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Abstract 
 

Embedded Computer vision, as many applications of artificial intelligence and edge computing, is 
subjected to hardware and power constraints. For instance, the object detection problem, consisting in finding 
different objects of specific classes (types) in an image, turns out to be quite complicated to embed near the image 
sensor as two complex tasks are required: multi-scale localization and multi-class classification (i.e. identifying 
bounding boxes that perfectly enclose each object, whatever its size, and labeling the type of the detected object). 
Today these tasks are often performed on general-purpose desktop machines. Nevertheless, attractive 
applications like autonomous-driving, augmented reality or video surveillance are urging the need for low-power, 
low-latency and compact low power devices. 

The state of the art has approached this challenge by optimizing specific sections of the complete 
processing-pipeline for a comparable object detection performance. A typical example in the last decade 
corresponds to minimizing the computing precision, hence the power, to a minimal value.  Diminishing the bit-
depth or image size has then been studied while implementing pre-processing steps that increase robustness 
against the loss in bit and image resolution. An algorithm that does not require that kind of pre-processing stage 
to be programmable is obviously desirable in order to simplify its implementation (e.g. no memory access to 
learned weights). Another strategy has been to reduce power due to I/O communications amongst different chips 
or devices thanks to a more exhaustive integration of specialized circuitry and thanks to more efficient memory 
accesses and mathematical operations. 

In that context of near-sensor computing, this work points towards a more energy efficient detection 
pipeline. We target several specific key aspects: 

1. We try to assess if a dedicated-class-agnostic region proposal algorithm, based on pre-
processed low-level features, could replace the typical sliding window approach for object localization in 
integrated smart imaging systems, allowing to target more efficiently objects in the image. Then, we propose a 
pipeline that takes into account near image sensor features extraction for Region Proposals with an embedded 
version of an algorithm called Edge-Boxes. 

2. We try to assess an optimal type of pre-processing (based on an efficient architecture) that 
would allow extracting low level features (oriented gradients), and give the best trade-off between power 
consumption, hardware complexity and object detection performance. Specifically, while being this architecture 
fully compatible with region proposal algorithms beyond the sliding window. 

3. Finally, we try to assess if non-standard, or neuromorphic, image acquisition techniques can be 
exploited in order to further increase the detection efficiency in real case scenarios. 

Our methodology relies on behavioral simulations carried out thanks to a custom framework written in 
Python and C++ code. We propose a hierarchical model (and code architecture) of different image acquisition and 
processing techniques, and we study their performance through specific metrics related to runtime, memory 
usage, hardware complexity, I/O data-rate, localization performance and classification performance. We provide 
comparison with the state of the art and several benchmarks giving guidance to choose one or another 
architecture depending on the specific needs, and we conclude by stating which one would give, from our 
perspective, the best trade-offs. 
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Chapter 1. Introduction  
 

 Computer vision and artificial intelligence have opened a new range of applications. For 

instance, machines have become able to solve complex problems for object localization and 

classification, and also with high resolution images. That is, even if challenging characteristics such as 

high dynamic range, occlusion and significant affine/projective transformations are present. 

Moreover, most recent algorithms, based on deep convolutional neural networks (CNNs), have shown 

capacity to classify objects from an elevated amount of different classes.  

  Nevertheless, some of those new applications are simply incompatible with desktop-machine 

computations and/or servers: typical limitations in latency, autonomy, size, weight and financial cost 

constraint the computational unit to be compact and portable. Probably, one of the most common 

use-case scenarios are mobile phones. In addition, other examples where such limitations are present 

are drones, autonomous vehicles, video surveillance and wearable devices, among others. The 

aforementioned means that such smaller devices are logically less equipped, and thus it is common to 

say that they are under “hardware and power constraints”.  

 Regarding the last sentence, power consumption restrictions typically arise when devices are 

not connected to a “permanent” energy source, but they rather depend on a battery. Of course, for 

being smaller, the battery size has to be reduced too, and thus its lifetime (before re-charging) as well. 

Yet, computer vision tasks are often related to computationally intensive operations, and, for instance, 

CNNs are not an exception. In parallel, each computation implies energy, and the faster the system 

goes, the more power is drained from the battery. In the other hand, sending data out from the system 

to a remote server is possible, but the energy cost of this I/O bus is significant and often unsuitable if 

the data-rate is too high.  

 Last paragraphs sets motivations for one entire research field: one that is focused on computer 

vision and/or artificial intelligence on hardware/power constrained devices. The set of problems 

addressed commonly cannot be reduced to simply “take” the exact same algorithm and then “run it” 

on an embedded device. Typical reasons for that are that embedded devices have, for example, less 

memory available, a reduced instruction set (e.g. summation, subtraction, bit-shifting, etc…), and less 

energy compared to desktop computers or servers. Those reasons are why efforts are made in 

optimizing, simplifying and/or adapting algorithms and hardware, so even embedded systems can 

perform more complex computer vision tasks.  

 Continuing with last ideas, our work focuses on optimizing the power versus AI performance 

trade-off for object detection. Object detection is a known problem in artificial intelligence and 

computer vision: the problem is giving bounding-boxes for objects in a still image as the algorithm 

output, along with class labels for each object inside each bounding box. Moreover, as other groups 

do, our approach is to include more complex/adapted operations on the same integrated chip, so the 

I/O data-rate with remote servers and/or other chips is reduced. Furthermore, as other groups do as 

well, we optimize the algorithm/hardware to make it more energy-efficient. We take into account the 

development of newer microfabrication technologies allowing 3D-IC staking for justifying the addition 

of more complex circuitry.  

 More specifically, we tackle the last mentioned problem by optimizing the region-proposals 

stage and the low-level-features generation in the object detection pipeline. We explore the inclusion 
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of circuitry specialized on generating low-level hand-crafted features for region proposals. We also 

explore both frame-based (classic) and asynchronous/neuromorphic (non-classic) pixel topologies for 

achieving it. We believe that region proposals can replace other typical IC implementations that rely 

on the older sliding window approach, and for energy efficiency. That is, since the computational 

complexity of the sliding window makes it inefficient or even unsuitable for solving problems with a 

high-scale-range or with high-resolution images. Indeed, with the so-called sliding window, embedded 

object detection can be constrained to “small” images only, and with objects in positions and/or scales 

that are relatively “easy” to solve, or in other works, incompatible with real-case/outdoors scenarios. 

 This work has been made in a laboratory called CEA-LETI/L3I: a group specialized in CMOS 

image-vision-sensor development, and also in integrated, low-power image pre-processing electronic 

architectures. The laboratory is located in Grenoble, France, and it forms a part of a bigger entity called 

the Commissary of Atomic Energy and Renewable Energies (CEA). The CEA counts with different 

laboratories in a wide range of fields, from fundamental sciences to applied electronics.  

 Our manuscript is composed of eight chapters (counting the introduction and conclusion). 

Chapter two gives a brief view of the state of the art in CMOS image-sensors, smart-imagers and object 

detection algorithms. Chapter three presents our simulation and modeling methodology, which we 

use to derive conclusions for the electronic-architecture design. Chapter four explains which kind of 

object detection pipeline we propose to use for embedded applications. Chapter five presents the low-

level features architecture that we propose to use for region-proposals-generation. Chapter six 

presents a series of benchmarks that show (at simulation level) that our pipeline is suitable for region-

proposals-generation on constrained devices. Finally, chapter seven presents further models and 

simulation results regarding the implementation of non-classic, neuromorphic pixels for optimizing the 

region proposals generation as well.  
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Chapter 2. State of the art 
 

Chapter 2 describes the main theoretical concepts for the general understanding of this thesis. 

We present a synthesis of our State of Art review, so the reader can find here a (non-exhaustive) list of 

related works. The first principal subject mentioned is “CMOS” Image sensors: we cover from photo-

generation to digital-image-output. We do so for different light-sensing types, and for several pixel 

architectures. However, we do not go into details, as we only cite relevant ideas for later in this work. 

The second principal subject is what a “smart-image-sensor” is. We explain it by signaling key 

differences with classic architectures, and by citing illustrative examples in the state of the art. The final 

subject covered here is the “object-detection” problem: it comes from the fields of Artificial Intelligence, 

Machine-learning and Computer-vision. We describe its formal definition, and later we relate it with 

applications and implementations in the embedded-IC case-scenario. 
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2.1. CMOS Image sensors 
 

The term « CMOS » is an acronym for « complementary metal oxide semiconductor » (El Gamal 

and Eltoukhy 2005). The name describes a specific type of electronics-related technology and physics 

knowledge, allowing creating devices known as CMOS transistors. CMOS transistors are useful to 

create simple or complex circuits, as switches, amplifiers and digital-processors, among many others. 

During advances in imaging techniques, CMOS technology became attractive for devices that generate 

a static image of a scene. In order to achieve that, transistors, combined with light-sensing devices 

(photo-transductors), have been used for locally transforming impinging light into an electric signal. 

This setup is known as a “pixel”. Pixels arranged into matrices are capable of generating an image. For 

the present work, one needs to understand how the signal goes from photo-generation to a digital 

image. In addition, the reader should know the behavior (operation) of the basic pixel types.       

 

2.1.1. Typical system architecture 
 

Classic CMOS image-sensors typically relate to a matrix of pixels. Each pixel transforms the 

local impinging light into an electric signal. In this work, we refer to an imaging-system as the 

combination of the image-sensor (including the pixels matrix), the optics that set how light rays are 

directed to pixels, and the read-out that outputs a digital-image. Another aspect is how such signal 

goes from the pixel to next stages. Indeed, this signal corresponds to a photo-generated electric-charge 

stored into a capacitance -at each pixel. This charge gives rise to an output voltage for each pixel, which 

directly relates to the amount of impinging light -into each pixel. For recovering the whole image, the 

read-out stage, after the imaging-part, has to output the voltage read at all pixels. Nevertheless, later 

stages normally are digital-based, whereas voltage-signals from pixels are analog values. Then, after 

reading each pixel voltage, the image-sensor has to “transform” analog values to digital ones (e.g. the 

analog-to-digital conversion). This process can be achieved in several manners, as shown in Figure 1. 
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Figure 1 : different approaches for pixels pre-processing and/or read-out. “(a) serial architecture; (b) column-parallel 

architecture; (c) pixel-parallel architecture.”  (Takayanagi and Nakamura 2013) 

FIg. [cmosArchitecture]  :  
In Figure 1, authors (Takayanagi and Nakamura 2013) explain three different image readout 

and/or pre-processing schemes. Figure 1 takes into account signal-processing and read-out, but for 

now we take only the read-out into account (letting more complex pre-processing types for section 

2.2): one possibility (Figure 1 a) is to read pixels one by one, while using only one unit for carrying-out 

the A-D conversion. Here, transistors are used as switches for selecting which pixel value goes to the 

ADC. Typically, a digital controller circuit selects a row of pixels and allows them to store their values 

in a column analog part. This part stores, “de-noises” and amplifies pixel values. Then, another digital 

controller-circuit selects these pixel values, one by one, and sends them to the ADC. Another possibility 

(Figure 1 b) is to have one ADC per column: a digital-controller selects only the row to convert, and 

then all pixels of the selected row are read in parallel (with a stack of parallel ADCs). This architecture 

is the current one in industry of image-sensors.  Another possibility (Figure 1 c), is to perform the A-D 

conversion at the pixel level by implementing one single ADC for each pixel. Notice that the name 

“Signal processing circuit”, used in Figure 1, illustrates that more (pre-) processing can be performed 

near sensor (or matrix of sensors). That can be done even without and/or beyond the standard A-D 

conversion. In next section, we go a bit deeper into the inner structure of pixels, and we briefly explain 

several of the most common variants.  

 

2.1.2. Pixel types 
 

 In previous part, we have cited the overall (frame-based) image-sensor architecture(s). Here, 

we go deeper into detail about pixel configurations and the main aspects for choosing amongst them. 

Figure 2 shows one simple pixel: it consists in a p-n junction in reverse-biasing conditions, a RS (row-

select) switch, and a column bus (shared by all pixel on the same column). The reverse p-n junction is 

the photo-sensitive area (i.e. where impinging photons give rise to photo-generated electron-hole 

pairs). Holes drift to ground, and electrons cumulate in the junction capacitance. This charge generates 

an electric signal that is temporarily stored in the junction-capacitance until the read. For reading one 
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pixel, the row is selected by the RS switch, while the corresponding column bus is addressed, for 

instance, by a column-decoder. For this particular case (called the passive pixel sensor PPS), when the 

signal is read, charges “escape” from the junction capacitance, and thus the reading process is 

“destructive”. The PPS has the advantages of being simple and compact, thus favoring the easiness of 

higher fill factors. Nevertheless, it typically suffers from poor performances (e.g. regarding noise) 

respect to later topologies (Theuwissen 2007).  

 
Figure 2 : illustration of the passive pixel in CMOS technology (Theuwissen 2007). 

Fig. [passivePixel] :  

 After the PPS, CMOS imaging was improved with the introduction of the so-called “Active Pixel 

Sensor” or APS, illustrated in Figure 3. We base our explanation from (El Gamal and Eltoukhy 2005), 

which gives a good overview. The term “active” comes from the amplifier (buffer) between the electric 

signal (the photodiode voltage) and the column bus. In this case, the readout is non-destructive. 

Moreover, one reset switch controls when photo-generated charges, which are stored in the junction 

capacitance, are discarded. The intermediate buffer-amplifier adds 1 transistor respect to the PPS, and 

the Reset adds another extra transistor. This is why this pixel configuration is known as the 3T-APS. 

This configuration allows improving the SNR respect to the PPS (El Gamal and Eltoukhy 2005), but still 

presents an important noise contribution from the “reset-noise”. In order to circumvent that, a forth 

transistor allows performing the so-called “correlated-doubled-sampling (CDS)” (El Gamal and 

Eltoukhy 2005). The 4T-APS is shown in Figure 3, bottom. Then, this pixel is known as the 4T-APS. This 

fourth transistor is, however, less conventional respect to the others in the pixel, since one of its 

terminals can be made of the so-called “pinned-photodiode” (El Gamal and Eltoukhy 2005). The pinned 

photodiode is the current industrial-standard pixel structure. Moreover, its dark-current is less 

important with respect to non-pinned junction. In addition, and regarding Figure 3 (bottom), signal TX 

allows splitting the photo-generated signal from the reading node FD. Thus, the reset signal is sampled 

at FD (almost) immediately before the photo-generated signal “passes” to FD (thus enabling CDS). This 

readout process is also non-destructive. Moreover, CDS can be set aside for the 4T-APS if a “global-

shutter” readout scheme is desired. Until now, pixels are read “one by one”, but photo-current-

integration is still happening during read time as well (a method known as the “rolling-shutter” reading 

scheme). In general, this effect is not desired. For instance, one way for letting away the rolling-shutter 

technique is by passing all photo-generated charges to the sensing node FD at once. That means that 
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photo-current-integration stops at the same time for all pixels. This strategy is the so-called global-

shutter in the literature. 

 
Figure 3 : illustrations of the active 3T (top) and 4T (bottom) pixels (El Gamal and Eltoukhy 2005). 

Fig. [activePixel] :  
 

 The last example we present is the 1.75T-APS (Figure 4). We base our description from (El 

Gamal and Eltoukhy 2005). This pixel allows performing neighboring-pixels-binning and at pixel level. 

Binning is important for us, since we want to assess the optimal image size for object localization / 

classification, and the impact of image binning on algorithms performances (e.g. object localization).  
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Figure 4 : illustration of the in 1.75T architecture (El Gamal and Eltoukhy 2005). 

Figure [175T]:  

In next section, we explain some important image-sensor design parameters that we mention 

often during this work. 

 

2.1.3. Typical design parameters 
 

We base our explanation of typical design parameters from the work of (El Gamal and Eltoukhy 

2005). (El Gamal and Eltoukhy 2005) explain several performance measures, and non-ideal-effects that 

are often mentioned in this work. They separate those non-ideal-effects into “temporal” and “fixed-

pattern-noise (FPN)”. As its name suggests, temporal noise depends on time, and thus it can make the 

signal to change between successive readings (instead of keeping steady until the reset). On the other 

hand, FPN does not depend on time, but on space: it corresponds to differences in amplifiers offsets 

and gains across (for instance) different pixels. In addition, (El Gamal and Eltoukhy 2005) explain that 

temporal noise sources are (without being exhaustive) “shot noise, pixel reset circuit noise, readout 

circuit thermal and flicker noise, and quantization noise” (El Gamal and Eltoukhy 2005).  
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 (El Gamal and Eltoukhy 2005) also mention important design parameters, such as the “signal-

to-noise-ratio” (SNR) and the “dynamic-range” (DR). The SNR is 10 times the base-10 logarithm of the 

ratio of signal power and noise power: 

𝑆𝑁𝑅 = 10 ⋅ log (
𝑃𝑠𝑖𝑔

𝑃𝑛𝑜𝑖𝑠𝑒
) 

Equation 1 

Where 𝑃𝑠𝑖𝑔 is the signal power and 𝑃𝑛𝑜𝑖𝑠𝑒 is the noise power. The higher the SNR, the greater 

is the signal respect to the noise. Moreover, the DR states the range of illumination (photons) that the 

image-sensor can collect and read from each pixel, settling a minimum and a maximum value. 

Mathematically the DR is 20 times the base-10 log of the ratio of maximum photo-current and the 

minimum photo-current (El Gamal and Eltoukhy 2005). The last parameter cite here from (El Gamal 

and Eltoukhy 2005) is the “spatial resolution”.  

 So far we have mentioned classic architectures and parameters of image-sensors. In next 

section, we introduce newer ideas, which try to include more complex signal (pre-) processing 

schemes.  

 

2.2. Smart CMOS image sensors 
 

Smart-image-sensors differentiate from classic approaches due to the inclusion of integrated 

signal (pre-) processing. These kind of devices go beyond the typical scheme of in-pixel buffer-

amplifier, column read/amplification and signal A-D conversion. The aim of integrated “smart” 

capabilities can be further improving design parameters (SNR, DR, etc), and at the cost of an increasing 

on-chip complexity. Another objective can be integrating (“embedding”) artificial-intelligence 

algorithms, in order to optimize performance at the system level, e.g. allowing for higher speed and/or 

attaining lower power consumption. This work is concerned by the second case scenario, related to 

embedded/integrated artificial intelligence for computer vision applications.  

There are several reasons for which “integrated-smart” capabilities are attractive. In the 

context of internet of things, distributed sensor networks, mobile robots, wearable devices, etc, 

devices have a limited battery that should last as long as possible without recharging. This rises the 

interest for “low-power” devices, which can perform artificial-intelligence-related tasks but without 

“draining” the battery.  Reducing power has been tackled in different ways in the literature. Some 

trends (without being exhaustive) are reducing inter-chip data throughput by including pre-processing 

steps in the same chip as the image-sensor. For instance, (Verdant et al. 2020) integrated the full 

object-recognition pipeline into one chip with an innovative (low-power) read-out. Other strategies 

have been optimizing the ADC by reducing its bit-depth output, and by changing the image codification 

as done by (Young et al. 2019). In addition, other works have tried performing more complex 

computations in the analog domain (so the ADC workload is significantly reduced), such as CNN-layers, 

like in (J.-H. Kim et al. 2019).  

In this work, we focus on two main types of smart-image-sensors: namely, frame-based (FB) 

image-sensors and event-based image-sensors. So far, concepts introduced apply for FB image-

sensors, whereas event-based image-sensors are just briefly explained in sub-section (2.2.2). We go 

more into details about event-based-imaging in chapter 7. 
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2.2.1. Frame-based smart-image-sensors 
 

 Frame based (FB) image-sensors are characterized by a deterministic read-out scheme. In 

other words, the pixel readout sequence is always the same and the frame rate is constant. Moreover, 

each output is an image, which is acquired by two main stages: integration, and read-out. During 

integration time, all pixels start sensing impinging photons. Then, during read-out, pixels voltages are 

read by any of the schemes shown in Figure 1. For the case of FB smart-image-sensors, a (pre-) 

processing stage can be included to the frame-time. In next subsections, we explain some topologies 

in the literature following the latter idea. Notice that integration examples we found (in relation to our 

work) were typically related to edges or oriented gradients extraction (and/or related pipelines). 

 

2.2.2. Edge or Oriented Gradients extraction 
 

 Edge-extraction1 consists in computing image intensity gradients, followed by a “thresholding” 

operation: only pixels with a gradient magnitude higher than a certain threshold are kept. This kind of 

task has been included in the ADC, and some examples are (H.-J. Kim et al. 2017) and  (Young et al. 

2019). For instance, (H.-J. Kim et al. 2017) implemented a read-out scheme for outputting both 5-level 

edges data and a light-intensity-image. Furthermore, they reported a figure of merit of 70 

pJ/pix/frame. For the case of (Young et al. 2019), they proposed an ADC capable of outputting 

logarithmic light intensity gradients on the fly. Their proposed complete system (see Figure 5) allowed 

detecting objects from different classes, such as humans. The logarithmic-gradients-output from their 

smart-imaging-system allowed better robustness under illumination conditions (e.g. high dynamic 

range). That was, even under strong quantization of the log-gradients, and which they linked to the 

logarithm-based gradients (related to pixel-intensities ratios instead of differences). In their pipeline, 

logarithmic-gradients were the input for another computing stage (only simulated). There, they 

computed the HOG features (Dalal and Triggs 2005), which derived from the oriented-gradients image. 

They used those with an object-detection framework and algorithm called the Deformable-Parts-

Model (P. F. Felzenszwalb et al. 2010) or DPM. The later uses a strategy based on pictorial structures, 

and Support-Vector-Machines, to localize and classify objects in an image. 

 
1 We take the convention of calling “edges” the image-gradients whose magnitude is higher to any threshold. 
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Figure 5 : logarithmic gradients object detection pipeline (Young et al. 2019). 

Fig. [youngetal2019]:  
 

 
Figure 6 : distribution of power consumption for the implemented circuit from (Young et al. 2019) 

Fig. [youngetal2019_2]:  
Figure 6 shows their (Young et al. 2019) power consumption decorticated for their 

implementation. Notice that they implemented only the pixels-array and the logarithmic ADC (called 
“RDC” by them). From that figure, we observe that the orange, gray and yellow blocks are related to 
the log-gradients ADC, which was capable of computing log-oriented gradients on the fly. Their 
reported power per pixel per frame was of 99 pJ/pix/frame (including the blue block) in Figure 6. Their 
log-gradients ADC is shown in Figure 7: Their circuit was capable of sampling two pixels from which the 
local log-gradient was obtained. The circuit used a successive approximation strategy for addressing 
each gradient-component magnitude and sign.  
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Figure 7 : circuit schematic for logarithmic gradients extraction (Young et al. 2019) 

Fig. [youngetal2019_3]:  
  Other edge extractors have been proposed, which typically implement linear versions of the 

gradient approximation (instead of log), and at the bottom-of-the-column level. For instance, (Soell et 

al. 2016) proposed an analog edge-extraction circuitry for a matrix of 200x200 pixels that consumed 

(in simulation) 5.5 mW@75 fps (2097 pJ/pix/frame). Their work was interesting for us since they show 

clever circuit ideas for analog implementation (showed in Figure 8). Their architecture was based on 

computing both gradient components with a Sobel kernel. Then, they used both components for 

approximating their respective absolute value, and finally the magnitudes-sum. If the sum of both 

absolute-values was higher than a reference threshold, then the 1-bit output was set to “high” 

(indicating the present of an edge). One of the main drawbacks we found from this architecture was 

that no angular information was output.  

 
Figure 8 : circuit schematic for Sobel-like edge-magnitude-extraction (Soell et al. 2016) 

Fig. [soelletal2016]:  
Other edge extractors have computed gradients and angles in the digital side (after the ADC). 

For instance, (Suleiman and Sze 2014). However, as mentioned by (Omid-Zohoor et al. 2018), digital 

computations with the ASIC proposed by (Suleiman and Sze 2014) could imply using a standard CMOS 

image sensor for extracting image intensities with 8-bit resolution images, which would consume more 

power for the ADC than for the feature extraction. One argument can be that 8-bit intensity images 
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are not really necessary, and that a reduced bit depth is possible. However, (Omid-Zohoor et al. 2018) 

also shows that reduced-bit-depth-linear-gradients are more prone to fail under high dynamic-range 

conditions. Another digital implementation of the edge extraction, after the ADC, was proposed by (Jin 

et al. 2020): their implementation had 1920 x 1440 pixels and consumed 9,4 mW@60fps (57 

pJ/pix/frame). However, their work does not address how to cope with high-dynamic-range 

conditions, neither how power would change if the angular information is needed. (Choi et al. 2014) 

proposed a digital block right after the A-D conversion, which can also calculate orientations. 

Moreover, their implementation also computes HOG features right after oriented gradients 

calculation. Their reported FOM was 51.94 pJ/pix/frame, but it cannot directly be compared with other 

examples, since it also includes the HOG features generation from the oriented gradients. In the other 

hand, they did not take into account high-dynamic range optimizations.   

Indeed, when comparing the work of (Soell et al. 2016) (2097 pJ/pix/frame) with respect to 

(Jin et al. 2020) (57 pJ/pix/frame) and (Young et al. 2019) (99 pJ/pix/frame), the increased power of 

the analog Sobel implementation can be explained by several reasons : firstly, they read pixels several 

times directly from the pixels matrix, implying the usage of amplifiers able to drive the column 

capacitances. One possible improvement, already applied by other works such as (Young et al. 2019), 

is buffering pixel values that are required more than once. Moreover, the Sobel filter mask is rather 

complicated in comparison with, for example, the mask used by (Young et al. 2019), which only 

requires 2 pixels per component computation. Finally, from their publication (Soell et al. 2016), we 

understood that the analog Sobel computing unit was shared and not parallelized at the bottom-of-

the-column level. This increases significantly the bandwidth requirements for this unit, increasing the 

power consumption. However, we still find the schematic from Figure 8 important since it gives an 

insight of implementation and potential optimizations.   

Other edge extractors have included corresponding electronics in pixel. Typically, the gain 

happens potentially in latency or power, since signals do not have to be transmitted before being 

processed. For example, (Valenzuela et al. 2021) proposed a smart-pixel array capable of computing 

pixel differences, and in order to generate a kind of feature (related to gradients) proposed by them: 

the Ringed Local Binary Patterns (Valenzuela et al. 2021). However, we did not find in their publication 

the power related for the smart-pixels-array, and for the analog-to-digital conversion. Another 

example is the work from (C. Lee et al. 2015): their implementation was able to detect edges, and with 

a power consumption of 8 mW@30fps over a 105 x 92 pixels matrix (27605 pJ/pixel/frame). In 

addition, (Yin, Chiu, and Hsieh 2016, 14) implemented an array of pixels with PWM read-out, and with 

in-pixel circuitry for Imaging, edge-extraction and multi-point tracking. As an example, the edge-

extraction was based on pixel-intensity-comparisons (of a central pixel with its neighbors). This 

comparison was made with in pixel-logic, and whose output was either 1 or 0 for reflecting the edge 

magnitude. Their implementation consumed 34.4 µW@2160 fps for an array of size 64 x 64, giving a 

FOM for edge extraction of ~3.89 pJ/pix/frame. Interestingly, in imaging mode, their implementation 

consumed 154 µW@30 fps, giving a FOM of ~1253 pJ/pix/frame. The latter example reflects the gain 

of three orders of magnitude after exchanging the image codification from intensity to edges. This 

work is interesting from the point of view of having a very good FOM for edge extraction mode. 

However, several drawbacks limit our interest about their approach: firstly, the pixel complexity, 

containing 26 transistors per pixel, would be challenging to scale to bigger resolutions, and could show 

very poor fill factors. Secondly, the way edges are extracted reflects a rather simplistic logic, which is 

not justified to work in more complex computer vision algorithms. Finally, they do not output 

orientation information if an edge is detected. 
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One interesting question is how reported FOMs compare to a FPGA implementation. We found 

an example of a Canny Edge Detection algorithm implementation on FPGA (J. Lee, Tang, and Park 

2018). The Canny Edge Detection algorithm runs on standard desktop computers with libraries such as 

OpenCV (“OpenCV, Canny Edge Detector” 2021). Continuing with last example, (J. Lee, Tang, and Park 

2018) reported an optimized algorithm and implementation (on FPGA) of the Canny-Edge-Detection 

algorithm. It consumed 5.48 mW@50 fps for a UHD image (3840 x 2160 pixels, giving a FOM of 13.1 

pJ/pix/frame). This illustrates that features/edges computations is not necessary the most consuming 

part. Moreover, last examples show as well that analog computations are not necessarily less power 

consuming than, for instance, the more standard pipeline Image-array -> 8-bit ADC -> processing ASIC. 

One example supporting this argument is the work from (Choi et al. 2014), and which had a good FOM 

of ~52 pJ/pix/frame. Nevertheless, even though the work of (Young et al. 2019) has not the best FOM 

(99 pJ/pix/frame), they are the only example we found that address high-DR for feature extractors 

along with aggressive quantization, and that proves (with benchmarks) the interest for Object 

Detection.  

From last examples, we observed certain trends that served us as starting point: firstly, low 

power optimizations seem to benefit most from near matrix-of-pixels integration of custom-ADCs. In 

addition, they benefit from specialized circuitry for features extraction. From examples we have found, 

we did not observe a conclusive reason to say that an analog or a digital implementation is more 

performant. The work from (Choi et al. 2014) made us wonder if computing the edge-extraction at the 

analog-side (and thus eliminating the need for 8-bit ADCs for A-D conversion of pixel-intensities) would 

lead to a significant gain in power. Moreover, from the work of (Young et al. 2019), we observed that 

column-parallel computations gave a much better significant FOM, and even for more complex 

processing (of log-gradients) with respect to the work of (Soell et al. 2016). In our work, we wonder if 

log-gradients could be implemented differently if we could implement another architecture which 

potentially gives a better FOM for oriented-edges-extraction. We did not find any particular interest in 

on-pixel edge-extraction, based on cited examples from the state of the art. Examples we found, like 

(C. Lee et al. 2015; Yin, Chiu, and Hsieh 2016, 5) were related to at least a subset of issues such as: 

relatively high power consumption, high pixel complexities, poor fill factors, and limited pre-processing 

capabilities because of the on-pixel size constraints. 

