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Life is an experimental journey
undertaken involuntarely.

Fernando Pessoa

Science never solves a problem
without creating ten more.

George Bernard Shaw

It is easier to disintegrate an atom
than a prejudice.

Albert Einstein



vi Abstract

The dynamics of liquid plugs in synthetic networks under cyclic forcings: to-
wards understanding and treatment of respiratory diseases

Abstract

Breathing is one of the most vital mechanism for humans. Indeed, one can live a
few days without eating or drinking, but only few minutes without breathing. Owing
to the complexity of the respiratory system, the mechanism of breathing is not well
understood, especially in pathological conditions when airways are obstructed by mucus.
The presence of liquid plugs resulting from the accumulation of mucus in the bronchial
tree is a characteristic of genetic diseases like cystic fibrosis or chronic diseases like
asthma or chronic bronchitis. Thus, understanding the dynamics of these plugs during
the breathing cycle is essential to improve our understanding of those diseases. In this
thesis, we study experimentally and theoretically, the dynamics and rupture of liquid
plugs under unidirectional and cyclic forcing in a rigid capillary tube. We develop a
reduced dimension model, which quantitatively reproduces the observed dynamics,
unveil the underlying physics and in particular the sources of the plug instability leading
to its rupture. From this model, we are able to derive the critical pressure magnitude
required to reopen obstructed pathways. In addition to the study of cylindrical tubes,
we investigated the cyclic dynamics of liquid plugs in rectangular channels, a geometry
of the utmost interest for microfluidic systems. In this case, we show that under cyclic
pressure forcing, two regimes can be observed depending on the values of the capillary
number: one leading to the rupture of the plug and one to stable cyclic oscillations.
Finally, in the last part of this work, we study experimentally the cyclic forcing of liquid
plugs in tree structures mimicking the geometry of intermediate generation of the lung.
These preliminary results show that plugs not ruptured during the first half cycle persist
in the airways for a long time and oscillate until their rupture. To conclude, we must
underline that the initial objective of this thesis was not to achieve a realistic description
of pathological flows in the lungs, but only to develop some fundamental solid building
blocks that might contribute to this goal in the future.

Keywords: two phase flow, cyclic forcings, taylor flow, slug, bolus, capillary tube,
synthetic networks, airways reopening



Abstract vii

De la dynamique de bouchons liquides dans les réseaux synthétiques soumis à des
forçages cycliques au diagnostic et traitement de maladies respiratoires

Résumé

La respiration est un mécanisme essentiel de survie chez les humains. En effet, si nous
pouvons survivre quelques jours sans manger et boire, nous ne pouvons survivre que
quelques minutes sans respirer. Le système respiratoire est extrêmement complexe de
par sa structure fractale qui induit des physiques très différentes entre les voies proxi-
males et distales. Il n’existe à l’heure actuelle aucune modélisation réaliste du système
pulmonaire en particulier dans des conditions pathologiques où les voies sont obs-
truées par des bouchons de mucus. Ces bouchons liquides caractéristiques de certaines
maladies comme la mucoviscidose, les bronchites chroniques ou l’asthme résultent
de l’accumulation de mucus dans les voies pulmonaires. Comprendre les mécanismes
à l’œuvre lors de l’écoulement de ces bouchons lors d’un cycle respiratoire est donc
primordial pour améliorer notre compréhension et le traitement de ces pathologies.
Nous présentons dans cette thèse une première étude théorique et expérimentale de
la dynamique de ces bouchons liquides dans des tubes capillaires rigides soumis à des
forçages unidirectionnels et cycliques. Nous avons développé au cours de ce travail
un modèle simplifié permettant de reproduire quantitativement les dynamiques obser-
vées, de comprendre la physique sous-jacente et en particulier d’identifier les sources
d’instabilités qui entraînent la rupture d’un pont liquide. Ce modèle nous a permis de
déterminer les pressions critiques nécessaires à la réouverture des voies pulmonaires.
Ensuite, nous nous sommes intéressés à la dynamique des ponts liquides dans des tubes
rectangulaires, la géométrie la plus communément rencontrée en microfluidique. Dans
cette géométrie, nous avons identifié de nouveaux régimes qui n’apparaissent pas dans
les géométries cylindriques, et en particulier un régime d’oscillation stable sous forçage
en pression périodique. Enfin nous nous sommes intéressés à la dynamique cyclique de
ponts liquides dans des réseaux synthétiques en arbres. Nos premiers résultats montrent
que les ponts qui ne sont pas détruits lors du premier demi-cycle persistent très long-
temps dans les voies et oscillent de manière cyclique dans une génération jusqu’à leur
rupture. Pour conclure il est important de souligner que l’objectif initial de cette thèse
n’était pas d’aboutir à une modélisation réaliste des écoulements pulmonaires dans
des conditions pathologiques, mais simplement d’apporter des briques fondamentales
solides qui pourraient y contribuer dans le futur.

Mots clés : écoulement diphasiques, forçages périodiques, bouchons liquides, bolus,
tubes capillaires, réseaux synthétiques, réouverture des voies respiratoires

IEMN
Laboratoire central – Cité scientifique - Avenue Poincaré – CS 60069 – 59652
Villeneuve d Asca Cedex – France
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General introduction

Basic features of the mechanism of breathing

The human respiratory system is a biological system made of 3 major parts:

(i) the lungs that are pair (left and right lung) of large, air-filled organs found

in the thoracic cavity of the chest, (ii) the airways, which include the nose,

mouth, pharynx, larynx, trachea, bronchi, and bronchioles and (iii) the muscles

of respiration in which the principal role is played by the diaphragm [1]. This

(c)

(b)

Figure 1 – Geometry of the human lung:
a) Cast of a human lung. The alveoli have been removed allowing the conduct-
ing airways to be seen [2].
b) 3D reconstruction of the first five bronchial generations of a woman lung
using computerized tomography for realistic numerical simulations [3].
c) 2D symmetric model of five bronchial generations made of PDMS used for
experiments.
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2 General introduction

complex system made up of organs, muscles and tissues is essentially used for gas

exchange but also plays roles in the metabolization of physiological compounds,

filtering the unwanted materials from the circulation, and acts as a reservoir for

blood [4, 5]. The process of gas exchange in which oxygen O2 is delivered from

the lungs to the bloodstream, and carbon dioxide CO2 is eliminated from the

bloodstream to the lungs is only possible by the process of breathing, consisting

of repetitive cycles of inspiration and expiration of air from the nose to about

500 millions of small alveoli sacs at a frequency of 12 to 18 breaths per mins

[2]. It is therefore a cyclic process that occurs through the lung airways (see Fig.

1). Several factors as the weight, sex, age, activity and the health can affect lung

capacity and therefore lung volumes during breathing. Average values of the

lung volumes in normal healthy female and male adults are found in Ganong

[6]:

• The tidal volume (TV): volume of air that moves into and out of the lungs

during quiet breathing 0.5l.

• The inspiratory Reserve Volume (IRV): additional volume of air that can be

forced into the lungs after you breathe in the tidal volume 1.9− 3.1l.

• The expiratory reserve volume (ERV): additional volume of air that be be

forced out at the end of a normal expiration 0.7− 1.2l.

• The residual volume (RV): volume of air that remains in your lungs after

you force out as much as possible 1.1− 1.2l.

• The total lung capacity (TLC=TV+IRV+ERV+RV): the maximum volume

of air that you breathe in and out of your lungs 4.2− 6l.

The mechanism of breathing involves not only the volumes of air that moves

in and out of the lung during breathing but also the pressures that are necessary

for airflow. Flow of air in the pulmonary airways occurs by bulk flow along

pressure gradients created in between the atmosphere and the alveoli (alveolar

pressure equal to the atmospheric pressure when there is no airflow). During a

quiet breathing, these pressure gradients are created by the contraction of the
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diaphragm and the abdominal muscles during inspiration and the elastic recoil

of the lungs during expiration (see Fig. 2).

Figure 2 – Mechanics of breathing [2] .

Inspiration is an active process that starts with the contraction of the di-

aphragm by 1 − 1.5cm which increases the volume of chest by 250 − 350cm3.

This increase in volumes lead to a decrease of the alveolar pressure below the

atmospheric pressure (negative pressure) due to Boyle’s law (P V = cst). Bulk

flow of air can then occur from places of high pressure (atmosphere) to places of

low pressure (lung) until the pressures get equals at the end of the inspiration.

Expiration is conversely a passive process in which the muscles of respiration

are relaxed because of the elastic recoil of the lung, leading to opposite pressure

gradients until the pressure inside the lung and the atmosphere are equal [2].

Simulations of the alveolar pressure using flow resistance models formulation

for the respiratory system [7, 8] led to Fig. 3 in which the zero is in reference to

the atmospheric pressure.

The other functions of breathing include: (i) the physiological regulation,

(ii) providing mechanisms for expressions and emotions, (iii) the balance of the

nervous-system.
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Figure 3 – Alveolar pressure during a quiet breathing cycle [8] .

Lung airways: a complex network of capillaries

Geometrical description

Lung airways consist in a network of branching pipes (Fig. 1) that display a

broad range of sizes and physical interactions [9]. To fulfill its principal function

of mass transport to and from the body, lungs adopt a tree like structure. This

configuration is suitable for a minimal volume (about (5 − 6)l in adult), but a

very large interface at its extremity for diffusional gas exchange between air and

blood (about (70− 100m2)) [9, 10, 11, 12, 2]. There are more than 20 generations

of branching in the lungs [10, 13, 14]. This complex network can be divided into

two main regions (see Fig. 4):

• The conducting airways (generations 0–16): consisting of the trachea, the

bronchi and the bronchioles. This system of connected ducts acts as low

work air conduits, bringing air to the respiratory region.

• The respiratory or gas-exchanging region (generations 17-23): In this

region, the diameter of the ducts is less than 0.6mm and alveoli start to

appear in bronchioles. The number of alveoli increases as it goes further

down to the lung and forms at the end section of the airways (generation 23)

a clusters where gas-exchange with the blood vessels occurs by diffusion.
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Figure 4 – Ideal model of the human airways adapted by [2] from [15]

The lung airway walls are made of elastic fibers of thickness about 10%

their radius with a Young’s modulus E = 6.103P a and a Poisson’s ratio ν = 0.49

[16] leading to a very flexible material. However, variations in the physical

properties the airways generations are found. While the trachea and bronchi

have cartilaginous walls, those disappear in the bronchioles and alveoli where

they are replaced by smooth muscles [1].

The most commonly used model of lung airways geometry is derived from

measurements made by Weibel [10] from which he constructed a symmetrical

model using means measurements of the airways tree in which all the airways in

a generation are identical and divide dichotomously (see Fig. 4). Another model

less used but more complete was proposed by Horsfield [17, 13, 14], who gave a

full description of an asymmetric lung by measuring the lengths, diameters and

the branching angle in all the generations on a cast of a male lung. He found

quite similar values to the one of Weibel except that he counted 24 instead of 23

generations proposed by Weibel and found a number of terminal bronchioles

less than half the predictions of Weibel which correspond to only one generation

of dichotomous branching. Despite these discrepancies, the model of Weibel

is still the most widely used since it offers a mathematical description of the

evolution of the generations of the airways. Table 1 present values of this model
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as well as Reynolds number (Re = ρV l/µ) associated with flows during a quiet

breathing (0.5l/s) and vigorous breathing (2l/s) as reported by Pedley [9].

Generation Diameter d(cm) Length L(cm)
Number of
alveoli(105) Re

Trachea 1.8 12 0 2325-9300
1 1.22 4.76 0 1719-6876
2 0.83 1.9 0 1281-5124
3 0.56 0.76 0 921-3684
4 0.45 1.27 0 594-2376
5 0.35 1.07 0 369-1476

10 0.13 0.46 0 32-127
15 0.066 0.2 0 1.9-7.6
20 0.045 0.083 210 0.09-0.37

Table 1 – Characteristics of the airway tree and Reynolds numbers associate with
two flow velocities in the airway [10, 9].

The flow in the trachea is turbulent and becomes more laminar as we go fur-

ther in the bronchial tree leading to different physical interactions and therefore

different models to study the airflow [12]. Using the data of this model, the char-

acteristics of a typical symmetrical bifurcation in the respiratory region reported

in [9, 18] was found to be: diameter ratio between daughter and mother branch

dn/dn+1 ∼ 0.79, length to diameter ratio in a generation L/d = 3.5 allowing the

construction of a fractal branching tree [19]. As for the mean branching angles α,

they are obtained from the data of Horsfield [17] and lie between 64° in airways

of diameter greater than 0.4cm to 100° in airways of diameter less than 0.1cm.

It is worth mentioning that maximal physical efficiency cannot be the only

criterion in the design of a bronchial tree since it is shown by Mauroy & al. [20]

that an optimized fractal bronchial tree may be dangerous. This can explain the

natural asymmetry of the lung where the right lung is bigger than the left one

which shares space with the heart. This asymmetry propagates in the bronchial

distribution creating a safety margin while keeping the physiological robustness

of the lung.
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Lung airway resistance

Airway resistance R is the force opposing air flow in the airway and can be

expressed analogously to Ohm’s Law as the pressure difference between the

alveoli and the mouth or the nose, ∆P , per unit of airflow Q.

R =
∆P
Q

(1)

Since the lung airways consist in connected cylindrical pipes, the pressure

difference can be expressed in terms of Poiseuille’s law (in generations where the

flow is laminar):

∆P =
128µLQ
πd4 (2)

With µ the dynamic viscosity, L and d respectively the length and diameter of a

pipe. Therefore, the airways resistance can be expressed in terms of the diameter

of the pipe:

R =
128µL
πd4 (3)

This simple estimation of the airways resistance shows that if the diameter

of the airway is halved for example as a result of asthma [21, 22] or airway

obstruction by mucus [23, 24], the resistance will increase by a factor 16. In

this case, the respiratory muscles will need to generate much more pressure to

overcome this resistance and produce adequate airflow. Thus, diseases affecting

the respiratory tract can increase dramatically airway resistance. However, most

airway resistance resides in the upper airways (80%) compared to less that 20%

in the airways of diameter less than 2mm which is rather counter-intuitive if we

assume Poiseuille’s law. This can be explained by the dichotomous division at

each generation leading to a rapid increase of the number of bronchi and as a

consequence, an increase of the total cross sectional area when we go further in

the bronchial tree, thus reducing a lot the total resistance contribution of that

region [2].
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Mucus

The human lungs secrete a liquid known as the mucus which coats the airway

walls and protects it against foreign material. This protection is essential since

millions of particles flow through the airways every day [25]. These particles

can be dangerous if they are in contact with the airways wall or pass through

the blood system. The role of the mucus is to trap these particles and with the

help of the airways cilia, move them out of the lung. The mucociliary system

therefore represent the first and major protection of the airway [2].

Properties

Airway mucus is a non-homogeneous mixture containing glycoproteins ∼ 2%,

proteins 1%, lipids 1%, inorganic salt 1%, DNA 0.02% and cellular debris in a

watery matrix 95% secreted from the airways [26, 27, 28]. Mucus is a gel layer

that has both solid elastic and viscous fluid properties, floating on a Newtonian

layer of low viscous fluid. In addition to its viscoelastic properties [29, 30, 31],

the non-Newtonian mucus exhibits other properties as Bingham plastic of finite

yield stress (∼ 500− 600dyn.cm−2) [32, 33], shear-thinning, and thixotropy [34].

The mucus layer is no uniformly distributed in the airway tree. In the conducting

airway, the mucus thickness is on the order of (5 − 10) microns [9, 35], while

in the respiratory region, it is approximately (2− 4%) of the airway radius [36,

37]. The properties of mucus also changes as we go further in the bronchial

tree, becoming Newtonian in the respiratory region because the concentration

of proteins that are responsible for the non-Newtonian properties of the mucus

reduces [18, 12]. This Newtonian mucus is typically characterized by a surface

tension σ = 20mN.m−1, a dynamic viscosity µ = 10−3kg.m−1.s−1 and a density

ρ = 103kg.m3 [38, 16].

Production and transport

The goblet cells together with the submucosal glands produce the mucus of the

conducting airways [39, 40], at a rate of ∼ 10mL/day in a adult normal lung [41].

The mucus that is secreted needs to be transported out of the airways towards

the stomach where it is destructed: this is known as mucociliary transport. The



Lung airways: a complex network of capillaries 9

transport of mucus through the airways is done by the activity of moving cilia

[29, 42].

(a) (b)

Figure 5 – Mucociliary clearance:
(a) 3D representation of the cilia motion in the lung from the Johns Hopkins
school of medicine
(b) Motion of cilia during their active stroke adapted by [42] from [43]

Each ciliated cell has 200 to 300 uniformly spaced cilia of about 6µm in

length [44], with a surface density around (5− 8) cilia/µm2 [45] . The cilia beat

in a synchronized, asymmetric, wavelike manner responsible for the net fluid

flow [46, 42]. During their active motion, the cilia that are immersed into the

Newtonian layer, with only their tips in contact with the mucus layer, propel

the mucus at a rate of ∼ 3mm.min−1 [47] out of the airways (see Fig. 5). The

coordinate motion of the cilia in the mucus gel create a surface that undulate in

a wavelike manner known as metachronal wave [48, 49, 50].

The efficiency of such a system is highly dependent of the rheology of mucus

in particular the depth of the Newtonian layer [51, 18, 52, 53]and the motion

and interactions between the cilia and the mucus [54, 42]. Cilia are quite

numerous in the trachea and large bronchi but their presence reduce as we go

further in the bronchial tree, even disappearing in the respiratory region. The

mucus clearance in this region is ensured by the mechanism of breathing or

by cough allowing to reach speeds up to 200m.s−1 [55]. Cough is especially

important when airways have accumulated abnormal amounts of mucus with

altered rheological properties [56].
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Pathologic mucus and lung conditions

(a) (b)

(c)

.

Figure 6 – Lung conditions:
(a-b) Mucus production in asthma and COPD. Excess mucus M is seen partially
occluding the large airways (arrows) of asthma and COPD patients. The excess
mucus could be due to excess synthesis or hypersecretion, or both [26].
(c) Mucus characteristics of some airways diseases [24]



Lung airways: a complex network of capillaries 11

Healthy mucus is easily cleared by the mucociliary system whereas pathologic

mucus often has altered properties such as higher viscosity and elasticity and

is less easily cleared [23, 27]. The combination of mucus hypersecretion and

impaired mucociliary clearance can cause a persistent accumulation of altered

mucus in the airway which in turns can lead to infection and inflammation

by providing an environment for microbial growth. Above a critical thickness,

the accumulated mucus can form mucus plugs inside the airways (see Fig. 6)

and obstruct airflow through the bronchial tree [57]. Some of the major lung

conditions associated with pathologic mucus are: (i) Asthma which is a chronic

lung disease triggered by allergy or pollution [58, 35, 59, 60], (ii) Cystic fibrosis

which is a genetic disorder in which mucus does not clear easily from the airways

[61, 62, 28], (iii) Chronic Obstructive Pulmonary Disease (COPD) characterized

by a non reversible and progressive breathing limitations [32, 58, 63] and (iv)

Lung cancer that affect almost any part of the lung.

Air

Figure 7 – Regular dichotomy model of 5 generation of the lung obstructed by
a liquid plug. The obstructed pathways become part of the death volume of the
lung adapted from [64].

When a mucus plug obstructs a branch of the airway, airflow cannot occur

below the plug and the obstructed pathways become part of the death volume of

the lung (see Fig. 7). The question of airway reopening is therefore essential for
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patient suffering from airway obstruction. In the next section, we will see the

mechanisms leading to the formation of liquid plugs and show different models

of airway reopening.

Pulmonary surfactant

Pulmonary surfactant is a mixture of proteins and lipids secreted in the alveoli

by the alveolar epithelial type II cells. This material is found in the mucus

lining of the alveoli where it acts to decrease surface tension at the air–liquid

interface of the alveoli. The presence of surfactant increases the stability of

alveoli, although collapse can still occur in disease. It has some other functions

including: (i) the reduction of the work necessary to breathe by increasing the

pulmonary compliance, (ii) the prevention of the lung collapse and (iii) the

lubrication of the lung [2].

A lack of surfactant in the lung result in consequences like the infant respi-

ratory distress syndrome (IRDS) found in premature infants or the respiratory

distress syndrome (RDS) in adult, that can even up to death due to the lung

collapse. In these cases, surfactant replacement therapy (SRT) can be used to

deliver synthetic surfactant bolus into the lung in newborn [65, 66, 67, 68],or

surfactant therapy with mechanical ventilator for breathing can be used in adults

[69, 70, 68].

The effect of surfactant therapy on mucus was shown to decrease the vis-

coelasticity of mucus in (RDS) [72], and increase the mucus flow velocities [73,

74]. It can be expected to be beneficial in the treatment of obstructive airway

diseases like asthma and chronic bronchitis by enhancing the mucus clearance

mechanism (see Fig. 8).

Airway closure and reopening models

Airway closure

Pulmonary airway closure by liquid (mucus) plugs can occur via various mecha-

nisms including:
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Bubble

Foam

Plug

Air

Figure 8 – Mucus clearance in a cylindrical bifurcating channel obstructed by a
plug of Pig gastric mucin (PGM) mixed with de-ionized water [71]:
(a) - (b) Mucus clearance of the mixture using air flow.
(c) - (d) Addition of surfactant improved clearing effectiveness due to bubbling
in 1mm diameter channels and foaming in 500µm diameter channels.

• Surface tension (capillary) instability of the thin liquid film lining the

airways [38, 75, 12]

• The elastic collapse of the small airways [75, 12, 76, 77]

• The introduction of liquid bolus (plugs) in the larger airways during sur-

factant therapies [78, 68].

Capillary instability

The instability leading to the formation of mucus plug is the same mechanism

explaining the destabilisation and breakup of a long falling liquid film into

small drops of minimal surface area in Fig. 9a, and the formation of liquid plugs

in a horizontal tube in Fig. 9b. This phenomenon known as Rayleigh-Plateau

instability [80, 81, 82] is caused by capillary, inertia or gravity effects. The

situation of a liquid layer lining a tube is the one observed in the lungs, therefore,

we will focus on that.

A liquid layer lining the walls of a tube is an unstable configuration no matter

how smooth the flow is. Lets consider an initial perturbation of wavelength L in



14 General introduction

(a) (b)

Figure 9 – Capillary instability of:
(a) A water jet film in oil [79].
(b) A liquid film lining an horizontal rigid capillary tube [57].

Figure 10 – Axisymmetric Rayleigh-Plateau instability of a liquid film of thick-
ness h0 lining a tube of radius a. The destabilisation of the liquid layer can
eventually lead to the formation of a liquid plug if the wavelength of the per-
turbation L > 2 π(a − h0), or the liquid layer will return to a uniform state if
L < 2 π(a− h0) [75].

the stream (see Fig 10). Once the instability is initiated, the fluid in the liquid

layer continues to distribute until the system reaches a stable configuration

minimizing its interfacial energy. The new equilibrium state can eventually lead
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to the plugs formation if the wave length of the perturbation (L > 2π(a− h0)). In

this situation, the fluid pressure decreases in the cap, driving more fluid in this

region and amplifying the perturbation, eventually leading to the formation of a

liquid plug. Conversely, if the wave length (L < 2π(a− h0)), the fluid pressure

increases in the cap and a flow occur from the cap to the wall until the fluid

returns to an axially stable state. From this analysis, it can be observe that for

large wave lengths, a cylindrical interface is always unstable [64, 75].

The development of the Rayleigh-Plateau instability of a liquid film lining

a horizontal tube when gravity effect are negligible, result in the competition

between viscous and capillary effects. The most unstable mode of the liquid

film destabilisation is associate with a characteristic time τrp = 12µa4/σh0
3 and

a wavelength L = 2π
√

2a [83, 84].

Elastic collapse

(a) (b)

(c) (d)

Figure 11 – Non-axisymmetric elastic instability of the airway walls[77]:
(a) - (b) Two-lobed mode collapse at low liquid surface tension.
(c) - (d) Three-lobed mode collapse at high liquid surface tension.

The low young modulus of the pulmonary airways make them easy to collapse

enhancing the capillary instability of the liquid lining the airways and giving rise

to a surface tension capillary-elastic instability (see Fig. 11). Airway closure due

to elastic collapse tend to occur naturally in smaller airways of a normal lung at

the end of expiration but reopening occurs in the early stage of inspiration [85,
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18, 86, 75]. The compression load Pw exerted on the airway wall is proportional

to the difference between the external pressure Pe which in this case is the pleural

pressure and the pressure in the core of the fluid Pf = Pi − σ/(a− h0) with Pi the

air pressure in the lumen [75]:

Pw = Pe − Pi +
σ

(a− h0)
(4)

When surface tension becomes important, the wall pressure increases, leading

to the collapse of the airways. At relatively low surface tension, the collapse

of the airway is dominated by the external pressure and the two lobed non-

axisymmetric instability occurs. Increasing the surface tension increases the

effects of the load caused by the liquid plug. This situation is favorable to

generate three lobed non-axisymmetric collapse that is more likely to occur

when the airway collapse over a short axial length scale due to a high surface

tension [77]. Pathological conditions may give rise to permanent pulmonary

collapse by changing the mucus properties or the mechanical properties of the

airways.

Other studies on the walls elasticity [87, 88, 89], the non-Newtonian proper-

ties of mucus [90, 31], the presence of surfactant [91],the effects gravity [92, 93,

57], the curvature of the bronchi [94] or inertia [95] affect the development of

the instability.

