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qui ont aidé de près ou de loin mon travail, avec notamment

This PhD work continues and reinforces recent investigations on bulk acoustic wave resonators at cryogenic temperature (typically 4 Kelvins). In such operating conditions their unique properties open up new applications in different fields, from ultra-stable oscillators to hybrid quantum systems. For all these areas of research, new low-loss devices can play a game changing role. This work, which is oriented towards optomechanics, explores the possibilities of light-based actuation of an acoustical cavity with the horizon of building a cryogenic oscillator with such a cavity. Without loss of generality, the selected cavity is a quartz crystal resonator, adapted to the usage requirements with cryogenic environment. The first part of this thesis focuses on the theoretical and experimental study of optical Fabry-Perot cavities with absorptive mirrors, most notably with a novel method to extract the index of refraction of thin metallic films based on their particular properties when used in an optical cavity, i.e. a broadened Full Width at Half Maximum with respect to the non-absorptive case, as well as a frequency shift between the transmitted and the reflected peaks. In the second part, an analysis is performed on different means of mechanical actuation by light, i.e.

by the photothermal force, the radiation pressure force and the electrostrictive force. An experimental study of the former demonstrates in particular the feasability of photothermal actuation at frequencies exceeding some Megahertz. The conclusion opens gives way to some perspectives, and specifically about other geometries which may potentially optimize the optomechanical coupling.

Titre : Des Cavités à Ondes Acoustiques jusqu'à l'Optomécanique

Mots-clés : Optomécanique, Résonateur à Quartz, Oscillateur, Acoustique, Cavité Fabry-Perot

Résumé :

Ce travail de thèse est destiné à poursuivre et renforcer les travaux démarrés récemment sur le comportement des résonateurs acoustiques à onde de volume piégée à basses températures (typiquement 4 Kelvins). Dans ces conditions de fonctionnement, leur propriété unique ouvre en effet des perspectives d'applications nouvelles dans différents domaines, depuis les oscillateurs ultrastables jusqu'aux systèmes quantiques hybrides. Dans toutes ces thématiques de recherche, ces cavités à faibles pertes peuvent jouer un rôle déterminant. Ce travail orienté vers l'optomécanique explore les possibilités d'excitation d'une cavité acoustique par la lumière, avec pour horizon la conception d'un oscillateur cryogénique avec une telle cavité.

Sans perdre en généralité, la cavité choisie est un résonateur à quartz adapté aux conditions d'utilisation cryogéniques. La première partie de cette thèse se concentre donc naturellement sur l'étude théorique et expérimentale des cavités optiques Fabry-Perot à miroirs absorbants métalliques, avec notamment une nouvelle méthode pour extraire l'indice de refraction des couches fines metalliques grâce à leurs propriétés particulières lors d'un utilisation en cavité optique, i.e. une largeur à mi-hauteur élargie par rapport au cas non-absorbant, ainsi qu'un décalage en fréquence entre les pics transmis et réfléchis. La deuxième partie analyse divers mécanismes d'excitation mécanique par la lumière, tels que l'excitation photothermique, la pression de radiation et la force électrostrictive. Une étude expérimentale démontre en particulier la faisabilité de l'excitation photothermique à des fréquences supérieures au MHz. La conclusion ouvre sur des perspectives, en particulier d'autres géometries optimisant potentiellement le couplage optomécanique.
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GENERAL INTRODUCTION

Time keeping is of primary importance in everyday's life, for applications ranging from GNSS (Global Navigation Satellite System) navigation to fundamental physics experiments [START_REF] Bushev | Testing of Quantum Gravity With Sub-Kilogram Acoustic Resonators[END_REF]. This task is generally performed through transforming a signal at a precise frequency to a time. The reference frequency can be provided by two main families of devices: bulk-material based clocks and atomic-based clocks.

Within the bulk-based clocks, quartz is a material which is widely used because of its price and availability, as well as its piezoelectric properties which allows to actuate the crystals in a direct way. It displays good performances at providing a stable frequency source thanks to its good mechanical properties, with some bare quartz crystal providing fractional frequency stabilities of about 10 -9 at 1 s integration time. Several architectures even allow to improve this figure through compensating the unstabilities originating from environmental sources that must be well-controlled (e.g. vibrations, temperature fluctuations), for example with the OCXO (Oven Controlled Crystal Oscillator) that can achieve fractional frequency stabilities down to 10 -13 at 1 s.

It has been shown in some previous work in our team that the mechanical quality factor Q can display values as high as some 10 9 for the very best quartz [START_REF] Galliou | Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments[END_REF] at cryogenic temperature. Because the Q factor is related to the ultimately reachable fractional frequency stability, this allows to expect figures improvements by a factor 1000 with respect to a typically good quartz resonator at room temperature, with a floor of the fractional frequency stability as low as 10 -16 .

The idea to use such high quality quartz resonators at cryogenic temperatures in order to build an ultrastable oscillator stems from this observation. The typical piezoelectric excitation scheme, however, can bring noise to the measurement and in particular in a cryocooler environment (through e.g. spatially variable thermal noise) which can limit this ultimate stability. In this context, the need for an alternative actuation scheme arises. An optomechanical actuation is therefore considered, which consists in mechanically actuating the quartz through an optical input, typically a laser [START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF] [ [START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF]. By doing so, one avoids the aforementioned noises while also allowing non-piezoelectric materials to be used as frequency references if they display good mechanical properties (e.g. sapphire [START_REF] Bourhill | Precision Measurement of a low-loss Cylindrical Dumbbell-Shaped Sapphire Mechanical Oscillator using Radiation Pressure[END_REF]).

While one may consider at first glance dielectric super mirrors in order to maximize the light coupling by turning the quartz crystal resonator into a Fabry-Perot cavity, literature shows that these coatings dampen the mechanical qualities of the resonator, limiting it to some 10 6 in most common solutions such as Ta 2 O 5 [Galliou et al., 2016a]based coatings. Metallic thin films coatings also induce damping, although it has been shown that they limit the mechanical qualities less than their dielectric counterpart [Galliou et al., 2016a]. Furthermore, the quartz crystal resonators are routinely coated with metallic layers providing electrical contacts, and because such metallic layers also constitute mirrors [START_REF] Echániz | Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region[END_REF], they might readily constitute devices that can be optomechanically actuated. The aim of this thesis is then to evaluate the potential of 1 metallic coatings for the generation of an optomechanically actuated oscillator, and investigate in this framework their properties to target their optimization. The thesis manuscript is therefore structured as follows:

• Chapter 1 gives an overview of the state of the art for time-references and a reminder of some basic descriptive framework for oscillators. The reasons behind our interest for the quartz crystal resonator is specified in more details, as well as some background concerning the expected improvements for the stability brought by our device. The reasons for the preference towards an optomechanical actuation are also discussed.

• Chapter 2 gives a quick reminder concerning some quartz crystal formalities, as well as a few equations of continuum physics formalism that are useful to analyze the situation for optomechanical actuation.

• Chapter 3 focuses on the study of the optical characteristics of the common quartz crystal resonator used as a Fabry-Perot cavity. This is in the aim of asserting whether these resonators can answer the requirements of optomechanical actuation, which are established in chapter 4. The first emphasis is put on the theoretical developments of the Fabry-Perot cavities, for the ideal cavity as well as for the absorptive mirrors cavity. Some specific characteristics are shown for the latter, such as an increased FWHM (Full Width at Half Maximum) of the transmitted peak, an asymmetry of the reflected peak as well as a frequency shift ∆f between the reflected and the transmitted peaks. An experimental study is also led, with a measurement campaign of several different layers of different thicknesses and of different materials, allowing to establish that silver is the best candidate for obtaining the highest possible reflectivity among common metals (chromium, gold, silver). Several properties are measured, both at room temperature and 4 K. This measurement campaign also allows to feed a numerical method that we designed to obtain the refractive index, starting from the knowledge of the FWHM and the peaks' frequency shift ∆f . Such knowledge is usually very method-dependent (as well as process-dependent) and is not widely found for cryogenic temperatures.

• Chapter 4's primary concern is to analyze several light-induced forces as the potential actuation sources for mechanical actuation, and in particular in the case of quartz crystal resonators coated with thin metallic films. The first force to be discussed is the photothermal force, for which a simplified 1D theoretical framework is developed through continuum mechanics. Some experimental results are then exposed, demonstrating the possibility to actuate the quartz crystal resonator with metallic thin films through this method at 5 MHz, both at room temperature and cryogenic temperature, as well as with or without optical resonance with the optical cavity formed by the thin films. The second force to be discussed is the radiation pressure force, with a brief reminder of the Hamiltonian framework from literature as well as an application to the case at hand with our quartz resonators. Lastly, the electrostrictive force and the subsequent Brillouin scattering interaction is analyzed with a similar continuum mechanics framework as mentioned above. A numerical application of the expected results of the optomechanical forces (i.e. radiation pressure and electrostriction) for the quartz resonator coated with metallic thin films is given, raising the requirement of other possible geometries for the resonators.

• Chapter 5 provides a conclusion to this work, as well as a perspective regarding other geometries for the quartz crystal resonators' mirrors, i.e. with combinations of metallic thin films and dielectric supermirrors, either deposited directly onto the resonator or suspended in front of it. A comparison of the different possibilities is briefly discussed.

STATE OF THE ART

This chapter aims to provide the general background for this thesis, regarding time keeping and basic concepts regarding oscillators as well as an outlook on the state of the art of some frequency sources. We then introduce the reasons why this work can be of interest towards the conception of an ultrastable cryogenic clock.

1.1/ GENERAL MOTIVATION

1.1.1/ TIME AND FREQUENCY METROLOGY, APPLICATIONS

There are countless devices in today's world using time references for their basic functioning: let us just mention a few devices such as cellphones, clocks, computer, GNSS, and in several industries too, such as spatial industry, military industry. Some applications require extreme efforts in time-keeping, such as e.g. fundamental physics experiments (see [START_REF] Mcgrew | Atomic clock performance enabling geodesy below the centimetre level[END_REF]).

Time metrology, the precise measure of time, is in fact often reduced to counting periods of oscillations or the related frequency. The frequency of a resonator is electronically measured and conveniently transformed into a time.

Several tools exist for evaluating how "precise" the time is, and different kind of references for time have been invented (see a detailed description in [Vallet, 2018], chapter 2). The vernacular concept of "precision" in fact includes several different concepts, one being the accuracy of the time (is the device's "one second" actually our world reference's "one true second"), and another one being the instability of the time (unrelated to whether the device's "one second" is in fact a real second, does it keep on beating the same "one second" as time passes?).

Throughout this thesis work, the main focus will be drawn onto the concept of instability. Some devices may naturally have a better short-term stability (such as quartz crystal for example), and some others may have a better long-term stability (such as atomic reference clocks for example). However, only by making a hybrid system can a device get a good short-term and long-term stability (see for example the diverse hydrogen masers devices commercially available). In the simplest approach to resonance with the mechanical pendulum, it is well known that any object that resonates, and in this case the pendulum, will eventually stop to oscillate because of the natural losses, e.g. friction. In a general fashion, when devices entering in resonance which we will call resonators are left alone, the system losses (engineering losses, intrinsic losses, etc) eventually dampens the resonance. This is why an oscillator is needed in order to forcefully prevent the resonance from stopping. The term oscillator designates the ensemble of the resonator with its accompanying components to maintain the oscillation (see for example [Riehle, 2004], section 2.2).

Taking a general picture for oscillator, the required elements for an oscillator to function are the resonator (through the resonance frequency, it is possible to extract a time), an amplifier (that will coherently provide the energy lost by the resonator during its vibration cycles) and the power source for the amplifier. In a familiar mechanical pendulum, the resonator is the mechanical arm, the amplifier is the set of gears and the energy source is generally either a human intervention to load the springs or an electrical power supplier. In a typical quartz wrist watch, the resonator is a resonating quartz tuning fork, the amplifier is an electronic amplifier and the power source a battery.

A simplified scheme of such an electronic oscillator is shown in 1.1a Simple scheme of an oscillator and 1.1b mathematical representation of this oscillator. A and B, respectively the amplifier's gain and the resonator's gain, are a priori complex and impart a phase on the signal. The phase fluctuations inside the loop are noted here ∆θ and come from other sources than the amplifier and resonator, whereas the output voltage U out = U 0 cos(2πf osc t + φ(t)), where U 0 is considered a constant and φ(t) are the phase fluctuations outside the loop. f osc is the oscillating frequency, which, because of the phase response of the amplifier, might be different from f 0 , the resonance frequency of the resonator.

onator, which we denoted as B, can be e.g. a quartz crystal resonator. It is possible to accurately represent its electrical behavior around resonance with an electronic 2 nd order RLC system with a parasitic capacitance C 0 , with typical order of magnitude of 3 pF-5 pF (see Fig. 1.2) 1 . The resonator then acts as a band-pass filter (see Fig. A second order RLC circuit (Fig. 1.2a), representing an electronic equivalent circuit of the quartz crystal resonator close to a resonance frequency when excited by piezoelectric means, with a parasitic C 0 capacitance due to electrodes (typical order of magnitude of 3 pF-10 pF), deposited in order to apply the exciting electric field, as seeable on Fig. 1.2b (see Fig. 1.5 for a sketch of these electrodes). Here, losses are normalized to 0 dB at resonance and the parasitic capacitance C 0 (see Fig. 1.2) is neglected . It is typically the response of a band-pass filter, whose bandwidth is ∆f = f 0 /Q. The bandwidth is also visible on the attenuation plot and is denoted as BW, and the phase-frequency slope at resonance is also drawn on the phase diagram (see Eq. 1.7). Here, some common experimental values of a "good" quartz crystal resonator are taken for the plot: ω 0 = 10 MHz, Q = 10 6 , R = 100 Ω.

The so-called Barkhausen conditions are conditions given for a loop in a steady state CHAPTER 1. STATE OF THE ART (see for example [Riehle, 2004] p.31):

|B||A| =1(≥ 1) (1.1a) argA(ω) + argB(ω) =0 [2π] (1.1b)
The first condition Eq. 1.1a means that the amplification needs to counterbalance the losses in the resonator. Oscillations typically start from noise, provided that |B||A| > 1 when the oscillator is turned on. Once the oscillations take place, |B||A| = 1 is met because of the nonlinearities. The second condition Eq. 1.1b describes the phase condition that needs to exist between both functions.These conditions are usually validated around a resonance frequency of the resonator f 0 = 1 t 0 = ω 0 2π . From this last statement, it is possible to conclude as well that, if the resonator and the amplificator are operating correctly and the resonance of the system is achieved, then the phase fluctuations from one element should compensate the phase fluctuations of the other:

∆θ A = -∆θ B (1.2)
Related to the transfer function of the resonator, its impedance can be written (neglecting the parasitic capacitance C 0 ):

Z = R + j Lω - 1 Cω (1.3)
where ω = 2πf is the angular frequency. Let us remind that the quality factor, in such an RLC circuit, is related to the R, L and C characteristics in the following way: .4) where ω 0 = 2πf 0 = 2π/T 0 is the resonance angular frequency. It is therefore possible to rewrite the impedance of Eq. 1.3 in terms of the mismatch with the resonance frequency:

Q = Energy stored Energy dissipated during t 0 = f 0 BW = Lω 0 R = 1 RCω 0 , ( 1 
Z =R + jR Lω 0 R ω ω 0 - 1 CRω 0 ω 0 ω Z =R + jRQ ω ω 0 - ω 0 ω (1.5a)
Z ≈R + 2jRQ ∆ω ω 0 with ω = ω 0 + ∆ω, and ∆ω ω 0 (1.5b) Note from this last Eq. 1.5b that when exactly at resonance (i.e. ω = ω 0 and ∆ω = 0), the impedance becomes purely real and resistive. If the parasitic capacitance C 0 were to be taken into account, it would introduce a slight shift in the series resonance frequency and would generate an antiresonance, a few tens of Hz apart typically.

By writing the argument of this last expression in Eq. 1.5b:

Arg Z = arctan -1 Im(Z) Re(Z) ≈ 2 Q ω 0 ∆ω (1.6)
we can highlight, as a consequence, that the transfer function of the resonator B(ω) related to the impedance Z exhibit a frequency-phase relationship close to the resonance frequency ω 0 (see Fig. 1.3 for a visual representation of this relationship):

∆f = - f 0 2Q ∆θ B (1.7)
The phase changes for B can come either from ∆θ A (as Eq. 1.2 implies) or by other phase noise sources inside the loop. This leads to a signal frequency change ∆f , whose Power Spectral Density (PSD) is, inside the operation range of the loop (i.e. the BW of the resonator):

S f (ν) = f 2 0 4Q 2 S θ (ν) (1.8) 1.1.2.2/ PSD OF THE PHASE FLUCTUATIONS
Very often, for commodity reasons, the PSD of the frequency fluctuations is measured indirectly: a phase-meter bench at the output of the loop permits to retrieve the PSD of the phase fluctuations S ϕ (ν), related to the PSD of the frequency fluctuations S f (ν) through:

S f (ν) = ν 2 S ϕ (ν) because f (t) = 1 2π dϕ dt (1.9)
Phase fluctuations inside the loop get therefore translated into frequency fluctuations with the resonator, in the way described with Eq. 1.7. It is therefore possible to write the following relation between the phase fluctuations inside and outside the loop, distinguishing between the case where the Fourier frequency of the fluctuation is included in the resonator's bandwidth (i.e. ν < f L = f 0 /2Q, the Leeson frequency):

S in ϕ (ν) = 1 ν 2 S f (ν) = 1 ν 2 f 0 2Q L 2 S θ (ν) (1.10a)
and outside the bandwidth (i.e. ν > f L , see Fig. 1.4.):

S out ϕ (ν) = S θ (ν) (1.10b)
where we used Q L the loaded quality factor (i.e. of the resonator inside the loop), which differs from the unloaded quality factor Q of the resonator alone. The total output power spectral density of the phase fluctuations is therefore written

S out ϕ (ν) = 1 + f 2 0 4Q 2 L 1 ν 2 S θ (ν) (1.11)
which is known as the Leeson model.

Following empirical observations, the typical Power Spectral Density (PSD) of the phase fluctuations for an amplifier such as A on Fig. 1.1a (or coming from an extra noise source) can be modeled by a frequency-power development (See for example [Rubiola, 2009] p30):

S θ (ν) = aν -1 + bν 0 (1.12)
where the ν 0 component is proportional to the temperature of the system. By injecting in Eq. 1.11 the expression for a typical phase fluctuations of Eq. 1.12, it is possible to obtain the general trend represented in Fig. 1.4. ), with a term proportional to ν -1 and another term proportional to ν 0 (i.e. constant). ν c is the corner frequency, at which the ν -1 noise starts to be under the ν 0 term. The latter term is proportional to the temperature T . In the Leeson model, there is furthermore a part, inside the bandwidth, where the ν -1 noise is converted and superseded by the ν -3 noise, created by the closed loop. The latter noise level is proportional to 1/Q2 , see Eq. 1.10a. Note that in the case drawn here, ν c > f L = f 0 /2Q the Leeson frequency, as is typically the case for quartz oscillators, but the opposite might be true, in which case there would also be a ν -2 noise, created from the ν 0 according to Eq. 1.10a.

CHAPTER 1. STATE OF THE ART

ν -1 ν 0 ν c ∝ T carrier ν S θ (ν) (in dBrad 2 /Hz) (a) Ideal case (open loop) ν -1 ν 0 S ϕ (ν) (in dBrad 2 /Hz) ν c ∝ T carrier ν ν -3 f L (b) Leeson model (closed loop)

1.2/ STATE OF THE ART FOR FREQUENCY SOURCES

It is possible to classify the time-keeping references systems into two main families: bulkmaterial based clocks and atomic-based clocks. We shall briefly present examples of the former kind, then present some instances of the latter.

Time-keeping and sensors applications 2 include time reference in cellphones, oscilloscopes, CPUs, aerospatial industry, military industry.

The two main types of bulk-material based clocks are the Bulk Acoustic Waves (BAW) devices, and Surface Acoustic Waves (SAW) devices.

SAW devices primarily serve as filters [START_REF] Ohsato | Mechanism of Piezoelectricity for Langasite Based on the Framework Crystal Structure[END_REF]] [Wall et al., 2015] and sensors [START_REF] Fachberger | Applicability of LiNbO3, Langasite and GaPO4 in High Temperature SAW Sensors Operating at Radio Frequencies[END_REF]] [Almirall et al., 2019], but can also be used as high quality resonator too (see [START_REF] Zhang | Monolithic ultra-high-Q lithium niobate microring resonator[END_REF]), for frequencies typically greater than a few hundred MHz up to a few GHz.

BAW frequency sources include many piezoelectric materials, among which, quartz crystal resonators are of primary importance. Beyond the fact that synthetic crystals are relatively cheap, there are several reasons for their predominent role: as they are piezoelectric, they are rather simple to actuate. Furthermore, they have low losses and can even have extremely low losses, which is generally interesting for minimizing frequency instability (see section 1.3.1). The instability may have different origins, sometimes intrinsic or sometimes caused by engineering or environment related phenomena (see section 1.3.1 for a lengthier discussion about these phenomena). In a familiar pendulum clock, for example, a change in temperature might influence the arm's length and hence is beating period. This is the reason why temperature fluctuations have to be taken accounted for, both through its stabilization but also through finding a turning point in the frequencytemperature curve (see chapter 2).

Quartz resonators can be used with different crystalline cuts in order to compensate for different kinds of effects (e.g. stress compensation, temperature compensation), i.e. render the device as insensitive as possible to the given parameter. It can also be used in the opposite regime, to be very sensitive to a certain parameter for creating sensors (e.g. Quartz Crystal Microbalance). The quartz resonator market reaches several billion of US dollars (see for example the market report, available online, by Mordor Intelligence), amounting to billions of units sold every year. They vary in frequency, from a few kHz to a few hundred of MHz for BAW devices. They also vary in frequency stability. Several types of packagings are built around the resonator, and, as mentioned earlier, they usually act on the frequency-temperature relationship of the resonator in order to improve its frequency stability through temperature stabilization at a turning point of the frequencytemperature curve.

The simple quartz crystal oscillator (XO) without any specific processing is the most common time reference unit, which, under the best conditions, can have an Allan deviation of about 10 -9 at 1 s (see for example [Riehle, 2004]). Another widely used unit where the output frequency is corrected according to the ambient temperature is the Temperature Compensated Crystal Oscillator (TCXO). Some devices can be shrinked down to MEMS size, typically less than a mm 3 , with stability performances Allan deviation exceeding a few 10 -11 at 1 s (see [START_REF] Kubena | A Fully Integrated Quartz MEMS VHF TCXO[END_REF]). Let us mention as well the Oven Controlled Crystal Oscillator (OCXO), which is used for the best performances in terms of frequency stability with quartz resonators. It consists of the crystal and its accompanying temperature control elements to be put in an oven set at the turning point of the frequencytemperature curve of the crystal. The crystal cut is selected so that the turning point is greater than the maximum operating temperature of the environment (typically 80 • C). Such an OCXO, however, is power consuming and is rather big with a typical size greater than 200 cm 3 . The phase noise performances of such OCXO can reach -170 dBc Hz -1 at 100 MHz (see [START_REF] Sakamoto | Development of ultra low noise VHF OCXO with excellent temperature stability[END_REF]), and the Allan deviation can be better than some 10 -13 at 1 s (see [START_REF] Hudson | Long-Term Performance of a Space-System OCXO[END_REF]). Companies providing quartz devices include AR electronique and Rakon.

Other piezoelectric materials used include the popular Lead Zirconate Titanate (PZT) family of materials, that can also be used for resonators, as well as aluminium nitrate AlN [START_REF] Löbl | Materials for bulk acoustic wave (BAW) resonators and filters[END_REF]] [Pulskamp et al., 2011].

There also are other ways of obtaining frequency references which do not use a mechanical resonance of the device. For example, Sapphire is used for that purpose, in particular for its dielectric properties (although it also has very good acoustical properties, see for example [START_REF] Driscoll | Extremely Low Phase Noise UHF Oscillators Utilizing High-Overtone, Bulk-Acoustic Resonators[END_REF], see section 1.3.2)). It is used e.g. as the heart of a commercial Cryogenic Sapphire Oscillator (CSO) clocks built here by FEMTO Engineering, which uses electromagnetic whispering gallery modes. They display very good stability performances, with Allan deviation of some 10 -16 at 1 s (see for example [START_REF] Giordano | The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements[END_REF]] [Grop et al., 2010]) and moreover, they are certified to have Allan deviations lower than 3 × 10 -15 for integration times ranging from 1 s to 10 000 s. Their competitors, Cryoclock, have similar though slightly lower performances (see their respective datasheet on their respective websites: Uliss and CryoClock).

Let us also mention the existence of some other ways to obtain time-references, such as Spintronics, i.e. the manipulation of electronic spin, is also of interest for reference signal generation (see for example [START_REF] Prokopenko | Spin-Torque Nano-Oscillator as a Microwave Signal Source[END_REF]) or optoelectronics oscillators (OEO) which typically relies on a laser and a Mach-Zehnder Modulator (see for example [START_REF] Lelievre | A Model for Designing Ultralow Noise Single-and Dual-Loop 10-GHz Optoelectronic Oscillators[END_REF] or the OEWAVES company products).

The other main kind of time reference which does not directly rely on the mechanical or dielectric properties of materials is atomic and ionic clocks (see [START_REF] Audoin | The Measurement of Time: Time, Frequency and the Atomic Clock[END_REF]). Generally speaking, an atomic (ionic) clock uses the frequency of the electromagnetic radiation associated with the energy transition between two levels of an atom (ion). There was historically a development mainly of microwave-range transitions (several hundreds of MHz) in this type of clocks, whereas today's technology tends more to the optical frequency range (hundreds of THz).

The current definition of the second relies on a microwave-frequency atomic clock. In- and [McCarthy et al., 2009] for a description of the definition and the role of a second).

The very best performances for long term stability, as of today, are achieved with opticalfrequencies atomic clocks with orders of magnitude for Allan deviation floor of about 10 -18 (see for example [START_REF] Nakamura | Coherent optical clock down-conversion for microwave frequencies with 10 -18 instability[END_REF]) Some effort is also made towards miniaturizing atomic clocks, while keeping fair performances: Coherent Population Trapping (CPT) used on a miniature atomic clock has demonstrated performances of Allan deviation of 7.5 × 10 -11 at 1 s and better than 2 × 10 -11 at 1 day (see [START_REF] Vicarini | Mitigation of Temperature-Induced Light-Shift Effects in Miniaturized Atomic Clocks[END_REF], SA.45s chip-scale atomic clock by Microsemi or MMAC by Syrlinks).

Among all these devices, we now turn to the reasons behind the choice to investigate some particular quartz crystal throughout this thesis.

1.3/ INTEREST OF OUR DEVICE

Some of the quartz resonators precedently investigated here in our team have displayed extremely high mechanical quality factors Q at cryogenic temperature, for the uncommon extensional (breathing) A-mode (see [START_REF] Galliou | Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments[END_REF]), as high as several billion for the very best ones. In fact, as this section highlights, this is the reason why they are of such interest and why we consider the option of a metallized quartz crystal resonator at the heart of an ultrastable clock (section 1.3.1). We subsequently show that the choice of studying an optomechanical coupling arises very naturally (section 1.3.2). Finally, we show some examples for which very high Q devices such as those mentioned earlier may help with fundamental physics (section 1.3.3).

1.3.1/ 1/Q 4 AND f 0 /2Q

A typical quartz resonator used in many devices is a plano-convex disc (in order to trap the energy), coated with a metallic layer in order to actuate it piezoelectrically. Very commonly, it is coated with a few nanometers of chromium (as it better adheres to the quartz than the subsequent gold layer) and about 100 nm-200 nm of gold (see Fig. 1.5).

(a) Face view (b) Side view Figure 1.5: Typical plano-convex quartz crystal resonator used in many devices. Very commonly coated with a few nanometers of chromium (represented in red on Fig. 1.5b) on the quartz, in order for the 100 nm-200 nm layer of gold to better adhere on the whole structure. Note the plane on the front view on the right, which is typically made in order to keep track of a particular crystalline axis (commonly the y axis). Note that the size of the electrodes on the side view is greatly exagerated with respect to both the front view and the quartz size for visual clarity.

Generally speaking, the Q factor is related to mechanical losses (they are proportional to 1/Q) in the medium from diverse origins, which are influencing the total (unloaded) Q through the following relation (see for example [Bon, 2018], p30, and [Schröter, 2008] throughout):

1 Q = i 1 Q i = 1 Q phonon-phonon + 1 Q thermoelastic + 1 Q scattering + 1 Q holders + 1 Q TLS + • • • (1.13)
Q being linked with the losses of the system. The losses, in turn, can be linked with either intrinsic losses phenomena, that is, physical phenomena or with engineering phenomena3 . As an illustration of the engineering losses, see Fig. 1.6 focusing on the geometrical design linked with the mechanical clamping losses as well as the on-quartz electrodes ddeposition losses; see Fig. 1.7 for some experimental data regarding losses of some of the resonators from Fig. 1.6, attributed by the authors to both the clamping and the coating influence (see [START_REF] Galliou | Quality Factor Measurements of Various Types of Quartz Crystal Resonators Operating Near 4 K[END_REF])

It follows that the Q factor should have an influence on the general trend of the phase noise. Indeed, an empirical study of the power spectral density of the fractional frequency fluctuations at 1 s for different devices available from litterature has been made by Gagnepain (see Frequency Standards and Metrology [START_REF] Marchi | [END_REF], p. 151), as shown in Fig. 1.8a. It clearly displays a general tendency of the PSD to be proportional to 1/Q 4 . This means that following this general trend, taking naively the 6/Q 4 dependency would In addition to this effect, an unrelated improvement is also at stake. Indeed, as Eq. 1.10a indicates, the ν -3 noise is proportional to 1/Q 2 . Furthermore, the Leeson frequency f 0 /2Q that marks the change of the ν -3 noise to the ν -1 noise (in the phase fluctuations PSD) is smaller if Q is bigger. Under the assumption that the ν -1 noise would not differ between the room temperature where most quartz crystals are operated and the cryogenic temperature (around 4 K) at which the quartz resonators from [START_REF] Galliou | Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments[END_REF] need to be operated, an improvement in the S y (ν < f 0 /2Q) figure is to be expected. In- The figure is taken from [START_REF] Galliou | Quality Factor Measurements of Various Types of Quartz Crystal Resonators Operating Near 4 K[END_REF]. It shows that the losses (hence the quality factors) depend on whether the quartz is coated, and whether some work is done on decoupling the resonating part of the crystal from the clamping etc (see Fig. [START_REF] Marchi | [END_REF], p. 151), with experimental points from litterature of the time. Shows the general tendency of the power spectral density of the fractional frequency fluctuations to go as 1 Q 4 , with Q the quality factor of the resonator. 1.8b Fit of the same points, along with a Q = 1 × 10 9 at cryogenic temperature device from [START_REF] Galliou | Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments[END_REF]. deed, on Fig. 1.9, the Leeson frequency where the ν -1 and the ν -3 curves of the S ϕ (ν) cross permits to establish the following relation between the coefficients for each slope:

a -3 f -3 L = a -1 f -1 L (1.14)
Additionally, the PSD for the relative frequency fluctuations are related to the PSD of the phase fluctuations through:

S y (ν) = ν 2 f 2 0 S ϕ (f ) (1.15)
On the other hand, the floor of the Allan variance for the relative frequency fluctuations is located in the area of the frequency flicker noise (i.e. the ν -1 slope on a S y (ν) plot and ν -3 slope on a S ϕ plot). It is formally written:

σ 2 y floor = 2 ln 2S y (f = 1 Hz) (1.16)
In order to express in a more specific form this last Eq. 1.16, let us rewrite Eq. 1.15 in the area of the frequency flicker noise, hence replacing S ϕ in Eq. 1.15 by its value in the frequency flicker noise area (corresponding to the ν -3 slope) and making use of the relation in Eq. 1.14 for a -3 :

S y (ν ≈ ν flicker ) = ν 2 f 2 0 a -3 ν -3 = a -1 f 2 L f 2 0 ν -1 (1.17)
Which permits to obtain from Eqs. 1.16 and 1.17 and by replacing the Leeson frequency by its value f L = f 0 /2Q the Allan deviation floor:

σ y floor = ln 2 2 a -1 × 1 Q (1.18)
By using this last Eq. 1.18 and the bibliography listed in section 1.2, with good quartz crystal resonators with accompanying packaging having typical Q ≈ 10 6 (at room temperature) that amount to an Allan deviation floor of σ y floor ≈ 10 -13 , it is reasonable to expect that with a device with a very high Q ≈ 10 9 as mentioned in the begining of this section (three orders of magnitude higher Q), a typical Allan deviation floor of σ y floor ≈ 10 -16 (three orders of magnitude lower according to Eq. 1.18) can ideally be expected, provided the resonator environement is ideally controlled (e.g. vibrations, temperature fluctuations). This is what is shown on Fig. 1.9.

1.3.2/ ADVANTAGES OF OPTOMECHANICAL ACTUATION

As mentioned, because quartz is piezoelectric, it is most commonly actuated with an electric field, taking advantage of its piezoelectrical properties. Even some non-piezoelectric materials are sometimes stratified with some piezoelectric material in order to actuate them, creating a so-called High-overtone Bulk Acoustic Resonator (HBAR) (see for example [START_REF] Ballandras | High overtone Bulk Acoustic Resonators: Application to resonators, filters and sensors[END_REF] and [START_REF] Baron | High-Overtone Bulk Acoustic Resonator[END_REF]). There are, however, other possibilities that call for attention in actuating quartz resonators, such as thermal actuation (see [START_REF] Dieulesaint | Ondes Élastiques Dans Les Solides: Application Au Traitement Du Signal[END_REF]] [Dieulesaint et al., 1989] [Dieulesaint et al., 1986]) and optomechanical actuation (see e.g. [START_REF] Renninger | Bulk crystalline optomechanics[END_REF]). The latter will be extensively discussed in this thesis, presenting a lengthier state of the art specifically for optomechanical interactions in section 4.2.1, and presenting in current section 1.3.2 its comparative S ϕ (dBrad 2 /Hz)

ν -3 ν -1 ν 0 f L = 1 2 ν 0 Q ν(Hz) σ y (t) 10 -13 ≈ 10 -16 τ -2 τ 0 τ 2 τ (s) 100s 1s Q =⇒ σ floor @ν -1 = constant @4K @300K floor ∝ 1 Q Figure 1
.9: Scheme of possible improvements for the Allan variance. See main text at the end of section 1.3.1 for details of the orders of magnitude.

advantages with respect to piezoelectric actuation for plano-convex quartz crystal resonators.

The metallic electrodes typically deposited on quartz crystal resonators (see Fig. 1.5) readily constitute mirrors as well, especially since most metals in the near infrared are rather reflective (see for example [START_REF] Echániz | Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region[END_REF]). As such, it is only natural to investigate the possibility of using these electrodes as mirrors in order to achieve a Fabry-Perot cavity (see part 3), having in mind that this allows increasing the light intensity within the cavity, hence possibly increasing the total force exerted by wavepackets with any of the optical forces exerted (see part 4). A naive scheme of such optomechanical coupling is presented in Fig. 1.10 for conceptual understanding.

There are two main advantages to actuate the quartz resonator with the help of an optomechanical coupling, instead of using typical piezoelectrical properties of the quartz.

The first and most immediate one is the fact that cables going down the cryogenerator to electrically actuate the quartz are no longer required, therefore saving the technological efforts of stabilizing the signal through the small temperature (hence length and phase) variations, generally with a Pound scheme [Pound, 1946] (see for example [START_REF] Grop | 10 GHz cryocooled sapphire oscillator with extremely low phase noise[END_REF], section 3.2.2). Indeed, considering a simplified model of only thermal fluctuations affecting the length of the wires (and hence the phase of the signal), con-mechanical expansion quartz Laser (1550nm) P rad silver electrodes λ Figure 1.10: Naive scheme of optomechanical coupling with radiation pressure. The incident light onto the quartz crystal resonator is amplified inside it, provided that the electrodes, constituting here mirrors, are at the right distance from one another with respect to the incoming wavelength (making it a Fabry-Perot cavity, see section 3.1). The pressure exerted by each individual wavepacket is therefore amplified and theoretically allows, under certain conditions discussed in part 4, the quartz crystal resonator to enter into mechanical resonance. Note that the size of the electrodes are greatly exagerated for visual clarity.

sidering a cable length of approximately L 0 = 3 m, a loaded Q factor of approximately Q = 5 × 10 8 (half ot the best expected factors), a 50 MHz signal yielding a wavelength of λ = c/ν = 5.99 m, and taking the thermal expansion coefficient of the cable to be α Cu = 1.7 × 10 -5 K -1 , we get a phase fluctuation along the cable of:

∆ν/ν 0 ∆T = 2πL 0 Q L λ 0 α Cu ≈ 1.06 × 10 -13 K -1 (1.19)
which could indeed limit the expected instability of the quartz crystal resonator. Furthermore, the Radio-Frequency (RF) Pound to stabilize these cable length fluctuations implies using a circulator (the optical equivalent is a polarized beam-splitter cube). Although they are easily available commercially for frequencies in the GHz range, they become much more scarce under some hundred MHz. This therefore makes this correction rather arduous in the aimed range of frequencies for our device (in the 5 MHz-100 MHz range, see [START_REF] Galliou | Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments[END_REF]).

The second advantage, which is conceptually more important, is that it permits to consider actuation of non-piezoelectric material with the help of optomechanics. Some materials that show rather promising mechanical properties could therefore be investigated with this method, such as sapphire (Corundum, Al 2 O 3 ) (see [START_REF] Uchiyama | Mechanical quality factor of a cryogenic sapphire test mass for gravitational wave detectors[END_REF], [START_REF] Rowan | Investigation of mechanical loss factors of some candidate materials for the test masses of gravitational wave detectors[END_REF], [START_REF] Wang | High Q Miniature Sapphire Acoustic Resonator[END_REF] or more recently [START_REF] Bourhill | Precision Measurement of a low-loss Cylindrical Dumbbell-Shaped Sapphire Mechanical Oscillator using Radiation Pressure[END_REF]), silicon (see [START_REF] Nawrodt | High mechanical Q-factor measurements on silicon bulk samples[END_REF], [START_REF] Nietzsche | Cryogenic Q -factor measurement of optical substrates for optimization of gravitational wave detectors[END_REF] or [Schröter, 2008]) or calcium fluoride (see [Schröter, 2008]).

1.3.3/ FUNDAMENTAL PHYSICS

The very high quality factors previously reported in section 1.3.1 permits some fundamental physics applications.

As an example, [START_REF] Bushev | Testing of Quantum Gravity With Sub-Kilogram Acoustic Resonators[END_REF] has shown that very high quality factor Q permits to have a better numerical insight on upper bounds for quantum gravity's corrections to existing theory, therefore allowing finer testing for theory than previously reported.

Also directed towards a fundamental physics theory limits, a paper by [START_REF] Lo | Acoustic Tests of Lorentz Symmetry Using Quartz Oscillators[END_REF] shows that using a high Q quartz crystal resonator has also helped improving by 1-3 orders of magnitude previous bounds to Lorentz symmetry breaking. In fact, both these last articles even have a perspective for further improvements using even higher Q in cryogenic temperatures (in the same way this thesis work is expecting an improvement of stability for metrological applications based on the improvement of the mechanical quality factor Q, see previous section 1.3.1).