We also observed relevant aspects regarding implemented algorithms for object localization 

or classification based on gradient-like features. Typically, different works choose a specific type of 

computer vision problem (e.g. face detection, identity verification, classification / recognition, etc…) 

and then they benchmark their implementation with a particular dataset (made by them or not). 

Nevertheless, most of the works we found only focus on processing images with only one object 

centered in them, like (Verdant et al. 2020). This might not be suitable for real case (“outdoors / out 

of lab”) scenarios. In this work, we have chosen the Object Detection (OD) problem (localization + 

classification), since it is still challenging due to its complexity, and because it may have a wide range 

of applications that could be used in more specific contexts (autonomous driving, gaming, surveillance, 

etc…). The work from (Omid-Zohoor et al. 2018) (Young et al. 2019) took such approach, and they also 

chose OD for benchmarking the output from their imager. They used an algorithm called the 

Deformable Parts Model (P. Felzenszwalb, McAllester, and Ramanan 2008) (DPM), which is further 

explained in section 2.3.2. Nevertheless, in our work we wonder if there is a better pipeline respect to 

the DPM model, which, for example, would be suitable for more modern algorithms such as low-power 

CNNs.  

Coming back to the work from (Verdant et al. 2020), their work is interesting for us, since they 

implemented an end-to-end image-acquisition and object recognition on chip. For the image 
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acquisition, they changed the standard image read-out for one that they called “Fastscan” (Verdant et 

al. 2020), and then they fed the image to a quantized SVM to compute binary classification “on the 

fly”. Their reported figure of merit for image acquisition plus object recognition was 53-59 

pJ/pix/frame for “intra-frame processing” (Verdant et al. 2020). Thus, they achieved a good figure of 

merit even with respect to works that only include the feature extraction. However, there are 

questions that, from our point of view, are yet to be clarified: firstly, the problem they solve (object 

recognition) is significantly simpler that problems tackled by, for example (Choi et al. 2014), and (Young 

et al. 2019). That is, since they targeted multi-scale and multi-class object detection. Then, it is not 

clear if the good FOM reported by (Verdant et al. 2020) comes from their read-out scheme and 

quantized SVM implementation, or just from the more simplistic machine learning problem. Secondly, 

and related to last sentence, there is not enough insight in the dataset they used. Therefore, we do 

not know how difficult the dataset is (e.g. presence of high dynamic range, variation in object’s 

position, occlusion, etc…). Finally, it is not clear if the edge-extraction performed on-the-fly can actually 

profit from the full imaging-system-DR of 36 - 88.3 dB  (Verdant et al. 2020), as targeted for example 

by (Omid-Zohoor et al. 2018) with their logarithmic features. 

 So far we have cited examples for edge-extractors. Those architectures are part of a bigger 

family of features called in the literature “hand-crafted-features”. That is, they are human-made and 

tuned. The opposite corresponds to algorithms that only “impose” shapes of operations performed on 

data, but they do not set fixed coefficients that appear during the (pre-) processing. Instead, many of 

those coefficients (and the logic behind them) are “learned” under a data-driven training-process, 

known in the literature as “supervised learning” and explained in (Khan et al. 2018) (i.e. the algorithm 

is trained by using example data, where each example is labeled with ground-truth annotations). In 

next subsection, we cite several examples of smart-imaging-systems which implement one specific 

kind of trained-algorithms: the so-called “Convolutional Neural Networks”. 

 

2.2.3. Embedded CNN-like features extraction 
 

 (J.-H. Kim et al. 2019) proposed a smart-imaging-system including a convolutional neural 
network (CNN). CNNs typically require multiply-accumulation (MAC) operations for subsequent cross-
correlations of different kernels with the image. Moreover, the need memory access for kernel-
coefficients (weights) loading and for intermediary operations. Finally, they require units capable of 
performing the activation-function (e.g. ReLu). In their work, (J.-H. Kim et al. 2019) implemented a CNN 
distributed between the analog and the digital domain. One particularity of such approach, is that no 
ADC is needed.  

Figure 9 illustrates the difference between more classic face recognition approaches and 

theirs. The ADC is not present, and instead, an analog unit computes the first convolution stage. The 

output is a 2-bit low-level-features map (after a ternary quantizer), which is used by two CNNs in the 

digital domain. One CNN is “always-on”, and it is in charge of finding faces. In one face is detected, 

then another CNN is “woken-up” for the identity verification process.  
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Figure 9 : “(a) Conventional face recognition system (b) Proposed recognition system”  (J.-H. Kim et al. 2019).  

Figure [kimetal2019]:  
Table 1 : comparison of the hybrid-CNN implementation and previous works (J.-H. Kim et al. 2019). 

 
9_2]:  

Table 1 shows that the work from (J.-H. Kim et al. 2019) is viable of face detection and identity 

verification at 96,18 % in their tests. Moreover, their implementation only consumed 0,6198 mW@1 

fps for 320 x 240 pixels, from which 10.17 – 18.75 µW where due to the analog multiply accumulation 

unit. The total analog part (imaging + convolution) was 0,0588 mW, giving a FOM of 765,5 

pJ/pix/frame. This FOM was approximately one order of magnitude higher than the case of edge-

detectors like (Young et al. 2019). Moreover, we observe, from Table 1, that the CNN implementation 

was not significantly better in power respect to a similar solution based on Haar-like features (for only 

the face-detection). In addition, their reported accuracy was slightly lower for the CNN. For those two 
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reasons, we do not observe a particular interest for going deeper into trainable kernels for low-level 

features extraction, which have to handle memory access and functions such as max-poling, activation 

and MAC with variable coefficients. 

In addition to last example, (Hsu et al. 2021) implemented a PWM pixel array and an analog 

convolution unit allowing 3 x 3 MAC operations (for applying the first layer of a CNN, or other kernels 

such as the ones needed for edge extraction). The architecture allows programmability of the kernel 

coefficients encoded in 4-bit weights (including the sign bit). The overall architecture is shown in Figure 

10.  

 
Figure 10 : system overview of the PWM pixels-matrix and programmable pre-processing (Hsu et al. 2021) 

Fig. [hsuetal2021]:  
The architecture from Figure 10 allowed reading, from the pixels-matrix, 9 neighboring pixels 

(with a PWM scheme). Then, those pixels could be multiplied by programmable-coefficients and 
accumulated on the fly in the analog domain. The processing steps applied by this architecture are in 
Figure 11. 
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Figure 11 : diagram of the implemented pre-processing for MAC after PWD read-out (Hsu et al. 2021) 

Fig. [hsuetal2021_2]:  
Figure 11 shows the sequence of operations performed on the image to achieve a 3x3 

programmable kernel convolution with the input image. This architecture achieved a FOM of 9.8 

pJ/pix/frame for imaging, and 14.8 pJ/pix/frame for the convolution, giving a total FOM of 9.8 + 14.8 = 

24.6 pJ/pix/frame. This implementation achieved a significantly better (~ 10x) FOM than the work of 

(J.-H. Kim et al. 2019). This might suggest that a PWM read-out plus analog-convolutions with current-

integration logic is a good approach for low-power feature extractors. Nevertheless, we observe the 

fill factor was relatively low (36 %), which probably came from their more complex pixel. In contrast, 

(Young et al. 2019) reported a fill factor of 60.4 % after using a more simple pixel type. Moreover, also 

related with the last argument, the dynamic range was 52.3 dB, which was lower than the one reported 

by (Young et al. 2019): 59.3 dB. Another potential drawback of this implementation is that they did not 

take into account big changes in scene illumination and their impact in the reported accuracy, as done 

by (Omid-Zohoor et al. 2018). That could suggest that this kind of linear pre-processing along with an 

aggressive quantization could suffer from scenes that are not uniformly illuminated.   

Another example of works for integrating CNNs is given by (Bose et al. 2019): they proposed 

an implementation of “Pixel processor arrays” (Bose et al. 2019) for computing ternary convolutions 

on the focal plane. Each pixel contained basic hardware, as illustrated by them in Figure 12, for 

computing addition, subtraction and bit-shifting. In their work, they explain how to represent ternary 

CNN convolutions with the limited hardware available.  
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Figure 12 : illustration of the in pixel-MAC architecture (Bose et al. 2019) 

Fig. [boseetal2019]:  
In last paragraphs we have cited different works that show interesting applications of 

integrated image pre-processing. One common trend is the increased circuit complexity, either at pixel 

level or at the periphery. In next section, we cite examples that use 3D-IC technologies for integrating 

relatively complicated and highly parallelized pre-processing algorithms. 

In our work, we preferred to tackle hand-crafted near-matrix-of-pixels feature extractors 

before going into more complicated implementations without having clear if they are really justified. 

 

2.2.4. 3D-IC Smart Image Sensors 
 

 (Millet et al. 2018) implemented a 3D-IC smart-image-sensor chip with two tiers (layers). Their 

microfabrication technology allowed them to parallelize communications between the two layers, as 

shown in Figure 13.  

 
Figure 13 : illustration of the 3D-IC smart-image sensor (Millet et al. 2018) 

Fig. [milletetal2018]:  
Figure 13 shows the system overview implemented by (Millet et al. 2018): the top layer (tier) 

included an array of what they called “macropixels”, which include a 16 x 16 arrays of pixels, plus an 
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ADC. Each macropixel could communicate with a processing unit located right underneath, so local 

operations could be performed with improved latency and with a high degree of parallelization. Figure 

14 shows each processing-unit-architecture. Indeed, this same Figure 14 indicates that one unit was 

dedicated for interfacing the pure computational unit (right) with the pixels on the top tier. Their 

processing unit (called “PE” for processing element), contained hardware capable of 8-bit computation 

of rather complicated functions (for near-sensor ICs) such as sinus, cosine and square root.  

 
Figure 14 : diagram of the units implemented in the bottom layer (Millet et al. 2018) 

Fig. [milletetal2018_2]:  
The implementation from (Millet et al. 2018) allowed interesting figures of merit, especially 

regarding latency : for an array resolution of 0.05 Mpixels with a 9 bit-depth encoding and a frame rate 

of 5500 fps. However, power-wise, the consumption for this arrangement was 720 mW, giving a FOM 

of ~166.5 pJ/pix/frame. This figure of merit is significantly less attractive than other works already 

cited before, also considering that it only takes into account image acquisition. Moreover, for low 

power applications, it is not clear for us how this system would benefit of such elevated frame rate 

without prohibitive power consumption from data I/O.  

 (Suarez et al. 2012) proposed and simulated a 3D-IC staked architecture for image acquisition 

and feature extraction. They present optimized mixed-signal (top-tier) and digital (bottom tier) 

electronics, for targeting complex algorithms such as interest-points detection. Interest-points is a 

concept in computer vision, related to zones (points) in the image (along the scale-space pyramid) that 

can be matched even if they re-appear later in a video sequence at another position. Those interest 

points are found with known algorithms based on handcrafted descriptors. In their work, (Suarez et al. 

2012) mentioned the Harris, Hessian and Difference of Gaussians descriptors. In their architecture, the 

top tier was in charge of image acquisition and generating (in parallel, in mixed-signal) a Gaussian 

pyramid. The bottom tier was in charge of computing the corresponding descriptor and of detecting 

the interest-points based on the corresponding local descriptor value. They reported a simulated value 

of 3600 pJ/pix/frame for image acquisition, Gaussian pyramid generation and A-D conversion. Without 

A-D conversion, their reported FOM was 50 pJ/pix/frame. The relative difference between these two 

FOMs suggests that removing or optimizing the A-D stage is critic for attaining figures of merit 

comparable with 1 layer smart-imaging architectures for low power. Again, we observe that the gain 
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from a 3D-IC implementation was the system being able to reach low latencies thanks to the high 

parallelization, of 50 µs for Gaussian pyramid generation from a QVGA image.  

 (Eki et al. 2021) implemented a two layer stacked IC with the imaging acquisition section on 

the top tier. In addition, they implemented a dedicated CNN computation unit on the bottom. They 

showed that their system was capable of computing a quantized version of Mobilenet (with latencies 

of 3.1 ~ 3.4 ms). That shows the applicability of a relatively complex CNN for low-power and embedded 

computer vision. However, as in previous examples, the power consumption due to the imaging part 

was considerably higher, and with respect to the computing part. For instance, we can take into 

account the energy related to 2 convolutions, and with kernels of size 3x3 (Sobel) like in (Soell et al. 

2016). For a chip of 4056 x 3040 pixels, their reported power is 278.8 mW@30 fps, giving a FOM for 

the image acquisition of 753.7 pJ/pix/frame. Their reported TOPS/W (“tera-operation per Watt”) was 

4.97 TOPS/W. We consider that the convolution of one single kernel of size n x n = 3 x 3, and with an 

image of size h x w = 4056 x 3040, gives a total amount of multiply-accumulation operations (MACS) 

of 𝑀𝐴𝐶𝑆 = 𝑛2 ⋅ (ℎ − 2)(𝑤 − 2) ≈ 110.8 mega-operations. We can multiply this number by two 

(considering that edge detection typically implies 2 kernels, one for each gradient component) and 

divide it by the TOPS/W. That gives the power for convoluting 2 kernels with one single frame, 

corresponding to ~22.3 µW/frame. For a frame rate of 30 fps, the corresponding FOM at the same 

image size is ~54.3 pJ/pix/frame. The total estimated FOM for image acquisition and convolution with 

2 kernels of size 3 x 3 is ~808,0 pJ/pix/frame, from which ~93 % comes from the image acquisition. 

Indeed, this FOM is similar to the one from (J.-H. Kim et al. 2019). However, in their case, the analog 

part consumed ~10x less than the digital CNN processor. In addition, (Hsu et al. 2021) also obtained a 

better FOM thanks to the PWM image acquisition scheme. Those two examples suggest that the work 

from (Eki et al. 2021) could be further improved by changing the column ADCs for an analog first stage 

convolution (which could potentially reduce the FOM due to acquisition only). 

 From 3D-IC staking technology examples we have cited so far, we observed that there is no 

clear reason, power-wise, for 3D-IC stacking. As we cited before, figures of merit are worse than single 

layered examples in the SoA. It is worth noticing that some works from 3D-IC staking have reported 

high-frame rates, probably thanks to the strong parallelization. Nevertheless, it is not clear for us how 

such high frame rates would be exploited in the context of low-power computer-vision-applications. 

Another potential interest, is the possibility of embedding more complex CNN architectures such as 

the case of benchmarks presented by (Eki et al. 2021), and with Mobilenet + SSD. Then, this is an 

illustrative example of 3D-staking technologies combined with embedding more complex algorithms. 

Another example supporting that argument is the work from (Millet et al. 2018): they can attain more 

important memory storage, and more complex operations (such as cosines) in parallel. Thus, from our 

perspective, the point of having a 3D-IC stack is to perform on chip (pre-) processing like 

localization/classification algorithms. Then, only high-level (semantic) data is sent by I/O interface, and 

so giving a potential power gain by reducing the data-rate with the “outside circuitry”.   

 Until this subsection we have cited examples of frame-based approaches. The state of the art 

presents many examples of this scheme being successfully used for computer vision purposes. 

Nevertheless, there is a general problem that they all share: the entire image is always acquired and 

processed, even if “nothing” has changed. That sets the need for a probably smarter approach, and in 

which only portions of the image where changes are present are processed. For instance, local 

processing only happens when local changes occur, instead of doing it regardless if nothing has locally 

changed. Ideas such as that one have inspired a family of non-classic imaging acquisition techniques: 

the “event-based” image sensors. In next subsection, we will explain them further and provide some 

examples on the SoA.   
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2.2.5. Event-based imaging-systems 
 

 Event based image-sensors typically codify information as a stream of asynchronous events. 

They do not output a stream of images, read “frame-by-frame” (by means of a rolling or global shutter), 

like it is the case of FB imagers. Figure 15 shows an illustrative pixel schematic (left) and functioning 

principle (right) of one example from those pixels: the dynamic vision sensor (DVS) (Posch et al. 2014). 

The pixel corresponds to three main stages: firstly, there is a reversed biased photodiode for photo-

current generation plus amplification. Secondly, next stage permanently computes the approximated 

relative difference between the instantaneous 𝐼𝑝ℎ, and the one sampled (as Voltage) at 𝐶1 at the last 

reset. Finally, the third stage permanently computes the comparison of the absolute value of this 

difference (with a double threshold) with a reference (set by comparators bias). When any of the two 

comparators in Figure 15 switches to the active stage, an asynchronous-request-signal is sent to 

activate the event-read. Figure 15 (right) shows how those events (codified as spikes) are sent each 

time the voltage at the sensing node 𝑉𝑙𝑜𝑔 changes (up or down) sufficiently. Moreover, those spikes 

can be accumulated during a time frame to render an image (such as the one represented in the same 

Figure 15). 

 
Figure 15 : illustration of the principle of functioning of the dynamic vision sensor (Posch et al. 2014) 

Fig. [poschetal2014]:  
Continuing with last idea, we no focus this paragraph on the work from (Lichtsteiner, Posch, 

and Delbruck 2008), related to Figure 16. This figure shows a typical architecture of Dynamic Vision 

Sensors: an array of pixels are constantly sensing the relative light intensity variation. When any of 

them send an asynchronous request signal (a spike), blocks handshake logic and the arbiter are in 

charge of “reading the event”. Moreover, they also manage events coming approximately at the same 

time, and send back acknowledge signals (for each pixel separately) that trigger the local reset.  
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Figure 16 : example of the event-based read-out “(a) Block diagram. (b) Timing for a communication cycle for a single ON 

event…” (Lichtsteiner, Posch, and Delbruck 2008) 

Fig. [lichtsteineretal2008]:  
Event Based Vision sensors aiming to recover temporal data (such as the DVS pixel and 

architecture from Figure 15 and Figure 16) are not the only non-standard scheme that has gained 

popularity in the SoA. Other imaging acquisition techniques can benefit from the event based 

codification for light intensity measurements. One example is the “time-to-first-spike” (Guo, Qi, and 

Harris 2007) imager, or TTFS. This kind of imager codifies each pixel-light-intensity as the time for the 

pixel-signal to reach a certain threshold. The principle of functioning is illustrated in Figure 17. The 

pixel-signal is the voltage at the sensing node resulting from the photo-current integration after a 

global-reset. Notice that, as the case of FB imagers, there is a global reset. However, pixels do not 

output a voltage signal which then is transformed to the digital domain by means of analog-to-digital 

conversion. Instead, they just send a request signal (a spike) to an arbiter circuit. Then, dedicated 

circuitry takes into account the individual address and spiking time for converting such time to lighting 

intensity.  
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Figure 17 : principle of functioning of the time-to-first-spike pixel (Guo, Qi, and Harris 2007) 

Fig. [guoetal2007]:  
Examples mentioned before for event-based image-sensors made us wonder the following: is 

it still possible to embed near sensor “logic” for performing computations? For instance, is it possible 

to handle summations, subtractions, multiplications and divisions? Indeed, several works have 

proposed logic units that work with spikes. For instance, (Ravinuthula and Harris 2004) proposed 

electronics for performing smoothing operations on pixels (see Figure 18), or for computing pixels 

differences which are then compared with a fixed threshold (see Figure 19). Moreover, they explain 

how those can be implemented in order to perform edge detection with the output of TTFS imager. 

 
Figure 18 : example of a weighted average circuit in spike-domain (Ravinuthula and Harris 2004) 

Fig. [ravinuthula2004]:  
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Figure 19 : example of a subtraction and thresholding circuit in spike domain (Ravinuthula and Harris 2004). 

Fig. [ravinuthula2004_2]:  
Until now, we have discussed integrated and embedded imaging-system architectures, and for 

low-power computer-vision/artificial-intelligence. Some of them presented IC implementations as 

well. Notice that this work points as well towards one specific problem of machine learning and 

computer vision: object detection (OD). Next section will discuss further about it, before we start 

making the link with sections 1.2 and 1.3. 

 

2.3. Object detection pipelines 
 

2.3.1. HOG and linear SVM 
 

(Khan et al. 2018) explain that the object detection problem consists in solving to sub-problems 

in computer vision: firstly, there is the classification problem (labeling each object where each label 

corresponds to a particular object class). Secondly, there is the localization problem, which consists in 

giving coordinates (e.g. bounding boxes) of the different objects. In next paragraphs, we give a very 

general, non-exhaustive overview of the main object-detection pipelines in the state of the art.  

 

 
Figure 20 : example of an object detection pipeline with HOG and SVM (Dalal and Triggs 2005) 

Fig. [dalal2005]:  
Figure 20 shows a relatively old pipeline (published in 2005), but that is still relevant for 

embedded cases, like (Suleiman and Sze 2014) and (Choi et al. 2014). The algorithm takes an intensity 

gray image from which it computes the local intensity gradients (magnitude and direction). This 

derived gradient map is divided into blocks called “cells” by (Dalal and Triggs 2005), and for each cell 

they proposed to obtain a feature called “Histogram of oriented gradients” (Dalal and Triggs 2005) 

(HOG). Then, a “sliding window” with a template of the object of interest (in HOG representation) is 



 36 

compared in as much as possible regions of the image (scale and space wise). The template is “learned” 

in their case, and by the implementation of a linear support vector machine.  

 

2.3.2. HOG and DPM 
 

 Later, (P. F. Felzenszwalb et al. 2010) presented a more complex model for object detection, 

which takes into consideration that objects can be “understood” or “modeled” as a collection of sub-

parts. In their model, those sub-parts can move respect to the others. Figure 21 illustrates how objects 

are “decomposed” into “parts” for the purpose of object detection. They (P. F. Felzenszwalb et al. 

2010) proposed a model which they called the “Deformable Parts Model” (P. F. Felzenszwalb et al. 

2010). This model has a similarity with the purely HOG approach from (Dalal and Triggs 2005), in the 

fact that is uses HOG features, and it performs the detection over a “HOG space”. Nevertheless, it 

changes the idea of a simple template representing each object, for a collection of templates that 

represent each part. Moreover, sub-parts can move respect to each other. However, templates 

allowing sub-part matching are limited in the range from which they can move respect to the “center 

of the model” (called by them the “root”), and this limitation is represented by a penalty function. 

Thus, the detection is determined by a global function taking into account the different templates-

matching, and their relative position to the “root”. This work was used indeed used for benchmark 

purposes by the circuit implementation from (Young et al. 2019).  

 
Figure 21 : illustration of the principle of functioning of the DMP model. “(a) a coarse filter, (b) several higher resolution 

part filters, and (c) a spatial model for the location of each part relative to the root…” (P. F. Felzenszwalb et al. 2010) 

Fig. [felzen2010]:  
 

2.3.3. Fast R-CNN 
 

In recent years, convolutional networks (CNNs) have gain popularity in computer vision, 

including object detection. For instance, Figure 22 presents a brief of the “Fast R-CNN” (Girshick 2015) 
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pipeline. It takes a colored input image, and then it takes it as input for a “Region proposal algorithm” 

(not shown in the figure). The region proposal algorithm outputs a series of region proposals or 

“bounding boxes” which are used later. Moreover, the colored image is also passed by a convolutional 

neural network from which a “convolutional feature-map” is derived. Then, the region proposals are 

projected into this feature map with an operation that they called the “RoI pooling layer” (Girshick 

2015). From each RoI, there is one output from the RoI pooling layer, which is then used for classifying 

the region proposal and for estimating the coordinates of the bounding box. This pipeline is interesting 

for us since the idea of “Region proposals” can be potentially more efficient (power and computational 

wise) than the sliding window approach when implemented, for instance, on a 3D-smart-image-sensor.  

 
Figure 22 : diagram of the Fast R-CNN pipeline: “… An input image and multiple regions of interest (RoIs) are input into a 

fully convolutional networks. Each RoI is pooled into a fixed-size feature map…” (Girshick 2015) 

Fig. [girshick2015]:  

 

2.3.4. Faster R-CNN 
 

Later, (Ren et al. 2017) proposed to replace the “external” RoI proposal algorithm by a CNN 

called by them the “Region Proposal Network” (RPN) (Ren et al. 2017). Moreover, this RPN shared 

convolutional layers with the classifier stage. Indeed, the input image was passed to a series of initial 

convolutional layers, from which a feature map is derived. Then, this feature map is passed to the RPN, 

and the output from the RPN is then used for “RoI pooling” the Region proposals before passing then 

to the final stage: the classifier. This approach is similar to the one implemented by (J.-H. Kim et al. 

2019), related to Figure 9. However, there are important difference to consider: firstly, the shared 

convolutional layers were replaced by a single CNN layer in the analog domain. Secondly, the RPN was 

changed by a face detection CNN, which could be understood as a “face-region-proposals stage”. 

Thirdly, their implemented face recognition stage (which would be similar to the classifier in Figure 23) 

was triggered only if the face was detected at a certain region of the image, and the classifier would 

evaluate only this specific region as input.  
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Figure 23 : illustration of the “Faster R-CNN” pipeline (Ren et al. 2017) 

Fig. [ren2017] :  
 

2.3.5. SDD and YOLO  
 

Finally, other works, such as (Redmon et al. 2016) and (Liu et al. 2016) are other kind of 

strategies that do not use the region proposals method. For instance, Figure 24 shows the working 

principle of the work from (Redmon et al. 2016): the image is divided into equal regions, and for each 

region there are C different “bounding boxes”. Then, for each bounding box in each region there is 

always a prediction of the class (or no class at all). This kind of strategy is not our first choice since it 

computes the classification stage in many regions (the number of image sub-regions multiplied by the 

number of bounding-boxes per region) in spite of if there is potentially an object or not. Then, it is less 

clear how to implement a wake-up or hierarchical system into which the portion expected to consume 

most of the power (the classifier) is used only when there is a minimal chance of finding any object.   
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Figure 24 : illustration of the principle of the YOLO-pipeline: “…It divides the image into an S x S grid and for each grid cell 

predicts B bounding boxes, confidence for those boxes, and C class probabilities…” (Redmon et al. 2016). 

Fig. [redmon2016] :  
In this section, we have cited several illustrative works of the trending algorithms for object 

detection, and for general purpose machines. In addition, we have cited works in the embedded vision 

context that get inspiration from the aforementioned pipelines. From there, we have selected to target 

Region Proposal Based pipelines since they could be compatible with hierarchical/wake-up 

mechanisms for low power, and they could reduce the classifier power at the cost/overhead 

introduced by the ROIs generation. For instance, our focus is to go deeper in a pipeline resembling 

Fast-RCNN, where we use a secondary algorithm (non CNNs-based) for ROIs-generation. We preferred 

to start from an algorithm that does not depend on CNNs for ROIs-generation, since it is not clear for 

us if the low level implementation of a CNN for ROIs would be advantageous or not. Then, one 

approach is to assess the best way of ROIs-proposals by studying both approaches (CNN-based with a 

Faster-RCNN-like pipeline, or by with non-CNN-like ROIs-generation as in Fast-CNN). Nevertheless, in 

this work we study only the non-CNN ROIs-generation, and we let the second case to further works. 

Finally, we discard the DPM model, since it seems, from our perspective, a prior (not necessarily less 

“heavy” in terms of computations) to CNN algorithms.  

 

2.4. Conclusions of chapter 2 
 

 In this chapter, we have presented an overview of the theoretical background (State of the art) 

related to this work. We have cited illustrative works in the SoA that give us a point of departure. From 

there, we have made the preliminary decisions that drive the rest of this work: 

1. We focus our attention in bottom-of-the-column parallel pre-processing, letting the matrix of 

pixels “untouched”. Indeed, it allows to split the optimization of the imaging part and the pre-

processing stage. Moreover, we do it in order to have simpler pixel architectures and classic 

read-out schemes, such as the case of the 4T-APS/1.75-APS. 

2. We focus on the generation of hand-crafted features by means of a dedicated, non-

programmable architecture, specialized for the kind of feature we want. Moreover, we follow 

the trend we observed in the SoA regarding the gradient-based features (such as variants of 

edge-extractors). However, we diverge from the SoA since we want to optimize the extraction 

of those features for the purpose of Region Proposals Generation on another chip, or in the 

bottom tier if 3D-IC staking is used. 
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3. We take inspiration from the pipeline of Fast-RCNN for achieving a good trade-off of 

hardware/computational-complexity and performance. We diverge from works in the SoA 

which tackle the OD problem by using the sliding window approach like (Young et al. 2019; 

Omid-Zohoor et al. 2018), or by using region-proposals (face-detection) with a CNN (J.-H. Kim 

et al. 2019). We use the same strategy as (Girshick 2015), which corresponds to using an 

algorithm for the Region Proposal generation.  

 

In next chapter, we will present out methodology for behavioral simulations, which we use along 

this thesis for obtaining our results and for driving our conclusions. 
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Chapter 3. Our simulation Framework 
 

In this chapter, we describe the framework developed during this thesis. Its objective is to allow 

smart imager system behavioral simulations in order to optimize the image-processing-pipeline design. 

One key aspect is that, for several specific stages (further developed in this chapter), it takes into 

account hardware constraints (e.g. memory access constraints, quantization, noise, suitable 

operations, etc). Moreover, we derive the impact of those constraints on relevant metrics related to 

artificial intelligence and integrated systems.  

The reason why we made our own simulation framework were the following: firstly, we wanted 

a tool that takes into account both electronic schematics and rather complex signal processing 

pipelines. Such tool would be in between a specific CAD tool like Cadence and a library such as OpenCV.  

The second reason was that we wanted a software allowing separation of behavioral models into two 

main groups: the ones that are integrated, and those that would run on a standard CPU or GPU. The 

integrated stages would include hardware constraints, while the rest of the stages will run without 

considering them, but their input is the output from integrated-behavioral-models (which do consider 

hardware constraints). The third and final reason was that we wanted a framework capable of 

simulating different kinds of standard and non-standard types of imagers.  

