • . . . . . . and τ k,i = i 1 i k i k+1 im . . . . . .
The relations above are then diagrammatically depicted by:

i j =                        0 if i = j, i j if i • j = 0, i j • + i j • if i • j = -1. (6.1) 
i j

• = i j • + δ i,j i i , i j • = i j • -δ i,j i i (6.2) i j k = i j k unless i = k and i • j = -1 (6.3) i j i - i j i = i j i if i • j = -1 (6.4) 
By convention, we translate an algebraic expression into a diagram by reading the generators from right to left and the diagrams from bottom to top. Note that the diagrammatic relations correspond, up to a choice of signs in the right hand-sides, to the relations i) -viii) above. The first relation corresponds to v), the second relation corresponds to relation vii) and the last one corresponds to relation viii) for this particular choice of polynomials Q i,j . The other relations are not taken into account since they are structural relations when the algebra is interpreted as spaces of 2-cells in the linear 2-category C KLR defined in Section 6.1.4. Namely, the first relation corresponds to the fact that 1 i is an identity 2-cell, and the other relations correspond to exchange relations of the linear 2-category C KLR . 6.1.3 Remark. We study the case of simply-laced Cartan data for simplicity in the proofs of confluence of critical branchings. In the general case, the KLR relations admit a polynomial right handside, and thus are more complicated to handle. For instance, the relation reducing a double crossing or the Yang-Baxter braid become

i j = i j • d i,j + i j
•dj,i whenever i • j = 0, and

i j k = i j k + d i,j -1 a=0 i j k • • a d i,j -1-a
whenever i = k and i • j = 0. However, we expect that the proof of confluence in the general setting works similarly as in the simply-laced setting, but the confluence of critical branchings is more difficult to ensure due to these relations.

6.1.4. The KLR algebras in the 2-category C KLR . Following [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF], we consider for any i and j in Seq(V) the set j R(V) i of braid-like Khovanov-Lauda diagrams with source i and target j, given by string diagrams satisfying the following conditions:

-the strands are labelled by vertices of Γ , and reading the labels on the bottom (resp. the top) of the diagram gives the sequence i (resp. j), -a strand does not intersect with itself.

For any i and j in Seq(V), the set j R(V) i is a K-vector space, and we have that

R(V) = i,j∈Seq(V) j R(V) i .
Let us consider the linear 2-cateory C KLR defined by: i) only one 0-cell denoted by * ,

ii) its generating one cells are the elements of I, and the ⋆ 0 composition of 1-cells is formal concatenation of vertices, so that the 1-cells of C KLR correspond to sequences of vertices of I.

iii) its generating 2-cells are given by i j

: i ⋆ 0 j → j ⋆ 0 i,

• i : i → i (6.5) 
for any i and j in I, so that the 2-cells of C KLR are obtained by all the diagrams one can form by vertical and horizontal compositions of these generating 2-cells. We require that the 2-cells of C KLR are subject to relations (6.1), (

Note that it is clear from the definition of C KLR that if i and j are sequences of vertices of I which does not belong to the same set Seq(V), then we have C KLR 2 (i, j) = ∅. When they belong to the same Seq(V), we have C KLR 2 (i, j) = j R(V) i . As a consequence, we have an isomorphism of algebras

R(V) ≃ i,j∈Seq(V) C KLR 2 (i, j)
so that for any V in ◆[I], the KLR algebra C KLR is encoded in the linear 2-category C KLR . 6.1.5. The linear (3, 2)-polygraph KLR. In this section, we will define linear (3, 2)-polygraphs presenting these simply-laced KLR algebras and prove that they are convergent. Let KLR be the linear (3, 2)-polygraph defined by: -One 0-cell denoted by * , -Its generating 1-cells are the elements i of I, -Its generating 2-cells are given by the elements of (6.5), -Its generating 3-cells are given by the following oriented relations:

i) For any i, j ∈ I, i j • α L i,j * R i j • and i j • α R i,j * R i j • ii) For any i ∈ I, i i • α L i * R i i • + i i and i i • α R i * R i i • - iii) For any i ∈ I, i i β i * R 0 iv) For any i, j ∈ I such that i • j = 0, i j β i,j * R i j v) For any i, j ∈ I such that i • j = -1, i j β i,j * R i j • + i j • vi)
For any i, j, k ∈ I, and unless i = k and i

• j = -1, i j k γ i,j,k * R i j k vii) For any i, j ∈ I such that i • j = -1, i j i γ i,j,k * R i j i + i j i
.

We then establish the following result:

6.1.6 Theorem. The linear (3, 2)-polygraph KLR is a convergent presentation of the linear 2-category C KLR .
The 3-cells of KLR are orientations of the relations of C KLR , so that KLR is a presentation of C KLR . On the one hand, we show that KLR is terminating using the derivation method to prove termination of 3-polygraphs from [51, Thm 4.2.1], extended in the linear setting in [START_REF] Dupont | Rewriting modulo isotopies in pivotal linear (2, 2)-categories[END_REF]. On the other hand, we prove that KLR is confluent by proving confluence of all its critical branchings, using [2, Thm 4.2.13].

6.1.7. Termination of KLR. We prove that KLR is terminating using the derivation method given in Section 2.8.9. We consider the internal abelian group Z in Ord and we set Y to be the trivial 2-functor, that is the 2-functor sending the generating 1-cell of KLR to the terminal object {0} of Ord. We define the values of the 2-functor X : KLR * 2 → Ord on generating 1-cells by X(i) = ◆ for any i ∈ I, so that X(i ⋆ 0 j) = ◆ × ◆, and on generating 2-cells by

X i (n) = n X i • (n) = n -1 X i j (n, m) = (m + 1, n)
for all n, m ∈ ◆ and for any i and j in I, so that we may omit the labels on the strands when computing values of the functor X. We consider the KLR * 2 -module M X, * ,Z . The following inequalities hold

X (n, m) = X (m + 1, n) = (n + 1, m + 1) ≥ max X • (n, m), X • (n, m), X (n, m) = max (n + 1, m), (n, m + 1), (n, m) , X • (n, m) = (m, n) ≥ (m, n) = max X • (n, m), X (n, m) , X • (n, m) = (m + 1, n -1) ≥ (m + 1, n -1) = max X • (n, m), X (n, m) , X (n, m, l) = (l + 2, m + 1, n) ≥ max X (n, m, l), X (n, m, l) . 
Let us now define the derivation d of KLR * 2 into M X, * ,Z on the generating 2-cells of KLR by setting

d i (n) = 0, d i j (n, m) = n , d i • (n) = n
for any n, m ∈ ◆ and any i, j ∈ I so that we can omit labels on the strands when computing the derivations on 2-cells of KLR * 2 . Following [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], the following inequalities hold:

d (n, m) = n + m + 1 > 0 = d (n, m) = max d • , d • (n, m), d (n, m, l) = 2n + m + 1 > 2n + m = max d , d (n, m, l),
and we check for 3-cells α L i,j (resp.

α L i ) that d • (n, m) = d ⋆ 1 • (n, m) + • ⋆ 1 d • = M X, * ,Z ⋆ 1 • d (n, m) + M X, * ,Z ⋆ 1 d • (n, m) = d (n, m) + d • X (n, m) = n + d • (m + 1, n) = n + m + 1 and similarly, d • (n, m) = n + m.
As a consequence, the derivation d satisfies the strict inequality

d • (n, m) = n + m + 1 > n + m = max d • , d (n, m),
In a similar fashion, we show that

d • (n, m) = 2n > 2n -1 = max d • , d (n, m).
so that the 2-functor X and the derivation d satisfy the conditions i), ii) and iii) of Section 2.8.9, and thus the linear (3, 2)-polygraph KLR is terminating.

6.1.8. Critical branchings of KLR. There are four different forms for the sources of 3-cells, that we denote as follows:

i j • ldot i,j , i j • rdot i,j , i j dcr i,j , i j k ybg i,j,k .
There are six families of regular critical branchings, which we all prove confluent in Appendix A.2. The exhautive list of critical branchings is given below, listing all the pairs of sources of 3-cells that overlap: a) Crossings with two dots of the form (ldot i,j , rdot i,j ) for any i and j in I.

b) Triple crossings of the form (dcr j,i , dcr i,j ) for any i, j in I and any value of the bilinear form i • j. c) Double crossings with dots of the form (ldot j,i , dcr i,j ) and (rdot j,i , dcr i,j ) for any i and j in I and any value of i • j.

d) Double Yang-Baxters of the form (ybg j,k,i , ybg i,j,k ) for any i, j and k in I and any values of i • j, j • k and i • k.

e) Yang-Baxters and crossings of the form (ybg i,j,k , dcr j,i ) and (dcr k,j , ybg i,j,k ) for any i, j and k in I and any values of i • j and j • k.

f) Yang Baxter and dots of the form (ldot k,j , ybg i,j,k ) ; (rdot k,j , ybg i,j,k ) ; (rdot i,k , ybg i,j,k ) for any i, j and k in I and any values of i • j, i • k and j • k.

There also are right-indexed critical branchings of the form

K i j k (6.6)
Following the study of the 3-polygraphs of permutations in [51, Section 5.4], the 2-cells K in normal form that can be plugged in (6.6) are identities or simple crossings. With the additional dot 2-cells, the normal forms that we can plug in (6.6) are given by:

i) i • n for every n ∈ N, which is an identity if n = 0. ii) i l
• n for all n ∈ ◆ and for any l in I.

All the right-indexed critical branchings are confluent, and are drawn in Appendix A.2.

6.1.9. Poincaré-Birkhoff-Witt bases. Let us fix two sequences i and j in Seq(V), with |V| = m. From [2, Prop. 4.2.15], the set of monomials in normal form with respect to KLR with 1-source i and 1-target j forms a basis of the vector space j R(V) i . In [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF], Khovanov and Lauda described a linear basis for this vector space, given by braid diagrams between i and j defined from a choice of minimal representatives for the Coxeter presentation of S m , with an arbitrary number of dots at the bottom of each strand. Using this rewriting theoretical approach, the set of minimal representatives in S m is given by braid diagrams which are normal forms for the 3-cells β i,j and γ i,j,k for any i,j and k in I. In [102, Thm 3.7], Rouquier established that these bases are Poincaré-Birkhoff-Witt (PBW for short) bases. Indeed, he described a morphism of algebras between H V (Q) and a wreath product algebra, and enounced that the KLR algebras satisfy a Poincaré-Birkhoff-Witt property if and only if this morphism is an isomorphism, which is equivalent to the fact that the set S = {τ i 1 ,s i 2 ...s ir (j) . . . τ ir,j x a 1 1,j . . . x am m,j } (i 1 ,...,ir)∈J,(a 1 ,...,am)∈◆ m ,j∈Seq(V)

is a linear basis of the algebra H V (Q), where J is a set of finite sequences of elements of {1, . . . , m -1} such that {s i 1 . . . s ir } (i 1 ,...,ir)∈J is a set of minimal length representatives of elements of S m for its Coxeter presentation. The multiplication by the x k,i to the right corresponds to adding an arbitrary number of dots at the bottom of each strand in the diagrams. The products τ i 1 ,s i 2 ...s ir (j) . . . τ ir,j are given in that case by the choices of braid diagrams which are normal forms for KLR, corresponding to minimal elements in the Coxeter presentation of S m for the degree lexicographic order induced by

s 1 > s 2 > • • • > s m-1 .
As a consequence, for this choice, the elements of S correspond to the set of monomial normal forms for KLR, proving the following result:

6.1.10 Corollary. The simply-laced KLR algebras admit PBW bases.

REWRITING MODULO ISOTOPY IN KHOVANOV-LAUDA-ROUQUIER'S 2-CATEGORY

In this section, we define a linear (3, 2)-polygraph presenting the linear 2-category U (g) and prove that rewriting modulo the isotopy relations using the remaining defining 3-cells gives a quasi-terminating and confluent modulo linear (3, 2)-polygraph modulo. As a consequence, we compute linear bases for the spaces of 2-cells in U (g) and prove non-degeneracy of Khovanov and Lauda's diagrammatic calculus.

6.2.1. The 2-categories A(g) and U (g). In this subsection, we define the linear 2-categories A(g) and U (g) defined respectively by Rouquier and Khovanov-Lauda. We recall Brundan's isomorphism theorem between these two 2-categories.

6.2.2. Rouquier's Kac-Moody 2-category. Let (I, •, X, Y) be a root datum. The Kac-Moody 2-category A(g) defined in [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] is the strict additive K-linear 2-category whose -0-cells are given by the elements λ in the weight lattice X of the Kac-Moody algebra;

-generating 1-cells are given by E i 1 λ : λ → λ + α i and F i 1 λ : λ → λα i ;

-generating 2-cells are given by x i :

E i 1 λ → E i 1 λ , τ i,j : E i E j 1 λ → E j E i 1 λ , η i : 1 λ → F i E i 1 λ and ε : E i F i 1 λ → 1 λ
which are represented respectively by the following diagrams:

• i λ i j λ i λ i λ .
These two morphisms are subject to the following list of relations:

i) The KLR relations for both upward and downward orientations.

ii) Right adjunction relations:

i λ = i λ , i λ = i λ , (6.7) 
which imply that F i 1 λ+α i is the right dual of E i 1 λ .

iii) Some inversion relations: we require the following 2-morphisms to be invertible in A(g):

j i λ : E j F i 1 λ ∼ → F i E j 1 λ if i = j, (6.8) 
j i λ ⊕ h i ,λ -1 n=0 i λ n• : E i F i 1 λ ∼ → F i E i 1 λ ⊕ 1 ⊕ h i ,λ λ if h i , λ ≥ 0, (6.9) 
j i λ ⊕ -h i ,λ -1 n=0 i λ n • : E i F i 1 λ ⊕ 1 ⊕-h i ,λ λ ∼ → F i E i 1 λ if h i , λ ≤ 0. (6.10) 
This condition of invertibility in A(g) imposes that we have to define new generating 2-cells as the formal inverses of each summand in (6.8) -(6.10). Let us denote by A(g) the linear 2-category obtained by forgetting the direct sums operations and the grading on 1-cells in A(g). In order to compute linear bases of A(g), it is sufficient to compute linear bases in the vector spaces of 2-cells in A(g). 6.2.3. Khovanov-Lauda's 2-category U (g). The 2-category U (g) has the same 0-cells and 1-cells than A(g), and have additional generating 2-cells x ′ :

F i 1 λ → F i 1 λ , τ ′ : F i F j 1 λ → F j F i 1 λ , η ′ : 1 λ → E i F i 1 λ and ε ′ : F i E i 1 λ → 1 λ diagrammatically depicted by x ′ = • i λ , τ ′ = j i λ , η ′ = i λ , ε ′ = i λ . (6.11) 
subject to some relations as the KLR relations for both upward and downard orientations and the local "sl 2 " relations which come from Lauda's categorification of sl 2 , [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF]. We refer to [67, Section 3.1] to see the complete definition of this 2-category.

6.2.4. Brundan's isomorphism theorem. In [20, Main Thm], Brundan defined a 2-functor from A(g) to U (g) that he proved to be an isomorphism. This functor is the identity on 0-cells and 1-cells. On 2-cells, it is the identity on the 4 generating 2-cells of A(g) which are also in U (g). It then remains to define new 2-cells x ′ , τ ′ , η ′ , ε ′ in A(g) that will be the images of the additionnal generators in U (g) under the inverse functor. We recall here the definition of these new 2-cells in A(g) and the relations implied by these definitions. First of all, we define the downward dot and crossing as being the right mates under adjunction of the upward ones:

x ′ i = • i λ := • i λ , τ ′ i,j = j i λ := i j .
In [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF], Brundan defined an additional generator for the isomorphism 2-cell:

σ i,j = j i λ := i j λ .
(6.12)

He then defined a leftward crossing as the formal inverse of this new generator. Using the cyclicity relations proved by Brundan in [20, Section 5], A(g) admits a pivotal structure and thus its 2-cells are represented up to isotopy. As a consequence, we set

σ ′ i,j = j i λ = j i λ : F i E j 1 λ → E j F i 1 λ , (6.13) 
Let us now define the new generators from [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF]. Note that these definitions slightly differ depending on the value of h i , λ . First of all, let us assume that h i , λ ≥ 0. The 2-cells σ ′ and η ′ are defined so that

- j i λ ⊕ • • • ⊕ i λ := i i λ ⊕ • • • ⊕ i λ h i ,λ -1 • -1 , (6.14) 
assuming that σ ′ is just the inverse of σ if h i , λ = 0. We also define

i λ := - λ • h i ,λ .
Now, let assume that h i , λ ≤ 0. The 2-cells σ ′ and ε ′ are defined so that

- j i λ ⊕ • • • ⊕ i λ := i i λ ⊕ • • • ⊕ i λ -h i ,λ -1 • -1 , (6.15) 
assuming again that σ ′ is the inverse of σ if h i , λ = 0. We set

i λ := λ • -h i ,λ
.

Using these definitions, Brundan also proved that F i 1 λ+α i also is the right dual of E 1 1 λ , yielding adjunction relations of the form where the 2-cells η ′ and ε ′ are units and counits of this left adjunction F i 1 λ+α i ⊢ E i 1 λ . Brundan also proved in [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF] that the dot 2-cells are cyclic under this biadjunction, yielding relations of the form:

• i λ = i λ • , i λ • = • i λ , • i λ = i λ • , i λ • = • i λ .
6.2.5. Z-grading. Following the definitions of Rouquier and Khovanov-Lauda, we define a Z-grading on the 2-morphisms in A(g), by setting for all i ∈ I:

deg(x i ) = i • i, deg(τ i ) = -i • j, deg(ε i ) = i • i 2 (1 -h i , λ ), deg(η i ) = i • i 2 (1 + h i , λ ).
With the previous definitions of x ′ i , τ ′ i , η ′ i and ε ′ i , we can prove that deg(

x ′ i ) = i • i, deg(τ ′ i ) = -i • j, deg(ε ′ i ) = i • i 2 (1 -h i , λ ), deg(η ′ i ) = i • i 2 (1 + h i , λ ).
and that deg(σ i,j ) = 0, deg(σ ′ i,j ) = 0 for all values of h i , λ , so that this grading exactly to the Z-grading in U (g) defined by Khovanov and Lauda. In order to compute the degree of a string diagram 2-cell, it suffices to sum up all the degrees of the generating 2-cells that appear in that diagram. For coherence, we set deg(0) = -∞.

6.2.6. Bubbles. For each λ ∈ X, we can define 2-cells in END(1 1 λ ) by putting a cap over a cup whenever the directions and labels are compatible. Thus, there is two kinds of bubble morphisms, namely clockwise bubbles and counter clockwise bubbles, and we can decorate them by placing an arbitrary number of dots on each:

i λ • n i λ • n .
If we compute the degree of such a bubble, we have:

deg i λ • n = i • i(1 -h i , λ + n) ; deg i λ • n = i • i(1 + h i , λ + n).
Following [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF][START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF], we have to impose conditions on these bubbles, namely bubbles with a negative degree are zero, and bubbles of degree zero are identities. This corresponds to the following relations:

i λ • n = 1 1 λ if n = h i , λ -1 0 if n < h i , λ -1 (6.17) i λ • n = 1 1 λ if n = -h i , λ -1 0 if n < -h i , λ -1 (6.18)
As in [82, Section 3.6], we introduce fake bubbles. These bubbles are formal symbols which correspond to bubbles decorated with a negative number of dots. It is explained in [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF] that these new symbols are added in order to have an interpretation only with diagrams of the relations obtained by lifting the relations in sl 2 . They are defined in terms of linear combinations of products of positively dotted bubbles. Following [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF], we set for r, s < 0:

i λ • n :=        - k≥0 i • -n-k-1 i λ • k-h i ,λ if n > h i , λ -1, 1 1 λ if n = h i , λ -1, 0 if n < h i , λ -1, i λ • n :=            - k≥0 i • h i ,λ +k i λ • -n-k-1 if n > -h i , λ -1, 1 1 λ if n = -h i , λ -1, 0 if n < -h i , λ -1.
The first condition for both orientations corresponds to Lauda's inductive definition of fake bubbles coming from the infinite Grassmaniann relation, see [START_REF] Lauda | An introduction to diagrammatic algebra and categorified quantum sl(2)[END_REF]Section 3.6.2]. The second two other definitions impose the same condition that fake bubbles of negative degree are zero, and that fake bubbles of degree zero are identities. With this definition, Brundan proved that the Infinite Grassmaniann relation hold in A(g), that is: 6.2.7 Theorem ( [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF], Thm 3.2). For t > 0, the following relation hold in A(g):

r,s∈Z r+s=t-2 i • r i λ • s = 0.
Using the conditions on degrees, we can restrict this relation to the following one:

α k=0 i • h i ,λ -1+α-l i λ
• -h i ,λ -1+l = 0 for all α > 0. (6.19)

6.2.8. The relations in A(g). In this section, we recall some of the important defining relations that arise from the invertibility condition. In [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF], Brundan introduced new generators

i λ k ♠ 0≤k≤ h i ,λ -1 and    i λ k ♣    0≤k≤-h i ,λ -1
as follows:

• For h i , λ ≥ 0, i λ k ♠ is the (n + 1)-th entry of the inverse vector of the invertible 2-cell when h i , λ ≥ 0, that is:

- i i λ ⊕ h i ,λ -1 n=0 i λ n ♠ := i i λ ⊕ h i ,λ -1 n=0 i λ n• -1
.

(6.20)

• Similarly, i λ k ♣
is defined for h i , λ ≤ 0 by:

- j i λ ⊕ -h i ,λ -1 n=0 i λ n ♣ := i i λ ⊕ -h i ,λ -1 n=0 i λ n • -1 . (6.21)
To establish the isomorphism between A(g) and U (g), Brundan proved that the following relation have to hold in A(g):

for all 0 ≤ n ≤ h i , λ -1, i λ n ♠ = r≥0 i λ i • -n-r-2 • r if 0 ≤ n < h i , λ , (6.22) 
i λ n ♣ = r≥0 i •r i λ • -n-r-2 if 0 ≤ n < -h i , λ . (6.23) 
As a consequence, we do not have to consider these inverse 2-cells as generators in the presentation, since we will replace them by their expression in term of the other generators whenever they appear. The invertibility conditions (6.8) and (6.9) can then be expressed diagrammatically by:

λ i i = h i ,λ -1 n=0 r≥0 i λ i • -n-r-2 • r i • n - i i λ , (6.24) 
λ i i = -h i ,λ -1 n=0 r≥0 i • r i λ • -n-r-2 • n i - i i λ .
(6.25)

Besides, some other relations directly follow from this isomorphism:

i) For h i , λ > 0 and 0 ≤ n < h i , λ , we have

λ i = 0, i λ • n = 0. (6.26)
ii) For h i , λ < 0 and 0 ≤ n <h i , λ , we have

λ i = 0, λ i • n = 0. (6.27)
The following relations also hold, and correspond to the sl 2 -relations of U (g), see [20, Corollary 3.5]:

λ i = h i ,λ n=0 i •n i λ • -n-1 , λ i = - -h i ,λ n=0 i •-n-1 i λ • n .
(6.28)

6.2.9. Further relations. We prove some further relations that we will use in the last section to prove that the linear (3, 2)-polygraph presenting A(g) is convergent.

6.2.10 Lemma. The following relations hold in A(g):

λ i = - -h i ,λ n=0 i • n i λ •-n-1 , λ i = h i ,λ n=0 i •-n-1 i λ • n .
Proof. Using the symmetry in A(g) coming from the anti-involution T defined by Brundan in [20, Thm 2.3], it suffices to prove the first relation. For h i , λ > 0, it follows directly from the relations (6.26).

For h i , λ = 0, the left handside is equal toi λ using the definition of ε i when h i , λ ≥ 0. The right handside also reduces toi λ because the bubble that remains is an identity, using the degree conditions. Let us prove it for h i , λ < 0. On the one hand, using the relation of invertibility, we have

• i i λ = -h i ,λ -1 n=0 r≥0 i • r i λ • -n-r-2 •n+1 i - i • i λ = (6.17) -h i ,λ -1 n=0 -h i ,λ -1 r=0 i • r i λ • -n-r-2 •n+1 i - i • i λ = -h i ,λ n=1 -h i ,λ -1 r=0 i • r i λ • -n-r-1 • n i - i • i λ = -h i ,λ n=1 -h i ,λ r=0 i • r i λ • -n-r-1 • n i - i • i λ
The last equality above is due to the fact that

-h i ,λ n=1 i •-h i ,λ i λ • -n+ h i ,λ -1
• n i = 0 since n > 0, using (6.17). On the other hand, we can make the dot go down using the upward KLR relations:

• i i λ = • λ i i - λ i + i λ = (6.25) -h i ,λ -1 n=0 r≥0 i •r+1 i λ • -n-r-2 • n i - i • i λ - λ i + i λ = (6.28) -h i ,λ -1 n=0 r≥0 i •r+1 i λ • -n-r-2 • n i + -h i ,λ n=0 i • -n-1 i λ • n i + i λ - i • i λ = (6.17) -h i ,λ -1 n=0 -h i ,λ -1 r=0 i •r+1 i λ • -n-r-2 • n i + -h i ,λ n=0 i • -n-1 i λ • n i + i λ - i • i λ = ( * ) -h i ,λ n=0 -h i ,λ -1 r=0 i •r+1 i λ • -n-r-2 • n i + -h i ,λ n=0 i • -n-1 i λ • n i + i λ - i • i λ = -h i ,λ n=0 -h i ,λ r=0 i • r i λ • -n-r-1 • n i + i λ - i • i λ ,
where the equality ( * ) is due to the fact the term inh i , λ in the first summand is zero by the degree conditions. Thus, the two expressions obtained have to be equal, and so we must have

-h i ,λ r=0 i • r i λ • -n-r-1 i + i λ = 0.
Using the bilinearity of the vertical composition in the linear 2-category A(g),we obtain the result.

