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Résumé en français

Lorsque deux systèmes physiques sont juxtaposés, il n’est pas rare d’observer l’émergence de
nouveaux phénomènes. Par exemple, la formation d’une molécule de dihydrogène est issue
du rapprochement de deux atomes d’hydrogène en-dessous du rayon de Bohr. Cette proximité
modifie les orbitales de chacun des atomes, leur spectre en énergie ainsi que leur propriété chim-
ique. De même, dans un circuit électrique où la séparation entre des composants est inférieure
à la longueur d’onde électromagnétique traversant ce dernier, les effets des interférences mod-
ifient sa réponse. Pour les composants électroniques, ces interactions peuvent devenir encore
plus riches en ajoutant les ingrédients de la physique quantique. Les composants peuvent alors
aussi être définis avec une longueur de cohérence électronique qui révèle une nouvelle dimension
pour les interactions.
L’un des composants électroniques quantiques les plus représentatifs est la jonction Joseph-

son. Les effets Josephson ont été théorisés en 1962 par Brian Josephson [1] puis observés dans
la première jonction Josephson par Anderson et Rowell [2] en 1963. Une jonction Josephson
est un composant constitué de deux îlots supraconducteurs séparés par un lien faible. Ce lien
faible, au centre de la jonction, transporte un supercourant sans être un supraconducteur. Cet
effet surprenant est rendu possible par l’existence des Etats Liés d’Andreev (Andreev Bound
States ou ABS). Ces états microscopiques de quasi-particules liées, situés au niveau du lien
faible, représentent des chemins fermés pour le transfert des paires de Cooper d’un côté à
l’autre de la jonction sans dissipation. La dispersion énergétique des ABS dépend de la nature
de la diffusion dans le lien faible ainsi que de la différence de phase à travers celui-ci. Les
propriétés assez généralistes d’une jonction Josephson composée de deux supraconducteurs et
d’un lien faible permettent l’existence d’un bestiaire très fournie. Il est possible de fabriquer
des jonctions avec des liens faibles à base de métaux normaux, de semi-conducteur, de nanofil,
de nanotube, de graphène, de vide, de contact atomique, etc. Ainsi, grâce à une conception
flexible et au développement de techniques de fabrication sophistiquées, les jonctions Josephson
sont devenues le couteau-suisse des circuits quantiques.
Lorsqu’elles sont isolées, les jonctions obéissent aux relations de Josephson. Leurs propriétés

sont bien comprises et exploitées dans divers domaines tels que la magnétométrie [3] et la
métrologie [4]. De plus, en raison de leur cohérence quantique et de leur potentiel d’intégration
dans des circuits à grande échelle, les jonctions Josephson servent de base pour certaines archi-
tectures de qubits pour l’information et le calcul quantique [5, 6, 7, 8, 9, 10, 11, 12, 13].
En rapprochant deux jonctions Josephson l’une de l’autre, elles se couplent elles et ne

sont plus isolées. Cette promiscuité permet alors de faire émerger de nouveaux phénomènes
physiques. Dans des circuits avec des fréquences de fonctionnement et des vitesses de propaga-
tion typiques, les jonctions peuvent interagir via le champ électromagnétique sur des distances
allant du micromètre au centimètre. Cette interaction est bien comprise et très utilisée dans
plusieurs applicationsé[14]. Cependant, elle n’est pas intrinsèque dans la mesure où elle dépend
entièrement de l’environnement électromagnétique qui couple les jonctions entre elles. En outre,
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Figure 1: Hybridation de jonctions Josephson contigües. (a) Schéma de deux jonctions Joseph-
son séparées par une distance de l � ξ0. (b) Schéma d’une molécule d’Andreev, au
sein de laquelle les états liés d’Andreev séparés par une distance l� ξ0 s’hybridisent.
Deux mécanismes non-locaux additionnels peuvent transporter les pairs de Cooper : le
double co-tunneling élastique (dEC) et la double réflexion croisée d’Andreev (dCAR).
(c)-(d) Fonctions d’onde des ABS. Lorsque la distance de séparation est grande
(l � ξ0), les fonctions d’onde ont un recouvrement négligeable. Pour des petites
distances de séparation (l � ξ0), les fonctions d’onde se recouvrent et s’hybridisent.
(e)-(f) Spectre en énergie des ABS en fonction de δ1 avec δ2 = 3π/5. Contrairement
au cas des jonctions séparées, la molécule d’Andreev fait apparaître des croisements
évités qui indiquent le mélange des états des deux jonctions.
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les jonctions s’influencent également sur une distance de l’ordre du micron par la diffusion de
quasi-particules. Cependant, cet effet n’est important qu’à proximité de Tc, la température
de transition supraconductrice, ou pour des tensions de polarisation importantes [15]. Ce pro-
cessus d’interaction modifie la valeur de l’énergie du gap supraconducteur ainsi que le courant
critique.
A mesure que la distance entre les jonctions devient comparable à ξ0 (la longueur de co-

hérence de l’état supraconducteur), des nouveaux processus apparaissent. Ces derniers trouvent
leur origine dans le chevauchement des fonctions d’onde définissant l’ABS de chaque jonction.
L’ABS est un système à deux niveaux, analogue à un atome artificiel. Ainsi, à l’image de
la formation d’une molécule, le rapprochement de deux jonctions Josephson contrôlables in-
dépendamment (c.-à-d. ABS) forme une molécule d’Andreev. Ce système intrigant a déjà été
étudié dans des travaux précédents dans des régimes particuliers. Près de Tc, des travaux,
utilisant les équations de Ginzburg-Landau, ont permit de calculer les effets résultant de cette
interaction [15, 16]. Plus récemment, des théoriciens ont étudié ce problème à une température
aléatoire en utilisant les fonctions de Green. Ces travaux ont permis de calculer des super-
courants non-locaux hors équilibre et de démontrer l’existence d’un déphasage de π dans la
relation courant-phase [17, 18, 19, 20, 21, 22]. Pour finir, un verrouillage de phase remar-
quable, similaire aux pas de Shapiro, a été prédit puis mesuré expérimentalement dans des
bi-jonctions supraconductrices polarisées avec des tensions commensurables [23, 24]

Cette thèse a pour but de poursuivre ces travaux intéressants et d’explorer la molécule
d’Andreev sur un plan à la fois théorique et expérimental.
La partie théorique présente une description microscopique du mécanisme responsable de

l’hybridation des jonctions et comprend une étude de la fragilité de l’hybridation dans des
systèmes comportant de nombreux canaux et un degré de désordre. La description de la
construction théorique d’une molécule d’Andreev est exposée en partant d’une seule jonction
Josephson (Fig. 1(e) et (b)).
Une fois construite, l’étape suivante est la description de la molécule d’Andreev la plus

simple possible à une dimension et un canal à l’aide des équations de Bogoliubov-de Gennes.
Par la suite, il est présenté l’analyse d’un système plus compliqué mais plus proche d’une
réalisation expérimentale. Cette étude utilise le formalisme de Landauer-Büttiker pour décrire
une molécule d’Andreev unidimensionnelle avec plusieurs canaux de conduction. Pour finir,
le modèle d’une molécule d’Andreev à deux dimensions est développé à l’aide d’une méthode
de liaisons fortes. Cette dernière approche permet l’ajout du désordre dans le modèle et d’en
observer les effets. La fonction d’onde (Fig. 1(c) et (d)), le spectre d’énergie (Fig. 1(e) et (f))
et la relation courant-phase calculée à partir de ce modèle donnent les signatures attendues
d’une molécule d’Andreev lors de mesures DC. De plus, la dépendance explicite des dimensions
physiques dans ces relations facilite la conception et la fabrication d’une molécule d’Andreev.
La partie expérimentale décrit la fabrication d’un dispositif composé de deux jonctions

Josephson juxtaposées, à partir de nanofils hybrides semiconducteur-supraconducteur épitaxiés
en InAs-Al [25]. Cette plateforme technologique a été choisie pour ses caractéristiques satis-
faisant les contraintes identifiées dans la partie théorique (Fig. 2(a)). Les mesures DC de ce
dispositif sont présentées dans la Fig. 2(b). De ces mesures, il ressort que la distance de sépara-
tion entre les jonctions n’est pas assez petite pour observer un effet clair et renforce le caractère
crucial de cette dimension. Ces premiers résultats encourageants ont permis de définir les bases

IX



Résumé en français

qui permettront d’optimiser les mesures et d’améliorer le dispositif.
Dans le but de réduire le bruit et d’obtenir une mesure plus fine d’une molécule d’Andreev, un

protocole a été développé afin d’utiliser des transistors à haute mobilité électronique (HEMT)
à des températures proches du millikelvin. La description précise de ce protocole figure dans
un chapitre à part, et montre l’utilisation d’un HEMT dans un régime de faible dissipation
fonctionnant toujours comme un amplificateur et un isolateur de circuit.
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Figure 2: (a) Photo prise au MEB du dispositif AM14 composé de deux jonctions Josephson,
JJ1 et JJ2, faites à partir d’un nanofils épitaxié en InAs-Al et séparé par une distance
d’approximativement 300 nm. (b) Courant de switching du dispositif AM14 montrant
une possible hybridation des états d’Andreev (déformation de la région rouge par
rapport au rectangle noir).
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Introduction

New physical phenomena often emerge when two interacting objects are juxtaposed. For ex-
ample, the molecule that forms when two hydrogen atoms are brought within a Bohr radius of
each other has modified orbitals, a distinct energy spectrum, and completely different chemical
properties. Similarly, when the separation between electrical components is smaller than the
electromagnetic wavelength, interference effects modify the circuit response. For electrical com-
ponents these interactions can become even richer if we add the ingredients of quantum physics.
Components can then also be defined with an electronic coherence length which reveals a new
dimension for interactions.
One of the most representative quantum electrical components is the Josephson junction.

The Josephson effects were theorized in 1962 by Brian Josephson and [1] then observed in
the first Josephson junction by Anderson and Rowell [2] in 1963. A Josephson junction is a
component made of two superconducting islands separated by a weak link. The weak link is the
core of a junction, and carries a supercurrent without being a superconductor. This surprising
effect is made possible by Andreev Bound States (ABS). These microscopic bound quasiparticle
states, located at the weak link, represent closed paths for the transfer of Cooper pairs from one
side of the junction to the other without dissipation. The energy dispersion of ABS depends
on the nature of scattering in the weak link as well as the phase difference across it. The
myriad possibilities for weak link materials include normal metals, semiconductors, nanowires,
nanotubes, graphene, atomic contacts, etc. With a flexible design and the development of
sophisticated fabrication techniques, Josephson junctions have become the Swiss Army knife of
quantum circuits.
When isolated, junctions obey the Josephson relations and their properties are well under-

stood and exploited in various fields such as magnetometry [3] and metrology [4]. Moreover,
due to their quantum coherence and potential for integration in large-scale circuits, Josephson
junctions serve as qubits for quantum information and computation [5, 6, 7, 8, 9, 10, 11, 12,
13].
Devices in which two Josephson junctions are brought close to each other can exhibit rich

new phenomena. In circuits with typical operating frequencies and propagation velocities,
junctions can interact via the electromagnetic field over distances spanning micrometers to
centimeters. This interaction is well understood and most often utilized in applications [14]. It
is not intrinsic in that it depends entirely on the electromagnetic environment which couples
the junctions together. Junctions also affect each other over a length scale of microns via
the diffusion of quasiparticles but this is only important close to Tc, the superconducting
transition temperature, or at large bias voltages [15]. This process induces modifications of the
superconducting energy gap and critical currents.
As the distance between Josephson junctions become comparable to ξ0, the superconducting

coherence length, additional processes emerge. They are due to the overlapping of the wave
functions defining the ABS of each junction. An Andreev bound states is a two-level system
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Figure 0.1: Hybridization of closely spaced Josephson junctions. (a) Sketch of two junctions
separated by a distance l � ξ0. (b) Sketch of an Andreev molecule, in which the
Andreev bound states of two junctions separated by a distance l � ξ0 hybridize.
Two additional non-local mechanisms can transport Cooper pairs: double elastic
co-tunneling (dEC) and double-crossed Andreev reflection (dCAR). (c)-(d) ABS
wave functions. At large separation, the other wave functions have a negligible
overlap. For small separation (l � ξ0), the wavefunctions overlap and hybridize
(e)-(f) Spectrum of ABS as a function of δ1 and fixed phase δ2 = 3π/5. Unlike for
large separation, in an Andreev molecule, the spectrum displays avoiding crossings
which indicate the mixing of states of the two junctions.
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analogous to an artificial atom. And similarly to the formation of a molecule, bringing closer
two independently controllable Josephson junctions (i.e. ABS) forms an Andreev molecule.
This intriguing system has been studied in preceding work in different scenarios. Near Tc,
using the Ginzburg-Landau equations, effects resulting from this interaction were calculated
[15, 16]. More recently, theorists have investigated this problem at arbitrary temperature using
Green’s function techniques. Non-local out-of-equilibrium supercurrents were calculated and
the existence of π shifts in the current-phase relation was demonstrated [17, 18, 19, 20, 21, 22].
A remarkable phase-locking similar to Shapiro steps was predicted and subsequently measured
experimentally in superconducting bi-junctions biased with commensurate voltages [23, 24].

This thesis aims to pursue these interesting works and to explore the Andreev molecule both
theoretically and experimentally.
On the theoretical aspects, we proposed a microscopic description of the mechanism respon-

sible for the hybridization of the junctions and studied the fragility of the hybridization in
systems with many channels and some disorder. We built an Andreev molecule step by step
starting from a single junction (Fig. 0.1(e) and (b)). The next step is the description of the sim-
plest possible Andreev molecule which corresponds to a one-dimensional one-channel molecule
using the Bogoliubov-de Gennes equations. The following step is the study of systems closer
to potential devices. We used the Landauer-Büttiker formalism to describe a one-dimensional
multi-channel Andreev molecule. Finally, using a tight-binding approach we construct a two-
dimensional Andreev molecule. This last approach allows adding disorder in the system and
studying its effect. The wave functions (Fig. 0.1(c) and (d)), the energy spectrum (Fig. 0.1(e)
and (f)) and the current-phase relation calculated from this model gives the expected signatures
of an Andreev molecuLe in DC measurements. Furthermore, the explicit dependence of the
physical dimensions in these relations aid in the design and fabrication of an Andreev molecule.
Experimentally, we chose to fabricate Josephson junctions based on hybrid semiconductor-

superconductor epitaxial InAs-Al nanowires [25] for their suitability in satisfying the constraints
identified theoretically (Fig. 0.2(a)). We present the DC measurements performed on this device
in Fig. 0.2(b). From the measurements, it appears that the junction separation was not small
enough to witness a clear effect and reinforce the crucial importance of the separation size.
These initial encouraging results laid the groundwork to optimize the measurement setup and
to improve the device.
In the quest to reduce noise and have a more sensitive measurement of an Andreev molecule,

we have developed the use of high-electron-mobility transistors (HEMT) at millikelvin temper-
atures. In a separate chapter, we present the protocol we developed to use a HEMT in a low
dissipation regime while continuing to function as an amplifier and circuit isolator.
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Figure 0.2: (a) SEM image of device AM14 with two Josephson junctions, JJ1 and JJ2, made
from an InAs-Al epitaxial nanowire and separated by a distance of approximately
300 nm. (b) Switching current measurement of AM14 hinting at the possibility of
hybridization of Andreev states (deformation of red region as compared to black
rectangular contour).
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1 Theory of hybridized Andreev Bound
States: Andreev molecules

The simplest Andreev molecule consists of two closely spaced Josephson junctions which share
a common terminal. In this configuration, each Josephson junction is composed of two super-
conducting electrodes separated by a weak link and one electrode is common to both junctions.
The Josephson junctions and the coherent mixing of their localized electronic state, the An-
dreev Bound States (ABS), are at the core of the Andreev molecule. In this chapter we will
theoretically describe the Andreev molecule starting from its building blocks a single Josephson
junction carrying Andreev Bound States. We will adopt three different models, each model giv-
ing a better understanding of different aspects of the Andreev molecule. The results presented
in this chapter come from two articles published by the group [26, 27] and enriched by new
findings.

We will first present a macroscopic approach to derive the Josephson effect in a single Joseph-
son junction in one dimension and one channel. We will then carefully add another junction to
this system to build the simplest Andreev molecule and then calculate its energy and current
of this new system.
In a second step, to depict an Andreev molecule closer to the devices we fabricated, we will

be using the Landauer-Büttiker formalism to derive the Josephson effect in a one-dimensional
multi-channel single Josephson junction. Then following the same procedure, we will add
a second junction to create a multi-channel Andreev molecule and calculate its energy and
current. This work will give a microscopic description of the phenomena at the origin of the
hybridization.
For the last model using, the tight-binding formalism, we will consider a multi-channel An-

dreev molecule in two dimensions. This approach will let us understand the robustness of the
phenomena against disorder for such hybridized systems. Eventually, we will gather all this
theoretical work into practical advice for experimentalists.

1.1 Single-channel Andreev molecule in 1D

In this section, we will describe the Andreev molecule using the most common description for
the Josephson junctions, the Bogoliubov-de Gennes formalism.

1.1.1 Andreev Bounds States in a Josephson junction

Consider a Josephson junction in the form of two superconductors S2 and S1 coupled through a
weak link. Experimentally, this has been realized with superconducting atomic contacts [28, 29]
or could be envisioned in semiconducting nanowires epitaxially covered with superconducting
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1 Theory of hybridized Andreev Bound States: Andreev molecules

aluminum [30, 31, 32]. The superconducting state of each slab is associated with a phase,
respectively φ2 and φ1. A phase difference δ = φ1 − φ2 is defined across the weak link, as
illustrated in Fig. 1.1. Quasiparticles in such a circuit can be described by a 2× 2 Hamiltonian
HSJJ in a Nambu space:

HSJJ =

(
H0 +HWL ∆ (x)

∆∗ (x) −H0 −HWL

)
(1.1)

where H0 = −~2
2m ∂2

x − µ is the single-particle energy (m is the electron mass, µ the chemical
potential) and HWL = U0δ (x) models scattering at the weak link with amplitude U0. By using
δ-Dirac functions for the scatterer, we limit the analysis to weak links that are shorter than the
superconducting coherence length. The off-diagonal terms of the Hamiltonian describe electron
pairing in each superconductor,

∆ (x) =

{
∆eiϕ1 if x < 0

∆eiϕ2 if x > 0

where the amplitude ∆ is constant along the whole device. To find the eigenenergies of this
Hamiltonian, we need to use wave functions that are continuous along the x-axis and obey the
Bogoliubov-de Gennes (BdG) equation HSJJψ = Eψ. The spectrum is composed of discrete
ABS with energies smaller than the superconducting gap |E| < ∆ and a continuum of states
for |E| > ∆.

(a) (b)

+

e-

Figure 1.1: (a) A single Josephson tunnel junction defined by two superconductors S1 and
S2, a weak link and a phase difference δ defined across the weak link following
the convention δ = φ1 − φ2. (b) The weak link hosts localized electronic states
called Andreev Bound States (ABS) whose energies periodically depend on the
superconducting phase difference. This two-level system can be interpreted as an
artificial atom with two levels as represented in blue.

If we consider the cases of the ABS, the sub-gap states respecting the BdG equations for an
infinite superconductor are evanescent waves. These solutions are spinors of electron or hole
type (η = e or h),

ψδη± (x) =
1√
L

(
uδη, v

δ
η

)T
e±ikηx, (1.2)
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1.1 Single-channel Andreev molecule in 1D

where L is the total size of the system and we have defined coherence factors,

uδe(h) = e−iδ/2√
2

(
1±
√

1− ε−2
)1/2

,

vδe(h) = sign(ε)× eiδ/2√
2

(
1∓
√

1− ε−2
)1/2

,
(1.3)

where ke(h) are complex momenta which results in an exponential envelope to the wave function.
The coherence factors come from the Bogoliubov transformation which allow to pass from a
many-body BCS hamiltonian to a single particle BdG Hamiltonian. If the superconducting
gap is much smaller than the Fermi energy ∆ � EF , we can use the Andreev approximation
which leads to ke(h) ≈ kF ± i/ξ where kF is the Fermi momentum in the normal state and the
coherence length is a function of energy ξ−1 = ξ−1

0

√
1− ε2 � kF . Here ξ0 = ~vF /∆ is the bare

superconducting coherence length, vF is the Fermi velocity and ε = E/∆ is the normalized
energy. The wave functions of Andreev molecules are defined piecewise in the following way

ψ (x) =

{
γ1eψ

−
e (x) + γ1hψ

+
h (x) if x < 0

γ2eψ
+
e (x) + γ2hψ

−
h (x) if x > 0

where we exclude diverging spinors on sides 1 and 2 and we introduce two sets of two coefficients
Ψe = (γ1e, γ2e)

T and Ψh = (γ1h, γ2h) T give the respective weight of each component (1 for
superconductor 1 and 2 for superconductor 2). If we want the solutions of the BdG equations
to be physically meaningful, the wave functions have to respect two conditions. Firstly, they
must be continuous at the boundary x = 0,

ψ
(
0−
)

= ψ
(
0+
)

with superscript ± referring to the two sides of the boundary. Secondly, their derivative at the
boundary has to be continuous

∂xψ
(
0+
)
− ∂xψ

(
0−
)

=
2m

~
U0ψ (0)

due to the δ Dirac function that we use to model scattering on the weak link. Continuity and
the BdG Hamiltonian impose conditions which give four equations for four unknown coefficients

Ψe = a (ε)AΨh and Ψh = a (ε)A∗Ψe (1.4)

with a (ε) = e−i arccos ε the probability amplitude for an electron to be Andreev reflected into
a hole at the interface between a normal metal and superconductor. The matrix A (Φ) =
e−iΦM−1M∗eiΦ depends on superconducting phase differences contained in the diagonal matrix
Φ = diag (δ1/2, δ2/2) and scattering amplitude at the weak links through the matrix M

M =

(
1 −1
−u∗0 −u∗0

)
with reduced scattering potential

u0 = 1 + iU0/~vF ,
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1 Theory of hybridized Andreev Bound States: Andreev molecules

which are directly related to the transmissions of each junction τ0 = 1/ |u0|2. Combining the
two parts of Eq. 1.4, we have non-trivial solutions only if

Det
(

1− a (ε)2A (Φ)A−1 (−Φ)
)

= 0. (1.5)

The solutions to this last equation are energies EA where

EA = ±∆

√
1− τ0 sin2

(
δ

2

)
(1.6)

is the Andreev energy for different τ0 displayed in Fig. 1.2(b). These energy states contribute
to the supercurrent passing through the junction from the following equation

IABS = − 1

ϕ0

∂EABS

∂δ
=

∆

4ϕ0

τ0 sin (δ)√
1− τ0 sin2

(
δ
2

) (1.7)

with ϕ0 = ~
2e the reduced flux quantum, see Fig. 1.2(a). This current exists in the absence of

voltage drop across the junction and can be tuned by changing the phase difference δ. In the
low transmission limit τ0 � 1, or tunnel limit, this expression simplifies to the DC Josephson
relation I(δ) = I0 sin δ, with I0 = ∆τ0/4ϕ0. The wave function of a quasiparticle occupying an
ABS decays exponentially away from it over a distance ξ = ξ0/

√
τ0| sin δ

2 |, where ξ0 = ~vF /∆
is the bare superconducting coherence length and vF is the Fermi velocity (Fig. 1.5(a)). As
with real atoms, ABS form a coherent quantum system with spatially localized wave functions.
As a consequence, if ABS are separated by a distance l ∼ ξ, the overlap of their wave functions
leads to their hybridization and the formation of the Andreev artificial molecule.

(a) −−

− EA𝜏
0
0.2
0.4
0.6
0.8
1

0
EA I (b)

Figure 1.2: (a) The energy spectrum of a single Josephson junction for different values of τ0.The
minimum gap between the ABS is obtained at δ = π. (b) The current-phase relation
of a single Josephson junction for different values of τ0. The higher transmissions
give larger supercurrents.

1.1.2 BdG description of the Andreev molecule

1.1.2.1 Hamiltonian of the circuit

The simplest Andreev molecule is made of the straightforward Josephson junction, which is
composed of two superconductors connected by a one-dimensional quantum conductor with a

8



1.1 Single-channel Andreev molecule in 1D

Figure 1.3: Two Josephson junctions separated by a distance l � ξ0 which individually hosts
an ABS. The first Josephson junction is composed of one outermost and central
superconductor S1 and SC , and the second junction is composed of the central and
the other outermost superconductor SC and S2. The two junctions share the central
slab which is connected to the ground. Due to the small separation between the
junctions, there is an overlap between the ABS hosted by each junction.

single electronic channel as described in the precedent section. From this device, an Andreev
molecule can be engineered by connecting in series two of these junctions separated by a short
distance l. The resulting device is then composed of three superconductors connected by two
closely spaced weak links. Using the derivation from the previous section 1.1.1, we can craft
this device by connecting a second junction to the first one. The junctions will share a terminal
but will have a distinct phase difference across it due to the connection to ground of the central
terminal. As illustrated in Fig. 1.3 and Fig. 1.5(a), by connecting an electrode to the central
conductor, one can flow current independently through each junction or apply superconducting
phase differences δ1(2) using magnetic fields. Electrons in such a circuit can be described by a
2× 2 Hamiltonian H in Nambu space:

H =

(
H0 +HDWL ∆ (x)

∆∗ (x) −H0 −HDWL

)
, (1.8)

where H0 = −~2
2m ∂2

x − µ is the single particle energy (m is the electron mass, µ the chemical
potential) and HDWL = U1δ (x+ l/2) +U2δ (x− l/2) models scattering at the weak links with
amplitudes U1(2). The off-diagonal terms of the Hamiltonian describe electron pairing in each
superconductor,

∆ (x) =


∆eiϕ1 if x < −l/2
∆ if |x| < l/2

∆eiϕ2 if x > l/2

,

using the same system but extend ∆ is constant along the whole device and by gauge invariance
we can choose the phase of the central superconductor to be zero such that δ1(2) = ϕ1(2). In
the one- to few-channel limit considered here the weak link supercurrents are much smaller
than the critical currents of the superconducting regions and it is justified to ignore additional
spatial variations in the order-parameter amplitude or phase. By connecting a ground electrode
to the central conductor, one can flow current independently through each junction or apply
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1 Theory of hybridized Andreev Bound States: Andreev molecules

individual phase differences δ1(2) using magnetic fields. The eigenstates and eigenenergies of H
respectively give the orbital states and the spectrum of the Andreev molecule. This minimal
model is sufficient to capture the essential features of the nonlocal Josephson effect.

1.1.2.2 Resolution of the Hamiltonian

We use the same strategy as in the last section to solve the system. We build wave functions
ψ that are continuous along the x-axis and obey the BdG equation Hψ = Eψ, where E is
the eigenenergy. The spectrum is composed of discrete ABS with energies smaller than the
superconducting gap |E| < ∆ and a continuum of states for |E| > ∆.

