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This PhD work continues and reinforces recent
investigations on bulk acoustic wave resonators at
cryogenic temperature (typically 4 Kelvins). In such
operating conditions their unique properties open up
new applications in different fields, from ultra-stable
oscillators to hybrid quantum systems. For all these
areas of research, new low-loss devices can play a
game changing role. This work, which is oriented
towards optomechanics, explores the possibilities of
light-based actuation of an acoustical cavity with the
horizon of building a cryogenic oscillator with such a
cavity. Without loss of generality, the selected cavity
is a quartz crystal resonator, adapted to the usage
requirements with cryogenic environment. The first
part of this thesis focuses on the theoretical and
experimental study of optical Fabry-Perot cavities
with absorptive mirrors, most notably with a novel

method to extract the index of refraction of thin
metallic films based on their particular properties
when used in an optical cavity, i.e. a broadened
Full Width at Half Maximum with respect to the
non-absorptive case, as well as a frequency shift
between the transmitted and the reflected peaks.
In the second part, an analysis is performed on
different means of mechanical actuation by light,
ie. by the photothermal force, the radiation
pressure force and the electrostrictive force. An
experimental study of the former demonstrates in
particular the feasability of photothermal actuation
at frequencies exceeding some Megahertz. The
conclusion opens gives way to some perspectives,
and specifically about other geometries which may
potentially optimize the optomechanical coupling.
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Ce travail de thése est destiné a poursuivre et
renforcer les travaux démarrés récemment sur
le comportement des résonateurs acoustiques a
onde de volume piégée a basses températures
(typiqguement 4 Kelvins). Dans ces conditions de
fonctionnement, leur propriété unique ouvre en
effet des perspectives d’applications nouvelles dans
différents domaines, depuis les oscillateurs ultra-
stables jusqu'aux systemes quantiques hybrides.
Dans toutes ces thématiques de recherche, ces
cavités a faibles pertes peuvent jouer un réle
déterminant. Ce travail orienté vers I'optomécanique
explore les possibilités d’excitation d'une cavité
acoustique par la lumiére, avec pour horizon
la conception d’'un oscillateur cryogénique avec
une telle cavité. Sans perdre en généralité,
la cavité choisie est un résonateur a quartz
adapté aux conditions d’utilisation cryogéniques.
La premiére partie de cette thése se concentre

donc naturellement sur [I'étude théorique et
expérimentale des cavités optiques Fabry-Perot a
miroirs absorbants métalliques, avec notamment
une nouvelle méthode pour extraire lindice de
refraction des couches fines metalliques grace a
leurs propriétés particulieres lors d’un utilisation
en cavité optique, i.e. une largeur a mi-hauteur
élargie par rapport au cas non-absorbant, ainsi
qu’un décalage en fréquence entre les pics transmis
et réfléchis. La deuxiéme partie analyse divers
mécanismes d’excitation mécanique par la lumiere,
tels que l'excitation photothermique, la pression
de radiation et la force électrostrictive. Une
étude expérimentale démontre en particulier la
faisabilité de [I'excitation photothermique a des
fréquences supérieures au MHz. La conclusion
ouvre sur des perspectives, en particulier d’autres
géometries optimisant potentiellement le couplage
optomécanique.
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GENERAL INTRODUCTION

Time keeping is of primary importance in everyday’s life, for applications ranging from
GNSS (Global Navigation Satellite System) navigation to fundamental physics experi-
ments [ ]. This task is generally performed through transforming a sig-
nal at a precise frequency to a time. The reference frequency can be provided by two
main families of devices: bulk-material based clocks and atomic-based clocks.

Within the bulk-based clocks, quartz is a material which is widely used because of its
price and availability, as well as its piezoelectric properties which allows to actuate the
crystals in a direct way. It displays good performances at providing a stable frequency
source thanks to its good mechanical properties, with some bare quartz crystal providing
fractional frequency stabilities of about 10~ at 1s integration time. Several architectures
even allow to improve this figure through compensating the unstabilities originating from
environmental sources that must be well-controlled (e.g. vibrations, temperature fluctua-
tions), for example with the OCXO (Oven Controlled Crystal Oscillator) that can achieve
fractional frequency stabilities down to 10713 at 1s.

It has been shown in some previous work in our team that the mechanical quality factor
Q can display values as high as some 10° for the very best quartz [ ]
at cryogenic temperature. Because the @ factor is related to the ultimately reachable
fractional frequency stability, this allows to expect figures improvements by a factor 1000
with respect to a typically good quartz resonator at room temperature, with a floor of the
fractional frequency stability as low as 10716,

The idea to use such high quality quartz resonators at cryogenic temperatures in or-
der to build an ultrastable oscillator stems from this observation. The typical piezoelec-
tric excitation scheme, however, can bring noise to the measurement and in particular
in a cryocooler environment (through e.g. spatially variable thermal noise) which can
limit this ultimate stability. In this context, the need for an alternative actuation scheme
arises. An optomechanical actuation is therefore considered, which consists in mechan-
ically actuating the quartz through an optical input, typically a laser [ ]
[ ]. By doing so, one avoids the aforementioned noises while also allow-
ing non-piezoelectric materials to be used as frequency references if they display good
mechanical properties (e.g. sapphire [ D.

While one may consider at first glance dielectric super mirrors in order to maximize
the light coupling by turning the quartz crystal resonator into a Fabry-Perot cavity, lit-
erature shows that these coatings dampen the mechanical qualities of the resonator,
limiting it to some 10% in most common solutions such as Ta,Os [ I-
based coatings. Metallic thin films coatings also induce damping, although it has been
shown that they limit the mechanical qualities less than their dielectric counterpart
[ ]. Furthermore, the quartz crystal resonators are routinely coated
with metallic layers providing electrical contacts, and because such metallic layers also
constitute mirrors [ ], they might readily constitute devices that can be
optomechanically actuated. The aim of this thesis is then to evaluate the potential of
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metallic coatings for the generation of an optomechanically actuated oscillator, and inves-
tigate in this framework their properties to target their optimization. The thesis manuscript
is therefore structured as follows:

« Chapter 1 gives an overview of the state of the art for time-references and a re-
minder of some basic descriptive framework for oscillators. The reasons behind our
interest for the quartz crystal resonator is specified in more details, as well as some
background concerning the expected improvements for the stability brought by our
device. The reasons for the preference towards an optomechanical actuation are
also discussed.

» Chapter 2 gives a quick reminder concerning some quartz crystal formalities, as
well as a few equations of continuum physics formalism that are useful to analyze
the situation for optomechanical actuation.

» Chapter 3 focuses on the study of the optical characteristics of the common quartz
crystal resonator used as a Fabry-Perot cavity. This is in the aim of asserting
whether these resonators can answer the requirements of optomechanical actu-
ation, which are established in chapter 4. The first emphasis is put on the theo-
retical developments of the Fabry-Perot cavities, for the ideal cavity as well as for
the absorptive mirrors cavity. Some specific characteristics are shown for the lat-
ter, such as an increased FWHM (Full Width at Half Maximum) of the transmitted
peak, an asymmetry of the reflected peak as well as a frequency shift A f between
the reflected and the transmitted peaks. An experimental study is also led, with a
measurement campaign of several different layers of different thicknesses and of
different materials, allowing to establish that silver is the best candidate for obtain-
ing the highest possible reflectivity among common metals (chromium, gold, silver).
Several properties are measured, both at room temperature and 4 K. This measure-
ment campaign also allows to feed a humerical method that we designed to obtain
the refractive index, starting from the knowledge of the FWHM and the peaks’ fre-
quency shift Af. Such knowledge is usually very method-dependent (as well as
process-dependent) and is not widely found for cryogenic temperatures.

» Chapter 4’s primary concern is to analyze several light-induced forces as the po-
tential actuation sources for mechanical actuation, and in particular in the case of
quartz crystal resonators coated with thin metallic films. The first force to be dis-
cussed is the photothermal force, for which a simplified 1D theoretical framework
is developed through continuum mechanics. Some experimental results are then
exposed, demonstrating the possibility to actuate the quartz crystal resonator with
metallic thin films through this method at 5 MHz, both at room temperature and
cryogenic temperature, as well as with or without optical resonance with the optical
cavity formed by the thin films. The second force to be discussed is the radiation
pressure force, with a brief reminder of the Hamiltonian framework from literature
as well as an application to the case at hand with our quartz resonators. Lastly, the
electrostrictive force and the subsequent Brillouin scattering interaction is analyzed
with a similar continuum mechanics framework as mentioned above. A numerical
application of the expected results of the optomechanical forces (i.e. radiation pres-
sure and electrostriction) for the quartz resonator coated with metallic thin films is
given, raising the requirement of other possible geometries for the resonators.
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« Chapter 5 provides a conclusion to this work, as well as a perspective regarding
other geometries for the quartz crystal resonators’ mirrors, i.e. with combinations
of metallic thin films and dielectric supermirrors, either deposited directly onto the
resonator or suspended in front of it. A comparison of the different possibilities is
briefly discussed.
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STATE OF THE ART

This chapter aims to provide the general background for this thesis, regarding time keep-
ing and basic concepts regarding oscillators as well as an outlook on the state of the art of
some frequency sources. We then introduce the reasons why this work can be of interest
towards the conception of an ultrastable cryogenic clock.

1.1/ GENERAL MOTIVATION

1.1.1/ TIME AND FREQUENCY METROLOGY, APPLICATIONS

There are countless devices in today’s world using time references for their basic func-
tioning: let us just mention a few devices such as cellphones, clocks, computer, GNSS,
and in several industries too, such as spatial industry, military industry. Some applications
require extreme efforts in time-keeping, such as e.g. fundamental physics experiments
(see [ D-

Time metrology, the precise measure of time, is in fact often reduced to counting periods
of oscillations or the related frequency. The frequency of a resonator is electronically
measured and conveniently transformed into a time.

Several tools exist for evaluating how “precise” the time is, and different kind of references
for time have been invented (see a detailed description in [ ], chapter 2). The
vernacular concept of “precision” in fact includes several different concepts, one being
the accuracy of the time (is the device’s “one second” actually our world reference’s “one
true second”), and another one being the instability of the time (unrelated to whether the
device’s “one second” is in fact a real second, does it keep on beating the same “one

second” as time passes?).

Throughout this thesis work, the main focus will be drawn onto the concept of instability.
Some devices may naturally have a better short-term stability (such as quartz crystal
for example), and some others may have a better long-term stability (such as atomic
reference clocks for example). However, only by making a hybrid system can a device get
a good short-term and long-term stability (see for example the diverse hydrogen masers
devices commercially available).
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1.1.2/ OSCILLATORS, PHYSICS ABOUT IT
1.1.2.1/ BASICS, PHASE FLUCTUATIONS

In the simplest approach to resonance with the mechanical pendulum, it is well known that
any object that resonates, and in this case the pendulum, will eventually stop to oscillate
because of the natural losses, e.g. friction. In a general fashion, when devices entering
in resonance which we will call resonators are left alone, the system losses (engineering
losses, intrinsic losses, etc) eventually dampens the resonance. This is why an oscillator
is needed in order to forcefully prevent the resonance from stopping. The term oscillator
designates the ensemble of the resonator with its accompanying components to maintain
the oscillation (see for example [ ], section 2.2).

Taking a general picture for oscillator, the required elements for an oscillator to function
are the resonator (through the resonance frequency, it is possible to extract a time), an
amplifier (that will coherently provide the energy lost by the resonator during its vibration
cycles) and the power source for the amplifier. In a familiar mechanical pendulum, the
resonator is the mechanical arm, the amplifier is the set of gears and the energy source is
generally either a human intervention to load the springs or an electrical power supplier. In
a typical quartz wrist watch, the resonator is a resonating quartz tuning fork, the amplifier
is an electronic amplifier and the power source a battery.