6.2.11. The linear (3, 2)-polygraph KLR. Let us now provide a presentation of the linear 2-category A(g) by a linear (3, 2)-polygraph, which we will prove quasi-terminating and confluent modulo its subpolygraph of isotopies.

6.2.12 Definition. Let KLR be the linear (3, 2)-polygraph defined by: i) the elements of KLR 0 are the weights λ ∈ X of the Kac-Moody algebra;

ii) the elements of KLR 1 are given by

1 λ ′ E ε 1 i 1 . . . E εmim 1 λ
for any signed sequence of vertices (ε 1 i 1 , . . . , ε m i m ) in SSeq :=

V∈N[I]

SSeq(V), and λ,λ ′ in X.

Such a 1-cell has for 0-source λ and 0-target λ ′ , and

1 λ ′′ E ε ′ 1 j 1 . . . E ε l j l 1 λ ′ ⋆ 0 1 λ ′ E ε 1 i 1 . . . E εmim 1 λ = 1 λ ′′ E ε ′ 1 j 1 . . . E εmim 1 λ
iii) the elements of KLR 2 are the following generating 2-cells: for any i in I and λ ′ in X,

• i λ i j λ • i λ i j λ i λ i λ i λ i λ iv
) KLR 3 consists of the following 3-cells:

1) The 3-cells of the linear (3, 2)-polygraph KLR for both upward and downward orientations of all strands. For any 3-cell δ in KLR 3 , we denote by δ λ,+ (resp. δ λ,-) the corresponding 3-cell in KLR with upward (resp. downward) oriented strands and the rightmost region of the diagram being labelled by λ.

2) The isotopy 3-cells: for any i ∈ I and λ ∈ X

i λ i 0 1 ⇛ i λ , i λ i 0 3 ⇛ i λ , i λ i 0 4 ⇛ i λ , i λ i 0 2 ⇛ i λ , (6.29) 
• i λ i 1 2 ⇛ • i λ , • i λ i 1 1 ⇛ • i λ , • i λ i 1 3 ⇛ • i λ , • i λ i 1 4 ⇛ • i λ , (6.30) 
• i λ i 2 1 ⇛ i λ • , i λ • i 2 3 ⇛ • i λ , • i λ i 2 2 ⇛ i λ • , i λ • i 2 4 ⇛ • i λ (6.31)
3) The 3-cells coming from the new generators in A(g): for any i, j ∈ I, λ ∈ X λ

• -h i ,λ D - i,λ ⇛ i λ for h i , λ ≤ 0, λ • h i ,λ B + i,λ ⇛ - i λ for h i , λ ≥ 0 (6.32)
4) The 3-cells for the degree conditions on bubbles: for every

i ∈ I, λ ∈ X i λ • n b 1 i,λ ⇛ b 0,n i,λ 1 1 λ if n = h i , λ -1 0 if n < h i , λ -1 (6.33) i λ • n c 1 i,λ ⇛ c 0,n i,λ 1 1 λ if n = -h i , λ -1 0 if n < -h i , λ -1 (6.34)
5) The Infinite-Grassmannian 3-cells: for any i ∈ I, λ ∈ X and α > 0, i λ

• h i ,λ -1+α ig α ⇛ - α l=1 i • h i ,λ -1+α-l i λ • -h i ,λ -1+l
6) Bubble-slide 3-cells: for any i, j in I and any α ≥ 0, i

• h i ,λ+α j -1+α j λ s + i,j,λ,α ⇛                                  α f=0 (α + 1 -f) i • α-f i λ • h i ,λ -1+f if i = j, j i λ • h i ,λ -1+α if i • j = 0, j • i λ •-h i ,λ +α-2 + j i λ • h i ,λ -1+α if i • j = -1.
and for any i, j in I and any α ≥ 0, i

•-h i ,λ+α j -1+α j λ s - i,j,λ,α ⇛                                  i • 2 i λ • -h i ,λ +α-3 -2 i • i λ • -h i ,λ +α-2 + i i λ • -h i ,λ -1+α if i = j, i i λ • -h i ,λ -1+α if i • j = 0. α f=0 (-1) f j • f i λ •-h i ,λ -1+α-f if i • j = -1.
so as their reflections r + i,j,λ,α and r - i,j,λ,α through a horizontal axis, allowing to make a bubble go through a downward strand. These reflexions correspond to the images of these relations via the symmetry ψ defined by Khovanov and Lauda in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF]Section 3.3]. Note that these relations were originally proved by Khovanov and Lauda in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF]Props 3.3 & 3.4], and are added to this presentation to reach confluence modulo as it will be explained later.

7) The invertibility 3-cells: for any i, j ∈ I and λ ∈ X λ i j

F i,j,λ ⇛ i j λ , λ i j E i,j,λ ⇛ i j λ λ i i F i,λ ⇛ - i i λ + h i ,λ -1 n=0 r≥0 i λ i •-n-r-2 • r i • n , λ i i E i,λ ⇛ - i i λ + -h i ,λ -1 n=0 r≥0 i • r i λ • -n-r-2 • n i .
8) The 3-cells corresponding to the sl 2 relations: for any i ∈ I and λ ∈ X

λ i C i,λ ⇛ h i ,λ n=0 i •n i λ •-n-1 ; λ i A i,λ ⇛ - -h i ,λ n=0 i • -n-1 i λ •n ; λ i B i,λ ⇛ - -h i ,λ n=0 i •n i λ • -n-1 ; λ i D i,λ ⇛ h i ,λ n=0 i •-n-1 i λ
•n .

6.2.13 Remark. The 3-cells defining the new caps and cups generators in 3) are redundant in this presentation since they can be recovered using the sl 2 relations of 8), the degree condition relations on bubbles of 4) and the KLR relations of 1): for instance, we have the following rewriting sequence in KLR: for h i , λ > 0, λ

• h i ,λ ⇛ λ • h i ,λ ⇛ λ • h i ,λ - a+b= h i ,λ -1 i •a i λ • b ⇛ 0 - i λ
Similarly, one proves that the relations (6.26) -(6.27) can be recovered with this presentation, so the corresponding 3-cells can be removed from the presentation. We still denote by KLR the linear (3, 2)polygraph defined as above but with the 3-cells of 3) removed.

Following [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF][START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF], the 3-cells in KLR are sufficient to recover all the relations in A(g), so that we have the following result: 6.2.14 Proposition. The linear (3, 2)-polygraph KLR presents the linear 2-category A(g).

6.2.15. Convergent splitting of KLR. We define a convergent splitting (E, R) of the linear (3, 2)polygraph KLR as follows: the linear (3, 2)-polygraph E has the same 0-cells and 1-cells than KLR, its generating 2-cells are given by the six following 2-cells

• i λ • i λ i λ i λ i λ i λ
and the 3-cells of E are the isotopy 3-cells of KLR given in (9.4) - (6.31). Note that following [START_REF] Dupont | Rewriting modulo isotopies in pivotal linear (2, 2)-categories[END_REF], the linear (3, 2)-polygraph E is convergent. The linear (3, 2)-polygraph R is then defined by R i = KLR i for 0 ≤ i ≤ 2 and R 3 = KLR 3 \E 3 . In the sequel, we will consider rewriting with respect to the linear (3, 2)-polygraph S := E R, and we will prove the following result:

6.2.16 Theorem. The linear (3, 2)-polygraph modulo (R, E, E R) is quasi-terminating and confluent modulo E.

6.2.17. Quasi-reduced monomials. Following 2.6.4, linear 2-categories admitting relations making bubbles go through strands cannot be equiped with a monomial order, and thus cannot be presented by terminating but rather quasi-terminating rewriting systems. This is the case in this setting because of the bubble slide relations creating rewriting cycles, as for instance:

j i • h i ,λ+α j -1 s + i,j,λ,0 * R j i • h i ,λ -1 r - i,j,λ-α j ,0 * R j i • h i ,λ+α j -1 = j i • h i ,λ+α j -1
for any i and j such that i • j = 0, and where the last equality is due to the exchange relation of 2-category A(g). Note that there are the same kind of cyclic rewriting sequences in KLR for different labels i and j, different orientations of bubbles and different number of dots decorating them. There also are the same kind of relations with caps replaced by cups, these relations are not drawn here. However, following [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF], we say that a monomial in A(g) is quasi-reduced if we can only apply to it one of the rewriting sequences given above. (6.35) using the dot move 3-cells i 2 j for 1 ≤ j ≤ 4, where k is a 2-cell in R * 2 . Note that when k is a 2-cell built of a ⋆ 0 and ⋆ 1 composite of dots, cups and caps 2-cells, the diagram in (6.35) is irreducible by R, and thus by E R E . When k is built with crossings, one checks that there there are cycles of the following form: the diagram obtained as the superposition of 2k composable crossings, closed on the left using a cap and a cup, there are cycles in E R given by:

λ • i j ⇛ λ • i j -δ i,j λ i ≡ E λ • i j -δ i,j λ i ⇛ λ • i j -δ i,j λ i + δ i,j λ i (6.
λ i j • . . . k ⇛ λ i j • . . . k
and similarly for a superposition of 2k upward oriented crossings closed on its right by a rightward cap and a leftward cup, and for downward oriented crossings. However, one can always leave the cycles of the form (6.36) using the 3-cells β + i,j or β - i,j when the dot is not inside a double crossing, so that we do not take these cycles into account when considering quasi-reduced monomials.

6.2.19. Termination without bubble slide 3-cells. Before proving that E R is quasi-terminating, let us at first prove the following result stating that, without the bubble slide 3-cells, the linear (3, 2)-polygraph R defined in Section 6.2.15 is terminating.

6.2.20 Lemma. The linear (3, 2)-polygraph R ′ = R 0 , R 1 , R 2 , R 3 \{s + i,j,λ , s - i,j,λ } is terminating.

Proof. We proceed into three steps.

i) At first, let us extend the derivation d defined in Section 6.1.7 by keeping the same value on crossings and dots, no matter the orientation of strands, and by setting the value on caps and cups 2-cells as 0.

Using this derivation, we get that d(s 2 (δ)) > d(t 2 (δ)) for any 3-cell δ coming from the linear (3, 2)polygraph KLR. As a consequence, one gets that if the linear (3, 2)-polygraph R ′′ defined as R ′ minus every KLR 3-cell terminates, then so does R ′ . Indeed, otherwise there would be an infinite reduction sequence (f n ) n∈◆ in R ′ and thus, an infinite decreasing sequence (d(f n )) n∈◆ of natural numbers. Moreover, this sequence would be strictly decreasing at each step that is generated by any KLR 3-cell. Thus, after some natural number p, this sequence would be generated by the other 3-cells only. This would yield an infinite reduction sequence (f n ) n≥p in R ′′ , which is impossible by assumption.

ii) Let us prove that R ′′ is terminating in the two remaining steps. First of all, let us consider the derivation ||•|| {τ + i,j ,τ - i,j } i,j∈I into the trivial modulo M * , * ,Z , counting the number of crossing generators in a given 2-cell. Then for any 3-cell δ belonging to {A i,λ , B i,λ , C i,λ , D i,λ , E i,j,λ , F i,j,λ }, we get that d(s 2 (δ)) > d(t 2 (δ)), and we prove in a same way that if the linear (3, 2)-polygraph R ′′′ defined as R with only all 3-cells implying bubbles as 3-cells is terminating, then so is R ′ .

iii) To prove that R ′′′ is terminating, we consider the derivation d ′ into the trivial module M * , * ,Z defined for any 2-cell u in KLR 2 by

d ′ (u) =      #{bubbles in u} + π clockwise oriented bubble in u deg(π) if u contains bubbles, 0 if u has no bubbles, -∞ if u = 0.
One then easily checks that

d ′ (s 2 (b 1 i,λ )) = d ′ (s 2 (b 0,n i,λ )) = 1 + 2(1 -h i , λ + n) > 0 = max d ′ (t 2 (b 1 i,λ )), d ′ (t 2 (b 0,n i,λ )) d ′ (s 2 (c 1 i,λ )) = d ′ (s 2 (c 0,n i,λ )) = 1 > 0 = max d ′ (t 2 (c 1 i,λ )), d ′ (t 2 (c 0,n i,λ )) d ′ (s 2 (ig α )) = d ′ λ • h i ,λ -1+α = 1 + α i • i > 2 + (α -l)i • i = d ′ • h i ,λ -1+α-l λ • -h i ,λ -1+l since l ≥ 1 and i • i = 2.
6.2.21. Quasi-orderings. Following [START_REF] Dershowitz | Termination of rewriting[END_REF], a quasi-ordered set is a set A equipped with a transitive and reflexive binary relation on elements of A. For example, for any abstract rewriting system (A, → R ), the derivability relation → * R is a quasi-ordering on the set A. Given a quasi-ordering on a set A, we define the associated equivalence relation ≈ as both and and the strict partial ordering > as but not . Such a quasi-ordering is said total if for any a,b in A, we have either a b or b a. The strict part > of a quasi-ordering is well-founded if and only if all infinite quasi-descending sequences a 1 a 2 . . . of elements of A contains a pair s j s k for j < k. A quasi-ordering defined on a set of 2-cells of a linear (2, 2)-category C is said monotonic if

(u v) ⇒ (C[u] C[v])
for any context C of C. From [START_REF] Dershowitz | Termination of rewriting[END_REF], if is monotonic then ≈ is a congruence. Many termination and quasi-termination proofs in the literature are made using well-founded quasi-orderings defined by monotonic polynomial interpretations, [START_REF] Lankford | On proving term rewriting systems are noetherian[END_REF]. In the case of linear (2, 2)-categories, these polynomial interpretations will be given by weight functions. of respective sources

λ i j ≡ E ⊤ λ i j , λ • i j ≡ E ⊤ λ i • j , λ i j i ≡ E ⊤ λ i j i
Similarly, there are critical branchings of the form

(β λ,+ i,j , (i 0 1 ⋆ 2 i 0 4 ) -• E i,j,λ ), (α L,+ i,λ , (i 0 1 ⋆ 2 i 0 4 ) -⋆ 2 (i 2 2 ⋆ 2 i 2 4 ) -• E i,j,λ ).
All these branchings are proved confluent modulo E with respect to E R in Appendix A.3.1. Besides, it is clear that each rewriting step drawn in the confluence diagrams in Appendix A.3.1 make the distance to a quasi-normal form decrease by 1, proving decreasing confluence of these critical branchings for ψ QNF .

6.2.25. Critical branchings between 3-cells A -F. Let us now classify critical branchings between the 3-cells A i,λ , B i,λ , C i,λ . We denote at first that if i, j ∈ I with i = j, there are two critical branchings given by (E i,j,λ , F i,j,λ ) and (F i,j,λ , E i,j,λ ) which are trivially confluent. When both strands are labelled by the same vertex i, the 3-cells E i,λ and F i,λ overlap with the sl 2 3-cells, and we describe below a way to list these overlappings, depending on the notion of type of a 2-cell.

6.2.26 Definition. For any 2-cell u in KLR 2 , we define the type of u as follows:

i) If u has a 1-source (resp. 1-target) E and an identity 1-cell as target (resp. source), that is if u is represented by a closed diagram at its top (resp. at its bottom), we set the type of D to be sgn(E) d (resp. sgn(E) u ),

where sgn(E) depicts the sequence of signs appearing in E.

ii) If u is a 2-cell in KLR 2 between two non-identity 1-cells, then the type of u is given by two elements sgn(E) d and sgn(F) u

For instance, the following diagrams have respectively for type (+, -) d and (-, +) d , (-, +) u := (-, +) u,d :

λ i , λ i i .
Moreover, all the 3-cells named by a letter A have the same type (-, +) u , we thus call it type A. We do the same thing for the other 3-cells and we recover the different types for our 3-cells in an array:

Type of the 3-cell Type of the diagram A (-, +) u B (-, +) d C (+, -) d D (+, -) u E (-, +) d,u F (+, -) d,u
There is a critical branching between two such relations if and only if they overlap on an element λ or λ . Thus, we can notice that there is a branching only between 3-cells of opposed type, that is in which we reverse all the signs and we change the orientation. For instance, there is a branching between A and C whose source is:

λ i
Following this observation, the pairs of 3-cells that lead to a critical branching are:

(C i,λ , A i,λ ), (F i,λ , A i,λ ), (B i,λ , D i,λ ), (B i,λ , F i,λ ), (C i,λ , E i,λ ), (E i,λ , D i,λ ), (E i,λ , F i,λ ), (F i,λ , E i,λ )
for any i in I, any λ in X and any possible value of h i , λ . We check that all these critical branchings are confluent modulo E, all the drawings are given in Appendix A.3. 6.2.27. Categorification of quantum groups. In this section, we prove using rewriting that the generating set that Khovanov and Lauda conjectured to be a linear basis indeed is a basis, by proving that this generating set corresponds to a set of quasi-normal forms for the linear (3, 2)-polygraph E R defined from KLR. As an immediate consequence of the results of [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF], we obtain that the linear 2-category U (g) is a categorification of the quantum group Uq (g) associated with a symmetrizable Kac-Moody algebra g whose Dynkin diagram Γ is a simply-laced graph.

6.2.28. Khovanov-Lauda's generating set. In [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF], Khovanov and Lauda described a general generating set for the vector space U (g)(E i 1 λ , E j 1 λ ), for any i and j in SSeq(V), and λ in X. To define this set, consider m points (resp. n points) on the lower (resp. upper) boundary R × {0} (resp. R × {1}) of the planar strip R × [0, 1], with m + n even, and choose an immersion of n+m 2 strands into the strip R × [0, 1] having these points as endpoints. We say that a strand is a through strand if it links an endpoint of R × {0} to an endpoint of R × {1}. We fix and orientation and a label for each of this strands, so that any endpoint inherit a label from the strand he is linked to, and a sign which is + if the strand is upward oriented when reaching the endpoint,otherwise. These orientations and labels on the upper (resp. the lower) endpoints then define signed sequences i and j in SSeq(V). These immersions between i and j are defined modulo boundary-preserving homotopies, and are called (i, j)-pairings. We will consider minimal (i, j)-pairings, that is such pairings in which strands have no self-intersections and any two strands intersect at most once.

Any (i, j)-pairing has a minimal diagram, as defined in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF], and we denote by p(i, j) a set of fixed minimal (i, j)-pairing ũ for any (i, j)-pairing u. Let us also denote by Π λ the set of 2-cells U (g)(1 λ , 1 λ ) containing all products of clockwise and counterclockwise oriented bubbles with exterior region labelled by λ, having an arbitrary number of dots on it and such that the degree of each bubble is positive. Following [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF], let us consider the set B i,j,λ consisting of the union, over all u in p(i, j), of diagrams built out of u by fixing a choice of an interval on each strand, away from the intersections, and placing an arbitrary number of dots on each of this intervals, and placing any diagram representing a monomial in Π λ to the right of this new diagram. Khovanov and Lauda proved that this space spans the K-vector space U (g)(E i 1 λ , E j 1 λ ).

6.2.29. Monomials in quasi-normal form. In this section, we will fix a particular set of monomials in quasi-normal form for the linear (3, 2)-polygraph E R. Before defining this set, let us expand a few remarks on reductions of 2-cells using rewriting modulo with respect to E R, allowing to change a diagram up to isotopy to apply 3-cells of KLR. a) Note that a 2-cell u can be reduced into a linear combination of diagrams in which all 2-cells have positive degree, using the infinite Grassmannian 3-cell and the degree condition 3-cells.

b) A 2-cell u containing bubbles can be reduced into a linear combination of 2-cells u ′ in which all the bubbles moved to the rightmost region using the bubble slide relations.

c) If a 2-cell u contains a strand that intersect twice with another strand, one can use isotopies and 3cells E i,λ , F i,λ or β ± i,j,λ to remove these intersections. As a consequence, two different strands can intersect at most once. d) If a 2-cell contains a non through strand that intersect with itself, one can use isotopies and 3-cells A i,λ (or B i,λ , C i,λ , D i,λ ) on the part of the diagram next to the intersection to remove this intersection.

e) If a 2-cell contains a through strand with dots on it, the dots can be moved to the bottom of the strand using the KLR 3-cells α L,± i,λ . f) If a 2-cell contains a non through strand with a dot on it, and this strand does not intersect with another strand, the dot can be placed anywhere. Taking the normal form will respect to E will then make the dot move to the right.

g) If this non-through strand intersect with another strand, we are in one of the following situations:

or the mirror image of it through the anti-involution T defined in [START_REF] Brundan | On the definition of Kac-Moody 2-category[END_REF], for any orientation and labels on strands. In the first case, if the dot is placed on the left of the cup, it can be moved to the right using isotopy and the 3-cell α L,± i,j,λ . In the second situation, if the dot is placed on the leftmost cup (resp. on the rightmost cup), it can be reduced with the KLR 3-cell α L,± i,j (or just an identity if the dot is already in the good position) in • , (resp.

• ) .

As a consequence, one can choose a set of E-normal forms of quasi-normal forms with respect to E R containing 2-cells in KLR 2 having: all bubbles placed in the rightmost region and all dots placed to the right of a bubble, a minimal number of crossings and crossings moved as far as possible to the right using the Yang-Baxter 3-cells γ ± i,j,λ , no strands with self-intersection and no double intersections between two different strands, dots placed on the bottom on every through strand and on the rightmost part of every non-through strand. This choice of set of quasi-normal forms correspond to a particular set B i,j,λ of Khovanov and Lauda. As a consequence of [START_REF] Dupont | Rewriting modulo isotopies in pivotal linear (2, 2)-categories[END_REF]Thm 2.5.6], we get the following result: 6.2.30 Theorem. The set B i,j,λ defined above is a linear basis of U (g)(E i 1 λ , E j 1 λ ).

6.2.31. Categorification of quantum groups. In [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF], Khovanov and Lauda defined a map γ between Lusztig's idempotented and integral form U(g) defined in [START_REF] Lusztig | Introduction to quantum groups[END_REF] of the quantum group U q (g) associated with a symmetrizable Kac-Moody algebra and the Grothendieck group of the (additive) linear 2-category U (g). They established that this map is surjective for any Kac-Moody algebra g and any field K. However, the injectivity of γ holds if and only if the graphical calculus they introduce is non-degenerate, which is equivalent to the fact that the generating set B i,j,λ is a linear basis of the K-vector space of 2-cells U (g)(E i 1 λ , E j 1 λ ) for any i and j in SSeq(V). From Theorem 6.2.30, this is true for any Kac-Moody algebra g defined from a simply-laced Cartan datum, namely for any Kac-Moody algebra having a simply-laced Dynkin Diagram, so we obtain as a corollary the following result: 6.2.32 Corollary. For a Kac-Moody algebra g defined by a simply-laced Cartan datum, the linear 2category U (g) is a categorification of U(g). linear rewriting, and explain why termination is a necessary condition to characterize local confluence in that case. We expect that these constructions can be adapted to rewriting in various algebraic structures, such as groups, differential algebras, Weyl algebras, Ore extensions, and higher-dimensional structures.

CARTESIAN POLYGRAPHS AND THEORIES

In section we recall the notion of algebraic theory from [START_REF] Lawvere | Functorial semantics of algebraic theories[END_REF] and of cartesian polygraph introduced in [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF].

7.1.1. Signature and terms. A signature is defined by a set P 0 of sorts and a 1-polygraph, i.e. a directed graph,

P * 0 P 1 ∂ + 0 o o ∂ - 0 o o
on the free monoid P * 0 over P 0 . Elements of P 1 are called operations. For an operation α in P 1 , its source ∂ - 0 (α) is called its arity and its target ∂ + 0 (α) its coarity. For sorts s 1 , . . . , s k , we denote s = s 1 . . . s k their product in the free monoid P * 0 . We denote |s| = k the length of s and the sort s i in s will be denoted by s i .