• Sub-gap states |E| < ∆

The sub-gap states of the BdG equation for an infinite superconductor are evanescent waves.
These solutions are spinors of electron or hole type (η = e or h), as in Eq. 1.2,

ψδη± (x) =
1√
L

(
uδη, v

δ
η

)T
e±ikηx

where L is the total size of the system and we have defined coherence factors and uδη, v
δ
η are

defined similarly as in Eq. 1.3. We also apply the Andreev approximation which decomposes
the wave vector into a slow and a fast part. With all the transformation mentioned above, the
wave functions of Andreev molecules are defined piecewise in the following way

ψ (x) =


γ1eψ

−
e (x) + γ1hψ

+
h (x)

γ+
ceψ

+
e (x) + γ−ceψ

−
e (x)

+γ+
chψ

+
h (x) + γ−chψ

−
h (x)

}
γ2eψ

+
e (x) + γ2hψ

−
h (x)

if x < −l/2

if |x| < l/2

if x > l/2

where, as previously, we exclude non-physical diverging spinors on sides 1 and 2 and we intro-
duce two sets of four coefficients Ψe = (γ1e, γ2e, γ

+
ce, γ

−
ce)

T and Ψh =
(
γ1h, γ2h, γ

−
ch, γ

+
ch

)
T which

give the respective weight of each component (1 for superconductor 1, 2 for superconductor 2
and c± for the center superconductor). These wave functions must be continous at x = ±l/2,
ψ (±l/2−) = ψ (±l/2+). Similarly, the BdG equation imposes boundary conditions on the
derivative of ψ

∂xψ
(
±l/2+

)
− ∂xψ

(
±l/2−

)
=

2m

~
U2(1)ψ (±l/2)

due to the δ Dirac function that we use to model scattering on the weak links. Continuity
and the BdG Hamiltonian impose conditions which give eight equations for eight unknown
coefficients

Ψe = a (ε)AΨh and Ψh = a (ε)A∗Ψe , (1.9)

with a (ε) = e−i arccos ε the probability amplitude for an electron to be Andreev reflected into
a hole at the interface between a normal metal and superconductor. The matrix A (Φ) =
e−iΦM−1M∗eiΦ depends on superconducting phase differences contained in the diagonal matrix
Φ = diag (δ1/2, δ2/2, 0, 0) and scattering amplitude at the weak links through matrix M
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1.1 Single-channel Andreev molecule in 1D

M = eikF l/2


i 0 −ie−ikel −i
0 i −i −ie−ikel
−u1 0 −u1e

−ikel u∗1
0 u2 −u∗2 u2e

−ikel


with reduced scattering potential

u1(2) = 1 + iU1(2)/~vF ,

which are directly related to the transmissions of each junction τ1(2) = 1/
∣∣u1(2)

∣∣2. Combining
the two parts of Eq. 1.9 we get(

1− a (ε)2A (Φ)A−1 (−Φ)
)

Ψe = 0,

which has a solution only if a (ε)2A (Φ)A−1 (−Φ) has eigenvalues. So we have non-trivial
solutions only if

Det
(

1− a (ε)2A (Φ)A−1 (−Φ)
)

= 0. (1.10)

This is equivalent finding energies for which

a (ε)2 λA = 1,

where λA are eigenvalues ofA (Φ)A−1 (−Φ) and λA ∈ U(1). Writing equation Det (A (Φ)− λAA (−Φ)) =
0, we can show that λA are roots of a symmetric polynomial

α0λ
4
A + α1λ

3
A + α2λ

2
A + α1λA + α0 = 0

with coefficients given by

α0 =
∣∣∣u1u2e

−i2kF l − e−
2l
ξ (u1 − 1) (u2 − 1)

∣∣∣2
and 

α1 = −4α0 + ε1

ε1 = 4e
− 2l
ξ sin2

(
δ2−δ1

2

)
−4
[(

1− e−
4l
ξ

)
(u1 − 1)2 +

(
e
− 2l
ξ − 1

)]
sin2

(
δ2
2

)
−4
[(

1− e−
4l
ξ

)
(u2 − 1)2 +

(
e
− 2l
ξ − 1

)]
sin2

(
δ1
2

)
and α2 = −2 (α1 + α0 − ε2)

ε2 = 8
(
e
− 2l
ξ − 1

)2
sin2

(
δ2
2

)
sin2

(
δ1
2

)
.

Since λA ∈ U(1) the symmetric polynomial can be simplified to obtain the eigenenergies of the
Andreev molecule,

ε2 = 1− 1

8α0

(
ε1 ±

√
ε21 − 8α0ε2

)
. (1.11)
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1 Theory of hybridized Andreev Bound States: Andreev molecules

In the general case, solutions to this transcendental equation can only be found numerically. It
is, however, useful to obtain analytical results in particular cases such as infinitely close (l ≈ 0)
or far junctions (l→∞). If we consider the limit of large transmission τ0 → 1 (or equivalently
u1(2) = 1), it simplifies into two compact transcendental equations

e
−2 l

ξ0
sinβ

sin
δ1

2
sin

δ2

2
= sin

(
δ1

2
∓ β

)
sin

(
δ2

2
± β

)
(1.12)

where β = − arccos ε and ε = E/∆, from which one can deduce interesting spectral features.
For example, we can recover spectra for well-known particular cases. If the junctions are
infinitely far (l→∞), the left-hand side cancels and we get ε = ± cos

δ1(2)
2 , which are the usual

ABS for two independent perfectly transmitted junctions. Similarly, if the junctions are merged
into a single one (l = 0), we recover the spectrum ε = ± cos

(
δ1−δ2

2

)
of a single junction with a

phase drop δ1−δ2. From the solutions of Eq. 1.10, we generally obtain up to four eigenenergies
EABS , from which we can deduce the contribution of ABS to the supercurrent flowing through
the first junction

IABS
1 = − 1

ϕ0

∑
EABS<0

∂EABS

∂δ1
.

In an Andreev molecule, the energies EABS depend both on δ1 and δ2, which leads to nonlocal
phase dependencies of the supercurrent.

• Continuum states |E| > ∆

The continuum of Andreev molecules is obtained with a similar approach as for the subgap
states but with energies larger than the superconducting gap |E| > ∆. We look for wave
functions ψE that are continuous along the x-axis and obey the BdG equation HψE = EψE ,
where E is the eigenenergy and H is given by Eq. 1.1. They are built from the eigenstates of
an infinite superconductor, which are plane waves of electron or hole type (η = e or h)

ψδη± (x) =
1√
L

(
uδη, v

δ
η

)T
e±ikηx

where L is the total size of the system and the coherence factors uδη, vδη are defined similarly as
in Eq. 1.3.
The main difference with the preceding treatment is the form of the wave vectors ke(h) which

do not contain any imaginary part since the solutions are only propagating states. Assuming
∆ � EF , we can make the Andreev approximation. Here ξ0 = ~vF /∆ is the bare supercon-
ducting coherence length, vF is the Fermi velocity and ε = E/∆ is the normalized energy. Since
momenta kη are real, there is no bound states but only propagating solutions called scattering
states. They are superpositions of an incoming wave and an outgoing wave resulting from
scattering at the weak links

ψη±E = ψη±inc (x) + ψη±out (x) (1.13)
with four possible types of incoming wave (here Θ is the Heaviside step function)

ψe+inc (x) = ψδ1e+ (x) Θ [−x− l/2]

ψe−inc (x) = ψδ2e− (x) Θ [x− l/2]

ψh+
inc (x) = ψδ2h+ (x) Θ [x− l/2]

ψh−inc (x) = ψδ1h− (x) Θ [−x− l/2]
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1.1 Single-channel Andreev molecule in 1D

and resulting outgoing wave

ψη±out (x) =


cη±1 ψδ1e− (x) + cη±2 ψδ1h+ (x) for x < − l

2

cη±3 ψ0
e− (x) + cη±4 ψ0

h+ (x)

+cη±5 ψ0
e+ (x) + cη±6 ψ0

h− (x)

}
for |x| < l

2

cη±7 ψδ2e+ (x) + cη±8 ψδ2h− (x) for x > l
2

For each type of incoming wave, we have a set of eight coefficients

Ψη±
E =

(
cη±1 , cη±2 , cη±3 , cη±4 , cη±5 , cη±6 , cη±7 , cη±8

)
T

giving the respective weights for the outgoing wave on the three superconductors. The continu-
ity of the wave functions and the conditions imposed on their derivatives by the BDG equation
[33] give the relations

Ψη±
E = −M−1

E Ψη±
inc (1.14)

where ME is a 8× 8 matrix given

ME =


mδ1m

+
k −m+

k −m−k 02

02 −m−k −m+
k mδ2m

+
k

mδ1m
+
km

1
u −m+

km
1∗
u m−km

1
u 02

02 m−km
2
u −m+

km
2∗
u mδ2m

+
km

2
u


where 02 are 2×2 matrix of zeros and we define three submatrices depending on the parameters
of the device

m
1(2)
u =

(
u1(2) 0

0 −u∗1(2)

)
, mδ =

(
e
iδ
2 0

0 e−
iδ
2

)

m±k =

(
e±

ikel
2 a (ε) e∓

ikhl

2

a (ε) e±
ikel
2 e∓

ikhl

2

)
.

The vectors Ψη±
inc can have four different forms depending on the nature of the incoming waves

(e or h) and their directions of propagation (+ for x > 0 and − for x < 0)

Ψe+
inc = e−i

kel+δ1
2



eiδ1

a(ε)
0
0

−u∗1eiδ1
−u∗1aε

0
0


,Ψe−

inc = e−i
kel+δ2

2



0
0
eiδ2

a(ε)
0
0

−u∗2eiδ2
−u∗2a(ε)
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Ψh−
inc = ei

khl−δ1
2



a(ε)eiδ1

1
0
0

u1a(ε)eiδ1

u1

0
0


,Ψh+

inc = ei
khl−δ2

2



0
0

a(ε)eiδ2

1
0
0

u2a(ε)eiδ2

u2


with a(ε) the probability amplitude for an electron of normalized energy ε to be Andreev
reflected at the interface between a normal metal and a superconductor. This gives then four
degenerate states for each energy ε. The solutions obtained from Eq. 1.13 with sets of coefficients
1.14 can therefore be written in the following way

ψη±E (x) =
1√
L

(
Uη±E (x)

V η±
E (x)

)
,

where Uη±E is the electron part and V η±
E is the hole part of the wave functions. In one dimension

and at zero temperature, the current at equilibrium carried by these states is given by [34, 35]

I (x) =
2e~
mL

∑
η,σ

∑
|k|>kF

Im
[
V ησ
E (x)∗ ∂xV

ησ
E (x)

]
.

The current flowing through the first junction is obtained by evaluating this expression at
x = −l/2. We substitute the sum by an integral

∑
k →

´
k dk × L/2π and sum over energy

rather than momentum by making use of dξk/dk ≈ ~2kF /m and dξk/dE = ε/
√
ε2 − 1 where

ξk is the kinetic energy. The current carried by the continuum through the first junction is
therefore given by

Icont
1 = 1

ϕ0

∑
ησ

´∞
∆

dE
2πkF

E√
E2−∆2

Im
[
V ησ
E

(
− l

2

)∗
∂xV

ησ
E

(
− l

2

)]
where ϕ0 is the reduced flux quantum. The current through the second junction I2 is obtained
similarly by taking x = +l/2.

1.1.3 Wave functions and spectra of Andreev molecules

Once we have solved for the eigenenergies, we obtain the Andreev molecule wave functions from
Eq. 1.9. These wave functions arise from the hybridization of the independent ABS at each
junction. As with real atoms, ABS form a coherent quantum system with spatially localized
wave functions. As a consequence, if ABS are separated by a distance l ∼ ξ, the overlap of
their wave functions leads to their hybridization and the formation of the Andreev artificial
molecule. Two microscopic mechanisms underlie this process: (i) double elastic cotunneling
of Cooper pairs (dEC) and (ii) double-crossed-Andreev reflections (dCAR). As pictured in
Fig. 1.4(a), the supercurrent in a single Josephson junction corresponds to the elastic tunneling
of Cooper pairs from one superconducting electrode to the other directly linked by that junction.
For two junctions which are located close to each other (Fig. 1.4(b)), Cooper pairs can also
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1.1 Single-channel Andreev molecule in 1D

(a) (b)

Figure 1.4: (a) When two junctions are placed in close proximity, the ABS wave functions
overlap. In this three-electrode geometry, where phases δ1 and δ2 can be controlled
independently, two new non-local mechanisms carry the supercurrent: double elastic
cotunneling (dEC) and double-crossed Andreev reflection (dCAR). (b) The spec-
trum of the device, plotted for varying δ1 and fixed δ2 = 3π/5, shows avoided
crossings which indicate the formation of Andreev molecules by hybridization of the
individual ABS. ABS as two-level systems can be interpreted as artificial atoms. By
bringing these atoms together an artificial molecule made of Andreev Bound States
is formed. An analogy can be made with the formation of a dihydrogen molecule
originating from the hybridization of two hydrogen atoms.

be transferred directly across the whole device (dEC,Fig. 1.4(b) top, 1). In contrast, dCAR
(Fig. 1.4(b)) bottom, 2), is the joint splitting of two Cooper pairs in the center of the device
and their crossed recombination in the two outermost electrodes. These processes respectively
confer δ1− δ2 and δ1 + δ2 dependence to the energy spectra. As a corollary, current due to dEC
flows in one direction between the two outermost electrodes, whereas dCAR consists in two
counterpropagating currents from the central electrode outwards. Without electrical connection
to the central superconductor, dCAR processes are not possible. When the independent ABS
energies are degenerate, their wave functions may be spread out over both junctions.
Fig. 1.5(a) and (c) show a one-dimensional single-channel conductor with weak links separated

by a distance l, a device which can be fabricated from epitaxially coated superconducting
nanowires [25]. For l comparable to ξ0, the wave functions hybridize as shown in Fig. 1.5.
In the general case, degeneracy occurs when a Snell’s law like condition,

√
τ1 sin (δ1/2) =

±√τ2 sin (δ2/2) is satisfied. For the case of symmetric junctions considered here, this equation
takes the simple form δ1 = ∓δ2 (mod 2π). For δ1 = −δ2, corresponding to dEC, the wave
function has a significant weight in the central superconductor. On the contrary, for the dCAR
process at δ1 = δ2 the wave functions are zero at the origin and peak at the positions of
the weak links. For infinitely far junctions (l � ξ0), these two processes are negligible and
the wave functions are localized at one of the junctions (Fig. 1.5(c) and (d)) and correspond
to distinct, non-overlapping pairs of ABS. As expected the spectrum is that of two isolated
junctions (Eq. 1.6). Only local tunneling of Cooper pairs occurs and there is no non-local
Josephson effect.
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(a) (b)

(c) (d)

Figure 1.5: Andreev molecule wave functions in a one-dimensional device. (c) and (a) A single-
channel conductor (gray) with superconducting regions (blue, magenta, red) defin-
ing two Josephson junctions respectively separated by a distance l ∼ ξ0 and l� ξ0.
(d) For large separation (l = 10ξ0), there is essentially no hybridization and the
junctions remain independent artificial atoms. When ABS are almost degenerate
(δ1 = 0.99δ2), the wave functions are localized separately on the two weak links.
The parameters chosen for calculations are U1 = U2 = 0.25~vF (τ1 = τ2 ≈ 0.94),
δ2 = 3π/5 and kF ξ0 = 10π. The square modulus is defined as |ψABS |2 = |u|2 + |v|2,
where u and v are the electron and hole components of ψABS . (b) Plot of the
last occupied ABS wave functions for small separation (l = ξ0). For δ1 = π or
δ1 = 0 the wave functions are localized to one side. When dEC or dCAR are dom-
inant processes, the ABS hybridize and the wave function is spread out over both
junctions.
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(d)

(e)

(c)

(b)

(a)
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Figure 1.6: (previous page) Spectra of Andreev molecules for varying separation. (a) For l� ξ0,
energies of ABS in the first junction (blue lines) modulate with δ1 (x-axis) while
those of the second junction are constant (red lines). (b-c-d) When the junction
separation l is comparable to ξ0, the ABS hybridize among each other, leading to the
appearance of avoided crossings which grow as l decreases. Colors indicate relative
localization of the wave function on the weak links (left: blue, right: red, center:
magenta). The extremal ABS are gradually pushed into the continuum (|E| > ∆)
as a result of hybridization. The dashed line in the graph (c) (l = ξ0) shows the
spectrum for U1 = U2 = 0 (τ1 = τ2 = 1), where dCAR splitting is absent. (e) For
l � ξ0, the two junctions merge into a single one, leaving only one pair of ABS.
Parameters used for these calculations are U1 = U2 = 0.25~vF (τ1 = τ2 ≈ 0.94),
δ2 = 3π/5 and the Fermi momentum is chosen such that kF l � 1 and kF l = π/2
(mod2π), maximizing the avoided crossings at δ1 = δ2.

Fig. 1.6(a) to 1.6(e) shows how the spectrum evolves, for fixed δ2 = 3π/5, as the junction
separation is reduced from l = ∞ to l = 0. For moderate distance, l = 2ξ0, ABS of the first
and second junction start to hybridize into bonding and anti-bonding states producing avoided
crossings around the points of degeneracy where dEC or dCAR is optimal (respectively at δ2 =
∓δ1 for symmetric junctions). In the particular case of weak links with perfect transmissions
(τ2 = τ1 = 1), avoided crossings disappear at δ1 = δ2 where the dominant nonlocal process is
dCAR.
As explained in Section 1.2, this process relies on the interconversion of electrons and holes

propagating in the same direction and requires backscattering, which is suppressed for τ0 =
1. In contrast avoided crossings at δ1 = −δ2 produced by dEC, a momentum conserving
process, are preserved for τ0 = 1. The inequivalence of the two processes of dEC and dCAR
lead to the unusual asymmetry about δ1 = π in the spectra for fixed δ2. Such asymmetry,
absent in the spectra of isolated junctions, is permitted by time-reversal invariance which only
requires E(δ1, δ2) = E(−δ1,−δ2) and not E(δ1, δ2) = E(−δ1, δ2). As the junction separation
is reduced, the size of the avoided crossings increases until some of the ABS are partially
pushed out from the superconducting gap into the continuum. For any state with |E| > ∆ the
momentum ke(h) must be real and therefore the corresponding ABS are no longer localized for
all values of the phase difference. These non-evanescent "leaky" Andreev states [36], which also
exist in asymmetric gap Josephson junctions, can make an important contribution to the total
supercurrent in Andreev molecules and significantly affects the nonlocal Josephson effect, but
unlike ABS they are delocalized plane waves [37, 38, 39].
Another interesting phenomenon that results from level repulsion due to hybridization is the

reduction in the gap between ABS around zero energy (δ1 ≈ 4π/3) in the spectrum Fig. 1.6(d)
for l = 0.5ξ0. This gap is smaller than both the unhybridized gap at δ1 = π in the case of
separate junctions (l/ξ0 � 1, Fig. 1.6(a)) and the gap at δ1 = π + δ2 in the case of fused
junctions (l/ξ0 � 1, Fig. 1.6(e)). This can be explained by the competition between scattering,
which pushes the innermost spectral lines away from zero energy, and molecular hybridization
due to dEC (δ1 = −δ2), which pushes them inward. When the distance l becomes negligible
compared to ξ0, the two junctions fuse into a single junction with twice the scattering amplitude
and one pair of ABS pushed entirely into the continuum. Instead of having two junctions in
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1.1 Single-channel Andreev molecule in 1D

series with transmissions τ0 ≈ 0.94 at large separation l � ξ0, there is now a single junction
with a larger scattering amplitude U1 + U2 (or equivalently a smaller transmission τ ′0 ≈ 0.8)
and an additional continuum state. The spectrum, shown in Fig. 1.6(e), is effectively that of
a single junction of transmission τ ′0 shifted by δ2 = 3π/5 to account for the fact that the total
phase drop is δ = δ1 − δ2. The mechanism of dCAR is no longer possible since there is no
central superconducting electrode and dEC is simply transformed into regular tunneling. The
two cases l � ξ0 and l � ξ0 are conventional in that the nonlocal mechanisms are absent and
that the energy spectrum can be described by the single-junction expression Eq. 1.6, albeit
with different transmissions and a shift in phase.

(a) (b)

Figure 1.7: From artificial atoms to molecules and fusion. (a) Continuous evolution of the
positive part of the spectrum at the avoided crossings δ1 = −δ2 (dEC, solid lines)
and δ1 = δ2 (dcar, dashed lines) as a function of l/ξ0 for fixed δ2 = 3π/5. at large
separation, ABS are degenerate and each junction behaves as an artificial atom with
only one state below the energy gap δ. As the separation is reduced, these atoms
hybridize to form a molecule, indicated by the splitting due to dEC and dCAR,
and eventually fuse into a single new artificial atom leaving only one sub-gap state.
(b) The strength of hybridization can be controlled by adjusting δ2. Here we see
a transition from an Andreev molecule, near δ2 = π, where there are two possible
positive-energy states (pair of dashed or solid lines), to a single artificial atom near
δ2 ≈ 0 (mod2π). Parameters used for these calculations are u1 = u2 = 0.25~vf
(τ1 = τ2 ≈ 0.94), δ2 = 3π/5 and kf l = π/2 (mod2π) with kf l� 1.

The transition from two independent artificial atoms to a single one with an intermediate
molecular state can be visualized in Fig. 1.7(a) where only the positive spectral lines for δ1 =
±δ2 are plotted as l/ξ0 is varied for fixed δ2 = 3π/5. At large separation l/ξ0 � 1 all positive
ABS converge to the same energy, E+(δ = ±3π/5, τ0) ≈ 0.62∆. For the dominant dEC
mechanism at δ1 = −δ2 (solid lines), with decreasing l/ξ0 the two degenerate ABS of the two
junctions gradually split to form bonding and anti-bonding molecular states until the higher-
energy ABS escapes into the continuum. Beyond that point the device hosts only one pair of
ABS, symmetric in energy, such that it behaves as a single artificial atom rather than a molecule.
Incidentally, around this transition from molecule to atom, the lower ABS reaches a minimum
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resulting in an overall shape which suggests the interatomic potentials used to describe the
formation of molecules. Physically, this minimum corresponds to the point where the single
quasiparticle occupying the lower ABS has been maximally localized and isolated from the
continuum. At l/ξ0 = 0, in contrast to a real interatomic potential, the energy of this lower
state does not diverge and is smaller than the energy at large separation, l/ξ0 → ∞. On the
other hand, for δ1 = δ2 (dashed lines) dCAR is the dominant mechanism. The corresponding
ABS hybridize as l/ξ0 decreases and then escape into the continuum, leaving no discrete states
for small l/ξ0. As the size l of the central superconductor approaches zero, the probability for
dCAR to happen shrinks to zero and, since the effective phase difference becomes zero, the
bound states enter the continuum. The strength of the two mechanisms dEC and dCAR can
be adjusted by tuning δ2 as shown in the spectra of Fig. 1.7(b), where the junction separation is
fixed at l/ξ0 = 0.5. Different regimes can be identified by the number of ABS. For δ2 increasing
from 0 to π at first, there is only a single dEC line, which is then joined by two dCAR lines
whose splitting increases with δ2, and then finally by a second dEC line near π. The dCAR
splitting, or hybridization strength, is maximal at δ2 = π whereas for dEC this maximum
splitting occurs at the point where the second dEC line passes below the gap approaching
δ2 = π, and then decreases as δ2 goes to π. By changing δ2 one can thus control the degree of
hybridization or the molecular nature of the system. These properties could be exploited for
quantum simulations of elaborate molecules, including those with strong Coulomb repulsion
since one could use weak links with large charging energy such as carbon nanotubes [40, 41, 42,
43]. In addition this tunable multi-level qubit may have applications for quantum information.
It is also possible that the ability to tune levels into the continuum may be useful for preparing
or resetting quantum states.