Airway reopening

The issue of airway reopening is critical for patients suffering from airway

obstruction. Several models to study airway reopening in rigid tubes under

constant pressure difference have been developed in the literature. From these

studies, the central role played by the liquid lining the airway is shown: In a

dry capillary tube (see Fig. 12), the propagation of the liquid plug is always

accelerative since the plug always leaves liquid on the walls and does not recover

liquid from its front meniscus (interface), the plug decreases in size and ruptures

in an accelerative event [96]. The propagation of the plug in a liquid-lined

tube can be either accelerative or decelerative depending on the initial liquid

film layer h0 [97, 98]. This ascertainment allowed the derivation of the critical
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Figure 12 – Rupture of a liquid plug in a rectangular microfluidic channel
showing the evolution of the front meniscus (interface) and the rear meniscus
(interface) [96].

constant pressure head required to rupture a liquid plug in a liquid-lined tube

[97]. Modeling of the propagation of liquid plugs also allowed to determine the

mechanical stresses exerted on the walls during the propagation of a liquid plug

and therefore quantify the damages on pulmonary airways [99].The effects of

gravity and inertia [93] and non-Newtonian properties of the mucus [100] were

also explored. In particular, the non-Newtonian properties of the fluid lead to

an increase in the pressure drop necessary to drive the flow at a given speed.

In addition, walls flexibility was investigated to determine the pressure

necessary to reopen obstructed pathways since the walls deform during the

liquid plug formation and propagation in the airway tree [103, 104, 102, 105,

106]. In this configuration, the effect of surfactant [107] was shown to increase

the normal stresses during reopening and the non-Newtonian properties of the

liquid [108] lead to higher reopening driving pressure and longer reopening

times (see Fig. 13).

Dissertation plan

This study was motivated by the absence of literature on the response of liquid

plugs to complex driving conditions. Indeed, nearly all the model experiments
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(e) (f)

(c) (d)

(a) (b)

Bo=0.1 ; Bo=0.6 ; Bo=0.6  ;Re=0 Re=0 Re=0

Re=50Re=50

Figure 13 – Flow fields during the propagation of a liquid plug in a channel:
(a)Steady propagation of a liquid plug at Re = 50 without surfactant [101]
(b)Steady propagation of a liquid plug at Re = 50 with surfactant [101].
(c) Effect of gravity (Bo = 0.1;0.6) in the unsteady propagation of a liquid plug
without inertia effects [93].
(d) Effect of gravity (Bo = 0.6) and presence of surfactant in the unsteady prop-
agation of a liquid plug without inertia effects [93].
(e) Model of PDMS channel with only one flexible wall [102].
(f) Propagation of a liquid plug in a flexible tube with only one flexible
wall[102].

and simulations are conducted with a constant driving pressure or flow rate,

which strongly differs from conditions enforced during a breathing cycle. This

work aims at offering an experimental and theoretical understanding of the flow

dynamics and rupture of liquid plugs under cyclic laminar forcing at a frequency

close to a real breathing cycle.

The fluid that is used in the experimental sections of this work is a Newto-

nian fluid (Perfluorodecalin PFD) of density ρ, surface tension σ and dynamic

viscosity µ close to the serous mucus. The experiments are performed in specific

conditions: laminar flow (Re < 2000), negligible gravity effects (Bo << 1) and low

capillary number (Ca < 10−1). These hypothesis are valid below generation 10 of

the airways for bronchioles of diameter below 1mm (Table 3.1).
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In this work, we do not consider the presence of alveoli on the bronchi that are

present in the respiratory region, the walls flexibility, the curvature of the bronchi

or the presence of surfactant. We also assume that the capillary instability

already occurred and the mucus plugs are already formed as in pathological

conditions. We thus focus on the effects of cyclic periodic forcings mimicking

a breathing cycle (see Fig. 3) on the dynamics of these plugs. Though it is an

ideal model, we expect this study to open new prospects in the comprehension

of mucus flow in the lung.

The first chapter of this dissertation focuses on the periodic flow rate and

pressure forcing of liquid plugs in cylindrical rigid capillary tubes. Depending

on the type of forcing, different behaviors are observed and the mechanisms

leading to the rupture of liquid plugs are explained. In the second chapter

we determine the critical pressure magnitude necessary to reopen obstructed

prewetted tubes submitted to cyclic forcing. The third chapter investigates

periodic forcing of liquid plugs in a rectangular channels. It is shown that the

transition between two liquid film deposition regimes due to the polygonal

shape of the microfluidic channel dramatically modifies the plug dynamics. And

the last chapter explores periodic forcings of liquid plugs in tree-like symmetric

and asymmetric networks. Different regimes are observed depending on the

amplitude of the forcing and the geometry of the network. The preliminary

results show that plugs not ruptured during the first half cycle persist in the

airways for a long time and oscillate until their rupture.

The first chapter of this thesis was accepted for publication in the Journal of

Fluid Mechanics and the third chapter is submitted to the International Journal

of Multiphase Flow.



Chapter1
Dynamics of a liquid plug in a

capillary tube under periodic forcings

Abstract

In this chapter, we investigate the dynamics of a liquid plug driven by a cyclic

periodic forcing inside a cylindrical rigid capillary tube. It is shown that depend-

ing on the type of forcing (flow rate or pressure cycle), the dynamics of the liquid

plug can either be stable and periodic, or conversely accelerative and eventually

leading to the plug rupture. In the latter case, we identify the sources of the

instability as: (i) the cyclic diminution of the plug viscous resistance to motion

due to the decrease in the plug length and (ii) a cyclic reduction of the plug

interfacial resistance due to a lubrication effect. Since the flow is quasi-static

and the forcing periodic, this cyclic evolution of the resistances relies on the

existence of flow memories stored in the length of the plug and the thickness

of the trailing film. Second, we show that contrary to unidirectional pressure

forcing, cyclic forcing enables breaking of large plugs in confined space though

it requires longer times. All the experimentally observed tendencies are quanti-

tatively recovered from a reduced analytical model. This study not only reveals

the underlying physics but also opens up the prospect for the simulation of

"breathing" of liquid plugs in complex geometries and the determination of

optimal cycles for obstructed airways reopening.

20
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1.1 Introduction

Since the seminal works on gas-liquid flows in capillary tubes [109], [110] and

[111], the subject have attracted much interest among different scientific com-

munities due to their widespread occurrence in many natural and engineered

fluidic systems such as pulmonary flows [12], oil extraction [112, 113], flow in

porous media [114, 115, 116, 117], or microfluidic systems [118, 119, 120]. In

particular, liquid plugs (also called bridges, slugs or boluses) play a fundamental

role in pulmonary flows where they can form in healthy subjects [121, 122] or in

pathological conditions [123, 124, 125, 126] due to a capillary or elasto-capillary

instability [38, 127, 57, 75, 12, 95]. For patients suffering from pulmonary ob-

structive diseases, these occluding plugs may dramatically alter the distribution

of air in the lungs, hence leading to severe breathing difficulties.

Conversely, liquid plugs can be used for therapeutic purpose [128, 69]: bo-

luses of surfactant are injected inside the lungs of prematurely born infants

to compensate for their lack and improve ventilation [67, 129]. A thorough

understanding of liquid plugs dynamics is therefore mandatory to improve both

treatments of patients suffering from obstructive pulmonary diseases and of

prematurely born infants.

When a liquid plug moves inside a cylindrical airway at low capillary number,

deformation of the front and rear menisci occurs near the walls and leads to

interfacial pressure jumps at the front and rear interfaces. This deformation also

leads to the deposition of a liquid film on the walls. From a theoretical point

of view, Bretherton [111] was the first to provide an estimation of the pressure

jump and the thickness of the liquid layer at asymptotically low capillary num-

bers. It’s analysis was later formalized in the framework of matched asymptotic

expansions [130] who extended this work to higher order developments. Later

on, the dynamics of a meniscus moving on a dry capillary tube was studied both

experimentally and theoretically [131, 132].

These pioneering results were later extended to unfold the effects of wall

elasticity [103], the behavior at larger capillary numbers [133, 134], the effects

of surfactants [135], the role of a microscopic or macroscopic precursor film

[136, 137], the influence of more complex tube geometries [138, 139, 140], the
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influence of gravity [92, 93] or the influence of non-Newtonian properties of

the liquid [141, 142, 143, 144]. These key ingredients have then been combined

with conservation laws determining the evolution of plug size and estimation

of pressure jump in the bulk of the plug to provide analytical models of the

unsteady dynamics of liquid plugs in capillary tubes [96, 97, 99]. In particular,

[96] introduced the long range and short range interactions between plugs to

simulate the collective behavior of a train of liquid plugs. These models were in

turn used to determine the critical pressure head required to rupture a liquid

plug in a compliant [103] or rigid prewetted capillary tube ([97]), or determine

the maximum stresses exerted on the walls [99], a fundamental problem for lung

injury produced by the presence of liquid plugs in the lung.

It is interesting to note that the dynamics of bubbles [111, 145, 146, 147]

and liquid plugs in capillary tubes look similar from a theoretical point of view,

since the interfacial pressure jumps and the deposition of a liquid film on the

walls induced by the dynamical deformation of the interfaces can be calculated

with the same formula. Nevertheless, there are also fundamental differences,

which lead to very different dynamics: Trains of bubble are pushed by a liquid

finger whose viscous resistance to the flow is generally higher than the resistance

induced by the presence of the bubble. In this case, a pressure driven flow is

stable and the flow rate remains essentially constant over time. In the case of

liquid plugs, the resistance of the plugs to motion is higher than the one of the

air in front and behind the plug. This leads to an unstable behavior with an

acceleration and rupture of the plugs [96] or a deceleration and the obstruction

of the airways [97].

From an experimental point of view, Bretherton’s interfacial laws have been

extensively verified for different systems (bubbles, liquid fingers, foams, ...).

Nevertheless, there have been few attempts to compare the unstable dynamics of

single or multiple plugs in capillary tubes to models accounting for the interface

and bulk pressure jumps along with mass balance. Baudoin & al. [96] showed

that their model was able to qualitatively predict the collective accelerative

dynamics of multiple plugs in rectangular microfluidic channels. More recently,

Magniez & al. [97] were able to quantitatively reproduce the acceleration and

deceleration of a single liquid plug in a prewetted capillary tube. Their model
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further provided the critical pressure below which the plug slows down and

thickens whereas above it accelerates and ruptures. These experiments were

particularly challenging owing to the complexity of controlling the prewetting

film thickness and performing the experiments before the occurrence of Rayleigh-

Plateau instability. Huh & al. [148] measured in realistic experiments the injury

caused by the motion of liquid plugs on the human airway epithelium deposited

at the surface of an engineered microfluidic airway. Later on, Zheng & al.

[102] quantified the deformation of the walls induced by the propagation of a

liquid plug in a flexible microchannel. Song & al. [149] employed microfluidic

techniques to investigate single liquid plug flow in a tree geometry and evidenced

the role of the forcing condition on the flow pattern. Finally, Hu & al. [31] studied

the rupture of a mucus-like liquid plug in a small microfluidic channel.

From a numerical point of view, simulations of liquid plugs in capillary tubes

are highly challenging. Indeed, the thin layer of liquid left on the walls requires

either adaptive mesh or the use of Boundary Integral Methods to reduce the

computational costs. Moreover, the unstable dynamics of the plugs pushed at

constant pressure head leads to high variability in the associated characteristic

times. Fujioka & al. [150] were the first to provide numerical simulations of

the steady dynamics of a liquid plug in a two-dimensional channel. Later on,

they studied the effects of surfactants [101], the unsteady propagation [151] in

an axisymmetric tube, the effects of gravity [93] the role played by the tube’s

flexibility [102] and the motion of Bingham liquid plugs [100]. More recently,

Vaughan & al. [152] studied numerically the splitting of a two dimensional

liquid plug at an airway bifurcation.

In all the aforementioned theoretical, experimental and numerical studies,

the liquid plugs are pushed either at constant flow rate or at constant pressure

head in a single direction. These driving conditions substantially differ from

the one in the lung where liquid plug will experience periodic forcing. In this

chapter, we investigate both experimentally and theoretically the response of

liquid plugs to cyclic and periodic pressure or flow rate forcing. The experiments

are conducted in straight cylindrical glass capillary tubes and compared to an

extended theoretical model based on previous developments [96, 97]. It is shown

that, depending on the type of forcing (flow rate or pressure cycle), the dynamics
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of the liquid plug can either be periodic with the reproduction of the same cyclic

motion over time, or accelerative eventually leading to the plug rupture. In

particular, this study discloses the central hysteretic role played by the liquid

film deposition on the plug dynamics.

We first describe the experimental setup and the mathematical model. Thirdly,

We discuss the effects of different type of forcings: pressure head and flow rate in

the dynamical behavior of the liquid plug. Fourthly, we compare the efficiency

of cyclic and unidirectional forcings for obstructed airways reopening. Finally,

we discuss on the relevance of the proposed model to pulmonary congestion

diseases.

1.2 Experimental method and model

The schematic of the experimental setup is provided in Fig. 1.1a. A perfluorode-

calin liquid plug of controlled volume is injected through a needle inside a rigid

horizontal cylindrical glass capillary tube (inner radius R = 470µm). Then, air

is blown at low flow rate (Q = 10µl/min) to bring the liquid plug to the center of

the channel and stopped manually when the plug reaches the target position.

Thus, depending on the size of the liquid plug, the creation step can take up

to 10 s. Finally, liquid plugs are moved back and forth with either pressure or

flow rate cyclic forcings enforced respectively with a MFCS Fluigent pressure

controller or a KdScientific 210 programmable syringe pump. For both pressure

driven and flow rate driven experiments, the period of oscillation is fixed at

2T = 4 s3, with T the duration of the motion in one direction. It is important to

note that during the first half-cycle, t ∈ [0,T ], the liquid plug moves along a dry

capillary tube (see Fig. 1.1b). The motion of the plug leads to the deposition of a

trailing film on the walls of thickness hr behind the rear meniscus at position

Xr(t). Thus, in the subsequent back and forth motion, the front interface of

the liquid plug moves on walls prewetted by a layer of thickness hf (Xf ) (with

Xf (t) = Xr(t) +Lp(t) the position of the front meniscus and Lp(t) the plug length)

as long as it remains on a portion of the channel already visited by the liquid

plug (see Fig. 1.1c) in a previous half-cycle.
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1.2.1 Experimental setup

Plug

Or

Liquid plug Liquid plug

(a)

(b) (c)

Glass pretri dish

needle

Figure 1.1 – Experimental description:
(a) Experimental setup.
(b) First half cycle : the liquid plug moves on a dry capillary tube.
(c) Following back and forth motions: the liquid plug moves on a prewetted
capillary tube.

The glass capillary tubes were cleaned prior to the experiments with acetone,

isopropanol, dichloromethane and piranha solutions (a mixture of sulfuric

acid (H2SO4) and hydrogen peroxide (H2O2)) successively to obtain perfectly

wetting surface and prevent dewetting induced by the presence of dust or organic

contaminants on the surface. Perfluorodecalin (dynamic viscosity µ = 5.1 ×
10−3P a.s, surface tension σ = 19.3× 10−3N/m and density ρ = 1.9× 10−3kg/m3)

was chosen for its good wetting properties and inertness. Experiments are

recorded using a Photron SA3 high speed camera mounted on a Z16 Leica

Microscope at a frame rate of 125 images per second, a trigger time of 1/3000s

and a resolution of 1024× 64 pixels. To prevent image deformation due to the

cylindrical shape of the capillary tube, it is immersed in an index-matching

liquid. The image analysis is then performed using ImageJ software and Matlab.
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1.2.2 Flow rate cyclic driving

The flow rate forcing (a) is obtained by connecting only one end (left side)

of the capillary tube to a programmable syringe pump KdScientific 210. The

command flow rate is a square signal with alternative motion in the right and

left directions (see Fig. 1.2a). Owing to the response time of the syringe pump

and compressibility effects, the actual flow rate imposed to the liquid plug may

differ strongly. Thus, the imposed flow rate is monitored directly by measuring

the motion of the left interface of the liquid plug. This signal is represented on

Fig. 1.2b.
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Figure 1.2 – Flow rate cyclic driving:
(a) Command flow rate ordered to the programmable syringe pump. Positive
values correspond to a motion from the left to the right.
(b) Actual flow rate forcing measured by monitoring the motion of the left
interface of the plug.

1.2.3 Pressure cyclic driving

The pressure driving is obtained by connecting two channels of the MFCS

programmable pressure controller to both ends of the capillary tube. This

pressure controller based on valve and sensors enables automated control of the

driving pressure. We impose alternatively a constant command overpressure

(compared to atmospheric pressure) P c1 and P c2 to each channel of the pressure

controller while the pressure of the other channel goes down to atmospheric
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pressure, as represented on Fig. 1.3a. Due to the response time of the pressure

controller (resulting from the response time of the valve, and the feedback

loop, the actual overpressure imposed to each side of the pressure controller

(measured by an integrated pressure sensor) is represented on Fig. 1.3b. The

final pressure forcing thus corresponds the difference of pressure ∆Pt = P c1 − P
c
2

between the two ends of the channel (see Fig. 1.3c).
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Figure 1.3 – Pressure cyclic driving:
(a) Command pressures P c1 and P c2 imposed via the software Maesflow to each
channel of the MFCS Fluigent pressure controller, connected respectively to
each extremity of the capillary tube.
(b) Resulting output pressure signals effectively imposed to each end of the cap-
illary tube, measured with an integrated sensor. The pressure represented on
these figures correspond to overpressures compared to atmospheric pressure.
(c) Pressure driving ∆Pt = P1 − P2 imposed to the liquid plug.
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1.2.4 Effects of air compressibility

In the experimental context, compressibility effects are critical for flow rate

driven experiments, since they increase the response time of the syringe pump

(difference between the piston motion and the actual motion of the fluid in

the capillary). To reduce this response time, the syringes are filled with water.

Moreover, since the imposed flow rate is measured directly by monitoring the

displacement of the left interface, compressibility effects are accounted for in

the forcing condition. For pressure driven experiments however, the pressure is

homogenised at the speed of sound (extremely rapidly) and the response time is

mainly due to the valve and sensors response time. Thus, the pressure measured

at the exit of the pressure controller with integrated pressure sensors is almost

identical to the pressure imposed at both side of the capillary tube (if we neglect

the pressure losses due to the air flow in the tubes compared to the pressure

losses due to the presence of the liquid plug).

1.3 Mathematical model

1.3.1 Dimensional analysis of the problem

The characteristic parameters in this problem are the radius of the tube R, the

surface tension σ , the liquid density ρ and viscosity µ , and the characteristic

speed U of the liquid plug. From these parameters, one can derive the char-

acteristic convection time τc = R/U , the characteristic viscous diffusion time

τv = ρR2/µ, the Reynolds number Re = ρUR/µ (comparing inertia to viscous

diffusion), the capillary number Ca = µU/σ (comparing viscous diffusion to

surface tension), the Bond number Bo = ∆ρgR2/σ (comparing gravity effects

to surface tension) and finally the Weber number We = ∆ρU2R/σ (comparing

inertia to surface tension). Table 1.1 summaries the maximum values of these

key dimensionless parameters based on the maximal velocity of the liquid plug

Um = 28mm/s observed in the present experiments.

Based on the order of magnitude of these dimensionless parameters, a few

primary insights can be drawn. The low Bond number and the horizontal
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position of the tube suggest weak effect of gravity in this problem. The flow

in the bulk of the plug remains laminar owing to the moderate values of the

Reynolds number. In addition, Aussillous & Quéré [133] studied the impact

of inertia on the deposition of a trailing liquid film behind a moving liquid

plug. From dimensional analysis and experiments, they introduced a critical

capillary number Cac (equal to 3.6× 10−1 in the present case) above which the

effect of inertia becomes significant. In the present experiments, the capillary

number is two order of magnitude smaller than this critical value and thus

inertia can be neglected in the film deposition process. Finally, Kreutzer &

al. [153] studied numerically the influence of inertia on pressure drops at

liquid/air interfaces. They showed that inertia plays no role for Re < 10 at

capillary numbers comparable to the present study. Thus, inertial effects can

safely be neglected here. Furthermore, the weak capillary and Weber numbers

indicate that surface tension is globally dominant over viscous stresses and

inertia. Nevertheless, it is to be emphasized that viscous effects must still be

accounted for close to the walls, in the so-called "dynamic meniscus" that is the

part of the meniscus deformed by viscous stresses. Finally, since the convection

and viscous diffusion times τc and τv are two orders of magnitude smaller than

the duration of the pressure or flow rate cycles, unsteady term in Navier-Stokes

equation can be neglected and the flow can be considered as quasi-static.

Another phenomenon that may occur during the plug motion is the desta-

bilisation of the trailing liquid film due to a Rayleigh-Plateau instability. The

characteristic time associated with the most unstable mode [83, 84] is given by :

τRP =
12µR4

σh3

The smallest destabilisation times is thus obtained for the thickest fluid layer.

In the experiments conducted in this chapter, the thickness of the liquid film

remains typically smaller than 5% of the tube radius leading to τRP = 13 s, whose

value remains significantly larger than the period of the plug motion (2T = 4 s).

In addition, this time grows rapidly (∝ 1/h3) when the thickness of the layer is

decreased ( τRP = 58 s for h/R = 3%) and thick films are only deposited close to

the plug rupture in the pressure driven experiments so that the destabilisation
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parameters Formula Maximum value

τc R/U 1.7× 10−2 s
τv ρR2/µ 8.2× 10−2 s
Re τd/τc 4.9
Ca µU/σ 7.4× 10−3

Bo ∆ρgR2/σ 2.1× 10−1

We ∆ρU2R/σ 3.6× 10−2

Table 1.1 – Values of the key parameters associated with the maximal velocity
Um

of the trailing film is expected to play a minor role in the following experiments.

1.3.2 Model: pressure driven forcing

In this context, the liquid plug dynamics can be predicted from a quasi-static

pressure balance and a mass balance. We thus adapted a visco-capillary quasi-

static model previously introduced by Magniez & al. [97] to include the motion

on both dry and prewetted portions of the tube and also the memory effects

resulting from a trailing liquid film deposition. Assuming that the pressure

losses in the gas phase are negligible compared to that induced by the liquid

plug, the total pressure jump ∆Pt across a liquid plug can be decomposed into

the sum of the pressure jump induced by the presence of the rear interface ∆P intrear ,

the front interface ∆P intf ront and the flow in the bulk of the plug ∆P bulkvisc :

∆Pt = ∆P bulkvisc +∆P intrear +∆P intf ront (1.1)

In the experiments, ∆Pt corresponds to the driving pressure head.

Viscous pressure drop

Since the flow is laminar, the viscous pressure drop in the bulk of the plug can

be estimated from Poiseuille’s law:

∆P bulkvisc =
8µLpU

R2 (1.2)
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with Lp, the plug length, that is to say the distance between the front and rear

meniscus Lp(t) = Xf (t)−Xr(t) as described in Fig. 1.1 and U = dXr /dt the liquid

plug velocity. This expression relies on two approximations: (i) it assumes a

Poiseuille flow structure and thus neglects the fluid recirculation occurring close

to the menisci and (ii) it assumes the same speed for the rear and front interfaces.

The validity of the first approximation has been tested with direct numerical

simulations performed with a Volume of Fluid (VOF) method.

0.25 0.5 0.75

Alpha

0 1

0.25 0.5 0.75

Alpha

0 1

Figure 1.4 – Configuration simulated with the VOF code Openfoam: a liquid
plug is pushed at constant flow rate with an air finger inside a prewetted
capillary tube. Up: Phase volume fraction α. The air is represented in blue
(α = 0) and the liquid in blue (α = 1). Down: Zoom on the edge of the liquid
plug to show the precision of the mesh.

Equation (1.2) relies on the assumption that the flow inside the liquid plug

is a Poiseuille flow. In a Poiseuille flow, the liquid velocity is maximum at the

center of the tube and decreases down to 0 at the walls. This flow structure

is not compatible with the boundary conditions imposed by the two menisci:
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a constant velocity all over the liquid/air interface (in absence of interfacial

deformation). Therefore, fluid recirculation will occur at the edges of the plug to

match this boundary condition. For long plugs this recirculation is expected to

play a minor role. Thus Equation (1.2) should give a correct approximation of

the pressure drop inside long plugs. However the accuracy of this approximation

should decrease as the length of the plug drops. To test the validity of equation

(1.2), we performed 2D direct numerical simulations of a flow rate driven liquid

plug in a capillary tube with the Openfoam Volume of Fluid (VOF) code (see Fig.

1.4). This code was modified to include a regularisation technics by Hoang & al.

[154], which reduces parasitic currents. The evolution of the viscous pressure

drop as a function of the plug size was evaluated by pushing a liquid plug at a

constant flow rate corresponding to Re = 2 and Ca = 5×10−2 in a prewetted tube

(layer of thickness corresponding to 4% of the tube diameter D). The properties

of the liquid are the same as the one used in the experiments. A 825 000 points

structured mesh was used with a refinement close to the walls (see Fig. 1.4).

Fig. 1.5 shows the computed pressure drop inside the liquid plug and the air.

Since the input flow rate leads to a deposition of a trailing film thicker than the

prewetting film, the length of the plug shrinks, which enables the evaluation of

the pressure drop for various plug lengths with a single numerical simulation.