A simplified scheme of such an electronic oscillator is shown in Fig. 1.1, with a resonator
and an amplifier. The amplifier's transfer function is noted as A in Fig.1.1b. The res-

P—
04
amplifier output A
Uout = Up cos(27 fosct + ¢(t))
2ndlorder RLC A_é)& = Uy cos(y)
BP filter
resonator
0N S_—rt_~
(a) Simplified scheme (b) Mathematical representation

Figure 1.1: 1.1a Simple scheme of an oscillator and 1.1b mathematical representation
of this oscillator. A and B, respectively the amplifier's gain and the resonator’s gain,
are a priori complex and impart a phase on the signal. The phase fluctuations inside
the loop are noted here Af and come from other sources than the amplifier and res-
onator, whereas the output voltage Uyt = Uy cos(27 fosct + ¢(t)), where Uy is considered
a constant and ¢(t) are the phase fluctuations outside the loop. fosc IS the oscillating
frequency, which, because of the phase response of the amplifier, might be different from
fo, the resonance frequency of the resonator.

onator, which we denoted as B, can be e.g. a quartz crystal resonator. It is possible to
accurately represent its electrical behavior around resonance with an electronic 2" order
RLC system with a parasitic capacitance Cg, with typical order of magnitude of 3 pF-5 pF
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(see Fig. 1.2)". The resonator then acts as a band-pass filter (see Fig. 1.3).

Co

(a) RLC (near-resonance) equivalent circuit (b) Quartz picture

Figure 1.2: A second order RLC circuit (Fig. 1.2a), representing an electronic equivalent
circuit of the quartz crystal resonator close to a resonance frequency when excited by
piezoelectric means, with a parasitic Cy capacitance due to electrodes (typical order of
magnitude of 3 pF-10 pF ), deposited in order to apply the exciting electric field, as seeable
on Fig. 1.2b (see Fig. 1.5 for a sketch of these electrodes).

Attenuation (dB)
t

—_
o
1

— m \9

-8 Z_ N
o 0

3

c T

T T T T
—1.5 -1.0 —0.5 0.0 0.5 1.0 1.5
W — Wo x1076

Fractional angular frequency
wo

Figure 1.3: Bode diagram of the admittance (i.e. the inverse of the impedance), repre-
senting the frequency response of the equivalent circuit for the quartz resonator around
resonance. Here, losses are normalized to 0dB at resonance and the parasitic capac-
itance Cy (see Fig. 1.2) is neglected . It is typically the response of a band-pass filter,
whose bandwidth is Af = fy/Q. The bandwidth is also visible on the attenuation plot
and is denoted as BW, and the phase-frequency slope at resonance is also drawn on
the phase diagram (see Eq. 1.7). Here, some common experimental values of a "good"
quartz crystal resonator are taken for the plot: wy = 10 MHz, Q = 10°, R = 100 ().

The so-called Barkhausen conditions are conditions given for a loop in a steady state

"Note near resonance, the resonator mainly acts as a RLC system, whereas far from resonance, it es-
sentially acts as its parasitic capacitance Co.
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(see for example [ ] p.31):

|B||A] =1(= 1) (1.1a)
argA(w) + argB(w) =0 [27] (1.1b)

The first condition Eq.1.1a means that the amplification needs to counterbalance the
losses in the resonator. Oscillations typically start from noise, provided that |B||A| > 1
when the oscillator is turned on. Once the oscillations take place, |B||A| = 1 is met be-
cause of the nonlinearities. The second condition Eq. 1.1b describes the phase condition
that needs to exist between both functions.These conditions are usually validated around
a resonance frequency of the resonator f, = % = 52, From this last statement, it is
possible to conclude as well that, if the resonator and the amplificator are operating cor-
rectly and the resonance of the system is achieved, then the phase fluctuations from one

element should compensate the phase fluctuations of the other:

A0y = —AOp (1.2)

Related to the transfer function of the resonator, its impedance can be written (neglecting
the parasitic capacitance Cy):

1
Z=R+j — — .
+7 [Lw C’w} (1.3)
where w = 27 f is the angular frequency. Let us remind that the quality factor, in such an
RLC circuit, is related to the R, L and C characteristics in the following way:

Energy stored _fo _Lw 1

@= Energy dissipated duringty BW R ~ RCwq’

(1.4)

where wy = 27 fy = 27 /1) is the resonance angular frequency. It is therefore possible to
rewrite the impedance of Eq. 1.3 in terms of the mismatch with the resonance frequency:

. Lwo w 1 wo]

Z =R+ jR —_— —

+J { R wyp CRwy w
Z =R+ jRQ {‘” _ “’0} (1.5)

wy W
o Aw .
Z ~R+ ZJRQw— with w = wg + Aw, and Aw < wq (1.5b)
0

Note from this last Eq. 1.5b that when exactly at resonance (i.e. w = wyg and Aw = 0), the
impedance becomes purely real and resistive. If the parasitic capacitance C, were to be
taken into account, it would introduce a slight shift in the series resonance frequency and
would generate an antiresonance, a few tens of Hz apart typically.

By writing the argument of this last expression in Eq. 1.5b:

Im(Z
Arg Z = arctan™! (;;EZD R~ Q(igko (1.6)
we can highlight, as a consequence, that the transfer function of the resonator B(w)
related to the impedance Z exhibit a frequency-phase relationship close to the resonance
frequency wy (see Fig. 1.3 for a visual representation of this relationship):

fo

Af=-35

Afp (1.7)
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The phase changes for B can come either from Af,4 (as Eq. 1.2 implies) or by other phase
noise sources inside the loop. This leads to a signal frequency change A f, whose Power
Spectral Density (PSD) is, inside the operation range of the loop (i.e. the BW of the
resonator):

5500 = 12 50w) (18)

1.1.2.2/ PSD OF THE PHASE FLUCTUATIONS

Very often, for commodity reasons, the PSD of the frequency fluctuations is measured
indirectly: a phase-meter bench at the output of the loop permits to retrieve the PSD
of the phase fluctuations S, (v), related to the PSD of the frequency fluctuations S(v)
through:

1 de

S;(v) =1v*S,(v) because f(t) = o

(1.9)

Phase fluctuations inside the loop get therefore translated into frequency fluctuations with
the resonator, in the way described with Eq. 1.7. It is therefore possible to write the fol-
lowing relation between the phase fluctuations inside and outside the loop, distinguishing
between the case where the Fourier frequency of the fluctuation is included in the res-
onator’s bandwidth (i.e. v < fr = fo/2Q, the Leeson frequency):

SI() = 55 ()

(2£L> So(v) (1.10a)

and outside the bandwidth (i.e. v > fr, see Fig. 1.4.):
SO (v) = Sp(v) (1.10b)

where we used @, the loaded quality factor (i.e. of the resonator inside the loop), which
differs from the unloaded quality factor @ of the resonator alone. The total output power
spectral density of the phase fluctuations is therefore written

SO (v) = <1+ 4?2)21>Sg(1/) (1.11)

which is known as the Leeson model.

Following empirical observations, the typical Power Spectral Density (PSD) of the phase
fluctuations for an amplifier such as A on Fig. 1.1a (or coming from an extra noise source)
can be modeled by a frequency-power development (See for example [ ]
p30):

Se(v) = av™t + b0 (1.12)
where the 1° component is proportional to the temperature of the system. By injecting in

Eq. 1.11 the expression for a typical phase fluctuations of Eq. 1.12, it is possible to obtain
the general trend represented in Fig. 1.4.
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S@(K) (in dBrad?/Hz) S¢(Av) (in dBrad?/Hz)

<Y

carrier Ve carrier /L Ve
(a) Ideal case (open loop) (b) Leeson model (closed loop)

Figure 1.4: Typical Power Spectral Density (PSD) in an open loop (Fig. 1.4a) and at the
output of a closed loop with the Leeson model (Fig. 1.4b), with a term proportional to
v~! and another term proportional to v° (i.e. constant). v. is the corner frequency, at
which the v~ noise starts to be under the v° term. The latter term is proportional to the
temperature T'. In the Leeson model, there is furthermore a part, inside the bandwidth,
where the v~ noise is converted and superseded by the v—3 noise, created by the closed
loop. The latter noise level is proportional to 1/Q?, see Eq. 1.10a. Note that in the case
drawn here, v. > f1, = fo/2Q the Leeson frequency, as is typically the case for quartz
oscillators, but the opposite might be true, in which case there would also be a v—2 noise,
created from the v* according to Eq. 1.10a.

1.2/ STATE OF THE ART FOR FREQUENCY SOURCES

It is possible to classify the time-keeping references systems into two main families: bulk-
material based clocks and atomic-based clocks. We shall briefly present examples of the
former kind, then present some instances of the latter.

Time-keeping and sensors applications ? include time reference in cellphones, oscillo-
scopes, CPUs, aerospatial industry, military industry.

The two main types of bulk-material based clocks are the Bulk Acoustic Waves (BAW)
devices, and Surface Acoustic Waves (SAW) devices.

SAW devices primarily serve as filters [ 11 ] and sen-
sors | 11 ], but can also be used as high quality
resonator too (see [ 1), for frequencies typically greater than a few hun-

dred MHz up to a few GHz.

BAW frequency sources include many piezoelectric materials, among which, quartz crys-
tal resonators are of primary importance. Beyond the fact that synthetic crystals are
relatively cheap, there are several reasons for their predominent role: as they are piezo-
electric, they are rather simple to actuate. Furthermore, they have low losses and can
even have extremely low losses, which is generally interesting for minimizing frequency
instability (see section 1.3.1). The instability may have different origins, sometimes intrin-
sic or sometimes caused by engineering or environment related phenomena (see section
1.3.1 for a lengthier discussion about these phenomena). In a familiar pendulum clock,

2They are essentially related through the fact that e.g. a device which is fairly insensitive, frequency-wise,
to temperature fluctuations will be a good metrological device, whereas the opposite situation results in a
good sensor for temperature through monitoring the frequency.
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for example, a change in temperature might influence the arm’s length and hence is beat-
ing period. This is the reason why temperature fluctuations have to be taken accounted
for, both through its stabilization but also through finding a turning point in the frequency-
temperature curve (see chapter 2).

Quartz resonators can be used with different crystalline cuts in order to compensate
for different kinds of effects (e.g. stress compensation, temperature compensation), i.e.
render the device as insensitive as possible to the given parameter. It can also be used
in the opposite regime, to be very sensitive to a certain parameter for creating sensors
(e.g. Quartz Crystal Microbalance). The quartz resonator market reaches several billion
of US dollars (see for example the market report, available online, by Mordor Intelligence),
amounting to billions of units sold every year. They vary in frequency, from a few kHz to a
few hundred of MHz for BAW devices. They also vary in frequency stability. Several types
of packagings are built around the resonator, and, as mentioned earlier, they usually
act on the frequency-temperature relationship of the resonator in order to improve its
frequency stability through temperature stabilization at a turning point of the frequency-
temperature curve.

The simple quartz crystal oscillator (XO) without any specific processing is the most com-
mon time reference unit, which, under the best conditions, can have an Allan deviation
of about 107 at 1s (see for example [ ])- Another widely used unit where the
output frequency is corrected according to the ambient temperature is the Temperature
Compensated Crystal Oscillator (TCXO). Some devices can be shrinked down to MEMS
size, typically less than a mm3, with stability performances Allan deviation exceeding a
few 107! at 1s (see [ ]). Let us mention as well the Oven Controlled
Crystal Oscillator (OCXO), which is used for the best performances in terms of frequency
stability with quartz resonators. It consists of the crystal and its accompanying temper-
ature control elements to be put in an oven set at the turning point of the frequency-
temperature curve of the crystal. The crystal cut is selected so that the turning point
is greater than the maximum operating temperature of the environment (typically 80 °C).
Such an OCXO, however, is power consuming and is rather big with a typical size greater
than 200 cm3. The phase noise performances of such OCXO can reach —170dBcHz! at
100 MHz (see [ 1), and the Allan deviation can be better than some
107" at 1s (see [ ). Companies providing quartz devices include AR
electronique and Rakon.