1.1.4 Signatures of Andreev molecules

The formation of an Andreev molecule dramatically modifies the Josephson effect. The three-
terminal devices we described in previous sections are not simply a series connection of two-
terminal devices.
For two closely spaced junctions, the supercurrent through the first junction I1 will also

depend on the phase drop across the second junction δ2, making it possible to obtain ϕ-
junctions. A ϕ-Joseph junctions are junctions which have a non-zero phase difference δ in the
ground state or, equivalently, which have a non-zero supercurrent when δ = 0. A particular
case of known ϕ-junctions are the π-junctions which have a phase difference δ = π in their
ground state. This behavior results from the unusual asymmetry in the spectrum of Fig. 1.6
with respect to δ1 = 0 or π. For an isolated Josephson junction (Fig. 1.8(a)), the spectrum is
always symmetric and therefore, according to Eq. 1.7, the supercurrent cancels at these points.
In particular, unless the weak link breaks time-reversal symmetry such that I1 (−δ1) 6= −I1 (δ1),
there is no zero-phase supercurrent: I1 (δ1 = 0) = 0 [44]. However when two junctions are close
enough for an Andreev molecule to form their current-phase relations depends on two phases.
In this case, time-reversal symmetry imposes I1 (−δ1,−δ2) = −I1 (δ1, δ2), which means that
the current I1 (δ1, δ2) does not need to cancel at δ1 = 0 if δ2 it is non-zero. In an Andreev
molecule, the total supercurrent can be divided in two contributions: one from the ABS IABS

1

and one from the continuum Icont
1 such that I1 = IABS

1 + Icont
1 . The ABS contribution to

the supercurrent flowing through the first junction is obtained similarly to the case of a single
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Figure 1.8: Current-phase relation of Andreev molecules. (a) For infinitely far junctions, the
current-phase relation I1(δ1) is identical to that of a single junction. (b-c-d) As
the junction separation l approaches ξ0, the current-phase relation is modified. It
shifts to the right such that a 0-phase supercurrent Iδ11 appears and the amplitude
decreases. Both ABS and the continuum contribute significantly when l ∼ ξ0,
which is unusual in the short limit. (e) When junctions merge into a single one,
the current-phase relation of the first junction is shifted by δ2. Parameters used for
these calculations: U1 = U2 = 0.25~vF (τ1 = τ2 ≈ 0.94), δ2 = 3π/5 and kF l = π/2
(mod 2π) with kF l� 1.
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junction

IABS
1 (δ1, δ2) = − 1

ϕ0

∑
EABS<0

∂EABS

∂δ1
(1.15)

where we sum over all the ABS of negative energy EABS .
Fig. 1.8(a) to (e) show current-phase relations of the first junction I1 (δ1) for a fixed supercon-

ducting phase difference δ2 across the second junction and for different values of the separation
l. We observe that the curve gradually shifts to the right as l decreases (from top to bottom).
As a result of this shift, the current cancels at δ1 = ϕ(δ2) rather than at δ1 = 0. When the cur-
rent carried by the continuum is negligible and for junctions with large transmission (τ0 ∼ 1),
the shift ϕ(δ2) is given by ϕ ≈ 2 arctan

[
e−2l/ξ0 tan (δ2/2)

]
simplifying Eq. 1.12, which becomes

ϕ = δ2 for infinitely close junctions (l = 0), Fig. 1.8(e). As a consequence, the current flowing
through the first junction is finite as soon as δ2 6= 0 even though no phase is applied across it
(δ1 = 0). The existence of a non-zero supercurrent at zero phase difference, which we denote
Iδ1=0

1 , is the signature of a ϕ-junction. The sign of Iδ1=0
1 for small ϕ is negative, indicating that

the current flows in the same direction as the phase difference δ2 from electrodes S1 and SC in
1.4(a). The ϕ-supercurrent Iδ1=0

1 increases exponentially as the junction separation becomes
small compared to ξ0 and converges to zero for large l with an oscillatory behavior (Fig. 1.8).
These oscillations have a period ∼ ξ0 and result from the interference of plane waves from the
continuum with momenta ke = kF + 1/ξ and kh = kF − 1/ξ. The exponential dependence of
Iδ1=0

1 (l/ξ0) is a direct result of the overlap of the ABS wave functions and a signature of the
non-local nature of the ϕ-junction effect. In the case of zero separation (l = 0), the device
only has two terminals and as expected the supercurrent is zero at δ1 = ϕ = δ2 since the total
phase drop δ = δ1 − δ2 is also zero. The ϕ-supercurrent Iδ1=0

1 (0) for the symmetric case is
given by the single junction expression (Eq. 1.7) with τ0 = τ ′0 and δ = −ϕ. In addition to
the rightwards shift of the current-phase relation, since τ0 > τ ′0 the overall amplitude decreases
as l/ξ0 → 0 (Fig. 1.8, top to bottom). For single junctions in the short limit, the continuum
carries a negligible supercurrent [35] and one can accurately describe the Josephson effect by
considering only the ABS. Here, we note that while in the extreme cases l� ξ0 and l� ξ0 the
supercurrent is entirely carried by ABS (Fig. 1.8(a) and (e), this is not the case for intermediate
separation l ∼ ξ0. The contribution of the continuum (states with E > ∆) becomes compara-
ble in magnitude and tends to flow in the opposite direction. Comparing Fig. 1.6 and 1.8, we
observe cusps in both contributions to the supercurrent each time a discrete state escapes from
the gap. The total supercurrent, however, evolves smoothly, indicating that the ABS hybridize
as much with the continuum as with each other and that the distinction is somewhat artificial.
Andreev molecules can be exploited to engineer nonlocal Josephson devices. As an example,

Fig. 1.9(b) shows a circuit where two superconducting loops interrupted by Josephson junctions
are connected to each other by a single superconducting wire. In the absence of hybridization,
assuming the superconducting loops have negligible inductances and that there is no flux in the
first loop (Φ1 = 0), we expect that the applied flux Φ2 results in a phase difference δ2 = Φ2/ϕ0

and a supercurrent in the second loop. However, if the length of this wire is short such that
the junction separation is small l . ξ0, applying a magnetic flux Φ2 will not only induce a
current in the second loop but also give rise to a non-local current in the first loop, even though
δ1 is zero. This zero-phase supercurrent Iδ1=0

1 periodically depends on δ2 (Fig. 1.9(b)) with a
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(a) (b)

Figure 1.9: Zero-phase current and ϕ-junction behavior. (a) Evolution of the 0-phase current as
a function of l/ξ0 for fixed δ2 = 3π/5. Contributions of the continuum (dotted lines)
and ABS (dashed lines) are indicated. (b) Circuit (top) to demonstrate a nonlocal
Josephson effect. If hybridization between the two junctions is strong enough, the
current I1 flowing through the first junction can be modulated by the flux Φ2

threading the second loop (bottom plot, calculated for l/ξ0 = 0.5). Parameters
used for these calculations: U1 = U2 = 0.25~vF (τ1 = τ2 ≈ 0.94), and kF l = π/2
(mod2π) with kF l� 1.

negative slope near the origin.

1.1.5 Particular case study: tunnel Josephson junctions

1.1.5.1 Spectrum for small transmission τ0 � 1

A wide variety of superconducting devices including most superconducting qubits are based
on tunnel Josephson junctions. In that case, ABS are very close to the edge of the supercon-
ducting gap (ε ∼ 1) such that their wave functions extend over a large distance (ξ0/ξ � 1).
For devices made, for example, with aluminum, the distance l between the junction is typically
comparable to the bare superconducting coherence length ξ0 and the overlap of ABS wave
functions e−2l/ξ ∼ 1 becomes important (Fig. 1.10). One could thus naively expect a strong
hybridization of their ABS leading to spectacular nonlocal effects. However, for small transmis-
sion τ0, nonlocal microscopic mechanisms (dEC and dCAR) are very unlikely as they require
double tunneling of Cooper pairs through the barriers with a probability proportional to τ2

0 .
This competes with local tunneling of Cooper pairs (EC) whose probability is proportional to
τ0

(
1− e−2l/ξ

)
where the second factor corresponds to the portion of the ABS wave functions in

the central superconductor. As a consequence, local events will generally dominate unless wave
functions spread over a very large distance ξ ∼ l/τ0. In standard devices, the distance between
tunnel junctions is a few µm and the transmissions are around τ0 ∼ 10−6 (for 1 µA.µm−1).
Wave functions would have thus to extent over more than a meter in order to fulfill this condi-
tion, which suggests that non-local effects are weak in these devices and one expects to observe
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standard Josephson effect.

Figure 1.10: For tunnel junctions, ξ � ξ0, which can lead to a strong overlap of the ABS wave
functions ψ even for l > ξ0.

However in the case of an ideal central superconductor, the tunnel barriers form a Fabry-Perot
cavity, which leads to interference that drastically affects the transmission. This interference
results in the formation of normal discrete electronic levels in the central part of the device
that will serve as channels for local and non-local microscopic events to happen. One can
distinguish "off" or "on" resonance conditions, depending on the value of kF l, for which the
transmission is respectively reduced or increased. In that case, the Josephson effect, including
non-local processes, is modified. The tunnel limit is interesting as it provides a compact an-
alytical expression of the Andreev spectrum giving insight in the mechanism leading to ABS
hybridization. In the tunnel limit (τ � 1) in Eq. 1.11 leads to the following ABS spectrum

ε±± ≈ ±
√

1− τ (ε±±)F± (δ1,δ2) (1.16)

where energy has been normalized by the superconducting gap ∆. This expression is an approx-
imation, which remains correct if sin2 (kF l) 6= 0 or if the junctions are not too close l/ξ � τ0.
Here, τ (ε) is an energy-dependent effective transmission and F± are combinations of trigono-
metric functions of δ1(2)

F± (δ1,δ2) = F1 ∓
√
F2

1 −F2

with {
F1 = s2

1 + s2
2 + τ0ξ

4l s
2
12

F2 = 4 sin2 (kF l) s
2
1s

2
2

where we have introduced compact notations
s1 = sin

(
δ1
2

)
s2 = sin

(
δ2
2

)
s12 = sin

(
δ1−δ2

2

)
Intuitively, one can see that combinations of s1(2) and s12 will result in contributions propor-
tional to sin (δ1 ∓ δ2), emerge respectively from dEC and dCAR and others to sin2 δ1(2) linked
to local processes. The secular Eq. 1.16 reminds of the energy spectrum of ABS (see Eq. 1.6)
in a single junction except that the apparent transmission τ (ε) depends on ξ, and therefore on
the energy, and momentum kF . At first order in l/ξ, this transmission is given by

τ (ε) ≈ τ0

2

l/ξ

(l/ξ)2 + sin2 (kF l)
(1.17)
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This function of kF l peaks and becomes larger than the bare transmission of the junctions
τ0 when kF l = 0 (modπ) but still with τ (ε) < 1 thanks to the condition l/ξ � τ0. This
results in periodic Lorentzian shaped peaks of width l/ξ. This width is reminiscent of the
decay e−l/ξ of quasiparticles propagating between the tunnel barriers in the central part of the
device such that interference gradually disappears as l tends to infinity. For other values of kF l,
τ (ε) becomes much smaller. These variations of the transmission cause ABS to respectively
go deeper into the superconducting gap or closer to its edge, which makes ξ vary by orders of
magnitude. At the same time, the probabilities for local and non-local processes to happen are
also affected as they depend on how ABS wave functions spread over the different parts of the
device. This incidentally changes the nature of the Josephson effect as we will subsequently
demonstrate.

1.1.5.2 Off resonance ballistic devices

Interference as described above would only be observable if quasiparticles could propagate
ballistically in the device and preserve their phases. In hypothetical devices made with ballistic
superconductors, effects of ABS hybridization through dEC and dCAR can have spectacular
consequences on the properties of the circuits whether they are resonant or not. Off resonance
(sin2 (kF l) ≈ 1, Fig. 1.11(a)), the transmission can be approximated as τ ≈ τoff

√
1− ε2 with

τoff = τ0l/ (2ξ0) and becomes much smaller than the bare transmissions of the junctions since
ε ≈ 1. Under this condition, Eq. 1.16 at first order in l/ξ leads to the following ABS energies

ε±±off = ±

√√√√1− τ2
off

[
s2

1 + s2
2 ∓

√(
s2

1 − s2
2

)2
+
ξ2

0

l2
s2

12

]2

This is very different from the standard ABS spectrum of a single junction (Eq. 1.6). First,
energies depend on two superconducting phase differences δ1(2) rather than on a single one.
Moreover the amplitude of ABS oscillations with these phases is proportional to τ2

0 rather than
τ0, which drastically suppresses the supercurrent carried by ABS. This is due to destructive
interference in the Fabry-Perot resonator formed by the two barriers, and this suppression be-
comes even more efficient as the junctions are placed closer to each other. On top of these
interference effects, the formation of an Andreev molecule, due to hybridization of ABS, ma-
terializes in the term proportional to s12, due to dEC, with an amplitude that slowly tends
to zero when junctions are far from each other compared to ξ0. As shown in Fig. 1.11(b),
it manifests itself in the spectrum as avoided crossings between ABS of the two junctions at
δ1 = −δ2. Remarkably, the avoided crossing is much less pronounced at δ1 = δ2 and even
cancels at first order in l/ξ. This result from dCAR being strongly suppressed by destructive
interference in the central part of the device, while dEC involving a direct tunneling between
the two parts remains important. Similarly to the case of junctions with large transmissions
described before, using a fixed δ2, this introduces large asymmetry with respect to δ1 = π in the
spectra. Note that here we can recover the spectrum of a single junction by taking l→ 0. The
contribution of ABS to the Josephson energy is given by the sum of ABS of negative energies
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Figure 1.11: (a) When sin2 (kF l) ≈ 1, the device is off resonance and the density of states in the
central part of the device is small because of destructive interference. This limits
the transmission of the two junctions and reduces the Josephson effect drastically.
(b) The spectrum for a tunnel device off resonance shows a strong hybridization
of ABS with large avoided crossings, but the discrete spectrum is close to the
edge of the gap. (c) Off resonance, the supercurrent carried by the first tunnel
junction has two contributions: one from the discrete spectrum (dashed line) and
the other from the continuum (dotted line). The ABS contribution shows a ϕ-
junction behavior but it is much smaller than the continuum contribution. Here
we multiply the ABS contribution by a factor τ−1

0 for visibility.
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1.1 Single-channel Andreev molecule in 1D

EABS = ∆
(
ε−+

off + ε−−off

)
and, since τoff � 1, it can be approximated as

EABS ≈
∆

2
τ2

off

∑
i=1,2

(1− cos δi)
2 + 2

ξ2
0

l2
s2

12


where we have discarded a constant term. This expression has the same 2π-periodicity with
δ1(2) than the Josephson energy of a single junction (EJ ∝ cos δ) but also additional harmonics
with a π-periodicity. As a consequence, the current carried by ABS deviates from the usual
Josephson relation (IJ = Ic sin δ)

IABS
1(2) = Ioff

c

[
4s2

1(2) × sin δ1(2) ±
ξ2

0

l2
sin (δ1 − δ2)

]
(1.18)

The off-resonance critical current Ioff
c = ∆τ2

off /2ϕ0 is much smaller than the bare critical
current of individual Josephson junctions Ic = ∆τ0/4ϕ0 since τ2

off � τ0 and would be therefore
only detectable for moderately low transmissions, for example τ0 ≈ 0.1. The second term
in Eq. 1.18 is of non-local nature and is the consequence of ABS hybridization between the
junctions. We see that if one junction is polarized with a finite phase, for example with δ2 6= 0,
the ABS will carry a supercurrent through the other junction if when no phase is applied across
it (Fig. 1.11(d)). Maintaining δ1 = 0, ABS have thus a perfect nonlocal behavior with a 0-phase
current IABS

1 (0, δ2) = −Ioff
c ξ2

0/
(
4l2
)
× sin (δ2). This behavior is, however, extremely hard to

detect experimentally because the continuum is carrying a much larger supercurrent than the
ABS. Numerical calculations show us that the total current–phase relation is the same as the
one of a single bare junction up to a factor (Fig. 1.13). In order to see the formation of Andreev
molecules, we would need to be able to measure selectively the current carried by ABS and the
continuum.

1.1.5.3 On resonance ballistic devices

The behavior of the device is completely different in the resonant case (Fig. 1.12(a)). If
sin2 (kF l) ≈ 0, the transmission then peaks at τ ≈ τon

√
1− ε2−1

with τon = τ0ξ0/ (2l). In
this configuration, two ABS merge with the continuum at ε = 1 leaving a spectrum of a single
ABS pair

ε±on = ±
√

1−
[
2τon

(
s2

1 + s2
2

)]2/3
The exponent 2/3 of the second term under the square root is due to the joined effects of dEC
and dCAR, which are enhanced by the fact that a resonant level lies at the Fermi energy level of
the electrodes. This can be understood by looking at the evolution of the ABS spectrum under
resonant condition when the two junctions are gradually brought together from infinity, which
makes nonlocal processes more and more effective. This causes the formation of larger and larger
avoided crossings between ABS of the two junctions. Once the limit l/ξ � 1 has been reached,
one pair of ABS vanishes into the continuum while the other one lies within the superconducting
gap and always remains detached from the edge provided that one of the phases δ1(2) is finite
(Fig. 1.12(b)). The remaining pair is fully delocalized over the two junctions. Moreover, due to
constructive interference, the amplitude of ABS oscillations is proportional to τ2/3

0 , which can
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Figure 1.12: (a) On resonance, sin2 (kF l) = 0, the density of states in the central part of the
device is expected to be large, which favors the flow of supercurrent. (b) The
spectrum then shows only one pair of ABS, which are detached from the edge of
the gap. ABS go deeper in the gap than in a single junction. (c) The contribution
of ABS and continuum to the supercurrent are of the same order of magnitude but
in opposite direction. Parameters used for these calculations: δ2 = 3π/5, l/ξ0 = 1,
U1 = U2 = 100 ~vF (τ1 = τ2 ≈ 10−4), and kF l� 1.
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1.1 Single-channel Andreev molecule in 1D

be orders of magnitude larger than for isolated tunnel junctions. Note that, in this expression,
we cannot take the limit l→ 0 to merge the two junctions and recover the spectrum of a single
one because the conditions of validity (sin2 (kF l) 6= 0 or l/ξ � τ0) would not be respected.
In that case, we would obtain transmission τ (ε) ∼ τ0ξ/l larger than 1, which is non-physical.
Similarly, to the off-resonance case, one can deduce the contribution of ABS to the Josephson
energy

EABS ≈ −
∆

2
τ2/3

on (2− cos δ1 + cos δ2)2/3

as well as the current carried by ABS

IABS
1(2) = Ion

c sin δ1(2) (2− cos δ1 − cos δ2)−1/3 (1.19)

with the critical current Ion
c = ∆τ

2/3
on / (3ϕ0). Similarly to the off-resonance case, the contri-

bution of the continuum is important and the total current–phase relation is the same as the
one of a single bare junction (Fig. 1.12(c) and 1.13). In practice, ballistic superconductors are
extremely rare in superconducting circuits, but semiconducting nanowires covered with epi-
taxial aluminum or Van der Waals materials such as NbSe2 are potential candidates for the
observation of an Andreev molecule in ballistic tunnel devices. Non-local effects are, however,
much weaker than in devices of larger transmission and it would be a challenge to detect them.
For example, the ϕ−junction behavior seems almost suppressed (Fig. 1.13).

Figure 1.13: Taking into account both contributions, the current-phase relation of the first
tunnel junction is I1 ≈ Ic sin δ1 with no ϕ-junction behavior. The critical current
is larger (on resonance, solid line) or smaller (off resonance, dashed line) compared
to a single tunnel junction with τ0 ≈ 10−4 (dotted line).

1.1.5.4 Diffusive devices

In most experiments involving tunnel Josephson junctions, superconductors are diffusive. Each
electronic channel carries a supercurrent through diffusive paths over which electrons take
random phases kF l where l can vary by several Fermi wavelengths. As a consequence, the
interference effects that we described previously are suppressed and non-local effects are essen-
tially negligible. The total Josephson energy of the system is obtained by averaging the phase
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1 Theory of hybridized Andreev Bound States: Andreev molecules

over all channels

EJ ≈
∆

π

ˆ π/2

−π/2
(ε−+ + ε−−)dkF l

Where ε−± are the energies of ABS of negative energies in Eq. 1.16 and the integral is summing
over all the possible values of kF l within one period of τ (ε). This can either be done numerically
or by approximating τ (ε) as a Dirac delta distribution τ0πδ (kF l) /2 leading at first order inτ0to

EJ ≈
τ0∆

2
(cos δ1 + cos δ2)

where we have dismissed a constant term. This simply corresponds to the Josephson energy of
two independent tunnel Josephson junctions. The next-order correction in τ0 is given by

δEJ ≈
τ

5/3
0 ξ

2/3
0

8l2/3
s2

12(
s2

1 + s2
2

)1/3
which is completely negligible since τ5/3

0 � τ0. In fact, even taking into account the contribution
of the continuum, the current-phase relations correspond to the standard Josephson formula
I1(2) ≈ Ic sin δ1(2) where Ic is the bare critical current of the junctions. The effects of ABS
hybridization are therefore hardly measurable in conventional devices with superconducting
tunnel junctions. Although the common technologies used to build Josephson junction, like
epitaxial superconductor/semiconductor nanowires or 2D electron gas, lead to devices with
high transmission but more importantly with more than one channel. This structure changes
the landscape seen by one ABS as now it has more ABS to interact and potentially hybridize
with. To study this more complex devices, one could apply the same BdG approach we used in
this section, however, even if this formalism is useful to develop an intuitive understanding of
the phenomenon, it is unwieldy for complicated structures like those. A more tailored formalism
to investigate multi-channel devices is the Landauer-Büttiker scattering formalism which will
be used in the next section

1.2 Multi-channel Andreev molecule in 1D

In a Josephson junction with multiple conduction channels, each channel hosts independent
ABS. The total supercurrent is given by the sum of all of their contributions (Eq. 1.7) and
the Josephson effect is qualitatively the same as for a single channel. However, when two
multi-channel junctions are placed close to each other, each ABS at the first junction can
potentially couple to every ABS at the sedonc junction to form complex Andreev molecules.
This is equivalent to increasing the number of valence electrons leading to Andreev molecules of
larger atomic number. Experimentally, the multi-channel case is relevant since many quantum
conductors used in weak links have lateral dimensions larger than the Fermi wavelength and
thus host a large number of channels. A convenient approach to deal with conduction through
mesoscopic systems is the Landauer-Büttiker scattering formalism [45]. As in the last section,
we will first describe briefly the simple case of a single Josephson junction and then consider
the Andreev molecule.
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1.2 Multi-channel Andreev molecule in 1D

1.2.1 Andreev Bound States in a multi-channel Josephson junction

The Landauer-Büttiker formalism permits to describe coherent conductors in terms of indepen-
dent channels. In this approach, electrons and holes (e and h) are described by an ensemble
of waves propagating backwards (←) or forwards (→), which are connected to each other by
normal scattering processes at the weak link or Andreev processes on the two superconductors.
These waves can be labeled with two sets of four coefficients{

A = (a→e , a
←
e , a

→
h , a

←
h )T

B = (b←e , b
→
e , b

←
h , b

→
h )T

(1.20)

where A describes waves propagating towards weak links with amplitudes a and B describes
outgoing waves with amplitudes b. The scattering equation for the weak links is given by:

B = SNA (1.21)

with

SN =

(
Se 0
0 Sh

)
where Se(h) is the normal state scattering matrix describing scattering of electrons and holes in
the weak link. The matrices Se and Sh can be linked by: Se = S∗hSe = S∗h. The specific form
of Se and Sh will depend on the weak links. For example, the scattering matrix corresponding
to a Dirac δ-potential as used in the BdG analysis of the Andreev molecule [26] is given by

S =

( −iu
1+iu

1
1+iu

1
1+iu

−iu
1+iu

)
(1.22)

where the constant u is related to the strength of the δ-potential, U0, and the Fermi velocity, vF ,
by u = U0/~vF . For simplicity, in the following analysis for a multi-channel weak link we use
random symmetric unitary matrices for S. Other classes of scattering matrices corresponding
to breaking time-reversal symmetry or spin-rotation symmetry can be used to model the effect
of a magnetic field or spin-orbit interaction [46, 47, 48]. The dimensions of SN is therefore
4N × 4N where N is the number of channels.

It remains to determine scattering on the superconductors. In contrast to scattering at the
normal weak links, which need not preserve momentum, scattering on the superconductors
occurs through Andreev processes which are momentum-conserving when the Fermi energy is
much larger than the superconducting gap. For the semi-infinite outermost superconducting
electrodes, for energies smaller than the superconducting gap (|E| < ∆), the only scattering
process possible is Andreev reflection, in which an incident electron is retroreflected as a hole
and an incident hole is retroreflected as an electron. This Andreev reflection amplitude is
rA = e−i(α±φ1,2), where φ1,2 is the superconducting phase of the first (second) superconductor
and α = cos−1 ε with ε = E/∆[49]. Since the Andreev reflection probability, |rA|2, is unity the
semi-infinite electrodes act as perfect phase-conjugating mirrors for electrons and holes [50].
The phase shift acquired in reflection is the sum of α, which is energy dependent, and the
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1 Theory of hybridized Andreev Bound States: Andreev molecules

superconducting phases φ1,2. We can depict the Andreev scattering matrix as a process for
which b states become incident and a are emergent :

A = SAB (1.23)

where SA is a block matrix:

SA =


0 0 e−iφ1 0
0 0 0 e−iφ2

eiφ1 0 0 0
0 eiφ2 0 0

⊗ IN ,

With IN a N ×N matrix where N corresponds to the number of channels.

In order to find resonant bound states, one needs to cascade the scattering matrices SN and
SA to define a closed loop for the states. A stationary state can be defined inside the weak link
by mixing Eq. 1.21 and Eq. 1.23 giving

A = SASNA,

This condition implies that the roots of the following equation,

Det (I4N − SASN ) = 0, (1.24)

are the energies of the resonant states. These states are ABS, as they correspond to coherent
resonant states between two superconductors separated by a weak link and mediated by Andreev
reflections. We recover the same formula as the previous section for the energies and the current

EA = ±∆

√
1− τ0 sin2

(
δ

2

)
, (1.25)

IABS = − 1

ϕ0

∂EABS

∂δ
=

∆

4ϕ0

τ0 sin (δ)√
1− τ0 sin2

(
δ
2

)
With ϕ0 = ~/2e, τ0 = 1/ |1 + iU0/~vF |2 and δ = φ1 − φ2.
As expected, the two methods give the same results. From Eq. 1.25 we can plot the en-

ergy spectra for a single Josephson junction made of 20 random channels. The channels are
independent and each of the 40 ABS as shown in Fig. 1.14.
However it is interesting to highlight the difference in the construction process of the ABS.

In the BdG approach, we had to explicitly constrain the wave function and its derivative to be
continuous. While with the Landauer-Büttiker approach, this constraint is embedded in the
scattering matrix and one just has to give wave functions.
In the following section, we will connect another multi-channel Josephson junction to the

first one which is a good toy model of an Andreev molecule built from nanowires.
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Figure 1.14: Energy spectrum of a single multi-channel junction composed of 20 independent
channels. This spectrum represents the 40 ABS carried by each channel for which
the transmission was randomly assigned.