We call our framework EdgeTon (“Edge” meaning that is for Edge-AI design, and “Ton” 

referring to be Python code). In the next sections, we start developing the framework architecture and 

functionalities. After, we discuss several imager system models that will be important in the next 

chapters.  
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3.1. EdgeTon main architecture 
 

 
 
 
 
 
 

 

Figure 25 : main Edgeton algorithm. 

Fig. [mainAlgorithm]: 
 

Figure 25 shows the flow for any general EdgeTon simulation. Firstly, the framework allows 

loading and customize an imager model, which is used by the simulation engine to simulate hardware-

constraints on the image acquisition/pre-processing. The output from there is later used by a standard 

algorithm (with a standard framework such as OpenCV or Tensorflow) to assess the algorithm 

performance when the input comes from a hardware-constrained/integrated image-sensor and pre-

processing. Finally, the simulation results are loaded by third module, which is in charge of calculating 

all the metrics used for human interpretation. The figure below shows a more detailed structured of 

the framework, which depicts different functional blocks important for the code-implementation. 
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Computing machine (Installation Folder) Storing Machine (Nomada Folder) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26 : diagram of EdgeTon framework architecture for simulating complete processing pipelines. 

Fig. [edgeton]:  

Figure 26 presents a diagram of our framework for simulating (behaviorally) smart imaging 

systems (integrated plus a portion potentially in another chip or device).  The left side represents the 

code architecture, the green color representing the starting point: the user, who provides a 

configuration file. Then, the main program, called edgeTonRun.py, launches sequentially each portion 

of the complete processing pipeline.  

The first stage is the simulation engine, which is in charge of simulating the part of the system 

that is hardware-constrained. Typically, this portion relates to the image acquisition and processing 

integrated near (or in) the pixel array, and only performs several initial steps in the processing. More 
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precisely, we make the difference (in our models, and corresponding code) between the pre-

processing that happens inside each pixel, and the one that happens after pixel readout (right before 

or after the ADC).  We refer to the first case as “deep pre-processing” (or near pixel processing), and 

to the second one as “shallow pre-processing” (or near ADC processing).  

In the next section, we focus on the general imager model. 

 

3.1.1. Imager models structure  

 

 
 

Figure 27 : imager model (Cubero et al. 2019) 

Fig. [imagerModel]:  

 Our imager model structure is presented in Figure 27. The image acquisition consists in 5 

stages, typical of the state of the art. Depending on the imager type, one or more blocks can be 

removed or by-passed. For example, blocks like event detection, spike generation, and arbitration are 

typically related to specific types of neuromorphic sensors only. Next, we describe each of these 

stages: 

 

Photo-current integration 

This stage, from the code point of view, relates to the module dataload in Figure 28. We 

typically load a standard dataset that could include unknown pre-processing and compression 

functions. Ideally, this step should be done with non-preprocessed or “raw” images. Nevertheless, in 

this work we used 8-bit images from standard datasets as a first approximation.  

In some cases, the image has to be pre-processed again from the dataset in order to make it 

compatible with the application scenario, typically by converting it from color space to gray space.  
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Event detection and Spike generation 

Those stages relates to the module event in Figure 28. It encloses any functionality related to 

what we called before the “deep pre-processing”, i.e. any sort of pre-processing happening at pixel 

level or at matrix of pixels levels (not at column bottom or the periphery). One example is the Dynamic 

Vision Sensor (Posch et al. 2014), which detects (on pixel) local light intensity changes and sends an 

asynchronous signal (spikes) whenever this happens. Other kinds of pre-processing related to in pixel 

pre-processing, such as edge-detection (Yin, Chiu, and Hsieh 2016, 1), local-binary-patterns-detection 

(Gottardi and Lecca 2019), or Time-To-First-Spike (Guo, Qi, and Harris 2007) architectures are modeled 

here. The input is the loaded image, and the output is the pre-processed image in any encoded format 

related to the specific kind of pre-processing.  

The reason why we separated the event detection from the spike generation was to prevent 

cases that an event occurring on one specific pixel does not trigger immediately a spike. Indeed, the 

spike can be triggered by the correspondence of several events of neighboring pixels such as the case 

of the local-binary-patterns (Gottardi and Lecca 2019) architecture. Moreover, one could imagine a 

general architecture that processes several events in neighboring pixels before sending any signal.  

 

Arbitration 

This stage relates to the module arbiter in Figure 28. It represents a specific functionality of 

asynchronous-spiking-imagers: asynchronous and event-based imagers sends spiking signals 

asynchronously. That means that a spike can be generated ideally at any time without being 

synchronized with an internal clock rate. As explained by (Posch et al. 2014), when a spike is sent, 

another circuit handles spike read-out, which normally consists in keeping information such as pixel 

address, event type and time-stamp. This circuit also deals with cases of several spikes coming at very 

similar times, for example, by establishing a priority order for reading each of them. The process just 

mention before is closely related to the known “hand-shake” protocol for asynchronous read-out. This 

functionality is included into this block. We decided to make a separated module for it, in order to 

simulate very specific phenomena happening in the arbiter if required: for instance, delays and data 

loss due to limitations in the arbiter circuitry (for instance, for simultaneous read-outs). As first 

approximation (and as we explain further in chapter 7), we modeled the arbiter as a perfect one, and 

we let this code architecture for being expanded more in detail in further works. 

 For classic (or frame-based) architecture, clearly the arbiter is not needed (as is the case for 

the event and spike generation stages in the model and respective modules). For those cases, the main 

imager model simply bypasses the input to the output in the code.  

 

Analog to digital interface 

This step is related to the module analog-to-digital in Figure 28. Notice that in classic imagers, 

this block would simply reflect the functionality of the analog to digital (ADC) converter. However, this 

block also takes into account any functionality resembling what we called previously the “shallow pre-

processing”. Then, here we take into account models of pre-processing done right after the read-out 

(analog side) or right after the ADC (digital side). Several types of shallow pre-processing are already 

suggested in the state of the art. For instance, 1-bit-edges detection (Soell et al. 2016). 
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Before we go more into details for specific architectures, we explain how the simulation engine 

uses the imager model class in order to perform the behavioral simulation. 

 

3.1.2. Imager model module 
 

The simulation engine is in charge of creating an instance of a class “imager”, which is a sort of 

“skeleton” that creates instances of 5 different subclasses for assembling all the parts of the imager 

system. Notice that from now on, we refer to the “imager system” or to the “smart imager” as the 

stages from image acquisition to the shallow pre-processing. All the rest is outside the imager (in 

another layer for 3D IC technologies, or in another chip). Those 5 subclasses are contained in 5 different 

modules represented in Figure 28 for code modularity. Each module defines a specific task inside the 

imager2, and each class inside each module represent a different variation (e.g. different kinds of pre-

processing, image acquisition, etc). Moreover, the engine selects objects from which class to 

instantiate based on the configuration file provided by the user. 

 

 
 

Figure 28 : example of the imager model implemented in Python modules (Cubero et al. 2019). 

Fig. [codeModularity]:  

Once the imager model is ready to use, the simulation engine launches a simulation loop 

(further discussed in 3.1.3. Simulation engine loop). The point is that, during this loop, the imager 

simulates the behavior from image acquisition to imager system output. The input data for performing 

the simulation comes from a dataset, for which a specific data-loader class is automatically 

instantiated. Then, the output from this first stage is rendered (by a specific class-object in a secondary 

module and selected accordingly to the simulation settings). Indeed, there are two kinds of outputs 

generated (rendered) in this stage: one is a complete set of all outputs from this stage in a non-human-

friendly format that is buffered in the hard-drive before the next stage. The other kind of rendering is 

for visualization purposes, so the user can see how the imager system output looks like and debug 

issues if required.   

Once the simulation engine is finished, the main program launches the second stage: the 

processing. Notice that we call here processing everything that is after the imaging system. Similarly, 

 
2 We decided to make this separation between modules in order to isolate different phenomena while making 
code development easier. Moreover, the different modules are selected as they represent a good generalization 
of different imager types in the state of the art. 
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to the first stage, the processing follows the same kind of simulation loop, and has specific data-loaders 

and renderers. The difference is that here, we only focused on applying state of the art algorithms, 

without taking into account hardware constraints. For example, we used directly algorithms from the 

OpenCV library, and only wrapped them with the rest of the whole simulation pipeline. Once the 

processing is finished, its output is buffered again to save the intermediary steps (notice that this 

buffering becomes important when the size of all outputs and internal variables becomes greater that 

the RAM of the computer running the program). Since the output from this stage (in our cases) was 

more abstract or harder to visualize respect to last stage, we did not create an automatic visualization 

output for this stage. Notice that this stage could represent a CNN, a Random Forest, a Support Vector 

Machine, ROI proposal algorithms, among others.  

One important aspect was that sometimes we required specific information about memory 

and runtime of the processing phase, in addition of the algorithm output. Moreover, sometimes 

specific sections of code were written in C++ language. For those cases, we wrapped the C++ code by 

executing it as a sub-process from Python. Moreover, we slightly modified the C++ code to output 

relevant information about memory and runtime, in addition of the main output. Moreover, we added 

an optional feature for executing compiled code in the processing stage in Figure 26. This optional 

stage (not present in the figure) was between the simulation engine and the processing block, and 

corresponded to a parsing task for solving any compatibility between our framework and external C++ 

code.  

Once the processing is finished, its output becomes the input for the metrics (or third stage) 

part of the main program. Again, different types of metrics are defined for the different classes inside 

a module, and the program instantiates the right one depending on the simulation settings. One 

example of metrics that are evaluated could be classification accuracy, detection rate, recall, and 

others. The final output is a single file summarizing results as a Python dictionary. This file can be used 

latter for statistical data post-processing, and visualizations leading to final conclusions.  

 

3.1.3. Simulation engine loop 

 

 
Figure 29 : simulation loop (Cubero et al. 2019). 

Fig [simulationLoop]:  
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 The simulation engine applies a loop as shown in Figure 29. The simulation engine uses the 

imager object, which has been already setup following the user settings, in order to implement the 

loop. Firstly, a frame is loaded as a way of representing the photocurrent in the matrix of pixels. Then, 

the module state, which hold specific state variables such as the pixel equivalent voltage values, is 

reset. Then, the loop wonders if the frame period is ended. This question is important for simulations 

in which one tries to simulate more complicated phenomena. For instance, we could say that each 

pixel sense-node voltage o, is linearly increased by a time step (which is a small fraction of the frame 

period). This linear increase (or any increase represented in the state-interpolation module in Figure 

28) happens during the update state phase. Then, the phase of find events starts. Continuing with our 

example, after a linear increase in pixels voltages, we could simulate a sort of complicated event that 

depends on values of neighboring events, and that somehow affects their values once it sends a spike. 

In such, or even more complicated cases depending on transient phenomena, this small step linear 

increasing during the step update is important. After events have been found for a specific small time 

step, the arbiter is launched, then the shallow pre-processing (the analog to digital interface). After 

several time increments, the reference time would be equal or higher than the frame period. Then, 

the simulation loops renders and output, and starts loading a new image. If there are no more images 

available, the simulation engine loop stops.  

 For the case of simpler, classic (frame-based) imagers, the linear increase is typically not 

required. Then, the loop works in a simpler manner: an image is loaded, then the pixels reads are reset. 

After, the engine launches blocks from update stage to analog to digital interface only once. After that, 

the loop moves on to the rendering frame output step.  

  

3.2. Imager model examples 
 

3.2.1. Ideal 8-bit-depth Sobel oriented-edges extractor 
 

This model represents an ideal edge-extractor, in the sense that it assumes that all the pre-

processing is carried out with numbers in floating point representation (32 to 64 bit-depth3). All pre-

processing operations (which end with the edge-extractor output) are included in the shallow pre-

processing module (see Figure 28). Again, depending on the user settings, the simulation engine selects 

the correct pre-processing class to use.  

 For this ideal case, the user selects the “8-bit Sobel edge extractor” imager-type. Notice that 

the 8-bit part comes from the fact that input images for the simulation engine are typically codified in 

8-bit for a given color space. Nevertheless, we do not simulate any effect due to electronics 

implementation in this model. The simulation engine selects the right imager-class to use, and the 

imager class automatically instantiates the appropriate pre-processing class from the shallow pre-

processing module (notice that several types of pre-processing are possible along with the same 

imager module, so this is also present in the user settings). We will go more in detail about the 

 
3 Due to specific aspects of the Python language and its packages, floating point numbers can be either 
represented in 32 or 64 bit-depth. In this work, we care about computations with low bit-depths (e.g. equal or 
lower than 8) respect to “high-resolution-bit-depths” (e.g. 32 bits or more). Then, we do not make a distinction 
in our analysis between 32 and 64 floating point representations in Python, and we refer to both in general as 
“floating point representation”.  
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mathematics and computations performed for the edge-extractor on chapter 4. Here, we specify how 

computations happen from a programmatic point of view.    

 The pre-processing class for the high-resolution edge-extractor contains a method that 

embeds all its stages: the function detect. It implements other class methods to simulate behaviorally 

the shallow pre-processing. The successive steps are: 

 

1. Read and buffer the entire image 

2. If binning is “True”, then apply 4x4 binning to the image (floating point). If binning is false, 

bypass the output from last step. 

3. If apply blur is “True”, then select kernel based on user settings. The options are the kernel 

type (Gaussian, average) and size (given by a valid integer, e.g. 3, or 5). After that, apply the 

blur kernel to the entire image (floating point). If apply blur is false, bypass the output from 

last step. 

4. Use the output from last step to obtain the gradient x component for each pixel. The gradient 

kernel type comes from the user settings (e.g. simple linear as the one used by (Dalal and Triggs 

2005), logarithmic like in (Omid-Zohoor et al. 2018), and Sobel as the one used by (Soell et al. 

2016)), in this particular case the Sobel is used. Operation happens in floating point, and the 

output are two matrices: one containing the absolute value (floating point) of the X 

component, and other containing the sign). 

5. Do the same as step 4, but for the y component. 

6. Use outputs from steps 4 and 5 to computes (floating point) the pixel gradient magnitude, and 

compare (floating point) the approximated gradient-magnitude with a threshold (provided in 

user settings).  If the gradient magnitude is higher, then the edge magnitude (for that pixel) is 

the gradient magnitude itself (floating point). If the contrary occurs, the edge magnitude is 

zero (Notice that then, the edge magnitude is the result after comparing the gradient 

magnitude with a threshold). This step outputs a matrix of magnitudes, which are always either 

a floating point value higher than the threshold, or zero. 

7. Use outputs from steps 4 and 5 to approximate the gradient orientations. The angle is 

approximated with the inverse tangent function in the gradient components (including the 

sign), and projected into the I and II quadrants. Notice that each gradient angle corresponds 

to one pixel-address, and the angle automatically is put to zero if the edge magnitude is zero. 

The output from this step is a matrix with angles (floating point) for every pixel.  

8. The class method “detect” outputs two matrices, the edges and orientations.  

Notice that computing steps mentioned before do not take into account any IC implementation, 

and they do not happen as they would in an integrated case. Nevertheless, steps mentioned before 

only try to assess how a particularly hypothetical pre-processing circuit, with high-bit-depth capability, 

compares with realistic architectures.   

 

3.2.2. Analog linear oriented gradient extractor 
 

In this case, we try to give a rough estimation of the output given by a more realistic edge-

extractor implemented in analog electronics. In order to do so, we add noise to the signal before the 

output. This noise corresponds to a quantization noise related to a user defined (in the user settings) 

“equivalent number of bits” (ENOB). The computation sequence goes as following: 
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1. Steps 1 to 5 happen as for the high-resolution edge extractor (the simple linear kernel and an 

average kernel of size 3 are always used). 

2. Apply quantization noise to the x gradient component. 

3. Apply quantization noise to the y gradient component. 

4. Use outputs from steps 2 and 3 to compute the edge magnitudes. In this case, a floating-point 

comparison between approximated gradient magnitudes and a user-defined threshold is the 

edge magnitude. That means that the edge magnitude takes a Boolean value (1-bit). 

5. Use outputs from steps 2 and 3 to calculate the orientations. This time, floating-point values 

output from the inverse tangent are projected into 4 main directions: 0, 45, 90 and 135 degrees 

(or automatically zero if the edge magnitude is zero).  

6. The returned values are two matrices, one for the edge magnitudes and other for the 

orientations. 

In next sub-section we explain further how we apply the noise in steps 2 and 3.  

 

The “apply quantization noise” function 

Notice that this noise is supposed to represent the total noise coming from the analog pre-

processing, as well as the temporal noise. That is, because it was easier to model for our framework. 

However, without a more detailed simulation we cannot know the spectral power function of the 

noise, so we are limited to choose arbitrarily an ENOB that seems reasonable. For design purposes, 

this ENOB states a first approximation of the noise budget for a particular pre-processing architecture. 

We try to take into account temporal and FPN sources mentioned by (El Gamal and Eltoukhy 2005) in 

a simplified form (e.g. by an equivalent quantization noise). 

 The apply quantization noise function takes as input a matrix representing a signal (gradient 

component along a specific axis for each pixel), and a value for the equivalent number of bits or ENOB. 

Its output is a quantized signal. The objective is to introduce quantization noise in order to simulate 

the impact of imperfections corresponding to analog electronics. We use the mid-thread quantization 

approach as described by (Wannamaker et al. 2000): 

1. Calculate de number of quantization steps 𝑛𝑆𝑡𝑒𝑝𝑠 = 2𝐸𝑁𝑂𝐵 − 1  (mid thread) 

2. Let 𝑠𝑀𝑎𝑥 = 255.0, and 𝑠𝑀𝑖𝑛 = 0.0 

3. Calculate in floating point: 

𝛿 =
𝑠𝑀𝑎𝑥 − 𝑠𝑀𝑖𝑛

𝑛𝑆𝑡𝑒𝑝𝑠
 

Equation 2 

 

4. Calculate the intermediary step 𝑞𝑆 (floating point): 

𝑞𝑆 =  ⌊
1

𝛿
⋅ 𝑰 +

1

2
⌋ 

Equation 3 

 Where the brackets above represent the floor function (which spans for every single pixel), 

and 𝑰 is the input image.  

5. Finally, the output value is (floating point): 
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𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑞𝑆 ∗ 𝛿 

Equation 4 

 

3.2.3. Digital linear oriented gradient extractor 
 

This model tries to emulate an edge extractor implemented in the digital domain. Then, we 

firstly apply the quantization noise before computing the pre-processing steps. The only function that 

happens before quantization is a 2x2 binning, since we assume that it happens directly in the matrix 

of pixels. The programmatic model is similar to the analog edge extractor. The differences are that the 

quantization is applied earlier, and the quantization function does not multiply by delta at the end. 

Indeed, the last multiplication by delta (a float) is unrequired, since the quantized output would be a 

matrix of integers. Later operations can be performed in integers only, which corresponds to digital 

operation with a fix bit-depth (as long as the maximum number is not attained).  

 The function detect goes as follows: 

1. Buffer the 8-bit gray image. 

2. Quantize the signal (image intensities) to a specific ENOB. 

3. Apply blur and round output to integer values. 

4. Obtain gradient (simple linear kernel) as integer operations. 

5. Approximate gradient magnitudes by adding the two gradient components, and the edge 

magnitudes are calculated by comparing gradient magnitudes with the floating-point value of 

the threshold over delta (thus comparing an integer type with a float type). 

6. Orientations are obtained with the inverse tangent applied on integer values and projected as 

for the analog edge extractor. 

 

3.2.4. Logarithmic oriented gradients extractor 
 

This model represents the logarithmic gradients as calculated by (Young et al. 2019), and related 

to Figure 5, Figure 6 and Figure 7. For this pre-processing type, we defined another attribute called 

qMinEdgeMag and set it to 1.0. Moreover, we changed the threshold attribute, whose value depends 

on the user settings, for the “ratio threshold”. In next paragraphs, we explain further those variables. 

Now, we specify the steps in the detect method for the logarithmic edge extractor class: 

1. Buffer the entire 8-bit image. 

2. Apply 4x4 binning (floating point) is requested by the user settings. 

3. Apply 3x3 average blur if requested by user settings. 

4. Gradient components are calculated as follows:  

a. The input of the function is a gray (potentially binned and blurred) image. 

b. For the x component, each pixel-gradient-value is the division (floating point) of the 

right neighbor-intensity-value over the left one. For the y component, the division is 

(in floating point) of the lower neighbor over the top one.  

c. Ratios (for either of the two components) are compared with the ratio-threshold 

attribute. If the ratio is higher or equal than it, then the component-magnitude is set 

to 1.0. If the ratio is lower than one over the ratio-threshold, then the component-

magnitude is set to -1. Otherwise, the component-magnitude is set to 0.  
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5. Edge magnitudes are calculated by comparing the sum (in absolute value) of the two 

components with the attribute qMinEdgeMag. Recall that this attribute is 1.0 by default, 

meaning that the edge magnitude is 1.0 If either of the two components is not 0.    

6. The orientations are also computed with the inverse tangent function, and projected to the I 

and II quadrants (taking sign into account).  

 

3.2.5. Relative edge extractor 
 

This shallow pre-processing class for the relative-edge-extractor defines an attribute called 

intensity-constant, which will be important during the edge magnitude calculation. The value for this 

attribute is set by the user settings. The function detect goes as follows: 

1. Buffer the entire 8-bit image 

2. Apply 4x4 binning (floating point) if requested. 

3. Apply 3x3 average blur (floating point) if requested. 

4. Get gradient components identically as for the case of the analog edge extractor. 

5. Apply quantization noise with a particular ENOB to each component (again, identically to the 

analog edge-extractor).  

6. Approximate edge magnitudes as follows: 

a. Take the gray image (potentially binned and/or blurred), and the two gradient 

components.  

b. Calculate the gradient magnitudes as the sum (in absolute value) of the two 

components. Then, calculate the edge magnitude by comparing the gradient 

magnitude with the gray image multiplied by the intensity-constant attribute. Every 

pixel address where the gradient is higher than the image times the constant, the edge 

magnitude is 1, and otherwise it is zero. All computations happen in floating point 

representation.  

7. Orientations are calculated in the same way as for the analog edge-extractor. 

 

3.2.6. Dynamic vision imagers 
 

Dynamic Vision Imagers taken into account in (Posch et al. 2014), and related to Figure 15, 

typically have a high temporal resolution thanks to the in-pixel pre-processing (event detection). Such 

event corresponds to the local, and relative, light intensity change in time. Whenever such change is 

detected, a spike encoding the event is generated asynchronously. For modeling the behavior of this 

kind of imager, and in order to integrate it with our simulation framework, we observed the following: 

The pre-processing happens in-pixel, so this is reflected in the code by models appearing in the deep 

pre-processing modules (contrary to the shallow pre-processing module, typically used for edge 

extractors).  

We found actually two ways of simulating the dynamic vision sensor behavior: one possibility 

was to take video frames (e.g. at 30 or 60 fps) and suppose that, for each frame, the intensity reading 

reflects a linearly-increasing-impinging-light on the pixel. That means that, at time 0, the light intensity 

is zero, and at time of read-out, the light intensity was at its final reading value. Then, for each frame, 

a shorter time step (close to the temporal resolution) would be used for updating light-intensity-

change-reading for every pixel. Such update would assume a linear increasing of the total intensity as 
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mentioned before (by using the state interpolation module). Then, when an event is detected, an 

output is generated with the pixel address, the polarity (plus for increasing and minus for the opposite) 

and the time stamp. At the same time that this output goes, the pixel difference value is reset to zero. 

Nevertheless, the light intensity difference continues to grow after that until the frame period is 

reached.  

 The model mentioned in last paragraph presents one fundamental problem: it assumes that 

light intensity impinging the pixel follows a linear increasing whose values are determined by zero and 

the pixel value obtained from a frame based approach. Nevertheless, there is no physical reason to 

assume that it is the case. Indeed, the pixel value corresponds to all photons that had impinged the 

pixel during the integration time, which for an imager at 30 or 60 fps is much slower than the temporal 

resolution of a typical DVS (in the order to micro-seconds). Other attempts to simulate the DVS from 

frame based imagers could be to obtain a better interpolation of light intensity evolution along time, 

however, that could lead to even more complicated models that are still trying to recover fast 

phenomena from relatively small frequency image samplings.  

To circumvent the issue mentioned in the paragraph above, we decided to synthesize a video 

dataset at a high frame rate, as further explained in chapter 7, so we could better approximate the 

instantaneous light intensity impinging at every pixel. Then, instead of using the state-interpolation 

module, we used an external 3D-scene simulator (“Blender” n.d.) for creating a synthetic high frame 

rate video, the frame rate being the temporal resolution of our simulated DVS. For this case, the 

simulation loop in Figure 29 runs from update state to analog-to-digital-interface blocks only once for 

every frame.  

Continuing with the model for Dynamic Vision Sensors, we explain how events are detected. 

Indeed, even though the instantaneous light intensity is approximated only with the current simulation 

frame, the conditions of an event4 happening depend on the history of previous events in the image. 

The reason is that each time that an event occurs at any pixel, its value for the cumulated intensity 

difference resets to zero. Moreover, for calculating the intensity change after any event, the pixel takes 

as reference value the instantaneous intensity at the moment of the last event. Thus, calculating 

lighting differences by simply subtracting two subsequent frames would be incorrect. The right way to 

do it, is by subtracting from the instantaneous intensity (from the current simulation frame) the values 

of light intensity at the last event for each pixel separately (the reference value of each pixel is different 

and may change asynchronously). For instance, in Figure 30 , light intensity evolves along time from 

left to right. We take a look at a pixel highlighted in orange in the matrix of pixels (blue rectangle). At 

time 𝑡2, there are two possible ways of calculating the gradient: one gives a difference of |a| and 

another a difference of |b|. However, |b| is large enough to cause an event, whereas |a| is not. Then, 

the pixel detects an event at time 𝑡2 only if the last event happened at time 𝑡0 (or possibly before 𝑡0), 

but not if the last event happened at 𝑡1, which changes the reference lighting for computing the 

gradient at time 𝑡2. 

In order to take that into account, we defined a state variable that holds all reference 

intensities for the pixels, and another state variable representing the instantaneous intensity (obtained 

from the current simulation frame). Both variables can change for each event detected.  

 

 
4 Recall that an event corresponds to a light intensity change higher than a certain threshold, defined by the 
temporal contrast sensitivity.  
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Figure 30 : example image of how an event at time step 𝑇𝑖 can depend on a time step simulation 𝑇𝑡−2. 

We took into account several aspects for synthesizing the high frame rate video. Firstly, the 

frame rate should be around or higher than 1000 frames/second. That would, at least, correspond to 

1 ms of temporal resolution. Moreover, we used the Cycles (“Blender 2.93 Manual, Cycles” 2021) 

renderer engine, which seemed to better simulate photonic noise with respect to the standard Blender 

renderer. More details about the generated datasets will be given in chapter 6. 

 

3.3. Conclusions of chapter 3 
 

In this chapter we described the general models and code architecture for simulating different 

types of imagers. We specified our simulation pipeline in order to produce A.I. benchmarks in chapter 

6. Moreover, we explained how we simulated behaviorally specific imager types, and how we 

approximated the impact of hardware constraints. Those specifications will be important when 

benchmarks are presented, since conclusions derived from those are limited by the fidelity of our 

models.
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Chapter 4: Region proposals pipeline 

design 
 

In this chapter, we study the feasibility of implementing Object Detection (OD), either in real 

time (e.g. at 30 fps or more) or not, on a dedicated near-sensor low power architecture (e.g. in the 

range of tens of 𝑝𝐽/pixel/frame).  We analyze methods that are more classical and power-hungry such 

as approaches using desktop computers, or dedicated servers that can exploit powerful hardware, like 

a graphics card unit (GPU), for massive runtime accelerations. However, our near-sensor approach 

demands hardware-aware algorithms that consider both AI performance (e.g. classification accuracy, 

intersection over union, runtime, etc...) and circuit architecture performance (power, speed, silicon 

surface…). This often leads to an iterative algorithm-and-hardware development, in which changing 

one of them may affect the other. For instance, if an algorithm relies on 32-bit division operations, but 

the hardware can only support 8-bit summations, then one has to adapt the algorithm to a lower bit 

resolution and simpler mathematical operations, or to increase-complexity / adapt the integrated 

electronics, or to find an intermediary trade-off by changing both of them.  

 The state of the art shows progress in implementing OD in embedded architectures. Some 

examples like (J.-H. Kim et al. 2019) (Suleiman and Sze 2014) (Choi et al. 2014) (Omid-Zohoor et al. 

2018), among others, start from a stable algorithm running on a complex hardware (e.g. a modern 

desktop pc), and then try to adapt it to low power-integrated-architectures. Most of the works we found 

rely on frame-based approaches, since frame-based (or just typical) cameras are user friendly and easily 

supplied. Such approaches typically focus on solving A.I. computer vision problems by using single-static 

images, one by one. 

In that context, this chapter aims to explore another possible pipeline and architecture for 

embedded OD, instead of the sliding window, namely, the usage of Regions of interest or Region 

proposals methods to reduce time and power complexity. First we contrast ROI based OD algorithm 

with the more classical sliding window approach. Then, we go deeper in selecting and understanding 

one specific ROI proposal algorithm potentially suitable for embedded integrated electronics: Edge-

Boxes. Next, we discuss how to generate the input for the selected algorithm: the oriented gradients 

map. Finally, we present a preprocessing pipeline for computing on the fly oriented gradients for low 

power applications.  
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4.1. ROI proposals vs. typical sliding window approaches 

 

Frames have standardized representations on different color spaces: one can imagine a frame 

(or simply, an image) as a 3D matrix. When seen from above, this 3D matrix looks like a 2D matrix and 

each “entry” is a pixel. Then, if we turn around a little bit to the side, we will be able to see the third 

matrix dimension (or its depth). This dimension (normally consisting in 1 to 4 values) are the pixel 

values for a specific color encoding (e.g. RGB, gray, etc…). One can notice that each image (or frame) 

only contains static information, and if one wants to recover dynamic information, such as the speed 

at which objects (or borders, points, etc…) are moving, then one would need at least two frames. 