Recall from [START_REF] Lawvere | Functorial semantics of algebraic theories[END_REF] that an (multityped Lawvere algebraic) theory for a given set of sorts P 0 is a category with finite products T together with a map ι from P 0 and with values in its set of 0-cells T 0 , and such that every 0-cell in T 0 is isomorphic to a finite product of 0-cells in ι(P 0 ). We denote by P × 1 the free theory generated by a signature (P 0 , P 1 ) whose products on 0-cells of P × 1 are induced by products of sorts in P * 0 , and the 1-cells of P × 1 are terms over P 1 defined by induction as follows:

i) the canonical projections x s i : s → s i , for 1 ≤ i ≤ |s| are terms, called variables, ii) for any terms f : s → r and f ′ : s → r ′ in P × 1 , there exists a unique 1-cell f, f ′ : s → rr ′ , called pairing of terms f, f ′ , such that x rr ′ 1 f, f ′ = f and x rr ′ 2 f, f ′ = f ′ , iii) for every operation ϕ : r → s in P 1 , s in S * 0 and terms f i : s → r i in P × 1 for 1 ≤ i ≤ |r|, there is a term ϕ f 1 , . . . , f |r| : s → s.

We define the size of a term f as the minimal number, denoted by |f|, of operations used to its definition.

For any 0-cells s, s ′ in P × 1 , we denote by 1 s the identity 1-cell on a 0-cell s, we denote by ǫ s the eraser 1-cell defined as the unique 1-cell from s to the terminal 0-cell 0, and we denote by δ s = 1 s , 1 s : s → s × s the duplicator 1-cell. We denote respectively by x ss ′ s : ss ′ → s (resp. x ss ′ s ′ : ss ′ → s ′ ) the canonical projections. Finally, we denote by τ s,s ′ : ss ′ → s ′ s the exchange 1-cell defined by τ s,s ′ = x ss ′ s ′ , x ss ′ s .

7.1.2. Two-dimensional cartesian polygraph. A cartesian 2-polygraph is a data (P 0 , P 1 , P 2 ) made of i) a signature (P 0 , P 1 ), ii) a cellular extension of the free theory P × 1 , that is a set P 2 equipped with two maps

P × 1 P 2 ∂ + 1 o o ∂ - 1 o o satisfying the following globular conditions ∂ µ 0 • ∂ - 1 = ∂ µ 0 • ∂ + 1 , for µ ∈ {-, +}.
An element α of P 2 is called a rule with source ∂ -(α) and target ∂ + (α) that we denote respectively by α -and α + so that such a rule is denoted by α : α -⇒ α + . The globular conditions impose that such a rule f ⇒ g relates terms of same arity s and same coarity r, and it will be pictured as follows:

s f 0 0 g d d α r
7.1.3. Two-dimensional theories. Recall that a 2-dimensional theory, or 2-theory for a given set of sorts P 0 is a 2-category with the additional following cartesian structure: i) it has a terminal 0-cell, that is for every 0-cell s there exists a unique 1-cell e s : s → 1, called eraser, and the identity 2-cell is the unique endo-2-cell on an eraser,

ii) it has products, that is for all 0-cells r, r ′ there is a product 0-cell rr ′ and 1-cells x rr ′ r : rr ′ → r and x rr ′ r ′ → r ′ satisfying the two following conditions:

• for any 1-cells f 1 : s → r and f 2 : s → r ′ , there exists a unique pairing 1-cell f 1 , f 2 : s → rr ′ , such that x rr ′ r f 1 , f 2 = f 1 , and

x rr ′ r ′ f 1 , f 2 = f 2 , • for any 2-cells α 1 : f 1 ⇒ f ′ 1 , α 2 : f 2 ⇒ f ′ 2 , there exists a unique 2-cell α 1 , α 2 : f 1 , f 2 ⇒ f ′ 1 , f ′ 2 .
We refer the reader to [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF] for a detailed construction.

7.1.4. Free 2-theories. We denote by P × 2 the free 2-theory generated by a cartesian 2-polygraph (P 0 , P 1 , P 2 ). We briefly recall its construction and refer the reader to [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF] for details. The underlying 1-category of P × 2 is the free theory P × 1 generated by the signature (P 0 , P 1 ). Its 2-cells are defined inductively as follows:

i) for any 2-cell α : u ⇒ v in P 2 and 1-cell w in P × 1 , there is a 2-cell αw :

u ⋆ 0 w ⇒ v ⋆ 0 w in P × 2 ,
ii) for any 2-cells α, β in P × 2 , there is a 2-cell α, β : α -, β -⇒ α + , β

+ in P × 2 ,
iii) for any 2-cell α in P × 2 , there are 2-cells in P × 2 of the form

A[α] : A[α -] ⇒ A[α + ]
where A[ ] denotes an algebraic context of the form:

A[ ] := f id f 1 , . . . , i , . . . , id f k : s → r,
where f 1 , . . . , f k : s → r i and f : r → r are 1-cells of P × 1 , and i is the i-th element of the pairing.

iv) these 2-cells are submitted to the following exchange relations f f 1 , ..., f i , ..., β, ..., f k ⋆ 1 f f 1 , α, ..., f j , ..., f k = f f 1 , ..., α, ..., f j , ..., f k ⋆ 1 f f 1 , ..., f i , ..., β, ..., f k where f i : s → r i and f : r → r are 1-cells in P × 1 , α and β are 2-cells in P 2 . We will denote by f 1 , ..., α, ..., β, ..., f k the 2-cell defined above.

v) The ⋆ 1 -composition of 2-cells in P 2 is given by sequential composition.

The source and target maps ∂ ± 1 extend to P × 2 and we denote a -and a + for ∂ - 1 (a) and ∂ + 1 (a).

7.1.5. Ground terms. Let (P 0 , P 1 , P 2 ) be a cartesian 2-polygraph. A ground term in the free theory P × 1 is a term with source 0. A 2-cell a in the free theory P × 2 is called ground when a -is a ground term. Finally, an algebraic context A[ ] = f f 1 , . . . , i , . . . f |r| is called ground when the f i are ground terms.

7.1.6. Free (2, 1)-theory. A free (2, 1)-theory is a theory T whose any 2-cell is invertible with respect the ⋆ 1 -composition. That is, any 2-cell α of T 2 has an inverse α -: α + ⇒ α -satisfying the relations α ⋆ 1 α -= 1 α-and α -⋆ 1 α = 1 α+ .

We denote by P ⊤ 2 the free (2, 1)-theory generated by a cartesian 2-polygraph (P 0 , P 1 , P 2 ). The 2-cells of the (2, 1)-theory P ⊤ 2 corresponds to elements of the equivalence relation generated by P 2 .

7.1.7. Rewriting properties of cartesian polygraphs. Let P be a cartesian 2-polygraph. The algebraic contexts of the cartesian 2-polygraph P can be composed, and we will denote by

AA ′ [ ] := A[A ′ [ ]].
In the same way, one defines a multi-context (of arity 2) as

B[ i , j ] := f id f 1 , . . . , i , . . . , j , . . . , id f k ,
where the f k : s → r k and f : r → r are 1-cells in P × 1 (X), and i (resp. j ) has to be filled by a 1-cell g i : s → r i (resp. g j : s → r j ).

A 2-cell of the form A[αw] where A is an algebraic context, w is a 1-cell in P × 1 and α is a rule in P 2 is called a rewriting step of P. A rewriting path is a non-identity 2-cell of P × 2 . Such a 2-cell can be decomposed as a ⋆ 1 -composition of rewriting steps:

α = A 1 [α 1 ] ⋆ 1 A 2 [α 2 ] ⋆ 1 . . . A k [α k ].
The length of a 2-cell α in P × 1 , denoted by ℓ(f), is the minimal number of rewriting steps in any ⋆ 1decomposition of α. In particular, a rewriting step is a 2-cell of length 1.

7.1.8. Notations. For the sake of readability, we will denote terms and rewriting rules of cartesian polygraphs as in term rewriting theory, [START_REF]Term rewriting systems[END_REF]. The canonical projections x s i : s → s i , for 1 ≤ i ≤ |s| are identified to "variables" x 1 , . . . , x |s| . And a 1-cell f : s → r is denoted by f(x 1 , . . . , x |s| ), and a rule α : f ⇒ g with f, g : s → r will be denoted by α x 1 ,...,x |s| : f(x 1 , . . . , x |s| ) ⇒ g(x 1 , . . . , x |s| ). that correspond to the rule C µ : µτ ⇒ µ, where τ is the exchanging operator defined in Section 7.1.1. Note that the cartesian 2-polygraph AC is not terminating, and that the rule C can not be oriented in a terminating way. As a consequence, in the sequel when P 2 is defined by a set of relations together with relations corresponding to commutativity and associativity axioms for some operation µ, we will chose to work modulo the polygraphs AC µ . Then the theory P is the theory of monoids that we will denote by M. We also define the cartesian polygraph CMON by CMON i = MON i for 0 ≤ i ≤ 1 and CMON 2 = MON 2 ∪ {C µ } where C µ is the commutativity 2-cell defined in (7.2). Note that following [START_REF] Hullot | A catalogue of canonical term rewriting systems[END_REF], the following set of generating 2-cells gives a cartesian polygrah that is Tietze equivalent to GRP (that is it also presents the theory GRP) and convergent modulo the cartesian polygraph ASS: 

ALGEBRAIC EXAMPLES

G µ,
D l : x • (y + z) ⇒ x • y + x • z D r : (y + z) • x ⇒ y • x + z • x (7.7)
The cartesian 2-polygraph CRING (commutative rings) is the cartesian 2-polygraph whose signature has a unique sort 1, CRING = RING 1 with the same notations as above, and

CRING 2 = RING 2 ∪ {C • } where C • is the commutativity generating 2-cell C • : •(x, y) ⇒ •(y, x) (7.8) 
Following [START_REF] Peterson | Complete sets of reductions for some equational theories[END_REF]Example 12.2], the following set of generating 2-cells gives a cartesian polygraph that is Tietze equivalent to CRING, and is convergent modulo AC: Following [START_REF] Hullot | A catalogue of canonical term rewriting systems[END_REF], the 2-cells in (7.9) together with the following set of 2-cells

E + r , I +,- r , G +,- 1 , G +,- 2 , G +,- 3 , D r , R 1 : x • 0 ⇒ 0, R 2 : x • (-y) ⇒ -(x • y), E • r ( 7 
M 1 , M 2 , M 3 , M 4 , N 1 : x ⊕ 0 ⊕ ⇒ x, N 2 : x ⊕ (λ.x) ⇒ (1 + λ).x, (7.12) 
N 3 : x ⊕ x ⇒ (1 + 1).x, N 4 : x.0 ⊕ ⇒ 0 ⊕ , N 5 : 0.x ⇒ 0 ⊕ , N 6 : ι(x) ⇒ (-1).x (7.13) gives a convergent presentation of the theory of modules over a commutative ring modulo AC • AC + , which contains all the associativity and commutativity relations for the operations • and +. This presentation can be summarized with the following set of generating 2-cells:

x + 0 ⇒ x (ring 1 ) x + (-x) ⇒ 0 (ring 2 ) -0 ⇒ 0 (ring 3 ) -(-x) ⇒ x (ring 4 ) -(x + y) ⇒ (-x) + (-y) (ring 5 ) x • (y + z) ⇒ x • y + x • z (ring 6 ) x • 0 ⇒ 0 (ring 7 ) x • (-y) ⇒ -(x • y) (ring 8 ) 1 • x ⇒ x (ring 9 ) a ⊕ 0 ⊕ ⇒ a (mod 1 )
x. Let us denote by MOD ′ 2 the set containing the 2-cells (7.9), (7.12) and (7.13), and denote by MOD c the cartesian 2-polygraph (MOD 0 , MOD 1 , MOD ′ 2 ∪ AC • ∪ AC + ). It also presents the theory of modules over a commutative ring.

ALGEBRAIC POLYGRAPHS MODULO

In this section we introduce the notion of algebraic polygraph as a cellular extension on closed terms. In Subsection 7.3.10, we introduce the notion of algebraic polygraph modulo following the constructions of Chapter 4.

7.

3.1. Constants. Let (P 0 , P 1 ) be a signature, and Q be a set of generating 1-cell (called constants) with source 0 and target a sort in P 0 . We denote by P 1 Q the set of ground terms of the free theory

(P 1 ∪ Q) × . 7.3.2. Algebraic polygraph. An algebraic polygraph is a data (P, Q, R) where, i) P is a cartesian 2-polygraph, ii) Q is a family of set of generating constants (Q s ) s∈P 0 ,
iii) R is a cellular extension of the set of ground terms P 1 Q .

Note that the cellular extension R is indexed by the sorts of P 0 , that is it defines a family (F s , R s ) s∈P 0 of 1-polygraphs, where F s = P 1 Q s . 7.3.3. Example. Let MON 2 be the cartesian 2-polygraph defined in (7.2.2). One defines an algebraic polygraph by setting:

Q = {s, t : 0 → 1}, R = { α : (s • t) • s ⇒ t • (s • t) }. (7.14)
7.3.4. Rewriting in algebraic prolygraphs. Let P = (P, Q, R) be an algebraic polygraph, and let α : f ⇒ g be a ground 2-cell in R. A R-rewriting step is a ground 2-cell in the free 2-theory R × on

(P 1 ∪ Q, R) of the form A[α] : A[f] ⇒ A[g],
where 

A[α] : (s • ((s • t) • s)) • t ⇒ (s • (t • (s • t)) • t.
7.3.6. Algebraic polygraph of axioms. The cellular extension P 2 defined on P × 1 extends to a cellular extension on the free 1-theory (P 1 ∪ Q) × denoted by P 2 , whose source and target maps are defined in such a way that the following diagram commutes

P 2 Q _ 7 7 
7 7 P 2 ∂ - 1 G G ∂ + 1 G G P × 1 G G (P 1 ∪ Q) ×
and denote by P 2 Q (resp P 2 Q ⊤ ) the set of ground 2-cells in P × 2 (resp. P ⊤ 2 ). The set P 2 Q thus contains the groundified 2-cells of P 2 . The data (P, Q, P 2 Q ) defines an algebraic polygraph, that we call the algebraic polygraph of axioms. We say that two terms f and g in P 1 Q are algebraically equivalent with respect to P, denoted by f ≡ P 2 g, if there exists a ground 2-cell in P 2 Q ⊤ from f to g.

We will denote by P Q the quotient of the full sub-category P 1 Q of P 1 ∪ Q × by the congruence generated by the 2-cells in P 2 Q . Namely, two terms f and g that are related by a 2-cell in P 2 Q ⊤ are identified in the quotient.

Note that the algebraic polygraph (P, Q, P 2 Q ) shares the rewriting properties of the cartesian 2polygraph P. In particular, if P is terminating (resp. quasi-terminating, confluent, confluent modulo P ′ ), then (P, Q, P 2 Q ) is terminating (resp. quasi-terminating, confluent, confluent modulo (P ′ , Q, P ′ 2 Q )). ). In many algebraic situations, we will set ASS ⊆ P ′′ 2 . In particular, in the case of SRS, P ′ 2 will be empty and P ′′ 2 = ASS. In that case, any term in P 1 Q is a normal form for the empty polygraph modulo ASS, and thus the positive strategy consists in taking all the fiber. In the case of LRS, P ′′ 2 will be AC, the algebraic polygraph corresponding to associativity and commutativity relations of the operations, and P ′ 2 will be the convergent presentation of RMOD modulo AC given in Section 7.2.6. 7.3.10. Algebraic polygraphs modulo. Given an algebraic polygraph P = (P, Q, R) and a positive strategy σ on P, one denotes by P R P the cellular extension

P 1 Q P R P o o o o
defined as in 4.4.1, and made of triple (e, a, e ′ ), where e and e ′ are ground 2-cells in P 2 Q ⊤ and a is a R-rewriting step. Such a triple will be denoted by e ⋆ a ⋆ e ′ , called a P R P -rule. Such a rule is called σ-positive if a is a σ-positive R-rewriting step. An algebraic polygraph modulo is a data (P, Q, R, S) made of i) an algebraic polygraph (P, Q, R), ii) a cellular extension S of P 1 Q such that R ⊆ S ⊆ P R P .

Note that the data (P, Q, S) defines an algebraic polygraph modulo. 7.3.11. Example. Let us consider the algebraic polygraph (P, Q, R) defined in (7.14), then the following composition gives a rewriting step in P R P : 

(s • (s • (t • s))) • t ≡ P 2 (s • ((s • t) • s)) • t A[α] ⇒ (s • (t • (s • t)) • t ≡ P 2 ((s • t) • (s • t)) • t.
(P, Q, R) is called i) algebraically terminating if for each sequence (f n ) ∈◆ of 1-cells of P 1 Q such that for each n ∈ N,
there is a rewriting step f n → f n+1 , the sequence (f n ) ∈N contains an infinite number of occurrences of same 1-cell in context, that is, there exist k, l ∈ N, such that f k+l = A[f k ] where A is a possibly empty ground context of P, ii) exponentiation free if there is no rewriting path with source a 1-cell f of P 1 Q and target

C[f],
where A is a nontrivial ground context of P.

Any quasi-terminating polygraph is algebraically terminating. But the converse implication is false in general, indeed the rewriting system a → a • a is algebraically terminating, but not quasi-terminating. In fact, it is not exponentiation free either. One proves that both properties algebraically terminating and exponentiation free implies the quasi-terminating property.

An algebraic polygraph modulo (P, Q, R, S) is called terminating (resp. quasi-terminating) if the algebraic polygraph (P, Q, S) is terminating (resp. quasi-terminating). Note that an algebraic polygraph is a special case of algebraic polygraph modulo when S = R. In the sequel we will consider only polygraphs modulo. 7.3.13. Quasi-normal forms. When the algebraic polygraph modulo P is quasi-terminating, any 1-cell f of P 1 Q admits at least a quasi-normal form. Such a quasi-normal form is neither S-irreducible nor unique in general. A quasi-normal form strategy is a map s : P 1 Q → P 1 Q sending a 1-cell f on a chosen quasi-normal form f. We define a map

d : P 1 Q → N
sending a 1-cell f to the integer d(f) counting the minimal number of P R P -rewriting steps needed to reach f from f. 7.3.14. Algebraic rewriting system. Note that the cellular extension S defined on P 1 Q extends to a cellular extension of P Q , with source and target maps defined respectively by ∂ -

1 := π • ∂ - 1 and ∂ + 1 := π • ∂ +
1 . An algebraic rewriting system on an algebraic polygraph modulo (P, Q, R, S) with a positive strategy σ is a cellular extension S of P Q defined in such a way that the following diagram commutes S

∂ - 1 Ð Ð ∂ + 1 Ð Ð π ′ P Q S o o o o
where the map π ′ assigns to a S-rule e⋆a⋆e ′ an element a in S with source a -and target a + . Explicitly, 

S = {a : a -⇒ a + | e ⋆ a ⋆ e ′ ∈

POSITIVE CONFLUENCE IN ALGEBRAIC POLYGRAPHS MODULO

In this section we present confluence properties of algebraic polygraphs modulo with fixed positive strategies. 

f a G G e f ′ a ′ G G h e ′ g b G G g ′ b ′ G G h ′
We say that the triple (a ′ , e ′ , b ′ ) is a σ-confluence modulo of the σ-branching modulo (a, e, b), and that the pair of terms (f, g) is the source of the σ-branching (a, e, b). Such a σ-branching is local if a is a rewriting step of S, b is ℓ(e) + ℓ(b) = 1. Namely, it is either of the form (a, e) or (a, b).

We say that the algebraic polygraph modulo (P, Q, R, S) is confluent modulo (resp. locally confluent modulo) if any σ-branching modulo (resp. local σ-branching modulo) is confluent modulo. We then define a well-founded order ≺ on the set of σ-branchings of S modulo P by:

(a, e, b) ≺ (a ′ , e ′ , b ′ ) if d(a, e, b) < d(a ′ , e ′ , b ′ ).
The confluence proofs in the sequel will be made using induction on this order. Note that this corresponds to a process of induction on sources of σ-branchings modulo, that is pairs of 1-cells in P 1 Q , with respect to distance of the quasi-normal form with respect to P R P . This follows Huet's double induction principle in the terminating setting, based on induction on an auxiliary rewriting system constructed on pairs of terms.

7.4.6. Positively confluence. An algebraic polygraph modulo (P, Q, R, S) with a positive strategy σ is called positively σ-confluent if, for any S-rewriting step f, there exists a representing a -∈ σ(a -) of a - and two σ-positive S-reductions a ′ and b ′ of length at most 1 as in the following diagram b 0 ) any critical σ-branching modulo (a, e), where a is an S-rewriting step and e is a 2-cell in

a - a ′ G G e e ′′ a -a G G e ′ G G b ′ G G 7 
P 2 Q ⊤ of length 1, is σ-confluent modulo.
Proof. The left to right implication is trivial. Let us prove the converse. Suppose that condition a 0 ) holds and prove condition a). The proof of the other implication is similar. We prove this by examine all the possible cases of local σ-branchings modulo given in Section ??. Local aspherical σ-branchings are always σ-confluent modulo. Let us consider a local orthogonal σ-branching modulo of the form

B[a -, b -] = B[a,b-] G G B[a + , b -] B[a -, b -] B[a-,b] G G B[a -, b + ]
where B[a, b -] and B[a -, b] are σ-positive S-reductions. There are natural 2-cells in S × that give a σ-confluence modulo of this diagram:

B[a -, b -] = B[a,b-] G G B[a + , b -] B[a+,b] G G B[a + , b + ] = B[a -, b -] B[a-,b] G G B[a -, b + ] B[a,b+] G G B[a + , b + ]
However, it may happen that these reductions are not σ-positive. Without loss of generality, let us assume that they are both not σ-positive. By positive σ-confluence assumption, there exists a representative

B[a + , b -] (resp. B[a -, b + ]) of B[a + , b -] (resp. B[a -, b + ]) in P 1 Q , σ-
positive S-rewriting sequences h 1 and h 2 , and 2-cells e 1 ,e 2 in P 2 Q ⊤ as in the following diagram:

B[a + , b -] G G f 1 e 1 c 1 G G B[a -, b -] = B[a,b-] G G B[a + , b -] B[a+,b] G G B[a + , b + ] = B[a -, b -] B[a-,b] G G B[a -, b + ] B[a,b+] G G B[a + , b + ] e 2 f 2 c 2 G G G G Then, we have d(f 1 ) < d(B[a -, b -]) and d(f 2 ) < d(B[a -, b -]
) so that we can use induction of the σbranching modulo (c 1 , e 1 ⋆ e 2 , c 2 ) of source (f 1 , f 2 ). As a consequence, there exists a σ-confluence modulo (c ′ 1 , e, c ′ 2 ) of this σ-branching modulo, and we then construct a σ-confluence modulo of (B[a, b -], B[a -, b]) by successive applications of induction as in the proof of Theorem 2.3.15. This process terminates since P R P is quasi-terminating, and thus the order ≺ on σ-branchings modulo defined in Section 7.4.2 is wellfounded. Let us now consider an overlapping σ-branching modulo of the form (a, b) where a and b are σ-positive S-rewriting steps. By definition, there exists a ground context A of P 1 Q and a critical σ-branching modulo (a ′ , b ′ ) such that (a, b) = (A[a ′ ], A[b ′ ]). Following condition a 0 ), the critical σ-branching (a ′ , b ′ ) is σ-confluent modulo, and there exists a σ-confluence modulo (a ′′ , e ′ , b ′′ ) of this σ-branching. However, the reductions A[a ′′ ] and A[b ′′ ] that would give a confluence modulo of (a, b) are not necessarily σ-positive:

u = a G G A[a ′′ ] G G A[e ′ ] u b G G A[b ′′ ]
G G However, using positive σ-confluence of S, we are able to construct a σ-confluence modulo of the σbranching modulo (a, b) as in the previous case. 7.4.8. Full positive strategy. When all reductions are positive, that is when σ(f) = π -1 (f) for any 1-cell f, we say that σ is a full positive strategy. In that case, the quasi-termination assumption in Proposition ?? is not needed, since the natural confluences represented by dotted arrows are σ-positive. Moreover, the positive σ-confluence is always satisfied, by considering a ′ = a and b ′ = 1 t 1 (a) .

ALGEBRAIC CRITICAL BRANCHING LEMMA

By taking the quotient of the S-rewriting paths in Proposition ??, in this section we obtain an algebraic critical branching lemma, that we apply to string rewriting systems and linear rewriting systems. 7.5.1. Algebraic critical branchings. Let P = (P, Q, R, S) be an algebraic polygraph modulo with a positive strategy σ and let A be an algebraic rewriting system on P. The critical branchings of A are the projections of the critical σ-branchings modulo of P of the form a 0 ), that is pairs (a, b) of S σrewriting steps such that there is a σ-branching modulo in P with source ( a -, b -). As a consequence of Proposition ??, we deduce the following result.

7.5.2 Theorem. Let P = (P, Q, R, S) be an algebraic polygraph modulo with a positive strategy σ such that P R P is quasi-terminating and positively σ-confluent. An algebraic rewriting system on P is locally confluent if and only if its critical branchings are confluent.

As an immediate consequence, we deduce the following usual critical branching lemma.

7.5.3 Corollary. Let P be an algebraic polygraph modulo with a full positive strategy. Any algebraic rewriting system on P is locally confluent if and only if all its critical branchings are confluent.