Another possible use for high Q quartz resonators is presented by [START_REF] Kotler | Hybrid quantum systems with trapped charged particles[END_REF], and consists in trapping an ion or an electron close to the quartz to couple the charged particle's motion to the quartz (because of its piezoelectricity) in order to transfer its quantum properties for Quantum Information Processing (QIP) applications.

In this introduction, we have seen the basics of oscillators and some relations about these systems. We also have seen a brief state state of the art of these oscillators of different nature, e.g. acoustical, dielectric, atomic. Within the group of acoustical resonatorsbased oscillators, quartz resonators have a particular status as their use is widely spread.

They have been shown, under certain circumstances, to display exceptional quality factors which allow for very good performances in terms of fractional frequency instability. This allows to expect Allan deviation floor in the order of some 10 -16. It is necessary to lead an experimental measurement to assess more accurately the integration time range within which these performances are realistically achievable. This goes beyond the scope of this thesis work.

We also have shown that a cableless actuation is preferable, through e.g. an optomechanical actuation. To this end, the immediate presence of a Fabry-Perot cavity within the quartz crystal resonator, due to its metalic electrodes, is an advantage. It therefore calls for a careful study of the optical properties of these optical cavities (see chapter 3) before assessing their use for optomechanical actuation (see chapter 4).

GENERAL REMINDERS

This chapter contains several short reminders and basic equations regarding the quartz' cuts and continuum mechanics' basic equations. A short description of the design of the quartz resonators we use is also given.

2.1/ QUARTZ CUT 2.1.1/ CUT FORMALISM Because quartz is anisotropic with trigonal symmetry 32, it can be cut along different directions of its crystalline structure to obtain different properties. There exists several IEEE (Institute of Electrical and Electronics Engineers) standards to define the piezoelectric properties and the crystalline cuts, where the main difference is the sign convention for the piezoelectric constants.

Throughout this thesis, we will adopt the convention from [IEEE, 1987]. Several cuts are shown in Fig. 2.1. The cuts are defined with the help of two main angles, ϕ and θ. When both angles are 0, the cut is a Y cut i.e. perpendicular to the Y axis (see Fig. 2.1b).

1.

The first angle ϕ is the angle of rotation around the Z axis, thus defining new axes X and Y (Z = Z). Note that 0 < ϕ < 30°.

2.

The second angle θ is the angle of rotation around the X axis, thus defining new axes Y and Z (X = X ). Note that -90°< θ < 90°.

Several cuts angles and main characteristics are listed in following form:

ij =    1 0 0 0 1 0 0 0 3    (2.1a) e ijk =    e 1 -e 1 0 e 4 0 0 0 0 0 0 -e 4 -e 1 0 0 0 0 0 0   
(2.1b)

C ijkl =        C 11 C 12 C 13 C 14 0 0 C 12 C 11 C 13 -C 14 0 0 C 13 C 13 C 33 0 0 0 C 14 -C 14 0 C 44 0 0 0 0 0 0 C 14 C 11 -C 12 2        (2.1c)
By default, these characteristics are expressed in the non-rotated Y cut. However, choosing another cut requires to rotate the characteristics. The way to do such a rotation is exposed in [Auld, 1973] p.74 or in [Bon, 2018] p.57. Taking the angles as before, we define the 3 × 3 matrix:

a ij =    cos(ϕ) sin(ϕ) 0 -cos(θ) sin(ϕ) cos(θ) cos(ϕ) sin(θ) sin(θ) sin(ϕ) -sin(θ) cos(ϕ) cos(θ)    (2.2)
As well as the 6 × 6 matrix: 5°30°TC at 4 K (see [Bon, 2018])

M =          a 2
Table 2.2: Table summing up some common quartz cuts and their main characteristics, taken from [Bon, 2018]. TC stands for "Temperature Compensated". The angles are defined as in the IEEE standard [IEEE, 1987]. Note that the cuts angles are defined within a certain tolerance, generally within 1°, as one adapts the exact angle to the desired result (e.g. workig temperature).

tensors defined in Eq. 2.1:

ij = a ij a T (2.4a) e ijk = ae ijk M T (2.4b) C ijkl = M C ijkl M T (2.4c)
This is exactly what we do with a python routine in Annex A in order to obtain the SC-cut characteristics from the non-rotated Y -cut characteristics, with the proper angles ϕ and θ.

2.2/ QUARTZ DESIGN

Earlier development and ground work concerning optomechanical coupling in a quartz crystal resonator in our group come from [Bon, 2018]. Indeed, as we have seen in section 1.3.2, one of the reasons why optomechanical coupling is particularly adapted is for avoiding noise from the thermal expansion of the cables. However, to that end, it is important that also the quartz crystal resonator be as insensitive as possible to thermal fluctuations. The quartz resonator is a priori sensitive to temperature for any given resonance mode, so that when looking at the frequency vs temperature curve, minimizing this effect implies to be at a local minimum (with null derivative). This happens for certain modes, and specifically at certain angles in the quartz cut in its crystalline structure. For example, the thickness shear (C) mode is temperature-compensated for the 3 rd overtone with an SC cut. See Table 2.2 for some quartz cut example with their main characteristic, and section 2.1 for a formal definition of the quartz cut and subsequent characteristics.

As shown in [Bon, 2018] (see Table 2.2), at cryogenic temperatures of around 4 K, a temperature-compensated cut was found for an X+5 quartz. Ultimately, this is therefore the cut we look to implement towards an ultrastable clock. However, production of (high quality factors) quartz crystal is not a trivial task, so that as a first approach to lightinduced mechanical oscilation (see part 4) we mostly use SC-cut quartz resonators which were commercially available from former company BVA industries.

The quartz crystal resonators we use throughout this thesis are typically with geometrical characteristics detailed in Fig. 2.2. As we shall see in section 3.1.3, these geometrical characteristics are compatible with optical use, and they also are compatible with energy trapping for mechanical resonance (see [START_REF] Stevens | An analysis of doubly rotated quartz resonators utilizing essentially thickness modes with transverse variation[END_REF]). Our theoretical approach to describe the dynamics of the quartz crystal throughout will mainly be based on continuum mechanics, for which some basic reminders and formulae are given in the next section.

2.3/ MECHANICAL EQUATIONS

In continuum mechanics, it is possible to express the equations governing the dynamic of the solid in a tensorial form. Following the notation and conventions of Royer in [Royer et al., 2000a] chapter 3, we can write the fundamental Equation Of Motion (EOM):

ρ d 2 u dt 2 = f vol (2.5)
where ρ is the material's mass density and f vol and u are the volumic forces applied and the displacement at each point, respectively.

We can separate the forces acting on the material as an instrinsic reaction force, following the (small) deformation of any solid, and a force caused by the possible presence external fields. We write, with the usual Einstein convention of summation over repeated index and where every small-letter index is for each spatial direction (i.e. i, j, k, l = 1, 2, 3):

f in i = dT in ij dx j (2.6) T in ij = C ijkl S kl + η ijkl dS kl dt (2.7)
f in i is the intrinsic reaction volumic force, T in ij is the stress tensor following a material deformation (in the linear regime, with small deformations), x j is the j th spatial coordinate. Eq. 2.7 is Hooke's law with losses (see [Royer et al., 2000a] Eq. 4.62), C ijkl and η ijkl are the stiffness and viscosity tensor which apply to the strain S kl and strain rate Ṡ kl .

As we shall see throughout this thesis, multiple external fields can be applied through different means and result in different reactions from within the solid. The main physical processes which give rise to different effects are thermal, mechanical and electrical (see [Nye, 1984], chapter 10). However, only some of the properties will be taken into account throughout this thesis at different times when they become sufficiently important to be included in the theoretical treatment.

Quartz crystal is not pyroelectric because of crystal symmetry (see [Nye, 1984], remark after Eq. 60 in chapter 10). This means that there is no primary relation effect between thermal and electrical field.

It is possible to follow energy conservation considerations in this piezoelectric thermoelasticity problem, in the absence of ultrafast-heating (see [START_REF] Li | Generalized piezoelectric thermoelasticity problems with strain rate and transient thermo-electromechanical responses analysis[END_REF]), and obtain all the interesting first order terms for the mechanical field and the electric displacement field (omitting the pyroelectric terms in virtue of the preceding remark):

     T ij = C E,T ijkl S kl + η ijkl ∂S kl ∂t -e T kij E k + β E ij θ D i = e E ijk S jk + S ij E j (2.8a) (2.8b)
where θ is the temperature increment, C E,T ijkl is the elastic tensor at constant electric and temperature field, e kij is the piezoelectric tensor and β E ij is the stress-temperature at constant electric field1 and S ij is the dielectric tensor at constant strain. The mechanical losses have been included in Eq. 2.8a.

Higher order effects can also be taken into account, which most notably include the radiation pressure and electrostrion (see section 4.2). These effects can be shown (see e.g. [START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF]) to be respectively written, in addition to the previously given total stress:

T es ij = - 0 2 ml p lkij kn E m E n (2.9a) T rp ij = D i E j - 1 2 D i E j δ ij + H i B j - 1 2 H i B j δ ij (2.9b)
where D i and E i designate the electric displacement and electric field, H i and B i the magnetic fields (H i = µ ik B k with µ ij the magnetic permability), ij the dielectric permittivity tensor, p ijkl is the elasto-optic tensor and δ ij is the kronecker delta. See more details in section 4.2. 

QUARTZ CRYSTAL RESONATOR USED AS AN OPTICAL CAVITY

In this chapter, we establish the basic descriptive framework for the quartz crystal resonator used as a Fabry-Perot optical cavity. To this end, we show the theoretical developments of both the ideal three-layers Fabry-Perot cavity and the absorptive mirrors cavity. We then proceed to an experimental study of these absorptive cavities, with a measurement campaign of the particular characteristics of the absorptive mirrors cavities with several depositions types and thicknesses. Finally, we give the description of a novel method to extract the refractive index from the deposited thin films.

3.1/ FABRY-PEROT CAVITY

3.1.1/ BIREFRINGENCE + MEASUREMENTS

Birefringence is defined as the property of a material to have a refractive index which depends on the incident light's polarization. Crystalline quartz is a birefringent material (see for example [START_REF] Shields | Dispersion of Birefringence of Quartz in the Near Infrared[END_REF]). It is a trigonal-symmetric birefringent material with symmetry 32 around the optical axis z (see for example [Rosenbaum, 1988] part 2.5, [Royer et al., 2000a] vol.1 part 2.2.3 or the IEEE standard on piezoelectricity [IEEE, 1987]) , which leads to different values for the refractive index n and the dielectric tensor . Fig. 3.1 illustrates these differences depending on the angle θ between the x 3 vector of the quartz cut and the z axis of the crystalline frame.

The most general way to express the refractive index along a specific direction consists in writing that if ê is the direction along which the field of interests is polarized, then the refractive index for a non-magnetic material1 is given by

n 2 d = i=3 i=1 j=3 j=1 e i e j ij (3.1)
with the relative dielectric tensor. In the case of the propagation direction being along the x 3 direction with an angle ψ from the Z-cut, the refractive index of the major axis yields (see Fig. 3.1):

n(ψ) = n 0 + ∆n sin 2 (ψ) (3.2)
where ∆n = n e -n 0 . Throughout this thesis however, the more common situation will be a propagation along the x 2 axis and an angle θ (in the double rotated cut2 ) with respect to the non-rotated Y-cut, which permits to write that in this case, the refractive index yields:

n(θ) = n e -∆n sin 2 (θ) (3.3) n e = 1.54 n 0 = 1.53 z n e x y n 0 n 0 (a) Non-rotated cut z n(ψ) ≈ n 0 + ∆n sin 2 (ψ) ψ n(ψ) n 0 x 1 x 2 x 3 (b) Rotated cut
Figure 3.1: Scheme of birefringence for quartz crystal with a beam propagating along x 3 , with the ellipsoid of indices in the case of a non-rotated cut with respect to the crystalline axes in Fig. 3.1a and with an angle ψ (with respect to the z axis, for a rotation aroud the x axis) in Fig. 3.1b. In Fig. 3.1a, the cartesian axis of the crystal cut x 1 , x 2 , x 3 and the crystalline frame x, y, z coincide. In Fig. 3.1b, they do not coincide and the quartz-cut frame has been indicated in light blue. The indicated ordinary and extraordinary refractive index values n 0 = 1.53 and n e = 1.54 are taken for optical wavelengths. See the most general formulation for the refractive index along any direction in Eq. 3.1. Note that the apparent anisotropy is greatly exagerated for visual clarity.

This has, of course, extensive influence on a Fabry-Perot cavity. Indeed, following Eq. 3.1, the polarization will define whether a particular frequency will indeed resonate or not, as the refractive index influences the optical path and therefore the overall phase conditions along propagation for a specific wavepacket (see Eq. 3.17, the resonance frequency is a multiple of the Free Spectral Range (FSR) which depends on n the refractive index). In the following, a specific linear polarization along a particular (ordinary or extraordinary) axis will therefore be considered.

3.1.2/ THREE LAYERS PLANAR CAVITY

3.1.2.1/ WAVES AMPLITUDES

Let us start by consering a typical plano-plano Fabry-Perot cavity in an isotropic nonmagnetic material without losses and with no alignment mismatch, as in Fig. 3.2. The

0 z E + 1 E - 1 E + 2 E - 2 E + 3 n 1 n 2 n 3 d d Figure 3
.2: Three layers optical cavity, with no entrance angle and therefore no misalignment. Each medium is represented by its refractive index n i (i = 1, 2, 3). The two black lines represent the media interfaces, which are separated by a distance d.

three media are therefore separated by two interfaces, and each medium is represented by its refractive index n. Let us represent the electric fields at each point by some copropagating and counter-propagating plane wave: ωt-kz) (3.4a)

E + i (z, t) = A i e i(
E - i (z, t) = A i e i(ωt+kz) (3.4b)
where A i is the amplitude of the i th electric field, k the wavevector for the field and z its position along the z axis (see Fig. 3.2).

Omitting the time dependance in the following equations, the conditions of electric field conservation at the interfaces are written:

E - 1 (0) = r 12 E + 1 (0) + t 21 E - 2 (0) (3.5a) E + 2 (0) = t 12 E + 1 (0) + r 21 E - 2 (0) (3.5b) E - 2 (d) = r 23 E + 2 (d) (3.5c) E + 3 (d) = t 23 E + 2 (d) (3.5d)
where where used the Fresnel coefficients:

r ij = n i -n j n i + n j the reflection coefficient (3.6a) t ij = 2n i n i + n j the transmission coefficient (3.6b)
at the interface between media i and j. The so called Stokes Relations relate the reflection and transmission coefficient at an interface:

r 2 12 + t 12 t 21 = 1 (3.7a) r 12 = -r 21 (3.7b)
Further developing and finding the expected amplitudes for the differents fields (see Fig. 3.2) requires to inject the field forms from Eqs. 3.4 in the boundary conditions equations in Eqs. 3.5:

A - 1 = r 12 A + 1 + t 21 r 23 e -2ikd A + 2 (3.8a) A + 2 = t 12 A + 1 + r 21 r 23 e -2ikd A + 2 (3.8b)
A - 2 e ikd = r 23 A + 2 e -ikd (3.8c)

A + 3 e -ikd = t 23 A + 2 e -ikd (3.8d)
Solving this system after some straightforward calculation, by replacing and expressing each amplitude in function of A + 1 , the input field (which is supposed known), yields:

A - 1 = r 12 + t 12 t 21 r 23 e -2ikd 1 -r 21 r 23 e -2ikd A + 1 (3.9a) A + 2 = t 12 1 -r 21 r 23 e -2ikd A + 1 (3.9b) A - 2 = t 12 r 23 e -2ikd 1 -r 21 r 23 e -2ikd A + 1 (3.9c) A + 3 = t 12 t 23 1 -r 21 r 23 e -2ikd A + 1 (3.9d)
Now, in order to find the well known formulas for the Fabry-Perot cavity, let us consider the more specific case where the media 1 and 3 are equal. In this case, the coefficients reduce to r ≡ r 12 = -r 21 and t ≡ t 12 and t ≡ t 21 . We can therefore rewrite Eqs. 3.9 with the use of the Stokes relations 3.7 and after a few simplifications the amplitudes can be written:

A - 1 = r 1 -e -2ikd 1 -r 2 e -2ikd A + 1 (3.10a) A + 2 = t 1 -r 2 e -2ikd A + 1 (3.10b) A - 2 = -tre -2ikd 1 -r 2 e -2ikd A + 1 (3.10c) A + 3 = tt 1 -r 2 e -2ikd A + 1 (3.10d) 3.1.2.2/ TRANSMITTED INTENSITY
Taking the square of Eq. 3.10d , we can find the transmitted intensity through the Fabry-Perot cavity:

I t (λ) ≡ I + 3 = A + 3 2 = T 2 I 1 1 + R 2 -2R cos(2kd) (3.11)
or, in order to write it in the more common form, note that tt = 1 Note that the reflectivity does not alter the maximum transmission peak, always equal to unity at resonance. In Eq. 3.13, kd = 2π λ 0 d so that here, the normalized cavity length is d = d λ 0 .

Airy peak form 3 :

I t (λ) = I 1 1 + m sin 2 (kd) (3.13)
where I t (I 1 ) is the transmitted (incoming) intensity and

m = 4R T 2 , R = r 2 , T = tt (3.14)
Fig. 3.3 illustrates what happens to the transmission lines for different values of reflectivity R = r 2 . We note the well known fact that increasing reflectivity sharpens the resonance peak, as well as it lowers the minimum of the transmission closer to 0 as R grows. In other words, the more reflective the mirrors, the lesser the light is able to pass through if the resonance condition is not met.

The transmission is maximum each time that the sin 2 (kd) in Eq. 3.13 cancels out, that is, each time the resonance condition is filled:

kd = p × π (3.15)
with p any integer number. This bring the condition to resonance in terms of the wavelength:

λ = 1 p × 2nd (3.16)
3 Note that near resonance, i.e. when d0 = p × λ/2 (see Eq. 3.16), if we shift slightly the cavity's length (or, equivalently, the wavelength) so that d = d0 + and if we notice that kd0 = 2π[2π], we can write the Airy peak in a Lorentzian form:

I res t (λ) = I1 1 + mπ 2 2 (λ/2) 2 (3.12)
Taking the dispersion relation k = ω c/n = n× ω c = n×k 0 with ω the angular frequency, n the refractive index, c n the speed of light in the medium and c the speed of light in vacuum, we can write that the difference in frequency between two consecutive resonances, also called the FSR, is:

n∆ω d c = π ∆ω = π c nd FSR = ∆ω 2π = c 2nd
(3.17)

In the case where a 1 mm thick quartz cavity, selecting n = 1.54, the FSR is calculated to be FSR ideal ≈ 97.33 GHz (3.18)

A way of visualizing the resonance phenomenon in terms of phase is sketched in Fig. 3.4. A wavepacket's evolutions is drawn against time. Let us suppose that n 2 < n 1 . At its arrival upon the interface, the wavepacket is partially reflected but acquires no specific phase from this reflection (if n 2 < n 1 , then r 12 = r > 0, see Eq. 3.19 for clarity.) We define the phase at this point as the reference, thus setting it to ϕ 0 = 0. The part which is transmitted also has the same phase. Along its path until the next interface in z = d, it acquires a phase ϕ 1 . Upon reflection, r 21 < 0 so that we write (using the same notations as in Fig. 3.2):

E - 2 (d) = r 21 E + 2 (d) E - 2 (d) = -r 12 E + 2 (d) E - 2 (d) = re iπ E + 2 (d) (3.19)
From Eq. 3.19, we see that the wavepacket acquires a π phase when reflected on a higher refractive index medium. The phase of the leaked exiting wavepacket is therefore ϕ 1 , whereas the reflected wavepacket has a phase ϕ 1 + π. Upon its return towards the entrance, it again acquires a ϕ 1 phase, now amounting to a total 2ϕ 1 + π upon arrival at the 2 → 1 interface. The leaked wavepacket now has a phase 2ϕ 1 + π and the reflected wavepacket a phase 2ϕ 1 +r r 2π. More generally, the wavepacket that has done n round-trips inside the cavity leaks out of the first interface with a phase 2nϕ 1 +π and out of the second interface with a phase (2n + 1)ϕ 1 . Therefore, the wavepacket that was first reflected off the interface upon entrance is in phase opposition with the wavepacket that got reflected inside the cavity (and all the following) if ϕ 1 = p × π, with p any natural number. On the other hand, the wavepackets that get transmitted through the second interface will all be in phase if the same condition is true.

3.1.2.3/ REFLECTED INTENSITY

In very much the same way as in the previous section 3. 1.2.2, one could calculate the reflected intensity through taking the squared modulus of the reflected amplitude in Eq. 3.10a. However, considering that the medium is lossless, it follows that the energy conservation imposes at al time that

I - 1 + I + 3 = I + 1 .
In other words, the incident inten- Let us stress that here, the evolution of a wavepacket evolving on the same straight line as in Fig. 3.2 is drawn against time, thus giving the false impression of a spatial propagation with an angle. The incident wavepacket gets partially reflected without an additional phase (we suppose n 1 > n 2 in this drawing), so that both the transmitted wavepacket and reflected wavepacket have a reference phase ϕ 0 = 0. Upon arrival on the next interface, the wavepacket now has a phase ϕ 1 and is transmitted with this phase, whereas it now acquires a π phaseshift upon reflection. It returns to its entrance point with a phase 2ϕ 1 + π. The wavepacket that leaks from the first interface is therefore in phase opposition with the first reflected beam if 2ϕ 1 = p × 2π, with p being a natural number. All of the wavepackets leaking from the second interface, on the other hand, are in phase if the same condition is true.

0 d z t ϕ 0 = 0 ϕ 1 n 1 n 2 < n 1 n 1 ϕ 1 + π 2ϕ 1 + r r 2π 2ϕ 1 + π 3ϕ 1
sity is split between the transmitted intensity and the reflected intensity in the stationnary regime4 . Therefore, it is simpler to refer to the (normalized) reflected intensity as

I r ≡ I - 1 = 1 -I t (3.20)
The maximum (minimum) of the transmission (reflection) obviously occur at the same frequency, as the conservation of energy dictates. See the illustration in Fig. 3.4.

3.1.2.4/ PEAK'S WIDTH

To be able to find the peak's width (either the transmitted or reflected peak), usually defined as the Full Width at Half Maximum (FWHM), it suffices to find for which frequencies the peak is at half its maximum. It is necessary to rewrite the transmitted intensity in function of the frequency. To this end, let us write some relations which will be useful. The speed of light, which we noted c, is known to be equal to c = λν, where λ is the wavelength and ν the frequency. As we have seen in Eq. 3.16, upon resonance, the distance between the two interfaces has to be a number of times (notes p here) the refractive index-corrected half wavelength, d = p × λ 2n (see Fig. 3.2). In the same way, the resonance frequency can also be written as ν = p × FSR. Therefore, the light velocity can be written

c n = λ n p × FSR c n =2d × FSR (3.21)
Once the relation 3.21 is obtained, expressing the transmitted intensity in Eq. 3.13 in terms of frequency is a matter or replacing kd by its frequency equivalent. This is done by using the dispersion relation for k = ω cn and replacing c n by its expression from Eq. 3.21 that has just been obtained. This amounts to:

I t (ω) = I 1 1 + m sin 2 ( ω 2FSR ) (3.22)
Now, finding the frequencies for which I t is half its maximum value means to find the frequencies for which the denominator of Eq. 3.13 is equal to 2:

1 = m sin 2 ω 2FSR ± 1 m = sin ω 2FSR ω ± ≈ ±2FSR 1 m ⇒ FWHM ≈ FSR π × T r (3.23)
where the approximation arcsin 1 m ≈ 1 m has been taken5 . Here, if we set R = 98.7% and T = 1.3% (which corresponds to the reflectivity and transmittivity as the interface quartz-Ag50nm with refractive index taken from [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF]), with the FSR that we previously calculated in 3.18, then the FWHM is approximately equal to 405 MHz. If we take R = 99.6% and T = 0.4%, then the FWHM is approximately 124 MHz. Note that the FWHM is inversely proportional to the average lifetime of photons inside the optical cavity.

3.1.2.5/ FINESSE OF THE CAVITY

Finesse in a Fabry-Perot is a useful quantity, which is oftentimes used to characterize a cavity. It is convenient to do so, as it does not depend on the geometrical properties, only on its reflective and transmissive properties (ignoring the absorption and diverse losses). It is defined as

F = FSR FWHM (3.24)
Taking into account Eq. 3.23, we can therefore write that the finesse is 6 :

F ≈ π r T (3.25)
It is often further simplified, in the case where the reflection is high (i.e. R ≈ r ≈ 1), to be F = π T . The finesse is also connected to the number of round-trips that a photon undergoes inside the opical cavity before (statistically) leaving it. Indeed, considering that the FWHM is simply the inverse of the lifetime of any individual photon, we can write:

F = τ 1/2 FSR = τ 1/2 × C n 2d = d mean 2d ⇒ F = N mean (3.26)
where we have noted C n = C/n the light velocity, τ 1/2 = 1 FWHM the lifetime, d mean the mean distance which is travelled by an indivual photon and N mean the (mean) number of round trips travalled by an individual photon.

3.1.2.6/ INTRACAVITY INTENSITY, AMPLIFICATION FACTOR

Let us calculate the intracavity intensity. At any point in the cavity, the intensity is defined as the square modulus of the amplitude. In the cavity, the amplitude in each point is constituted from both the propagating and counter-propagating electric field, leading to a total field 7 :

E in (z, t) = E + 2 (z, t) + E - 2 (z, t) (3.27a) = te iωt e -ikz -re ikz 1 -Re -2ikd E + 1 (3.27b)
We therefore define and calculate the ideal amplification factor, A ideal , as:

A ideal = I in I + 1 (3.28a) A ideal = |E in | 2 E + 1 2 (3.28b) A ideal = T (1 -r) 2 + 4r sin 2 (kz) (1 -R) 2 + 4R sin 2 (kd) (3.28c) ⇒ A max ideal = (1 + r) 2 t (3.28d)
6 This last expression is sometimes found as (and equal to) π √ m 2 . See Eq. 7.18-19 from [Steck, 2020]. 7 From Eq. 3.27b, it is possible to note that, in the limit where r ≈ 1, then e -ikz -

re ikz = (1 -r) cos(kz) + (1 + r)i sin(kz) ≈ (1 + r)i sin(kz).
were the passage from Eq. 3.28c to Eq. 3.28d was done by setting kd = p × π (which is the on-resonance condition, see Eq. 3.15) and setting kz = p × π + π 2 to maximize the numerator (i.e. finding a position z for which the intensity is maximum).

The intracavity normalized intensity (the amplification factor A) is represented against the position for an out-of-resonance case and a in-resonance case in Fig. 3.5. In this computation, R = 98.7% and T = 1.3% so that A ≈ 310. When the reflectivity is R = 99.6% and the transmission T = 0.4%, then the amplification is of about A ≈ 1130. In other words, the intensity inside the cavity is, at best, 310 (1130) times larger than the incoming intensity. Note that in the case where r ≈ 1, it is possible to relate the amplification factor to the Finesse by rewriting Eq. 3.28d with the help of the expression for the Finesse in Eq. 3.25: .5: An out-of-resonance (full line, left y axis) and in-resonance (dashed line, right y axis) plot of the normalized intracavity intensity against normalized position inside the cavity (also defined as the amplification factor A in Eq. 3.28c). The reflectivity is taken to be R = 98.7%, T = 1.3%.

A max ideal ≈ 4 π F ( 

3.1.3/ ABSORBING THIN-LAYER METALLIC MIRRORS

3.1.3.1/ INTRODUCTION

Following the ideal lossless Fabry-Perot cavity under study in section 3.1, the present section will focus on the study of a Fabry-Perot cavity with losses, namely, with the metal thin layers electrodes, which also constitute mirrors. The case with absorbing media is treated and developed theoretically in several articles by Monzón and colleagues [START_REF] Monzón | On the concept of absorption for a Fabry-Perot interferometer[END_REF]] [Monzón et al., 1992] [Monzón et al., 1991] [Monzón et al., 1995], and is illustrated on Fig. 3.6. [START_REF] Monzón | On the concept of absorption for a Fabry-Perot interferometer[END_REF]): Thin absorptive layers, constituting the mirrors, are deposited on some medium which is called the spacer. a is the entrance point of the system.

z b N 0 E + a a E - a θ 0 θ 0 d 1 N 1 d 2 N 2 d 3 N 3 z x x l z b E - b E + b θ 2 θ 2 θ 2 θ 2 E - c E + c c d θ 0 E + d N 0 Figure 3.6: Monzón model ([

3.1.3.2/ THEORETICAL DEVELOPMENT

3.1.3.2.1/ Electric field evolution

Let us start by defining the forward and backwardpropagating electric field at any point in this system by writing

E + (z) E -(z)
Considering that the entry point is named a and the exit point named d, it is possible to write the relation between the electric fields at these two point with the help of the scattering matrix, S:

E (+) a (z a ) E (-) a (z a ) = S 11 S 12 S 21 S 22 E (+) d (z d ) 0 (3.30)
In the case at hand, represented on Fig. 3.6, this scattering matrix S is written

S = I 01 L 1 I 12 L 2 I 23 L 3 I 30 (3.31)
where we introduced

I ij = 1 t ij 1 r ij r ij 1 (3.32a) L i = e iβ i 0 0 e -iβ i (3.32b)
Eq. 3.32a expresses the modification at an interface, and 3.32b introduces a (possibly complex) phase along the path in medium i. Their derivation are found in Ellipsometry and Polarized Light, section 4.6 [START_REF] Azzam | Ellipsometry and Polarized Light[END_REF]. In these last quantities, we made use of:

β i = 2π λ 0 ñi d i cos(θ i ) (3.33a) ñi = n i -in i (3.33b)
Eq. 3.33a expresses the phase acquired along the propagation in the medium with d i the i th layer's thickness, and Eq. 3.33b the complex index of refraction of medium i with r ij and t ij the corresponding Fresnel coefficients (defined just as in Eqs. 3.6).

The introduction of the complex refractive coefficient introduces the absorption. Indeed,

consider that if β ∈ C, then β = β -iβ . (with β = 2π λ 0 cos(θ i )n i d i and β = 2π λ 0 cos(θ i )n i d i )
. Let us take the example of points b and c, separated by a distance d 2 (see Fig. 3.6). The relationship between the fields at the two points can be written, using Eqs. 3.30 and 3.32b:

E (+) b E (-) b = e i(β -iβ ) 0 0 e -i(β -iβ ) E (+) c E (-) c E (+) b E (-) b =   e β E + c e iβ e -β E (-) c e -iβ   (3.34)
This means that when going through an absorptive medium, each electric field component acquires a phase β , as well as it is attenuated by a factor e -β8 .

3.1.3.2.2/ Transmitted intensity

The transmission coefficient for the system described above is simply the fraction of transmitted amplitude over incident amplitude, which, using Eq. 3.30, yields:

E + d E + a = 1 S 11 (3.35)
It is possible to calculate that Eq. 3.35 is written (see Eq. 3.1 from [START_REF] Monzón | On the concept of absorption for a Fabry-Perot interferometer[END_REF] or Eq. 2.11a from [START_REF] Monzón | Influence of coating thickness on the performance of a Fabry-Perot interferometer[END_REF]):

T F P = T 012 T 230 e -iβ 2 1 -R 210 R 230 e -2iβ 2 (3.36)
where β i is defined as in Eq. 3.33a and the following quantities were introduced:

T ijk = t ij t jk e -iβ j 1 + r ij r jk e -2iβ j (3.37a) R ijk = r ij + r jk e -i2β j 1 + r ij r jk e -2iβ j (3.37b)
These two quantities represent the transmitted (reflected) coefficients for material j stuck between two infinite plates of materials i and k. Note the similarity between these two coefficients and the derived amplitudes for reflected and transmitted fields in Eqs. 3.9 from the section about the three-layers non-absorptive Fabry-Perot (see 3.1.2.1).

To obtain the normalized transmitted intensity, it suffices to take the squared modulus of the amplitude in Eq. 3.36. To that end, let us rewrite Eq. 3.37b as:

R ijk = |R ijk |e i∆ ijk : (3.38)
The intensity can then be calculated to yield:

T F P = |T 012 T 230 | 2 1 + |R 210 R 230 | 2 -2|R 210 R 230 | cos (δ) (3.39) where δ = 2β 2 -∆ 210 -∆ 230 (3.40)
This phase δ (which is a real quantity because β 2 is real) represents the difference between the phase acquired along a return-trip in the central part of the cavity (see Fig. 3.6) and the phase acquired at both ends' reflections. These phases were trivially equal to 0 or π for the non-absorbing case, but might be more complicated here. Eq. 3.39 can also be written in the more common-looking form:

T F P = T max 1 1 + F sin 2 (δ/2) (3.41)
where we used

T max = |T 012 T 230 | 2 (1 -|R 210 R 230 |) 2 (3.42) F = 4|R 210 R 230 | (1 -|R 210 R 230 |) 2 (3.43)
Note the very close resemblance of coefficient F in Eq. 3.43 to the coefficient m in Eq. 3.14. Indeed, the finesse can be expressed in a very similar way to the non-absorptive three layers case (see footnote 6):

F ≈ π √ F 2 (3.44)
More importantly, we note that the form of the transmitted intensity for an absorptive system, in Eq. 3.41, is formally equivalent to the form derived for an ideal non-absorptive system from Eq. 3.13, i.e. it is, near resonance, a Lorentzian peak. This means that they have the same shape and that the absorption of the reflective layers does not alter the Airy nature of the transmitted intensity. Figure 3.7: Normalized transmitted intensity against wavelength shift for different material refractive indicess. The system is taken to be as in Fig. 2.2, with a 1 mm thick planoconvex quartz and 50 nm of silver deposited on each side, with a 1550 nm laser input. The refractive index for thin layers are taken from [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF], whereas the bulk value is taken from [McPeak et al., 2015a].

Some normalized transmitted intensities are represented on Fig. 3.7. They are all computed for a double 50 nm thin layer film of silver, with the refractive index taken with different values, corresponding to thin films and bulk. We observe, just as in the case of the ideal Fabry-Perot in section 3.1.2, that the FWHM change along with the refractive index: the less reflective, the broader the peak (see Eq. 3.23). Furthermore, the more absorptive the material, the more the peak is shifted towards shorter wavelength. Most importantly, the more reflective (see Eqs. 3.6) the material, the greater the transmitted intensity.

An important fact for the choice of deposition thickness is the study of finesse and total transmission as a function of the both mirrors' thicknesses. Such a study is readily lead by computing both quantities in one graph, as in Fig. 3.8. This figure shows that for a given finesse (transmission), the optimization of the transmission (finesse) is obtained for an equal deposition thickness for both mirrors. This lead the experimental choice of depositing mirrors equally thick on both sides of the quartz.

3.1.3.2.3/ Reflected intensity

The reflected amplitude can also be expressed from Eq. 3.30:

E - a E + a = S 21 S 11 (3.45)
Similar to the case from the simple Fabry-Perot cavity and to Eq. 3.9a, the reflected amplitude can be written9 : Note that for a given finesse, the maximum possible transmission is for d 1 = d 3 and vice versa. Which shows that the best choice to maximize the finesse (transmission) for a given transmission (finesse) is to make both mirrors equally thick.

R FP = R 012 1 -z 1 z 2 e -2iβ 2 1 -R 210 R 230 e -2iβ 2 (3.46)
where we have used the generalized Stokes relations:

T 012 T 210 -R 012 R 210 = z 1 (3.47a) R 210 = -z 2 R 012 (3.47b) z 1 = r 01 r 12 + e -2iβ 1 1 + r 01 r 12 e -2iβ 1 (3.47c) z 2 = r 12 + r 01 e -2iβ 1 r 01 + r 12 e -2iβ 1 (3.47d)
The reflected amplitude from Eq. 3.46 can be rewritten in the more convenient form (See Eq. 4.3 from [START_REF] Monzón | On the concept of absorption for a Fabry-Perot interferometer[END_REF]):

R FP = R 012 1 -ζ 210 R 230 e -2iβ 2 1 -R 210 R 230 e -2iβ 2 (3.48)
where the quantity ζ 210 was introduced:

ζ 210 = R 012 R 210 -T 012 T 210 R 012 ζ 210 = z 1 z 2 R 210 ζ 210 = 1 + r 21 r 10 e 2iβ 1 r 21 + r 10 e 2iβ 1 (3.49)
and, just as in Eq. 3.40, we also introduce the norm-argument notation of this quantity:

ζ 210 = |ζ 210 |e iΦ 210 (3.50)
In order to find the reflected normalized intensity, here too, as in Eq. 3.41, we take the squared modulus of the normalized reflected amplitude Eq. 3.48:

R FP = |R 012 | 2 1 + |ζ 210 R 230 | 2 -2|ζ 210 R 230 | cos(∆) 1 + |R 210 R 230 | 2 -2|R 210 R 230 | cos(δ) (3.51)
where we made use of the quantity ∆, defined as:

∆ = 2β 2 -Φ 210 -∆ 230 (3.52)
Much like δ in Eq. 3.40, ∆ is a phase difference. Even though Φ 210 doesn't have an immediate physical signification, it does account for the non-trivial difference in phase between the wavepacket reflected from the spacer (the part between the two mirrors) of the cavity and the counter-propagating wavepacket, coming out of the spacer (see Fig. 3.9).

Unlike in the ideal Fabry-Perot from section 3.1.2 and the phase equivalence between the transmitted and reflected peaks (see Fig. 3.4), transmitted and reflected peaks happen at different phase here, i.e. different wavelength or frequency. Furthermore, the reflected intensity peak is asymetric [START_REF] Giust | Asymmetrical properties of the optical reflection response of the Fabry-Pérot interferometer[END_REF], and is therefore no longer exactly an Airy function. This situation is illustrated on Fig. 3.10

There are three non-trivial situations (considering only the case where the first layer has a non-zero thickness and is not made of the same material as the layer 0 or 2, i.e. ñ1 ñ0 and ñ1 ñ2 ) for which Φ 210 = ∆ 210 , so that ∆ = δ and the reflected peak returns to being symmetrical and centered at the same wavelength (frequency) as the transmitted one. These three situations are (see [START_REF] Monzón | Reflected fringes in a Fabry-Perot interferometer with absorbing coatings[END_REF]):

1. When the first coating is very thick, T 012 T 210 → 0 so that ζ 210 → R 210 2.
When the thickness of the first coating is very thin, it is therefore nearly transparant so that the condition ∆ ≈ δ is met

When the first coating is actually transparent (non-absorptive)

The first situation (1) will not be of any practical interest for the study of metal thin layers optical cavities because it does not let any light pass through. The second situation (2) is practically unreachable. Indeed, looking at Fig. 3.11, the normalized reflection is plotted against wavelength shift and first mirror's thickness d 1 . The transmission, normalized to unity for visual convenience, is also plotted. Even at very small d 1 , the two peaks are shifted, thus showing that this situation will not be practically reached. The last situation (3) is of no interest for the study of metal thin layers mirrors, but does point to the possible alternative solutions for optomechanical coupling (see section 5).

z t N 1 N 2 N 3 -3β 2 + ∆ 230 + ∆ 210 -2β 2 +∆ 230 +∆ 210 -β 2 + ∆ 230 -2β 2 +∆ 230 -2β 2 + ∆ 230 ϕ 0 = 0 -β 2 -Φ 210 d 2 N 0 N 0 Figure 3
.9: Conceptual phase-matching drawing for a two absorptive mirrors cavity.