1.2.2 Scattering description of Andreev molecule

Similarly to Sec. 1.1.2, we connect a second junction to the first junction we described in the
previous section. This new junction shares, as previously, a terminal with the first junction. The
common terminal, of size l, is also connected to the ground and allows defining independent
phase across each junction. In this configuration, using the Landauer-Büttiker formalism,
matrices describe the scattering of propagating electrons or holes on three different types of
elements: weak links, semi-infinite superconductors, and a superconductor of finite length,
Fig. 1.15(a). In this approach, electrons and holes (e and h) are described by an ensemble of
waves propagating forwards (→) or backwards←), which are connected to each other by normal
scattering processes at the two weak links or Andreev processes on the three superconductors.
These waves can be labeled with two sets of eight coefficients{

A = (a→1e, a
←
1e, a

→
2e, a

←
2e, a

→
1h, a

←
1h, a

→
2h, a

←
2h)T

B = (b←1e, b
→
1e, b

←
2e, b

→
2e, b

←
1h, b

→
1h, b

←
2h, b

→
2h)T

(1.26)

where A describes waves propagating towards weak links with amplitudes a and B describes
outgoing waves with amplitudes b. The scattering equation for the weak links is given by:

B = SNA (1.27)

with

SN =


S1 0 0 0
0 S2 0 0
0 0 S∗1 0
0 0 0 S∗2


where S1(2) is the normal state scattering matrix describing scattering of electrons in the first
(resp. second) weak link. The equivalent for holes is given by S∗1(2). The specific form of
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S1,2 and S∗1,2 will depend on the weak links. For example, the scattering matrix corresponding
to a Dirac δ-potential as used in the BdG analysis of the Andreev molecule [26] is given by
Eq 1.22. For simplicity, in the following analysis for a multi-channel weak link we used random
symmetric unitary matrices for S1 and S2. Other classes of scattering matrices corresponding
to breaking time-reversal symmetry or spin-rotation symmetry can be used to model the effect
of a magnetic field or spin-orbit interaction [46, 47, 48]. The dimensions of SN are therefore
8N × 8N where N is the number of channels.
It remains to determine scattering on the superconductors. In contrast to scattering at the

normal weak links, which need not preserve momentum, scattering on the superconductors
occurs through Andreev processes which are momentum-conserving when the Fermi energy is
much larger than the superconducting gap. For the semi-infinite outermost superconducting
electrodes, for energies smaller than the superconducting gap (|E| < ∆), the only scattering
process possible is Andreev reflection. In that configuration an incident electron is retroreflected
as a hole and an incident hole is retroreflected as an electron. This Andreev reflection ampli-
tude is rA = e−i(α±ϕ1,2), where ϕ1,2 is the superconducting phase of the first (resp. second)
superconductor and α = cos−1 ε with ε = E/∆[49]. Since the Andreev reflection probability,
|rA|2, is unity the semi-infinite electrodes act as perfect phase-conjugating mirrors for electrons
and holes [50]. The phase shift acquired in reflection is the sum of α, which is energy dependent,
and the superconducting phases ϕ1,2.
As shown in Fig. 1.15(b), the situation is different for a superconductor of finite length, in

which an electron or hole can also propagate across the superconducting slab and emerge on the
other side without being retroreflected. For example, in Fig. 1.15(b) an electron incident on the
central superconductor from the first side with amplitude b→1e and momentum +kF may either
be retroreflected as a backward-propagating hole of amplitude a←1h or transmitted as a forward-
propagating electron of amplitude a→2e, both particles having momentum +kF . When there is
normal scattering in addition to a finite superconductor, such as in Fig. 1.15(c) where the weak
link has transmission probability τ < 1, electrons and holes can also be backscattered (BS) and
crossed-Andreev reflected (CAR), which consists of tunneling through the superconductor and
conversion from electron to hole or vice versa [51]. As depicted, the CAR process for an electron
incident from the first side corresponds to an Andreev reflection followed by backscattering of
the retroreflected hole, which then traverses the finite superconductor and exits towards the
second side. This mechanism can also be seen as the formation, in the central slab, of a Cooper
pair comprised of electrons from both outermost electrodes. The time-reversed equivalent is
known as Cooper-pair splitting and has device applications [52, 53, 54]. The CAR process,
which does not conserve momentum, requires backscattering in the normal weak links. The
probability amplitude associated with the process of partial Andreev reflection, Fig. 1.15(d),
can be found using the continuity of wave functions at each interface. These wave functions
are built from the electron and hole eigenstates of an infinite superconductor (η = e or h),

ψϕη± (x) =
(
uϕη , v

ϕ
η

)T
e±ikηx, (1.28)

where L is the total size of the system and the coherence factors uδη, vδη are defined similarly
as in Eq. 1.3 and kη are complex to account for bound states. Similarly as in Section 1.1.1,
if the superconducting gap is much smaller than the Fermi energy, ∆ � EF , we use the
Andreev approximation. If we focus on the subspace of waves with positive momentum, the
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1 Theory of hybridized Andreev Bound States: Andreev molecules

Figure 1.15: (previous page) Scattering description of multi-channel Andreev molecules. (a)
Plane waves corresponding to electrons (black arrows) and holes (gray arrows)
scatter on superconductors (blue, red and magenta) and weak links. The first
(resp. second) superconductor has phase ϕ1,2 and the central superconductor of
length l is grounded with phase zero. The ground connection allows applying the
phase differences ϕ1,2 independently. The matrix SS describes Andreev scattering
processes on the superconductors while S1,2 describes normal scattering at the
weak links. Only one channel is sketched. (b) For l . ξ0, an electron incident on
the central superconductor with energy E less than the superconducting gap ∆
can transmit across (elastic co-tunneling, EC) with probability amplitude tS or be
Andreev reflected as a hole with amplitude rS . (c) In the presence of scattering,
such that the first weak link has a channel transmission probablity τ < 1, the
electron may also be backscattered (BS) or undergo crossed Andreev reflection
(CAR), which converts it into an outgoing hole. (d) The probabilities of Andreev
reflection, transmission, and their product, which factors into the probability for
CAR, is plotted as a function of l/ξ0 for fixed energy E = 0.1∆. In a long
superconductor, l � ξ0, only Andreev reflection occurs whereas for a short one,
l � ξ0, only elastic co-tunneling occurs. At intermediate values l ≈ ξ0 and in the
presence of scattering there is a peak in the CAR probability which goes to zero
elsewhere.

wave function on the first side of the superconducting slab (x < −l/2) is given by

b→1ee
ikF (x+ l

2)
(

1
0

)
+ a←1he

ikF (x+ l
2)
(

0
1

)
while in the center (x < |l/2|) it is

γ+
ce

(
u0
e

v0
e

)
eikex + γ+

ch

(
u0
h

v0
h

)
eikhx

and on the second side where (x > l/2)

a→2ee
ikF (x− l

2)
(

1
0

)
+ b←2he

ikF (x− l
2)
(

0
1

)
The superconducting phase on the central superconductor is fixed at zero and serves as the ref-
erence for the phase differences ϕ1,2 on the outermost superconductors. Because of the ground
connection, there are effectively two loops connecting the outermost superconductors to the
central one, which allow tuning ϕ1,2 independently with external magnetic fields. In addition,
this ground connection allows an additional path for current flow such that the supercurrents
through the two weak links may be different. In the weak links (x < −l/2 or x > l/2) only elec-
tron or hole plane waves are possible, with wave vectors ±kF and coherence factors either (1, 0)
(electrons) or (0, 1) (holes). In the superconducting slab, the wave functions mix electrons and
holes and as a result of the complex wave vectors ke,h have an exponential, energy-dependent
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1.2 Multi-channel Andreev molecule in 1D

envelope. Imposing boundary conditions at the slab edges x = ±l/2 to preserve continuity we
have (

b→1e
a←1h

)
= e−

ikF l

2

(
u0
ee

1/2ξ u0
he
−l/2ξ

v0
ee

1/2ξ v0
he
−l/2ξ

)(
γ+
ce

γ+
ch

)
,(

a→2e
b←2h

)
= e+

ikF l

2

(
u0
ee
−l/2ξ u0

he
1/2ξ

v0
ee
−l/2ξ v0

he
1/2ξ

)(
γ+
ce

γ+
ch

)
.

By eliminating the coefficients, c+
e,h we can relate incoming and outgoing waves with a scattering

matrix, (
a←1h
a→2e

)
=

(
rS t−S
t+S rS

)(
b→1e
b←2h

)
,

where we define the Andreev transmission amplitude,

tS =
e−l/ξ

(
1− e−2iα

)
1− e−2l/ξe−2iα

, (1.29)

with t±S = tSe
±ikF l, and the partial Andreev reflection amplitude,

rS =
e−iα

(
1− e−2l/ξ

)
1− e−2l/ξe−2iα

. (1.30)

For the negative momentum wave function, the substitution kF → −kF yields the same
scattering matrix with t+S and t−S swapped. This amplitude satisfies |rS |2 + |t±S |2 = 1 as
expected from quasiparticle conservation. In a realistic system with a three-dimensional central
superconductor, the wave functions ψ (Eq. 1.28) will be spherical and the geometric factors
e−l/ξ describing the envelope of the probability amplitudes tS , rS (Eqs. 1.29 and 1.30) will be
different. In general, they will decay faster and acquire additional dependence on the Fermi
wavelength or the mean free path [55, 56, 57]. This reduction can be understood from the
increase in scattering angle as the number of dimensions is increased.
The following analysis is limited to the one-dimensional case. In addition we ignore fast

phase oscillations in tS and rS arise from the small Fermi wavelength by fixing kF l arbitrarily
and independent of l while maintaining kF l� 1. In Fig. 1.15(d) we plot the Andreev reflection
probability |rS |2 and transmission probability |tS |2 for fixed energy ε = 0.1 as a function of
l/ξ0. The likelihood of elastic co-tunneling (EC), Fig. 1.15(b), in the absence of scattering at
the weak links (τ = 1) is quantified by |tS |2. As the superconductor thickness goes to zero,
l/ξ0 → 0, Andreev reflections are suppressed and all quasiparticles tunnel across, tS → 1.
Andreev processes are equally probable when l/ξ0 ≈ 1. As we extend the length of the central
superconductor, l/ξ0 → ∞, one recovers the Andreev reflection amplitude of a semi-infinite
superconductor, rS → rA = e−iα, and transmission is squashed, tS → 0. The Andreev phase-
conjugating mirror is only perfect if it is much thicker than ξ0, the characteristic length scale
for Andreev reflection. Scattering at the weak links will also reduce elastic co-tunneling. If
the single-channel transmissions of the weak links are τ1,2, the first order EC probability will
be reduced to τ1τ2|tS |2. For τ < 1, there will be higher order processes involving multiple
reflections at the barriers which will also transmit a particle across the superconductor. Also
plotted in Fig.1.15(d) is the probability |rStS |2, which is the Andreev scattering contribution
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to the first-order CAR process depicted in Fig.1.15(c). If the first interface has transmission
probability τ < 1, this CAR process requires normal barrier transmission (τ), an Andreev
reflection (|rS |2), a normal reflection (1−τ), and an Andreev transmission (|tS |2). The Andreev
contribution, |tSrS |2, is maximal at 0.25 for a separation l/ξ0 such that |tS | = |rS | = 0.5 and
the maximum of the normal part, τ(1 − τ), is also 0.25 for τ = 0.5. Therefore the maximum
likelihood of the first-order CAR process is 6.25%, with higher order processes contributing
little as they scale as τn(1 − τ)n. Ignoring higher order processes the likelihood of EC in the
presence of scattering at the first weak link, τ |tS |2, is approximately four times that of CAR for
τ = 0.5 and at a comparable separation l/ξ0 . 1 such that |tS |2 ≈ 0.5. The optimal separation
l/ξ0 to maximize CAR and EC depends on the energy ε but the relative likelihood for CAR
over EC remains (1− τ)/2. In a symmetric situation where both weak links have transmission
τ , the first-order expressions above are reduced by a factor τ .
In a similar fashion to the derivation of SN , we use these results for scattering from the

three superconductors to define a matrix SS which relates waves incident on the slab (B) to
the outgoing waves, A = SSB,

SS =

(
See Sehe

−iΦ

Sehe
iΦ Shh

)
⊗ IN ,

with blocks Seh on the anti-diagonal for Andreev reflections,

Seh =


rA 0 0 0
0 rS 0 0
0 0 rS 0
0 0 0 rA

 ,

and blocks See and Shh on the diagonal for tunneling through the central superconducting slab,

See =


0 0 0 0
0 0 t+S 0
0 t+S 0 0
0 0 0 0

 .

Shh is obtained from See with the transformation t+S → t−S . The superconducting phases are
contained in the diagonal matrix Φ = diag (ϕ1, 0, 0, ϕ2) and IN is the N ×N identity matrix.
The total size of SS , like SN , is 8N × 8N , accounting for N conduction channels. We combine
the scattering equation for weak links, B = SNA, and for superconductors, A = SSB, in order
to obtain the master equation,

B = SNSSB. (1.31)
The scattering product SNSS depends on energy ε, the scattering properties of the weak links
(S1,2), and the superconducting phases ϕ1,2. Eq. 1.31 is a unity eigenvalue problem in which
solutions of the characteristic equation,

Det (I8N − SNSS) = 0, (1.32)

gives the energy spectrum ε, the scattering amplitudes a and b, and the corresponding wave
functions of the Andreev molecule [48]. To verify correctness, we numerically solved Eq. 1.32 for
the spectra in the case of a single-channel Andreev molecule with symmetric δ-function barriers,
i.e. S1 and S2 given by Eq. 1.22, and compared it for agreement with the Bogoliubov-de-Gennes
solution for the same parameters [26].
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1.2 Multi-channel Andreev molecule in 1D

1.2.3 Spectra of multi-channel Andreev molecules

In Fig. 1.16 we represent an example of a multi-channel double weak link device formed from
a highly doped graphene nanoribbon [58, 59]. We show the evolution in the energy spectra of
such a multi-channel Andreev molecule as the size of the central superconductor is reduced.
Spectra are obtained by numerically solving the characteristic equation 1.32 for fixed 20-channel
random scattering matrices S1,2 and fixed phase ϕ2 = 3π/5. Each channel of each weak link
will have an effective transmission τ which can be extracted from the scattering matrices S1,2.
The spectra are plotted as a function of the phase ϕ1 for four values of the separation l/ξ0.
Each conduction channel of each junction hosts one pair of ABS and as a consequence there
are 4N = 80 lines, some of which are close to the gap edge and difficult to distinguish. For
large separation, l/ξ0 � 1, there is no coupling between the two weak links, and the spectral
lines follow the standard ABS energy dispersion,

E±1n,2n = ±∆
√

1− τ1n,2n sin2 (ϕ1,2/2),

where τ1n,2n corresponds to the transmission of the n-th channel in the first or second weak
link. Since the second phase is fixed, ϕ2 = 3π/5, ABS corresponding to the second weak link
(red) do not disperse with ϕ1, whereas those of the first junction (blue) dip towards zero as ϕ1

approaches π. There is no hybridization between ABS at the two junctions and the spectral lines
cross without forming gaps. As the junctions are brought closer, for l/ξ0 = 1, 0.5, 0.1, multiple
avoided crossings materialize, signaling the formation of Andreev molecules. Similarly, to the
one-channel case [26], the amplitude of the avoided crossings increases as the separation is
reduced and some discrete states are gradually pushed out into the continuum. At separation
l = 0.1ξ0, where the Andreev molecule fuses into a single weak link, only approximately half
of the ABS remain in the gap and the states have shifted in phase to the right by ϕ2 = 3π/5.
Overall, the spectra of Fig. 1.16(b) for the multi-channel case shows qualitatively the same
behavior as for the Andreev molecule in the single-channel case [26]. The most obvious global
sign of hybridization remains the breaking of symmetry about the phase ϕ1 = π. Since there are
often phase offsets in experiments, it is difficult to verify that ϕ1 = π. One could instead check
for symmetry about the more easily identifiable point, ϕ1 = ϕ0

1, where the ABS are closest to
zero in energy at a fixed phase ϕ2. The multi-channel spectra indicate that the symmetry point
ϕ0

1 shifts from π to π+ϕ2 as the separation l/ξ0 goes from infinity to zero and that symmetry
is broken for l . ξ0.

1.2.4 Molecular Bound States

An eigenvector B0 which solves Eq. 1.31 corresponds to a closed trajectory or bound state of
the Andreev molecule, formed due to interference between forward- and backward-propagating
waves. There are three different types of closed cycles, or orbits, with two non-trivial ones
which can be built from the EC and CAR processes shown in Fig. 1.15.
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(a)

(b)

Figure 1.16: Spectra of multi-channel Andreev molecules. (a) An Andreev molecule is formed
from a one-dimensional, multiple channel weak link, here a graphene nanoribbon,
connected to three superconductors of which the central one has length l compara-
ble to the coherence length ξ0. (b) Spectra of an Andreev molecule for decreasing
l/ξ0. The randomly generated symmetric unitary matrices S1 and S2 are the same
for each value of l/ξ0 and describe scattering of weak links with N = 20 channels.
Hybridization of Andreev states is indicated by the appearance of avoided cross-
ings for l/ξ0 . 1. Note that S1 6= S2 and, for simplicity, the momentum is chosen
such that kF l = 0 (mod2π), with kF l� 1, for every channel.
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1 Theory of hybridized Andreev Bound States: Andreev molecules

Figure 1.17: (previous page) Bound states of an Andreev molecule. (a) At large separation
l � ξ0 the only eigenstate is a conventional ABS, shown here localized at the
second weak link by Andreev reflections at the central (purple) and second (red)
superconductor. (b) At small separation l . ξ0 and for superconducting phases
ϕ1 ≈ −ϕ2 there is an additional trajectory, double Elastic Co-tunneling (dEC),
which extends across all three superconductors. (c) The likelihood of dEC (blue
lines) and ABS (red lines) trajectories are plotted as a function of separation l/ξ0

for ϕ2 = 0.5π, ϕ1 = −0.48π, τ ≈ 0.94 and kF l � 1, kF l = 0 (mod 2π). The
dEC probability increase as the separation is reduced. (d) A second “molecular”
trajectory extending across all superconductors is possible at small separation
l . ξ0 but for superconducting phases ϕ1 ≈ ϕ2. This is called double Crossed
Andreev Reflection (dCAR) and differs from dEC by additional Andreev reflections
in the central superconductor. (e) The likelihood of dCAR and ABS trajectories
are plotted as a function of l/ξ0. Parameters are the same except for ϕ1 = 0.52π
and kF l = π/2 (mod 2π). The dCAR probability vanishes for large and small
separation and is maximal at l ≈ ξ0. Results are obtained by numerically solving
the eigenvalue equation, Eq. 1.31.

The trivial cycle is a conventional Andreev bound state at one of the weak links and is rep-
resented in Fig. 1.17(a) where the central superconductor is large, l � ξ0. The closed orbit
consists of two Andreev reflections at the second weak link, with the backward-propagating
hole of amplitude b←2h being completely transformed into a forward-propagating electron of am-
plitude b→2e at the central superconductor (purple). Since the Andreev transmission probability
tS vanishes for large l/ξ0, Fig. 1.15(d), the incident hole cannot be transmitted through the
central superconductor. Likewise at the infinite first (blue) and second (red) superconductors,
only Andreev reflection is possible. A conventional ABS does not connect particles on all
three superconductors and therefore the supercurrent associated with it only flows between two
superconductors.
With a shorter central superconductor, Fig. 1.17(b), one has the first non-trivial or "molec-

ular" Andreev bound state: the loop passing through all three superconductors. This or-
bit consists of two simultaneous EC processes, one shown in Fig. 1.15(b), and the other its
particle-conjugate dual in which a hole propagates in the opposite direction. Such a double
elastic cotunelling (dEC) process transports two electrons from superconductor S1 to supercon-
ductor S2. Since the phases are fixed and all voltages are zero, this charge transfer corresponds
to a unidirectional supercurrent flowing across the device. dEC-type bound states are probable
when the normal scattering matrices have high channel transmissions and the phases ϕ1,2 have
opposing signs and values which result in an energy degeneracy in the limit l/ξ0 →∞. In the
case of a symmetric single-channel Andreev molecule [26], dEC is maximal when the phases
satisfy ϕ1 = −ϕ2.
Fig. 1.17(c) shows the dEC bound state probability as a function of l/ξ0 determined by

numerically solving the eigenvalue problem, Eq. 1.31, for the lowest positive energy state of
a symmetric, single-channel Andreev molecule of transmission τ ≈ 0.94. In red we plot the
probabilities |b→2e|2 and |b←2h|2 corresponding to the orbit shown in Fig. 1.17(a) or the right part
of Fig. 1.17(b). In blue we plot |b→1e|2 and |b←1h|2 which correspond to the complementary orbit
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1.2 Multi-channel Andreev molecule in 1D

passing through the first weak link in Fig. 1.17(b). The eigenvectors are normalized so that the
probabilities sum to 1 and the amplitudes a are related to the b’s by the scattering matrix SN .
To maximize dEC, the phases are fixed at ϕ2 = 0.5π and ϕ1 = −0.48π. The slight detuning of
ϕ1 from −0.5π allows being sufficiently far from the degeneracy such that there is no mixing
between the eigenstates of sides 1 and 2 at l/ξ0 = 10. In principle at the exact degeneracy and
arbitrarily large l/ξ0, a viable eigenstate can consist of equal weights at the first and second
weak links.
At large separation, l/ξ0 ≈ 10, both probabilities at the second weak link (red) are approx-

imately 0.5 whereas those at the red weak link (blue) are almost zero, indicating that the
eigenstate is a conventional ABS as in Fig. 1.17(a).
As the separation is reduced, the weights at the first weak link (blue) start to increase and

those at the second weak link (red) decrease, indicating the formation of a dEC state. The
position of the step will depend on the detuning of ϕ1 from −ϕ2. Near l/ξ0 ≈ 1, the orbit is
approximately equally distributed between the two weak links. The decomposition of dEC into
two simultaneous EC processes leads to the qualitatively similar form of the probabilities in
blue with the EC probability |tS |2 of 1.15(d).
For even smaller separation, both the red and blue probabilities decrease and are compensated

by an increase in the amplitudes |b←1e,2e|2 and |b→1h,2h|2 (not shown) of the counter-propagating
orbit given by reversing the directions of the arrows in Fig. 1.17(b). The relative weight of
these two trajectories will be determined by the value of the phase difference ϕ2. This can be
understood by considering the complementary time-reversed ABS trajectory to the one shown
in Fig. 1.17(a). When the phase ϕ2 is zero or π, such that the supercurrent is zero, these two
trajectories have equal weights and compensate each other. At extrema of the supercurrent
one trajectory will dominate. This is why with our choice of ϕ2 = π/2 the red probabilities in
Fig. 1.17(c) approach 0.5 for large l/ξ0, near a supercurrent extremum for the secon weak link.
The situation is similar for a dEC orbit and when the separation approaches zero, the total phase
drop across the device is ϕ2 − ϕ1 ≈ π, so the dEC supercurrent vanishes and both trajectories
coexist. This is why all probabilities approach 1/8 near l/ξ0 = 0 in Fig. 1.17(c), resulting in
approximately equal clockwise and counter-clockwise orbits. The additional splitting of the
blue lines results from normal scattering and is absent when τ = 1.
The second molecular bound state, dCAR, is shown in Fig. 1.17(d), and with respect to the

dEC orbit involves two additional quasiparticle conversions in the central superconductor and
a reversal of current direction at the first weak link. During the conversion an incident electron
of energy E is reflected as a hole of energy −E which results in the crossing of trajectories at
the central superconductor and in the twist relative to the dEC diagram Fig. 1.17(c). dCAR
describes supercurrent flowing from the central superconductor to the outer ones and cannot
occur for a floating central island, or without a connection to ground.
The dCAR probability is plotted in Fig. 1.17(c) for the same ϕ2 = π/2 but with ϕ1 = 0.52π ≈

ϕ2 in order to maximize the effect while maintaining a detuning to avoid a trivial degeneracy.
Note that although the probabilities in red are identical to those for dEC, Fig. 1.17(c), the
probabilities in blue are |b←1e|2 and |b→1h|2 to take into account the reversal of the trajectory
on the first weak link. There is a non-physical numerical instability at exactly l/ξ0 = 0 so
the x-axis extends from l/ξ0 = 0.05 to 10. As expected, at large separation, l/ξ0 = 10 the
eigenstate is an ABS localized at the second weak link.
As the separation is reduced the probability shifts to the first weak link, much as with
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1 Theory of hybridized Andreev Bound States: Andreev molecules

dEC. The increase in probability at the first weak link (blue lines) occurs at smaller l/ξ0 than
for dEC, most likely a result of the high value of transmission which leads to weak dCAR
hybridization. After reaching a maximum at l/ξ0 ≈ 1 the blue lines take a sharp downturn
and approach zero as the separation is further reduced. The probability for dCAR follows
the Andreev reflection probability which vanishes as l/ξ0 → 0. As with dEC the probabilities
describing propagation through the second weak link, including the time-reversed ones not
shown, approach approximately the same value as l/ξ0 → 0. However, since the probability of
all trajectories at the first weak link must vanish, the red lines approach a value of 1/4 instead
of 1/8 as with dEC. The additional splitting of the probabilities for l/ξ0 . 1 is also due to
imperfect transmission. Unsurprisingly, the overall shape of the dCAR probabilities (blue lines)
is similar to that of the CAR probability plotted in Fig. 1.15(d).
In the general multi-channel, non-symmetric case and as a function of the separation the

eigenstates will be mixtures of conventional ABS and molecular ABS. The phase configuration
necessary for molecular orbits will coincide with the position of level crossings in the large
separation ABS energy spectrum such as in Fig. 1.16(b) for l = 10ξ0.

1.3 Multi-channel Andreev molecule in 2D: the role of disorder

Up to now, we have treated Andreev molecules without any disorder in the models. However
Andreev molecules emerge when ABS of different junctions interfere with each other and form
a delocalized state. In mesoscopic systems, interference may be destroyed by disorder and one
can legitimately wonder whether or not Andreev molecules can form in realistic devices where
weak links are connected to thin film diffusive superconductors. Although the superconducting
gap ∆ remains largely unaffected by non-magnetic disorder, in the limit l0 � ξ0, where l0 is the
mean free path in the diffusive superconductor, the effective superconducting coherence length
is reduced to

√
ξ0l0. As a consequence, for an isolated junction, the spread of the wave func-

tion is reduced by disorder but the spectrum, which only depends on ∆, remains unchanged.
However, in an Andreev molecule, disorder reduces the overlap of wave functions of adjacent
junctions, hence degrading the probability of dEC and dCAR and changing the spectrum. The
one-dimensional approach we described so far is powerful to obtain a simple understanding of
Andreev molecules but it does not describe the effect of disorder. In this section we present
a tight-binding model for Josephson devices made with diffusive superconductors in order to
demonstrate that Andreev molecules and the resulting nonlocal effects survive in realistic ex-
perimental conditions. Moreover, this approach can easily generalize the concept of Andreev
molecule in two dimensions, which is relevant experimentally as thin films of superconductors
have typical thicknesses smaller than the superconducting coherence length.

1.3.1 Tight-binding description of Andreev molecules

In this approach to describe Andreev molecules (see Fig. 1.18(a)), we decompose the space
over a N ×N square lattice with lattice constant α in discrete sites labeled (i, j) where i and
j are integers. In the corresponding base |i, j〉, the normal part of the Hamiltonian H0 =
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(a)
1

2

(b)

1
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Figure 1.18: Tight-binding description. (a) Illustration of the discretization for the tight-
binding approach: each site is a circle. For clarity, we draw fewer sites than
we actually use for calculations (200× 200). The weak links are in black and their
widths are chosen such that each QPC has a single channel. (b) Real part of uijψ ,
the electron part of the wave function ψ (i, j), when hybridization is maximum
(δ1 = −δ2) for a device with no disorder. Interference between ABS leads to the
formation of fringes between the junctions, which shows the hybridization into an
Andreev molecule. The checkerboard patterns in the corners are finite size effects
due to reflections on the edges. Parameters used for calculations are either given
in the figures or: α = 1, l = 28, t = 10, δt = 0, ∆ = 0.5, δ2 = π/2, µ = 11 and
W = 6. This gives ξ0 ≈ 12.7, l0 = ∞ (or rather the size of the device N) and
λF ≈ 6.3.

45



1 Theory of hybridized Andreev Bound States: Andreev molecules

−~2
2m

(
∂2
x + ∂2

y

)
− µ becomes

H0 =
∑
i,j

(4t− µij) |i, j〉〈i, j| − t
∑
σ=±1

|i+ σ, j〉〈i, j|+ |i, j + σ〉〈i, j| . (1.33)

The first term corresponds to the on-site energy and the second one to the coupling between
adjacent sites by a hopping energy t = ~2/2mα2. To describe electrons in continuous media, we
require that the Fermi wavelength exceed the lattice spacing (λF > α), a condition satisfied for
µ ≤ t. In the following, we set µ ≈ t such that the wavelength and superconducting coherence
length are given by λF ≈ 2πα and ξ0 ≈ 2tα/π∆, respectively. Since α is the spatial resolution
and ξ0 is the spread of Andreev molecules, we choose parameters such that ξ0 > λF > α and
our resolution is sufficient to observe effects due to the overlap of ABS wave functions. In order
to build a global matrix describing the system, we first define local BDG matrices in Nambu
space that describes individual sites of the lattice

H0D (i, j) =

(
εi,j ∆eiϕi,j

∆e−iϕi,j −εi,j

)
where εi,j = 4t− µi,j + Ui,j , Ui,j is a local electrostatic potential, ∆ = |∆| eiϕi,j and ϕi,j is the
local superconducting phase for the site labeled(i, j). We also introduce an on-site chemical
potential µij to define the shape of the device. Sites on the boundary of superconductors and
weak links have µij � t and are therefore kept empty. The i-th line of the lattice corresponds
then to the assembly of N these matrices coupled by horizontal hopping terms between adjacent
sites T� = diag (−t, t)

H1D (i) =


H0D (i, 1) T� 0 0

T� H0D (i, 2)
. . . 0

0
. . . . . . T�

0 0 T� H0D (i,N)

 .