7.5.4. Critical branching lemma for string rewriting systems. When MON is the cartesian 2-polygraph presenting the theory M of monoids given in (7.2.2), Theorem 7.5.2 corresponds to critical branching lemma for string rewriting systems as proved by Nivat, [START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF]. In that case, the choice of positive strategy σ making all the 2-cells in S × be σ-positive implies that we do not need the additional quasi-termination and positive σ-confluence property, as explained in Remark 7.4.8.

7.5.5. Critical branching lemma for linear rewriting systems. Suppose that P contains the cartesian 2-polygraph MOD c presenting the theory of modules over a commutative ring defined in Section 7.2.6. If P ′′ 2 is the 2-polygraph AC + ∪ AC • , and P ′ 2 is MOD c , then Theorem 7.5.2 corresponds to the critical branching lemma for linear rewriting systems proved in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Theorem 4.3.2]. Indeed, given an algebraic polygraph modulo (P, Q, R, S) with the σ-strategy of normal forms modulo AC defined in 7.3.9, the positivity confluence of S with respect to σ implies the factorization property given in Lemma 2.8.4, stating that any rewriting step a of S can be decomposed as a = b ⋆ c -1 where b and c are either rewriting steps of S σ or identities, as pictured in the following diagram:

h f a 1 W b 2 X g c d l
Note that if a is already a rewriting step of S σ , this factorization is trivial. When a is in S but not in S σ , that is a is a quotient of a non-σ-positive S-rewriting sequence, it states that a can be factorized using positive reductions. Note that in that case, P R P can never be terminating: indeed, because of the linear context, for any R-rule a : f ⇒ g, we have a P R P -rewriting step given by

g ≡ P -f + (g + f) -a+(g+f) + Q -g + (g + f) ≡ P f (7.15)
However, the quasi-termination assumption of P R P is equivalent to the termination assumption of S σ given in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Theorem 4.3.2]. Indeed, by definition an infinite rewriting path in S σ comes from an infinite P R P -rewriting path that is not created by a cycle of the form (7.15), since the rule -α + (g + f) above is not σ-positive.

CHAPTER 8

Work in progress and perspectives In this Chapter, we introduce the current works in progress and perspectives that are suggested by the previous works. The first work in progress aims at defining a categorification of the Mackey induction/restriction theorem for the Brauer algebras, following the constructions of Khovanov [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF] for the algebras of the symmetric groups and of Mackaay and Savage for the degenerate cyclotomic Hecke algebras [START_REF] Mackaay | Degenerate cyclotomic hecke algebras and higher level Heisenberg categorification[END_REF]. The first Section of this chapter provides preliminary results towards this objective, with the study of structures of modules for the tower of Brauer algebras.

The second work in progress consists in extending the coherence modulo constructions of [START_REF] Dupont | Coherent confluence modulo relations and double groupoids[END_REF] in higher dimensions. Chapter 4 suggests that these constructions would take place in higher-dimensional globular strict categories enriched in p-fold groupoids, in which the higher-dimensional cubical cells would be constructed from cubes built from confluence diagrams of critical branchings modulo.

CATEGORIFYING MACKEY'S INDUCTION RESTRICTION THEOREM

FOR BRAUER ALGEBRAS The algebra B n (δ) admits a unit 1 n given by the Brauer diagram on 2n points in which the vertex i in top is joined to vertex i in the bottom by a vertical strand:

1 n := n . . . . . . n . . . . . . 1
An edge in a Brauer diagram b linking an element of the top row to an element of the bottom row will be called a through strand, and an edge linking two elements of the same row will be called an arc. A permutation σ ∈ S n can be realized as a Brauer diagram on 2n points with only through strands, so that we have an inclusion kS n ⊂ B n . An Brauer diagram on 2n2 strands that belongs to kS n will be called a permutation.The algebra B n (δ) admits a presentation by generators and relations as follows: it has generators s 1 , . . . , s n-1 , e 1 , . . . , e n-1 subject to relations e 2 i = δe i , s 2 i = s i , e i s i = e i = s i e i , (8.1) e i e j e i = e i , s i s j s i = s j s i s j , s i s j e i = e j e i , for any i, j such that |i -j| = 1 (8.2) e i s j s i = e i e j , e i s j e i = e i for any i, j such that |i -j| = 1 (8.3) e i e j = e j e i , s i s j = s j s i , s i e j = e j s i for any i, j such that |i -j| > 1 (8.4)

The generator e i (resp. Diagrammatically, the map ε n corresponds to the usual Markov trace construction [START_REF] Vaughan | A polynomial invariant for knots via von Neumann algebras[END_REF][START_REF] Birman | Braids, link polynomials and a new algebra[END_REF] of taking a Brauer diagram on 2n points and closing off the leftmost strand to the left as follows:

b ∈ B n → 1 δ b ∈ B n-1
Note that this trace map is normalized by the parameter 1 δ so that the identity

1 n of B n is sent to the identity 1 n-1 of B n-1 . 8.1.6 Example. b = → = .
As a consequence, from the inductive definition of the linear map τ n : B n → K, this map corresponds to the operation of closing off all the n strands on the left:

b ∈ B n → b . . . ∈ k
Note that this element is in K because it is given by the following composite in the linear 2-category B: Let us define some elements in B n of key importance in the sequel: for 1 ≤ i ≤ n, consider the elements 

D →       ⋆ 1 (1 ⋆ 0 n ⋆ 0 D) ⋆ 1 ∈ End(1 * ) ≃ k.
X i,n := n i . . . 1 
x = i∈I ψ i (x)x i . (8.6) 
Note that the same definition and characterization also holds for right R-modules. In our case, let us prove that B n is projective as a left 

= ε n-1 (b)(n l),
where l is the integer such that b ∈ X l n .

ii) For b ∈ Y n , the following equality holds for any arc (i, j) in Bot(b):

b = δε n-1 (bX j,n )X j,n X i,j .
iii) For b ∈ X l n , the following equality holds for any arc (i, j) in Bot(b):

b = ε n-1 (bX j,n )(n l)X j,n X i,j ,
where (n l) is the permutation of n and l in S n .

Proof. i) In the Brauer diagram on 2n dots corresponding to the transposition (n l), any element k / ∈ {l, n} in the bottom row is linked to k in the top row, and l ∈ Bot((n l)) (resp. l ∈ Top((n l))) is linked to n ∈ Top((n l)) (resp. n ∈ Bot((n l))). Therefore, on the one hand b = b ′ (n l) where b ′ ∈ B n-1 corresponds to the Brauer diagram such that:

a) Any vertex k = l in the bottom row of b ′ is linked to k ′ in b ′ , where k ′ is the vertex linked to k ∈ Bot(b) in b. b) l ∈ Bot(b ′ ) is linked to n ′ in b ′ , where n ′ is the vertex linked to n ∈ Bot(b) in b.
On the other hand, taking the trace ε n-1 of b ′ gives 1 δ times the Brauer diagram on 2(n -1) dots in which the strand linking n in the top row and l in the bottom row of b is removed, and replaced by a strand linking l in the bottom row to n ′ . So it is clear that b ′ = δε n-1 (b), hence the equality.

ii) Let us consider an arc linking i ∈ Bot(b) to j ∈ Bot(b), with 1 ≤ i < j ≤ n -1. In the Brauer diagram corresponding to X j,n X i,j , any k / ∈ {i, j, n} in the bottom is sent to k in the top via a vertical strand, there is one arc (i, j) (resp. (n, j)) in Bot(X j,n X i,j ) (resp. in Top(X j,n X i,j )), and n ∈ Bot(X j,n X i,j ) is sent to i ∈ Top(X j,n X i,j ) via a through strand. Now, as b ∈ Z n , suppose that b has an arc (n, l) in its top row, and a through strand linking n ∈ Bot(b) to m ∈ Top(b). Then, we check that b = b ′ X j,n X i,j where b ′ is the Brauer diagram on 2n points uniquely determined by:

a) n ∈ Bot(b ′ ) is sent to n ∈ Top(b ′ ) via a vertical strands, that is b ′ ∈ B n-1 . b) Any k / ∈ {i, j, n} in Bot(b ′ ) is linked to k ′ , where k ′ is the unique vertex linked to k ∈ Bot(b). c) i ∈ Bot(b ′ ) is sent to m ∈ Top(b ′ ). d) j ∈ Bot(b ′ ) is sent to l ∈ Top(b ′ ).
It thus remains to prove that b ′ = δε n-1 (bX j,n ). The Brauer diagram bX j,n contains the following strands:

i) It has an arc (n, j) in its bottom row, and and arc (n, l) in its top row.

ii) It has a through strand linking

i ∈ Bot(bX j,n ) to m ∈ Top(bX j,n ). iii) Any k / ∈ {i, j, n} in Bot(bX j,n ) is linked to k ′ , where k ′ is the vertex linked to k ∈ Bot(b) in b.
By taking the trace map ε n-1 of this diagram, the through strands (i, m) and the strands (k, k ′ ) of ii) and iii) are still in the resulting diagram, and the arcs (n, j) and (n, l) of i) disappear, giving a through strand linking l ∈ Top(ε n-1 (bX j,n )) to j ∈ Bot(ε n-1 (bX j,n )). Moreover, as ε n-1 (bX j,n ) ∈ B n-1 , when embedded in B n it has a vertical strand from n in bottom to n in top, so that we get that b ′ = δε n-1 (bX j,n ).

iii) Let us consider an arc (i, j) in Bot(b), with 1 ≤ i < j ≤ n. In the Brauer diagram (n l)X j,n X i,j , there is an arc (i, j) in the bottom row and an arc (l, j) in the top row, any k / ∈ {i, j, l, n} is sent to k in the top, l in the bottom row is sent to n in the top row and n in the bottom row is sent to i in the top row. As a consequence, we prove that b = 1 δ b ′ (n l)X j,n X i,j where b ′ ∈ B n-1 is the Brauer diagram defined by:

i) ψ i,j,l (b) is 0 if b / ∈ X l n .
In particular, if n ∈ Top(b) belongs to an arc, then all the ψ i,j,l (b) for 1 ≤ l ≤ n -1 are 0.

ii) ψ i,j,l (b) is 0 if (i, j) is not an arc in Bot(b), so that the only terms giving non-zero elements correspond to the bottom arcs of b.

Moreover, by Proposition 8.1.11, we get that for any b ∈ B n , we have that

ψ i,j,l (b)(n l)X j,n X i,j = 1 A(b) b,
hence the equality (8.9). As a consequence, we proved the following statement:

8.1.12 Proposition. The set

{(n l)X j,n X i,j | 1 ≤ l ≤ n, 1 ≤ i, j ≤ n}
together with the maps ψ i,j,l defined above is a left projective basis of B n as a left B n-1 -module.

The next step to be able to define the left cup for the biadjunction Ind n+1 n ⊢ Res n n+1 is to find a dual basis for the projective basis given in Proposition 8.1.12 with respect to the bilinear form

•, • on B n × B n defined by b, b ′ = ε n-1 (bb ′ ).
Once this is done, all the unit and counit maps for the biadjunction Ind-Res are defined, and it remains to define the remaining generating 2-cells in the spirit of Khovanov [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF], as in Section 9.5. We then have to find relations that are satisfied by the 2-cells made on this generators, part of them giving the Mackey decomposition theorem for the Brauer algebra, which is unknown in these terms. Once the 2-category is completely defined with all the relations, we would like to use rewriting modulo the pivotal axioms to compute an hom-basis, in order to be able to compute the Grothendieck group of it and identify which algebra it categorifies.

POLYGRAPHIC RESOLUTIONS FROM REWRITING MODULO

8.2.1. Triple categories. A triple category is an internal category in the category DbCat of double categories and their morphisms. Explictely, it is given by a diagram

( C 1 s C G G t C G G C 0 ) ⇒ ( D 1 s D G G t D G G D 0 )
where C 1 ,C 0 ,D 1 and D 0 are 1-categories whose 0-cells and 1-cells respectively have the following shapes:

i) 0-cells of D 0 = {•}, ii) 1-cells of D 0 = { • G G • } iii) 0-cells of D 1 =      • •      iv) 1-cells of D 1 =          • s D (A) G G • • t D (A) G G • A + Q          v) 0-cells of C 0 =          t(f) s(f) f a a          vi) 1-cells of C 0 =            t(f) t(A) G G t(g) s(f) f s(A) G G s(g) g À + Q            vii) 0-cells of C 1 =              • t(A) • s C (A) W W s(A) • • t C (A) W W A              viii) 1-cells of C 1 =                            • b G G f • h • c G G e a c c • g d c c • j G G • • i c c l G G • k c c A B γ * R                            with A = s C (γ), B = t C (γ), a = s C (A), i = t C (A), d = s C (B) and k = t C (B).
The square in front is s(γ) and the square behind is t(γ). 8.2.2. Cubical coherence from triple critical branchings modulo. To mimick the constructions of Section 4.6, we could like to generate an n-category enriched in 3-fold categories from an n-polygraph modulo (R, E, S) in which: i) the horizontal category is given the free n-category S * n generated by S, ii) the vertical category is given by the free (n, n -1)-category E ⊤ n ,

iii) the diagonal category is given by the free (n, n -1)-category E ⊤ n .

Given a triple of categories (C h , C v , C d ), together with three square extensions Γ h,d , Γ h,v and Γ v,d respectively on the pairs of categories (C v , C d ), (C h , C v ) and (C v , C f ), we define a 3-fold extension as a set Γ equipped with maps ∂ µ,ν -,n+1 , ∂ µ,ν +,n+1 : Γ → Γ µ,ν for any µ, ν ∈ {v, h, d} satisfying relations such that the elements of Γ are 3-cubical sets. We would like to extend the notion of polygraphic resolution from [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] recalled in Section Namely, given a triple of categories (C h , C v , C d ), together with three square extensions Γ h,d , Γ h,v and Γ v,d respectively on the pairs of categories (C v , C d ), (C h , C v ) and (C v , C f ), we define a 3-fold square extension as a set Γ equipped with maps ∂ µ,ν -,n+1 , ∂ µ,ν +,n+1 : Γ → Γ µ,ν for any µ, ν ∈ {v, h, d} satisfying relations such that the elements of Γ are 3-cubical sets. to this context of rewriting modulo by constructing an "acyclic" 3-fold extension on (S * , E ⊤ , E ⊤ ), that is a set of cubical (n+2)-cells whose compositions would tile every cube made with horizontal arrows in S * , and vertical or diagonal arrows in E ⊤ . We expect to be able to define such a 3-fold extension on the triple of categories (S * , E ⊤ , E ⊤ from triple critical branchings as follows. Let (R, E, S) be an n-polygraph modulo. A triple critical branching of S modulo E is a quintuple (f, e 1 , g, e 2 , h) such that (f, e 1 , g), (g, e 2 , h) and (f, e 1 ⋆ n-1 e 2 h) are local branchings of S modulo E and (f, e 1 , g, e 2 , h) is minimal for the order ⊑ defined in Section 4.4.7. Such a data is depicted on the following diagram:

f G G e 1 c c e 2 g G G h G G
Following [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], we construct the candidate 3-fold extension using normalization strategies for the polygraph modulo S. Let us fix a normalization strategy σ v : v → v with respect to S, and for any n-cell k in S * , denote by k the n-cell k ⋆ n-1 σ t n-1 (k) . By confluence of S modulo E assumption, there exist n-cells e ′

1 and e ′ 2 in E ⊤ as in the first diagram below. Now, let us fix a choice Cd(E) of a square extension given by a family of generating confluences for the convergent n-polygraph E. By convergence of E, there exist n-cells e 3 and e 4 in E ⊤ as in the second diagram below. Now, by confluence modulo on the branching (e 3 , h), there exists a confluence modulo (h ′ , e ′ 3 ) of this branching, and using the confluence modulo assumption, we can assume that h ′ = h ′ . We then construct the n-cell e ′ 4 in E ⊤ closing the cube by convergence of the n-polygraph E. This process is summarized in the following steps:

f G G e 1 c c e 2 g G G e ′ 1 c c e ′ 2 h G G f G G e 4 e 1 c c e 2 g G G c c h G G e 3 c c f G G e 4 e 1 c c e 2 g G G c c h ′ G G h G G e 3 c c e ′ 3 c c f G G e 4 e ′ 4 e 1 c c e 2 g G G c c h ′ G G h G G e 3 c c e ′ 3 c c
The left and right faces of the cube thus constructed are tiled by square cells in Γ E , and the top, bottom, front and behind faces are tiled by square cells in the square extension provided by Theorem 4.6.6. We consider the set Γ (3) of cubical (n + 2)-cells tiling the set of all cubes thus constructed, for any choice of generating confluence Γ E of E and of Squier completion Γ of S modulo E. 8.2.3 Conjecture. The set Γ (3) is an acyclic 3-fold extension on the triple of categories (S * , E ⊤ , E ⊤ ).

Adapting this construction in the above dimensions, we expect to construct k-fold extensions on the k-uples of categories (S * , E ⊤ , . . . , E ⊤ ) made of k-cubical cells constructed from k-critical branchings of S modulo E, and a normalization strategy with respect to S as in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF].

CHAPTER 9

Catalogue of diagrammatic algebras In this Chapter, we give a catalogue of the various families of diagrammatic algebras and categories that have been studied using various rewriting (resp. rewriting modulo) methods: the Hecke type algebras, introduced in [START_REF] Elias | A diamond lemma for Hecke-type algebras[END_REF], including the nil Hecke algebras and the KLR algebras, the Brauer and Temperley-Lieb categories (encoding the Brauer and Temperley-Lieb algebras), the partition category, the affine oriented Brauer category and Khovanov's categorification of the Heisenberg category. and "commutation" relations of the form

HECKE TYPE ALGEBRAS

• = • + . (9.2)
In [START_REF] Elias | A diamond lemma for Hecke-type algebras[END_REF], it is proved that one can compute a linear basis for such a presentation using the Bergman diamond lemma. This lemma states that, if there exist an orientation of the relations of the presentation with respect to a monomial order, and if all minimal overlappings between reductions are confluent, then the monomials in normal form gives a hom-basis of the presentation. This is analogous to Section 2.9.7.

In that setting, there always are indexed critical branchings of the form 6.6), that we have to prove confluent for all cases of colours/labels of the strands as in Appendix A.2. The critical branchings implying the symmetric group relations on one colour/label of the strands are always confluent, and the proof of their confluence is given in the proof of confluence of the 3-polygraph of permutations in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. 9.1.2 Remark. In [46, Thm 5.12], Elias gives an exhaustive list of the critical branchings that need to be checked in order to prove confluence for these algebras using the Manin-Schechtman theory. Manin and Schechtman [START_REF] Yu | Arrangements of hyperplanes, higher braid groups and higher Bruhat orders[END_REF] made an analysis of reduced expressions in the Coxeter presentation of the symmetric group, and of orientations in the corresponding reduction graph. These orientations were extended in [START_REF] Elias | A diamond lemma for Hecke-type algebras[END_REF] to non-reduced expressions using the idea of rewriting modulo the commutation relations s i s j = s j s i for |j -i| > 1 of this presentation, by identifying two words in the reduction graph if they only differ by these relations. 9.1.3. The nil Hecke algebras. Given a ground ring K, the nil Hecke algebra N H n of degree n is the K-algebra presented by generators ξ j for 1 ≤ j ≤ n and ∂ i for 1 ≤ j ≤ n -1 submitted to relations relations

i) ξ i ξ j = ξ j ξ i , ii) ∂ i ξ j = ξ j ∂ i if |i -j| > 1, iii) ∂ i ∂ j = ∂ j ∂ i if |i -j| > 1, iv) ∂ 2 i = 0, v) ∂ i ∂ i+1 ∂ i = ∂ i+1 ∂ i ∂ i+1 , vi) ξ i ∂ i -∂ i ξ i+1 = 1, vii) ∂ i ξ i -ξ i+1 ∂ i = 1.
As in Section 6.1.4, the algebra N H n is isomorphic to End N H C (n), where C N H is the 2-category with only one 0-cell, one generating 1-cell * , so that (C N H ) * 1 ∼ ◆, two generating 2-cells crossing and dot, and the following four relations

= , = , • = • + , • = • - .
The algebra N H n is an instance of the KLR algebra R(V) associated to a Dynkin graph with only one vertex. Therefore, this algebra appears in the process of categorification of the quantum group associated with sl 2 . The proof of convergence for the KLR algebras adapt to this situation, and thus orienting the above relations from left to right gives a convergent presentation of the nil Hecke algebras. [START_REF] Temperley | Relations between the 'percolation' and 'colouring' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the 'percolation' problem[END_REF]. It plays an important role in mathematics and physics, for instance it underlies the study of Potts models, ice-type models and Andrews-Baxter-Forrester models. It can also be connected to categorical quantum mechanics and even to logic and computation. Let R be a noetherian integral domain, and δ be an element of R. The Temperley-Lieb algebra TL n (δ) of degree n over R is the unital R-algebra with basis the set of diagrams corresponding to graphs on 2n vertices arranged in two rows each containing n points, and in which:

TEMPERLEY LIEB AND BRAUER CATEGORIES

1. every vertex has degree 1, that is each vertex admits exactly one incident edge, and two vertices of the same row can be linked.

two different edges does not intersect.

As in the case of Brauer algebras in Section 8.1.1, the vertices are numerated from 1 to n from right to left in each row. The multiplication in Tl n (δ) is defined as in B n (δ): we place the first diagram on top of the second one by identifying the middle row of points, remove all the loops and multiply by δ everytime a loop is removed. The Temperley-Lieb algebra TL n (δ) is the R-algebras presented by generators e 1 , . . . , e n-1 which are diagrammatically represented as the generators e i in Section 8.1.1 submitted to relations e 2 i = δe i , e i e i±1 e i = e i , e i e j = e j e i if |i -j| > 1.

Let us define a category T L(δ) encoding the Temperley-Lieb algebras in every degree as in Section 6.1.4 as follows: let T L(δ) be the linear (2, 2)-category defined by: i) only one 0-cell, ii) its 1-cells are given by the elements {0, . . . , m} for any m in ◆ * and the tensor product (or ⋆ 0composition is defined by m is a partition of the set {1, . . . , m, 1 ′ , . . . , ℓ ′ }. The elements of the partition will be called blocks. We will depict such a partition as a simple graph with ℓ vertices in the top row labelled 1 ′ , . . . , ℓ ′ from right to left, and m vertices in the bottom row, labelled 1, . . . , m from right to left. We draw edges joining elements of each block of the partition. For example, the partition {1, 5}, {2}, {3, 1 ′ }, {4, 4 ′ , 7 ′ }, {2 ′ , 3 ′ }, {5 ′ }, {6 ′ } of type 7 5 is depicted as follows:

5 4 3 2 1 7 ′ 6 ′ 5 ′ 4 ′ 3 ′ 2 ′ 1 ′
As the labels of vertices are clear according to the number of dots in each row, we may omit them. If D is a partition of type ℓ m , we write that D : m → ℓ. There are unique partitions of types 1 0 and 0 1 that are respectively denoted by : 0 → 1 and : 1 → 0. 9.3.2. Confluent presentation. Following [START_REF] Comes | Jellyfish partition categories[END_REF][START_REF] Samuel Nyobe Likeng | Embedding Deligne's category Rep(s t ) in the Heisenberg category[END_REF], this category admits a presentation by a linear (3, 2)polygraph as follows: 

⇛ ⇚ , ⇛ ⇚ , ⇛ ⇚ , ⇛ , ⇛ , ⇛ , ⇛ , ⇛ , ⇛ , ⇛ , ⇛ , ⇛ δ1 0 .
is a presentation of Par(δ).

It is easy to see that the linear (3, 2)-polygraph Par(δ) is not confluent. Checking the first critical branchings, we notice that we have to add new relations in Par(δ) so that our set of 3-cells is stable under some symmetries through horizontal and vertical axis. Moreover, checking the confluence with this new stable-by-symmetry set of 3-cells still requires to add new 3-cells. 9.3.4 Definition. Let us consider the linear (3, 2)-polygraph CPar defined by: CPar i = Par(δ) i for 0 ≤ i ≤ 2, and CPar 3 contains the following 3-cells:

A ⇛ A ′ ⇚ , Ã ⇛ Ã ′ ⇚ , B ⇛ B ′ ⇚ , C ⇛ , D ⇛ , E ⇛ , E ′ ⇛ , Ẽ ⇛ , Ẽ ′ ⇛ F ⇛ , F ⇛ , F ′ ⇛ , F ′ ⇛ G ⇛ , G ′ ⇛ , G ⇛ , G ′ ⇛ H ⇛ , H ⇛ , I ⇛ , J ⇛ δ1 0 . K ⇛ K ′ ⇚ , L ⇛ , L ⇛ M ⇛ , M ⇛ .
Note that we adopted some notations such that, for any 3-cell γ in CPar 3 :

i) γ ′ , if it exists, has for source ι(s 2 (γ)) and for target ι(t 2 (γ)) where ι : Par(δ) → Par(δ) op is the involution of Par(δ) sending a diagram to its image through a reflexion by a vertical axis.

ii) γ, if it exists, has for source τ(s 2 (γ)) and for target τ(t 2 (γ)) where τ : Par(δ) → Par(δ) op is the involution of Par(δ) sending a diagram to its image through a reflexion by an horizontal axis.