 OD runs successfully on frames, and has interesting applications when information about 

different objects in an imaged scene is important. More specifically, if one wants to know the location 

(in a projected 2D image space) of several objects, and the nature (class) of each one as well. This 

process is carried out with different main strategies in the state of the art. For instance, the simplest 

is to train a classifier and “test it” as exhaustively as possible along the frame for finding objects (sliding 

window) as made by (Dalal and Triggs 2005). Another option is first to generate potential regions with 

objects in the scene with a lightweight algorithm (ROI proposals algorithm) and then to pass those 

regions to a classifier5, as done for example by (Girshick 2015). This last example matches the Fast R-

CNN architecture (Girshick 2015). Continuing with the improved version of Fast R-CNN as example: 

Faster R-CNN (Ren et al. 2017), one of the main ideas is to change the ROI proposals algorithm for a 

CNN that is in charge of detecting such regions, and then using ROI pooling6 in the CNN-feature-

extractor output for passing selected regions to the classifier. Finally, one pipeline (that is the least 

relevant for this work) is to remove the regions proposals section completely, but without having to 

search exhaustively for every possible position and scale in the image. That is, by computing several 

regions (ideally “at the same time”) and along a less dense grid in the image. Two known examples are 

the single shot detector (Liu et al. 2016) (SSD) and You Only Look Once (Redmon et al. 2016) (YOLO) 

CNN architectures. 

 In Figure 31 we summarize some examples in the literature that we found closely related to 

our work, and we present (in red) the processing pipeline (already mentioned in the SoA) that we found 

interesting to implement in an embedded smart imager context.  

  

 
5 Notice that those regions are projected from an intermediate feature space if ROI pooling is used (Ren et al. 
2017). 
6 ROI pooling is a way of using region proposals in a CNN-features-output and not directly in an input image 
(Ren et al. 2017). 
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Figure 31 : Example of diagrams of pipelines for embedded integrated devices. 

Fig. [odPipelines] 

Figure 31 shows three different examples of OD in embedded devices. The red arrows show 

the pipeline of interest for this work. Figure 31 (a) corresponds to a sliding window approach with a 

support vector machine (Suleiman and Sze 2014). Figure 31 (b) is a similar case to (a), but the classifier 

is improved by adding the deformable parts model (DPM) (Omid-Zohoor et al. 2018). Figure 31 (c) 

corresponds to an identity-verification system with a face detection network, and a subsequent face 

classification network for verifying user identity (J.-H. Kim et al. 2019). 

As mentioned in last paragraph, Figure 31 (a) and (b) show one possible approach for OD: the 

sliding window. In order to explain it, we can start by hypothesizing simpler case scenarios: we can 

assume that a target object will appear on the image with a specific size and aspect ratio. That is, if 

one imagines a rectangle perfectly englobing the object7. For example, we can say such rectangle size 

is 15 pixels high by 10 pixels wide. Then, one could train a classifier to label images of size 15 x 10, and 

with the object of interest nicely centered on this small image. Finally, if we want to locate and classify 

any object in a wider test image (for example, with size of 100 x 300 pixels), we can evaluate sub-

portions in this test image, by taking groups of pixels of size height x width (15 x 10 for our example). 

We can do that with every possible group of pixels in the test image, with the condition that its size is 

15 x 10, and then let the classifier to determine if such portion contains the desired object or not. This 

method is the so-called Sliding window approach, used for example by (Omid-Zohoor et al. 2018) (Dalal 

and Triggs 2005) (Suleiman and Sze 2014), and we can imagine it as a small rectangle of fixed size 

sliding along a wider test image. Nevertheless, the amount of tests (e.g. when placing the small 

rectangle on the test image for a test with the classifier) increases as 𝑂(𝑛2 = ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑤𝑖𝑑𝑡ℎ) with 

the test image size. Indeed, this situation gets worse when there are several objects of different nature 

to find, since the number of tests increases linearly (assuming one test, and model, per class) with that 

quantity as well. Moreover, the fixed-object-size assumption (15 x 10 in our last example) is not valid 

for many real scenarios. To circumvent that issue, works like (Omid-Zohoor et al. 2018; Dalal and Triggs 

2005; Suleiman and Sze 2014) have implemented the so-called “Image scale pyramid” (“Pyramid 

 
7 i.e. This rectangular zone perfectly encloses the object limits (rightmost, leftmost, top and bottom) in the image. 
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(Image Processing)” 2021; “Scale Space” 2021):  it consists on several sequential de-noising steps (for 

example, with a Gaussian kernel) and down-sampling one already blurred image by a factor of two 

along each height and width dimension. This process repeats several times, thus generating an image 

scale pyramid, where each scale represents a different pair of blurring and down sampling (“Scale 

Space” 2021; “Pyramid (Image Processing)” 2021). Then, the sliding window is applied exhaustively 

along this scale pyramid, which means that the classifier-testing time complexity increases linearly with 

the amount of scales as well. In addition, there is an overhead due to the scale pyramid generation 

itself. Those aforementioned factors can make the OD pipeline too expensive in terms of time and 

power for embedded devices targeting, for example, mega-pixel images as input and under challenging 

scenarios.  

Another popular example for embedded applications, showed in Figure 31 (c), is face 

recognition and identity verification in mobile phones, like in (J.-H. Kim et al. 2019): firstly, the phone 

“has to” determine where in the whole image the face is, or if there is a face at all (which is analogous 

to the localization phase). However, this localization phase is not « class agnostic », since it is not 

scoring any object presence, but rather a specific target class. In this case, the ROI localization is a low 

power and weaker classifier, computed exhaustively along the image, and which is not capable itself 

of determining if a detected face corresponds to the registered-user or not. Secondly, it has to assess 

if the detected face corresponds to the registered user or not (with that being the classification phase).   

The sliding window approach is simple and intuitive but the required computational 

complexity increases for high-resolution images. To circumvent that, the Region proposals or ROIs 

approach used for example by (Girshick 2015; Ren et al. 2017) could have advantages if the overhead 

caused by the ROIs calculation is acceptable. The principle is that, instead of “testing densely or 

exhaustively” the classifier, a previous algorithm is in charge of generating a certain amount of regions 

that are most likely to contain objects. The first potential advantage is that the amount of tested ROIs 

passed to the « energy hungry » classifier decreases enormously. The second advantage is that there 

is time saved when processing each frame since (ideally) only the relevant regions are tested. Those 

two reasons are critic in low power applications with objects of many different sizes. That is why we 

chose to explore a pipeline such as the one exalted with red arrows in Figure 31. 

 

4.2. Selecting a ROI detection algorithm 
 

There are several ROIs algorithms in the literature targeting non-constrained devices. One example 

is the Fast R-CNN (Girshick 2015). Afterwards it was improved and named Faster-R-CNN (Ren et al. 

2017), and then Mask R-CNN (He et al. 2018) (the latter includes segmentation as well). Nevertheless, 

their integrated circuit (IC) implementation remains difficult. One example in the SoA (J.-H. Kim et al. 

2019) has already tried this idea along with a hybrid (analog / digital) Convolutional Neural Network 

CNN (which resembles to an “embedded version of Faster R-CNN”), and for face detection/identity 

verification on mobile devices.  

This aforementioned idea, from (J.-H. Kim et al. 2019), was to use a low power CNN (they 

implemented it in the analog domain, i.e. before the analog to digital converter) whose input are pixel 

readings, while its output is  (or allows to obtain easily) regions of interest. Their processing pipeline is 

showed in Figure 32: 
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Figure 32 : “(a) Conventional face recognition system (b) Proposed face recognition system"  (J.-H. Kim et al. 2019). 

Fig. [ccnkaist]: [ref: cnnkaist] 
In their case, the regions of interest where related to potential faces, and when one region was 

detected, another CNN (on the digital side) was triggered for performing the classification (identity 

verification) phase. This approach is interesting, yet the justification for an analog CNN, complex to 

design and implement, is not completely clear. For example, this analog CNN has to be simple enough 

(i.e. just one convolutional layer in their work (J.-H. Kim et al. 2019)), and is aggressively quantized (3-

bit weights in their work). Nevertheless, in their results, they report a very similar accuracy for the 

Hybrid CNN (for face detection) with respect to the usage of a Haar-Features (see Table 2). Then, this 

made us wonder if such aggressive quantization actually makes a CNN implementation near the ADC 

more interesting that a non-trainable approach. For instance, for implementing a trainable kernel (or 

one CNN layer) their design had to take care of an analog unit capable of multiply-accumulation 

operations. In addition, non-volatile memory reads for weights were required. Finally, the design had 

to include analog implementations of the activation function: ReLu. That leads to trade-offs typical of 

an analog design, such as fixed pattern noise, temperature-voltage variations, and non-negligible noise 

sources introduced by all added transistors and capacitances (which can accumulate after each 

operation).  
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Table 2 : The hybrid-CNN implementation versus previous works (J.-H. Kim et al. 2019). 

 
 

Based on factors mentioned previously, we decided to explore another approach (which resembles 

to an “embedded version of fast R-CNN or R-CNN”): instead of a simple CNN in the analog domain, we 

prefer to generate hand-crafted features that could be implemented on the sensor silicon die, like a 

gray-light-intensity gradient computation. An example is offered by (Omid-Zohoor et al. 2018): they 

showed a near sensor architecture that can improve dynamic range issues thanks to an approximation 

of the gradient as a ratio8 instead of as a light intensity subtraction (or subtraction and addition, 

depending on the gradient kernel).  Their pipeline is showed in Figure 33, where they introduce the 

ratio approximation by means of their “ratio-to-digital-converter” (RDC) (Omid-Zohoor et al. 2018). 

 
Figure 33 : (a) OD in general. (b) OD with embedded and digital pre-processing. (c) Their innovative approach with 

embedded digital and analog pre-processing. (Omid-Zohoor et al. 2018) 

Fig. [hogstandford]: [ref: hogstandford] 
  However, one question raises from the paragraph above: how to use hand-crafted features 

for region proposals generation? Indeed, in our state-of-the-art compilation, we found several 

algorithms that do not rely on CNNs for ROIs detection. Of course, such generated ROIs are good-

candidate inputs for a potential CNN classification (or other type of classifier). Among those ROIs 

 
8 They (Omid-Zohoor et al. 2018; Young et al. 2019) called such approach the logarithmic gradients, since the 
gradient representation as a ratio aims to approximate a logarithmic analog to digital conversion which is less 
sensitive to local light intensity variations. 
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proposals algorithms, we selected Edge-Boxes (Zitnick and Dollár 2014). The reasons are, firstly, 

because  its first stage depends upon an image of edges which could be feasible to extract with a low 

power embedded architecture, as done for example by (Choi et al. 2014). Secondly, because chapter 

6 will show that it has reasonably good performance even for gray images. From Table 3, we observe 

Edge-Boxes has one of the lowest runtimes with good recall with respect to other approaches.  

In order to avoid any confusion, in this work we call edges individual pixels with high local-intensity-

gradient-magnitude. In the other hand, segments are groups of edges that are “related” by a clustering 

algorithm. Finally, contours, are groups of segments that form a more complex topology.  

Table 3 : benchmark of performances for different region proposals algorithms: “… for IoU threshold of 0.7. Methods are 
sorted by increasing Area Under the Curve (AUC). Additional metrics include the number of proposals needed to achieve 
25%, 50% and 75% recall and the maximum recall using 5000 boxes…” (Zitnick and Dollár 2014). 

 
 

 Introducing Edge-Boxes into the embedded OD pipeline raises the question of “how and where 

to implement it” (e.g. analog or digital, the exactly same algorithm of a modified version, etc…). Notice 

that Edge-Boxes digital implementation is not the objective of this work, but rather to assess if an 

imager with specialized pre-processing for it would be worth. For that purpose, we decorticate it in 

different stages, and try to estimate its complexity and associated speed in order to assess a potential 

digital implementation. Moreover, we try to assess if the modifications targeting a low power 

architecture do not degrade significantly the whole algorithm performance.  

 In the next section, we go more into details about Edge-Boxes: we decorticate and compare it 

with other approaches.  
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4.2.1. EdgeBoxes decortication 
 

 
 

Figure 34 : principle of functioning of Edge-Boxes (Zitnick and Dollár 2014). 

Fig. [edge_boxes]:  
EdgeBoxes (Zitnick and Dollár 2014) is a region proposal algorithm: it takes an edges-map as input, 

and its output is a list of Region Proposals (ROIs). For instance, in Figure 34 (Zitnick and Dollár 2014) 

they present their stages from input to output. The input is a colored image, from which the oriented 

edges are extracted. Then, the algorithm tries to relate pixels into clusters (connected segments and 

contours), and then uses them for scoring a series of hypothetical boxes distributed along the image. 

Finally, it outputs those that are most likely to contain an object. The input edges map corresponds to 

two 2D matrices of equal size: one filled with values between 0 and 1 (Mag), and another filled with 

values between 0 and 𝜋 (Or). Typically, the edges map derives from a standard image frame. In 

addition, both Mag and Or matrices-size (when projected into a 2D image9) are equal or smaller than 

the original image used to obtain the edges map10. When rendered, the edges map appears to “follow” 

the original image contours, and the more contrast is present along the contour, the brighter it will be. 

Indeed, a value for Mag at the position ij can be interpreted as the local and spatial light-intensity-

gradient magnitude. The corresponding value in Or, at the same ij position, represents the local and 

spatial gradient orientation (in a 2D image space). Values in Or go between 0 and 𝜋 and not to 2𝜋, 

since two orientations pointing along the same straight line are considered as equivalent, even if they 

go in opposite directions. For instance, if a gradient orientation points towards 5𝜋/4 𝑟𝑎𝑑, then its 

 
9 Notice that Mag and Or are a 2D matrices both of the same size (height x width), while the input image can 
have a more complex color encoding representation. Then, the original image size is (height x width x color-
encoding-depth).  
10 The image size can be reduced due to border effects, or after down-sampling. Another case may be to up-
sample an image before extracting its contour map, but this is not relevant for the present work. 
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corresponding value in the Or-matrix will be 𝜋/4 𝑟𝑎𝑑. Regarding EdgeBoxes output, it is a list of ROIs. 

Each ROI corresponds to a 4-value-array containing information about the size and position (in image 

space) of a rectangle englobing a potential object. Finally, a fifth optional value for each ROI represents 

its score , which goes between 0 and 1, and estimates how likely an ROI actually contains an object 

(Zitnick and Dollár 2014).  

 In the next sections, we will go into more details about how to generate the input edges map 

(both for the general and for the embedded case scenarios). Until then, we will assume it is available 

for EdgeBoxes, and in order to decorticate it. 

We base our explanation from both their publication (Zitnick and Dollár 2014) and source code 

(Dollar and Zitnick 2015b), since several details were not completely clear for us directly from their 

paper: EdgeBoxes is composed of 3 main pipelined stages: edge clustering, data structure preparation, 

and boxes scoring. We will explain them briefly as follows: 

 

Edge clustering 

During edges clustering, each ij value-pair conceptually corresponds to an “edge” if 𝑴𝒂𝒈(𝑖𝑗) is 

above a user defined threshold11. Besides, the algorithm tries to “merge” groups of edges into clusters 

based on a specific strategy. Clustering is important for computational efficiency at later stages. 

Regarding the merging criterion, it is as follows: starting from an edge ij, supposedly the only element 

on cluster C, the algorithm finds the 8-connected pixel to ij, namely 𝑖 + 𝑥, 𝑗 + 𝑦 such as12: 

𝑴𝒂𝒈(𝑖 + 𝑥, 𝑗 + 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Equation 5 

 And, 

𝑥, 𝑦 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝑥,𝑦 ϵ {−1,0,1}

|𝐎𝐫(𝑖𝑗) −  𝐎𝐫(𝑖 + 𝑥, 𝑗 + 𝑦)| 

Equation 6 

 The “argmin” function implies that the algorithm is “looking” for the 8-connected edge whose 

orientation is the closest to ij ’s. Of course, the case in which 𝑥 = 𝑦 = 0 is not relevant. Once a new 

edge is “added to the cluster”12, 𝑖 + 𝑥, 𝑗 + 𝑦  takes the role of the new starting point for a next 

clustering iteration. This process stops when the cumulated orientation differences for C is higher than 

another threshold, or when there are not 8-connected edges13 to the current ij-pair. If a clustering 

process stops for a cluster C, then the algorithm continues to “scan” along the contour map “searching” 

for individual edges that can start a new cluster (i.e. that have 8-connected edges, and which do not 

belong to any cluster yet). In addition, after clustering, the algorithm tries to eliminate clusters whose 

magnitudes are smaller than a user defined threshold. However, clusters with magnitudes lower than 

this threshold can be merged with other clusters if possible.  

 
11 Not to confuse with other thresholds, especially those that could have been previously used to generate the 
edge map. 
12 This is tracked by a matrix of id numbers, where each id maps to a specific cluster. 
13 Here, we refer to 8-connected edges as edges that are only one pixel apart, no matter in which direction 
(including diagonals). This is a distinction to other types of connectivity such as 4-connected edges that does not 
take into account diagonals (“Pixel Connectivity” 2019). 
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Once the clustering is done, the affinity parameter “𝑎” is introduced to estimate how likely two 

segments (or edge clusters), whose “heads and tails” are not 8-connected, but that are “near 

enough”14 from each other, can be deemed to “belong”15 to the same contour. The formula for 𝑎 is 

given below: 

𝑎(𝑠𝑖 , 𝑠𝑗) = |cos(𝜃𝑖 − 𝜃𝑖𝑗) cos(𝜃𝑗 − 𝜃𝑖𝑗)|
𝛾
  

Equation 7: (Zitnick and Dollár 2014) 

In Equation 7, the affinity a of segments 𝑠𝑖  and 𝑠𝑗 is calculated as a function of a user defined 

parameter 𝛾. Angles 𝜃𝑖 and 𝜃𝑗 are the overall angles for each segment, and 𝜃𝑖𝑗 is the angle between 

the two segments. Another important aspect is that if segments are more than 2-pixel radius away, 
they get an affinity of zero. One example is illustrated in Figure 35. 

 

        

        

        

        

        

        

        

         

 

Figure 35 : example of how Edge-Boxes relates disconnected segments. 

Fig. [Figure 35 shows an example of how Edge-Boxes relates disconnected segments throughout 

the affinity variable. Orange squares represent pixels detected as Edges. The black arrows represent 

segments average magnitude and direction. Finally, the blue, discontinued and smaller arrows 

represent the affinity variable. Notice that segments on the lower right have higher affinity than the 

two in the upper left, due to the similarity of average angle. Also, segments separated by two or more 

pixels have no affinity between them. 

During the clustering process, the algorithm creates new data structures (2D matrices) for holding 

relevant cluster information, such as cluster id, cluster average orientation and cluster average 

magnitude. In order to store and to further use the affinity, efficient data of non-fixed length are 

defined. Firstly, two vector variables hold the bottom-right edge coordinates for each cluster (the index 

corresponds to the cluster id). Secondly, a data structure, which is not a 2D matrix but rather “a list of 

 
14 Inside a radius of 2x2 pixels in the Author’s source code (Dollar and Zitnick 2015b).  
15 From our perspective, the notion of « belonging to a contour » is subjective or hard to define. We simplify this 
by imaging that two segments are indeed forming a contour if it is very likely that a human- being would state it 
as true, and by means of simple visual inspection.   
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lists”16, is the segments Affinities (represented as _segAff and _segAffIds17 in the author’s source code 

(Dollar and Zitnick 2015b)). Being those more abstract (complex) than the others, we dedicate the next 

paragraph to explain them. 

In order to know which pair of segments (clusters) relate to any entry in _segAff, another variable 

(_segAffIds) becomes essential. Both _segAff and _segAffIds have the same shape. Moreover, since 

they both are lists of lists, any value (entry) corresponds to an index pair, similarly to a 2D matrix. For 

the case of _segAffIds, the first index x represents a particular cluster id or 𝐶𝑥 (thus the amount of lists 

equals the number of clusters). The second index y iterates along a sub-list of all clusters that have a 

non-zero affinity with 𝐶𝑥. Notice that 𝑦 ≠ segment id, and if one wants to obtain the second segment 

id (the first id is x) for a value pair (x, y) in _segAff, this value lies on the variable _segAffIds at the same 

index pair (x, y). 

Aiming at a digital implementation, we enumerated the class variables created during this step and 

estimated its memory size: 

Table [clusteringVariables] 

 
16 This distinction is important, since each « sub-list » within the list of lists, as well as the amount of sub-lists can 
grow in size in runtime (as opposed to a fixed size image). In addition, different sub-lists are not restricted to 
have the same length. 
17 Typically, the underscore before the variable name is a convention to indicate that it is a C++ class variable. 
This is not relevant for understanding this work, yet we clarify it to avoid confusion. 
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Table 4 : most-relevant-variables size-estimation for the first EdgeBoxes stage; segments =  2𝑖𝑛𝑡 = 216 (worst-case). 

Name Native type Derived type Size Formula Max size (kBytes) 

_segIds int  Array int*h*w 500 

_segMag float std :: vector float*segments 262,144 

_segAff float std :: vector float*segments*totalNeighbors*2*2 25165,824 

_segAffIdx int std :: vector float*segments*totalNeighbors*2*2 12582,912 

_segC int std :: vector int*segments 131,072 

_segR int std :: vector int*segments 131,072 

map int  vector int*segments 131,072 

meanX float vector float*segments 262,144 

meanY float vector float*segments 262,144 

meanOx float vector float*segments 262,144 

meanOy float vector float*segments 262,144 

vs  float vector segments*float 262,144 

cs int  vector segments*int 131,072 

rs int  vector segments*int 131,072 

 

In Table 4, we estimate the size of most “memory hungry” variables generated in the clustering 

stage. Values for int and float are 16 and 32 respectively, the maximum amount of segments, or simply 

segments is 216  =  65536, and totalNeighbors =  24 = (2 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 + 1)2 –  1, with radius = 2.  

Notice the size formula for both _segAff and _segAffIdx is multiplied by 2 two times; the first factor 

takes into account that any affinity is copied twice (for example, the affinity for segments 𝐶𝑥 and 𝐶𝑦 

will appear in both _segAff[x] and _segAff[y] lists). The second factor takes into account that neighbors 

can be at either at the head or at the tail of any segment. One can immediately notice the high memory 

values (for instance, more than 25 Mbytes for _segAff) required. As we will show later, this example is 

illustrative, but it lacks accuracy for selecting a realistic amount of segments. As we did not develop a 

theoretical formula for a better amount-of-segments estimation, we decided to obtain it 

experimentally as it will be shown later in section “4.2.2. Preliminary memory estimation”. 

Once finished all those initial steps, the algorithm continues to the rest of data structures 

preparation. 

 

Data structures preparation 

 This phase aims to maximize the computational efficiency for determining the “objectness” 

(Zitnick and Dollár 2014; Alexe, Deselaers, and Ferrari 2012) of ROIs. From here, we find useful to 

introduce already how Edge-Boxes estimates this objectness: the idea is to estimate it by “counting” 

the amount of connected contours that trespass, or overlap, with the ROI borders (again, considering 

the ROI as a rectangle). In other words, the algorithm considers that if an object is located inside any 

hypothetical ROI, then most of the existing contours inside it would not trespass the ROI limits. 

However, when applied, this concept brings several complications: For instance, several clusters 

related by their corresponding affinities can form a contour, and then, a contour can appear to be 

“disconnected”. Moreover, another question is how to handle contours that could have several 

branches. One final example is the time complexity of searching contours along ROI borders when 

estimating its objectness (box scoring): as discussed later in the profiling, this operation (box scoring) 

happens many times during Edge-Boxes execution.  
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Complications such as those mentioned above bring the importance of data structures 

preparation. During this stage, several variables are created to increase the estimation speed for ROI 

objectness (or, box scoring, which is the next stage). We do not enter into details of each variable’s 

objective. Indeed, this is not necessary in order to have a first approximation of the memory usage, 

and it could make the present writing too tedious18. We repeated the same steps as before in order to 

obtain estimated variable sizes depicted in Table 5.  

 

Table 5 : most-relevant-variables size-estimation for the second Edge-Boxes stage; h = w = 500 pixels. 

Name Native type Derived type Size Formula Max size (kBytes) 

_scaleNorm float std :: vector 1000*float 40 

_segIImg float Array (h+1)*(w+1)*float 1004,004 

_magIImg float Array (h+1)*(w+1)*float 1004,004 

_hIdxs int std :: vector h*int 1 

_hIdxImg int Array h*w*int 500 

_vIdxs int std :: vector w*int 1 

E1 float Array float*h*w 1000 

 

From Table 4 and Table 5, one can observe that variables in the first one depend on the amount 

to clusters or segments. On the other hand, the latter table presents space-complexities depending 

only on image dimensions. Once this stage is completed, the algorithm move on to the box-scoring 

stage. 

Box scoring 

In this phase, Edge-Boxes applies the same idea of the sliding window approach. However, the 

benefit respect to a sliding window without Edge-Boxes, is that objectness calculation is expected to 

be less “expensive”. Then, it can be densely (not necessary exhaustively) estimated along the image. 

Edge-Boxes searches for ROIs almost exhaustively in the image: it “distributes” a series of hypothetical 

ROIs along it. Those hypothetical ROIs correspond to groups with different sizes and aspect ratios19. 

User parameters control boxes density (spacing), aspect ratios and sizes. 

 During this stage, the algorithm “slides” across all hypothetical boxes and scores them. For the 

scoring, Edge-Boxes adds borders completely inside the ROI, and the amount added depends on cluster 

magnitudes. In addition, it penalizes when clusters intersect with the ROI borders, or when clusters 

inside the ROI are likely to form a connected contour with clusters outside. In order to figure that out, 

the affinities variables contain the required information to link groups of clusters. Notice that these 

variables relate to clusters that could form a completely connected contour. In addition, even though 

the scoring happens over a potentially big amount of boxes, not all of them are in the output. The user 

can select the desired amount of ROIs, and Edge-Boxes will provide the top ones accordingly. Of course, 

 
18 Those variables are further explained in the EdgeBoxes paper (Zitnick and Dollár 2014). 
19 Actually, the process is more complicated than that, in the sense that after scoring a box, if a score is high 
enough, then Edge-Boxes tries to « improve » that score by testing other boxes with the same size and aspect 
ratio in the surroundings. This idea is called « box refining » by the author (Zitnick and Dollár 2014). 
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in order to avoid redundant boxes in the output, a non-maximum-suppression20 step becomes 

important (which is already done in the original algorithm). 

 

4.2.2. Preliminary memory estimation 
 

This sections aims to assess the feasibility of Edge-Boxes integration. We consider that this is 

more likely to be possible in a 3D-IC architecture. For example, in a two-layer 3D-IC imaging system, 

the top layer would target image acquisition and pre-processing (e.g. edge extraction). Then, the 

bottom layer could be in charge of memory storage, ROIs detection and classification. For the moment, 

we approximate memory requirements for Edge-Boxes. Nevertheless, we first use “worse-case” 

scenario criteria for choosing the amount of segments, and bit-depths (int, float). That leads to values 

that are potentially high and “over-conservative”. In the next sections, we show experimentally that 

this first theoretical value reduces significantly in real images.  Nevertheless, we present our 

preliminary memory estimation scheme for later comparison.  

 In order to estimate the total memory required by Edge-Boxes, we listed all variables used in 

the source code (Dollar and Zitnick 2015b), and assigned an approximated21 size formula for each of 

them. Moreover, we take into account that not all variables are required along the whole algorithm, 

thus allowing to free some space during the execution runtime. We then tried to approximate the 

behavior of an optimized and compiled code memory usage.  

 

 

Figure 36: Edge-Boxes memory estimation while processing one image. 

Fig [memoryEstimation]  

 
20 For clarification, the term “non-maximum-suppression” is a general way of referring to algorithms that try to 
minimize the amount of false positives of a detection algorithm (rather it be edges, objects, or anything else) 
when there are close in a particular space (in our case, in the image space, closeness means spatially close). Then, 
if several neighboring positives for a detection algorithm have a score estimation (regardless of it is objectness, 
gradient magnitude, or other) the algorithm tries to only keep the local maxima and neglect the others. Notice 
that this is a very general definition, and its specificities depend on the context of application. 
21 In our total calculation, we take into account smaller variables and overheads related to data structures 
(pointers, instance variables, etc…). 
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Figure 37: Edge-Boxes instance variables size estimation. 

Fig [variablesSizeEstimation] 

 In Figure 36 shows the Edge-Boxes memory estimation while processing one image. The x axis 

indicates the algorithm progression divided in arbitrary checkpoints. This curve was obtained by listing 

all variables inside the source code and trying to estimate the optimal memory handling from the C++ 

compiler along the algorithm execution. From that image, we observe that there is an abrupt increase 

in the estimated memory. This relates to the affinities variable creation, whose size depends on the 

number of segments. In addition, Figure 37 shows Edge-Boxes instance variables size estimation, and 

derived from the Author’s source code (Dollar and Zitnick 2015b). Figure 37 clarifies that, when the 

number of segments is big, the affinities variable takes the most important impact on memory usage. 

This result is reasonable since the segments affinities variable grows linearly with the amount of 

segments (when taking Table 4 as reference), and here we took as reference the worst case for the 

amount of segments. Nevertheless, we expect those theoretical results to change after we get a better 

statistical approximation of the practical segments amount. Then, the relative memory impact of the 

rest of the variables can potentially increase.  We think that the memory requirements as shown in 

Figure 37 are too high, so going deeper for a better estimation of the segments amount is important. 

