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1 Une difference de ∼ 5σ dans la mesure du parametre de Hubble H 0 entre différentes sondes cosmologiques à hauts et bas redshifts.

Introduction

Les observations des dernières décennies ont fait émerger un modèle standard en cosmologie, appelé modèle de concordance. Le paradigme qui s'est imposé grâce aux observations aux échelles cosmologiques est celui d'un univers contenant deux phases d'expansion accelerée. La première permet d'expliquer l'origine des galaxies et amas de galaxies que l'on observe de nos jours, tandis que la deuxième rend compte de l'expansion accelérée actuelle, confirmée par de nombreuses observations. Le mécanisme physique à l'origine de cette expansion accelérée reste une des plus grandes questions ouvertes en physique. Néanmoins, des observations provenant du rayonnement fossile cosmologique (Cosmic microwave background -CMB), des oscillations acoustiques baryoniques (Baryon Acoustic Oscillations -BAO), des supernovae du type Ia (SNeIa) et de nombreuses autres observations, semblent en accord avec l'introduction d'une constante cosmologique Λ dans les équations du champ de la gravitation (les équations d'Einstein). Par ailleurs, une composante de matière "sombre" (noire) froide (non-relativiste) -appélée Cold Dark Matter ou CDM-est un ingrédient nécéssaire pour expliquer la croissance et la formation des grandes structures dans l'Univers.

Ce modèle repose aussi sur des hypothèses concernant les fluctuations cosmologiques primordiales (supposées d'origine inflationaire). En fait, le modèle ΛCDM de base est entièrement caractérisé par 6 paramètres libres. On arrive ainsi au modèle ΛCDM -appelé aussi "modèle de concordance". Ce dernier est à ce jour, le modèle le plus simple pour décrire notre Univers. C'est pour cette raison, qu'il est devenu le modèle de référence. Malgré son énorme succès, le modèle de concordance reste un modèle phénomenologique, dans lequel 95% de son contenu est dans un secteur "sombre" -dont la nature nous échappe. De plus, iii l'introduction d'une telle constante cosmologique pose un problème majeur du point de vue théorique.

Son interprétation en tant qu'énergie du vide en théorie des champs est problématique du fait de sa petitesse, comparé aux valeurs planckiennes attendues dans une telle théorie. De plus, comme nous le rappelerons plus tard, les théories des hautes énergies supersymétriques préfèrent une constante cosmologique négative, plutôt que positive. Or pour être en accord avec les observations, il faut une constante cosmologique positive. Il est à noter que le modèle ΛCDM rencontre également des difficultés pour rendre compte de certaines observations aux petites échelles cosmologiques, en particulier aux échelles galactiques ("smallscale crisis"). C'est pour toutes ces raisons, aussi bien théoriques qu'observationelles, qu'il est nécessaire d'explorer d'autres mécanismes physiques qui pourraient également rendre compte de cette deuxième phase d'expansion accélérée, tout en étant en accord avec l'ensemble des observations. Dans le cadre de cette thèse, nous allons étudier la phénoménologie de plusieurs modèles au-delà de ΛCDM .

Nous nous concentrerons notamment sur une observable qui permet de distinguer les modèles d'énergie noire du modèle ΛCDM , en l'ocurrence l'indice de croissance (growth index) γ des perturbations. Cet indice de croissance γ est un outil efficace pour distinguer les modèles d'énergie noire en gravitation modifiée et ceux formulés dans le cadre de la relativité générale, dont le modèle ΛCDM . En effet, dans les théories de gravité modifiée, la croissance des perturbations est modifiée. Cela montre l'intêret essentiel d'inclure les observations relatives aux perturbations cosmologiques dans l'ensemble des observations lorsque l'on cherche à contraindre les modèles théoriques d'énergie noire. Remarquons que bien que pour des raisons historiques, on appelle cette quantité "indice" de croissance γ, il s'agit en realité d'une fonction du temps, et même des echelles cosmologiques quand il s'agit de modèles d'énergie noire en gravitation modifiée.

Dans la première partie de cette thèse, nous comencerons naturellement par une introduction à la cosmologie moderne, en mettant l'accent sur les différentes contraintes observationelles existantes (et à venir).

Phénomenologie des modèles d'énergie noire et croissance des perturbations.

Dans la deuxième partie de cette thèse, nous nous intéresserons à l'étude de la croissance des perturbations de matière dans le régime linéaire, en particulier à travers la dynamique de son indice de croissance ( growth index) γ ≡ ln f/ ln Ω m -où f = d ln δm d ln a est appelée growth function (fonction de croissance). Après avoir brièvement introduit les éléments nécéssaires à l'étude des perturbations et leur lien avec les quantités observables dans le Chapitre 3, nous allons ensuite introduire quelques extensions du modèle de concordance dans le Chapitre 4. Nous appliquerons par la suite le formalisme du growth index pour étudier leur phénomenologie et proprietés globales en termes de la variable Ω m . Nous considérerons en particulier des modèles d'énergie noire où le comportement de γ est très different de celui de ΛCDM . En effet, dans le cadre de ΛCDM (et des modèles à l'interieur de la relativité générale avec un w ̸ = -1 constant ), l'indice de croissance γ est une fonction monotone et décroissante. Ce comportement, peut être drastiquement modifié dans des théories de gravité modifiée et dans d'autres extensions du modèle ΛCDM -faisant de γ un outil extrêmement précieux pour détecter des déviations du modèle de concordance. La prochaine génération de relevés de galaxies, dont Euclid, permettra peut-être une mesure assez précise de l'indice de croissance γ 0 ≡ γ(z = 0) et de sa derivée γ 1 ≡ dγ dz z=0 .

Nous poursuivons l'analyse par une extension de ΛCDM , i.e. une équation d'état variable parametrisée par w DE (a) = w 0 + w a (1 -a) (CPL). Pour les valeurs de parametres (w 0 , w a ) que l'on considère, le comportement de γ reste essentiellement similaire à celui de ΛCDM (quasi-constant avec γ ∼ 0.55), sauf dans le futur asymptotique (Ω m → 0) où l'on trouve une valeur asymptotique γ ∞ = 1 2 alors que γ ΛCDM ∞ = 2 3 . D'un point de vue observationel, cependant, ces modèles seront difficilement distinguables de ΛCDM à l'époque actuelle. La situation est différente lorsqu'on étudie des modèles du type f(R) ou des modèles en dimensions supplementaires, comme le modèle Dvali-Gabadadze-Porrati (DGP). En effet, v dans le régime linéaire et pour les modes d'intérêt cosmologique, les modifications dans le secteur gravitationnel se traduissent par une modification de la constante "effective" de couplage G eff (z, k) dans l'équation de Poissonk 2 a 2 Φ = 4πG eff (z, k)ρ m δ m (i.e. dans le terme de source pour les perturbations). Par exemple, les modèles du type f(R) prédisent une évolution de G eff (z) dans le temps, et en particulier, G eff (z) ≥ G, pouvant atteindre G eff = 4 3 G -où G est la constante de Newton. Dans une approche phénoménologique, nous modélisons ces comportements à l'aide d'un "bump" ou d'un "dip" dans la quantité g(z) ≡ G eff (z)/G et nous obtenons des solutions numériques pour γ. Le modèle DGP est un example parfait de la puissance de γ, et de l' avantage d'étudier son comportement (global) en fonction de Ω m . Nous dérivons explicitement l'origine de sa valeur γ DGP -∞ = 11/16 dans le passé asymptotique, differente de la valeur attendue γ DGP -∞ = 9/16 puisque g DGP (Ω m = 1) = 1. Cela découle du fait que g ′ (Ω m ) Ωm=1 ̸ = 0. La dynamique de γ dans ces modèles est differente à celle de ΛCDM . Sa valeur aujourd'hui γ DGP 0 ≃ 0.68 est facilement distinguable de γ ΛCDM 0 ≃ 0.55.

Un autre système physique intéressant à considérer est celui incluant une composante de matière qui ne s'agglutine pas, comme par exemple les neutrinos massifs après leur transition dans le regime non-relativiste.

On pourrait aussi penser à d'autres particules, comme les particules de type axion. Nous avons donc un système avec de la matière qui s'agglutine, une composante de matière (x) qui ne s'agglutine pas et de l'énergie noire, avec Ω x + Ω m + Ω DE = 1. On introduit Ω tot m = Ω m + Ω x et ε ≡ Ω x /Ω tot m . Nous étudions la dynamique de γ dans ce modèle, et on trouve en particulier la valeur asymptotique dans le passé γ ε -∞ = 3 5 + O(ε). On donne le développement de γ ε -∞ jusqu'au troisième ordre en ε. On remarque que γ ε -∞ ne dépend pas de la valeur w -∞ dans le passé asymptotique. Il n'est donc pas possible de retrouver la valeur γ -∞ quand la composante x est absente (ε → 0). Ceci est possible, car comme on le montre, il existe une discontinuité dans les variables (ε, Ω tot m ), i.e. les limites Ω tot m → 1 et ε → 0 ne commutent pas.

vi Une constante cosmologique négative?

Finalement, motivés par des idées de la physique des hautes énergies, nous considérerons la possibilité d'avoir une constante cosmologique négative, que nous appelons λ, dans le secteur sombre de notre Univers.

Clairement, une constante cosmologique négative ne peut être à l'origine de l'expansion accélérée suggérée par les observations des SNeIa. Pour assurer la viabilité de ces modèles (i.e. en accord avec une expansion accélérée actuelle) nous considérerons aussi la présence d'une composante "X". Cette composante serait responsable de l'expansion accélérée actuelle. Par conséquent, nous nous intéresserons à la phénoménologie d'un secteur sombre "composé" (i.e. Ω DE = Ω X + Ω λ , avec Ω λ < 0) en considérant plusieurs comportements de la composante X. Une question immédiate, est de se demander si ces modèles pourraient éventuellement soulager ce que l'on appele "la tension de Hubble" 1 . Pour quantifier la viabilité de ces modèles, nous combinons des mesures provenant du CMB, des BAO et des Supernovae. Plus concrètement, nous nous intéressons à l'influence de λ, et supposons que l'univers primordial reste inchangé -l'horizon du son (sound horizon) r s est fixé à sa valeur dans ΛCDM -et nous explorons la possiblité de changer la physique à bas redshifts z avec plusieurs comportements de w X (z).

Une façon élégante de comparer différents modèles avec différents degrés de liberté, est au moyen des méthodes (Bayesiennes) Markov-Chain Monte-Carlo, du type "Nested-Sampling". En prenant en compte les observations mentionées précédemment, nous comparons ainsi les différents modèles considérés à l'hypothèse nulle qui est ΛCDM . Parmi les differents modèles que l'on considère, nous trouvons plusieurs modèles avec Ω λ ̸ = 0 qui sont viables, certains scénarios étant favorisés par rapport à ΛCDM . C' est vrai en particulier pour ceux où les déviations de w X par rapport w X = -1 se passent à haut-redshift (z ≳ 1), là où les données sont moins contraignantes. Quant au rôle de H 0 , nous étudions son impact dans une analyse sé-Ces dernières années d'études ont bouleversé ma vision du monde et changé profondément qui je suis à ce jour. La thèse a été pour moi une expérience inoubliable, pleine d'émotions et d'apprentissage. Loin d'être l'oeuvre d'une seule personne, cette thèse est le résultat de nombreuses discussions et d'interactions avec mon directeur de thèse, mes collaborateurs, mes collègues et amis. Je me considère chanceux d'avoir eu l'opportunité de partager cette expérience avec des personnes que j'admire et que j'estime énormément.
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Overview/Introduction

Over the last century, and due to tremendous efforts in both the experimental and theoretical physics communities, our understanding of the Universe we live in has been dramatically revolutionized. Astronomical observations have revealed the dynamical nature of space-time, while microscopic observations have unveiled the quantum nature of reality. Our current understanding of nature is mainly based on two wellaccepted theories. Namely, Quantum Mechanics (QM) describing the microscopic world, and General Relativity (GR) describing interactions on the largest of scales. Theoretically, these are both heavily relying on beautiful and well-established principles in physics, such as symmetry and conservation laws, yielding extremely precise predictions that are now at the very core of all human technologies. Despite their great (experimental and technological) success, these are facing deep issues at the fundamental level, that have been puzzling physicist for more than 50 years.

The Standard Model of Particle Physics

On one hand, the Standard Model (SM) of particle physics provides a remarkable description of interactions up to the ∼ TeV scale [START_REF] Salam | Weak and Electromagnetic Interactions[END_REF], as probed by the current experiments such as the Large Hadron Collider (LHC) at CERN. It is undoubtedly the most successful theoretical accomplishment of Human kind. The SM is a gauge theory based on a SU(3) c × SU(2) L × U(1) Y symmetry group at high energies, which is spontaneously broken -via the Brout-Englert-Higgs mechanism [START_REF] Englert | Broken Symmetry and the Mass of Gauge Vector Mesons[END_REF][START_REF] Higgs | Broken symmetries and the masses of gauge bosons[END_REF] -into a SU(3) c responsible for the strong nuclear force, SU(2) L responsible for weak interactions and U(1) e.m accounting for the well-known electromagnetic interactions at low-energies. Despite its enormous theoretical success, the SM -in its vanilla form -fails to include a viable Dark Matter candidate, capable of explaining observations-and required in the cosmological structure formation context. Furthermore, it does not tackle the hierarchy or neutrino masses problems, nor explains the origin of the clear matter/anti-matter asymmetry we observe in the Universe today; But more importantly for us, it does not provide an explanation for dark energy, nor includes a spin-2 field (massless particle) in its field content which would be responsible for long-range gravitational interactions -the so-called graviton. Thus, the SM provides an accurate enough (at low energies), but most definitely effective description of a more fundamental theory. The recent confirmation of a 20 year old (∼ 4σ) discrepancy between the SM prediction and observed values of the anomalous magnetic dipole moment of the muon (the so called g-2 anomaly) by the Fermilab collaboration is both proof of its enormous success and might as well be the very first failure of the SM [6]. At the same time, a (statistically) less-significant (∼ 2σ) deviation from the SM prediction has been observed at the LHCb experiment [68] .

Thus supporting the evidence for new physics.

The Standard Model of Cosmology

On the other hand, General Relativity (GR) provides an equally good description of gravitational interactions. According to Einstein, gravity would be nothing more than the manifestation of the curvature of spacetime, in the presence of matter/energy. Moving bodies would then naturally follow geodesics (straight lines) in a curved space-time. Technically speaking, GR is said to be invariant under diffeomorphisms. In practice, this implies that the laws of physics should remain unchanged when changing the coordinate system. This has profound (sometimes counter-intuitive) implications 1 , as we shall later discover in this thesis. Since the time of Einstein, countless theoretical -general relativistic -predictions have been experimentally verified. Without GR ever failing a single one of these tests. When applied to the Universe as a whole, the field of Cosmology, Einstein quickly realized the Universe cannot be static, if described by the laws of GR2 . In the late 1920's, E. Hubble discovered that distant galaxies where receding away from us, with a speed proportional to their distance -the so-called Hubble's law v = H 0 d -which ultimately implied that the universe was indeed expanding [START_REF] Hubble | A relation between distance and radial velocity among extra-galactic nebulae[END_REF]. Another crucial implication of allowing for a dynamical spacetime, is the existence of gravitational waves (GW). These are ripples in the fabric of spacetime that can propagate freely throughout the universe. The existence of these waves was the last major prediction by Einstein's theory of GR. The discovery of the former over a century after the theory's prediction by the LIGO/VIRGO collaborations [3]was the ultimate test of General Relativity. Due to its tremendous success, GR remains the most widely accepted framework for describing gravitational interactions.

Nonetheless, in order to accommodate observations on the largest (cosmological) scales, GR requires a mysterious form of (what appears to be constant) energy density across space and time -with equal in magnitude, but opposite in sign, pressure w DE = P ρ ≃ -1. What is commonly referred to as Dark Energy. Indeed, by the end of the twentieth century, observations from two independent teams using 42 distant supernovae revealed that the expansion of the universe had been accelerated for the past 5 billion years. The urge to understand the reason for this acceleration has driven the field of precision cosmology for the last decades and remains today one of the biggest open questions in fundamental physics. Hence, the prevailing paradigm in cosmology is that of an expanding Universe; In which the late-time accelerated stage of expansion is driven by a cosmological constant Λ. However, the mismatch between observed and predicted values for Λ -from the otherwise successful SM framework -is 120 orders of magnitude away, when interpreted as vacuum energy in a Quantum Field Theory (QFT) context. Making it the biggest failure in theoretical physics. Moreover, ordinary matter, as described by the SM of particle physics, only accounts for ∼ 20% of the matter density needed for galaxies and clusters of galaxies to form. The remaining ∼ 80% would be in a form of non-relativisitic (cold) and non-interacting (dark) matter -the so-called Cold Dark Matter (CDM). This model is known as the Concordance Model, or ΛCDM and it is the best and most widely accepted model describing the universe today.

Fundamental and Observational Issues

At the fundamental level, there are many reasons to go beyond Einstein's theory of gravity. It is well known that GR suffers from a singularity at early times (where QM plays a crucial role). Within the standard QFT prescription, Classical Physics emerges as constructive interference of probability amplitudes given in terms of Feynman Diagrams (in the path integral approach). GR however is a purely classical (geometrical) theory. At high-energies, the theory breaks down. A quantum description of gravitational interactions is needed to describe such high-energies -what is commonly referred to as Quantum Gravity. It has proven to be an incredibly difficult challenge to reconcile these two theoretical giants into a unified framework. Similarly, even if we decided to postpone or ignore the problem of the initial singularity (at the Big Bang), there is now irrefutable evidence for the existence of Black Holes (BH), objects where we know GR fails3 [START_REF] Penrose | Gravitational collapse and space-time singularities[END_REF].

Moreover, aside from theoretical issues, as experimental and theoretical precision have rapidly increased, the concordance Model of cosmology might be starting to show some of its very first cracks. Suggesting that perhaps the simple Λ is just an effective description, and that we might need to go beyond this simple and elegant -although phenomenological-framework. The most interesting example being the discrepancy in the value of H 0 as inferred from early universe observables such as the Cosmic Microwave Background (CMB), assuming ΛCDM and local (late-time) measurements using calibrated Type Ia Supernovae (SNeIa), and as reported by various other (low-z) observational probes. A milder, but longstanding tension also exists in the amplitude of matter fluctuations σ 8 (or more recently S 8 ≡ σ 8

√ Ω m /0.3) -as measured by weak lensing (WL) surveys [67,[START_REF] Heymans | Kids-1000 cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints[END_REF] and the one inferred using CMB observations[69] -characterizing the smoothness or clumpiness in the (matter) density field in the late-universe. In the last couple of years, a lot of effort has gone in trying to address and come up with solutions to these tensions [START_REF] Pan | In the realm of the hubble tension -a review of solutions[END_REF][START_REF] Di | Cosmology Intertwined III: fσ 8 and S 8 . 9[END_REF][START_REF] Perivolaropoulos | Challenges for ΛCDM: An update[END_REF].

While the physical mechanism for the late-time accelerated expansion of the universe remains an open question, its phenomenology is known with ever increasing accuracy. Cosmology is said to be living in its Golden Era, where precise measurements allows us to rule-out or at least tightly constrain many alternative cosmological scenarios. Any viable beyond-ΛCDM candidate must therefore be able to, in some sense, reproduce the ΛCDM phenomenology (at the background level at least). The urge to try and solve these "discrepancies" has launched a huge theoretical (model-building) program, and many extensions to the simple ΛCDM picture have been proposed over the years. Because of its simplicity -and in view of Occam's razor -the ΛCDM remains the preferred model by observations, and has proven to be extremely robust to any changes in its content.

Possible Extensions and The Road Ahead

It is therefore quite natural (and very much needed) to explore modifications of the gravitational sector beyond General Relativity. Although this idea has attracted a lot of interest in the last decades, GR turns out to be the unique theory [START_REF] Lovelock | The Einstein Tensor and Its Generalizations[END_REF] one can write in 4 dimensions, yielding second order equations of motion -the Einstein Field Equations. In practice, this implies that if one is to modify the gravitational sector, one has to give up or relax some of its assumptions.

While the particle physics of Inflation is still unknown, observations of the CMB and LSS seems to favor a Gaussian nearly adiabatic, nearly scale-invariant primordial spectrum of fluctuations. This is typically achieved by invoking a slowly-rolling scalar field -the inflaton φ. While interestingly, the Starobinsky inflationary model is a modified gravity of the form f(R) = R + αR 2 which provides a very good fit to current CMB data. Such theories are also interesting as they can naturally lead to an accelerated expansion of the Universe because of the presence of the αR 2 -term (with α > 0). Furthermore, f(R) models are well-known to be conformally equivalent to Scalar-Tensor theories of gravity -which can be thought-of as low-energy descriptions of more fundamental (high-energy) theories. Another "expected" -and highly motivated-DM candidate are axions, or axion-like particles (ALP). These were first considered by Peccei and Quinn to solve the CP problem in the theory of strong interactions (QCD) [START_REF] Peccei | CP conservation in the presence of pseudoparticles[END_REF][START_REF] Peccei | The Strong CP Problem and Axions[END_REF]. The last missing piece in the SM of particle physics -the Higgs boson -predicted in the sixties by P. Higgs, F. Englert and R. Brout was indeed observed more than 5 decades later at the LHC [START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF]. It is the first experimental evidence for a fundamental scalar (spin-0)-field in nature [START_REF] Chatrchyan | Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC[END_REF][START_REF] Higgs | Broken symmetries and the masses of gauge bosons[END_REF]. Many extensions to the SM of particle physics, and to the SM of cosmology involve a scalar field. Scalar fields are also quite natural and expected from a high-energy perspective.

Recent technological progress has made possible to study theories beyond Einstein's GR with gravitational waves. These place stringent constraints on alternative theories of gravity. More specifically, the fact that electromagnetic and gravitational radiation travel at the same speed [4,[START_REF] Abbott | Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a[END_REF] ruled-out a gigantic class of MG theories (see e.g. [START_REF] Creminelli | Dark energy after gw170817 and grb170817a[END_REF][START_REF] María | Dark Energy After GW170817: Dead Ends and the Road Ahead[END_REF][START_REF] Kase | Dark energy in horndeski theories after gw170817: A review[END_REF]). Furthermore, next generation of LSS surveys such as Euclid, Nancy Grace Roman Space Telescope (former WFIRST), Vera Rubin Observatory (former LSST) are going to collect enormous amounts of data and are expected to constrain cosmological parameters at the same level of accuracy as CMB experiments currently do. In the next decades, in combination with space and groundbased 3G Gravitational Waves observatories such as the Laser Interferometer Space Antenna (LISA), Einstein Telescope (ET) or Cosmic Explorer (CE) and many more, we will probing the dark side of the Universe to unprecedented precision.

Outline

In this thesis, following high-energy physics considerations, we will explore various extensions to the standard ΛCDM paradigm and asses the viability of such models in light of recent observations. Our approach is rather phenomenological, aimed at capturing various types of behaviors while focusing on tools that can efficiently discriminate between the wide variety of Dark Energy and Modified Gravity models, as for the growth index of density perturbations γ. We shall naturally start by reviewing the standard cosmological picture (that of an expanding, homogeneous and isotropic universe) in Chapter 1 and explore its deep connection to an accelerated stage of expansion during the very-early Universe in Chapter 2. In Chapter 3, we briefly review the linear formalism of perturbation theory and derive the basic observables needed throughout this thesis. Chapter 4 is devoted to modified theories of gravity and other extensions to the ΛCDM paradigm. In particular, we discuss a large family of models belonging to the Horndeski class and briefly review current observational constraints -specifically, those coming from recent gravitational wave observations-and further motivate higher-dimensional theories of gravity. We will then apply the formalism developed in Chapter 3 to the (linear) growth of matter perturbations in Chapters 5 and 6. In particular, we shall focus on the dynamics of the growth index γ using dynamical system techniques, considering simple extensions to the standard paradigm (Λ) e.g. a varying EoS w DE (a), a phenomenological f(R)-like bump/dip in G eff (z), in the presence of an unclustered (axion/neutrino-like) component during matter domination and in braneworld models, such as the Dvali-Gabadadze-Porrati model [START_REF] Dvali | 4D gravity on a brane in 5D Minkowski space[END_REF]. Finally, in Chapter 7, following the aforementioned (high-energy physics) considerations, we investigate the possibility that the dark sector of our Universe contains a negative cosmological constant, dubbed λ. We explore the impact of introducing λ and further asses the viability of such models when incluiding Baryon Acoustic Oscillations(BAO), SNeIa and (geometrical) CMB data. We performed a Nested sampling of the parameter space, thus obtaining the (Bayesian) evidence needed for model selection.

Part I

Foundations of Modern Cosmology

"It seems that scientists are often attracted to beautiful theories in the way that insects are attracted to flowers -not by logical deduction, but by something like a sense of smell."