The total matrix H2D describing the N ×N lattice in 2 dimensions is then built by coupling
N of these lines

H2D =


H1D (1) Tl 0 0

Tl H1D (2)
. . . 0

0
. . . . . . Tl

0 0 Tl H1D (N)


with vertical hopping diagonal matrices Tl = diag (t,−t...t,−t) of dimensions 2N . The resulting
Hamiltonian H2D is a 2N2 × 2N2 matrix, where the factor two accounts for the electron and
hole parts of the electronic states. The energy spectrum of the system corresponds then to the
ensemble of eigenvalues of H while the eigenvectors are the quasiparticle wave functions (see
Fig. 1.18(b)).

1.3.2 Andreev molecules robustness against disorder

To reproduce the results of the preceding sections, we focus on a superconducting double
quantum point contact (QPC), as shown in Fig. 1.19(a). This geometry also corresponds to
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back-to-back superconducting atomic contacts. We choose the width W ∼ λF of the weak
links such that only one conduction channel is open in each QPC. Within the tight-binding
approach, the disorder associated with the diffusive nature of superconductors can be described
by giving a random Gaussian distribution to the hopping energies with a mean value t0 and a
standard deviation δt. The timescale over which an electron is scattered is then approximately
~/δt and an order of magnitude estimate of the mean free path is l0 ∼ t0α/δt provided that
this is smaller than the size of the device.
Fig. 1.19(b) shows the spectrum obtained for two QPCs separated by twenty sites, which

is more than twice the effective superconducting coherence length ∼ 2.5
√
ξ0l0. For varying δ1

and fixed δ2 = 3π/5, we recover the main features that we observed in the one-dimensional
case. We see the appearance of avoided crossings at δ1 = ±δ2 between ABS that were originally
localized at different junctions. In the absence of disorder in Fig 1.19, the hybridization of ABS
is revealed by the interference pattern in the wave function, which consists of circular waves of
period λF centered at the QPCs and decaying exponentially into the outermost superconduc-
tors. In between the QPCs, the circular waves overlap and interfere leading to parallel fringes
demonstrating the hybridization of ABS into an Andreev molecule.
As we add disorder, this regular interference pattern is severely destroyed and the wave

functions resemble a random speckle pattern. As expected, we also observe that the wave
functions are more localized than for a ballistic sample with no disorder. The probability
distribution of the wave function is plotted in Fig. 1.19(c), (d) and 1.19(e) for fixed δ2 = 3π/5
and three different superconducting phases δ1 indicated in Fig. 1.19(b) (red, blue and magenta
circles). As in Fig. 1.5(b) where the wave function envelope is calculated in one dimension,
regions of high probability correspond to the localization of a single Cooper pair. Away from
the avoided crossings (red and blue circles), the probability peaks on one of the QPCs only,
which is natural as the ABS are not hybridized. On the other hand, for maximum hybridization
(magenta) the probability is equally distributed over the two QPCs. We have shown that tight
binding can capture the formation of Andreev molecules in 2D and in the presence of disorder.
The technique can easily be extended to model more sophisticated structures, Andreev analogs
of multi-atomic molecules such as polyacetylene, or even cyclic molecules such as benzene.
When the distance between QPCs becomes smaller than ξ0 (Fig. 1.20), the ABS start to

hybridize more strongly since the overlap of their wave functions becomes significant. In this
regime, the Andreev molecule shows a large nonlocal Josephson effect. In Fig. 1.20(a), we show
three current-phase relations of the first junction for three different superconducting phase dif-
ferences across the second junction. As in the one-dimensional case, we observe the appearance
of a zero-phase current, which modulates with δ2 and represents a significant fraction of the
maximum supercurrent. Moreover it is clear in this comparison that the critical current of the
first junction (i.e. the maximum of I1) modulates with δ2. The same calculations performed for
a ballistic sample (Fig. 1.20(b)) provides similar results, showing that disorder does not affect
qualitatively the formation or behavior of an Andreev molecule.
In conclusion, as for ABS in a single junction, we observe that the main consequence of dis-

order on Andreev molecules is to effectively reduce the superconducting coherence length. This
imposes the junctions to be close enough such that l is smaller than the diffusive superconduct-
ing coherence length, but it does not induce qualitative changes and non-local effects are still
substantial. Andreev molecules can thus be detected in devices made of diffusive aluminum
since the diffusive superconducting coherence length is 150 nm [60], as compared to 3 µm in
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Figure 1.19: Andreev molecule in a double superconducting quantum point contact. (a)
Schematic of a device based on two point contacts (QPC) used as weak links
between disordered superconducting electrodes (blue, magenta and red). In these
electrodes, quasiparticles propagate in a diffusive way. (b) Spectrum of a two-
dimensional Andreev molecule as a function of δ1 at fixed δ2 for a disordered
device (δt/t0 = 0.2). (c-d-e) Square modulus of the wave function for three differ-
ent phases δ1 at fixed δ2 = 3π/5 (see b). The red (resp. blue) dot corresponds to
an electronic state localized on the second (resp. first) junction with δ1 = 0 (resp.
δ1 = π). For the magenta point, hybridization is maximum (δ1 = −δ2) and the
electronic states are fully delocalized on the two junctions. Parameters used for
calculations are either given in the figures or: α = 1, l = 20, t0 = 10, δt = 0.2,
∆ = 0.5, µ = 11 andW = 6. This gives ξ0 ≈ 12.7, l0 ≈ 5,

√
ξ0l0 ≈ 8 and λF ≈ 6.3.

The number of sites is 200× 200. Separations between the three superconductors
are indicated by dashed lines and colors along one axis. The weak links are small
openings in the center of these separations.
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the ballistic limit. A Josephson device showing nonlocal effects could therefore be fabricated
using conventional techniques of nanofabrication, which have a resolution down to 10 nm.
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Figure 1.20: ϕ-junction in disordered two-dimensional devices. (a) Supercurrent I1 flowing
through the first junction as a function of δ1, for three different superconducting
phase differences across the second junction δ2, in a two-dimensional disordered
device (δt/t0 = 0.2). We choose l = 4α such that l .

√
ξ0l0. We observe an

important 0-phase current Iδ1=0
1 , which modulates with δ2. (b) Current-phase

relation calculated for a ballistic device (δt/t0 = 0). Here, we choose l = 8α such
that l . ξ0. We observe that nonlocal effects are qualitatively the same with or
without disorder. For these calculations, we use the following parameters with
α = 1: l = 4, t0 = 10, δt = 0.2 (for the diffusive case), ∆ = 0.5, µ = 11 and
W = 6. This gives ξ0 ≈ 12.7, l0 ≈ 5,

√
ξ0l0 ≈ 8 (for the diffusive case) and

λF ≈ 6.3. The number of sites is 200 × 200. The supercurrent is obtained from
the highest 1000 eigenstates of negative energies found numerically. They include
the ABS of negative energies, from zero down to approximately −3∆.

1.4 Implications for experiments

The preceding theory is necessary to understand the different aspects of the formation of an
Andreev molecule. To perform actual experiments, we must identify the physical constraints
and find a technological platform to realize devices.

• Main physical constraints

The three main ingredients to engineer Andreev molecules are the distance between the
junctions, the transmission and the number of conduction channels in the junctions. The most
crucial dimension in the design is the distance between the junctions. The splitting of the
energy levels, i.e. the intensity of the hybridization, is in a best-case scenario of the order
of e−

l
ξd with l the distance between the junctions and ξd the dirty coherence length of the

superconductor, as shown in Eq. 1.11. The fundamental idea behind this dependence is the
size of the overlap of the ABS of the junctions. Since the two junctions host ABS with a size
ξd, we need to place the junction at a distance of the order of ξd to get a measurable effect.
All the more, in a general quantum physics problem the overlap of two wavefunctions of finite

size varies on the dimension of the system. In one dimension, a Josephson junction is made of
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1 Theory of hybridized Andreev Bound States: Andreev molecules

a weak link considered as a Dirac point and one-dimensional superconducting islands. In this
configuration, the wavefunction of an ABS of a junction is centered at the weak link and its

wave function has an envelope proportional to e−
xwl1−x
ξd with xwl1 the position of the weak link

and x the distance from the weak link. If a second junction is placed at a distance l from the

first junction with a wavefunction envelope similar e−
xwl2−x
ξd but centered at its weak link xwl2,

the overlap of the wavefunction will happen on the distance l separating the junctions. With
the exponential decrease of the wavefunctions along the x-axis, it is considered that the ABS of
each junction are overlapping and so hybridizing if l ≤ ξd. One important remark is that since
the system is in one dimension all the weight of the wavefunctions is along one axis, giving no
space to the wavefunctions to spread other than this one axis. And so, the dimension of the
system is favoring the hybridization of the junctions.
In a three-dimension system, the weak links are still considered as Dirac points but the super-

conducting islands are now considered as three-dimensional spaces where the ABS wavefunc-
tions can spread. Thin films superconducting island, sketched on Fig.1.21, can be approximate
as such systems, for example. In these systems, the ABS are spread on a wider space than
in one dimension. If two junctions are placed at the same distance l as in one dimension one
could be thinking that the overlap of the would be the same. However, the ratio of wavefunc-
tions overlapping is smaller compared to the one-dimensional case, and correspond to a smaller
overlap. If the overlap is smaller so is the hybridization of the junctions and the spectrum of
such Andreev molecule will contain smaller avoided crossings. To obtain the same ratio of the
wavefunctions overlapping hence the same hybridization of the junctions, the junctions have
to be brought closer to one another. A similar explanation can be given for two-dimension
systems. So, the dimensionality of the system can make the hybridization harder to happen.
In a deeper theoretical work has been made by Kornich et al. [57, 61] which takes into account

the change in dimensionality of the wave function. They find for a "concrete setup" made of two
Josephson junctions in aluminum with high transmission separated by 50 nm that the energy
splitting would be around few µeV. For comparison in our theoretical work considering only
one-dimensional systems, we would get splitting one order of magnitude bigger.
The second and third important points are the transmission and the number of conduction

channels in the junctions. The transmission of the conduction channels is critical. For low
transmission junctions, τ � 1, as we have seen in Sec 1.1.5.1, the fraction of non-local current
compared to the conventional supercurrent will be in the best case proportional to τ . So
maximizing this value is important. Also, the number of conduction channel has its importance
depending on the type of measurement intended. Since the non-local current is proportional
to a fraction of the critical current of the junction, higher critical current leads to higher
non-local current. However, higher current for a given voltage means more dissipation and
superconducting Josephson junctions needs to be operating at cryogenic temperature. A point
of equilibrium needs to be found in order to get the maximum critical current in the junctions
without risking dissipating too much heat in the cryostat. Considering the cooling power
of a typical dry cryostat to be of few tens µW to maintain a temperature of few mK, the
current of one perfectly transmitting channel in aluminum to be of 50 nA and necessary in
series resistance for measurement to be of 10 000 Ω, it seems reasonable to aim at the order
of ten conduction channels per junction. More than this order of magnitude will result in
current too high to be easily measurable at cryogenic temperature due to heat dissipation.
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Figure 1.21: Perspective drawing based on Fig. 2(a) from [57].The two junctions are represented
with superconducting islands, S1 S2 and SC, made with thin films. Each junction,
JJ1 and JJ2, has respectively a phase difference of δ1 and δ2. Each junction has
side gates represented in yellow. The spreading of the ABS wave function in the
superconducting leads is represented in shade of grey. The overlap is the darker
grey part. The spreading in two dimensions exhibits that, for a distance l, the
overlap of the wave function is reduced since y component do not interact as much
as in one dimension.

And with less than this value, the variation of the switching current of the junctions would be
too small to be measurable. For spectroscopy measurement, we want ideally only one channel
per junction. The size of the energy gap for dEC and dCAR is determined by the channel
with the smallest transmission which makes it possibly smaller for multi-channel junctions. In
addition, the spectral lines will have some width, so that if the number of channels is high the
energy spectrum will be dense, as we show in Fig 1.16, and it will not be possible to distinguish
them.
Finally, with all these constraints in mind we can discuss which technological platform is

most promising to build an Andreev molecule device.

• Choice of technological platform

We need to determine the most suitable technology with which it is possible to craft Josephson
junctions with few high-transmitting channels and to place two of these junctions close to one
another with a middle island connectable. Among the possibilities for fabricating Josephson
junction, two technologies stand out: stacked aluminum tunnel junctions and InAs-Al nanowire
based junctions.
The stacked aluminum tunnel junctions design is made of two tunnel junctions vertically

stacked. The device is composed of three aluminum layers and two aluminum oxide layers at
the interface of two aluminum layers. Each junction is made of two aluminum layers and one
oxide layer. And the two junctions share the middle aluminum layer which plays the role of
a common electrode, as shown in Fig. 1.22. We end up with two vertically stacked Josephson
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(a)
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Figure 1.22: Stacked aluminum tunnel junctions. (a) 3D scheme of a cut of stacked junctions.
The stacked junctions are a superposition of three aluminum layers, in blue, orange
and brown, with two oxidized layers ,in yellow. This setup defines two junctions
JJ1 and JJ2 with a spacing l corresponding to the thickness of the orange layer.
(b) SEM image with false color of stacked junctions. The three layers define in (a)
are colorized. The thickness of the orange layer is l ≈ 50 nm

junctions for which the separation length is defined by the thickness of the second aluminum
layer, in orange. The biggest advantage of this design is the possibility to determine the spacing
between the junctions with great precision on the order of a few nanometers. This precision
is possible using metal evaporator with electronic gun which allows evaporating aluminum at
0.5 nm/s. However, this design has some drawbacks. It is not a common technique and needs to
be developed from scratch. Also, the number of channels, their transmission and the distance
between the junction are fixed for each device and cannot be tuned inside the cryostat, for
example. Another drawback is the difficulty to create few high transmission channels in a
tunnel junction. The oxidation process used to create the weak links of the junctions results
in low transparency barriers. The junctions have S/λ2

f number of channels available, with S
the surface of the junctions and λf the Fermi wavelength, with low transmission. One strategy
to create few high transmission channels in tunnel junctions is to send electrical pulses to
the junctions as in [62]. However, this technique is not easy to master and creating only few
channels is demanding. Lastly, this design is not scalable if we want to create more complex
molecules with an increasing number of junctions.
The first part of this thesis was an attempt to develop a working recipe to fabricate Andreev

molecules based on stacked Josephson junctions. This try was motivated by the work of Tolpygo
et al. [62]. The most advanced recipe permits to craft two stacked junctions with in the order
of a hundred well-transmitted channels. Even if promising the number of channels was too high
to be measurable. Unfortunately, no recipes were found to overcome this limit, which leads
to start a new design based on InAs nanowires which became a more promising technological
platform.
The second strategy is to use InAs-Al nanowires as the canvas to create two Josephson

junctions. These nanowires are made with a semiconducting core of InAs and an epitaxially
grown Al shell, this specific fabrication process allows having a hard gap and makes them a
very interesting platform to make Josephson junctions. It is achieved by removing the Al shell
of the nanowire at two places and exposing the core. The exposed parts in InAs represent the
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(a)
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Figure 1.23: (a) A full-shell nanowire etched in two places, exposing the core of the nanowire
made of InAs. The nanowire is not connected to the rest of the circuit. (b) SEM
image showing multiple junctions Andreev molecules. The design is easy to scale to
multiple junctions by juxtaposing them. The nanowire is connected to the rest of
the circuit with also the presence of side gates for each junction by electrodes (left,
right, and top) and side gates (bottom) allow tuning the channel transmissions of
each junction independently.

weak links of the junctions and the rest with the aluminum shell still in place represents the
superconducting islands, as shown in Fig 1.23(a). This technology has many advantages. One of
the most noticeable is the capability to tune the number and the transmission of the conduction
channels. It is feasible because of the semiconducting nature of InAs which can be depleted by
applying an electric field with a side gate. This technology is also very common nowadays with
all the effort put towards the detection and the manipulation of Majorana fermions. It helps
to find new and more reliable fabrication technique. Lastly, the design is scalable as shown in
Fig 1.23(b). Once we have tackled the way to fabricate an Andreev molecule with two junctions,
adding more junctions to engineer more complex molecules is straight forward. The only two
drawbacks of this technique are the reliability of the etching process to precisely remove the
aluminum shell and the numerous precise lithography steps needed to build a device. A deeper
review of the fabrication process is presented in Chap. 3.
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The two main signatures of Andreev molecule at equilibrium are the spectral avoided cross-
ings and the non-local current-phase relations, which are formed when ABS hybridize through
non-local processes. The non-equilibrium case, in which the junction voltages are non-zero,
was considered by Freyn et al. [17] and has been investigated experimentally [23, 24]. The
interpretation of their results is complex as dynamic phenomena such as mutual phase locking
[63] can lead to similar signatures. On the contrary, the equilibrium experiments at zero volt-
age, detailed below, should provide a signature easier to interpret as the detection of Andreev
molecules.

In this chapter, we present one experiment and two proposals of experiments which aim
to probe the signatures of an Andreev molecule. The experiment is a current bias switching
measurement which probes the nonlocal Josephson effect by applying and measuring super-
current across the junctions. The first experiment proposal presents a phase bias switching
measurement which explores further the nonlocality of the Josephson effect by applying phase
and measuring supercurrents. The second proposal is a Josephson spectroscopy of an Andreev
molecule, which aims to access the transition between the ground state and the first excited
state of the Andreev molecule to witness the avoiding crossings.

2.1 Current bias switching measurement

As seen in Chap. 1, the hallmark of hybridization of Josephson junctions is the dependence
of one junction’s switching current on the supercurrent passing in the other junction. The
objective of this experiment is to measure this dependence in a two junction Andreev molecule.
Due to technical difficulties and time constraints, a full measurement of the junction’s current-
phase relation was not performed. However the experiment described below is similar and helps
to determine with precision the supercurrent of one junction while current biasing the other
junction.

2.1.1 Circuit design and principle

The Andreev molecule, made of two Josephson junctions, defined by the dotted rectangle in
the center of Fig. 2.1 is the heart of the circuit. The two junctions JJ1 and JJ2 composing the
molecule are made out of epitaxial InAs-Al full-shell nanowires coming from a collaboration
with Peter Krogstrup from the University of Copenhagen [25]. These nanowires allow craft-
ing superconductor-semiconductor-superconductor junctions in which the supercurrent can be
modulated by an electric field. The junctions share a common superconducting island in pink
in fig. 2.2(b) which separates the junctions by l ≈ 300 nm. This island is connected to ground,
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Figure 2.1: Simplified equivalent circuit of sample AM14. The central part inside the dotted
line is the Andreev molecule. It is composed on one side of a Josephson junction
JJ1 (in blue) and on the other side of another Josephson junction JJ2 (in red).
The middle line in pink connected to ground represents the central island of the
molecule made of aluminum. The upper part of the scheme corresponds to the two
gates voltage connected to voltage sources (VG1 , VG2 ) necessary to adjust the weak
link characteristics of each junction. Two independent current sources (Ib1 , Ib2 )
bias each junction independently.

which allows current biasing each junction independently with sources Ib1 and Ib2 . An elec-
trode placed near each weak link is used to apply a gate voltage and modulate the junction
conductance (Fig. 2.1, VG1 , VG2 ). Lastly, two voltage probes are used to measure the junction
voltages VJJ1 and VJJ2 . With this setup, it is then possible to tune the channel transmissions,
current bias and measure the voltage of each junction independently. Details of sample fabri-
cation and the measurement setup are given in Sec. 3.1 and Sec. 3.1. The advantages of the
design shown in Fig. 2.1 are:

• The sample is the simplest possible while allowing independent measurement of the
current-voltage characteristics of each junction.

• We can tune and measure each junction independently before performing more complex
measurements. For example, the first junction can be measured with the second junction
grounded.

• It is straight forward to add more junctions or atoms to the molecule.

• It is easy to short one of the junctions to form a superconducting loop and perform a
phase bias switching measurement as in Fig. 2.12.

To measure the hybridization of Andreev Bound States in this circuit, one needs to measure
the variation of the switching currents which should be larger than the switching noise. Since the
expected variations are relative to the size of the switching current of the junctions, one firstly
needs to maximize them. Higher supercurrent leads to higher relative variation of amplitude and
would be more detectable. The conductance of the InAs-Al nanowire based semiconducting
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2.1 Current bias switching measurement

PARAMETER SAMPLE AM14
Length weak link 1 lwl1 331 nm

Length weak link 2 lwl2 322 nm

Length between weak links l 329 nm

Parasitic resistor Rp1 41.6 Ω

Parasitic resistor Rp2 41.2 Ω

Parasitic resistor Rp3 33.8 Ω

Table 2.1: Parameters of sample AM14 presented in this chapter.

weak links determines their critical currents. The semiconducting nature of the weak links
makes them tunable by an electric field. Their conductance can be either enhanced or reduced
by an electrical field in close proximity.
One can use the side gates maximize their supercurrent. After adjusting the gate voltages to

have high switching currents, we perform a current bias switching measurement. The variation
in the switching current of JJ1 is measured for different fixed values of current in JJ2. We start
by applying a fixed current bias to JJ2, using Ib2 , then ramp the current in the other junction,
JJ1 using Ib1 , until it switches. This sweep gives the switching current value of JJ1 for a defined
value of current in JJ2. After one sweep, the bias current Ib2 , is changed and JJ1 is swept again
from zero until it switches. If the two junctions are hybridized, the switching current of JJ1
should depend on the supercurrent of JJ2. In Sec. 2.1.3, this current bias switching protocol is
used to measure the hybridization of the junctions in device AM14 (Fig. 2.2(a)).
It is important to note that fixing the current bias does not fix the phase in the case of

hybridized junctions. The current-phase relation (CPR) of one junction might involve the
phase of the other junction, as it is the case for example for the analytical CPR for small
transmission junctions in Eq. 1.18.
Even if the exact value of the phases is not known, their sign is related to the sign of

the current and spans an interval from zero to approximately π for a single high-transmission
conduction channel (Fig. 1.2(b)). As both junctions can be biased in a large range from −Isw to
Isw, one can measure the two specific configurations δ1 = δ2 and δ1 = −δ2. These configurations
correspond to the two microscopic mechanisms, dEC and dCAR respectively. Being capable of
putting the device in these two configurations greatly help

The results presented in this chapter were obtained with the sample AM14 (see Fig. 2.2)
whose parameters are listed in Table 2.1.

2.1.2 Control measurements

Control experiments allow characterizing each junction individually before any measurement
of hybridization. We present three experiments: the individual current-voltage characteristics
of the two junctions, gate voltage map of one junction and current-voltage of one junction for
different gate values.
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(a)
600 nm

(b)
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Figure 2.2: SEM images and design superposition of the sample AM14. (a) Three SEM pictures
at different zoom levels. The photo on the left shows the sample with multiple
nanowires and their corresponding connections. The middle picture is a zoom of
the dotted black square on the left picture with a tilt. There are two Andreev
molecules on a single nanowire. Each molecule has two gates which corresponds
to the parallel white lines and two weak links. The image on the right is a focus
on a single Andreev molecule from the middle picture. We can clearly see the two
Josephson junctions with the weak links where the arrows are pointing. (b) A
top-down view SEM image of an Andreev molecule with the superposition of the
simplified circuit described in Fig 2.1. The pink part underlines the middle island,
the AM and the yellow lines are the voltage gates closed to each weak link.
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2.1.2.1 Individual current-voltage characteristics
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Figure 2.3: Current-voltage IJ(VJ) characteristic of the two Josephson junctions (JJ) com-
prising the Andreev molecule at gate voltages VG1 = 0 V and VG2 = 7.99 V. (a)
Josephson Junction 1 (JJ1) IV with an equivalent resistance in series Req1 = 75.4 Ω
and a switching current Isw1 = 27 nA (b) Josephson Junction 2 (JJ2) IV with an
equivalent resistance in series Req2 = 75 Ω and a switching current Isw2 = 10 nA.

When measuring the current-voltage characteristic of one junction, we set the bias current
in the second junction to zero. The current of the junction is measured on a calibrated bias
resistor in series with the junction and the voltage at the measurement point VJJ . Despite
being at zero current bias, the second junction may have non-zero phase due to hybridization
when the junction separation is small (Eq. 1.19). An alternative would have been to configure
the second junction in the pinch-off regime but due to crosstalk this would require adjusting
both gate voltages.
Fig. 2.3 shows the current-voltage IJ(VJ) of the two junctions (JJ1 and JJ2) for fixed gate

voltages (VG1 and VG2 ) which maximize the two critical currents. The measured average
switching currents are Isw1 = 27 nA and Isw2 = 10 nA.

59



2 Experiments to observe Andreev molecules

One striking important of Fig. 2.3 is the slope of the critical current peaks indicating the
presence of unwanted resistances in series with the junctions. These parasitic resistances are
due to the use of gold lines on the chip as shown in Fig. 2.4(b). The gold leads were made
before the fabrication, they help to define a zone to deposit the nanowires with the help of a
micromanipulator. Without this zone finding the nanowires on the substrate would be difficult.
The leads play the role of bonding pads at one end and contact pads for the aluminum leads
of the Andreev molecule, at the other end. A revised circuit including these unanticipated
resistances is presented in Fig. 2.4(a). Since there are three aluminum leads coming from
the device which are connected to three gold lines, there are three parasitic resistances. The
parasitic resistances Rp1 and Rp2 increase the effective value of the bias resistances Rb1 and
Rb2 . However, the third parasitic Rp3 is common to both junctions and results in a common
voltage measured at VJJ1 and VJJ2 . If a current goes through JJ1, VJJ2 will be non-zero even
if JJ2 has no current through it. This spurious signal needs to be accounted for by determining
the values of the parasitic resistors and removing the unwanted contribution.
Three measurements are required to obtain the values of Rp1 , Rp2 and Rp3 . The first

measurement is a current-voltage characteric (IV) of JJ1 and JJ2 at zero current which gives
us access to Req1 = Rp1 + Rp3 = 75.4 Ω. The second measurement is the IV of JJ2 with JJ1
current which gives us access to Req2 = Rp2 +Rp3 = 75 Ω. These measurements correspond to
fitting the slopes in the IVs in Fig. 2.3. The last measurement is to bias both junctions in series
with a current source which is not connected to the ground. To perform this measurement,
with the sample in the fridge, the trick is to bias via the lines used for voltage probes VJJ1 and
VJJ2 . The resistances of the measure lines Rlead1 ,2 in the cryostat are known from previous
cooldowns and can be substracted from the measurements. In this configuration the current
will pass through Rlead1 , Rp1 , JJ1, JJ2, Rp2 and Rlead2 , as defined in Fig. 2.4. By measuring
the voltage drop across the voltage points VJJ1 and VJJ2 and substracting Rlead1 ,2 , as defined
in Fig. 2.4(a), we obtain Req3 = Rp1 +Rp2 = 82.8 Ω. With these three equations the parasitic
resistances areRp1 = 41.6 Ω, Rp2 = 41.2 Ω andRp3 = 33.8 Ω. These values are reasonable given
the square resistance of gold leads (approximately 1 Ω/�) and their geometry corresponding to
350 squares.
Finally, the contribution of the parasitic resistances can be subtracted from our measurements

of VJJ1 and VJJ2 and one can obtain independent IV characteristics for the two junctions. We
underline that these corrections do not change the value of current in the junctions, it only
changes the voltage VJJ1 and VJJ2. The switching currents are still the same as the one shown
in Fig. 2.3.