If the segments amount in practice is significantly less, then the affinities size will reduce as well, thus 

potentially making the embedded implementation feasible for embedded. 

 

4.3. Embedding oriented gradients generation 
 

In this section, we explain our approach to optimize the ROIs detection pipeline for embedded 

applications. Our strategy consists in three parts: firstly, we evaluate the viability of computing a map 

of oriented gradients near the matrix of pixels. That computation would exploit the pixel rolling-shutter 

readout with a column-parallel architecture (so that the imager calculates oriented gradients on the 

fly, at the rolling shutter readout speed). Secondly, we study the impact of different gradient 

architectures (method, encoding, and implementation) on ROI proposals performance. Finally, for 

each possible architecture, we extract experimentally the amount to segments generated. Then, we 

0

5

10

15

20

25

30
Si

ze
 (

M
B

yt
es

)

Variable name



 70 

derive a more realistic estimate of memory usage. In addition to the aforementioned steps, we 

estimate the memory usage after taking into account that, given the quantized input, reducing bit-

depth inside Edge-Boxes computations could be possible as well. However, we do not test this idea 

experimentally, and thus we let it for further works.      

 As mentioned in the last paragraph, Edge-Boxes is fed with the map of oriented gradients as 

input. In the original paper (Zitnick and Dollár 2014), they obtained such an input with a “structured 

edge detection” (Dollar and Zitnick 2015a) algorithm. It used random forests, whose input was a 3-

channel (color) image, and whose output was a contour map.  This map is composed of two matrices: 

a first one containing the light intensity gradient magnitudes for every pixel (from 0 to 1), and a second 

one containing the corresponding local orientation (from 0 to π). The implementation available at 

OpenCV (“OpenCV, EdgeBoxes” 2021) used a 32 bit float type for representing them. From our 

perspective, this solution is too complex for a near-matrix implementation. Nevertheless, Edge-Boxes’ 

authors mentioned that they tested the more classic Canny Edge Detection (“OpenCV, Canny Edge 

Detector” 2021) approach.  Even though this latter approach gave a lower detection rate reported by 

(Zitnick and Dollár 2014), we estimated that the Canny Edge Detection was a good starting point, and 

potentially a good performance-complexity trade-off. In next section, we present this algorithm in 

more detail, as well as potential architectures that could allow to generate the contour map. Then, we 

compare with other approaches in the state-of-the-art literature.   

 

4.3.1. Canny Edge Detection  

 

We now explain the Canny Edge Detection (“OpenCV, Canny Edge Detector” 2021) algorithm 

in more detail, and then we start exploring how to integrate it near the matrix of pixels. The original 

paper (Canny 1986) includes a dense theoretical background that is not essential in this work. So we 

will base our explanation on OpenCV’s documentation (“OpenCV, Canny Edge Detector” 2021). The 

algorithm takes a gray-image as input (each pixel contains one only value related to gray light 

intensity), and outputs an edge map. The difference with the structured edge detection, is that now 

the gradient magnitudes can only be either 0 or 1, and the orientations can only be 0, 𝜋/2, 3𝜋/2 and 

𝜋.  

 In OpenCV’s documentation (“OpenCV, Canny Edge Detector” 2021), the algorithm is 

explained as a pipeline of 4 stages: spatial noise suppression, gradient estimation, “non-maximum 

suppression”, and “hysteresis thresholding”. As a starting point, we explain briefly each on them based 

on (“OpenCV, Canny Edge Detector” 2021): 

 

Spatial noise reduction  

 Our objective is not to provide a strict theoretical background on this subject, but rather to 

explain the intuition behind and its practical implementation. The point of this first stage is to reduce 

spatial noise caused by local intensity gradients that appear to be “erratic”, and thus that may not 

belong to any contour. In our experiments (as will be further explained later), we observed that this 

spatial “noise” is potentially related to textures, and other small details in the image that are often not 

relevant (at least for a human) for understanding the overall morphology of different objects. 

Regarding the implementation, it typically involves convolving an input image with a “blur” kernel of 

fixed (e.g. non-trainable or handcrafted) parameters. The one suggested in OpenCV documentation 
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(“OpenCV, Canny Edge Detector” 2021) is a Gaussian kernel22 of size 5x5 pixels. Notice that there is not 

a specific Gaussian kernel for each size, since the kernel (2D-matrix) coefficients depend on a 

parameter σ representing the standard deviation. In OpenCV documentation, the Gaussian kernel 

coefficients can be obtained as (“OpenCV, Image Filtering” 2021): 

𝐺𝑖 = 𝛼 ∗ 𝑒
−
(𝑖−

𝑘𝑠𝑖𝑧𝑒−1
2

)
2

2𝜎2 , 𝑖 = 0,… , 𝑘𝑠𝑖𝑧𝑒 − 1 

Equation 8 (“OpenCV, Image Filtering” 2021) 

 

∑𝐺𝑖 = 1 

Equation 9 (“OpenCV, Image Filtering” 2021) 

 

𝜎 = 0,3 ∗ ((𝑘𝑠𝑖𝑧𝑒 − 1) ∗ 0,5 − 1) + 0,8 

Equation 10 (“OpenCV, Image Filtering” 2021) 

 Where ksize is the number of kernel coefficients when taking into account one linear kernel 

from which the 2D Gaussian kernel can be derived (since the Gaussian Kernel is compatible with 

separable convolutions). For instance, for a 3x3 Gaussian Kernel: 

𝒌𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 = [

𝐺1

𝐺2

𝐺3

] [𝐺1 𝐺2 𝐺3] 

Equation 11 

 Alternatively to the Gaussian Kernel, there are other types of kernel that can be applied. One 

possibility is to reduce the size, which may lead to a simple electronic implementation. Another 

possibility is to use an average23 kernel (“OpenCV, Image Filtering” 2021): in this case, the output (de-

noised) pixel value is an average of the corresponding neighbor pixels (and itself) in the input image. 

The amount of pixels that are “averaged” depends on the kernel size.  We found this second option 

interesting since it could simplify the electronic implementation with respect to a Gaussian kernel. That 

is, because the average kernel has the same “entry” for every value, whereas the Gaussian Kernel has 

different values for each entry, which can make symmetric layouts more challenging. The expression 

of the average kernel can be found in the OpenCV documentation as (“OpenCV, Image Filtering” 2021): 

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 =
1

9
[
1 1 1
1 1 1
1 1 1

] 

Equation 12 (“OpenCV, Image Filtering” 2021) 

Gradient estimation 

This step tries to estimate the local light intensity gradient (magnitude and orientation) at 

every pixel from an input image 𝑰(𝑥, 𝑦) (with x and y being pixel coordinates). The image can be colored 

or gray, and different algorithms accept one type or several codifications. In the original paper (Zitnick 

 
22More details about the Gaussian Kernel documentation in OpenCV can be found at (“OpenCV, Image Filtering” 
2021). 
23 In OpenCV’s documentation, it is called the “normalized box filter” (“OpenCV, Image Filtering” 2021). 
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and Dollár 2014), the gradient for Edge-Boxes is estimated with the “Structured Edge Detection”. It 

relies on a Random Forest (Dollar and Zitnick 2015a) for obtaining both gradient magnitude and 

direction with a float (32-bit) precision. For the Canny-edge detection, one common way is to convolve 

the image with two kernels 𝒌𝑥  and 𝒌𝑦̂, made of handcrafted coefficients, and each kernel corresponds 

to one image axis (𝑥, 𝑦̂). The resulting gradients maps are 𝑮𝑥̂ = |𝑮𝑥̂| , and 𝑮𝑦̂ = |𝑮𝑦̂| (one for each 

axis, and both being functions of spatial coordinates x and y). For instance, if we represent the 

convolution operation as ⊛, then |𝑮𝑥| = 𝑰 ⊛ 𝒌𝑥  , and |𝑮𝑦̂| = 𝑰 ⊛ 𝒌𝑦̂ . From there, the total 

magnitude |𝑮(𝑥, 𝑦)| (or simply |𝑮|) of the gradient 𝑮(𝑥, 𝑦) (or simply 𝑮) is  

|𝑮| =  √|𝑮𝑥|
2 + |𝑮𝑦̂|

2
  

Equation 13 (“OpenCV, Canny Edge Detector” 2021) 

 In addition, the orientation 𝜽(𝑥, 𝑦), or simply 𝜽 is: 

𝜽 = arctan (
|𝑮𝒚̂|

|𝑮𝒙̂|
)  

Equation 14 : orientation from gradient components magnitudes (“OpenCV, Canny Edge Detector” 2021) 

 However, notice that Canny-edge-detection “expects” 𝜽(𝑥, 𝑦)  ∊ [0, 𝜋], 

whereas arctan(𝜃)  ∊ ] − 𝜋/2, 𝜋/2 [ . Moreover, several questions rise regarding how to implement 

the expressions for both 𝑮 and 𝜽: firstly, which kernels to use, and how to deal with “complex 

expressions” for a near-to-matrix of pixels implementation, such as squaring, square root and inverse 

tangent. One approximation used for example by (Soell et al. 2016) is: 

|𝑮| =  |𝑮𝑥| + |𝑮𝑦̂|   

Equation 15 : gradient magnitude estimation (Soell et al. 2016). 

 For the case of 𝑶, (Choi et al. 2014) mentions the possibility of a digital “look up table” , which 

has as inputs both |𝑮𝑥|, |𝑮𝑦̂| (represented with a particular bit-depth after analog-to-digital 

conversion), and outputs a discrete value representing an angle. Another idea is to perform a 

successive approximation in the analog domain (Choi et al. 2014): the authors explain that two 

successive comparisons with fixed voltage values can approximate the inverse tangent (for a low 

power application).  

 Regarding the kernels 𝒌𝑥  and 𝒌𝑦̂ , the Sobel kernel 𝒌𝑖 ∊ {𝑥̂,𝑦̂}
𝑆  is for example used by (Soell et al. 

2016): 

 

𝒌𝑥
𝑆 = [

−1 0 1
−2 0 2
−1 0 1

]    𝒌𝑦̂
𝑆 = [

−1 −2 −1
   0   0   0
  1   2   1

] 

Equation 16 : Sobel kernels (“OpenCV, Canny Edge Detector” 2021)  

 Another simpler kernel have been used for example by (Dalal and Triggs 2005)  to estimate 

oriented gradients, such as: 
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𝒌𝑥
𝐷 = |−1 0 1|    𝒌𝑦̂

𝐷 = |
−1  
   0  
   1  

|   

Equation 17: simple linear kernel (Dalal and Triggs 2005) 

 Where the superscript D indicates “difference”, and it is only a convenient notation for better 

clarity. Kernels 𝒌𝑖 ∊ {𝑥̂,𝑦̂}
𝐷  are simpler to implement, since they involve only differentiation of two pixels 

that are adjacent to a central one. In this work, we try to compare the performance of both cases while 

taking into account quantization. 

 (Omid-Zohoor et al. 2018) proposed to approximate |𝑮𝑦̂|, |𝑮𝑦̂| as a “ratio” instead of a 

difference. They implemented that in the ADC, which they called the “ratio-to-digital converter” 

(Omid-Zohoor et al. 2018). They explained that by applying a logarithmic function on the image 

followed by kernels similar to 𝒌𝑥
𝐷 , 𝒌𝑦̂

𝐷, then the ADC output is the logarithm of a ratio, instead of a 

linear difference. For instance, |𝑮𝑥| = log(𝑰) ⊛ 𝒌𝑥
𝐷, where the expression log(𝑰) indicates that the 

logarithmic function spans for every single pixel-value (if considering a gray image, then 𝑰 corresponds 

to a 2D-matrix). For instance, log(𝑰) (𝑥, 𝑦) = log[𝑰(𝑥, 𝑦)]. Then, 

|𝑮𝑥(𝑥, 𝑦)| = log[𝐈(𝑥 + 1, 𝑦)] − log[𝐈(𝑥 − 1, 𝑦)]  ∀ 𝑥 ∊ {1,… ,𝑊 − 1}, 𝑦 ∊ {1,… , 𝐻 − 1}   

 With W and H being the image width and height (in pixels) respectively. The expression 

becomes: 

|𝑮𝑥̂(𝑥, 𝑦)| = log [
𝑰(𝑥 + 1, 𝑦)

𝑰(𝑥 − 1, 𝑦)
]   

Equation 18 (Omid-Zohoor et al. 2018) 

 (Omid-Zohoor et al. 2018) explained that the obtained gradient is more robust to region light 

intensity changes that are not related to the presence of a feature (i.e. to changes in illumination, 

which can “fool” the algorithm to think that there is a feature where there is not). They illustrate it by 

saying that, if multiplying 𝑰 along a spatial sub-region by a coefficient 𝛼, simply because such zone 

received more photons (illumination), then 𝛼 no longer affects |𝑮𝑥̂(𝑥, 𝑦)| due to the division. That is:  

|𝑮𝑥(𝑥, 𝑦)| = log [
𝛼 ∗ 𝑰(𝑥 + 1, 𝑦)

𝛼 ∗ 𝑰(𝑥 − 1, 𝑦)
] =  log [

𝑰(𝑥 + 1, 𝑦)

𝑰(𝑥 − 1, 𝑦)
]   

 Notice that the effect of 𝛼 would remain in the case of a linear subtraction operation on the 

input image. Furthermore they show that such “pre-processing” in the analog domain enhances the 

performance of the subsequent AI processing when applying an aggressive gradients quantization. 

Finally they (Omid-Zohoor et al. 2018) also explain how to implement that idea by approximating the 

logarithmic operation with a dedicated ADC (which they call “ratio-to-digital” converter (Omid-Zohoor 

et al. 2018)). In this work, we take this kind or pre-processing into account, and we test it with Edge-

Boxes in order to assess the global ROI performance (or objectness). 

 

Non-maximum suppression 

 We explain the non-maximum-suppression (NMS) step based on OpenCV’s documentation 

regarding the Canny Edge Detection (“OpenCV, Canny Edge Detector” 2021), and then we explain the 

implications of embedding it near the pixel matrix. NMS “tries” to generate “thin contours” by 

preserving pixels already taken as edges only if their corresponding  |𝑮(𝑥, 𝑦)| is a local maximum along 
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its local direction 𝜃(𝑥, 𝑦) ∊ {0, 𝜋/4, 𝜋/2, 3𝜋/2}. However, we found several issues when trying to 

implement it (near the pixels-matrix, before the ADC). For example, one NMS iteration would be as 

follows: 

A. Before NMS 

1. Calculate both gradient components for a 3x3 region around a pixel (x, y) and “buffer” 

them. 

2. Calculate gradient magnitudes from gradient components and “buffer” them.  

3. Calculate the local gradient 𝜃(𝑥, 𝑦) orientation at (x, y), and, 

B. During NMS 

4. If  𝜃(𝑥, 𝑦) = 0, then pixel (x, y) is preserved as an edge only if 𝑮(𝑥, 𝑦) >

 𝑮(𝑥 + 1, 𝑦) 𝑎𝑛𝑑 𝑮(𝑥 − 1, 𝑦). 

5. If  𝜃(𝑥, 𝑦) = 𝜋/4, then pixel (x, y) is preserved as an edge only if 𝑮(𝑥, 𝑦) >

 𝑮(𝑥 + 1, 𝑦 + 1) 𝑎𝑛𝑑 𝑮(𝑥 − 1, 𝑦 − 1).  

6. If  𝜃(𝑥, 𝑦) = 𝜋/2, then pixel (x, y) is preserved as an edge only if 𝑮(𝑥, 𝑦) >

 𝑮(𝑥, 𝑦 + 1) 𝑎𝑛𝑑 𝑮(𝑥, 𝑦 − 1).  

7. If  𝜃(𝑥, 𝑦) = 3𝜋/4, then pixel (x, y) is preserved as an edge only if 𝑮(𝑥, 𝑦) >

 𝑮(𝑥 − 1, 𝑦 + 1) 𝑎𝑛𝑑 𝑮(𝑥 + 1, 𝑦 − 1).  

For one single pixel, step 1 implies obtaining local gradient components of a 3x3 region around. 

Thus, considering any of the gradient kernels cited before, the architecture has to buffer (in the analog 

side) a 5x5 pixels-region in order to calculate the gradient components (if one wants to minimize pixel 

readings directly from the pixels-matrix). Then, step 2 implies computing the gradient components, 

thus performing a summation in analog domain and then buffering the resulting values. Notice that at 

this point, the architecture should buffer both total gradient magnitudes (for at least a 3x3 region 

around the pixel of interest) and local gradient components (e.g. only at pixel (x, y)). Then, the local 

angle is recovered from the local gradient components and buffered. After that, NMS begins in step 4. 

For example, a combinatorial circuit should “decide” which values of the gradient magnitude to 

compare with the local G(x, y), and then more electronics have to handle the comparison. Finally, the 

output of the local gradient magnitude output (from the ADC) is G(x, y) if the pixel is effectively an 

edge, or 0 for the contrary. 

The paragraph above puts into evidence the potential additional complexity of implementing 

NMS before the ADC: several buffers are required for different computational steps, and analog or 

mixed-signal logic units for making decisions of which values to compare the local gradient magnitude 

with. Moreover, it is less likely that column-parallel parallelization could be exploited. One could argue 

that this could be easier to implement in the digital domain. However, the caveat is that, considering 

a low power ADC with aggressive quantization (for example, with magnitudes being only 0 or 1), we 

think that comparisons in steps 4 to 7 are likely to lose relevance and become harder to interpret. That 

is due to the aggressive quantization in the gradient magnitude. For instance, in the gradient in 

quantized to 1-bit, then the comparison of one gradient being bigger that another one becomes less 

meaningful, and a gradient that would normally be detected as bigger might be classified as “equal” 

due to quantization.  

 

Hysteresis-thresholding 

 This step “tries” to estimate if pixels are (or not) edges based on their local gradient 

magnitude 𝑮(𝑥, 𝑦). While edge-detection ideas for near pixels-matrix implementation, such as (Soell 

et al. 2016), detect edges if |𝑮(𝑥, 𝑦)| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, OpenCV’s implementation (explained by them in 
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(“OpenCV, Canny Edge Detector” 2021)) is more complex. First, all gradients are compared with two 

fixed thresholds 𝑇1, 𝑇2, with 𝑇2 > 𝑇1. Then, pixels with 𝑮(𝑥, 𝑦) > 𝑇2 are immediately classified as 

edges and pixels with 𝑇1 < 𝑮(𝑥, 𝑦) < 𝑇2 are classified as edges only if they are connected with a pixel 

in which 𝑮(𝑥, 𝑦) > 𝑇2. For all other cases, the edge-detector outputs 𝑮(𝑥, 𝑦) = 0. 

 From previous paragraph, we notice that this last stage presents similar issues with the 

previous one (non-maximum-suppression). Thus, in our approach we try to assess if a near pixel-matrix 

gradient architecture could work without those two lasts steps. In next section, we will continue 

developing the edge detection pipeline to find which one is most suitable for object detection with ROI 

proposals. 

 

4.3.2. Our edge detection pipeline description 
 

In this section, we describe in detail our pipeline for oriented gradient generation. We discuss 

each stage in terms of image processing, and we try to take into account IC-implementation 

phenomena as well. For example, we introduce more specifically where we perform quantization, and 

how the signal (information) goes from the pixels-matrix to the ADC.  

 

 

Figure 38: our proposed column parallel pre-processing pipeline for gradient computation.  

Fig [generalPipeline] 

In Figure 38 we represent a series of stages for near pixel-matrix edge-extraction (i.e. extraction of 

oriented gradients at individual pixels and which are higher than a reference threshold). It is important 

that this is not the first architecture proposed to perform this task, thus we will make emphasis on 

differences with the state to art when required. Continuing with the overall description, our approach 

targets column-parallel computations, instead of inside-pixel architectures as in (Bose et al. 2019). Our 

motivation is to be able to separate pixel-matrix design from pre-processing, then allowing optimizing 

both independently. Moreover, in-pixel architectures have important issues with fill-factor, fixed-

pattern-noise and pixel complexity: all of which make it more difficult to implement (and model) a pre-

processing pipeline like the one we chose.  
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According to Figure 38, the different stages are: 

1. Image-acquisition (a standard H x W pixels-matrix with column parallel read-out). 

2. Correlated double sampling, and 5x5-pixels circular-image-buffer 

3. Average 3x3-kernel de-noising. 

4. Gradient components calculation with kernels as in Equation 17. 

5. Gradient and orientation: 

a. Gradient magnitude estimation as in (Soell et al. 2016). 

b. Orientation estimation with the approach suggested by (Choi et al. 2014)24 (with 

successive approximations). 

The remainder of this section describes the behavior of each of the stages, starting step 2 in the 

list above. 

 

 

CDS and circular buffer 

We think that correlated-double-sampling (CDS) is important to mitigate FPN and temporal noise, 

especially because the architecture is multi-staged, and noise “propagates” during pre-processing. We 

took the CDS plus buffering architecture from (Young et al. 2019), and we slightly modified it to adapt 

for including the de-noising (include capacitances to change kernel size). As they (Young et al. 2019) 

explain, with the right amount of capacitances, this block also allows performing “binning” if needed. 

The importance of a circular buffer is that gradient calculations depend on values of neighboring pixels, 

and we wanted to avoid at maximum to read pixels directly from the matrix several times. Indeed, 

different values of pixels are required several times, and one gradient value (magnitude plus direction) 

depends on 25 values in the original image. For example, in Figure 39, the yellow (thick border) 

rectangle in (a) englobes original values needed for computing the de-noised value 𝐼(4, 4) in (b), which 

is needed for gradient computation at pixel (4, 5). The thick borders in (b) represent all de-noised 

values  needed for computing the Gradient G at pixel (4, 5) (the gradient matrix is not shown). At the 

same time, the light-blue background in (a) represent all original values used for computing one single 

gradient value at pixel (4, 5). That is, one entry in the gradient matrix “expands” to a 5x5 matrix in the 

original pixel-values-matrix. Now, we center our attention at location (4, 5), where our goal is 

calculating the gradient. From that figure, we observe that due to the 2-stages (image acquisition and 

de-noising), this gradient value depends on values from a 5x5-matrix in the original image. That is, we 

want to buffer those 25 values for a simple gradient computation. Moreover, when computing gradient 

at other locations, like at (3, 5), original-pixels-values that were used before are required again. That 

is, the buffer has to “keep” pixels values while they are still needed. 

 

 

 

 

 
24 We represented it as a trigonometric ADC for clarification. However, (Choi et al. 2014) did not implemented 
this idea for an ADC. In fact, they use values already in the digital domain, transferred it to the analog domain, 
and then went backwards to the digital side. All of that only for calculating the gradient orientation.  
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(a) Original pixel values (b) De-noised values 
  

I(1, 1) I(1, 2) I(1, 3) I(1, 4) I(1, 5) I(1, 6) I(1, 7) I(1, 8) 

I(2, 1) I(2, 2) I(2, 3) I(2, 4) I(2, 5) I(2, 6) I(2, 7) I(2, 8) 

I(3, 1) I(3, 2) I(3, 3) I(3, 4) I(3, 5) I(3, 6) I(3, 7) I(3, 8) 

I(4, 1) I(4, 2) I(4, 3) I(4, 4) I(4, 5) I(4, 6) I(4, 7) I(4, 8) 

I(5, 1) I(5, 2) I(5, 3) I(5, 4) I(5, 5) I(5, 6) I(5, 7) I(5, 8) 

I(6, 1) I(6, 2) I(6, 3) I(6, 4) I(6, 5) I(6, 6) I(6, 7) I(6, 8) 

I(7, 1) I(7, 2) I(7, 3) I(7, 4) I(7, 5) I(7, 6) I(7, 7) I(7, 8) 

I(8, 1) I(8, 2) I(8, 3) I(8, 4) I(8, 5) I(8, 6) I(8, 7) I(8, 8) 

 

I(1, 1) I(1, 2) I(1, 3) I(1, 4) I(1, 5) I(1, 6) I(1, 7) I(1, 8) 

 I(2, 1) I(2, 2) I(2, 3) I(2, 4) I(2, 5) I(2, 6) I(2, 7) I(2, 8) 

I(3, 1) I(3, 2) I(3, 3) I(3, 4) I(3, 5) I(3, 6) I(3, 7) I(3, 8) 

 I(4, 1) I(4, 2) I(4, 3) I(4, 4) I(4, 5) I(4, 6) I(4, 7) I(4, 8) 

I(5, 1) I(5, 2) I(5, 3) I(5, 4) I(5, 5) I(5, 6) I(5, 7) I(5, 8) 

I(6, 1) I(6, 2) I(6, 3) I(6, 4) I(6, 5) I(6, 6) I(6, 7) I(6, 8) 

I(7, 1) I(7, 2) I(7, 3) I(7, 4) I(7, 5) I(7, 6) I(7, 7) I(7, 8) 

I(8, 1) I(8, 2) I(8, 3) I(8, 4) I(8, 5) I(8, 6) I(8, 7) I(8, 8) 

 

  Fig. [bufferExample] 

Figure 39: Illustration of why a simple gradient computation depends upon 25 original-image-values. 

 

De-noising 

In our simulations results (depicted in detail in the benchmarks chapter), we found that de-noising 

has an important impact in the amount of pixels that are detected as edges. Moreover, this stage 

improves the performance for ROI proposals with Edge-Boxes and with quantized gradients. We think 

this relates to the mitigation of high spatial gradients corresponding to textures and not to overall 

topologies. However, when de-noise is not present, the elevated amount of edges increases the 

amount of clusters of edges in Edge-Boxes, which increases memory and runtime as, will be shown in 

chapter 6. Thus, de-noising allows to decrease memory and runtime, at the same time that ROIs are 

obtained with the same or even better accuracy.  

We selected an average kernel because it was the simplest to implement, and our decision is 

supported by results that will be presented at the benchmarks chapter (chapter 6). Indeed, in our tests, 

a more complex kernel type did not change significantly the accuracy for ROI proposals.  

Another important aspect is that we have not found another work which proposes a column-

parallel staged-pipeline pre-processing including both de-noising and gradient computation (i.e. 

without a “standard computational unit” or a standard addressable memory). This column architecture 

exploits parallelism and computes gradients on the fly. In chapter 5 we go deeper in how we propose 

to achieve that. We found works, for example (Hsu et al. 2019; Soell et al. 2016; Young et al. 2019), 

proposing analog computing architectures for image pre-processing. However, they only computed 

one single stage (either de-noising or pixels differences) before the ADC, or they implemented a more 

complex computational unit resembling a standard processor. In that case, it is less obvious to exploit 

parallelism and compute gradients on the fly.  
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Gradient components 

We selected the kernels showed in Equation 17 because of their simplicity, and since results (in 

the benchmarks section) support that this kernel is “good enough” for ROI proposals. Indeed, a more 

complex type of gradient, such as a Sobel (Equation 16), did not lead to significant improvements. 

Hence, we propose calculating each gradient component with two separate blocks (one for each 

component) as proposed by (Soell et al. 2016). In their work, however, they did not use a de-noising 

stage previous to the gradient extraction. We also keep the idea from (Soell et al. 2016) of calculating 

the absolute value for each component for the next stage, yet we add two additional signals respect 

to (Soell et al. 2016), sx and sy, the gradient signs, that are important for the angle.  

 

Gradient magnitude 

Similarly to (Soell et al. 2016), we simply “add” the gradient magnitude from each component and 

we compare the sum with a fixed threshold (𝑽𝒓𝒆𝒇).  This comparison outputs either 1 (high) or 0 (low) 

values, thus quantizing the magnitude to 1 bit values. During our experiments, we often observed that 

many pixels (between 80 to 90%) are not detected as edges (when the threshold is set correctly). Then, 

we concluded that the architecture should compute the angle only when the magnitude equals 1 

(high). That could save power and speed up gradients computation. For instance, by exploiting the 

edge map sparsity: if the gradient magnitude is 0, the angular calculation is not performed, and only 1 

bit is read from the ADC. Two possible ways of exploding that (that are let to be studied in further 

works) are to reduce the trigonometric ADC activity by approximately 90 % for angular calculation. 

Secondly, to allow the system to run in a simpler (probably faster) mode by only detecting edges and 

not angles. That could be attractive for autonomous systems with adaptive behaviors.  

 

Angle computation 

 For the angular computation, we propose to adapt the block from (Choi et al. 2014) to carry out 

the inverse tangent approximation. The principle consists in comparing the ratio Gx/Gy to tan() 

where  is a threshold angle that can be adjusted. As an example, if we want to discriminate 4 angles 

from 0 to 180°, you need the comparison results from: 

- Comp1 : |Gy| > |Gx|.tan(22.5°), meaning  >22.5° if Gy/Gx> 0, or  <177.5° if Gy/Gx< 0, 

- Comp2 : |Gy |> |Gx|.tan(67.5°), meaning  >67.7° if Gy/Gx> 0, or  <132.5° if Gy/Gx< 0, 

For simplicity, we call this block “trigonometric ADC plus an encoder” in Figure 38.  From (Choi 

et al. 2014) , we took into account several differences that we had to adapt for our case. Firstly, in their 

implementation (Choi et al. 2014) the angular computation was after the ADC (thus, in the digital side). 

Then, they had to include the digital to analog conversion. Our implementation will be simpler as we 

already are in the analog domain. Secondly, since the angle depends on gradient-components signs, 

they used the previously obtained signs from the gradients calculation in the digital side. In our case, 

we use the sign signals output from the analog absolute value function instead, based on the 

architecture proposed by (Soell et al. 2016). Finally, for our implementation, the whole circuitry can be 

simplified, since they (Choi et al. 2014) projected the angle into 9 bins, whereas we are interested in 4 

angular values (or 4 bins).  
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4.3.3. Dynamic range improvement 
 

 The ratio-to-digital converter architecture proposed by (Young et al. 2019; Omid-Zohoor et al. 

2018) is more robust to high-dynamic-range effects related to gradient-components-quantization. 