As a consequence, if a critical branching of the form (γ, δ) is confluent, then by applying ι (resp. τ) on all the 2-cells in the confluence diagram yields a confluence for the critical branching (γ ′ , δ ′ ) (resp. ( γ, δ)). Therefore, this reduces the number of critical branchings that we have to take into account when proving confluence. Note that some of these 3-cells are symmetric by the and ′ -involutions, for instance the following inequalities hold:

C = C, C ′ = C, D = D, H ′ = H, H ′ = H.
The list of critical branchings for CPar that we need to prove confluent is given by: Proof. The proof of confluence of all these critical branchings is given in Appendix A.1.

In order to obtain a convergent presentation, we also conjecture that the following result holds: We conjecture that this can be proved using the derivation method of Section 2.6.4, but after fixing an apropriate value for the derivation on each generating 2-cell, there are a lot of inequalities to check to ensure conditions i)-iii).

Note that the following inclusions of linear (2, 2)-categories hold:

T L(δ) ⊆ B(δ) ⊆ Par(δ) so that computing a convergent presentation, and thus a hom-basis using Section 2.9.7 of the (2, 2)category Par(δ) yields a convergent presentation, and thus hom-bases, for the linear (2, 2)-categories T L(δ) and B(δ).

THE AFFINE ORIENTED BRAUER CATEGORY

In this section, we illustrate the previous results by computing a hom-basis for the affine Oriented Brauer linear (2, 2)-category AOB. We describe a linear (3, 2)-polygraph (E, R, E R) for which we prove that E R is quasi-terminating and E R is confluent modulo. As a consequence, we prove that a choice of quasinormal forms yields to the well-known basis obtained in [START_REF] Brundan | A basis theorem for the affine oriented Brauer category and its cyclotomic quotients[END_REF][START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. 9.4.1. A presentation of AOB. We recall from [START_REF] Savage | String diagrams and categorification[END_REF] the natural presentation of the affine oriented Brauer category from the degenerate affine Hecke monoidal category. [START_REF] Brundan | A basis theorem for the affine oriented Brauer category and its cyclotomic quotients[END_REF], and oriented in the same way than in [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF].

• α i α 1 ⇛ • α , • α i α 3 ⇛ • α , • α i α 4 ⇛ • α , • α i α 2 ⇛ • α , for any α ∈ {0, 1} (9.4) 
• i 2 1 ⇛ • • i 2 3 ⇛ • • i 2 2 ⇛ • • i 2 4 ⇛ • (9.
We easily prove following [START_REF] Savage | String diagrams and categorification[END_REF] that this linear (3, 2)-polygraph is a presentation of AOB. To study this linear (3, 2)-polygraph modulo, we consider its convergent subpolygraph E defined by E i = AOB i for i = 0, 1, E 2 contains the last six generating 2-cells in 9.3 and E 3 contains exactly the isotopy 3-cells (9.4). Following 5.3.1, E is convergent. We denote by R the linear (3, 2)-polygraph having the same i-cells than AOB for i = 0, 1, 2 and such that R 3 = AOB 3 \E 3 . From the data of E and R, we can then consider the linear (3, 2)-polygraph (R, E, E R), and prove the following result: 9.4.5 Theorem. Let (R, E) be the splitting of AOB defined above, then E R is quasi-terminating and R is confluent modulo E.

(β + , i 0 1 ⋆ 2 i 0 4 , F), (α + , i 0 1 ⋆ 2 i 0 4 , E), (γ l,+ , i 0 1 ⋆ 2 i 0 4 ⋆ 2 (i 2 2 ⋆ 2 i 2 4 ) -, E). Some of these branchings are proved decreasingly confluent with respect to ψ QNF by the confluence modulo diagrams below. The remaining one are obtained by symmetries of the diagrams and are thus not drawn.

= C G G o 1 0 G G = A G G F G G = = λ A G G D G G λ B G G = C G G = λ F G G B G G = o 1 0 G G = D G G λ E G G = = λ D G G A G G C G G = B G G = E G G F G G = = E G G • A i,λ G G = • = • γ l,+ G G • + i 2 2 ⋆ 2 (i 2 3 ) -•γr,+ G G λ • (i 2 1 ) -•A G G • • B G G = • (i 2 4 ) - • i 2 4 •γ l,+ G G • + i 2 2 ⋆ 2 (i 2 3 ) -•γr,+ G G • B G G • 9.
5.2. Induction and Restriction for the symmetric groups. The monoidal category H ′ was discovered by considering compositions of induction and restriction functors for the inclusions of symmetric group algebras K[S n ] ⊆ K[S n+1 ] as defined in Section 8.1.2. Following [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF], we adopt simple notations for modules and by modules over the symmetric group algebras. For instance n (n + 1) stands for S n+1 viewed as a left S n -module, and n (n + 1) n-1 stands for S n+1 viewed as a (S n , S n-1 )-bimodule for the standard inclusions S n ⊂ S n+1 ⊃ S n ⊃ S n-1 . This notation is also suited for tensor products of modules as follows: n (n + 1) n (n + 2) stands for S n+1 ⊗ Bn S n+2 viewed as a (S n , S n+2 )-bimodule.

Let us represent the identity endomorphism of the induction functor Ind n+1 n : S n -Mod → S n+1 -Mod (resp. of the restriction functor) as an upward (resp. downward) oriented arrow as follows:

n n + 1 n + 1 n
This functor corresponds to tensoring with the bimodule (n + 1) n (resp. n (n + 1)). It is proved in [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF] that the functors Ind Following [?, Prop. 7], with these definitions of generating 2-cells, the relations (9.8)-(9.9) are satisfied for every diagram with rightmost region labeled by n. The relations (9.8) follow from the definition of the bimodule map defined by the upward crossing, and come from relations s 2 n = 1 and s n+1 s n+2 s n+1 = s n+2 s n+1 s n+2 in the symmetric groups. The relations of (9.9) encode the bimodule decomposition n (n+ 1) n ≃ (n) n-1 (n) ⊕ (n), giving an isomorphism 9.5.3 Remark. We can prove that orienting the relations (9.8)-(9.9) and rewriting modulo the isotopy axioms of pivotality gives a confluent modulo presentation of the category H ′ in a similar fashion than for AOB in Section 9.4. We thus find an hom-basis of H ′ . Actually, a family Heis k of degenerate Heisenberg categories with central charge k ∈ Z were introduced in [START_REF] Brundan | On the definition of Heisenberg category[END_REF] and admit as special case H ′ for k = -1 and AOB for k = 0. These categories admit a presentation given in [START_REF] Brundan | On the definition of Heisenberg category[END_REF]Theorem 1.2] for general k ∈ Z, and we expect that these methods of rewriting modulo can be adapted to compute hom-bases of these categories. In [START_REF] Savage | Frobenius heisenberg categorification[END_REF], these constructions were extended by considering a family of monoidal supercategories Heis F,k associated to a graded Frobenius superalgebra F and integer k. One expects that the methods of Chapter 5 can be extended to linear (2, 2)-supercategories, in which the exchange law is up to a sign, and that we could also compute hom-bases of these categories for any algebra F.

APPENDIX A

Appendix: Proofs of confluence of critical branchings

A.1. CRITICAL BRANCHINGS FOR THE PARTITION CATEGORY

We prove that all the critical branchings of the linear (3, 2)-polygraph CPar defined in Section 9.3.2 are confluent. The branchings between relations C and D and the associated indexed critical branchings are proved confluent as in the proof of confluence of the 3-polygraph of permutations in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. The remaining ones are respectively confluent as follows:

⇚ E ′ ⇚ E ⇛ C , ⇚ G ⇚ F ⇛ C ⇚ G ⇚ G ⇛ C , ⇚ G ⇚ F ⇛ C ⇚ C ⇛ H ⇛ H ⇚ E ′ ⇚ E ⇛ D ⇛ E ′ ⇛ E ⇚ E ′ ⇚ E ′ ⇛ D ⇛ E ′ ⇛ E ′ ⇚ H ⇚ C ⇚ D ⇛ F ′ ⇛ H ⇛ G ′ ⇚ C ⇚ G ′ ⇚ H ⇚ D ⇛ G ′ ⇛ C ⇛ H ⇚ H ⇚ F ′ ⇚ D ⇛ H ⇛ F ′ = ⇚ E ⇚ E ⇛ F ⇛ E ⇚ A ′ ⇚ E ⇛ A ′ ⇛ A ′ ⇚ A ⇚ E ⇛ G ⇛ A = ⇚ E ′ ⇚ E ⇛ G ′ ⇛ E ′ ⇚ E ⇛ G ⇛ M ⇚ E ′ ⇚ E G ′ ⇛ ⇛ E ⇚ A ′ ⇚ E ⇛ H ⇛ A ⇚ A ⇚ E ′ ⇛ F ⇛ A ⇚ E ′ ⇚ E ′ ⇛ F ′ ⇛ E ′ ⇚ C ⇚ I ⇚ F ⇛ G ⇛ C ⇛ I ⇚ K ⇚ H F ⇛ ⇛ B ′ ⇛ H ⇚ H ⇚ B ⇚ H ⇛ G ⇛ K ⇚ H ⇛ G ⇛ L ⇚ H ⇛ H ⇚ C ⇛ L ⇛ F ′ ⇛ H ⇚ H ⇚ C ⇚ L ⇛ D ⇛ H ⇛ L ⇛ C ⇚ A ′ ⇚ E ⇛ L ⇛ E ′ ⇛ A , ⇚ A ′ ⇚ E ⇛ L ⇛ A ′ ⇛ A ⇚ H ⇚ I ⇚ F ′ ⇛ L ⇛ C ⇛ I ⇚ H ⇚ F ⇛ L ⇛ C ⇚ I ⇚ B ⇚ H ⇚ G ′ ⇛ L ⇛ H ′ ⇛ B ⇛ H ⇛ I ⇚ I ⇚ B ⇚ H ⇛ L ⇛ K ′ ⇛ I ⇚ C ⇛ M ⇛ F ′ ⇛ E ′ ⇚ H ⇚ C ⇚ M ⇛ D ⇛ H ⇛ E = ⇚ E ⇛ M ⇛ E ′ ⇚ A ′ ⇚ E ′ ⇛ M ⇛ A ′ ⇛ E ′ ⇚ E ⇚ I ⇚ F ′ ⇛ M ⇛ C ⇛ I ⇚ A ⇚ K ⇚ G ′ ⇛ M ⇛ H ⇛ B ⇛ H ⇛ A ′ ⇚ A ⇚ K ⇚ B ⇚ H ⇛ M ⇛ K ′ ⇛ A ′ A.2

. CRITICAL BRANCHINGS FOR THE KLR ALGEBRAS

In this section, we will draw all the diagram corresponding to the given list of critical branchings for the linear (3, 2)-polygraph KLR.

Crossings with two dots:

i j • • 8 i j • • 8 r 8 i j • • i j • • 8 r i i • • - i i • * R i i • • - i i • + i i • i i • • 5 h A i i • • i i • • + i i • * R i i • • + i i • - i i
• Triple crossings: respectively when i • j = 0, i • j = -1 and i = j.

Double crossings with dots:

i j • * R i j • 6 i j • : s * R i j • i j • * R i j • A i j • : s * R i j • 2 + i j • • i j • * R i j • 6 i j • : s * R i j • i j • * R i j • A i j • : s * R i j • 2 + i j
• • when i = j and i • j = 0 or i • j = -1 respectively. When i = j, we have the following situation:

i i • * R @ 0 i i • + i i * R i i • J i i • * R @ 0 i i • - i i * R i i • J
Double braid relation: The form of this critical branching depends on the labels on the three strands and the value of the bilinear form • between them. i) First of all, we consider the case where two consecutive vertices are equal: for instance i = j = k.

The other cases would provide the same discussion.

i i k * R i i k * R 0 i i k < t 4 i i k * R 0 i i k + i i k * R i i k + i i k + i i k i i k 8 q 9 i i k - i i k + i i k i i k * R 0
when i • k = 0 and i • k = -1 respectively.

ii) When three vertices are distinct: we have to distinguish 6 cases according the values of i • j, j • k and i • k. We focus on the case i • j = i • k = j • k = -1, the other forms are proved confluent similarly.

i j k * R i j k • + i j k • * R i j k • + i j k • • + i j k • • i j k ; s 5 i j k 2 • + i j k • • + i j k • • + i j k • • i j k * R i j k • + i j k • * R i j k • + i j k • * R i j k 2 • + i j k • • + i j k • • + i j k • • J iii) Let us consider the case i = k: i j i * R i j i 0 i j i < t 4 0 i j i * R 0 i j i * R 0 i j i 7 q 9 i j i + i j i * R i j i • + i j i • + i j i * R i j i
• -

i j i + 0 + i j i J 217
when i • j = 0 and i • j = -1 respectively.

Braid relation and crossings:

i) We treat at first the case when two consecutive vertices are equal. For instance if i = j or i = k, we have respectively:

i i k * R 5 
0 i i k * R i i k * R 0 i j j + i j j * R i j j + i j j " F i j j 7 p A i j j • + i j j • + i j j o { i j j
• + i j j

• i j j

• + i j j

• i j j + i j j

when i • j = -1.

ii) We check the case where all the vertices are different: one can check that the critical branching only depends on the value of i • k:

i j k 5 i j k ; t 7 i j k y Ø i j k i j k * R i j k @ i j k 6 p A i j k • + i j k • p { i j k • + i j k
• when i • k = 0 and i • k = -1 respectively.

iii) When the bottom sequence is iji, we focus on the case i • j = -1 and the other case would be similar:

i j i * R i j i + i j i " F i j i 7 p A i j i • + i j i • + i j i o { i j i • + i j i • i j i
• -

i j i + i j i • + i j i
We study the confluence diagrams of all the forms of the branching in the same way.

Braid relation + dots :

i) When the three vertices are disctinct, the diagrams do not depend on the values of the bilinear pairing. ii) When two consecutive vertices are equal, for instance if i = j = k, if a dot is placed on the left strand, then it will go down in the diagram without creating any additive term because there will be no crossing with two strands with the same label, so that the branching is trivially confluent.

For the other cases, the same process applies. Let us prove the confluence when there is a dot on the rightmost strand:

i i k • * R i i k • - i i k C i i k • 9 r 7 i i k • - i i k i i k • * R i i k • - i i k 3 e
One may apply the same process for the case i = j = k with a dot placed on the up of the leftmost (or middle) strand.

iii) When the bottom sequence is iji, the way to make a dot go down is the same no matter where the dot is placed at the beginning, we only check confluence for a dot placed on the leftmost strand. It would provide the same diagram for the other cases.

i j i • * R i j i • + i j i C i j i • 9 r 6 i j i • + i j i i j i • * R i j i • + i j i 3 e i j i • + i j i • * R i j i • + i j i • + i j i # G i j i • 5 g A i j i • + i j i • + i j i • + i j i • i j i • * R i j i • + i j i / Y
when i • j = 0 and i • j = -1 respectively.

Indexed critical branchings : Let us prove that the indexed critical branchings of the form (6.6) given in Section 6.1.8 are confluent, in the following two cases: plug in (6.6) is given by the following 2-cells:

i) i • n for every n ∈ N, ii) i l
• n for all n ∈ ◆ and for any l in I.

For the first case, the instance for n = 0 was already checked in the Double Yang-Baxter family of critical branchings. Let us prove the confluence of this indexed critical branchings in the particular case when i = k and i • j = -1. This is the "most complicated" case in the sense that it is the one that creates the most additive terms.

Let us denote by α L,n i,j and α R,n i,j the 3-cells

α L,n i,j = α L i,j ⋆ 2 α L i,j • • • ⋆ 2 α L i,j n times (resp. α R,n i,j = α R i,j ⋆ 2 α R i,j • • • ⋆ 2 α R i,j n times ) depicted by i j • n α L,n i,j * R i j •n , i i • n α L,n i,i * R i i •n + a+b=n-1 i i • a •b , i j •n α R,n i,j * R i j • n , i i •n α R,n i,i * R i i • n - a+b=n-1 i i • a •b .
Thus, we have:

i j i • n - a+b=n-1 i j i •b • a * R i j i • n - a+b=n-1 i j i • a+1 •b - a+b=n-1 i j i • a • •b + i j i • n i j i • n - a+b=n-1 i j i •b • a J i j i • n - a+b=n-1 i j i • a • b+1 - a+b=n-1 i j i • a • •b + i j i •n i j i •n 4 f B i j i •n + i j i
•n

i j i • n - a+b=n-1 i j i •b • a + i j i •n J i j i • n + i j i •n * R i j i • n - a+b=n-1 i j i • b • a + i j i
•n

J

For the second indexation, one remarks that the fourth vertex of the sequences does not matter in the reductions. We consider the case where the bottom sequence is ijik with i • j = 0. Let us at first consider this indexation for n = 0:

i j i k * R i j i k * R i j i k 6 i j i k : s 6 i j i k i j i k * R i j i k * R i j i k : s
This diagram was given in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] for the indexation of in the double Yang-Baxter diagram. When i • j = -1, it is the same branching except that it creates an extra term

i j i k
in both reducing paths. For n > 0, the bottom line of (A.1) defines a 3-cell γ ijik :

i j i k ⇛ i j i k .
As we started reducing only the bottom part on the diagram, we can apply the same reductions on the diagram i j i k

• n since the dot 2-cell never appears in the source of any reduction. This enables us to define, for any n ∈ ◆, a 3-cell γ n :

i j i k • n ⇛ i j i k • n + i j i k • n
Then we have:

i j i k • n q } γn E i j i k • n - a+b=n-1 i j i k •b • a i j i k • n + i j i k • n i j i k • n - a+b=n-1 i j i k •b • a i j i k • n + i j i k • n i j i k • n - a+b=n-1 i j i k • b • a • - a+b=n-1 i j i k • b • a+1 γ 0 i j i k • n + i j i k • n - a+b=n-1 i j i k • b • a i j i k • n + i j i k • n - a+b=n-1 i j i k •b • a i j i k • n + i j i k • n i j i k • n + i j i k • n - a+b=n-1 i j i k • b • a • - a+b=n-1 i j i k • b • a+1 - a+b=n-1 i j i k • b • a • - a+b=n-1 i j i k • b+1 • a A.3.

CRITICAL BRANCHINGS MODULO FOR THE KLR 2-CATEGORY

A.3.1. Further 3-cells in KLR. In this subsection, we define some additional 3-cells in KLR 3 , which we will use to prove the confluence modulo of the linear (3, 2)-polygraph modulo E R. First of all, using the degree conditions on bubbles on the terms r≥0 i

• r i λ

• n-r-2

• n i ;

(resp.

r≥0 i λ i • n-r-2 • r i • n
), when r >h i , λ -1 (resp. r ≤ h i , λ -1), then n-r-2 <h i , λ -1 (resp. n-r-2 < h i , λ -1 and then the bubble reduces to 0. We then denote by b ′ i,λ and c ′ i,λ the following 3-cells in KLR obtained by application of the 3-cells b 0 i,λ and c 0 i,λ :

r≥0 i • r i λ • n-r-2 • n i b ′ i,λ ⇛ -h i ,λ -1 r=0 i • r i λ • n-r-2 • n i ; r≥0 i λ i • n-r-2 • r i • n c ′ i,λ ⇛ h i ,λ -1 r=0 i λ i • n-r-2 • r i • n
We also define the 3-cell A ′ i,λ for h i , λ ≥ 0 having as 2-source λ

• n i and as 2-target either 0 if n < h i , λ or - where:

• the 3-cell (i 2 3 ) -• α R,+ i,λ is the rewriting step of E R given by λ

• n = λ • n ∼ λ • n α R,+ i,λ ⇛ λ • n - a+b=n-1 i • b i λ •a
• the 3-cell b i,λ is defined by successive applications of the cells b 0,b i,λ since .

We define in a similar fashion 3-cells i λ

• n B ′ i,λ ⇛      - i λ if n = h i , λ 0 if n < h i , λ ; λ i • n C ′ i,λ ⇛      i λ if n = -h i , λ 0 if n < -h i , λ ; λ i • n D ′ i,λ ⇛    i λ if n = -h i , λ 0 if n < -h i , λ
for h i , λ ≥ 0 for B ′ i,λ and h i , λ ≤ 0 for C ′ i,λ and D ′ i,λ .

Branchings from KLR relations A.3.2. Critical branchings (A i,λ , α L,+ i,λ ). For any i in I and λ in X the weight lattice, and for any value of h i , λ , the critical branchings (A i,λ , α L,+ i,λ ) are confluent modulo E as follows:

λ • A i,λ * R = - -h i ,λ n=0 i • -n-1 i λ • n+1 (i 2 1 ) - λ • α L,+ i,λ * R λ • + i i λ i 2 2 ⋆ 2 (i 2 3 ) -•α R,+ i,λ * R λ • (i 2 1 ) -•A i,λ * R - -h i ,λ n=0 i • -n-1 i λ • n • A.3.3. Critical branchings (B i,λ , i 2 4 • α L,+ i,λ ). λ • B i,λ * R = - -h i ,λ n=0 i • n • i λ • -n-1 i 2 4 λ • i 2 4 •α L,+ i,λ * R λ • + i i λ i 2 2 ⋆ 2 (i 2 3 ) -•α R,+ i,λ * R λ • B i,λ * R - -h i ,λ n=0 i •n+1 i λ • -n-1
A.3.4. Critical branchings (i 2 3 • C i,λ , α R,+ i,λ ).

λ • i 2 3 •C i,λ * R = h i ,λ n=0 i n+1 • i λ •-n-1 (i 2 3 ) - λ • α R,+ i,λ * R λ • - i i λ (i 2 1 ) -⋆ 2 i 2 4 •α L,+ i,λ * R λ • C i,λ * R h i ,λ n=0 i • n • i λ •-n-1
A.3.5. Critical branchings (D i,λ , α R,+ i,λ ).

λ • D i,λ * R = h i ,λ n=0 i •-n-1 i λ •n+1 (i 2 2 ) - λ • α R,+ i,λ * R λ • - i i λ (i 2 1 ) -⋆ 2 i 2 4 •α L,+ i,λ * R λ • D i,λ * R h i ,λ n=0 i •-n-1 i λ • •n
A.3.6. Critical branchings (E i,λ , α L,+ i,λ ) and (F i,λ , α R,+ i,λ ). Let us prove that for any i in I and λ in X, and for any value of h i , λ , the critical branching (E i,λ , α L,+ i,λ ) is confluent modulo E. The proof of confluence modulo of this branching follows the proof scheme of Lemma 6.2.10, and we prove the confluence of the critical branching (F i,λ , α L,+ i,λ ) similarly. Let us denote by α i the following composition of 3-cells of E R:

• i i λ α L,+ i,λ * R • λ i i + i λ α R,+ i,λ * R • λ i i - i λ + λ i i)
For h i , λ > 0,

• i i λ E i,λ * R = - i • i λ = • i i λ α i * R • λ i i - i λ + λ i E i,λ -A i,λ +B i,λ * R - i • i λ
using that for h i , λ > 0, A i,λ and B i,λ admit 0 as 2-target, and where the 3-cell E i,λ -A i,λ + B i,λ is actually a composite of three rewriting steps of E R.

ii) For h i , λ = 0, the 2-cells iii) For h i , λ < 0,

• i i λ E i,λ * R = - i • λ + -h i ,λ -1 n=0 r≥0 i • r i λ • -n-r-2 •n+1 i b ′ i,λ * R - i • λ + -h i ,λ -1 n=0 -h i ,λ r=0 i • r i λ • -n-r-2 •n+1 i = • i i λ α i * R • λ i i - i λ + λ i γ * R - i • i λ + -h i ,λ n=1 -h i ,λ r=0 i • r i λ • -n-r-1
• n i where the 3-cell γ is defined as the following composite of 3-cells of ( E R) ℓ 3 :

• λ i i - i λ + λ i E i,λ -A i,λ +B i,λ ⇛ -h i ,λ -1 n=0 r≥0 i •r+1 i λ • -n-r-2 • n i - -h i ,λ n=0 i • -n-1 i λ • n i + -h i ,λ n=0 i • -n-1 i λ • n i b ′ i,λ ⇛ -h i ,λ -1 n=0 -h i ,λ -1 r=0 i •r+1
i λ

•

-n-r-2

• n i - -h i ,λ n=0 i • -n-1 i λ • n i + -h i ,λ n=0 i • -n-1 i λ • n i = -h i ,λ -1 n=0 -h i ,λ -1 r=-1 i •r+1 i λ • -n-r-2 • n i - -h i ,λ n=0 i • -n-1 i λ • n i + i • h i ,λ -1 i λ • h i ,λ = -h i ,λ n=1 -h i ,λ r=0 i • r i λ • -n-r-1
• n i where the equalities are obtained from the linear structure using reindexations of sums.