The comparison between Poiseuille’s law and simulations is shown on Fig. 1.6

(left) with a zoom on small values of the plug length on Fig. 1.6 (right). This

comparison shows that the discrepancy between the formula remains weak

(below 4.5% for plugs with sizes Lp > D) but increases up to 25% for plugs whose

size lies between 1/4D and D.

As expected, the accuracy of this approximated formula decreases with

the size of the plug. Nevertheless, the difference between approximated and

computed values remains below 4.5% for plugs larger than the tube diameter and

below 25% for plugs larger than 1/4 of the tube diameter. The approximation is

therefore consistent for large plug. The larger discrepancy observed for smaller

plugs is not critical since in this case the interfacial pressure drops at the rear

and front interfaces are largely dominant over the viscous one. We verified

the consistency of the second approximation experimentally by measuring the

difference between the front and rear interface speeds. These measurements
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Figure 1.5 – Pressure variation (in Pa) inside the plug and the air in the config-
uration represented on 1.4.

show that the speed of the two menisci only differ by a few percent. The reason

is that the evolution of the plug size dLp/dt remains much smaller than the plug

velocity dXr /dt for the essential part of the plug dynamics. In the following, we

keep this assumption (front and rear interfaces velocities approximatively equal)

to evaluate the interfacial pressure jump).

Interfacial pressure drops

Since the Capillary, Bond and Reynolds numbers are small and the flow is quasi-

static (see section 1.3.1), the pressure drop across the rear interface Fig. 1.7 of

the moving liquid plug can be estimated from Bretherton’s formula [111] :

∆P intrear =
2σ
R

(1 + 1.79(3Ca)2/3) (1.3)

Finally, the Laplace pressure drop across the front meniscus depends on the

apparent dynamic contact angle θad according to the formula (in the limit of low

capillary number and thus θad):

∆P intf ront = −
2σcosθad

R
≈ −

2σ (1−θad
2/2)

R
(1.4)
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o Dimensionless

Dimensionless

Figure 1.6 – Comparison of the simulated pressure drop ∆P bulkvisc (blue dots) and
Poiseuille law (red dashed line) as a function of the plug dimensionless plug
length Lp/D, with D the tube diameter. Left: evolution for large plug. Right:
zoom for small plugs.

Choosing the Laplace pressure jump 2σ/R as the characteristic pressure

scale, and the tube radius R as the characteristic length scale, the dimensionless

pressure jump across the liquid plug becomes:
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(a) (b)

Figure 1.7 – The motion of a bubble in a tube by Bretherton [111]:
(a) Motion of a long bubble in a capillary tube filled with liquid. The rear and
front interfaces of the bubble are respectively the front and rear interfaces of
the plug.
(b) Transition regions at the rear meniscus of the plug.

∆P̃t = 4L̃pCa+ 1.79(3Ca)2/3 +
θad

2

2
(1.5)

A tilde indicates dimensionless functions.

In order to achieve a closed set of equation, two additional equations must

be derived. They are (i) the relation between the apparent dynamic contact

angle of the front meniscus θad and the capillary number Ca and (ii) an equation

determining the evolution of the plug length L̃p. The first relation depends on

the wetting state of the tube walls ahead of the liquid plug:

When the liquid plug moves on a dry substrate Fig. 1.8a, this relation is given

by Hoffman-Tanner’s law valid at low capillary numbers:

θad = ECa1/3 (1.6)

with E a numerical constant of the order of (4− 5) for a dry cylindrical capillary

tube as reported by Hoffman [131] and Tanner [132]. For a liquid plug moving

on a prewetted substrate Fig. 1.8b, θad can be calculated from Chebbi’s law [137],

which can be simplified at low capillary number through a second order Taylor
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expansion by Magniez & al [97]:

θad =
−1 +

√
1 + 4CD

2C
(1.7)

with:

A = (3Ca)−2/3h̃f (1.8)

B = (3Ca)1/3 (1.9)

C =
1

log(10)

(
b1

2
+ b2log10(A) +

3b3

2
[log10A]2

)
B (1.10)

D =
(
b0 + b1log10(A) + b2 [log10(A)]2 + b3 [log10(A)]3

)
B (1.11)

b0 ≈ 1.4, b1 ≈ −0.59, b2 ≈ −3.2× 10−2, and b3 ≈ 3.1× 10−3 (1.12)

SinceCD � 1 at low capillary number (in the present experimentsCD < 5×10−2),

this equation can further be simplified into:

θda =D = FCa1/3 (1.13)

with F = 31/3
(
b0 + b1log10(A) + b2 [log10(A)]2 + b3 [log10(A)]3

)
.

(a) (b)

Figure 1.8 – Front gas-liquid meniscus:
(a) Along a dry substrate by Hoffman [131].
(b) Along a prewetted substrat showing the contact angle θ by Chebbi [137].

The next step is to determine the dimensionless plug length L̃p. A simple
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mass balance between the fluid collected from the fluid layer lying ahead the

plug (of thickness hf ) and the trailing liquid film (of thickness hr) deposited

behind the plug gives:

dV = (πR2 −π(R− hf )2)dXf − (πR2 −π(R− hr)2)dXr (1.14)

with V = πR2Lp the volume of the plug. Finally, with dXr = Udt and dXf =
(R− hr)2

(R− hf )2dXr , we obtain:

dLp
dt

=
[

(R− hr)2

(R− hf )2 − 1
]
U (1.15)

Using the capillary time scale, µR/σ , as the characteristic time scale, this

equation can be rewritten in the dimensionless form:

dL̃p
dt̃

=
[

(1− h̃r)2

(1− h̃f )2
− 1

]
Ca (1.16)

Liquid film deposition

The last essential point is to determine the thicknesses of the liquid film lying in

front and left behind the liquid plug hr and hf respectively. The thickness of the

trailing film can be calculated from an extension of Bretherthon’s law introduced

by Aussillous & Quéré [133] (see Fig. 1.9). This thickness only depends on the

velocity of the plug U , that is to say in dimensionless form only on the capillary

number Ca:

h̃r =
1.34Ca2/3

1 + 2.5× 1.34Ca2/3
(1.17)

Finally, the thickness h̃f depends on the history of the plug motion. Indeed,

the capillary tube is initially dry. Thus, for a cyclic motion, the liquid film

lying ahead of the plug at position XNf during the half-cycle N comes from the

deposition of a trailing film behind the plug at the same position XN−1
r = XNf

during the half cycle N − 1. In order to determine h̃f , the thickness of the liquid

film deposited on the walls must therefore be kept in memory and then taken as
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Figure 1.9 – Liquid film thickness h/r deposited at the rear interface of liquid
plug moving along a capillary tube as a function of the capillary number Ca.
The straight dashed line is the prediction of Bretherton’s law [111] valid at
low capillary number (Ca < 10−3) and the full line is the extended formula
proposed by Aussillous & Quéré [133] valid at high capillary number.

an entry when the plug moves back to the same location. If the plug moves to a

location never visited before, then the tube is dry, h̃f = 0 and the pressure jump

for the front interface corresponds to the dry version.This analysis shows that

the liquid film acts as a memory of the liquid plug motion. Nevertheless, each

back and forth motion of the liquid plug prescribes new values of the liquid film

thickness. This means that this memory is a short term memory whose lifetime

is a half cycle.

To summarize, the complete nonlinear system of equations that need to be
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solved to determine the evolution of the plug is:

∆P̃t =


4L̃pCa+

(
3.72 +

E2

2

)
Ca2/3, if dry

4L̃pCa+
(
3.72 +

F2

2

)
Ca2/3, if prewetted

(1.18)

F = 31/3
(
b0 + b1log10(A) + b2 [log10(A)]2 + b3 [log10(A)]3

)
(1.19)

A = (3Ca)−2/3h̃f (1.20)

dX̃r
dt̃

= Ca, X̃f = X̃r + L̃p (1.21)

dL̃p
dt̃

=
[

(1− h̃r)2

(1− h̃f )2
− 1

]
Ca (1.22)

h̃r =
1.34Ca2/3

1 + 2.5× 1.34Ca2/3
(1.23)

h̃f (X̃f ) is obtained from the memory of the liquid film deposition(1.24)

At each change of flow direction, the front meniscus becomes the rear meniscus

and vice versa. The pressure balance in the dry and prewetted tubes share

a relatively similar expression, but the coefficient E remains constant while F

depends both onCa and h̃r . This system of equations is solved numerically with a

first order Euler explicit method. Since the dynamics is accelerative, an adaptive

time step refinement is used. It consists in keeping the spatial displacement over

a time step constant: ∆t̃ = ∆x̃/Ca with ∆x̃ constant. Convergence analysis on ∆x̃

was performed for the calculations presented in this chapter.

1.3.3 Validation of the model for unidirectional pressure forc-

ing in a dry capillary tube

Magniez & al. [97] validated the constitutive laws summarized in the previous

section through careful comparison with experiments of the motion of liquid

plugs in prewetted capillary tubes driven by a constant pressure head. This

section is dedicated to the validation of the constitutive laws for the motion of

liquid plugs in dry capillary tubes driven by an unidirectional pressure driving
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∆Pt = 80P a
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Figure 1.10 – Unidirectional pressure forcing imposed by the pressure con-
troller. Blue solid line: pressure magnitude measured with an integrated
pressure sensor. Red dashed line: approximation of the pressure driving by the
so-called Gompertz function ∆Pt = 78exp(−6exp(−3t)) used in the simulations
as the driving pressure head since it fits well with the experimental signal.
Black dashed-dotted line: asymptote ∆Pt = 80 Pa when t→∞.

(represented on Fig. 1.10) and in particular the determination of the Hoffman-

Tanner constant E (an essential parameter in the analytical model). om

In such configuration (Fig. 1.11), the deposition of a trailing film behind the

plug leads to the reduction of the plug length (see Fig. 1.11b) and eventually its

rupture when the front and rear interface meet (see Fig. 1.11a at time t = 3 s).

This process is unsteady and highly accelerative as seen on Fig. 1.11c. From t = 0

to t = 2 s, this acceleration is mostly related to the increase in the pressure head

(see Fig. 1.10). After t = 2 s, the acceleration goes on and is even exacerbated close

to the plug rupture, while the pressure head reaches a plateau. This behavior can

be understood by rewriting equation 1.18 under a form reminiscent of Ohm’s

law: ∆P̃t = R̃tCa, with R̃t = (R̃v + R̃ri + R̃fi ) the dimensionless global resistance to

the flow, R̃v = 4L̃p, R̃fi = E2/2 Ca−1/3 and R̃ri = 3.72 Ca−1/3 the viscous, front and

rear interface resistances respectively. From this form of the pressure balance,

we see that the reduction of the plug length L̃p leads to a reduction of the viscous
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Figure 1.11 – Temporal evolution of a liquid plug of initial length L0 = 2.5mm
pushed with a unidirectional driving pressure (represented on Fig. 1.10) in a
dry capillary tube.
(a) Position of the rear and front meniscus.
(b) Evolution of the plug length.
(c) Evolution of the plug dimensionless speed, i.e. the capillary number Ca.
Blue curves correspond to experiments and the red dashed curves are obtained
from simulations of equations 1.18 to 1.24.

resistance R̃v and thus, at constant pressure driving ∆P̃t, to an increase of the

capillary number. This increase in the capillary number is strengthened by a

decrease of the interfacial resistance R̃i = R̃
f
i + R̃ri , since R̃i is proportional to

Ca−1/3. Finally, the increase of the trailing film thickness with the capillary

number (equation 1.23) implies that the whole process (fluid deposition and

plug motion) accelerate progressively as can be seen on Fig. 1.11. It is important

to note that in these experiments the acceleration of the plug does not rely on

inertial effects (which can be neglected according to the dimensional analysis
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provided in section 1.3.1) but rather on the intimate relation between the plug

size and velocity.

Many experiments have been performed for different initial plug lengths and

compared with the numerical solutions of equations (1.18) to (1.24) (dry version

with h̃f = 0). In the simulations, a Gompertz function ∆Pt = 78exp(−6exp(−3t))

was used as the driving pressure head due to its excellent match with the pressure

head measured experimentally at the exit of the the pressure controller with an

integrated pressure sensor (see Fig. 1.10, blue line corresponds to experimental

signal and red line to best fit with Gompertz function). The complex shape of the

pressure head is the result of the pressure controller response time (the command

is a constant pressure Po = 80 P a starting at t = 0). The only adjustable parameter

in the model is the Hoffman-Tanner constant E appearing in equation (1.18).

The best fit between experiments and theory was achieved for E = 4.4, a value

close to the coefficient 4.3 obtained by Bico & Quéré [155] in their experiments

on falling of liquid slugs in vertical dry capillary tubes. With this value, an

excellent prediction of the plug dynamics is achieved for all experiments (see

e.g. Fig. 1.11 where blue solid lines correspond to experiments and red dashed

lines to simulations). In particular, this model enables a quantitative prediction

of the rupture length, defined as the portion of the tube Ld =max(Xf )−min(Xr)

visited by the liquid plug before its rupture (see Fig. 1.12a), and the rupture

time, which is the total time elapsed between the beginning of the experiment

and the plug rupture (see Fig. 1.12b).

1.4 Cyclic forcing of liquid plugs

This section is dedicated to the dynamics of liquid plugs under cyclic forcing.

In the first subsection, the influence of the forcing configuration (pressure of

flow rate) is examined. The second subsection enlightens the fundamental role

played by hysteretic effects resulting from fluid deposition on the walls.
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Figure 1.12 – Evolutions of liquid plugs pushed with a unidirectional pressure
head of the form ∆Pt = 60exp(−6exp(−3.5t)) in a dry capillary tube as a func-
tion of the initial plug length L0:
(a) Evolution of the rupture length.
(b) Evolution of the rupture time.
The blue stars represent experiments. The red curve is obtained numerically
by simulating the evolution for 107 initial plug lengths.

1.4.1 Influence of the driving condition: pressure head versus

flow rate

In this first subsection, the responses of liquid plugs to two types of forcings

are compared: (i) a cyclic flow rate imposed by a syringe pump (represented on

Fig. 1.13a, blue line) and (ii) a pressure cycle imposed by a pressure controller

(represented on Fig. 1.13b, blue line). These forcings have a complex temporal

shape owing to the response time of the syringe pump and pressure controller.

In section 1.2, we describe precisely how this forcing conditions are obtained.

The pressure forcing is well approximated by the following analytical expression,

which is a combination of Gompertz functions (see Fig. 1.13b, red dashed line):
∆Pt = 78exp(−6exp(−3t)) for t ∈ [0,T ]

∆Pt = (−1)n(Pc − Pd) for t ∈ [n, (n+ 1)T ]

Pc = 78exp(−3exp(−3(t −nT )))

Pd = 78exp(−1.4(t −nT ))exp(−0.02 ∗ exp(−1.4 ∗ (t −nT )))

(1.25)
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Figure 1.13 – Cylic driven forcings imposed experimentally with respectively a
syringe pump and a pressure controller:
(a) Flow rate forcing.
(b) pressure cyclic forcing.
Blue solid line: experimental values measured with sensors. Red dashed line:
fit of the pressure cyclic forcing measured experimentally with the analytical
expression: ∆Pt = 78exp(−6exp(−3t)) for t ∈ [0,T ], ∆Pt = (−1)n(Pc − Pd) for
t ∈ [nT , (n+ 1)T ] with Pc = 78exp(−3exp(−3(t −nT ))) and Pd = 78exp(−1.4(t −
nT ))exp(−0.02exp(−1.4 ∗ (t −nT ))), T = 2.15 s the half period and n ∈N∗.

with T = 2.15 s the half period and n ∈N∗ for cyclic forcing.

Two extremely different behaviors are evidenced in these two cases: For

a cyclic flow rate forcing (see Fig. 1.14a, b, c), the liquid plug dynamics is

periodic and stable (see phase portrait on Fig. 1.15a). Indeed, the plug velocity

and positions are directly imposed by the motion of the syringe pump, thus:

U (t+2T ) =U (t) (see Fig. 1.14b) and Xr(t+2T ) = Xr(t) (see Fig. 1.14a). Moreover,

since (i) the film deposition process solely depends on the plug velocity and (ii)

the fluid recovery at half cycle N depends on the fluid deposition at half cycle

N − 1, the mass balance is null over each cycle and the evolution of the plug

size is also periodic: Lp(t + 2T ) = Lp(t) (see Fig. 1.14c). It is interesting to note

that the initial wall wetting condition plays little role in this process; it only

affects the mass balance during the first half cycle and thus determines the plug

size Lp((2n+ 1)T ) with n ∈N. This wetting condition is indeed erased by the

backward motion during the second half cycle and the plug evolution is then
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only dictated by the temporal shape of the flow rate cycle.
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Figure 1.14 – Temporal evolutions of a liquid plug under two types of cyclic
driving:
(a), (b), (c) Temporal evolution of a single liquid plug of initial length L0 = 1.05
mm pushed with the cyclic flow rate forcing represented on Fig. 1.13a. (a)
Positions of the menisci. (b) Evolution of the dimensionless velocity of the left
meniscus (capillary number). (c) Evolution of the plug length.
(d), (e), (f) Temporal evolution of a single liquid plug of initial length L0 = 3.3
mm pushed with the pressure cyclic forcing represented on Fig. 1.13d. (d)
Position of the menisci. (e) Evolution of the dimensionless velocity of the left
meniscus (capillary number). (f) Evolution of the plug length.
In all these figures blue lines represent experiments and red dashed lines
simulations obtained from equations (Fig. 1.18) to (1.24).

The liquid plug undergoes a very different evolution for a periodic pressure
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forcing (see Fig. 1.14d, e, f). In this case, the plug velocity and position are

no more enforced by the driving condition and depend only on the evolution

of the resistance of the plug to motion. For the forcing condition represented

on Fig. 1.13b, it is observed that (i) the plug travels on a longer portion of the

tube at each cycle (see Fig. 1.14d), (ii) the dimensionless velocity of the plug

(the capillary number) is no more cyclic but increases progressively at each

cycle, U (t + 2T ) > U (t) (see Fig. 1.14e) and (iii) the size of the plug diminishes

(Lp(t + 2T ) < Lp(t)), eventually leading to its rupture (see Fig. 1.14f). These

phenomena are of course related since a larger plug velocity leads to more

liquid deposition and thus a diminution of the plug size. Conversely, the cyclic

diminution of the plug size leads to a decrease in the viscous resistance (the

same process as described in subsection 1.3.3). Nevertheless this sole mechanism

is not sufficient to explain the cyclic acceleration of the plug evidenced in the

phase portrait (see Fig. 1.15b) as demonstrated in the next sections.
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Figure 1.15 – Phase portrait showing the evolution of the position of the left
meniscus as a function of the capillary number Ca:
(a) Cyclic flow rate forcing.
(b) cyclic pressure forcing.
The blue curves correspond to experiments and the red dashed line to simula-
tions.
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1.4.2 Memory effects and hysteretic behaviour
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Figure 1.16 – Solid lines: dimensionless front interface resistance R̃fi at dif-
ferent capillary numbers Ca as a function of the prewetting film thickness h̃f .
Dashed lines: dimensionless front interface resistance for dry capillary tubes.
These curves show (i) that the interfacial resistance is systematically lower for
prewetted capillary tubes than for dry capillary tubes and (ii) that for prewetted
capillary tubes, the interfacial resistance decreases with the thickness of the
prewetting film h̃f

In this section, the model introduced in section 1.3.2 (equations (1.18)to

(1.24)) is used to analyse the origin of the departure from a periodic evolution

for a pressure forcing and in particular analyse the contributions of the different

terms. Indeed, this model quantitatively reproduces the liquid plug dynamics

(see Fig. 1.14d, e, f, red dashed lines, Fig. 1.15 and Fig. 1.12 for comparisons of

the simulations and experiments for a large set of initial conditions).

The response of a liquid plug to a cyclic forcing is periodic since (i) the plug

velocity is enforced and does not rely on the evolution of the plug resistance to

motion and (ii) the liquid deposition on the walls, and thus the size of the plug

solely depends on the plug velocity. This leads to a zero mass balance at each

cycle.

For pressure driven cyclic forcing, the departure from this periodic behavior
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Figure 1.17 – Spatiotemporal diagram showing the evolution of the thickness of
the liquid film deposited on the walls obtained from simulations of equations
(1.18)to (1.24) with the same initial and forcing conditions as Fig. 1.14. The
dimensionless film thickness h̃ = h/R is represented in color at each time and
position in the tube.

thus relies on the evolution of the plug resistance at each cycle due to the

existence of flow memories since the flow is quasi-static. A first memory, which

is already at hand in unidirectional pressure forcing is simply the evolution

of the plug length. Indeed, the plug size at a given time t depends on the

history of the plug velocity at times t∗ < t. In turn, the plug length modifies the

viscous resistance R̃v = 4L̃p and thus the plug velocity. The mass balance which

is relatively simple for a unidirectional driving in a dry tube (the liquid left at

time t on the walls only depends on the velocity of the plug at time t) becomes

much more complex for a cyclic forcing. Indeed, at each back and forth motion,

the liquid plug leaves on the walls a film layer whose thickness keeps a memory

of the plug velocity during the corresponding half-cycle (since h̃r depends on

Ca). Thus, the mass balance both depends on the velocity of the plug at time

t and its velocity at the same position in the previous cycle. The progressive
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transfer of mass from the liquid plug to the liquid film is clearly evidenced

on Fig. 1.17. This graph shows that both the portion of the tube covered by

the liquid film and the film thickness increase at each cycle. This graph also

exhibits the complexity of the mass transfer: While the size of the plug gradually

decreases at each cycle, its evolution is not monotonous during a half-cycle.

Indeed, when the flow direction is changed the plug moves at first slowly (due to

the response time of the pressure controller) and thus the thickness of the liquid

film deposited on the walls behind the plug is smaller than the one in front of

the plug, leading to a growth of the liquid plug. Then the plug accelerates and

progressively the tendency is inverted leading to a reduction of the plug size.

The transition between the growing and decreasing phases correspond on the

graph to the times when the thickness (color) on each side of the plug is the

same.

A second memory originates from the lubrication of the plug motion by the

liquid film, i.e. the reduction of the front interface resistance R̃fi = (F2/2)Ca−1/3

as the thickness of the prewetting film h̃f is increased (see equation 1.20 and Fig.

1.16). Indeed, during the first half cycle the liquid plug moves on a dry capillary

tube and leaves a liquid film behind it on the walls whose thickness increases

with the speed of the liquid plug (see Fig. 1.17). This liquid film lubricates the

passage of the plug during the back motion, leading to a drastic reduction of the

front interface resistance (see Fig. 1.16) and thus, a higher plug speed. Then the

same mechanism is reproduced during the following cycles: Since the speed is

increased at each cycle, the plug leaves more liquid on the walls, leading again

to a reduction of the interfacial resistance through a lubrication effect.

Of course, these two memory effects are coupled. To quantify the relative

contribution of these two effects, we simulated the plug behavior when the

viscous resistance R̃v is kept constant (see Fig. 1.18b) and when the front in-

terface resistance R̃fi is kept constant (see Fig. 1.18c). The simulations show

that in these two cases the plug acceleration and rupture still occurs but that

the rupture time is substantially increased. This tendency is confirmed on Fig.

1.19 where we compared the time necessary for the plug to rupture (called the

"rupture time") to simulations for a large number of initial plug sizes when

the whole model is considered (red solid line), when the first memory effect
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Figure 1.18 – Simulations with equations (1.18) to (1.24) of the positions of the
menisci of a liquid plug of initial of size L0 = 3.3 mm pushed with the cyclic
pressure driving represented on 1.13(b):
(a) Complete models (equations (1.19) and (1.20)).
(b) The viscous resistance interface is kept constant R̃v = cste.
(c) The front interface resistance is kept constant (F = E).

(length effect) is discarded (purple dashed line) and when the second memory

effect (lubrication effect) is discarded (green dashed-dotted line). While the com-

plete model quantitatively reproduces the tendencies, the other two simulations

largely overestimate the rupture time.

This analysis also shows the central role played by the initial wetting con-

dition: The successive accelerations at each half-cycle all originate from the

transition between a dry and a prewetted capillary tube during the first cycle,

which led to a massive acceleration of the plug in the back motion. In theory, the

opposite behavior (plug cyclic slow down and growth) might be observed in a

prewetted capillary tube depending on the thickness of the prewetting film and

the amplitude of the pressure driving as was already observed by Magniez & al.

[97] for unidirectional constant pressure forcing.
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Figure 1.19 – Rupture time of liquid plugs pushed with a cyclic pressure
driving given by equation (1.25) as a function of their initial lengths L0. Blue
stars correspond to experiments, the red solid curve to simulations with the
complete model, the purple dashed-dotted line to simulations when the viscous
resistance R̃v is kept constant and the green dashed-dotted line to simulations
when the front interface resistance R̃fi is kept constant and thus lubrication
effects are discarded.

1.5 Cyclic motion vs direct rupture of the plug un-

der pressure forcing

In this last section, we compare experimentally and theoretically the time and

space required to break a liquid plug with either a unidirectional or a cyclic

pressure forcing with the same magnitude. The two driving conditions used for

this comparison are represented respectively on Fig. 1.10 and Fig. 1.13b. As pre-

viously mentioned, their temporal evolution can be approximated respectively

by the Gompertz function ∆Pt = 78exp(−6exp(−3t)) and the equations (1.25).