Steven Weinberg

1

Cosmology in a Nutshell

The Homogeneous Universe: A Review. The aim of this chapter, is to provide the reader with a pedagogical, self-contained introduction to the material needed throughout this thesis. We will review the very basics of what is now well-established, textbook material in Cosmology -i.e. an isotropic and homogeneous spacetime-focusing on the derivation of the observables we will be needing in this work. The reader familiar with these concepts is invited to proceed to the next chapters. peculiar motions v pec ≡ aẋ. Notice we have explicitly introduced the Hubble parameter H ≡ ȧ a . This is an extremely important quantity in cosmology, as it encodes the rate at which the universe expands with time. Its value today is called the Hubble constant H 0 , it has units of inverse time and allows to determine the age and size of the Universe, as it sets a fundamental time and thus length scale d ∼ H -1 0 in spacetime. Measuring this quantity is crucial in cosmology. Notice also how by ignoring the contribution from the peculiar motion v pec , we recover the famous Hubble law v = H 0 d [START_REF] Hubble | A relation between distance and radial velocity among extra-galactic nebulae[END_REF]. Nonetheless, the study of peculiar velocities turns out to be extremely useful for constraining the growth of structure in the largest of scales, and therefore to probe the underlying laws of gravity, as we shall discuss in Chapters 3, 4 and 5.

From Einstein to Friedmann

In GR, the fundamental (spin-2) field is the metric g μν . The Einstein Field Equations (EFE) can (somewhat elegantly) be obtained by varying the Einstein-Hilbert action S EH ≡ ∫ d 4 x √ -gR w.r.t the inverse metric g μν .

δS EH = δ ∫ Ω d 4 x √ -gR = ∫ d 4 x{(δ √ -g)R + √ -gδR} , (1.4) 
where g is the determinant of the metric g μν , which stems from the fact that the volume element d 4 x is not invariant under diffeomorphisms but transforms as d 4 x → |J|d 4 x ′ , where |J| is the determinant of the Jacobian Matrix |J| = √ -g ′ √ -g . Thus the combination √ -gd 4 x becomes the relevant invariant quantity. The first term in Eq (1.4) gives a famous result worth remembering from GR, we will extensively use this result on the following chapters. Namely

δ √ -g = - 1 2 √ -gg μν δg μν (1.5)
The second term in the integral (1.4) can easily be evaluated using the definition of the Ricci scalar

δR = δ(R μν g μν ) = δ(R μν )g μν =0 +R μν δg μν . (1.6)
The first term in Eq.(1.6) vanishes in account for Gauss theorem, it corresponds to a boundary term and can be written as a total derivative and integrated out by impossing that the variations of the metric vashishes at the boundary, i.e. δg μν | ∂Ω = 0. Then, by imposing Eq (1.4) = 0, we finally get

∫ d 4 x( √ -g ){R μν - 1 2 g μν R} = 0 . (1.7)
The terms in the brackets are the Field Equations in vacuum, or the so-called Einstein tensor G μν . In order to include any form of energy (matter) we need to modify Eq. (1.4) to include an action S m describing the matter fields. This is done by writting δS = δS EH + δS m and defining the Energy-Momentum tensor for matter T μν as

T μν = - 2 √ -g δ( √ -gL m ) δg μν . (1.8)
In which case, the full Einstein Field Equations in the presence of any form of matter simply reads

G μν ≡ R μν - 1 2 g μν R = κT μν (1.9)
where κ ≡ 8πG/c4 is the coupling of matter to the geometry2 and is chosen such that in the weak-field limit, the equations reduce to that of Newtonian gravity.

Uniqueness of GR

It turns out that the only possible modification we can do3 to Eq. (1.4) is to include a constant Λ in the action such that

S = M 2 pl 2 ∫ Ω d 4 x √ -g (R -2Λ) , (1.10) 
leading to the modern version of the Einstein equations

R μν - 1 2 g μν R + Λg μν = 8πG c 4 T μν (1.11)
We shall come back to the different ways one can extend the gravitational sector -beyond the simple Λ -in Chapter 4.

The geometry of FLRW universes

As discussed earlier, the Einstein field equations relate the energy content of the universe encoded in the Stress-Energy tensor T μν to its geometrical properties encoded in the Einstein tensor G μν through the relation G μν = κT μν . We have to calculate the geometrical properties that characterizes the FLRW universe.

In other words, we have to calculate the Christoffel connections associated with (1.1), from which we will derive all the rest. For this, it is convenient to rewrite Eq. (1.1) as:

ds 2 = -dt 2 + a 2 (t)γ ij dx i dx j , (1.12) 
where we have isolated the spatial components γ ij of the metric g μν , the so-called induced metric (c.f. Fig. 1.1.2). The Christoffel connections associated with g μν are as usual given by

Γ ρ μν = 1 2 g ρσ (∂ μ g νσ + ∂ ν g μσ -∂ σ g μν ) .
(1.13)

In a FLRW universe, all the off-diagonal elements of g μν are zero. From this, we immediately see that Γ 0 00 = 0 since the only contribution would be coming from the σ = ρ = 0, where g 00 = constant. The sum of derivatives of the metric in parenthesis vanishes. Similarly, because we assumed space to be isotropic, we can conclude that Γ i 00 = Γ 0 i0 = Γ 0 0i = 0 since having any single one of these connections different from zero would imply a preferred direction, therefore violating the isotropy assumption. The remaining (nonvanishing) Christoffel symbols are given by4 :

Γ i j0 = Γ i 0j = ȧ a δ i j , Γ 0 ij = Γ 0 ji = aȧγ ij ≡ a 2 Hγ ij , (1.14) 
Γ i jk = 1 2 γ il (∂ j γ kl + ∂ k γ jl -∂ l γ jk ) , (1.15) 
Where γ ij is the spatial part of the RW metric and we have introduced the Hubble parameter H ≡ ȧ a . For the sake of simplicity, we will derive the Friedmann equations in a Flat Universe where k = 0 and so γ ij = δ ij and thus Γ i jk = 0, but keep in mind that in general, these connections do not vanish. We now have the ingredients to calculate the Riemmann Curvature Tensor :

R α βμν ≡ 2∂ [μ Γ α ν]β + 2Γ α σ[μ Γ σ ν]β , (1.16) 
From which we obtain the Ricci tensor

R μν ≡ R σ μσν = ∂ σ Γ σ μν -∂ ν Γ σ σμ + Γ σ σρ Γ ρ μν -Γ σ νρ Γ ρ σμ , (1.17) 
and Ricci scalar (also called Scalar Curvature) defined as R = R μν g μν = R μ μ . Again, using the symmetries of the metric we can easily conclude that R 0i = 0. We are left with the (00)-component of the Riemman Tensor

R 00 = -∂ t (3H) -3H 2 = -3( Ḣ + H 2 ) , (1.18) 
and the spatial components R ij of the Riemann tensor yield

R ij = ∂ t (a 2 δ ij H) + 3a 2 δ ij H 2 -2a 2 δ ij H 2 = a 2 δ ij ( Ḣ + 3H 2 ) . (1.19) 
Ultimately leading to the Ricci scalar R = 6(H 2 + ä/a). The geometrical picture being complete, i.e. the LHS of (1.9) defined, we need to further specify the matter (or energy) content of our Universe. Once again, and from simple symmetry arguments we can already deduce that the stress-energy tensor T μν must be a diagonal tensor, since any non-zero component outside the diagonal would again imply a preferred direction. Thus, we can stipulate:

T 00 = ρ(t), T 0i = 0 and T ij = g ij P(t) . (1.20) 
In FLRW universes, we will use (comoving) perfect fluids, whose energy-momentum tensor T μν is given by5 T μν = (ρ + P)u μ u ν + g μν P, (1.21) where u μ = (1, 0, 0, 0) is the four-velocity of a comoving fluid and g μν u μ u ν = -1. Taking (1.21) together with (1.18) and (1.19) (with k = 0) leads to

H 2 ≡ ( ȧ a ) 2 = 8πG 3 ρ(t) and ä a = - 4πG 3 (ρ + 3P) . (1.22)
We have derived the Einstein Equations for a flat FRLW metric, if we allow for an arbitrary curvature term k, one finds that the Friedmann Equations can be written as :

H 2 ≡ ( ȧ a ) 2 = ρ 3M 2 pl - k a 2 (1.23)
Where M -2 pl ≡ 8πG and G is the usual newtonian gravitational coupling constant

ä a = H 2 + Ḣ = - 1 6M 2 pl (ρ + 3P) (1.24)
By defining a critical density ρ cr ≡ 3H 2 M 2 pl , we can rewrite equation (1.23) in terms of the fractional energy density Ω ≡ ρ ρ cr to give

Ω -1 = ρ 3H 2 M 2 pl -1 = k a 2 H 2 ≡ Ω k .
(1.25)

The critical energy density today ρ cr,0 has been measured to be [224] ρ cr,0 = 3M 2 pl H 2 0 = 1.878 340(4) × 10 -29 h 2 g cm -2 .

(1.26)

Where we have introduced the reduced Hubble parameter h, which characterizes our ignorance on the measure of the Hubble constant H 0 through the relation

H 0 = 100 h km/s/Mpc and h ≃ 0.67 . (1.27)
The "true" value of h is a highly debated topic in the literature, but quite likely lies within the range 0.67 < h < 0.76 . We shall later see in Chapter 7, how this discrepancy in the measurement of H 0 might be interpreted as a sign of new physics, beyond the standard ΛCDM picture. Already at this stage, we see once again the direct relation stated by Eq. (1.1) between k and the geometry of the universe. It turns out that Eq.(1.25) is an unstable fixed point for the dynamical system, as we will later discuss in chapter 2. For now, let us just state that the universe had to have the exact amount of energy density ρ cr in order to stay flat. Which requires a gigantic amount of fine-tunning (see 2). From now on, we shall consider k = 0, as geometrical probes (BAO+CMB) suggest the universe is extremely close to being flat 6 . One important quantity in observational cosmology is the Hubble Radius

R H = 1 H(t) , (1.28) 
which has units of length. The co-moving Hubble Radius is thus given by (aH) -1 . We will see in Chapter 2 the crucial role played by the comoving Hubble radius during the inflationary epoch. It is closely related to the curvature Ω k , as can be seen from (1.25).

Stress-Energy and Conservation laws

In order to relate the physical quantities accessible today, and compare them to the theoretical predictions at a certain epoch in the cosmic history, we need to determine how these quantities evolve with time. As a consequence of the Bianchi Identities (∇ μ G μν = 0) we get:

∇ μ T μν = 0 (1.29)
The ν = 0 component yields the conservation of energy

ρ + 3 ȧ a (ρ + P) = 0 (1.30)
It is of common practice at this stage to introduce the equation of state parameter w ≡ P/ρ. Rewriting in terms of w and using the fact that H = ∂ t ln a, Eq. (1.30) becomes 7 :

ρ = -3H(1 + w)ρ ⇔ d ln ρ = -3(1 + w)d ln a . (1.32)
Considering a constant equation of state w, the solution to Eq. (1.32) is given by

ρ i ∝ a -3(1+wi) (1.33)
We have the following picture:

ρ = ρ tot = {ρ r ≡ ρ γ + ρ ν } + {ρ m ≡ ρ b + ρ cdm } + ρ Λ (1.34)
Thus, for presureless matter (w = 0) we obtain ρ m ∝ a -3 and for radiation, with w r = 1/3 we get ρ r ∝ a -4 . The vanilla ΛCDM assumes w DE = w Λ = -1. In this work, we will not restrict ourselves to a constant w.

By allowing for a time variation in w(a) we get

ρ(a) ∝ e -3 ∫ a 1 (1+w(a ′ ))d ln a ′ (1.35) 
From this, it follows that the relation Ω = ρ/ρ cr can be generalized to any of the above mentioned components so that Ω i = ρ i /ρ i,cr and

Ω tot = ∑ i Ω i = Ω r + Ω m + Ω Λ = 1 -Ω k (1.36)
The Friedmann equations can be cast into the more compact form

H 2 (a) = H 2 0 [ Ω r,0 ( a 0 a ) 4 + Ω m,0 ( a 0 a ) 3 + Ω k,0 ( a 0 a ) 2 + Ω Λ,0
] (1.37) 7 As an analogy, one might see Eq. (1.30) as the first law of thermodynamics, namely TdS = dU + PdV. The internal energy U can be written as U = ρa 3 , and volume V as V = a 3 , therefore obtaining

d(ρa 3 ) + Pd(a 3 ) = 0 ⇔ ρ + 3 ȧ a (ρ + P) = 0 (1.31)
and so we see that the expansion is adiabatic (i.e. to a good approximation we have dS = 0). This means the energy density ρ and pressure P are intrinsically related to one another and justifies our previous assumption of writting P = w • ρ in terms of an equation of state parameter w.

Distances and Redshift in Cosmology

As a result of the expansion of the universe, the distance between two events in spacetime is always changing. For a really longtime, until very recently with the detection of gravitational waves8 [3], the only messenger carrying information about the universe's past were photons. It is of extreme importance to understand what happens to light as it travels through an expanding universe if we want to conclude something about the former, just from cosmological observations. As the universe expands (see Fig. 1.1.3) the wavelength λ of light is stretched by a linear factor such that λ(t) ∝ a(t), which also implies that photons travelling through an expanding universe loose energy as E(t) ∝ a -1 . If we observe light from distant stars, the observed wavelength is larger than the emmited one, is convenient to introduce the redshift factor z defined as

z = λ obs -λ em λ em = λ obs λ em -1 , (1.38) which implies a(t = t today ) a(t) = 1 + z(t) . (1.39) 
In this thesis, and as usually done in the literature, we set the value of the scale factor today a 0 ≡ a(z = 0) = 1. Measuring distances in an expanding universe can be tricky, but fortunately all physical quantities can be obtained from the Metric or Comoving Distance. Photons follow null geodesics (ds 2 = 0) from (1.1) and for k = 0, we get the expression for the comoving distance :

r(a) = ∫ dt ′ a(t ′ ) = ∫ 1 a da ′ a ′2 H(a ′ ) (1.40)

Luminosity Distance

In the same way we intuitively estimate the distance to e.g. a moving car at night, by looking at its headlights, we can use the light from distant objects with known luminosity, to infer their distance to us. These are the so called standard candles. Type Ia Supernovae are such candles 9 , which ultimately led to the astonishing discovery of our Universe's acceleration [START_REF] Albrecht | Cosmology for grand unified theories with radiatively induced symmetry breaking[END_REF][START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF]. Starting from the flux of light we observe from distant sources, the (bolometric) flux F received is given by F = L 4πd 2 , this then defines the luminosity distance in a cosmological context [START_REF] Hogg | Distance measures in cosmology[END_REF] 

d L = √ L 4πF . (1.41)
We finally arrive at the expression for the luminosity distance in a spatially flat FLRW universe:

d L (z) = (1 + z) c H 0 ∫ z 0 dz ′ h(z ′ ) . (1.42)
Where we have introduced the dimensionless Hubble parameter h(z) ≡ H(z)/H 0 .

Angular Diameter Distance

Another useful way of determining distances in astronomy is by measuring the angle of an object (of known physical size) in the sky. As its name suggests, it is defined as the ratio between physical size of an object and its angle subtended in the sky d A = x θ . In metric theories of gravity, the following relation holds

d L (z) = (1 + z) r(z) = (1 + z) 2 d A (z) where d A is the angular diameter distance. Yielding d A (z) = c (1 + z) ∫ z 0 dz ′ H(z ′ )
.

(1.43)

In the same way objects with known luminosity distance can be used as standard candles to infer distances, objects with known physical size, can also be used through (1.43) to infer distances. Such objects are called standard rulers. One of the most powerful probes in modern cosmology is the BAO scale (cf. 1.3.3), which serves as a standard ruler.

The Concordance (ΛCDM) Model

In the standard ΛCDM picture, we assume GR to be the correct theory describing gravitational interactions on the largest of scales. Furthermore, as we previously discussed in Section 1.1.1, it also relies on the assumption that on those scales, the Universe is accurately described by the (flat) FLRW metric (i.e. an isotropic & homogeneous spacetime). The late-time accelerated expansion of the universe is driven by a important example of such standard candles are Cepheids -stars whose lumonisity is periodic.

cosmological Λ, whose small value remains a mystery today. This mysterious form of dark energy constitutes ∼ 70% of the energy budget of the Universe. Furthermore, a pressure-less fluid (w = 0) accounting for ∼ 25% of the energy density is needed for structures to efficiently form at early times. Yet in order to accommodate observations, this particle needs not to (or weakly) interact -other than gravitationally-with the rest of the SM. While ordinary (baryonic) matter constitutes the remaining 5% of the energy density in the universe, the rest is still unknown. This is known as the concordance, or ΛCDM model. where the fractional energy densities are typically expressed in terms of physical energy densities

ω i = Ω i h 2 , (1.44) 
and where h = H 0 /100 eludes to the Hubble constant defined in (1.27). This turns out to be an inferred parameter using θ s , as we shall discuss in Chapter 7. The parameters A s and n s in table 1.2.1 are the amplitude and tilt of (primordial) scalar fluctuations, respectively. τ is dubbed the optical depth and is related to reionization epoch and the birth of the first stars. These are free-parameters to be inferred by observations within a given model, namely ΛCDM . Because of its simplicity and its remarkable success to cope with observations, this model provides a benchmark for assessing the viability of more intricate dark energy models. Nonetheless the ΛCDM remains a phenomenological (toy) model, where most of the energy budget in the universe remains in a dark sector (Ω CDM , Ω Λ ) -whose fundamental nature is yet unknown.

In the next section, we shall go over the most important observational probes, and see how we can constrain from Fig. 1.3.3. The light we receive from the surface of last scattering, i.e. the Cosmic Microwave Background (CMB) is a perfect black body by definition. Furthermore, due to expansion of the universe, T γ ∝ a -1 . The initial temperature of T ≃ 3000 K decreases with time, and we observe it as a radiation with temperature T ∼ 3 K, which explains why Penzias and Wilson [START_REF] Penzias | A Measurement of Excess Antenna Temperature at 4080 Mc/s[END_REF], detected this very first light in the form of (static noise) radio waves (at 4080 Hz) in the sixties. The theoretical understanding of the blackbody radiation by Planck, Einstein and others, ultimately led to the development of Quantum Mechanics. Its application to the physics of the early Universe -prediciting the spectrum of the CMB -is a major success of modern Cosmology. The COBE-FIRAS measurement yielded T 0 = 2.7255( 6) K [100] -perfectly consistent with an idealized blackbody. Indeed, deviations from the perfect blackbody law allows us to constrain any type of exotic energy injection in the early Universe [START_REF] Poulter | CMB constraints on ultra-light primordial black holes with extended mass distributions[END_REF][START_REF] Serpico | Cosmic microwave background bounds on primordial black holes including dark matter halo accretion[END_REF]. It is always possible to write

T(ν, n) = T 0 + ΔT(n) Anisotropies + ΔT(ν) Spectral Distortions + δT(ν, n) Spectral-Spatial Distortions (1.46)
where T 0 is the average (blackbody) temperature, and n is the direction we observe in the sky. Deviations from Planck's law can depend on: (i) on the direction we observe (the well-known CMB anisotropies), (ii) the frequency (the so-called y/μ -spectral distortions) and (iii) on both (SZ effect) [START_REF] Khatri | Beyond y and μ: the shape of the cmb spectral distortions in the intermediate epoch, 1.510 4 ≲ z ≲ 210 5[END_REF] (see e.g. [START_REF] Ali-Haïmoud | Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions[END_REF][START_REF] Ali-Haïmoud | Testing dark matter interactions with cmb spectral distortions[END_REF] and references therein). Because of this, and due to the high level of precision of current CMB experiments, it has proven to be an extremely difficult task to introduce new physics at early times, without spoiling BBN or CMB constraints. Thus, if something funny happens in the early universe that changes the size of the sound horizon, it has to happen just prior to recombination, in order to avoid (as much as possible) current BBN+CMB constraints. This is the motivation behind early-time solutions to the Hubble tension [START_REF] Aylor | Sounds discordant: Classical distance ladder and ΛCDM-based determinations of the cosmological sound horizon[END_REF]132,[START_REF] Poulin | Early Dark Energy Can Resolve The Hubble Tension[END_REF]-to change the size of the sound horizon, by injecting energy just prior to recombinationeffectively changing the distance at which we observe the CMB 11 . There has been a lot of debate recently in the literature [START_REF] Aylor | Sounds discordant: Classical distance ladder and ΛCDM-based determinations of the cosmological sound horizon[END_REF][START_REF] Jedamzik | Why reducing the cosmic sound horizon alone can not fully resolve the hubble tension[END_REF]132,[START_REF] Poulin | Cosmological implications of ultralight axionlike fields[END_REF] on whether such (early-time) solutions are actually viable.

Baryon Acoustic Oscillations

Because of the large pressure provided by photons, the initial overdensities set up acoustic (sound) waves in the photon-baryon fluid that propagate as long as these two are coupled and behave as a perfect fluid. In shall later discuss in Chapter 7, the size of the sound horizon plays a crucial role at inferring cosmological parameters, and is tightly related to the so-called Hubble tension [START_REF] Aylor | Sounds discordant: Classical distance ladder and ΛCDM-based determinations of the cosmological sound horizon[END_REF]132]. The BAO scale r s constitutes one of the most important observational probes of the (late-time) cosmic acceleration. We refer the reader to Refs. [START_REF] Aubourg | Cosmological implications of Baryon Acoustic Oscillation measurements[END_REF][START_REF] Daniel | Detection of the baryon acoustic peak in the large-scale correlation function of sdss luminous red galaxies[END_REF][START_REF] Hu | Wandering in the background: A CMB explorer[END_REF][START_REF] David | Observational probes of cosmic acceleration[END_REF] for a more thorough discussion of the physics of BAO.

Tensions/Anomalies within the Concordance Model

In recent years, several analyses coming from different cosmological probes have reported curiosities between cosmological parameters, as measured in the local (low-z) universe, and high-z, assuming ΛCDM .

Two notable examples are H 0 and σ 8 "tensions". Note however, other shortcomings of the ΛCDM at small (galactic) scales paradigm have been pointed out [START_REF] Bullock | Small-Scale Challenges to the ΛCDM Paradigm[END_REF]. The reader is referred to [START_REF] Di | Cosmology Intertwined III: fσ 8 and S 8 . 9[END_REF][START_REF] Perivolaropoulos | Challenges for ΛCDM: An update[END_REF][START_REF] Verde | Tensions between the early and late Universe[END_REF] for a recent and full account of the challenges the ΛCDM paradigm is facing. 

2

The Early Universe

Quantum mechanical seeds during the early Universe. The ΛCDM paradigm relies on the assumption of a nearly adiabatic, and nearly scale-invariant spectrum of primordial fluctuations -as encoded in the amplitude and tilt parameters A s and n s , respectively. In this Chapter, we shall briefly introduce one of the most commonly investigated mechanisms responsible for generating these primordial seeds1 namely Inflation. In Chapter 3 we will see how through gravitational instability, these tiny (quantum) fluctuations grow to form the LSS we observe in the late-universe. Let us also mention that other alternatives to inflation have been explored in the literature, such as bouncing cosmologies (see e.g. Ref. [START_REF] Brandenberger | Bouncing cosmologies: Progress and problems[END_REF]).

The Flatness Problem

Another interesting observation, is to realize the universe is extremely close to flat [69], as we previously discussed in Chapter 1. If we allow for k ̸ = 0, in a universe dominated by a fluid with equation of state w, it is easy to show from (1.23) and (1.25) that the fractional energy density evolves as

dΩ d ln a = (1 + 3w)Ω(Ω -1) . (2.
2)

The case Ω = 1 is an unstable critical point of the dynamical system-i.e. any deviation from exactly Ω = 1 will grow with time -in particular during the standard radiation and matter dominated epochs where the expansion is decelerated (w = 1/3 and w = 0, respectively). To explain the small value of |Ω k,0 | we observe today, one finds that the universe had to start with Ω(a pl ) ∼ 1 ± 10 -60 at the planck epoch. Which represents an unacceptable amount of fine-tunning. Unless of course, w < -1/3 -which implies through (1.24) ä > 0. If the expansion of the universe is accelerated, the solution Ω k = 0 becomes an attractor of the system. Inflation is precisely an epoch of accelerated expansion during the early Universe, and as such, provides a solution to the flatness and homogeneity problems. We should emphasize however, that Inflation does not affect the overall geometry of the universe. It only does so that locally, the universe seems to be flat.

Inflation: a solution to the Big-Bang puzzles

During inflation, the comoving Hubble radius (aH) -1 shrinks, as H is nearly constant and a(t) ∝ exp (Ht). 