Other piezoelectric materials used include the popular Lead Zirconate Titanate (PZT)
family of materials, that can also be used for resonators, as well as aluminium nitrate AIN

[ I I

There also are other ways of obtaining frequency references which do not use a me-
chanical resonance of the device. For example, Sapphire is used for that purpose, in
particular for its dielectric properties (although it also has very good acoustical proper-
ties, see for example [ ], see section 1.3.2)). It is used e.g. as the
heart of a commercial Cryogenic Sapphire Oscillator (CSO) clocks built here by FEMTO
Engineering, which uses electromagnetic whispering gallery modes. They display very
good stability performances, with Allan deviation of some 10~ !¢ at 1s (see for example
[ 11 ]) and moreover, they are certified to have Allan
deviations lower than 3 x 105 for integration times ranging from 1s to 10000s. Their
competitors, Cryoclock, have similar though slightly lower performances (see their re-
spective datasheet on their respective websites: Uliss and CryoClock).


http://www.ar-e.com/
http://www.ar-e.com/
https://www.rakon.com/
https://www.femto-engineering.fr/equipement/data-sheet-uliss/
https://9bb9e800-f9ac-4d37-9e0e-4bb31f61027a.filesusr.com/ugd/d2b25e_73ab243f758c4eecbd24a7e7fa7be660.pdf
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Let us also mention the existence of some other ways to obtain time-references, such as
Spintronics, i.e. the manipulation of electronic spin, is also of interest for reference sig-
nal generation (see for example [ ]) or optoelectronics oscillators
(OEO) which typically relies on a laser and a Mach-Zehnder Modulator (see for example
[ ] or the OEWAVES company products).

The other main kind of time reference which does not directly rely on the mechanical
or dielectric properties of materials is atomic and ionic clocks (see [ D-
Generally speaking, an atomic (ionic) clock uses the frequency of the electromagnetic
radiation associated with the energy transition between two levels of an atom (ion). There
was historically a development mainly of microwave-range transitions (several hundreds
of MHz) in this type of clocks, whereas today’s technology tends more to the optical
frequency range (hundreds of THz).

The current definition of the second relies on a microwave-frequency atomic clock. In-
deed, since the 13" Conférence Générale des Poids et Mesures (CGPM) in 1967,
“The second is the duration of 9 192 631 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state of the caesium
133 atom” (see the Bureau International des Poids et Mesures (BIPM) official website,
and [ ] for a description of the definition and the role of a second).
The very best performances for long term stability, as of today, are achieved with optical-
frequencies atomic clocks with orders of magnitude for Allan deviation floor of about 1018
(see for example [ D

Some effort is also made towards miniaturizing atomic clocks, while keeping fair per-
formances: Coherent Population Trapping (CPT) used on a miniature atomic clock
has demonstrated performances of Allan deviation of 7.5 x 107! at 1s and better than
2x 107 at 1 day (see [ ], SA.45s chip-scale atomic clock by Mi-
crosemi or MMAC by Syrlinks).

Among all these devices, we now turn to the reasons behind the choice to investigate
some particular quartz crystal throughout this thesis.

1.3/ INTEREST OF OUR DEVICE

Some of the quartz resonators precedently investigated here in our team have displayed
extremely high mechanical quality factors @ at cryogenic temperature, for the uncommon
extensional (breathing) A-mode (see [ ]), as high as several billion for
the very best ones. In fact, as this section highlights, this is the reason why they are of
such interest and why we consider the option of a metallized quartz crystal resonator at
the heart of an ultrastable clock (section 1.3.1). We subsequently show that the choice
of studying an optomechanical coupling arises very naturally (section 1.3.2). Finally, we
show some examples for which very high @ devices such as those mentioned earlier may
help with fundamental physics (section 1.3.3).

1.8.1/ 1/Q* AND f,/2Q

A typical quartz resonator used in many devices is a plano-convex disc (in order to trap
the energy), coated with a metallic layer in order to actuate it piezoelectrically. Very


https://www.oewaves.com/oe3700
https://www.bipm.org/en/CGPM/db/13/1/
https://www.microsemi.com/product-directory/clocks-frequency-references/3824-chip-scale-atomic-clock-csac
https://www.microsemi.com/product-directory/clocks-frequency-references/3824-chip-scale-atomic-clock-csac
https://www.syrlinks.com/en/time-frequency/mems-micro-atomic-clock-mmac/mems-micro-atomic-clock-mmac
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commonly, it is coated with a few nanometers of chromium (as it better adheres to the
quartz than the subsequent gold layer) and about 100 nm-200 nm of gold (see Fig. 1.5).

7\

O

N\

(a) Face view (b) Side view

Figure 1.5: Typical plano-convex quartz crystal resonator used in many devices. Very
commonly coated with a few nanometers of chromium (represented in red on Fig. 1.5b)
on the quartz, in order for the 100 nm-200 nm layer of gold to better adhere on the whole
structure. Note the plane on the front view on the right, which is typically made in order
to keep track of a particular crystalline axis (commonly the y axis). Note that the size of
the electrodes on the side view is greatly exagerated with respect to both the front view
and the quartz size for visual clarity.

Generally speaking, the @ factor is related to mechanical losses (they are proportional
to 1/Q) in the medium from diverse origins, which are influencing the total (unloaded)

@ through the following relation (see for example [ ], p30, and [ ]
throughout):
1 1 1 1 1 1 1
=27 = + + + + +--- (113
Q ; Qz Qphonon-phonon Qthermoelastic Qscattering Qholders QTLS ( )

Q being linked with the losses of the system. The losses, in turn, can be linked with
either intrinsic losses phenomena, that is, physical phenomena or with engineering phe-
nomena®. As an illustration of the engineering losses, see Fig. 1.6 focusing on the ge-
ometrical design linked with the mechanical clamping losses as well as the on-quartz
electrodes ddeposition losses; see Fig. 1.7 for some experimental data regarding losses
of some of the resonators from Fig. 1.6, attributed by the authors to both the clamping
and the coating influence (see [ 1)

It follows that the @ factor should have an influence on the general trend of the phase
noise. Indeed, an empirical study of the power spectral density of the fractional frequency
fluctuations at 1s for different devices available from litterature has been made by Gag-
nepain (see Frequency Standards and Metrology [ 1, p. 151), as shown
in Fig. 1.8a. It clearly displays a general tendency of the PSD to be proportional to 1/Q*.
This means that following this general trend, taking naively the 6/Q* dependency would

3The physical phenomena can include e.g. phonon-phonon interactions, thermoelastic interactions linked
with the acoustical wave creating thermal gradients, scattering losses on the quartz’ surface etc whereas the
engineering phenomena include e.g. the device holders losses, the Two Level System (TLS) lossed linked
with impurities in the quartz that may be engineered to migrate on the side of the crystal with an intense
electric field, making use of Top High Quality quartz which limits the impurities and defects and is obtained
with the first growth from a natural quartz germ.
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w_,

(b) QAS quartz

electrodes

' bridge (QAS-like)
condensator

(c) BVA quartz (d) BVA schematics

Figure 1.6: An illustration of the different efforts to minimize the engineering losses. On
Fig. 1.6a, a quartz is simply coated with rather big metallic electrodes and is suspended in
the same fashion as a flag would be. On Fig. 1.6b, a Quartz Auto-Suspendu (QAS, "self-
hanged quartz") is presented; the bridges permit to minimize the losses of energy of the
acoustical mode, as the oscillations are better confined in the middle part. On Fig. 1.6c,
a Boiter a Vieillissement Amélioré (BVA, "casing with improved aging") is presented. It
presents the double advantage of conserving the same decoupling of the central vibrating
part from the holding part like in Fig. 1.6b, but it also takes the electrodes off the quartz
to coat the so-called condensators instead, which are two quartz pieces cut in the same
crystallin cut as the resonator and which permit approaching the electrodes close to the
resonator without directly coating it, see scheme on Fig. 1.6d

lead for a Q = 1 x 10° resonator to a PSD of the fractional frequency fluctuations at 1 Hz
of S,(1Hz) ~ 9 x 10730 dBrad? Hz ! (see Fig. 1.8b). This would correspond to an Allan
deviation floor of o, (1s) ~ 3.5 x 10718 |

In addition to this effect, an unrelated improvement is also at stake. Indeed, as Eq. 1.10a
indicates, the v~ noise is proportional to 1/Q?. Furthermore, the Leeson frequency
fo/2Q that marks the change of the v~3 noise to the v~! noise (in the phase fluctuations
PSD) is smaller if @ is bigger. Under the assumption that the »—! noise would not differ
between the room temperature where most quartz crystals are operated and the cryo-
genic temperature (around 4 K) at which the quartz resonators from [Galliou et al., 2013]
need to be operated, an improvement in the S, (v < fy/2Q) figure is to be expected. In-
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Figure 1.7: Mechanical quality factor ), plotted against the mechanical resonance fre-
quency for several quartz crystal resonators. BVA stands for "Boiter a Vieillissement
Amélioré” (see Fig. 1.6c), whereas OSA and BVA Industry are quartz resonator providers.
The figure is taken from [Galliou et al., 2016b]. It shows that the losses (hence the qual-
ity factors) depend on whether the quartz is coated, and whether some work is done on
decoupling the resonating part of the crystal from the clamping etc (see Fig. 1.6 for visual

details about this point).
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Figure 1.8: 1.8a Graph taken from Gagnepain (see Frequency Standards and Metrology
[ ], p. 151), with experimental points from litterature of the time. Shows
the genera/ tendency of the power spectral density of the fractional frequency fluctuations
fo go as Q4, with ) the quality factor of the resonator. 1.8b Fit of the same points, along

with a Q@ = 1 x 10° at cryogenic temperature device from [ .

deed, on Fig. 1.9, the Leeson frequency where the v~ and the v 3 curves of the S, (v)
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cross permits to establish the following relation between the coefficients for each slope:

a_sf;® =a_1f;" (1.14)

Additionally, the PSD for the relative frequency fluctuations are related to the PSD of the
phase fluctuations through:

2

Sy(”) = Esw(f) (1.15)

On the other hand, the floor of the Allan variance for the relative frequency fluctuations is
located in the area of the frequency flicker noise (i.e. the v~! slope on a S, (v) plot and
v~3 slope on a S, plot). It is formally written:

o floor = 2128, (f = 1Hz) (1.16)

In order to express in a more specific form this last Eq. 1.16, let us rewrite Eq.1.15 in
the area of the frequency flicker noise, hence replacing S, in Eq.1.15 by its value in
the frequency flicker noise area (corresponding to the »—3 slope) and making use of the
relation in Eq. 1.14 for a_3:

V2 _ a_ 2 _

Sy(V & Vticker) = —za—3v > = ;QfLV ! (1.17)

0 0
Which permits to obtain from Egs. 1.16 and 1.17 and by replacing the Leeson frequency
by its value f1. = fo/2Q the Allan deviation floor:

In2 1
nTa_l x5 (1.18)

By using this last Eqg. 1.18 and the bibliography listed in section 1.2, with good quartz
crystal resonators with accompanying packaging having typical @ ~ 10° (at room temper-
ature) that amount to an Allan deviation floor of o, figor ~ 1013, it is reasonable to expect
that with a device with a very high @ ~ 10° as mentioned in the begining of this section
(three orders of magnitude higher Q), a typical Allan deviation floor of o, fioor &~ 1071°
(three orders of magnitude lower according to Eq. 1.18) can ideally be expected, pro-
vided the resonator environement is ideally controlled (e.g. vibrations, temperature fluc-
tuations). This is what is shown on Fig. 1.9.