Figure 1.20 compares theoretically the dynamics of liquid plugs of increasing

sizes for unidirectional and cyclic pressure driving. This figure shows (i) that

plug rupture and thus airways reopening is obtained in a longer time but in a

more confined space with a cyclic forcing compared to a unidirectional pressure
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Figure 1.20 – Spatiotemporal evolution of plugs of initial lengths L1 = 2.2
mm (a,b), L2 = 2.8 mm (c,d) and L3 = 3.2 mm (e,f) pushed either with a
unidirectional pressure driving (black dotted line) or with a cyclic pressure
driving (red solid line):
(a), (c), (e): Position of the rear and front menisci.
(b), (d), (f): Evolution of the plug size.

forcing and (ii) that the difference between these two driving conditions increases

with the number of cycles and hence with the initial size of the liquid plug. This

tendency has been verified experimentally and theoretically on a large number

of initial plug lengths. The results are summarized in Fig. 1.21. Figures 1.21(a)

and (b) show respectively the rupture length (the portion of the tube visited

by the liquid plug before its rupture) and the rupture time (the time required

for the plug to rupture) as a function of the plug initial length, L0. In these
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two figures, the blue stars and the solid red line correspond respectively to

experiments and simulations for a cyclic pressure driving, while the black dots

corresponds to simulations with a unidirectional pressure driving. The successive

cycles are highlighted with different colors. This figure shows again excellent

agreement between experimental data and numerical predictions for up to 5

cycles (Fig. 1.21), underlining that the model summarized in equations (1.18) to

(1.24) captures the main physics.

Figure 1.21 – Evolutions of liquid plugs pushed with a cyclic pressure driving
given by equation (1.25) as a function of their initial lengths L0:
(a) Evolution of the rupture length.
(b) Evolution of the rupture time.
Blue stars correspond to cyclic experiments and the red solid curve to simula-
tions. The black dashed line and the blue square dots correspond respectively
to simulations and experiments for a unidirectional pressure driving.

As long as the liquid plug breaks during the first half cycle, the cyclic forcing

(red solid line) and the unidirectional forcing (black dotted line) are of course

equivalent. When the plug starts going back (for initial length L0 ≈ 1.7 mm)

brutal changes in the tendencies are observed: the rupture length starts decreas-

ing (see Fig. 1.21a), while the increase in the rupture time is on the contrary

exacerbated (see Fig. 1.21b). For larger plug lengths, the number of cycles

required to achieve plug rupture increases rapidly. Since each change in the plug
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flow direction is associated with some sharp fluctuations of the rupture length,

this increase in the number of cycles leads to a saturation of the rupture length

(see Fig. 1.21a). This is very different from the relatively linear trend predicted

by our simulations (black dots) and observed experimentally on Fig. 1.12 for a

unidirectional forcing. This saturation means that there is a maximal distance

that a liquid plug can travel regardless of its size for a prescribed pressure cycle.

An interesting point is that, despite this confinement, the plug rupture remains

possible due to the hysteretic effects that enable a progressive acceleration of the

liquid plug at each cycle, even if the liquid plug moves on the same portion of

the tube.
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Figure 1.22 – Rupture lengths of two liquid plugs of close initial lengths
pushed with a cyclic pressure driving:
(a) Experimental investigation.
(b) numerical investigation.
The initial length of the plug in dashed lines L1 = 2.5 mm is smaller than the
initial length of the plug in solid line L2 = 2.85 mm but nevertheless travels on
a larger distance Ld1 > Ld2 before its rupture.

To understand the decrease in the rupture length observed when the flow

direction is changed, we plotted the experimentally observed (Fig. 1.22a) and

numerically predicted (see Fig. 1.22b) spatiotemporal diagrams of the evolution

of two plugs with initial lengths L1 = 2.5 mm and L2 = 2.85 mm in a region
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where the rupture length is decreasing when the initial plug length is increased.

The experiments were performed with a different pressure driving magnitude

Po = 60 Pa than for Fig. 1.21. So the positions of these two points in the rupture

length graph are represented on Fig. 1.23 (encircled points). In Fig. 1.22 the

dashed lines corresponds to L1 = 2.5mm and the solid lines to L2 = 2.85 mm.

The experimental (Fig. 1.22a, blue line) and numerical trends (Fig. 1.22b, red

line) are similar. These figures show that the largest plug requires less space to

break than the smallest plug Ld1 > Ld2. The origin of this rather counterintuitive

behavior again lies in memory effects. Since these two plugs are pushed with

the same pressure head, the smallest plug with the lowest bulk resistance moves

faster, leaves more liquid on the walls than the bigger one and thus goes further

during the first half-cycle. When the sign of the pressure head is inverted, the

smallest liquid plug will move on a more prewetted channel and thus (i) it will

travel faster (since lubrication effects reduce its resistance to motion) and (ii) it

will recover more liquid, thus slowing down the plug size decrease through the

mass balance. The combination of these two effects enables the plug to reach a

deeper location in the tube.

On the other hand, a comparison between unidirectional and cyclic forcing

indicates that more time is required to break liquid plugs for cyclic motion than

straight motion (see Fig. 1.21b). This is simply the result of the mass balance. As

the liquid plug moves back and forth on prewetted capillary tubes, it recovers

some liquid while it doesn’t when it moves only on a dry capillary tube. This

slows down the plug size evolution.

Finally, a comparison of the evolutions of the rupture time and rupture length

on Fig. 1.21 shows that the rupture time undergoes an exponential-like growth

when the rupture length approaches the saturation zone (for length Lo > Ls) with

Ls ≈ 2.4 mm. To confirm this trend, we performed some numerical simulations

of the rupture time and rupture length for three different time periods (see Fig.

1.24). For each period, the evolution is relatively similar and the semilog graph

in Fig. 1.24b, indeed underlines that the rupture time follows an exponential

growth (rupture time ∝ ex/Lc) for initial plug lengths larger than a critical length

Ls. We calculated both the critical saturation length Ls and the characteristic
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Figure 1.23 – Rupture length of a liquid plug pushed with a cyclic pressure
driving given by the analytical function ∆Pt = 59exp(−6exp(−3.5t)) for t ∈
[0,T ], ∆Pt = (−1)n(Pc−Pd) for t ∈ [nT , (n+1)T ] with Pc = 59exp(−2.2exp(−3.5(t−
nT ))) and Pd = 59exp(−1.1(t −nT ))exp(−0.06exp(−1.1 ∗ (t −nT ))), T = 2.1 s the
half period and n ∈N∗. Blue stars correspond to experiments, the red curve is
the result from our simulations. The encircled experimental points correspond
to plugs of initial lengths L1 = 2.5 mm and L2 = 2.85 mm, whose evolutions are
compared in Fig. 1.22.

length Lc for the three time periods T = 2s, 4s and 6s and found the values:

Critical saturation lengths: Ls2 ≈ 1.6mm, Ls4 ≈ 2.4mm, Ls6 ≈ 3.4mm (1.26)

Characteristic lengths: Lc2 ≈ 0.6mm, Lc4 ≈ 0.7mm, Lc6 ≈ 0.8mm (1.27)

These two factors depend on the time period T . This means that for each time

period and pressure forcing, the rupture time becomes exponentially long when

Lo −Ls� Lc and the pressure driven plug dynamics asymptotes a stable periodic

propagation.

As a conclusion of this section, large liquid plug breaking is achieved in a

more confined space but in longer time with a cyclic forcing than with a unidirec-

tional pressure forcing. Moreover, the rupture times grows exponentially when

the plug initial length exceeds a critical length Ls, whose value depends on the
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Figure 1.24 – Evolutions of liquid plugs pushed with a cyclic pressure driving
given by equation (1.25) as a function of their initial lengths L0 for 3 different
time periods T = 2s, 4s and 6s:
(a) Evolution of the rupture length.
(b) Evolution of the rupture time.

cycle period. In this regime, the liquid plug dynamics becomes quasi-periodic.

1.6 Conclusion

Despite its occurence in practical situations such as pulmonary flows in patho-

logical conditions, the specificity of the response of liquid plugs to cyclic driving

has not been studied so far experimentally and theoretically. The present results

show that the dynamics and rupture of a liquid plug strongly depends on the

type of forcing. A flow rate cyclic forcing results in periodic oscillations of the

plug and no rupture. On the contrary, a pressure cyclic forcing enables airway

reopening through a progressive acceleration of the liquid plug dynamics and re-

duction of its size. This departure from a periodic response originates from two

memory effects which decrease the resistance of the plug to motion at each cycle:

(i) the cyclic reduction of the plug size which reduces the viscous resistance and

(ii) a lubrication effect which reduces the front interface resistance. These two
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coupled effects are strongly connected to the thickness of the liquid film lying on

the walls, which keeps a memory of previous plug displacements. In addition,

this study shows that the rupture of a liquid plug with a prescribed pressure

cycle is a spatially bounded phenomenon regardless of the initial plug length. In

other words, large plug can be ruptured in a limited space with a cyclic forcing,

while more and more space is required to break plugs of increasing size with a

unidirectional forcing. The trade-off is that more time is nevertheless required

and that this time grows exponentially above a critical length, which depends

on the cycle period and the applied pressure.

The analysis of the underlying physics was achieved through a comparison

of extensive experimental data to a reduced dimension model. This model quan-

titatively predicts the plug behavior for the numerous pressure cycles studied

in this chapter. Moreover it is in principle valid for any pressure cycle in the

visco-capillary regime (low capillary, Reynolds and Bond numbers). Combined

with constitutive laws for the plug divisions at bifurcation, it might serve as

a basis to simulate cyclic plug dynamics in more complex geometries, or even

the dynamics of mucus plugs in distal pulmonary airways. In this last case

however, complementary elements such as the influence of walls elasticity, the

non-Newtonian fluid properties of mucus, or the presence of an initial mucus

layer on the walls should be implemented to achieve realistic simulations. In

particular, it is envisioned that the presence of a prewetting film on the walls

might lead to either plug ruptures or persistent occlusions as was demonstrated

by Magniez & al. [97] for unidirectional driving. Complete models of plug

dynamics would open tremendous perspectives, such as the "virtual testing" of

new strategies to improve airways clearance for patients suffering from chronic

obstructive pulmonary disease or cystic fibrosis. But it might also open perspec-

tives to design robust pressure controllers that enable stable control of liquid

plugs. Indeed, the instability to breaking is a major drawback to manipulate

plugs with pressure controllers.



Chapter2
Critical pressure necessary for airway

reopening

Abstract

In this chapter, we investigate theoretically and numerically the critical pressure

necessary to reopen prewetted obstructed airways under complex (non-constant)

driving conditions. For realistic cyclic driving, it is shown that depending on the

thickness of the prewetting liquid film and the magnitude of the pressure driving,

the behavior of the plug can be either accelerative with a progressive decrease

of its length at each cycle and eventually leading to its rupture or conversely,

decelerative associated with plug growths and therefore, worsening of the airway

obstruction. In particular, we are able to identify pressure thresholds for the

transition between these two regimes for physiologically relevant forcing. This

study allows a deeper comprehension of liquid plugs response to breathing

cycles and underlines the importance of considering a complete geometry model

of the pulmonary tree including interactions in the network through bifurcations

and the wall properties.
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2.1 Method

In this chapter, we consider a liquid plug of initial length L0 driven by a time

dependent pressure head ∆Pt in a capillary tube of radius R prewetted by an

initial liquid film of thickness h0. Xr and Xf correspond to the positions of the

rear and front interfaces (menisci), with Lp(t) = Xf −Xr the plug length at time t,

and hf and hr to the thicknesses of the wetting film in front and behind the plug.

Figure 2.1 – Sketch of a liquid plug in a prewetted capillary tube adapted from
[97].

This theoretical study is based on the model developed in chapter 1 in the

case of a prewetted capillary tube, which can be written under dimensionless

form [97]:

∆P̃t = 4L̃pCa+
(
3.72 +

F2

2

)
Ca2/3 (2.1)

dX̃r
dt̃

= Ca, X̃f = X̃r + L̃p (2.2)

dL̃p
dt̃

=
[

(1− h̃r)2

(1− h̃f )2
− 1

]
Ca (2.3)

h̃r =
1.34Ca2/3

1 + 2.5× 1.34Ca2/3
(2.4)

with F = 31/3
(
b0 +b1log10(A)+b2 [log10(A)]2 +b3 [log10(A)]3

)
and A = (3Ca)−2/3h̃f
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2.2 Constant unidirectional pressure driving

The response of a liquid plug driven by a constant pressure difference in a

prewetted channel was investigated experimentally, theoretically and numeri-

cally in [151, 98, 97]. The plug dynamics strongly depends on the thickness of

the prewetting liquid film h0 and the magnitude of the pressure driving. Two

important regimes can be distinguished as shown experimentally and theoreti-

cally by [97]:

• A regime of acceleration, wherein the liquid plug leaves more liquid on the

walls behind it than it recovers from the prewetting film (h̃r > h̃f = h̃0). In

this case, the length of the plug decreases, eventually leading to its rupture.

• A regime of deceleration, in which the plugs leaves less liquid on the walls

behind it than it recovers from the prewetting film (h̃r < h̃f = h̃0). In this

case, the plug size increases and the plug slows down.

The transition between the two regimes occurs at a critical pressure ∆P̃c related

to an equal balance between the precursor and the trailing liquid films thickness

(h̃r = h̃f = h̃0) leading to (dL̃p/dt̃ = 0). A critical capillary number was derived

from equation 1.23 by Magniez & al. [97]) in this case:

Cac =
(

h̃f

1.34(1− 2.5h̃f )

)3/2

(2.5)

Since the evolution of the plug is monotonous, equation 2.5 combined with

equation 2.1 enables to predict the pressure necessary for airway reopening

depending on the precursor liquid film thickness: ∆P̃c = ∆P̃t(Cac, L̃0, h̃0). If the

driving pressure is greater than the critical pressure (∆P̃t > ∆P̃c), we observe an

acceleration of the liquid plug and conversely, if the driving pressure is smaller

than the critical pressure, (∆P̃t > ∆P̃c) we observe a deceleration of the liquid

plugs as shown in Fig 2.3.

The evolution of the critical pressure ∆P̃c as a function of the prewetting film

thickness h̃0 is represented on Fig. 2.2 for an initial length L0 = 5R.
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Figure 2.2 – Critical pressure for the transition of regimes of a liquid plug of
initial length L̃0 = 5 in a capillary tube covered with prewetting liquid films of
different thickness h̃0.

The acceleration regime is characterised by the temporal reduction of the

plug length (see Fig 2.3b), which further reduces the viscous resistance leading

to a highly accelerative evolution (see Fig 2.3c). Since the critical pressure

∆P̃c = ∆P̃t(Cac) depends linearly on the plug length (Eq. 2.1), this leads to

a reduction of the critical pressure away from the driving pressure (see Fig

2.3d). This regime eventually leads to the plug rupture (see Fig 2.3a). As we

keep the initial liquid film thickness constant h̃0 = 0.04, a reduction of the

driving pressure leads to a deceleration regime when ∆P̃c < ∆P̃t, characterised

by an increase in the plug length (Fig 2.3f), inducing an increase in the viscous

resistance which in turns slows down the plug (see Fig. 2.3) and increases the

critical pressure. For constant pressure driving, the critical pressure always

evolve away from the pressure driving, so that no transition can occur between

the acceleration and deceleration regimes.

To investigate physiologically relevant regimes, we must consider complex

cyclic driving such as the one represented on Fig. 2.4. Such complex signal

has a time-dependent amplitude and is cyclic. To understand the role play by

these two components of the signal, we will first study the response of liquid

plugs to time-dependent unidirectional pressure driving and then cyclic driving

with constant magnitude. Finally, we will study the response of liquid plugs to
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Figure 2.3 – Temporal evolution of the dynamics of a liquid plug of initial length
L̃0 = 5 in a capillary tube prewetted by a liquid film of thickness h̃0 = 0.04
under the driving pressure ∆P̃ = 0.4 in the acceleration regime and ∆P̃t = 0.2 in
the deceleration regime:
(a-e) Position of the menisci.
(b-f) Evolution of the length of the plug.
(c-g) Evolution of the non dimensional speed of the plug Ca.
(d-h) Evolution of the pressure.
The critical capillary number and the critical pressure appear in red in Figure
(c-g) and (d-h)respectively.
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Figure 2.4 – Alveolar pressure during a quiet breathing cycle [8].

realistic pressure driving.

2.3 Time dependent unidirectional pressure driving
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Figure 2.5 – Unidirectional time dependent pressure driving ∆P̃t = P̃0(1 −
exp(−t̃/ τ̃)) with P̃0 = 0.9 and τ̃ = 103.

In this section we consider a simple time dependent exponential driving

of the form ∆P̃t = P̃0(1 − exp(−t̃/ τ̃)) in which t̃ and τ̃ are respectively the non

dimensional values of the time and transient time. The asymptotic value P̃0 is
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reached when t→∞ as shown in Fig. 2.5.

2.3.1 Transition between different flow regimes

An increase in the magnitude P̃0 of the pressure driving while keeping the

transient time τ̃ and the initial prewetting liquid film thickness h̃0 constant

leads to the observation of three different flow regimes as shown in Fig. 2.6: (i) a

deceleration regime, (ii) an intermediate regime, that we call induced deceleration
regime and (i) an acceleration regime.

The deceleration regime occurs when the magnitude P̃0 is lower than the

initial critical pressure P̃co(h̃0, L̃0) (see Fig. 2.6d). In this case, and despite the

progressive increase in the driving pressure, the liquid plug always remain in the

deceleration regime which is characterised by a low capillary number compared

to the critical capillary number (see Fig. 2.6c) and a plug growth (see Fig. 2.6a,

b). In this regime, we recover the behavior already observed at constant driving

pressure: a critical pressure increasing over time principally due to the plug

growth, while the critical capillary number remains constant because it solely

depends on the prewetting liquid film thickness h̃0.

The so-called induced deceleration regime occurs at moderate magnitude P̃0 in

which, though the magnitude slightly overcomes the initial critical pressure P̃co,

it is not enough to reverse the tendency, and the plug remains in the deceleration

regime. This regime is explained by the evolution of the critical pressure during

the transient regime (between t̃ = 0 and t̃ = 5τ̃). Within this time period, the

driving pressure remains below the critical pressure, the liquid plug grows,

which in turns increases the critical pressure (see Fig. 2.6d). Thus, when the

maximum driving pressure is reached ∆P̃t = P̃0, it remains below the new value

of the critical pressure and the acceleration regime is never reached.

Finally, the acceleration regime occurs when the pressure driving magnitude P̃0

significantly overcomes the initial critical pressure. This regime is characterised

at first by a slight plug growth and a low capillary number when (t̃ < 2τ̃) and is

rapidly followed by an increase in the capillary number and a diminution of the

plug length, which eventually leads to the plug rupture.

The transient region makes more complex the prediction of the transition
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Figure 2.6 – Temporal evolution of a liquid plug of initial length L̃0 = 5 in a
capillary tube prewetted by a liquid film of dimensionless thickness h̃0 = 0.07
under a driving pressure of the form ∆P̃t = P̃0(1 − exp(t̃/103)). Left column:
pressure magnitude P̃0 = 0.9, acceleration regime. Center column: P̃0 = 0.76,
induced deceleration regime. Right column: P̃0 = 0.6, deceleration regime.
(a) Positions of the rear and front menisci.
(b) Evolution of the plug length.
(c) Evolution of the non dimensional speed of the plug Ca.
(d) Evolution of the pressure.
The critical capillary number and the critical pressure appear in red in figures
(c) and (d) respectively.
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between the acceleration and deceleration regime. However, the magnitude of

the pressure driving P̃0 and the initial prewetting liquid film thickness h̃0 still

remain the key parameters.

2.3.2 Influence of the main parameters
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Figure 2.7 – Critical pressure for the transition between the acceleration regime
and the deceleration for τ̃ = 0,1000,2000,4000.

The influence of the prewetting liquid film h̃0 and the transient time τ̃ are

presented in Fig. 2.7, in which the critical pressure is plotted as a function of

the prewetting liquid film thickness h̃f for four transient times pressure driving

(τ̃ = 0,1000,2000,4000).

As expected, the critical pressure is lower for constant pressure driving (τ̃ = 0)

and further increases when the transient time τ̃ is increased. Indeed, the critical

pressure is increased during the transient region owing to the increase in the

plug size. However, at low values of the prewetting liquid film (h0 < 0.04), all

the curves converge, which means that the effects of the transient time can be

neglected. Indeed, the evolution of the critical pressure during the transient

time is linked to the increase in the plug size within this time period, which is

lowered when the prewetting film is thin.
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2.4 Cyclic rectangular pressure driving
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Figure 2.8 – Rectangular cyclic pressure driving of magnitude ∆P̃t = 1 and
period T̃ = 104.

In this section, we investigate the effect of cyclic pressure forcing on the

dynamics of the plug. To isolate the effect of the change in the flow direction, we

consider a signal of constant magnitude (see Fig 2.8).

2.4.1 Flow regimes

Three regimes are observed when a plug is driven by a cyclic pressure driving of

constant magnitude (see Fig. 2.9):

(i) A rupture acceleration regime at high pressure magnitude leading to the

plug rupture.

(ii) A saturated acceleration regime at intermediate pressure magnitude char-

acterised by a diminution of the plug length, which however tends towards a

saturation value. In this situation, the plug starts accelerating but since the

pressure magnitude (∆P̃t = 0.45) is close to the critical pressure introduced in

the previous section, the liquid plug reaches a situation of equal mass balance

between the liquid film recovered from the prewetting film and left behind

it (h̃f = h̃r) all over the successive cycles. Thus the plug dynamics eventually

converges toward a stable periodic oscillating state with a constant value of the
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Figure 2.9 – Temporal evolution of a liquid plug of initial length L̃0 = 5 in a
capillary tube prewetted by a liquid film of dimensionless thickness h̃0 = 0.04
under a driving pressure of the form presented in Fig. 2.8. Left: driving pres-
sure magnitude ∆P̃t = 0.5, acceleration regime. Center: ∆P̃t = 0.45, saturation
acceleration regime. Right: ∆P̃t = 0.2, deceleration regime.
(a) Positions of the menisci.
(b) Evolution of the plug length.
(c) Evolution of the absolute value of the dimensionless speed of the plug | Ca |.
(d) Evolution of the absolute value of the pressure | ∆̃P |.
The critical capillary number and the critical pressure are represented in red
on figures (c) and (d) respectively.
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plug length and a constant velocity.

Finally, (iii) a saturated deceleration regime at low pressure magnitude in which

the length of the plug increases but also stabilizes at a saturation value as in (ii).

It is interesting to note that only the acceleration regime can be observed in dry
capillary tubes (see chapter 1) even if the rupture time increases exponentially

when the initial size of the plug is increased.

The occurrence of stationary regimes of stabilised plug oscillations is a conse-

quence of the convergence of the critical pressure toward the driving pressure.

The difference between the saturation acceleration and deceleration regimes

resides in the initial increase or decrease of the critical pressure toward the

driving pressure (see Fig. 2.9d). This leads to a saturation plug length smaller

(larger) than its initial value for acceleration (deceleration) regimes respectively.

Now that we have identified and characterised the three possible regimes, we

will in the two next subsections (i) determine the physical origin and character-

istics of the stable states and (ii) study the transition between these regimes and

establish a phase diagram.

2.4.2 Stable states

Physical analysis

The divergence of the plug dynamics or its convergence toward a stable periodic

state can be understood from the evolution of the plug during the first 3 half

periods.

If the magnitude of the pressure is higher than the initial critical pressure, the

liquid plug size diminishes through the deposition of a liquid film thicker than

the prewetting film. During the second half period, the plug comes back and

retraces its steps. The critical pressure is affected by two adversarial effects: the

diminution of the plug size and the increase in the prewetting film thickness. The

first effect reduces the critical pressure while the second increases its value (see

Fig. 2.11). In any case, the critical pressure remains below the driving pressure,

and thus the regime remains accelerative. But the difference between the rupture

and saturated accelerated regime resides in the subsequent cyclic increase or
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decrease of the critical pressure that makes it diverge or converge toward the

driving pressure. This tendency is determined through the comparison of the

critical pressure at the beginning of the third and second cycles.

If the magnitude of the pressure is lower than the initial critical pressure,

only the saturated deceleration regime can occur. Indeed, at each cycle, the plug

grows and slows down. Thus, the plug travels on a diminishing portion of the

tube and can at best collect the fluid that is lying on this portion of the tube. This

bounds the growth of the plug size and explains the observed saturation. We

can now work on the determination of the characteristics of the stable periodic

states.

Analytical description of the stable periodic states

0 0.02 0.04 0.06 0.08 0.1
−6

−4

−2

0

2

h̃s

∆
P̃
c
−

∆
P̃

Figure 2.10 – Evolution of the pressure difference between the critical capillary
number and the driving pressure in the saturation acceleration regime in which
∆P̃t = 0.45, L̃0 = 5, h̃0 = 0.04 and T̃ = 104.

In the saturated acceleration and deceleration regimes, the plug dynamics

evolves toward a stable state, wherein the capillary number Ca and the driving

pressure ∆P̃t are equal to their critical values Cac and ∆P̃c, the plug length to a

saturation value L̃s and the thickness of the wetting film to a constant value h̃s.