A.3.7. Critical branchings (β λ,+ i,j , (i 0 1 ⋆ 2 i 0 4 ) -• F i,j,λ ).

i) First of all, let us consider the case where i = j, and thus the source of this branching rewrites to 0 using β i,λ + . The other side of this critical branching is given by the following scheme of rewritings with respect to E R:

λ i i F i,λ ⇛ - i λ i + h i ,λ -1 n=0 r≥0 i •n i λ • -n-r-2 • r i b ′ i,λ ⇛ - i λ i + h i ,λ -1 n=0 h i ,λ -1 r=0 i •n i λ • -n-r-2 • r i ≡ E - i λ i + h i ,λ -1 n=0 h i ,λ -1 r=0 i • -n-r-2 i • λ n+r
Each summand in the above sum rewrites using the bubble slide 3-cells as follows:

i • -n-r-2 i • λ n+r s - i,λ ⇛ i • n+r+2 i λ • -n-r-2 -2 i • n+r+1 i λ • -n-r-1 + 1 • n+r i λ •-n-r
and we easily check that the above sums are telescopic, so that it remains the 2-cell

h i ,λ -1 r=0    i • r i λ •-r - i • r+1 i λ • -r-1 + i • h i ,λ +r+1 i λ •-h i ,λ -r-1 - i • h i ,λ +r i λ • -h i ,λ -r   
After simplification, it only remains i λ i and thus the starting diagram reduces to 0, and this critical branching is confluent modulo E.

ii) Now, let us consider the case where i = j and i • j = 0. Let us at first notice that in that case, we have the following rewriting step given by a bubble slide 3-cell: where α =< h i , λ + α j > +1. Hence, the decreasing confluence of this critical branching is given by the following diagram: A.3.8. Critical branchings (α R,+ i,λ , (i 0 1 ⋆ 2 i 0 4 ) -⋆ 2 i 2 3 ⋆ 2 i 2 1 • F i,j,λ ). When i = j and i • j = 0:

λ • i j i 0 1 ⋆ 2 i 0 4 γr,+ * R • i j λ α R,+ i,j * R • j i λ s - i,j,λ,-h i ,λ+α j +2 * R i • j λ = i • j F i,λ * R i • j When i • j = -1, we have λ • i j i 0 1 ⋆ 2 i 0 4 γr,+ * R • i j λ α R,+ i,j * R • j i λ • + •2 j i λ i • j F i,λ * R i • j
Using the bubble slide 3-cells s - i,j,λ, h i ,λ +1 and s - i,j,λ, h i ,λ +2 respectively, we get that

• j i λ • ⇛ h i ,λ +1 f=0 (-1) f j • f+1 i λ •-f and •2 j i λ ⇛ h i ,λ +2 f=0 (-1) f j • f i λ •1-f
and one then proves the confluence of this critical branchings modulo using reindexations of the sums.

In the case i = j, we get the following situation:

• i i i 0 1 ⋆ 2 i 0 4 γr,+ * R • i i - i β + i -(i 0 1 ) -•C i,λ * R h i ,λ n=0 i •n i λ •-n-1 ≡ E h i ,λ n=0 i •-n-1 i • λ n • F i,λ * R - • + h i ,λ -1 n=0 h i ,λ -1 r=0 λ i • -n-r-2 i •n+r+1
Because of the degree conditions on bubbles 3-cells, the last summand in the last term of the bottom line of this critical branching modulo is equal to 0 whenever n + r > h i , λ -1. As a consequence, it reduces to

h i ,λ -1 n+r=0 i • -n-r-2 i • λ n+r+1
and one then proves the confluence modulo of this branchings using a reindexation of this sum and the bubble slide 3-cells as in the previous proof of confluence of critical branching.

A.3.9. Critical branchings (γ λ,+ j,i,j , (i 0 1 ⋆ 2 i 0 4 ) -• F i,j,λ ). •n i λ

•-n-1

Using the 3-cell C i,λ , the term in the top line reduces to

h i ,λ n=0 λ •-n-1 i • n i i ≡ E h i ,λ n=0 λ •-n-1 i i j • n α L,n,+ i,j ⇛ h i ,λ n=0 λ • -n-1 i i j
•n (A.1)

When i • j = 0, this rewrites using β + i,j to h i ,λ n=0

•-n-1

• n λ so that this branching is confluent modulo E. In the case i • j = 1, this rewrites to

h i ,λ n=0 •-n-1 • • n λ + h i ,λ n=0 •-n-1 •n+1 λ .
Then note that

h i ,λ n=0 •-n-1 • n+1 λ + i j i λ = h i ,λ -1 n=0 • -n
• n λ so that the top line of this branching rewrites to

h i ,λ n=0 •-n-1 • • n λ + h i ,λ -1 n=0 • -n
• n λ and we check the confluence modulo of this branching using the bubble slide 3-cells, the dots on the leftmost strand being cancelled by the 3-cells s - i,j,λ,α for i • j = -1.

Branchings between isomorphism and sl 2 relations A.3.10. Critical branchings between types A and C. We prove that for any i ∈ I and λ ∈ X, and for any value of h i , λ , the critical branchings (A i,λ , C i,λ ) are confluent modulo E.

i) For h i , λ < 0,

λ i C i,λ * R = 0 = λ i A i,λ * R - -h i ,λ n=0 i λ • n i • -n-1 b 0,n i,λ * R i λ • -h i ,λ i • h i ,λ -1 + i λ • h i ,λ i •-h i ,λ -1 * R i λ •-h i ,λ + i λ • h i ,λ I 1 * R 0 ii) For h i , λ = 0, λ i C i,λ * R = i λ •-1 i c 1,-h i ,λ -1 i,λ * R i λ I 1 * R -i λ = λ i A i,λ * R - i λ i •-1 b 1, h i ,λ -1 i,λ * R -i λ
iii) For h i , λ > 0, the computation is similar to the case h i , λ < 0, except that the source 2-cell reduces to 0 by A i,λ instead of C i,λ .

A.3.11. Critical branchings between types A and F.

i) For h i , λ < 0,

i λ F i,λ * R = - i λ = i λ A i,λ * R - -h i ,λ n=0 λ • n i λ • -n-1 (i 2 1 ) -⋆ 2 i 2 4 •D ′ i,λ * R - i • -h i ,λ -1 i λ c 1 i,λ * R - i λ
where D ′ i,λ is a composite of n positive 3-cells of ( E R) ℓ 3 , which represents the sum D ′ i,λ,1 +. . . D ′ i,λ,-h i ,λ , where the 3-cell D ′ i,λ,k is defined for any 1 ≤ k ≤h i , λ in Appendix A.3.1.

ii) For h i , λ = 0,

i λ F i,λ * R = - i λ = i λ A i,λ * R - λ i λ •-1 b 1 i,λ * R - λ i D i,λ * R - i •-1 i λ c 1 i,λ * R - i λ iii) For h i , λ > 0, i λ = F i,λ * R - i λ + h i ,λ -1 n=0 r≥0 i λ i •-n-r-2 • r i • n b 0,n i,λ * R - i λ + r≥0 i λ i •-h i ,λ -r-1 • r i • h i ,λ -1 = i λ A i,λ * R 0 - i λ + r≥0 i •-h i ,λ -r-1 i λ •r c i,λ j t - i λ + r≥0 i λ i •-h i ,λ -r-1 • r i • h i ,λ -1 b 1 i,λ j t
where the cell c i,λ is defined as the composite of rewriting steps of E R given by c 1,-h i ,λ -1 i,λ + c 0,-h i ,λ -2 i,λ + . . . , using degree condition 3-cells on bubbles to prove that the only term remaining is for r = 0, and is i λ .

A.3.12. Critical branchings between types B and D.

i) For h i , λ < 0,

λ i B i,λ * R = - -h i ,λ n=0 i λ • -n-1 i • n c 0,n i,λ * R i λ • h i ,λ -1 i • -h i ,λ + i λ • h i ,λ i •-h i ,λ -1 b 1 i,λ +c 1 i,λ * R i λ •-h i ,λ + i λ • h i ,λ I * R 0 = λ i D i,λ * R 0 ii) For h i , λ = 0, λ i B i,λ * R = - i λ •-1 i b 1 i,λ * R -i λ • = λ i D i,λ * R i λ •-1 i c 1 i,λ * R i λ • I 1 * R -i λ •
iii) For h i , λ > 0, i) For h i , λ < 0, i,λ into 1 1 λ when n = 0.

λ i B i,λ * R = = λ i C i,λ * R h i ,λ n=0 i λ • -n-1 i • n b 0,n i,λ * R i λ •-h i ,λ -1 i • h i ,λ + i λ • -h i ,λ i • h i ,λ -1 c 1 i,λ +b 1 i,λ * R i λ • h i ,λ + i λ •-h i ,λ
λ i E i,λ * R = - i λ + -h i ,λ -1 n=0 r≥0 i • r i λ •-n-r-2 • n i b ′ i,λ * R - i λ + -h i ,λ -1 n=0 -h i ,λ -1 r=0 i • r i λ •-n-r-2 • n i = λ i D i,λ * R 0 - i λ + -h i ,λ -1 n=0 i • -h i ,λ -n-1
ii) For h i , λ = 0,

λ i E i,λ * R = - i λ = λ i D i,λ * R λ i •-1 c 1 i,λ * R λ i A i,λ * R - i • -1 i λ b 1 i,λ * R - i λ iii) For h i , λ > 0, λ i E i,λ * R = - i λ = λ i D i,λ * R h i ,λ n=0 λ •n i •-n-1 A ′ i,λ * R - i • h i ,λ i λ c 1 i,λ * R - i λ
where the 3-cell A ′ i,λ is defined as the 3-cell A ′ i,λ,0 + • • • + A ′ i,λ, h i ,λ , where each 3-cell A ′ i,λ,k for 0 ≤ k ≤ h i , λ is defined in Appendix A. 

+ i i λ • h i ,λ -1 b 1 i,λ j t - i λ + r≥0 i •r i λ • h i ,λ -r-1 b i,λ j t = λ i E i,λ * R - i λ + -h i ,λ -1 n=0 r≥0 i • r i λ •-n-r-2 • n i c 0,n i,λ * R - i λ + r≥0 i • r i λ • h i ,λ -r-1 • -h i ,λ -1 i c 1 i,λ * R - i λ + r≥0 i •r i λ • h i ,λ -r-1 ii) For h i , λ = 0, λ i C i,λ * R = λ i •-1 i c 1 i,λ * R λ i B i,λ * R - i i λ • -1 b 1 i,λ * R - i λ = λ i E i,λ * R - i λ iii) For h i , λ > 0, λ i C i,λ * R = h i ,λ n=0 λ • n i • -n-1 i B ′ i,λ * R i i λ • h i ,λ -1 b 1 i,λ * R - i λ = λ i E i,λ * R - i λ
where the 3-cell B ′ i,λ is defined as the 3-cell B ′ i,λ,0 + • • • + B ′ i,λ, h i ,λ , where each 3-cell B ′ i,λ,k for 0 ≤ k ≤ h i , λ is defined in A.3.1, and has for 2-target 0 if n < h i , λ andi λ if n = h i , λ .

A. 3.16. Critical branchings between types E and F. For any i in I and λ in X, there are two types of critical branchings implying 3-cells E i,λ and F i,λ , depending on if the source 2-cell of E i,λ is vertically composed below or above the source 2-cell of F i,λ . Following 6.2.25, we denote by (E i,λ , F i,λ ) (resp.

(F i,λ , E i,λ )) these two families of critical branchings. We will prove that for any i and λ, the critical branchings (E i,λ , F i,λ ) are confluent modulo E, the other family of branchings would be proved confluent modulo E similarly.

i) For h i , λ < 0,

λ i i F i,λ * R = - i i λ = λ i i E i,λ * R - i i λ + -h i ,λ -1 n=0 r≥0 • n i λ •-n-r-2 •r i D ′ i,λ * R - i i λ
where D ′ i,λ is the 3-cell of ( E R) ℓ 3 defined as the composite of 3-cells D ′ i,λ,0 + • • • + D ′ i,λ,-h i ,λ -1 , where these cells are defined for 0 ≤ k ≤h i , λ -1 in Appendix A.3.1, and have all 0 as 2-target.

ii) For h i , λ = 0,

λ i i F i,λ * R = - i i λ = λ i i E i,λ * R - i i λ iii) For h i , λ > 0, λ i i F i,λ * R = - i i λ + h i ,λ -1 n=0 r≥0 i • r λ •n i •-n-r-2 i B ′ i,λ * R - i i λ = λ i i E i,λ * R - i i λ
where B ′ i,λ is the 3-cell of ( E R) ℓ 3 defined as the composite of 3-cells B ′ i,λ,0 + • • • + B ′ i,λ, h i ,λ -1 , where these cells are defined for 0 ≤ k ≤ h i , λ -1 in Appendix A.3.1, and have all 0 as 2-target.

Réécriture modulo dans les catégories diagrammatiques

Résumé. En théorie des représentations, de nombreuses familles de catégories sont définies par générateurs et relations diagrammatiques. Une des questions principales dans létude de ces catégories est le calcul de bases linéaires des espaces de morphismes. Ces calculs de bases sont en général très difficiles en raison de la complexité combinatoire des relations. Cette thèse introduit une approche constructive permettant de calculer ces bases avec des méthodes issues de la théorie de la réécriture.

Nous introduisons un cadre catégorique de réécriture modulo, qui décrit le calcul dans une structure algébrique par application de relations orientées modulo les axiomes de la structure. Ce cadre nous permet de développer des outils pour réécrire dans des algèbres et catégories diagrammatiques admettant une structure inhérente complexe, telles que la structure de catégorie pivotale dans laquelle les diagrammes sont représentés à isotopie planaire près.

Nous définissons la notion de système de réécriture de dimension supérieure modulo, appelés polygraphes modulo, dans un contexte ensembliste et linéaire. Ces structures polygraphiques fournissent un cadre pour les preuves de cohérence modulo ainsi que le calcul de bases linéaires. En particulier, nous démontrons que des bases linéaires pour les espaces de 2-cellules de 2-catégories pivotales peuvent être obtenues à partir de présentations dont les relations forment un système de réécriture terminant, ou quasi-terminant, et confluent modulo les relations disotopie planaire. Nous étudions via ces méthodes la catégorie définie par Khovanov, Lauda et Rouquier pour catégorifier le groupe quantique associé à une algèbre de Kac-Moody symétrisable simplement lacée. Nous calculons des bases explicites des espaces de 2-cellules de cette catégorie, et montrons ainsi la non-dégénérescence du calcul diagrammatique introduit par Khovanov et Lauda, prouvant dans ce cas le théorème de catégorification du groupe quantique associé. Enfin, nous étendons la structure de polygraphe modulo au contexte de la réécriture modulo les axiomes décrits par une théorie algébrique de Lawvere. Nous démontrons un lemme des paires critiques algébrique basé sur une notion de stratégie de réécriture adaptée au contexte algébrique.

Mots-clés: Réécriture modulo, polygraphes modulo, algèbres diagrammatiques, catégorification, groupes quantiques.

, 1 )

 1 La multiplication correspond alors à la juxtaposition verticale de diagrammes du bas vers le haut. Par conséquent, les relations locales i)-iii) admettent également une interprétation diagrammatique, représentée ci-dessous: faisant de K[S n ] une algèbre diagrammatique. Cependant, afin d'étudier les algèbres K[S n ] pour tout n ∈ ◆, ces présentations ne sont pas économiques pour les raisons suivantes: Il faut considérer toutes les algèbres K[S n ] pour chaque entier n ∈ ◆, et il y a donc une infinité dénombrable d'algèbres à étudier.

4 . 1 .

 41 Un tel scindage est donné par un couple de (3, 2)-polygraphes linéaires tel que E est convergent et contient tous les axiomes d'isotopie planaire de la structure pivotale, et R contient les autres relations. Cette donnée permet de considérer des polygraphes modulo (R, E, S), et nous provuons alors en Section5.4 le théorème suivant: Théorème 5.4.4. Soit P un (3, 2)-polygraphe linéaire monomial à gauche présentant une (2, 2)-catégorie linéaire C, (E, R) un scindage convergent de P et (R, E, S) un (3, 2)polygraphe linéaire modulo tel que i) S est normalisant, ii) S est confluent modulo E, alors l'ensemble des formes normales pour (R, E, S) est une hom-base de C.

Théorème 5 . 4 . 8 .

 548 Avec les mêmes notations que dans le Théorème 5.4.4, si i) S est quasi-terminant, ii) S est confluent modulo E, l'ensemble des quasi-formes normales pour (R, E, S) est une hom-base de C.

  la présentation des algèbres (H V (Q)) V∈◆[I] , où I est l'ensemble de sommets indexant le graphe de Dynkin de g, et nous spécialisons cette définition à la présentation diagrammatique de Khovanov et Lauda, notée (R(V)) V∈◆[I] dans le cas simplement lacé. Nous définissons une 2-catégorie C KLR contenant les algèbres KLR dans ses espaces de 2-cellules, et construisons une présentation polygraphique KLR de C KLR . Nous établissons alors le premier résultat principal de ce Chapitre: Théorème 6.1.6. Le (3, 2)-polygraphe linéaire KLR est une présentation convergente de la (2, 2)-catégorie linéaire C KLR . Par conséquent, nous obtenons des bases linéaires pour chaque algèbre R(V) en calculant les monômes en forme normale pour KLR. En particulier, nous retrouvons ainsi les bases linéaires décrites par Khovanov et Lauda dans [71, Theorem 2.5]. Nous prouvons suivant [102, Theorem 3.7], que ces bases sont des bases de Poincaré-Birkhoff-Witt.

Theorem 5 . 4 . 8 .

 548 With the same assumptions as inTheorem 5.4.4, if i) S is quasi-terminating, ii) S is confluent modulo E,then the set of quasi-normal forms for (R, E, S) is a hom-basis of C.

2. 4 . 4 .

 44 Contexts of n-categories. A context of an n-category C is a pair (S, C) made of an (n -1)sphere S of C and an n-cell C in C[S] such that S, formally seen as an n-cell, appears only once in C. We often denote simply by C, such a context. Recall from [51, Proposition 2.1.3] that every context of C has a decomposition

2. 5 . 2 .

 52 Classification of local branchings. Local branchings of an n-polygraph P can be classified into the following three families: i) Aspherical branchings, which are branchings of the form (α, α): Peiffer branchings, which are of the form (α ⋆ i v, u ⋆ i β) where u and v are k-cells for k ≥ i + 1 and α : u → u ′ and β : v → v ′ are rewriting steps of P:

  depicted by horizontal juxtaposition of the two string diagrams corresponding to f 1 and f 2 . The ⋆ 1 -composition of two 1-composable 2-cells f : a 1 . . . a m ⇒ b 1 . . . b n and g : b 1 . . . b n ⇒ c 1 . . . c k is depicted by vertically juxtaposing the corresponding string diagrams and linkind the wires in the middle component. These two representations are summarized as follows:

•.

  Right-indexed critical branchings (also left-indexed, multi-indexed):where f, g, h, k are 2-cells in P * 2 , and C is a context of P * 2 . Following[START_REF] Lafont | Towards an algebraic theory of boolean circuits[END_REF][START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], it suffices to check the confluence of the indexed branchings for the instance k being in normal form, using the following diagram from [51, Section 5.3]:

  t}, P 2 = {α : xy → xz, β : zt → 2yt}). It has an additive branching with source xyt + xzt, which is not confluent since the dotted arrows in the diagram below are 2-cells of P ℓ 2 that are not positive.

  The split Grothendieck group of A, denoted by K split 0 (A) is the quotient group F(A)/N split (A). We still denote the image of [A] in K split 0 (A) by [A]. This comes together with a map (•) : A → K split 0 (A) which maps a 0-cell M in A to the class [M] in K split 0 (A). The group K split 0 (A) then has the following universal property: for every abelian group A and for any additive function χ

3. 2 . 3 .

 23 Naive and weak categorification. Let B be a unital associative R-algebra, and let {b i } i∈I be a fixed generating set for B. If M is a B-module, then the action of each b i on M defines an R-linear endomorphism b

3. 2 . 4

 24 Example. Let B = C[x]/(x 2 -2x) with the generating set {x}. Let M = C be the B-module with action given by b • z = 0 for z ∈ M, and let N = C be the B-module with action given by b • z = 2z for z ∈ N. Let M = Vect C be the category of finite-dimensional C-vector spaces and define the functors

3. 3 . 2 .

 32 Strong categorification. Let C be an R-linear category. A strong categorification of C is a pair (C, ϕ) where C is an additive 2-category and ϕ :

  i) the 0-cells of Kar(C) are triples (b, e, µ) where e : b → b is an idempotent in C and µ is an idempotent 2-cell (under ⋆ 1 -composition) of e in C. ii) the 1-cells of Kar(C) between 0-cells (b, e, µ) and (b ′ , e ′ , µ ′ ) are pairs (f, β) where f : b

3. 4 . 5 .

 45 Cartan datum. A Cartan datum (I, •) consists of a finite set I and a bilinear form on Z[I], taking values in Z such that: i) i.i ∈ {2, 4, 6, . . . } for any i ∈ I;

3. 4 . 6

 46 Remark. If we set (I, •) a Cartan datum and A = -2 i.j i.i 1≤i,j≤#I , then A is a generalized Cartan matrix and so we can associate to each Cartan datum a Kac-Moody algebra as in the previous section.3.4.7. Root datum of type (I, •). Let us fix a Cartan datum (I, •).A root datum of type (I, •) consists of i) two free finitely generated abelian groups X,Y and a perfect pairing , : Y × X → Z;
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4. 1 . 4 . 2 -

 142 categories as double categories. From a 2-category C, one can construct two canonical double categories, by setting the vertical or horizontal cells to be only identities in C. In this way, 2-categories can be considered as special cases of double categories. The quintet construction gives another way to associate a double category, called the double category of quintets in C and denoted by Q(C) to a 2-category C. The vertical and horizontal categories of Q(C) are both equal to C, and there is a square cell

4. 4 . 1 .

 41 Cellular extensions modulo. Consider two n-polygraphs E and R such that E ≤n-2 = R ≤n-2 and E n-1 ⊆ R n-1 . One defines the cellular extension

1 B 1 B 1 C.

 111 since the top rectangle is by definition tiled by the (n + 1)-cell 1 e 1 A, the bottom rectangle is tiled by the (n + 1)-cell e 1 e - and the remaining rectangle is tiled by the (n + 1)-cell e 1 e - The rest of the diagram is tiled in the same way than above.

4. 6 . 5 .

 65 Normalization in polygraphs modulo. Let us recall the notion of normalization strategy in an n-polygraph P. Denote by C the (n -1)-category presented by P. Consider a section s : C → P * n of the canonical projection π : P * n → C, that sends any (n -1)-cell u in C on an (n -1)-cell in P * n-1 denoted by û such that π(û) = u. A normalization strategy for P with respect to s is a map σ : P * n-1 → P * n that sends every (n -1)-cell u of P * n-1 to an (n + 1)-cell σ u : u → û.

4. 7 . 2

 72 Proposition. Let (R, E, S) be a diconvergent n-polygraph modulo. If Irr(E) is E-normalizing with respect to S, then for any coherent completion Γ of S modulo E, the (n+1, n-1)-dipolygraph V(E, S, E⋊ Γ ∪ Peiff(E ⊤ , S * ) ∪ Γ E ) is a globular coherent presentation of the (n -1)-category (R * n-1 ) E . 4.7.3 Theorem. Let (R, E, S) be a diconvergent n-polygraph modulo such that Irr(E) is E-normalizing with respect to S. Let Γ be a coherent completion of S modulo E, then the cellular extension

Dn 4 . 7 . 7 .

 477 Pivotal categories.

Γ 4 . 7 .

 47 [START_REF] Bernšteȋn | A certain category of S(g)-modules[END_REF] Remark. Now let us consider a new linear (3, 2)-polygrah P ′ defined as the same i-cells than P for 0 ≤ i ≤ 2, and the same 3-cells than P, except that the 3-cell γ is replaced by the following new 3-cell γ: γ ⇛ (4.30)
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 611 The sets Seq(V) and SSeq(V).Let V = i∈I V i .i ∈ ◆[I]be an element of N[I], the free semigroup generated by I, and let us fix m := |V| =

6. 2 .

 2 [START_REF] Brown | Nonabelian algebraic topology[END_REF] Remark. Note that rewriting with respect to the linear (3, 2)-polygraph modulo E R brings additional loops coming from indexed diagrams of the form

  [START_REF] Dawson | Free extensions of double categories[END_REF] and from the same diagram closed on its right by a rightward cap and a leftward cup. Similarly, if for k ≥ 0 we denote by

7. 2 . 1 .