Oy floor =

1.3.2/ ADVANTAGES OF OPTOMECHANICAL ACTUATION

As mentioned, because quartz is piezoelectric, it is most commonly actuated with an elec-
tric field, taking advantage of its piezoelectrical properties. Even some non-piezoelectric
materials are sometimes stratified with some piezoelectric material in order to actuate
them, creating a so-called High-overtone Bulk Acoustic Resonator (HBAR) (see for ex-

ample [ ]and [ ])- There are, however, other pos-
sibilities that call for attention in actuating quartz resonators, such as thermal actuation
(see [ 11 11 1) and op-
tomechanical actuation (see e.g. [ ). The latter will be extensively

discussed in this thesis, presenting a lengthier state of the art specifically for optomechan-
ical interactions in section 4.2.1, and presenting in current section 1.3.2 its comparative
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Figure 1.9: Scheme of possible improvements for the Allan variance. See main text at
the end of section 1.3.1 for details of the orders of magnitude.

advantages with respect to piezoelectric actuation for plano-convex quartz crystal res-
onators.

The metallic electrodes typically deposited on quartz crystal resonators (see Fig.1.5)
readily constitute mirrors as well, especially since most metals in the near infrared are
rather reflective (see for example [ ])- As such, it is only natural to
investigate the possibility of using these electrodes as mirrors in order to achieve a Fabry-
Perot cavity (see part 3), having in mind that this allows increasing the light intensity within
the cavity, hence possibly increasing the total force exerted by wavepackets with any of
the optical forces exerted (see part 4). A naive scheme of such optomechanical coupling
is presented in Fig. 1.10 for conceptual understanding.

There are two main advantages to actuate the quartz resonator with the help of an op-
tomechanical coupling, instead of using typical piezoelectrical properties of the quartz.

The first and most immediate one is the fact that cables going down the cryogenera-
tor to electrically actuate the quartz are no longer required, therefore saving the tech-
nological efforts of stabilizing the signal through the small temperature (hence length
and phase) variations, generally with a Pound scheme | ] (see for example
[ ], section 3.2.2). Indeed, considering a simplified model of only thermal
fluctuations affecting the length of the wires (and hence the phase of the signal), con-
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silver electrodes

Laser :
(1550nm) I >

+—> )
mechanical expansion

Figure 1.10: Naive scheme of optomechanical coupling with radiation pressure. The
incident light onto the quartz crystal resonator is amplified inside it, provided that the
electrodes, constituting here mirrors, are at the right distance from one another with re-
spect to the incoming wavelength (making it a Fabry-Perot cavity, see section 3.1). The
pressure exerted by each individual wavepacket is therefore amplified and theoretically
allows, under certain conditions discussed in part 4, the quartz crystal resonator to enter
into mechanical resonance. Note that the size of the electrodes are greatly exagerated
for visual clarity.

sidering a cable length of approximately Ly = 3m, a loaded @ factor of approximately
Q = 5 x 108 (half ot the best expected factors), a 50 MHz signal yielding a wavelength
of A = ¢/v = 5.99m, and taking the thermal expansion coefficient of the cable to be
acy = 1.7 x 1075 K~1, we get a phase fluctuation along the cable of:

Av/vy  2mLg

—13 o1
= ~ 1. K 1.1
AT O acy ~ 1.06 x 10 (1.19)

which could indeed limit the expected instability of the quartz crystal resonator. Further-
more, the Radio-Frequency (RF) Pound to stabilize these cable length fluctuations implies
using a circulator (the optical equivalent is a polarized beam-splitter cube). Although they
are easily available commercially for frequencies in the GHz range, they become much
more scarce under some hundred MHz. This therefore makes this correction rather ar-
duous in the aimed range of frequencies for our device (in the 5 MHz-100 MHz range, see

[ D

The second advantage, which is conceptually more important, is that it permits to con-
sider actuation of non-piezoelectric material with the help of optomechanics. Some mate-
rials that show rather promising mechanical properties could therefore be investigated

with this method, such as sapphire (Corundum, Al,Os3) (see [ 1,
[ L [ ] or more recently [ 1), silicon
(see [ I [ ]or| ]) or calcium fluo-

ride (see [ D.
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1.3.3/ FUNDAMENTAL PHYSICS

The very high quality factors previously reported in section 1.3.1 permits some funda-
mental physics applications.

As an example, [ ] has shown that very high quality factor @@ permits
to have a better numerical insight on upper bounds for quantum gravity’s corrections to
existing theory, therefore allowing finer testing for theory than previously reported.

Also directed towards a fundamental physics theory limits, a paper by [ ]
shows that using a high @ quartz crystal resonator has also helped improving by 1-3
orders of magnitude previous bounds to Lorentz symmetry breaking. In fact, both these
last articles even have a perspective for further improvements using even higher @ in
cryogenic temperatures (in the same way this thesis work is expecting an improvement of
stability for metrological applications based on the improvement of the mechanical quality
factor Q, see previous section 1.3.1).

Another possible use for high @ quartz resonators is presented by [ 1,
and consists in trapping an ion or an electron close to the quartz to couple the charged
particle’s motion to the quartz (because of its piezoelectricity) in order to transfer its quan-
tum properties for Quantum Information Processing (QIP) applications.

In this introduction, we have seen the basics of oscillators and some relations about these
systems. We also have seen a brief state state of the art of these oscillators of different
nature, e.g. acoustical, dielectric, atomic. Within the group of acoustical resonators-
based oscillators, quartz resonators have a particular status as their use is widely spread.
They have been shown, under certain circumstances, to display exceptional quality fac-
tors which allow for very good performances in terms of fractional frequency instability.
This allows to expect Allan deviation floor in the order of some 10~ 16. It is necessary to
lead an experimental measurement to assess more accurately the integration time range
within which these performances are realistically achievable. This goes beyond the scope
of this thesis work.

We also have shown that a cableless actuation is preferable, through e.g. an optome-
chanical actuation. To this end, the immediate presence of a Fabry-Perot cavity within the
quartz crystal resonator, due to its metalic electrodes, is an advantage. It therefore calls
for a careful study of the optical properties of these optical cavities (see chapter 3) before
assessing their use for optomechanical actuation (see chapter 4).
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GENERAL REMINDERS

This chapter contains several short reminders and basic equations regarding the quartz’
cuts and continuum mechanics’ basic equations. A short description of the design of the
quartz resonators we use is also given.

2.1/ QUARTZ CUT

2.1.1/ CUT FORMALISM

Because quartz is anisotropic with trigonal symmetry 32, it can be cut along different
directions of its crystalline structure to obtain different properties. There exists several
IEEE (Institute of Electrical and Electronics Engineers) standards to define the piezoelec-
tric properties and the crystalline cuts, where the main difference is the sign convention
for the piezoelectric constants.

Throughout this thesis, we will adopt the convention from [ ]. Several cuts are
shown in Fig. 2.1. The cuts are defined with the help of two main angles, ¢ and 6. When
both angles are 0, the cutis a Y cut i.e. perpendicular to the Y axis (see Fig. 2.1b).

1. The first angle ¢ is the angle of rotation around the Z axis, thus defining new axes
X"and Y’ (Z' = Z). Note that 0 < ¢ < 30°.

2. The second angle 0 is the angle of rotation around the X’ axis, thus defining new
axes Y” and Z” (X” = X'). Note that —90° < # < 90°.

Several cuts angles and main characteristics are listed in Table 2.2.

2.1.2/ ROTATED CUT TENSORIAL CHARACTERISTICS

Mechanical and electrical characteristics of the quartz can be expressed through tensorial
formalism, which, due to quartz symmetry, can be broken to matricial writing. These
characteristics are, for example, the dielectric tensor ¢;;, piezoelectric contants e;;;, and
mechanical stiffness C;;;. Useful quartz characteristics are explicitely and numerically
given in Annex A, and consist, throughout this thesis, of three type of tensors: second,
third and fourth order. Because of the crystal symmetry, it is convenient to use the Voigt
notation convention, summed up in table 2.1: With this notation, the tensors have the

21
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i,j]1]2]3
111 6 5
2 2 4
3 3

Table 2.1: Voigt notation formalism. i,j =1,2,3 and so that the combination of ij is
reported at the intersection of the correspond row and column. For example, i = 1 and
j = 3 gives the corresponding Voigt notation 5. The table is only filled on the upper half,
as it is symmetrical.

following form:

ege 0 O
=10 e 0 (2.1a)
0 0 e3
€] —e1 0 €4 0 0
€ijk = 0 0 0 0 —eqs —e (21b)
0 0O 0 O 0 0
Cin Ci2 Ciz3 Cuu 0 0
Ci2 Cii Ciz3 —Cuy 0 0
Cijm= |Ciz Ciz Cs3 0 0 0 (2.1¢c)

0 0 0 0 Cn 9z

By default, these characteristics are expressed in the non-rotated Y cut. However, choos-
ing another cut requires to rotate the characteristics. The way to do such a rotation is ex-
posed in [ ]p.74 orin | ] p.57. Taking the angles as before, we define
the 3 x 3 matrix:

cos(¢p) sin(¢p)
a;j = | —cos(#)sin(p) cos(h)cos(p)  sin(6) (2.2)
sin(f) sin(p)  —sin(f) cos(yp) cos(d)

As well as the 6 x 6 matrix:

2 2 2
an a12 a13 2a12a13 2a11a13 2a11a12
a3, a3, a3s 2a92a23 2a91a923 2a91a22

2 2 2
a3y a3y ass 2a320a33 2a31a33 2a31a32

(21431 (22032 (23033 | G22a33 + A23A32 (23431 1+ A21433 Q21032 + 422031
a31011 Q32012 Q33013 | 632013 + G33G12 (33011 + A31G13 G31612 + A32011
a11021 Q12022 Q13023 | G12023 + A13G22 Q13021 + 11023 @11022 + @12021
(2.3)
where a;; designates the corresponding matrix element from Eq. 2.2. Note that an em-
phasis has been put on the pattern of the matrix by adding lines to divide it into four
parts.

With these matrices, we can now write the way to rotating the matrix notation of the
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Cut 0 % Main interest
AT 35° 0° TC at room temperature
BT —49° 0° TC at room temperature

SC 33.88° 22.4° Stress Compensated - TC at room temperature and has a
weak stress-frequency effect

IT 34° 19° TC at room temperature

LD 34° 27° Low Defect - low sensitivity of the resonance frequency to
exciting power

FC 34° 15°  Frequency Compensated - TC for a large temperature range

SBTC —34.5° 16.3° Low sensitivity of the B mode to pressure. C mode used as a
pressure sensor
X+5 5° 30° TCat4K (see] )]

Table 2.2: Table summing up some common quartz cuts and their main characteristics,
taken from [ ]. TC stands for "Temperature Compensated”. The angles are
defined as in the IEEE standard [ |. Note that the cuts angles are defined within
a certain tolerance, generally within 1°, as one adapts the exact angle to the desired result
(e.g. workig temperature).

tensors defined in Eq. 2.1:

E;j = aeijaT (243-)
eijn = aeipM’ (2.4b)
tik = MCijiM” (2.4c)

This is exactly what we do with a python routine in Annex A in order to obtain the SC-cut
characteristics from the non-rotated Y'-cut characteristics, with the proper angles ¢ and
6.