Considering only the first two iterations of the drawing allows to understand conceptually the difference in phase (wavelength/frequency) between the reflected and transmitted peaks. Contrary to the simple non-absorptive case in Fig. 3.4, the reflection of the wavepacket on interfaces does not impart a trivial 0 or π phase. This non-trivial phase is different at the lower exit of the spacer, where the second mirror starts (transmission), and at the upper exit (reflection), because the firstly reflected wavepacket's phase also depends on the intra-first-mirror dynamics trough the generalized Stokes relations. This amounts to a certain wavelength (or frequency) cancelling the transmitted phase

(3β 2 -∆ 210 -∆ 230 ) -β 2 = δ. The wavelength (frequency) cancelling the reflected phase -2β 2 + ∆ 230 -(-Φ 210 ) = ∆ is, in general,
different from the previous one.

3.1.3.2.4/ Absorption

We briefly introduce the absorption. This model only takes the absorption into account for losses, so that we can write the absorption as the difference between the total intensity and the reflected and transmitted intensity:

ĀFP = 1 -R FP -T FP (3.53)
The essential feature of the absorption, which derives from the particular phase upon reflection when the mirrors are absorbing (see Fig. 3.9) and the conservation of energy, is that the two mirrors do not absorb light equally. As shown by Monzón (see Eqs. 5.1 and 5.2 in [START_REF] Monzón | On the concept of absorption for a Fabry-Perot interferometer[END_REF]), the absorption in each mirror can be calculated by looking at [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF] for silver and [McPeak et al., 2015a] for aluminium. Note that the two peaks are slightly detuned in wavelength, with the reflection peak being centered at a longer wavelength. Note also that the reflected peak is slightly asymetrical. The two peaks in Fig. 3.10a are shifted by about 0.17 pm, which, for a 1550 nm laser, amounts to about 21.2 MHz. In Fig. 3.10b, they are shifted by about 2.03 pm, or approximately 253 MHz.

the difference between amplitudes before and after the mirror (in points a and b or points 

Ā1 =ñ 0 cos(θ 0 ) E + a 2 -E - a 2 + ñ2 cos(θ 2 ) E - b 2 -E + b 2 (3.54a) Ā2 =ñ 2 cos(θ 2 ) E + c 2 -E - c 2 -ñ0 cos(θ 0 ) E + d 2 (3.54b)
These equations can also be written:

Ā1 =1 -R FP -T FP ñ2 cos(θ 2 ) ñ0 cos(θ 0 ) × 1 -|R 230 | 2 |T 230 | 2 (3.54c) Ā2 =T FP ñ2 cos(θ 2 ) ñ0 cos(θ 0 ) × 1 -|R 230 | 2 |T 230 | 2 -T FP (3.54d)
Fig. 3.12 displays the difference in wavelength betweent the actual resonance at transmission and the peaks of absorption for the total absorption, the first mirror's absorption and the second mirror's absorption. The first mirror's absorption is centered on a different wavelength (frequency) than the transmission. In other words, just as the reflection, its maximum does not happen at the actual resonance.

3.1.3.3/ AMPLIFICATION FACTOR

In the same way as for the non-absorptive ideal Fabry-Perot cavity in section 3.1.2.6, it is possible to define the amplification factor for the cavity with absorbing mirrors described by Monzón. From the theoretical premises we detailed in the previous section, we now derive the amplification factor which will be of use for optomechanical coupling. Indeed, Ā2) mirror (right y-axis). Note that the first mirror has its maximum absorptance at a greater wavelength than the second one. This is another aspect of the phasematching presented in Fig. 3.9. The computation was made for a refractive index associated with 50 nm of silver.

because the optomechanical coupling depends on the photonic intensity, it is critical to have a knowledge of how much more light lives inside the cavity than what the incoming light provides. To this end, we write, just as in Eq. 3.28c, that the amplification factor is simply the intensity inside the cavity divided by the incoming intensity :

A = I in I + 1 (3.55)
The intensity inside the cavity is the squared amplitude inside the cavity. In the same way as in Eq. 3.27a, we note that this amplitude is the sum of the propagating and counterpropagating amplitude. In order to find these, let us start by calculating the amplitudes at point c in the cavity, located at the spacer-2 nd mirror's interface (see Fig. 3.6). This field is written, according to the method adopted in Eq. 3.30:

E + c (z c ) E - c (z c ) =I 23 L 3 I 30 E + d (z d ) 0 (3.56a) E + c (z c ) E - c (z c ) =    T FP T 230 E + a T FP R 230 T 230 E + a    (3.56b)
with T FP defined in Eq. 3.36.

Once this expression is obtained, the amplification factor is readily found by expressing the field in the point x with maximum amplitude. This amounts to propagating the field in point c to a point x with max amplitude and position z x so that z c -z x = x:

E + x (z x ) E - x (z x ) = L 2 (x) E + c (z c ) E - c (z c ) (3.57)
where we noted

L 2 (x) = e iβ 2 (x) 0 0 e -iβ 2 (x) (3.58a) β 2 (x) = 2π λ ñ2 cos(θ 2 )x (3.58b)
These two last equations, Eqs. 3.58, simply express the way the field evolves for a trip of length x instead of the whole layer's thickness d i as defined in Eqs. 3.32b and 3.33a. Let us express the field at point x, which will then be maximized in order to find A.

E x = E + x + E - x = T FP T 230 E + a e iβ 2 (x) 1 + R 230 e -2iβ 2 (x) (3.59)
In order to find the amplification factor we combine Eqs. 3.55 and 3.59:

A = |T FP | 2 |T 230 | 2 1 + |R 230 |e (2iβ 2 (x)+i∆ 230 ) 2 (3.60)
which, with x as the variable, is maximum for

2β 2 (x) = -∆ 230 [2π].
Then, A yields:

A(λ) = T FP (λ) (1 + |R 230 |) 2 |T 230 | 2 (3.61)
The maximum amplification factor we can get from a specific cavity is when the resonance condition is filled, i.e. when the transmitted intensity is maximized. Using Eq. 3.42, we finally write that the maximum amplification factor is: Note the resemblance between this last expression for the amplification factor and the expression given in section 3.1.2.6, which we remind here for convenience:

A = T max (1 + |R 230 |) 2 |T 230 | 2 (3.
A max ideal = (1 + r) 2 t (3.28d)
Identifying R 230 with r and T 230 with t, if T max = 1, then the two equations are equivalent. This last condition is almost verified when the reflectivity of the mirrors are high (see the visual aid of Fig. 3.3). For visual clarity, a figure summing up all interesting quantities (intracavity amplification factor A, absorption, transmission and reflection) against deposition thickness is presented in Fig. 3.14.

Although both situation are described by a similar framework, the introduction of the absorption decreases the intracavity amplification factor, primarily through the coefficient T max < 1. Indeed, in the ideal case, the normalized maximum transmission is always unity (see Eq. 3.13 and Fig. 3.3).

Furthermore, as Eq. 3.28d shows, the amplification factor in the ideal case is in principle growing infinitely as the reflectivity approaches unity, i.e. A max ideal → ∞ with r → 1. This behavior is very different from what is expected in the absorptive case, as Fig. 3.14 shows. It is apparent from the figure that as the reflectivity grows (with deposition thickness), the transmission decreases and the overall absorption reaches a peak before decreasing Figure 3.13: Computed amplification factor A against mirror thickness (both are taken to be equal), for different refractive indices. The refractive indices are taken constant over the range of thickness. Ag stands for the bulk index taken from [McPeak et al., 2015a] while the others are taken from [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF]. Note that every maximum happens for a slightly different mirror thickness, although they all lie in the 30 nm-40 nm region. again to 0. Likewise, the intracavity amplification factor reaches a peak before decreasing again, unlike the ideal case.

As a numerical example, the amplification factor expected with a mirror reflectivity of R = 98.7% (i.e. the expected reflectevity for a 50 nm silver deposition), the ideal amplification factor is expected to be A max ideal = 310 while the same coefficient with the absorptive silver thin films is calculated to be A = 24 (at 50 nm deposition thickness). This is a significant decrease, which calls for a deeper understanding of the optomechanical requirements (see section 4 for further details) in order to be able to comment on the possible impact this may have on optomechanical actuation feasability.

In this first part of the 3 rd chapter, we have reminded the theoretical developments for the ideal three-layers Fabry-Perot cavity, followed by a comparison with the theoretical developments for the absorptive mirrors version of the optical cavity, basing ourselves on an existing workframe [START_REF] Monzón | On the concept of absorption for a Fabry-Perot interferometer[END_REF] while adding some analysis, such as a visual phase-shift scheme for clarity of how the frequency shift happens, as well a brief analysis of the intracavity amplification factor A. The latter is necessary in order to estimate the optical power inside the optical cavity, which is of importance for optomechanical coupling.

We have highlighted the peculiar effects arising from the absorption of the mirrors with a modified FWHM and a frequency difference between the transmission and reflection peaks, which is of the order of several tens of megahertz for tens of nanometers of deposited metal. We have also noted that within the frame of quartz resonator-based optical cavity with a typical geometry as presented in Fig. 2.2 and a few tens of nanometers of deposited metal, it is impossible to rid oneself of the aforementioned peculiar effects.

The modified (broader) FWHM due to the absorption is of negative influence to optome- Computations are made with a constant refractive index corresponding to a 50 nm layer of silver. Note that the points where the curves cross are not significant because each curve has its own scale. chanical coupling, as an increased FWHM is synonymous to a decreased lifetime of the photons in the cavity, i.e. to a decreased finesse and ultimately of the amount of light trapped inside the cavity. The asymmetry of the reflection peak and the frequency shift ∆f , however, are not as clearly problematic as the increased FWHM could be. In the perspective of a Pound Drever-Hall stabilization scheme, however, the shift between the two peaks may pose an experimental difficulty, as the technique would need to be adapted. Indeed, this technique relies on the stabilization of the frequency around the reflection peak minimum which, in our case, is different from the frequency of the transmission maximum. The latter frequency is the proper resonance frequency, whereas the former is the fruit of an artifact due to the phase acquired by the light upon reflecting on the first film interface (see Fig. 3.9). Furthermore, stabilizing the frequency around the reflection minimum slightly worsens the light coupling in the Fabry-Perot cavity due to the shift with the actual resonance frequency, decreasing the amplification factor for a 50 nm silver cavity by about a factor 1 × 10 -3 . We conclude that although the frequency shift is not an immediate obstacle to light coupling in the optical cavity, it should be taken into consideration in the future developments towards an ultrastable clock, should be taken into consideration.

The absorptive feature of the coatings, on the other hand, significantly decreases the intracavity amplification factor. Indeed, the 50 nm silver thin film is calculated to display a reflectivity of approximately R = 98.7%, and as Fig. 3.5 and 3.13 show, the introduction of the absorption decreases this factor from A = 310 → 24.

Because the quartz resonator has displayed its best quality factors at 4 K, and because earlier literature has noted an improvement of the optical qualities of metals at low temperatures [START_REF] Bass | Optical Properties of Metals[END_REF], in the following, we proceed with the study of the behavior of the amplification factor at cryogenic temperature, in order to assess whether or not the expected change of optical properties can be beneficial for optomechanical coupling.

3.2/ EXPERIMENTAL STUDY OF THIN METAL LAYERS 3.2.1/ EXPERIMENTAL SETUP Because of our interest in the typical quartz resonator as a possible optomechanical coupling candidate, it is necessary to look at the optical properties of the electrodes to better grasp its subsequent coupling to mechanical features of the quartz itself. In particular, because the two electrodes face each other, they readily constitute a Fabry-Perot cavity, of whose properties we have given an overview in section 3.1.3.

As seen in the theoretical description from section 3.1.3, some interesting and specific effects arise from the absorption of the metallic thin layers constituting mirrors for our quartz-crystal Fabry-Perot cavities. In particular, the shift in phase-conditions for resonance and anti-resonance (hence wavelength/frequency shift, see Fig. 3.9) are one example, as well as a broadening of the optical peak's FWHM and increased losses by absorption, bringing along a worsening of the peaks' visibility in both reflection and transmission.

In this section, a general look at the experimental setup that is used for the measurement campaign (see [START_REF] Rosenziveig | Quartz Crystal Resonator Used as an Optical Fabry-Perot Cavity[END_REF]) of these optical properties of the Fabry-Perot cavity is presented, as well as the results with different types of deposition layers, under room temperature and cryogenic temperature. A discussion is also lead about the quality of these deposition layers.

3.2.1.1/ QUARTZ DESIGN

Although the typical quartz-crystal resonator used for time-reference purposes is deposited with a very thin layer of chromium (≈ 5 nm-10 nm) on top of which a rather large layer of gold is deposited (150 nm-200 nm), this does not permit to detect a significant optical signal for a device used as a Fabry-Perot cavity under these conditions. Therefore, an early interest was put in thinner and more reflective metallic layers, with gold and silver in particular, as we shall see in the section 3.2.2.2.2. These are indeed the most common reflective metallic layer deposited for commercially available optical mirrors (see for example [START_REF] Smith | Scan measurement of the nonlinear absorption of a thin gold film[END_REF] or [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF]).

We have used several types of quartz crystal resonators, with rather close geometrical characteristics. See Fig. 2.2 for a visual description of these typical characteristics. laser with a tunable power output, with range 0.1 mW-120 mW. We typically use it in order to get an experimental power incident onto the cavity in the range 2 mW-10 mW.

3.2.1.2/ OPTICAL

Its fiber output is plugged into a (fibered) optical isolator to prevent backwards travelling re-entry of light which might damage the laser. The output of which is then collimated through a lens and injected in free-space on the optical table, passing through a set of lenses in order to achieve the mode-matching for the Fabry-Perot cavity. This means that the Gaussian beam laser has a minimum radius (waist) at the entrance of the Fabry-Perot cavity, where the mirror is plane (i.e. infinite radius of curvature), and that it has an appropriate radius of curvature upon reaching the second mirror. It is possible to establish a condition for the waist, relating it to the radius of curvature and the distance from the the waist in the propagation axis:

w 0 = {R(z) -(z -z 0 )} λ 2 n 2 π 2 (z -z 0 ) 1/4 (3.63)
where R(z) is the radius of curvature at distance z along the propagation axis, z 0 is the waist position on the propagation axis, n is the refractive index and λ is the (vacuum) wavelength of the laser. In this case, by taking the refractive index of the quartz to be n = 1.53 and by having a 250 mm radius of curvature at 1 mm distance from the plane (infinite radius of curvature hence waist position) mirror and a 1550 nm laser imposes the condition that the waist be equal to

w 0 = 71.1 µm (3.64)
After ensuring the modematching of the Gaussiam beam laser, it passes through a 50/50 non-polarized Beam Splitter (BS). Only 50% of the laser power therefore passes through the BS, while the other 50% is blocked (represented by a cross on the scheme in Fig. 3.15). This is not a very common scheme for retrieving the reflected beam, see the text below and Fig. 3.16.The scheme presented here shows the critical advantage to be polarization-independent, at the cost of some optical power losses.

Indeed, there is an a priori uncertainty on the quartz crystal's fast and slow axes directions. In the typical scheme for retrieving the reflected beam (see footnote ??), the beam arrives on the mirror with a circular polarization. This does not permit a coupling with only one (slow or fast) axis of the quartz, which is birefringent (see Fig. 3.16a).

The quartz' fast and slow axes directions uncertainty as well as the need for the polarization to be linear upon arriving on the mirror leads to the scheme presented in Fig. 3.16b. The polarization is also sent linear onto the non-polarized beam splitter, so half of it goes through and is then rotated with a λ/2 waveplate in order to fit one of the two (fast or slow) axes of the quartz. On its way back, the beam, though of a different polarization, partially exits through the opposite port of the beam splitter and it also gets partially reflected through the last port, so we can retrieve the signal there, with the help of a photodiode. 3.16a: Illustration of why the typical reflection retrieval scheme described in footnote ?? does not work in our case. Indeed, the beam arrives with a circular polarization on the mirror, which is problematic if the goal is to be able to couple light inside the Fabry-Perot only along the fast or the slow axis of the quartz. Also, the orientation of the fast and slow axis is, in general, unknown and would therefore require for the quartz holder to permit rotation in order to hit the quartz with the right rotation, which is not entirely trivial to realize experimentally. Fig. 3.16b shows our scheme, which, at the cost of losing some optical power at the non-polarized beam splitter, permits to eliminate the polarization problem: a particular linear polarization is sent through the beam splitter, and is then rotated with a λ/2 waveplate. This permits to control the polarization of the beam incident on the quartz, and to adapt it to the fast or slow axis of the quartz, hence permitting coupling inside the Fabry-Perot to a particular axis. Furthermore, upon reflection, another half is then reflected through the other port of the beam splitter and retrieved for reflection analysis (not drawn on the figure). Note that a s-polarization is drawn, but it could be a p-polarization or even any linear polarization just the same.

oscilloscope and, through a python program of our design, are retrieved on the computer where a further python algorithm permits to to determine their shift in frequency and their width (FWHM) (see Fig. 3.19).

The quartz crystal is kept under vacuum inside the cryo chamber, although not necessarily put at cryogenic temperature. A Polaris mirror holder from Thorlabs has been adapted to welcome a BVA-like device (see chapter 1 for a description of the BVA), see Fig. 3.17 and Fig. 3.17b in particular. This is critical in several respects, but the main concern to be able to simply hold the quartz. Indeed, with the differential thermal dilations of the materials involved, it is not possible to simply hold the quartz crystal in the Thorlabs mount. As a matter of fact, doing so has led to the destruction of the quartz crystal, most probably because of radial contraction of the holder different than the quartz itself. It is therefore critical to be able to hold the quartz without radially constraining it (with anything else than quartz). Hence the solution of using a BVA structure, which presses on the quartz not radially but on its thickness with the same material. Figure 3.17: Fig. 3.17a: a BVA-like structure with a hole on the bottom and the top metallic holder to permit the optical beam to cross through. Fig. 3.17b: the mirror holder adapted to hold the BVA-like structure. Fig. 3.17c: the same part of the experiment, once the cryogenic cooler has been closed again and vacuum and has been made inside. The two long tubes going out of the main metallic structure permit to have the light pass through, as they have small portholes at the top of these tubes. Fig. 3.17d: the experimental setup as in Fig. 3.15, with the beam traced on the picture in order to follow the propagation.

3.2.2/ MEASUREMENTS

3.2.2.1/ RESULTS

The measurements are made in transmission with a photodiode PDA20CS(-EC) from Thorlabs, which permits to observe both the DC offset and AC coupling up to 10 MHz (in the 0 dB gain setting). In reflection, on the other hand, a 1611 photodiode from Newport is used, where the DC offset and AC coupling are in different outputs; however, the DC output does not start to (low-pass) filter the output until several hundreds of Hz. This means that with a slow enough scan of the wavelength, the DC output gives an accurate signal.

The Koheras AdjustiK TM can be tuned in wavelength through a temperature shift (built-in) that permits to shift the wavelength for a total range of about 1 nm, from approximately 1549.5 nm-1550.5 nm (which corresponds to approximately one Free Spectral Range of the Fabry-Perot cavity). It also accepts a high-voltage entry to "fine-tune" the wavelength piezoelectrically: a 0 V-200 V input permits to shift by about 27 pm over the whole range, i.e. about 0.135 pm V -1 . At 1550 nm central wavelength, this translates into a total frequency shift of about 3.369 GHz, i.e. about 16.85 MHz V -1 .

A function generator is connected to a Thorlabs HVA200 high-voltage amplifier to provide the entrance signal for the piezoelectric unit. A ramp-like signal is produced from the signal generator, in order to obtain a smooth sweep of the laser's wavelength over the optical resonance. By comparing the transmission and reflection temporal signals and using the ramp signal to provide a time-to-frequency reference, it is possible to determine the peaks' width and frequency shift, as seen in chapter 3.1.3. The signal are compared and taken on a Rohde & Schwarz RTE1104 from which the datapoints are retrieved.

In order to align the quartz properly and reach a fundamental TEM00 Gaussian mode, we first look at a visual signal with an image sensor G12242-0707W from Hamamatsu. We first scan the temperature (hence wavelength) of the laser while tweaking the alignment of the injection mirror until obtaining an alignment on any optical mode, and then proceed to go as high-up in wavelength as possible while tilting the input mirror in order to keep a signal with the objective of isolating a TEM00 mode. We then put the photodiode in front of the image sensor and maximize the power in this mode by fine-tuning both the injection angle and the quartz rotation angle, as well as by rotating the λ/2 waveplate at the entrance to hit at best along the fast or slow axis of the quartz, while checking that there are no superpositions of optical modes (see section 3.2.2.2.3)

The typical optical resonance signal is seeable on Fig. 3.18. In order to treat and retrieve the data we are interested in from these graphs, a Python program is designed to approximate with either a Lorentzian function or a parabolic function. The Lorentzian function is especially relevant for the transmission signal, which is predicted to be Lorentzian near resonance, just like a regular profile for a transmitted mode in a Fabry-Perot cavity (see Eq. 3.13 and Eq. 3.41). This permits to obtain both the position of the center of the peak, as well as the peak's width (FWHM). Indeed, as we have shown in Eq. 3.12, the Airy peak is locally equal to a Lorentzian near resonance. A Lorentzian profite has its FWHM directly reachable in its definition 10 , so that if we can fit a particular profile to a Lorentzian, 10 Indeed, a Lorentzian profile is written Figure 3.18: An indicative typical resonance signal, in this case a 50 nm silver film. Data was taken with the oscilloscope. The dissymetry of the reflection signal as well as the slight shift in frequency between the reflected and transmitted signal, as predicted in chapter 3.1.3, is apparent here. Note that the reflection signal is obtained with the Newport 1611 photodiode, which has a negative gain, hence the inverted reflection signal. its FWHM is immediately extractable.

f (x; x0, γ) = 1 πγ γ 2 (x -x0) 2 + γ 2 (3.65)
The reflection, on the other hand, is predicted to be dissymetrical and to have a non-Lorentzian shape, which makes it so that the Lorentzian profile fit is not well adapted. A parabolic fit (i.e. second-order polynomial type fit), however, gives a rather good approximation on the local extremum of the reflection curve. This fit is therefore accurately indicating the extremum position so it can further be converted into a frequency difference from the transmission extremum. A typical example of such fit and data extraction is visible in Fig. 3.19.

The experimental results from several deposition type and thickness are listed in Table 3.1. We mainly measured the FWHM, the frequency shift between the two peaks ∆f and the transmission and reflection coefficient. Note that we defined the reflection coefficient in a somewhat peculiar fashion, for we chose to define the reflection as:

R contrast = P R min P max R P R res P in P R res P max R
where P R res is the reflected optical power at resonance (i.e. when the transmission is maximum), P in is the incident optical power and P R min is the minimum reflected power, which, in virtue of the shift ∆f that was described earlier (see for example Fig. 3.18), is slightly different from the reflected power at resonance (i.e. when the transmission is maximum).

where x0 is the center of the peak and γ is the FWHM. Refractive indices are taken from [START_REF] Yakubovsky | Optical constants and structural properties of thin gold films[END_REF]][Ciesielski et al., 2017][McPeak et al., 2015b][Kischkat et al., 2012]. R contrast is defined as earlier in the main text. Only one polarization axis is studied here, as the results do not seem to be dependent on the polarization axis. The blue area is the zone of interest of the figure that we manually select in order to be able to apply a Lorentzian or parabolic fit on the relevant part of the graph, where some informations about the fit thereafter appear on the left-hand side of the image. We then use these informations to further treat and convert them properly into frequency shifts between the top (transmission) and the bottom (reflection) plots, as well as retrieving the level of each signal and the FWHM for the transmission plot. Note that here too, much like in Fig. f,3.18, the reflected signal comes from the 1611 Newport photodiode and therefore has a negative gain, explaining the reversed shape of the peak.

In other words, the way we defined the reflection is the minimum of the reflection over the maximum of the reflection. Because of absorption (and some transmission), this maximum of reflection is different from the total incident power. Moreover, the reflection minimum is slightly different from the reflection that we measure at optical resonance because of ∆f . We chose this definition because it does not depend directly on the losses and gives therefore a better comparison tool between the different deposited thicknesses.

T max is calibrated through a measurement of the incident optical power onto the quartz resonator with a powermeter, thus blocking the beam. The powermeter is then removed from the laser beam's path, allowing the laser beam to reach the quartz resonator and thus the optical resonance to take place, which output is then measured with a photodiode in order to assess the ratio of the output to the input, permitting the calculation of T max .

3.2.2.2/ DISCUSSION, UNCERTAINTIES

Several sources of errors and uncertainties have to be taken into account regarding the results presented in the last section. Some sources are linked with our method for aligning the Fabry-Perot cavity and its intrinsic properties of birefringence and it is discussed in the following section 3.2.2.2.3, while some other uncertainty originates in the way we treat the data, see following section 3.2.2.2.4. The deposition quality of the thin metallic films is also a broad source of disparity and uncertainty, as discussed in section 3.2.2.2.2. The particular discrepancy between theoretical and experimental values for the transmission and reflection are discussed in section 3.2.2.2.1.

3.2.2.2.1/ Discrepancy for R and T

As is apparent from the results Table 3.1, there are some discrepancies between the theoretically expected and measured reflection and transmission11 . As to investigate on this matter, two main leads are retained: the surface quality (see section 3.2.2.2.2) and the possible oxydation of the metallic layers.

The oxydation does not seem to immediately affect the results. Indeed, gold is known for being oxidation-resistant; yet, the samples with gold deposition do not seem to display significantly more conform results for T and R. From the oxidation-resistant property of gold, an attempt is made to coat a deposited silver layer (subject to oxidation) with a thin layer of gold; this does not improve significantly the conformity with theory either. Furthermore, because gold does not adhere on quartz just as well as e.g. silver, a doubt could subsist as to whether the poor results obtained with gold could be due to some surface tension buckling of some kind. This is in fact why a thin layer of chromium is usually deposited before gold is deposited. However, because chromium is a poor optical reflector (and was the reason for early and repeated failures at observing a Fabry-Perot resonance with typical quartz crystal resonators simply put and aligned with a laser beam), we attempt to coat the quartz with another material which could be more transparent to telecom wavelength and serve as an adherence layer: TiO 2 (see [START_REF] Kischkat | Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride[END_REF]). The results, in the last row of Table 3.1, are not particulary more encouraging than the rest. We therefore discard the oxidation as the sole source for discrepancy12 .

3.2.2.2.2/ Discussion about Deposition

An early interest was given to gold and silver, as they tend to be the best types of metallic deposition for achieving high reflections. However, following the rather high error in the transmitted and reflected levels signal with respect to the theoretically predicted levels, some attention is given to the quality of the depositions themselves as it may influence the quality of the mirrors (see [START_REF] Bartek | Quality Factor of Thin-Film Fabry-Perot Resonators: Dependence on Interface Roughness[END_REF]).

This particular subject has been studiedby [START_REF] Elie-Caille | Preparation of flat gold terraces for protein chip developments[END_REF], specifically on the influence of annealing and thermal treatment on the quality of the surface and on the formation of terraces. The study shows that some particular annealing time permits to reduce the typical roughness of the surface of the thin film of gold (which are on the few nanometer scale) and to create larger terraces to some Angström of roughness only. These island-like terraces are visible on Fig. 3.20, which are taken with a Scanning Electron Microscope (SEM).

Another effect that we observed mostly on silver is buckling. The formation of micrometer- scaled bubbles has been observed and studied in litterature (see [START_REF] Dahmane | Cloquage de films minces ductiles sur substrat rigide[END_REF], [START_REF] Coupeau | Evidence of plastic damage in thin films around buckling structures[END_REF] or [Hutchinson, 2001]).

However, both these effects which are related to the deposited layer's quality, and although they certainly influence the observed refractive index and the exact local thickness which the light goes through, they have not shown any clear-cut effect on the theoryexperiment discrepancy observed on transmission and reflexion levels in section 3.2.2.1.

Furthermore, the surface quality of the quartz itself has been, for some of the quartz resonators, polished by an external company to achieve a quartz surface quality of λ/4 (for our telecom wavelength λ = 1550 nm). This did not seem to induce any specific difference in the results. We therefore do not consider either the quartz' or the deposition surface quality further as the possible source for discrepancy. [ [START_REF] Billard | Pulvérisation cathodique magnétron. Techniques de l'ingénieur Traitements de surface des métaux par voie sèche et en milieu fondu, base documentaire[END_REF]. The sputtering happens for one side at a time, and it is therefore a source of discrepancy in deposited thickness between the two faces of the quartz. Although ellipsometric measurements realized after thin silver layer deposition have made it clear that the deposited layer is indeed in the desired range of e.g. 50 nm, direct mechanical measurement is technologically difficult. Indeed, the deposited layer is typically sputtered through a mechanical mask, making the deposited layer slightly thicker at the center than on the edges, so that there is no clear-cut thickness edge. In order to characterize the thickness, a large (≈ 300 nm) layer of material is deposited on a glass wafer to be able to measure it more precisely, so that a simple deduction is made as to how long the deposition should last.

From the analysis of some deposition images with SEM, the total uncertainty on deposited thickness is estimated to be, on average, of ±3 nm. This is done by depositing a thin metal layer onto a circular wafer which is then cut along a line passing through the center of this circular wafer. The SEM is then performed along the central thickness, which permits to measure the deposted layer.

Table shows the way the results for FWHM, ∆f , T max and R contrast can change when an error of 3 nm is made on the deposition thickness, giving an rough estimation of the tolerance and uncertainty of the computational predictions.

3.2.2.2.3/ Alignment, superposition of modes

As we discuss in section 3.1.1, quartz is a birefringent material. It therefore has two different preferred axes for light coupling, the fast and slow axis. Each has a different effective refractive index ñ, which means that the polarization of the incoming light influences the optical path that the beam travels. The wavelength where the phase-matching condition is filled is slightly different for each axis. This is what we observe on Fig. 3.21. The temperature (hence wavelength) of the laser is scanned in time. We see a succession of TEM modes (00, 01, etc) along each one of the two fast and slow axes of the quartz (two distinct measurements along each axis have been superimposed on the graph). These modes are, however, sometimes overlapping.

This creates a situation where two different modes, which have a priori different characteristics and may have different FWHM for example, may coexist at the same time if the polarization of the incoming beam is not exactly set along one axis only. This can affect the exactitude of our measurement. It is for this reason that we mention, in section 3.2.2.1, that we rotate the λ/2 waveplate to get a polarization which is as purely along one axis as possible, in order to eliminate coupling with the other axis. Since the TEM00 is the right-most (left-most) mode on each succession of modes when increasing (decreasing) the wavelength once set on a particular axis, it is convenient to select the most isolated TEM00, which, on Fig. 3.21, is the right-most mode along the 21°axis. Note that in some cases, different modes along a different axis can coexist at the same wavelength (time), showing how polarization of the incoming beam, if not set exactly onto a polarization (fast or slow) axis, can affect the measurements' exactitude. An SC cut quartz was used for this measurement, with a 50 nm silver deposition.

3.2.2.2.4/ Data treatment

As shown in Fig. 3.19, the way we retrieve the data is through a python program of our design where a visual window helps to select the zone of interest (ZOI) in which we perform a fit, either Lorentzian or parabolic. For the transmitted peak, we superimpose a Lorentzian distribution. From this fit, we directly retrieve the FWHM expressed in the same unit as the x axis, namely, time; we also retrieve other relevant informations like maximum and minimum of the peak, as well as its center's position. By deducing the center of the reflected peak with a very local parabolic fit (see Fig. 3.19), again in unit of time, we can multiply this ∆t by the scanning velocity, in MHz s -1 . This scanning velocity is related to the slope of the voltage applied to the piezo unit of our laser, so that we can deduce the total wavelength/frequency shift in this time ∆t (see Fig. 3.18). From this, we finally recover both the FWHM and the ∆f . This process, however, is prone to several mistakes and uncertainties, mostly userdependent and numerical. Indeed, slightly changing the exact width of the ZOI and its central position gives slightly different numerical results for both the FWHM and the cen-tral frequency timemark. Repeated measurements and attemps at extracting the exact timestamp for a particular file has lead to the conclusion that the distribution of error is approximately Gaussian, and has an approximate standard deviation of ±2% for the ∆f and of about 3 × 10 -3 for the FWHM. See for example the distribution of error for the timestamp of the transmitted peak's maximum in a particular datafile in Fig. 3 

3.2.2.3/ CRYOGENIC TEMPERATURE MEASUREMENTS

As well as with simple vacuum in the chamber left at room temperature, the cryogenerator can be also turned on to the set temperature of approximately 4.2 K. We conducted several measurements of the same type as before at this cryogenic temperature, with expected changes in the optical properties of the silver layers (see [START_REF] Bass | Optical Properties of Metals[END_REF]) hence the Fabry-Perot cavity.

These measurements were lead for several samples of deposited silver thin layers, of thickness 35 nm, 50 nm and 70 nm. The experimental process is fundamentally the same as before, with a necessary realignment of the optical beam to match the contracted and slightly misaligned cavity, as well as a new resonant wavelength setting. Of course, only an outside alignment procedure is possible, so that the only available parameter to tweak is the angle of the incident beam, not the quartz' angle13 .

A notable improvement on both the FWHM and the ∆f was observed, as they both decreased, indicating the reflectivity to be higher and the absorption to be lower. Some of the measurements are seeable in the following section 3.2.3.2.

3.2.3/ ñ EXTRACTOR

In order to achieve optomechanical coupling, we are primarily interested in the quantity of light present inside the quartz crystal; it is therefore of foremost importance to be able to derive information about this quantity with every possible mean. The theoretical description presented in section 3.1.3 and in particular the amplification factor A in Eq. 3.62 provided a way of calculating theoretically the light present inside the cavity; the whole description, however, relies on the knownledge of the particular absorptive refractive index ñ = n -in of the mirrors. We therefore now look into the possibility to retrieve this refractive index from experimental measurements.

As we have seen and presented in section 3.1.3, the absorptivity of the mirrors made from thin metallic layers bring some unfamiliar effects, among which a modified FWHM and a shift in frequency between the reflected and transmitted peaks, ∆f . It is intuitive and obvious from the derivation of equations 3.41 and 3.51 that the optical refractive index n influences the result of these equations, i.e. that the refractive index of the mirrors has an influence on the peaks themselves (see for example Fig. 3.7), be it on the FWHM or the exact location of the peak (hence their frequency shift).

A direct subsequent question is whether there is a bijective relationship between these quantities, and whether we could retrieve the refractive index ñ with experimental measurements of a particular cavity. As a matter of fact, this section shows that, to within certain limits and uncertainties, it is possible to draw such a relationship and hence retrieve the refractive index from the measurement of the FWHM and ∆f , the peaks' frequency shift [START_REF] Rosenziveig | Measurement of Refractive Index at Cryogenic Temperature of Absorptive Silver Thin Films Used as Reflectors in a Fabry-Perot Cavity[END_REF].

3.2.3.1/ METHODS

We start from the observation that we have expressed the refractive index in Eq. 3.33b as a two part index, ñ = n -in . These real and imaginary part of the refractive index can be considered as two independant quantities that we need to retrieve, hence implying we need two variables to retrieve them from. As we have seen from section 3.2.2.1, the total reflection and transmission are unreliable quantities to work with, as a large dispersion with predicted values are observed, and they are therefore not reliable quantities to try and work with.

Let us stress that a fundamental limitation to this method and its subsequent development is that the refractive index we extract is averaged over both the total active surface and over the two mirrors. Where therefore can obtain the refractive index of the equivalent layer equally deposited on both sides of the quartz. Let us note that all subsequent formulas have therefore been simplified from their versions in section 3.1.3 and include two layers which are deemed the same, so that there is no difference for any of the properties for the two mirrors.

We remind the expression of Eq. 3.39 for the transmitted intensity across a thin metallic layers absorptive mirrors:

T F P = T max 1 1 + F sin 2 (δ/2) (3.39)
To be able to go further, a capital observation is required: as written in Eq. 3.40:

δ = 2β 2 -2∆ 210 (3.40)
Although β 2 = 2π λ 0 ñ2 d has a simple expression (where ñ2 ∈ R here, because the quartz resonator is taken as non-absorptive), the other two quantities are in fact much more complicated and integrate the refractive indices of the metallic layer in their expressions (see section 3.1.3.2.1 for their definition). However, it is possible to show that they barely vary when λ varies, so that they almost constitute a constant in the equation over a wide range of wavelength, see Fig. 3.23a.

It is in fact rather natural that the evolution is very slow and only trivially dependent on the wavelength (for a constant refractive index): indeed, the quantity R 230 , as discussed in section 3.1.3.2.1, represents an ideal three-layers Fabry-Perot cavity (such as described in section 3.1.2) with a few-nanometers-thick metallic layer stuck between two infinite stacks of material 2 and 0 (namely quartz and air in this case). The layer being so thin, it is only marginally important how the wavelength changes, as it is so much longer than the layer itself. This is, of course, only true as long as the wavelength remains much longer. In this case, the quantity δ can be considered in the much simpler form, which depends in a very simple linear way on the laser's frequency:

δ = 4πf ñ2 d c + cst(ñ Ag ) (3.66)
where the constant is, in fact, constant with respect to the wavelength but does depend on the mirrors' refractive index. Further analysis will be greatly simplified by this fact.

3.2.3.1.1/ FWHM

The first variable we get interested in is the FWHM. In virtue of the transmitted intensity equation at the beginning of this section (Eq. 3.39) and the derivations leading to the FWHM for the ideal cavity case in Eq. 3.23, as well as the previous observation about the quantity δ, the FWHM for the absorptive case is derived by noting that the shift in frequency from resonance to half the peak's maximum is written:

F sin 2 ( ∆δ 2 ) = 1 ∆δ 2 ≈ 1 F
where we have written ∆δ instead of δ because this corresponds to a laser frequency shift from the δ = 0 condition of in-resonance frequency, and in the last equation the first ∆δ also designates a small shift. We can therefore write the final form of the FWHM, which is twice as much as the previous condition (twice the shift from δ = 0) by using Eq. 3.66:

FWHM ≈ c πñ 2 d 1 F (ñ Ag ) (3.67)
where the approximation sign holds for high enough reflectivity and in any interesting case for us (see footnote 5 from chapter 3.1) and where all the quantities are defined in the same way as in section 3.1.3.2.1. We have stressed the dependancy of F on the refractive index of the metallic layer by adding explicitly the dependance. There is no specific need to account for the transmission peak's exact central wavelength 14 in this case, as the equation for the intensity shows, it suffices to consider the shift from the δ = 0 on-resonance condition. Furthermore, althouh F has a complicated expression involving indeed the wavelength, it is possible to compute it against the wavelength and to show, in the same way as for ∆ 210 , that it is only marginally dependent on the wavelength, for much the same reason as before. See Fig. 3 

×10 -3 ∆ -δ (c) ∆ -δ Figure 3
.23: Fig. 3.23a: R 210 against wavelength shift. Computation made for a 35 nm silver layer with constant index of refraction. Because we consider both metallic layers identical (i.e. 1 st and 3 rd layers), this could just as well describe R 230 . Fig. 3.23b: F against wavelength. As before, the quantity F is only marginally dependent on the wavelength and it is therefore not necessary, once a particular wavelength is chosen, to account for the variations of F with varying wavelength for small variations. Fig. 3.23c: ∆ -δ is plotted against wavelength for a constant index of refraction. Once again, it is apparent that this quantity barely changes with changing wavelength over a rather large shift. Simulation is lead for a 35 nm of silver.