2.1.2.2 Gate voltage dependence

The gate electrodes allow tunning the junction conductance to obtain, in the ideal case, only a
few highly-transmitted channels. In this section, we explore the influence of the gate voltages
on the current-voltage characteristic of JJ2. For brevity we do not show similar measurements
for JJ1.
Fig. 2.5(a) shows a map of the calculated differential conductance of JJ2 versus voltage

VJJ2 , the y-axis, for different values of gate voltage VG2 , the x-axis. This map is obtained by
measuring IVs at fixed VG2 . The same technique as described in Sec. 2.1.2.1 is used to measure
the IVs. The differential conductance is obtained by numerical differentiation.
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Figure 2.4: Parasitic resistances in device AM14. (a) Simplified circuit of AM14 with parasitic
resistances. The main difference with the circuit presented in Fig. 2.1 is the presence
of Rp1 , Rp2 and Rp3 . Both measurements of VJJ1 and VJJ2 include a contribution
from the total current flowing into the common resistor Rp3 . To properly determine
the voltage drop across the individual junction this contribution must be removed
after determining the value of Rp3 . Note that these resistances do not lead to
corrections in the junction currents. (b) Modified SEM image of the sample AM14.
The wide traces entering from outside the image and used to connect the sample
to bonding pads are made of gold and have a low-temperature square resistance
of approximately 1 Ω. These parasitic resistances are colorized in blue and are
connected by aluminum leads (dark gray) directly to the nanowire. These lines are
connected to three aluminum leads connecting the nanowire directly to form the
molecule.
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Figure 2.5: (a) Differential conductance map of JJ2. The electrical field effect in the exposed
InAs nanowire results in modulation of the differential conductance and supercur-
rent as a function of gate voltage. The pinch off region is below VG2 ≈ −0.8 V.
Above VG2 = 0.8 V, the map shows complicated structure with high differential
conductance indicative of multiple Andreev reflections as well as supercurrent peaks
at VJJ2 = 0 V. (b) Current-voltage characteristic of JJ2 for different values of the
gate voltage VG2 . The color corresponds to the cuts (dotted lines shown in (a)).
The supercurrent peak and subgap structure are strongly influenced by the gate.
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In Fig. 2.5(a), one can observe the quasiparticle branches which are the two zones for
|VJJ2 | > 360 µV. In this region, the conductance is reduced as expected. Another distinctive
zone is the pinch-off region from VG2 = −1.5 V to VG2 = −0.8 V where the conductance of the
junction is zero. Before pinch-off, from VG2 = −0.8 V to VG2 = −0.3 V peaks of conductance
start to appear for |VJJ2 | > 100 µV. Then from VG2 = −0.8 V to VG2 = −0.3 V the supercur-
rent current peak emerges along with MAR like features of high differential conductance for
|VJJ2 | < 100 µV. Going to higher gate voltage, there is a small high-resistance zone and then
the supercurrent peak reemerges. Gate voltage regions with a bright supercurrent peak and
significant differential conductance at sub-gap voltages are indicative of highly transmitting
channels and are well suited for switching measurements of Andreev molecules.

2.1.2.3 Detection of high transmission features in the subgap

The effect of hybridized states in an Andreev molecule depends strongly on the transmission
of the conduction channels in the junctions. A signature of systems with high transmission
channels is the presence of subgap features, called Multiple Andreev States (MAR), in the IV
of the junctions.
Fig. 2.5(b) represents six IVs of JJ2 taken at different values of VG2 , the corresponding

slices are marked with dashed lines in Fig. 2.5(a). Among these different IVs, the switching
current value of JJ2 is different and the greatest value is obtained when VG2 = 1.2 V. One
can also see kinks at different values of VJJ2 which look similar to MAR. However, using the
same Monte-Carlo technique [64] as in the work of Goffman et al. [32], we were unable to fit
the MAR-like features in the IVs. The difficulty in fitting the curves can be explained by the
different size of the weak links. In the work of Goffman et al. [32], the junction is in the short
limit regime where the length of the weak link is greater than the coherence length inside the
weak link. However the junctions forming the device AM14 have an average length of 326 nm
which is greater than the 230 nm separation of the junction in the device of Goffman et al. This
increase of 42% could be sufficient to go from a short to a long limit regime. The Monte Carlo
model is only valid for short weak links, possibly explaining the poor fit.
Even though the MAR fit is unsatisfactory, there is a large subgap current, the height of the

supercurrent peak and the similarity of the current-voltage characteristics to those in [32] using
the same nanowires indicate that the junctions have high transmissions.

From the control experiments, the two closely spaced junctions have some highly transmitted
channels. Device AM14 combines the main ingredients to measure the hybridization of two
Josephson junctions, although the weak links are in the long regime which is not described
by the theory of Ch. 1. With this platform we will perform, in the following section, the
measurements towards the characterization of an Andreev molecule.

2.1.3 Measurement of zero voltage region

One of the signatures of the hybridization of the junctions is the modulation of the switching
current of one junction for different values of phase on the other junction (Sec. 1.1.4).
To detect any such modulation, we measured the extent of the zero voltage region for both

junctions as a function of bias currents, shown in Fig. 2.6. Each point corresponds to a pair of
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Figure 2.6: Zero voltage region of device AM14. Each red point in the graph corresponds to
a pair of junction currents (I1, I2) on the supercurrent branches, such that both
junction voltages are zero. The points of the graph defining the border of the
quadrilateral are the switching points of the device. Any possible hybridization of
the junctions would be characterized by a deformation from a rectangle describing
two non-interacting junctions.

currents (I1, I2) for which both junctions are at zero voltage. In other words, in the red region,
both junctions are on their supercurrent branches.

A standard switching measurement was not used to obtain the data of Fig. 2.6 due to a
problem with the sample, as explained in Sec. 2.1.4. To acquire this data, we first apply
a ramp to each junction, starting at zero current, that will make the junction switch for any
value of supercurrent passing in the other junction. We also took care to adjust the ramp height
such that the maximum current value passing through the junction during a ramp would always
be its switching current. In order to acquire a full map of the switching current dependance of
the two junctions, we perform a radial switching sweep. This radial sweep consists of applying a
dephasing coefficient α on each ramp. For example, we apply a coefficient of cos(α) for JJ1 and
sin(α) for JJ2 as shown in Fig. 2.7(a). To complete this radial sweep, we spanned α from 0 to
2π and, for each value of α, we ramped the junctions with the corresponding ramps, as shown
in Fig. 2.7(b). Thereby, for each value of α, the junctions are ramped with the corresponding
coefficient until one of them switches making the other junction switch as well. Current and
voltage of the junctions are measured in the same way as the IVs in Sec. 2.1.2.1.
One remark on the graph, the junctions are biased in such a way that after they switch the

junctions are in a state of non-zero voltage and current. These points of non-zero voltage are
also visible on the graph. However, the voltage ramp is short enough such that the current,
in these post-switch states, is always smaller than the switching current. It was not necessary
to explicitly remove these points because they are in the middle of the red region and do not
change the interpretation of the graph.

The most important points on the graph are at the border. They represent the last current
configuration before switching from the supercurrent branch. If the two junctions are indepen-
dent, the switching current of one junction does not depend on the current coming through the
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2.1 Current bias switching measurement

other junction. This independence would result in the rectangular border denoted in black in
Fig. 2.6 and Fig. 2.7(b). The positions of the sides of this rectangle are the mean switching
currents of JJ1 and JJ2. However, as it can be seen in Fig. 2.6, the border defined by the
measured points is not a clear quadrilateral due to noise.
One important reminder is that switching is a stochastic process, for each value of supercur-

rent there is an associated switching probability, which in the case of a bias current pulse will
depend on the height and duration of the pulse. For low currents this value is close to zero but
for currents close to the critical current this value goes up to one. In the case of our triangular
ramps, we do not perform any statistics to extract the switching probability. So the border
of the red region defines the switching current for one ramp realization which is different than
the mean switching value resulting from multiple realization of the same ramp. Due to single
ramp realization and noise we have a variability for each switching value which gives these loose
edges.
However even with these poorly defined edges, we can see from the data in Fig. 2.6 that

the top right and bottom left corners of the red region are set back from the corners of the
black rectangle. On the contrary the upper left and bottom right corners are extend outward
from the rectangle. These deformations could be interpreted as a sign of hybridization. All the
more, the theory developed previously predicts deformation in the same direction as the one
appearing in the data and an analysis of this will be developed in the next section. However
the quantity of noise in the measurements does not permit drawing conclusions. The causes of
unwanted noise and strategies to filter it are discussed in Sec. 2.1.3.1.
Lastly, with the noise, there are other unexpected features on the map which are not expected

by the theory that confirm that it is worth interpreting the data with care. One of these features
is the dip on the left border where 1 nA < I2 < 4 nA which could be due to low frequency noise.
A detailed explanation of the potential cause for this characteristic is in Sec. 2.1.3.1. Another
feature is the relative flatness of the horizontal edges compare to the vertical ones. And to finish
in the top left and bottom right corner only a part of the zero voltage region extends outward
the black rectangle, instead of the whole region, which is different than what the theory seems
to predict.

2.1.3.1 Analysis

The hallmark of hybridization of junctions is a deformation of the switching rectangle in Fig. 2.6.
Quantifying this deviation is key to confirming hybridization. For weak hybridization, we expect
one side of the rectangle will develop a small tilt, deviating from horizontal or vertical. Therefore
it is sufficient to fit only the right side of the zero voltage region. Ramping the bias current
on only one junction allows optimizing the measurement and reducing the noise as much as
possible. Data acquired this way for device AM14 is shown in Fig 2.8(a). The map (Fig 2.8(a))
plots the voltage on JJ1 as a function of time (x-axis) and the trace number (y-axis). For each
trace, the current through JJ1 is ramped up from negative values. The bias current applied
to JJ2 is fixed during the ramp, and is stepped up from approximately −30 nA at trace 0 to
approximately 30 nA at trace 256. The switching of JJ1 is identified by the jump in voltage
around 95 ms. To determine the border an edge detection algorithm was used, giving the red
line. From the time at which JJ1 switches, we determine its switching current.
Fig. 2.8(b) shows the fit of the right side of the zero voltage region of Fig. 2.6. The deviation
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Figure 2.7: Current biasing protocol to acquire a critical current graph I1 vs I2. (a) Current
bias for JJ1, IB1(α), and JJ2, IB2(α), as a function of time. The current bias is
ramped up to a value that guarantees switching for any value of α. The current
plateau at the beginning serves as a reference point to correct drift. (b) Resulting
sweep profiles as a function of α and zero voltage region for uncoupled junctions
(dashed rectangle).

is of 1.4% ± 0.3. Although the slope is small, it is statistically significant, and barring low-
frequency noise, systematic error, or an artefact due to other causes, hints at a possible Andreev
molecule. To confirm such a detection one needs to perform other measurements such as the
one described in Sec. 3.2-3.

In the last chapter, we developed a theory relating the switching current variation of the
junctions to the hybridization of their ABS. We focused on the dependence of one junction’s
switching current on the phase of the other junction (Fig. 1.9(b)) and the junction separation.
However in this experiment we measure the switching current variation of one junction for
different values of bias current applied to the other junction at fixed separation.
In a current biasing experiment, Fig. 2.9, there are two possible current configurations. The

first one is the anti-parallel current state. Given our convention, positive current through each
junction means that both currents will go to ground and are in opposite directions. In the
anti-parallel current configuration shown in Fig. 2.9(b), the phase differences of the junctions
are of the same sign δ2 = δ1. The second configuration is the parallel current state represented
in Fig. 2.9(a), where the measured current values are of opposite sign, I1 = −I2.

Returning to the data of Fig. 2.6, the most noticeable deviation is at the corners. Due to
symmetry, opposite corners are expected to have similar characteristics, either stretching out
of the boundary of the black rectangle (top left and bottom right), or contracting inwards (top
right and bottom left). In these regions, the device has the same current configuration, either
parallel (top left and bottom right) or anti-parallel (top right and bottom left), which leads to
the same deviation from the rectangle.
Comparing these variations with the numerical simulation from Fig. 2.10(a), showing the
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Figure 2.8: (a) Switching map of JJ1. Each trace records the voltage VJJ1 as the current bias
Ib1 is ramped up. The bias current applied to JJ2 is fixed during each trace, and
is stepped up as the trace number increases. The red line is obtained with an edge
detection algorithm and shows when JJ1 switches. (b) Extracted plot of switching
currents I1 vs I2, with a fit of slope 1.4%± 0.3 indicating a possible hybridization
of the junctions.
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Figure 2.9: The parallel (a) and anti-parallel (b) current configurations of an Andreev molecule.
The parallel configuration corresponds to dEC and results in an enhanced total
supercurrent |I1| + |I2| as compared to dCAR (anti-parallel configuration).
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Figure 2.10: (a) Supercurrent variation of JJ1 as a function of its phase difference δ1 for a
fixed value of phase δ2 on JJ2. The hybridized (l = ξ0) and unhybridized (l� ξ0)
configurations are shown. The important feature to notice is the shift of the
extrema when δ1 = δ2 or δ1 = −δ2. For δ1 = δ2 (dCAR) the supercurrent value
is reduced, and this the opposite for δ1 = −δ2 (dEC). (b) Sketch of the boundary
of the zero voltage region for τ = 1 and varying separation l. This theoretical
prediction for the deformation of the zero voltage region can be compared to the
data in Fig. 2.6 and 2.8(a). The full lines are the analytical solution of Eq. 1.12
for the cases l = 0 and l� ξ0 (τ = 1).
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dependence of I1 on δ2 at two different separations (reproduced from Fig. 1.8(a,d)), a similar
signature is retrieved. The blue line is the current of JJ1 for values of δ1 ranging from −π to π
and for a fixed value of δ2 = 3π/5 when the two junctions are in a non-hybridized configuration
l � ξ0. The magnitude of the positive and negative critical currents, 0.38, are identical.
These extrema represent the switching current for a unique phase configuration (δ1 ≈ ±3π/4,
δ2 = 3π/5) when l � ξ0. Comparing it to the green line which represents the same current
but for hybridized junctions where l = ξ0, one notices a slight shift towards the right and a
distortion of the curve. The magnitude of the positive critical current has decreased to 0.35
whereas the negative one has increased to 0.40.
The reduction in the positive critical current is 7.9%. The experimental data of Fig. 2.8(b)

and the small slope there is may be related to the theoretically predicted reduction in the
critical current for this configuration. The 7.9 % should correspond to the contraction of the
red region in the upper right corner when the currents have the same sign (Fig. 2.8(b)). In this
area of the graph, we are in the anti-parallel current configuration which is also coherent with
the sign of the phase in Fig. 2.10(a). Indeed, the decrease happened for values of δ1 between
0 and π when the phases have the same signs (δ2 = 3π/5) hence the currents have opposite
direction as shown in Fig. 2.9.
As developed in the theory, the phase or current configuration is also associated with the mi-

croscopic mechanism at play in hybridization. When the phases of the junctions have the same
sign, the dominating mechanism is dCAR. This can be understood since dCAR corresponds to
the double splitting of a Cooper pair from the central superconducting island to the island on
the sides. The resulting current directions in the junctions are in opposite direction.
Regarding the magnitude of the negative critical current in Fig. 2.10(a) a similar analysis

can be performed. The minimum value of switching has decreased by 5.2 %. In Fig. 2.6, this
decrease corresponds to extending the zero-voltage boundary beyond the black rectangle in the
top left region when the measured current have opposite signs. The decrease happens when
δ1 is between −π and 0, and since δ2 = 3π/5, the phases have opposite signs. So the phase
and current configuration correspond to the parallel current configuration. The corresponding
microscopic mechanism at play is dEC, the dEC is the double tunneling of a Cooper pair
through the two junctions and therefore the currents are in the same direction.
With these two regimes corresponding to parallel and anti-parallel current directions, one can

compare the coupling of ABS to ferromagnetism. If one considers that the magnitude of the
Josephson energy is proportional to the critical current Ic, the highest critical current and thus
the lowest energy is reached when the currents and the phases of both junctions are aligned.
This is similar to ferromagnet which reaches its lowest energy when its magnetic moments are
aligned.

It is possible to expand on Fig. 2.10(a) and plot the theoretically expected zero voltage region,
similar to what is shown experimentally in Fig. 2.6, for an ideal symmetric Andreev molecule
with perfect transmission. The region is sketched in Fig. 2.10(b) as a function of the junction
separation. This graph has been obtained by analyzing the solutions for the Andreev molecule
in the case of perfect transmission (Eq. 1.12). For l →∞, one gets ε = ± cos

δ1(2)
2 which gives

two independent values of I1 and I2. The corresponding configuration is the violet square.
For l → 0, one gets ε = ± cos

(
δ1−δ2

2

)
which give I1 = −I2. These solutions appear in red
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2 Experiments to observe Andreev molecules

on the graph. For intermediate values of separation, the zero voltage region must interpolate
between these two extremes. We sketch these solutions by starting from the diagonal (l = 0)
and expanding it until it reaches the square (l →∞). It is important to note that the dashed
lines in Fig. 2.10(b) are drawings and a further analysis is necessary to solve numerically
these intermediate states. A missing feature from this graph is the deformation at the top-
left and bottom-right corner. This absence is explained by the lack of dCAR processes at
perfect transmission, which inhibits changes in the critical current for the anti-parallel current
configuration. Further theoretical work could elucidate the full border of the zero-voltage region
for different values of l and τ is pending.

To finish this analysis, we address the defects of the measurement. Using Fig. 2.10 we have
explained the main features of the zero voltage region and related them to theory. The fluctua-
tions in the switching current due to noise are of several nanoamperes, corresponding to roughly
5 − 10% of the mean switching current. The lack of better data, including a real switching
current measurement, is due to the fact that the device failed due to improper handling. Better
measurements were planned before breakage. Unfortunately, the slow acquisition time of the
data presented in Fig. 2.7 and Fig. 2.8a made them susceptible to low frequency noise. We sus-
pect this noise to be at the origin of the deep pocket on the left side border between I2 = 1 nA
and I2 = 4 nA.
Sources of systematic error also need to be considered, such as the role of heating. Due to

the parasitic on-chip resistors which are in series with the junctions, one could expect that at
higher bias currents the effective electronic temperature will be higher. This could lower the
mean switching current of one junction when the applied bias current on the other junction
is high, thereby also deforming the zero-voltage region, effectively rounding out all corners
equally. However due to the small critical currents, small values of the parasitic resistors, and
their adequately large volume, this heating effect is negligible for device AM14. Other sources
of systematic error may remain unidentified.
One last identified contribution to the noise in the data is the unbalanced measurement

design. One technique to reduce noise in a measurement is to measure the sample in a balanced
design where a device under test (DUT), with two pins, is connected such that the impedance
to ground is the same for the two pins. In such a design, electromagnetic interference which
couples equally to both lines (common mode noise) will be canceled at the DUT. However since
Andreev molecules are three-terminal devices, it is not clear how to create a balanced circuit
which allows measuring both junctions simultaneously.

2.1.4 Conclusions and perspectives

The experiments described above show possible signatures of hybridization between two Joseph-
son junctions. However, the data is not conclusive. Our observations concur with the theory
but they are not complete enough to be fully convincing. A small variation of the switching
current of one junction as a function of the current applied to the other junction has been
observed. Furthermore, these variations can be partially understood with the theory developed
in Chap. 1 and interpreted in terms of the two microscopic phenomena, dEC and dCAR.
However further measurements are compulsory to confirm that these variations are related

to an Andreev molecule physics. Unfortunately device failure made it impossible to carry out
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Figure 2.11: (a) Bias protocol to avoid low frequency noise on I vs I graph. By alternating
two opposite values on the I vs I, we can do (b) Simplified circuit using HEMT to
measure voltage on JJs. There is a HEMT for each junction. The voltage probes
VJJ1 and VJJ2 in Fig. 2.4(a) are replaced with VH1 and VH2. The junction is
amplified by the HEMT and measured at its terminals.

these measurements. New samples are crucial performing new measurements and confirming
these encouraging preliminary results.

Learning from our experience with device AM14 some improvements can easily be made.
Regarding the device itself and the fabrication process, one of the easiest improvements is
to remove the gold leads to avoid the parasitic resistances and avoid potential errors due to
calibration of their values. Also, as explained in Chap. 2 and reinforced by the findings of
Kornich et al.[57, 61], the distance between the junctions needs to be the smallest possible. A
strategy to fabricate a device with a smaller middle island was underway and is described in
Sec. 3.1.
Concerning improvements to the measurement, a proper protocol. Proper switching experi-

ments, with better statistics, needs to be performed. The protocol consists of sending a large
number of current pulses of constant value in one junction, JJ1 for example, with a fixed cur-
rent bias in the other junction, JJ2. From the whole train of pulses sent to JJ1 only a certain
percentage would make it switch. This value corresponds to the percentage of switching for
a certain height of the pulse [65] and a fixed current on JJ2. The height of pulse which gives
a percentage of 50 % is usually defined as the switching current of JJ1 for a fixed value of
JJ2. Repeating this protocol for different values of current in JJ2 would give a result similar
to Fig. 2.10b with proper switching values. Also since the hallmark of an Andreev molecule is
the deformation of the zero voltage region at the corners, four precise measurements, or even
only two, could tell if there is a variation. One does not need to span a whole region or a full
side.
Lastly, using a switching pulse sequence like the one represented in Fig. 2.11(a) could help to

reduce, or drift, in the measurements. This setup aims to determine the boundaries of the zero
voltage region in a different fashion. At fixed bias current on JJ2, the switching pulse sequence
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2 Experiments to observe Andreev molecules

for JJ1 alternates between positive and negative polarity. The difference between the measured
positive switching probability and the negative switching probability quantifies the deformation
of the zero voltage region. Effectively we obtain the difference between opposite sides of the
zero voltage region as shown in Fig. 2.10b. This difference is maximal at the corners of the
rectangle. This protocol is insensitive to drift since low frequency noise will equally affect the
positive and negative switching probabilities.
Another improvement can be made regarding the design of the measurement circuit. Apart

from the low noise frequency, two main causes of the noise are the unbalanced circuit and the
inadequate filtering of the DC lines used to measure the voltage of the junctions. A possible
solution replacing the direct voltage measurement lines with an indirect measurement using a
HEMT. A HEMT plays the role of a DC amplifier and isolator. With a HEMT, the voltage of
the junction will not be measured by connecting an external amplifier via cabling to the points
VJJ1 or VJJ2 , as in Fig. 2.4(a), but it will be measured through the voltage drop across the gate
of a cryogenic HEMT close to the sample at VH1 and VH2 , as shown in the simplified circuit
Fig. 2.11(b). Although this design is still unbalanced, the isolation provided by the HEMTs
decouples the noise incident from the measurement lines connecting outside the cryostat. The
closer the HEMT is located to the device, the less low frequency external noise will be picked
up. Since we are working at cryogenic temperature, the HEMTs need to be working at this
temperature. Also the amplification of the signal provided by the HEMT will improve the
signal-to-noise ratio.
After the measurement of AM14, we developed such a HEMT-based measurement setup.

The cryogenic HEMTs provided by Y. Jin are designed to work at liquid helium temperature
[66] so it was necessary to adapt the HEMT biasing protocol for millikelvin temperatures. We
succeeded in getting a working HEMT at 10 mK with an amplification of around 10 with a noise
of less than 1 nV/

√
Hz at 100 Hz. Unfortunately, we did not have time to measure an Andreev

molecule with HEMTs during this thesis. We developed the protocol between the measurement
of the AM14 device and we did not get a new working device. However our protocol was tested
on single Josephson junction placed in a device similar to an Andreev molecule device. Our
protocol and results can be found in Sec. 3.3

2.2 Current bias switching measurement at fixed phase

The experiment described in the previous section gives only probes the zero voltage region
of the Andreev molecule. The boundaries of this region is complicated to compute since the
phases of the two junctions are not simply related to the bias currents. A simpler measurement
would be to control the phase of one junction and measure the switching current of the other
junction.

The simplified circuit design is presented in Fig. 2.12(a). The design is very similar to the
one presented for the current bias switching measurement in Fig. 2.1. The Andreev molecule
corresponds to the junctions JJ1 and JJ2 inside the dotted box with a common superconducting
terminal shown in pink. JJ1 is inside a superconducting loop, as shown in the hypothetical
SEM image Fig. 2.12(b), which permits defining the phase difference δ1 of JJ1 as δ1 = 2πΦ1/Φ0,
with n an integer and Φ0 the flux quantum. JJ2 is current biased by Ib2 and its voltage is
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Figure 2.12: (a) Simplified phase bias switching circuit, corresponding to the circuit of Fig. 2.1
with an additional shunt across JJ1 which forms a superconducting loop. The
magnetic flux Φ1 inside the loop is generated by an external electromagnet and
allows tunning the phase δ1 = 2πΦ1/Φ0 of JJ1 from 0 to 2π while measuring
the switching current of JJ2. (b) Modified SEM image of a hypothetical sample
with a superconducting shunt (blue) corresponding to the circuit in (a). The only
difference with the design used for the current bias switching measurement is the
addition of the Al trace in blue defining a superconducting loop. In practice the
superconducting shunt would be further away from JJ1 to define a bigger loop and
thereby reduce the magnetic field necessary for phase biasing.
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probed at VJJ2 . As usual the conductance of both junctions can be tuned by gate voltages VG1

and VG2 .
One of the difficulties of this setup is that it is impossible to characterize the conductance

of the shunted junction. The gate voltage must be adjusted blindly to move out of the pinch-
off region where there is no hybridization. However, the main advantage of this design is its
similarity with the current bias switching design. This permits measuring an Andreev molecule
first using the design Fig. 2.2(b). Then a single lithography and deposition step allow adding an
Al patch to the design and shunting one of the junctions in a superconducting loop, as shown
in Fig 2.12(b). This two-step technique is a good solution to fully characterize the junction
before it is shunted.
One must ensure that the blue aluminum shunt in Fig. 2.12(b) is properly connected and

that the junctions are not harmed or significantly modified during the second fabrication cycle.
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Figure 2.13: (a) Setup for measurement of the current-phase relation of a device hosting An-
dreev molecules. The Andreev molecule is made of the blue and red junctions.
By shunting the blue junction with a tunnel junction (yellow) of larger critical
current, it is possible to extract the current-phase relation of the blue junction as
a function of the red junction’s phase δ2 = 2πΦ2/Φ0. The big yellow junction is
not part of the Andreev molecule and serves as probing device. The fluxes in both
loops are controlled independently by a global field for the junction in blue and
by a local field generated by a gradiometric loop for the junction in red. (b) An
example of the expected current-phase relation for δ2 = 3π/5 which should rise
from the setup in (a). The presence of non-zero supercurrent at δ1 = 0 is indicative
of a ϕ-junction.