2.2/ QUARTZ DESIGN

Earlier development and ground work concerning optomechanical coupling in a quartz
crystal resonator in our group come from [ ]. Indeed, as we have seen in sec-
tion 1.3.2, one of the reasons why optomechanical coupling is particularly adapted is
for avoiding noise from the thermal expansion of the cables. However, to that end, it is
important that also the quartz crystal resonator be as insensitive as possible to thermal
fluctuations. The quartz resonator is a priori sensitive to temperature for any given res-
onance mode, so that when looking at the frequency vs temperature curve, minimizing
this effect implies to be at a local minimum (with null derivative). This happens for certain
modes, and specifically at certain angles in the quartz cut in its crystalline structure. For
example, the thickness shear (C) mode is temperature-compensated for the 3™ overtone
with an SC cut. See Table 2.2 for some quartz cut example with their main characteristic,
and section 2.1 for a formal definition of the quartz cut and subsequent characteristics.

As shown in | ] (see Table 2.2), at cryogenic temperatures of around 4K, a
temperature-compensated cut was found for an X+5 quartz. Ultimately, this is therefore
the cut we look to implement towards an ultrastable clock. However, production of (high
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quality factors) quartz crystal is not a trivial task, so that as a first approach to light-
induced mechanical oscilation (see part 4) we mostly use SC-cut quartz resonators which
were commercially available from former company BVA industries.

The quartz crystal resonators we use throughout this thesis are typically with geometrical
characteristics detailed in Fig. 2.2. As we shall see in section 3.1.3, these geometrical
characteristics are compatible with optical use, and they also are compatible with energy
trapping for mechanical resonance (see [ ])- Our theoretical approach
to describe the dynamics of the quartz crystal throughout will mainly be based on con-
tinuum mechanics, for which some basic reminders and formulee are given in the next
section.

2.3/ MECHANICAL EQUATIONS

In continuum mechanics, it is possible to express the equations governing the dynamic
of the solid in a tensorial form. Following the notation and conventions of Royer in
[ ] chapter 3, we can write the fundamental Equation Of Motion (EOM):

d%u
p@ = vaol (25)

where p is the material’s mass density and f,,; and u are the volumic forces applied and
the displacement at each point, respectively.

We can separate the forces acting on the material as an instrinsic reaction force, following
the (small) deformation of any solid, and a force caused by the possible presence external
fields. We write, with the usual Einstein convention of summation over repeated index and
where every small-letter index is for each spatial direction (i.e. ¢, j,k,1 = 1,2, 3):

NG
mo_ 1]
f dz, (2.6)
) ds
T} = Cijri Skt + mjkz% (2.7)

fin is the intrinsic reaction volumic force, T;J” is the stress tensor following a material
deformation (in the linear regime, with small deformations), z; is the ;" spatial coordinate.
Eq.2.7 is Hooke’s law with losses (see | 1 Eq. 4.62), C;j1; and n;;1; are
the stiffness and viscosity tensor which apply to the strain Sj; and strain rate Sj;.

As we shall see throughout this thesis, multiple external fields can be applied through
different means and result in different reactions from within the solid. The main physical
processes which give rise to different effects are thermal, mechanical and electrical (see
[ ], chapter 10). However, only some of the properties will be taken into account
throughout this thesis at different times when they become sufficiently important to be
included in the theoretical treatment.

Quartz crystal is not pyroelectric because of crystal symmetry (see [ ], remark
after Eq. 60 in chapter 10). This means that there is no primary relation effect between
thermal and electrical field.

It is possible to follow energy conservation considerations in this piezoelectric thermoe-
lasticity problem, in the absence of ultrafast-heating (see [ ), and obtain all
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the interesting first order terms for the mechanical field and the electric displacement field
(omitting the pyroelectric terms in virtue of the preceding remark):

0Sh1
Ti; = Cgk?skl + mjkliat — e%;-jEk + 559 (2.8a)
D; = e[}, Sjk + € E (2.8b)
where 0 is the temperature increment, Cg,flp is the elastic tensor at constant electric and
temperature field, ey;; is the piezoelectric tensor and 55 is the stress-temperature at
constant electric field ' and efj is the dielectric tensor at constant strain. The mechanical
losses have been included in Eq. 2.8a.

Higher order effects can also be taken into account, which most notably include the radi-
ation pressure and electrostrion (see section 4.2). These effects can be shown (see e.g.

[ ]) to be respectively written, in addition to the previously given total
stress:
es €0
Tij - - gemlplkijeknEmEn (293_)
1 1
T’ = D;E; — iDiEj(sij + H;Bj — §HiBj5ij (2.9b)

where D; and E; designate the electric displacement and electric field, H; and B; the
magnetic fields (H; = p;x Bi, with p;; the magnetic permability), €;; the dielectric permittiv-
ity tensor, p;;; is the elasto-optic tensor and ¢;; is the kronecker delta. See more details
in section 4.2.

"Note that the stress-temperature coefficients arise because the internal strain S‘i’} is related to the internal
stress T;; throuh the elastic coefficients. Therefore, upon writing T;;, = Ti";- = CL’}MSZ-]-, one writes that
Ti; = Cijri(Sw — cua®) With o the thermal expansion coefficients. From this, we therefore write the stress-
temperature coefficients as 5i; = Cijr Olr.
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\

ww 056

(b) Quartz crystal front view (c) Quartz crystal side
view

Figure 2.1: Quartz cuts, with IEEE 1949 standard on piezoelectricity for the angles (taken
from [Bon, 2018]. Front view (Fig. 2.1b) and side view (Fig. 2.1c) of a synthetic quartz
crystal, with crystallographic axes X, Y and Z, as well as crystal typical dimensions.
The blue dotted line indicates the position of the initial quartz from which the crystal has
grown, and the orange dotted line indicate a 'Y -cut.
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R=250mm

<—0.712mm
(a) Side view (b) Front view (c) Front view (with electrode)

Figure 2.2: Side view and front view of the quartz, and its accompanying geometrical
properties. R designates the radius of curvature of the convex side of the quartz.

electric

electric
displacementj

thermal pressure

stress
thermoelastic effects

Figure 2.3: All a priori possible mechanical, electrical and temperature-related effects
affecting a solid, summed up in a graph, taken from [ ] Fig. 10.1a.






3

QUARTZ CRYSTAL RESONATOR USED
AS AN OPTICAL CAVITY

In this chapter, we establish the basic descriptive framework for the quartz crystal res-
onator used as a Fabry-Perot optical cavity. To this end, we show the theoretical de-
velopments of both the ideal three-layers Fabry-Perot cavity and the absorptive mirrors
cavity. We then proceed to an experimental study of these absorptive cavities, with a
measurement campaign of the particular characteristics of the absorptive mirrors cavities
with several depositions types and thicknesses. Finally, we give the description of a novel
method to extract the refractive index from the deposited thin films.

3.1/ FABRY-PEROT CAVITY

3.1.1/ BIREFRINGENCE + MEASUREMENTS

Birefringence is defined as the property of a material to have a refractive index which
depends on the incident light’s polarization. Crystalline quartz is a birefringent mate-
rial (see for example [ ]). It is a trigonal-symmetric birefringent ma-
terial with symmetry 32 around the optical axis z (see for example [ ]
part 2.5, [ ] vol.1 part 2.2.3 or the IEEE standard on piezoelectricity
[ ]) » which leads to different values for the refractive index n and the dielectric
tensor e. Fig. 3.1 illustrates these differences depending on the angle 6 between the x5
vector of the quartz cut and the z axis of the crystalline frame.

The most general way to express the refractive index along a specific direction consists
in writing that if & is the direction along which the field of interests is polarized, then the
refractive index for a non-magnetic material ' is given by

=3 j=3
n?l = ZZeiejeij (31)
i=1j=1
with e the relative dielectric tensor. In the case of the propagation direction being along
the x5 direction with an angle ¢ from the Z-cut, the refractive index of the major axis yields
(see Fig. 3.1):
n(y) = ng + Ansin®(1)) (8.2)

'The most general expression for the refractive index is n®> = ij o1

dielectric constant and . the relative magnetic susceptibility constant.

ei€ijlLiker Where e is the relative

29
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where An = n. — ng. Throughout this thesis however, the more common situation will be
a propagation along the z, axis and an angle 6 (in the double rotated cut %) with respect to
the non-rotated Y-cut, which permits to write that in this case, the refractive index yields:

n(6) = ne — Ansin?() (3.3)

n() ~ ng + Ansin?

ne = 1.54 z z
no = 1.53 Ne A A
1o -
/ no Y
X
(a) Non-rotated cut (b) Rotated cut

Figure 3.1: Scheme of birefringence for quartz crystal with a beam propagating along xs,
with the ellipsoid of indices in the case of a non-rotated cut with respect to the crystalline
axes in Fig. 3.1a and with an angle v (with respect to the z axis, for a rotation aroud the
x axis) in Fig. 3.1b. In Fig. 3.1a, the cartesian axis of the crystal cut x,, x2, x3 and the
crystalline frame x, y, z coincide. In Fig. 3.1b, they do not coincide and the quartz-cut
frame has been indicated in light blue. The indicated ordinary and extraordinary refractive
index values nog = 1.53 and n. = 1.54 are taken for optical wavelengths. See the most
general formulation for the refractive index along any direction in Eq. 3.1. Note that the
apparent anisotropy is greatly exagerated for visual clarity.

This has, of course, extensive influence on a Fabry-Perot cavity. Indeed, following Eq. 3.1,
the polarization will define whether a particular frequency will indeed resonate or not, as
the refractive index influences the optical path and therefore the overall phase conditions
along propagation for a specific wavepacket (see Eq. 3.17, the resonance frequency is a
multiple of the Free Spectral Range (FSR) which depends on n the refractive index). In
the following, a specific linear polarization along a particular (ordinary or extraordinary)
axis will therefore be considered.

3.1.2/ THREE LAYERS PLANAR CAVITY
3.1.2.1/ WAVES AMPLITUDES

Let us start by consering a typical plano-plano Fabry-Perot cavity in an isotropic non-
magnetic material without losses and with no alignment mismatch, as in Fig.3.2. The

2Note that because the rotations are non-commutative and that the quartz cut are defined (see chapter
2) with a first rotation around Z by an angle ¢ and then around z (the rotated x; vector) by an angle 6, the
vector | will always be in the initial equatorial plan and have an index no, and =5 (z- after the two rotations)
will depend only on 6 and not on ¢ for a given propagation direction along e.g. z-.
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Figure 3.2: Three layers optical cavity, with no entrance angle and therefore no misalign-
ment. Each medium is represented by its refractive index n; (i = 1,2,3). The two black
lines represent the media interfaces, which are separated by a distance d.

three media are therefore separated by two interfaces, and each medium is represented
by its refractive index n. Let us represent the electric fields at each point by some co-
propagating and counter-propagating plane wave:

Ef (2,t) = Aje@t=F2) (3.4a)
E7(2,t) = Aje’@ith?) (3.4b)

)

where A; is the amplitude of the it" electric field, k the wavevector for the field and z its
position along the z axis (see Fig. 3.2).

Omitting the time dependance in the following equations, the conditions of electric field
conservation at the interfaces are written:

El_ (O) = TlgEf(O) + t21E2 (0) (353.)
E;(O) = tlgEr(O) + T’21E2 (0) (35b)
E; (d) = re3 By (d) (3.5¢)
E5 (d) = ty3E5 (d) (3.5d)
where where used the Fresnel coefficients:

Tij —" " the reflection coefficient (3.6a)
n; n;

tij = 2% the transmission coefficient (3.6b)
n; + 15

at the interface between media i and j. The so called Stokes Relations relate the reflec-
tion and transmission coefficient at an interface:

T%Z + t1oto; = 1 (373)
T2 = —T21 (3.7b)
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Further developing and finding the expected amplitudes for the differents fields (see
Fig. 3.2) requires to inject the field forms from Egs. 3.4 in the boundary conditions equa-
tions in Egs. 3.5:

Al_ = T12Aii_ + t21T23672ide;_ ( )
A;r = tlgA;r + 7‘217‘236_2%(114; (38b)
A2—€ikd _ T23A3—e—ikd ( )
(3.8d)

Aéi-efzkd — tQSAS—szkd

Solving this system after some straightforward calculation, by replacing and expressing
each amplitude in function of A, the input field (which is supposed known), yields:

_ tiatorroze2ikd

AT = __ | AF 3.9a
1 (7”12 + 1_ 7’21T23672'Lkd 1 ( )

t12

AT = Y 3.9b
2 (1 - 7’21T236_2’kd) ! ( )
- t1orage2ikd .