3.2.3.1.2/ ∆f

The second quantity we get interested in is the peaks' frequency shift, ∆f . We remind the expression for the reflected intensity, written in Eq. 3.51:

R FP = |R 012 | 2 1 + |ζ 210 R 210 | 2 -2|ζ 210 R 210 | cos(∆) 1 + |R 210 | 4 -2|R 210 | 2 cos(δ)
where everything is defined just as in section 3.1.3.2.3, and, in particular, ∆ is similar to δ and is defined in Eq. 3.52 as

∆ = 2β 2 -Φ 210 -∆ 210
Here, it is critical to be able to define the minimum of the reflected peak. In order to do this, we note that the difference between ∆ and δ yields:

∆ -δ = ∆ 210 -Φ 210 (3.68)
Once again, it greatly simplifies further calculations and considerations to note that this quantity too is almost wavelength-independent, as Fig. 3.23c shows. Indeed, with ∆ -δ being established as almost a constant with respect to wavelength, it is much easier to look for an optimum of Eq. 3.51, which we rewrite in a slightly different way:

R FP = |R 012 | 2 1 + |ζ 210 R 210 | 2 -2|ζ 210 R 210 | cos(δ + ) 1 + |R 210 | 4 -2|R 210 | 2 cos(δ) (3.69)
where we have written = ∆ -δ, a constant with respect to the wavelength which is added to the quantity δ.

If δ is considered as the variable and all the rest of the quantities are considered constant, so far in a pure mathematical reasoning, an optimum for the function exists, and has a rather complicated expression. It can be shown to yield:

δ R = -arccos B 4 (-2D -2) 2 E 2 sin 4 ( ) -4(A 2 E 2 -2ABDE cos( ) -2ABE cos( ) + 2AE 2 + B 2 D 2 + 2B 2 D + B 2 -2BDE cos( ) -2BE cos( ) + E 2 )(-A 2 E 2 + 2ABDE cos( ) + 2ABE cos( ) -2AE 2 -B 2 D 2 cos 2 ( ) -2B 2 D cos 2 ( ) + B 2 E 2 sin 2 ( ) -B 2 cos 2 ( ) + 2BDE cos( ) + 2BE cos( ) -E 2 ) 1 2 -B 2 (-2D -2)Esin 2 ( ) 2(A 2 E 2 -2ABDE cos( ) -2ABE cos( ) + 2AE 2 + B 2 D 2 + 2B 2 D + B 2 -2BDE cos( ) -2BE cos( ) + E 2 ) (3.70)
where

A = |ζ 210 R 210 | 2 , B = 2|ζ 210 R 210 |, D = |R 210 | 4 and E = 2|R 210 | 2 .
This gives us the δ for which the reflected amplitude is minimum. It is sufficient to describe the shift in frequency between the peaks, because δ = 0 corresponds to the transmitted intensity maximum, i.e. the intracavity resonance. Therefore, the only remaining step is to find the frequency shift between the δ = 0 condition and this last condition for δ in Eq. 3.70, which can easily be computed.

As we have seen earlier, δ is dependent on the frequency in a trivial linear way (to within a n dependent constant which has to be calculated, see Eq. 3.66). Because all of the other quantities involved in Eq. 3.69 are also almost wavelength-independent (for the same reason that was introduced in section 3.2.3.1.1), it is possible to consider the optimum with respect to the frequency in a very simple way: from the δ = 0 condition of transmission maximum to the δ = δ R condition, the only possible shift must come from β 2 , as we established from Eq. 3.66. This shift in δ is written:

∆δ = 4πñ 2 d ∆f c (3.71)
so that the formula we are looking for that describes the shift in frequency between the two peaks is when this shift equals δ R . This yields the form:

∆f = c δ R (ñ Ag ) 4πñ 2 d (3.72)
where we have, here too, added the dependance of δ R on the refractive index of the mirror n Ag to stress the fact that this is the relevant quantity in the equation.

3.2.3.1.3/ Computational method

Once the expressions for ∆f (Eq. 3.72) and the FWHM (Eq. 3.67) are obtained, we have two conditions to retrieve the actual refractive index. In fact, for each value of FWHM and ∆f , there exists a priori an infinite set of solutions values n and n , the real and imaginary part of the refractive index respectively, that verifies the condition.

We design a python program that rather simply computes the FWHM and the ∆f over a certain n and n span for a particular mirror thickness (considered to be equal on both sides). Because the computational 2D fold of FWHM and ∆f is not necessarily a plane over a large-enough n and n span, it is not possible to resolve it analytically by fitting it a to a plane and this method gives erroneous results. It is therefore more accurate and simpler to consider a calculatory solution of the type local numerical approximation. That is, a certain couple of n 0 and n 0 are considered a solution for the FWHM if they verify

FWHM(n, n ) -FWHM(n 0 , n 0 ) < η (3.73)
where η is small and is chosen arbitrarily. A visual representation of such a situation is presented in Fig. 3.24.

Each of these two a priori semi-infinite sets of n and n that are solutions (one for FWHM and the other for ∆f ) locally (i.e. over a small enough span) form a straight line. We fit them to a first order polynom (a line) and calculate their intersection point. This point is the solution of the problem and gives ñAg .

3.2.3.2/ RESULTS

We present here some results, basing ourselves on experimental values for ∆f and FWHM that were obtained in the same way as in section 3.2.2, for room and cryogenic temperature at 4.2 K (see section 3.2.2.3).

Some parameters are fixed for the calculations of the refractive indices, such as the quartz thickness d 2 = 1 mm, the quartz refractive index is taken to be ñ2 = 1.54. These are assumed to be exact and no uncertainty is taken into account regarding their value.

Some experimentally taken data for FWHM and ∆f for a particular deposition thickness and particular temperature have been processed both at room and cryo temperature to obtain their corresponding n and n , and tabulated with their uncertainty (see following A typical extraction of sets of n and n that verifies the experimental value conditions, for FWHM and ∆f . This produces a locally linear set of solutions, which are a priori different except for their intersection, which therefore gives the actual value of n Ag we are looking for. In this example, the theoretical values for a 35 nm of silver are taken from [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF], ñ = 0.2997 -10.7355j, which gives FWHM=1011 MHz and ∆f = 45 MHz. η = 1 × 10 -2 here (see Eq. 3.73). The program returns a fit value of ñ = 0.2999 -10.7384, which gives an error of approximately 7 × 10 -4 for n and 3 × 10 -4 for n . See section 3.2.3.3 for more details. Note that the calculation is lead with 128bits numpy floats in python, or else with 64bits float, erratic results are returned.

sections for details). The results are displayed in Table 3.3, and they are also represented graphically in Fig. 3.25.

It is not possible to measure the values at midway temperatures because the cryocooler can only be set to this temperature and the temperature quickly changes to rise when the cryocooler is turned off, so that there is no time to fine-tune the alignment and take the transmission and reflection measurement.

The measured values are processed, knowing the deposition thickness to obtain their corresponding n and k, and are tabulated with their respective uncertainty (see section 3.2.3.3 for details). Let us stress that each extracted value of n, n , FWHM and ∆f correspond to a single particular deposition. The values are detailed in Table 3.3. They are also graphically represented in Fig. 3.25, where it is possible to see that the measurements and method meet the ground requirement that it is possible to clearly separate between the room temperature and the cryo temperature results, as the wide spread (including uncertainty bars) between the two results shows.

We observe graphically from Fig. 3.25 that for each thickness, there is a tendency to decrease both the real and imaginary part of the refractive index at 4 K with respect to 300 K. The fact that the index varies with thickness is not surprising and is widely observed in the litterature [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF]] [Mayy et al., 2012] [Reddy et al., 2017]. Furthermore, we observe that the decrease is much more significant for the real part n (≈ 40 -60%) than for the imaginary part n (≈ 5 -8%). This is coherent with the tendency found in the litterature (with the data from e.g. [START_REF] Jayanti | Low-temperature enhancement of plasmonic performance in silver films[END_REF]).

Although the obtained values for n and n are different from the data found in the (scarce) litterature for thin films (e.g. [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF]), they highly depend on the deposition process and can very by as much as 60% for n and 8% for n (data from [START_REF] Jayanti | Low-temperature enhancement of plasmonic performance in silver films[END_REF], at 500 nm wavelength). Comparing values for some d ≈ 35 nm thin film at 594 nm from [START_REF] Mayy | Low temperature studies of surface plasmon polaritons in silver films[END_REF] and [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF] permits to see that even though the technique of deposition is evaporation in both cases, the variation is still large: ≈ 45% for n and ≈ 6% for n . Our values for 35 nm of silver, for example, vary by about 16% for n and 8% for n with respect to the values obtained in [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF], which we deem satisfactory in view of the aforementioned orders of magnitude.

The extraction method we use inherits an intrinsical imprecision from the fact that we consider the two mirrors as perfectly equal. Incidentally, we also consider the mean refractive index over the whole surface that the light acts upon. We are therefore only able to extract the mean refractive index, averaged over the whole surface and over the two mirrors. Note that this is inherent to any optical detection method for the refractive index, e.g. ellipsometry. The size of the laser beam is 71 µm at the waist, which is small with respect to the typically millimetric beam size in ellipsometry.

This means that the only accessed value for the equivalent refractive index of the thin films is for this particular wavelength. However, the method we use can easily be extended to longer or shorter monochromatic wavelength, as long as two conditions are met: Firstly, a fundamental requirement is to be able to sweep the frequency of the source over the resonance gain to observe any resonance curve. This means that the source's spectral width should be sharper than the Fabry-Perot resonance's spectral width. Second, no intra-silver-layer resonance shoud be observed. The theoretical limit for this to happen is when d = p × λ/2, with p any natural number, i.e. deep UV light in this case.

The evolution of the optical properties at 4 K go in the desired direction, i.e. become less absorptive and more reflective. This is coherent with the litterature [Bass et al., 1995] [Smith et al., 1995]. For example, the Fabry-Perot cavity with 35 nm of silver on quartz has a (theoretical) optical finesse of 80 at room temperature, which grows up to 100 at 4 K. The maximum transmission is almost doubled, from 1% at room temperature to 1.8% at 4 K. The contrast of the reflection (i.e. 1 -R min /R max ) goes from 18% at room temperature to 65% at 4 K. The maximum absorption goes from 50% at room temperature to 40% at 4 K.

3.2.3.3/ UNCERTAINTIES

First and foremost, we stress that this method is used and is useful for our particular experimental conditions and limitations (such as a systematic interest and deposition of two-layers, experimental difficulty to vary the angle of incidence which is characteristic of the ellipsometric method, see section 3.2.3.4). In the following sections, we discuss different types of sources for error and uncertainty. We then perform a Monte-Carlo statistical analysis in section 3.2.3.3.5 to be able to account for the error bars displayed in the previous result section 3. of computations of n and n with their uncertainty: in bold green (first in order of appearance), the uncertainty taking into account the deposition thickness uncertainty (see table 3.6); in italic orange (second in order of appearance), the uncertainty without taking into account the uncertainty on the deposition thickness (see table 3.7 and the discussion in section 3.2.3.3.5). Each of these values is extracted from a single particular deposition and its experimental values of FWHM and ∆f (last columns), with the first value appearing in red being the 300 K value, whereas the value in blue is the 4 K value. Note that the values of FWHM and ∆f here are different from those of Table 3.1, as they concern different metal deposition runs. 3.3. The red color (right-most points of the graph) is used for the 300 K points, whereas the blue color (leftmost points of the graph) is used for the 4 K points. The error bars including the thickness uncertainty (see Table 3.6 and the red error bars displayed in the results Table 3.3) are taken here.

3.2.3.3.1/ Intrinsical and Numerical

We start by stressing that this extraction method inherits an intrinsical imprecision from the fact that we consider the two mirrors as perfectly equal, as well as incidentally considering the mean refractive index over the whole surface that the light acts upon. We therefore only are able to extract the mean refractive index, averaged over the whole surface and over the two mirrors.

We verify the numerical error which is intrinsic to the method, and whereas it is good enough, by inputing a FWHM and ∆f which are known for a particular thickness. This is what is shown in Table 3.4, where we use data taken for silver thin films from [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF]. From these values of n and n , displayed in column 1 and 2, we calculate by two different methods the corresponding FWHM and ∆f , displayed in columns 3 and 4: one is the method described above in section 3.2.3.1 (see Eqs. 3.67 and 3.72). The other is an iterative numerical method, looking for optima of transmission and reflection peaks, which is therefore less precise. They agree, however, to within 2 × 10 -3 with a million iteration points for the iterative method; this varies depending on the wavelength which is spanned. We conclude that although this method is not as good as the previous one, it is useful indeed in confirming the displayed FWHM and ∆f results for a particular set of n and n .

These FWHM and ∆f are used to feed the program, out of which columns 5 and 6 are filled. Finally, columns 7 and 8 correspond to the relative error made between the program output and the original value we started from. Note that these errors and all extracted set of n 0 and n 0 (solutions of the problem) depend slightly on the span of n and n we allow when running the program. This is easily explained by the quality of the local linear fit, once intersection points are found between the computed surface of FWHM and ∆f and the actual experimental value (see Fig. 3.24). For example, for a 50 nm silver layer, with refractive index ñ = 0.2522 -10.8507j, allowing n to be spanned -3 for n and 7 × 10 -4 for n . Allowing for 0.07 < n < 0.32 and 10 < n < 12, however, increases this error to 3.9 × 10 -3 for n and 8 × 10 -4 for n .

Note also that the calculations are lead with numpy 128bit floats. This is of importance, as if regular 64bit floats were used instead, rounding errors would make ∆f unusable for high enough thickness (starting at around 50 nm). See for example Fig. 3 Figure 3.26: Rounding errors have a dramatic effect when increasing the thickness, in particular because of the presence of an arccos in Eq. 3.70 which is very sensitive to rounding errors. This is the reason why numpy 128 bits floats are required for calculating properly the intersection points. The calculation was made for a 65 nm silver layer.

Another source of error we classify as numerical comes from the errors described in earlier experimental section 3.2.2.2.4, namely, the numerical extraction of experimental FWHM and ∆f from the transmission and reflexion curves, inducing errors on these values hence subsequently influencing the extracted set of n and n . We estimated the error on ∆f to be of the order ±2% and the error on FWHM to be on the order of 3 × 10 -3 . Upper Bound n 9.2% 5.6% 4.3% 3.6% n 7.5% 4.6% 3.1% 2.2%

Lower Bound n 7.9% 6.7% 4.4% 3.7% n 9.2% 5.4% 3.4% 2.4%

Table 3.5: Table of errors on thickness, with an uncertainty of ±3 pm. The upper bound means we calculated the set of solutions n 0 and n 0 for a certain set of FWHM and ∆f with a thickness of x + 3 nm, whereas the lower bound is the opposite.

In the case of a 50 nm layer with characteristic values as in table 3.4, this leads to an estimated higher bound (i.e. error when the ∆f and FWHM are both taken higher than their actual value) for this error of 4.3% for n and 1.1% for n . The lower bound, on the other hand, is estimated to be of 5.1% for n and 1.3% for n .

3.2.3.3.2/ Optical alignment

The error made from each different optical alignment, i.e. each different realization of the alignment protocol, is estimated to be on the order of ±5% for ∆f and ±1% for FWHM. We attribute this shift to the fact that the waist is of 71 µm, so that any small change of alignment will probe a different region of the silver layer, hence giving a slighly different averaged index of refraction. Changing the optical alignment procedure from one polarization axis (fast or slow) to the other on the QR does not modify the results significatively more than any renewal of the optical alignment procedure.

Let us stress that one of the requirements that leads to the use of this particular technique is the experimental difficulty to vary the angle of incidence on the quartz by more than 2°, so that any optical angular misalignment is contained within a fraction of this quantity.

Once again, taking an example with the 50 nm thick silver layer, this leads to an upper bound error (defined as in the previous paragraph) of 4.5% for n and 1% for n . The lower bound, on the other hand, is calculated to be 5.3% for n and 1.1% for n . When calculated for 35 nm and 65 nm, the numbers do not change dramatically and stay in the same order of magnitude.

3.2.3.3.3/ Deposition thickness

The deposition thickness uncertainty is estimated to be ±3 nm.

This fixed uncertainty incidentally implies that it weighs more on the smaller thicknesses. For example, 3 nm represents 15% of a 20 nm layer, whereas it represented only 4% of a 65 nm layer. It is therefore rather natural that this changes much more dramatically the results for thinner deposited layers. The results are displayed in table 3.5.

Note that the thickness uncertainty, however, has a particular status within the accounted errors. Indeed, although the general uncertainty on the measurement remains, it is irrelevant when comparing the cryogenic values to the room temperature values. When a particular extraction is made with and particular thickness decided upon, the error made on this measurement with respect to its true value (for which we would need the true exact value for thickness) has no consequence on the error bar when comparing the cryogenic value against the room temperature one, as we make the same mistake over its thickness too (when neglecting the difference in thermal expansion and taking an average uncertainty, as described in section 3.2.3.3.4).

3.2.3.3.4/ Thickness at cryogenic temperature Thermal expansion and contraction

is a phenomenon which is mostly known and measured for bulk materials [McLean, 1969], and it does not change much with the heat treatment (annealing) or deposition conditions [START_REF] Marquardt | Cryogenic Material Properties Database[END_REF]. However, the thin-film Coefficients of Thermal Expansion (CTE) are shown to vary from their bulk counterpart (see [START_REF] Chen | Effect of temperature gradient on simultaneously experimental determination of thermal expansion coefficients and elastic modulus of thin film materials[END_REF], [START_REF] Fang | On the thermal expansion coefficients of thin films[END_REF] or [START_REF]Coefficient of thermal expansion measurements for freestanding nanocrystalline ultra-thin gold films[END_REF]), so that the thickness is not only altered by the temperature, but it is altered in a different pattern than we are able to calculate due to lack of available data on thermal expansion for silver thin films.

For the needs of calculating an approximative total contraction between room temperature and cryogenic temperature, we have used the integrated CTEs over the whole range of temperature. As the thermal expansion changes with temperature, it is not possible to chose only one CTE over the whole range; it is, however, possible to write the total contraction coefficient as the integral over the range of the relevant temperatures:

α tot 300K-4K = - 300K 4K α(T) dT (3.74)
Unfortunately, to the best of our knowledge, there is no publication where the coefficients for silver have been measured over the wide range of temperature we are interested in (4 K-300 K), so that we have aggregated coefficients from different publications: from 2.4 K to 29.6 K, we used the values from [START_REF] White | Thermal expansion of copper, silver, and gold at low temperatures[END_REF]; from 32.5 K to 95 K, we used the values from [START_REF] Fraser | The Coefficient of Thermal Expansion of Various Cubic Metals Below 100 °K[END_REF]; and finally from 100 K to 270 K, we used the values from [START_REF] Waterhouse | The interferometric measurement of the thermal expansion of silver and palladium at low temperatures[END_REF].

In order to better integrate these values to calculate the total contraction between 300 K and 4 K, the values has been divided into two series, which each has been fitted to a 5 th power polynomial fit. The litterature values and the fit values are visible on Fig. 3.27 (note that the values from 270 K to 300 K are extrapolated from the previous ones). This leads to a raw total contraction coefficient (i.e. without taking the thin-layer nature of our sample) of:

α tot 300K-4K = 4.26 × 10 -3 (3.75)
Fang [START_REF] Fang | On the thermal expansion coefficients of thin films[END_REF], however, shows that the thin film bevahior is rather different and the order of magnitude of change in CTE is of about a factor 2. The total thickness of the cryocooled thin silver layer can be estimated to be roughly comprised between 99.43% and 99.78% of the original thickness:

d 4K Ag ≈ 0.9943 -0.9978 × d 300K Ag (3.76)
Including the original uncertainty on the deposited thickness as well as the contraction uncertainty, the total uncertainty on the thickness at cryogenic temperature yields:

∆d 4K =∆d 300K + ∆α tot d 300K + α tot ∆d 300K (3.77)
that is to say, for a 50 nm thick layer ∆d 4K ≈3 nm + 7 × 10 -2 nm ≈ 3 nm which can be essentially identified with the uncertainty of the deposited layer itself, so that we discard it in the following. [START_REF] White | Thermal expansion of copper, silver, and gold at low temperatures[END_REF], [START_REF] Fraser | The Coefficient of Thermal Expansion of Various Cubic Metals Below 100 °K[END_REF] and [START_REF] Waterhouse | The interferometric measurement of the thermal expansion of silver and palladium at low temperatures[END_REF]. Values from 270 K onwards are extrapolated from the previous fit.

3.2.3.3.5/ Statistical analysis

In order to analyze the propagation of errors on the different parameters we have discussed throughout this session, we perform a Monte-Carlo type analysis. Because there is no evident analytical dependence of the extracted n and n on the different variables we feed the program, the easiest to obtain an estimation of the total error made on the extracted set of values for n and n is to run the extraction program many times with slightly different values of FWHM, ∆f and thickness d.

We evaluate the error on the FWHM and ∆f to be distributed in a Gaussian fashion, namely following a so-called normal distribution, by repeating many times the central value numerical extraction as described in section 3.2.3.3.1. The amplitude of the error was already reported in the previous sections.

The error on the thickness deposition, on the other hand, is not directly measurable. Mostly because measuring a statistical error distribution on such deposition would require a large amount of runs and proper means of measuring the exact deposited thickness, none of which we possess. By using the central limit theorem, however, it is possible to estimate that all the possible human errors and the machine imprecisions and errors would lead to another normal (Gaussian) distribution. The amplitude of which we discussed earlier as well, as is taken to be always ±3 nm.

Once those different sources of uncertainty are taken into account, we run the extraction program numerous times, by varying the input FWHM, ∆f and thickness d following a normal distribution, each centered on their theoretical values and with a deviation given by the previously discussed values: we took a deviation of 2 nm for the thickness deposition, of 4% for ∆f and of 7 × 10 -3 for FWHM. These values are selected so that the returned value from their respective normal distribution barely ever exceeds the nominal error value that we set in the previous sections 15 . An example of a distribution obtained by this mean is presented in Fig. 3.28 The calculations is lead for 35 nm, 50 nm and 65 nm. The results 35nm 50nm 65nm error on central value n 9.9 × 10 -3 8 × 10 -5 5.4 × 10 -4 n 7.6 × 10 -3 7 × 10 -4 6.9 × 10 -4 deviation n 7.1% 6.1% 5.5% n 3.4% 2.7% 2.5% Figure 3.28: Monte-Carlo-type method to evaluate the error on n and n for a 50 nm silver layer, taking into account the uncertainties, all of them following a normal distribution around their expected value: on thickness d (deviation ±2 pm), FWHM (deviation ±7 × 10 -3 ) and ∆f (deviation ±4%). The gaussian fit is rather good and gives a typical deviation of about 6.1% on n and 2.7% on n , with central values for n and n equal to their nominal values to within 1 × 10 -5 for n and 7 × 10 -4 for n (see Table 3.6). Graphs is made with 500 bins on 22650 points.

These error bars, however, account for the uncertainty of the thickness, which is useful when treating the total uncertainty of the claimed values (within the intriscal bounds discussed in section 3.2.3.3.1) but lose their interest when treating the relative uncertainty between the room temperature and cryogenic values. The same systematic error on the thickness is made between room temperature and cryogenic temperature. The uncertainty is therefore evaluated without the thickness uncertainty and is presented in Table 3.7.

3.2.3.4/ CONTEXT: COMPARISON WITH OTHER METHODS

There are other methods to obtain the refractive index for a single layer. In particular, the most used and most widespread is the ellipsometric method [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF] 35nm 50nm 65nm error on central value n 2.4 × 10 -3 3.7 × 10 -3 2 × 10 -3 n 6.9 × 10 -4 7.6 × 10 -4 5.5 × 10 -5 deviation n 5.8% 5.3% 4.9% n 1.2% 1.5% 1.9%

Table 3.7: Same as Table 3.6, except that the uncertainty on thickness has not been taken into account here for the reasons explained in the main text of section 3.2.3.3.5.

[ [START_REF] Weber | Optical constants of graphene measured by spectroscopic ellipsometry[END_REF]] [Yang et al., 2015] [Jayanti et al., 2015]. It relies on incident light at an angle, however, which is problematic in our case as the setup gives a vey small angular freedom (about 2°). Some other method rely only on the reflectance spectrum [START_REF] Lévêque | Determination of optical constants of thin film from reflectance spectra[END_REF].

As mentioned, this measurement method can only extract an average refractive index. It is averaged over both the illuminated surface, and over the both mirrors, so that we obtain the equivalent refractive index, i.e. the would-be refractive index of two identical layers deposited on both sides. Note that the index is always averaged over the illuminated surface, which, in our case, is rather small (71 µm), as compared to the millimetric spot size of a typical ellipsometry measurement. Furthermore, like all other methods, our method inherits the refractive index -thickness inseparability, because light ultimately is subject to optical path (i.e. refractive index balanced distance), not absolute path.

At any rate, it is possible to establish that some errors are of the same nature as when using ellipsometry (e.g. angle of incidence, wavelength errors, see [Tompkins et al., 2005]).

In this second part of the Chapter 3, we have confirmed the ability of the model presented in section 3.1 to describe the experimental behavior of metallic coated optical resonators. We lead here a novel systematic measurement campaign of several metal depositions onto the quartz resonator, both at room temperature and cryogenic temperature. We seek to establish the possible improvements that the cryogenic temperature can bring to reflectivity and absorption of the deposited thin films mirrors towards achieving optomechanics. The experimental results are in good agreement with Literature to pick, reflectivity-wide, silver as the best candidate.

Discrepancies were obtained between the theoretically predicted values and the experimentally measured values for several observables (e.g. the total transmitted power, the FWHM, reflected power ratio), which we attribute to the different sources of errors both on the measurement and data treatment as well as the deposition uncertainty. This is not necessarily problematic for the light coupling itself, as a measurement of the FWHM and the peaks' frequency shift ∆f suffice to characterize the mirrors.

Indeed, we have developped a novel way of extracting the refractive index ñ from the measurement of the specific FWHM and ∆f inherent to the absorptive mirrors Fabry-Perot cavities [START_REF] Rosenziveig | Measurement of Refractive Index at Cryogenic Temperature of Absorptive Silver Thin Films Used as Reflectors in a Fabry-Perot Cavity[END_REF]. This allows us to gain a better understanding of the optical properties of the deposited thin films, about which litterature is scarce.

The results agree with the litterature, and establish that going from room temperature to cryogenic temperature (4 K), the real part of the refractive index decreases by about 40 -60% whereas the imaginary part decreases by about 5 -9%. This translates into a typical 50 nm thin silver deposition optical cavity to increase its finesse by about 30%, i.e. F = 120 → 160. This is a positive outcome for our optomechanical coupling horizon, although the major decrease of the imaginary part would have been preferred over the actual major decrease of the real part, because the imaginary part of the refractive index corresponds to the absorptivity which has been identified as possibly problematic in section 3.1.3.

We therefore proceed with the study of the light actuation of the quartz resonator with three main sources: the photothermal force, the radiation pressure force and the electrostrictive force, to evaluate, based on derived cryogenic optical parameters, the capacity of metallic coatings to actuate the quartz crystal.

LIGHT-INDUCED MECHANICAL RESONANCE

This chapter focuses on the the possibility of driving mechanical resonances by incoming light from the laser. A 1D model for the photothermal actuation scheme is given along with an experimental study. A theoretical study follows, for the equations governing resonance with radiation pressure force and electrostrictive force. An application to the silver thin films Fabry-Perot is explored in both cases.

4.1/ PHOTO-THERMAL EXCITATION

4.1.1/ INTRODUCTION

It has been demonstrated that a (power with time) oscillating thermal source permits to actuate a mechanical mode in an object, here more specifically in a quartz crystal resonator (see for example [START_REF] Dieulesaint | Optical Excitation of Quartz Resonators[END_REF]). The idea is to modulate a laser's intensity at the mechanical resonance frequency and send it onto the quartz. This in turn causes the metal layer deposited as an electrode on the quartz to partially absorb the optical energy, hence creating a local temperature fluctuation which in turns implies a local deformation on the quartz crystal. If the frequency of the laser's intensity fluctuations is tuned to the acoustic resonance frequency, an oscillation is observable.

Although this excitation is known and has been studied to a large extent (see for example [START_REF] Dieulesaint | Résonateur Miniature à Entrée et Sortie Optiques[END_REF]], [START_REF] Bontempi | Photo-thermal quartz tuning fork excitation for dynamic mode atomic force microscope[END_REF]), it has mostly been restrained to kHz frequencies [START_REF] Bontempi | Photo-thermal quartz tuning fork excitation for dynamic mode atomic force microscope[END_REF] and exceptionally up to 1 MHz [START_REF] Dieulesaint | Optical Excitation of Quartz Resonators[END_REF], and, to the best of our knowledge, has not been used on cryogenic temperature materials or coupled with a Fabry-Perot architecture of the resonator.

We perform an exploratory study, both theoretical and experimental, of the photothermal excitation of a quartz crystal resonator metallized with electrodes on both side (thus with absorbing mirrors providing the incoming heat flux).

One of the advantages of photo-thermal actuation over piezoelectric actuation has been pointed by [START_REF] Bontempi | Photo-thermal quartz tuning fork excitation for dynamic mode atomic force microscope[END_REF]: the antiresonance is cancelled, as the equivalent circuit is different with this type of actuation (see section 4.1.3.2) with respect to the typical piezoelectric actuation. Another important advantage is that this actuation method does not require a piezoelectric material, as the effect spanning the mechanical response is thermal and not piezoelectric, thus answering the thesis problematic of avoiding piezoelectric actuation. As we shall see in this section, although the photothermal effect does not classify as an optomechanical effect, it is possible to use it in our typical configuration originally planned for optomechanics, and it is readily functional.

4.1.2/ THEORETICAL DESCRIPTION

Applying heat on a material and looking for the temperature tendency or the subsequent deformation can take rather complicated forms in the most general case, e.g. if the heating is ultrafast. In this case, the heat and mechanical quantities appear as coupled in a generalized heat equation (see e.g. [START_REF] Li | Generalized piezoelectric thermoelasticity problems with strain rate and transient thermo-electromechanical responses analysis[END_REF]). In the following study of the thermoacoustical problem, the generalized heat equation is not necessary because the heating rate is not ultrafast1 , and the spatial variation of the temperature is also sufficiently slow to consider both problems (mechanical and heat) as decoupled from one another (see [START_REF] Sellitto | Generalized heat equation and transitions between different heat-transport regimes in narrow stripes[END_REF]). In this section, we will derive the dynamics equations in order to investigate the mechanical mode. Although our quartz crystal has a primary function for the shear thickness C3 mode, we chose to study the shear thickness B3 mode. Indeed, as it appears throughout this section, a simplified thermal and mechanical model can be obtained through some simplifications. However, this model is limited in its validity and the coupling coefficient for thermal and mechanical dynamics is zero for the relevant axes for the C3 mode (β 6 coefficient, see Annex A), whereas it is non-zero for the B3 mode (β 4 ), see Eq. 4.18.

We therefore start by solving the heat equation in order to obtain the temperature increment resulting from the incoming heat which is absorbed by the electrode (section 4.1.2.1). We then use this temperature increment in the mechanical equations where it is the source for the movement, so as to estimate the subsequent mechanical displacement (section 4.1.2.2).

4.1.2.1/ THERMAL PROBLEM

4.1.2.1.1/ Assumptions

We start by noting that we will consider a simplified version of the heat diffusion problem for the quartz slab. The situation is rather complicated, because a silver electrode is deposited on the plano-convex quartz disk (see Fig. 4.7) so that we should therefore consider the 3D problem of heat diffusion in all spatial direction with some interface between both materials.

However, in order to simplify the modelling, only the temperature increment is considered. This means that the total temperature, θ tot = θ 0 + ∆θ, is comprised of a mean temperature θ 0 (or a so-called "DC" component) and the fluctuating part ∆θ (or the socalled "AC" component). The fluctuating part is treated in more detail in this section. The mean temperature, on the other hand, will be considered as originating from the mean incoming heat flux. The flow of this flux throughout the quartz towards the extremities will therefore give a spatially dependent mean-temperature, thus building up the local static (temperature-related) stress which could simply be taken into account by modifying lo-cally the elastic constants (or stiffness)2 . In the following, for notation simplicity, we adopt θ ≡ ∆θ.

We only consider the problem after the optical power has been turned into local heat applied on the boundary, which we will note φ (for more details about this conversion, see [Lax, 1977]). Some possible phase difference happens between the two quantities, which we will discard for now and take the actually converted heat as the reference. Thermal exchanges through radiation are neglected. Moreover, we do not consider the interface between the electrode and the quartz (in fact, we discard the electrode altogether, see next section 4.1.2.2).

We also consider only the dynamics along the direction for which the quartz is thinner, i.e. the x 2 direction. This is possible because it is much smaller than the other two directions (by about a factor 10) and because the source of heat, i.e. the laser beam, is much smaller than the heated area (see [START_REF] Lammerink | Optical excitation of micro-mechanical resonators[END_REF]). A simplified electronic equivalent scheme permits to establish this. The scheme is presented in Fig. 4.1.

Fig. 4.1a shows the full equivalent scheme for the current I = Ī + i, with Ī the mean current and i the fluctuating current. The point M 1 is located at the center of the quartz, M 2 is near the border of the inner ring that resonates, whereas M 3 is located near the outer (holding) ring which is decoupled from the vibrating part except for four bridges (see Fig. 2.2). The latter part is assumed to be maintained at ambient temperature θ amb . Fig. 4.1b, on the other hand, presents the scheme for the fluctuating part of the current. The capacitance and resistance along direction x i are noted on the scheme. For the calculations, the mean resistance R 13 = (R 1 + R 3 )/2 are taken because the thermal conductivity slightly changes, due to quartz anisotropy.

The equivalent voltage, current, resistance and capacitance for the electronic equivalent circuit of the thermal problem are written:

V th is the temperature, in K (4.1a)

I th is the energy flux, expressed in W (4.1b) R th = d KS expressed in K W -1 (4.1c) C th = C p ρdS expressed in J K -1 (4.1d)
where d is the length along the direction considered and S is the area perpendicular to the considered direction. K and C p are respectively the thermal conductivity and the heat capacity.

This permits to calculate several quantities in order to compare the impedance along the direction x 2 and along the direction x 1 to determine whether the heat will preferentially go along either direction. At 300 K, the thermal conductivities can be calculated to be and [Kanamori et al., 1968]) for the SC cut, whereas at the calorific capacity is C p = 733 J kg -1 K -1 (see [START_REF] Kanamori | Thermal diffusivity measurement of rock-forming minerals from 300°to 1100°K[END_REF]). We therefore calculate the different interesting quantities from Fig. 4.1 with the mean coefficient K 13 = (K 1 + K 3 )/2: 4.1c. The point M 3 , located on the outer ring of the resonator, is assumed to be maintained at ambient temperature θ amb . Note that the resistor between parenthesis represents the losses by radiation, which are assumed to be negligeable so that this resistor is actually infinite in this scheme. Fig. 4.1b: equivalent scheme for the fluctuating part of the current. R i designates the resistance in the direction x i , and C i the capacitance in the direction x i and R b is the resistance of the bridges. Note that the mean resistance R 13 and capacitance C 13 along directions x 1 and x 3 is taken. Fig. 4.1c: Scheme of the quartz resonator with the discreet M 1 , M 2 and M 3 points considered in the electronic scheme. The white spaces represent the bridges. Let us remind that x 2 is the direction of the thickness of the quartz, as well as the direction favored by the thermal dynamic, as the simplified analysis in the main text shows.

K 1 = 6.4895 W m -1 K -1 , K 2 = 8.805 W m -1 K -1 and K 3 = 11.626 W m -1 K -1 (see Annex A
I I = 0 M 1 M 2 M 3 θ amb R b C 13 R 13 C 2 R 2 (a) Full scheme Z i C 2 R 2 C 13 R b R 13 (b) Varying current scheme M 1 M 2 M 3 x 2 x 1 x 3 (c) Geometrical considerations
R 13 = 1 4 × 1 9.0575 × 7.8.10 -3 1.5.10 -3 × 1.10 -3 = 143.3 K W -1 (4.2a) R 2 = 1 8.805 × 1.10 -3 π × 71.10 -6 2 2 = 2.86 × 10 4 K W -1 (4.2b) R b = 1 4 × 1 9.0575 × 3.5.10 -3 1.10 -3 × 1.5.10 -3 = 64.3 K W -1
(4.2c)

C 13 = 2648 × 733 × 1.10 -3 × π × 7.8.10 -3 2 = 0.371 J K -1 (4.2d) C 2 = 2648 × 733 × 1.10 -3 × π × 71.10 -6 2 2 = 7.68 × 10 -6 J K -1 (4.2e) Z C 13 = 1 C 13 × 2πf 0 = 7.8 × 10 -8 K W -1 at 5.47 MHz (4.2f) Z C 2 = 1 C 2 × 2πf 0 = 3.78 × 10 -3 K W -1 at 5.47 MHz (4.2g) Z C 13 / /R b ≈ Z C 13 (4.2h) Z = R 1 + Z C 13 / / R b ≈ R 13 Z C 2 (4.2i)
where d is the thickness of the quartz and the area of the laser beam is used for R 2 , with the laser beam's radius being half the waist, w 0 /2 (see Fig. 4.5). On the other hand, for R 1 , d is the quartz' radius and the area used is that of the bridge. Similarly, the length of the bridge and its area is used for R b .

For C 2 , the situation is similar to R 2 . For C 1 on the other hand, the whole volume of the inner inner vibrating part should be taken into account, which results in d being the thickness of the quartz and the area being the whole surface of the quartz. We note that the factor 1/4 appears for R 1 and R b because there are four bridges.

With the obtained orders of magniture, it is possible to calculate the mean temperature in the presence of the incoming flux, which can be written as:

θ 0 = θ amb + (R 13 + R b ) Ī (4.3)
At 300 K, and with an incoming laser power of 5 mW and a non-reflected part of the beam at 1.3% of the incoming beam, the mean temperature elevation is calculated to be:

(R 13 + R b ) Ī = 13 mK (4.4)
From Eq. 4.2, it is seeable that because Z Z C 2 , the hypothesis that the dynamics can be considered exclusively along x 2 hold well and should be accurate. Leading the same calculation at 4 K yields different results, because [START_REF] Hofacker | Low temperature thermal properties of crystalline quartz after electron irradiation[END_REF] and Annex A), so that K 13 = 224, and with C p = 8 × 10 -2 J kg -1 K -1 (see [START_REF] Hofacker | Low temperature thermal properties of crystalline quartz after electron irradiation[END_REF]): R 13 = 6.45 K W -1 (4.5a)

K 1 = 150 W m -1 K -1 , K 2 = 196 W m -1 K -1 and K 3 = 253 W m -1 K -1 (see
R 2 = 1288 K W -1 (4.5b) R b = 2.21 K W -1 (4.5c) C 13 = 4.05 × 10 -5 J K -1 (4.5d) C 2 = 8.38 × 10 -10 J K -1 (4.5e) Z C 13 = 7.18 × 10 -3 K W -1 at 5.47 MHz (4.5f) Z C 2 = 34.7 K W -1 at 5.47 MHz (4.5g) Z ≈ R 1 = 6.45 K W -1 < Z C 2 (4.5h)
Here again, the mean temperature elevation can be calculated the same way as in Eq. 4.3, and it yields:

(R 13 + R b ) Ī = 0.56 mK (4.6)
From Eq. 4.5, we conclude that the hypothesis that the dynamics is only along x 2 is to be taken with caution at 4 K, as the impedance Z C 2 is of the same order of magnitude than Z. It appears that the theory and the experimental results do not match very well at cryogenic temperature, see sections 4.1.3.3.2 and 4.1.2.2.