Single Field Inflation

The easiest and simplest way to produce a period of accelerated expansion is by supposing that during the very early universe, the energy density was governed by a scalar field φ. The simplest Lagrangian for a Scalar

We can then identify from (1.21) the expressions for the energy density and pressure as

p φ = 1 2 φ2 -V(φ) , ρ φ = 1 2 φ2 + V(φ) . (2.7) 
From Eqs. (2.7), and in the limit V(φ) ≫ φ2 , we immediately see that a scalar field minimally coupled to gravity behaves like a DE-like fluid with equation of state w φ = p φ /ρ φ ≃ -1. We get accelerated expansion (ä > 0) in slow-roll inflationary models if ε, η ≪ 1, where these are dubbed the "slow-roll" parameters defined as [START_REF] Liddle | Formalizing the slow-roll approximation in Inflation[END_REF] 

ε = - d ln H dN = - Ḣ H 2 =⇒ ε V = 2 M 2 pl ( V ′ V ) 2 , (2.8 
)

η = - φ Hφ = ε - 1 2ε dε dN =⇒ η V = 1 M 2 pl V ′′ V = V ′′ 3H 2 . (2.9)
where in the last equality, we assume slow roll and write ε and η in terms of the potential V(φ) and its derivatives (wrt φ). A plethora of inflationary models have been proposed over the years, we refer the reader to Refs. [START_REF] Chowdhury | Inflation after Planck: Judgment Day[END_REF][START_REF] Martin | Encyclopaedia Inflationaris[END_REF] 

Generating the primordial seeds

Inflation seems to be driven by the vacuum energy of the Inflation field (in the SR approximation). Due to its quantum nature, the inflaton φ fluctuates with δφ ≡ φ(x, t) -φ(t) and these fluctuations -through the Einstein equations-lead to fluctuations in the metric and ultimately to fluctuations in the temperature we observe in the CMB. The perturbed Einstein equations schematically read

δG μν = 8πGδT μν , (2.10) 
if the perturbations are small, the full non-linear solution is well approximated by the linear treatment. The statistical properties of those fluctuations is encoded in the so called correlation function

⟨δ(k)δ * (k ′ )⟩ = (2π) 3 δ (3) D (k -k ′ )P(k) (2.11)
of the former into a Black Hole -Primordial Black Holes. So far, the LIGO-VIRGO collaboration has detected O(50) gravitational wave events from BH binary mergers, most of them in the ∼ 30 M ⊙ mass range. PBH were first proposed by Hawking [START_REF] Hawking | Gravitationally collapsed objects of very low mass[END_REF] in the early seventies. Inflationary models can naturally lead to the formation of PBH. Nonetheless, CMB constraints makes it hard to produce large enough O(1) fluctuations on small scales. Note however that recent studies using the stochastic inflation (or δN) formalism [START_REF] Starobinsky | STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN THE EARLY UNIVERSE[END_REF][START_REF] Starobinsky | Equilibrium state of a self-interacting scalar field in the de sitter background[END_REF] suggest that PBH production is a generic feature of inflationary models coming from quantum diffusion of the inflaton along its potential [START_REF] María | The exponential tail of inflationary fluctuations: consequences for primordial black holes[END_REF][START_REF] Vennin | Stochastic inflation and primordial black holes[END_REF]. The tantalizing possibility that a fraction of the BH binary mergers events detected by LIGO/Virgo are from primordial origin is not excluded [START_REF] Franciolini | Evidence for primordial black holes in ligo/virgo gravitational-wave data[END_REF]. Excitingly, even the non observation of PBH in those mass ranges could in principle exclude or at least constrain a wide class of inflationary potentials near the reheating epoch. By gathering more data from current and next generation of GW observatories, we will be probing the last numbers of e-folds before the end of inflation.

Stochastic Gravitational Wave Background

The unexpected gift we get from the inflationary paradigm, is the generation of a primordial (stochastic) gravitational wave background (SGWB) permeating spacetime. In analogy with its scalar counterpart, we parametrize the spectrum of tensor modes as

P t = A t ( k k * ) n T (2.13)
Due to historical reasons, the scale-invariant case is n T =0. One interesting quantity in inflationary cosmology is the tensor-to-scalar ratio r

r = A t A s (2.14)
The simplest inflationary models predict a relation between the tilt of tensor modes and the tensor-to-scalar ratio r = 16ε = -8n T -known as consistency relation. In the next decade, we might be able to probe physics up to extremely high-energies with GW observatories. Many (BSM) early-universe scenarios predict a first-order phase transition (among other mechanisms) that can lead to a detectable SGWB with future space-based GW observatories, such as LISA [START_REF] Brdar | Gravitational waves from first-order phase transitions: Ligo as a window to unexplored seesaw scales[END_REF][START_REF] Caldwell | Using a Primordial Gravitational Wave Background to Illuminate New Physics[END_REF][START_REF] Zhou | Gravitational waves from first-order phase transition and domain wall[END_REF]. -This assumes a ΛCDM cosmology -Structure formation will happen differently in a non-cold DM filled-universe. Simulations in a ΛCDM universe qualitatively reproduces the structure of the cosmic web. In fact, since observations are done in redshift space, galaxies appear strechted or squished from their "original" positions. This due to effect of peculiar velocities (typically of the order ∼ 1000 km s -1 ), an effect known as the fingers of god. Figure taken from [START_REF] Volker | The large-scale structure of the universe[END_REF].

Part II

Phenomenology of Dark Energy models: The Growth Index γ 3

Inhomogeneities around the FLRW background

Evolution of cosmic inhomogeneities as a probe of gravity. So far, we have treated the universe as being perfectly homogeneous and isotropic. This is just a first approximation, which is extremely accurate at large scales, but far from reality at small-scales -where we evidently see large deviations from homogeneity. If the universe was perfectly homogeneous and isotropic there wouldn't be any stars or galaxies to harvest life. And we humans would not be here to study the cosmos. This part of the thesis is dedicated to the study of small fluctuations, or perturbations, and their evolution around the FLRW universe we studied in Part I. In Chapter 2, we explored how an epoch of (rapid) accelerated expansion naturally sets the initial conditions for our Universe to evolve into the inhomogeneous Universe we observe today. In this chapter, we review the basics of (linear) perturbation theory needed to relate the former with the Large Scale Structures (LSS) we observe in the late-universe. Throughout this section, we will limit our discussion to the linear (quasi-static) regime. This is justified by the fact that at scales of cosmological interest, and in particular for CMB and LSS studies, the universe can accurately be described by (small) perturbations around potential. Similarly, mass conservation yields the famous Continuity Equation

∂ t ρ = -∇ r • (ρu) . (3.3)
The peculiar velocity is tightly related to the density field, as seen from (3.3). The last equation, which will be of crucial importance when discussing modified theories of gravity is Poisson's Equation

∇ 2 r Φ = 4πGρ (3.4)
Relating the gravitational potential Φ to the energy density ρ. Notice the gradient ∇ r with respect to the physical coordinate r. In an expanding universe, r is related to the comoving coordinates x by the relation r = a(t)x with a(t) being the scale factor (see Fig. 1.1.3). It will be useful to reformulate the problem in the comoving coordinates [START_REF] Bertschinger | Cosmological dynamics[END_REF], remembering

∇ r = a -1 ∇ x , ∂ ∂t r = ∂ t x - 1 a v • ∇ x = ∂ t x -Hx • ∇ x . (3.5) 
We apply the procedure (3.1) for all quantities of interest, namely the pressure P, bulk velocity u, density ρ, and gravitational potential Φ. Assuming that the fluctuations are small, we can linearize Eqs. (3.2), (3.3) and (3.4) and drop the product of fluctuations (which are negligible if they are small) to obtain

δ + 2H δ - c 2 s a 2 ∇ 2 δ = 4πGρδ (3.6)
Where we have introduced the fractional density perturbation, or sometimes called density contrast δ as well as the speed of sound

c 2 s . δ ≡ δρ ρ , c 2 s ≡ ∂P ∂ρ (3.7) 
We explicitly assume here that the perturbations are adiabatic (as predicted by most single-field inflationary models), which allows us to relate the pressure to energy density via its sound speed c s , effectively removing the pressure dependence from our equations. Furthermore, it is convenient to work in Fourier space. We decompose δρ as

δρ(r, t) = ∫ d 3 k (2π) 3 e -i k•r δρ k (t) (3.8)
This is particularly useful since at the linear level in perturbation theory, Fourier modes decouple and evolve independently. For each wavenumber k, from (3.6) their evolution is dictated by:

δk + 2H δk expansion = 4πGρδ k gravity -c 2 s k 2 a 2 δ k pressure (3.9)
From the above equation, we distinguish 2 different regimes, for small scales λ

(large k > k J ) below the Jeans scale λ J (t) = 2π/k J = c s (t)
√ π/Gρ(t) modes oscillate in time with decreasing amplitude. On the other hand, for scales larger than the Jeans scale (k < k J ), pressure forces cannot longer compensate for gravitational attraction, and thus the perturbations grows as a power law, as opposed to exponentially in a static universe (ȧ = 0). The factor 2H δ -often called Hubble drag -is related to the expansion of the universe and plays the role of a friction term in the EOM for δ, slowing down the growth of perturbations.

A few words on scales:

A given scale λ is said to cross the horizon when

λ = R H ⇔ 2π k a = 1 H . (3.10) 
where R H = 1/H is the Hubble radius defined in (1.28) and the numerical factor (2π) is often left out so we talk about a scale crossing the Hubble Radius R H when k = aH. Modes with k ≫ aH and k ≪ aH are said to be sub-horizon and super-horizon modes, respectively. For a more detailed (and pedagogical) treatment of structure formation and perturbation theory, the reader is referred to e.g. [START_REF] Knobel | An introduction into the theory of cosmological structure formation[END_REF].

Stages of Evolution

Remarkably, the Newtonian approach to cosmological perturbation theory already gives us a huge amount of information about the evolution of the inhomogeneities in the universe and the underlying theory of gravity. In this thesis, we will mainly be interested in large-scale perturbations entering the horizon during Matter domination. From (3.6), considering matter to be accurately described by a pressure-less fluid(c 2 s = 0) the gradient term vanishes and we get the master equation for DM perturbations.

δm + 2H δm -4πGρ m δ m = 0 (3.11)

Matter Dominated stage

During matter domination we have H ≃ 2/3t, and thus Eq. (5.1) simply reads

δm + 4 3t δm - 2 3t 2 δ m = 0 (3.12)
By simple substitution of a power law solution of the form δ m ∝ t p , we get the following two solutions:

δ m ∝    t -1 ∝ a -3 2 , "decaying mode" t 2 3 ∝ a, "growing mode" (3.13)
This is an important result worth remembering. i.e. matter (density) perturbations grow like the scale factor a(t) during matter domination (Einstein-DeSitter with Ω m = 1). By the time matter dominates, the decaying mode is no longer present. Therefore we will only consider the growing mode in (3.13), but we shall later on comment on the decaying mode in Chapters 5 and 6.

Radiation Dominated stage

During the Radiation-Dominated (RD) stage, on scales smaller than the Hubble radius, the growth of perturbations was inhibited by the large pressure provided by photons in the photon-baryon plasma. The competition between the gravitational and pressure forces led to the formation of acoustic waves that propagated through the plasma, and leaved an imprint on the surface of last scattering. We observe this oscillations in the acoustic peaks of the CMB and in the matter power spectrum P m (k).

to show (see e.g. [START_REF] Dodelson | Modern Cosmology[END_REF]) that the time-averaged density contrast of radiation fluctuations vanishes, whereas DM perturbations grow logarithmically δ m ∝ ln a during the RD stage. A presure-less (dark) fluid is therefore needed for the perturbations to grow efficiently during the RD stage. This is reflected in the dependence of the acoustic peaks in the CMB on the fractional energy density of DM ω CDM ≡ Ω CDM h 2 .

Dark matter out weights ordinary matter by a factor of 5, and unlike baryons, it does not interact with photons, and thus feels no pressure. As DM flowed inwards towards over dense regions, baryons feel an enormous pressure exerted by the imprisoned photons. After decoupling, baryons fall into the (enhanced) potential wells and track DM perturbations.

Λ-Dominated stage

By the time matter has been diluted away, the main contribution in the energy density is that of DE. It seems that DE is described (to a good approximation) by a cosmological constant Λ, which by definition remains constant across spacetime and therefore does not cluster (δ Λ = 0). In a Λ-dominated universe, it is straightforward to show that the solutions to δ + 2H δ ≃ 0 are

δ m ∝    const. e -2Ht ∝ a -2 (3.15)
implying that the growth of perturbations is frozen once DE starts to dominate over matter.

Large Scale Structure Observables

So far, we have explored how the initial seeds evolve during the history of our Universe. Here we will relate the fluctuations in matter density to actual cosmological observables that we can measure with galaxy surveys. In the nineties, Peebles, Efstathiou and others used LSS observations to predict the presence of a Λ-term [START_REF] Efstathiou | The cosmological constant and cold dark matter[END_REF][START_REF] Peebles | Cosmology with a Time Variable Cosmological Constant[END_REF] -before the discovery of the accelerated expansion by SNeIa [START_REF] Perlmutter | Measurements of Ω and Λ from 42 high redshift supernovae[END_REF][START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF]. LSS has proven to be extremely useful in constraining the properties of Dark Energy, as it probes the late-time growth of structures when DE starts to dominate over DM. Recent results from large-scale structure surveys, such as eBOSS [START_REF] Alam | Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory[END_REF] and DES(Y3) [67] show the potential of these to infer cosmological parameters, by cleverly using and combining different Late-time observables, such as Galaxy Clustering, Weak Lensing, Redshift Space Distortions among others.

Ongoing and future LSS surveys have been (or will soon be) measuring the distribution of matter across a wide variety of scales and redshifts, thus allowing us to contrain the expansion history of the Universe during DE domination to unprecedented precision, allowing for the inference of cosmological parameters at the same level of accuracy as CMB analyses currently do. We will soon be able to further test the concordance model of cosmology and probe the nature of Dark Energy. As we already stated previously, the linear formalism of perturbation theory is thus valid at large (early) enough scales (times), such that the requirement δ m ≪ 1 is satisfied.

The reader is referred to [START_REF] Bernardeau | Large-scale structure of the universe and cosmological perturbation theory[END_REF][START_REF] Knobel | An introduction into the theory of cosmological structure formation[END_REF] for a more detailed treatment of LSS and Perturbation Theory. Let us also mention that higher-order statistics beyond the simple power spectrum, (or two-point correlation function) could potentially yield valuable information about the laws of gravity on the largest of scales, driving the late-time accelerated expansion as discussed in [START_REF] Li | New probes of large scale structure[END_REF].

Matter Power Spectrum

One crucial quantity mentioned before, is the matter power spectrum. We cannot predict the precise value of δ m in any point in space-time, but rather we can predict the statistical properties of these overdensities. One can define the correlation function as

⟨δ m (k)δ * m (k ′ )⟩ = (2π) 3 δ D (k -k ′ )P m (k) (3.16)
where δ D (x) is the Dirac delta function, and P m (k) is called the matter Power Spectrum. It is then possible to write [START_REF] Dodelson | Modern Cosmology[END_REF] 

δ( ⃗ k, a) = δ p ( ⃗ k) × { Transfer Function T( ⃗ k) } × {Growth δ(a)} , (3.17) 
where δ p indicates the initial primordial amplitude for a given mode k and δ(a) accounts for its evolution as a function of a. The exact computation of the transfer function T(k) is complicated, and is typically done numerically, as one needs to solve the hierarchy of Boltzmann equations and take into account interactions between different species, free-streeming effects, etc. Nowadays, many (fast) numerical Boltzmann solvers for computing the matter power spectrum are readily avaible, such as CLASS [START_REF] Blas | The cosmic linear anisotropy solving system (class). part ii: Approximation schemes[END_REF][START_REF] Lesgourgues | The cosmic linear anisotropy solving system (class) i: Overview[END_REF] or CAMB [START_REF] Lewis | Efficient computation of CMB anisotropies in closed FRW models[END_REF]. The basic (qualitative) features of the Power spectrum are nontheless easy to understand. First, it is easy to see that P(k) ∝ ⟨|δ m (k)| 2 ⟩ is always a positive quantity. At larges scales (small k) we must recover the homogeneity assumption, thus P(k) → 0 for k → 0. We further saw in the previous section that during matter domination, perturbations grow efficiently (δ m ∝ a), whereas during radiation domination, the e.m. pressure inhibited the growth, so that their growth is logarithmic only δ m ∝ ln a. There is a difference between the growth of perturbations in RD and MD epochs, thus we should expect a preferred scale k eq = a eq H eq distinguishing the two "regimes" of growth (before and after matter-radiation equality a eq ) -see Fig. 3.2.1. The transfer function T(k) has the following limits:

T(k) ∝    1, for k ≲ k eq = a eq H eq ( k keq ) -2 , for k ≳ k eq (3.18)
The key idea, is that at late-time when matter dominates all fourier modes evolve identically. Before that, their evolution is essentially determined on whether these modes re-enter the horizon before or after a eq . Modes satisfying k > k eq are suppressed relative to k < k eq . The small wavelength modes that enter the horizon during RD feel their growth suppressed by a factor (k/k eq ) -2 at late-times 1 . For larger-wavelengths that re-enter at the time matter dominates, the transfer function is close to unity, and thus evolve as δ ∝ a. Numerical calculations can be reasonably well-approximated by the BBKS formula 2 [START_REF] Bardeen | The Statistics of Peaks of Gaussian Random Fields[END_REF] T(k) = ln (1 + 2.34 q) 2.34 q [1 + 3.89 q + (16.2 q) 2 + (5.47 q) 3 + (6.71 q) 4 ] -1/4 , (

with q ≡ k Ωmh 2 Mpc . This approximation assumes a vanishing anisotropic stress (Φ = -Ψ) and ignores baryonic effects, which definitely change the small scale behaviour of the power spectrum. However, throughout this thesis, we will focus on large-scales, so we can safely neglect these effects.

1 Up to a logarithmic correction accounting for the logarithmic growth at early times. 2 A simpler, and more accurate approximation for the transfer function was also derived in [START_REF] Daniel | Baryonic features in the matter transfer function[END_REF] Figure

(following page): Top :

The Matter Power Spectrum at z = 0. Bottom : Residuals wrt Planck's ΛCDM best-fit. We see the remarkable agreement with the wide variety of observational probes . Notice how at large scales (small k), as probed by Planck, we are limited by cosmic variance. Figure taken from [START_REF] Chabanier | Matter power spectrum: from ly α forest to cmb scales[END_REF] to which we refer for the details on the data sets under consideration.

From the Poisson equation(3.4), we see k 2 Φ(k) ∝ δ m (k) which implies the matter power spectrum is a power law of the form

P(k) ∝ k ns (3.20)
where n s is the spectral tilt, measured to be n s = 0.965 ± 0.004 by CMB experiments [69], which is in perfect agreement with inflationary predictions. The exact case n s = 1 is known as the Harrison-Zel'dovich power spectrum.

Weak Lensing & Galaxy Clustering

Observationally speaking, galaxy surveys measure the statistical properties of the distribution of galaxies (and/or voids3 ). The galaxy overdensity is related to the usual (dark) matter overdensity via the simple linear relation

δ g = b • δ m , (3.21) 
where b is the galaxy bias. There is yet another subtlety, we do not observe the galaxy density constrast δ g directly, but rather its density constrast in redshift space δ z , which leads to Redshift Space Distortions (RSD) which we will briefly discuss in the next section. On large scales, where the linear treatment is accurate, one can safely assume

P g (k, z) = b 2 P m (k, z) . (3.22)
A common way of characterizing the amplitude of the over densities at a given scale is by means of the root mean squared (RMS) in a sphere of radius R, defined as

σ 2 R ≡ ⟨δ 2 R (x)⟩ , (3.23) 
where Morevover, galaxy surveys not only give us information about the positions of galaxies, but also their shape (cosmic shear measurements [START_REF] Kilbinger | Cosmology with cosmic shear observations: a review[END_REF]-See Fig. 3.2.2) and their cross-correlation. These are the so callled 3x2pt analyses -because of the three types of 2pt correlation functions: position-position, shearshear, shear-position. Such surveys are extremely sensitive to the combination

δ R (x) ≡ ∫ d 3 x ′ δ(x ′ )W R (x -x ′ )
S 8 ≡ σ 8,0 √ Ω m /0.3 (3.24)
which effectively removes the degeneracy between Ω m and σ 8 and characterizes the smoothness or clumpiness of the DM density field in our Universe. In Fig. 3.2.3 we report the new measurements from the 3-Year Dark Energy Survey.

Redshift space distortions

The observed redshift receives contributions from the real redshift, and an additional contribution coming from the peculiar motion of e.g. galaxies, so that

z obs = z real + 1 a v ∥ c (3.25)
where v ∥ refers to the line-of-sight component of the peculiar velocity. This ultimately leads to 5 .

δ z = (1 + f b μ 2 k )δ g (3.26)
where μ k = k•ẑ k is the cosine of the angle between the line-of-sight and the wave-vector k, f ≡ d ln δm d ln a is the growth function and b is the bias factor encountered before (3.21). This is the so-called Kaiser effect6 [START_REF] Kaiser | Clustering in real space and in redshift space[END_REF]. RSD surveys are sensitive to the combination β ≡ f(z)/b -often called the distortion parameter (see more in [START_REF] Bernardeau | Large-scale structure of the universe and cosmological perturbation theory[END_REF][START_REF] Desjacques | Large-scale galaxy bias[END_REF]). Eq. (3.26) is telling us that the observed matter power spectrum is modulated by a factor f(z) ≃ Ω m (z) γ(z) , encoding the logarithmic growth of matter perturbations and -as we will see in Chapters 5 and 6 -is sensitive to the nature of DE. In practice, one prefers to work with the (unbiased) combination f(z) • σ 8 (z). By definition we have

f(z) = - d ln δ m d ln(1 + z) and σ 8 (z) = σ 8,0 • δ m (z) δ m (z = 0) (3.27)
From there, it is straightforward to find

fσ 8 (a) ≡ σ 8,0 • a • δ ′ m (a) δ m,0 . (3.28)
This is the actual observable in RSD surveys. We again refer the reader to Ref. [START_REF] Percival | Testing cosmological structure formation using redshift-space distortions[END_REF] for a clear account of observations done in redshift space.

"In Physics we have Heroes, not prophets."

Steven Weinberg
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Modified Gravity

Scalar fields are ubiquitous in High Energy Physics and Cosmology. The "recent" discovery of the Higgs boson is the very first experimental evidence of a fundamental scalar (spin-0) field in nature. We further saw in Chapter 2 how the standard ΛCDM paradigm relies on an early stage of quasi-De Sitter expansion -with nearly constant Hfor generating the primordial seeds. While the exact particle physics of Inflation is still unknown, observations of the CMB and LSS seem to favor a Gaussian -nearly adiabatic, nearly scale-invariant -primordial spectrum of fluctuations. This is typically achieved by invoking a slowlyrolling scalar field -the Inflaton φ. Interestingly, one of the most widely accepted (and first) inflationary models is a modified gravity of the form f(R) = R + αR 2 which provides a very good fit to current CMB data [START_REF] Starobinsky | A New Type of Isotropic Cosmological Models Without Singularity[END_REF]. The discovery of DE in the late 90's provides further motivations to consider modifications to Einstein's GR. Moreover, it is known that scalar degrees of freedom arise quite naturally-as an effective description-in the context of UV-complete theories of gravity (e.g. the Dilaton in String Theory) . More generally, many interesting extensions to the SM of particle physics predict new (light) species which are 55 very-weakly coupled to ordinary matter, making them very hard to detect on terrestrial experiments. One such example, are Axion-like Particles (ALP). More specifically, the original QCD axion is the emerging Nambu-Goldstone boson of a spontaneously broken U( 1) PQ (Peccei-Quinn) symmetry [START_REF] Peccei | CP conservation in the presence of pseudoparticles[END_REF]. It is one of the most highly-motivated BSM candidates in particle physics as it solves two of the most important shortcomings in the SM1 . More recently, ALP have received a lot of attention in the cosmological community because of their potential to ease the Hubble tension [START_REF] Murgia | Early dark energy resolution to the hubble tension in light of weak lensing surveys and lensing anomalies[END_REF][START_REF] Poulin | Early Dark Energy Can Resolve The Hubble Tension[END_REF], by effectively reducing the size of sound horizon at recombination2 . A lot of effort has also gone in constructing such models in the context of modified gravity (see e.g. [START_REF] Ballardini | Scalar-tensor theories of gravity, neutrino physics, and the H 0 tension[END_REF][START_REF] Ballesteros | The H 0 tension: ΔG N vs. ΔN eff[END_REF][START_REF] Zumalacárregui | Gravity in the era of equality: Towards solutions to the hubble problem without fine-tuned initial conditions[END_REF] and references therein for recent works in this direction). It is therefore quite natural (and insightful!) to study the dynamics of scalar fields in a gravitational context. In this chapter, we shall briefly review recent advances in modified gravity theories, and provide further motivations for the kind of (phenomenological) features considered in this thesis. The interested reader is referred to Refs. [START_REF] Tsujikawa | f(R)-Theories[END_REF][START_REF] Clifton | Modified gravity and cosmology[END_REF][START_REF] María | Dark Energy in light of Multi-Messenger Gravitational-Wave astronomy[END_REF][START_REF] Kase | Dark energy in horndeski theories after gw170817: A review[END_REF] for a more thorough discussion of modified gravity.