A5 = . A 3.9¢
2 (1 — ro1roze2kd |7 (8.90)

12t23
+_ +
A = (1 _mmem)Al (3.90)

Now, in order to find the well known formulas for the Fabry-Perot cavity, let us consider
the more specific case where the media 1 and 3 are equal. In this case, the coefficients
reduce to r = r1o = —r9; and t = t15 and ¢’ = to;. We can therefore rewrite Eqs. 3.9 with
the use of the Stokes relations 3.7 and after a few simplifications the amplitudes can be
written:

3 1— G—Qikd N
" (1 - r%_md) A (3.10a)
t
+_ +
a5 = (= r2€_2ikd),41 (3.10b)

(
Ay = (W)Af (3.10¢)
(

!
_tt.>A1+ (3.10d)

3.1.2.2/ TRANSMITTED INTENSITY

Taking the square of Eq.3.10d , we can find the transmitted intensity through the Fabry-
Perot cavity:
2 T211
I =17 =|AT| = 3.11
N =1 ‘ 3 ‘ 1+ R? — 2R cos(2kd) 3.11)

or, in order to write it in the more common form, note that ¢t = i and using the fact that

tt
cos(2a) = 1 — 2sin?(«) during the calculation, the last equation 3.11 yields the so-called
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Figure 3.3: Normalized transmitted intensity as a function of normalized distance d be-
tween the media interfaces, for different values R of reflection at each interface. Note that
the reflectivity does not alter the maximum transmission peak, always equal to unity at
resonance. In Eq. 3.13, kd = %d so that here, the normalized cavity length is d = A%.

Airy peak form 3:

L
I = A
t) 1 + msin?(kd) (3.13)
where I, (I1) is the transmitted (incoming) intensity and
m=2 R=r% T=tt (3.14)

Fig. 3.3 illustrates what happens to the transmission lines for different values of reflectivity
R = r2. We note the well known fact that increasing reflectivity sharpens the resonance
peak, as well as it lowers the minimum of the transmission closer to 0 as R grows. In
other words, the more reflective the mirrors, the lesser the light is able to pass through if
the resonance condition is not met.

The transmission is maximum each time that the sin?(kd) in Eqg. 3.13 cancels out, that is,
each time the resonance condition is filled:

kd=pxm (3.15)

with p any integer number. This bring the condition to resonance in terms of the wave-
length:

A:;x%w (3.16)

3Note that near resonance, i.e. when dy = p x \/2 (see Eq.3.16), if we shift slightly the cavity’s length
(or, equivalently, the wavelength) so that d = do + € and if we notice that kdy = 27 [2x], we can write the Airy
peak in a Lorentzian form:

(3.12)

€2
(A/2)?
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Taking the dispersion relation k& = C/Ln = nx % = nxko with w the angular frequency, n the
refractive index, ¢, the speed of light in the medium and ¢ the speed of light in vacuum,
we can write that the difference in frequency between two consecutive resonances, also

called the FSR, is:

nAwg =7
C
C
Aw = 11—
w ﬂ-nd
Aw c

In the case where a 1 mm thick quartz cavity, selecting n = 1.54, the FSR is calculated to
be

FSRideal ~ 97.33GHz (31 8)

A way of visualizing the resonance phenomenon in terms of phase is sketched in Fig. 3.4.
A wavepacket’s evolutions is drawn against time. Let us suppose that no < ny. Atits
arrival upon the interface, the wavepacket is partially reflected but acquires no specific
phase from this reflection (if na < ni, then r1o = r > 0, see Eq.3.19 for clarity.) We
define the phase at this point as the reference, thus setting it to o9 = 0. The part which
is transmitted also has the same phase. Along its path until the next interface in z = d, it
acquires a phase ¢1. Upon reflection, ro; < 0 so that we write (using the same notations
as in Fig. 3.2):

Ey (d) = ro1 E5 (d)
E;(d) = —7”12E§r(d)
E; (d) = re"™Ey (d) (3.19)

From Eq.3.19, we see that the wavepacket acquires a = phase when reflected on a
higher refractive index medium. The phase of the leaked exiting wavepacket is therefore
1, Whereas the reflected wavepacket has a phase ¢1 + w. Upon its return towards the
entrance, it again acquires a ¢; phase, now amounting to a total 2¢1 + 7 upon arrival at
the 2 — 1 interface. The leaked wavepacket now has a phase 21 + 7 and the reflected
wavepacket a phase 2¢; +2%. More generally, the wavepacket that has done n round-trips
inside the cavity leaks out of the first interface with a phase 2ny; +7 and out of the second
interface with a phase (2n + 1)p;. Therefore, the wavepacket that was first reflected off
the interface upon entrance is in phase opposition with the wavepacket that got reflected
inside the cavity (and all the following) if 1 = p x 7, with p any natural number. On the
other hand, the wavepackets that get transmitted through the second interface will all be
in phase if the same condition is true.

3.1.2.3/ REFLECTED INTENSITY

In very much the same way as in the previous section 3.1.2.2, one could calculate
the reflected intensity through taking the squared modulus of the reflected amplitude in
Eq.3.10a. However, considering that the medium is lossless, it follows that the energy
conservation imposes at al time that I;7 + I; = I;". In other words, the incident inten-
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ny

Figure 3.4: Phase matching drawing in a three layers non-absorptive Fabry-Perot cavity.
Let us stress that here, the evolution of a wavepacket evolving on the same straight
line as in Fig. 3.2 is drawn against time, thus giving the false impression of a spatial
propagation with an angle. The incident wavepacket gets partially reflected without an
additional phase (we suppose ny > ns in this drawing), so that both the transmitted
wavepacket and reflected wavepacket have a reference phase ¢y = 0. Upon arrival on
the next interface, the wavepacket now has a phase ¢ and is transmitted with this phase,
whereas it now acquires a m phaseshift upon reflection. It returns to its entrance point with
a phase 2¢, + w. The wavepacket that leaks from the first interface is therefore in phase
opposition with the first reflected beam if 21 = p x 2x, with p being a natural number. All
of the wavepackets leaking from the second interface, on the other hand, are in phase if
the same condition is true.

sity is split between the transmitted intensity and the reflected intensity in the stationnary
e 4
regime “.

Therefore, it is simpler to refer to the (normalized) reflected intensity as
L= =1-1, (3.20)

The maximum (minimum) of the transmission (reflection) obviously occur at the same
frequency, as the conservation of energy dictates. See the illustration in Fig. 3.4.

“It is possible to verify that I, + I = I, by reminding the Stokes relation 3.7. It imposes that, by noting
T = tt’ and R = r?, the addition of the reflected and transmitted intensity numerator reads (1 — R)? + 2R —
2R cos(2kd) = 1+ R? — 2R cos(2kd), which is equal to the denominator of the both fractions, hence yielding
1.
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3.1.2.4/ PEAK’S WIDTH

To be able to find the peak’s width (either the transmitted or reflected peak), usually de-
fined as the Full Width at Half Maximum (FWHM), it suffices to find for which frequencies
the peak is at half its maximum. It is necessary to rewrite the transmitted intensity in
function of the frequency. To this end, let us write some relations which will be useful.
The speed of light, which we noted ¢, is known to be equal to ¢ = A\v, where X is the
wavelength and v the frequency. As we have seen in Eq. 3.16, upon resonance, the dis-
tance between the two interfaces has to be a number of times (notes p here) the refractive
index-corrected half wavelength, d = p x % (see Fig.3.2). In the same way, the reso-
nance frequency can also be written as v = p x FSR.. Therefore, the light velocity can be
written

Cn :ip x FSR
n
cn, =2d x FSR (3.21)

Once the relation 3.21 is obtained, expressing the transmitted intensity in Eq.3.13 in
terms of frequency is a matter or replacing kd by its frequency equivalent. This is done by
using the dispersion relation for £ = :~ and replacing ¢, by its expression from Eq. 3.21
that has just been obtained. This amounts to:

1

I (w) !

1+ msin? (55w )

(3.22)

Now, finding the frequencies for which I; is half its maximum value means to find the
frequencies for which the denominator of Eq. 3.13 is equal to 2:

o i 2 w
1 = msin (2FSR>
1 . w
5, =5n <2FSR>
/1
w4 ~ +2FSR ¢/ —
m

éFWHMzFS—RxZ
T r

(3.23)

where the approximation arcsin ( %) ~ \/% has been taken °.

Here, if we set R = 98.7% and T = 1.3% (which corresponds to the reflectiv-
ity and transmittivity as the interface quartz-Ag50nm with refractive index taken from
[ 1), with the FSR that we previously calculated in 3.18, then the
FWHM is approximately equal to 405 MHz. If we take R = 99.6% and T' = 0.4%, then
the FWHM is approximately 124 MHz. Note that the FWHM is inversely proportional to
the average lifetime of photons inside the optical cavity.

3.1.2.5/ FINESSE OF THE CAVITY

Finesse in a Fabry-Perot is a useful quantity, which is oftentimes used to characterize a
cavity. It is convenient to do so, as it does not depend on the geometrical properties, only

®Note that this approximation is almost always valid in realistic Fabry-Perot cavity situations. For R = 70%
and T = 30%, the relative error is of 5 x 107%; when R = 98% and T = 2% is taken, the relative error drops
t0 1.7 x 107°.
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on its reflective and transmissive properties (ignoring the absorption and diverse losses).

It is defined as
FSR

= 24
FWHM (3.24)
Taking into account Eq. 3.23, we can therefore write that the finesse is ©:
r
~T— 2
Frr T (3.25)

It is often further simplified, in the case where the reflection is high (i.e. R =~ r ~ 1), to be
F=r.

The finesse is also connected to the number of round-trips that a photon undergoes inside
the opical cavity before (statistically) leaving it. Indeed, considering that the FWHM is
simply the inverse of the lifetime of any individual photon, we can write:

F = Tl/QFSR
=Ty/2 X 2*2
— dmean
2d
= F = Nmean (3.26)

where we have noted C,, = C/n the light velocity, 7, = m the lifetime, diyean the
mean distance which is travelled by an indivual photon and Ny,c.n the (mean) number of
round trips travalled by an individual photon.

3.1.2.6/ INTRACAVITY INTENSITY, AMPLIFICATION FACTOR

Let us calculate the intracavity intensity. At any point in the cavity, the intensity is defined
as the square modulus of the amplitude. In the cavity, the amplitude in each point is
constituted from both the propagating and counter-propagating electric field, leading to a
total field”:

Ein(z,t) = Ef (2,t) + E; (2,1) (3.27a)
—ikz ikz
qwt | € —Tre
We therefore define and calculate the ideal amplification factor, A;geal, as:
I;
Alideal = + (3.28a)
1
Ein 2
Aideal = | ‘2 (3.28b)
=]
(1 —7)% + 4rsin?(kz2)
ideal = T s .28
Aideat (1 — R)? + 4Rsin?(kd) (3.28¢)
1 2
B G (3.284)

t

®This last expression is sometimes found as (and equal to) ”Tm See Eq. ‘7.18-19‘ from [ ]-
"From Eq. 3.27b, it is possible to note that, in the limit where r ~ 1, then e=*** — re™* = (1 — 1) cos(kz) +
(1+r)isin(kz) =~ (1 + r)isin(kz).
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were the passage from Eq. 3.28¢ to Eq. 3.28d was done by setting kd = p x 7 (which is
the on-resonance condition, see Eq.3.15) and setting kz = p x © + § to maximize the
numerator (i.e. finding a position z for which the intensity is maximum).