4.1.2.1.2/ Heat equation

With these assumptions, the 1D heat equation for the temperature increment θ with the situation depicted in Fig. 4.3 can be written as the wellknown Fourier law for heat:

K 4 ∂ 2 θ ∂x 2 2 -ρC p ∂θ ∂t = 0 (4.7)
with K 4 the anisotropic thermal conductivity coefficient (in an SC cut) and C p is the calorific capacity and ρ the volumic mass.

We know that the temperature follows the tendency of the laser power, which is oscillating sinusoidally in time at frequency Ω, so that we can write and separate the variables for the temperature in the following form:

θ(x 2 , t) = e iΩt Ae i βx 2 + Be -i βx 2 (4.8)
and injecting Eq. 4.8 in Eq. 4.7, it is possible to find that:

β = (1 + i)β = (1 + i) Ω 2κ with κ = K 4 ρC p (4.9)
where κ is the thermal diffusivity.

One can obtain the expression for the temperature by considering boundary conditions, either with a temperature condition or a flux condition. On the incoming optical power side of the quartz, the very thin metallic (50 nm) layer deposited allows to consider a flux per unit surface rather than a temperature condition. On the opposite face, the metallic layer imposes a very low thermal emissivity and the convection is also negligeable under vacuum, which permits to impose the null flux condition on this face. These conditions are formally written3 :

φ(0) = φ φ(d) = 0 (4.10a) (4.10b)
We remind that the thermal flux per unit area is proportional to the temperature gradient:

φ = -K 4 ∂θ ∂x 2 (4.11)
and in this particular case, it is equal (in first approximation) to the non-reflected part of the incident light power per unit surface:

φ ≈ (1 -R FP ) P in πw 2 0 (4.12)
where R FP is as defined in Eq. 3.51, P in is the incident optical power and w 0 is the waist of the incident laser beam.

With the aformentioned context, we obtain the following condition on A by inserting the general temperature form Eq. 4.8 into the boundary conditions of Eq. 4.10:

A = Be -2 βd (4.13)
so that the expression for the temperature increment reads:

θ(x 2 , t) = e iΩt θ 0 e -βx 2 + e -2 βd e βx 2 (4.14) θ 0 = φ K 4 β 1 -e -2 βd (4.15)
The diffusion length is very small at 300 K and remains negligeable with respect to the quartz thickness at 4 K:

β -1 = 2K 4 ΩρC p 5.47 MHz ≈ 0.336 µm at 300 K ≈ 144 µm at 4 K (4.16)
so that the temperature problem could be approximated by a semi-infinite plane model (see [START_REF] Dieulesaint | Optical Excitation of Quartz Resonators[END_REF]). We will keep, however, the generalized expression throughout which is easily usable analytically.

4.1.2.2/ MECHANICAL PROBLEM

The system is simplified, considering it to be a slab of quartz and neglecting the presence of the electrodes.

We have presented the constitutive equations for the motion in the continuum mechanics frame, in section 2.3, which we will now make use of. The equations of motion for the shear thickness displacement u 3 reads, with the same conventions as in section 2.3: [START_REF] Dieulesaint | Optical Excitation of Quartz Resonators[END_REF]). An input power of 1 mW is used for the calculation at frequency Ω = 2π × 5.46 MHz (resonance frequency of the B3 mode, see section 4.1.3). It works rather well for both the room and cryogenic temperatures because of low diffusion length with respect to the thickness (see Eq. 4.16). The diffusion length is noted on both plot, and it is much shorter in the 300 K case.

T 31,1 + T 32,2 + T 33,3 = ρ ü3 (4.17
Because the quartz is in an SC cut (related quantities which are relevant for the problem are given in appendix A), all the tensorial components for the stiffness, the piezoelectric and the thermal diffusivity tensors have a priori no strictly null component so that all possible components are taken into account for the development of the expressions. We therefore give the expanded expression for the interesting stresses, accounting for the fact that the total strain is the sum of the internal strain S int ij , the electrically-induced strain S el ij = e kij E k and the thermally induced strain S th ij = α ij θ with α ij the thermal expansion coefficients (see section 2.3): 

x 3 x 1 x 2 E 2 0 d φ 1 mm
T 31 = T 5 = C 51 S 1 + C 52 S 2 + C 53 S 3 +
T 33 = T 3 = C 31 S 1 + C 32 S 2 + C 33 S 3 + 2C 34 S 4 + 2C 33 S 3 + 2C 36 S 6 -β 3 θ -e 13 E 1 -e 23 E 2 -e 33 E 3 (4.18c)
where we have noted the stress-temperature coefficients

β i = C ij α j .
Here, however, we will make the same type of simplification as is usually the case (see [Nassour, 1982] [Gagnepain, 1972] [Gufflet, 2000]): we will limit the study to a pure shear thickness motion in the x 3 direction, which means that the only displacement that we keep is along the x 3 axis, i.e. u 3 . This corresponds to an almost pure B mode (see details in [Nassour, 1982] p121). By taking this into account, replacing the strains as the derivatives of the displacement and injecting Eqs. 4.18 in Eq. 4.17, we get: So far in these mechanical equations, we have considered the slab as finite. It is, however, reasonable to consider an infinite plane in the x 1 and x 3 directions because the dimensions of the quartz are so much bigger in these directions. This is also reasonable temperature-wise, as it decreases rapidly in space (see Eq. 4.16). Mathematically, this translates into the fact that the derivatives of the quantities in Eq. 4.19 are non-zero only when derivated with respect to x 2 . We also make the assumption that the electric field, deriving from an electric potential, is only along x 2 .

ρ ü3 = C 55 u 3,11 + C 44 u 3,22 + C 33 u 3,33 + (C 54 + C 45 )u 3,21 + (C 34 + C 43 )u 3,32 + + (C 53 + C 35 )u 3,31 -β 5 θ ,1 -β 4 θ ,2 -β 3 θ ,3 -e 15 E 1,1 -e 25 E 2,1 - -e 35 E 3,1 -e 16 E
Rewriting Eq. 4.19 with these assumptions yields:

C 44 ∂ 2 u 3 ∂x 2 2 -β 4 ∂θ ∂x 2 -e 24 E 2,2 = ρ ü3 (4.20)
In the following, we will simply call u the displacement along x 3 , as it is the only displacement that we will consider. Because it is known that the equation of motion relates the second temporal derivative of the displacement to the spatial derivative of the stress (see Eq. 2.6), we can retrieve the total interesting stress from this last equation of motion Eq. 4.20. We also ignored the mechanical losses, which can be taken into account. Doing this permits to establish equations of motions which are similar to some equations found in the litterature (e.g. [Gagnepain, 1972]), although we also include the thermal excitation in the expression for the stress:

                                                       T 4 = C 44 ∂u ∂x 2 + η 44 ∂ 2 u ∂t∂x 2 -e 24 E 2 -β 4 θ D 2 = e 24 ∂u ∂x 2 + 22 E 2 ρ ∂ 2 u ∂t 2 = ∂T 4 ∂x 2 d 0 E 2 dx 2 = V 0 cos(Ωt) and E 2 = - ∂V ∂x 2 I = ∂ ∂t D d S ∂D 2 ∂x 2 = 0 T 4 e 0 = 0 (4.21a) (4.21b) (4.21c) (4.21d) (4.21e) (4.21f) (4.21g)
where β 4 = C 4i α i where α i is the thermal expansion coefficient, V(x 2 ) is the electric potential and V(0) -V(e) = V 0 is the experimentally measured voltage at the quartz' ends (see section 4. 1.3 and Fig. 4.11 in particular).

At any rate, by injecting Eq. 4.21b in Eq. 4.21a, and deriving this expression with respect to x 2 (using Eq. 4.21f to simplify), it is therefore possible to write the equation for the dynamics Eq. 4.21c in the form:

∂ 2 u ∂t 2 -c 2 ∂ 2 u ∂x 2 2 -α ∂ 3 u ∂t∂x 2 2 = - β 4 ρ ∂θ ∂x 2 (4.22)
that is, in a sinusoidal steady state:

∂ 2 ū ∂t 2 -z2 ∂ 2 ū ∂x 2 2 = - β 4 ρ ∂θ ∂x 2 (4.23)
with ū is the complex displacement (i.e. with a possible phase), α = η 44 /ρ, with c 2 = (C 44 + e 2 24 22 )/ρ and z2 = c 2 + iα ∂ ∂t = c 2 + iΩ if in a sinusoidal state (the bar stands to stress the complex value of z), and where Eq. 4.23 is obtained from Eq. 4.22 by considering that the displacement can be decomposed into a time-dependent and space-dependent function, i.e. ū(x, t) = Ū (x 2 )e iΩt .

Let us rewrite further this dynamics equation, leaving only the spatial dependency Ū (x 2 ) and, in order to simplify the notation, we will write this quantity U (x 2 ) instead:

z2 U ,22 + Ω 2 U = β 4 ρ θ ,2 (4.24)
We also write the electric potential, injecting Eq. 4.21b into Eq. 4.21f and integrating two times:

V(x) = e 24 22 U + L 1 x 2 + L 2 (4.25)
where L 1 and L 2 are integration constants, to be determined. Because the potential is always defined to within a constant L 2 , we arbitarily impose L 2 = 0. It is now possible to rewrite the stress equation Eq. 4.21a for T 4 (x 2 ) by replacing the electric field by the derivative of the electric potential, E 2 = -V ,2 :

T 4 (x 2 ) = C+ 44 U ,2 + e 24 L 1 -β 4 θ(x 2 ) (4.26)
We therefore get to the following mathematical problem:

           u tt -z2 u ,22 = - β 4 ρ θ ,2 u ,2 (e) = h(t) = Ae iΩt u ,2 (0) = j(t) = Be iΩt (4.23) (4.27a) (4.27b)
where A = U ,2 (e) and B = U ,2 (0) are adimensional coefficients defined with the help of the boundary condition Eq. 4.21g and using the expression for the stress Eq. 4.26. They are written explicitly:

           A = 1 C+ 44 -e 24 L 1 + β 4 θ 0 2e -βe B = 1 C+ 44 -e 24 L 1 + β 4 θ 0 1 + e -2 βe (4.28a) (4.28b)
The problem exposed in Eq. 4.27 is a typical non-homogeneous wave equation problem (simplified in its temporal dependency) with non-homogeneous Neumann boundary conditions. The way to proceed is to make the boundary conditions homogeneous by defining a function w which will shift the original data U . After which we solve the homogeneous wave equation with the newly defined w, which makes it possible to solve also the nonhomogeneous wave-equation for w by decomposing the source term in the basis of the eigenfunctions of the homogeneous wave equation. Finally, it is possible to retrieve the interesting solution U by shifting once again the data (see this lesson by Viktor Grigoryan from South Carolina Beaufort University).

The details of the calculations are given in Annex C. One can express the complete nearresonance displacement as:

u n 0 (x 2 , t) = λ n 0 cos(β n 0 x 2 ) + x 2 - x 2 2 2e B + x 2 2 2e A e iΩn 0 t (4.29)
where n 0 is the index of the resonant mode (e.g. n 0 = 3 in our experimental study), λ n 0 is the eigenvalue to the non-homogeneous boundary problem, β n 0 is the wavevector for the homogeneous boundary problem and A and B are defined as above (see Annex C for a full expression of these quantities).

With these expressions, one can do a numerical application for U 3 (0) = λ res 3 , at 300 K with C p = 733 J kg -1 K -1 , e = 1 mm, ρ = 2648 kg m -3 , Ω = (5.476 × 2π) MHz with P in = 1 mW and the (experimentally measured4 , see Fig. 4.11) voltage V 0 = 48 nV and thermal flux per unit area φ = 820 W m -2 , and the properly rotated coefficients in the SC cut i.e. using K 4 = 3.452 W m -1 K -1 , η 44 = 0.247 × 10 -3 Pa s, C 44 = 42.04 × 10 9 N m -2 , e 24 = -0.086 C m -2 and β 4 = -0.117 × 10 6 N m -2 K -1 . This leads to a coefficient for the displacement |λ res 3 | = 3.4 × 10 -8 m. This order of magnitude seems rather high at first glance, although comparing it with the displacement values of some 10 -8 m obtained in [START_REF] Iijima | Laser interferometric measurement of the vibration displacements of a plano-convex AT-cut quartz crystal resonator[END_REF] with a current of 1 mA (the calculated current is of 0.9 mA in our case, see Eq. 4.21e) shows that this result is within reasonable bounds set by previous litterature.

Because the phase is imposed on the temporal part of the displacement, a possible phase shift is accessible through the imaginary part of the displacement. The latter (i.e. π/2 out of phase with the excitating incident flux) is plotted in Fig. 4.4, while the real part is an order of magnitude smaller. The real part has a similar shape, but is an order of magnitude smaller.

For the 4 K case, the calculation using C p = 8 × 10 -2 J kg -1 K -1 (see [START_REF] Hofacker | Low temperature thermal properties of crystalline quartz after electron irradiation[END_REF]), and tensorial properties K 4 = 69.4 W m -1 K -1 (see [START_REF] Hofacker | Low temperature thermal properties of crystalline quartz after electron irradiation[END_REF], with python routine to rotate for the SC cut, see Annex A), C 44 = 59.6 × 10 9 N m -2 so as to get β 4 = -129.7 N m -2 K -1 , leading to a predicted displacement of some |λ res 3 | = 8 × 10 -10 m, which is substantially lower than at room temperature. However, this last prediction is not verified experimentally, as the measured voltage is higher for 4 K than for 300 K (see section 4. 1.3.3). This might be explained by the fact that the thermal model has a limited validity at cryogenic temperature, as section 4.1.2.1.1 shows. The laser goes through a 200 MHz AOM. The latter is actuated with an electrical signal whose voltage oscillates in intensity at frequency f 0 , the acoustical frequency of the quartz. The reference signal of frequency f 0 /2 is sent both into the frequency mixer which permits to feed the AOM (see Fig. 4.6), and into the Lockin Amplifier to provide the reference signal to compare the test signal to. See main text of section 4. 1.3.1. The experimental setup is simple, and is presented in Fig. 4.5. The laser is going through a fibered AOM, to which we feed an electronic signal consisting of a 200 MHz sine wave (the AOM driving frequency) whose intensity oscillates at the acoustic frequency f 0 (see Fig. 4.6), with a possible remainder of mean optical power:

P in = P mean + ∆P cos(2πf 0 t) (4.30)
with ∆P = P mean in the ideal case, so that the power oscillates to reach 0 periodically. The resulting laser power is therefore modulated at the acoustic frequency f 0 , in phase with the RF signal (see Fig. D.2 and annex section D), providing the alternating source of heat to excite the mechanical mode of the quartz.

The f 0 /2 signal, sent into the mixer, is also sent into the Lockin Amplifier (Stanford Research System, model SR844) as the reference signal with which the Lockin will compare the test signal from the quartz. A phase calibration of the Lockin amplifier is performed and it consists of securing a 0 phase between the reference and the signal when these are in phase, which can be done by injecting the reference signal in both the reference and measurement channel and forcing the phase to be 0 with the appropriate setting on the Lockin amplifier. The Lockin is able to take the second harmonic of the f 0 /2 signal, in order to compare the test signal with f 0 rather than f 0 /2. By sweeping the frequency of the f 0 /2 signal generator, it is possible to observe a mechanical resonance, as presented in the experimental results.

In order to retrieve an electric signal from the quartz, the quartz holder from Fig. 1.6d is slightly adapted by piercing the so-called condensators, as seen on Fig. 4.7. Indeed, the condensators (the quartz plates made from the same crystalline cut as the working quartz resonator that hold it in place, see Fig. 4.7) are metallized with a typical chromium-gold layer in order to retrieve the electric signal. This signal is sent through cables which are coiled around the cold finger of the cryogenerator all the way towards the user SMA plug outside the cryogenerator. This coil-like rolling is done in order to keep them at best in a thermalized state and avoid extra thermal extension noise.

The laser's wavelength can be set to a range of values (see section 3.2.1 for more informations about the laser used). Incidentally, the wavelength can therefore be set to either an optically resonant or non-resonant value for the Fabry-Perot cavity formed by the set of metallic mirrors deposited on the quartz(see section 3.1.3 for more details about the optical resonance). An experimental study concerning the possibility to set an optically resonant wavelength is discussed in section 4.1.3.3.

4.1.3.2/ EQUIVALENT CIRCUIT

In order to modelize the behavior of the photo-elastically induced resonance, it is possible to give an equivalent electrical circuit. From Eq. 4.21e, one can calculate that in the steady state, and by naming S the surface of the electrodes:

I 0 = iΩDS (4.31) electrodes clamp mirrors (electrodes) signal V LI ring Figure 4
.7: BVA-like structure to hold the quartz which is metallized with thin silver layers, and the holders are metallized with typical chromium and gold layers to retrieve the piezoelectric signal from the quartz' mechanical resonance because of the photo-thermal effect. The output of the gold electrodes are plugged into the Lockin amplifier (see Fig.

4.5).

By inserting the expression for U (e) -U (0) (Eq. C.18 or Eq. C.19) in the expression for the electrical potential (Eq. 4.25) and in the electric displacement Eq. 4.21b, one can obtain a cumbersome analytical expression for the electric current. In this expression, one can formally identify several parts, suggesting different parallel currents going through different branches of equivalent (R,L,C...) components. It is possible to rearrange the circuit in order to arrive to an equivalent model, which is displayed in Fig. 4.8a (see e.g. [START_REF] Bontempi | Photo-thermal quartz tuning fork excitation for dynamic mode atomic force microscope[END_REF]).

Contrary to the typical Butterworth-Van Dyke model, the generator is included in the motion branch. This is similar to models in the field of energy harvesting (see [START_REF] Liang | Impedance Modeling and Analysis for Piezoelectric Energy Harvesting Systems[END_REF]] [Liao et al., 2019]).

It consists of an excitation reference signal (f 0 /2 signal in Fig. 4.5) which is split to be sent both to the Lockin amplifier as a reference, and to the AOM (after mixing) as a way to modulate the laser's power. Because the laser power and the reference f 0 /2 signal are in-phase and vary from one another only by a scaling factor (see annex D), we will consider the exciting signal as the optical power P in instead 5 . This optical power is transformed, through an a priori unknown transfert function T th to a voltage V x exciting the quartz crystal. This quartz crystal, which is modelized by a typical RLC circuit, has a parasitic C 0 coming from the presence of electrodes (see Fig. 4.7) and the cables driving the signal. Note also the presence of a load resistor R L , plugged onto the quarz, equivalent to the input impedance of the Lockin amplifier.

There are two extreme cases for the scheme presented on Fig. 4.8a: R L 1/(C 0 ω) and R L 1/(C 0 ω). An impedancemeter measurement permits to establish that the order of magnitude of C 0 (including both the cables and the parasitic electrodes capacitance) is 5 Because the f0/2 signal feeds both the reference input of the Lockin and also the AOM (see Fig. 4.5) changing its output power is problematic; although it does not influence the results of the Lockin amplifier, it would indeed influence the optical power which is modulated through the AOM. However, because the f0/2 signal passes first through a frequency mixer, as described in Fig. 4.6, the RF power needed is fixed and should not be tweaked. Because the optical power and the f0/2 RF power only vary by a factor and are in phase, it is therefore simpler for all experimental considerations to take P in as the reference excitation signal, see Annex D. 4.8a: equivalent circuit of the total system. For details about the relation between P in and V ex , see Annex D. See the main text for a complete description of the different quantities. Fig. 4.8b: focus on the crystal part of the system when the input impedance of the Lockin amplifier is set to 1 MΩ. This simplifies the theoretical description, as seen in the main text. Fig. 4.8c: a small reminder scheme for the two transfer functions acting on the input excitation and reference optical signal P in , transformed (through a to-be-determined transfer function T th ) into voltage V x which excites the crystal, which, in turn, is transformed (through transfer function T x ) into the measured voltage V LI which is measured at the parasitic capacitor's ends.

V LI

Lockin ref in

P in V ex V x R L C C 0 R L T th (a) Equivalent circuit V LI Lockin V x R L C C 0 (b) Crystal part with RL = 1 MΩ P in T th T x V LI V x (c) Transfer functions
of about 300 pF-500 pF. With a typical resonance frequency ranging in 5 MHz-10 MHz, this gives an impedance for C 0 of Z 0 =30 Ω-100 Ω. It is therefore simpler to set the Lockin input to 1 MΩ (as the capacitance will act as a short-circuit for the latter), so that the details of the subsequent simplified expression follows.

With the transfer function defined in Fig. 4.8c, V LI can be expressed as a function of P in :

V LI = T tot P in = (T th T x )P in (4.32)
Let us write T th as:

T th = V x P in = Ae iϕ (4.33)
where A is the attenuation factor and ϕ is the imparted phase, which is possibly different from 0.

It is therefore possible to write the full expression for V LI , by determining the analytical expression for T x and inserting it as well as Eq. 4.33 in Eq. 4.32:

V LI = P in AZ -1 C 0 ω e i(ϕ-π 2 ) (4.34)
where Z -1 is the admittance of the motional RLC part of the circuit, along with C 0 :

Z -1 = 1 R + iLω + 1 iCω + 1 iC 0 ω (4.35)
where the R, L and C are a priori unknown but can be determined through a prior impedancemeter measurement.

This expression permits to relate the measured voltage V LI to other experimentally accessible quantities. The measurement of the transfer function T th is therefore allowed by this theoretical model, and is shown in the following section 4.1.3.3 (see Fig. 4.12).

4.1.3.3/ RESULTS AND DISCUSSION

In this section, some experimentally obtained data is shown, with the setup presented in section 4.1.3.1. We start by giving some example of the measured X, Y data or the |V LI | and accompanying phase ϕ. We proceed with a brief analysis of the changes of the maximum voltage at mechanical resonance in the four following cases:

1. Simple mechanical resonance at room temperature 2. Mechanical resonance at room temperature, with the laser set to be at the optical resonance wavelength

3.

Simple mechanical resonance at cryogenic temperature 4. Mechanical resonance at cryogenic temperature, with the laser set to be at optical resonance wavelength Indeed, as discussed in section 4.1.3.1, the laser's wavelength can be set to be optically resonant for the Fabry-Perot cavity. We conclude this section by an experimental identification of the coefficients A and ϕ from Eq. 4.33.

4.1.3.3.1/ Typical resonance

The quartz crystal under use is an SC cut crystal, with a plano-convex feature and 50 nm of deposited silver electrodes, which can also be used as mirrors for Fabry-Perot cavity regime (see section 2.2 and section 3.1 for more details).

A variable optical power of around 5 mW arrives at the quartz inside the vacuum chamber, with a linear polarization along one of the quartz' polarization axis (see section 3.1.1).

The Lockin amplifier gives, by default, an output in X and Y , the usual output of a Lockin amplifier, which corresponds to the in-phase and out-of-phase (with respect to the reference) components of the test signal, respectively, i.e. it compares the difference in phase ∆θ between the tested signal and the reference. The tested signal V LI = |V LI |e i∆θ is then expressed:

|V LI | = X 2 + Y 2 (4.36a) ∆θ = arctan Y X (4.36b)
The raw signal, which is phase-calibrated (see section 4. 1.3.1), is seeable on Fig. 4.9a.

The amplitude-phase signal, on the other hand, is seeable on Fig. 4.10. .9: Raw data X and Y (in and out-of-phase signals respectively) from the Lockin amplifier for a C3 mode (which has the largest signal), simply sending the laser on the metallized quartz and shifting its power modulation frequency (see Fig. 4.6) with 5 mW mean power in Fig. 4.9a. On Fig. 4.9b, on the other hand, the input power is the same, but the wavelength of the laser is set to be on-resonance with the Fabry-Perot cavity, which amplifies the light inside the cavity and hence results in a higher level signal. Note also a slight displacement in the peaks' central frequency, which we attribute to a change in the mean temperature of the quartz due to the increased presence of light dissipating in the thin metal layers. A similar signal can be obtained for several modes. In particular, we performed the measurement mainly on three modes: at room temperature, the C3 mode is at 4 999 014 Hz (shown in Figs. 4.9 and 4.10), B3 mode at 5 475 748 Hz (5 475 774 Hz) for the opticallyresonant (non-resonant) signal, and for the A3 mode at 9 102 355 Hz (9 102 381 Hz) for the optically-resonant (non-resonant) signal. This difference in frequency for the B3 and A3 mode are attributed to a shift in the mean temperature of the quartz because of the increased light absorbtion on the electrodes which is simply due to the increased presence

A A res A 4K A 4K res A 1 1.805 X 0.376 A res 1 X 0.208 A 4K 1 X A 4K res 1 Table 4.1:
Table of the amplification (attenuation) for the A3 mode, i.e. ratio of the top quantity by the side quantity: e.g. A res /A = 1.805. A is the basis (optically) non-resonant 300 K situation, A res is the optically resonant case at 300 K, A 4K is the non-resonant 4 K situation, A 4K res is the resonant 4 K situation. In the specific case of the A3 mode, a very poor signal for the non-resonant 4 K situation prevented measurement in this particular scenario. One can note the generally poor results for the resonant case and the cryogenic resonant case, in particular with respect to the B3 and C3 modes. Base voltage is 6.30 × 10 -8 V.

of light inside the optical cavity6 . Indeed, the frequency thermal sensitivity of the B3 mode for an SC cut is of about -29 × 10 -6 K -1 . Considering the amplification factor to be A = 22, that would lead to a temperature elevation 22 times that predicted in Eq. 4.4 in the case of optical resonance, meaning a total elevation of approximately θ = 286 mK. With the considered frequency thermal sensitivity, this would lead to a change of frequency of ∆f 0 ≈ -45 Hz, which is in reasonable agreeement with the experimentally reported difference of ∆f 0 = -26 Hz.

Although this effect is also observable for the C3 mode, the latter is specifically designed to be relatively insensitive to temperature fluctuations in the SC cut with a frequency temperature sensitivity of only 1.5 × 10 -6 K -1 , which results in a small shift of resonance frequency with increased mean temperature. Theoretical predictions of the same kind as for the B3 mode lead to a calculated ∆f 0 ≈ 1.5 Hz, which is reasonably agreeing with the slight shift observable on Fig. 4.10 At 4 K, on the other hand, these frequencies get to 4 992 242 Hz (4 992 233 Hz) for the resonant (non-resonant) C3 mode, 5 504 280 Hz for both resonant and non-resonant B3 modes and 9 608 980 Hz for the resonant A3 mode (for the absence of non-resonant A3 mode, see main text below.

In the non-resonant use, an increased incoming optical power results in an approximately linearly increasing output voltage, see Fig. 4.11. A first order polynom fit gives the slope to be of approximately 8.35 × 10 -6 V mW -1 , whereas the offset at the origin is of about 3.9 × 10 -5 V mW -1 , which indicates that the voltage does not behave linearly anymore at lower optical power.

4.1.3.3.2/ Signal level

As one can observe on Fig. 4.10, the signal at optical resonance is somewhat increased in amplitude with respect to the non-resonant case. A numerical treatment permits to establish the amplification to be dependent on the particular mechanical mode investigated, see the sum-up tables 4.1 -4.3.

From these tables, we note that the signal is generally improved with optical resonance against input optical power P in for a C3 mode at 4 999 008 Hz. It is almost affine with input optical power, with a slope of approximately 8.35 × 10 -9 V W -1 . The offset at the origin is of about 3.9 × 10 -8 V W -1 , which indicates that the voltage does not behave linearly at lower optical power. Indeed, an absence of optical power physically results in an absence of measured voltage, so that the offset does not translate a physical phenomenon at null incident optical power. 4.1, with the B3 mode. Here, the amplification for the opticallyresonant case with respect to the non-optically-resonant case is much higher than for the A3 mode, as well as the amplification at 4 K with respect to the 300 K case, which is not explained by the theory (see main text).

with respect to the non-resonant case. It is, however, not proportional to the theoretical amplification of light inside the optical cavity which is of about A ≈ 22 for a 50 nm silver deposition (see Fig. 3.13). Furthermore, Fig. 4.11 predicted a linearly dependent output voltage with input optical power. The fact that the amplification factor listed in table 4.1 between the non-resonant case and the resonant case changes depending on the mechanical mode indicates that some non-linear effect is at hand, or that the coupling no longer produces a linear response of the voltage in function on the input optical power for modes other than the C mode (see Fig. 4.11). Another possible explanation is that the boundary conditions change altogether upon imposing an optical resonance inside the optical cavity. Indeed, the situation then turns out to be symmetrical and the theoretical framework developed thus far has to be be modified consequently. This last hypothesis is strenghtened by the previously reported frequency shift (see previous section 4. 1.3.3.1) which is compatible with a linear response to increasing optical power. At any rate, further investigation is required to fully understand the coupling between the mechanical modes and the laser, and in particular through testing an excitation with a laser split and sent on both sides of the quartz to compare with the one-sided incidence results.

From these same tables, we observe a trend to increase the maximum amplitude when going from room temperature to cryogenic temperature, except for the A3 mode. Some other results for other modes, which are not displayed in this thesis, tend to validate the tendency to improve the signal at cryogenic temperature. This is not in agreement with the attenuation factor of a hundred for the displacement predicted by our simple model from section 4.1.2.2 for the cryogenic displacement with respect to the room temperature displacement. The discrepancy is probably due to the neglected directions of coupling in the model and to its limited applicability (see section 4. 1.2.1.1).

Lastly, the tables also show that at 4 K, the optical resonant case with respect to the nonresonant case display a signal approximately 6 times stronger for both the B3 and C3 mode, with a lack of data for the A3 mode due to an absence of non-resonant cryogenic signal. Here, both the B3 and C3 mode display an approximately equal amplification factor for the resonant case whereas it was rather different at room temperature. Another cryogenic measurement for the C5 mode, at 8 295 762 Hz, shows that the amplification factor in this case is of approximately 4.15. The A5 mode at 15 728 268 Hz shows an amplification factor of about 1.77. Unfortunately, no other mode was available for measurement in both the resonant and non-resonant cases at 4 K, so that this issue can be investigated no further. This limitation comes mainly from the frequency involved: indeed, the scheme described in Fig. 4.6 consists in sending two signals at 200MHz ± f 0 /2 to the AOM. The latter, however, has a limited bandwith around 200 MHz in which it produces an efficiently diffracted first order. We measured this bandwidth to be of about 10 MHz. Therefore, resonances with increasing frequency are increasingly hard to observe because the diffracted first order of the AOM is decreasingly efficient, i.e. the total oscillating optical power decreases so that ∆P < P mean and P in decreases too (see Eq. 4.30).

4.1.3.3.3/ Equivalent circuit

The equivalent circuit for the excitation scheme, detailed in Fig. 4.8 and section 4.1.3.2, is further studied experimentally with the C3 mode in particular. Indeed, measuring the signal against frequency sweep for different input optical powers permit to obtain the unknown transfer function T th from Eq. 4.33 at mechanical resonance:

Ae iϕ = V LI C 0 ωe i π 2 P in Z -1 (4.37)
where V LI is obtained from experimental measurements such as the ones presented in Fig. 4.11 and the other quantities can be determined experimentally or by computation.

In particular, a prior impedancemeter measurement is taken as the reference in order to determine Z -1 , the admittance of the motional part of the quartz.

From these experimentally measured V LI , the attenuation factor is obtained by computing with a python program the max amplitude of the signal for each incoming power. The resonance phase, on the other hand, is obtained with a python routine that fits the experimental signal to an admittance circle; indeed, to within some constants and a phase at resonance, V LI ∝ Z -1 i.e. to an admittance. This leads to the results represented on Fig. 4.12.

The transfer function at mechanical resonance seems to vary with incoming optical power. This comes from the fact that the measured resonance signal is not exactly affine with incoming optical, contrary to what transpires in Fig. 4.11 This might be due to some nonlinear coupling effects that requires further investigation. At any rate, the phase offset of V LI at mechanical resonance goes closer and closer to 0 with increasing optical power, which indicates that at hight enough optical power, the phase of the transfer function, ϕ, gets closer and closer to π/2 (because of the e -i π 2 factor in Eq. 4.34). This is adding to the previously discussed fact that achieving higher optical power is also associated with a phase transition closer to π. We have lead here an experimental study which is limited to a restricted number of mechanical modes due to technological constraints such as the achievable frequency of the oscillating optical power, input optical power after AOM (and light coupling thereof) etc. However, to the best of our knowledge, this is the first time that this photo-thermal excitation is achieved at cryogenic temperature and at high frequencies, i.e. several MHz. To describe the mechanical dynamics with a more refined model would require a lengthy theoretical description or another approach algotether with e.g. a numerical finite element method. A lack of time prevented such a work, although one can only conclude from the achieved experimental work that the coupling between the thermal source and the mechanical movement does happen although quite weakly, at high frequency (A3 mode at 15 MHz for example), and even for apparently prohibited modes.A better theoretical understanding is therefore required to make more refined predictions, although the present exploratory work permits to establish the photo-thermal actuation as a possible and rather easy way of actuating the quartz optically.

Piezoelectric readout was preferred for the accessibility ease and the necessary time to implement experimentally, although an optical readout would offer the advantages that are required by the metrological use we are seeking (see chapter 1). Such a readout is presented in the future perspectives, in Appendix E. This 1 st part of chapter 4 reports on our investigations concerning the photothermal excitation scheme, both theoretical and experimental.

The novel 1D theoretical framework that we developed has shown to be more accurate at room temperature than at cryogenic temperatures. Since it is an approximation of the more complex 3D dynamics, it now requires to be completed with Finite Element Methods (FEM, see e.g. )<++> in order to confirm the predictions of remarkable displacements at room temperature. Indeed, several tens of nm displacements for the C3 mode at 5 MHz have been observed by piezoelectric measurements. This indicates that optical readout, with e.g. heterodyne detection, should be possible (see Annex E).

The experimental study has permitted to establish several points:

• This actuation method allows displacement measurement readout up until several MHz, with the detection of a weak signal up to 15 MHz at 4 K. The limitation is most certainly due to the setup with the limited bandwidth of the AOM, and higher frequencies should be achievable with the appropriate equipment.

• The excitation is generally more efficient at cryogenic temperatures, with a signal which is improved in a variable proportion depending on the mode (at the exception of the A3 mode).

• The photothermal excitation is reinforced while the laser is tuned to be onresonance with the Fabry-Perot cavity, allowing for a slightly better signal.

The latter point might be explained by the increased amount of light inside the quartz. Indeed, the observed central resonance frequency shift obtained at optical resonance corresponds to an intracavity amplification factor of the order of A = 20, i.e. the theoretically predicted value from section 3.1.3 for a 50 nm silver thin films optical cavity. The observed mechanical resonance signal, however, does not seem to follow the same simple trend of a multiplicative factor due to increased light. This discrepancy could originate from the new and different boundary conditions in the presence of a stationary optical field within the quartz.

Finally, under certain hypotheses, we have identified the transfer function that relates the input optical power P in to the intracrystal excitation voltage V x . It is found to have a variable attenuation factor with incident optical power, as well as a variable phase with incident optical power. This point requires further study.

We conclude from this study that photothermal excitation is a good candidate for mechanical actuation with light, and that it is readily usable with our thin silver films coated quartz resonators. Furthermore, one could consider coating the resonators with non-metallic films, with e.g. dielectric coatings which are highly absorbtive at some functioning wavelength in order to maximize the optical power transfer into heat or even using some absorbing wavelength of the resonator material (e.g. in the UV region for quartz), at the expense of the possibility to tune the laser to optical resonance. Optomechanics is the coupling between light (optics) and mechanics. Generally, it can refer to both the action of light on mechanics or the opposite, although it is most commonly used in the former sense. The most widespread optomechanical effects that are of use are the radiation pressure and the electrostriction.

The first mechanical effects of light on matter7 were demonstrated in the early 20 th century, with radiation pressure (see [Lebedew, 1901] and [START_REF] Nichols | A preliminary communication on the pressure of heat and light radiation[END_REF]) being carefully differentiated from thermal effects. In fact, this effect had a wide enough popularity to be the research subject of a fictional character in a novel by Natsume Soseki in 1908 (Sanshiro, see Soseki [Natsume, 2020]), which studies the "pressure exerted by light on objects". It consists in imparting momentum from the photon to the object, either through absorption, reflection or through light which is otherwise emitted from the object (e.g. black body radiation). A significant advance in the field was demonstrated in the 70's by Hänsch [START_REF] Hänsch | Cooling of gases by laser radiation[END_REF] and Wineland [START_REF] Wineland | Proposed 1014 ∆ν/ν laser fluorescence spectroscopy on Ti+ mono-ion oscillator III (side band cooling)[END_REF] independently, making use of radiation pressure in order to cool atoms with a laser. Wide experimental demonstrations of this technique, and even furthermore trapping the cooled atoms, have since been made [Ashkin, 1978] [Phillips et al., 1982] [Metcalf et al., 1999]. This effect of radiation pressure for cooling atomic gases is widely used nowadays in experiments for atomic and ionic clocks [Vallet, 2018] [Lauprêtre et al., 2020] [Huang et al., 2019] [McGrew et al., 2018], where the effect is often combined with a magnetic field to create a so called Magneto-Optical Trap (MOT): see [START_REF] Raab | Trapping of Neutral Sodium Atoms with Radiation Pressure[END_REF]]. An extensive theoretical (and experimental review) discussion about the radiation pressure effect is presented in the rather recent article by Aspelmeyer [START_REF] Aspelmeyer | Cavity Optomechanics: Nano-and Micromechanical Resonators Interacting with Light[END_REF]. Radiation pressure is discussed at more length in part 4.2.2.

Another widely used effect arising from optomechanical coupling is the electrostriction. Electrostriction is similar in its nature to piezoelectricity, although the former depends on the square of the electric field and is therefore independent on the field's direction (sign) whereas the latter does depend on the field's direction and is a linear effect at first order (and more generally dependent on the electric field at an odd number power). Piezoelectricity was discovered in the late 19 th century by the Curie brothers [START_REF] Curie | Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées[END_REF], and it would appear that electrostriction had been studied by Röntgen at around the same time (see [Katzir, 2006], p.46). Although the effect of a material's density fluctuations on light and subsequent scatterings was known and shown by Brillouin [Brillouin, 1922] early on, different origins for these density fluctuations are possible. Brillouin described effects induced by thermal fluctuations. It is only with the work of Osterberg [START_REF] Osterberg | The Piezodielectric Effect and Electrostriction in Anisotropic or Isotropic Media[END_REF]] that a proper theoretical description emerges for the electrostriction effect, understood as the complementary effect of the piezodielectric effect (the effect of mechanical perturbations on dielectric constants of a material, as defined by this last author). The electrostrictive effect is discussed in part 4.2.3.