The Horndeski Action

The most general action involving a scalar field φ plus the metric g μν leading to second order field equations3 has already been written [START_REF] Walter | Second-order scalar-tensor field equations in a four-dimensional space[END_REF]. It takes the following, rather cumbersome form:

S[g μν , φ] = ∫ d 4 x √ -g [ 5 ∑ i=2 1 8πG L i [g μν , φ] + L m [g μν , ψ M ] ] . (4.1) 
The above action includes a wide variety of dark energy (and inflationary) models with a single degree of freedom added to the Einstein-Hilbert Action. These include the good-old Quintessence/K-essence models, Scalar-Tensor (Brans-Dicke) theories, Kinetic Gravity Braiding ,Generalized Galileons and many more (see e.g. [START_REF] Kase | Dark energy in horndeski theories after gw170817: A review[END_REF]). The Lagrangian densities L i are given by

L 2 = G 2 (φ, X) , L 3 = G 3 (φ, X)□φ , (4.2) 
L 4 = G 4 (φ, X)R + G 4,X (φ, X) [ (□φ) 2 -φ ;μν φ ;μν ] , (4.3) 
L 5 = G 5 (φ, X)G μν φ ;μν - 1 6 G 5,X (φ, X) [ (□φ) 3 + 2φ ;μ ν φ ;ν α φ ;α μ -3φ ;μν φ ;μν □φ ] , (4.4) 
where □φ ≡ g μν φ ;μν , X ≡ -1 2 ∂ μ φ∂ μ φ and G μν is the Einstein Tensor in (1.9). It is seen from the above Lagrangians the gigantic class of theories that could lead to second order equations of motion (EOM). However, many of the terms G i (φ, X) in (4.1) have now been ruled out -or have stringent constraints-by recent gravitational wave observations. Namely, GW170817 and its electromagnetic counterpart GRB170817A [4,[START_REF] Abbott | Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a[END_REF] (see e.g. [START_REF] Copeland | Dark energy after gw170817 revisited[END_REF][START_REF] Creminelli | Dark energy after gw170817 and grb170817a[END_REF][START_REF] María | Dark Energy After GW170817: Dead Ends and the Road Ahead[END_REF][START_REF] Kase | Dark energy in horndeski theories after gw170817: A review[END_REF] and references therein). It seems appropriate at this stage to try and classify the wide variety of DE models contained in (4.1) according to the phenomenological implications for cosmological observables. This is indeed along the lines of the Effective Field Theory formalism of DE [START_REF] Bellini | Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity[END_REF][START_REF] Gleyzes | New class of consistent scalar-tensor theories[END_REF] (see e.g. [START_REF] Frusciante | Effective field theory of dark energy: A review[END_REF] for a pedagogical introduction). In recent years, the correspondence between Horndeski's models 4 and the EFT description of DE became transparent [START_REF] Bellini | Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity[END_REF].

Phenomenology of Modified Gravity

When expanding Horndeski's action up to second order in perturbations and imposing the symmetries of the background, there are 4 remaining functions of time α i (t) parametrizing the deviations from GR. These are: α M denoting the running of the Planck Mass, α K related to the kinetic part of the scalar lagrangian, α B characterizing the mixing between metric and scalar perturbations and α T which parametrizes the deviations in the tensor speed w.r.t. unity (c = 1). These α-functions can be expressed as combinations of the functions G i (φ, X), but their closed-form expressions are irrelevant for our purposes. The reader is referred to [START_REF] Bellini | Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity[END_REF][START_REF] Frusciante | Effective field theory of dark energy: A review[END_REF][START_REF] Gleyzes | New class of consistent scalar-tensor theories[END_REF]. The key point being that the α i 's encapture the phenomenology of deviations from General Relativity. As an example, one can show that tensor modes (gravitational waves) in modified gravity theories evolve as

ḧij + (3 + α M ) H ḣij + (1 + α T )k 2 h ij = 0 (4.5)
with α T = 1 -c 2 T encoding the deviations in the tensor speed from unity and α M = d ln M 2 * d ln a being the running of the Planck mass. As mentioned before, the tensor speed excess has been measured to be vanishingly small α T ≤ O(10 -15 ) [START_REF] Abbott | Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a[END_REF]. This severely constrained the landscape of possible DE models in (4.1), as many predicted c T ̸ = c [START_REF] Baker | Strong constraints on cosmological gravity from gw170817 and grb 170817a[END_REF][START_REF] María | Dark Energy After GW170817: Dead Ends and the Road Ahead[END_REF] . The parameter α M also enters as a friction term in the equations of motion for GW, modulating the way in which GW feel the expansion of the Universe and as such, could play a crucial role in determining the nature of DE -through the next generation of GW observations. Another key (generic) feature of MG models is that their (scalar) density perturbations evolve differently than in GR, since G → G eff (a, k) which effectively encodes the additional degree of freedom and sources the perturbations through Poisson's equation. For modes well-within the horizon, their evolution is dictated by

δm + 2H δm = 4πG eff (a, k)ρ m δ m (4.6)
where G eff (a, k) is a time and scale dependent effective gravitational coupling. Therefore, from a phenomenological point of view, an interesting place to look for departures from GR is the evolution of cosmic inhomogeneities. Such a phenomenological tool is the growth index γ of matter perturbations. We shall come back to this in great depth in Chapters 5 and 6.

Some examples of Modified Gravity

One of the most natural, and simplest possibilities is to extend the Einstein-Hilbert action (1.4) to include higher-order contribution in terms of geometrical (covariant) objects, such as the Ricci scalar R, R μν R μν and so on. In the following, we will consider f(R) theories, as it is one of the few subclass of models in (4.1) surviving current constraints. These have been classified in e.g. [START_REF] Baker | Strong constraints on cosmological gravity from gw170817 and grb 170817a[END_REF][START_REF] María | Dark Energy After GW170817: Dead Ends and the Road Ahead[END_REF][START_REF] Kase | Dark energy in horndeski theories after gw170817: A review[END_REF].

f(R) Gravity

Throughout this section, we follow the notations of Ref. [START_REF] Tsujikawa | f(R)-Theories[END_REF]. One of the minimal extensions to GR is to promote R to f(R), such that

S EH = 1 2κ 2 ∫ d 4 x √ -g R -→ S = 1 2κ 2 ∫ d 4 x √ -g f(R) (4.7)
where f(R) is a generic function of the Ricci scalar R. By taking the variational derivative with respect to g μν , we can define the equivalent of the Einstein tensor:

Σ μν ≡ F(R)R μν (g) - 1 2 f(R)g μν -∇ μ ∇ ν F(R) + □F(R)g μν = κ 2 T μν (4.8)
where we have introduced F ≡ ∂ R f(R) and T μν is the usual energy-momentum tensor (1.8). Taking the trace of the above equation (i.e. g μν Σ μν ) gives

3□F(R) + F(R)R -2f(R) = κ 2 T (4.9)
where T ≡ T μ μ = g μν T μν is the trace of the energy-momentum tensor. One immediately sees from (4.9), that there is a propagating (dynamical) degree of freedom-the so-called Scalaron φ ≡ F(R) = ∂f/∂R. These theories are well-known to be conformally equivalent to the good-old Scalar-Tensor (ST) Theories5 in the Einstein and Jordan Frames. f(R) theories have also been studied in the context of Dark Energy models 6 . There are nonetheless general stability conditions this function must satisfy for our theory to be viable (and ghost-free). These can be summarized as [START_REF] Starobinsky | Disappearing cosmological constant in f(R) gravity[END_REF] 

F ≡ ∂ R f > 0 and ∂ R F > 0. (4.10)
The viability conditions for f(R) DE models were derived in [START_REF] Amendola | Conditions for the cosmological viability of f(R) Dark Energy models[END_REF] and many interesting observational constraints have been studied throughout the years in the literature [START_REF] Battye | Do cosmological data rule out f(r) with w≠-1 ?[END_REF][START_REF] Brax | f(r) gravity and chameleon theories[END_REF][START_REF] Faulkner | Constraining f(r) gravity as a scalartensor theory[END_REF][START_REF] Motohashi | Phantom boundary crossing and anomalous growth index of fluctuations in viable f(R) models of cosmic acceleration[END_REF][START_REF] Raveri | Effective field theory of cosmic acceleration: Constraining dark energy with cmb data[END_REF][START_REF] Vagnozzi | Direct detection of dark energy: the xenon1t excess and future prospects[END_REF]. In particular, an important thing to mention is that such theories require screening-mechanisms (due to the coupling of the scalar to matter) in order to evade solar-system and laboratory constraints [START_REF] Brax | Screening mechanisms in modified gravity[END_REF]. One functional (viable) form for f(R) has been proposed in [START_REF] Hu | Models off(r)cosmic acceleration that evade solar system tests[END_REF][START_REF] Starobinsky | Disappearing cosmological constant in f(R) gravity[END_REF] 

f(R) = R + λR s [ ( 1 + R 2 R 2 s ) -n - 1 
] (4.11)
The growth of perturbations in such models is modified because of the effective gravitational constant G eff appearing in (4.6) (see e.g. [START_REF] Gannouji | The growth of matter perturbations in f(R) models[END_REF][START_REF] Tsujikawa | Matter density perturbations and effective gravitational constant in modified gravity models of Dark Energy[END_REF]). It is well-known that in the quasi-static approximation (QSA) [START_REF] Boisseau | Reconstruction of a scalartensor theory of gravity in an accelerating universe[END_REF], i.e. on subhorizon scales, the modification to effective gravitational constant can be written as

G eff (z, k) = G N F ( 1 + 4 k 2 a 2 m 1 + 3 k 2 a 2 m ) , m ≡ ∂ R F F . (4.12)
model, to explore the implications of higher dimensions in cosmological observables. The DGP model is an IR modification to GR, the effective Friedmann equation can be cast in the form

H 2 - H r c = 8πG 3 
∑ i ρ i (t) , (4.13) 
where r c is a critical scale, above which GR is modified to include the effects of the extra dimension. This model had attracted a lot of interest in the cosmological community, since the (modified) Friedmann equation above has a (late-time) accelerating solution a(t) ∝ e t/rc without the need for a dark energy component.

H(t) = 1 2 ( 1 r c ± √ 1 r 2 c + 32πG 3 ρ m (t) ) (4.14)
This can be seen by taking the limit ρ m → 0 of (4.14), the so-called self-accelerating branch in the DGP model. However, it has been pointed out that this branch suffers from a ghost at the linear level [START_REF] Koyama | Ghosts in the self-accelerating universe[END_REF] The most interesting aspect of the DGP is that its effective gravitational coupling constant decreases with the expansion (5.37), and therefore perturbations feel a weaker gravity than in GR. Thus, the growth of structures in such models is drastically modified, as we will show in Chapter 5. In particular, the growth index γ(z = 0) in such models has very different values and appears to be excluded by -or is in tension with -current data. Showing the potential of such phenomenological tool in studying the high-energy world.

The dawn of multi-messenger astronomy has opened up a new window to study the fundamental nature of DE, and possibly its connection to the high-energy/particle physics content of the models. Although the tensor speed excess has been measured to be vanishingly small O(10 -15 ), there are many surviving models satisfying the constraint α T ≃ 0, with viable but potentially detectable cosmological signatures (e.g. [START_REF] Linder | No Slip Gravity[END_REF][START_REF] Mitra | Cosmology with the Einstein Telescope: No slip gravity model and redshift specifications[END_REF]). One particularly interesting observable is the modified luminosity distance of tensor perturbations d GW L (z), which could help further constrain e.g. non-minimally coupled theories [START_REF] Kase | Dark energy in horndeski theories after gw170817: A review[END_REF].

5

Global properties of the Growth Index γ 

Global properties of the growth index of matter inhomogeneities in the Universe

Physical Review D -100, 083503 (2019) [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF] Despite intensive activity in recent years, the late-time accelerated expansion rate of the Universe remains a theoretical challenge. A wealth of theoretical models and mechanisms were put forward for its solution; see reviews [START_REF] Copeland | Dynamics of dark energy[END_REF][START_REF] Li | Dark energy[END_REF][START_REF] Padmanabhan | Cosmological constant: The Weight of the vacuum[END_REF][START_REF] Peebles | The Cosmological Constant and Dark Energy[END_REF][START_REF] Sahni | The Case for a Positive Cosmological Λ-Term[END_REF][START_REF] Sahni | Reconstructing dark energy[END_REF]. Remarkably, the simplest model -GR with a non-relativistic matter component (mainly a non-baryonic one) and a cosmological constant Λ -is in fair agreement with observational data, especially on large cosmic scales. Notwithstanding the theoretical problems it raises, this model provides a benchmark for the assessment of other dark energy (DE) models phenomenology. One can make progress by exploring carefully the phenomenology of the proposed models and comparing it with observations [START_REF] David | Observational probes of cosmic acceleration[END_REF]. Tools which can efficiently discriminate between models, or between classes of models (e.g. [START_REF] Sahni | Model-independent evidence for dark energy evolution from baryon acoustic oscillations[END_REF]) are then needed. The growth index γ which provides a representation of the growth of density perturbations in dust-like matter, is an example of such phenomenological tool. Its use was pioneered long time ago in order to discriminate spatially open from spatially flat universes [START_REF] Peebles | Tests of cosmological models constrained by inflation[END_REF] and then generalized to other cases [START_REF] Lahav | Dynamical effects of the cosmological constant[END_REF]. It was later revived in the context of dark energy [START_REF] Linder | Parameterized beyond-einstein growth[END_REF], with the additional incentive to single out DE models beyond GR. The growth index has a clear and important signature in the presence of Λ: it approaches 6/11 for z ≫ 1 and it changes little from this value even up to z = 0. This behaviour still holds for smooth non-interacting DE models inside GR with a constant equation of state w DE , as depicted in Fig5.3.1. A strictly constant γ is very peculiar [START_REF] Polarski | On the growth of linear perturbations[END_REF][START_REF] Polarski | When is the growth index constant[END_REF]. On the other hand, this behaviour is strongly violated for some models beyond GR, see e.g. [START_REF] Gannouji | The growth of matter perturbations in f(R) models[END_REF][START_REF] Motohashi | Phantom boundary crossing and anomalous growth index of fluctuations in viable f(R) models of cosmic acceleration[END_REF]. Surprisingly, important properties of the growth index behaviour can be understood by making a connection with a strictly constant γ. Further, while present observations probe low redshifts z ≲ 2, still as we will see, more insight is gained looking at the global evolution of γ. Before starting this analysis, we first review the basic formalism for the study of the growth index γ.

Characterizing the growth of perturbations with γ

A particularly useful way of characterizing the evolution and growth of scalar (density) perturbations for non-relativistic matter is by the means of the growth index γ introduced a while ago [START_REF] Paul | Cluster abundance constraints on quintessence models[END_REF].In this section, we will briefly derive the important equations for γ. Our starting point will be Eq. (3.6). For modes well inside the Hubble radius, their evolution is dictated by

δm + 2H δm -4πGρ m δ m = 0 (5.1)
To do so, we will consider a non-interacting mixture of dust-like matter and DE components, since we happen to live close to the transition era between a matter dominated and a DE dominated universe. The dimensionless Hubble function h(z) ≡ H(z)/H 0 at z ≪ z eq (long after the radiation dominated epoch) reads

h 2 (z) = Ω m,0 (1 + z) 3 + (1 -Ω m,0 ) exp [ 3 ∫ z 0 dz ′ 1 + w DE (z ′ ) 1 + z ′ ] (5.2)
with w DE (z) = P DE (z)/ρ DE (z). From this, we can calculate the entire evolution of Ω m (a) through the useful relation

Ω m (a) = Ω m,0 a -3 h -2 (a) . (5.3) 
Moreover, it is easy to show the following relation holds

w DE = 1 3 Ω DE d ln Ω m dN (5.4)
For later convenience, we may want to work with the scale factor a(t) as the main variable. Remembering that d/dt = aH(d/da) = H(d/d ln a), Eq (5.1) can be written as a non-linear first-order differential equation in terms of the growth function f (see e.g. [START_REF] Polarski | On the growth of linear perturbations[END_REF] and references therein)

df d ln a + f 2 + ( 2 + Ḣ H 2 ) f = 3 2 Ω m (a) (5.5) 
Where we have introduced the usual definition for f ≡ d ln δm d ln a , and used 4πGρ m = 3 2 H 2 Ω m . Notice however the definition of Ω m in terms of Newton's coupling constant G = G N . In general, modified theories of gravity can (and generically do) have a time-dependent (and even scale-dependent) effective coupling's constant G eff (a, k) (see.e.g. [START_REF] Tsujikawa | Matter density perturbations and effective gravitational constant in modified gravity models of Dark Energy[END_REF]). In many DE models outside GR the modified evolution of matter perturbations is recast into

δm + 2H δm -4πG eff ρ m δ m = 0 , (5.6) 
where G eff is some effective gravitational coupling appearing in the model. For example, for effectively massless scalar-tensor models [START_REF] Boisseau | Reconstruction of a scalartensor theory of gravity in an accelerating universe[END_REF], G eff is varying with time but it has no scale dependence while its value today is equal to the usual Newton's constant G. Introducing for convenience the quantity

g ≡ G eff G , (5.7) 
equation (5.6) is easily recast into the modified version of Eq. (5.5), viz 1 .

df dN + f 2 + 1 2 [ 1 - d ln Ω m dN ] f = 3 2 g Ω m ; g ≡ G eff G (5.8)
With N ≡ ln a is the number of e-folds. Clearly f = p if δ m ∝ a p (with p constant). In particular, when the growing mode dominates, f → 1 in ΛCDM for large z and f = 1 in the Einstein-de Sitter universe (we recover the solutions in (3.13)). In the peculiar situation where the decaying mode dominates, f → -3 2 in ΛCDM for large z and f = -3 2 in the Einstein-de Sitter universe. We will return to the consequences of a non-negligible decaying mode later. Also, if the dependence f(N) is known from observations, the Hubble function H(z) and finally the scale factor a(t) dependence can be determined unambiguously in an analytical form [START_REF] Starobinsky | How to determine an effective potential for a variable cosmological term[END_REF] (see [START_REF] Benjamin | Defying the laws of gravity i: model-independent reconstruction of the universe expansion from growth data[END_REF] for implementation of this to recent observational data). Note that we can easily reconstruct the familiar quantity δ m (a) using

δ m (a) = δ m,i exp [∫ N Ni f(N ′ )dN ′ ] (5.9)
It is well known now that a useful parametrization for the growth function f is given by When the growth index γ is strictly constant, it is straightforward to deduce from (5.8) that w DE = w with

f (z) ≡ d ln δ m d ln a = - d ln δ m d ln (1 + z) = Ω m (z) γ(z) (5.
w = - 1 3(2γ -1) 1 + 2Ω γ m -3gΩ 1-γ m 1 -Ω m (5.11) ≡ - 1 3(2γ -1)
F(Ω m ; g, γ).

(5.12)

The quantity w(Ω m , γ) defines a function in the (Ω m , γ) plane which will be useful even when γ is not constant. The case g = 1 reduces to GR and we will simply write

F(Ω m ; g = 1, γ) ≡ F(Ω m ; γ) . (5.13)
Below, for any quantity v, v ∞ , resp. v -∞ , will denote its (limiting) value for N → ∞ in the DE dominated era (Ω m → 0), resp. N → -∞ (generically Ω m → 1). We have in particular from (5.11) for g = 1 (GR)

γ = 3w ∞ -1 6w ∞ (5.14) γ = 3(1 -w -∞ ) 5 -6w -∞ . (5.15) 
Here we assume that w < 0 to ensure a matter dominated stage in the past and dark energy dominated stage in the future. In addition, Eq. ( 13) requires that w ∞ < -1 3 to have 0 < γ < 1, otherwise w ∞ becomes infinite. As it was found in [START_REF] Polarski | When is the growth index constant[END_REF], these relations between a constant γ and the corresponding asymptotic values w ∞ and w -∞ apply also for the dynamical γ obtained for an arbitrary but given w DE . In the latter case, we obtain for g = 1

γ ∞ = 3w ∞ -1 6w ∞ (5.16) γ -∞ = 3(1 -w -∞ ) 5 -6w -∞ , (5.17) 
with w ∞ , respectively w -∞ , the asymptotic value of w DE in the future, respectively past. We will return later to this important property.

Global analysis in the (Ω m , γ)-plane

It is natural to consider Ω m as the fundamental integration variable. In this case the evolution equation for γ obtained from (5.8) using (5.10) yields

2αΩ m ln(Ω m ) dγ dΩ m + α(2γ -1) + F(Ω m ; g, γ) = 0 , (5.18) 
where we have defined α ≡ 3w DE .

(5. [START_REF] Amendola | Cosmology and fundamental physics with the euclid satellite[END_REF] where we have defined

F(Ω m ; γ) ≡ (1 -Ω m )F(Ω m ; γ) = 1 + 2Ω γ m -3Ω 1-γ m . (5.22) 
For convenience, we have written the vector field in this way in order to have explicitly regular functions, so this vector field is well-defined everywhere for (Ω m , γ) ∈ [0, 1] × R. The associated unit vector field is represented in fig.

(5.2.1) for w DE = -1.

The integral curves of this vector field (i.e. the phase portrait), are obtained by solving the autonomous differential system

dΩ m ds = 2αΩ m (1 -Ω m ) ln(Ω m ) dγ ds = -α(2γ -1)(1 -Ω m ) -F(Ω m ; γ) (5.23)
where s ∈ R + is a dummy variable parametrizing the curves.

The vector field corresponding to w DE = -1 is displayed on Fig. 5.2.1 and will be considered now for concreteness. The growth index γ(Ω m ) which starts at γ(1) ≡ γ -∞ = 6/11 is the only curve γ(Ω m ) which is finite everywhere. This curve corresponds to the presence solely of the growing mode of eq.(5.1) or equivalently to the limit of a vanishing decaying mode. Let us consider this point in more details. Generally, in the presence of two modes δ ≡ δ 1 + δ 2 , we have

f = δ 1 δ f 1 + δ 2 δ f 2 , (5.24) 
where f 1 > 0, resp. f 2 < 0, corresponds to the growing mode δ 1 , resp. decaying mode δ 2 . Inspection of (5.24) shows that f < (6.1) gives γ → γ ∞ , eq. (5.16), with

f 1 if δ 1 δ 2 > 0 while f < f 1 or f > f 1 when δ 1 δ 2 < 0.
f ∝ 1 a 2 H ∝ a -1 2 (1-3w∞) → 0 . (5.25)
The crucial point is that the same asymptotic behaviour is obtained for all cases where the decaying mode is present, up to a change of the prefactor in (6.5) which depends on the initial conditions and on the amplitude of the decaying mode with respect to the growing mode. This immediately follows from the fact that one can neglect the last term in Eq.(5.1) in this regime, so that

δ m = δ ∞ + const ∫ dt a 2 = δ ∞ + const ∫ dN a 2 H . (5.26)
The same occurs for the more general modified gravity eq.(5.6), apart from the case of an anomalously large growth of G eff in the future. On the other hand we have in the future (w ∞ < -1 3 )

Ω m ∼ a 3w∞ . (5.27)
Using the definition of γ, eq. ( 5.10), it is straightforward to obtain

γ = ln f ln Ω m → γ ∞ , (5.28) 
for all curves with γ today smaller or larger than the value obtained when we integrate eq.( 6.1) with γ(1) = γ -∞ (= 6 11 for w DE = -1). This is somehow complementary to the results obtained in [START_REF] Linder | End of cosmic growth[END_REF] where the limit of a vanishing decaying mode was considered, however allowing for models beyond GR. Of course, in standard cosmological scenarios, the decaying mode is negligible already deep in the matter era so this result is essentially of mathematical interest. This is nicely illustrated with figure (6.2.1) for w DE = -1, all curves tend to the same limit γ ∞ = 2 3 but only one curve, corresponding to the limit of a purely growing mode, tends to the finite value γ -∞ = 6 11 in the past.

Global evolution of the slope Γ(Ω m )

In this section we want to consider more closely the slope of γ(Ω m ) when γ evolves with time and this will allow us to find an interesting connection with the constant γ case. It is seen from ( 6.1) that a solution can satisfy dγ dΩm = 0 in the (γ, Ω m ) plane only on the curve Γ(Ω m ) defined as

w = w DE , (5.29) 
where w DE is the true equation of state (EoS) of the DE component of the system under consideration, while w is given in (5.11). We can view w(Ω m , γ) as a given function of both variables Ω m and γ, while w DE is the EoS of DE given in function of Ω m . Hence in each value of Ω m , the curve Γ(Ω m ) takes that value of γ such that w = w DE , namely w (Ω m , Γ(Ω m )) = w DE (Ω m ) .