They (Young et al. 2019; Omid-Zohoor et al. 2018) approximated logarithmic gradient-component-

conversion with two successive comparisons. To explain this process, we take into account one 

gradient component along x (it could be y as well) 𝑮𝒙(𝑥, 𝑦). It depends on image values (not de-noised, 

in the case of (Young et al. 2019; Omid-Zohoor et al. 2018)) 𝑰𝒙(𝑥 − 1, 𝑦) and 𝑰𝒙(𝑥 + 1, 𝑦). In the analog 

domain, those two image values are voltages corresponding to (respectively) are  𝑽𝒊−𝟏 and 𝑽𝒊+𝟏. Then, 

the first comparison is 𝑽𝒊−𝟏 < 𝑽𝒊+𝟏. If true, then the second comparison is 𝑽𝒊−𝟏 < 1/2 𝑽𝒊+𝟏. If the 

first comparison result is false, the second one is similar, but the sub-indexes are switched. Then, for 

their case (Young et al. 2019), gradient components where obtained with Table 6: 

Table [youngtruthtable] 

Table 6: truth table suggested by (Young et al. 2019) for approximating logarithmic 2-bit gradient-components. 

Comparison 1 Output 1 Comparison 2 Output 2 𝑮𝒊=𝒙,𝒚 

𝑽𝒊−𝟏 < 𝑽𝒊+𝟏 

1 𝑽𝒊−𝟏 < 1/2 𝑽𝒊+𝟏 
1 1 

0 0 

0 𝑽𝒊+𝟏 < 1/2 𝑽𝒊−𝟏 
1 -1 

0 0 

 

From Table 6 presents truth table suggested by (Young et al. 2019) for approximating 

logarithmic 2-bit gradient-components with successive approximation (comparison). From Table 6, we 

observed that this dynamic range improvement is related with comparing voltages (light intensities) 

that are spatially close. The idea of a fixed threshold for “simple or linear gradients” is changed for a 

“fixed factor”, which is multiplying one on the two voltages. We then wondered if we could apply a 

similar idea to our pipeline (depicted in Figure 38). In order to do so, we also observed that: 

𝑽𝒊−𝟏 <
1

2
𝑽𝒊+𝟏 ⇒ 2𝑽𝒊−𝟏  <  𝑽𝒊+𝟏  ⇒ 𝑽𝒊−𝟏 + 𝑽𝒊−𝟏 <  𝑽𝒊+𝟏  ⇒ 

𝑽𝒊+𝟏 − 𝑽𝒊−𝟏 > 𝑽𝒊−𝟏  

On the left hand side of this expression is the linear gradient component. What has changed is 

the right hand side, which is a variable voltage (representing light intensity) instead of a fixed value. 

From here, we consider a second approximation, by changing the threshold from 𝑽𝒊−𝒊 to 𝑽𝒊  : 

𝑽𝒊+𝟏 − 𝑽𝒊−𝟏 > 𝑽𝒊  

𝑮𝒙 = 𝑽𝒙+𝟏 − 𝑽𝒙−𝟏         , 𝑮𝒚 = 𝑽𝒚+𝟏 − 𝑽𝒚−𝟏  

Then, if we apply the condition the gradient magnitude, we obtain: 

|𝑮𝒙| + |𝑮𝒚| ≈ |𝑮| > 𝟐𝑽𝒊 

We interpret that last condition as: in order to detect an edge at pixel location (x, y), the 

estimated local gradient magnitude has to be higher than twice the local light intensity value. We did 

not find any particular justification for the factor of 2. Then, the last inequality can be generalized as: 

|𝑮𝒙| + |𝑮𝒚| > 𝛼𝑽𝒊  ⇒ 𝐸𝑑𝑔𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  

Equation 19 
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 We call the gradients detected by last inequality as “relative gradients”, since its magnitude 

depends on the local light intensity value instead of a fixed threshold. Again, only if an edge is detected, 

then we proceed to compute the angle. Another important difference, which will be relevant in the 

benchmarks section, is that estimating the angle based on “logarithmic-gradient-components” is not 

the same as estimating it with “linear gradient components”. The reason is that, theoretically, 

estimating the angle from linear gradient component is an approximation of the inverse tangent of the  

 
Figure 40 : adaptation from Figure 38  for relative gradients. The architecture segments added are colored in red. 

Figure [relativePipeline]:  
ratio of linear gradients. Nevertheless, obtaining the angle from logarithmic components, is an 

approximation of the inverse tangent of the logarithm of the ratio of the components. Those two 

functions are not (to our knowledge) to be mathematically equivalent. In addition, based on results 

that will be shown and explained in the benchmarks section, using linear gradients for angle 

approximation gave better results in overall for ROI proposals with Edge-Boxes. Notice that 

“logarithmic-gradient-components” refers to the architecture proposed by (Young et al. 2019), in 

which they only calculated angles based on two gradient components in the X and Y axis. Nevertheless, 

if four gradient components were calculated (X and Y axis and the 2 diagonals), the angle assessment 

could be reduced to only finding the maximum of the four gradients (which was not studied in this 

work, since we found that it was interesting after discussing the results).  

 

4.4 Conclusions of chapter 4 
 

In this chapter we discussed the feasibility of ROI proposals generation in an embedded 

(hardware-constrained) architecture. We observed that, due to complexity of state of the art 

algorithms, it is not obvious to implement them near the sensor. However, a good candidate is the 

algorithm called Edge-Boxes. We decorticated this algorithm to have a first assess of memory usage as 

first estimation of implementation viability. We found that using worst case criteria gives rather 

elevated memory requirements (~50 Mbytes), but that may not be realistic, since in practice a much 

smaller number of contour segments could be required (for now we let this as an open question until 

we address it our benchmarks chapter). After that, we explained different methods for obtaining, at 

the column level, the Edge-Boxes input: the edge map. Moreover, we selected a specific pipeline for a 

possible implementation based on power constraints, but also for optimizing the A.I. performance. In 

the next chapter, we will dig into each block of our proposed gradient computation scheme by 

presenting possible electronics schematics, functioning, and power consumption approximations. In 

the next chapter, we will start by decoupling all the processing in stages. 
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Chapter 5: Embedded Edge Extraction 

Circuitry 
 

In this chapter, we focus on describing the different stages for edges extraction, which we call 

Origrad, at the schematic level. Our principal objective is to get first approximations for power 

consumption, bandwidth and noise. Those approximations are based on the behavioral functioning of 

each stage, associated with estimated parameters (stray capacitances, intrinsic transistor gain, …). As 

presented in chapter 4, and for the sake of clarity, we divide the whole pipeline into five stages. The 

first one, the correlated doubled sampling and circular buffer circuit, is the one proposed by (Young et 

al. 2019). The only difference is that we added two sampling capacitors to buffer two more pixels per 

column (and again 1 more if binning is required). We proposed the next two stages, the low pass filter 

and the intermediary buffer, inspired from typical sampling and capacitive charge recombination 

circuits. We took the circuitry from (Soell et al. 2016) for the final two stages: difference plus absolute 

value, and summation plus quantization. The only difference we made was to adopt sampling-

capacitances and switched-capacitor topologies.  

For our analysis, we assume that the matrix of pixels outputs a gray intensity image of size H x 

W (rows times columns). In addition, we foresee that there is one pipeline circuit for each column. 

Nevertheless, if area constraints impose it, the circuitry could be further adapted so that several image 

columns share one pipeline circuit.  
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5.1. Circuit stages 
 

5.1.1. Correlated double sampling and first buffer 

 

 

Figure 41 : Correlated double sampling and buffer circuitry proposed by (Young et al. 2019). 

Fig. [firstState]:  

This circuit was taken from (Young et al. 2019), related to the pipeline in Figure 5, with the only 

difference being that we use 5 capacitances 𝐶𝐻 instead of 4. If n x n binning is desired, a sixth 

capacitance 𝐶𝐻 should be added in parallel to the circuit in Figure 41. The reader can find more details 

about n x n binning with this architecture in (Young et al. 2019). In addition, as explained by (Young et 

al. 2019), this circuit performs a CDS, removing the pixel reset noise and the low-frequency noise, by 

sampling onto any of the capacitances 𝐶𝐻  the difference between the pixel-signal value and the pixel-

reset value. Switches S31 to S35 determine the capacitance at which each pixel value goes. Each 𝐶𝐻 

samples one row at a time and a digital-state-machine controls the row corresponding to each 

capacitance such that the circuit behaves as a circular buffer of 5 rows. 5 rows are needed as explained 

in chapter 4. Taken into account that this happens for every column, the whole first preprocessing 

stage buffers 5 complete rows at the same time during the preprocessing. Then, when a new row is 

read and sampled, the rest of the pipeline computes new features, a row output (of features) is 

generated, and then a new row is sampled again (overwriting a row that is no longer used for 

preprocessing). In the next paragraph, we try to estimate the power consumption for this stage. 

 Let fps be the number of frames per second output by the image sensor, and 𝑓𝑠1 be the pixel-

value sampling-frequency at 𝐶𝑠 during reading. Since there is one pipeline circuitry per column, 

then 𝑓𝑠1 = 𝐻 ⋅ 𝑓𝑝𝑠, where 𝐻 is the number of rows in the original matrix of pixels. We approximate 

the power for this stage, per column, as 𝑃1 = 𝛼 ⋅ 𝑉 ⋅ 𝐼 (idle factor, times voltage, times current), so 𝑃1 

is in units of 𝑊/𝑐𝑜𝑙𝑢𝑚𝑛. 

𝑃1 = 𝛼𝐼𝑖𝑛𝑣𝑉𝑖𝑛𝑣 

Equation 20 
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 In last equation, 𝛼 represents a sort of “activity factor” (similar to digital electronics) which 

takes into account that the inverter biasing can be “set to off” when it is not in use (duty-cycling). This 

is not rare since, for example, autonomous systems can lower the frame rate in order to save energy. 

Moreover, for a whole object detection pipeline the feature map acquisition could use just a small 

portion of the whole A.I. processing time. 

 

5.1.2. Low Pass Filter 

 

 

Figure 42 : image spatial-low-pass (blur) filter with an averaging kernel. 

Fig [secondStage]: 

The aim of this circuit is to convolve (on the fly) the gray-intensity-image with a 3x3 averaging 

kernel. This stage adds a complexity and power overhead respect to other edge-detectors such as  

(Young et al. 2019; Soell et al. 2016). Nevertheless, in the benchmarks (chapter 6) we will discuss 

further about the interest of this stage. One can note that this stage is not critical as the edge detector 

will still “work” even if the average kernel is not applied. Indeed, the objective of this stage two is to 

enhance or optimize the A.I. performance vs. runtime trade-off. 

The principle of functioning is the following: during the sampling phase, switch S6 is closed 

whereas S10 is open. Switches S71 to S79 select which capacitance the value is sampled on, and the 

mapping between the sampling capacitance and the row, column positions in the original image is 

carried by a digital-state-machine. Thus, a 9 x 9 window of the original image is sampled in those 

capacitances. For the second stage, S6 opens and S10 closes, such that the output voltage at node y 

represents an average of sampled values. In next paragraph we start estimating the power 

consumption.  

Let 𝑓𝑠2 be the frequency at which values are sampled in any of the switched capacitances in 

Figure 42. Then, this frequency has to be nine times the frequency at which values are sampled in next 

and previous stages (e.g. nine sampled “pixel positions” in this stage correspond to “just one” averaged 

value). Then 𝑓𝑠2 = 9 ⋅ 𝑓𝑠1, and: 
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𝑃2 = 𝛼𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝 

Equation 21 

Where 𝐼𝑎𝑚𝑝 and 𝑉𝑎𝑚𝑝 correspond, respectively, to the current and voltage biasing for the unity 

gain buffer 𝐴1. 

 

5.1.3. Second buffer 
 

 

Figure 43: intermediary buffer schematic. 

Fig [thirdStage 

This stage (Figure 43) allows to store 3 averaged values corresponding to 3 pixels from 3 

consecutive rows (when thinking of the original image). This obeys the pipeline introduce in chapter 4, 

with this intermediary buffer between the de-noising and the subtraction. Since it is implemented in 

every column, three whole rows are sampled in this stage as the next stage carries out the gradients 

components computation with a 3x3 kernel. The intermediary buffer performs a first sampling, switch 

S12 is open while S11 is closed. Switches S131 to S133 select the corresponding capacitance for 

sampling the denoised pixel value. This is controlled by a digital state machine on the periphery, since 

switching signals are the same for all columns. For the reading phase, switch S11 is open, while switch 

S12 is closed. Again, switches S13i select the value to read. 

By keeping a logic similar to last stage, one value sampled at any of the capacitors in Figure 43 

corresponds only to one pixel address at the pixel matrix. Then, the value storing frequency is 𝑓𝑠3 =

𝑓𝑠1, with 𝑓𝑠1 the frequency of sampling at 𝐶𝑠 in Figure 41. Then, the power consumption is: 

P3 = 𝛼𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝 

Equation 22 

 Once values are « de-noised », they are ready to be used for gradient components 

computation. Then, next stage « reads » 2 values sequentially to compute the difference and the 

absolute values of the gradient components. In addition, notice that in last chapter, stages 2 (low pass 

filter) and 3 (intermediary buffer) are merged into one single block. Indeed stage 3 comes specifically 

from implementation details only. We decided to separate stages 2 and 3 only to facilitate our analysis. 
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5.1.4. Difference and absolute value 
 

 

Figure 44 : schematic for computed gradient magnitude components. 

Fig. [fourthStage]:  

 This stage can be accomplished with a sequential computation of the two main axes 

components. Nevertheless, if area constraints allow it, the same architecture can be repeated twice. 

We take the second option for our further analysis, since it is interesting to explore a more aggressive 

parallelization. This stage is based on the publication from (Soell et al. 2016), where the subtraction 

was changed for taking switched-capacitance amplifiers into account. The absolute value circuit was 

left completely as presented in (Soell et al. 2016). 

The functionality of the circuit in Figure 44 is as follows: firstly, at sampling stage (Figure 45), 

switches S16, S21 are closed, while S201, S202 and S18 are opened. Switches S171 and S172 select the 

capacitance for sampling the previously de-noised value hold in the intermediary buffer. Two values 

are required to compute each component. Then, corresponding switches to read/sample each value 

are controlled by an external digital-state-machine placed on the periphery. Once the two values are 

sampled, the second stage is the subtraction and absolute value computation. There (Figure 46), 

switches S16, S171, S172, S192 and S21 are opened, while S201, S02, S18 and S191 are closed. Notice 

that S18 allows changing the polarity of the read value from the capacitor below it in Figure 44. Then, 

during subtraction, charges from both capacitors at the left of amplifier A4 (Figure 44) are subtracted 

and the resulting charge is stored in the capacitor below S21. Then, one gradient component (as an 

analog voltage) has been computed, and the rest of the circuitry carries the absolute value function as 

explained by (Soell et al. 2016).  
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Figure 45 : equivalent difference and absolute value circuit from Figure 44 in sampling phase. 

 

 
 

Figure 46 : equivalent difference and absolute value circuit from Figure 44 in amplification stage. 

 
For estimating the power consumption, we assume that all amplifiers are biased with the same 

parameters. Moreover, for each pixel address in the original image, two values are sampled for the 

gradient calculation at capacitors to the left from A4, whereas the one below S21 charges only once 

per subtraction. Then 𝑓𝑠41 = 2𝑓𝑠1 and 𝑓𝑠42 = 𝑓𝑠1. Moreover: 

𝑃4 = 2 ⋅ (𝛼5𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝) = 10𝛼𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝 

Equation 23 

 Once the two components are calculated in parallel, they can be used to calculate the total 

gradient magnitude in next stage.  

 

5.1.5. Summation and quantization 
 

 

Figure 47: circuit schematic for the summation and quantization stage. 
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This circuit computes (see Figure 47), firstly, the summation of both gradient-components 

absolute-values. Secondly, it estimates the 1-bit gradient magnitude by comparing the later 

summation with a fixed reference (Vref_1 in Figure 47). The functioning of this circuit is as follows: for 

the sampling phase, switches S241 and S242 are opened, while the rest are closed. Then, the abs-

component-values are sampled at capacitances at the left of amplifier A7 and the capacitor above it is 

(ideally) set to zero voltage (charge). For the next stage, switches S221, S222 and S25 open, while 

switches S231, S232, S241, S242 are closed. Then, the charge from capacitors at the left of A7 is 

« transferred » to the capacitance above it, completing the amplification (summation). The summation 

is then compared by means of a simple comparator amplifier. Then, 𝑓𝑠5 = 𝑓𝑠1. 

 

 The power consumption can be thus estimated as: 

𝑃5 = 2𝛼𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝 

Equation 24 

 

5.1.6. Angular computation 

 
Figure 48 shows the circuit schematic, inspired from (Choi et al. 2014), for sorting the gradient 

angle among the four values {0°, 45°, 90° and 135°}. The principle of functioning is as follows: during 

sampling time, switches 611, 612, 621, 622 are ON for sampling the gradient component values. Also, 

S641, S642 are ON for reset of capacitors C1 and C2. |Gx| is sampled twice, at C01 and C02, and the 

analog happens for |Gy|. During the logic phase, all switches previously ON pass to OFF, and switches 

S631, S632 pass from OFF to ON. The result is that two key comparisons are performed, in order to 

assess the angle. Compared to (Choi et al. 2014), since we only needed 4 angular values (2 bits), the 

schematic and functioning was simplified, while preserving the same key ideas. During the logic phase, 

the two logic comparisons performed are |𝐺𝑦| > |𝐺𝑥| ⋅ tan (67.5°), and |𝐺𝑥| < |𝐺𝑦| ⋅
1

tan(22.5)
. 

Similarly as suggested by (Choi et al. 2014), those values are determined by C01, C1, C12 and C2. The 

result from those two comparisons are fed to an encoder, along with logic signals sx, sy, which contain 

the gradient components sign. Figure 49 shows the truth table for projecting the angle on only the first 

quadrant, according to the results of the two comparisons mentioned before. For including the second 

quadrant as well, an extended truth table (considering sx, sy) is showed as well.  



 88 

 
Figure 48 : simplified circuit respect to the one from (Choi et al. 2014) for angular computation. 

Fig. [angleApproximation]:  
Regarding the power consumption, we approximate it by taking into account the power from 

the two amplifiers (comparators). We neglect the power consumed by the digital part (the encoder). 

The bandwidth of both comparators is 𝑓𝑠6 = 𝑓𝑠1. 

𝑃6 = 𝛼(2 ⋅ 𝑉6𝐼6) 

Equation 25 
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Figure 49 : logical expressions and related truth tables for angular computation with the circuit from Figure 48. 

Fig. [angleApproximation_2]: 
 

5.2. Condensing power into a single formula 
 

The total power is the sum of all stages multiplied by the number of columns. We are also 

interested at the “energy per pixel per frame”, which is a figure of merit reported by other works such 

as (Young et al. 2019). Then, 

𝑃𝑡𝑜𝑡𝑎𝑙

𝑊
[
𝑊𝑎𝑡𝑡𝑠

𝐶𝑜𝑙𝑢𝑚𝑛
] = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 + 𝑃5 + 𝑃6 

Equation 26 

 

𝑃𝑡𝑜𝑡𝑎𝑙

𝑊
= (𝛼𝐼1𝑉1) + (𝛼𝐼2𝑉2) + (𝛼𝐼3𝑉3) + (10𝛼𝐼4𝑉4) + (2𝛼𝐼5𝑉5) + (2𝛼𝐼6𝑉6) = 𝛼(𝐼1𝑉1 + 𝐼2𝑉2 +

𝐼3𝑉3 + 10𝐼4𝑉4 + 2𝐼6𝑉6)  

Equation 27 
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In last equation, we assume that the inverter amplifier in first stage is also biased with the 

same parameters as the rest of amplifier in other stages. For selecting the factor 𝛼, we first set it to 1 

and observe the implications of doing so. Some calculations are presented below: 

 

Table 7: power estimation when taking 𝑉𝑖 = 1,5 𝑉, 𝐼1 = 1 µ𝐴, 𝐻 = 𝑊 = 500 𝑝𝑖𝑥𝑒𝑙𝑠, and 𝑓𝑝𝑠 = 60 𝑓𝑟𝑎𝑚𝑒𝑠/𝑠. 

alpha Total power (mW) E per pixel (pJ/pix) 

1 12,750 850,0 

0,1 1,275 85,0 

0,01 0,128 8,5 

0,001 0,013 0,9 

0,0001 0,001 0,1 
 

 In Table 7, we illustrate the effect of alpha in reducing the energy per pixel, assuming alpha 

does not depend on the bandwidth. We chose arbitrary values for the bias, based on values reported 

by (Young et al. 2019) for the CDS plus circular buffer stage. Notice that those are not the final 

theoretical values, since they have to be consistent with the required bandwidth. That will be derived 

in next section. Also, the energy per pixel is calculated by dividing the total power by the frame rate 

and the total number of pixels W times H. We chose a typical value for the fps, but again, this value is 

just illustrative, and it will be derived in next section. From one can observe that for a α equal to 1,  the 

energy per pixel is one order of magnitude higher than the one reported by (Young et al. 2019). Then, 

we observe that power can be reduced either by duty-cycling, or by reducing the biasing (voltage or 

current). Indeed, that will be our objective in next subsection.  

 

5.3. Estimation of the bias current 
 

In last section, the bias current was selected as a rounded value from the CDS plus buffer stage 

proposed by (Young et al. 2019). This selection, however, is still arbitrary and here we try to go deeper 

in how to assess better the expected order of magnitude for the biasing current. Please consider that 

our objective is to study a rather simplistic test scenario for delimiting the reasonable range of the 

biasing current 𝐼𝑑. Up to now, we let this current for all previously described stages equal to one 

Ampère. Then, we consider the minimal value imposed by the worst-case band-width, and signal-to-

noise (SNR) ratio. 

 

5.3.1. Band-width constraints on biasing current 
 

We take as reference (for a fist approximation) the switched-capacitance non-inverting 

amplifier, which is well know from basic electronics, like from (Razavi 2001). Notice that, as explained 

for example from (Razavi 2001),  in a simple amplifier, the first pole of the transfer function is defined 

by the output node small-signal resistance 𝑟𝑜 and the target load capacitance 𝐶𝐿 = 𝐶𝐻. For instance, 

the open loop bandwidth in Hertz is 𝐵𝑤 = (2𝜋𝑟𝑜𝐶𝐿)
−1, and the closed loop bandwidth (and the 
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respective time constant) can be obtained by the gain-bandwidth-product relation. Nevertheless, our 

circuitry considers switched-capacitor-amplifiers. Then, we have set our biasing current to meet the 

time constants for the equivalent circuits in both sampling and amplification modes. From general 

knowledge about electronics design, the settling time for the output signal (e.g. the time constant 𝜏 

multiplied by 6) must be smaller than the clock semi-period. Then, for the sampling and amplification, 

respectively, we have the following relation: 

6 ⋅ 𝜏𝑠𝑎𝑚𝑝/𝑎𝑚𝑝 <
𝑇𝑐𝑙𝑘

2
⇒ 6 ⋅ 𝜏𝑠𝑎𝑚𝑝/𝑎𝑚𝑝 <

1

2 ⋅ 𝐻 ⋅ 𝑓𝑝𝑠
 

Equation 28 

 Notice that 𝑇𝑐𝑙𝑘 = (𝐻 ⋅ 𝑓𝑝𝑠)−1 since we assume that one row is processed during each clock 

period. This, however, is not correct when the several sampling stages are required, such as the circuit 

in Figure 42. In such case, a faster clock tick is required (for following the output speed of adjacent 

stages), and the fps is multiplied by a factor reflecting several sampling steps. We represented this 

factor as 𝑁𝑐. We assume that one stage can have a faster clock if required. From fundamental 

electronics, such as from (Razavi 2001), the equivalent sampling time constant is: 

 

𝜏𝑠𝑎𝑚 = (𝑅𝑜𝑛1 +
1

𝐺𝑚
)𝐶𝐻 

Equation 29 : the time constant “𝜏𝑠𝑎𝑚”, for a detailed explanation, see (Razavi 2001).. 

 
 

Where 𝜏𝑠𝑎𝑚 is based on the equivalent circuit of the unity-gain sampler in sampling mode. In 

Equation 29, we neglect 𝑅𝑜𝑛 as a first approximation. 𝐺𝑚 corresponds to the input transistor 

transconductance, which we approximate as 𝐺𝑚 = 𝑔𝑚 = 10 ⋅ 𝐼𝐷. Then, 

𝜏𝑠𝑎𝑚 =
𝐶𝐻

10𝐼𝐷
 

Equation 30 

 As explained in (Razavi 2001), for the amplification phase, the equivalent small signal circuit 

has a resulting time constant 𝜏𝑎𝑚𝑝 as in Equation 31.  

 

𝜏𝑎𝑚𝑝 =
𝐶𝐿𝐶𝑒𝑞 + 𝐶𝐿𝐶2 + 𝐶𝑒𝑞𝐶2

𝐺𝑚𝐶2
 

 
Equation 31 : time constant 𝜏𝑎𝑚𝑝, for a detailed explanation, see (Razavi 2001). 

In  Equation 31, 𝐶𝑖𝑛 represents the operation amplifier input capacitance (Razavi 2001), which 

we neglect (compared to 𝐶𝐻) for a first approximation. For simplification, we assume that 𝐶𝐿 = 𝐶2 =

𝐶1 = 𝐶𝐻. Then: 

𝜏𝑎𝑚𝑝 =
3𝐶𝐻 

𝑔𝑚
≈

3𝐶𝐻

10𝐼𝐷
= 3𝜏𝑠𝑎𝑚𝑝  

Equation 32 

From last equation, we notice that the amplification phase is the critic one for selecting the 

biasing current. Then, 
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6𝜏𝑎𝑚𝑝 <
1

𝑁𝑐 ⋅ 2 ⋅ 𝐻 ⋅ 𝑓𝑝𝑠
 

Equation 33 

Where the factor 𝑁𝑐 reflects that some stages have a faster clock. Also: 

3𝐶𝐻

10𝐼𝐷
<

1

𝑁𝑐 ⋅ 12 ⋅ 𝐻 ⋅ 𝑓𝑝𝑠
 ⇒ 

𝐼𝐷 > 3,6𝐶𝐻𝑁𝑐𝐻 ⋅ 𝑓𝑝𝑠 

Equation 34 

 

Table 8 : example of values calculated for 𝐼𝐷 when 𝐶𝐻 = 100 𝑓𝐹,𝑁𝑐 = 1 and 𝐻 = 500 𝑟𝑜𝑤𝑠. 

fps I_D (nA) 

30 5,4000 

60 10,8000 

120 21,6000 

300 54,0000 

500 90,0000 
 

 

From last table, we observe that the previous choice of 𝐼𝐷 = 𝐼𝑎𝑚𝑝 = 1 𝜇𝐴 was rather high in 

comparison with overall values calculated. For a typical smart imager, 500 pixel-rows and 60 fps is 

reasonable, leading to a bias current in the order of nA. Taking into account over-simplification made 

in this exercise, we can elevate again by one order of magnitude for a more conservative reference 

value. In last section, and in Table 7, we took the biasing current as 𝜇𝐴. Now, we will exchange this by 

values found in Table 8, as presented in Table 9: 

Table [updatedPowerEstimation]:  

Table 9 : updated power current estimation when taking V_ampDD=1,5 V,C_H=100fF,H=W=500 pixels,V_R=1 V, and fps = 
60. 

Nc for each stage Current (nA) 

Stage 
1 

Stage 
2 

Stage 
3 

Stage 
4 

Stage 
5 

Stage 
6 

Stage 
1 

Stage 
2 

Stage 
3 

Stage 
4 

Stage 
5 Stage 6 

1 9 1 2 1 1 10,80 97,20 10,80 21,60 10,80 10,80 

1 9 1 2 1 1 10,80 97,20 10,80 21,60 10,80 10,80 

 

 From Table 9, we have enough information for calculating the total estimated power 

consumption. The calculation summary is presented in Table 10. 

Table [update 

dPowerEstimation_2]:  
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Table 10 : updated power estimation when taking V_DD=1,5 V,C_H=100fF,H=W=500 pixels, and fps = 60. 

Power 

Total power 
(nW) 

Power per pixel 
(fJ/pix) 

Alph
a 

Stage 
1 

Stage 
2 

Stage 
3 

Stage 
4 

Stage 
5 

Stage 
6 

1 16,20 145,80 16,20 324,00 32,40 32,40 850,50 56,7 

0,1 1,62 14,58 1,62 32,40 3,24 3,24 85,05 5,67 

 

 Next section will be dedicated to an analysis on noise, in order to assess if such multi-staged 

preprocessing is reasonable in terms of SNR degradation before the ADC. 

 

 

 

 

5.4. Noise analysis 

 

In this section, we study the impact of thermal noise on the SNR. The effect of flicker noise, 

fixed pattern noise, and charge injection in switched-capacitors can be added in further works. Here, 

we will take into account only the thermal component.  