4.2.1.2/ DEVICES AND APPLICATIONS

As mentioned in section 4.2.1.1, the two mainly used effects of optomechanics are radiation pressure and electrostriction. In some pionneering work by Chiao [START_REF] Chiao | Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves[END_REF], electrostriction was applied to achieve coherent phonons production with laser light (with a Mandel'shtam-Brillouin type interaction). Some years later, Braginsky [START_REF] Braginskii | Investigation of Dissipative Ponderomotive Effects of Electromagnetic Radiation[END_REF] showed the opposite effect with radiation pressure, namely that some suspended mirror could be cooled down with electromagnetic radiation (in the microwave domain), which is a major concern in the highly sensitive field of interferometric gravitational-wave detection [START_REF] Cohadon | Cooling of a mirror by radiation pressure[END_REF].

Some related works with the production of stimulated phonons by means of electrostriction followed, e.g. Kroll [Kroll, 1965], Starunov [START_REF] Starunov | Stimulated Mandel'shtam-Brillouin Scattering and Stimulated Entropy (Temperature) Scattering of light[END_REF] and later, by Nelson [Nelson, 1982] by varying the angle of incidence of the laser (hence the frequency of the phonons, see section 4.2.3). Using both electrostriction and radiation pressure for the excitation of mechanical modes and coherent phonons or cooling and their suppression also was achieved again in a quartz crystal with laser light, rather recently by Renninger [START_REF] Renninger | Bulk crystalline optomechanics[END_REF] and in an optical (Fabry-Perot) cavity by Kharel [START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF].

A major part of the electrostriction community is actually interested in its application (and the issue that it might constitutes) within optical fibers (see e.g. [START_REF] Aoki | Input power limits of singlemode optical fibers due to stimulated Brillouin scattering in optical communication systems[END_REF]] [Beugnot et al., 2012] [Kobyakov et al., 2010] [Laude et al., 2013] [Rakich et al., 2010] [Shelby et al., 1985]) and, more generally, within nanoscaled devices (see e.g. [START_REF] Wolff | Stimulated Brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis[END_REF]] [Wiederhecker et al., 2019] [Carvalho et al., 2019] [Bahl et al., 2011]).

In fact, as we discuss in part 4.2.3, electrostriction is (one of the possible) origin to the presence of Brillouin-scattering. These forces are prominent in optical fibers, both because of the very way that light is transported and the intensity of circulating light as well as the size of the transporting area. The intensity of the phenomenon can even dramatically increase by several orders of magnitudes when subwavelength scale are achieved, see [START_REF] Rakich | Giant Enhancement of Stimulated Brillouin Scattering in the Subwavelength Limit[END_REF]).

It is, however, sometimes used and observed in bulk material too (see [START_REF] Bon | Cryogenic optomechanic cavity in low mechanical loss material[END_REF]] [Kharel et al., 2019] [Renninger et al., 2018] [Grimsditch et al., 1975]). Electrostriction gives rise to Brillouin scattering, which can be used to either excite the mechanical modes with the optical field ( [Nelson, 1982] [Chiao et al., 1964] [Kroll, 1965]) or to do the opposite-that is, to cool the device ( [START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF]] [Agarwal et al., 2013]).

4.2.2/ RADIATION PRESSURE

Radiation pressure corresponds to the cumulative collective effect of the momentum that each individual photon imparts to the matter that it scatters with. There exists several descriptive frameworks for this effect: in particular, continuum mechanics can account for radiation pressure through boundary conditions (see e.g. [START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF]] [Wang et al., 2016] [Laude et al., 2015]). We will mainly focus on the Hamiltonian description which is much more usual for cavity radiation pressure optomechanics ( [START_REF] Aspelmeyer | Cavity Optomechanics: Nano-and Micromechanical Resonators Interacting with Light[END_REF]] [Agarwal et al., 2013]). The Hamiltonian descriptive framework for the radiation pressure has been developed by [Law, 1995], and has beeen widely used ever since ( [START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF]] [Siciliani de Cumis et al., 2009]). We then specialize the calculation to the thin film quartz optical cavity which has been studied optically in section 3. We draw the conclusions as to the apparent lack of feasability of optomechanical actuation through radiation pressure in this particular case. Throughout this section, we take the notation and development from [Aspelmeyer et al., 2014a]. The situation is considered to be as depicted on Fig. 4.13.

The first input mirror is only partly reflective and is stationary, whereas the second mirror is considered perfectly reflective and moving. This means that in this framework, the optical cavity length and thus its optical characteristics (FWHM of the peaks and FSR) will depend on the second mirror's position. Its position is described by the operator x.

Let us write that the cavity resonance frequency ω is in fact dependent on the position:

ω(x) = ω + x ∂ω ∂x + • • • (4.38)
On the other hand, the Hamiltonian of the mechanical and optical system is as follows:

Ĥ = ωâ † â + Ω m b † b (4.39)
where is Planck's constant (divided by 2π) and â † ( b † ) and â ( b) are respectively the creation and destruction operator for the optical (mechanical) field.

This leads to write the interaction part of the Hamiltonian, after injecting Eq. 4.38 in Eq. 4.39 and reminding that the position operator is proportional to the mechanical field operators, x ∝ b † + b :

Ĥint = -g 0 â † â b † + b (4.40)
where g 0 is the 1photon-1phonon coupling strength expressed as a frequency, which is expressed as:

g 0 = ω d 2m ef f Ω m (4.41)
with d the cavity length and m ef f the effective mass of the vibrating part of the system.

Unfortunately, the expression 4.40 is not linear in the optical field operators. As shown in [Law, 1995], it is possible to linearize the expression by decomposing the optical field into its average coherent amplitude and the fluctuating part â = â + δâ:

Ĥlin int = -g 0 Ncav δâ † + δâ b † + b (4.42)
where we have introduced Ncav , the mean photon number inside the cavity.

It is possible to derive the coupled linear equation of motions for the field operators and solve it. Solving these coupled equations in Fourier space is easier and leads to the extra contributions to the typical mechanical susceptibility of a mechanical oscillator 8 , with a modified expression (see Eq. 4.43) which depends on the Fourier frequency ω and the detuning from cavity's resonance frequency ∆:

χ opt [∆, ω] = 1 m ef f [(Ω 2 m -ω 2 + 2ωδΩ m (∆, ω)) + iω(Γ m + Γ opt )]
(4.44)

In the last expression, the optomechanically induced damping Γ opt (which can be positive or negative) and the frequency shift δΩ have been added to the typical expression (see Eq. 4.43), with the following expressions:

δΩ m (∆, ω) = Ω m ω g 2 0 Ncav (∆ + ω) (∆ + ω) 2 + FWHM 2 /4 + (∆ -ω) (∆ -ω) 2 + FWHM 2 /4 (4.45a) Γ opt (∆, ω) = Ω m ω g 2 0 Ncav FWHM (∆ + ω) 2 + FWHM 2 /4 - FWHM (∆ -ω) 2 + FWHM 2 /4 (4.45b)
From Eq. 4.44, we gather that the total mechanical losses, Γ tot = Γ m + Γ opt , can be either negative or positive. The intrinsic mechanical losses of the system, are related to the quality factor Q (see Eq. 1.13) through Γ m = Ω m /Q. Therefore, in order to gain knowledge about the behavior of the system, one needs to compare Γ m to Γ opt , i.e. to compare the mechanical damping of the system to the optomechanically induced damping which can be positive or negative.

When Γ tot > 0, the damping impedes a lasting mechanical resonance. This is accompanied by a loss of phonons number, associated with cooling the device (see e.g. [START_REF] Cohadon | Cooling of a mirror by radiation pressure[END_REF]] [Siciliani de Cumis et al., 2009] [Vahala, 2008] [Neuhaus, 2016]).

When Γ tot < 0, on the other hand, the system can reach the so-called "mechanical lasing" point (see e.g. [START_REF] Braginsky | Parametric oscillatory instability in Fabry-Perot interferometer[END_REF]] [Siciliani de Cumis et al., 2009] [Carvalho et al., 2019]). It is the latter state we are interested in, in order to actuate the mechanical modes of the quartz resonator.

8 A typical mechanical oscillator has an equation of motion:

d 2 x(t) dt 2 + Γm dx(t) dt + Ω 2 m x(t) = F m ef f
with x the position, Γm the mechanical losses and F the external force and m ef f the effective mass. In Fourier space, this same equation is written

X[ω] = χ[ω]F with X[ω]
, the fourier transform of x(t) and χ[ω] the mechanical susceptibility with expression:

χ[ω] = 1 m ef f (Ω 2 m -ω 2 + iΓmω) (4.43)

4.2.2.2/ APPLICATION TO THIN FILMS

From what is established in chapter 3 of this thesis, it is known that the power incident on the optical cavity gives rise to a higher intracavity optical power and that the FWHM is different from a regular Fabry-Perot cavity. Therefore, in order to predict the possibility to have an optomechanically induced mechanical lasing, one needs to know about the exact parameters of the optical system in order to evaluate Γ tot . In particular, we establish that:

Ncav (∆) = A(∆)P in FWHM × ω l (4.46) A(∆) = A 1 + ∆ FWHM/2 2 (4.47)
with P in the incoming laser power. Eq. 4.46 is simply the fraction of the total intracavity power to the typical photon power. Note that Eq. 4.47 is a first order expansion of an Airy peak around a local maximum (see Eq. 3.62 for the expression of A in the case of an absorptive thin film mirrors).

A previous work has shown that the best mechanical frequency to work at for optimizing the displacement with a plano-convex d = 1 mm quartz is of about Ω m = 50 MHz, at which frequency the effective mass is of about m ef f = 1 mg (see [START_REF] Bon | Cryogenic optomechanic cavity in low mechanical loss material[END_REF]). This mass is calculated by integrating the resonant volume and setting aside any optomechanically induced change, because the relevent responses will be studied around the mechanical resonance frequency, unlike some other treatments (see [START_REF] Pinard | Effective mass in quantum effects of radiation pressure[END_REF]).

It is possible to determine that the solutions for the max (min) of Γ opt in Eq. 4.45b, which we note ∆ + (∆ -), are:

∆ ± ≈ ∓0.288675 -FWHM 2 + 4Ω 2 m + 2 FWHM 4 + 4Ω 2 m FWHM 2 + 16Ω 4 m (4.48)
In our case, Ω m FWHM (see Table 3.1), the opposite case to the known sidebandresolved. Indeed, Ω m has be within an interesting range of frequencies for the quartz crystal resonator, i.e. 1 MHz < Ω m /2π < 50 MHz. On the other hand, the FWHM has been shown to be within the range of 500 MHz < FWHM < 1200 MHz for reasonably thick silver thin films.

Eq. 4.45b can thereafter be approximated at the first order in Ωm FWHM to get:

Γ ≈ opt (∆) = -4g 2 0 N cav Ω m ∆FWHM (FWHM 2 /4 + ∆ 2 ) 2 (4.49)
We also approximate at the first order in Ω m Eq. 4.48 to get the approximate detuning for the max (min) of Γ opt : ∆ ≈ ± ≈ ∓0.288675FWHM (4.50) so that using Eq. 4.50 and 4.49 along with the relation F = FSR FWHM , we get to the result that the minimum is reached for ∆ -and reads:

Γ ≈ opt = -10.3923g 2 0 P in ω l A F 3 FSR 3 (4.51)
Eq. 4.51 and Fig. 4.14 show that it does not suffice to maxime the amplification factor A as it may intuitively seem in order to maximize the optomechanical coupling. Instead, the important quantity to maximize is the product A × F 3 , while keeping the FSR constant for geometry-imposed reasons. This is done for a thickness d ≈ 52 nm.

Figure 4.14: Minimum of the optomechanically induced damping Γ min opt , computed for the refractive index for 35 nm silver and 50 nm silver taken from [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF]. Ag35nm designates the computation with Eq. 4.45b, whereas Ag35 approx designates the calculation with the approximated form in Eq. 4.51. In both the Ag35nm and Ag50nm computations, the optimal seems to be at around 52 nm of coating thickness. One can note that the minimum of the curve for Γ min opt against deposition thickness, be it with the approximated formula or the exact formula, coincides with the maximum of the product AF 3 , which indicates that this is the important quantity in order to determine the optimal value of Γ min opt .

We perform a numerical application for d = 52 nm of silver with refractive index ñ = 0.2609 -9.6359j (see Table 3.3), which is the point where Γ opt is minimum on Doing the same calculation with a Ω m /2π = 5 MHz mode yields that m ef f = 5 mg, g 0 = 5.2 mHz and Γ opt (∆ -, Ω m ) ≈ -2.79 × 10 -6 Hz which is also far from the mechanical losses, of approximately Γ m ≈ 0.1 Hz -0.5 Hz (with Q ≈ 1 × 10 7 -5 × 10 7 ).

These numbers show that the optics need to be improved in order to achieve sufficient optomechanically induced mechanical losses and compensate for the intrinsic mechanical losses Γ m . As is discussed in section 3.2.2.3 and as Table 3.3 shows, there is a tendency to improve the reflectivity at cryogenic temperature, so that one may wonder whether using the same scheme with a cryogenic temperature environment might improve the optics enough so as to allow for radiation pressure actuation.

To verify this, we inject the numbers once again, with this time refractive index ñ = 0.1100 -8.8149j (see Table 3.3). Again, we start with Ω m /2π = 50 MHz and m ef f = 1 mg. The optical index yields FWHM = 612 MHz with a optimal detuning ∆ -= 176 MHz and an intracavity amplification factor at this detuning of A = 58, which gives g 0 = 1.6 mHz like before. The optomechanically induced losses in this case are of Γ opt (∆ -, Ω m ) ≈ -6.15 × 10 -6 Hz, which are still far away from the required Γ m ≈ 0.1 Hz -1 Hz.

At the mechanical frequency Ω m /2π = 5 MHz and m ef f = 5 mg, with once again g 0 = 5.2 mHz, one finds that the optomechanically induced losses are Γ opt (∆ -, Ω m ) = -1.47 × 10 -5 Hz, far away from the required Γ m ≈ 0.1 Hz -5 Hz.

As these orders of magnitude show, even the use of cryogenic temperature on the thin silver films does not provide sufficient reflectivity in order to achieve mechanical lasing through radiation pressure [START_REF] Rosenziveig | Quartz Crystal Resonator Used as an Optical Fabry-Perot Cavity for Optomechanical Coupling[END_REF]. Only the use of highly reflective mirrors could provide the required light quantity in order to achieve actuation. Such higly reflective mirrors are mentioned and briefly studied in the future perspectives, section 5.2. Electrostriction is a material deformation effect arising from non-linear coupling with the applied electric field. It also gives rise to the Stimulated Brillouin Scattering (see for example [He, 2009] chapter 4, [Boyd, 2008] chapter 9 or [Fabelinskii, 1968] section 34), which is the main source of optomechanical coupling in matter. To get a first though incomplete grasp about electrostriction, we can follow the development given by [Boyd, 2008].

Let us assume a solid in an electric field. The potential energy stored in a solid because of the electromagnetic field is given by9 :

U = 1 2 0 E 2 (4.52)
where 0 is the eletric permittivity of the vacuum and is the relative permittivity. In all of the following, the notation r will be simplified to . The permittivity of the vacuum 0 will be put every time that it is needed. Any small volume will develop a dipole moment δP = 0 χ e E with χ e the electric susceptibility10 . In the presence of the electric field, this will cause a force to act on each small volume, proportional to ∇E 2 , pushing them towards stronger field regions. This, in turn, causes a deformation of the material on the macroscopic scale, which will change the permittivity by a quantity ∆ so that it is now + ∆ . The total potential energy stored in the solid therefore has changed by a quantity

∆U = 1 2 0 ∆ E 2 (4.53)
This means work was done on the system, by a force which is called the electrostrictive force.

4.2.3.2/ COUPLED EQUATIONS

The presence of an electrostrictive force gives rise to an influence on both the mechanical and the electromagnetic fields, which influence one another through the Brillouin scattering. In the next sections, we will see the coupled equations for the mechanical part in section 4.2.3.2.1, followed by the perturbed wave equation in section 4.2.3.2.2.

4.2.3.2.1/ Mechanical equations

In the presence of an electric field, if the material is piezoeletric, the piezoelectric (noted pz) stress arises (see section 2):

T pz ij = -e kij E k (4.54)
where e kij is the piezoelectric tensor and E k is the component of the electric field along the k axis.

Because of the presence of the optical field, electrostriction may come to play an important role, as some previous works have thoroughly shown [START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF]] [Laude et al., 2013] [Kharel et al., 2019] [Agarwal et al., 2013]. We therefore now have to account for this force.

Energy conservation arguments (see Royer, Eq. 3.32 [Royer et al., 2000a] or the appendix of Rakich [START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF]) permit to derive the following relation between the strain and the stress:

dE dS ij = T ij (4.55)
where E is the elastic potential energy stored in the solid.

We can therefore write that because of the presence of the electric field and its non-linear coupling with the solid under study, the variation in elastic energy in the solid dE and the variation in electromagnetic field potential energy stored dU are taken to be equal, dE = dU. Eq. 4.53 already established dU. Therefore, the elastic energy variation is, for an anisotropic solid,

dE = 1 2 0 ∆ ij E i E j (4.56)
with the same definitions as in section 4.2.3.1.

Next, let us find the expression for the variation ∆ caused by the deformation of the solid. The canonical relation between the strain and the inverse permittivity is (see for example Nye [Nye, 1984]chapter XIII Eq. 16 or Rouvaen [START_REF] Rouvaen | On a general treatment of acousto-optic interactions in linear anisotropic crystals[END_REF] Eq. 17)

∆ -1 ij = z ijk E k + p ijkl S kl (4.57)
where we introduced z ijk , the electro-optic tensor applied to the electric field E k and p ijkl , the elasto-optic tensor applied to the strain S kl11 , which is dimensionless. We see that the change in the inverse electrical permittivity, or impermittivity, depends on the strain and on the electric field.

The dynamic response of the solid, however, is several orders of magniture slower than the fast-oscillating optical field. The temporal mean value will have to be taken for the electric field. It is reasonable to assume the harmonic behavior of the time dependance for the electric field, which leads to consider the mean-value of a sinusoidal function, which is 0. E = t E(t) dt = 0. Furthermore, although the inverse piezoelectric effect will lead to an electric field following the dynamic of S kl , which does not average to 0 in the same way as presented above, it is a second order term12 because the strain is field-induced (see Eq. 4.62) and is therefore nelected. It is therefore possible to rewrite Eq. 4.57 and simplify it by eliminating the dependence on the electric field:

∆ -1 ij = p ijkl S kl (4.58)
On the other hand, ij -1 jk = δ ik with δ ik the Kronecker delta, equal to 1 if i = k, 0 if not. The derivative of a Kronecker delta (in the distribution sense) is 0, and it is therefore written (see Eq. 8.12 from Royer vol.2 [Royer et al., 2000b])

d ij -1 jk = 0 ⇒ 0 = ∆ ij -1 jk + ij ∆ -1 jk (4.59a) ∆ ij -1 jk kl = -ij ∆ -1 jk kl ∆ il = -ij ∆ -1 jk kl (4.59b)
Using Eq. 4.58 in Eq. 4.59b we obtain the expression of ∆ ij :

∆ ij = -il p lkmn kj S mn (4.60)
Now it suffices to insert Eq. 4.60 in Eq. 4.56 for the case of a small strain due to electrostriction, noted δS es ij . This reads:

dE = - 1 2 0 il p lkmn kj δS es mn E i E j (4.61)
From this last equation 4.61, we finally derive the stress induced by the electrostriction in the same way as in Eq. 4.55:

T es ij = - 1 2 0 ml kn p lkij E m E n (4.62)
The radiation pressure can also influence the shape of the solid and generate an interesting actuation method, see [Aspelmeyer et al., 2014a] [Braginskii et al., 1970] [Cohadon et al., 1999] [Bon et al., 2018] (see section 4.2.2). It has been shown that the electromagnetic field exerts a stress on the solid through the radiation pressure (see Eq. 6.120 of [Jackson, 1998] or Eq. 1 of Rakich [START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF]). This stress reads:

T rp ij = D i E j - 1 2 D i E j δ ij + H i B j - 1 2 H i B j δ ij (4.63)
where we introduced the magnetic fields B and H = µ 0 µB with µ 0 the permeability of the vacuum and µ the relative permeability. Because quartz is non-magnetic, µ ≈ 1.

Because the system is linear, the total stress acting on the solid is given by the addition of all previous contributions13 :

T tot ij = T in ij + T pz ij + T es ij + T rp ij (4.64)
where T in ij = C ijkl S kl (the stress described by the linear elastic response), so that the total volumic force is simply

f tot i = ∂T tot ij ∂x j (4.65)

4.2.3.2.2/ Electric Field Equations

To be able to establish the wave equation for the electric field, we remind Maxwell's equations in a non-magnetic dielectric (See Eqs. 6.6 from Jackson [Jackson, 1998]):

∇ D =0 (4.66a) ∇ B =0 (4.66b) ∇ × E = - ∂ B ∂t (4.66c) ∇ × H = ∂ D ∂t (4.66d)
where, as defined in section 4.2.3.2.1, E is the electric field, D = 0 E is the electric displacement field, B is the magnetic field and H = µ 0 µ H ≈ µ 0 H is the H magnetic field14 . We omitted from Eqs. 4.66 the terms which are zero in the case of a dielectric, such as the term proportional to the free charges current J or the free charges volumic density ρ e . Note that is a tensor which, because of the anisotropy of our medium, lets the electric displacement field be in a slightly different direction than the electric field.

The usual development to find the propagation equation for the electric field is to take the curl of Eq. 4.66a. Doing so yields

∇ × (∇ × E) = ∂ ∂t = -µ 0 ∂ 2 D ∂t 2 = - 1 0 c 2 ∂ 2 D ∂t 2 ∇ × (∇ × E) = - 1 c 2 ∂ 2 E ∂t 2 (4.67)
where the relation 0 µ 0 = 1 c 2 was used, c being the light velocity in vacuum. The electric displacement field D accounts for the appeance of dipole moments in matter, notably through the displacement of electric charges. This is described through the relation

D = 0 E + P (4.68a) D = 0 E (4.68b) ∆ D =∆ P (4.68c) ∆ D = 0 ∆ E (4.68d)
where P is the density of permanent and induced dipole moments in the solid.

We have seen from section 4.2.3.2.1 that the dielectric permittivity was subject to a change under the influence of the electric field and the strain. We can consider a slight change in the dielectric permittivity ∆ , such that now becomes + ∆ . This is obviously due to a change in the dipole moment field which we will write ∆ P. Indeed, the presence of matter impacts on the total displacement field because of the presence of a polarizability, which gives the difference between the vacuum case and the case inside matter. E is therefore constant so that P is source of variation in Eq. 4.68a. As in section 4.2.3.2.1, any effect on the dielectric permittivity change ∆ due to the inverse piezoelectric will be discarded because it was shown that the high (optical) frequency electric field do no contribute to the mechanical actuation (see Eq. 4.57). With this, we therefore write ∆ just as we did in Eq. 4.60:

∆ ij = χ ijkl δS kl (4.69)
where we introduced the tensor χ ijkl = jn p mnkl im , closely related to the usual definition of the electric susceptibility 15 16 .

Knowing that D will be changed into D + ∆ D, and with the expression of ∆ D in Eq. 4.68c, we can insert this into Eq. 4.67 to obtain:

∇ × (∇ × E) = 1 c 2 ∂ 2 ( E + ∆ P) ∂t 2 (4.70)
so that we can, in the end, write the anisotropic perturbed wave equation for the electric field:

∇ × (∇ × E) - 1 c 2 ∂ 2 E ∂t 2 = 1 0 c 2 ∂ 2 ∆ E ∂t 2 (4.71)
In the following, however, we will only consider that the incident and diffracted optical fields are sufficiently strong to be unaffected by the acoustic answer, so that the evolution of the electric fields will be ignored.

4.2.3.3/ PHASE-MATCHING CONSIDERATIONS

The electrostrictive force gives rise to the Brillouin scattering, thus permitting further interaction between optics and acoustics (see [Boyd, 2008]). Brillouin scattering, which is a 3 waves interaction, imposes a phase condition on the diffracted light beam and the phonon created in order to be efficient (i.e. stimulated Brillouin scattering), called the Bragg condition. For the Stokes band, i.e. the diffracted light beam at lower frequency, the phase and energy conservation conditions are written:

k i = k d + q (4.72a
)

ω i =ω d + Ω (4.72b)
where k i and k d are the incident and diffracted optical beams' wavevector respectively, and q is the acoustic wavevector. ω i and ω d are the incident and diffracted beams' frequencies, respectively, and Ω the acoustic frequency.

It can be shown that the most favorable interaction for Brillouin Scattering is the allcolinear backwards interaction, i.e. with the incident and diffracted optical fields with opposite directions, although this type of interaction happens at a high acoustical frequency in general. For quartz, it happens around 12 GHz (see [START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF]] [Renninger et al., 2018]). The forwards interaction, on the other hand, is less favorable (see [START_REF] Corvo | Forward stimulated Brillouin scattering[END_REF]) but the acoustical frequency is much lower.

A forward interaction is represented with a small angle on Fig. 4.15. Chosing a simple plane-wave dispersion relation for the electromagnetic and acoustic waves permits to write the relationships:

k i k d q
k α = ñα ω α c = 2πñ α 1 λ α (4.73a) q = Ω v = 2π 1 Λ (4.73b)
where v is the acoustic wave's velocity, c is light's velocity in the vacuum, ñα is the refractive index for each wave and λ α (Λ) are the wavelength of the electromagnetics (acoustic) waves. For a colinear interaction (i.e. k i , k d and q all in the same axis) the acoustic wavevector can be obtained from Eqs. 4.72 and 4.73:

q =k i -k d q = ñi ω i -ñd ω d c Ω v = ñi (ω i -ω d ) + ∆ñω d c Ω v = ñi Ω c + ∆ñω d c (4.74)
where ∆ñ = ñdñi .

In the case of quartz with an SC cut, with a beam propagating along the x 2 direction (see Fig. 4.17), the major axis has an index 17 :

ñd = ñe -∆ñ sin 2 (θ) (3.3)
which leads to an interaction frequency of:

Ω 2π = v(ñ d -ñi ) λ 0 (4.75)
which, for a longitudinal A-mode with V ≈ 6000 m s -1 , θ = 33.88°, ñ0 = 1.5276, ñe = 1.5361 and λ 0 = 1550 nm gives an acoustical frequency of Ω/2π ≈ 15 MHz.

It is easy to see that if Ɩ = 0 in Eq. 4.74, the phase relation cannot be satisfied, as the velocity of the acoustic wave would need to be equal to the incident electromagnetic wave's velocity. This permits to conclude that a change in refractive index between the incident and refracted EM wave has to happen in the colinear forward Stokes interaction in order to take place efficiently.

It can be shown that, given a certain electromagnetic wave's frequency and direction of propagation, at most two (perpendicular) polarizations can exist, which are lying in the plane perpendicular to the propagation axis. These directions are the directions of the minor and the major axis of the plane perpendicular to D intersecting the index ellipsoid (see Fig. 3.1).

It is thereafter obvious that the only possible way for the refractive index to change and satisfy the phase-matching condition of Eq. 4.74 is for the polarization to change, that is, to rotate 90°1 8 . This is illustrated in Fig. 4.16. The polarizations are represented here with their unit polarization vector êi and êd of the incident and diffracted beams. Note that the incident wave should be along the higher index direction in order to achieve a Stokes-band interaction.

x 2

x 3 x 1 0 e Figure 4
.17: Scheme of the quartz system under study.

4.2.3.4/ ESTABLISHING THE EQUATIONS

In order to obtain and solve a simplified version of Eq. 4.65, the equation of motion for the mechanical mode, we start by writing the volumic electric field (in the same way as in [START_REF] Agarwal | Multimode phonon cooling via three-wave parametric interactions with optical fields[END_REF] or in [START_REF] Wolff | Stimulated Brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis[END_REF]), taking into account our current situation sketched in Fig. 4.17, with all the implied waves propagating in the x2 direction:

D = α=i,d D α = ˆ α Dα (x 1 , x 3 )φ α (t) sin(k α x 2 ) cos(ω α t) (4.76)
where α = i, d designates the incident and diffracted beam respectively, ˆ α the polarization unit vector, Dα the transverse spatial profiles for the electric field, φ the slowly varying19 envelopes for the electric and acoustic fields, ω α the electric frequency, k α the electromagnetic wavevector.

The electric field's spatial profile verifies the equations:

∇ 2 Dα + ω α c 2 Dα =0 (4.77a) ∇ • Dα =0 (4.77b)
Eq. 4.77a represents the fact that the transverse profile verifies as of itself the wave equation and is a stable mode of the wave equation. Eq. 4.77b is one of the Maxwell equations.

As established in Eq. 4.62, the electrostriction induced stress T es ij (see [Nelson, 1982]) is written20 :

T es ij = - 1 2 0 p ijmn D m D n (4.78)
so that the total stress applied is written:

T tot ij = c ijkl ∂u k ∂x l + η ijkl ∂ 2 u k ∂x l ∂t - 1 2 0 p ijkl D k D l (4.79)
with the losses tensor η ijkl .

so that the perturbed wave equation (Equation Of Motion, EOM) for the acoustic field is written (ignoring the radiation pressure):

ρü i -c ijkl u k,jl -η ijkl uk,jl = - 1 2 0 p ijmn (D m D n ) ,j (4.80)
This calls for a closer look at the product D l D k , because only phase-matched elements will be kept (i.e., elements where ω 0 -ω d = Ω). The interesting terms are the crossed terms between the frequencies ω i and ω d , so that the frequency difference (hence a priori phase-matched) terms are the only relevant ones:

D m D n = Di Dd ϕ i ϕ d sin(k i x 2 ) sin(k d x 2 ) cos(ω i t) cos(ω d t) D m D n ≈ Di Dd ϕ i ϕ d 1 4 [ $ $ $ $ $ cos(qx 2 ) -cos ([k i + k d ]x 2 )][cos(Ωt) + @ @ @ @ @ @ @ @ h h h h h h h h cos((ω i + ω d )t)] × ˆ i m ˆ d n + ˆ d m ˆ i n (4.81)
where we have striked through and neglected the part that oscillates at the frequency ω i + ω d , as it oscillates too fast for any acoustical response to take place. Furthermore, the part that slowly depends on the position, cos(qx 2 ) we also neglected, as it oscillates so much more slowly than the cos ([k i + k d ]x 2 ) ≈ cos(2kx 2 ) part, so it is practically negligible when considering the derivative of the previous expression (for the equation of motion, see Eq. 4.80).

In order to simplify greatly the problem, which is a priori a 3D problem with all possible components for all possible values, we will start by supposing that the optical beams and their electric fields are not affected by the acoustical dynamics, so that we set the electric enveloppes as constants, normalized to 1 for convenience: φ α = 1. We will also set the spatial dependence D, that will be limited in space but constant within the radius w of the optical beam. That is, Di (x 1 , x 3 ) = D, a constant, for x 1 and x 3 ∈ [-w 2 , w 2 ] and 0 outside these bounds. It is normalized so that the optical power is

P = ñc 4 0 πw 2 |D| 2 (4.82) which implies that |D| = 1 w 4 0 P ñcπ (4.83)
With these assumptions, we are left with the easier expressions for the product D m D n and its derivative:

D m D n ≈ ˆ i m ˆ d n + ˆ d m ˆ i n Di Dd ϕ i ϕ d sin(k i x 2 ) sin(k d x 2 ) cos(Ωt) (4.84) (D m D n ) ,2 ≈ ˆ i m ˆ d n + ˆ d m ˆ i n Di Dd ϕ i ϕ d k 2 sin(2kx 2 ) cos(Ωt) (4.85)
In order to solve Eq. 4.80, one notes that the only dependency left of the quantities involved is in x 2 (because we have set the spatial dependency of the wavefunction to be a constant in the other directions), so that in the right-hand side of the equation, j is set to be j = 2. For the same reason, the left-hand side also needs to have l = j = 2.

Because we set the quartz to be in an SC cut, the stiffness, elasto-optic and viscosity tensors have a priori no null element (see Annex A). Therefore, we can deduce that the non-zero elements for the equation of motion in Eq. 4.80 are:

1. on the right hand side of the equation, j = 2 so that the non zero elements are: 2. on the left hand side of the equation, j = k = 2 so that the non-zero elements are:

• i = 1: C 66 , C 62 , C 64 • i = 2: C 26 , C 22 , C 24 • i = 3: C 46 , C 42 , C 44
We can now write the equations for the three axes. To this end, let us examine the equation for e.g. the first axis x 1 :

ρü 1 -C66 u 1,22 -C62 u 2,22 -C64 u 3,22 = kD 2 2 0 sin(2kx 2 ) cos(Ωt)× × $ $ $ $ $ (ˆ i 1 ˆ d 1 )p 61 + $ $ $ $ $ (ˆ i 2 ˆ d 2 )p 62 + $ $ $ $ $ (ˆ i 3 ˆ d 3 )p 63 + @ @ @ @ @ @ @ @ (ˆ i 2 ˆ d 3 + ˆ i 3 ˆ d 2 )p 24 + (ˆ i 3 ˆ d 1 + ˆ i 1 ˆ d 3 )p 65 + @ @ @ @ @ @ @ @ (ˆ i 2 ˆ d 1 + ˆ i 1 ˆ d 2 )p 66 (4.86) where Cij = (C ij + η ij ∂ ∂t
) the modified stiffness that takes into account the losses. Many polarization products have been equated to zero and striked through, as it is impossible for the polarization to be along the same axis as the propagation axis (i.e. along x 2 ), and it is also impossible to have the same polarization on both the incident and reflected optical wave, see Eq. 4.74.

From these observation, we write the equations for the three axes:

ρü 1 -C66 u 1,22 -C62 u 2,22 -C64 u 3,22 = kD 2 p 65 2 0 sin(2kx 2 ) cos(Ωt) × (ˆ i 3 ˆ d 1 + ˆ i 1 ˆ d 3 ) (4.87) ρü 2 -C26 u 1,22 -C22 u 2,22 -C24 u 3,22 = kD 2 p 25 2 0 sin(2kx 2 ) cos(Ωt) × (ˆ i 3 ˆ d 1 + ˆ i 1 ˆ d 3 ) (4.88) ρü 3 -C46 u 1,22 -C42 u 2,22 -C44 u 3,22 = kD 2 p 45 2 0 sin(2kx 2 ) cos(Ωt) × (ˆ i 3 ˆ d 1 + ˆ i 1 ˆ d 3 ) (4.89)
From this, it is immediately seeable that all modes along all directions are mixed. The only relevant polarization coupling term here is for the incident optical field to be polarized along the x3 direction, because it is along this direction that the optical refractive index is higher (see Fig. 4.16).

4.2.3.5/ SOLVING THE DISPLACEMENT EQUATION

We will now proceed to solve Eq. 4.88, simplifying the resolution by taking into account only the C 22 coefficient, as the other coefficients are much smaller (see Annex A). Let us rewrite the equation in the form:

u ,tt -z2 u ,22 = kD 2 p 25 2ρ 0 sin(2kx 2 ) cos(Ωt) (4.90)
where we simplify notations with u ≡ u 2 , as it is the only relevant displacement, z2 = z 2 + iΩα with z = C 22 ρ and α = η 22 ρ . The situation is very similar to section 4.1.2.2, although this time, the wave-equation is inhomogeneous but the boundary condition is homogeneous. Indeed, without the radiation pressure taken into account, Eq. 4.79 yields 0 in x 2 = 0 and x 2 = e, at the boundaries. This is because the electric field at the boundaries is zero when at optical resonance, see Eq. 3.15. Here both the incident and diffracted fields are assumed to be at optical resonance, so they are both approximately 0 at the boundaries.

T 2 e 0 = 0 ⇒ u ,2 e 0 = 0 (4.91)
This situation is simpler than that of section 4.1.2.2, because there is no need to shift the data, as the boundary conditions are homogeneous. In the same manner as Eq. C.4, it is possible to write a condensed version of the system (leaving aside the losses for now):

       u tt -z 2 u ,22 = θ(x 2 , t) u ,2 (e, t) = 0 u ,2 (0, t) = 0 (4.92a) (4.92b) (4.92c) where θ = kD 2 p 25 2ρ 0 sin(2kx 2 ) cos(Ωt)
The solutions of the freely oscillating wave equation have the same form as in section 4.1.2.2:

u n = cos(β n x 2 ) cos(Ω n t) (C.7a) β n = nπ e (C. 7b 
)

Ω n = nπz e (C.7c)
The solutions to the forced wave equation Eq. 4.92a are found by decomposing its solutions and the forcing term θ on the (eigen)basis of the freely oscillating wave basis, which has the same form as earlier Eq. C.7:

U (x 2 ) = λ n cos nπ e x 2 (4.94a) θ = θn cos nπ e x 2 (4.94b)
and one obtains the equation for coefficient λ n by injecting these last two decompositions into Eq. 4.92a:

-

Ω 2 λ n + nπz e 2 λ n = θn (4.95)
where θn can be calculated to be:

θn = kD 2 p 25 2ρ 0 e 0 sin(2kx 2 ) cos nπ e x 2 dx 2 (4.96) θn = k 2 e 2 D 2 p 25 ρ 0 × ≈1 $ $ $ $ $ cos(2ke) cos(nπ) -1 n 2 π 2 -4k 2 e 2 (4.97)
where in the last equation, because we work near resonance, cos(2ke) ≈ 1.

Like in section 4.1.2.2, at resonance, only one coefficient of index n 0 is to be taken into account, and it can be calculated to be:

λ res n 0 = c 2 iαω 3 n 0 θn 0 (C.10)
A numerical application is taken for a 50 nm silver deposition on each side of the quartz at 300 K, with an input power of P out = 5 mW which leads to an optical power inside the quartz of about P in = AP out ≈ 110 mW with A = 22 defined as in Eq. 3.62 and a beam waist of 73 µm as well as a refractive index of ñ0 = 1.5276, this leads to an electric displacement field of D = 8.861 × 10 -7 C m -2 . ρ = 2649 kg m -3 , C 22 = 11.53 × 10 10 N m -2 , η 22 = 5.978 × 10 -4 Pa s, p 25 = -1.84 × 10 -3 , Ω/(2π) = 15.07 MHz as established in Eq. 4.75. The coefficient for the displacement of the mode of order n = 5 (wich is closest to the calculated value of Ω, see Eq. C.7b) is thus calculated to be on the order of λ res 5 ≈ 4.52 × 10 -18 m. This quantity is obviously extremely small and does not seem, at first glance, to allow for any displacement to be measured. In particular, taking into account that the ideal shot-noise limited detection noise floor in a perfect homodyne detection is calculated to be (see [Briant, 2004], Eq. 1.24) of about δx min ≈ 2.9 × 10 -18 m/ √ Hz, with the true floor of sensitivity even higher, one concludes that the expected several Hz-wide mechanical resonance will not be able to be differentiated from the noise.

There is, however, another descriptive framework with which one may make predictions (see e.g. [START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF]] [Agarwal et al., 2013] [Laude et al., 2015]). In the Hamiltonian description frame, and similarly to the radiation pressure description, a selfoscillating power threshold should be accessible. This is when the effective mechanical losses (the intrinsic mechanical losses with the electrostrictive-induced) become negative, i.e. an amplification regime is reached, much like with the radiation pressure in section 4.2.2. This effect is not predicted by the current theory and requires to analyze the situation with the Hamiltonian framework.