(5.30)

The fact that Γ(Ω m ) is not constant just means that the solution γ(Ω m ) of (6.1) is not constant. The curve Γ(Ω m ) defined by (5.29) satisfies by construction in the asymptotic future

w (0, Γ(0)) = w ∞ .
(5.31)

Hence we have in view of equalities (5.16) and (5.14)

Γ(0) = 3w ∞ -1 6w ∞ = γ ∞ . (5.32)
Analogously, we get in the asymptotic past

w (1, Γ(1)) = w -∞ , (5.33) 
with, using (5.17) and (5.15)

Γ(1) = 3(1 -w -∞ ) 5 -6w -∞ = γ -∞ . (5.34)
It is exactly here that we can use the crucial property reminded at the end of Section 5.1. Indeed, as it was shown in [START_REF] Polarski | When is the growth index constant[END_REF], the solution γ(Ω m ) of (6.1) starts at γ -∞ in the past and tends to γ ∞ in the future (whence our choice of notation). In other words the curves Γ(Ω m ) and γ(Ω m ) meet at their endpoints (see figure (5.1.1)). It is also seen from ( 6.1) that all points (γ, Ω m ) above the curve Γ(Ω m ) satisfy dγ dΩm > 0; on the other hand in the region below Γ(Ω m ) we have dγ dΩm < 0. Let us assume that (5.29) represents a monotonically decreasing function of Ω m , hence γ ∞ > γ -∞ . This holds for example for all constant EoS of DE inside GR. Then it is clear that γ(Ω m ) cannot cross the curve Γ(Ω m ) at some value γ 1 with γ -∞ < γ 1 < γ ∞ . If it did, γ(Ω m ) would cross with a zero derivative and have its minimum at γ 1 . This is in contradiction with γ -∞ < γ 1 . This also shows that a change in the sign of the slope of γ(Ω m ) is possible only if Γ(Ω m ) is not a monotonically decreasing function of Ω m . Note that the slope of γ(Ω m ) does not vanish at Ω m = 1 and Ω m = 0 even though γ(Ω m ) and Γ(Ω m ) meet there. Actually it even diverges in Ω m = 0 [START_REF] Polarski | When is the growth index constant[END_REF]. Indeed, we have that the prefactor of the first term of (6.1) vanish there leaving the slope a priori unspecified. For a given growth function f, a lower Ω m implies a lower γ. For a given Ω m on the other hand, a decrease in f induces an increase in γ. All this is clearly understood from the equality γ = ln f ln Ωm . When γ(Ω m ) is monotonically descreasing, and this is the case for generic w DE inside GR, it is the second effect which prevails.

Systems with a non-monotonic γ(Ω m )

We can consider now several cases where the growth index is not a monotonically decreasing function of Ω m -in sharp contrast with ΛCDM .

Varying equation of state w DE (z)

The first case that comes to one's mind is an oscillating equation of state w DE . Indeed, it is easy to show that Γ(Ω m ) is no longer monotonically decreasing in this case and that γ may oscillate provided the oscillations in w DE , and hence in Γ(Ω m ), are sufficiently pronounced. Observations however do not seem to favour such oscillations. We rather want to investigate whether a smoothly varying EoS can lead to a change in slope of γ. For this purpose we use the parametrization in terms of x ≡ a a0 [START_REF] Chevallier | Accelerating universes with scaling dark matter[END_REF] w DE = w 0 + w a (1 -x) .

(5.35)

We consider the cases with w -∞ = w 0 + w a < 0 , w a > 0 .

(5.36)

The first inequality is to enforce the domination of matter (and the disappearance of DE) in the past. We also restrict our attention to w a > 0 in order to have a varying EoS leading to the opposite case in the future, namely DE domination and disappearance of matter. Also we will not impose the restriction w DE ≥ -1 valid for quintessence (a self-interacting scalar field minimally coupled to gravity) and admit arbitrarily negative values of w DE .

We consider conservative values 0 < w a ≤ 0.5 and w 0 ≈ -1. We obtain that γ(x) is quasi-constant deep in the matter dominated stage and starts decreasing (with the expansion) in the past typically at z ≃ 10, this decrease being stronger as w a is larger. In the future, a bump is obtained typically at z ≃ -0.9, which is higher for lower w a , this bump would essentially disappear for w a = 0.8. Finally in the asymptotic future γ → 1 2 as we expect for w ∞ → -∞. As a function of Ω m , γ will be increasing deep in the DE domination typically until Ω m ≃ 10 -5 , then decreasing until Ω m ≃ 0.7, and finally increasing again for w a ≳ 0.2. To summarize, γ(Ω m ) is essentially slowly varying and decreasing from the past to the future in this case covering in particular the range probed by observations. The significant changes in slope are pushed around Ω m ≈ 0. While this is interesting in itself, from an observational point of view models with w a ≲ 0.2 follow essentially the ΛCDM phenomenology regarding their growth index. Strong departure from ΛCDM takes place in the remote future only. These features are shown on figure 5.4.1. this is not so due to the non-vanishing derivative

( dg DGP dΩ m ) -∞ = 1 3 .
(5.39)

In order to find γ(Ω m ), we can use the same method as in [START_REF] Polarski | When is the growth index constant[END_REF] and write Eq.(6.1) for Ω m → 1. After some calculation, solving for γ(Ω m ) we obtain in the asymptotic past for the finite constant solution γ -∞ for arbitrary modified gravity models

γ -∞ = 3 (w -∞ -1 -d) 6w -∞ -5 , (5.40) 
where we have set

d ≡ ( dg dΩ m ) -∞
.

(5.41)

The GR result is recovered setting d = 0. Note that a similar relation was found between a constant γ corresponding to w -∞ = w -∞ in an arbitrary modified gravity model [START_REF] Polarski | When is the growth index constant[END_REF]. We finally obtain for the DGP model

γ DGP -∞ = 11 16 . (5.42) 
So the (finite) γ -∞ corresponding to w -∞ = -1 2 has the value γ DGP -∞ = 11 16 for a DGP model instead of 9 16 for GR. The derivation given here relies solely on the properties of the DGP model, eq. (5.37), and exhibits the origin of this anomalous value in an explicit way (see [START_REF] Linder | Parameterized beyond-einstein growth[END_REF], [START_REF] Huang | An analytic calculation of the growth index for f(R) Dark Energy model[END_REF] for other approaches).

This value for γ DGP -∞ corresponds to the constant γ DGP (and g = g DGP ) yielding identical equations of state, w -∞ = w DGP -∞ , in the past. We can summarize this in the following way

γ DGP -∞ ( w DGP -∞ ) = γ ( w -∞ = w DGP -∞
) .

(5.43)

The left hand side corresponds to a varying γ -the true γ obtained for w DGP and g DGP -while the right hand side corresponds to a constant γ in a modified gravity model with g = g DGP . A similar equality holds in the future and we have shown it here with the DGP model

γ DGP ∞ ( w DGP ∞ ) = γ ( w ∞ = w DGP ∞ ) .
(5.44)

Analogous equalities were found in [START_REF] Polarski | When is the growth index constant[END_REF] for GR and imply that the curves Γ(Ω m ) and γ(Ω m ) meet at Ω m = 0 and Ω m = 1, a property that we have used in the previous section. We have generalized this result to a class of modified gravity models including DGP models. As a corollary, we have the following important result: any modified gravity model with g(1) = 1, i.e. tending to GR in the past, however in a smooth way satisfying d = 0, will have the same limit γ GR -∞ (w -∞ ) as in GR. As can be seen from Fig. (5.4.4), the curve Γ DGP (Ω m ) and γ DGP (Ω m ) intersect indeed at Ω m = 0 and Ω m = 1. In contrast to generic models inside GR, here we have γ DGP ∞ = 2 3 < γ DGP -∞ = 11 16 . Hence Γ(Ω m ) cannot be monotonically decreasing, at best it would be monotonically increasing. If that were the case, γ DGP (Ω m ) would be monotonically increasing as well, always lying above Γ DGP . Actually this is what happens between Ω m ≃ 10 -3 and Ω m = 1. It is only in the far future, Ω m ≲ 10 -3 , that the slope of γ DGP (Ω m ) is negative (i.e. γ DGP increases with expansion) and that the behaviour is similar to ΛCDM.

Summary and conclusions

The growth index γ allows to distinguish efficiently the phenomenology of dark energy (DE) models and has been used extensively for this purpose (see e.g. [7, 25, 29, 33, 36, 52, 78, 86, 107, 140, 159, 160, 167-169, 237, 238, 240]). In this work we have performed an analysis of the growth index evolution from deep in the matter era till the asymptotic future. In this way global properties are exhibited. While from an observational point of view the main focus lies in the low-redshift behaviour of the growth index γ still, a global analysis yields some interesting insight and results. Some of the properties found here become transparent when we perform a global analysis of the growth index evolution. We have shown that when the growth index had a bump, resp. dip, in the recent past while the background evolution is similar to ΛCDM, today it is substantially lower, resp. larger, than 0.55 with a negative, resp. positive, slope dγ dΩm reflecting that the gravitational coupling G eff of the underlying modified gravity model is already decreasing, resp. increasing, with the expansion. The behaviour with a bump is a schematic representation of many f(R) models [START_REF] Gannouji | The growth of matter perturbations in f(R) models[END_REF][START_REF] Motohashi | Phantom boundary crossing and anomalous growth index of fluctuations in viable f(R) models of cosmic acceleration[END_REF], the second case was considered in e.g. [START_REF] Gannouji | Consistency of modified gravity with a decreasing G eff (z) in a ΛCDM background[END_REF].

Using results valid for a constant growth index, we suggest a condition giving the global sign of the slope dγ dΩm : when the curve Γ(Ω m ) introduced in Section 5.3 is monotonically decreasing then we have globally dγ dΩm < 0. This is the case in particular for models inside GR with a constant equation of state w DE = constant. Another interesting point concerns the value of the growth index for a given cosmological model at a given time. Actually the growth index γ can take a range of values. What is really meant by the value of γ(Ω m ) which corresponds to a given model is its value when the decaying mode of the perturbations mode tends to zero. We show that while the presence of a substantial decaying mode does not change the value of γ in the asymptotic future, this leads (as expected) to a divergence in the asymptotic past. It is only in the limit of a vanishing decaying mode that γ takes a finite value from γ -∞ in the asymptotic past (Ω m → 1) - 6 11 for ΛCDM -up to γ ∞ in the asymptotic future (Ω m → 0) -2 3 for ΛCDM. We have studied further the global behaviour of γ for the DGP model. In contrast to generic models in GR, we have γ DGP

-∞ = 11 16 > γ DGP ∞ = 2 3 with w DGP -∞ = -1 2 and w DGP ∞ = -1. While g DGP → 2 3 in the future, we have γ DGP ∞ = γ ΛCDM ∞
, so we get the same relation as in GR between γ DGP ∞ and w DGP ∞ = -1. Interestingly, while g DGP → 1 in the past so this model tends to GR in the past, γ DGP -∞ ̸ = 9 16 , the value expected in GR for w -∞ = -1 2 . This is because the DGP model does not tend to GR in a way which is "smooth enough". Indeed, it satisfies dg DGP dΩm -∞ = 1 3 ̸ = 0. As a corrolary we find that any modified gravity model which tends to GR in the past yields a γ -∞ which is the same function of w -∞ as in GR provided dg DGP dΩm -∞ = 0. Finally we find that γ DGP (Ω m ) is monotonically increasing from the past until the far future (Ω m ≈ 10 -3 ) where it crosses the curve Γ(Ω m ) in accordance with the condition mentioned above. The results presented in this work indicate that a measurement of γ on a significant part of the expansion could give interesting constraints and a deeper insight into the physics governing the Universe dynamics.
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The Growth Index γ: Mathematical Aspects and Physical Relevance 2020) [START_REF] Calderon | Global properties of the growth index: Mathematical aspects and physical relevance[END_REF] The present accelerated expansion rate of the Universe remains an outstanding challenge for theoretical cosmology. Despite intensive ongoing activity, the nature of dark energy (DE) driving the present accelerated expansion stage (physical, geometrical, or both) and its relation to known particles and fields remain unsettled [START_REF] Copeland | Dynamics of dark energy[END_REF][START_REF] Li | Dark energy[END_REF][START_REF] Padmanabhan | Cosmological constant: The Weight of the vacuum[END_REF][START_REF] Peebles | The Cosmological Constant and Dark Energy[END_REF][START_REF] Sahni | Reconstructing dark energy[END_REF][START_REF] Sahni | The Case for a positive cosmological Lambda term[END_REF]. Many DE models inside, as well as outside, general relativity (GR) were suggested for this purpose. While the increasing accuracy of observations allow to rule out many of them, a large number still remains viable. Among the successful DE models, ΛCDM has a very particular place due to its remarkable simplicity: it is based on GR with cold non-relativistic matter as a source, and requires only the addition of a (cosmological) constant Λ into the Einstein field equations. However, the attempt to interpret Λ in terms of 'vacuum energy' of quantum fields requires understanding why its effective energy density is so small compared to all other known substances. On the other hand, from the classical point of view, the ΛCDM is intrinsically consistent and its phenomenology serves as a benchmark for the interpretation of observational data and comparison to other DE models. Future observations will strongly constrain surviving models [START_REF] Amendola | Cosmology and fundamental physics with the euclid satellite[END_REF][START_REF] Bull | Beyond ΛCDM: Problems, solutions, and the road ahead[END_REF][START_REF] David | Observational probes of cosmic acceleration[END_REF]. It is therefore important to have tools characterizing their phenomenology (see e.g. [START_REF] Sahni | Model-independent evidence for dark energy evolution from baryon acoustic oscillations[END_REF]). One such tool is the growth index γ.

The growth index has a nice property valid for ΛCDM and more generally for non-interacting smooth DE models inside GR [START_REF] Polarski | On the growth of linear perturbations[END_REF]: up to a small correction depending on Ω m,0 , its value today γ 0 is well constrained, γ 0 ≈ 0.55. In addition, at higher redshifts it is quasi-constant, as depi5.3.1 (see also [START_REF] Polarski | When is the growth index constant[END_REF]). For example, in the presence of a cosmological constant Λ, γ tends to 6 11 for z ≫ 1 and it departs little from that value even up to the present time. Its discriminative power is therefore limited for these models. However modified gravity DE models can exhibit a strong departure from this behaviour [START_REF] Linder | Parameterized beyond-einstein growth[END_REF], [START_REF] Gannouji | The growth of matter perturbations in f(R) models[END_REF], [START_REF] Motohashi | Phantom boundary crossing and anomalous growth index of fluctuations in viable f(R) models of cosmic acceleration[END_REF]. The growth index offers therefore the possibility to discriminate between DE models inside and outside GR, motivating its study in the context of DE models. Hence, while the growth index was initially introduced in order to characterize the growth of matter perturbations for open Universes [START_REF] Peebles | Tests of cosmological models constrained by inflation[END_REF], and later generalized to other models inside GR [START_REF] Lahav | Dynamical effects of the cosmological constant[END_REF], interest in the growth index was revived recently [START_REF] Linder | Parameterized beyond-einstein growth[END_REF] for the assessment of DE models.

The study of the growth index is also of mathematical interest in its own. A global analysis of its dynamics, from deep in the matter era till the future DE dominated stage, often offers a better insight on its evolution including low redshift behavior probed by observations [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF]. We will study in details a system with partially unclustered dust-like matter (or, DE tracking dust-like matter), showing interesting connections with results obtained earlier for a strictly constant growth index. We will also study the evolution of γ using the dynamical system analysis. We first review the basic formalism in the next section, as well as results and methods from our earlier work [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF].

The growth index γ

Taking Ω m as the integration variable, the evolution equation for γ obtained from (5.8) using (5.10) yields

2αΩ m ln(Ω m ) dγ dΩ m + α(2γ -1) + F(Ω m ; g, γ) = 0 , (6.1) 
where we introduce for simplicity

α ≡ 3w DE , F(Ω m ; g, γ) ≡ 1 + 2Ω γ m -3 g Ω 1-γ m 1 -Ω m . (6.
2)

The solutions to equation (6.1) on the entire Ω m interval is the envelope of its tangent vectors

( 1 dγ dΩm
) .

All these tangent vectors define a vector field that can be written

( 2αΩ m (1 -Ω m ) ln(Ω m ) -α(2γ -1)(1 -Ω m ) -F(Ω m ; γ)
) .

where we have defined

F(Ω m ; g, γ) ≡ (1 -Ω m )F(Ω m ; g, γ) = 1 + 2Ω γ m -3 g Ω 1-γ m . (6.3)
We write the vector field in this way in order to have explicitly regular functions everywhere for (Ω m , γ) ∈ [0, 1] × R. One obtains the integral curves of this vector field (i.e. the phase portrait) by solving the autonomous differential system

dΩ m ds = 2αΩ m (1 -Ω m ) ln(Ω m ) (6.4) dγ ds = -α(2γ -1)(1 -Ω m ) -F(Ω m ; γ)
where s ∈ R + is a dummy variable parametrizing the curves. Clearly, the trajectories γ(Ω m ) are not unique. Only one integral curve however is finite everywhere: for ΛCDM, it is the curve γ(Ω m ) which starts (in the past) at γ(1) ≡ γ -∞ = 6/11 and ends (in the future) at γ(0) ≡ γ ∞ = 2/3. It corresponds to the presence solely of the growing mode of Eq.(3.13), or equivalently to the limit of a vanishing decaying mode. For cosmological constraints on DE models, one is essentially interested in that unique trajectory corresponding to a vanishing decaying mode. It is the only trajectory which has a finite initial condition γ -∞ at Ω m = 1, for all other trajectories γ will diverge in the past. However, concerning the asymptotic future (Ω m → 0), inside GR the solution to Eq. ( 6.1) gives γ → γ ∞ , Eq. ( 5.16), with (w

∞ < -1 3 ) f ∝ C a -1 2 (1-3w∞) → 0 . (6.5)
The crucial point is that this asymptotic behaviour is identical for all cases where the decaying mode is present, up to a change of the prefactor in (6.5) which depends on initial conditions and on the amplitude of the decaying mode with respect to the growing mode. Taking into account that Ω m ∼ a 3w∞ , it is straightforward to obtain from Eq. (5.10) that

γ = ln f ln Ω m → γ ∞ (6.6)
for all curves. This is complementary to the results obtained in [START_REF] Linder | End of cosmic growth[END_REF], where the growing mode for models beyond GR was considered.

Dynamical System Analysis

In this section, we will study our equations using the dynamical system approach. While the introduction of the variable Ω m is natural for a global analysis of the evolution of the growth index γ, we use the integration variable N ≡ ln a for the dynamical system approach, and we obtain for g = 1 (GR)

2 ln(Ω m ) dγ dN + α(2γ -1)(1 -Ω m ) + F(Ω m ; γ) = 0 . (6.7)
This is equivalent to the following differential system

dΩ m dN = α(1 -Ω m )Ω m . (6.8) dγ dN = - α(2γ -1)(1 -Ω m ) + F(Ω m ; γ) 2 ln(Ω m ) . (6.9)
We will use these equations in order to find the critical (or stationary) points of our system satisfying dΩm dN = 0, dγ dN = 0. Note that Eq.(6.8) is independent of γ and can therefore be integrated independently. When the function α(a) ≡ 3w DE (a) is known, we can obtain α(Ω m ) using (5.4). We find readily from (6.8) that dΩm dN = 0 in the following three cases:

Ω m = 0, Ω m = 1, α(Ω m ) = 0.
The stability of a dynamical system is given by the Hartman-Grobman theorem which asserts that there is a certain 2×2 matrix whose eigenvalues characterize the behavior of the system around the critical points. For the critical point corresponding to

Ω m = 1 S = ( Ω m = 1, γ = γ -∞ ) , (6.10) 
we find that the eigenvalues of our system are (-2α -∞ , 2α -∞ -5) and therefore the critical point is a saddle point for α -∞ ≤ 0. For the critical point corresponding to 6.11) the eigenvalues of the linearized system are (α ∞ , 0) and therefore we conclude that it is an attractor for α ∞ ≤ 0. Notice that the zero eigenvalue does not point to any stability or instability, but a simple centre manifold analysis allows us to conclude about the stability of the critical point. To study the structure of the phase space at infinity, we define u = 1/γ. We obtain that u = 0 (γ = ±∞) is also a critical point and it is easy to show that u = 0 is a repeller. These results of the dynamical system analysis confirm the asymptotic properties found analytically and numerically in [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF] and summarized in Section 5.1.

Ω m = 0 A = ( Ω m = 0, γ = γ ∞ ) , ( 
The remaining critical points correspond to α(Ω m ) = 0 and F = 0. Indeed, various critical points can exist if α(Ω m ) has different zeroes. These critical points can have a richer structure. The eigenvalues associated to this system are (-

2Ω γ m -1/2, Ω m (1 -Ω m )α ′ (Ω m )). If dα dΩm ≡ α ′ (Ω m ) < 0, the critical point is an attractor, if α ′ (Ω m ) > 0,
the critical point is a saddle point. In particular for constant γ, these obtains

γ = γ -∞ + (α -∞ -2)(α -∞ -3) + 2α ′ -∞ (2α -∞ -5) 2(5 -4α -∞ )(5 -2α -∞ ) 2 (1 -Ω m ) + O ( (1 -Ω m ) 2
) . (6.12)

This line is the asymptote of the heteroclinic orbit. Note that (6.12) generalizes the result given in [START_REF] Polarski | When is the growth index constant[END_REF] for constant α. One checks easily that ΛCDM satisfies indeed (6.12). Because we consider a dynamical system (system of first order differential equations), the trajectories (orbits) in phase space cannot intersect. But of course other curves which are not orbits of the system can intersect these orbits, e.g. we can consider the curve for which dγ dN = 0 everywhere. For α < 0, it satisfies dγ dΩm = 0 for 0 < Ω m < 1 and goes through the endpoints γ -∞ , resp. γ ∞ , at Ω m = 1, resp. Ω m = 0. from eqs.(6.10), (6.11).So it corresponds to the curve dubbed Γ(Ω m ) in [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF]. It satisfies w(Ω m , Γ(Ω m ) = w DE (Ω m )) and we have indeed Γ(1) = γ -∞ and Γ(0) = γ ∞ . For arbitrary w DE , γ is not constant and hence Γ(Ω m ) is not constant either. As Γ satisfies by construction dγ dN = 0 and critical points are defined by ( dγ dN = 0, dΩm dN = 0), Γ must intersect the critical points, but of course it can also intersect orbits at points which are not critical points. We can ask if it is above or under the heteroclinic orbit that we previously defined because they start and end at the same points. A global analysis is impossible, but we can at least analyze the behavior around Ω m = 1. We have already found the tangent to the heteroclinic orbit (see Eq.6.12). We can also calculate the tangent to Γ and we find around

Ω m = 1 Γ = γ -∞ + (α -∞ -2)(α -∞ -3) + 2α ′ -∞ (2α -∞ -5) 2(5 -2α -∞ ) 3 (1 -Ω m ) + O ( (1 -Ω m ) 2
) . (6.13) Therefore Γ lies above the heteroclinic orbit iff

α ′ -∞ < (α -∞ -2)(α -∞ -3) 10 -4α -∞ . (6.14)
One checks easily that ΛCDM satisfies (6.14). These results can be easily generalized to modified gravity for which the system becomes

dΩ m dN = α(1 -Ω m )Ω m (6.15) dγ dN = - α(2γ -1)(1 -Ω m ) + F(Ω m ; g, γ) 2 ln(Ω m ) (6.16)
We recover the same critical points as in GR if g = 1. Note that g -∞ = 1 and ( dg dN

) -∞
= 0 in order to avoid that w -∞ becomes singular [START_REF] Polarski | When is the growth index constant[END_REF]. The coordinate of the critical point at Ω m = 1 changes into

( Ω m = 1, γ = α -∞ -3 -3g ′ -∞ 2α -∞ - 5 
) . (6.17)

As expected, the expression for γ in Eq.( 6.17) corresponds to the only finite value in the asymptotic past found earlier [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF]. Finally, we can also find the condition for which the curve Γ starts at Ω m = 1 with an inclination larger than that of the heteroclinic orbit, viz.

α ′ -∞ < (α -∞ -2)(α -∞ -3) 10 -4α -∞ + 3 2 g ′′ -∞ (2α -∞ -5) (6.18) + 3g ′ -∞ 33 -28α -∞ + 6α 2 -∞ -27g ′ -∞ + 12α -∞ g ′ -∞ -6(5 -2α -∞ ) 2 g ′′ -∞ 2(2α -∞ -5)(6g ′ -∞ + 1)
.

When we apply this equation to the Dvali-Gabadadze-Porrati (DGP) model [START_REF] Dvali | 4D gravity on a brane in 5D Minkowski space[END_REF] (g ′ -∞ = 1 3 ), it is found that the inequality (6.19) is satisfied. Hence the heteroclinic orbit in the DGP model is a decreasing function of Ω m in the neighbourhood of Ω m = 1. This contrasts with the general shape of the heteroclinic orbit in the DGP model: it is an increasing function of Ω m except for Ω m ≲ 10 -3 and Ω m ≳ 0.9, the latter decrease (in the asymptotic past) is very tiny as compared to the sharp decrease in the asymptotic future [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF].

Presence of an Unclustered Dustlike Component

We consider yet another case inside GR where the growth index γ(Ω m ) is not monotonically decreasing in contrast to ΛCDM. Let us note first that in the particular case where Ω m is constant, we readily get from (5.8)

f ′ + f 2 + 1 2 f - 3 2 C = 0 , (6.19) 
and we set Ω m = C to emphasize the constancy of Ω m . Equation ( 6. [START_REF] Amendola | Cosmology and fundamental physics with the euclid satellite[END_REF]) has two constant solutions

p 1 = - 1 4 + 1 4 √ 1 + 24C , p 2 = - 1 4 - 1 4 √ 1 + 24C . (6.20)
For C > 0, we have necessarily p 1 > 0 and p 2 < 0. In other words, there are two genuinely growing and decaying modes for δ m . When C = 1 we recover the standard results in an Einstein-de Sitter universe.