With this design by tuning the phase on one of the junctions we can control the strength of
hybridization, as shown in Fig. 1.7 and obtaining current-voltage characteristics of one junction
as a function of the fixed phase on the other (Fig. 1.9b).

2.3 Phase bias switching measurement

To explore further the non-local current-phase relation of Andreev molecules, one needs to be
able to phase bias both junctions. Accessing both phases allows demonstrating a ϕ-junction

74



2.4 Josephson spectroscopy

behavior, corresponding to a junction developing a supercurrent without a phase drop across
it.

In this proposal the existence of a non-local current-phase relation can be directly determined
by measurements of the switching current. This type of experiment has been performed on
superconducting atomic contacts [67], graphene [68] and carbon nanotubes [69]. In this circuit,
shown in Fig. 2.13(a), a large Josephson junction of critical current I0 � ILC is wired in
parallel with the first junction hosting the Andreev molecule, forming an asymmetric SQUID.
The second junction is shorted in a loop enclosing an applied magnetic flux Φ2 such that its
superconducting phase difference is δ2 = ϕ2. A differential flux line combined with a global
applied flux Φ = ϕ0ϕ allows independent tuning of δ1 and δ2. Due to the asymmetry, the
SQUID critical current ISQ(ϕ,ϕ2) is essentially given by that of the large junction, effectively
at a phase difference of π/2, modulated by the supercurrent of the first junction, ISQ(ϕ,ϕ2) ≈
I0 + I1(ϕ − π/2, ϕ2), where flux quantization constrains δ1 = ϕ − π/2. By sending current
pulses or ramps and measuring the switching of the SQUID to a non-zero voltage state, one
can extract the current-phase relation I1(ϕ−π/2, ϕ2) and demonstrate that there is a non-local
component that depends on δ2, as shown in Fig. 2.14(b).

2.4 Josephson spectroscopy
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Figure 2.14: (a) Setup to perform Josephson spectroscopy of an Andreev molecule in a Joseph-
son device with two junctions (black crosses connected to red, magenta and blue
wires forming two loops). The Andreev molecule is made of the blue and red
junctions. The big yellow junction is not part of the Andreev molecule and serves
as probing device. A magnetic field B induces a flux Φ in both of the loops of
the device. For independent control of ϕ1 and ϕ2, a gradiometric line with con-
trol current Id (on the right) induces an additional flux coupled only to the first
junction loop. (b) Andreev molecule spectra with a figurative representation of an
excitation from the ground state to the excited state.

In Fig. 2.14(a), we propose a setup to perform spectroscopy of an Andreev molecule in a
similar manner to the spectroscopy of an Andreev "atom" in a superconducting atomic contact
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[28].

A large tunnel Josephson junction (yellow) is simultaneously used as an on-chip microwave
source and detector. When a voltage VJ is applied across this spectroscopy junction, Cooper
pairs tunnel back and forth by emitting and absorbing photons of energy hν = 2eVJ/h. As
long as all emitted photons are reabsorbed, the net current IJ is zero. However if the Andreev
molecule, which is capacitively coupled to the spectrometer, absorbs photons (Fig. 2.14(b)
at a rate Γ, a non-zero DC current will flow of magnitude IJ = 2eΓ. The current-voltage
characteristic, IJ(VJ) of the spectrometer junction will thus have peaks at voltages ET /2e
corresponding to the transition energies ET of the Andreev molecule. The magnetic field B
and gradiometric control current Id allow independently tuning the phases δ1 and δ2. A full
measurement IJ(VJ , B, Id) would allow reconstructing the spectra of Fig. 1.8. In addition,
assuming that the loops have the same area A and their geometric inductances are negligible,
by fixing Id = 0 and varying B so that δ1 = −δ2 = BA/ϕ0 one can directly probe the dEC
transitions. Likewise by fixing B = 0 and varying Id such that δ1 = δ2 ∝ Id one can probe dCAR
transitions and thereby obtain the hybridization spectrum of Fig. 1.7. Josephson spectroscopy
is well suited for detecting Andreev molecules, as ET may be comparable to ∆/h (90 GHz for
aluminum), well within the spectrometer bandwidth. Conventional microwave spectroscopy
using a resonator coupled to the Andreev molecule is convenient for small hybridization gaps
less than 18 GHz, for example when transmissions are low or the separation is large. Further
theoretical work is necessary to determine the selection rules for the transitions. By design, as
only the first junction is inside the spectrometer high-frequency loop, emitted photons cannot
directly excite the second junction. This implies that only vertical transitions in Fig. 1.6 are
possible. However as the symmetry of the BdG Hamiltonian is different for dEC and dCAR,
there is no evidence that the selection rules are similar. Since the conventional ABS Hamiltonian
has the same symmetry as the dEC Hamiltonian, at least the transitions at δ2 = −δ1 should
be optically active.
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3 Experimental techniques

This chapter focuses primarily on the most time-consuming part of the thesis: fabrication of
devices. It includes the design of devices and their fabrication, explaining the choices that were
made based on physical constraints and the problems that were faced. We also outline potential
improvements to the whole process. Second we describe the setup used for DC measurements
and detail the circuit from the sample holder to oscilloscope. We also explain our results on
the use of HEMTs as DC cryogenic amplifiers and how they isolate samples from noise. These
HEMTs are a promising tool to perform low noise DC measurements in dry cryostats where
low-frequency noise due to vibrations is ubiquitous.

3.1 Sample design and fabrication process

In this section, we are going to present the extended fabrication process of device AM14,
from motivation and design to detailed fabrication steps. The design attempts to satisfy the
constraints dictated by theory and inevitably includes compromises.

3.1.1 Sample design and fabrication strategy

The objective is to obtain a device which hosts an Andreev molecule and which can be measured
with DC electronic transport techniques. The two Josephson junctions in the molecule must
be closely spaced and contain a few conduction channels of high transmission. The distance
separating the junctions must be on the order of the coherence length of the superconductor
used. For the conduction channels of the weak links, the goal is to have approximately ten
well-transmitted channels.
With these constraints, the most promising technological platform is InAs-Al nanowires.

These nanowires are recent technology coming from an impressive work of Peter Krogstrup’s
group [25]; they are made of a semiconducting core of InAs covered by an epitaxial supercon-
ducting Al shell, as shown in Fig. 3.1(a). Thanks to the epitaxial growth process the nanowires
have a good interface between the core and shell, as shown in Fig. 3.1(b). The end result is
that Josephson junction fabricated from these nanowires have a well-defined superconducting
gap. Furthermore with aluminum as the superconducting shell, the nanowires are amenable
to conventional superconducting circuit fabrication techniques. The aluminum has a dirty su-
perconducting coherence length of about 150 nm, which makes fabrication of junctions with
smaller spacing technically feasible. Furthermore, this platform allows tuning the number of
channels and their transparency with side gates.
We were able to access to this technological platform thanks to a close collaboration with

Groupe Quantronique (or "the Quantronics group") which was willing to share their knowledge
with us. The Quantum Flux Lab and Groupe Quantronique were already working together on
other research projects.

77



3 Experimental techniques

I would like to deeply thank Groupe Quantronique without which the fabrication of this
sample would have taken much longer.

InAs

Al

≃150 nm

Al

InAs

(a) (b)

Figure 3.1: Figures modified from [25]. (a) Schematic of the cross-section of epitaxial full-shell
nanowire with InAs core (green) and Al shell (gray). (b) Transmission electron
micrograph of epitaxial N/S interface along the cut in (a)

To make Josephson junctions with InAs-Al nanowires, one needs to etch the Al shell around
the core to create a weak link. After this step one connects electrodes to the junctions and
deposits side gates.. The final device should look like the schematic in Fig. 3.2. It consists of
two Josephson junctions separated by a distance l ≈ ξ0 and with side gates addressing each
junction.
To obtain this device from raw nanowires it is necessary to perform multiple optical and

electronic lithography steps, many thin film depositions and one wet etch. Among these steps,
the two most difficult ones are the wet etch to define the two weak links and forming the contact
to the nanowires. The short duration of the wet etch makes the weak link length susceptible
to variations. Contacting the nanowire is delicate due to the precision required to align to the
middle island (l ≈ 150 nm) of the freshly etched nanowire.
With these challenges in mind, we increase the chances to obtain a working sample by

fabricating multiple samples in parallel. Multiple nanowires are deposited on each chip, and
multiple Andreew molecules are fabricated on each nanowire.

JJ1

JJ2

Figure 3.2: Schematic of Andreev molecule device. The sample is made of two junctions JJ1
and JJ2. JJ1, located between the blue and pink terminals, is in contact with the Al
shell (gray) of the InAs-Al nanowire and has a side gate (yellow) to tune the carrier
density of the exposed InAs core of the nanowire (green). JJ2 is located between
the pink and red terminals. The separation between junctions is l, corresponding
to the width of the middle terminal (pink).
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3.1 Sample design and fabrication process

3.1.2 Preparation of the wafer

In this section, we describe how we prepared a bare wafer to use it as a support for the future
circuit. The wafer used is intrinsic floating-zone silicon (100) with a 150 nm capping layer of
silica (SiO2) and is diced into 1 cm2 × 1 cm2 chips. Multiple nanowires are deposited onto a
prefabricated 90 µm2 × 90 µm2 drop zone on each chip. The drop zone is surrounded by leads
which will serve to make electrical contact to the nanowires and which have bonding pads at
the far end.
The lithography and thin-film metal deposition techniques used in the following steps are

described in detail in Fig. 3.5-3.8. To fabricate the leads we employ a photoresist stencil mask
consisting of a bilayer of S1813/LOR5B and pattern the design using optical lithography at a
dose of approximately 200 mJ/cm2. After development, we deposit a 3 nm thin film of titanium
and 50 nm of gold. The resulting pattern, after lift-off, is shown in Fig. 3.3.

Bounding Pads

5.3 mm

Au leads

0.5 mm

Nanowires drop zone

Figure 3.3: Two micrographs show the bond pads, the leads and the nanowire drop zone. The
Au(50 nm)/ Ti(3 nm) metallization is patterned with optical lithography.

After this step, we add alignment markers, in the form of evenly spaced crosses, to the drop
zone. These marks allow aligning the electrodes with the nanowires. Patterning the sub-micron
crosses requires the use of electronic lithography. The chip is first cleaned in an asher using
an oxygen plasma. The cleaning parameters are 38 cc/min flow of oxygen at a pressure of
0.2 mbar and an RF power of 50 W for a duration of 2 min. After cleaning the chip was coated
with a bilayer of PMMA/MAA as described in Sec. 3.1.2.1. The design, shown in Fig. 3.4(a),
was patterned with a 30 kV scanning electron microscope at a dose of 420 µC/cm2. After
development, we obtain the stencil shown in Fig. 3.4(b). We then perform the same Au/Ti
metal deposition as before. The resulting pattern, after lift-off, is shown in Fig. 3.4(c).

3.1.2.1 Lithography techniques

Optical lithography was performed with a Microtech Laserwriter LW405B capable of 1 µm
resolution. Electronic lithography was performed at an accelerating voltage of 30 kV in a Philips
XL30 scanning electron microscope (SEM) equipped with Raith Elphy Quantum lithography
software.
Prior to exposure, the chip is coated with the proper resist. For optical lithography, we used

a bilayer of S1813/LOR5B. The top layer, S1813, is a positive photo resist from Shipley. The
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(a) (b)

(c)

Figure 3.4: Representation of the alignement crosses necessary for further steps. (a) Aligne-
ment crosses in the gds viewer. (b) Micrograph (500x) of the stencil of alignement
crosses. (c) Micrograph (200x) of the metal deposition of alignement crosses.
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3.1 Sample design and fabrication process

bottom layer, LOR5B, is a resist based on polydimethylglutarimide from Microchem which
is removed chemically by the developer solution. For electronic lithography, we use either a
single resist layer of polymethyl-methacrylate (PMMA) or a bilayer stack of PMMA/MMA
(methyl-methacrylate). The chips are spin-coated with the following recipes.

Bilayer for optical lithography Pour LOR5B on chip and spin at 1000 rpm for 60 s to obtain
850 nm thin film. Bake on hotplate at 200 ◦C for 5 min and spray cool by flowing nitrogen
gas on backside of chip. Pour S1813 and spin at 3000 rpm for 45 s. Bake at 115 ◦C for
1 min. The resulting bilayer is 1.5 µm thick.

Monolayer for electronic lithography Prebake the chip at 175 ◦C for 5 min. Pour PMMA
on chip and spin at 6000 rpm for 60 s to obtain 290 nm thin film. Baked on hotplate at
180 ◦C for 90 s.

Bilayer for electronic lithography Prebake the chip at 175 ◦C for 5 min. Pour MMA on
chip and spin at 6000 rpm for 60 s for a 390 nm thin film. Bake chip on hotplate at 180 ◦C
for 90 s After cooling with nitrogen flow, pour PMMA, spin at 6000 rpm for 60 s and bake
at 180 ◦C for 90 s. The resulting bilayer is 680 µm thick.

The chip is then loaded in the lithography system and the designed pattern exposed point-by-
point. Parameters such as step size, dose, and beam intensity are optimized for each lithography.
In electronic lithography, the undercut layer is electro-active and is exposed with a lower dose
than the main design, as shown in Fig. 3.6. In optical lithography, the chemically active
undercut layer is not affected by photo exposition.

After exposition, the resist is developed. For optical lithography, the chip is dipped in a
MF319 solution (Dow) for 30 s, rinsed with water to stop development, and dried under nitrogen
flow. For electronic lithography, we develop the resist in methyl-isobutyl ketone (MIBK) diluted
1:3 by volume in isopropanol (IPA) for 45 s. We then transfer the chip to a beaker full of IPA,
rinse it for 15 s to stop development, and dry with nitrogen. We finally obtain the desired
pattern as shown in Fig. 3.7.

3.1.2.2 Metal deposition

All the metal deposition steps were performed with two similar electron beam evaporators
from Plassys (MEB 550S). The evaporator has two vacuum chambers: the main chamber, at
10−8 mbar, containing the electron gun and crucibles; and the load lock chamber, pumped to
10−7 mbar, containing the sample chip and process accessories including an ion-mill etcher and
a liquid nitrogen cooling system for the sample holder.
All evaporation recipes start with ion etching. This dry physical etch is used to either clean

the sample surface or to remove oxides. Metal can then be deposited on the exposed regions.
Metal is sublimated from the crucibles as a result of heating by electron bombardment from

the electron gun. In this recipe, we only use titanium, gold and aluminum, which are typically
evaporated at a rate between 0.5 nm/s and 1 nm/s.
After metal deposition, the load lock chamber is vented and the chip is removed. The resist

stencil is removed in a lift-off process where the the chip is placed in a bath of heated acetone
at 65 ◦C for 30 min. Fig. 3.8 summarizes the process.
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Resist
SiO2

electron/photon beam

(a) (b)

(c) (d)

Figure 3.5: All the stages of lithography with a single layer. (a) Chip after resist deposition.
(b) Chip after spinning and baking. (c) Exposure of the chip. (d) Chip after
development. The exposed resist has been dissolved.

MAA/LOR5B

PMMA/S1805

electron/photon beam

SiO2

exposed resist
(a) (b)

(c)

electron beam

Figure 3.6: Lithography of a bilayer stack. (a) Chip exposition. (b) Exposition of the undercut
at a lower dose than (a) only necessary for the PMMA/MAA stack. (c) Chip after
development. For the photosensitive resist the undercut is due to inherent chemical
sensitivity to the developer. For the electro-sensitive resist the undercut is due to
exposure in (b).
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(a) (b)

Figure 3.7: Examples of lithography steps. (a) Lithography steps of the alignment marks.
(b) Lithography steps of contact leads.

(a) (b)

Resist
SiO2

Evaporated metal

(c)
Remover

(d)

Figure 3.8: Metal deposition process. (a) Evaporation of metal. (b) Metal deposited on chip
covering resist and patterned trenches. (c) Chip immersed in remover. (d) Chip
after lift-off with desired metallization pattern.
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3.1.3 Nanowire deposition

Once the chip is prepared with the intermediate lines and the alignement crosses, we clean the
chip in the asher with the same parameters as before. After cleaning the chip is baked at 140 ◦C
for 5 min to remove water. Then we coat the chip with AL1805 which corresponds to S1805
resist from Shipley diluted in volume concentration 1:33 with propylene glycol monomethyl
ether acetatat from Dow and filtered through 0.2 µm filter paper. This coating is an adhesion
layer to avoid the peeling of the PMMA resist during a future etching step due bad adhesion
between PMMA and silica. The resist is then spun at 6000 rpm for 45 s and baked at 110 ◦C for
3 min. The resulting 4 nm underlayer avoids having the nanowire in direct contact with the chip
and helps in etching its aluminum shell. To spread the nanowires we use a micromanipulation
station home assembled. This station is composed of a digital microscope VHX950F from
Keyence and a micromanipulator TransferMan4R from Eppendorf. The tips used to manipulate
the nanowires are made in titanium from American Probe & Technologies, Inc, with a radius of
curvature of 100 nm (model : #72X-G2/01). They are placed in a tip holder design and made in
house which allows, contrary to commercial options, a rotation along the tip axis. This feature
is of great importance to manipulate and place the nanowires on the chip. From a forest of
nanowires, shown in Fig. 3.9(a), one nanowire is collected onto the tip of the micromanipulator,
as shown in Fig. 3.9(b), and is transferred to the drop zone on the chip 3.9(c). Once the nanowire
is deposited, it can be delicately pushed around and positioned with the micromanipulator tip.
This operation is repeated for each nanowire. Fig. 3.9(c) shows the sample AM14 with ten
nanowires placed inside the drop zone.

3.1.4 Nanowire etching

In this step we etch parts of the aluminum shell of a nanowire. The exposed regions of the
nanowire will be the weak links of the Josephson junctions. The distance between the two
regions is the junction separation and needs to be short to obtain an Andreev molecule. On
the other hand if this aluminum island is too short it will be difficult to make electrical contact
with the central lead.
To remove the Al shell, we first coat the nanowires on the chip with a single layer of PMMA

as described in 3.1.2.1. Optical micrographs of the as-deposited nanowires serve as a reference
to align the lithography pattern, show in Fig. 3.10(a), consisting of narrow perpendicular cuts
across the nanowires which define the junctions. After alignment, the design is exposed with
electron beam lithography and developed with the aligement crosses pattern recipe (3.1.2).
Fig. 3.10(b) shows the chips after exposure and development. Before the chemical etch, the
surface of the exposed aluminum shell is cleaned by ashing with the above-mentioned parame-
ters.
The layer of AL1805 is dissolved during development, creating a 4 nm gap between the

nanowire and the wafer. Exposed regions of nanowire are therefore suspended above the wafer.
This gap helps to evenly etch the aluminum shell, as the etchant may otherwise fail to pass
under the nanowire.
A beaker of aluminum etchant, Transine type-d, and a beaker of DI are placed in a mary

bath of water at 50 ◦C. We plunge the chip first in the Al etchant for 12 s, then hot DI water
for 15 s, and finally in room-temperature DI water. The chip is then plunged in a beaker of
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(a)

10  m

(b)

2  m

(c)

40  m

nanowire

(d) nanowire

Figure 3.9: (a) SEM image of a forest of III-V semiconductor nanowires standing, as grown, on
a silicon substrate from the Technische Universitaet Muenchen [70]. The nanowires
we used are different but also grew in forest like the one on the image. (b) SEM
image from [71] with false colored single nanowire (blue) being removed with a
micromanipualtor from a forest of GaN nanowires. The nanowires we used are
different but the extraction technique is similar. (c) Micrograph (1000x) of InAs-Al
at the end of a micromanipulator. (d) Micrograph (500x) of InAs-Al deposited on
AM14 chip.
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(a) (b)

(c) (d)

150 nm

Figure 3.10: Etching of the nanowires (a) Lithography pattern of the trenches crossing the
nanowires. (b) Microscope image zoom x500 of AM14 chip after development,
the black lines crossing the nanowires are the trenches. (c) SEM image of three
nanowires after etching. We can see the variations on the etching process on a
same chip. (d) SEM image of succeeded etch. The two exposed parts and the
middle island have clear edges.
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acetone at 60 ◦C to dissolve the PMMA mask. Fig. 3.10(c)-(d) shows an SEM image of the
nanowire after the etching, where we can see the InAs nanowire core in two places for each
sample.
This step produces unreliable results since the etching process is extremely sensitive to tem-

perature and time. Furthermore, wetting of the Al etchant inside the resist trenches is not
always reproducible. As we can see in the SEM image not all nanowires are etched equally. By
etching multiple junctions on multiple nanowires, we can select the best ones for an Andreev
molecule.

3.1.5 Contacting nanowires with metallic leads

Using SEM images taken after the etch step, it is possible to align the pattern with the electrical
connections to the nanowires. The design of AM14 in Fig. 3.11(a) shows contacts to six potential
Andreev molecules on four different nanowires.
Before electron-beam lithography, the chip is cleaned with the asher and coated with a bilayer

of PMMA/MAA. Fig. 3.11(b) shows microscope images of the sample AM14 after these steps.

(a) (b)

(c) (d)

600 nm

Figure 3.11: Metal deposition of contact leads (a) Patterns of the contact leads defined in
Elphy Quantum. (b) Optical micrograph (500x) of AM14 chip after development.
The stencil represents contacting leads to six Andreev molecules. Some molecules
also have gate leads. (c) Optical micrograph (500x) of AM14 chip after metal
deposition and development of gates, showing aluminum contact leads. (d) SEM
image of AM14 before gate deposition.
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To electrically contact the nanowires, it is necessary to first etch the thin aluminum oxide
layer on the aluminum shell before evaporating aluminum. The Al shell oxidizes in air and
would result in a large series resistance if not removed. A dry argon ion etch performed in the
electron-beam evaporator physically removes this oxide layer. This step is performed before
depositing the aluminum leads and without breaking vacuum, avoiding additional oxidation.
The etch consists of height 5 s cycles of ion irradiation, with 40 s pauses in between at 500 eV
and 130 mA. The pauses are necessary to avoid excessive heating which would damage the
resist and distort the lithography pattern. We discuss solutions to improve reliability of this
step using different techniques in Sec. 3.1.7. After ion milling, we evaporate 120 nm of Al and
then proceed to lift-off. Fig. 3.11(c) shows a microscope image of the sample. Even if the
overall result is satisfying, we can see in Fig. 3.11 that there is a shift of approximately 100 nm
between the pattern and the actual circuit, as shown in Fig. 3.12. This shift is due to the
precision limit of the lithograph. Some strategies to reduce the offset are presented in Sec.3.1.7.

(a)

600 nm
(b)

600 nm

Figure 3.12: SEM images of devices showing the shift between the desired pattern and the metal
deposition. (a) AM14 device before gate deposition. (b) AM15 device before gate
deposition.

One can remark that some potential molecules have their gate electrodes patterned at this
stage. This was an attempt to reduce the number of fabrication steps, but the patterns are
distorted by ion milling and short the junctions, as shown in Fig. 3.13.

3.1.6 Gating and shunting nanowires

The last step is adding side gates and protective shorts between intermediate leads. The gates
tune the conduction channels of the weak links and the shorts mitigate the risk of electrostatic
discharge which could damage the junctions. The chip is cleaned, spin-coated, and then loaded
for electron-beam lithography as above. The small gate electrodes are patterned with a dose
of 390 µC/cm2 and small spot size (1) whereas the larger shorts are patterned at 700 µC/cm2

and spot size 5.
After development, the resulting stencil for the gates is shown in Fig.3.11(c). There are

six gates for three potential Andreev molecules. A bilayer of Au(150 nm) /Ti(3 nm) is then
deposited in the electron-beam evaporator. Fig. 3.14 is an electron micrograph of the chip,
showing device AM14 whose measurement is presented in Chap. 2.
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(a)

short600 nm

(b)

short

600 nm

Figure 3.13: SEM images of samples with aluminum gates shorting the junctions. (a) Sample
with a short and a middle island damaged during ion milling. (b) Sample with
shorts.

3.1.7 Potential improvements

The recipe presented is long and difficult. There are six lithography steps, one wet etch and
one dry etch. We managed to produce a working device, AM14, with junction length and
separation of 330 nm. Although these dimensions are promising, the experiments showed that
even smaller lengths are needed, particularly for the middle island. Since the device broke
in the fridge, we started developing a new recipe to reach smaller dimensions. The potential
advantages of this recipe are presented in this section.

The goal was to reduce the size of the weak links and their separation as well as to improve
reproducibility. To reduce these dimensions we improved the patterning of trenches in the
Elphy Quantum electron-beam lithography software. In the previous recipe these trenches
were patterned as a rectangular grid of exposure points with a specified width and length.
Depending on the orientation of the trenches and other factors, the software calculates how
to pattern the exposure. In order to eliminate ambiguities in this calculation, we changed
the pattern from rectangles to single path lines, with a linear dose of 1300 pC/cm. Only one
parameter, the dose, defines the width of the trench, making it easier to control and improving
reproducibility.
The second goal was to improve the wet etching technique. The purpose was to find a recipe

which would take more time to decrease the relative variability between each wet etch. When
the whole etch process is done by hand and takes only 12 s, the relative timing error may be
large. To extend the duration of this process we changed the chemical etchant to MF319 from
The Dow Chemical Company. The chip is dipped in MF319 at 20◦ for 55 s and then in DI
water at 20◦.
Using these two techniques, we were able to etch weak links of less than 150 nm width and

separation, as shown in Fig. 3.15(a)
However it turned out that this combination of techniques does not result in a uniform etch.