 For a first approximation, we observe the spectral input-referred-noise (thermal) per unit of 

bandwidth (or 𝑃𝑆𝐷𝑖𝑛) intrinsic to a differential pair (based on (Razavi 2001)) with a capacitive load at 

the output 𝐶𝐻. Firstly, we take into account only the open loop case: 

𝑃𝑆𝐷𝑖𝑛 = 8𝑘𝑇 (
2

3𝑔𝑚
+

𝑔𝑑𝑠

𝑔𝑚
2 )     

Equation 35 (Razavi 2001) 

 

 If the overdrive voltage 𝑉𝑜𝑣 = 𝑉𝑔𝑠 − 𝑉𝑡ℎ = 0,2 𝑉, then 𝑔𝑚 = 10𝐼𝐷. Also, 𝑔𝑑𝑠 = 𝜆𝐼𝐷. If 𝜆 =

0,1 𝑉−1, then 𝑔𝑑𝑠 = 0,1 𝐼𝐷 = 0,01 𝑔𝑚. Then, 

𝑃𝑆𝐷𝑖𝑛 = 8𝑘𝑇 (
2

3 ⋅ 10𝐼𝐷
+

𝐼𝐷
10 ⋅ (10𝐼𝐷)2

) ≈ 8𝑘𝑇 (
2

3 ⋅ 10𝐼𝐷
) 

Equation 36 

 The noise-spectral-density 𝑃𝑆𝐷𝑜𝑢𝑡 (thermal) is obtained from the product of 𝑃𝑆𝐷𝑖𝑛 and the 

square of the transfer function magnitude |𝐻(𝑓)|2. Firstly, we derive the output noise equation for 

the open loop case, and then we proceed for the closed loop case. For the open loop case, the gain 

𝐴 = 𝑟𝑜𝑔𝑚, 𝐵𝑤 = (𝐶𝐻𝑟𝑜)
−1 = 𝜔 in radians per second. Notice that 𝑟𝑜 is the open loop output resistance 

such that 𝑟𝑜 = 𝑟𝑜𝑛 | | 𝑟𝑜𝑝 of the differential pair. From common knowledge, the transfer function is: 

𝐻(𝑠) =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝐴0 (

1

𝑠𝜏0 + 1
) 

Equation 37 
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|𝐻(𝑠 = 𝑗𝜔)|2 = 𝐴0
2 (

1

4𝜋2𝐶𝐻
2𝑟𝑜

2𝑓2 + 1
) 

Equation 38 

 From common knowledge, we can make the replacement 𝑥 = 2𝜋𝐶𝐻𝑟𝑜𝑓, with 𝑓 𝜖 [0,∞[, 

then: 

|𝐻(𝑠 = 𝑗𝜔)|2 = 𝐴0
2 (

1

𝑥2 + 1
) 

Equation 39 

 From common knowledge, the open loop output noise power is: 

𝜎0
2 = ∫ 𝑃𝑆𝐷𝑖𝑛|𝐻|2𝑑𝑓  ,  𝑑𝑓 =

𝑑𝑥

2𝜋𝐶𝐻𝑟𝑜
 

Equation 40 

 Then, 

𝜎0
2 = 𝑃𝑆𝐷𝑖𝑛 ∫ 𝐴0

2 (
1

𝑥2 + 1
) ⋅

𝑑𝑥

2𝜋𝐶𝐻𝑟𝑜
= 

∞

0

𝑃𝑆𝐷𝑖𝑛

𝐴0
2

2𝜋𝐶𝐻𝑟𝑜
 ∫ (

1

𝑥2 + 1
) ⋅

∞

0

𝑑𝑥 

∫ (
1

𝑥2 + 1
) ⋅

∞

0

𝑑𝑥 =
𝜋

2
 ⇒ 

𝜎0
2 = 𝑃𝑆𝐷𝑖𝑛

𝐴0
2

2𝜋𝐶𝐻𝑟𝑜
⋅
𝜋

2
=

𝑃𝑆𝐷𝑖𝑛𝐴0
2

4𝜏0
 

Equation 41 

 With 𝜏0 = 𝐶𝐻𝑟𝑜25. We now take the closed loop case, in which the transfer function can be 

expressed as (Razavi 2001): 

𝐻1(𝑠) =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝐴0
𝑠𝜏0 + 1

1 + 𝛽
𝐴0

𝑠𝜏0 + 1

 

Equation 42 (Razavi 2001) 

 With 𝛽 begin the feedback gain. Last equation can be re-arranged as (Razavi 2001): 

𝐻1(𝑠) =

𝐴0
1 + 𝛽𝐴0

1 +
𝑠𝜏0

1 + 𝛽𝐴0

 

Equation 43 (Razavi 2001) 

 We can now make some convenient replacements: 

 
25In (Razavi 2001), page 252, they use 𝜔0 in Equation 42 and Equation 43 instead of 𝜏0. Here, we take 𝜏𝑖 = 𝜔𝑖

−1 
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𝐴1 =
𝐴0

1 + 𝛽𝐴0
 

Equation 44 

 

𝜏1 =
𝜏0

1 + 𝛽𝐴0
 

Equation 45 

 

 From equations above, the so-called (in the literature) gain-bandwidth product 𝐺𝐵𝑊 can be 

derived: 

𝐺𝐵𝑊 =
𝐴1

𝜏1
=

𝐴0

𝜏0
 

Equation 46 

 Then, the closed loop transfer function 𝐻1 becomes: 

𝐻1(𝑠) =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝐴1 (

1

𝑠𝜏1 + 1
) 

Equation 47 

 By comparing with equations from the open loop case, we can immediately conclude that: 

𝜎2 = 𝑃𝑆𝐷𝑖𝑛 (
𝐴1

2

4𝜏1
) =

𝑃𝑆𝐷𝑖𝑛 (
𝐴0

1 + 𝛽𝐴0
)
2

4 (
𝜏0

1 + 𝛽𝐴0
)

= 𝑃𝑆𝐷𝑖𝑛 (
𝐴0

2

4𝜏0
)(

1

1 + 𝛽𝐴0
) 

Equation 48 

 If we take a simply unity gain buffer as reference, then 𝛽 = 1, and: 

𝜎1
2 =

𝑃𝑆𝐷𝑖𝑛𝐴0

4𝜏0
= 𝑃𝑆𝐷𝑖𝑛 ⋅

𝑟𝑜𝑔𝑚

4𝐶𝐻𝑟𝑜
= 𝑃𝑆𝐷𝑖𝑛 ⋅

𝑔𝑚

4𝐶𝐻
≈ 8𝑘𝑇 (

2

3 ⋅ 10𝐼𝐷
)(

10𝐼𝐷
4𝐶𝐻

) 

𝜎1
2 ≈

4𝑘𝑇

3𝐶𝐻
 

Equation 49 

 The effective number of bits ENOB is (Maloberti 2007): 

𝐸𝑁𝑂𝐵 =
𝑆𝑁𝑅𝑇 − 1.78

6,02
 

Equation 50 (Maloberti 2007) 

 Where 𝑆𝑁𝑅𝑇 is the signal to total-noise ratio (not only quantization noise) (Maloberti 2007). 

The typical formula in the literature for the signal to noise ratio is: 
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𝑆𝑁𝑅 = 20 ⋅ log (
𝑉𝑠𝑖𝑔

√𝜎1
2
) 

Equation 51 

Some example calculations are presented in Figure 50 and Figure 51, where 𝜎2 is the calculated 

noise-power 𝜎1
2 multiplied by the “equivalent number of sequential amplifications n”: 

 

 

Figure 50 : Equivalent number of bits for two different pixel-intensity-voltage-swings V_sig=V_R, as a function of the 
equivalent number of sequential signal amplifications n. C_H=100 fF,T=300 K. 

Fig. [enob]:  
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Figure 51 : RMS Thermal noise voltage (√(σ^2 )), as a function of the equivalent number of sequential signal amplifications 
n. C_H=100 fF,T=300 K. 

Fig. [noise]:  

This number of amplifications n was inferred from circuits presented from stages 1 to 5. For 

our focus pipeline, 𝑛 = 24, if we assume that all amplifications had a noise value close to the noise 

value of a closed-loop gain of 1. For the case of the subtraction and addition operations in stages 4 and 

5, the noise propagates in two branches before those two branches are added again for performing 

the operation. That is why 𝑛 = 24 is higher than the total number of amplifiers in any non-cyclic 

sequential path from CDS to quantization. Then, Figure 50 and Figure 51 illustrate how the signal 

degrades due to thermal noise through the sequential amplifications. We also evaluate the ENOB for 

two different values of 𝑉𝑅, 0.5V and 1V, in order to a reasonable voltage range for biasing the pipeline. 

We can guess that this range could be divided by 2 at the end of the pre-processing, meaning that the 

area between the two curves in Figure 50 is the expected calculated interval. We observe that ENOB 

drops from 10,76 (n = 1) to 8,47 (n = 24) if the useful swing is 0,5 V. If the useful swing is 1 V, then 

ENOB drops from 11,76 to 9,47. Then, for n = 24, from previous estimations the resulting ENOB should 

be among 9,47 and 8,47. If we further consider 1/f noise and switches charge injection, we can just 

keep in mind that our analog pipeline can be approximated to an 8-bit digital pipeline. 

 From last paragraph we infer that the noise-power only due to thermal power from the multi-

staged analog pre-processing has an significant contribution. Nevertheless, here is when one of the 

“powerful” characteristic of oriented gradients as “low level static features” comes in: since those 

correspond to a relatively high local and spatial gradient, then they are more robust to noise if the 

expected gradient variation is significantly higher than noise signal in rms. In addition, we can compare 

the worst estimated ENOB of 8,47 with the amount of bits codifying the gradient magnitude (1 bit) or 

the gradient angle (2 bits). Moreover, this features still allow to perform low power object detection.  
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5.5. Conclusions of chapter 5 
 

In this chapter, we explained and analyzed the circuit stages to achieve the pre-processing 

pipeline mentioned in chapter 4. We differ from (Young et al. 2019; Soell et al. 2016) as we introduced 

the average denoising stage in order to alleviate the memory and runtime of the next processing stage, 

the Edge Boxes algorithm. We obtained first estimations of power consumption, and we refined such 

estimations by taking into account the required biasing current for the desired bandwidth. This lead to 

an ideal power consumption of ~851 𝑛𝑊 (at 500 x 500 resolution, 60 fps and without duty-cycling the 

amplifiers), corresponding to a FOM of 56.7 fJ/frame/pix. We also discussed that duty-cycling with a 

low value of 𝛼 is especially interesting when the smart imager “decides” to reduce the frame rate in 

order to save power.   

 Next, we made an analysis on the impact of thermal noise in the final gradient computation. It 

showed that our analog pipeline can be approximated to an 8-bit digital pipeline. This is a critical 

analysis since a complex analog pre-processing architecture with several sequential stages might 

significantly degrade the output signal. We observed that indeed that is the case, obtaining a drop 

11,76 - 10,76 to 9,47 - 8,47 equivalent bits. However, even though this could be critical for standard 

CMOS imagers, typically aiming for high quality images, in chapter 6 we show that this does not prevent 

our proposed pipeline from functioning, even if the output gradient magnitude is codified in 1 bit, and 

the angle in 2 bits.  

 In next chapter, we will benchmark different variations of edge-extractors architectures 

already detailed in the two previous chapters. We will focus on a specific dataset so we can quantify 

performance, mainly in terms of runtime, memory usage and Intersection-Over-Union.
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Chapter 6. Object Localization benchmarks 
 

In this chapter, we try to assess the optimal pre-processing architecture by characterizing the 

system performance for object localization. As mentioned in chapter 4, a variety of object detection 

(OD) algorithms behaves as a two-staged process: firstly, the localization of potential objects in the 

scene, and secondly, the classification of the content inside each object proposal or region of interest 

“ROI”. Moreover, each task (localization or classification) performs as a “black box”, and their contents 

can change as long as they maintain the expected input and output variables.  
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6.1. Localization characterization methodology 
 

When classification and localization are indeed two separate stages, a metric for each stage 

can be relevant and simpler to carry out. For the localization phase, the “intersection over union” (IoU)  

or “Jaccard index” (“Jaccard Index” 2021) is typically used in the literature. Conceptually, it measures 

how well an individual ROI proposal overlaps with a ground-truth-bounding-box thanks to a scalar 

between 0 (no overlap at all) to 1 (perfect overlap). Mathematically, we can express it by considering 

two rectangular areas in the image: one corresponding to a single ROI proposal 𝑹𝒑, and another one 

corresponding to the ground-truth-bounding-box for a particular object 𝑹𝒈 (both represented in Figure 

52). Then,  

𝐼𝑜𝑈(𝑅𝑝, 𝑅𝑔) =
𝑅𝑝 ∩ 𝑅𝑔

𝑅𝑝 ∪ 𝑅𝑔
 

Equation 52 (“Jaccard Index” 2021) 

Figure 52 : Illustration of the IoU showing the ROI proposal, ground-truth-box, and intersection areas. The union area is 
delimited by borders of both rectangles without taking into account borders of the intersection rectangle. 

Fig. [iou]:   

 Typically, dataset annotations provide ground-truth-boxes (in plural, if there are several 

objects in the image), whereas a computer algorithm gives the ROI proposals. Notice that only one 

proposal may be insufficient, thus the algorithm may output a certain number of them. For instance, 

Edge-Boxes has a parameter controlling the amount of output boxes. In this work, we fix it to 1000 

boxes in all benchmarks, since it was a value used by (Zitnick and Dollár 2014). If the reader wants to 

go deeper in the effect of the amount of boxes, the Edge-Boxes paper (Zitnick and Dollár 2014) explains 

the trade-off between IoU and the amount of proposals.  

 In order to benchmark different architectures in term of IoU, we require a dataset compatible 

with OD. We selected the dataset Pascal VOC 2007 (M. Everingham et al. n.d.; n.d.; Mark Everingham 

et al. 2015) since it is a well-known dataset, with illustrative classes of objects (person, cat, dog, car, 

among others). Indeed, it has 20 classes in total (see table Table 11). The dataset has a set of images, 

and for each image, there is a file containing the annotations. Inside that file, one can find, for each 

object, a category (corresponding to one of each class), and image coordinates for the ground-truth 

object bounding-box. Table 11 presents a summary of the classes provided by this dataset. In next 

section, we start by explaining how we use our simulation framework EdgeTon (described in chapter 

3) to characterize different architectures followed by the Edge-Boxes algorithm.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 

𝑅𝑝 ∩ 𝑅𝑔 : intersection of two areas 

 
𝑅𝑝 ∪ 𝑅𝑔 : union of the two areas 

𝑅𝑂𝐼 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑅𝑝 

𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑅𝑔 

𝑅𝑝 ∩ 𝑅𝑔 
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Table [pascalVOCclasses]: classes found in the Pascal VOC 2007 dataset, and one example image with two cats. 

Table 11 : classes found in the Pascal VOC 2007 dataset(M. Everingham et al. n.d.; n.d.; Mark Everingham et al. 2015), and 
one example image with two cats. 

(a) Classes (b) Example 

aeroplane  

 
 

Image 000019.jpg in the PASCAL VOC 2007 dataset (M. Everingham et al. n.d.; n.d.; 
Mark Everingham et al. 2015), the image contains two objects, both of category 

‘cat’, and the bounding boxes for each are given in a XML file corresponding to this 
image. On the right, we provide the original image. On the left, we draw 

(inaccurately) the bounding boxes for an illustrative purpose.  

bicycle 

bird 

boat 

bottle 

bus 

car 

cat 

chair 

cow 

diningtable 

dog 

horse 

motorbike 

person 

pottedplant 

sheep 

sofa 

train 

tvmonitor 

 

 

 In the case of Edge-Boxes, we do not train the algorithm, and we just keep the parameters by 

default, and with the amount of proposals set to 1000. Then, for localization benchmarking with Edge-

Boxes, we only use the training portion of the dataset26. Next, we must take into account that along 

the training-dataset there are images with several objects of different categories, and so we proceed 

as follows: 

 

 

 

 

 
26 For readers that are not familiar with the term « training dataset », we clarify that for training machine learning 
algorithms (e.g. with parameters that are learned), the dataset is typically split in three portions: firstly, the 
training dataset, which is used to learn the parameters (for instance, by means of an optimization algorithm). 
Secondly, the validation dataset, which is used to tune algorithm parameters that are not directly learned (e.g. 
the number of layers in a CNN, regularization parameters, the learning rate, etc.). Finally, there is the test dataset, 
which is used to characterize the performance of the already trained model with samples that haven’t been 
« seen » before.  
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6.1.1. Simulation Flow with EdgeTon 
 

  
 
 
 
 
 
 
 
 
 
 
 

  

Figure 53 : Diagram of simulation flow from dataset to final plots. The figure is divided in upper and bottom sections. The 
first one was computed in a cluster, with 10 jobs (available to run in parallel and scalable to more jobs) of 100 images each. 

The second (bottom) one corresponded to the post-processing made to generate the final plots. 

Fig. [simFlow]:  

Figure 53 shows the overall simulation flow from dataset to final plots. The simulation was 

made such that several metrics could be obtained: firstly, the IoU for localization. Secondly, variables 

showing (indirectly) the relative time and space complexity of Edge-Boxes when using different 

extractors. All stages show in previous figure, except for the Edge-Boxes source code (Dollar and Zitnick 

2015b), which was not changed, were coded in this work (on top of known libraries such as OpenCV, 

Numpy, Pandas, Matploblib, etc). All stages regarding the cluster (including the management of 

parallelization of batches of images) are a part of a bigger simulation scheme comprised in EdgeTon. 

The simulation is scalable to more jobs if desired, yet we arbitrarily chose 10 jobs, each containing 100 

images chosen each time randomly from the original dataset.  

Notice that EdgeTon runs in Python code, yet the source code for EdgeBoxes (Dollar and Zitnick 

2015b) is provided in C++ code. Since we did not want to change it, we took the source code, from 

which a main class for generating ROI proposals was defined. We instantiated this class inside another 

script for loading the parsed images from the .txt files and wrapping with the rest of the simulation 

(i.e. to output files in the desired path and format), and for counting the approximated runtime of 
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EdgeBoxes with C++ std::chrono library. In order to approximate the memory usage, we focused on 

obtaining two variables that we found to be most relevant for comparisons: the segment-affinities 

variable size, and the amount of segments clustered by Edge-Boxes. In order to access them, we 

modified the source code (Dollar and Zitnick 2015b) with functions that allow to output in a file the 

values of those variables during runtime. Then, we had to slightly change the source code, but such 

changes do not affect the behavior of Edge-Boxes, except for the overhead to write the output ROI 

proposals, runtime, segment-affinities size, number of segments, number of columns and number of 

rows per image.  

In next sections, we describe our simulation flow with more details. 

 

6.1.2. Edge extraction with a smart imager behavioral model 

 

For this stage, we use our framework EdgeTon to simulate an approximation of different smart imager 

architectures. Here, the overall input is an image from the dataset, and the output is the edge map 

containing magnitudes and orientations. The way those imagers are modeled is described in chapter 

3, where the idea is to model different kinds of oriented gradients (or edge-map) extractors for 

integrated/embedded smart imagers. The types of edge extractors we took into account are 

summarized below in Table 12. 

 

Table 12 : different types of light-intensity oriented gradient extractors types considered in our localization benchmark.  

Oriented Gradient 
extractor type 

Description Output to EdgeBoxes 
backend bit-depth 

Threshold type 

Linear (Digital) Uses kernels in Equation 17 and the 
digital model described in chapter 3. 

1 bit for magnitude 
2 bits for orientation 

Fixed (4-bit digital) 

Linear (Analog) Uses kernels in Equation 17 and the 
linear analog model described in chapter 
3. 

1 bit for magnitude 
2 bits for orientation 

Fixed (32 bit-analog) 

Relative Uses kernels in Equation 17 with 
dynamic range enhancement described 
in chapter 4, and the analog model 
described in chapter 3. 

1 bit for magnitude 
2 bits for orientation 

Light intensity 
dependent, with a 

fixed factor 

Logarithmic Uses logarithmic kernels as in (Omid-
Zohoor et al. 2018; Young et al. 2019), 
and is modeled as described in chapter 
3. 

1 bit for magnitude 
2 bits for orientation 

Light intensity 
dependent, with a 

fixed factor 

8-bit Sobel Uses the Sobel kernel as in Equation 16, 
and outputs 8-bit (ENOB) oriented edges 
in floating point representation map as 
described in chapter 3. 

8 bits (ENOB) for 
magnitude and 

orientation (32-bit float 
representation) 

Fixed (32-bits) 

 

Moreover, for each extractor type we take into consideration two variants, namely if a blur 

kernel is applied before the intensity derivative (or gradient) extraction (with one from previous table), 

or no blur-step at all. In addition, we study the effect of 2x2 binning for an illustrative purpose.  Once 

the output is obtained, it is passed to next stage: Edge-Boxes. One important aspect is that each 

extractor type has one parameter that we did not fixed, but that we optimized from simulations: the 

threshold. Indeed, whether it is constant, or proportional (factor) to a local average (for logarithmic 

and relative types), we did not have any particular design criteria to choose them. Then, we performed 

a parameter sweep for each architecture and chose a specific threshold (factor) to report our results. 
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In order to do so, we obtain the localization performance for all extractor types and several variants 

(regarding blur kernel and binning). We obtained results for several thresholds (factors) values and for 

10 jobs (iterations). Each iteration could give different values of the optimal threshold, since they used 

different sub-sets of 100 images. Then, we chose the threshold that repeated the most from all jobs. 

Next, for reporting benchmark results, we only use the threshold that was chosen, regardless if it was 

optimal or not for any particular job.  

 

6.1.3. Localization with Edge-Boxes 
 

 We now feed the edges-maps from previous section to a compiled binary containing the source 

code for Edge-Boxes from (Dollar and Zitnick 2015b), and some wrapping code. For each image, the 

corresponding edge map is loaded. Since quantization was already taken into account, the pixel values 

(both for gradient and magnitude) can be converted to floating point or integer C++ types and 

quantization is still preserved. This is analogue to saying that the smart imager output has been passed 

to a dedicated computed hardware running on 32-bit floating point resolution.  

The localization stage output a file per image, containing 1000 ROI proposals coordinates and 

their associated objectness scores. Moreover, another file (one per job) contains the computational 

complexity required for those 1000 ROI proposals: the runtime for each image, the size (in number of 

elements) of the segments-affinities variable, the number of segments clustered by Edge-Boxes, and 

the number of columns and rows for each image for normalization (so the runtime and memory 

estimation do not depend on image resolution).  

 

6.1.4. Intersection over union metrics calculation 
 

 We already introduced the IoU as a metric for characterizing performance for object 

localization. Now, we go deeper into how we used it in conjunction with the Pascal VOC 2007 dataset. 

Notice that IoU simply gives a relation between a single ROI proposal and a single object ground-truth-

box. However, there are 1000 ROI proposals per image, potentially several objects per image, and 20 

different classes of objects. One problem we faced is that a single object in the image can be 

“proposed” several times with different boxes from Edge-Boxes. This can happen because the 

algorithm distributes hypothetical boxes of different sizes and aspect ratios along the image, and it is 

possible that two near boxes (that were similar enough) both score high in objectness. Then, one 

question rises: which of all of those potential boxes do we take for calculating the IoU with the ground-

truth-box? In this work, we took as reference the “best IoU” or BIoU, which we will further develop in 

next paragraph. 

 For BIoU calculation of a single object of a single image, we considered boxes that had an IoU 

equal or greater than 0.5, called 𝑅𝑝𝑘 , with a particular ground-truth-box 𝑅𝑔. Then we selected, among 

those 𝑅𝑝𝑘, the one with the best IoU score, noted 𝑅𝑝𝑧 . In other words 𝑅𝑝𝑧  verifies 𝐼𝑜𝑈(𝑅𝑝𝑧, 𝑅𝑔) >

𝐼𝑜𝑈(𝑅𝑝𝑘 , 𝑅𝑔) , 𝑅𝑝𝑘 ≠ 𝑅𝑝𝑧. Rejected 𝑅𝑝𝑘 are considered as false positive. Another interesting case is if 

there is no ROI proposal 𝑅𝑝 such that (𝑅𝑝, 𝑅𝑔) ≥ 0,5 , in which case 𝑅𝑔 was counted as a “false 

negative”. Thus, for every 𝑅𝑔 , 4 pieces of information are returned: a specific bounding box 𝑅𝑝, a 

related IoU score (BIoU) (it could be zero in case of no overlapping), a number of false positives and a 

number of false negatives. The performance of object localization can thus be assessed independently 
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of the classifier, by assuming that the best chance that the algorithm (classifier) had of classifying 

properly the object inside the proposal, was for the 𝑅𝑝 related to the BIoU.   

 Another relevant aspect is that, after processing all images, our metrics tool is able to calculate 

a metric per class. Indeed, even though the localization with Edge-Boxes is class agnostic, there was a 

change that some types of objects could score higher in objectness respect to others. Another reason 

for spreading performance results into classes is to avoid biasing results if the dataset is “unbalanced”: 

if there are much more samples of one class respect to another, then the average along one class will 

have a greater impact on the final performance score27. For instance, suppose we have a dataset with 

only persons and pets, and which contains 1000 samples of persons and 10 samples of pets. Then, 

assume that the average best IoU, referred to as ABIoU, for all persons was 0,5 and 0.1 for pets. The 

global average is: 

 

𝐴𝐵𝐼𝑜𝑈(𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠) =
0,5 ∗ 1000 + 0,1 ∗ 10

10 + 1000
= 0,49604 

 

 The last calculation reflects that even though the performance for pets localization was very 

bad (0,1), the ABIoU for all classes was minimally impacted. In order to have a global metric 

independent of the class sizes, we take first the ABIoU for all samples of the same class, then, the global 

ABIoU is the average of the averages per class. Coming back to the case of the hypothetical persons 

and pets dataset, we would have: 

 

𝐴𝐵𝐼𝑜𝑈(𝑝𝑒𝑟𝑠𝑜𝑛𝑠) = 0,5 

𝐴𝐵𝐼𝑜𝑈(𝑝𝑒𝑡𝑠) = 0,1 

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 2 

𝑔𝑙𝑜𝑏𝑎𝑙 𝐴𝐵𝐼𝑜𝑈 =
∑𝐴𝐵𝐼𝑜𝑈𝑖

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠
=

0,5 + 0,1

2
= 0,3 

Equation 53 

 In last calculation, we can observe that now the fact that pets were badly localized is better 

reflected. In our benchmarks, we use the global ABIoU as metric for each behavioral model.  

 

6.2. Benchmarks 
 

6.2.1 Global ABIoU along jobs for each architecture 

 
 Our benchmark is illustrated in Figure 54 with a bar plot summarizing results for the average 

(along jobs) global ABIoU for several edge extraction variants. Figure 54 presents the average global 

ABIoU obtained with 10 jobs, each job processing 100 randomly selected images. Bar labels indicate 

 
27 Notice that our objective with the tool we developed was to use and charaterize (fastly) other datasets aside 
from Pascal VOC 2007 in future works. 
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the edge extractor type and variants (BINN refers to 4x4 binning). The red bars indicate the Average 

ABIoU for each (notice the range in the x axis not starting at zero), and the black lines indicate the 

standard deviation along the 10 jobs. 

 

Figure 54 : average global ABIoU obtained with 10 jobs. 

Fig. [abiouAlljobs]:  

In addition, in Table 13, we summarize the selected thresholds for each architecture (with the 

method mentioned previously): 
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Table 13 : selected thresholds values issued from simulation (selected as described in chapter 3). 

archName selectedThres 

analogOrigrad_averageBlur 30 

analogOrigrad_gaussianBlur 30 

analogOrigrad_noBlur 30 

digitalOrigrad_averageBlur 30 

digitalOrigrad_gaussianBlur 30 

digitalOrigrad_noBlur 30 

relativeOrigrad_averageBlur 0,3 

relativeOrigrad_averageBlur_withBinning 0,3 

relativeOrigrad_gaussianBlur 0,3 

relativeOrigrad_noBlur 0,3 

relativeOrigrad_noBlur_withBinning 0,6 

logHog_averageBlur 1,8 

logHog_averageBlur_withBinning 1,8 

logHog_gaussianBlur 1,8 

logHog_noBlur 1,8 

logHog_noBlur_withBinning 1,8 

highResOrigrad_gaussianBlur_sobelGradient 50 

highResOrigrad_noBlur_sobelGradient 60 
 

 From Figure 54, we observe that, for all architectures, the global ABIoU (from here, we call it 

simply the ABIoU) was higher than 0.5, which is typically the minimum expected for “sufficient” ROI 

proposal (Zitnick and Dollár 2014). Yet, (Zitnick and Dollár 2014) suggests that this values may not be 

good enough, and proposes targeting higher IoUs. For instance, they (Zitnick and Dollár 2014) targeted 

IoUs of 0.5, 0.7 and 0.9 (which can be tunned with Edge-Boxes parameters). In this work, we take 

intermediate values from ~0.5-0.7 as target for Edge (Boxes parameters and we hypothesize without 

further demonstration that this is good enough for embedded applications. Of course, we observe the 

impact of gradients quantization falling down from 0.7 especially for the linear and logarithmic cases. 

We also observe that best performances come from the 8-bit Sobel case and the relative gradients. 

ROI proposals can face “difficult cases”, due to small, partially-occluded, or surrounded by fine-

textures objects (such as grass). An image example is given on Figure 55 (a). The resulting Edge map 

and ROI proposal are on Figure 55 (b): the first two architectures give good proposals for one person 

and the horse, whereas they missed the second person that is partially occluded. In this case, the 

relative pre-processing failed to give a good proposal for both persons and only gave a good one for 

the horse.  
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(a) 

 
 

(b) 
8-bit Sobel Linear (Analog) Relative  

   
   

 

Figure 55 : example of an input image from PASCAL VOC2007 dataset (M. Everingham et al. n.d.; n.d.; Mark Everingham et 
al. 2015), and corresponding representations of the oriented edges map outputs from three different edge-extractors. The 
gray/red boxes represent the best ROI proposals after running Edge-Boxes on the edges-maps. Green means that the object 
was correctly including in the ROI, while red means that the object was not found (e.g. all ROIs where such that their IoU < 
0.5). 

 We now focus in answering four key questions:  

1. Is the average blur necessary or critical? 

2. What is the impact of a 4x4 pixels binning? 

3. Could an analog edge extractor have better performance than a similar complexity digital 

one? 

4. What is the performance of the best possible analog extractor in comparison with a digital 

architecture running with 8-bit depth computations? 
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In the next paragraphs we will cover those questions from the point of view of ABIoU, memory 

and runtime. Finally, we will provide a FOM for estimating the optimal architecture in terms of those 

three metrics.  