An interesting situation arises when dust-like matter has some (small) relative fraction Ω x which does not cluster and only usual matter denoted by Ω m does, with

Ω tot m ≡ Ω m + Ω x = 1 . (6.21)
Phenomenologically, this unclustered component could be ultra-light dark matter, or DE tracking matter 1 exactly, thought later we will consider the presence of a DE component different from the unclustered (dustlike) matter component. It can also represent a light relativistic species like massive neutrinos once they become non-relativistic. Then Eq.( 6. [START_REF] Amendola | Cosmology and fundamental physics with the euclid satellite[END_REF]) is obtained with C = Ω m < 1. Let us consider for concreteness the situation with Ω x ≪ 1. From (6.20) the growing mode scales ∝ a p1 with

p 1 ≈ 1 - 3 5 Ω x ≈ Ω 3 5 m . (6.22)
The last term in (6.22) makes contact with the growth index γ. In the case under consideration, both Ω m and f = p 1 > 0 are constant, hence γ is constant, too, and from (6.22) it is close to 3 5 (see the nice discussion in [START_REF] Tegmark | Cosmological neutrino bounds for non-cosmologists[END_REF]). In [START_REF] Polarski | When is the growth index constant[END_REF], a family of solutions with constant γ > 3 5 was found corresponding to the roots of F(Ω m ; γ) for Ω m < 1 with w = 0 so that Ω m remains constant. This corresponds to our system with 1 i.e. having the effective equation of state w DE = 0 at this stage w = w x . For Ω x ≪ 1 it was found [START_REF] Polarski | When is the growth index constant[END_REF] 

p 1 = Ω 3 5 (1+ Ωx 25 ) m , (6.23) 
when we expand γ up to first order in Ω x . We see that (6.23) refines the result (6.22) (see also [START_REF] Linder | Parameterized beyond-einstein growth[END_REF], [START_REF] Paul | Cluster abundance constraints on quintessence models[END_REF]). We now extend these results to a universe where the expansion is driven also by an additional nontracking (genuine) dark energy component so that Ω m is no longer constant. The equation for γ in the presence of a dust-like matter component Ω x that does not cluster simply becomes

[ 2 Ω tot m ln ((1 -ε)Ω tot m ) dγ ε dΩ tot m + (2γ ε -1) ] α(1 -Ω tot m ) + F((1 -ε)Ω tot m ; γ ε ) = 0 , (6.24) 
with

Ω DE = 1 -Ω tot m , Ω m = (1 -ε)Ω tot m , Ω x = ε Ω tot m , (6.25) 
obviously satisfying

Ω tot m + Ω DE = Ω m + Ω x + Ω DE = 1 . (6.26) 
We have noted γ ε (Ω tot m ) the solution of Eq.(6.24) for ε > 0. In the asymptotic past, Ω DE → 0, this reduces to

-6 w -∞ ln(1 -ε) dγ ε d ln(1 -Ω tot m ) + F(1 -ε; γ ε ) = 0 . (6.27) 
It is seen from (6.27) that any finite solution γ ε of (6.24) must tend in the past to the root of

F(1 -ε; γ), viz. F(1 -ε; γ ε -∞ ) = 0 , (6.28) 
with

γ ε -∞ ≡ γ ε (Ω tot m → 1). Considering the change of variable, X = (1-ε) γ ε -∞
, the Eq.(6.28) transforms into

2X 2 + X -3(1 -ε) = 0 (6.29) X ± = -1 ± √ 25 -24ε 4 (6.30) 
Considering only the positive root, we get

γ ε -∞ = ln ( -1+ √ 25-24ε 4 ) ln(1 -ε) (6.31) 
Expanding this expression in series near ε = 0 leads to

γ ε -∞ ≡ γ ε (Ω tot m → 1) = 3 5 + 3 125 ε + 97 6250 ε 2 + 737 62500 ε 3 + O(ε 4 ) (6.32)
We recover the first two terms, the root of F(1 -ε; γ) to first order in ε [START_REF] Polarski | When is the growth index constant[END_REF] mentioned above, (6.23). Expression (6.32) extends these earlier calculations to third order in ε. We note the intriguing property that γ ε -∞ does not depend on any nonzero w -∞ . In order to understand this, we consider the corresponding vector field

F[Ω tot m , γ ε ; ε] tangent to the solutions γ ε F[Ω tot m , γ ε ; ε] = ( 2αΩ tot m (1 -Ω tot m ) ln((1 -ε)Ω tot m ) -α(2γ ε -1)(1 -Ω tot m ) -F((1 -ε)Ω tot m ; γ ε ) ) (6.33) 
and to look for its streamlines as we have done in Section 3. For Ω tot m ≃ 1 and ε ≃ 0, we can write the vector field (6.33) to leading order

F[Ω tot m , γ ε ; ε] ≃ ( (Ω tot m -1) ε 6w -∞ (Ω tot m -1) [(6w -∞ -5)γ ε -3w -∞ + 3] + ε(3 -5γ ε ) ) (6.34) 
It is seen that the leading order of the upper component (

dΩ tot m ds
) is of order (Ω tot m -1) × ε in the small parameters (Ω tot m -1) and ε. In the lower component

( dγ ds
) , we have neglected all higher order terms. For

ε = 0 (Ω x = 0), in the neighbourhood of Ω tot m = 1, we obtain to leading order in Ω tot m (= Ω m ) F[Ω tot m , γ; 0] ≃ ( 0 (Ω tot m -1) [ (6w -∞ -5)γ -∞ -3w -∞ + 3 ] ) , (6.35) 
with

γ -∞ ≡ γ(Ω tot m → 1, ε = 0) . (6.36) 
To avoid that dγ

dΩ tot m ε=0
diverges in the neighborhood of Ω tot m = 1, the lower component of F[Ω tot m ≃ 1, γ; ε = 0] must vanish too and hence we get

γ -∞ = 3w -∞ -3 6w -∞ -5 , (6.37) 
so we recover the (expected) result, Eq.(5.17). On the other hand, for ε > 0 fixed and however small, from (6.34) the limit Ω tot m → 1 gives to leading order in the small parameter ε

F[Ω tot m → 1, γ ε ; ε] ≃ ( 0 ε ( -5γ ε -∞ + 3 ) ) . (6.38) 
We obtain now 3 5 to lowest order in ε, viz.

γ ε -∞ = 3/5 + O(ε) , (6.39) 
in agreement with (6.22), (6.23). Actually, if we take the limit Ω tot m → 1 in (6.33), without expanding in ε, we obtain

F[Ω tot m → 1, γ ε -∞ ; ε] = ( 0 - F ( 1 -ε; γ ε -∞ ) ) , (6.40) 
showing again that γ ε -∞ must be a root of F(1-ε; γ), and the value 3 5 obtained from (6.38) is just the lowest order of the expansion of γ ε -∞ in powers of ε. Interestingly, there is another situation where an identical result appears [START_REF] Polarski | When is the growth index constant[END_REF]. Let us assume that we have a two-component system (ε

= 0) with Ω tot m = Ω m → 1 -δ, Ω DE → δ. This is possible only if DE
After some calculations, detailed in the next subsection 6.3, for α = -3 (w DE = -1) we obtain

γ Ω = 3 55ε -399 30250 -10161ε 16637500 (6.43) γ ΩΩ = 6 55ε 2 -31083 257125ε + 12960073 1202059375 . (6.44) 
These results are illustrated with Figure (6.3.1) where we can see that the approximation (6.52) gives an excellent match to the solution γ ε (Ω tot m ) for ε = 0.15, Ω tot m ≃ 1. Note that we have obtained a double expansion with respect to both Ω tot m and ε (neglecting all terms O(ε))

γ ε (Ω tot m ) ≃ 3 5 + [ 3 55ε - 399 30250 
] (Ω tot m -1) + 1 2 [ 6 55ε 2 - 31083 257125ε + 12960073 1202059375 
] (Ω tot m -1) 2 + ... (6.45) 
This suggests that, as a function of ε, γ ε has an essential singularity (i.e. a pole of infinite order) at ε = 0. These expressions given above show explicitely the discontinuity expressed by (6.42). For ε > 0, γ tends in the asymptotic past to γ ε -∞ , which has been calculated here up to terms O(ε 4 ), (6.32). For ε = 0 on the other hand, γ tends to γ -∞ (5.17). While γ -∞ depends on w -∞ , γ ε -∞ doest not and is in this sense universal. Clearly it would not be possible to recover γ -∞ by taking the limit ε → 0. This is what the equations above show: while γ ε -∞ is consistently obtained from (6.45) at Ω tot m = 1, the limit ε → 0 does not even exist in the neighborhood Ω tot m ≃ 1. Note that at Ω tot m = 1, the limit ε → 0 gives 3 5 . We will see now other situations were the value 3 5 appears. Until now we were interested in an unclustered component which behaves like dust, hence ε = constant. For such a system we see from (6.45) that γ ε (Ω tot m → 1) → 3 5 . The same limit is obtained if the unclustered component instead of behaving like dust tends to such a behaviour in the past, in other words if it is a tracking component in the past with ε tending to some constant value. Finally we note that our results hold for ε < 0, see e.g. [START_REF] Boisseau | Bouncing universes in scalar-tensor gravity models admitting negative potentials[END_REF].

It is also interesting to consider an unclustered component with w DE < w uncl < 0. Specializing to w DE = -1, taking only the leading order term in ε at each order of the expansion (6.45), we obtain

γ ε (Ω DE ) = 3 5 + 3 55 Ω DE ε + 3 55 ( Ω DE ε ) 2 + 3 55 
( Ω DE ε ) 3 + • • • (6.46) = 3 5 [ 1 + 1 11 ∞ ∑ k=1 ( Ω DE ε ) k ] + • • • (6.47) = 3 5 [ 1 + 1 11 ( -1 + ∞ ∑ k=0 ( Ω DE ε ) k )] + • • • (6.48) = 6 11 + 3 55 ∞ ∑ k=0 ( Ω DE ε ) k + • • • (6.49)
For our system, ΩDE ε → 0 so the sum is well-defined and yields

γ ε (Ω DE ) = 6 11 + 3 55 1 1 -ΩDE ε + • • • (6.50) For ΩDE ε → 0 we obtain again γ ε (Ω DE → 0) → 6 11 + 3 55 = 3 5 . (6.51) 
Computing the derivative of γ ε (Ω tot m )

In order to evaluate the derivative of γ ε (Ω tot m ) with respect to Ω tot m at Ω tot m = 1, let us assume γ ε (Ω tot m ) is analytic with respect to Ω tot m and use an expansion at second order in (Ω tot m -1), viz.

γ ε (Ω tot m ) = γ ε -∞ + dγ ε dΩ tot m -∞ (Ω tot m -1) + 1 2 d 2 γ ε d(Ω tot m ) 2 -∞ (Ω tot m -1) 2 + O ((Ω tot m -1) 3 ) . (6.52)
For simplicity, we denote

γ Ω ≡ dγ ε dΩ tot m -∞ , γ ΩΩ ≡ d 2 γ ε d(Ω tot m ) 2 -∞ . (6.53) 
The derivative dγ ε dΩ tot m has therefore the following expansion up to first order

dγ ε dΩ tot m = γ Ω + γ ΩΩ (Ω tot m -1)
Let us use this expansion in F[Ω tot m , γ; ε] given in (6.34) and compute the ratio of the components, which then gives the derivative dγ ε dΩ tot m -∞ . We will assume here that α is constant. The first component is

2αΩ tot m (1 -Ω tot m ) ln ((1 -ε)Ω tot m ) ≃ -2α [ln(1 -ε)(Ω tot m -1) + (ln(1 -ε) + 1)(Ω tot m -1) 2 ] , (6.54) 
while the second component is

-α(2γ ε -1)(1 -Ω tot m ) - F ( (1 -ε)Ω tot m ; γ ε -∞ + γ Ω (Ω tot m -1) + 1 2 γ ΩΩ (Ω tot m -1) 2 ) ≡ f 0 (ε) + f 1 (ε)(Ω tot m -1) + f 2 (ε)(Ω tot m -1) 2 + . . . (6.55) 
Considering Ω m = 1, it is trivial to find

f 0 (ε) = - F ( (1 -ε); γ ε -∞ ) = 0, (6.56) 
The derivative dγ dΩ tot m is therefore given by

f 0 (ε) + f 1 (ε)(Ω tot m -1) + f 2 (ε)(Ω tot m -1) 2 -2α ln(1 -ε)(Ω tot m -1) -2α(log(1 -ε) + 1)(Ω tot m -1) 2 , (6.57) 
and using Eq.(6.28), we obtain f 0 (ε) = 0. We have further

f 1 (ε) =α(2γ ε -∞ -1) -2(1 -ε) γ ε -∞ (γ ε -∞ + γ Ω ln(1 -ε))- 3(1 -ε) 1-γ ε -∞ (γ ε -∞ + γ Ω ln(1 -ε) -1) (6.58) f 2 (ε) =2αγ Ω -3(1 -ε) 1-γ ε -∞ × ( γ Ω + 1 + (-γ ε -∞ + γ ΩΩ log(1 -ε)) -(-1 + γ ε -∞ + γ Ω log(1 -ε)) 2 2 ) -2(1 -ε) γ ε -∞ ( γ Ω + -γ ε -∞ + γ ΩΩ log(1 -ε) + (γ ε -∞ + γ Ω log(1 -ε)) 2 2 ) (6.59) If ε > 0, this expression is not singular at Ω tot m = 1 provided that f 0 (ε) = 0. That is to say γ ε -∞ = ln ( √ 25-24ε-1 4 ) ln(1 -ε) . (6.60) 
Expanding this expression in series near ε = 0 leads to

γ ε -∞ ≡ γ ε (Ω tot m → 1) = 3 5 + 3 125 ε + 97 6250 ε 2 + 737 62500 ε 3 + O(ε 4 ) (6.61)
We recover the first two terms, the root of F(1-ε; γ) up to first order in ε [START_REF] Polarski | On the growth of linear perturbations[END_REF] mentioned above, Eq.(6.23).

We can proceed to the identification

γ Ω = f 1 (ε) -2α ln(1 -ε) (6.62) γ ΩΩ = f 2 (ε) -2α ln(1 -ε) - f 1 (ε)(-2α(ln(1 -ε) + 1)) (-2α ln(1 -ε)) 2 . ( 6.63) 
We first solve for γ Ω , using (7.38)

γ Ω = (1 -ε) γ ε -∞ (2γ ε -∞ (1 -ε) γ ε -∞ + 3(γ ε -∞ -1)(1 -ε) 1-γ ε -∞ -α(2γ ε -∞ -1)) ln(1 -ε)(3ε -2(1 -ε) 2γ ε -∞ + 2α(1 -ε) γ ε -∞ -3) (6.64) 
expanding in series of ε gives

γ Ω = α 5(2α -5)ε - 26α 2 -5α + 150 250(2α -5) 2 . (6.65) 
Finally, we use this expression in f 2 (see Eq. (7.40)) in order to solve for γ ΩΩ and we obtain the following expansion (the close form expression is too complicated to be of interest)

γ ΩΩ = 2α 5(2α -5)ε 2 - α(504α 2 -1525α + 1250) 125(2α -5) 2 (4α -5)ε + 61696α 5 -141960α 4 + 658150α 3 -2382375α 2 + 3413125α -1818750 18750(2α -5) 3 (4α -5) 2 . ( 6.66) 
Let us remark that near Ω tot m = 1, the derivative is given, up to terms of order

O(ε)O(γ ε -∞ ) by dγ dΩ tot m ≃ (5γ ε -∞ -3)ε 2α(1 -Ω tot m ) ln((1 -ε)Ω tot m ) - α(2γ ε -∞ -1) + 3 -5γ ε -∞ 2α ln((1 -ε)Ω tot m ) (6.67) 
For ε > 0, this expression is not singular at Ω tot m = 1 provided that the first term is null, i.e. γ ε -∞ = 3 5 + O(ε), whereas for ε = 0, the first term is identically zero and the condition for the derivative to be non singular at Ω tot m = 1 is γ -∞ = (α -3)/(2α -5) as obtained in (6.37).

Summary and Conclusions

The growth index γ is an interesting tool for the study of the evolution of matter perturbations on cosmic scales in various cosmological models (see e.g. [7, 25, 29, 33, 36, 52, 78, 86, 107, 140, 159, 160, 167-169, 237, 238, 240] for its use in different contexts). Though it was introduced in order to characterize the influence of a non-vanishing spatial curvature on the growth of matter perturbations, interest for its study was revived in the context of DE models. Indeed, the growth index is a particularly efficient tool for the assessment of DE models in modified gravity. We are interested in the global dynamics of γ from the asymptotic past to the asymptotic future. Though only a restricted interval of redshifts is relevant for observations, a global analysis yields a deeper insight [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF]. Using the dynamical system approach we have found all critical points of the system. That unique trajectory for which the growth index remains finite from the asymptotic future to the asymptotic past is identified as the heteroclinic orbit connecting the critical points (Ω m = 0, γ ∞ ) in the asymptotic future and

( Ω m = 1, γ -∞ ) in the asymptotic past. The critical point (Ω m = 0, γ ∞ ) is an attractor while the critical point ( Ω m = 1, γ -∞
) is a saddle point. These results confirm our earlier findings [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF]. We recall that this unique trajectory corresponds to a vanishing decaying mode. As an additional result, we have refined our earlier results regarding the behaviour of γ(Ω m ) in the DGP model and we find its very tiny decrease in the past, while it is essentially an increasing function except in the asymptotic future (Ω m ≲ 10 -3 ).

Finally, we have also considered a system consisting of DE with an effective equation of state having arbitrary dependence on redshift and partially clustered dust-like matter with some (small) component of the latter remaining smooth at all scales, and investigated the growth of perturbations in it at scales exceeding the Jeans (or free-streaming) length of gravitationally clustering matter (but much less than the Hubble scale). We have shown both analytically and numerically that γ ε -∞ is the root of

F(1 -ε; γ) for Ω m → 1 -ε < 1. Interestingly γ ε
-∞ does not depend on w DE which is possible because, as we have shown

lim ε→0 γ ε -∞ ̸ = γ -∞
where the last quantity corresponds to (usual) clustered dust and depends of course on w DE . The quantity γ ε -∞ was found earlier to correspond to the constant growth index corresponding to tracking DE in the matter era with Ω DE → ε. We find further that

dγ ε -∞ dΩm ∼ 1 ε 2 for ε ≃ 0 suggesting that γ ε
-∞ has an essential singularity at ε = 0. The results presented in this work show that besides its use for the assessment of DE models, the growth index γ has also interesting mathematical properties reflecting physical properties of the underlying cosmological model, as in the case of an unclustered axion-like component.

Part III A Negative Cosmological Constant in the Dark

Sector? Physical Review D -103, 023526 (2021) [START_REF] Calderón | A negative cosmological constant in the dark sector?[END_REF] While the physical mechanism behind the late-time accelerated expansion rate of the Universe still remains an open question [START_REF] Copeland | Dynamics of dark energy[END_REF][START_REF] Padmanabhan | Cosmological constant: The Weight of the vacuum[END_REF][START_REF] Peebles | The Cosmological Constant and Dark Energy[END_REF][START_REF] Sahni | The Case for a Positive Cosmological Λ-Term[END_REF], its phenomenology is known with ever increasing accuracy [START_REF] Amendola | Cosmology and fundamental physics with the Euclid satellite[END_REF][START_REF] David | Observational probes of cosmic acceleration[END_REF]. It is interesting that perhaps the simplest model, the Λ Cold Dark Matter (ΛCDM ) model, where gravity is described by general relativity whereas dark energy (DE) is simply a positive constant Λ, can account for the data to some accuracy. Hence the concordance model in which the present accelerated expansion rate is driven by a cosmological constant Λ has become the reference cosmological model. Aside from the theoretical problems, the smallness of Λ compared to expected Planckian values, it is not clearly established whether this model can successfully cope with all observations especially on small cosmic scales (see e.g. [START_REF] Bullock | Small-Scale Challenges to the ΛCDM Paradigm[END_REF]). Hence one is still investigating other DE models, both inside and outside gen-eral relativity, which are able to roughly reproduce the ΛCDM phenomenology and are therefore viable with the hope that some specific signature will single them out. Recently the so-called tensions with the concordance model, and more generally possible discrepancies [START_REF] Raveri | Concordance and discordance in cosmology[END_REF] between early and late time measurements of cosmic quantities, have attracted a lot of interest with a special emphasis on the H 0 tension [START_REF] Luis Bernal | The trouble with H 0[END_REF][START_REF] Benjamin | Model-independent test of the flrw metric, the flatness of the universe, and non-local estimation of h 0 r d[END_REF][START_REF] Shafieloo | Falsifying ΛCDM : Modelindependent tests of the concordance model with eBOSS DR14Q and Pantheon[END_REF][START_REF] Verde | The length of the low-redshift standard ruler[END_REF][START_REF] Verde | Tensions between the early and late Universe[END_REF]. This latter tension-a substantial difference at the ∼ 4σ level between the value of the present Hubble constant H 0 derived from the cosmic microwave background (CMB) Planck data [START_REF] Ade | Planck 2015 results. XIII. Cosmological parameters[END_REF] on one hand and from local data on the other hand, when the concordance model is assumed-could imply that the DE sector is more complicated than in the concordance model. This is one more incentive to consider models which are more sophisticated than ΛCDM. It is well known on the other hand that the presence of a positive cosmological constant Λ in superstring models is problematic. These theories prefer a negative cosmological constant, dubbed here λ, reflecting the embedding of the anti de Sitter rather than the de Sitter symmetry group. It is therefore interesting to investigate the possibility that our homogeneous expanding Universe contains a λ term and it may come as a surprise that this is indeed viable. In some sense this is so as long as the presence of the λ term does not change radically the main properties of the expansion history of our Universe compared to the concordance model. This requires first of all that the (smooth) dark sector (which we call here for simplicity the DE sector) contains an additional component, dubbed here X component, responsible for the late-time accelerated expansion rate (see e.g. [START_REF] Cardenas | A model of the universe including dark energy accounted for by both a quintessence field and a (negative) cosmological constant[END_REF][START_REF] Visinelli | Revisiting a negative cosmological constant from low-redshift data[END_REF]). Note that a transient effective λ switching around recombination to a positive Λ was considered in [START_REF] Ye | Is the Hubble tension a hint of AdS phase around recombination?[END_REF] while [START_REF] Akarsu | Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant[END_REF] considers the intriguing possibility of such a spontaneous switch at z ∼ 2. Let us mention that a negative, not necessarily constant, energy component can also appear as a result of the equations of motion like the negative dark radiation component found in [START_REF] Boisseau | Bouncing Universes in Scalar-Tensor Gravity Models admitting Negative Potentials[END_REF]. Among other interesting examples of components that can have negative energy is the "missing matter" of [START_REF] Vazquez | Observational constraints on conformal time symmetry, missing matter and double dark energy[END_REF], the dynamical Λ(t) term in [START_REF] Grande | Λxcdm: a common model solution to the cosmological coincidence problem[END_REF], or the reconstructed total dark energy component (see e.g. [START_REF] Dutta | Beyond ΛCDM with low and high redshift data: implications for dark energy[END_REF][START_REF] Poulin | Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions[END_REF]).

We address in this work the observational viability of models in the presence of a negative λ term for several behaviors of the dark sector, investigating more specifically the constraint coming from a high H 0 . Independently of observations, we study also the future evolution of such universes with constant w X , in which case a λ term can crucially change the dynamics of our Universe. We address as well the nontrivial appearance of transient accelerated stages in the past.