 21 Associative and commutative magmas. Denote by MAG the cartesian 2-polygraph whose signature has a unique sort denoted by 1 and an unique generating 1-cell µ : 2 → 1 and an empty set of generating 2-cells. Denote by ASS the cartesian 2-polygraph such that ASS 1 = MAG 1 and with an unique generating 2-cell:A µ x,y,z : µ(µ(x, y), z) ⇒ µ(x, µ(y, z))(7.1)Denote by AC µ (or simply AC when there is no ambiguity) the cartesian 2-polygraph such that AC 1 = MAG 1 , and AC 2 = ASS 2 ∪ {C} with C µ : µ(x, y) ⇒ µ(y, x) (7.2)

7. 2 . 3 .

 23 Groups. We define the cartesian polygraph GRP whose signature has a unique sort 1, GRP 1 = MON 1 ∪ {ι : 1 → 1}, and GRP 2 = MON 2 ∪ {I µ l , I µ r } with I µ,ι l : µ(ι(x), x) ⇒ e I µ,ι r : µ(x, ι(x)) ⇒ e (7.4)

ι 1 : 4 : 7 . 2 . 4 .

 14724 ι(e) ⇒ e G µ,ι 2 : ι(ι(x)) ⇒ x G µ,ι 3 : ι(µ(x, y)) ⇒ µ(ι(y), ι(x))(7.5)G µ,ι µ(x, µ(ι(x), y)) ⇒ y G µ,ι 5 : µ(ι(x), µ(x, y)) ⇒ y (7.6) Abelian groups. Consider the cartesian polygraph AB whose signature has a unique sort 1, AB 1 = GRP 1 and AB 2 = GRP 2 ∪ {C} where C is the commutativity generating 2-cell defined in (7.2). 7.2.5. Rings. Consider the cartesian polygraph RING whose signature has a unique sort 1, RING 1 = AB 1 MON 1 with the following notations:AB 1 = {+ : 2 → 1, 0 : 0 → 1, -: 1 → 1}, MON 1 = {• : 2 → 1, 1 : 0 → 1},and RING 2 = AB 2 ∪ MON 2 ∪ {D l , D r }, where

. 9 ) 7 . 2 . 6 .

 9726 Modules over a commutative ring. The cartesian 2-polygraph MOD with MOD 0 = {m, r}, andMOD 1 = CRING 1 ∪ AB 1 ∪ {η : rm → m} with the following notations i) CRING 0 = {r}, CRING 1 = {+ : rr → r, 0 : 0 → r, -: r → r, • : rr → r, 1 : 0 → r}; ii) AB 0 = {m}, AB 1 = {⊕ : mm → m, 0 ⊕ : 0 → m, ι : m → m};iii) If there is no possible confusion, we will denote η(λ, x) = λ.x for λ and x of type r and m respectively.andMOD 2 = CRING 2 ∪ AB 2 ∪ {M 1 , M 2 , M 3 , M 4 } with M 1 : λ.(µ.x) ⇒ (λ • µ).x M 2 : 1.x ⇒ x (7.10) M 3 : λ.(x ⊕ y) ⇒ (λ.x) ⊕ (λ.y) M 4 : λ.x ⊕ µ.x ⇒ (λ + µ).x(7.11) 

  (y.a) ⇒ (x • y).a (mod 2 )1.a ⇒ a (mod 3 )x.a ⊕ y.a ⇒ (x + y).a(mod 4 ) x.(a ⊕ b) ⇒ (x.a) ⊕ (y.b) (mod 5 ) a ⊕ (r.a) ⇒ (1 + r).a (mod 6 ) a ⊕ a ⇒ (1 + 1).a (mod 7 ) x.0 ⊕ ⇒ 0 ⊕ (mod 8 ) 0.a ⇒ 0 ⊕ (mod 9 )I(a) ⇒ (-1).a (mod 10 )

A

  [ ] is a ground context. It can be depicted by the following diagram: R-rewriting path is a finite or infinite sequence a = a 1 ⋆ 1 a 2 ⋆ 1 . . . ⋆ 1 a k ⋆ 1 . . . of R-rewriting steps a i . The length of 2-cell a in R × , denoted by ℓ(a), is the minimal number of R-rewriting steps needed to write a as a composition as above 7.3.5. Example. Consider the rule α defined in(7.14). And the algebraic contexte A[ ] = (s • ) • t, we have the rewriting step

7. 3 . 12 .

 312 Termination properties. An algebraic polygraph P =

7. 4 . 1 ..

 41 Branchings in algebraic polygraphs modulo. Let P = (P, Q, R, S) be an algebraic polygraph modulo and σ a positive strategy on P. A σ-branching of (P, Q, R, S) is a triple (a, e, b) where f and g are σ-positive 2-cells of S × and e is a 1-cell of P 2 Q ⊤ such that e -= a -and e + = b -. Such a σ-branching is depicted as follows Note that the 2-cells are represented by simple arrows in confluence diagrams for better readability in the diagrams in the sequel. The 2-cell b (resp. a) can be an identity 2-cell of S × , and in that case the σ-branching is of the form (a, e) (resp. (e, b)). The source of such a σ-branching is the pair (f, f) where f = a -= e -(resp. f = b -= e + ). The 2-cell e in P 2 Q ⊤ can also be trivial, and in that case the σ-branching modulo is a regular σ-branching (a, b). We denote by (u, u) its source, where u = a -= b -.Such a σ-branching is σ-confluent modulo if there exist σ-positive 2-cells a ′ and b ′ in S × and a 2-cell e ′ of P 2 Q ⊤ as follows:

7. 4 . 2 .

 42 Double induction on the distance to the quasi-normal form. Consider the distance map d :P 1 Q → ◆ defined in Section 7.3.13. We extend this distance on 1-cells of P 1 Q to a distance on σ-branchings modulo (a, e, b) by defining d(a, e, b) := d(a -) + d(a + ).

. 4 . 7

 47 Proposition (Terminating critical branching theorem modulo). Let (P, Q, R, S) be a quasi-terminating and positively σ-confluent algebraic polygraph modulo with a positive strategy σ. Then it is locally σconfluent modulo if and only if the two following properties hold: a 0 ) any critical σ-branching modulo (a, b), where a and b are S-rewriting steps, is σ-confluent modulo.
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  In the sequel, when this is not necessary, we omit to label the vertices of the graph. To define the multiplication in B n (δ), it is enough to define a multiplication rule on two Brauer diagrams on n points b 1 and b 2 . The product b 1 b 2 is defined as follows: place the diagram of b 1 on top of the diagram of b 2 , and identify Bot(b 1 ) with Top(b 2 ), remove the inside cycles consisting of paths that start and finish in this middle row of vertices, and multiply the resulting diagram by δ γ(b 1 ,b 2 ) , where γ(b 1 , b 2 ) is the number of cycles removed.For instance, if

1 )

 1 s i ) corresponds to the following Brauer diagram on 2n points:This definition also emphasizes the fact that there exists a non-degenerate map ε n : B n → B n-1 . Following[START_REF] Wenzl | On the structure of Brauer's centralizer algebras[END_REF], this map is defined as follows: if b ∈ B n admits a through strand joining n ∈ Top(b) to n ∈ Bot(b), then b is in B n-1 and ε n (b) = b. Otherwise, if b ∈ B n \B n-1 ,consider the element e n be n ∈ B n+1 . It is clear from the definition of the generator e n that the vertex n in Top(e n be n ) is joined to vertex n +1 in Bot(e n be n ). As a consequence, the remaining Brauer diagram on the remaining 2(n -1) points gives an element b ′ in B n-1 , and define ε n (b) := b ′ .

8. 1 . 7 .

 17 Units and counits of biadjunctions Ind -Res. Given a unital inclusion of rings A ⊂ B, the unit and counit for the left adjunction Ind B A ⊢ Res A B are defined by:B A : B ⊗ A B → B b ⊗ b ′ → bb ′As a consequence, any element of B n is either in B n-1 , or can be written as b 1 χb 2 , with b 1 , b 2 ∈ B n-1 and χ ∈ {e n-1 , s n-1 }, proving the result.The next step to define the counit of the adjunction Res n n+1 ⊢ Ind n+1 n is to find a basis of B n as a right B n-1 -module, and to find a basis that is left dual for the bilinear form •, • n : B n → B n-1 defined by b, b ′ := τ n (bb ′ ).

  B n-1 -module by providing a finite left projective basis for B n . Let us consider the following subsets of B n : i) B n-1 via the embedding (8.5), ii) X l n consisting of all the Brauer diagrams b on 2n points such that n ∈ Top(b) is linked to l ∈ Bot(b), with l ≤ n -1, via a through strand. We also denote by X n = n consisting of all the Brauer diagrams b on 2n points such that n ∈ Top(b) is linked to some m ∈ Top(b), with m ≤ n -1 via an arc. For example, belongs to Y 5 . It is easy to check that if b is a Brauer diagram on 2n points, then b is either in B n-1 , in X n or in Y n . 8.1.11 Proposition. i) For b ∈ S n , the following equality holds: b
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9. 1 . 1 .

 11 Hecke type presentations. Elias introduced in[START_REF] Elias | A diamond lemma for Hecke-type algebras[END_REF] a family of algebras including the KLR algebras which he called Hecke type presentations. These are presentations of monoidal categories or their endomorphism rings with only two kind of generators: crossings and dots with possible colours/labels satisfying the symmetric group relations

9. 2 . 1 .

 21 The Temperley-Lieb category. The Temperley-Lieb algebras were at first introduced in 1971 by Temperley and Lieb in

2 . 1 .

 21 {1, . . . , m} ⋆ 0 {1, . . . , n} := {1, . . . , m, m + 1, . . . , m + n} iii) its generating 2-cells are caps and cups 2-cells: iv) the 2-cells of T L(δ) are subject to the following relations: The Brauer category. Similarly, we define a linear (2, 2)-category B(δ), called the Brauer category encoding the Brauer algebras B n (δ) for any n ∈ ◆ as follows:i) B(δ) ≤1 = T L(δ) ≤1 and B(δ) 2 = T L(δ) 2 ∪ { },ii) The 2-cells of B(δ) are subject to the relations of T L(δ) and the following relations implying crossings: Partition diagrams and the partition category. For m, ℓ ∈ ◆, a partition of type ℓ

  Given two partitions D ′ : m → ℓ, D : ℓ → k, one can stack D on top of D ′ to obtain a diagram D ′′ with three rows of vertices. The number of connected components in the middle row of this new diagram is denoted by α(D, D ′ ). Let D ⋆ D ′ be the partition of type k m with the following property: vertices are in the same block of D ⋆ D ′ if and only if the corresponding vertices in the top and bottom rows of D ′′ are in the same block. The partition category Par(δ) is the strict K-linear monoidal category whose 0-cells are elements n ∈ ◆ and, given two objects m, ℓ in Par(δ), the 1-cells from m to ℓ are K-linear combinations of partitions of type ℓ m . The vertical composition is given by D • D ′ = δ α(D,D ′ ) D ⋆ D ′ for composable partition diagrams D, D ′ , and extended by linearity. The bifunctor ⊗ is given on objects by ⊗ : Par(δ) × Par(δ) → Par(δ), (m, n) → m + n. The tensor product on 1-cells is given by horizontal juxtaposition of diagrams, extended by linearity. For example, if D ′ = and D = then D D ′ = , D ⋆ D ′ = , and D • D ′ = t 2 .

9. 3 . 3 3 .: 2 → 1 , : 1 → 2 , : 2 → 2 , : 0 → 1 , : 1 → 0 4 .

 333211222114 Proposition. The linear (3, 2)-polygraph Par(δ) defined by: 1. Par(δ) 0 = { * }, 2. Par(δ) 1 = {1} so that the 1-cells in Par(δ) * are non-negative integers n ∈ ◆, Par(δ) 2 = Par(δ) 3 is the set of following 3-cells:

(

  C, C), (C, D), (D, C), (C, E), (C, F), (C, G), (G, C), (C, H), (D, E), (D, E ′ ), (D, F ′ ), (D, H), (E, F), (E, F ′ ), (E, G), (E, G ′ ), (E, G), (E, G ′ ), (E, H), (E ′ , F), (E ′ , F ′ ), (F, G), (F, H), (G, H), (G, H), (H, H), (L, C), (L, D), (L, E), (L, E ′ ), (L, F ′ ), (L, F, (L, G ′ ),(L, H), (M, C), (M, D), (M, E), (M, E ′ ), (M, F ′ ), (M, G ′ ), (M, H).

9. 3 . 5

 35 Proposition. All the critical branchings enumerated above are confluent.

9. 3 . 6

 36 Conjecture. The linear (3, 2)-polygraph CPar is terminating.

9. 4 . 2 . 3 )

 423 The degenerate affine Hecke category. Let AH deg be the linear (2, 2)-category with only one 0-cell, one generating 1-cell , two generating 2-cells : ⋆ 0 → ⋆ 0 and • : → iii) 8 generating 2-cells: iv) the following families of 3-cells: a) Isotopy 3-cells:

3 -sliding 3 -cells s 0 n and s 1 n

 331 3-cells with downward orientations respectively denoted by α -,β -, γ l,- and γ r,-. cells defining the caps and cups: and ordering 3-cells o n defined by induction in

1 • 1 n⊕ 1

 111 Res n-Sn-Mod(9.10) of endofunctors in K[S n ]mod, giving the Mackey decomposition theorem for the algebras of the symmetric groups.

  i,λ * R -δ n, h i ,λ i λ

  n = h i , λ and a = 0,b = h i , λ -1, and in that casei λ • h i ,λ -1 reduces to 1 1 λ by b 1, h i ,λ -1 i,λ

1 i

 1 so that the 2-target of the 3-cell E i,λ -A i,λ + B i,λ is unchanged, which proves the confluence of the branching.

•(

  Let us now consider the last case where i = j and i • j = -1. In that case, we have the following rewriting step in E R:Using the bubble slide 3-cells, the first summand (resp. the second summand) rewrites into h i ,λ +1 f=0

  branching is confluent modulo E.

I 1 *A. 3 . 13 .

 1313 R Critical branchings between types B and F.i) For h i , λ < 0, i,λ is the positive 3-cell of ( E R) ℓ 3 corresponding to B ′ i,λ,0 + • • • + B ′ i,λ,-h i ,λ where each 3-cell B ′ i,λ,k for 0 ≤ k ≤h i , λ is defined in Appendix A.3.1. ii) For h i , λ = 0, b i,λ is the 3-cell of ( E R) ℓ 3 reducing each bubble by b 0,-n-h i ,λ -1 i,λinto 0 when n = 0 and by b 1 i,λ into 1 1 λ when n = 0.A.3.14. Critical branchings between types E and D.

  where b i,λ is the 3-cell of ( E R)ℓ 3 reducing each bubble by b 0,-n-h i ,λ -1 i,λ into 0 when n = 0 and by b 1

3 . 1

 31 and has for 2-target 0 if n < h i , λ and -i λ if n = h i , λ .A.3.15. Critical branchings between types C and E. i) For h i , λ < 0,

  

  e, g) de S modulo E. En conséquence du Théorème 4.6.6, nous montrons comment étendre une complétion cohérente Γ de S modulo E et une complétion cohérente Γ E de E, non modulo, en une extension cubique acyclique. En particulier, lorsque le n-polygraphe E contient un ensemble vide de n-cellules, nous retrouvons le théorème de cohérence de Squier pour des n-polygraphes convergents, tel qu'établi en [51, Theorem 5.2.], voir également[START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]. Nous prouvons en Théorème 4.6.12 qu'une extension acyclique d'un couple de (n, n -1)-catégories (E ⊤ , S ⊤ ) provenant d'un polygraphe modulo (R, E, S) peut également être obtenue à partir de stratégies de normalisation pour les n-polygraphes S and E satisfaisant une hypothèse supplémentaire de commutation.

Cohérence par double cohérence. En Section 4.7, nous explicitons comment déduire une présentation cohérente globulaire pour une n-catégorie à partir d'une double présentation cohérente générée par un polygraphe modulo. Cette construction est basée sur la structure de dipolygraphes, étant définis comme des systèmes générateurs de ∞-catégories dont les k-catégories sous-jacentes ne sont pas nécessairement libres, pour k ∈ ◆, voir see Section 4.2. Nous définissons les dipolygraphes comme une variation des polygraphes pour lesquels les extensions cellulaires sont définies sur des quotients de catégories libres. En Section 4.2.15, nous définissons un foncteur quotient V : DbPol (n+2,n) → DiPol (n+2,n) de la catégorie des doubles (n + 2, n)-polygraphes vers la catégorie des (n + 2, n)-dipolygraphes.

Le dernier résultat du Chapitre 4 donne les conditions nécessaires pour pouvoir quotienter une double présentation cohérente engendrée par un polygraphe modulo lorsque le n-polygraphe E est convergent, S termine et est confluent modulo E. Le Théorème 4.7.3 montre comment déduire, d'une complétion cohérente Γ de S modulo E, une présentation cohérente globulaire de la (n -1)-catégorie (R * n-1
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  is terminating if and only if R E is terminating, if and only if E R E is terminating, if and only if S is terminating. An order relation ≺ on X is compatible with → R modulo E if it satisfies the two following conditions:

  2.9.1. Terminating linear critical branching lemma. The local branchings of linear (n + 1, n)polygraphs can be classified in four different forms, see [2, Section 4.2]. An aspherical branching of P is a branching of the form

t(α) ← s(α) → t(α).

  4.4.5. Diconvergence. The n-polygraph modulo S is called convergent if it is both terminating and confluent. It is called convergent modulo E when it is confluent modulo E and E R E is terminating. We say that S is diconvergent when E is convergent and S is convergent modulo E.

4.4.6. Classification of local branchings modulo. Recall that a branching (f, e, g)

modulo E is local if f is an n-cell of S * (

1) 

, g is an n-cell of S * and e an n-cell of E ⊤ such that ℓ(g) + ℓ(e) = 1. Local branchings modulo are classified into the following five families: i) local aspherical branchings of the form:

  We illustrate the completion procedure 4.7.4 to show how to compute a coherent presentation of a commutative monoid presented by a 2-polygraph modulo (R, E, E R E ), where E is the 2-polygraph Com 2 (X) for a finite set X defined in 4.3.2. The 2-cell of the 2-polygraph Com 2 (X) are oriented with respect to a deglex order induced by a total order on X, hence Com 2 (X) is terminating.

g) is a critical branching of S modulo E }, where bracket notation [-] v is defined in 4.2.16. 4.7.5. Commutative monoids.

  [START_REF] Anick | On monomial algebras of finite global dimension[END_REF] x 2 . As any permutation of the x i in x 2 x 4 x 2 and x 2 x 4 are irreducible with respect to R 2 , the 1-cells x 2 x 4 x 2 and x 2 x 4 are normal forms with respect to E R E , so the branching (4.21) is not confluent modulo E. Following the completion procedure 4.4.11, we define the following 2-cell δ : x 2 x 2 x 4 ⇒ x 2 x 4 , and we set R := R ∪ {γ}. The degree lexicographic order induced by x 1 > x 2 > x 3 > x 4 is a termination order compatible with R 2 modulo E, so that E R E is terminating and Irr(E) is trivially E-normalizing with respect to E R E . Moreover, the 2-polygraph modulo E R E is confluent modulo E. Indeed, all its critical branchings modulo, depicted in (4.22) and (4.23), are confluent modulo.

	x 1 x 2 x 3	α -2,3 •β

  5.2.2. Decreasingness modulo.Following[START_REF] Vincent Van Oostrom | Confluence by decreasing diagrams[END_REF] Definition 3.3], we introduce a notion of decreasingness for a diagram of confluence modulo. Let (R, E, S) be a linear (3, 2)-polygraph modulo equipped with a well-founded labelling modulo (X, <, ψ) of S. A local branching (f, g) (resp. (f, e)) of S modulo E is decreasing modulo E if there exists confluence diagrams of the following form

  7.2.2. Monoids. We define the cartesian polygraph MON whose signature has a unique sort 1, MON 1 = ASS 1 ∪ {e : 0 → 1}, and MON 2 = MAG 2 ∪ {E µ

	l , E µ r } with	
	E µ l : µ(e, x) ⇒ x	E µ r : µ(x, e) ⇒ x.	(7.3)

  7.3.7. Example. In the example of the algebraic polygraph defined in(7.14), the set P 2 Q is defined by the associativity relations on ground terms on the constants s and t. For instance, P 2 Q contains the following ground 2-cell:A s,t,s : (s• t) • s ⇒ s • (t • s).7.3.8. Positivity. Denote π : P 1 Q → P Q the canonical projection, and let σ : P Q → Set be a map such that for any f ∈ P Q , σ(f) is a chosen non-empty subset of π -1 (f). Such a map is called a positive strategy with respect to (P, Q). A rewriting step a in R × is called σ-positive if a -belongs to σ(a -). A rewriting path a 1 ⋆ 1 . . . ⋆ 1 a k in R × is called σ-positive if any of its rewriting steps is positive.7.3.9. Strategies to define positivity. We introduce positivity strategies that depend on the inherent cartesian 2-polygraph P. Suppose that P is such that P 2 = P ′ 2 ∪ P ′′ 2 , with P ′ 2 confluent modulo P ′′ 2 . For every 1-cell f in P Q , we set σ(f) = NF(f, P ′ 2 mod P ′′ 2 ), where f ∈ π -1 (f), the set of normal forms of f for P ′ 2 modulo P ′′ 2 . Note that this is well-defined following [56, Lemma 2.6], since if f, f ′ ∈ π -1 (f), then NF(f, P ′ 2 mod P" 2 ) ≡ P" 2 NF(f ′ , P ′ 2 mod P" 2

  Note that S = R for any R ⊆ S ⊆ P R P . Let us consider the subset S .3.15. Example: string rewriting systems. A SRS can be deduced as a quotient algebraic polygraph as follows. We consider an algebraic polygraph (MON, Q, R, S), where MON is the cartesian polygraph defined in 7.2.2. The set of constants Q is the set of generating 1-cells of the SRS, and R corresponds to fibrations of rules of the SRS on the fibers modulo associativity.For instance, consider the algebraic polygraph defined in(7.14). Then by quotient, we obtain the string rewriting system s, t | sts ⇒ tst that presents the monoid B + 3 of braids on 3 strands.7.3.16. Example: linear rewriting systems. A linear rewriting system (LRS) is an algebraic rewriting system on an algebraic polygraph modulo (P, Q, R, S) such that MOD c ⊆ P, where MOD c is the cartesian 2-polygraph presenting the theory of modules over a commutative ring defined in Section 7.2.6.

S}. σ of S defined by S σ = {a : a -⇒ a + | a is a σ-positive S-rule}.

A S-rewriting step (resp. a S σ -rewriting step) is the quotient of a S-rewriting step (resp. σ-positive

rewriting step) by the canonical projection π, that is a 2-cell of the form C[a] : C[a -] ⇒ C[a + ],

where C is a ground context of P 1 Q and C[a] is a S-rewriting step (resp. σ-positive S-rewriting step). A S-rewriting path is a sequence of S-rewriting steps.

7

  8.1.1. Brauer algebras. The Brauer algebras were introduced by Brauer in 1937[START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF] to study the representation theory of the orthogonal group O n , and plays the same role than the symmetric group for the representation theory of GL n in Schur-Weyl duality. Let R be a noetherian integral domain, and δ be an element of R. The Brauer algebra B n (δ) of degree n over R is the unital R-algebra with basis the set of Brauer diagrams with 2n points.

A Brauer diagram with 2n points is a graph with 2n vertices arranged in two rows each containing each point, and in which every vertex has degree 1, that is each vertex admits exactly one incident edge. In each row, vertices are numbered from 1 to n from right to left. The top (resp. bottom) row of a Brauer diagram b will be denoted by Top(b) (resp. Bot(b).) For example, here is a Brauer diagram with 14 points:

  It is a well-known fact that the set {s n . . . s i | 1 ≤ i ≤ n} forms a basis of S n as a right S n-1 -module.8.1.10. Projective bases. Let R be a ring and M be a left R-module. M is said free if it is a direct summand of copies of R. It is said to be projective if it isomorphic to a direct summand of a free Rmodule F R . Following[START_REF] Kadison | New examples of Frobenius extensions[END_REF], a left R-module M is finite projective if it admits a left projective basis, that is a family of elements (x i ) i∈I of M indexed by a finite set I, together with a family of left R-module homomorphisms (ψ i : M → R) i∈I such that for any x ∈ M, the following equality holds:

	n	. . .	i . . . 1	n	. . .	j	. . .	i . . . 1
			X i,j =					
		. . .		n	. . .	j	. . .	i	. . .	1
	8.1.9 Remark.							

  s i+1 . . . s n ⊗ s n . . . s i+1 s i where ρ g (n) is the map defined by ρ n (g) = g if g ∈ S n and 0 otherwise. Khovanov also defined the following four generating morphisms

				n+1 n	and Res n n+1 are biadjoint with unit and counit morphisms given by
	n	:	(n + 1) n (n + 1) → (n + 1) g ⊗ h → gh	n	:	(n) → n (n + 1) n g → g
	n		: n (n + 1) n → (n) ⊗ n (n + 1) g → ρ n (g) gs n : (n + 1) → n n+1 : g → i=1 (n + 2) n → (n + 2) n g → gs n+1 n : n (n + 2) → n (n + 2) (n + 1) ⊗ n (n + 1) g → s n+1 g
			n :	(n) n-1 (n) → n (n + 1) n g ⊗ h → gs n h	n		:	g ∈ S n gs n h	→ →	δg, g ⊗ h

i n (n + 1) n → (n) n-1 (n)

[START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF] établit que sous l'hypothèse de terminaison, la confluence de (X, R) est équivalente à sa confluence locale, c'est à dire la confluence des branchements locaux de la forme x 1 ← x → x 2 . Une forme normale de (X, R) est un élément de X qui ne peut être réduit par aucune relation de R. Un système de réécriture est dit convergent si il est à la fois terminant et confluent, et dans ce cas tout élément x de X admet une et une seule forme normale.