Therefore, equations 2.1 to 2.4 become:
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∆P̃t = ∆P̃c (2.6)

∆P̃c = 4L̃sCac +
(
3.72 +

F2

2

)
Cac

2/3 (2.7)

Cac =
(

h̃s
1.34(1− 2.5h̃s)

)3/2

(2.8)

with F = 31/3
(
b0 +b1log10(A)+b2 [log10(A)]2 +b3 [log10(A)]3

)
and A = (3Cac)

−2/3h̃s

The liquid mass balance between the initial state (wherein the plug size is

equal to L̃0 and the thickness of the liquid film on the walls h̃0) and the final

state (wherein the plug size is equal to L̃s and the thickness of the liquid film to

h̃s) gives:

L̃0 + (L̃d − L̃0)(1− (1− h̃0)2) = L̃s + (L̃d − L̃s)(1− (1− h̃s)2) (2.9)

Finally, there is a relation between the speed of the plug during the motion

in a half period and the distance travelled L̃d :

L̃d =
∫ T̃ /2

0
Cacdt̃ + L̃s =

T̃
2
Cac + L̃s (2.10)

Using these equations, the pressure difference ∆P̃t −∆P̃c is plotted against

h̃s as shown on Fig. 2.10. This graph shows that the equation ∆P̃t − ∆P̃c = 0

admits multiple solutions. The stable state corresponding to a given initial state

is obtained from a bisection method by looking for the closest solution to the

initial state corresponding to an increase or a decrease of the plug length in

the acceleration and deceleration regimes respectively. This model allows us to

compute the stationary state in the saturation acceleration regime and in the

deceleration regime as shown in Fig. 2.9. The saturation values are in good

agreement with the values obtained through the computation of the whole plug

dynamics.
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2.4.3 Diagram of the flow regimes
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Figure 2.11 – Critical pressure for the transition between the deceleration and
saturated acceleration regime (blue line, P̃ = ˜Pco) and the saturated acceleration
regime and the rupture acceleration regime (red line, P̃ = ˜Pc1) as a function of:
(a) the initial plug lengths L̃0 with h̃0 = 0.05, T̃ = 104.
(b) the oscillation periods T̃ with h̃0 = 0.05, L̃0 = 5.
(c) the initial liquid films thickness h̃0 with L̃0 = 5, T̃ = 104.

We will now analyse the transition between these 3 regimes for different

values of the key parameters governing the evolution of the liquid plug ∆P̃t, L̃0,

T̃ and h̃0.

Following the physical analysis developed in the previous section, we can

identify each regime by computing only the first 3 cycles of the plug evolution

with the following criteria:

• If | L̃p(t̃ = T̃ )− L̃p(t̃ = 2̃T ) |<| L̃p(t̃ = 2̃T )− L̃p(t̃ = 3̃T ) |, the liquid plug loses

more and more liquid at each period. This corresponds to the acceleration
regime leading to the plug rupture.

• If the previous criterion is not satisfied and L̃p(t̃ = T̃ ) < L̃0, the size of the

plug cyclically diminishes but this evolution slows down so that it evolves

toward a saturation value. This corresponds to the saturated acceleration
regime.
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• Finally the regime wherein the previous criteria are not verified and L̃p(t̃ =

T̃ ) > L̃0 is the deceleration regime.

From numerous numerical simulations, we can then obtain the phase dia-

grams representing the transition between the three different regimes (see Fig.

2.11, solid lines) as a function of the three key parameters: the initial plug length

L̃0, the oscillation period T̃ and the prewetting film thickness h̃0.

Another way to compute the transition between the regimes is to use the ana-

lytical expressions introduced earlier. Indeed, the occurrence of the acceleration

or deceleration regime is only determined by the initial state (since no transition

between the acceleration and deceleration regimes occurs). Thus if the value of

the pressure magnitude ∆P̃t > ∆ ˜Pco, the plug accelerates, while if ∆P̃t < ∆ ˜Pco, it

decelerates, with:

∆ ˜Pco = 4L̃0Caco +
(
3.72 +

F2

2

)
Caco

2/3 (2.11)

Caco =
(

h̃0

1.34(1− 2.5h̃0)

)3/2

(2.12)

with F = 31/3
(
b0+b1log10(A)+b2 [log10(A)]2+b3 [log10(A)]3

)
andA = (3Caco)

−2/3h̃0.

Then, when ∆P̃t > ∆ ˜Pco, the saturated acceleration regime occurs if a steady

state exists (solution of Eq. 2.6 to 2.10) with L̃s < L̃0, otherwise, the plug breaks.

This enables to compute the critical pressure ∆ ˜Pc1 for the transition between the

results obtained with this method are presented on Fig. 2.11 (dashed line, Pco
in blue and Pc1 in red) and are in good agreement with the ones obtained from

numerical simulations of the plug evolution.

The transitions represented on Fig. 2.11 are rather intuitive since: (i) the

critical pressures increase linearly with the plug initial length L̃0 (see Fig.2.11a)

and also increase with the prewetting liquid film thickness (see Fig. 2.11b), (ii)

the transition between the acceleration and deceleration regimes does not depend

on the period T̃ since it only depends on the initial state and (iii) Pco→ Pc1 when

T̃ increases since, when the time period of the oscillation regime is increased,

the forcing tends toward a constant unidirectional pressure driving with no
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saturated acceleration regime.The most original result is the disappearance of

the saturated acceleration regime at large prewetting film thickness as seen on Fig.

2.11c.

2.5 Physiologically relevant driving

We will now study the response of liquid plugs to realistic breathing cycles

(see Fig. 2.4, [8]), which are both cyclic and variable in time and thus combine

elements from the two previous sections. In particular, we will focus on the

critical pressure levels required to trigger the transition between a regime leading

to plugs breaking and hence airway reopening, and a regime leading to the

persistence of liquid plugs, as a function of the generation inside the airway

tree and the thickness of the liquid lining. Indeed, this last parameter strongly

varies for patients suffering from pulmonary diseases like cystic fibrosis, chronic

obstructive pulmonary disease and asthma and strongly affects the ability of

quiet breathing to break liquid plugs as we shall see in the remaining part of

this section.

2.5.1 Parameters value

The key parameters to run the simulations are: the shape of the pressure driving,

the geometry of the lung (radius of the airways at each generation), the initial

sizes of the plug L̃0, the relative initial thickness of the mucus lining h̃0 and

the properties of mucus. For the lung geometry, we will only consider here

the intermediate conducting airways (generation 10 to 16), where the Reynolds,

Weber, Bond and Capillary numbers are small and use the data presented in

Table 1 to estimate the airway radii. Since mucus plugs in the lung originate

from Rayleigh-Plateau instability, we will consider that their length is dictated

by the most unstable wavelength λ = 2π
√

2R. Thus the initial dimensionless

length of the plug can be estimated as L̃0 = 2
√

2(1− (1− h̃0)2). For the thickness

of the mucus lining, we will consider thicknesses of healthy patients (2− 3% of

the airways radii) up to thicknesses associated with pulmonary diseases (10% of

the airways radii or more). Finally for the mucus properties, we will consider
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the values provided in the introduction.

2.5.2 Flow regimes of liquid plugs under a realistic breathing

cycle

For realistic pressure driving, only two flow regimes are observed : (i) a acceler-
ation regime leading to the plug rupture (see Fig. 2.12a) and (ii) a deceleration
regime leading to stable periodic oscillations of the liquid plug (see Fig. 2.12b).

While we do not have quantitative explanation for the absence of the saturated

acceleration regime, it can be explained qualitatively by the fact that this regime

occurs for rectangular pressure driving when the pressure magnitude is just

above the critical pressure Pco. Thus, for physiologically relevant pressure driv-

ing, if the pressure magnitude is just above the critical pressure Pco, the dynamics

of the plug will be mostly decelerative due to the progressive increase in the

pressure during the cycle and thus this will lead instead to a deceleration regime.

2.5.3 Critical pressure in the airway tree

Now, we can study the critical pressure magnitude required to open obstructed

airways with realistic pressure driving as a function of the liquid lining thickness

and the generation in the lung (see Fig. 2.13). These critical pressures are

compared to the values obtained for constant pressure driving. As expected, the

critical pressures are higher in the former case since for time dependent signal,

the plug always grows during the first part of each half-cycle (since the driving

pressure is low), which makes the rupture of the plug more difficult.

This figure shows that the thickness of the liquid lining is a key parameter,

which dramatically increases the critical pressure necessary to break liquid plugs.

If we compare the calculated critical pressure to the typical breathing pressure

magnitude (between 133 and 266 Pa), we see that liquid plugs rupture naturally

during quiet breathing cycles of healthy patients for all generations while they

persist in airways of sick patients, especially in the last generation of the lung.
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Figure 2.12 – Temporal evolution of the dynamics of a liquid plug of initial
length L̃0 = 2

√
2(1− (1− h̃0)2) in a capillary tube prewetted by a liquid film of

thickness h̃0 = 0.06 under the driving pressure ∆P̃t = 0.5 in the acceleration
regime and ∆P̃t = 0.45 in the saturation deceleration regime:
(a-e) Position of the menisci.
(b-f) Evolution of the length of the plug.
(c-g) Evolution of the absolute value of the dimensionless speed of the plug
| Ca |.
(d-h) Evolution of the absolute value of the pressure | ∆̃P |.
The critical capillary number and the critical pressure are respectively in red
and green.
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Figure 2.13 – Critical pressure for the transition between the acceleration
and deceleration regime as a function of the liquid films thickness h̃0 and for
different generation of the lung tree. Solid line: constant pressure driving.
Dashed line: realistic pressure driving of same magnitude.

2.6 Conclusion: critical assessment of the relevance

of this study for pulmonary airway conditions

In this study, we did not consider some important factors that might play a fun-

damental role on obstructed lung airways reopening : (i) the complex rheological

properties of the mucus evolving with the pathologies, (ii) the deformation of

the airways walls and its effect on the plug displacement and rupture, (iii) the

complex 3D branching geometry of the lung. Moreover, the alveolar pressure is

also directly applied to the liquid plug, neglecting the interactions at the ends

of the bronchi or the pressure changes in the presence of obstructed pathways.

Nevertheless, this study is, to the best of our knowledge, the first to explore the

dynamics and rupture of liquid plugs for realistic breathing cycles and prewet-

ted airways and to determine the critical pressure necessary to reopen obstructed

airways in these conditions. The results are consistent with observations in real

lungs: occlusion mainly occurs in the smallest conducting airways and diseases
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increasing the thickness of airways lining strongly increase the persistence of

liquid plug in the bronchial tree. Finally, our model enables the gradual incorpo-

ration of the missing ingredients to provide more and more consistent models of

plugs flow in the lung airway and achieve realistic predictions.



Chapter3
Pressure-driven dynamics of liquid

plugs in a rectangular microchannel:

influence of the transition between

static and dynamic film deposition

regimes

Abstract

In this chapter, we study experimentally and theoretically the dynamics of liquid

plugs in rectangular microchannels for both unidirectional and cyclic pressure

forcing. In both cases, it is shown that the transition between static and dynamic

film deposition behind the liquid plug leads to a dramatic acceleration of the

plug, rapidly leading to its rupture. This behavior proper to polygonal channels

with singularities in the tube corners is recovered from a reduced dimension

model based on previous theoretical and numerical developments. In addition,

it is shown for cyclic periodic forcing that the plug undergoes stables periodic

oscillations if it remains in the static deposition regime during the first cycle,

while otherwise it accelerates cyclically and ruptures. The transition between

these two regimes occurs at a pressure-dependent critical initial length.

80
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3.1 Introduction

The interest in segmented gas-liquid flows in polygonal, and in particular, rect-

angular microchannels [156, 157, 145, 139, 158, 159, 160, 161, 162, 163] has

further grown with the development of soft lithography techniques in microflu-

idics [164, 165], which enable simple design of complex microchannels with

rectangular cross-sections [166].

A finite volume of liquid (liquid plug or slug) that is displaced by an air finger

at constant flow rate or pressure head (Taylor flow) leaves on the walls a trailing

liquid film. Its thickness can be quantified by the so-called wet fraction, which

is the proportion of the tube section occupied by the liquid film. In cylindrical
capillary tubes, this parameter increases monotonically with the dimensionless

velocity of the meniscus (the so-called capillary number Ca) with a Ca2/3 law

[111] at low capillary number. This law was further extended to larger capillary

number [133]. In polygonal microchannels however, a transition occurs at a critical

capillary number between two radically different regimes: Under this critical

parameter, the fluid deposition process is mainly independent of the capillary

number since it relies on the static shape of the meniscus [138, 139]. Indeed,

the static meniscus shape cannot follow the singular shape of the rectangular

channel, thus leading to fluid deposition in the corner of the tube. Above this

critical number, the fluid deposition resulting from the deformation of the rear

meniscus induced by the flow overcomes the static one. In this case, the wet

fraction becomes again dependent on the capillary number, similarly to what

is observed in cylindrical channels. Nevertheless, this process in polygonal

channels also depends on the tube geometry [157, 138, 139, 160, 161]. It is

possible to extend the laws introduced for cylindrical tubes to rectangular tubes,

providing the introduction of an aspect-ratio-dependent capillary number [160,

161].

This liquid film deposition process induces a dramatic acceleration of a liquid

plug when it is pushed at constant pressure head [96]. Indeed the diminution of

the plug size leads to a reduction of the viscous resistance of the plug to motion,

itself leading to an acceleration of the plug and thus more fluid deposition.

More recently, it has been shown experimentally [97] that the inverse behavior
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(progressive slow down and growth of the liquid plug) might also be observed

in prewetted capillary tubes depending on the value of the driving pressure and

the thickness of the prewetting film. The acceleration and rupture of a liquid

plug has also been evidenced in complex tree geometries [96] and for cyclic

pressure forcing [167]. In the latter case however, both the diminution of the

viscous resistance and interfacial resistance (due to lubrication effects) at each

cycle contribute to the plug acceleration and breaking.

Nevertheless, all the aforementioned studies were conducted in cylindrical

tubes or at capillary number well above the critical capillary number. In this

chapter, we study experimentally and theoretically the influence of the transition

between static and dynamics fluid deposition process on the dynamics of liquid

plugs in rectangular channels pushed either with a unidirectional or a cyclic

pressure forcing. In both cases, it is shown that the transition between these

two regimes leads to a dramatic acceleration of the plug eventually leading

to its rupture. It is interesting to note that such rapid switching between two

dramatically different behaviors has been reported for propagating bubbles by

De Lózar & al. [168]. For cyclic forcing, it is shown that under a critical length

the plug dynamics is unstable and leads to the plug rupture while above it

is stable and periodic; the experimental results are recovered from a reduced

dimension model, inspired from previous theoretical developments [96, 97,

167] adapted here to take into account (i) the modifications of the laws in the

rectangular geometry, (ii) lubrication effects resulting from the back and forth

motion of the liquid plug on a prewetted tube, and (iii) the transition between

static and dynamic film deposition. The second and third sections provide

the experimental and model details. The fourth and fifth sections explore

respectively the response of liquid plugs to unidirectional and periodic cyclic

pressure forcings and compare the observed dynamics to results in cylindrical

tubes.

3.2 Experimental method

The experimental set-up is represented on Fig. 3.1. The experiments are con-

ducted in rectangular polydimethylsiloxane (PDMS) microfluidic channels ob-
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Microfluidic PDMS chip

High speed camera

Microscope

Image acquisition

Plug

Air Air

Liquid injection

Figure 3.1 – Sketch of the experimental setup. A liquid plug is created inside a
rectangular PDMS channel by pushing alternatively some liquid and some air
at a Y-junction. The liquid is pushed by a syringe pump while the air is pushed
by a MFCS pressure controller. Then the liquid plug is moved by the pressure
controller either in one direction (unidirectional driving) or alternatively in
both directions (cyclic periodic driving).

tained by standard photolithography techniques: A mold is etched by depositing

a layer of photoresist resin (Microchem, SU8-2035) on a silicon wafer. This layer

is spin-coated and patterned by standard photolithography. The spin-coating

speed combined with the choice of the photoresist sets the height h = 45± 2µm

of the microfluidic channels, while the width w = 785± 2µm is controlled by the

design of the patterned masks which are used during the UV exposure. These

values of the channel size and height were measured afterward (see Fig. 3.2).

After exposure, the film is developed in an organic solvent solution (SU-8 de-

veloper) to yield the negative of the channel design. This SU8 mold was used to

pour PDMS (Dow Corming, Sylgard 184) whose polymerization was obtained

by curing it at 100◦C. The microfluidic channel is then cut out and bonded on

a glass microscope slide by passing the two surfaces in an oxygen plasma. The

microscope slides are covered by a thin PDMS membrane in order to guarantee

identical boundary condition to all four channel walls .
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(a) (b)

Figure 3.2 – Geometry dimensions of the rectangular microchannel:
(a) Widths of the controlled region wc and the experiment region w measured
with a microscope.
(b) Height of the microchannel measured with a profilometer (Dektak XTL).

Then, perfluorodecalin (PFD) liquid plugs are created in this channel by

pushing alternatively some liquid and some air at a Y-junction with a syringe

pump and a MFCS Fluigent pressure controller respectively, connected to both

entrances of the microfluidic device. Perfluorodecalin was used for its good

wetting properties (static contact angle θs = 23± 1◦ see Fig. 3.3) with PDMS and

since it does not swell PDMS [169]. Then, air is blown in the channel at low

pressure to bring the liquid plug to the center of the microfluidic channel and

stopped manually when the target position is reached. Finally, the plug motion

is forced with either a unidirectional or cyclic periodic pressure forcing with the

MFCS programmable pressure controller. For cyclic forcing one entrance and

the exit of the channel are connected to two channels of the MFCS pressure

controller. Then an overpressure (compared to atmospheric pressure) is applied

alternatively to each end of the channel while the other is set to atmospheric

pressure. The resulting shapes of the pressure forcing measured with an internal

pressure sensors in these two cases are represented (as in chapter 1) on Fig.

3.4. For cyclic forcing the period was fixed to 2T = 4s or 2T = 6s, with T the

duration of a half cycle. The measured unidirectional pressure driving can

be approximated by the following analytical expression based on Gompertz
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functions:

Figure 3.3 – Contact angle of a perfluorodecalin liquid plug in the PDMS
microchannel

Pt = 900e−3e−10t
, (3.1)

while the cyclic forcing can be approximated by the expression :

∆Pt = 1200e−6e−3t
Pa for t ∈ [0;T ] (3.2)

∆Pt = (−1)n(Pc − Pd) for t ∈ [nT ; (n+ 1)T ] (3.3)

with Pc = 1200e−2.5e−3(t−nT )
P a (3.4)

and Pd = 1200e−1.2(t−nT )e−0.02e−1.2(t−nT )
P a (3.5)

Initially the tube is dry. Hence, the liquid plug moves on a dry capillary tube

for unidirectional forcing. Nevertheless, the motion of the liquid plug leaves a

trailing liquid film on the walls and in the corner of the channel. Thus, for cyclic

forcing the liquid plug moves on a prewetted capillary tube after the first cycle

as long as it is moves on a portion of the tube already visited by the liquid plug

in the previous back and forth motions.

Experiments are recorded with a Photron SA3 high speed camera mounted

on a Z16 Leica Microscope. The resolution of the camera used in the experiments

is 1024× 64 pixels, the acquisition frame rate 125 images/s and the trigger time

1/3000 s. The image analysis is then performed using ImageJ software and

Matlab. The plug evolution is characterized by monitoring the positions of the

rear interface Xr and front interface Xf (see Fig. 3.1), and deducing the evolution

of the plug length Lp(t) = Xf (t)−Xr(t) and the speed of the rear interface of the
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Figure 3.4 – Pressure forcings:
(a) Unidirectional pressure forcing measured experimentally (blue solid line)
and approximated by the formula (red dotted line): ∆Pt = P0e

−ae−bt with P0 =
900P a, a = 3 and the growth rate b = 10.
(b) Cyclic pressure forcing imposed by the MFCS pressure controller measured
experimentally (blue solid line) and approximated by the analytical formula
∆Pt = 1200e−6e−3t

P a for t ∈ [0;T ], and ∆Pt = (−1)n(Pc − Pd) for t ∈ [nT ; (n+ 1)T ]
with Pc = 1200e−2.5e−3(t−nT )

P a and Pd = 1200e−1.2(t−nT )e−0.02e−1.2(t−nT )
P a (red dotted

line) and T = 2.12 is the half period.

plug Ur = dXr /dt.

3.3 Model of a plug flow in dry and prewetted rect-

angular microfluidic channels

The model derived in this section combines previous theoretical developments

[96], [97] and [167], and integrates additional elements to include the transition

between static and dynamic liquid film deposition.

3.3.1 Dimensional analysis and characterisation of the regime

In this problem, we consider a single liquid plugs of initial length L0 set into

motion in a rectangular microfluidic channel under the unidirectional or periodic
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forcings represented on Fig. 3.4.

Dimensionless number Formula Estimation
τc/τexp lc/U 1.8× 10−2

τd/τexp ρlc
2/µ 1.3× 10−2

Re τd/τc 0.7
We ρU2lc/σ 1.9× 10−3

Ca µU/σ 2.6× 10−3

Bo ρgh2/σ 2× 10−3

Table 3.1 – Values of the key dimensionless parameters associated with the mean
characteristic velocity U = 1cm/s.

The characteristic parameters in this problem are the width of the microflu-

idic channel w, its height h, the viscosity of the liquid plug µ, the surface tension

σ , the speed of the liquid plug U and the characteristic time associated with the

plug evolution in the experiments τexp. For cyclic forcing, this time is simply

the half period of the signal τexp = T , while for unidirectional forcing, it is the

time required for the plug to rupture. In the following, the geometry will be

characterized by the aspect ratio α = w/h and the characteristic length scale

lc =
√
wh. From these parameters, we can construct the characteristic convection

time τc = lc/U , and the characteristic viscous diffusion time τd = ρlc
2/µ. Then

we can characterise the flow regime by introducing the following dimension-

less numbers: the Reynolds number (Re = τd/τc) which compares convection to

viscous diffusion, the Weber number (We = ρU2lc/σ ) which compares inertia

to surface tension, the capillary number (Ca = µU/σ ) which compares viscous

effects to surface tension effects, the Bond number which compare gravity to

surface tension (Bo = ρgh2/σ ), and finally the ratio of the experimental charac-

teristic time τexp to the convective and diffusion times τexp/τc and τexp/τd . In the

experiments the average velocity is typically Umean = 1 cm/s and the maximal ve-

locity Umax = 4.5 cm/s. The time required for the plug to rupture varies between

0.5 s and 5 s for unidirectional forcing and the half period of periodic forcing

is T = 2 s or T = 3 s. These values enable the estimation of the dimensionless

numbers introduced previously and summarised in 3.1 (for these estimations,

we take τexp = 1 s and U = 1 cm/s).
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These values of the dimensionless numbers indicate that, globally, surface

tension effects are dominant over viscous effects, themselves being dominant over

inertial effects. This means that away from the walls, the shape of the meniscus

is mainly dictated by the minimization of the interfacial capillary energy. This

undeformed part of the meniscus is called the static meniscus. Nevertheless, as

demonstrated first by Bretherton [111] in cylindrical tubes, viscous effects still

play an important role close to the walls due to the incompatibility between the

adherence condition (null velocity at the walls) and the homogeneous motion

of an undeformed meniscus. This singularity leads to the existence of large

shear stresses close to the walls and, hence, the deposition of a thin trailing film

behind the rear meniscus and a change in the apparent contact angle for the

front meniscus. Thus viscous effects still play an important role close to the walls

despite the low value of the capillary number. Then, the relative importance

of unsteady effects can be estimated from the ratios τc/τexp and τd/τexp. Since,

these two ratios are small, the unsteady terms can be neglected in Navier-Stokes

equations even if the plug evolves over time: the flow is quasi-static. Finally, the

small value of the Bond number indicates that gravity effects can be neglected.

Based on this analysis, we expect the liquid plugs dynamics in the present

problem to be considered as a quasi-static visco-capillary flow governed by

steady Stokes equation (as in chapter 1).

3.3.2 Model of the plug dynamics.

The model describing the pressure drop in the microfluidic channel is obtained

by equalizing the driving pressure head ∆Pt (Fig. 3.4) to the sum of the pressure

drop resulting from viscous dissipation in the bulk of the liquid plug ∆P bulkvisc ,

the pressure drops at the front and rear meniscus of the plug ∆Pmenf ront, ∆P
men
rear and

the pressure drop ∆Pbubble inside the air. Simple estimation of these pressure

drops show that this latest contribution can of course be ignored compared to

the other ones (see e.g. Kreutzer & al. [153]). Thus, the steady state balance of

pressure across the liquid plug becomes:

∆Pt = ∆P bulkvisc +∆Pmenf ront +∆Pmenrear (3.6)
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Viscous pressure drop

The pressure drop resulting from a laminar flow of a fluid in a rectangular

geometry is given by White [170]:

∆P bulkvisc =
aµQL

wh3 (3.7)

with a = 12
[
1− 192

π5α
tanh

πα2
−1]

, L the portion of the tube considered and Q

the flow rate. In the limit α� 1 considered here (α = 17.5 in the experiments)

and for a liquid plug of length Lp, this expression becomes:

∆P bulkvisc =
12µQLp
wh3 (3.8)

where Q =UrSr is the flow rate, Sr is the the cross sectional area open to air be-

hind the liquid plug andUr the speed of the rear meniscus. This expression relies

on two assumptions: (i) it assumes that the pressure drop inside the plug follows

a Hagen-Poiseuille law despite the finite size of the plug and the recirculation

occurring close to the menisci and (ii) it assumes the same speed for the front and

rear menisci. The validity of the first approximation has been tested numerically

with the OpenFoam Volume of Fluid code [167] in 2D. These 2D simulations

shows that equation (3.8) is an excellent approximation of the viscous pressure

drop (error < 4.5%) as long as the length of the plug remains larger than the

height of the channel. For smaller plugs the discrepancy increases progressively

but, in this case, the pressure drops at the menisci strongly dominate over bulk

viscous pressure drop leading to minor effects of the error on the overall plug

dynamics. The second approximation amounts to neglect the evolution speed

of the plug length dLp/dt compared to the translational speed of rear interface

dXr /dt, since dXf /dt = dXr /dt + dLp/dt. Experimental measurements of the

speed of the front and rear interfaces show that this approximation holds within

a few percent of accuracy. In the remaining part of the thesis, we will therefore

neglect the difference between the front and rear interfaces in the estimation of

the pressure drops, and the capillary number Ca will therefore be constructed
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on the rear interface velocity: Ca = µUr /σ .