Cosmic expansion with a negative cosmological constant

We recall first the basic equations and concepts. We intend to study here a universe containing a negative cosmological constant λ. Obviously, such a model cannot accelerate the late-time expansion rate of the Universe in the absence of some additional component in the dark sector. To comply with observations we add an X component with w X < - 1 3 on very low redshifts. For a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe, the evolution of the Hubble parameter as a function of the redshift z = a0 a -1 at z ≪ z eq reads

H 2 (z) = H 2 0 [Ω m,0 (1 + z) 3 + Ω λ,0 + Ω X,0 f X (z)] , (7.1) 
where H(t) ≡ ȧ(t)/a(t) is the Hubble parameter, a is the scale factor and a dot stands for the derivative with respect to cosmic time t, Ω i ≡

ρ i ρ cr with 3H 2 ≡ 8πGρ cr , finally f X (z) = ρ X (z) ρ X,0 is given by f X (z) = exp [ 3 ∫ z 0 dz ′ 1 + w X (z ′ ) 1 + z ′ ] , (7.2) 
with w X ≡ p X /ρ X . When we consider later constraints involving much larger redshifts, we will add radiation and neutrinos. It is crucial that in (7.1) we have

Ω λ,0 < 0 , (7.3) 
as we assume the presence of a negative cosmological constant λ < 0. For such a model it is natural to make the following identification

Ω DE,0 ≡ Ω λ,0 + Ω X,0 ≃ 1 -Ω m,0 . (7.4) 
The combined dark energy (DE) sector must of course be able to produce the late-time accelerated expansion of the universe. Its evolution is shown in Fig. 7.1.1 as a function of z and w X . While a negative cosmological constant can hide in the dark sector during the past evolution of our Universe, it can significantly modify its future evolution. Before considering the asymptotic future it is also very interesting to study the appearance of accelerated stages in such models.

universe never accelerated in the past. The maximum value for ä/a is given by

ä aH 2 0 max = Ω λ,0 - w X Ω m,0 2(1 + w X ) [ Ω X,0 (1 + 3w X )(1 + w X ) -Ω m,0 ] -1 w X , (7.6) 
which shows the nontrivial dependence of the acceleration parameter on w X and Ω λ,0 . In Fig. 7.1.3, we extended this analysis to a large range of Ω λ,0 and w X . In white, the universe accelerates today while in gray the universe decelerates today. The latter is divided in areas (light gray) where the universe never accelerated until today and situations (darker gray) where the universe had an acceleration in the past but does not accelerate today. Having in mind the observational constraints which will be addressed more thoroughly later, we have also represented in the same figure the set of parameters satisfying Eq. (7.27) in red for h = 0.74, and SNe Ia data constraints in blue. Notice that for SNe Ia, we have marginalized over H 0 and assumed for ω m the CMB best fit value. This is somehow naive and a more rigorous analysis will be performed in the next section. We see that SNe Ia data exclude any decelerated universe today if w X is constant. Notice also that if Ω λ,0 = 0, we need w X = -1.2 to obtain h = 0.74 as it was already noticed in [START_REF] Alestas | H 0 tension, phantom dark energy, and cosmological parameter degeneracies[END_REF]. For negative values of the cosmological constant the required phantomness is milder as we will see in Section III, but we see that SNe Ia constraints are also tighter and no intersection is possible. The SNe Ia data are marginally consistent with h = 0.72 at 3σ for any value of Ω λ,0 . We conclude therefore that even though a negative cosmological constant is appealing and easily motivated from string theory, its impact on the Hubble tension is rather marginal for constant w X , which will be confirmed by our numerical results.

Future asymptotic solutions

Let us consider now the limit in the future where dust-like matter density becomes negligible compared to the dark sector density. As we have our Universe in mind, we consider the regime in the future for which Ω m,0 ( a0 a

) 3 ≪ |Ω λ,0 | < Ω X,0
. Then, we have to solve the effective Friedmann equation

H 2 = -|α| + β a p , (7.7) 
where we have set for brevity

α ≡ Ω λ,0 H 2 0 < 0 β ≡ Ω X,0 H 2 0 a p 0 p ≡ 3(1 + w X ) . (7.8) 
The exact solution of Eq. (7.7) is

a = ( β |α| ) 1 p sin 2 p ( p 2 √ |α| t + C ) , (7.9) 
or more explicitly in function of the cosmological parameters

a a 0 = ( Ω X,0 |Ω λ,0 | ) 1 p sin 2 p ( p 2 √ |Ω λ,0 | H 0 t + C ) , (7.10) 
where C is an integration constant. We obtain further

H H 0 = √ |Ω λ,0 | cot ( p 2 √ |Ω λ,0 | H 0 t + C ) (7.11) Ḣ H 2 0 = p 2 |Ω λ,0 | [ -1 -cot 2 ( p 2 √ |Ω λ,0 | H 0 t + C )] (7.12) 
If p = 0 (w X = -1), the two terms on the r.h.s. of Eq. (7.7) combine to give an effective positive cosmological constant. The resulting future evolution is that of ΛCDM. Note that it is possible in this case to give the exact analytic expression even when dustlike matter is taken into account. We consider next p > 0, in other words the X-component is not of the phantom type. As its density is decreasing with expansion, the universe will eventually recollapse. Note that the density of dustlike matter decreases even more rapidly (∝ a -3 ) so Eq. (7.7) applies if |Ω λ,0 | ≪ Ω DE,0 ≈ 0.7 and w X ≈ -1. Indeed, we can read off from Eq. (7.10) the condition for the existence of a time interval before the contraction during which dustlike matter can be neglected, viz.

( |Ω λ,0 | |Ω λ,0 | + Ω DE,0 ) 3 p ≪ |Ω λ,0 | Ω m,0 (7.13) 
As expected, we verify further with Eqs. (7.11), (7.12), that the expansion is decelerating, ä < 0, (at least) in the neighbourhood of a M , the maximal value of the scale factor. As expected this is only so for 0 < p < 2 (-1 < w X < -1 3 ) otherwise there is no acceleration at all. So even if the universe is accelerating today, it passes again through ä = 0, from an accelerating to a decelerating expansion rate. When (7.13) is satisfied, this takes place at a M a ≃

( 1 + p 2 ) 1 p , (7.14) 
which is close to a M and lies in the regime described by (7.7). We now turn to p < 0, the phantom case. It is clear that the universe will eventually reach the Big Rip singularity in a finite time t ∞ . In some range before t ∞ , the dust-like component will be negligible compared to the negative cosmological constant. In that case, a(t) is given to high accuracy by the solution (7.9) or (7.10). To ensure the presence of a Big Rip at t ∞ , we write the integration constant C in a way to have a Big Rip at t = t ∞ and the solution for a(t) then reads

a(t) = ( |Ω λ,0 | Ω X,0 ) 1 |p| a 0 sin -2 |p| ( |p| 2 √ |Ω λ,0 | H 0 (t ∞ -t) ) . (7.15) 
We verify easily that in the limit t → t ∞ , this solution tends asymptotically to

a(t) ∼ A (t ∞ -t) 2 |p| , (7.16) 
with A given by

A = ( |p| 2 √ Ω X,0 H 0 ) -2 |p| a 0 . (7.17)
This is the well-known singular behaviour in the vicinity of t ∞ , depending solely on the phantom component, here the X component. The solution (7.15) gives a nearly exact fit in the regime Ω m,0 ≪ |Ω λ,0 | and improves on (7.17) when t is sufficiently far from t ∞ .

Cosmic Relevance of λ and the H 0 tension

We now turn to the cosmic relevance of models admitting a negative cosmological constant λ. As for any cosmological model differing from ΛCDM , an important question to address is how viable the model is if the measured value of h is substantially higher than 0.67. It is well known that there is a tension between the value of H 0 obtained by Planck and the value obtained with many local (low redshifts) measurements. This is a very interesting problem which has been widely investigated recently in various ways (see e.g. [START_REF] Agrawal | H 0 Tension, Swampland Conjectures and the Epoch of Fading Dark Matter[END_REF][START_REF] Anchordoqui | H 0 tension and the String Swampland[END_REF][START_REF] Ballardini | Scalar-tensor theories of gravity, neutrino physics, and the H 0 tension[END_REF][START_REF] Banerjee | Hubble Sinks In The Low-Redshift Swampland[END_REF][START_REF] Barker | Systematic study of background cosmology in unitary Poincaré gauge theories with application to emergent dark radiation and H 0 tension[END_REF][START_REF] Benaoum | Modified Emergent Dark Energy and its Astronomical Constraints[END_REF][START_REF] Benevento | Can late dark energy transitions raise the Hubble constant?[END_REF][START_REF] Demianski | High redshift constraints on dark energy models and tension with the flat LambdaCDM model[END_REF][START_REF] Valentino | Interacting dark energy in the early 2020s: A promising solution to the H 0 and cosmic shear tensions[END_REF][START_REF] Hernández-Almada | Generalized emergent dark energy: observational Hubble data constraints and stability analysis[END_REF][START_REF] Jedamzik | Relieving the Hubble tension with primordial magnetic fields[END_REF][START_REF] Li | A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tension[END_REF][START_REF] Poulin | Early Dark Energy Can Resolve The Hubble Tension[END_REF][START_REF] Sekiguchi | Early recombination as a solution to the H 0 tension[END_REF][START_REF] Sola | Brans-Dicke cosmology with a Λ-term: a possible solution to ΛCDM tensions[END_REF][START_REF] Vagnozzi | New physics in light of the H 0 tension: An alternative view[END_REF][START_REF] Vattis | Dark matter decaying in the late Universe can relieve the H0 tension[END_REF][START_REF] Eoin Ó Colgáin | de Sitter Swampland, H 0 tension & observation[END_REF] for a non exhaustive list). This tension can be traced back to the measurement of the standard ruler r s , the comoving sound horizon at recombination time (very close to the drag epoch) relevant for the corresponding angle θ s sustended on the CMB. Refer reader to schematic picture in 1.3.5

r s (z 1 ) = ∫ t1 0 c s dt a(t) = 1 a 0 ∫ ∞ z1 c s dz H(z) , (7.18) 
where adiabatic primordial fluctuations are assumed. The angle θ s is given by

θ s = a 1 r s (z 1 ) d A (z 1 ) , (7.19) 
where d A (z) is the angular-diameter distance out to a redshift z. We finally obtain

θ s = r s (z 1 ) r(z 1 ) , (7.20) with r(z 1 ) = c a 0 ∫ z1 0 dz H(z) . (7.21) 
We have reintroduced explicitly the speed of light c and a 0 in (7.18), (7.21) (c = 1 and a 0 = 1 in this work but will sometimes be written explicitly). We choose the Planck 2018 TT,TE,EE+LowE+Lensing constraints (no BAO), with one massive neutrino species [START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF]. We take the following values , defined as

z 1 = z rec = 1089.
Ω i,0 = 8πGρ i,0 3H 2 0 , (7.23) 
suffers from the uncertainty of the value of H 0 even if ρ i is otherwise known. However, it is often possible to find observationally the numerical value of the combined quantities

ω i ≡ Ω i,0 h 2 , (7.24) 
with h ≡ H0 100 km s -1 Mpc -1 . For our models, we have obviously on low redshifts

H(z) = [ω m (1 + z) 3 + ω λ + ω X f X (z)] 1 2 × 100 km s -1 Mpc -1 . (7.25)
In the standard ΛCDM model, the value of r s (z 1 ) is controled by the quantities ω i contained in the model with the notable exception of ω Λ . Measuring these quantities yields in turn r Planck s (z 1 ). As the angle θ Planck s is accurately measured by the Planck collaboration, the numerical value of r(z 1 ) becomes fixed in turn (for given θ s measured by Planck) to its value r Planck (z 1 ), r Planck (z 1 ) = 13 872.8 Mpc .

(7.26)

Hence, once a cosmological model is adopted which does not change the early-time physics of ΛCDM, such a model is compelled to give the same r(z 1 ). For ΛCDM this boils down to fix the value ω Planck Λ and therefore the value of H 0 . The Planck collaboration finds H 0 = 67.36 km s -1 Mpc -1 a value substantially lower than the value measured locally. We refer the interested reader to the excellent account given in [132]. In this work we are interested in models which depart from ΛCDM regarding the universe expansion for z < z 1 , however in a way that they satisfy r(z 1 ) = r Planck (z 1 ) (7.27)

for a larger H 0 value. Used in our theoretical investigations, the constraint (7.27) assumes that both r s and θ s are fixed to their Planck values (see Table 7.2.1). It is obvious from (7.25), (7.20) that a larger H 0 requires

ω DE = ω λ + ω X > ω Planck Λ , (7.28) 
and a phantom behaviour of the X component, hence also an effective phantom behaviour of the DE sector. This amounts to explore models with w X < -1 at least during part of the late-time expansion. It is straightforward to obtain the exact equality

ω DE -ω Planck Λ = h 2 -(h Planck ) 2 , (7.29) 
It is further clear that our models satisfy (by construction)

Ω m,0 = ( h Planck h ) 2 Ω Planck m,0 < Ω Planck m,0 , Ω DE,0 ≃ 1 -Ω m,0 > Ω Planck Λ,0 . (7.30) 
Since we have to calculate distances up to z = z rec , where radiation is subdominant but not negligible, we have to properly take into account the effect of photons and neutrinos. At high redshifts (z ≳ 50), Eq. (7.25) becomes [START_REF] Komatsu | Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation[END_REF] H(z)

100 km s -1 Mpc -1 = [ ω m (1 + z) 3 + ω λ + ω X f X (z) + ω γ (1 + z) 4 ( 1 + 0.2271 N eff 3 ∑ i f ν ( m νi T ν ) ) ] 1 2 , (7.31) 
with ω γ = 2.47 × 10 -5 while f ν is well fitted with f ν (y) ≃ (1 + (Ay) p ) 1/p with A = 180ζ(3) 7π 4 and p = 1.83 [START_REF] Komatsu | Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation[END_REF]. The function f ν interpolates between the relativistic behaviour, m ν ≪ T ν (T ν ∼ a -1 ), and the non-relativistic regime, m ν ≫ T ν . Even for m ν as light as 0.06eV, the transition occurs rather early around z ≃ 110. Given these considerations, we fix the early Universe cosmology as in table 7.2.1.

100ω b 100ω c N eff m ν r s r d 100θ s (eV) (Mpc) (Mpc)
2.237 12.00 3.046 (0,0,0.06) 144.43 147.09 1.04110 

The Models

When assessing the viability of our models with respect to the low-redshift data and the constraint on their free parameters coming from a high H 0 , we will consider various types of equation of state (EoS) parameters w X and various values of ω λ .

Scenario w:

We consider first models with constant equation of state w X = constant. In this case we obviously have f X (z) = (1 + z) 3(1+wX) . (7.32)

As we have seen earlier, to ease the H 0 tension necessarily requires a phantom behaviour and for a constant w X the only possible choice is to take w X < -1. We take an EoS of the form

w X = -1 + Δ 1 = w 0 , Δ 1 < 0 , (7.33) 
and we obtain immediately f X (z) = (1 + z) 3Δ1 . (7.34)

While a constant w X gives us some insight, it is clearly advisable to explore also models with varying equations of state.

CPL scenarios: here we adopt the CPL parametrization of w X corresponding to a smoothly (differentiable)

varying EoS with w X = w 0 + w a (1 -a) ≡ -1 + Δ + w a (1 -a) (7.35) which gives [START_REF] Chevallier | Accelerating universes with scaling dark matter[END_REF], [START_REF] Linder | Exploring the expansion history of the universe[END_REF] f X (z) = (1 + z) 3(Δ+wa) exp -3wa z 1+z . (

We consider also two constrained versions: CPLw a , with w 0 = -1 while w a is free; and CPLw 0 , where w 0 is free and w a = -1 -w 0 so that w X → -1 ≡ w ∞ .

Scenario I:

In this scenario, we take a piece-wise constant w X where dark energy is of a phantom type below some transition redshift z c and a cosmological constant Λ above, with

w X (z) =    -1 + Δ 1 = w 0 , for z ≤ z c Δ 1 < 0 -1 = w ∞ , for z > z c (7.37) 
Here we take Δ 1 < 0 in order to ensure a phantom behaviour and we fix z c = 1. As z c increases, it is easier to meet the data on small redshifts but it requires stronger phantomness on large redshifts in order to comply with the observed θ s and a higher H 0 . We note that most of the SN Ia data are in the range z c ≤ 1. In this scenario, the evolution of the X-component is given by

f X (z) =    (1 + z) 3Δ1 , for z ≤ z c (1 + z c ) 3Δ1 , for z > z c (7.38)
Scenario II: This scenario has also a piece-wise constant w X , but it is now opposite to the previous scenario, i.e.

w X (z) =    -1 = w 0 , for z ≤ z c -1 + Δ 2 = w ∞ , for z > z c , Δ 2 < 0 (7.39)
We have now

f X (z) =    1, for z ≤ z c ( 1+z 1+zc ) 3Δ2
, for z > z c (7.40) In this case too, we take z c = 1.

Scenario III:

w

X (z) =          -1 + Δ 1 = w 0 , for z ≤ z c1 , Δ 1 < 0 -1, for z c1 < z ≤ z c2 -1 + Δ 2 = w ∞ , for z > z c2 , Δ 2 < 0 (7.41) 
We have in this case

f X (z) =          (1 + z) 3Δ1 , for z ≤ z c1 (1 + z c1 ) 3Δ1 , for z c1 < z ≤ z c2 (1+zc1) 3Δ1 (1+zc2) 3Δ2 (1 + z) 3Δ2
, for z > z c2 (7.42) For this scenario we take z c1 = 0.1 and z c2 = 1. A significant change in w X on very small redshifts is viable and we exploit also this possibility here. Once a specific model is adopted we can find the dependence of h on the model parameters for a model satisfying (7.27). This gives insight into the phenomenology of these models irrespective of the observational constraints. For constant w X , we can study its behaviour in terms of the following three free parameters: ω λ , w X and h. Indeed the parameter ω X is fixed once ω λ and h are given. From the constraint (7.27) however, only two free parameters are left. In Figure 7.2.1, we show the value of h in terms of w X , when ω λ is fixed and as a function of w X and ω λ in a 3-dim plot. In the first case, we confirm the linear relation obtained in [START_REF] Alestas | H 0 tension, phantom dark energy, and cosmological parameter degeneracies[END_REF] (for ω λ = 0), which we have generalized here to h = 0.673 + (w X + 1)(0.93ω λ -0.33).

(7.43)

At this point we emphasize another interesting aspect of our models which we discuss here for a constant w X . As we will see later, observations favour models of the phantom type, w X < -1. This implies that ρ DE = ρ λ + ρ X will necessarily become negative in the past at some redshift z λ and it is straightforward to find

1 + z λ = [ 1 + h 2 -ω m |ω λ | ] -1 3(1+w X ) . (7.44) 
We have used ω DE ≈ h 2 -ω m which is valid to high accuracy. On the other hand, H 2 (z) is necessarily positive ∀z > z m with

1 + z m = [ |ω λ | ω m ] 1 3 . (7.45)
It is seen from (7.44) that z λ → 0 as |ω λ | is increasing and w X is more phantom. When this is the case there might be some parameter values for which H 2 (z) itself becomes negative for some redshifts in the range z λ < z < z m , such models are not viable and must be rejected. The condition .46) This inequality depends on the free parameters w X , ω λ , h. However, we should remember that in our theoretical analysis once w X and ω λ are given, because of the constraint (7.27) h is no longer free as we illustrate with Figures 7.2.1 and 7.2.2. We see that a priori, for given w X , large|ω λ | and low h 2 values can lead to a violation of (7.46). Once a two-dimensional surface h(w X , ω λ ) is found satisfying (7.46) (see the lower panel of Figure 7.2.1), the projection in the (w X , ω λ ) plane satisfies it automatically too.

H 2 (z) > 0 is easily translated into ω m [(1 + z) 3 -f X (z)] + h 2 f X (z) > |ω λ | (1 -f X (z)) . ( 7 

Comparison with data: Model Selection and Parameter Estimation

In this section, we are interested in the question of model selection: namely, comparing the different models to the reference ΛCDM model. Let M be the model, D the data, and Θ the parameters of the model. Bayes

The data

The quantities ω m and ω r are kept to their fiducial Planck value, and thus so are r s and r d . We vary h and the parameters ω λ , w X associated with dark energy and obtain θ s,model for each set of free parameters which is then compared to θ s,Planck and gives us a likelihood for θ s .

In addition, we used the 1048 distance modulus measurements from the Pantheon type Ia supernovae (SNIa) compilation [START_REF] Scolnic | The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample[END_REF], and the BAO from the Baryon Oscillation Spectroscopic Survey (BOSS) and extended-BOSS (eBOSS) surveys [START_REF] Alam | The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample[END_REF][START_REF] Zhao | The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space[END_REF]. Since the measurements from the SH0ES project are in tension with ΛCDM , we instead use a measurement with larger error bars which is not inconsistent [START_REF] Huang | Hubble Space Telescope Observations of Mira Variables in the SN Ia Host NGC 1559: An Alternative Candle to Measure the Hubble Constant[END_REF]. In general, supernovae show a degeneracy between the absolute magnitude and the Hubble constant. Therefore, SNIa alone cannot measure H 0 . However, in this particular study, since we fixed ω m , choosing a certain value for Ω m,0 uniquely fixes h; therefore we can use SNIa data to obtain h. The BAO provide us with H(z)r d and d A (z)/r d , where d A is the angular diameter distance and the sound horizon at the drag epoch r d is fixed to its Planck value (Table 7.2.1). The three pairs of data points (d A /r d and H r d ) from BOSS are correlated, and so are the four eBOSS pairs, and the BAO covariance matrix is thus

C BAO = ( C BOSS 0 0 C eBOSS ) . ( 7 

.50)

θ s and H 0 are one data point each, and their associated likelihood is thus trivial. We used flat priors as shown in Table 7.3.1. Table 7.3.2 summarizes our results for SN+BAO+θ s while in Table 7.3.3 the H 0 data point from HST-Mira is added. The quoted central values and error bars correspond to the median and 68% credible intervals around it. We remind the reader that in this analysis, ω m , ω b , N eff , and ∑ m ν are fixed to their Planck value, and thus so are r s and r d (see Table 7.2.1). Figure 7.3.1 shows the posterior distributions of the parameters for models ΛCDM , III, and λIII (lefthand panel), and ΛCDM , λCPLw a , and λII (right-hand panel). Model III shows preference for a higher value of h, and adding a negative λ pushes h even higher, although this is not sufficient to reconcile it with the SH0ES value. An interesting property of the negative cosmological constant is that it allows to satisfy the observational constraints with an equation of state which is less phantom. This is clearly seen in partic-ular for scenario w, where the addition of λ shifts the central value of w 0 from -1.049 to -1.0122. We note that given our priors on w 0 and w ∞ , the equation of state is not always constrained, as seen, for instance, for model III. It is also interesting that the best models λII are those where the phantom behavior, and hence the departure from ΛCDM, takes place at z ≳ 1. This suggests new physics appearing at these redshifts rather than at redshifts z ≲ 1 can yield viable models. Models (λ)III fare reasonably well while having an additional departure from ΛCDM at very low redshifts z ≤ 0.1 but it is clear when we compare them with models (λ)I that their main advantage comes from their phantomness at z ≳ 1. This seems further supported by the better evidence for (λ)CPLw a , where w 0 = -1 with a phantom behavior at higher redshifts (w a < 0), compared to (λ)CPLw 0 with w tending asymptotically to -1 and departure from -1 takes place essentially at low redshifts. Note that CPLw a models have the best evidence for λ = 0, while models II have the highest evidence for λ ̸ = 0 (λII). Interestingly, λCPLw a lowers the evidence compared to CPLw a . As we have said earlier, perhaps with the exception of the models λII, the higher evidence compared to ΛCDM is not decisive and should be interpreted with caution.

Summary and Conclusion

In this work, we have considered the possibility that the dark energy sector contains a negative cosmological constant λ. Indeed, theoretical considerations from high energy physics suggest the possible presence of a negative cosmological constant rather than a positive one. This constitutes a radical change as in that case, and contrary to a positive cosmological constant Λ, this constant cannot produce the late-time accelerated expansion rate and a more sophisticated dark sector is required. The Universe acceleration is produced here by the X component. Clearly the presence of λ can affect the expansion history and we have studied the viability of these models, also when a high H 0 is considered.

While as we have shown some models can achieve a higher H 0 when the equation of state of the X component w X is of the phantom type-this is of course a generic property not restricted to λ ̸ = 0 -we have investigated whether these models are viable when SNIa and BAO data are taken into account. We find indeed that most of our models are viable with a fair evidence for the models λII. Taking into account the H 0 value of the HST-Mira experiment reinforces the evidence of the models λII, reaching a value h ≈ 0.7 but not higher. Hence, while these models do alleviate the H 0 tension, a value for H 0 substantially higher would rule them out. We note also that the CPLw a models are the best models for λ = 0 while the presence of a nonvanishing λ lowers the evidence for λCPLw a versus CPLw a . It is further interesting that the best models λII are equal to ΛCDM on z ≤ 1 and of the phantom type only at higher redshifts.

The constant λ will manifest itself in a very explicit way in another context, namely, the future evolution of our Universe. Considering for concreteness a constant w X , it is clear that an equation of state -1 < w X , sufficiently negative in order to produce an accelerated expansion rate today, will necessarily produce a transient acceleration stage. It will then eventually lead to a recollapsing universe. We have found the analytical expression for the scale factor a(t) in the regime around the turning point when dustlike matter is negligible compared to the dark sector. On the other hand if the X component is of the phantom type, w X < -1, our Universe will end in a Big Rip as expected and we have found here too an analytical fit for a(t) valid in the asymptotic region when dust-like matter becomes negligible compared to λ while the latter

is not yet negligible compared to the X component.

Suggested by high energy physics, the possibility to have a negative cosmological constant is worth investigating as it challenges our intuition about the phenomenology of cosmological models. If this negative cosmological constant is substantial enough to affect the cosmic expansion history like in those models investigated here, a high value for H 0 could be a decisive test.

"Las Estrellas dicen que nosotros somos los fugaces."
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Conclusions

It is rather curious -to say the least-to note that the Universe seems to have undergone a De Sitter-like epoch of accelerated expansion twice already in the cosmic history. Yet it seems very challenging to construct a (stable) De Sitter vacuum from a more fundamental theory [START_REF] Obied | De sitter space and the swampland[END_REF]. While the physical mechanism driving these periods of accelerated expansion remains unknown, supernovae [START_REF] Perlmutter | Measurements of Ω and Λ from 42 high redshift supernovae[END_REF][START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF], CMB [69] and LSS observations [START_REF] Percival | Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample[END_REF] suggest the universe is currently accelerating, consistent with a simple (positive) cosmological constant (Λ), and Cold Dark Matter (CDM). The ΛCDM model is in remarkable agreement with a vast array of cosmological probes throughout the cosmic history. The so-called "tensions" within the ΛCDM paradigm have shown the robustness of the former, when tested against increasingly precise cosmological measurements. Throughout this thesis, we explored the phenomenology of various beyond ΛCDM scenarios. We focus on those particular observables that could allow us to distinguish between the wide class of dark energy and modified gravity models already existing in the literature. One example is the growth index γ of matter perturbations.