2.3.1. Abstract rewriting systems modulo. Let us consider a set X and two binary relations → R and → E on X. In the sequel, 1. (X, → R ) will be an abstract rewriting system, and reductions with respect to → R are oriented, that is they have a distinguished source and a distinguished target.2. (X, → E ) will be considered as a set of non-oriented equations on the set X, forgetting which side is the source and which side is the target.

i i

Remerciements

Input:

-R and E 2-polygraphs over a 1-polygraph X.

-≺ a termination order for R compatible with E, which is total on the set of E R-irreducible elements.

begin

R)-critical branchings created by α}; end end

This procedure may not be terminating. However, it does not fail because of the hypothesis that ≺ is total on the set of E R-irreducible elements.

4.4.10 Proposition. When it terminates, the completion procedure for E R returns an n-polygraph Ř such that E Ř is confluent modulo E.

Proof. The proof of soundness of the completion procedure for E R is a consequence of the inference system given by Bachmair and Dershowitz in [START_REF] Bachmair | Completion for rewriting modulo a congruence[END_REF] in order to get a set of rules Ř such that E Ř is confluent modulo E. Given two n-polygraphs R and E and a termination order > compatible with R modulo E, their inference system is given by the following six elementary rules:

1) Orienting an equation:

2) Adding an equational consequence:

3) Simplifying an equation:

4) Deleting an equation:

5) Simplifying the right-hand side of a rule:

Now, suppose that conditions b 0 ) holds and prove condition b). Let us consider a local branching (f, e) of S modulo E of source (u, v), with f in S ℓ (1) and e in E ℓ of length 1. We still assume that any local branching of source (u ′ , v ′ ) such that there is a 3-cell (u, v) → (u ′ , v ′ ) in S ∐ is confluent modulo E. The branching (f, e) is either a local Peiffer branching modulo E, an additive branching modulo E or an ovelapping modulo E. Let us prove that it is confluent modulo E for each case.

i') If (f, e) is a local Peiffer branching modulo of the form

2 , f a positive 3-cell in S ℓ (1) and e a 3-cell in E ℓ (the other form of such branching being treated similarly), there exist 3-cells f ⋆ i v ′ and u ′ ⋆ i e in S ℓ and E ℓ respectively as in the following diagram

However, the dotted horizontal 3-cell is not necessarily positive, for instance if uv ′ ∈ Supp(w). By Lemma 2.8.4, there exist positive 3-cells f 1 , f 2 in S ℓ of length at most

and by assumption the branching (f 2 , (u ′ ⋆ i e) -) is confluent modulo E, so there exists positive 3-cells g and h in S ℓ and a 3-cell e ′ in E ℓ as follows:

where f is a positive 3-cell in S ℓ (1) and e is a 3-cell in E ℓ of length 1 (the other form of such branching being treated similarly), there exist 3-cells f + v ′ and u ′ + e in S ℓ and in E ℓ respectively as in the following diagram (1) is not necessarily positive, for instance if u ∈ Supp(v ′ ) but by Lemma 2.8.4, there exist positive 3-cells f 1 and f 2 in S * of length at most

We then prove the confluence modulo of the branching (f, e) by a similar argument than above.

5.4.7. Linear bases under quasi-termination. Note that both Lemma 5.4.3 and Theorem 5.4.4 have an adaptation in a non-normalizing but quasi-terminating setting. Indeed, instead of fixing a normal form u with respect to S for any u in R ℓ 2 , we fix a choice of a quasi-normal form u for u satisying u = u if u already is a quasi-normal form with respect to S. By confluence modulo, u and v are 2-cells of R ℓ 2 such that there is a 3-cell e : u → v in E ℓ , then the 2-cells u and v are equivalent modulo E. We then say that a quasi-normal form for (R, E, S) is a monomial appearing in the monomial decomposition of the E-normal form of a monomial in Supp(u). With a similar proof than above, we obtain the following result: 5.4.8 Theorem. Let P be a linear (3, 2)-polygraph presenting a linear (2, 2)-category C, (E, R) a convergent splitting of P and (R, E, S) a linear (3, 2)-polygraph modulo such that

Then the set of quasi-normal forms form (R, E, S) is a hom-basis of C.

CHAPTER 6

Khovanov and Lauda's categorification and rewriting modulo Khovanov and Lauda [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF], and Rouquier [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] defined a candidate 2-category to be a categorification of Lusztig's idempotented and integral version of a quantum group associated with a symmetrizable Kac-Moody algebra. The first authors established [67, Theorems 1.1 & 1.2] that this 2-category, denoted by U (g), is indeed a categorification of U q (g) if the diagrammatic calculus they introduce is non-degenerated, which corresponds to the fact that each vector space of 2-cells admits an explicit linear basis. They proved in [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups III[END_REF] the non-degeneracy of their calculus for symmetrizable Kac-Moody algebras of type A. The non-degeneracy of this diagrammatic calculus has then been proved for any root datum of finite type and any field K independently by Kang and Kashiwara [START_REF] Kang | Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras[END_REF], and by Webster [START_REF] Webster | Knot invariants and higher representation theory[END_REF], using non-degeneracy of cyclotomic quotients of the KLR algebras categorifying highest-weight modules of U q (g). In this Chapter, we prove the non-degeneracy of their calculus using rewriting modulo methods, for any symmetrizable Kac-Moody algebra associated with a root datum of simply-laced type. However, we expect that this result can be extended to the general case, requiring additional computations due to the fact that some of the relations become more complicated, and thus checking the confluence modulo should be more difficult.

In the process of categorifying a quantum group, a family of algebras called KLR algebras (or Quiver Hecke algebras) appeared, [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF][START_REF] Rouquier | 2-Kac-Moody algebras[END_REF]. These algebras act on some endomorphism spaces of the 2-category U (g), so that the relations of these algebras appear in the 2-category U (g). In the first part of this Chapter, we study the KLR algebras using the non-modulo rewriting methods developed by Alleaume [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. In this way, we recover the Poincaré-Birkhoff-Witt bases given by Khovanov and Lauda [START_REF] Khovanov | A diagrammatic approach to categorification of quantum groups[END_REF] and Rouquier [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF].

In the second part of this Chapter, we split the presentation of U (g) into two parts following the ideas developed in Chapter 5: one containing the isotopy relations coming from the pivotal structure, and one coming from the remaining relations defining U (g). We then prove that the assumptions of Theorem 5.4.8 are satisfied, so that we are able to deduce, by a choice of quasi-normal forms with respect to the U (g)-relations, the expected basis of each set of 2-cells in U (g), proving the non-degeneracy of 6.2.22. Weight functions. Let C a linear 2-category. Recall from [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF] that a weight function on C is a

Note that when C is presented by a linear (3, 2)-polygraph P, such a weight function is uniquely and entirely determined by its values on the generating 2-cells of P 2 . This enables to define a quasi-ordering on KLR ℓ 2 by u v if τ(u) ≥ τ(v), where τ is an apropriate weight function on KLR ℓ 2 . We define such a weight function on KLR ℓ 2 by its following values on generating 2-cells:

Note that for any 3-cell α in E 3 , we have τ(s 2 (α)) = τ(t 2 (α)) so that the isotopy 3-cells preserve this weight function. Then, starting with a monomial u of KLR ℓ 2 : -While u can be rewritten with respect to E R into a 2-cell u ′ such that τ(u ′ ) < τ(u), then assign u to u ′ .

-While u can be rewritten with respect to E R into a 2-cell u ′ without any of the 3-cells depicted in Section 6.2.17, then assign u to u ′ .

From Lemma 6.2.20 and well-foundedness of the quasi-ordering , this procedure terminates and returns a linear combination of monomials in KLR ℓ 2 which are quasi-reduced, proving that E R is quasiterminating.

6.2.23. Confluence modulo. We prove that E R is confluent modulo E by proving that it is decreasing modulo E. To prove that it is decreasing, we prove that all critical branchings of the form (f, g), where f is a positive 3-cell in S ℓ (1) and g is a positive 3-cell in R ℓ (1) are decreasingly confluent with respect to the quasi-normal form labelling ψ QNF . First of all, let us provide an exhaustive list of such critical branchings. Note that the branchings implying 3-cells b k,n i,λ , b k,n i,λ and I α for k = 0, 1 and α > 0 are trivially confluent by definition of bubbles with a negative number of dots and the Infinite Grassmanian relation. Notice also that the bubble slide 3-cells does not overlap with the degree condition 3-cells since their sources are bubbles with positive degrees by definition. Let us now study the remaining critical branchings, that we split into two sets: those implying the KLR 3-cells and the remaining branchings between 3-cells A i,λ -F i,λ . 6.2.24. Critical branchings from KLR relations. First of all, we have to consider all the the critical branchings of the linear (3, 2)-polygraph KLR presenting the KLR algebra for both downward and upward orientation of strands. These are all confluent from 6.1.8 and Appendix A.2. The 3-cells coming from KLR also provide the following critical branchings of E R modulo E:

for any value of h i , λ , of respective sources

•

There are also critical branchings coming from isotopy given by

Algebraic Polygraphs Many rewriting results given above are based on the notion of confluent (resp. confluent modulo) presentations. We have seen that one the the main tools to prove confluence of a polygraph is by the critical branching lemma, giving a way to deduce confluence from a finite checking of confluence of local minimal overlappings of two reductions. However, the extension of these methods to a wide range of algebraic structures is made difficult because of the interaction between the rewriting rules and the inherent axioms of the algebraic structure. For instance, in the case of string rewriting systems, Nivat proved [START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF] that it suffices to check confluence of critical branchings to obtain local confluence. However, this is wrong in the linear setting, and it requires an additional termination assumption, see Remark 2.9.3 for a counter-example. For this reason, extensions of this approach to a wide range of algebraic structures, including groups, Lie algebras, is still an open problem.

In this Chapter, we introduce a categorical model for rewriting in algebraic structures which formalizes the interaction between the rules of the rewriting system and the inherent axioms of the algebraic structure. We recall the notion of cartesian 2-dimensional polygraph introduced in [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF], corresponding to rewriting systems that present a Lawvere algebraic theory. We introduce an algebraic setting for the formulation on the critical branching lemma, by defining the structure of algebraic polygraph modulo which consists in rewriting with respect to the rules of a structure modulo the ambient algebraic axioms. We introduce rewriting strategies based on a restriction on rewriting steps, depending on whether their source is a normal form or not with respect to the inherent algebraic theory. We then introduce rewriting properties with respect to these strategies, and prove an extension of the terminating Newman lemma modulo for quasi-terminating algebraic polygraphs modulo, and a critical branching lemma for rewriting systems on algebraic structures whose axioms are specified by term rewriting systems satisfying appropriate convergence relations modulo associativity and commutativity. Finally, we explicit our results in 7.4.3 Theorem (Newman lemma modulo for algebraic polygraphs modulo). Let P be a quasi-terminating algebraic polygraph modulo, and σ be a positive strategy on P. If P is locally σ-confluent modulo, then it is σ-confluent modulo.

Proof. The proof of this result follows the scheme of the proof of Theorem 2.3.15 in the terminating setting, by replacing each use of Huet's double induction principle by induction on the well-founded order ≺ on branchings modulo defined above. 

for some ground context context A and σ-positive S-rewriting step a.

ii) inclusion independant σ-branchings modulo of the form

for some ground contexts context A and A ′ , and σ-positive S-rewriting steps a and b.

iii) orthogonal σ-branchings modulo of the form

for some ground multi-contexts B and B ′ of arity 2, S-rewriting steps a,b and c of S, and 2-cells e and e ′ in P 2 Q ⊤ .

iv) non orthogonal σ-branchings are the remaining local σ-branchings, that is nor inclusion independant nor orthogonal. iii) There exists an isomorphism ψ : A → Hom k (A, k) of right (or left) A-modules.

A Frobenius algebra A over k is said to be symmetric if the non-degenerate associative k-bilinear form (•, •) is further symmetric, that is for any a and a ′ in A, we get (a, a ′ ) = (a ′ , a). Similarly, recall from [START_REF] Nakayama | On Frobenius extensions[END_REF] that for a unital inclusion of algebras A ⊂ B over k, B is a Frobenius extension of A if and only if, equivalently: i) There exists a non-degenerate associative k-bilinear form B × B → A.

ii) There exists an isomorphism of (A, A)-bimodules B → A, called the trace map of the Frobenius extension. 

d) There is an arc (l, j) in Bot(b ′ ), creating a loop in b ′ (n l)X j,n X i,j imposing to add a factor δ to the resulting diagram, which is erased by the multiplication by 1 δ . Now, it remains to prove that b ′ = δε n-1 (bX j,n ). The Brauer diagram corresponding to bX j,n contains:

i) An arc (n, j) in its bottom row, ii) A strand linking any k / ∈ {i, j, n} to k ′ , which is the vertex linked to k ∈ Bot(b) in b,

Therefore, ε n-1 (bX j,n ) is 1 δ times the Brauer diagram on 2(n -1) points in which the strands given by ii) and iii) above remain unchanged, and the strands given by i) and iv) disappear to give an arc (l, j) in Bot(ε n-1 (bX j,n )). Hence it is clear that b ′ = δε n-1 (bX j,n ).

Let us now consider the set

with the convention that (n n) = δ1 n and X j,j = δ1 n for any 1 ≤ j ≤ n, and the following maps:

for any 1 ≤ l ≤ n -1, 1 ≤ i ≤ j ≤ n and the maps

for any 1 ≤ i ≤ j ≤ n, where the number A(b) stands for the number of arcs in the bottom or top row of b.

Note that for any 1 ≤ l ≤ n -1 and any 1 ≤ i ≤ j ≤ n, the map ψ i,j,l is the following composite of maps:

, where Π X n i,j : B n → B n is the projection on the subset X l i,j of B n corresponding to Brauer diagram with an arc between vertices i and j in the bottom row, and in which n in the top row is sent to l in the bottom row. As this set is stable by left-multplication by B n-1 , since the arcs in the bottom row and the vertex to which n in the top row is linked are preserved, it is clear that the map Π X l i,j is a left-module homomoprhism, and finally so are the maps ψ i,j,l as composites of left B n-1 -module homomorphisms. Similarly, we can prove that the maps ψ i,j,n for any 1 ≤ i ≤ j ≤ n are left B n-1 -module homomorphisms.

Moreover, following Proposition 8.1.11, the following equality holds for any b ∈ B n :

Indeed, consider a Brauer diagram b in B n , then:

and three relations

Following [START_REF] Savage | String diagrams and categorification[END_REF], End AH deg ⊗n is isomorphic to the degenerate affine Hecke algebra of degree n. 9.4.3. The linear (2, 2)-category AOB. To define the affine oriented Brauer linear (2, 2)-category AOB, we add to this data an additional generating 1-cell that we require to be right dual to . Following Section 4.3.3, this requires the existence of unit and counit 2-cells

and

where 1 denoted the identity 1-cell on the only 0-cell of AH deg . These 2-cells have to satisfy the adjunction relations = , = .

We also add an additional 2-cell defined by a right-crossing as follows:

:= that we require to be invertible, namely there exists a two-sided inverse to this 2-cell, that we will denote by . The resulting category AOB is called the affine oriented Brauer category. It was proved to be a pivotal linear (2, 2)-category in [START_REF] Brundan | On the definition of Heisenberg category[END_REF], with also being the left dual of and the unit and counit 2-cells being defined as follows:

The left crossing 2-cell is then proved to be equal to

The inverse condition is then given by the following two relations: ii) two biadjoint generating 1-cells and , 9.4.6. Quasi termination of E R. To prove quasi-termination of the linear (3, 2)-polygraph E R is quasiterminating, we will proceed in two steps: at first we will prove that the linear (3, 2)-polygraph R minus the sliding 3-cells is terminating using derivations as in 2.6.4. Then, using a notion of quasi-ordering and a suited notion of polynomial interpretation on AOB ℓ 2 , we will describe in the same fashion than in [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF] a procedure proving that every 2-cell in AOB can be rewritten in a finite number of steps into a monomial on which the only 3-cells that can be applied are the cells creating cycles. Let us at first state the following lemma: 9.4.7 Lemma. The linear (3, 2)-polygraph R ′ = R \{s 0 n , s 1 n } n∈◆ is terminating. Proof. Let us proceed in three steps, using the derivation method given in 2.6.4. We at first consider a derivation d defined by d(u) = ||u|| { , } into the trivial modulo M * , * ,Z , counting the number of crossing generators in a given 2-cell. We have that d(s 2 (ω)) > d(ω i ) for any 3-cell ω in {A, B, C, D, E, F, α} and any ω i in Supp(t(ω)). As a consequence, one gets that if the linear (3, 2)polygraph R ′′ defined as R ′ minus each of these 3-cell terminates, then so does R ′ . Indeed, otherwise there would exist an infinite reduction sequence (f n ) n∈◆ in R ′ and thus, an infinite decreasing sequence (d(f n )) n∈◆ of natural numbers. Moreover, this sequence would be strictly decreasing at each step that is generated by any of these 3-cells and thus, after some natural number p, this sequence would be generated by the other 3-cells only. This would yield an infinite reduction sequence (f n ) n≥p in R ′′ , which is impossible by assumption.

It remains to prove that the linear (3, 2)-polygraph (R 0 , R 1 , R 2 , {β ± , γ l,± , γ r,± , o n } n∈◆ ) terminates. We can still reduce this problem to the termination of the rules β ± , γ l,± and γ r,± by considering a derivation d ′ with values in the trivial modulo M * , * ,Z counting the number of clockwise oriented bubbles. Let us consider X the 2-functor X : AOB * 2 → Ord on generating 2-cells by: X(

for both orientations of strands, and we consider the AOB * 2 -module M X, * ,Z and define the derivation d : AOB * 2 → M X, * ,Z on the generating 2-cells by d(

With these assignments, we obtain the same inequalities than in Section 6.1.7, so that the 2-functor X and the derivation d satisfy the conditions i), ii) and iii) of Section 2.8.9, and thus the corresponding linear (3, 2)-polygraph is terminating.

However, as explained in [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF], the addition of the sliding 3-cells create rewriting cycles, so that R is not terminating. Nethertheless, we will prove that it is quasi-terminating. Following [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF], we say that a monomial in AOB is quasi-reduced if it can be rewritten by only one of the 3-cells derived from ordering and sliding 3-cells in E R on the following subdiagrams:

• n for any n in ◆. We call a 2-cell of AOB ℓ 2 quasi-reduced if all monomials in its monomial decomposition are quasi-reduced.

We then define as in Section 6.2.22 a weight function on AOB ℓ 2 by its following values on generating 2-cells:

Note that for any 3-cell α in E 3 , we have τ(s 2 (α)) = τ(t 2 (α)) so that the isotopy 3-cells preserve this weight function. Then, starting with a monomial u of AOB 200 -While u can be rewritten with respect to E R into a 2-cell u ′ such that τ(u ′ ) < τ(u), then assign u to u ′ .

-While u can be rewritten with respect to E R into a 2-cell u ′ without any of the 3-cells depicted above, then assign u to u ′ .

From Lemma 9.4.7 and well-foundedness of the quasi-ordering defined as in Section 6.2.22, this procedure terminates and returns a linear combination of monomials in AOB ℓ 2 which are quasi-reduced. 9.4.8. Confluence modulo. We prove that the linear (3, 2)-polygraph modulo E R is confluent modulo E using Theorem 5.2.4 and Proposition 5.4.6. Let us at first enumerate the list of all critical branchings modulo that we have to prove decreasing with respect to ψ QNF . First of all, there are 6 regular critical branchings implying the degenerate affine Hecke 3-cells:

(α ± , α ± ), (α ± , β ± ), (β ± , α ± ), (α ± , γ η,± ) η∈{l,r} , (β ± γ η,± ) η∈{l,r} , (γ l,± , γ r,± ).

The first three families are proved confluent modulo in the same way that the polygraph of permutations is proved confluent in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. The remaining critical branchings are decreasingly confluent as follows:

for both orientations of strands. In the last two cases, we proceed similarly if the dot is placed on another strand. Following the study of the 3-polygraphs of permutations in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], there also are right-indexed critical branchings of the form (6.6), forgetting the labels on the strands. We have two families of normal forms that we can plug in this indexation, as in Section 6.1.8. These indexed critical branchings are confluent modulo E, and the proof of their confluence is similar to the confluence of indexed critical branchings for the KLR algebras, see Appendix A.2. The critical branchings modulo implying the sliding and ordering 3-cells are proved confluent modulo E in a similar fashion than in [START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. We then give the exhaustive list of all critical branchings modulo implying the 3-cells A,B,C,D,E and F. First of all, these branchings overlap with degenerate affine Hecke relations to give the following sources of critical branchings modulo:

(A, C), (B, D), (B, F), (E, D), (C, E), (E, F), (F, E), (A, γ l,+ ), (B, i 2 4 , γ l,+ ), (D, γ r,+ ), (E, γ l,+ ), (γ r,+ , i 2 3 , C), (F, γ r,+ ), (α + , i 0 1 ⋆ 2 i 0 4 , F), (γ r,+ , i 0

9.4.9. Normally ordered Brauer diagrams. A dotted oriented Brauer diagram is a planar string diagram built from ⋆ 0 and ⋆ 1 -compositions of the above generating 2-cells in which every edge is oriented and is either a bubble or have a boundary point as source and target, each edge is decorated with an arbitrary number of dots not allowed to pass through the crossings. Such a diagram is said normally ordered if all its bubbles are clockwise oriented and located in the leftmost region, and if all dots are either on a bubble or a segment pointing toward a boundary (or in the opposite direction). In a similar fashion than [2, Lemma 5.2.6], we prove that each 2-cell of AOB ℓ 2 can be rewritten with respect to E R into a linear combination of diagrams whose normal forms with respect to E are normally ordered dotted oriented Brauer diagrams. As a consequence, we get from 5.4.8 that the set of such diagrams with 1-source u and 1-target v form a basis of the K-vector space AOB 2 (u, v), and we recover the result from [START_REF] Brundan | A basis theorem for the affine oriented Brauer category and its cyclotomic quotients[END_REF][START_REF] Alleaume | Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category[END_REF]. 203 9.5. KHOVANOV'S HEISENBERG CATEGORIFICATION 9.5.1. The Heisenberg algebra. Let K be some ground commutative ring. The Heisenberg algebra H is the K-algebra presented by generators p n , q n for n ∈ Z and relations p n q m = q m p n + δ n,m 1, p n p m = p m p n , q n q m = q m q n . (9.6)

Let us consider a strict K-linear monoidal category H ′ , seen as a 2-category with only one 0-cell, admitting two generating 1-cells Q + and Q -whose identities are respectively diagrammatically represented by and as generating 2-cells: Any 1-cell Q in H ′ can then be decomosed as a linear combination of elements Q ε 1 ⋆ 0 • • • ⋆ 0 Q εm , denoted by Q ε , where ε = (ε 1 , . . . , ε m ) is a finite sequence of signs. We denote by Q n ε the element

The space of 2-cells with 1-source Q ε and 1-target Q ε ′ is then given by diagrams constructed from horizontal and vertical compositions (whenever it is well-defined) of the generating 2-cells above, modulo the relations. In Khovanov's original paper, it is expressed that all these diagrams are oriented compact one-manifolds into the plane strip R × [0, 1], modulo boundary isotopies, which in fact makes H ′ into a pivotal 2category.

The relations (9.9) correspond to the fact there there is an isomorphism Q -+ ≃ Q +-⊕ 1 in H, given by the following maps:

, and the symmetrization and antisymmetrization idempotents in K[S n ] produce 1-cells in H := Kar(H ′ ), that can be seen as symmetric and exterior powers of the generating 1-cells Q + and Q -, that we denote as follows

It is conjectured in [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF] that H is a strong categorification of the Heisenberg algebra, with the isomorphism K 0 (H) → H being given by:

It is proved in [START_REF] Khovanov | Heisenberg algebra and a graphical calculus[END_REF] that this map is injective, and this conjecture was finally proved in a more general setting for degenerate Heisenberg categories in [START_REF] Brundan | The degenerate Heisenberg category and its Grothendieck ring[END_REF].