The intracavity normalized intensity (the amplification factor A) is represented against
the position for an out-of-resonance case and a in-resonance case in Fig.3.5. In this
computation, R = 98.7% and T' = 1.3% so that A ~ 310. When the reflectivity is R =
99.6% and the transmission T' = 0.4%, then the amplification is of about A ~ 1130.
In other words, the intensity inside the cavity is, at best, 310 (1130) times larger than
the incoming intensity. Note that in the case where r ~ 1, it is possible to relate the

amplification factor to the Finesse by rewriting Eq. 3.28d with the help of the expression
for the Finesse in Eq. 3.25:

Aldear ~ —F (3.29)
0.025 - -
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Figure 3.5: An out-of-resonance (full line, left y axis) and in-resonance (dashed line, right
y axis) plot of the normalized intracavity intensity against normalized position inside the

cavity (also defined as the amplification factor A in Eq. 3.28c). The reflectivity is taken to
be R =98.7%, T = 1.3%.

3.1.3/ ABSORBING THIN-LAYER METALLIC MIRRORS

3.1.3.1/ INTRODUCTION

Following the ideal lossless Fabry-Perot cavity under study in section 3.1, the present
section will focus on the study of a Fabry-Perot cavity with losses, namely, with the
metal thin layers electrodes, which also constitute mirrors. The case with absorbing me-
dia is treated and developed theoretically in several articles by Monzén and colleagues

[ 11 11 11 ],

and is illustrated on Fig. 3.6.
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Figure 3.6: Monzon model ([ ]): Thin absorptive layers, constituting

the mirrors, are deposited on some medium which is called the spacer. a is the entrance
point of the system.

3.1.3.2/ THEORETICAL DEVELOPMENT

3.1.3.2.1/ Electric field evolution Let us start by defining the forward and backward-
propagating electric field at any point in this system by writing

E*(2)

E™(2)
Considering that the entry point is named « and the exit point named d, it is possible
to write the relation between the electric fields at these two point with the help of the

scattering matrix, S:
B (z) _ (S Sz E((iﬂ(zd) (3.30)
B (z0) Sa1 S22 0

In the case at hand, represented on Fig. 3.6, this scattering matrix S is written

S = Io1 L1112Lolo3 L33 (3.31)
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where we introduced

11y
I;; = E (Tij 1 ) (3.32a)
e'Bi 0
L;= ( 0 e-ibi (3.32b)

Eq. 3.32a expresses the modification at an interface, and 3.32b introduces a (possibly
complex) phase along the path in medium 4. Their derivation are found in Ellipsometry

and Polarized Light, section 4.6 [ ]- In these last quantities, we made
use of:
21
Bi = Tnidi cos(0;) (3.33a)
0

Eq. 3.33a expresses the phase acquired along the propagation in the medium with d; the
i layer’s thickness, and Eq. 3.33b the complex index of refraction of medium i with Tij
and t;; the corresponding Fresnel coefficients (defined just as in Egs. 3.6).

The introduction of the complex refractive coefficient introduces the absorption. Indeed,
consider that if 3 € C, then 8 = 3'—if". (with 8’ = 3 cos(6;)n;d; and 3" = 3T cos(6;)njd;).
Let us take the example of points b and ¢, separated by a distance ds (see Fig.3.6). The
relationship between the fields at the two points can be written, using Egs. 3.30 and

3.32b:
EéJF) - et (B —iB") 0 EéJF)
B 0 eit-ien |\ g
(+) 6// E+ ZB/
Elzi) - e// |: (i)e -:|/ (334)
E, e P {Ec e_zﬁ}

This means that when going through an absorptive medium, each electric field compo-
nent acquires a phase ', as well as it is attenuated by a factor e 5" 8.

3.1.3.2.2/ Transmitted intensity The transmission coefficient for the system de-
scribed above is simply the fraction of transmitted amplitude over incident amplitude,
which, using Eq. 3.30, yields:

Ef 1
= =— 3.35
Ef  Su (3.35)
It is possible to calculate that Eq. 3.35 is written (see Eqg. 3.1 from [ ]
or Eq. 2.11a from [ D:
P
Tpp To12To30€ (3.36)

" 1= RyioRaspe 2P

81t may seem at first glance that there is an inconsistency because of the reversed sign between the two
components of the electric field on the right side of Eq. 3.34; However, the two components describe counter-
propagating fields, which therefore get attenuated or phase-shifted along their own path. In other words, for
the propagating field, point b is anterior in its path to point ¢, whereas it is anterior in point ¢ with respect to
point b for the counter-propagating field.
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where j; is defined as in Eq. 3.33a and the following quantities were introduced:

tijtjkefwj
1+ ’I”ijT‘jkefmﬁj

ijk = (3373)

rij + rige” 20
1+ rijrjke_%ﬁj

R = (3.37b)

These two quantities represent the transmitted (reflected) coefficients for material j stuck
between two infinite plates of materials i and k. Note the similarity between these two
coefficients and the derived amplitudes for reflected and transmitted fields in Egs. 3.9
from the section about the three-layers non-absorptive Fabry-Perot (see 3.1.2.1).

To obtain the normalized transmitted intensity, it suffices to take the squared modulus of
the amplitude in Eq. 3.36. To that end, let us rewrite Eq. 3.37b as:

Rz‘jk = ‘Rijk|€iAijk . (338)

The intensity can then be calculated to yield:

Tip— [Tinz ool (3.39)
1+ |R210R230’2 — 2‘R210R230| COS (5) .
where
d =202 — Ag10 — Aa3p (3.40)

This phase ¢ (which is a real quantity because (3 is real) represents the difference be-
tween the phase acquired along a return-trip in the central part of the cavity (see Fig. 3.6)
and the phase acquired at both ends’ reflections. These phases were trivially equal to 0
or 7 for the non-absorbing case, but might be more complicated here. Eq. 3.39 can also
be written in the more common-looking form:

1
Trp = 7Tnax1 T Fn’(0/2) (3.41)
where we used

| To12 T30
oo 3.42
T (1 — [Ra1oRaso )2 (3.42)

4

Fo | R210R230] (3.43)

(1 — |Ra10R230])?

Note the very close resemblance of coefficient F' in Eq.3.43 to the coefficient m in
Eq. 3.14. Indeed, the finesse can be expressed in a very similar way to the non-absorptive
three layers case (see footnote 6):

mVF

2

F = (3.44)
More importantly, we note that the form of the transmitted intensity for an absorptive
system, in Eqg. 3.41, is formally equivalent to the form derived for an ideal non-absorptive
system from Eq. 3.13, i.e. it is, near resonance, a Lorentzian peak. This means that they
have the same shape and that the absorption of the reflective layers does not alter the
Airy nature of the transmitted intensity.
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Figure 3.7: Normalized transmitted intensity against wavelength shift for different material
refractive indicess. The system is taken to be as in Fig. 2.2, with a 1 mm thick plano-
convex quartz and 50 nm of silver deposited on each side, with a 1550 nm laser input. The
refractive index for thin layers are taken from [ ], whereas the bulk
value is taken from [ .

Some normalized transmitted intensities are represented on Fig.3.7. They are all com-
puted for a double 50 nm thin layer film of silver, with the refractive index taken with differ-
ent values, corresponding to thin films and bulk. We observe, just as in the case of the
ideal Fabry-Perot in section 3.1.2, that the FWHM change along with the refractive index:
the less reflective, the broader the peak (see Eq. 3.23). Furthermore, the more absorptive
the material, the more the peak is shifted towards shorter wavelength. Most importantly,
the more reflective (see Egs. 3.6) the material, the greater the transmitted intensity.

An important fact for the choice of deposition thickness is the study of finesse and total
transmission as a function of the both mirrors’ thicknesses. Such a study is readily lead
by computing both quantities in one graph, as in Fig.3.8. This figure shows that for a
given finesse (transmission), the optimization of the transmission (finesse) is obtained
for an equal deposition thickness for both mirrors. This lead the experimental choice of
depositing mirrors equally thick on both sides of the quartz.

3.1.3.2.3/ Reflected intensity The reflected amplitude can also be expressed from
Eq.3.30:
Ea_ . 521
Es  Sn
Similar to the case from the simple Fabry-Perot cavity and to Eq. 3.9a, the reflected am-
plitude can be written®:

(3.45)

1-— le2€—2i62
1 — Ry19Rogpe 22

Rep = Ro12 (3.46)

The simplification to get from Eq.3.9a to Eq.3.10a in section 3.1.2.1 about the simple non-absorptive
three layers Fabry-Perot included using the Stokes relations in Egs. 3.7. Using the generalized Stokes
relations from Egs. 3.47 gives the result in Eq. 3.46.
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ds (in nm)

dy (in nm)

Figure 3.8: Normalized maximum transmission (expressed in %, starting from the bottom
left side) and finesse contours (starting from upper right side) as a function of the first
mirror’s thickness di and the second mirror's thickness ds (assumed to have the same
index of refraction). Note that for a given finesse, the maximum possible transmission is
for dy = ds and vice versa. Which shows that the best choice to maximize the finesse
(transmission) for a given transmission (finesse) is to make both mirrors equally thick.

where we have used the generalized Stokes relations:

To127210 — Ro12Ro10 = 21 (3.47a)

Ro10 = —22Ro12 (3.47D)
ro1T12 + e~ %A

= . 3.47c

A1 1 + 7’01’]"126_2Zﬂ1 ( )
—2if

oy = 2T TOIE (3.474)

ro1 + rige 2

The reflected amplitude from Eq. 3.46 can be rewritten in the more convenient form (See
Eq. 4.3 from | 1):

1 — (o109 Rogoe 212

Rep = R _
P 0121 — Ry10Raz0e— 252

(3.48)
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where the quantity {219 was introduced:
_ Ro12R210 — To12T210

Co10 = Rora
2179
(210 = Rato
1+ ro17r10e?A
G210 = (3.49)

ro1 + ripe?h
and, just as in Eq. 3.40, we also introduce the norm-argument notation of this quantity:

Ca10 = |Caroe®210 (3.50)

In order to find the reflected normalized intensity, here too, as in Eq.3.41, we take the
squared modulus of the normalized reflected amplitude Eq. 3.48:

o 14 [C10Raz0|” — 2|10 Razo| cos(A)
1+ |Ra1oRasz0|” — 2| Ra10Raso] cos(9)

where we made use of the quantity A, defined as:
A =28 — P19 — Aa3p (8.92)

Much like ¢ in Eq.3.40, A is a phase difference. Even though ®,;5 doesn’'t have an
immediate physical signification, it does account for the non-trivial difference in phase
between the wavepacket reflected from the spacer (the part between the two mirrors)
of the cavity and the counter-propagating wavepacket, coming out of the spacer (see
Fig. 3.9).