Further investigation is needed to understand why some nanowires are incompletely etched and
others perfectly etched, despite being on the same chip, as shown in Fig. 3.15(b). This lack
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(a) (b)

(c) (d)

15  m

600 nm

600 nm600 nm

Figure 3.14: Electron micrographs of the chip containing device AM14. (a) Image of the
nanowire drop zone. The gray lines are in aluminum and the white lines are in gold.
The nanowire inside the black dotted rectangle contains AM14. (b) Image of a
nanowire with two potential Andreev molecules: (c) AM14 (red dashed rectangle),
for which data is presented in Chap. 2. (d) AM15 (green dashed rectangle) which
did not work.
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(a) 150 nm

(b) 150 nm

Figure 3.15: Electron micrographs of nanowires on the same chip showing successful etch (a)
and failed etch (b). Etch process is MF319 solution at 20◦ for 55 s.

of uniformity may not be a problem as long as some of the nanowires in the drop zone are
properly etched. However if one preselected nanowire needs etching, this recipe is not suitable
without further development.

The second challenge is making electrical contact to the small island separating the two weak
links, as described in Sec 3.1.5. The small size of the island makes ion milling more delicate, with
deformations of the resist due to heating becoming more detrimental. Heat induced changes
to the resist layers damages the undercut, resulting in walls after metal deposition as shown in
Fig. 3.16(a). During lift-off, these metallic walls are redeposited on the chip and may short the
Josephson junctions, as shown in Fig. 3.16(b).

(a)

vertical
walls

collapsed
walls

(b)

shorts

Figure 3.16: Electron micrographs of failed devices with unwanted aluminum walls resulting
from ion milling induced resist damage. (a) Device with both vertical and collapsed
walls which do not short the circuit. (b) Device with shorts due to collapsed walls.

To overcome re-deposition of sidewalls we tried cooling the chip during ion milling and
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by sonicating the sample during lift-off. Since the deformation of the resist is due sample
heating, we used the liquid nitrogen cooling system in the electron-beam evaporator to maintain
the sample holder at −70 ◦C during the entire ion milling and metal deposition process. To
terminate lift-off, instead of manual agitation we sonicate the sample for 10 s at low power in
order to break the remaining walls. The combination of these two techniques give good results
as shown in Fig. 3.17(a).

(a) (b)

Figure 3.17: Electron micrographs of the last device, with approximately half the junction
length and separation as compared to AM14. (a) Image of a nanowire with three
potential molecules. (b) Image of one failed device due to shorts. This last device
is promising for future realizations of an Andreev molecule.

The last challenge is improving the alignment of patterns to nanowires in electron-beam
lithography, essential in contacting the small island separating the junctions of an Andreev
molecule. With a double layer of PMMA/MAA, the alignment precision is around 100 nm. To
increase precision it would be to necessary to use a smaller working area and a better reference
image. These possibilities have only been partially explored.

To conclude, as seen in Fig. 3.17(b), we produced samples with characteristic size divided by
two compared to device AM14.

3.2 Cryogenic D.C. measurements

To perform cryogenic D.C. measurement, it is important to take care of noise filtering at
each stage of the setup from the sample holder to the electronic equipment needed for data
acquisition. In this section, we present the complete measurement and bias circuit and the
strategies implemented to minimize noise when measuring the current-voltage characteristics
of Andreev molecules.
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3.2.1 Chip and sample box

Starting from the chip, on the sample itself two characteristics can be designed to reduce noise.
First the use of superconductors all the way to the nanowire to avoid any heat dissipation
close to the Josephson junction and thereby thermal noise. This point was overlooked for
device AM14 and there are three parasitic resistances, as shown in Fig. 2.4. Fortunately
the resistances were small enough so that heating was not an issue for small critical current
Andreev molecules. The second strategy, to eliminate common mode noise, is to use a balanced
measurement circuit. A completely balanced circuit is not possible for a three-terminal device
in which one terminal, the middle superconductor, needs to be connected to ground.
To reduce electromagnetic noise incident on the sample, it is necessary to filter it along the

cables coming from the biasing and measurement equipment. Among the different filtering
stages, the last stage closest to the sample is made of discrete RC filters. With the necessity to
use discrete components close to the chip, a custom sample box was designed to be able to carry
a double-sided printed circuit board (PCB). The double-sided multi-layer PCB allows placing
all the filtering on one side and connecting to the sample located on the other side of the PCB,
as shown in Fig. 3.18(b). The PCB is screwed into a copper sample box which is anchored to
the mixing chamber plate. The inward face of the PCB is the filtering circuit. The outward
face of the PCB is aligned with a hole in the sample box which is the zone where the chip can
be attached and then wire bonded, as shown in Fig. 3.18(a,c). Once the chip is in place, a lid
is screwed in the sample holder and place on top of the chip, as shown in Fig. 3.18(d). The
inward face of the lid is covered with a layer of magnetically loaded material (Ecosorb MFS
series) which has high permeability and magnetic losses. This helps to reduce high-frequency
electromagnetic noise and dampens resonant modes of the sample box cavity.
Fig. 3.19 is a simplified schematic of the bias circuit of the PCB and the sample which does

not show filtering components. The bias lines B1/2 are attenuated by a divisor made of RB1/2

and rs1/2 . There are three measurement lines by junction: I−1/2 , I
+
1/2 and VJJ1/2 . Junction

voltages are measured at VJJ1/2 and from a differential measurement of I±1/2 and the value of
RB1/2 one can obtain the junction currents. Lastly, there is one gate bias line per junction,
VG1/2 .

3.2.2 Cryostat wiring and room temperature setup

All the lines of the sample box previously mentioned are filtered along their path to the exterior
of the cryostat. Outside the sample box, these lines are twisted pairs, thermally connected to
each stage of the cryostat.
All the measurements presented in this thesis were performed in a Bluefors LD dry cryostat

reaching a base temperature of 7 mK. It encloses a mu-metal shield preventing the external
magnetic field from entering the cryostat.
At the exterior of the cryostat, each pair of measurement lines I−1/2 and I+

1/2 is connected
to a DC-coupled, differential voltage preamplifier (LI-75A, NF Corporation). Similarly, each
line VJJ1/2 is connected to a similar preamplifier in differential mode but with the minus input
connected to cold ground. The gate bias lines VG1/2 are each connected to a low-noise DC
voltage supply (Yokogawa 7651). The bias lines B1/2 are connected to a two-channel arbitrary
waveform generator (Rigol DG1032).
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Wire Bonds

Flexible cable

Lid

Bottom 
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Top 
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(a) (b)

(c) (d)

Figure 3.18: Photos of the sample holder, the printed circuit board (PCB) and the sample (a)
attached to one side of the PCB and connected with wire bonds. (b) Bottom side
of the PCB, with discrete resistances and capacitors. The whole PCB is connected
to the exterior via the flexible printed circuit (FPC) cable. (c) Sample holder with
a sample inside attached to the cryostat. (d) Sample holder closed and attached
to the cryostat.
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Figure 3.19: Sketch of the biasing circuit inside the sample holder.

To avoid ground loops, the four preamplifiers are powered by batteries. Furthermore, the two
gate supplies and the waveform generator are decoupled from building ground with an isolation
transformer.

3.3 Cryogenic amplifier and sample isolator: HEMT

Low noise DC measurements at millikelvin temperatures are challenging, especially in a closed-
cycle cryostat. In general at low frequencies the noise spectral density is high and few compo-
nents, such as amplifiers or circulators, exist or work at cryogenic temperatures and can help
alleviate this noise. The difficulty in isolating a sample from noise near zero frequency and
amplifying the signal is a great hindrance to DC measurements.
For example, to maximize and measure the switching current of a junction it is important to

reduce the noise coming to the junction and to have enough bandwidth to do perform statistics.
In the setup shown in Fig. 3.19, the noise coming from the bias line is attenuated down to DC,
however, the noise coming from the unattenuated measurement lines (VJJ1/2 , I

+/−
1/2 ) directly

affects the sample. There are many sources of noise which can propagate through these cables,
including magnetic pickup in cable loops, thermal noise, and triboelectric noise. High frequency
noise can be filtered through a mix of discrete and distributed filters, such as Eccosorb, copper
powder filters, thermocoax, and microwave capacitors. When filtering for DC measurements, a
balance must be struck between noise and bandwidth. Furthermore, in a closed cycle cryostat
such as the Bluefors SD/LD used for this thesis, one of the main sources of low frequency noise
is the triboelectric noise coming from the vibration of the cables connecting the samples. Since
cables vibrate over their whole length, the corresponding noise source is also distributed.
In this kind of setup a solution to reduce noise impinging on the sample is to place an amplifier

with a low output impedance, in a buffer or isolator configuration, as close to the sample as
possible. Thereby, noise coming from the measurement lines will be shorted to ground without
passing through the sample. Unfortunately, there is no commercial DC low-noise amplifier
which can work at millikelvin temperatures.
Fortunately, there exist high-electron mobility transistors (HEMTs), made by Dr. Yong Jin,

a principal investigator of the NanoFET group at C2N, which have low noise at low frequencies,
which work at 4 K, and are immune to freeze-out effects which would make them fail at lower
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temperatures [66, 72]. This motivated us to use these HEMTs as millikelvin DC amplifiers
and isolators. HEMTs are field-effect transistors made of different layers of semiconducting
material (GaAs) which allow tuning with a gate the carrier density of a two-dimensional electron
gas (2DEG) connecting the source and drain terminals. HEMTs were discovered by Takashi
Mimura in 1980 [73] and integrated in circuits the following year [74]. Nowadays, such HEMTs
are frequently incorporated into sensitive microwave amplifiers, including for cosmology [75, 76,
77, 78]. Although these HEMTs should work at millikelvin temperature, there are additional
challenges regarding dissipation or heating which must be addressed.
In this section we present a protocol to use HEMTs as DC amplifier at millikelvin tempera-

tures. The amplifier is DC-coupled, has a gain of approximately 7, and sub-nV/
√
Hz voltage

noise at 100 Hz. The first part will introduce the operational principal of a HEMT. The second
part is a description of the bias cooling process necessary to make the HEMT work at mK tem-
perature. The last part is the presentation of the acquisition of a current-voltage characteristic
of a Josephson junction forming part of an Andreev molecule measured with a HEMT.

3.3.1 Operational principle

A HEMT is a three-terminal device with a source, a drain and a gate, as shown in Fig. 3.20(a,c).
The drain and the source are connected through a 2DEG whose carrier density can be tuned
by the capacitively coupled gate. Applying a voltage at the gate tunes the source-drain con-
ductance and affects the current passing between drain and source. When linearized about the
operating point, this relationship can be expressed as

δIDS = gmδVGS , (3.1)

with gm the transconductance of the HEMT, IDS the current between drain and source and
VGS the voltage between gate and source.
To measure a Josephson junction using a HEMT as an amplifier we follow a common source

circuit topology as shown in Fig. 3.20(c). The source degeneration, or the presence of the
resistance RS , allows bias cooling the HEMT. The junction is connected to the gate terminal
at one end and to ground at the other end. Not shown is the junction biasing circuit which
would also be connected to the gate. The signal to amplify is the voltage at the junction VG
and the amplified output voltage is VD. Most importantly, the noise coming from the biasing
lines VBC1, Vb1 and the measurement line Vb1 are only capacitively coupled to the Josephson
junction and is therefore blocked at low frequencies. The relevant gate-source and gate-drain
capacitances (Cgs and Cgd) are small, on the order of 1 pF to 300 pF, and are not shown
in Fig. 3.20(c). In this configuration, the voltage source Vb1 supplies power to the HEMT. The
HEMT drain-source voltage is

VDS = Vb1 − IDS (RD +RS) , (3.2)

with VDS = VD − VS , RD the drain resistance and RS the source resistance. If the voltage at
the junction changes, for example when switching, as a result of Eq. 3.1 the current passing
between drain and source will also change. This variation in current will lead to a change in
the voltage VD and result in voltage gain,

δVout
δVin

=
δ (VS + VDS)

δVG
= α, (3.3)
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Figure 3.20: (a) HEMT wire-bonded inside of chip carrier. Image courtesy Yong Jin and Quan
Dong. (b) Sample holder showing printed circuit board containing HEMTs and
biasing circuits. The sample is in close proximity on the back side of the PCB in
the central circular region as shown in Fig. 3.18(c). (c) Schematic of an electrical
circuit used to bias cool and measure a HEMT amplifier connected to a Josephson
junction.
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with a gain α given by,

α =
−gmRD

1 + gmRS
. (3.4)

To maximize the gain α one would reduce RS and increase RD, however one must also take
into account dissipation which could heat the mixing chamber stage of the fridge.
An important characteristic of HEMTs is the pinch-off voltage, the gate-source voltage dif-

ference at which the transconductance gm is non-zero. Below the pinch-off voltage the HEMT
cannot be used to amplify. A typical gate-source voltage VGS = VG − VS to operate these
cryogenic HEMTs is −150 mV, and will change slightly for each batch of HEMTs. Since the
Josephson junction is connected to ground and will only be biased in a range of 4∆ ≈ 1 mV
with ∆ = 180 µV for aluminum, VG ≈ 0. Therefore one would have to apply a large positive
voltage VRS ≈ 150 mV on RS such that VGS = −150 mV. The power dissipated by RS is
PRS = V 2

RS/RS and should not exceed the cooling power of the cryostat near base tempera-
tures, 20 µW. Therefore the value of RS cannot be too small. At the same time, to keep the gain
high, we would like to increase RD but this will also result in dissipation, PRD = I2

DSRD. Fi-
nally, gain can be improved by increasing the value of gm, but this is only possible by increasing
the drain-source current and therefore the dissipation in the HEMT itself, PH = IDSVDS .
An equilibrium needs to be found between amplification and dissipation. Our closed-cycle

cryostat has a cooling power of approximately 20 µW at 10 mK. We primarily want to use a
HEMT as an isolator and if there is any remaining cooling power we can optimize the circuit
for amplification. One solution to avoid the problems of heating is to place the HEMT and
the resistances RS , RD at the 1 K or 4 K stage of the cryostat where there is ample cooling
power. However the drawback of this solution is that the junction could pick up noise from the
intermediate cabling. Although this strategy improves upon simple room temperature signal
amplification, it is not the best we can do in terms of isolating the junction.
A better solution exists which is to change the operating point of the HEMT. By using a

method called bias cooling [66, 72], one can shift the pinch-off voltage closer to zero. By doing
so the operating point can be set to a value of VGS = 0 mV, eliminating the heat dissipated
in RS , increasing the gain, and allowing the use of the HEMT in a common source topology
at mK temperature. Using this method, the HEMT can be placed on the same printed circuit
board as the sample as shown in Fig. 3.20.

3.3.2 Bias cooling

When a HEMT is cooled down, usually the gate and source terminals are grounded. Bias
cooling corresponds to applying a non-zero gate-source voltage, VGS = VGC , during cooldown.
This potential difference may “freeze-in” charges at low temperature and can thereby shift the
pinch-off voltage [66]. Applying positive VGC will shift the IDS − VGS towards the right, as
shown in Fig. 3.21(a) and oppositely a negative value will push the operating point towards
the left [66, 72].
Fig. 3.21(a) represents the IDS − VGS characteristic of one HEMT for different bias cooling

voltages VGC . With the HEMT above 200 K, this gate offset is applied by biasing the source with
the supply voltage VBC1, always keeping the gate terminal grounded such that VGC = −VS . The
exact value of VGC can be measured at VBH1 3.20(c) and the drain supply Vb1 is left floating.
When the source bias is zero such that VGC = 0 V) during cooldown the base temperature
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Figure 3.21: (a) IDS−VGS characteristics of cryogenic HEMT at different bias cooling voltages
VGC . (b) IDS − VDS characteristic of HEMT bias-cooled with VGC = 135 mV for
different values of gate voltage VGS .

pinch-off point of the HEMT is around VGS = −150 mV. Even if this value is different for each
HEMT, for one HEMT the same cool down protocol will give the same operating point. With
this reproducibility, it is possible to tune the bias cooling voltage to place the operating point
of a HEMT where it is beneficial for the measurement.
To measure a Josephson junction’s switching current, the main points to optimize are the

gain and the power dissipation. To minimize the dissipation in RS , the HEMT needs to have
its operating point at VGS = 0 V. The total power dissipated in the HEMT and the biasing
circuit is

Ptot = I2
DS(RS +RD) + IDSVDS . (3.5)

From this equation and regarding the gain we want to achieve, we distribute the power dissi-
pation evenly between the resistances and the HEMT.
For a given bias cooling voltage and value of resistances (RS , RD), the current and voltage

states accessible by a HEMT are shown in Fig. 3.21. The IDS −VDS characteristic for different
values of gate voltage shows the possible current-voltage configuration for the HEMT. Starting
from one current-voltage state, a HEMT has to follow the load line (dashed gray lines) with a
slope of 1/(RD + RS) to move to a new state. In optimizing HEMT operation, higher gain is
generally associated with higher power but also more dissipation.
With all these constraints, choosing the values of resistances, bias cooling voltage and op-

erating current-voltage is a complex optimization where different solutions are possible. The
main factors to determine these values will be the type of measurement to perform and the
cooling power available.

3.3.3 Data acquisition with a bias cooled HEMT

This section presents the acquisition protocol and switching current data of one Josephson
junction. The measured junction is part of device AM20 (Fig. 3.17(b)), a failed Andreev
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Figure 3.22: Current-voltage characteristics of one Josephson junction in device AM20
(Fig. 3.17(b)) measured at different frequencies f with a cryogenic, bias-cooled
HEMT.
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molecule in which one of the junctions is shorted. The remaining junction is studied in this
section.
With the available cooling power of 20 µW at 20 mK and with the objective of measuring two

Josephson junctions with independent HEMTs simultaneously, the power dissipated for each
amplifier must be less than 10 µW. If we allocate the power evenly between the resistances
RS , RD and the HEMT, each component must dissipate less than approximately 3 µW. Bal-
ancing between power dissipation and gain, (Eq. 3.4), the chosen resistances are RD = 1 kΩ
and RS = 10 Ω and an operating point for the HEMT of IDS ≈ 50 µA, VDS ≈ 50 µV.
The HEMT used in this section has been calibrated such that the bias cooling voltage nec-

essary to place its operating point at zero VGS is already known and corresponds to VGC =
128.55 mV. Similarly, the gain has been calibrated to α = 8.6. This value is in accordance with
Eq. 3.4, it corresponds to gm ≈ 9.4.

The data acquisition is in two steps: the bias cooling and the measurement. To bias cool
the circuit, the previously determined bias cooling voltage needs to be applied across the gate
and source terminals of the HEMT. Referring to Fig. 3.20(a), we apply the negative of the
bias cooling value to the source via VBC1 , such that VGS = −VS = 128.55 mV is at the correct
positive value. Since this preparation is done at room temperature where the pinch-off voltage
is approximately −150 mV, the HEMT is on. The drain terminal is shorted outside the fridge
via the supply Vb1 which is set to zero. To check the value of VS applied by VBC1 , a voltmeter
is connected to VBH1. Since the HEMT is on and gm is large, the voltage drop VDS is small
compared to IDSRD and therefore VGS = −VS ≈ −VD (3.21(b)).
The power dissipated in RS during bias cooling is V 2

GC/10 ≈ 1.65 mW which is much too
high to maintain at base temperature. Before condensing the dilution unit, when the mixing
chamber is approximately at 7 K, bias cooling is turned off. At this temperature, electrons in
the HEMT are already frozen in. Once the fridge has reached base temperature, the HEMT
is turned on by biasing Vb1 such that VDS = 50 mV. We also verify that IDS ≈ 50 µA. The
measurements are performed in a Bluefors SD which has a cooling power of 20 µW at 20 mK.
The operating temperature is at 58 mK which is higher than expected.
To measure the switching current, we bias the junction with a circuit similar to the one in

the experiment presented in Fig.3.19. The measurement lines are different in this circuit, with
only line I+

1 remaining in Fig.3.19. There are no more unattenuated direct measurement lines
connected to the junctions. The amplified junction voltage is measured at VD and from the
difference with I+

1 one can calculate the junction current.
Fig.3.22 shows the current-voltage characteristic of the junction measured with the HEMT

at different sweep frequencies. The switching current of the junction is approximately 15 nA
with a junction’s gate voltage VJG = 0 V. This value is comparable to the junctions measured
in Chap. 2 (device AM14). The fact that the mean switching current varies little with sweep
frequency between 10 Hz to 1000 Hz is promising in terms of the low-frequency noise isolation
provided by the HEMT. Measurements of the switching probability and extraction of the ef-
fective temperature, as well as control measurements, would be necessary to fully quantify the
role of the HEMT in reducing noise. However, this junction is much more isolated than the
previous ones, so a higher current could have been expected. This could be explained by the
fact that this junction was not made using the same fabrication recipe and do not present
the same physical characteristics. However, even if these first considerations let us think that
these measurements could be noisier, the stability of the switching current value for different
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frequencies shows how isolate is the junction. These last measurements show how effective are
the isolation and the amplification of a HEMT. Using bias cooling techniques, we were able
to measure the switching current of a Josephson junction up to 1 kHz without diminishing its
value.
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Conclusion

This thesis was motivated by work on multi-terminal Josephson junction circuits [38, 21],
specifically Cooper pairs quartets [22]. Experimental work on the hybridization of Andreev
bound states at non-zero voltage [23, 24] revealed intriguing physics and raised several questions.
This thesis focused on studying the hybridization of Andreev bound states at zero voltage both
with a different theoretical formalism and a different type of experiment.
Theoretically, we calculated properties of the Andreev molecule, two closely Josephson junc-

tions, within the Bogoliubov-de Gennes formalism. Using three different techniques we explored
different aspects of the Andreev molecule. Our simplest model consisted of two one-dimensional
single-channel junctions separated by a superconducting segment. We calculated the energy
spectra and current-phase relation of such a system for varying junction separation, channel
transmissions, and phase configurations. These studies allowed describing the spatial depen-
dence of hybridization in an Andreev molecule, showing exactly how various phenomena such as
the energy gap varied with the length of the superconducting segment separating the two junc-
tions. We developed the link between these phenomena and the two microscopic mechanisms
at the core of the hybridization, double elastic cotunneling and double-crossed Andreev reflec-
tion. Most importantly, Andreev state hybridization changes the current-phase relation of the
junctions. The theory predicts non-local Josephson effects where the phase of one junction can
influence the current-phase relation of the other junction. One striking effect is the possibility
of a ϕ0-junction where a junction may have a non-zero supercurrent with zero-phase difference.
A second step was to describe one-dimensional, multi-channel Andreev molecules. Numerical
simulations of such Andreev molecules with random scattering matrices showed more complex
structure but with experimentally identifiable signatures such as energy gaps and modifications
to the current-phase relation. The last step was to use a tight-bonding model which allowed
representing two-dimensional systems with disorder. This last representation, the closest to a
real system, showed the robustness of hybridization to disorder.
Experimentally, a two-junction system was fabricated based on InAs-Al nano-wire from Peter

Krogstrup’s group from the University of Copenhagen [25] and thanks to the sharing of knowl-
odge and facility of the Quantronique group. The junctions made of aluminum were separated
by 330 nm. The objective was to measure the influence of one junction on the supercurrent of
the other one. A map delimiting the zero voltage region as a function of both junctions’ bias
currents was acquired. Unfortunately the measurement had too much noise to be conclusive.
However some features of the map indicate agreement with theory and are encouraging for the
design of future experiments. Lastly, in subsequent measurements a protocol was developed to
use a cryogenic HEMT to isolate the junctions from noise and to amplify their voltage signal.
To conclude, this thesis gives a better understanding of the hybridization of Andreev bound

states at zero voltage and presents experiments paving the way for the detection of an Andreev
molecule.
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Conclusion

There are several perspectives to improve on this work. In the short term, producing new
samples with a smaller junction separation is the main objective. A new fabrication recipe was
developed to overcome the problems encountered in making the first batch of samples. We hope
to perform pulsed switching measurements with the next batch of samples using the cryogenic
HEMTs.
Eventually, it will be necessary to explore the phase space of an Andreev molecule with a

phase-biased switching current measurement. Measuring the spectrum of an Andreev molecule
using the Josephson spectrometer developed by the group [79] or with conventional microwave
spectroscopy could establish the existence of hybridization-induced gaps.
In the much longer term, the Andreev molecules have prospects for both quantum informa-

tion and quantum simulation. Regarding quantum information, an Andreev molecule can be
considered a tunable four-state qubit and could be useful in implementing gates in an Andreev
bound state based quantum computer. Finally, one could extend Andreev molecules to more
than two Josephson junctions, realizing Andreev “polymers” or more complex structures with
multiple closely spaced weak links. Such Andreev systems may allow simulating the chemistry
of real molecules, or help in implementing exotic Hamiltonians, such as the SSH model or the
Kitaev chain.
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ABSTRACT 
 
This thesis discusses the hybridization of Andreev bound states in a system of two 
closely spaced Josephson junctions, an "Andreev molecule". Devices incorporating 
Andreev molecules are predicted to have an energy spectrum with avoided crossings and 
a non-conventional current-phase relation. 
The first part is a theoretical analysis of Andreev Molecule. Two microscopic mechanisms 
at the origin of the hybridization of Andreev bound states are explained. Furthermore, 
electrical characteristics of a molecule in multiple circuit configurations are calculated 
using different theoretical frameworks. 
In the second part measurements of a circuit made up of two Josephson junctions in 
close proximity to each other are presented. Although possible signs of hybridization are 
detected, due to the presence of noise and insufficiently small junction separation, the 
results are inconclusive. 
In the third part technical details of device fabrication and the measurement setup, 
including a millikelvin DC cryogenic amplifier, are described. 

MOTS CLÉS 
 
Physique mésoscopique, états liés d'Andreev, jonction Josephson, molécule d'Andreev, 
hybridation 

RÉSUMÉ 
 
Cette thèse traite de l’hybridation des états liés d’Andreev dans un système formé de 
deux jonctions Josephson contiguës, une "molécule d’Andreev". Il est prédit que les 
dispositifs incorporant des molécules d’Andreev ont un spectre d’énergie avec des anti-
croisements et une relation courant-phase non conventionnelle. 
La première partie est une analyse théorique de la molécule d’Andreev. Les deux 
mécanismes microscopiques à l’origine de l’hybridation des états liés d’Andreev y sont 
décrits. De plus, les caractéristiques électriques d’une molécule dans des configurations 
de circuits multiples y sont calculées à l’aide de différents cadres théoriques. 
Dans la deuxième partie sont présentées des mesures d’un circuit constitué de deux 
jonctions Josephson très proches l’une de l’autre. Bien que des signes possibles 
d’hybridation soient détectés, en raison de la présence de bruit et d’une séparation des 
jonctions trop faible, les résultats ne sont pas concluants. 
Dans la troisième partie sont décrits les détails techniques de la fabrication de l’appareil 
et du dispositif de mesure, y compris l’utilisation à des millikelvins d’un amplificateur DC 
cryogénique. 

KEYWORDS 
 
Mesoscopic physics, Andreev bound states, Josephson junction, Andreev molecule, 
hybridization 
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