Front meniscus pressure drop

When a liquid plug is at rest (no pressure head) in a rectangular tube, its front

and rear interfaces adopt complex shapes minimizing the interfacial energy. This

minimization problem can be solved with the method of Lagrange multipliers.

The solution is a constant mean curvature (CMC) surface verifying the wetting

conditions at the walls. In a rectangular geometry, this shape is rather complex

Wong & al. [171] and there is no analytical expression of these surfaces geometry.

Nevertheless, what matters when we consider the motion of a liquid plug is not

the static shape of the meniscus but the departure from this static shape when the

plug moves. Indeed the Laplace pressure jumps resulting from the curvatures

of the front and rear interface at rest compensate one another leading to a zero

contribution. Therefore we will only consider in the following the dynamic

pressure jumps at the interface, that is to say the Young-Laplace pressure jumps

when the plug is moving minus their value at rest.

The computation of the dynamic pressure jumps at the front interface can

be greatly simplified in a rectangular geometry with high aspect ratio α� 1. In

this case, the principal curvature in one direction κh ≈ 2cos(θad)/h is strongly

dominant over the curvature in the other direction κw ≈ 2cos(θad)/w, where

θad is the advancing dynamic apparent contact angle. Based on Young-Laplace

equation, the dynamic pressure jump at the front meniscus can thus be estimated

from the formula:

∆Pmenf ront ≈ −σ (κh −κsh), with κh ≈ 2cos(θad)/h (3.9)

and κsh ≈ 2/h the principal curvature in the vertical direction at rest. In the limit

of low capillary numbers, asymptotic expansion leads to: cosθad ∼ (1 − θad
2/2),

and the dynamic pressure drop becomes:

∆Pmenf ront =
2σ
h

(
θad

2

2

)
(3.10)
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Of course, this expression is an approximation since (i) it neglects the horizontal

curvature compared to the vertical one and (ii) it neglects the thickness of the

prewetting film (if the plug is moving on a prewetted capillary tube). This

expression is therefore only valid for high aspects ratios h/w, low capillary

numbers and thin prewetting films.

The next step is to determine the value of the dynamic apparent contact

angle θad as a function of the capillary number. On a dry substrate, the dynamic

contact angle can be estimated from Hoffman-Tanner’s law:

θad = ECa1/3 (3.11)

The measurements of the coefficient E for wetting silicon oil liquid plugs by

Bico and Quéré [155] and perfluorodecalin liquid plugs by Signe & al. [167] in

cylindrical glass capillary tubes obtained consistent values of this parameter:

E = 4.3 and E = 4.4 respectively. Ody & al. [172] and Baudoin & al. [96] measured

a value of E = 4.9 for perfluorodecalin liquid plug moving in PDMS rectangular

capillary tubes with high aspect ratio. This value is in good agreement with the

experiments performed in our rectangular microchannels.

The expression of the dynamic contact angle in the rectangular microchan-

nel on a prewetted surface that integrates lubrication effects is the theoretical

expression proposed by Chebbi [137] and used in chapter1:

tanθad = (3Ca)1/3f ((3Ca)−2/3cosθad hf /R) (3.12)

with hf /R the thickness of the liquid film ahead of the liquid plug, f (y) =∑3
j=0 bn[log10y]n and the coefficients bn are tabulated in Chebbi [137]. To the

best of our knowledge, no rigorous derivation of an analytical formula exists for

rectangular geometries. Nevertheless, a similar expression as equation (3.12)

is expected in rectangular geometries with high aspect ratios α � 1. Indeed,

Chebbi (similarly to Bretherton) derive the above theoretical expression in the

approximation of thin prewetting liquid film hf compared to the radius of the

tube (hf /R� 1). In this approximation, the radial curvature of the tube is locally

neglected and the problem solved is identical to a 2D planar problem.
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In the rectangular configuration, an estimation of the thickness of the prewet-

ting film in the vertical direction is nevertheless missing. To adapt this formula

to rectangular geometries, Baudoin & al. [96] proposed to estimate the relative

thickness of the prewetting film by the formula
√

1− S̃f with S̃f = Sf /(hw) the

dimensionless cross sectional area open to air in front of the plug. For rectangu-

lar channel with large aspect ratios, it is expected that this expression slightly

overestimates lubrication effects since the prewetting film is always thicker on

the lateral walls than in the central ones.

Finally, as demonstrated by Signe & al. [167], a good approximation of the

implicit formula (3.12) in the limit of low capillary numbers is:

θad = FCa−1/3 (3.13)

with:

F = 31/3
(
b0+b1log10(A)+b2 [log10(A)]2+b3 [log10(A)]3

)
and A = (3Ca)−2/3

√
1− S̃f .

This expression shares some similarities with Hoffman-Tanner’s law but this time

the coefficient F depends on the capillary number, underlining the lubrication

effect.

Rear meniscus pressure drop

The dynamical pressure drop at the rear interface was calculated theoretically by

Bretherton [111] in cylindrical geometries, Wong & al. [138, 139] for polygonal

channels, and later on numerically by Hazel & Heil [140] for rectangular mi-

crofluidic channels of different aspect ratios at finite capillary numbers. Based

on the results of Hazel & Heil [140], it is possible to infer the following formula

for the dynamic pressure jump at the rear interface [96]:

∆Pmenrear =
2σ
h
Df (α)Ca2/3 (3.14)

with f (α) = (0.52 + 0.48/α) and D = 4.1 a constant obtained from best fitting of

Hazel & Heil [140] data.
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Total pressure drop

If we combine equations (3.8), (3.10), (3.11), (3.13) and (3.14), the total pressure

drop across the liquid plug becomes:

Dry tube: ∆Pt =
12σSrLp
wh3 Ca+

σ
h

[
E2 + 2Df (α)

]
Ca2/3 (3.15)

Wet tube: ∆Pt =
12σSrLp
wh3 Ca+

σ
h

[
F2 + 2Df (α)

]
Ca2/3

with E = 4.9, F = 31/3
(
b0 + b1log10(A) + b2 [log10(A)]2 + b3 [log10(A)]3

)
and A =

(3Ca)−2/3
√

1− S̃f . These equations can be written under dimensionless form by

introducing the characteristic length lc =
√
wh and the characteristic pressure

variation σ/h:

Dry tube: ∆P̃t = 12
√
αS̃r L̃pCa+

[
E2 + 2Df (α)

]
Ca2/3 (3.16)

Wet tube: ∆P̃t = 12
√
αS̃r L̃pCa+

[
F2 + 2Df (α)

]
Ca2/3

where the tildes indicate dimensionless functions. To achieve a close set of

equations, two equations are missing: one determining the evolution of the plug

length L̃p and one determining the fluid deposition process on the walls and

consequently S̃r and S̃f .

Evolution of the plug length

The first equation is simply obtained from a mass balance between the amount

of liquid that the plug collects and loses. Let S0 = wh be the cross section of

channel, and Sr and Sf the sections of the tube open to air behind and in front

of the plug respectively. The mass balance becomes:

S0dLp = (S0 − Sf )dxf − (S0 − Sr)dxr (3.17)
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with dxf = dLp + dxr . Therefore, the equation giving the evolution of the length

of the liquid plug takes the form:

dLp
dt

=
[
Sr
Sf
− 1

]
U =

σ
µ

[
Sr
Sf
− 1

]
Ca (3.18)

where Sr depends only on the dimensionless speed of the rear interface Sr =

Sr(Ca) and Sf depends on the history of the liquid deposition on the walls and

the position of the front interface Sf = Sf (xf , t). If we introduce the characteristic

length lc and the viscocapillary time scale τ = µlc/σ , we obtain the dimensionless

equation:
dL̃p
dt̃

=
[
S̃r(Ca)
S̃f (x̃r , t̃)

− 1
]
Ca (3.19)

When the plug moves on a dry surface, then S̃f = 1. Otherwise the value of S̃f is

either inferred from the initial condition if the plug moves on a prewetted tube

or from a memory of the liquid deposition by the liquid plug when the plug

undergoes cyclic motion (see Signe & al. [167] for cylindrical tubes). In many

publications, the wet fraction m is introduced instead of the air fraction Sr . The

wet fraction is the relative portion of the tube section occupied by the liquid.

These two parameters are linked by the formula: m = 1− S̃r .

Static and dynamic wet fraction

(a) (b)

Figure 3.5 – Sketch of the cross-section behind the liquid plug:
(a) When Ca→ 0 (static film deposition regime).
(b) Ca & Cac (dynamic film deposition regime). Black: liquid, white: air.

An air finger pushing a liquid plug in a cylindrical tube adopts a cylindrical

shape closely fitting the shape of the cylindrical tube. Such close fitting is not
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possible in rectangular tubes due to the presence of the singularities in the

corners. In the low Bond number (Bo � 1) and low capillary number limit

(Ca� 1), the section of the bubble far behind the rear meniscus can adopt two

configurations [161] schematically represented on Fig. 3.5 depending on the

value of the capillary number:

• (i) When Ca → 0, in the static limit, the liquid only covers the corners

of the tube and the limit between the liquid and the air are four quarter

circles. In this case the wet fraction tends to an asymptotic value called

the static wet fraction ms, which depends only on the aspect ratio of the

channel α: ms =ms(α). Indeed, the liquid deposition in the corners of the

tube in this regime relies on the static shape of the rear meniscus.

• (ii) when Ca & Cac, the limit between the liquid and the air becomes two

half circle on the side and a liquid film covers the walls in the center of the

channel De Lozàr & al. [161]. In this case, the wet fraction depends on the

dynamics of the plug and hence on the capillary number. We will call it

the dynamic wet fraction md =md(Ca,α).

The transition between these two configurations is progressive (see De Lozàr

& al. [160]) and occurs at a critical capillary number Cac whose value was found

in our experiments to lie around Cac = (2± 0.1)× 10−3, a value coherent with the

measurement of De Lozàr & al. [161] at similar aspect ratios α.

The static wet fraction ms in the absence of gravity (Bo = 0) was theoretically

predicted in Wong & al. [138]:

ms = (4−π)r̃s
2 (3.20)

with r̃s = rs/lc the dimensionless radius of curvature of the four quarter circles

delimiting the liquid and the air in the corners of the tube and

r̃s =
√
α

α + 1 + ((α − 1)2 +πα)1/2
(3.21)

For an aspect ratio α = 17 such as in our experiments, this formula gives the

value ms = 0.012. The wet fraction can be estimated experimentally by moni-
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toring the evolution of the plug size as a function of the rear interface velocity

when Ca � Cac. We found the average estimate of this parameter (over all

the experiments performed and described in the next section) to be: ms = 0.03.

This value is larger than the theoretical value predicted by Wong & al. [138].

Nevertheless the theoretical value derived by this author was obtained with zero

influence of gravity (Bo = 0). For finite values of the Bond number, it was shown

experimentally by De Lozàr & al. [161] (see their figure 4) that gravity tends to

significantly increase the static wet fraction (these authors found ms ≈ 0.065 for

Bo ∼ 1 and α = 15). In our case, though small the Bond number (table 3.1) is not

null, which might explain the larger value of the static wet fraction measure ex-

perimentally than expected theoretically. For the simulations, we will therefore

adopt the constant value:

ms = 1− S̃r = 0.03 for Ca < Cac (3.22)

under the critical capillary number.

The evolution of the dynamic wet fraction in square and rectangular microflu-

idic channels was investigated experimentally by [158, 159, 160, 146, 162, 163]

and numerically by [140, 161, 173]. In particular, [160, 161] found that the

measured and simulated evolution of the dynamic wet fraction md as a function

of the capillary number collapse for all aspect ratio α providing the introduction

of an effective capillary number Ĉa =
[
1 +α2/α2

t

]
Ca with αt = 6.4. Thus the

behavior in a rectangular channel with any aspect ratio can be inferred from

the behavior in a square tube. This scaling subsist even for finite Bond numbers

as demonstrated both theoretically and numerically by [160, 161]. Of course

this scaling is only valid for Ca > Cac since otherwise, the fluid deposition does

not depend on Ca but strongly depends on α. Thus, combining (i) the scaling

law proposed by De Lozàr & al. [161] for the effective capillary number, (ii)

Aussilous & Quéré law [133] for the evolution of the wet fraction as a function

of the capillary number and (iii) the matching condition at the critical capillary

number between the static and dynamic behavior gives:
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md = 1− S̃r =
ms +G

[
(Ĉa/Ĉac)2/3 − 1

][
1 +H((Ĉa/Ĉac)2/3 − 1)

] for Ca > Cac (3.23)

where the coefficients G = 1.05 and H = 1.75 are obtained from best fit with De

Lozàr & al. [160] experimental data.

Finally, S̃r is taken as S̃r =ms − 1 when the plug moves at a capillary number

lower than Cac and S̃r =md − 1 above. This is of course an approximation since

the experimentally observed transition between the dynamic and static regime

at Ca ∼ Cac is more progressive [160].

3.3.3 Numerical resolution of the equations

The closed set of equations (3.16), (3.19), (3.22) and (3.23) are also solved using

a first order Euler explicit scheme to predict the speed and the evolution of the

length of the liquid plug. To cope with the strong acceleration of the liquid plug,

an adaptive time step refinement is used: the spatial displacement ∆x̃ = xn+1
r −xnr

is kept constant and thus the time step ∆t̃n at iteration n is calculated from

the formula: ∆t̃n = ∆x̃Can−1. Convergence on ∆x̃ has been verified for all the

simulations provided in this chapter.

3.4 Effect of the transition between static and dy-

namic film deposition on the dynamics of a liq-

uid plug driven by a unidirectional forcing

3.4.1 Direct experimental evidence of the transition

The transition between the static and dynamic liquid film deposition and the

associated changes in the plug dynamics are evidenced on Fig. 3.6 a-d. These

figures illustrate the evolution of a liquid plug of initial size Lo = 3.5 mm driven

by a unidirectional pressure head ∆Pt = 1000e−3e−10t
P a.
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Figure 3.6 – Dynamics of a liquid plug of initial length L0 = 3.55mm pushed
in a dry rectangular microfluidic channel with a unidirectional pressure head
∆Pt = 1000e−3e−10t

P a:
(a) Stack showing the evolution of the plug below and above the critical capil-
lary number Cac. Liquid (air) appears light (dark) grey.
(b) Position of the rear and front interfaces (menisci) as a function of time.
(c) Evolution of the capillary number as a function of time.
(d) Evolution of the plug length as a function of time. Blue solid curves corre-
spond to experimental measurements and red dashed curves to simulations.
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Blue curves correspond to experimental measurements while red curves

correspond to simulations with the model developed in the previous section. Fig.

3.6a is obtained by stacking snapshots of the plug evolution every 8 ms when

the capillary number lies below its critical value Cac and then later on when Ca

exceeds Cac. When Ca < Cac no liquid film is visible on the channel sides since

liquid deposition only occurs in the corner of the tube, while this film is clearly

visible when Ca exceeds Cac.

Figure 3.6b shows the position of the front and rear interfaces as a function of

time. Figure 3.6c shows the evolution of the capillary number. The black dashed

line (also reported on Fig. 3.6d) marks the transition (at time tc ≈ 2.8s) between

the static and dynamic film deposition regimes. It corresponds to the time when

Ca reaches the critical value Cac = 2 ± 0.1 × 10−3. Before tc and after the end

of the transient regime (t > tt = 0.3 s) (corresponding to the time required for

the pressure controller to achieve a constant value), the increase in the capillary

number is very slow. This leads to a quasi-linear variation of the plug size as a

function of time as can be seen on Fig. 3.6d since the wet fraction m is constant

in the static regime. Then, when the value of the capillary number overcomes

the critical value Cac, the plug undergoes a strong acceleration leading to more

and more fluid deposition and eventually to the plug rupture.

Excellent agreement between the simulations (red) and experiments (blue) is

achieved for the evolutions of (i) the position of the interface (Fig. 3.6 b), (ii) the

plug dimensionless speed (Fig. 3.6 c) and (iii) the plug length (Fig. 3.6 d). Our

reduced dimension model thus properly captures the main physical ingredients.

This model can be used to rationalize the observed tendencies: In the static film
deposition regime, the value of the pressure head prescribes an initial value of

the capillary number and the size of the plug diminishes quasi-linearly due

to film deposition in the corners of the tube. This regular diminution of the

plug size leads to a reduction of the viscous resistance of the plug to motion

since the viscous pressure drop depends linearly on Lp. This induces a slow

increase in the liquid plug speed (since the viscous resistance is weak compared

to interfacial resistances). Nevertheless, since m does not depends on Ca, there

is no retroaction of the evolution of the plug speed on the liquid film deposition

and thus the evolution remains relatively stable. In the dynamic film deposition
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regime however, the increase in the plug speed leads to more film deposition

according to equation (3.23), itself leading to an acceleration of the plug speed.
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Figure 3.7 – Rupture lengths (a-a1) and rupture times (b-b1) of a set of liquid
plugs as a function their initial lengths when they move on a dry rectangular
microfluidic channel under two driving pressure ∆Pt = 900e−3e−10t

P a (a-b-c)
and ∆Pt = 1000e−3e−10t

P a (a1-b1-c1). The rupture lengths as a function of
the rupture times are given in figures (c-c1). The blue stars correspond to
experiments and the red lines to simulations with the model developed in
section 3.3. A circle surrounds three datas which are out of the global tendency.
The most likely reason of this dispersion is that the microfluidic channel was
not dried properly and there were some liquid remaining at the front interface
that lubricated the channel and thus accelerated the plug motion leading to
reduced rupture time and length.

This retroaction is at the origin of the massive acceleration of the plug and

rapid evolution of its size when Ca exceeds Cac. This behavior is reminiscent of

what is observed in cylindrical tubes [97, 167] while the static film deposition

regime only occurs in polygonal channels.
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3.4.2 Influence of this transition on the plugs rupture time

and rupture length

We performed numerous experiments (represented on Fig. 3.7) for different

initial plug lengths Lo and two different driving pressure (∆Pt = 900e−3e−10t
P a

and ∆Pt = 1000e−3e−10t
P a) to analyse the evolution of the plug rupture time and

rupture length in rectangular microchannels. The rupture time is the time

required for the plug to rupture (Lp = 0) while the rupture length is the distance

traveled by the liquid plug (Dl =max(Xf )−min(Xr)) before its rupture. These two

parameters quantify the stability of a liquid plug to breaking. The quantitative

agreement between experiments (blue stars) and simulations (red lines) enables

to validate our model on an an extensive set of experimental data.

Again a transition between two distinct regimes is clearly evidenced on Fig.

3.7 (for both the rupture time and the rupture length) at a driving pressure-

dependent critical initial plug length Lco (Lco ≈ 2.6 mm for ∆Pt = 900 Pa and

Lco ≈ 3.1 mm for ∆Pt = 1000) Pa. Under this critical value of the initial plug length

Lo < L
c
o, the initial dimensionless plug speed lies above the critical capillary

number and thus the dynamics of the liquid plug is only in the dynamic film

deposition regime. Thus the plug accelerates rapidly leading to rapid rupture of

the plug on a short propagation length scale. Above, this critical initial length

Lo > L
c
o, the initial capillary number lies under the critical number Cac and thus

the plug dynamics is initially in the static film deposition regime. This regime

leads to larger plug rupture time and thus propagation distance. Moreover, since

in this regime the acceleration is weak, the rupture time and rupture length

remain relatively linear function of the plug initial length (see Fig. 3.7). From

this analysis, we can infer a theoretical evaluation of the critical initial length Lco,

which delimits the transition between these two regimes. Indeed, Lco corresponds

to the plug initial length when the initial capillary number is equal to the critical

capillary number Cac. From equation (3.15) and by approximating Sr by wh at

first order, we obtain:

Lco =
h

12Cac

[
∆Pt h
σ
− (E2 + 2Df (α))Ca2/3

c

]
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This formula gives Lco = 3.1 ± 0.2 mm and Lco = 3.5 ± 0.2 mm for ∆Pt = 900 Pa

and ∆Pt = 1000 Pa respectively. It slightly overestimates the critical length

but nevertheless remains in good agreement with the experimentally measured

values. This formula is also consistent with the increase in Lco as a function of ∆Pt
observed experimentally. This theoretical prediction of the critical initial length

Lco is of the upmost practical interest since it enables to predict in which regime

will mainly evolve a liquid plug depending on its initial length. An interesting

point is also that despite the regime change, the rupture length and rupture time

remain relatively proportional to each other (Fig. 3.7 c and c1).

3.4.3 Comparison with the dynamics in cylindrical tubes

Figure 3.8 compares the rupture time and length obtained in rectangular and

cylindrical tubes in the same range of capillary number (5.5 × 10−5 . Ca .

1.2×10−2). As mentioned before, there is no static regime in cylindrical tubes

and thus only the dynamic regime is observed on Fig. 3.8 (a2-b2).

3.5 Response of liquid plugs to periodic pressure

forcings in rectangular microfluidic channels

3.5.1 Detailed analysis of single plug ruptures.

We further investigated the response of liquid plugs to cyclic forcing. For this

purpose, liquid plugs are inserted at the center of a rectangular microfluidic

channel and a cyclic pressure forcing (represented on Fig. 3.4b) is applied. Fig.

3.9 illustrates the positions of the rear and front interfaces (a-c-e) and the evolu-

tion of the plug length (b-d-f) for three different initial plug lengths: L1 = 3.8

mm (a,b), L2 = 4.1 mm (c,d) and L3 = 4.5 mm (e,f). The blue curves correspond

to experiments and the red curves to simulations. For these 3 initial lengths, the

plugs undergo oscillations eventually leading to their rupture. The experimental

results show that the evolution of the plug length is not monotonous: the plug

size first increases and then decreases during each back and forth motion. This is

a consequence of the progressive increase in the driving pressure (Fig. 3.4b): at



3.5. pressure forcings in rectangular microchannels 103

2 3 4
0

5

10

15

20

25

30

35

40

45

R
u
p
tu

re
L
e
n
g
th

(m
m
)

 

 

Initial plug length L0 (mm)

Experiments rectangular

Model: ∆Pt = 1000e−3e−10t
P a

(a1)

0 1 2 3 4
0

10

20

30

40

50

60

Initial plug length L0 (mm)

R
u
p
tu

re
le
n
g
th

(m
m
)

 

 

Experiments cylindrical

Model: ∆Pt = 80e−6e−3t
P a

(a2)

2 3 4
0

1

2

3

4

5

Initial plug length L0 (mm)

R
u
p
tu

re
ti
m
e
(s
)

 

 

Experiments rectangular

Model: ∆Pt = 1000e−3e−10t
P a

(b1)

0 1 2 3
0

1

2

3

4

5
R
u
p
tu

re
ti
m
e
(s
)

 

 

Initial plug length L0 (mm)

Experiments cylindrical

Model: ∆Pt = 80e−6e−3 t
P a

(b2)

Figure 3.8 – Rupture lengths (a1) and rupture times (b1) of a liquid plug
moving in a rectangular microfluidic channel under the pressure driving ∆Pt =
1000e−3e−10t

Pa compared to the rupture lengths (a2) and rupture times (b2) of
a liquid plug moving a cylindrical capillary tube of radius R = 0.235 mm under
the pressure driving ∆Pt = 80e−6e−3t

Pa (a2-b2) . The blue stars correspond to
experiments and red curves to simulations.

the beginning the driving pressure is low, the plug moves slowly and leaves less

liquid behind it that it recovers from the liquid film lying in front of it. Then,

when the driving pressure reaches a critical pressure (derived in Magniez & al.

[97] in the case of cylindrical tubes), the tendency is inverted.

The number of oscillations before the plug rupture increases with the initial

length of the plug. For the longest plug (L3 = 4.5 mm), a clear transition can be

seen between a first phase where the plug undergoes relatively stable oscillations
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Figure 3.9 – Spatiotemporal evolution of three plugs of initial lengths (a-b)
L1 = 3.85 mm, (c-d) L2 = 4.1 mm and (e-f) L3 = 4.5 mm driven by the cyclic
pressure forcing represented on Fig. 3.4(b). (a-c-e) Positions of the left and
right menisci as a function of time. (b-d-f) Evolution of the length of the plug
as a function of time.

with weak net evolution of its length from one cycle to another (see Fig. 3.9

before time t = 15 s) and a second phase with a brutal acceleration of the plug

rapidly leading to its rupture (t ≥ 15s)

3.5.2 Specificity of the cyclic dynamics of liquid plugs in rect-

angular channels compared to cylindrical channels.