Unlike in the ideal Fabry-Perot from section 3.1.2 and the phase equivalence between the
transmitted and reflected peaks (see Fig. 3.4), transmitted and reflected peaks happen at
different phase here, i.e. different wavelength or frequency. Furthermore, the reflected
intensity peak is asymetric | ], and is therefore no longer exactly an Airy
function. This situation is illustrated on Fig. 3.10

Rep = | oo (3.51)

There are three non-trivial situations (considering only the case where the first layer has
a non-zero thickness and is not made of the same material as the layer 0 or 2, i.e. 711 # ng
and 1y # ng) for which ®919 = Asyg, so that A = § and the reflected peak returns to being
symmetrical and centered at the same wavelength (frequency) as the transmitted one.
These three situations are (see [ D:

1. When the first coating is very thick, Ty127510 — 0 so that (210 — Ra10

2. When the thickness of the first coating is very thin, it is therefore nearly transparant
so that the condition A = § is met

3. When the first coating is actually transparent (non-absorptive)

The first situation (1) will not be of any practical interest for the study of metal thin layers
optical cavities because it does not let any light pass through. The second situation (2) is
practically unreachable. Indeed, looking at Fig.3.11, the normalized reflection is plotted
against wavelength shift and first mirror’s thickness d;. The transmission, normalized to
unity for visual convenience, is also plotted. Even at very small d;, the two peaks are
shifted, thus showing that this situation will not be practically reached. The last situation
(3) is of no interest for the study of metal thin layers mirrors, but does point to the possible
alternative solutions for optomechanical coupling (see section 5).
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Figure 3.9: Conceptual phase-matching drawing for a two absorptive mirrors cavity.
Considering only the first two iterations of the drawing allows to understand conceptu-
ally the difference in phase (wavelength/frequency) between the reflected and transmit-
ted peaks. Contrary to the simple non-absorptive case in Fig. 3.4, the reflection of the
wavepacket on interfaces does not impart a trivial 0 or m phase. This non-trivial phase
is different at the lower exit of the spacer, where the second mirror starts (transmis-
sion), and at the upper exit (reflection), because the firstly reflected wavepacket’s phase
also depends on the intra-first-mirror dynamics trough the generalized Stokes relations.
This amounts to a certain wavelength (or frequency) cancelling the transmitted phase
(382 — Ag19 — Ag3g) — B2 = 6. The wavelength (frequency) cancelling the reflected phase
—209 4+ Ag3p — (—P210) = A Is, in general, different from the previous one.

3.1.3.2.4/ Absorption We briefly introduce the absorption. This model only takes the
absorption into account for losses, so that we can write the absorption as the difference
between the total intensity and the reflected and transmitted intensity:

App =1 —Rep — Trp (3.53)

The essential feature of the absorption, which derives from the particular phase upon
reflection when the mirrors are absorbing (see Fig. 3.9) and the conservation of energy, is
that the two mirrors do not absorb light equally. As shown by Monzon (see Egs. 5.1 and
5.2in] 1), the absorption in each mirror can be calculated by looking at
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Figure 3.10: Theoretical normalized transmission and reflection with corresponding ver-
tical line pointing to the center of the peak. The computation is for a 50 nm deposit of
Ag50nm material in Fig.3.10a and material Al in Fig.3.10b, with refractive index val-
ues taken from [ '] for silver and [ | for aluminium.
Note that the two peaks are slightly detuned in wavelength, with the reflection peak being
centered at a longer wavelength. Note also that the reflected peak is slightly asymetri-
cal. The two peaks in Fig. 3.10a are shifted by about 0.17 pm, which, for a 1550 nm laser,
amounts to about 21.2 MHz. In Fig. 3.10b, they are shifted by about 2.03 pm, or approxi-
mately 253 MHz.

the difference between amplitudes before and after the mirror (in points a and b or points
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Figure 3.11: 3D plot of the normalized reflection (color) and the transmission (normalized
to unity) in black. This plot shows that even for very small thicknesses of d,, the two peaks
are still frequency shifted.

c and d in Fig. 3.6). Doing so yields:

- 2 9 12 2

Ay =ng cos(@o)( Efl —|E;] ) + nig cos(eg)(‘Eb ‘ - ‘Egr’ > (3.54a)

_ 2 2

Ag =N 005(02)( Ef — |EC_|2> — Ny COS(Q())‘E;’ (3.54b)

These equations can also be written:

- ’ﬁg COS(QQ) 1-— |R230|2

A1 =1—Rrp — Trp| = X 3.54c
1 Fp — TFp (no cos(0o) Ty ( )

- ’fLQ COS(@Q) 1-— |R230‘2

Ay =Trp| = X —Tr 3.54d
2 =Trp (no cos(00) Tyl FP ( )

Fig. 3.12 displays the difference in wavelength betweent the actual resonance at trans-
mission and the peaks of absorption for the total absorption, the first mirror’s absorption
and the second mirror’s absorption. The first mirror's absorption is centered on a different
wavelength (frequency) than the transmission. In other words, just as the reflection, its
maximum does not happen at the actual resonance.

3.1.3.3/ AMPLIFICATION FACTOR

In the same way as for the non-absorptive ideal Fabry-Perot cavity in section 3.1.2.6, it is
possible to define the amplification factor for the cavity with absorbing mirrors described
by Monzon. From the theoretical premises we detailed in the previous section, we now
derive the amplification factor which will be of use for optomechanical coupling. Indeed,
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Figure 3.12: Normalized transmission (left y-axis), total absorption and absorption of the
first (A1) and second (As) mirror (right y-axis). Note that the first mirror has its maximum
absorptance at a greater wavelength than the second one. This is another aspect of the
phasematching presented in Fig. 3.9. The computation was made for a refractive index
associated with 50 nm of silver.

because the optomechanical coupling depends on the photonic intensity, it is critical to
have a knowledge of how much more light lives inside the cavity than what the incoming
light provides. To this end, we write, just as in Eq. 3.28c, that the amplification factor is
simply the intensity inside the cavity divided by the incoming intensity :

A=lm (3.55)

Il

The intensity inside the cavity is the squared amplitude inside the cavity. In the same way
as in Eq.3.27a, we note that this amplitude is the sum of the propagating and counter-
propagating amplitude. In order to find these, let us start by calculating the amplitudes at
point ¢ in the cavity, located at the spacer-2"® mirror’s interface (see Fig. 3.6). This field is
written, according to the method adopted in Eq. 3.30:

Ef(z. ET
(E_ Ei;) —123L3130< d ézd)> (3.56a)
Tep p+
+ Taz0 @
(EC_(ZC)> [ (3.56b)
E;(2) Tep Ra3o pr+
T30 a

with T¢p defined in Eq. 3.36.

Once this expression is obtained, the amplification factor is readily found by expressing
the field in the point z with maximum amplitude. This amounts to propagating the field in
point ¢ to a point z with max amplitude and position z, so that z. — z, = z:

Ef(z)) _ EF (2)
( e (ZI)> — Ly(x) ( jd (ZC)> (3.57)

c
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where we noted

1/32
%2 @) (3.58a)
&

9 cos(fs)x (3.58b)

Pa(z) =7

These two last equations, Egs. 3.58, simply express the way the field evolves for a trip of
length x instead of the whole layer’s thickness d; as defined in Egs. 3.32b and 3.33a. Let
us express the field at point z, which will then be maximized in order to find A.

E, = Ef + By = 2P gt if@ (1 + Ragoe2)) (3.59)
Tr3o

In order to find the amplification factor we combine Egs. 3.55 and 3.59:

_ ‘TFP‘Q ‘1 + |R |e(27jﬁg(z)+iA230) 2 (3 60)
which, with = as the variable, is maximum for 25(z) = —Aa30[27]. Then, A yields:
1+ |Rasol)?
A = Tep () LT Has0l)” (3.61)

| Tas0]?

The maximum amplification factor we can get from a specific cavity is when the resonance

condition is filled, i.e. when the transmitted intensity is maximized. Using Eq. 3.42, we

finally write that the maximum amplification factor is:

(1 + |Razol)?
| Taz0|”

See Fig. 3.13 for some numerical examples with different refractive indices.

A= 7?nax (3-62)

Note the resemblance between this last expression for the amplification factor and the
expression given in section 3.1.2.6, which we remind here for convenience:

max _ (147)°
e = 10 (3.280)

Identifying Ra3¢ With » and Th3¢ with ¢, if Thax = 1, then the two equations are equiva-
lent. This last condition is almost verified when the reflectivity of the mirrors are high (see
the visual aid of Fig.3.3). For visual clarity, a figure summing up all interesting quan-
tities (intracavity amplification factor .4, absorption, transmission and reflection) against
deposition thickness is presented in Fig. 3.14.

Although both situation are described by a similar framework, the introduction of the ab-
sorption decreases the intracavity amplification factor, primarily through the coefficient
Tmax < 1. Indeed, in the ideal case, the normalized maximum transmission is always
unity (see Eq. 3.13 and Fig. 3.3).

Furthermore, as Eq. 3.28d shows, the amplification factor in the ideal case is in principle
growing infinitely as the reflectivity approaches unity, i.e. Af3x — oo with » — 1. This
behavior is very different from what is expected in the absorptive case, as Fig. 3.14 shows.
It is apparent from the figure that as the reflectivity grows (with deposition thickness), the

transmission decreases and the overall absorption reaches a peak before decreasing
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Figure 3.13: Computed amplification factor A against mirror thickness (both are taken to
be equal), for different refractive indices. The refractive indices are taken constant over
the range of thickness. Ag stands for the bulk index taken from [ ]
while the others are taken from [ . Note that every maximum hap-
pens for a slightly different mirror thickness, although they all lie in the 30 nm-40 nm region.

again to 0. Likewise, the intracavity amplification factor reaches a peak before decreasing
again, unlike the ideal case.

As a numerical example, the amplification factor expected with a mirror reflectivity of
R =98.7% (i.e. the expected reflectevity for a 50 nm silver deposition), the ideal amplifi-
cation factor is expected to be A2 = 310 while the same coefficient with the absorptive
silver thin films is calculated to be A = 24 (at 50 nm deposition thickness). This is a sig-
nificant decrease, which calls for a deeper understanding of the optomechanical require-
ments (see section 4 for further details) in order to be able to comment on the possible

impact this may have on optomechanical actuation feasability.

In this first part of the 3" chapter, we have reminded the theoretical developments for
the ideal three-layers Fabry-Perot cavity, followed by a comparison with the theoretical
developments for the absorptive mirrors version of the optical cavity, basing ourselves on
an existing workframe [ ] while adding some analysis, such as a visual
phase-shift scheme for clarity of how the frequency shift happens, as well a brief analysis
of the intracavity amplification factor .A. The latter is necessary in order to estimate the
optical power inside the optical cavity, which is of importance for optomechanical coupling.

We have highlighted the peculiar effects arising from the absorption of the mirrors with
a modified FWHM and a frequency difference between the transmission and reflection
peaks, which is of the order of several tens of megahertz for tens of nanometers of de-
posited metal. We have also noted that within the frame of quartz resonator-based optical
cavity with a typical geometry as presented in Fig. 2.2 and a few tens of nanometers of
deposited metal, it is impossible to rid oneself of the aforementioned peculiar effects.

The modified (broader) FWHM due to the absorption is of negative influence to optome-
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Figure 3.14: Intracavity amplification factor A, total absorption, transmission and reflec-
tion against thickness. Computations are made with a constant refractive index corre-
sponding to a 50 nm layer of silver. Note that the points where the curves cross are not
significant because each curve has its own scale.

chanical coupling, as an increased FWHM is synonymous to a decreased lifetime of the
photons in the cavity, i.e. to a decreased finesse and ultimately of the amount of light
trapped inside the cavity. The asymmetry of the reflection peak and the frequency shift
Af, however, are not as clearly problematic as the increased FWHM could be. In the per-
spective of a Pound Drever-Hall stabilization scheme, however, the shift between the two
peaks may pose an experimental difficulty, as the technique would need to be adapted.
Indeed, this technique relies on the stabilization of the frequency around the reflection
peak minimum which, in our case, is different from the frequency of the transmission
maximum. The latter frequency is the proper resonance frequency, whereas the former
is the fruit of an artifact due to the phase acquired by the light upon reflecting on the
first film interface (see Fig. 3.9). Furthermore, stabilizing the frequency around the re-
flection minimum slightly worsens the light coupling in the Fabry-Perot cavity due to the
shift with the actual resonance frequenc