The second part of this chapter 4 focuses briefly of the optomechanical possibilities with the radiation pressure force and the electrostrictive force.

The main properties have been reminded for the radiation pressure force in cavity optomechanics, in particular with the optomechanically induced damping Γ opt which can be either positive or negative, thus possibly compensating the intrinsic mechanical losses Γ m to achieve the so-called "mechanical lasing" point. The calculation is then specialized to the case where the mechanical frequency is included within the optical cavity's gain, i.e. Ω m < FHWM which is always true for reasonably thin silver films mirrors coatings (500 MHz < FWHM < 1200 MHz) along with interesting frequency range 1 MHz < Ω m /2π < 50 MHz. This allows to establish that the best optomechanically induced damping Γ opt is achieved for a thickness of about 50 nm due to the dependency of Γ opt ∝ AF 3 . This means that the optimum is not achieved for the optimum intracavity intensity, but rather for the optimum of the product AF 3 , which is the reason why we took the 50 nm silver thin film as the reference film throughout this thesis.

We have also given a brief introduction and reminder to the electrostrictive force, which can be of interest for actuation through the Brillouin scattering. We have also derived the equations governing the mechanical actuation with co-propagating beams in order to achieve the lowest frequencies for a SC quartz cut, i.e. around 15 MHz, under a 1D simplification and the assumption that the light fields are sufficiently strong to ignore their amplitude dynamics.

The numerical application of the optical characteristics of the silver thin films to either forces with derived equations shows that the reflectivity of the thin films is not sufficient to actuate the resonator in this configuration. As discussed in section 3.1.3, the absorptivity of the mirrors also impacts negatively the overall expected finesse and intracavity amplification factors, so that this adds negatively to an insufficient maximum reachable reflectivity. This permits to conclude that even by performing a precise-enough measurement, e.g. with a perfect heterodyne detection, we should not be able to detect a mechanical resonance based on optomechanical forces alone.

The possible use of more reflective and less absorptive mirrors arises in this context. This is discussed in the perspective section 5.2 as a possible way to achieve a sufficient optomechanical coupling in order to actuate the quartz resonator, at the expense of worsening the mechanical quality factor of the resonator.

CONCLUSION AND PERSPECTIVES

5.1/ CONCLUSION

This thesis work enters into the frame of one of the developped research themes in the Time and Frequency department at FEMTO-ST, namely the study of quartz crystal Bulk Acoustic Wave resonators at cryogenic temperatures and its promising features. Indeed, an extremely high mechanical quality factors as high as a few billion at cryogenic temperature was found for the very best quartz crystal resonators some years ago in our team [START_REF] Galliou | Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments[END_REF]. We have summed up the reasons why this could lead to an improved frequency stability, and in particular how this would permit to achieve a stability (Allan deviation floor) down to 10 -16 , provided the environmental sources of unstability are well controlled, with e.g. temperature fluctuations, vibrations, acceleration. Another previous work in our team has shown that there exists a compensated cut for frequencytemperature fluctuations at 4 K [Bon, 2018], which paves the way towards the realization of an ultrastable clock.

In order to do that, we worked with the hypothesis that optomechanical actuation of these quartz crystals could constitute a promising alternative to the usual piezoelectric actuation. Optomechanics is a quite unique and slightly peculiar thematics to our department and we have done an exploratory work.

In particular, we have systematically studied experimentally and theoretically the absorptive Fabry-Perot cavities that a typical quartz resonator coated with metallic thin-films readily constitutes. The absorptivity of these coatings brings several effects specific features, especially the frequency shift between the reflection and absorption peaks and the broadened FWHM. We have developed an original method that takes advantage of these particular effects of the apsorbtive Fabry-Perot cavity in order to extract the thin films refractive index. We have successfully confronted it to existing litterature, giving reasonable confidence in its accuracy.

We have also studied both experimentally and theoretically the photothermal actuation of the quartz crystal. From the knowledge of the refractive index and optical properties of the thin-films Fabry-Perot cavities, we have been able to study theoretically the possibility to actuate optomechanically the quartz, either through radiation pressure or electrostriction. With the limited reflectivity offered by the thin-film mirrors, we have established that it does not seem possible, in this configuration, to obtain optomechanical actuation of the quartz crystal resonator.

We have mentioned, however, as a possible future perspective, how other geometries 125 could offer this possibility, and in particular with the use of super mirrors at the cost of reducing the mechanical quality factor of the quartz.

There are several points that require further study and some question left unanswered, mainly due to a lack of time. In particular, two main axes are left with unanswered questions: photothermal excitation and optomechanical excitation.

Unfortunately, the study of photothermal excitation had to be simplified in order to make theoretical predictions within the available time. This means that we have chosen to simplify the problem to a 1D problem, both thermal-wise and mechanics-wise. Although we have shown that this is fairly accurate at room temperature, it is not anymore at cryogenic temperature. This might explain the discrepancies between the displacement levels which are predicted to be smaller at cryogenic temperature. This is both counterintuitive with the known mechanical constants values and inaccurate experimentally. Furthermore, the question of signal levels at optical resonance would need to be clarified through some further experimental and theoretical work. Indeed, as pointed out in section 4.1.3.3.2, the frequency shift indicates a temperature elevation which is compatible with the announced intracavity amplification factor. The measured signal level, however, is not compatible with this elevation. Further study is required over this part, possibly involving more sophisticated 3D resolution of the problem, or even Finite Element Methods softwares.

The other main point is that the optomechanical actuation has not been measured, though it has been predicted to be too small. In order to measure the smallest possible displacements, we consider an optical readout, such as heterodyne detection (see Annex E) which was unfortunately not implemented due to a lack of time. The Hamiltonian framework for the electrostrictive force is known to provide a threshold power, over which a self-oscillating "mechanical lasing" phenomenon is known to arise. This is not predicted by the continuum physics framework, which, so far, does not include the radiation pressure force in the treatment of the boundary conditions due to a lack of time. Further study is therefore required to analyze the difference in physical predictions that the Hamiltonian framework might bring.

Regardless, this thesis work has several upsides to it. In particular, to the best of our knowledge, there never has been before a systematic measurement campaign to confirm the exactitude of Monzón theoretical framework [START_REF] Monzón | On the concept of absorption for a Fabry-Perot interferometer[END_REF]. We performed this systematic measurement campaign with several metallic films at different thicknesses, both at room and cryogenic temperature to observe the difference. From this, we have been able to extract a refractive index from an original numerical method that we developed and gave rise to an article ( [START_REF] Rosenziveig | Measurement of Refractive Index at Cryogenic Temperature of Absorptive Silver Thin Films Used as Reflectors in a Fabry-Perot Cavity[END_REF], to be published) which, when compared to the (scarce) litterature, stands as reasonably agreeing (see section 3.2.3). We have been able to confirm the validity of this descriptive frame through our measurement campaign.

Another main point to this thesis work has been to demonstrate the feasability of photothermal excitation for the quartz crystal resonators, taken out of the box. To the best of our knowledge, although it had been previously demonstrated that this excitation was possible, it had only been shown for rather low frequencies (up to 1 MHz [START_REF] Dieulesaint | Optical Excitation of Quartz Resonators[END_REF]). We have demonstrated that the excitation works even to rather high frequencies, up to 15 MHz at 4 K although with weak signal at higher frequencies (possibly due to the AOM bandwidth, see section 4.1.3). What's more, we also demonstrated experimentally that the excitation works better at cryogenic temperature, which had also not been done before, inspite of the fact that we lack a proper theoretical frame- [START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF]. This has the advantage of allowing the maximum mechanical Q factor, though only electrostriction is accessible this way. Fig. 5.1b: 2 super mirrors are deposited right on the resonator. This has the advantage of allowing both electrostriction and radiation pressure, but dramatically decreases the Q factor. Fig. 5.1c: 1 super mirror is decoupled from the resonator, which is deposited with one metal electrode. This allows for a rather high Q, and both the photo-thermal effect as well as radiation pressure. Fig. 5.1d: 1 super mirror is deposited on the quartz, as well as a metal electrode. All three forces are achievable this way, though the Q is diminished.

work to properly describe the results.

Lastly, although we did not demonstrate experimentally the lack of resonance, we have demonstrated that the optomechanical actuation is unlikely for the quartz resonators coated with metallic thin films, due to the poor reflectivity properties as well as the absorption of the thin metallic layers coating, even at cryogenic temperature which has been shown to improve the optical qualities of metals. This permits to discard optomechanical actuation as an easy and likely candidate to replace piezoelectric actuation in a typical quartz crystal resonator with typical geometry.

5.2/ PERSPECTIVE: OTHER POSSIBLE GEOMETRIES

A possible perspective for the future of the experiment is to change the geometry of the quartz and accompanying mirrors, both in their nature and exact placing. Throughout this section, we consider other such geometries in order to assess the feasability of optomechanical coupling. By changing the nature of the mirror (silver, super-mirror with dielectric layers) and its position (input side, output side) the forces, coupling rate and expected displacements are affected. Four main possibilities are considered in this section, which are visually summed up in Fig. 5.1. Table 5.1 also sums up their main characteristics with the acting forces, the expected mechanical quality factor losss, the expected optical finesse, and whereas an actuation is possible.

Note that in all of these options, the input mirror is always a super-mirror, indicating that its absorption is of the order of some ppm.

5.2.1/ OPTION 5.1A

In this geometry, which is the solution used in [START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF], both mirrors are decoupled from the quartz resonator and are held at a distance. The thermal absorption of the quartz at telecom wavelength is extremely small thus leading to almost no thermal excitation (see section 4.1). Likewise, because of the quartz faces display very small reflectivity, the radiation pressure is too small to be considered. The only acting force is therefore the electrostrictive force.

The remote mirrors present the obvious advantage to provide a contactless Fabry-Perot cavity, which is not solidary to the resonator, thus avoiding the deposition mechanical losses. Throughout this section Q 0 is the maximum (bare quartz) mechanical quality factor and Q the quality factor in the present geometry. Avoiding to deposit extra layers directly onto the quartz translates into

Q/Q 0 = 1.
Envisioning the use of super mirrors 10CV00SR.70F from Newport, with a reflectivity R > 99.97%, this would lead to a minimum finesse of F ≈ 10400 (see Eq. 3.25). The provider even claims finesse exceeding 30000, which we will therefore take as the reference finesse. Using Eq. 3.29, the intracavity amplification factor A ≈ 38200. Applying this new amplification coefficient to the previously calculated order of magnitude for the displacement in section 4.2.3.5 (see Eq. C.10), one predicts a displacement coefficient λ res 5 ≈ 7.86 × 10 -15 m. This is very small, although the ideal theoretical shot-noise limit in a perfect homodyne detection (see [Briant, 2004]) predicts a displacement detection limit at 2.9 × 10 -20 m/ √ Hz.

5.2.2/ OPTION 5.1B

In this geometry, two super-mirrors are deposited right on the quartz resonator, much like the typical quartz resonator geometry: the common electrodes are replaced with a succession of dielectric layers permitting to obtain a super-mirror. It has the obvious advantage of achieving very high finesse (thus amplification factor A), much higher than in the thin metallic deposition geometry studied throughout this thesis. Furthermore, with respect to option 5.1a, here both electrostriction and radiation pressure are a priori achievable, although it is possible they might work against one another (see [START_REF] Rakich | Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces[END_REF]). On the other hand, main inconvients include the difficulty of the deposition process leading to high costs and an incapacity to process the deposition in the local clean room without a substantial work, far exceeding the reach of this PhD. More importantly, a major topic in the high-reflectivity coatings is to be able to reduce the thermal noise and thus the mechanical losses, in particular towards the improvement of gravitational wave detectors (see [Cole, 2012] [Vajente et al., 2021] [Harry et al., 2002]). This solution is counterproductive in terms of mechanical resonance effect. Indeed the dielectric layers constituting the mirrors also have an impact on the mechanical losses of the resonator as discussed in section 1.3.2, even more so than metallic depositions (see [START_REF] Galliou | Impact of coatings on the quality factor of a quartz crystal resonator at liquid helium temperature[END_REF]).

Several different types of depositions can be considered, leading to different results for both the mechanical and optical characteristics. We will study in more details some options in this section.

5.2.2.1/ TA 2 O 5 /SIO 2

In some previous works [START_REF] Galliou | Impact of coatings on the quality factor of a quartz crystal resonator at liquid helium temperature[END_REF]] [Galliou et al., 2016a], it has been established that the deposited layers of Ta 2 O 5 /SiO 2 hinders the mechanical resonance and adds mechanical losses to the intrinsical resonator losses. The order of magnitude of the losses that the coating induces is estimated, at cryogenic liquid helium temperatures, to be of1 Q coating ≈ 1.6 × 10 -5 , generally much larger than the intrinsic losses for good resonators (some 10 -8 ). This leads to a mechanical quality factor reduction of about 10 3 . They also displayed a reflectance of about R = 99.99%, leading to a finesse of about F ≈ 31000. Using once again Eq. 3.29, this gives an intracavity amplification factor of about A ≈ 40000.

Leading again the same calculation as before for the electrostrictive force leads to the similar result λ res 5 ≈ 8.23 × 10 -15 m and to the similar conclusion that this small but can theoretically be detected, as the finesse of the cavity is very high in this case and allows for a shot-noise theoretical detection limit of around δx min ≈ 2.9 × 10 -20 m/ √ Hz. Inserting the numbers in Eq. 4.45b permits to establish that with an input laser power of 5 mW, then Γ opt ≈ 535 Hz for a Ω m = ∆ω = 2π × 5 MHz mechanical resonance frequency and detuning from optical resonance. This value of optomechanically induced losses is much larger than the typical mechanical peak's width at 5 MHz: considering a good resonator with Q = 1 × 10 7 , this leads to a FWHM of about FWHM ≈ 0.5 Hz Γ opt , i.e. the optomechanical actuation with the radiation pressure is predicted to be accessible in this configuration for this frequency. The same calculation at 50 MHz leads to a Γ max opt ≈ 529 Hz, which is still much larger than the typical mechanical peak's width of around 0.5 Hz for a quality factor Q = 1 × 10 8 . We conclude that the optomechanical actuation is possible through the radiation pressure with this configuration, and, again, through the developed theoretical description, does seem reachable through electrostriction. It is, however, highly damageable to the mechanical resonance, leading to a mechanical quality factor reduction of around 100 -1000.

5.2.2.2/ GAAS/ALGAAS

A promising solution would consist in alterning layers of GaAs/AlGaAs, with a separate epitaxial growing of the layers, followed by a removal of the layers from the substrate and a final bonding to the host substrate as described in [START_REF] Cole | Tenfold reduction of Brownian noise in high-reflectivity optical coatings[END_REF]. The mechanical losses for such layers has been measured to provide an improvement with previously available types of coating of about a factor 10 (see [START_REF] Cole | Tenfold reduction of Brownian noise in high-reflectivity optical coatings[END_REF]), which reaches a value of 1 Q coating ≈ 10 -5 (see [START_REF] Penn | Mechanical ringdown studies of large-area substrate-transferred GaAs/AlGaAs crystalline coatings[END_REF]) 1 . This lead, once again, to a mechanical quality factor reduction of about 10 -3 (assuming the reference 10 -8 intrinsic mechanical losses for the bare resonator).

The optical properties of these substrates are shown to yield, in the infrared region, extremely low absorption and very high reflectivities, leading to a finesse of up to F = 3 × 10 5 (see [START_REF] Cole | High-performance near-and mid-infrared crystalline coatings[END_REF]) amounting to a reflectivity of around 99.998%2 and thus an amplification factor of A ≈ 3.8 × 10 5 . We can once again use Eq. C.10 to calculate λ res 5 ≈ 7.8 × 10 -14 m for the electrostrictive force, once again a small a result that can theoretically be detected, with an ideal shot-noise limited detection floor of about δx min ≈ 2.9 × 10 -21 m/ √ Hz. On the other hand, calculating from Eq. 4.45b establishes a Γ opt ≈ 9.8 × 10 5 Hz for P in = 5 mW and Ω m = 2π × 5 MHz. This is more than sufficient to actuate the quartz throuh radiation pressure with its typical FWHM ≈ 0.5 Hz Γ opt .

Similarly to the Ta 2 O 5 /SiO 2 deposition, we conclude that the optomechanical actuation is once again possible through radiation pressure, and that the electrostriction is calculated to provide weak though sufficient actuation to be observed through appropriate measurement means.

5.2.2.3/ ASI/SIN

A previous work has also shown that layers of aSi/SiN (amorphous silicium) is also a good candidate in order to reduce the existing thermal noise on gravitational wave detectors (see [START_REF] Steinlechner | Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing[END_REF]). Furthermore, the deposition relies on the intervention of a commercial entity, Tafelmaier Dünnschicht Technik GmbH which could easily provide its service and is therefore easily accessible for consideration without further technical developments.

Although the aim functioning is for a 2 µm, the 1550 nm regime is still attractive for the mechanical losses, given a 22 alterning stacks. The total mechanical losses in this case is close to 1 Q coating ≈ 10 -5 in the cryogenic temperature range (at 20 K). This is once again bringing a factor ≈ 10 -3 onto the bare resonator mechanical quality factor (assuming 10 -8 intrinsic mechanical losses).

These mechanical properties accompany a reflectivity of R = 99.997% with very low optical absorption (< 27ppm), which gives an optical finesse of F = 105000 (see Eq. 3.25) and an amplification factor of about A = 1.3 × 10 5 .

Following the same type of calculation as earlier, one calculates that for electrostriction, λ res 5 ≈ 2.6 × 10 -14 m, which too small but is possible to be observed through the same calculation as in section 5.2.2.1. The optomechanically induced damping, however, is of about Γ opt ≈ 2.1 × 10 4 Hz, which is sufficient to obtain mechanical lasing, as calculated earlier with FWHM ≈ 0.5 Hz Γ opt .

We conclude that this deposition too permits to obtain actuation through the radiation pressure force, with a reduced efficacy with respect to the previously discussed deposition of section 5.2.2.2. It is, however, bringing about a similar losses to the mechanical quality factor of the quartz resonator, by a factor ≈ 1000.

5.2.3/ OPTION 5.1C

In this geometry, one super-mirror is detached from the quartz resonator, and facing a thin metallic mirror deposited on the quartz. This has the advantage to limit the me-chanical quality factor losses with respect to the all super-mirror solution, as shown in [Galliou et al., 2016a], and is better than doing the opposite geometry around. It has been estimated that coating with chromium and gold (at cryogenic temperatures) worsens the (uncoated) mechanical quality factor by about a factor 10 (see [Galliou et al., 2016a]).

The coating with silver, with far thinner electrodes than the the typical chromium + gold electrodes (≈ 200 nm thickness) is assumed to give a similar result.

Furthermore, both the radiation pressure and photothermal effects are achievable, although the optical finesse in this case is rather low. Indeed, the maximal achievable reflectivity with the silver deposition is of about R m = 98.7% (for a 50 nm silver layer, with index from [START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF]), along with a super-mirror (e.g. the 10CV00SR.70F from Newport) with reflectivity of about R sm = 99.97%, which yields a finesse of around F ≈ 450. This is much lower than for two super-mirrors as in option 5.1b. An amplification factor of about A ≈ 560 is predicted from this.

One can therefore lead the same calculations as for the other options, for the radiation pressure force and calculate that, for an incoming P in = 5 mW, the optomechanically induced damping Γ opt ≈ 3.1 × 10 -3 Hz at Ω m = 2π × 5 MHz. This is insufficient to actuate the resonator, assuming a mechanical quality factor of about Q = 10 8 .

On the other hand, one can expect quite a dramatic effect from the photothermal excitation. Indeed, as section 4.1.3 has shown, even without optical resonance, the effects of photothermal excitation are visible with an input laser of some mW income power.

The operation in the optical resonance regime was shown to improve the signal (see section 4.1.3.3.2), with a (theoretical) amplification factor of about A = 20. An operation with A = 560 should provide an even more easily observable signal, although it is hard to predict how much more visible (see the theory/experiment discrepencies in section 4. 1.3.3.2).

We conclude that the performances are clearly limited by the worst mirror, i.e. the metallic mirror in this case. Although optomechanical actuation is not expected, it should be possible to obtain an improved photothermal excitation (with respect to the situation described in section 4. 1.3.1).

5.2.4/ OPTION 5.1D

In this geometry, which is very similar to option 5.1c, a metallic mirror and a super-mirror are both deposited onto the quartz. The main advantage of this option is to provide a possibility for all the different forces studied thus far to act upon it, although it is clear from the previous results that this possibility will not be filled by theoretical predictions.

One can expect a similar reflectivity of both mirrors with respect to the previously discussed solution 5.1c, namely R m ≈ 98.7% for the silver (50 nm layer) mirror and R sm ≈ 99.998% (see section 5.2.2.2). This leads to a similar result of F ≈ 480 and an intracavity amplification factor of A ≈ 610, which is slightly better than the previous configuration.

We chose to evaluate the best possible dielectric coating, namely the GaAs/AlGaAs so that the mechanical losses are comparable to those that are expected within the framework discussed in section 5.2.2.2 (see [START_REF] Penn | Mechanical ringdown studies of large-area substrate-transferred GaAs/AlGaAs crystalline coatings[END_REF]), with a factor 10 -3 with respect to the reference quality factor Q ≈ 10 8 .

We therefore get to the orders of magnitude for the electrostriction which are similarly small, i.e. with an input power of 5 mW, one finds that λ res 5 ≈ 1.2 × 10 -16 m, which is small but could theoretically be observed, with a similar calculation as before leading to a detection floor of about δx min ≈ 1.44 × 10 -18 m/ √ Hz. Once again, leading the calculation for the radiation pressure force yields a Γ opt ≈ 4.1 × 10 -3 Hz at Ω m = 2π × 5 MHz, which is smaller than the reference Γ m ≈ 0.5 Hz. One therefore concludes that the radiation pressure force is too weak in enough in order to actuate the quartz, but the electrostrictive force gives a very weak actuation which could be accessible in ideal homodyne detection conditions.

The photothermal force, however, is again expected to actuate the quartz in a measurable way, as the intracavity power is once again much higher than the experimental (optically non-resonant) case discussed in section 4.1.3. Other possible geometries, and their different optical and mechanical characteristics. Q/Q 0 is the mechanical quality factor divided by the maximum (bare quartz) quality factor Q 0 (≈ 10 8 ). ES stands for electrostriction, RP for radiation pressure and PT for photothermal.

5.2.5/ DISCUSSION

We have have studied four main alternative geometries, each one presenting its advantages and inconvenients for actuating the quartz resonator. Some of their main characteristics are summed up in table 5.1.

Unfortunately, there is no clear-cut criteria to improve all the forces coupling at once. Indeed, absorption of the mirrors is damageable to radiation pressure and electrostriction though it is desirable for photothermal actuation, and so forth. Because the horizon goal of this thesis is to conceive the actuation means towards an ultrastable oscillator, preserving the mechanical Q factor is of primary importance (see section 1.3 for details). For this reason, the main classification tool that we use will therefore be that the lesser the mechanical attenuation, the better the actuation scheme.

In this regard, the solution 5.1a is undoubtedly the best among the four studied options. Indeed, it allows for an all-contactless actuation and readout, as described in [START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF]. Some technicalities should be taken into careful consideration, such as properly aligning the quartz in order to insert it inside an external Fabry-Perot cavity while keeping coupling, as well as minding its exact position within the latter in order not to nullify the coupling (see details in [START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF]). The contactless (i.e. no layer is deposited directly onto the quartz resonator) actuation allows for a preservation of the mechanical Q factor. One might therefore simply tune at will the reflectivity and absorptivity of the external supermirrors without worrying oneself with direct consequence on the mechanical qualities of the resonator.

The next solution which least dampens the mechanical Q factor is the option 5.1c, with a single deposition of a thin silver film onto the quartz. As a previous study shows [Galliou et al., 2016a], the metallic thin layers tend to dampen the Q factor less than the dielectric layers. Here, only the photothermal force is available, which should be enough to actuate the quartz resonator, much in the same way as section 4.1. Indeed, the situation is similar if no optical resonance is cast3 . If the laser is tuned to be optically resonant, on the other hand, the amplification factor is even slighly better than in section 4.1 so that photothermal excitation should be readily accessible. It might even be advantageous to use another metal than silver, such as chromium which is less reflective than silver, thus ultimately allowing more light to be absorbed along the path within the thin film.

The other two solutions have relatively similar mechanical dampening, so that they are not clearly classifiable. However, solution 5.1d might be preferable in that photothermal actuation has been demonstrated to be easily and readily accessible, as well as to provide a displacement which is about 7 orders of magnitude larger than the electrostrictive scheme. This makes it easier to detect and easier to implement. It is also possible to leave out the dielectric supermirror altogether in solution 5.1d in order to decrease the damping, making it effectively similar to option 5.1c Q factor-wise (at the cost of being able to use optical cavity amplification of light). This is not possible with option 5.1b, as both mirrors are required to achieve cavity amplification of the optomechanical forces.

It is worth noting that the mechanical damping of the dielectric layers in all the solutions including dielectric layers have been estimated for a very high reflectivity of about 99.99%, which corresponds to a large number of alterning layers of materials (15 -30 depending on the chosen material solution). Specifically, the number of layers is larger than necessary. As briefly discussed in some previous work [START_REF] Rosenziveig | Quartz Crystal Resonator Used as an Optical Fabry-Perot Cavity for Optomechanical Coupling[END_REF], achieving a finesse of about F = 3000 (with non-absorptive dielectric supermirrors) would allow to overcome the intrinsic mechanical losses of Γ m 0.1 Hz -1 Hz. This finesse is a factor 10 -100 lower than the finesse achieved with the dielectric supermirrors discussed in this section. This means that the number of necessary dielectric layers could be divided by a factor, thus allowing to decrease the mechanical damping. The latter decrease, however, is expected to be only relatively small and would therefore constitute a tradeof discussion.

A TENSORS FOR QUARTZ CRYSTAL

Here are listed some quantities for quartz crystal which are of use: The values from [START_REF] Tichý | Fundamentals of Piezoelectric Sensorics[END_REF] are used here for the stiffness of quartz. The values from [START_REF] Tarumi | Complete set of elastic and piezoelectric coefficients of α-quartz at low temperatures[END_REF] are used here for the cryogenic stiffness of quartz. (×10 10 N m -2 ) (A.3) Calculated with a python routine from the values taken from [START_REF] Tichý | Fundamentals of Piezoelectric Sensorics[END_REF]. 
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C PHOTOTHERMAL CALCULATION

Let us remind that the problem to be solved is:

           u tt -z2 u ,22 = - β 4 ρ θ ,2
u ,2 (e) = h(t) = Ae iΩt u ,2 (0) = j(t) = Be iΩt where the temporal dependency of θ is omitted so as to leave only the spatial dependency.

The coefficient for the term of order n is then found by injecting these sum decompositions in Eq. C.4a and using the completeness of the basis, i.e. solving for each individual term:

-Ω 2 λ n + nπc e Of course, near resonance, Eq. C.9 is not valid anymore, as the denominator vanishes. In this case, the way around to keep the amplitude finite is to reintroduce the losses through the frequency, and give it a complex value (see [Tiersten, 1975] Eq. 60). Specifically, this can be done in two different ways: writing c 2 → z2 = c 2 + iαΩ or writing that Ωn = Ω n + iΩ n /Q n where Q n = c 2 /(αΩ n ). In either case, this leads to the following expression at resonance:

λ res n = c 2 iαΩ 3 n θn (C.10)
There remains to calculate θn in order to find the total displacement. This is done by injecting Eq. C.5 in Eq. C.8a. In order to do a numerical application, coefficient θn is injected in Eq. C.10. However, coefficients A and B are left with the quantity U (e) -U (0) which is unknown. With the expression for the coefficients λ n composing w(x 2 , t), it is now possible to find this difference by using Eq. C.3, noting that because experimental work is performed near resonance, one particular term of index n 0 in the sum in Eq. C.8b will be significant while the rest can be discarded:

u n 0 (x 2 , t) = λ n 0 cos(β n 0 x 2 ) + x 2 - x 2 2 2e B + x 2 2 2e
A e iΩn 0 t (4.29) which can be rewritten, omitting the temporal part: In order to go any further, we have to set the value of L 1 , which, so far, has been left unknown in the expression of A and B. This can be done by imposing that the electric potential V(x 2 ) obeys the boundary condition that V(e) -V(0) = V 0 , which, from Eq. 4.25, leads to write that:

U n 0 (x 2 ) = W n 0 (x 2 ) + V (x 2 ) (C.
L 1 = V 0 e - e 24
e 22 (U (e) -U (0)) (C.17)

From this last condition, the final expression for U (e) -U (0) in the near-resonance approximation1 is found to be:

U (e) -U (0) = Note that throughout this section, V 0 has been considered as the experimentally measured voltage at the quartz' ends and is thus deemed known. Conceptually, the voltage is a consequence of the incoming heat flux which is transformed into motion of the quartz (at resonance), giving rise to the said voltage. Within the present theoretical framework, however, it is not possible to express V 0 as a function of θ, the temperature fluctuation. See section 4.1.3 for measurements of V 0 .

D PD AND RF PHASE RELATION

In chapter 4.1 and specifically in section 4.1.3.2, we introduced the idea that the optical input power was to be used as the reference signal instead of the excitation RF signal. We verify that the electronics and optics response do not have a delay and are indeed in phase. Several measurements for the photodiode response to the input (modulated) optical power are taken, with each time a different cable length (see Fig. D.1). This permits to compensate for the unavoidable phase shift linked with the cable from the photodiode to the oscilloscope. A linear first order fit is conducted on the obtained phases, to extrapolate to the 0 m long cable. The 0 m long cable photodiode signal is then compared with the radiofrequency signal that feeds the AOM. The result is as shown in The Radio Frequency (RF) signal feeding the AOM, and the PhotoDiode (PD) AC signal measuring the laser's intensity. The AC coupled signal does not reflect the general offset, which means it is impossible to determine whether the optical power indeed drops to 0 from this graph alone. It suffices, however, to note that they do indeed oscillate at the same frequency and are in-phase. A fit for removing cable-related phase delay has been led upon various cable lengths for the photodiode signal (see Fig. D.1).

The displayed PD signal is therefore the fit for a 0 m cable. Note that the signals have been normalized in amplitude to fit on the same scale, and that the amplitude is therefore purely indicative and is shown in arbitrary units (a.u.). The RF signal in this graph is at frequency f 0 = 5 116 136 Hz, which is the resonant frequency of this particular quartz at cryogenic temperature (4.2 K).

E HETERODYNE DETECTION

Another important feature to be implemented for the future of the experiment is to be able to measure the displacement optically, in order to investigate whether optomechanical coupling is taking place or not.

Indeed, as we have emphasized in section 1.3.2, the presence of the electrodes serving as both readout and (piezoelectric) excitation is a drawback, which gave the background for this research on optomechanical coupling. This means that in the other geometries considered in section 5.2, a piezoelectric readout (such as that lead in the photothermal experiment of section 4.1) is impossible, because of the absence of proper electrodes to read it from. Hence the need for another type of mechanical displacement measurement solution.

The most obvious solution is an optical readout, with e.g. an heterodyne detection measurement. Conceptually, only a small mirror displacement is expected from an optomechanically induced actuation, so that looking at the reflection curve of a Fabry-Perot cavity the intensity should barely change with the (slightly) moving mirrors. However, the phase change rate is maximum at resonance1 , see Fig. The laser beam is split into two beams: one is injected on the optical table just as in the optical setup previously discussed in this thesis (see section 3.2. 1 and Fig. 3.15), which goes through the mode-matching elements and is incident onto the optical cavity made by the quartz and its mirrors. It is then deflected by the beam splitter to reach the lower part of the scheme, where it first goes through a polarizer and a λ/2 waveplate to control the incoming polarization. It is set so that part of it passes the polarized beam splitter.

The other part of the incident beam, on the other hand, is set to be deflected by the polarized beam splitter so as to mix with the frequency shifted beam (which has been properly prepared in polarization at the fiber output). They are both undergo a 45°rotation in polarization with the help of a λ/2 waveplate before arriving to another polarized beam splitter, in order to combine the both beams and have them interact by projecting the polarization state onto the same axis 2 . This is where the phase measurement happens.

The process is known and can be broken down as follows. Let us focus on the PBS1 

a † 1 = 1 √ 2 a † + a † LO (E.1a) a † 2 = 1 √ 2 a † -a † LO (E.1b)
The same results hold for the classical fields going through the beamsplitter (see [START_REF] Kučera | Quantum Description of Optical Devices Used in Interferometry[END_REF]). Let us describe now the fields by their classical counterparts, so that we define E LO = a LO cos ([ω + Ω LO ]t) and E = (a + δa) cos(ωt + ϑ). E LO is the local oscillator field, which is considered to be perfect (i.e. without amplitude or phase fluctuations), whereas the field E coming from the cavity has the amplitude and phase fluctuations, δa and ϑ respectively.

It is possible to write the intensity I 1 = a 2 1 in the following way: 

I 1 = 1 2 E 2 LO + E 2 + 2E LO E ≈ 2E LO E (
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 11 Figure 1.1: 1.1a Simple scheme of an oscillator and 1.1b mathematical representation of this oscillator. A and B, respectively the amplifier's gain and the resonator's gain, are a priori complex and impart a phase on the signal. The phase fluctuations inside the loop are noted here ∆θ and come from other sources than the amplifier and resonator, whereas the output voltage U out = U 0 cos(2πf osc t + φ(t)), where U 0 is considered a constant and φ(t) are the phase fluctuations outside the loop. f osc is the oscillating frequency, which, because of the phase response of the amplifier, might be different from f 0 , the resonance frequency of the resonator.

  Figure 1.2: A second order RLC circuit (Fig. 1.2a), representing an electronic equivalent circuit of the quartz crystal resonator close to a resonance frequency when excited by piezoelectric means, with a parasitic C 0 capacitance due to electrodes (typical order of magnitude of 3 pF-10 pF), deposited in order to apply the exciting electric field, as seeable on Fig. 1.2b (see Fig. 1.5 for a sketch of these electrodes).

Figure 1 . 3 :

 13 Figure 1.3: Bode diagram of the admittance (i.e. the inverse of the impedance), representing the frequency response of the equivalent circuit for the quartz resonator around resonance.Here, losses are normalized to 0 dB at resonance and the parasitic capacitance C 0 (see Fig.1.2) is neglected . It is typically the response of a band-pass filter, whose bandwidth is ∆f = f 0 /Q. The bandwidth is also visible on the attenuation plot and is denoted as BW, and the phase-frequency slope at resonance is also drawn on the phase diagram (see Eq. 1.7). Here, some common experimental values of a "good" quartz crystal resonator are taken for the plot: ω 0 = 10 MHz, Q = 10 6 , R = 100 Ω.

Figure 1 . 4 :

 14 Figure 1.4: Typical Power Spectral Density (PSD) in an open loop (Fig.1.4a) and at the output of a closed loop with the Leeson model (Fig.1.4b), with a term proportional to ν -1 and another term proportional to ν 0 (i.e. constant). ν c is the corner frequency, at which the ν -1 noise starts to be under the ν 0 term. The latter term is proportional to the temperature T . In the Leeson model, there is furthermore a part, inside the bandwidth, where the ν -1 noise is converted and superseded by the ν -3 noise, created by the closed loop. The latter noise level is proportional to 1/Q 2 , see Eq. 1.10a. Note that in the case drawn here, ν c > f L = f 0 /2Q the Leeson frequency, as is typically the case for quartz oscillators, but the opposite might be true, in which case there would also be a ν -2 noise, created from the ν 0 according to Eq. 1.10a.
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 16 Figure 1.6: An illustration of the different efforts to minimize the engineering losses. On Fig.1.6a, a quartz is simply coated with rather big metallic electrodes and is suspended in the same fashion as a flag would be. On Fig.1.6b, a Quartz Auto-Suspendu (QAS, "selfhanged quartz") is presented; the bridges permit to minimize the losses of energy of the acoustical mode, as the oscillations are better confined in the middle part. On Fig.1.6c, a Boîter à Vieillissement Amélioré (BVA, "casing with improved aging") is presented. It presents the double advantage of conserving the same decoupling of the central vibrating part from the holding part like in Fig.1.6b, but it also takes the electrodes off the quartz to coat the so-called condensators instead, which are two quartz pieces cut in the same crystallin cut as the resonator and which permit approaching the electrodes close to the resonator without directly coating it, see scheme on Fig.1.6d 
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 17 Figure 1.7: Mechanical quality factor Q, plotted against the mechanical resonance frequency for several quartz crystal resonators. BVA stands for "Boîter à Vieillissement Amélioré" (see Fig. 1.6c), whereas OSA and BVA Industry are quartz resonator providers.The figure is taken from[START_REF] Galliou | Quality Factor Measurements of Various Types of Quartz Crystal Resonators Operating Near 4 K[END_REF]. It shows that the losses (hence the quality factors) depend on whether the quartz is coated, and whether some work is done on decoupling the resonating part of the crystal from the clamping etc (see Fig.1.6 for visual details about this point).
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 1 Figure 1.8: 1.8a Graph taken from Gagnepain (see Frequency Standards and Metrology[START_REF] Marchi | [END_REF], p. 151), with experimental points from litterature of the time. Shows the general tendency of the power spectral density of the fractional frequency fluctuations to go as 1 Q 4 , with Q the quality factor of the resonator. 1.8b Fit of the same points, along with a Q = 1 × 10 9 at cryogenic temperature device from[START_REF] Galliou | Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments[END_REF].
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 21 Figure 2.1: Quartz cuts, with IEEE 1949 standard on piezoelectricity for the angles (taken from [Bon, 2018]. Front view (Fig. 2.1b) and side view (Fig. 2.1c) of a synthetic quartz crystal, with crystallographic axes X, Y and Z, as well as crystal typical dimensions. The blue dotted line indicates the position of the initial quartz from which the crystal has grown, and the orange dotted line indicate a Y -cut.

Figure 2 . 3 :

 23 Figure2.3: All a priori possible mechanical, electrical and temperature-related effects affecting a solid, summed up in a graph, taken from[Nye, 1984] Fig. 10.1a.

1 Figure 3 . 3 :

 133 Figure3.3: Normalized transmitted intensity as a function of normalized distance d between the media interfaces, for different values R of reflection at each interface. Note that the reflectivity does not alter the maximum transmission peak, always equal to unity at resonance. In Eq. 3.13, kd = 2π λ 0 d so that here, the normalized cavity length is d = d λ 0 .
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 34 Figure 3.4: Phase matching drawing in a three layers non-absorptive Fabry-Perot cavity.Let us stress that here, the evolution of a wavepacket evolving on the same straight line as in Fig.3.2 is drawn against time, thus giving the false impression of a spatial propagation with an angle. The incident wavepacket gets partially reflected without an additional phase (we suppose n 1 > n 2 in this drawing), so that both the transmitted wavepacket and reflected wavepacket have a reference phase ϕ 0 = 0. Upon arrival on the next interface, the wavepacket now has a phase ϕ 1 and is transmitted with this phase, whereas it now acquires a π phaseshift upon reflection. It returns to its entrance point with a phase 2ϕ 1 + π. The wavepacket that leaks from the first interface is therefore in phase opposition with the first reflected beam if 2ϕ 1 = p × 2π, with p being a natural number. All of the wavepackets leaking from the second interface, on the other hand, are in phase if the same condition is true.