Such transition is not observed in cylindrical tubes wherein the net variation of

the plug size is more regular (see Fig. 3.10f). Signe & al. [167] demonstrated

that in cylindrical channels, the two sources of the plug instability leading

to its rupture are (i) the cyclic diminution of the plug viscous resistance to
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Figure 3.10 – (a-b-c) Spatiotemporal evolution of a liquid plug of initial length
L1 = 4.5mm moving in a rectangular microchannel under the driving pressure
represented on Fig. 3.4(b). (a) Position of the left and right menisci. (b)
Evolution of the capillary number. (c) Evolution of the plug length. (d-e-
f) Spatiotemporal evolution of a liquid plug of initial length L2 = 3.35mm
moving in a cylindrical capillary tube of radius R = 0.235mm driven by a cyclic
forcing: ∆Pt = 78e−6e−3t

P a for t ∈ [0,T ], ∆Pt = (−1)n(Pc − Pd) for t ∈ [nT , (n+ 1)T ]
with Pc = 78e−3e−3(t−nT )

P a and Pd = 78e−1.4(t−nT )e−0.02e−1.4∗(t−nT )
P a, T = 2.15s with

2T = 4s. (d) Position of the left and right menisci. (e) Evolution of the Capillary
number. (f) Evolution of the plug length. For all experiments, the blue curves
correspond to experiments and the red curves to simulations with the model
presented in this chapter for experiments (a-b-c) in rectangular tube and the
model presented in Signe & al. [167] for the experiments (d-e-f) in cylindrical
tubes.



106 CHAPTER 3. Dynamics of liquid plugs in rectangular microchannels

motion due to the diminution of its length and (ii) a cyclic reduction of the plug

interfacial resistance due to the deposition of a liquid film of increasing thickness

at each cycle and lubrication effects. A very interesting point is that these two

instability sources rely on the amount of liquid deposited on the walls. If the

amount of liquid left on the walls behind the liquid plug would remain constant,

there would be no cyclic evolution of the plug size and no instability related to

lubrication effects. Thus the plug would undergo stable periodic motion with no

evolution of its size and no rupture.
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Figure 3.11 – (a) Evolution the positions of the left and right menisci of a plug
of initial length L4 = 6.5mm driven by the cyclic forcing represented on Fig.
3.4(b). We stopped the acquisition after 6 cycles since no significant of the plug
length and speed from one cycle to the next was observed. (b) Simulations
showing the predicted spatiotemporal evolution of the amount of liquid lying
on the walls (wet fraction).

This behavior is indeed observed for plugs of initial length larger than Lco =

4.7mm (see Fig. 3.11a). In this case the plug always moves at a dimensionless

speed smaller than the critical capillary number Cac. Since simulations and

experiments are in good quantitative agreement, the simulations are used to

monitor the evolution of the amount of liquid covering the walls (wet fraction)

as a function of time. On Fig. 3.11b, we indeed see that the plug leaves a film of

constant thickness (constant wet fraction ms), thus leading to a zero cyclic mass

balance.
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Figure 3.12 – Spatiotemporal evolution of the amount of liquid lying on the
walls (wet fraction) for a plug of initial length L3 = 4.5mm driven by the cyclic
pressure forcing Fig. 3.4(b). This figure correspond to the same experiment as
Fig. 3.9 (e-f) and Fig. 3.10 (a-b-c)

To understand the transition occurring for plugs smaller than Lco we also

plotted the evolution of the wet fraction as a function of time for the initial

size L3 = 4.5mm (see Fig. 3.12). In this case, the plug moves initially at a

capillary number lying under the critical capillary number Cac thus leading to

the deposition of a liquid film of constant thickness behind the plug. The plug

speed increases progressively (see Fig. 3.10b) due to the increase in the driving

pressure (see Fig. 3.4). At time t ≈ 1.5s (see Fig. 3.12) the plug dimensionless

speed overcomes Cac and the wet fractions starts increasing until the direction

of motion changes (see Fig. 3.12). During the next cycles, the same behavior is

observed with, at first, the deposition of a film of constant thickness and then

the deposition of a film of increasing thickness (see Fig. 3.12). Nevertheless, at

each cycle, (i) the plug travels further away, (ii) the plug size decreases, (iii) more

and more liquid is left on the walls and (iv) the proportion of the motion above

Cac increases. For time t > 15s the plug dimensionless speed exceeds Cac for the

most part of the motion and this leads to a rapid evolution of the plug size and

speed and eventually its rupture. This second phase is similar to the evolution
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of liquid plugs in cylindrical tubes.

This analysis enables to set a criterion on the stability of a liquid plug driven

by a pressure periodic cyclic forcing in a dry rectangular microchannel: If the

plug dimensionless speed remains below Cac during the first cycle, then the plug

dynamics will remain stable during the next cycles, while if the plug reaches

Cac during this first cycle, it will accelerate cyclically and eventually rupture.
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Figure 3.13 – (a1-a2) Rupture lengths and (b1-b2) rupture times for a cyclic or
unidirectional pressure forcing in a rectangular (a1-b1) or cylindrical (a2-b2)
channel. For rectangular channels, the pressure driving corresponds to the one
represented on Fig. 3.4b and for cyclic pressure driving, it correspond to the
one described in Fig. 3.10. Blue stars correspond to experiments with cyclic
forcing, black squares to experiments with unidirectional pressure forcing, red
solid lines to simulations for cyclic pressure forcing and black dashed lines to
simulations with unidirectional pressure driving.
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3.5.3 Evolution of the rupture time and rupture length and

comparison between cyclic and unidirectional forcing.

To get a parametric overview of plugs dynamics in rectangular microchannels,

we performed hundreds experiments with different plug initial lengths and

either unidirectional or cyclic pressure drivings (of same maximal amplitude).

The measured values of the rupture time and rupture length are represented on

Fig. 3.13a1, b1) and compared to the evolutions in cylindrical tubes Fig. 3.13a2,

b2). As previously reported in cylindrical channels, we observe a saturation of

the rupture length when the plug starts undergoing cycles. Nevertheless a major

difference with cylindrical tubes is that the rupture time increases to infinity for

a finite value of the critical initial length Lco ≈ 4.7mm while the increase in the

rupture time was shown to follow a more "gradual" exponential trend in Signe &

al. [167]. This is again a consequence of the existence of the static deposition

regime in rectangular channels which does not exist in cylindrical tubes. Of

course, in any case, the rupture time is never really infinite owing to evaporation

of the plug occurring in the channel.

3.6 Conclusion

In this chapter, we studied the dynamics of single liquid plugs in rectangular

microfluidic channels under unidirectional and cyclic pressure forcing. First, we

showed that the transition between static and dynamic film deposition regimes

leads to a dramatic acceleration of the plug rapidly leading to its rupture. A

pressure-dependent critical size for the transition between these two regimes

is derived analytically. For cyclic periodic pressure forcing, we showed that

two regimes can occur depending on the initial size of the plug: the plug can

either undergo stable periodic oscillations or cyclically accelerate and eventually

rupture. The stable regime is observed when the plug dimensionless speed

remains below a critical capillary number during the first cycle, while the second

is observed as soon as the plug overcomes this value during the first cycle. We

were able to quantitatively reproduce the evolution with a reduced dimension

model obtained from the combination of previous elements introduced in chap-
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ter 1 with additional elements to consider the transition between the static and

dynamic film deposition regimes.

These results are of primary interest since microfluidic channels with polyg-

onal cross sections are widely used in the field of microfluidics owing to their

easy fabrication. In particular, for the study of liquid plugs dynamics in complex

geometries, such as airway tree, it is extremely difficult to design trees with

cylindrical sections. Thus, this work also enable to analyse and transpose results

obtained in rectangular channels to cylindrical channels and understand the

pertinence and limit of such comparison.



Chapter4
Ongoing work: Cyclic dynamics of

liquid plugs in synthetic tree

networks

Abstract

In this chapter, we present preliminary experimental results on the dynamics of

single liquid plugs inserted inside a five generations PDMS synthetic network

and driven by a cyclic forcing. Three main regimes are identified as the driving

pressure level is decreased: A first regime wherein all daughter plugs break

during the first half cycle and hence do not enter cyclic evolution. A second

regime wherein at least one path is reopened during the first half cycle, but

some daughter plug survive and oscillate until their rupture. And a third regime

wherein no plug breaks during the first cycle and all daughter plugs enter cyclic

motion. Each of these transitions leads to a dramatic increase in the total time

required to reopen the entire network. The physics learnt from the previous

chapters helps us understanding qualitatively the tendencies, yet, much work is

still needed to extract the physics behind all these experimental data.

111
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4.1 Introduction

Two-phase gas-liquid flow in complex networks is a hydrodynamic problem

with practical applications in a variety of engineered systems including flow in

porous media [114, 116, 117], enhanced oil recovery [112], the stability of flow

in microfluidic device [174, 175, 172, 176] and in natural systems as the network

in a tree leaf [177] or the human pulmonary airway tree. This last case motivated

many numerical [178, 179, 68, 180, 181, 152], experimental [71, 114, 182, 183,

149] and theoretical studies [184, 172, 96], which attempt to analyse and model

the dynamics of liquid plugs in bifurcating microchannels and understand the

physical interactions that occur between the flowing fluids and the network.

Nevertheless, to the best of our knowledge, no experiments have been performed

for cyclic dynamics of plugs in networks and there are few comparisons in the

literature of the models with carefully controlled experiments.
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Figure 4.1 – Models of 5 generations tree-like networks of the lung obstructed
by a liquid plug used for the experimental design of the PDMS networks. The
first branch numbered 0 divides in successive generations:
(a) Symmetric model: each branch in a generation of the network divides di-
chotomously in successive daughter branches.
(b) Asymmetric model: each branch of the network gives rise to the following
two next daughter branches.
The branching angle φ = 90o is kept constant in all the branches of the net-
works.
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In the previous chapters, we have shown that the dynamics of a liquid plug

in a straight channel depends on the type of forcings (flow rate or pressure head),

the liquid film history during the flow, the magnitude and the frequency of

the cyclic forcing, and the geometry of the channel (cylindrical or polygonal).

The connections between different branches in a network of microchannels

makes the analysis of the dynamics of the liquid plugs more complex due to

local and global interactions that occur through the connected network which

allow the flow in a given generation to influence the flow in the other regions of

the branching network [96]. The number of levels in the network also play an

important role because during a cyclic motion, the liquid plugs can oscillate in

between successive generations of the branching tree. Therefore, the physical

interactions between the flowing fluids and the connected network depend on

all those parameters which are, for most of them not accounted for in all the

aforementioned studies.

In this chapter, we present an experimental study on the flow and rupture

of liquid plugs in two polydimethylsiloxane (PDMS) microfluidic tree-like net-

works: one symmetric and one asymmetric (see Fig. 4.1). The liquid plugs

experience a pressure cyclic forcing of oscillation period close to a real breathing

cycle (2T = 4 s) and pressure levels comparable to the alveolar pressure. Our first

analysis of the experiments shows that depending on the pressure magnitude,

several regimes exist with either the breaking of all the liquid plugs during the

first half-cycle or the persistence of liquid plugs in the airways, which undergo

cyclic motion until their rupture. The transition between the straight and cyclic

behavior leads to a dramatic increase in the total reopening time of the network.

An interesting point, is that the second regime (persistence of liquid plugs and

oscillations in a single generation) is reminiscent of the configurations studied in

the previous chapters. Nevertheless the slow motion of the liquid plugs in this

regime leads to static film deposition, and hence high rupture time of the liquid

plug... This means that while the preliminary distribution and division of the

plugs in the network is probably relatively similar to what happens in cylindrical

channels, their persistence time is dramatically increased by the existence of the

static deposition regime in our rectangular channels.
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4.2 Method

Microfluidic PDMS Netwotk

Vieworks microdisplay Camera

Image acquisition

Plug

Air

Liquid injection

Air

Figure 4.2 – Sketch of the experimental setup. A liquid plug is created inside
a rectangular PDMS tree-like network by pushing alternatively some liquid
and some air at a Y-junction. The liquid is pushed by a syringe pump while the
air is pushed by a MFCS pressure controller. Then the liquid plug is moved
alternatively in both directions in a cyclic periodic driving.

The experimental setup is represented on Fig. 4.2. The experiments are

conducted in rectangular polydimethylsiloxane (PDMS) microfluidic tree-like

networks obtained by standard photolithography techniques already explained

in chapter 3. The height h = 45 ± 2µm of the microfluidic network is fixed by

the choice of the photoresist and the speed of the spin-coating, while the cross

sectional ratio r between the branch number n and the branch number n+ 1 is

kept constant r = Sn+1/Sn = 0.83, thus fixing the width wn at each generation n as

in Song & al. [185]. The channel lengths also decrease linearly with almost the

same ratio and the branching angle is kept constant in the network φ = 90o. This

value is consistent with the measured branching angles in airway generations of

less than 1mm in diameter by Horsfield [17].

A perfluorodecalin liquid plug is then injected in the first generation 0 and is

moved alternatively by periodic pressure cyclic drivings of different level varying

from (200 to 900) Pa. The shape of the pressure forcing is complex owing to the
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response time of the system but we succeeded to have almost the same pressure

evolution for all experiments. Therefore we will only characterise the pressure

driving by the maximum pressure level ∆Pmaxt that is reached. The experiments

are recorded with a Vieworks microdisplay camera allowing to take long time

experiments with a suitable acquisition rate up to 350 images/s compared to

the high speed camera that allowed to take up to (10000) images/s but in a very

short time. The acquisition rate in the experiments are fixed according to the

driving conditions. The resolution of the camera used is 1024×726 pixels and

the trigger time 1/3000 s.
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Figure 4.3 – Total reopening times of (a) the symmetric network and (b) the
asymmetric network obstructed by a liquid plug of initial length L1 = 1± 0.1
mm and L2 = 1.8±0.1 mm set in motion under different cyclic pressure driving
of level ∆Pmaxt varying from (200 to 900) Pa. Each experiment is repeated four
times in the symmetric network and three times in the asymmetric network.
The solid lines represent the mean value for the experiments.

4.3 Total reopening time and flow regimes in the

tree-like networks

A single liquid plug of controlled size L is initially created in generation 0 of

the network represented on Fig. 4.1 and driven by a cyclic pressure driving
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of pressure level ∆Pmaxt . The first parameter that we investigated is the time

required for the network to be entirely reopen (all paths free), called total

reopening time. We can see on Fig. 4.3 some sharp transition between different

regimes. At high driving pressure the plug leaves a large amount of fluid behind

it and its size evolves rapidly as it invades the network. Depending on the

pressure level, it will divide one or several times into daughter plugs but all

plugs will rupture during the first half cycle. This regime is observed on Fig. 4.3

(a) for pressure levels larger than 650 Pa for L1 = 1mm and 700 Pa for L2 = 1.8

mm. We must underline that the channels are not prewetted, which leads to a

rapid decrease of the plug length. Then, if all the daughter plugs do not break

during the first cycle, they start undergoing cyclic motions in the network.

0 200 400 600 800 1000

500

1000

1500

2000

Pressure Pa

T
o
t
a
l
r
e
o
p
e
n
in
g
t
im

e
(
s
)

200 400 600 800 1000

10
0

10
2

10
4

Pressure Pa

T
o
t
a
l
r
e
o
p
e
n
in
g
t
im

e
(
s
)

(a)
Symmetric tree L1

Asymmetric tree L1

0 200 400 600 800 1000

500

1000

1500

2000

2500

3000

Pressure Pa

T
o
t
a
l
r
e
o
p
e
n
in
g
t
im

e
(
s
)

200 400 600 800 1000

10
0

10
2

10
4

Pressure Pa

T
o
t
a
l
r
e
o
p
e
n
in
g
t
im

e
(
s
)

(b)
Symmetric tree L2

Asymmetric tree L2

Figure 4.4 – Total reopening time in (a) the symmetric network compared to
the asymmetric network (b) for two plug sizes L1 = 1±0.1 mm and L2 = 1.8±0.1
mm set in motion under different cyclic pressure driving of level ∆Pmaxt varying
from (200 to 900) Pa. The solid lines represent the mean values.

In practice, in most experiments, the daughter plugs only oscillate in one

generation since a plug ruptured during the first half period, leading to large

pressure decrease and they are not able to cross the bifurcations. When plug

enter cyclic motions, their evolution is much slower since (i) the plug moves on

a prewetted channel when it moves back, which slows down the evolution of

its size as seen in chapter 1 (exponential increase in the rupture time when the



4.4. Influence of the network geometry 117

plug starts undergoing cycles) and (ii) at each plug rupture, the driving pressure

in the network decreases dramatically and thus the plug enters the static film

deposition regime which is extremely stable. We need now to analyse more

closely what happens in the transition and find relevant quantities to quantify

the evolutions in these two regimes.

4.4 Influence of the network geometry

If we compare the evolution in the asymmetric and symmetric networks Fig.

4.4, we see that the regimes are pretty similar except that the reopening time

is significantly larger for the asymmetric network. We believe that it is mainly

due to the fact that since the reduction in the network cross sections from one

generation to the next is faster for the asymmetric network. This leads to a more

rapid evolution of the network resistance in the asymmetric case and thus slower

plug displacement for the same pressure driving. Again, this intuition needs to

be quantified by measuring the average speed of the plugs per generation in each

networks. Another interesting point is that the two curved converge for both

high and low pressure. This is expected for the largest pressures since in this

case, the plug break in the first generation of the network and thus the dynamics

does not depend on the network geometry.

4.5 First pathway reopening time

As long as all pathways are closed by a liquid plug (there is a liquid plug in

between all paths entrance and exit), each plug is driven by the same applied

driving pressure ∆Pmaxt since the pressure loss is mainly due to the presence of

the plug (resistance of air can be neglected). Once a path is reopened, the air

flows freely inside it, which leads to a drastic reduction of the driving pressure

for all the remaining plugs since in a branching tree, all paths are connected.

Thus it is essential to track down the first plug rupture to understand the

tendencies. Fig. 4.5 shows the evolutions of the first pathway reopening time

for each network and initial plug size L. If we look at the transition between
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Figure 4.5 – Rupture time of the first liquid plug (thus reopening a path of the
network) for the symmetric and asymmetric networks and the two plug sizes
L1 = 1±0.1 mm and L2 = 1.8±0.1 mm as a function of the cyclic pressure driving
level ∆Pmaxt varying from (200 to 900) Pa. The solid lines represent the mean
value of four experiments in the symmetric network and three experiments in
the fractal network.

the rupture of the plug during the first half-cycle and its rupture during the

next cycles, we see that the transition occurs at about 500 Pa for the asymmetric

tree with plug initial length L2, 400 Pa for the asymmetric tree with plug initial

length L1, 350 Pa for the symmetric tree with plug initial length L2, and 300 Pa

for the symmetric tree with plug initial length L1. Each time, these transition

leads to an obvious evolution of the trends for the total reopening time and in

particular an increase in the slope of the total reopening time evolution.

4.6 Volume of reopened airway

The knowledge of the volume of reopened airway is of fundamental importance

for pulmonary obstruction diseases because it gives informations on the evolu-

tion of the airway congestion during the breathing cycle. As we write this lines,

we just obtained the evolution of the reopened volume as a function of time (see

Fig. 4.6 and Fig. 4.7) for the different pressure levels but has not time to analyse



4.6. Volume of reopened airway 119

the tendencies yet...
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Figure 4.6 – Reopened volume of the symmetric network for a liquid plug of
initial length L1 = 1± 0.1 mm (a-b-c) and L2 = 1.8± 0.1 mm (a1-b1-c1) under
different cyclic pressure driving of level ∆Pmaxt varying from (200 to 900) Pa.
Solid lines show the situation in which the oscillations of the liquid plugs occur
in a given generation of the network while dashed lines present the situation in
which the oscillations occur between one or two generations of the network.
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Figure 4.7 – Reopened volume of the asymmetric network for a liquid plug of
initial length L1 = 1± 0.1 mm (a-b-c) and L2 = 1.8± 0.1 mm (a1-b1-c1) under
different cyclic pressure driving of level ∆Pmaxt varying from (200 to 900) Pa.
Solid lines show the situation in which the oscillations of the liquid plugs occur
in a given generation of the network while dashed lines present the situation in
which the oscillations occur between one or two generations of the network.
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4.7 Conclusion

In this chapter, we presented experimental preliminary results of the cyclic

dynamics of liquid plugs in synthetic (PDMS) tree-like networks. These first

results show some interesting tendencies, with the existence of different flow

regimes. A substantial amount of time is nevertheless necessary to analyse them

properly... Work in progress...



Conclusion and prospects

During this thesis, we studied experimentally and theoretically the response

of liquid plugs to cyclic forcing in three different configurations: cylindrical

rigid capillary tubes, rectangular (PDMS) channels and tree-like (PDMS) syn-

thetic networks. Our starting motivation was to understand how mucus plugs

behave in the lung tree during breathing cycles: do they break or do they persist

depending on the intensity of the forcing and the thickness of the mucus lining.

Indeed, while there is an abundant literature on the dynamics of liquid plugs

in tubes, almost all of these studies have been performed with constant flow rate

or pressure driving, forcing conditions far from the ones occurring in the lungs

during the breathing cycle. The study of the response of liquid plugs to cycles

unveiled many interesting physical phenomena: the history role played by the

film deposition, the existence of stable states with periodic oscillations of liquid

plugs in prewetted tubes for pressure forcing or the fundamental role played by

the transition between static and dynamic film deposition on the plug dynamics

in rectangular channels. The models developed and validated in this thesis were

then used to identify the critical pressures required to reopen airways obstructed

by liquid plugs for a physiologically relevant forcing. This study underlines the

key role played by the thickness of the liquid lining on the stability of the plugs

and the higher driving pressure required to reopen more distal airways.

Since our initial motivation was the physiology of lungs in pathological

conditions, one may wonder: why performing experiments in rectangular chan-

nels? First, it is extremely difficult to conceive cylindrical complex microfluidic

networks, while it is much easier to conceive rectangular networks with soft

photolithography. As a consequence, many studies on the dynamics of liquid

plugs have been performed in rectangular tubes. It is therefore fundamental

122
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to understand the physics in this geometry and to determine in which cases

the results can be extrapolated to cylindrical geometries and in which cases the

plug dynamics is fundamentally different. We are currently working a lot on

the analysis of the results obtained in networks and how the tendencies apply

or not to cylindrical networks. Second, rectangular channels obtained with soft

lithography have become a standard in microfluidics setup and segmented gas-

liquid flow appear in many research and industrial systems. Thus, it is equally

important to understand the dynamics of liquid plugs in these geometries. Our

study extends results in the literature to account for the variation of the channel

geometry and the transition at a critical capillary number Cac, between the

static ms and the dynamic md wet fraction of liquid deposited during the cyclic

motion.

This work raises many questions (What happens if the mucus is not Newto-

nian? Can we derive a model in a complex network? How to account for plugs

division? What are the real forcing conditions in intermediate airways? What

role is played by the walls elasticity?...) and provides only a few answers. Nev-

ertheless, we hope that this thesis will add another small piece to the complex

puzzle of the pulmonary airway flows and pave the way toward new studies.
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The dynamics of liquid plugs in synthetic networks under cyclic forcings: to-
wards understanding and treatment of respiratory diseases

Abstract

Breathing is one of the most vital mechanism for humans. Indeed, one can live a
few days without eating or drinking, but only few minutes without breathing. Owing
to the complexity of the respiratory system, the mechanism of breathing is not well
understood, especially in pathological conditions when airways are obstructed by mucus.
The presence of liquid plugs resulting from the accumulation of mucus in the bronchial
tree is a characteristic of genetic diseases like cystic fibrosis or chronic diseases like
asthma or chronic bronchitis. Thus, understanding the dynamics of these plugs during
the breathing cycle is essential to improve our understanding of those diseases. In this
thesis, we study experimentally and theoretically, the dynamics and rupture of liquid
plugs under unidirectional and cyclic forcing in a rigid capillary tube. We develop a
reduced dimension model, which quantitatively reproduces the observed dynamics,
unveil the underlying physics and in particular the sources of the plug instability leading
to its rupture. From this model, we are able to derive the critical pressure magnitude
required to reopen obstructed pathways. In addition to the study of cylindrical tubes,
we investigated the cyclic dynamics of liquid plugs in rectangular channels, a geometry
of the utmost interest for microfluidic systems. In this case, we show that under cyclic
pressure forcing, two regimes can be observed depending on the values of the capillary
number: one leading to the rupture of the plug and one to stable cyclic oscillations.
Finally, in the last part of this work, we study experimentally the cyclic forcing of liquid
plugs in tree structures mimicking the geometry of intermediate generation of the lung.
These preliminary results show that plugs not ruptured during the first half cycle persist
in the airways for a long time and oscillate until their rupture. To conclude, we must
underline that the initial objective of this thesis was not to achieve a realistic description
of pathological flows in the lungs, but only to develop some fundamental solid building
blocks that might contribute to this goal in the future.