We start this thesis with a thorough review of the homogeneous and isotropic (FLRW) expanding universe in Chapter 1 -focusing on the key observables and assumptions underlying the concordance model of cosmology (ΛCDM ). We briefly mention some of its shortcomings and/or possible discrepancies. The inflationary paradigm is then discussed in Chapter 2, as one possible mechanism for generating the (quantum-mechanical) seeds, that much later on -through gravitational instability -will grow into galaxies and clusters of galaxies we observe in the late Universe. We briefly comment on the potential of future space-based GW observatories to probe new physics, at extremely high-energies. Chapter 3 is devoted to the study of small perturbations around the FLRW universe, we also comment on the various types of Large Scale Structure (LSS) probes and see how these observables allow us to probe the nature of DE -in complementarity with BBN, CMB, SNeIa, BAO and other background probes discussed in Chapter 1. In Chapter 4 we introduce some modified gravity models, beyond Einstein's GR. In such models, the growth of perturbations is modified and one tool to study these modifications is the growth index γ. This is indeed the main subject of part II.

In Chapter 5, we shall study the global behaviour of γ in various beyond-ΛCDM scenarios, i.e. a varying EoS w DE (a), an f(R)-like bump/dip in G eff (z) or more intricate DE models such as the Dvali-Gabadadze-Porrati model. In such models, the behaviour of γ can drastically differ from that of ΛCDM . In particular, we find that all of the above mention scenarios lead to a change in the slope of γ -in sharp constrast with the monotonically decreasing ΛCDM case. We derive the asymptotic value in the past for γ -∞ in such models, and explicitly see the origin of the anomalous γ DGP -∞ = 11 16 value in the DGP model. In Chapter 6, we consider its behaviour in the presence of a (dustlike) unclustered component Ω x and explore interesting mathematical properties of γ in the asymptotic past.

In Chapter 7, we consider the possibility of having a more intricate Dark Sector. Inspired by high energy physics, we explore the phenomenology of models containing a negative cosmological constant λ on top of an additional X-component, responsible for the late-time accelerated stage. More specifically, we assume the early universe remains unchanged wrt ΛCDM -thereby fixing the value of the sound horizon r s at recombination -and asses the viability of such models when including BAO, SNeIa and CMB data. We also explore the effect of considering a high-H 0 prior in separate runs. We perform a nested-sampling of the parameter space associated with our models, and evaluate the Bayesian evidence needed for model selection. Although we find no decisive evidence for a non-vanishing Ω λ,0 , its presence remains viable as it hides behind an effective (positive) Λ with w X ∼ -1. Models with higher evidence are found to be those with new physics appearing at large-z (w X ≤ -1). A value of H 0 substantially larger than H 0 ∼ 70km.s -1 .Mpc -1 could be a decisive test of their viability. If the "true" value of H 0 turns out to be H 0 ∼ 69km.s -1 .Mpc -1 , it would be interesting to further explore the viability of such models at the level of perturbations. As we have seen in this work, the linear growth of matter perturbations gives stringent constraints on DE models, and the tools presented in this thesis could be useful for that purpose. This could be the subject of future work, especially in light of upcoming (LSS) experiments. For reference, a typical cluster of galaxies with total mass M ∼ 10 10 M ⊙ has a virial radius R vir ∼ 1 Mpc below which non-linear gravitational interactions can no longer be neglected. In such cases, one typically relies on numerical N-body simulations. . . . . . . 3.1.1 Schematic Illustration of the physics of Baryonic Acoustic Oscillations (BAO). A constant battle between gravitational attraction and electromagnetic repulsion. Baryons are constantly shifted out of equilibrium due to a dynamical gravitational potential arena. This in turn translate into areas with higher baryonic density (Hot spots in the temperature of the CMB) and areas with lower density (blue spots). This is just a first approximation, in reality, the non-interacting (cold) Dark Matter sits at the bottom of those wells and enhance the gravitational potential. The fractional abundance of DM compared to baryonic matter determines the shape of the acoustic peaks in the CMB Energy Survey (DES) results. It is seen that both (Kids & DES) weak-lensing surveys prefer a lower value for S 8 than early-universe (CMB) measurements from Planck -although it is not statistically significant yet to call it a "tension". Figure taken from [67] (Fig. 19) . here to be slightly in the past (with Ω m,0 = 0.3) while the background expansion is fixed (w DE = -1). We see that γ decreases first (with the expansion) when g goes up before increasing when g decreases back to one. It is this last behaviour that was found today in many f(R) models. Hence, the sign of the derivative tells us that we (just) passed the maximum of the bump. Note that γ Bump and γ ΛCDM shown here have the same asymptotic values both in the past and future because g → 1 in a smooth way and they have identical It is seen that the growth of perturbations in GR is well approximated by γ ≃ 0.55. In the past, already at z ∼ 10 where matter dominates their evolution is nearly identical with f = 1, and thus δ m ∝ a as expected. Small departures from the "true" numerical solution (GR) can be seen at low-z, where γ starts to depart from its "nearly constant" regime. . . . . . . . . . . . . . . . . . . . . . . . . . .
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5.4.4

The behaviour of γ in DGP models is shown and compared to that in ΛCDM. We see that γ DGP > Γ DGP and hence γ DGP (Ω m ) is an increasing function, except for the tiny interval Ω m ≲ 10 -3 . While w DGP -∞ = -1 2 , γ DGP -∞ = 11 16 and not 9 16 as one would have in GR. This is because the DGP model does not tend to GR in a smooth enough way, namely (

dg DGP dΩm ) -∞ = 1
3 ̸ = 0. In the future however, while DGP does not tend to GR with g DGP ∞ = 2 3 and w DGP ∞ = -1, the same asymptotic value γ DGP ∞ = 2 3 is obtained as in GR for w ∞ = -1 because gravity in DGP is weaker than in GR in the far future. Note that all four curves tend to 2 3 in the future. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Streamlines (Phase Portrait) for the dynamical system {(6.8),(6.9)}. Point A = (Ω m = 0, γ ∞ ) corresponds to an attractor of the system, S = (Ω m = 1, γ -∞ ) is a saddle point and R ± refers to the two critical points at infinity, which are both repellers of the system. The green line denotes the so-called heteroclinic orbit (connecting the two critical points S & A.), which corresponds to the solely presence of the growing mode for δ(a) [START_REF] Calderon | Global properties of the growth index of matter inhomogeneities in the universe[END_REF]. . . 6.3.1 Left panel: The blue curve shows the reconstruction of γ(Ω tot m , ε) for ε = 0.15. The red curve is the second order approximation given by Eq. (6.52). We see that they match nicely for Ω tot 

7.2.2

We show iso-h curves for scenarios I (left), II (middle), and III with Δ 1 = -0.04 (righthand panel) in the (Δ 1,2 , ω λ ) parameter plane. The shaded areas correspond to the following H 0 values (in km.s -1 .Mpc -1 units): 73.30 ± 4 (HST-Mira) [START_REF] Huang | Hubble Space Telescope Observations of Mira Variables in the SN Ia Host NGC 1559: An Alternative Candle to Measure the Hubble Constant[END_REF]), 74.03 ± 1.42 (SH0ES) [START_REF] Riess | Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM[END_REF] and 69.8 ± 1.9 (TRGB) [START_REF] Freedman | The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch[END_REF] 
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 14 Figure 1.4.1 (following page): Compilation of early vs. late-time (local) measurements H 0 . Figure taken from [83].
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 21 [START_REF] Tsujikawa | f(R)-Theories[END_REF] shows the behaviour of the (comoving) Hubble radius during inflation, large scales fluctuations leave the horizon earlier than small scale fluctuations, and they are frozen for k < aH. After inflation stops, the comoving Hubble radius starts to grow again during the usual radiation and matter dominated epochs, and scales re-enter the progressively -See Fig.2.2.1.
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 241 Figure 2.4.1 (following page): Top-left panels: Observations of clusters of galaxies in redshift space by the 2dFGRS and SGW surveys. Bottom right: Comparison with numerical N-body simulations from the Millennium Simulation[START_REF] Volker | The large-scale structure of the universe[END_REF] -This assumes a ΛCDM cosmology -Structure formation will happen differently in a non-cold DM filled-universe. Simulations in a ΛCDM universe qualitatively reproduces the structure of the cosmic web. In fact, since observations are done in redshift space, galaxies appear strechted or squished from their "original" positions. This due to effect of peculiar velocities (typically of the order ∼ 1000 km s -1 ), an effect known as the fingers of god. Figure taken from[START_REF] Volker | The large-scale structure of the universe[END_REF].
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 322 Figure 3.2.2: Weak gravitational lensing in the Abell 2218 galaxy cluster. The shapes of galaxies appear to be distorted, or elongated in some direction. Advanced Statistical methods can be used to quantify this effect, and estimate the mass distribution along the line of sight[130, 217]. Figure taken by the Hubble Space Telescope. Credit: NASA/ESA https://esahubble.org/images/heic0814a/

  , D. Felbacq, R. Gannouji, D. Polarski and A. A. Starobinsky

  [START_REF] Alam | The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample[END_REF] where γ is dubbed growth index, though in general γ(z) is a genuine function of redshift. It can even depend on scales for models where the growth of matter perturbations has a scale dependence. The representation (5.10) has attracted a lot of interest with the aim to discriminate between DE models based on modified gravity theories and the ΛCDM paradigm. It turns out that the growth index is quasi-constant for the standard ΛCDM from the past untill today. Such a behaviour holds for smooth non-interacting DE models when w DE is constant, too[START_REF] Polarski | On the growth of linear perturbations[END_REF] -See Figs. (5.1.1)and (5.3.1).
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 521 Figure 5.2.1:The (unit time-oriented) vector field tangent to the solutions γ of Eq.(6.1) is displayed for w DE = -1. The red curve corresponds to the solution for γ, with boundary condition γ(1) ≡ γ -∞ = 6/11. It is the only solution which is finite on the entire Ω m interval, physically it corresponds to the presence of the growing mode of (5.6) only. The difference can be important in the far past only. All the other solutions correspond to solutions containing also the decaying mode solution. As explained in the text, these solutions (if physical) tend to the same value of γ, namely γ ∞ = 2 3 , for Ω m → 0, and they diverge for Ω m → 1.
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 531 Figure 5.3.1: The growth index with various constant equations of state w DE . As explained before, the monotonically decreasing behaviour of γ(Ω m ) holds in these models. We have used a logarithmicscale in Ω m .

  , D. Felbacq, R. Gannouji, D. Polarski and A. A. Starobinsky Global properties of the growth index: Mathematical aspects and physical relevance Physical Review D -101, 103501 (
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 713 Figure 7.1.3: Evolution of the universe in the space (w X , Ω λ,0). In white, the universe accelerates today, in light gray, the universe never accelerated until today while in darker gray, we have a transient situation where the universe accelerated in the past but does not accelerate today. In blue, we have represented the SNe Ia data constraints at (1σ, 2σ, 3σ). Finally the red and purple lines represent the (Ω λ,0 , w X ) values which satisfy Eq. (7.27) for h = 0.74 and h = 0.72 respectively.
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 721 Figure 7.2.1: Parameters (h, ω λ , w X ) which satisfy the relation (7.27) for models with constant w X . a) In the upper panel, ω λ is fixed and we see that an increasing |ω λ | (from left to right) gives the same h with less phantomness. We note the quasilinear relation, which follows from (7.43) for constant ω λ . b) In the lower panel all parameters are free. For the latter, we show the lines corresponding to a constant h when (7.27) is satisfied: continuous line (h = 0.68), long dashed line (h = 0.7) and dashed line (h = 0.74). They satisfy to good accuracy (7.43).
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 722 Figure 7.2.2: We show iso-h curves for scenarios I (left), II (middle), and III with Δ 1 = -0.04 (righthand panel) in the (Δ 1,2, ω λ ) parameter plane. The shaded areas correspond to the following H 0 values (in km.s -1 .Mpc -1 units): 73.30 ± 4 (HST-Mira)[START_REF] Huang | Hubble Space Telescope Observations of Mira Variables in the SN Ia Host NGC 1559: An Alternative Candle to Measure the Hubble Constant[END_REF]), 74.03 ± 1.42 (SH0ES)[START_REF] Riess | Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM[END_REF] and 69.8 ± 1.9 (TRGB)[START_REF] Freedman | The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch[END_REF].
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 11 Left Panel: Distribution of galaxies as a function of distance, taken by 2dFGRS / Sloan Digital Sky Survey (SDSS III)[START_REF] Colless | The 2dF Galaxy Redshift Survey: Final data release[END_REF]. Each point represents a galaxy, containing about 100 billion stars each. Right Panel: Cosmic Microwave Background Radiation,the heat remnants of the big bang taken by Planck satellite. . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.2 3-dimensional hypersurfaces Σ t at different times t, representing the different possible geometries of the universe. Each slice corresponds to a moment in time. Space-time can be thought of as a collection of time-ordered 3-dim hypersurfaces, characterized by the induced metric γ ij defined on such (curved) hypersurfaces (the so-called 3+1 decomposition). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.3 Illustration of a comoving coordinate system. The lefthand side shows a grid-like coordinate system at t = 0, a(t) is the scale factor accouting for the expansion of spacetime. The righthand side shows the same coordinate system some later moment in time t = t 1 . Notice the comoving coordinates x i are the same for the two red points, but the physical distance separating them has grown by a factor of a(t). The scale factor a(t) inherits the physical interpretation of distance and becomes the important variable that we need to keep track of. In orange, we represent a photon, whose initial wavelength λ 1 gets strechted as the universe expands with time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Schematic view of the relevant processes happening during Big Bang Nucleosynthesis (BBN) -The formation of light elements. Essentially all of the elements that are heavier than lithium were cooked and produced much later in the history of our Universe, by Stellar Nucleosynthesis in evolving and eventually exploding stars. . . . . . . . . . . . . . . . . . 22 1.3.2 Schematic picture of recombination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.3 Blackbody spectrum in the range 10-10 3 nm for different temperatures (in K) of the black body. From this, we can estimate with great precision the temperature of the cosmic microwave background. The sun's temperature is T ⊙ ∼ 5777 K and thus emits visible light. . . 24 1.3.4 Angular (Temperature) Power Spectrum of the Cosmic Microwave Background Radiation, as measured by various experiments. Namely, Planck[69], Atacama Cosmology Telescope (ACT)[START_REF] Choi | The atacama cosmology telescope: a measurement of the cosmic microwave background power spectra at 98 and 150 ghz[END_REF] and South-Pole Telescope (SPT)[87]. Solid line represents the ΛCDM prediction. Credit: D.Baumman . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.5 Schematic view of the sound horizon. From right to left, the sound horizon r s propagates through the primordial plasma and grows with time, baryons are carried along this propagating sound wave until recombination happens, when the photons decouple from baryons and can propagate freely. The sound horizon "freezes" and a characteristic wavelength is imprinted in the surface of last scattering (CMB). We observers, seat at the origin, and should find a correlation between points separated by the comoving length r s (z rec ). This has indeed been measured in various observational probes, such as the correlation function (or matter power spectrum) and in the acoustic peaks of the CMB. . . . . . . . 1.4.1 Compilation of early vs late-time measurements of H 0 . Figure taken from [83]. . . . . . . 2.0.1 Schematic representation of the "Horizon problem". Left Panel: Points P and P ′ at the surface of last-scattering never talked to each other, i.e. their past light-cones do not overlap in the spacetime diagram. A straightforward calculations leads to ∼ 10 5 casually disconnected regions in the CMB. Yet, regardless of the direction we observe in the sky, the temperature appears to be homogeneous, with small fluctuations O(10 -5 ) around the mean.Right Panel: Solution by the inflationary paradigm. The big bang singularity is pushed to the infinite past τ i → -∞. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Solution to the Homogeneity Problem in the standard inflationary picture. From left to right, the evolution of the Hubble Radius (in comoving coordinates) at the beginning and end of Inflation, and nowadays, respectively. The comoving Hubble radius shrinks exponentially during inflation, as can be seen from Eq. (1.28), since a(t) ∝ exp (Ht). Those regions that were causally connected before inflation, exit the horizon during inflation and re-enter progressively after it stops; when the Hubble radius starts to grow again. . . . . . 2.2.1 Schematic picture of the evolution of perturbations generated during inflation, as a function of time. The Hubble crossing corresponds to the time t k , when the mode k = aH crosses the Hubble radius. The quantity ζ is an extremely important conserved quantity outside the horizon. The power spectrum P ζ encodes the statistical properties of the fluctuations at horizon crossing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Schematic illustration of an inflationary potential. Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) surveys are consistent with the predictions from slow-roll (single) field inflation. These probe the shape of the inflationary potential around ∼ 60 e-folds before the end of inflation. Scales of interest for PBH formation will leave the horizon much later on, only a few e-folds before the end of inflation. The non-observation of PBH in certain mass ranges, could in principle, constrain the shape of the inflationary potential near the reheating epoch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 LSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0.1 Schematic view of the differents regimes as function of scale. The study of fluctuations in the superhorizon regime requires treating cosmological perturbations relativistically.
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  w DE . The behaviour on small redshifts and in the future captures essentially the f(R) phenomenology. (b)Right-hand panel: the same as on the left panel but now with a dip in g starting today. At the present time, γ > γ ΛCDM and γ are decreasing with the expansion, reflecting that g is increasing and we just have passed the minimum of the dip. . . . . . . 5.4.3 Left panel: The growth function f ≡ d ln δm d ln a in the presence of a bump in g = G eff G . Right panel: Evolution of f as a function of redshift. The approximation f = Ω γ m is shown for comparison, for different values of γ.
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Table 1 .2.1: PlanckTT+TE+EE+lowE+lens

 1 constraints on the 6 ΛCDM parameters[69] 

	It can describe,

  92, θ Planck

	s	= 1.04110 × 10 -2 , r Planck s	(z rec ) = 144.43Mpc	(7.22)
	see Table 7.2.1. The relative energy density Ω i,0 ≡	ρ i,0 ρ cr,0	

Table 7 .2.1:

 7 Parameter values as given by the Planck 2018 TT,TE,EE+LowE+lensing results (Table 2). r s is the comoving sound horizon at recombination (z 1 = 1089.92), and rd at the drag epoch z d = 1059.94

  . . . . . . . . . . . . . . . . . . . . . . . 116 7.3.1 Marginalized posteriors for different models using SNIa, BAO, θ s , and H 0 from HST Mira. The central value is the median, and the shared areas show the 68% credible intervals around it. Left: ΛCDM (blue), III (orange), and λIII (green). Right: ΛCDM (blue), λCPLw a (orange), λII (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Such phenomena include length contraction, time dilation or the bending of light near massive objects. The most famous one being the Perihelion precession of Mercury.

Upon which, he introduced a constant Λ in his field equations, to ensure the Universe remains unchanging.

Sir. Roger Penrose showed that singularities are unavoidable in GR, which got him the 2020 Nobel Prize in Physics.

We have explicitly reintroduced the speed of light c ≃

• 10 8 m.s -1 , showing how we need gigantic amounts of energy densities, such as two merging Black Holes, to generate disturbances in the geometry of the Universe (gravitational waves)-Because of the factor c

4 in the denominator.3 This has been proven in[START_REF] Lovelock | The Einstein Tensor and Its Generalizations[END_REF] and goes by the name of Lovelock's Theorem.

We have used the fact that for a Torsion-free metric, which is assumed throughout this work, the connection is symmetric in their lower components Γ α νμ = Γ α μν .

In general, for a real fluid, the stress-energy takes the same form T μν = (ρ + P)u μ u ν + g μν P + Π μν -Where Π μν is the anisotropic-stress, encoding the deviations from a perfect fluid. It is well known that neutrinos, because of their free-streaming, induce a small but non-vanishing anisotropic stress. In the remaining of this thesis, we shall neglect this effects and set Π μν = 0.

Planck's satellite found Ω k,0 ≃ 0.0007[69]. See also recent discussions on spatial curvature in[START_REF] Vagnozzi | Listening to the BOSS: the galaxy power spectrum take on spatial curvature and cosmic concordance[END_REF] 

On September 14, 2015 at 09:50:45 UTC, shortly after turning on the two detector located at .. opening a new window to study the universe -The dawn of multi-messenger astronomy

These are binary systems involving a white-dwarf accreting matter from some other companion star, until the former exceeds the Chandrasekar limit of about 1.44 M ⊙ and explodes. Releasing a "standardizable" amount of photons (Luminosity). Another

the CMB would appear closer, and therefore we would infer a larger value of H 0 . Another possibility is to play with the value of z rec , as discussed in e.g.[START_REF] Jedamzik | Relieving the Hubble tension with primordial magnetic fields[END_REF][START_REF] Sekiguchi | Early recombination as a solution to the H 0 tension[END_REF].

And solving the horizon and flatness puzzles.

In the same way that galaxy provides a biased tracer of the underlying dark matter overdensities, cosmic voids (underdense regions) can yield valuable information about the growth of structure in the universe. A particular interesting application is the cross-correlation of these two datasets, allowing us to test e.g. the isotropic and homogeneous assumptions.

Although it has been pointed out recently that the use of h -1 .Mpc units in cosmology might be responsible for misconceptions regarding the normalization of P(k) encoded in σ 8 , and is therefore at the heart of the discrepancy in the measure of σ 8[START_REF] Sánchez | Arguments against using h -1 .Mpc units in observational cosmology[END_REF] 

See e.g.[START_REF] Bernardeau | Large-scale structure of the universe and cosmological perturbation theory[END_REF][START_REF] Desjacques | Large-scale galaxy bias[END_REF][START_REF] Kaiser | Clustering in real space and in redshift space[END_REF] for a more detailed derivation.

Although it seems these ideas were first discussed in[START_REF] Sargent | A statistical method for determining the cosmological density parameter from the redshifts of a complete sample of galaxies[END_REF].

Namely, the strong CP (θ-term) problem in Quantum Chromo-Dynamics (QCD) and it was soon realized it is also a perfect Dark Matter candidate. See e.g. Ref.[START_REF] David | Axion cosmology[END_REF] for more details on axions and their relation to cosmology

Although it has been debated whether LSS observables exclude such models[START_REF] Mikhail | H0 tension or t0 tension?[END_REF][START_REF] Smith | Early dark energy is not excluded by current large-scale structure data[END_REF]. Indeed, these models suffer from higher (inferred) values of σ 8 , in tension with recent WL measurements.

Theories having higher-order equations of motion as thought to be plagued by the Ortogradsky instability, yielding ghost degrees of freedom -i.e. particles with M < 0. Recently, a class of theories known as Degenerate Higher-Order Scalar-Tensor Theories (DHOST)have been found to evade the Ortogradsky instability[START_REF] Langlois | Degenerate higher derivative theories beyond horndeski: evading the ostrogradski instability[END_REF]. See[START_REF] Langlois | Degenerate higher-order scalar-tensor (dhost) theories[END_REF] 207] for a review

Beyond-Horndeski theories can also be encaptured by the EFT functions α i , by incluiding an additional function α H .

both at the classical and (one-loop) quantum level[START_REF] Ohta | Quantum equivalence of f(R) gravity and scalar-tensor theories in the jordan and einstein frames[END_REF] 

although it is hard to construct viable theories with the usual decelerated stages of expansion during the radiation and matter dominated epochs.

See E. Linder's paper[START_REF] Linder | Cosmic growth history and expansion history[END_REF] on the different ways we can write this equation and it use in cosmology.
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where P(Θ) = Pr(Θ|M, D) is the posterior distribution, L(Θ) = Pr(D|Θ, M) is the likelihood, π(Θ) = Pr(Θ|M) is the prior, and Z = Pr(D|M) is the evidence.

For parameter evaluation within a given model, the evidence can be seen as a normalization constant, and thus ignored. However, in order to perform model selection, the Bayesian evidences of the models have to be evaluated and compared. Calculating the evidence can be computationally challenging, in particular when using Monte Carlo Markov Chains. Therefore, in order to calculate the posterior distributions and the evidence, we use the nested-sampling algorithm [START_REF] Skilling | Nested Sampling[END_REF] as implemented in pymultinest [START_REF] Buchner | X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue[END_REF][START_REF] Feroz | MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics[END_REF]. We follow the authors' recommendations and use different sampling efficiencies for evidence evaluation and parameter estimation (0.3 and 0.8, respectively). We used 1000 live points and a tolerance factor of 1. We checked that the tolerance factor does not affect too much the results. The priors are shown in Table 7.3.1. As for h, because of its crucial role in this work, we choose rather wide, uninformative priors. For the other parameters associated to dark energy, we base our priors on physical properties of existing dark energy models, for example the difficulty to obtain realistic phantom models with w ≪ -1. Finally, we take the priors ω λ ∈ [-4, 0]; see Figs.