  Figure3.5: An out-of-resonance (full line, left y axis) and in-resonance (dashed line, right y axis) plot of the normalized intracavity intensity against normalized position inside the cavity (also defined as the amplification factor A in Eq. 3.28c). The reflectivity is taken to be R = 98.7%, T = 1.3%.

  Figure3.8: Normalized maximum transmission (expressed in %, starting from the bottom left side) and finesse contours (starting from upper right side) as a function of the first mirror's thickness d 1 and the second mirror's thickness d 3 (assumed to have the same index of refraction). Note that for a given finesse, the maximum possible transmission is for d 1 = d 3 and vice versa. Which shows that the best choice to maximize the finesse (transmission) for a given transmission (finesse) is to make both mirrors equally thick.

  Figure3.10: Theoretical normalized transmission and reflection with corresponding vertical line pointing to the center of the peak. The computation is for a 50 nm deposit of Ag50nm material in Fig.3.10a and material Al in Fig.3.10b, with refractive index values taken from[START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF] for silver and[McPeak et al., 2015a] for aluminium. Note that the two peaks are slightly detuned in wavelength, with the reflection peak being centered at a longer wavelength. Note also that the reflected peak is slightly asymetrical. The two peaks in Fig.3.10a are shifted by about 0.17 pm, which, for a 1550 nm laser, amounts to about 21.2 MHz. In Fig.3.10b, they are shifted by about 2.03 pm, or approximately 253 MHz.

Figure 3

 3 Figure 3.11: 3D plot of the normalized reflection (color) and the transmission (normalized to unity) in black. This plot shows that even for very small thicknesses of d 1 , the two peaks are still frequency shifted.

Figure 3

 3 Figure3.12: Normalized transmission (left y-axis), total absorption and absorption of the first ( Ā1 ) and second ( Ā2 ) mirror (right y-axis). Note that the first mirror has its maximum absorptance at a greater wavelength than the second one. This is another aspect of the phasematching presented in Fig.3.9. The computation was made for a refractive index associated with 50 nm of silver.

  62) See Fig. 3.13 for some numerical examples with different refractive indices.

  Figure3.14: Intracavity amplification factor A, total absorption, transmission and reflection against thickness. Computations are made with a constant refractive index corresponding to a 50 nm layer of silver. Note that the points where the curves cross are not significant because each curve has its own scale.

  Figure3.16: Fig.3.16a: Illustration of why the typical reflection retrieval scheme described in footnote ?? does not work in our case. Indeed, the beam arrives with a circular polarization on the mirror, which is problematic if the goal is to be able to couple light inside the Fabry-Perot only along the fast or the slow axis of the quartz. Also, the orientation of the fast and slow axis is, in general, unknown and would therefore require for the quartz holder to permit rotation in order to hit the quartz with the right rotation, which is not entirely trivial to realize experimentally. Fig.3.16b shows our scheme, which, at the cost of losing some optical power at the non-polarized beam splitter, permits to eliminate the polarization problem: a particular linear polarization is sent through the beam splitter, and is then rotated with a λ/2 waveplate. This permits to control the polarization of the beam incident on the quartz, and to adapt it to the fast or slow axis of the quartz, hence permitting coupling inside the Fabry-Perot to a particular axis. Furthermore, upon reflection, another half is then reflected through the other port of the beam splitter and retrieved for reflection analysis (not drawn on the figure). Note that a s-polarization is drawn, but it could be a p-polarization or even any linear polarization just the same.

  Figure 3.17:

Figure 3

 3 Figure3.19: Fitting and data extraction process with a python program of our design. The top figure is the transmission, with the grey curve being the experimental data and the blue curve being the fit displayed on top of the data. The blue area is the zone of interest of the figure that we manually select in order to be able to apply a Lorentzian or parabolic fit on the relevant part of the graph, where some informations about the fit thereafter appear on the left-hand side of the image. We then use these informations to further treat and convert them properly into frequency shifts between the top (transmission) and the bottom (reflection) plots, as well as retrieving the level of each signal and the FWHM for the transmission plot. Note that here too, much like in Fig.f,3.18, the reflected signal comes from the 1611 Newport photodiode and therefore has a negative gain, explaining the reversed shape of the peak.

  Figure 3.20: SEM images of the gold layer deposited with different techniques. 3.20a is deposited with Physical Vapor Deposition, 3.20b with Magnetron Sputtering at room temperature, 3.20c with Magnetron Sputtering at 300 • C and 3.20d with Magnetron Sputtering at 300 • C followed by 8 h annealing at 300 • C. We can see island-like structures appearing in the coatings made with MS technique, which does not appear just as much with PVD technique. The bottom-right bar on the figures gives the 500 nm reference scale.

  Transmission signal of the Fabry-Perot cavity versus time, which corresponds to wavelength because a temperature (hence large wavelength) sweep is conducted on the laser, with wavelength increasing with time. Two signals are superimposed, with two different orientation of the injection λ/2 waveplate (see Fig.3.15), which are along the fast and slow axes of the quartz. These signals correspond to a succession of TEM XY modes, with XY = 0, 1, 2, • • • , which are known to be resonant at different frequencies.

  Figure3.22: Distribution of the central timestamp of the transmission peak in a particular result file, of the same kind displayed in Fig.3.18 and with the python program method shown in Fig.3.19. The treatment was lead with 990 points. The distribution is approximated with a Gaussian, and has a relative standard deviation of 4 × 10 -5 s.

  Figure 3.24:A typical extraction of sets of n and n that verifies the experimental value conditions, for FWHM and ∆f . This produces a locally linear set of solutions, which are a priori different except for their intersection, which therefore gives the actual value of n Ag we are looking for. In this example, the theoretical values for a 35 nm of silver are taken from[START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF], ñ = 0.2997 -10.7355j, which gives FWHM=1011 MHz and ∆f = 45 MHz. η = 1 × 10 -2 here (seeEq. 3.73). The program returns a fit value of ñ = 0.2999 -10.7384, which gives an error of approximately 7 × 10 -4 for n and 3 × 10 -4 for n . See section 3.2.3.3 for more details. Note that the calculation is lead with 128bits numpy floats in python, or else with 64bits float, erratic results are returned.

  Figure 3.25: Graphical representation of the results displayed in Table3.3. The red color (right-most points of the graph) is used for the 300 K points, whereas the blue color (leftmost points of the graph) is used for the 4 K points. The error bars including the thickness uncertainty (see Table3.6 and the red error bars displayed in the results Table3.3) are taken here.

  Figure3.27: Coefficients of Thermal Expansion (CTE) in the range 4 K-300 K. Values are taken from[START_REF] White | Thermal expansion of copper, silver, and gold at low temperatures[END_REF],[START_REF] Fraser | The Coefficient of Thermal Expansion of Various Cubic Metals Below 100 °K[END_REF] and[START_REF] Waterhouse | The interferometric measurement of the thermal expansion of silver and palladium at low temperatures[END_REF]. Values from 270 K onwards are extrapolated from the previous fit.

Figure 4 . 1 :

 41 Figure 4.1: Simplified electrical equivalent scheme to the heat diffusion situation explained in main text. Fig. 4.1a: scheme for I = Ī + i where Ī is the mean current and i is the fluctuating current. The points M 1 , M 2 and M 3 represent different areas of the quartz, see Fig.4.1c. The point M 3 , located on the outer ring of the resonator, is assumed to be maintained at ambient temperature θ amb . Note that the resistor between parenthesis represents the losses by radiation, which are assumed to be negligeable so that this resistor is actually infinite in this scheme. Fig.4.1b: equivalent scheme for the fluctuating part of the current. R i designates the resistance in the direction x i , and C i the capacitance in the direction x i and R b is the resistance of the bridges. Note that the mean resistance R 13 and capacitance C 13 along directions x 1 and x 3 is taken. Fig.4.1c: Scheme of the quartz resonator with the discreet M 1 , M 2 and M 3 points considered in the electronic scheme. The white spaces represent the bridges. Let us remind that x 2 is the direction of the thickness of the quartz, as well as the direction favored by the thermal dynamic, as the simplified analysis in the main text shows.

  )

Figure 4 . 2 :

 42 Figure 4.2: Generalized curve for temperature fluctuation (Eq. 4.14) and with simplified 1/2 i.p. (semi-inifite-plane) model (see[START_REF] Dieulesaint | Optical Excitation of Quartz Resonators[END_REF]). An input power of 1 mW is used for the calculation at frequency Ω = 2π × 5.46 MHz (resonance frequency of the B3 mode, see section 4.1.3). It works rather well for both the room and cryogenic temperatures because of low diffusion length with respect to the thickness (see Eq. 4.16). The diffusion length is noted on both plot, and it is much shorter in the 300 K case.

Figure 4 . 3 :

 43 Figure 4.3: Scheme of the mechanical problem. The slab is infinite in the x 1 and x 3 directions and goes from 0 to e in the x 2 direction. An incoming thermal flux (which is the unreflected part of an optical flux) is displayed on the lower part of the slab, giving rise to the boundary thermal conditions in Eq. 4.10.

Figure 4 . 4 :

 44 Figure 4.4: Imaginary (i.e. π/2 out of phase) part of the displacement U 3 (x 2 ) at 300 K, with input power 1 mW and the rest of the values of the calculation detailed in main text.The real part has a similar shape, but is an order of magnitude smaller.

  Figure 4.5: Simplified experimental setup for photothermal excitation and measurement.The laser goes through a 200 MHz AOM. The latter is actuated with an electrical signal whose voltage oscillates in intensity at frequency f 0 , the acoustical frequency of the quartz. The reference signal of frequency f 0 /2 is sent both into the frequency mixer which permits to feed the AOM (see Fig.4.6), and into the Lockin Amplifier to provide the reference signal to compare the test signal to. See main text of section 4.1.3.1. 

Figure 4 . 6 :

 46 Figure4.6: Output of an electronic mixer, with input signal at f 0 = 5 MHz (f 0 /2 = 2.5 MHz, represented on the figure) and 200 MHz which is the center frequency of the AOM. It is seeable that to within a phase factor shifting from 1 to -1, this signal, which is fed to the AOM, oscillates in intensity at frequency 5 MHz (i.e. 2 × f 0 /2 ).

Figure 4 . 8 :

 48 Figure 4.8: Fig.4.8a: equivalent circuit of the total system. For details about the relation between P in and V ex , see Annex D. See the main text for a complete description of the different quantities. Fig.4.8b: focus on the crystal part of the system when the input impedance of the Lockin amplifier is set to 1 MΩ. This simplifies the theoretical description, as seen in the main text. Fig.4.8c: a small reminder scheme for the two transfer functions acting on the input excitation and reference optical signal P in , transformed (through a to-be-determined transfer function T th ) into voltage V x which excites the crystal, which, in turn, is transformed (through transfer function T x ) into the measured voltage V LI which is measured at the parasitic capacitor's ends.

Figure 4

 4 Figure4.9: Raw data X and Y (in and out-of-phase signals respectively) from the Lockin amplifier for a C3 mode (which has the largest signal), simply sending the laser on the metallized quartz and shifting its power modulation frequency (see Fig.4.6) with 5 mW mean power in Fig.4.9a. On Fig.4.9b, on the other hand, the input power is the same, but the wavelength of the laser is set to be on-resonance with the Fabry-Perot cavity, which amplifies the light inside the cavity and hence results in a higher level signal. Note also a slight displacement in the peaks' central frequency, which we attribute to a change in the mean temperature of the quartz due to the increased presence of light dissipating in the thin metal layers.

Figure 4 . 10 :

 410 Figure 4.10: Same as Fig. 4.9, but with the test signal voltage V LI = |V LI |e i∆θ instead of the raw X-Y signal (see Eq. 4.36), without (Fig. 4.10a) or with (Fig. 4.10b) optical resonance. Note that the phase transition is closer to the maximum predicted 180°in the optical resonance case.

  Figure 4.11: Maximum test signal voltage |V LI | (e.g. max of V LI curve in Fig.4.10a) against input optical power P in for a C3 mode at 4 999 008 Hz. It is almost affine with input optical power, with a slope of approximately 8.35 × 10 -9 V W -1 . The offset at the origin is of about 3.9 × 10 -8 V W -1 , which indicates that the voltage does not behave linearly at lower optical power. Indeed, an absence of optical power physically results in an absence of measured voltage, so that the offset does not translate a physical phenomenon at null incident optical power.

Figure 4 . 12 :

 412 Figure4.12: Transfer function T th = Ae iϕ against optical power at mechanical resonance and without optical resonance, see Eq. 4.37.

Figure 4

 4 Figure 4.13: Depiction of the radiation pressure within Hamiltonian framework. The input mirror is considered as fixed and only partly reflective, whereas the output mirror is considered as moving and entirely reflective. The displacement operator x measures the displacement with respect to the mean position.

Fig. 4 .

 4 14. For Ω m /2π = 50 MHz and m ef f = 1 mg this yields FWHM = 790 MHz, ∆ -= 0.288675FWHM = 228.0 MHz amounting to an amplification factor at this detuning of A(∆ -) = 20.5 and allowing to calculate g 0 = 1.6 mHz, . For an input optical power of 1 mW, this gives a total optomechanically induced mechanical losses of Γ opt (∆ -, Ω m ) ≈ -1.65 × 10 -6 Hz, far from the mechanical losses of approximately Γ m ≈ 0.1 Hz-1 Hz.

Figure 4 .

 4 Figure 4.15: Phase-matching diagram for wavevectors of a Stokes Brillouin interaction. All waves are forward-propagating.

  Figure 4.16: Phase-matching diagram for forward Brillouin Stokes band scattering.The polarizations are represented here with their unit polarization vector êi and êd of the incident and diffracted beams. Note that the incident wave should be along the higher index direction in order to achieve a Stokes-band interaction.

Figure 5 . 1 :

 51 Figure5.1: Fig.5.1a: 2 super mirrors are decoupled from the resonator, like in[START_REF] Kharel | High-frequency cavity optomechanics using bulk acoustic phonons[END_REF]. This has the advantage of allowing the maximum mechanical Q factor, though only electrostriction is accessible this way. Fig.5.1b: 2 super mirrors are deposited right on the resonator. This has the advantage of allowing both electrostriction and radiation pressure, but dramatically decreases the Q factor. Fig.5.1c: 1 super mirror is decoupled from the resonator, which is deposited with one metal electrode. This allows for a rather high Q, and both the photo-thermal effect as well as radiation pressure. Fig.5.1d: 1 super mirror is deposited on the quartz, as well as a metal electrode. All three forces are achievable this way, though the Q is diminished.

(

  Figure B.2: The quartz crystal resonator is sandwiched between the condensators, with the electrical contact from the condensator visible on the side.

Figure B. 3 :

 3 Figure B.3: Same as B.2, with the BVA holder also in place. Note the hole on top of the structure, allowing the laser to pass by.

ww

  shift the data, i.e. to render the boundary conditions equal to zero, let us start by defining the function:v(x 2 , t) = V (x 2 )e iΩt = x 2deriving V with respect to x 2 , it is possible to see that if we define a shifted displacement: w(x 2 , t) = W (x 2 )e iΩt = u -v (C.3)then this shifted displacement w(x 2 ), t obeys homogeneous boundary conditions: tt -z2 w ,22 = θ(x 2 , t) w ,2 (e, t) be obtained by injecting w in the equation of motion Eq. 4.24: homogeneous wave equation for w with Neumann boundary conditions, leaving aside the losses for now (so that z2 → c 2 ): tt -c 2 w = 0w ,2 (e, t) = 0 w ,2 (0, t) = 0 (C.6) 141The solutions can be shown to be exclusively symmetrical. It has the form:w n = cos(β n x 2 )e iΩnt(C.7a) solve the wave equation with the source term from Eq. C.4a, leaving the losses for now. Furthermore, we solve for the forced oscillation frequency Ω. In order to do this, we use the completeness of the basis of eigenfunctions we just found for the homogeneous problem in order to decompose the shifted displacement w and the source term θ: θ(x 2 ) = n=0 θn cos(β n x 2 ) where θn = e 0 θ(x 2 ) cos(β n x 2 ) dx 2 (C.8a) W (x 2 ) = n=0 λ n cos(β n x 2 ) and W ,22 = n≥1 -λ n nπ e 2 cos(β n x 2 ) (C.8b)

  14a)U n 0 (0) = W n 0 (0) (C.14b) U n 0 (e) = W n 0 (eL 1 + β 4 θ 0 1 + e -βx 2 2 (from Eq. 4.28) (C.14d)In Eq. C.14b and Eq. C.14c, the quantity W n 0 (x 2 ) appears. In x 2 = 0, W n 0 (0) = λ res n 0 , whereas in x 2 = e, the value of cos(β n 0 e) = ±1 depending on the value of n 0 : this, we gather that U (e) -U (0) 1 must depend on the parity of the mode one is considering to be resonant:U (e) -U (0) = e 2 (A + B), if n 0 = 2, 4, 6 • • • -2λ res n 0 + e 2 (A + B), if n 0 = 1, 3, 5 • • • (C.16)

  β 4 θ 0 (1 + e -2 βe )

  Fig. D.2, and shows that the two signals are indeed in phase, thus validating the optical power reference.

Figure D. 1 :

 1 Figure D.1: Signal from the PhotoDiode (PD) with different cable length. This permits to extract the phase relation to cable length, hence to extrapolate the actual signal with a 0 m long cable.

  Figure D.2:The Radio Frequency (RF) signal feeding the AOM, and the PhotoDiode (PD) AC signal measuring the laser's intensity. The AC coupled signal does not reflect the general offset, which means it is impossible to determine whether the optical power indeed drops to 0 from this graph alone. It suffices, however, to note that they do indeed oscillate at the same frequency and are in-phase. A fit for removing cable-related phase delay has been led upon various cable lengths for the photodiode signal (seeFig. D.1). The displayed PD signal is therefore the fit for a 0 m cable. Note that the signals have been normalized in amplitude to fit on the same scale, and that the amplitude is therefore purely indicative and is shown in arbitrary units (a.u.). The RF signal in this graph is at frequency f 0 = 5 116 136 Hz, which is the resonant frequency of this particular quartz at cryogenic temperature (4.2 K).

E. 1 .

 1 Considering this fact, the best option is therefore to measure the phase fluctuations and look at the component at the expected mechanical resonance frequency. Experimentally, this phase measurement translates into the setup presented on Fig. E.2.

  Figure E.3: Polarized Beam Splitter 1 (PBS1) part of the setup in Fig. E.2. a † LO and a † and respectively the quantum field creation operators of the local oscillator (LO) and of the field coming from the cavity, which we are interested in. a † 1 and a † 2 , on the other hand, describe the fields exiting the PBS1.
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	.2.

  31 a 22 a 32 a 23 a 33 a 22 a 33 + a 23 a 32 a 23 a 31 + a 21 a 33 a 21 a 32 + a 22 a 31 a 31 a 11 a 32 a 12 a 33 a 13 a 32 a 13 + a 33 a 12 a 33 a 11 + a 31 a 13 a 31 a 12 + a 32 a 11 a 11 a 21 a 12 a 22 a 13 a 23 a 12 a 23 + a 13 a 22 a 13 a 21 + a 11 a 23 a 11 a 22 + a 12 a 21

	Cut	θ	ϕ	Main interest
	AT	35°0°TC at room temperature
	BT	-49°0°TC at room temperature
	SC	33.88°22.4°Stress Compensated -TC at room temperature and has a
				weak stress-frequency effect
	IT	34°19°TC at room temperature
	LD	34°27°Low Defect -low sensitivity of the resonance frequency to
				exciting power
	FC	34°15°Frequency Compensated -TC for a large temperature range
	SBTC -34.5°16.3°Low sensitivity of the B mode to pressure. C mode used as a
				pressure sensor
	X+5			
	11 a 2 21 a 2 31 a 21 a  a 2 12 a 2 13 2a 12 a 13 2a 11 a 13 2a 11 a 12 a 2 22 a 2 23 2a 22 a 23 2a 21 a 23 2a 21 a 22 a 2 32 a 2 33 2a 32 a 33 2a 31 a 33 2a 31 a 32        
				(2.3)
	where a ij designates the corresponding matrix element from Eq. 2.2. Note that an em-
	phasis has been put on the pattern of the matrix by adding lines to divide it into four
	parts.			
	With these matrices, we can now write the way to rotating the matrix notation of the

TABLE

  The optical experimental setup is presented on Fig.3.15. It consists of a (commercially available from NKT Photonics) Koheras AdjustiK TM piezo-tunable wavelength laser, with center wavelength at 1550 nm, i.e. typical telecom wavelength. It is a continuous wave Experimental setup for measuring thin metallic (absorptive) layers properties. It mainly consists in adapting the waist to fit the mirrors' curvatures and measuring the transmitted and reflected signal. The incident polarization is adapted through a λ/2 waveplate, unlike the typical λ/4 scheme. See main text for more information and Fig. 3.16.

			f=75mm f=250mm
	Piezoelectric	
	λ tuning	measurement transmission	waist 71µm
			reflexion measurement
	Figure 3.15:		

Table 3 . 1 :

 31 Table of results and measured parameters from different types of deposited thin films.

			FWHM (MHz)	∆f	T max (‰)	R contrast
		theo	1771	251	4	12.6
	Al 30 nm	expe 1635 ± 60 357 ± 20	1.2 ± 0.1	1.63 ± 0.1
		expe2 1856 ± 80 480 ± 25 0.84 ± 0.1 5.59 ± 0.5
	Au 40 nm	theo expe 1274 ± 70 136 ± 10 1224 92	22.6 1.8 ± 0.2	27.5 8.4 ± 0.8
	Au 50 nm	theo expe	886 577 ± 30	64 43 ± 4	6.6 4.3 ± 0.4	15.5 7.2 ± 0.7
	Ag 35 nm	theo expe	1011 100 ± 10 100 ± 10 45	108 13 ± 1	54.6 10.7 ± 1
		theo	531	21	22	27.3
	Ag 50 nm	expe	600 ± 15	56 ± 5	8.2 ± 0.8	15.3 ± 1.5
		expe2 644 ± 15	39 ± 4	15.4 ± 1.5	6.5 ± 0.6
		theo	339	13.2	1.3	7.1
	Ag 70 nm	expe	502 ± 10	58 ± 10 0.08 ± 0.01 0.8 ± 0.1
		expe2 573 ± 10	51 ± 5	0.6 ± 0.05	1.9 ± 0.2
	Ag 50 nm	theo	493	24.1	10.2	19.1
	+ Au 5 nm	expe	724 ± 15	49 ± 5	4.1 ± 0.4	5.5 ± 0.5
	TiO 2 10 nm	theo	896	65.9	7.1	16.1
	+Au 50 nm	expe 1150 ± 20 179 ± 20 0.9 ± 0.09	5.2 ± 0.5

  Table of the influence of the thickness uncertainty on the different quantities involved. Computed with the refractive index for 50 nm, extrapolated from [Ciesielski et al., 2017].

		FWHM (MHz)	∆f (MHz)	Finesse T max % R contrast
	Ag 47 nm	569	22.6	167	3.3	33.9
	Ag 50 nm	531	21.5	184	2.2	27.3
	Ag 53 nm	502	20.8	193	1.4	22.4
	Ag 47/53 nm	534	21.2	180	2.1	34.7
	Ag 53/47	534	22.4	180	2.1	21.1
	Table 3.2:					
	The deposition of most materials is done with magnetron sputtering technology

  .22.

	2.1360	2.1361	2.1362	2.1363	2.1364	2.1365
		central transmission peak time (in s)	×10 -2

Table 3 . 3 :

 33 Table

	2.3.2.

  Table 3.4: Table of extracted values for refractive indices from the python program described in section 3.2.3.1 (columns n fit and n fit ), starting from known values of refractive indices (columns n and n ) taken from[START_REF] Ciesielski | Controlling the optical parameters of self-assembled silver films with wetting layers and annealing[END_REF], and subsequent FWHM and ∆f characteristics. The relative errors are displayed in the last two columns. We note that the error grows as the thickness grows, due to rounding errors in the calculations. Note that calculations were lead with numpy 128 bit floats in python. Note also that the table is indicative, as changing the span over which n and n are swept changes (slightly) the quality of the local linear fit (see section 3.2.3.1 about the linear fit).

	n Ag20nm 0.3130 10.6052 n	FWHM ∆f 2841 128 0.3132 10.6747 4 × 10 -4 n fit δn/n n fit	δn /n 6 × 10 -5
	Ag35nm 0.2997 10.7355	1011	45 0.2999 10.7384 7 × 10 -4	3 × 10 -4
	Ag50nm 0.2522 10.8507	531	21 0.2512 10.8416 1 × 10 -3	7 × 10 -4
	Ag65nm 0.2047 10.9659	339	13 0.2043 10.9639 9.3 × 10 -4 2 × 10 -4

between 0.24 < n < 0.26 and 10.84 < n < 10.86 gives the correspond estimated error in table 3.4, namely 1.4 × 10

  .26.

		intersection
		computation
		exp value
		10 20 30	∆f (MHz)
	n 0.202 0.200 0.204 0.206 0.208 0.210	n 10.966 10.964 10.962 10.960 10.968 10.970

Table 3 .

 3 6: Error on central value (w.r.t. the known litterature value) and deviation of the distribution of n and n for different deposition thickness, following a Monte-Carlo type simulation where all previously described uncertainties including thickness uncertainty are taken into account. This permits to quantify the overall expected uncertainty on values extracted from our program. The results for n and n displayed in the section for our experimental results 3.2.3.2 make use of these error bars.are presented and listed in Table3.6.

  2C 54 S 4 + 2C 55 S 5 + 2C 56 S 6 T 32 = T 4 = C 41 S 1 + C 42 S 2 + C 43 S 3 + 2C 44 S 4 + 2C 45 S 5 + 2C 46 S 6

-β 5 θ -e 15 E 1 -e 25 E 2 -e 35 E 3 (4.18a) -β 4 θ -e 14 E 1 -e 24 E 2 -e 34 E 3 (4.18b)

Table 4 . 2 :

 42 Same as table

		B B res	B 4K	B 4K res
	B	1 4.072 2.395 14.402
	B res	1	0.588 3.536
	B 4K		1	6.013
	B 4K res			1

Table 4 .

 4 3: Same as table 4.2, although the amplification is slightly lower than for the B3 mode. See main text.

		C C res	C 4K	C 4K res
	C	1 3.630 1.245 7.367
	C res	1	0.342 2.029
	C 4K		1	5.917
	C 4K res			1

  • i = 1: p 61 , p 62 , p 63 , p 64 , p 65 , p 66 • i = 2: p 21 , p 22 , p 23 , p 24 , p 25 , p 26 • i = 3: p 41 , p 42 , p 43 , p 44 , p 45 , p 46

  This leads to write: -βx 2 + e -2 βe e βx 2 + Ω 2 x 2 -dx 2 = βe 2 e βe cos(nπ) -1 β2 e 2 + n 2 π 2 (C.12a) using Eq. C.12 in Eq. C.11, the total integral yields:θn = β 4 θ 0 ρ β2 e 2 2e -βe cos(nπ) -1 -e -2 βe β2 e 2 + n 2 π 2 + -Ω 2 e 2 cos(nπ) n 2 π 2 β 4 θ 0 1 -e -βe 2 + Ω 2 e 2 B n 2 π 2 (cos(nπ) -1)

	Calculating each integration separately yields:
					0 0	e x 2 e e βx 2 cos nπ e x 2 2 cos nπ e x 2 dx 2 =	2e 3 cos(nπ) n 2 π 2	(C.12b)
					0	e	x 2 cos	nπ e	x 2 dx 2 =	e 2 (cos(nπ) -1) n 2 π 2	(C.12c)
					0	e	cos	nπ e	x 2 dx 2 = 0	(C.12d)
	so that by (C.13)
	θn =	0	e	β 4 βθ 0 ρ	-e x 2 2 2e	B +	x 2 2 2e	A
									+	e c 2	(-B + A) cos(β n x 2 ) dx 2	(C.11)

  keeping only the crossed AC term that fluctuate at frequency Ω LO ) = a LO (a + δa) cos ([ω + Ω LO ]t) cos (ωt + ϑ)

≈

a LO (a + δa) 2 cos (Ω LO t + ϑ) (keeping only terms at frequency Ω LO )

I 1 = a LO (a + δa) 2 cos(Ω LO t) -sin(Ω LO t)ϑ (E.2a)

Note near resonance, the resonator mainly acts as a RLC system, whereas far from resonance, it essentially acts as its parasitic capacitance C 0 .

They are essentially related through the fact that e.g. a device which is fairly insensitive, frequency-wise, to temperature fluctuations will be a good metrological device, whereas the opposite situation results in a good sensor for temperature through monitoring the frequency.

The physical phenomena can include e.g. phonon-phonon interactions, thermoelastic interactions linked with the acoustical wave creating thermal gradients, scattering losses on the quartz' surface etc whereas the engineering phenomena include e.g. the device holders losses, the Two Level System (TLS) lossed linked with impurities in the quartz that may be engineered to migrate on the side of the crystal with an intense electric field, making use of Top High Quality quartz which limits the impurities and defects and is obtained with the first growth from a natural quartz germ.

Note that the stress-temperature coefficients arise because the internal strain S in ij is related to the internal stress Tij throuh the elastic coefficients. Therefore, upon writing Tij = T in ij = C in ijkl Sij, one writes that Tij = C ijkl (S kl -α kl θ) with α kl the thermal expansion coefficients. From this, we therefore write the stresstemperature coefficients as βij = C ijkl α kl .

The most general expression for the refractive index is n

=

i,j,k=1 ei ij µ jk e k where is the relative dielectric constant and µ the relative magnetic susceptibility constant.

Note that because the rotations are non-commutative and that the quartz cut are defined (see chapter 2) with a first rotation around Z by an angle ϕ and then around x 1 (the rotated x1 vector) by an angle θ, the vector x 1 will always be in the initial equatorial plan and have an index n0, and x 2 (x2 after the two rotations) will depend only on θ and not on ϕ for a given propagation direction along e.g. x2.

It is possible to verify that I - 1 + I + 3 = I + 1 by reminding the Stokes relation 3.7. It imposes that, by noting T = tt and R = r 2 , the addition of the reflected and transmitted intensity numerator reads (1 -R) 2 + 2R -2R cos(2kd) = 1 + R 2 -2R cos(2kd), which is equal to the denominator of the both fractions, hence yielding 1.

Note that this approximation is almost always valid in realistic Fabry-Perot cavity situations. For R = 70% and T = 30%, the relative error is of 5 × 10 -3 ; when R = 98% and T = 2% is taken, the relative error drops to 1.7 × 10 -5 .

It may seem at first glance that there is an inconsistency because of the reversed sign between the two components of the electric field on the right side of Eq. 3.34; However, the two components describe counterpropagating fields, which therefore get attenuated or phase-shifted along their own path. In other words, for the propagating field, point b is anterior in its path to point c, whereas it is anterior in point c with respect to point b for the counter-propagating field.

The simplification to get from Eq. 3.9a to Eq. 3.10a in section 3.1.2.1 about the simple non-absorptive three layers Fabry-Perot included using the Stokes relations in Eqs. 3.7. Using the generalized Stokes relations from Eqs. 3.47 gives the result in Eq. 3.46.

Note that there are serious discrepancies between most of the expected and measured quantities; however, as Table3.2 shows, it can be partially explained by the uncertainty of the deposited thickness, and the surface quality does influence the results too, see for example[START_REF] Reddy | Temperature-Dependent Optical Properties of Single Crystalline and Polycrystalline Silver Thin Films[END_REF] or[START_REF] Jayanti | Low-temperature enhancement of plasmonic performance in silver films[END_REF]

 12 It is clear, however, that although the oxidation does not seem to explain the main discrepancy between experimental and theoretical values for R and T , we have noticed (though not systematically investigated) that it does influence the results on the scale of several days/weeks of time if the sample is kept without a proper vacuum environment

Note that a future improvement includes being able to tweak this angle with a piezo-controlled rotative holder from company Attocube

As Fig.3.7 shows, changing the mirrors' thickness or refractive index changes the peak's central wavelength.

Note in particular that this is a rather pessimistic guess for all thicknesses except the 20 nm deposition thickness, which, in practice, we do not use nor study experimentally.

Typically, the heating rate is considered ultrafast for femtosecond pulsed laser, with atomic collisions on the timescale of femto to pico seconds[Tzou et al., 

2010], which is not the case here.

Note that although the thermal losses are neglected throughout, taking them into account is necessary to treat the mean temperature as finite, for the incoming flux not to raise temperature to an infinite value.

Note that this is a first approximation and is true only for the non-optically-resonant case. Indeed, upon optical resonance, the light is also present on the other surface and this conditions is no longer valid.

Note that this value is necessary because in this model, the voltage is assumed to be known.

In the light of section 4.2.2, one might wonder if the frequency shift can be attributed so some potential optomechanical coupling. It is very unlikely to be the case, for the orders of magnitude involved for the shift involved by this type of interaction is far smaller than the shifts observed here.

Although the discovery of electrostriction is anterior to that of radiation pressure, visible light's effects were indeed discovered and envisioned with radiation pressure, even though it was already known when electrostriction was studied by Rötgen in 1880 that light was an electromagnetic radiation (it had been inferred by Faraday and consolidated by Maxwell, see[Longair, 2003], p87) 

Eq. 4.52 is true only when the energy of E 2 the electric field and H 2 the magnetic field are equal, which is not true in general for forced solutions of the wave equation.

Note that and χe are related through the definition of the electric displacement D = 0E + P = 0 E = 0(1 + χe)E so that χe = -1

Note that this tensor and its application to the strain is taken in the particular case where no local rotations are considered, therefore ignoring theNelson and Lax tensor 

Note that the expression for D should include a term due to the inverse piezoelectric effect, therefore proportional to the strain, w ijk S jk (see for example Royer[Royer et al., 2000a] Eq. 3.86). But because this strain is caused by the field itself here, this last term acting on the electric displacement is of higher order, and we therefore neglect it, see paragraph 2.4, chapter XIII of Nye[Nye, 1984].

Note that the same result can be obtained through accounting for the different fields through e.g. a Lagrangian method, see[START_REF] Laude | Lagrangian description of Brillouin scattering and electrostriction in nanoscale optical waveguides[END_REF] 

Quartz is a non-magnetic material, hence the simplification that the relative magnetic susceptibility is approximately equal to the unit tensor.

The usual definition of χ in isotropic media relates the polarisation with the electric field, through writing thatP = χE + χ (2) E 2 + χ (3) E 3 + O E 4 .

Note that the same χ ijkl tensor is also present in the definition of the stress induced by electrostriction in Eq. 4.62, although is is not explicitly written.

Indeed, in a non-rotated Y-cut, the major and minor axes correspond to the extraordinary and ordinary indices; for the SC cut, on the other hand, the first rotation is around Z so that no change is made for the refractive index because nx = ny. But the second rotation is around X, so that with a fixed direction of propagation along x2, the index decreases from ne to n0, see section 3.1.1.

Note that, in general, because any electromagnetic wave in the medium is always decomposed into its two polarizations components, even though a particular component of the diffracted beam may be mathematically allowed to be created by optical and acoustical interactions, it will not in fact be created if the phase-matching condition is not fufiled.

 19 With respect to the optical frequency. The expected order of magnitude for the time variations are of the order of the acoustic frequency Ω

Note that the original equation is given with the electric fields and the permittivities, but because ij Ej = Di at first order, it is possible to express it in the form 4.62

Note that this value has in fact been found for rather low frequencies, in the Hz to kHz range because of its gravitational wave detection use. Although we lack data in the interestin MHz frequency range, we extrapolate the result on the basis that the total coating losses do not seem to vary significantly over a large frequency range, e.g. over 5 decades in[Crooks et al., 

2004].

Inverting Eq.

3.25 with no losses, one can find the reflectivity from the finesse to be approximately R ≈(1 -π 

Provided that the laser is incident from the opposite side than that drawn on the scheme. Indeed, if the laser is tuned out of optical resonance, the light will hardly enter the cavity if incident on the supermirror.

Only the K3 value is available in the reference, so that we extrapolated the results from[START_REF] Kanamori | Thermal diffusivity measurement of rock-forming minerals from 300°to 1100°K[END_REF] and took K1 to be half of the K3 value.

This should formally be written as Un 0 (e) -Un 0 (0), although the n0 is dropped for simplicity

Note that this fact is also the ground consideration to achieve a Pound Drever Hall laser stabilization, see[Black, 

2001].2 We remind that two wavepackets of light only intereacts when in the same polarization state. 147

APPENDIX A. TENSORS FOR QUARTZ CRYSTAL Calculated with a python routine from the values taken from [START_REF] Tarumi | Complete set of elastic and piezoelectric coefficients of α-quartz at low temperatures[END_REF].

13.672 0 0 0 13.672 0 0 0 7.508

The values from [START_REF] Kosinski | Thermal expansion of alpha quartz[END_REF] are used here for the thermal expansion.

The cryogenic thermal expansion coefficients the values from [START_REF] Barron | Thermal expansion, Gruneisen functions and static lattice properties of quartz[END_REF] are used here (note that only values for 5 K are available, which we will assimilate to values at 4 K throughout).

The thermo-acoustical coefficients are calculated with a python routine from the values taken from [START_REF] Tichý | Fundamentals of Piezoelectric Sensorics[END_REF] for the C ijkl and from [START_REF] Kosinski | Thermal expansion of alpha quartz[END_REF] for the α ij .

154.24 7.60 0 0 67.10 -129.77 0 -129.77 -39.02

The thermo-acoustical coefficients calculated with a python routine from the values taken from [START_REF] Tarumi | Complete set of elastic and piezoelectric coefficients of α-quartz at low temperatures[END_REF] for the C ijkl and from [START_REF] Barron | Thermal expansion, Gruneisen functions and static lattice properties of quartz[END_REF] for the α ij .

The values from [START_REF] Kanamori | Thermal diffusivity measurement of rock-forming minerals from 300°to 1100°K[END_REF] are used here for the thermal conductivity.

The values from [START_REF] Hofacker | Low temperature thermal properties of crystalline quartz after electron irradiation[END_REF] 1 are used here for the cryogenic thermal conductivity.

6.489 0 0 0 8.805 3.449 0 3.449 11.626

The thermal conductivity coefficients in the SC cut are calculated with a pyton routine from the values taken from [START_REF] Kanamori | Thermal diffusivity measurement of rock-forming minerals from 300°to 1100°K[END_REF].

The cryogenic thermal conductivity coefficients in the SC cut are calculated with a python routine from the values taken from [START_REF] Hofacker | Low temperature thermal properties of crystalline quartz after electron irradiation[END_REF] 1 . (see Eq. 3.10a), around basis cavity length d = 1 mm. Note that although the intensity reaches a minimum and has very small fluctuations near resonance, the phase has its maximum change rate precisely at resonance. This permits to measure small displacements of the input mirror, i.e. of the cavity length. From this last expression, we get to the conclusion that by observing the AC output of the branch a 1 of the PBS1 and demodulating with a signal at frequency Ω LO with the right phase, one can observe the sin(Ω LO t) part of expression Eq. E.2a. Observing the component of this signal at the mechanical frequency Ω m gives the wanted quantity, i.e. the phase fluctuations ϑ (more precisely, its component at the mechanical frequency) which are proportional to the movement of the input mirror. If a peak is visible at this particular frequency, a mechanical resonance of the system can be infered.
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