Keywords: two phase flow, cyclic forcings, taylor flow, slug, bolus, capillary tube,
synthetic networks, airways reopening
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De la dynamique de bouchons liquides dans les réseaux synthétiques soumis à des
forçages cycliques au diagnostic et traitement de maladies respiratoires

Résumé

La respiration est un mécanisme essentiel de survie chez les humains. En effet, si nous
pouvons survivre quelques jours sans manger et boire, nous ne pouvons survivre que
quelques minutes sans respirer. Le système respiratoire est extrêmement complexe de
par sa structure fractale qui induit des physiques très différentes entre les voies proxi-
males et distales. Il n’existe à l’heure actuelle aucune modélisation réaliste du système
pulmonaire en particulier dans des conditions pathologiques où les voies sont obs-
truées par des bouchons de mucus. Ces bouchons liquides caractéristiques de certaines
maladies comme la mucoviscidose, les bronchites chroniques ou l’asthme résultent
de l’accumulation de mucus dans les voies pulmonaires. Comprendre les mécanismes
à l’œuvre lors de l’écoulement de ces bouchons lors d’un cycle respiratoire est donc
primordial pour améliorer notre compréhension et le traitement de ces pathologies.
Nous présentons dans cette thèse une première étude théorique et expérimentale de
la dynamique de ces bouchons liquides dans des tubes capillaires rigides soumis à des
forçages unidirectionnels et cycliques. Nous avons développé au cours de ce travail
un modèle simplifié permettant de reproduire quantitativement les dynamiques obser-
vées, de comprendre la physique sous-jacente et en particulier d’identifier les sources
d’instabilités qui entraînent la rupture d’un pont liquide. Ce modèle nous a permis de
déterminer les pressions critiques nécessaires à la réouverture des voies pulmonaires.
Ensuite, nous nous sommes intéressés à la dynamique des ponts liquides dans des tubes
rectangulaires, la géométrie la plus communément rencontrée en microfluidique. Dans
cette géométrie, nous avons identifié de nouveaux régimes qui n’apparaissent pas dans
les géométries cylindriques, et en particulier un régime d’oscillation stable sous forçage
en pression périodique. Enfin nous nous sommes intéressés à la dynamique cyclique de
ponts liquides dans des réseaux synthétiques en arbres. Nos premiers résultats montrent
que les ponts qui ne sont pas détruits lors du premier demi-cycle persistent très long-
temps dans les voies et oscillent de manière cyclique dans une génération jusqu’à leur
rupture. Pour conclure il est important de souligner que l’objectif initial de cette thèse
n’était pas d’aboutir à une modélisation réaliste des écoulements pulmonaires dans
des conditions pathologiques, mais simplement d’apporter des briques fondamentales
solides qui pourraient y contribuer dans le futur.

Mots clés : écoulement diphasiques, forçages périodiques, bouchons liquides, bolus,
tubes capillaires, réseaux synthétiques, réouverture des voies respiratoires



Résumé de la thèse en français

Ce travail de thèse s’inscrit dans un projet qui vise une modélisation réaliste des
écoulements pulmonaires en particulier dans des conditions pathologiques où
les voies respiratoires sont obstruées par des bouchons (ponts) de mucus. Pour
comprendre ces écoulements et construire des modèles qui se rapprochent des
conditions physiologiques, il est nécessaire de tenir compte des interactions com-
plexes entre l’air qui s’écoule dans les voies respiratoires pendant la respiration,
le fluide (mucus) qui recouvre les parois du poumon et les parois pulmonaires
pendant le cycle respiratoire.

L’objectif du travail présenté dans cette thèse est l’étude des mécanismes
physiques à l’œuvre lors de l’écoulement de ces bouchons de mucus pendant les
cycles respiratoires afin d’améliorer notre compréhension des phénomènes et les
traitements liés à ces pathologies.

Introduction générale

Le système respiratoire humain est un système biologique formé de 3 grandes
parties : (i) les poumons (droit et gauche) que l’on retrouve dans la cavité
thoracique, (ii) les voies respiratoires, comprenant le nez, la bouche, le larynx,
le pharynx, les bronches et les bronchioles et (iii) les muscles respiratoires dont
le rôle principal est tenu par le diaphragme [1]. Ce système complexe formé
d’organes, de muscles et de tissus est essentiellement utilisé pour les échanges
gazeux mais joue également un rôle fondamental dans la métabolisation de
composés physiologiques, le filtrage de l’air et agit comme un réservoir pour le
sang [4, 5]. Les échanges gazeux au cours desquels le dioxygèneO2 est absorbé et
le dioxyde de carbone CO2 est rejeté par les poumons ne sont possibles que par
la respiration qui consiste en des cycles répétés d’inspirations et d’expirations
de l’air par le nez jusqu’à environ 500 millions de petits sacs alvéolaires à une
fréquence de 12 à 18 respirations par minute [2] : il constitue donc un processus
cyclique qui se produit dans les voies respiratoires.

L’inspiration est un phénomène actif qui commence par la contraction du
diaphragme d’environ 1−1.5cm, ce qui augmente le volume de la cage thoracique
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(c)

(b)

Figure 4.8 – Géométrie d’un poumon humain:
a) Moule d’un poumon humain. Les alvéoles ont été retirées pour pouvoir
observer les voies respiratoires [2].
b) Reconstruction 3D de 5 générations du poumon d’une femme utilisée pour
des simulations [3].
c) Modèle symétrique fractal 2D fait en PDMS de 5 générations d’un poumon
utilisé pour des expériences.

250 − 350cm3. Cette augmentation de volume entraîne une diminution de la
pression d’écoulement d’air entre le nez et les alvéoles pulmonaires (pression
alvéolaire) en dessous de la pression de référence dans le poumon qui est la
pression atmosphérique à cause de la loi de Boyle (P V = cst) : ce qui engendre
un écoulement d’air vers les poumons jusqu’à ce que les pressions s’égalisent
à la fin de l’inspiration. L’expiration est au contraire un phénomène passif au
cours duquel les muscles de respiration se relaxent et l’air maintenant chargé en
dioxyde de carbone est expulsé du poumon [2].

Les voies respiratoires du poumon qui sont le lieu de passage de l’air et
d’échanges gazeux, consistent en un réseau de tubes de différentes tailles et
propriétés mécaniques, interconnectés et qui adoptent une structure en arbre
(Fig. 4.8). Ces voies pulmonaires sont recouvertes d’une double couche de
liquide (mucus non Newtonien au-dessus d’une couche Newtonienne) ayant
un rôle de protection contre les particules extérieures qui sont inhalées lors de
la respiration et qui peuvent s’avérer dangereuses si elles sont en contact avec
les parois du poumon [25]. Ce mucus est ensuite transporté par le mouvement
coordonné de cils pulmonaires à une vitesse ∼ 3mm.min−1 jusqu’à l’estomac où
il sera détruit.

Cette fine couche de mucus qui, dans un poumon sain est repartie de façon



uniforme le long des parois pulmonaires adopte un comportement différent
dans des conditions pathologiques telles que : (i) l’asthme [58, 35, 59, 60],
la mucoviscidose [61, 62, 28], (iii) les bronchites chroniques [32, 58, 63] ou
encore (iv) le cancer du poumon. Ce comportement anormal du mucus peut se
traduire par une hypersécrétion de mucus ou encore un mucus aux propriétés
rhéologiques altérées qui offre un environnement de choix pour la prolifération
des bactéries (Fig. 4.9). Ce mucus pathologique qui obstrue les voies respiratoires
entrave la circulation de l’air dans l’arbre pulmonaire et peut mener à la mort
des sujets malades à cause d’une insuffisance respiratoire.

Figure 4.9 – Production de mucus dans le cas de l’asthme et d’une bronchite
chronique. L’excès de mucus M bloque partiellement la voie respiratoire [26].

La problématique de la réouverture des voies aériennes est critique pour
les patients souffrant d’obstruction des voies respiratoires. Dans la littérature,
plusieurs modèles ont été développés pour étudier la réouverture des voies
respiratoires dans des tubes rigides secs [96] et prémouillés [97]. En prenant en
compte l’élasticité des parois pulmonaires [103, 104, 102, 105, 106], les effets
de la gravité de l’inertie [93], ou encore les propriétés non Newtoniennes du
mucus [108, 100] mais toujours en utilisant des conditions de forçages (débit ou
pression) constantes.

Ce travail de thèse est motivé par l’absence dans la littérature d’études sur
la dynamique de ponts liquides soumis à des conditions de forçages complexes.
Ainsi nous visons au travers des études menées dans ce manuscrit une meilleure
compréhension théorique et expérimentale de la dynamique de l’écoulement et
de la rupture des ponts liquides soumis à un forçage cyclique à une fréquence
proche d’un cycle respiratoire réel.
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Dans le chapitre 1, nous proposons une étude théorique et expérimentale
de la dynamique des ponts liquides soumis à des forçages cycliques (débit et
pression) dans des tubes capillaires cylindriques en verre. Cette étude nous a
permis d’identifier les sources d’instabilités qui entraînent la rupture d’un pont
liquide.

Le chapitre 2 complète l’étude précédente par une étude numérique qui nous
a permis de déterminer les pressions critiques nécessaires à la réouverture des
voies pulmonaires obstruées.

Avec le chapitre 3, nous explorons la dynamique cyclique des ponts liquides
dans des canaux rectangulaires qui est la géométrie la plus communément ren-
contrée en microfluidique. Nous montrons que la transition entre 2 régimes de
dépôts de films liquides due à la forme polygonale des canaux modifie drama-
tiquement la dynamique des ponts liquides.

Enfin nous présentons dans le chapitre 4 une étude préliminaire sur la dy-
namique des ponts liquides dans des réseaux en arbres soumis à des forçages
cycliques de différentes amplitudes. Plusieurs régimes d’écoulement sont ob-
servés en fonction de l’amplitude de forçage et de la géométrie du réseau. Ces
résultats montrent que les ponts liquides qui ne sont pas détruits lors du premier
cycle ont tendance à persister dans l’arbre pulmonaire et osciller jusqu’à leurs
ruptures.

Chapitre 1 : Dynamique d’un pont liquide dans un
tube capillaire soumis à un forçage cyclique

Pont liquide Pont liquide

(a) (b)

Figure 4.10 – Un pont liquide de longueur Lp est créé à l’intérieur d’un tube
capillaire de rayon R. Xr et Xf sont respectivement les positions des ménisques
arrière et avant. La couche de liquide déposée lors du mouvement du pont
liquide est hr :
(a) Le tube capillaire est sec hf = 0.
(b) Le tube capillaire est prémouillé hf > 0.



Un pont liquide initialement créé à l’intérieur d’un tube capillaire et qui
se déplace sous l’action d’un forçage unidirectionnel déforme ses interfaces
(ménisques) avant et arrière. Cette déformation qui se produit au niveau des
parois du capillaire conduit à des sauts de pressions à l’avant et à l’arrière du
pont liquide ce qui entraîne un dépôt de film liquide sur les parois du tube
pendant le mouvement (Fig. 4.10).

Dans cette partie, nous étudions théoriquement et expérimentalement la
réponse d’un pont de liquide à un forçage cyclique en pression et en débit de
période (2T = 4 s). Les expériences sont menées dans des tubes capillaires rigides
en verre et comparées à un modèle théorique étendu basé sur les développe-
ments précédents [96, 97]. Il est montré qu’en fonction du type de forçage,
la dynamique du pont liquide peut être soit périodique avec la reproduction
du même mouvement cyclique dans le temps (en débit), soit accélératrice con-
duisant éventuellement à la rupture du bouchon (en pression) . En particulier,
cette étude révèle le rôle hystérétique central joué par le dépôt de film liquide
sur la dynamique du pont liquide.
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Figure 4.11 – Portait de phase montrant l’évolution de la position du ménisque
arrière du pont liquide en fonction de la vitesse adimensionnée (le nombre
capillaire Ca) :
(a) Forçage cyclique en débit.
(b) Forçage cyclique en pression.
Les courbes en bleu représentent les expériences tandis que les courbes en
rouge représentent les simulations.

La différence observée dans la dynamique du pont liquide soumis à un
forçage en débit et en pression s’explique par la nature même de la contrainte
appliquée. En effet pour un forçage cyclique en débit, (i) la vitesse du pont
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liquide et sa position sont directement imposées par le mouvement du pousse
seringue et ne dépendent pas de la résistance du pont liquide et (ii) le film de
liquide déposé sur les parois du tube est constant parce qu’il ne dépend que
de la vitesse. Ce qui conduit à un bilan massique nul et donc une évolution
périodique du pont liquide à chaque cycle (Fig. 4.11a).

Dans le cas d’un forçage cyclique en pression, la dynamique du pont liquide
diffère fondamentalement (Fig. 4.11b). L’explication de cette modification se
situe dans l’existence de deux effets mémoires qui modifient l’évolution des
résistances à chaque cycle : (i) Un effet mémoire lié à une réduction cyclique
de la longueur du pont liquide qui à son tour diminue la résistance visqueuse
et (ii) un deuxième effet lié à la lubrification du tube après chaque passage du
pont liquide (hf > 0) qui réduit la résistance de l’interface avant. Ces effets
mémoires dépendent fortement de la mémoire du film liquide déposé lors de
chaque déplacement dans le cycle (Fig. 4.12).
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Figure 4.12 – Diagramme spatiotemporel montrant l’évolution de l’épaisseur
de film liquide déposé sur les parois obtenu à partir du modèle réduit.

Enfin, la comparaison des données expérimentales avec notre modèle théorique,
de la rupture de ponts liquides de tailles différentes soumis à un forçage en pres-
sion cyclique démontre l’existence d’une distance de saturation pour la rupture
des ponts liquides quelque soit la taille initiale : c’est donc un phénomène limité
dans l’espace contrairement à ce qui observé en utilisant un forçage unidirec-
tionnel.



Chapitre 2 : Pressions critiques nécessaires à la réou-
verture des voies respiratoires

Nous montrons à travers une étude théorique et numérique des pressions cri-
tiques nécessaires à la réouverture des voies respiratoires obstruées par des ponts
liquides soumis à dans des conditions réalistes de forçage (voir Fig. 4.13), que
la dynamique des ponts liquides peut être soit : (i) accélérée associée à une
diminution progressive de la taille du pont liquide à chaque cycle menant à la
rupture du pont liquide ou (ii) décélérée associée à une croissance de la taille du
pont liquide à chaque cycle et une aggravation de la congestion. La transition
entre ces deux régimes dépend essentiellement de l’amplitude de la pression de
forçage ainsi que de l’épaisseur de film liquide tapissant les voies pulmonaires.
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Figure 4.13 – Simulation numérique de la pression alvéolaire obtenue pendant
un cycle de respiration normal [8] .

Pour ce faire, nous avons initié une première étude sur la réponse du pont
liquide à un forçage en pression variable dans le temps ∆P̃t = P̃0(1− exp(−t̃/ τ̃))
avec t̃ et τ̃ respectivement les valeurs du temps et du temps instationnaire. Cette
étude nous a permis d’observer trois régimes d’évolution de la dynamique du
pont liquide : (i) un régime d’accélération qui apparait pour des amplitudes de
pression très supérieures à la pression critique, (ii) un régime de décélération
induit pour des amplitudes de pression légèrement supérieures à la pression
critique initiale mais qui restent insuffisantes pour parvenir à une accélération
du pont liquide et enfin (iii) un régime de décélération pour des amplitudes
de pression bien inférieures à la pression critique initiale. Bien que l’existence
d’une zone d’évolution instationnaire de la pression rende la prédiction de la
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transition entre les différents régimes plus complexes, les paramètres clés de
transition restent l’amplitude de forçage et l’épaisseur initiale de film liquide.

Le second cas étudié est la réponse du pont liquide soumis à un signal en
pression cyclique rectangulaire pour évaluer l’influence du mouvement cyclique.
Dans ce cas de figure comme dans le précédant trois régimes sont observés mais
toujours avec l’apparition du régime d’accélération pour des amplitudes de pres-
sion très supérieures à la pression critique. Par contre, on observe deux autres
régimes d’oscillations stables des ponts liquides : (i) un régime d’accélération
saturante pour des amplitudes de pression légèrement supérieures à la pression
critique et caractérisée dans un premier temps par une diminution de la taille
du pont liquide mais qui va tendre une valeur de constance et (ii) un régime de
décélération saturante pour des pressions faibles caractérisé par une augmenta-
tion de la taille du pont liquide qui va finir par se stabiliser et osciller autour
d’une valeur constante comme dans le cas précédent. La différence entre ces
deux derniers régimes se situe dans une croissance ou décroissance initiale de la
pression critique qui va conduire dans un cas à une taille du pont liquide plus
petite que la taille initiale (accélération saturante) ou une taille de pont liquide
plus grande que sa taille initiale (décélération saturante).

En combinant les résultats des études précédentes et en utilisant: (i) les
données physiologiques du diamètre et la taille des bronches, (ii) la dépendance
de la longueur du pont liquide avec l’épaisseur du film liquide et (iii) la variation
de l’épaisseur initiale de film liquide pour différents degrés de congestion des
voies respiratoires, nous avons étudié la réponse du pont liquide soumis à un
forçage réaliste (variable dans le temps et cyclique) présenté à la figure 4.13.
Le résultat le plus surprenant est la disparition des régimes de décélération
induite et d’accélération saturante qui peut s’expliquer par la forme particulière
du signal utilisé. Nous retrouvons toujours les deux régimes : (i) d’accélération
conduisant à la rupture du pont liquide et (ii) de décélération associée à une
augmentation progressive de la taille du pont liquide à chaque cycle.

Nous montrons également au travers de cette étude le rôle clé joué par
l’épaisseur de film liquide qui augmente de façon dramatique les pressions
critiques nécessaires à la réouverture des voies respiratoires en particulier dans
les dernières générations du poumon.

Dans cette étude nous nous limitons à un cas idéal qui ne prend pas en
compte : (i) les propriétés rhéologiques du mucus, (ii) la déformation des parois
et leurs effets sur la propagation et la rupture du pont liquide ainsi que (iii) les
interactions complexes dues à la géométrie en arbre du poumon. Cependant
cette étude est à notre connaissance la première à explorer la réponse des ponts
liquides soumis un forçage se rapprochant d’un cycle respiratoire réaliste pour
différentes épaisseurs de films liquide et qui permet de déterminer les pressions
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Figure 4.14 – Pression critique de transition entre le régime d’accélération et
de décélération en fonction de l’épaisseur de film liquide h̃0 dans différentes
générations de l’arbre pulmonaire. Pointillé: pression alvéolaire et trait solide :
pression constante de même amplitude.

critiques nécessaires à la réouverture des voies respiratoires obstruées.

Chapitre 3 : Dynamique d’un pont liquide dans un
microcanal rectangulaire soumis à des forçages en pres-
sion : Influence de la transition entre le régime de
dépôt de film liquide statique et dynamique

La transition entre le régime de dépôt de film liquide statique et dynamique
(voir Fig. 4.15) conduit à une accélération dramatique du pont liquide qui mène
rapidement à sa rupture. Cette transition de régime est propre aux canaux
polygonaux qui présentent des singularités au niveau de leurs bords. Dans
cette partie nous étudions l’influence de la transition entre ces deux régimes
de dépôt de film liquide sur la dynamique du pont liquide dans un microcanal
rectangulaire fait en PDMS à partir des techniques de photolithographie. Le pont
liquide est soumis à différents types de forçages en pression (unidirectionnel et
cyclique). Les observations expérimentales sont quantitativement recouvrées par
un modèle théorique que nous avons développé et qui s’appuie sur des études
précédentes.

La première étape de cette étude consiste à déterminer l’influence de la
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(a) (b)

Figure 4.15 – Esquisse de la section de la bulle d’air à l’arrière du pont liquide:
(a) Quand la vitesse adimensionnée Ca→ 0 (régime de dépôt de film liquide
statique).
(b) Ca & Cac (régime de dépôt de film liquide dynamique).
En noir: liquide, blanc: air.

transition de régime de dépôt de film liquide sur la dynamique des ponts liquides.
Pour cela nous avons étudié expérimentalement la propagation et la rupture de
ponts liquides dans un canal rectangulaire soumis à des forçages en pression
unidirectionnels et d’amplitudes différentes.

Les observations expérimentales confirmées par la notre modèle théorique
montrent que dans le régime de dépôt statique, l’évolution du nombre capillaire
Ca et de la taille du pont liquide est quasi linéaire à cause du film liquide qui
est déposé principalement dans les bords du canal. Cette fraction de liquide
est estimée par une valeur constante qui dépend du rapport d’aspect. Dans
le régime de dépôt dynamique, la loi de dépôt ne dépend plus seulement du
rapport d’aspect, mais aussi du nombre capillaire. Cette rétroaction est à l’origine
de l’accélération massive du pont liquide qui conduit à une diminution rapide
de sa taille quand le nombre capillaire dépasse le nombre capillaire critique
Ca > Cac (voir Fig. 4.16). Ce phénomène rappelle ce qu’on a précédemment
observé dans les tubes capillaires où le régime de dépôt statique n’existe pas.
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Dans un deuxième temps, nous avons soumis les ponts liquides à un forçage
en pression cyclique. Dans ce cas nous montrons que les ponts liquides vont
osciller de façon quasi stable tant qu’ils restent dans le régime statique (Ca <
Cac) durant le premier cycle. Autrement, les ponts liquides vont accélérer
progressivement dans le cycle et finalement casser. À partir de ces observations,
nous avons pu dériver une expression théorique de la longueur critique qui nous
permet de prédire dans quel régime va principalement évoluer le pont liquide.

Étant donné la difficulté de fabrication de systèmes microfluidiques de section
cycliques par exemple des réseaux connectés mimant un arbre pulmonaire,
cette étude nous permet d’analyser et de transposer les résultats obtenus de
la géométrie rectangulaire vers la géométrie cylindrique et de comprendre la
pertinence et les limites d’une telle comparaison.

Chapitre 4 : Dynamique cycliques des ponts liquides
dans des réseaux en arbre
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Figure 4.17 – Modèles de 5 générations d’un réseau en arbre obstrués par un
pont liquide. La première branche numérotée 0 se divise successivement :
(a) Modèle symétrique : chaque branche dans une génération se divise de façon
dichotomique en branches filles successives.
(b) Modèle asymétrique : chaque branche dans une génération donne naissance
au 2 branches filles suivantes.

La dynamique des ponts liquides soumis à des forçages cycliques de dif-
férentes amplitudes dans des réseaux fractals en arbres (symétrique et asymétrique),
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nous avons pu identifier trois régimes associés à une diminution de l’amplitude
de forçage : (i) un premier régime associé à une amplitude de forçage élevée et
dans lequel tous les ponts liquides seront détruits avant d’entrer dans le cycle,
(ii) le second régime dans lequel au moins une branche du réseau est réouverte
pendant la première demi-période et les autres ponts liquides qui auront survécu
vont osciller jusqu’à la rupture et enfin (iii) le troisième régime dans lequel aucun
pont liquide ne va casser durant le premier cycle et tous les ponts liquides vont
entrer dans le mouvement cyclique. Chacune de ces transitions étant associée à
une augmentation spectaculaire du temps de réouverture total du réseau.

En comparant la dynamique des ponts liquides dans les réseaux symétriques
et asymétriques, nous observons que les régimes d’évolution sont similaires
exceptés le temps de réouverture qui est quasiment doublé dans le réseau
asymétrique. Une explication à cela serait la réduction rapide des sections d’une
génération à une autre dans l’arbre asymétrique comparé à l’arbre symétrique
(voir Fig. 4.17). Ce qui conduit à une évolution plus rapide de la résistance du
réseau et ainsi un ralentissement de la propagation des ponts liquides dans le
cas asymétrique.

La connaissance du volume réouvert en fonction du temps est d’une im-
portance fondamentale pour les maladies pulmonaires parce qu’elle donne des
informations essentielles sur l’évolution des congestions pendant la respiration.
Nous avons pu obtenir ces informations en fonction des amplitudes de forçage
mais nous n’avons pas eu le temps d’analyser toutes les tendances.

Conclusion

La motivation principale de cette thèse était la compréhension de la dynamique
des ponts de mucus durant la respiration : Est ce qu’ils finissent par être détruits
ou bien persistent-ils dans l’arbre pulmonaire? Quelle est l’influence de la
pression de forçage ou encore de l’épaisseur de mucus sur la dynamique de ces
ponts de mucus?

L’étude de la réponse des ponts liquides soumis à des forçages cycliques nous
a dévoilé plusieurs phénomènes physiques intéressants : (i) le rôle essentiel de
l’histoire du film liquide déposé, (ii) l’existence d’états stables avec des oscilla-
tions périodiques de ponts liquides dans les tubes prémouillés, (iii) l’influence
de la transition entre le dépôt de film statique et dynamique sur la dynamique
des ponts liquides dans les canaux rectangulaires. Nous avons aussi pu mettre en
évidence le rôle clé de l’épaisseur de la couche de liquide recouvrant les parois
du poumon sur la stabilité des ponts liquides ainsi que la nécessité de pression
de forçage plus élevée pour rouvrir les voies respiratoires plus distales.

Ce travail soulève plusieurs questions (quelle est l’influence des propriétés



non Newtoniennes du mucus? peut-on dériver un modèle théorique complet
pour le réseau? quelles sont les conditions de forçages réelles dans les branches
intermédiaires de l’arbre pulmonaire? quel est le rôle de l’élasticité des parois
sur la dynamique des ponts de mucus? ...) et ne fournit que quelques réponses.
Cependant, nous espérons que le travail fournit dans cette thèse ajoutera une
autre pierre au puzzle complexe que représente les écoulements pulmonaires.

IEMN
Laboratoire central – Cité scientifique - Avenue Poincaré – CS 60069 – 59652
Villeneuve d Asca Cedex – France
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