 

Blur vs. no blur impact on ABIoU 

 Figure 56 shows that, for most of the cases, the average blur improved the ABIoU. For readers 

that are not familiar with this kind of plot (box plot (“Box Plot” 2021)), the rectangles englobe the 

percentiles 25, the vertical smaller bars englobe the percentile 50, and values outside are represented 

with dots (considered as outliers). The red bar indicates the median value. Logarithmic gradients gave 

a lower performance respect to the relative ones, one reason could be a deteriorated angular 

approximation from the logarithmic gradient components. Indeed, during our experiments, we 

observed that edge maps for logarithmic gradient contained low occurrences of 45° and 135° edge 

orientations. The majority of detected edge-angles were 0 degrees (Gx = 1 or -1, Gy = 0) or 90 degrees 

(Gx = 0, Gy = 1 or -1). Thus, we think that this makes harder for Edge-Boxes to link different edges into 

segments and different segments into connected contours. We observed that, except for the case of 

logarithmic gradients, the average filter (blur) positively affects the ABIoU. Our explanation of why this 

happens (for the increasing cases), is that the blur step reduces (statistically speaking) the amount of 

false edges, which makes it easier for Edge-Boxes to generate meaningful segments and connected 

contours. In the case of the logarithmic gradients, this reduction may be too drastic, having then a 

negative impact. 

 

Figure 56 : global average best IoU comparison for architectures using and not using de-noising. 
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Binning vs. no binning impact on ABIoU 

From Figure 57 we observed that binning has different impacts on relative and logarithmic 

gradients. Binning consistently improves the performance for logarithmic gradients, whereas the 

average denoising tends to have a negative impact. For relative gradients, both Binning and denoising 

have a positive impact. However, the best case scenario for relative gradients was when only the 

average denoising is applied. Our explanation of why the logarithmic gradients benefit of binning (in 

the contrary with relative gradients) is that Binning has two different impacts on the image. On one 

side, it reduces the amount of false edges, and the 2x2 averaging contributes in reducing false edges 

(yet it can give place to bounding effects since the averaging zones do not overlap). On the other side, 

it reduces the image resolution, thus neglecting small details which could have been used to recover 

the overall contour topology of any object. The first impact is positive, and the second is negative. We 

then think that the noise reduction due to binning is beneficial for logarithmic gradients in terms of 

the ABIoU. Notice that for the case of relative gradients, if the average blur is applied then binning 

decreased slightly the performance, meaning that in that case the noise reduction due to binning was 

less important than details lost due to the loss in image resolution. 

 

Figure 57 : global average best IoU comparison for architectures using and not using 2x2 binning. 

 

 

Relative vs 4-bit linear gradients 

Figure 58 shows results when comparing relative and simple linear gradients. As explained in 

chapter 3, relative gradients were calculated as follows: firstly, 8-bit input images were pre-processed 

in floating point resolution. Then, a first quantization to 4 bits (ENOB) was introduced, as described in 

chapter 3, before the final quantization to 3 bit edge maps was obtained. For the case of linear-analog 
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gradients, the same was performed, but with equation related to the simple linear edge-extractor. For 

the case of the linear-digital edge-extractor, the 8-bit image was first quantized into 4 bits, and then 

all operations until right before generating the 3-bit edge map are done in 4 bits. We observe from 

Figure 57 that relative gradients have a tendency towards greater values when an average blur is 

applied. Nevertheless, it is expected that there is no exceptional enhancement respect to linear 

gradients, since the PASCAL VOC 2007 dataset is not particularly made for testing high dynamic range 

image with very different illumination conditions along the same image.  

 

Figure 58 : global average best IoU comparison for architectures using relative and simple linear gradients (4 ENOB). 

 

Relative vs 8-bit linear gradients 

 As a recall, 8-bit-linear gradients were calculated as follows: they were calculated similarly to 

the simple linear analog edge-extractor, with the difference that the Sobel kernel was used for the 

derivative. Moreover, right before generating the 3-bit edge map, a quantization noise with an ENOB 

of 8 bits was introduced instead of 4 bits (as explained in chapter 3). In Figure 59, we observed that 

the effect of the average filter (blur) was more important when the number of bits was lower (like for 

the relative case). However, when the average blur was applied, the performance of the relative 

gradients was as good as the equivalent 8-bit-Sobel architecture.  
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Figure 59 : global average best IoU comparison for architectures using relative and simple linear gradients (4 ENOB). 

 

6.2.2 Memory estimation 
 

After our analysis in chapter 4, we found that (theoretically) the affinities variable is the one 

consuming the most memory during Edge-Boxes runtime. Moreover, after Edge-Boxes decortication, 

we observed the possibility that the size of this variable is correlated with the amount of segments 

clustered during the first Edge-Boxes phase. Recall that such segments are generated due to contours 

that appear to be disconnected after the edge extraction, and thus they can be related (as a contour 

as a whole) throughout the affinities variable only. Ideally, those disconnected contours should not 

appear, and thus we can say that the edge extractor quality is somehow linked to the amount of 

segments that are clustered. Nevertheless, staying that the lesser the amount of segments, the better 

the edge extractor, would be also false. For instance, when using an arbitrarily high threshold (or 

factor) for the magnitude, no edge or segment would be detected, but neither will be any object in the 

image. Another important point is that the affinities variable grows during runtime, as the number of 

segments is unknown previously to the clustering. Then, this is why it was difficult to have a better 

estimation (not based in a worst case) in our previous analysis in chapter 4.  
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Figure 60 : normalized affinities variable size as a function of the normalized number of egde-clusters (segments) for 
different architectures. All plots show a positive correlation between the two variables. 
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 In Figure 60, we observe that there is a clear positive correlation between the normalized 

affinities-variable-size and the normalized-number-of-segments. Remember that we normalized to the 

number of pixels to eliminate the dependency upon pixels amount. 

 

Blur vs. no blur impact on memory (segment affinities variable size) 

 In Figure 61, we plot the average of all normalized affinities sizes along each batch of 100 

images, and then we average again along the 10 jobs. For the considered architectures, we clearly 

observe a positive impact of the average blur in reducing the size of the affinities variable.  

 

 

Figure 61 : affinities-variable-size comparison for architectures using and not using de-noising. 

 

Binning vs. no binning impact on memory (segment affinities variable size) 

 In Figure 62, we observed that, with respect to edge-extractors without an average blur, 

binning significantly reduced the segments affinities variable size. Moreover, the combination of 

average blur and binning did not improve significantly (or even increased memory slightly) compared 

to only binning. Binning alone gives a significant boost for memory, and the averge blur improved it as 

well. Nevertheless, denoising and binning at the same time gives slightly poorer results when 

compared with denoising alone. Recall, however, that improving (reducing) memory by means of 

binning/de-noising could be at the expense of decreasing the ABIoU (performance in localization).  
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Figure 62 : affinities-variable-size comparison for architectures using and not using 2x2 binning. 

 

Relative vs 4-bit linear gradients 

 We observe that the memory performance for the architectures in Figure 63 is rather similar 

for those that did not use a blur step, and for those that use a specific type of blur. For this case, the 

only point to take into account is that for significant memory reduction either binning of a blur step is 

needed.  
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Figure 63 : affinities-variable-size comparison for architectures using relative and simple linear gradients (4 ENOB). 

 

Relative vs 8-bit linear gradients 

 As in cases before, Figure 64 shows that memory performance for Edge-Boxes execution is 

similar for ENOBS before edge map generation of 4 and 8 bits, if an average blur is applied before 

gradients extraction. In this benchmark, the best performance was the relative gradients with an 

average blur, even surpassing the 8-bit-ENOB case.  
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Figure 64 : affinities-variable-size comparison for architectures using relative linear gradients (8 ENOB). 

 

 So far in this subsection we have shown mostly qualitative tendencies regarding dynamic 

memory requirements, and with through an estimation of the affinities-variable size. Now, we go into 

a more qualitative analysis, and for which we recall the reader an unsolved problem mentioned in 

chapter 4: indeed, we tried to estimate the total memory required for running Edge-Boxes. 

Nevertheless, some variables grow in runtime since the number of segments is not known before the 

program execution. Then, for a preliminary estimation, we hypothesized a worst-case number of 

segments, equal to the maximum number that can be represented by a non-signed integer data type 

of 16 bits. Nevertheless, we obtained the average number of segments along all images and jobs 

(normalized to the image-size) for each architecture and threshold combination. This number 

corresponds to a coefficient that, once multiplied by the image-size, provides an overall estimation of 

the number of segments detected by Edge-Boxes. Once we have this number of segments, we can 

modify it in our estimation from chapter 4. As an example, we present in table # the coefficients we 

found for the relative oriented gradients (with average blur and with binning): 
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Table 14 : norm-number-of segments, norm-segAffSize, and global-ABIoU for the Relative Origrad with avr. de-noising and 
binning. 

Threshold No. of segments (norm) segAffSize (norm) Global-ABIou 

0.3 0.01620484263724415 0.05186999892981794 0.6948367046975842 

0.4 0.012804822681744824 0.03586742498866486 0.6904189331054339 

0.5 0.010263935545649961 0.02554154369488491 0.6854328357236822 

0.6 0.008351933262945569 0.018695970491177476 0.6737017146185899 

0.7 0.006862945858983502 0.013993912559256309 0.6672997980522251 

0.8 0.005691222468060574 0.010638890556151607 0.6550939843676324 

0.9 0.004759960442535616 0.008248585213333473 0.6434149945568532 

1.0 0.004029531099946791 0.006536805260365127 0.6285615565304473 

1.2 0.002953513479478474 0.0042213371827614764 0.6030951228860276 

 

In Table 14 we present coefficient allowing estimating the overall number of segments and 

affinities-variable-size after multiplying them by the image size. For instance, for a 500 x 500 resolution, 

which we took into account for memory approximation in chapter 4. The overall expected amount of 

segments is 0,01620484263724415 ∗  500 ∗ 500 ≈ 4051,51 segments. Notice that for the worst-

case we used segments as 216 = 65536, which is 
65536

4051,51
≈ 16 times bigger than the 

empiric/experimental average value. Moreover, when repeating the exercise from chapter 4, where 

we approximated the optimal behavior of the C++ compiler, and in order to approximate the memory 

usage. We obtained an experimental/empiric peak memory of ~5,2 Mbytes (or ~5,52 Mbytes if we just 

add the memory requirements for all variables, without trying to simulate the compiler), instead of the 

~50 Mbytes related to the worst-case. We also took into account that the input size memory drops to 

3 bits times the image size, since we use relative oriented gradients in this example. 

The conclusion from this section, is that Edge-Boxes could run on an embedded device having 

around 5,2 Mbytes of available memory for ROIs generation. Moreover, the pipeline of using Edge-

Boxes with strongly quantized oriented gradients is compatible with several architectures, including 

our relative-oriented-gradients architecture (presented in chapter 5), as well as other in the state of 

the art (such as logarithmic gradients from (Young et al. 2019). We have presented the impact of two 

key pre-processing stages, namely binning and de-noising. In general, either binning or de-noising 

improve the memory usage for our relative-oriented-gradients, where the best performance comes 

with both combined.  

 

6.2.3 Runtime estimation 
 

In addition, aside from the memory dependence upon the number of segments, we observed 

that there might be also a link between the runtime (per image and per pixel), the number of segments, 

and with the affinities size variable. Indeed the more the number of segments, the longer will be the 

time for scoring each box. As a result, plots for the runtime estimations have the same tendencies as 

for the affinities variables size.  We show the respective benchmark plots below: 
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Figure 65 : normalized-runtime comparison for architectures using and not using de-noising. 

 

 

Figure 66 : normalized-runtime comparison for architectures using and not using 2x2 binning. 
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Figure 67 : normalized-runtime comparison for architectures using relative and simple linear gradients (4 ENOB). 
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Figure 68 : normalized-runtime comparison for architectures using relative and 8-bit linear gradients. 

  

 In this work, we do not try to specifically approximate the runtime of Edge-Boxes, and we only 

show the difference of running the algorithms with different pre-processing types, and simulated on 

the same desktop/server machine. Exact runtime values are not so meaningful, and only the relative 

improvement from one pre-processing to another is useful for design/optimization purposes. The 

reason is that the runtime depends on the specifics of the system (hardware, and software) into which 

the algorithm is running. We understand as well that even the shapes/values of plots regarding 

runtime could vary when changing, for instance, the source-code, the operating system, and the 

hardware architecture. Thus, runtime-plots are to be considered as only preliminary, and conclusions 

driven for them are to be taken with caution. That said, we observed that there is a notable positive 

impact in runtime when using de-noising and/or binning, where the best performance is when both 

are combined.  

 

6.3. Empiric Figure of Merit 
 

Given that we have three different metrics to characterize (behaviorally) the smart imager 

system, we then wondered if we could use an empiric figure of merit to jointly characterize each edge 

extractor type. We thought that the most intuitive way was to take the ratio between the ABIoU and 

the memory times the runtime (both normalized). However, to improve the range of values, and to 

give more importance to the ABIoU, we modified it as follows: 
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𝐹𝑂𝑀 = log(
𝐴𝐵𝐼𝑜𝑈10

𝑛𝑜𝑟𝑚𝑅𝑢𝑛𝑡𝑖𝑚𝑒 ∗ 𝑛𝑜𝑟𝑚𝑆𝑒𝑔𝐴𝑓𝑓𝑆𝑖𝑧𝑒
) 

Equation 54 

 

Figure 69 : Figure of merit for different architectures at selected thresholds (from table []). 

 

 In Figure 69, we observe that the best FOM was for the logarithmic architecture, with an 

average blur kernel and with binning. However, this architecture also had one of the worst ABIoU. That 

is why we observed that even though we used an exponent of 10 for the ABIoU in the FOM, yet the 

equation makes the impact of the normalized segments affinity size and the normalized runtime more 

important. This also raised the question that, in the case that this FOM was accepted since memory 

and runtime are the most important parameters, then one could change the initial strategy for 

threshold selection before in the chapter, since it was based uniquely on ABIoU performance. That is 

illustrated in Figure 70. 
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(a) 

 

(b) 

 

Figure 70 : Global ABIoU dependance upon the gradiend threshold for different architectures. 

 

In Figure 70 (a) and (b) we observe the ABIoU tendency for different relative and log 

architectures when varying the threshold value (log cases) or the threshold gain (relative cases). As 

expected, and systematically, the ABIoU reduces when increasing the threshold, since a lower amount 
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of edges is detected and more disconnected contours appear. Now, we can observe what happens 

with the FOM when we increase the threshold: 

 

Figure 71 : figure of merit as a function of the relative/log threshold for different architectures. 

 

 In Figure 71, we observe that the FOM systematically increases (except cases in which the 

relative/log threshold is so high that it starts significantly diminishing the performance), reflecting thus 

the impact of runtime and memory reduction, but does not reflect (clearly enough) the diminishing on 

the ABIoU. To circumvent this issue, we finally decided to plot the FoM versus the ABIoU: 
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Figure 72 : dependance of the figure of merit upong the ABIoU for different architectures (both quantities are parametric 
funcitons of the architecture thresholds). 

 

 In Figure 72, we plotted the FOM when varying the ABIoU (being the threshold factor the 

hidden parameter). Then, we can “draw” an imaginary vertical line representing a desired ABIoU, and 

for this ABIoU we then have the corresponding FOM for each architecture. From this plot we observed 

that not all architectures (at least in the parameter sweep we did28) achieve the maximum ABIoU.  

 

6.4. Conclusions of chapter 6 

 

In this chapter, we presented our scalable simulation scheme. In addition, we provided 

benchmarks for system performance in terms if IoU, memory usage through affinities-variable-size, 

and runtime estimation. We proposed a way of choosing each architecture threshold for benchmarking 

based on the ABIoU. Benchmarks illustrated as box plots allow a first estimation of memory usage and 

relative time complexity in comparison to other edge-extractors (in correlation with corresponding 

ABIoUs). Moreover, we proposed a FOM based on those three variables, and we studied it in order to 

to give it a proper interpretation. We plot the FOM vs. the ABIoU when the architecture threshold is 

varying. Then, we draw an imaginary vertical line representing a constant (desired) ABIoU. Thus, each 

 
28 It is possible that, for example, the logarithmic gradients could achieve a higher ABIoU, which, based on the 
figure of ABIoU vs. threshold factor, would mean decreasing the threshold factor. That, however, could lead to 
higher memory and runtime needs. Such case scenario could be analyzed if found relevant in further works. 
Notice as well that for the case of logarithmic gradients, we did a factor sweep around the value 2, recommended 
by the original authors (Omid-Zohoor et al. 2018; Young et al. 2019). 
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intersection with the vertical line with each architecture curve gives the FOM. The upmost architecture 

corresponds to the best architecture, corresponding (for the parameter sweep we made) to the 

relative variant of our model, with an average blur before edge extraction, and with a 4x4 pixel binning.  

Indeed, since the output from the edge-extractor is aggressively quantized, one reasonable 

question is if Edge-Boxes could also exploit such quantization to reduce the bit-depth during 

computations. We think that this could be possible, but we let this question for further works.  
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Chapter 7. Dynamic Vision Pre-processing 
 

 In last chapters, we have discussed about classic or frame-based approaches for object 

detection. However, there is a specific motivation to assess the viability of OD with neuromorphic or 

dynamic-sensing imagers. Indeed (Gori 2018) mentions that solutions for OD based on single static 

frames is far from how nature copes with this challenge. Specifically, living beings seem to benefit from 

motion information as well. That’s the reason why they say that using both static and dynamic 

information could make OD an easier problem to solve. In this chapter, we will explore such idea. 
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7.1. Event-base data for object detection 
 

 One possible way to use dynamic sensors for OD is to use their inherent motion detection to 
obtain set of region proposals like done by (Acharya, Padala, and Basu 2019). Their mechanism aims 
at spotting regions containing clusters of events potentially containing an object, as shown in figure 
Figure 73. 

 
Figure 73 : example of regions proposals generated in (b) from (a) (Acharya, Padala, and Basu 2019). 

 
Moreover, examples like (Deng, Li, and Chen 2020; Deng, Chen, and Li 2021) show that 

classification tasks are also possible with dynamic data codified as asynchronous spikes. In addition, in 

they work, they propose generating frames (or more complex data-structures similar to frames) from 

the asynchronous event-streams, and then use more conventional, frame-based learning approaches. 

Another way of using machine-learning with events, and which could exploit the asynchronous events-

behavior, is by using a family of approaches called Spiking Neural Networks (SNNs). For instance, 

(Lamba and Lamba 2019) present a comparison between CNNs and SNNs for handwritten-digit 

classification. However, as mentioned by (Barchid, Mennesson, and Djeraba 2021), SNNs algorithms 

are not as mature as FB counterparts, and so it is not clear for us how to use SNNs for multi-class and 

multi-scale object detection, and at the same time exploiting neuromorphic (event-based) imaging-

systems. Indeed, (Barchid, Mennesson, and Djeraba 2021) show an example of SNNs performing 

single-object detection, but their work is, from our perspective, still only a prove of concept which has 

to be further studied at algorithm level.   In addition, (S. Kim et al. 2019) showed that SNNs can indeed 

accomplish complex tasks beyond classification, such as OD. They (S. Kim et al. 2019) used a way of 

converting deep neural networks to spiking neural networks and attained good performance for OD. 

Nevertheless, they used the PASCAL VOC dataset (Mark Everingham et al. 2015), which is frame-based, 

and then it is not obvious for us how to map this technique to neuromorphic imaging systems. Because 

of the reasons mentioned in this paragraph, we think that, at the time of the present work, algorithms 

for OD (with supervised learning techniques) are not mature enough when using neuromorphic 

(spiking-based or event-based) algorithms. However, neuromorphic image-systems are still interesting 

in this work since they allow obtaining dynamic data in the image directly, which could allow, for 

instance, exploiting such dynamic information for attention-based mechanisms for more efficient ROI 

proposals generation. In next paragraph, we start covering the state of the art for the so-called 

Dynamic Vision Sensors (DVS).   

There are several imager variations trying to recover dynamic information. Such sensors 

typically correspond to the DVS family as they share several features: firstly, “scene-motion” is 
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captured by detecting temporal light-intensity variations for every pixel. Secondly, the sensing of those 

changes happens at pixel level. Thirdly, the way for communicating those changes (namely events) is 

as spikes, from which the system recovers specific information (pixel address, time stamp, and 

polarity29). Finally, the DVS scheme abandons (although the asynchronous read-out is not mandatory, 

as implemented by (Li et al. 2019)) the routine of sequential-synchronous-photo-integration plus read-

out, for a spike-asynchronous-read-out. This asynchronous read-out of incoming events, codified as 

spikes, is managed by a dedicated digital-circuitry called the arbiter. 

Regarding last paragraph, one interesting question is why the DVS scheme could be more 

interesting that just subtracting image frames. Firstly, the event-based approach, where only pixels 

detecting events send a spike, allows saving data-throughput from regions where nothing is 

happening. Secondly, the combination of in-pixel event-detection, plus asynchronous reading allows 

outstanding low event-detection latencies (in the order to tens of us (Lichtsteiner, Posch, and Delbruck 

2008; Berner et al. 2013)). Finally, DVS pixels have been shown to achieve temporal contrast 

sensitivities for instance between 1% (Yang, Liu, and Delbruck 2015) and 0.3 % (Delbruck and Berner 

2010) . The temporal contrast (TC) of a dynamic vision sensor is the threshold at which the pixel 

“detects a change” and sends a spike (Posch et al. 2014). Such change is typically described as the 

relation between the light intensity changing respect to the last spiking time, and the light intensity 

changing also at the last spiking time (Posch et al. 2014). However, for us, it is not clear if a more 

sensitive TC is essential for OD. Nevertheless, achieving the aforementioned features by subtracting 

frames (in an embedded and frame based manner) implies somehow buffering images, and subtracting 

them at an elevated frame-rate for a later comparison with a threshold (where this threshold can vary 

for each pixel alone depending on the intensity at the local last event). For instance, considering the 

15 µs spike latency reported by (Lichtsteiner, Posch, and Delbruck 2008), the equivalent frame rate for 

achieving a similar latency would be of (15 µ𝑠)
−1

 ~ 66.7 𝑘𝑓𝑝𝑠. In addition, subtracting images one 

after the other is not enough since events can be related to changes slower than the frame rate (an 

event at time 𝑇𝑖 can depend on light intensity at time 𝑇𝑖−2, if we imagine a fine-grained discretization 

of the continuous time-line, with time steps30 Δ𝑇 = 𝑇𝑖 − 𝑇𝑖−1). Thus, there has to be added logic for 

handling pixel-values-updating in the previous buffered-image. Finally, the subtraction should happen 

at a SNR or bit-resolution (depending on the implementation being analog or digital) sufficient for the 

required contrast sensitivity or temporal contrast TC. Those constraints do not make obvious for us 

the implementation of a low power imaging device with a classic frame-based approach. 

  In this chapter, we try to assess if a DVS sensor could improve the OD pipeline we have studied 

so far. We preferred to have an imager that does not rely specifically on SNNs, since they are still young 

research topic, whereas Convolutional Neural Networks or Support Vector Machines are extensively 

proven to work for frame-based OD. Moreover, another solution could be collecting events during a 

period and then performing classic, FB based OD on this output, but then this seems more like a FB 

type of processing, and it is not clear for us why to use a DVS in such case. In addition, the in-pixel read-

out significantly degrades the fill factor, while the asynchronous read-out imposes a complicated read-

out scheme. Thirdly, the event data-throughput, measured in events per second (e/s), can easily 

increase not only due to motion along the scene, but also because of photonic-noise, illumination 

changes, shadows and texture-artifacts, making the power saving or the OD not that efficient. In fourth 

place, the stream of events, if coming from different occluded objects, has to be somehow segmented 

 
29 The polarity is a Boolean value indicating whether the light intensity derivative is positive of negative.  
30 That is, indeed, the strategy we adopted for simulating this kind of neuromorphic imaging-systems. 
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for each particular object (if not, then it would be more difficult to know how each object is moving). 

Finally, the last question is how to perform OD if the scene is (sometimes) static. 

 Our strategy for coping with the complications mentioned above was the following: we 

proposed a simulation scheme with synthetic datasets. From our simulations, we expect to see if we 

can improve one specific problem: the high event data throughput, because, from our point of view, it 

was critic for reducing redundancies and the corresponding power consumption. Then, we try to create 

a Frame Based imager that efficiently “emulates” part of the behavior of the DVS, so the emulated 

dynamic vision part will make the FB one more efficient and fast regarding the object localization task. 

 

7.2. Synthetic dataset generation  
 

As mentioned in chapter 3, our preferred strategy for behavioral DVS simulations was using 

synthetic datasets at a high frame rate (~ 1 kfps or more). The reason why we had to create our 

datasets is that we wanted to evaluate the impact of changing the system at pre-processing level (pixel 

level, or at bottom-column). Moreover, we wanted to evaluate specific points, all at the same time, 

that were hard to attain in datasets in the state of the art. For instance, at the same time that we 

wanted to simulate changes at pixel or column-bottom level, we also wanted to evaluate the behavior 

of different edge extractors (and Edge-Boxes) when objects are of different size, when shadows are 

present, when lighting conditions around the image differ significantly, and when there are both 

moving and static objects. Also, we wanted to start from rather simplistic datasets which could allow 

to drive simpler and preliminary conclusions, instead of using real-life video-datasets from which, 

potentially, observations would be harder to interpret. Then, for approaching as much as possible to 

the real behavior, we preferred using a simulator taking into account light phenomena on a custom 

scene. For such purpose, we hypothesize that each frame represents the instantaneous photocurrent 

generated at each pixel. In this section, we focus on how we generated the two datasets we used in 

this work.  
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7.2.1. Polygon dataset 
 

 
 

 

Figure 74 : our animation setup for generating our first synthetic dataset. 

Fig. [polygonSimulation]:  
 The simulation setup in Blender is shown in Figure 74. It corresponds to a cylinder that is 

rotating around its main axis, a camera capturing only the top view, and a light source. As mentioned 

in our previous publication (Cubero et al. 2020), we rendered 1000 frames for a 37-degree rotation of 

the cylinder along the Z axis. In Blender, we configured the amount of frames and the motion, but the 

frame rate can be chosen arbitrarily. For our case, the fps can be derived by considering a hypothetic 

event read latency (which dictates the time resolution of the simulation, and that is why we relate it 

with the frame rate for simulation purposes). In our paper (Cubero et al. 2020), we used 15 𝜇𝑠, inspired 

by (Lichtsteiner, Posch, and Delbruck 2008). Then, the fps is the inverse of the time resolution, giving 

approximately 66,7 kilo-frames per second, which gives to our cylinder a rotating speed equivalent to 

that of a car-wheel, with 0,5 m diameter, going forward at ~77,5 km/h. In addition, for rendering the 

video sequence, we used the Cycles renderer, and contrast threshold of 3 %, which was an arbitrary 

yet illustrative value chosen to be in the range of reported values from (Lichtsteiner, Posch, and 

Delbruck 2008) and (Berner et al. 2013). One example of a rendered frame from the setup presented 

in Figure 74 is presented in the Figure 75.  

 

 

 

 

 

Light source 

Camera 

Background plane 



 132 

 
Figure 75 : example of a rendered image from the video sequence generated with the simulation setup from Figure 74 

(Cubero et al. 2020). 

 
One interesting experiment was to observe the resulting light-intensity curve evolution in time 

for one particular pixel. In the figure below, that is what we present for two particular pixel positions: 

one pixel was closer to the center and it corresponded to a smoother (lower gradient) curve. The 

second one was closer to the polygon perimeter, and it corresponded to a higher gradient curve. Both 

pixels where in the same radial line and their values were taken during the same period of time.  

 
 

Figure 76 : light intensity evolution for two pixels when a color-edge is passing through. The gray plot corresponds to a 
pixel far away from the polygon center, whereas the red one corresponds to a pixel closer to the center (Cubero et al. 

2020). 

Fig. [pixelevolution] 
From Figure 76, we observe that we arrive to generate a light-intensity curve at high frame 

rate. This kind of curve is the one that will be used to approximate the events for each pixel. Notice 

also that the pixel that is closer to the perimeter corresponds not only to a higher slope in the intensity 

versus time curve, but it also has a higher linear speed31. Then, last experiment agrees with the 

hypothesis that (at constant and approximately uniform illumination conditions) the curve slope is 

correlated to the particle-speed in the image32. 

 
31 As a reminder, the linear speed (magnitude of velocity) of a particle describing a circular motion in 2 dimensions 
is the scalar multiplication of the radial distance times the angular speed.  
32 Saying that the slope is correlated to the speed in the 3D World is incorrect, since that would not take into 
account projection effects. Then, we cannot obtain directly the object speed in the real World with such simplistic 
approach. 
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7.2.2. Three spheres over ground dataset 
 

Our synthetic dataset consisted in three spheres of the same size located in front of the 

camera. Each one was at a different depth distance from the camera, so their size in the image plane 

would change respect to the others. In addition, we rendered a video-sequence, in which each sphere 

showed a different type of motion. One sphere moved faster than the others, another one was the 

slow sphere, and another laid static. We also located a background plane perpendicular to the image 

plane, so the shadows would be visible. From this dataset, we wanted to be able to simulate it with 

both edge-extractors, but also with a DVS architecture. Moreover, we made the scene (see Figure 77) 

such that objects would appear at different sizes because of the distance from the camera, they would 

move differently (or not move at all), and there would be different lighting conditions along the 

rendered images (see Figure 78). As mentioned before, all those requirements made hard for us to 

find a datasets that would comply with them at the same time. 

This dataset was generated similarly to the case of the polygon dataset. Nevertheless, this 

dataset was for testing the object localization task, besides of behavioral simulation of DVS imagers.  

 

 

Figure 77 : our animation-setup for our second dataset generated. 

 

 

 
(a) Frame 0 

 
(b) Frame 59 

 

Figure 78 : first (a) and last (b) frames rendered from the video sequence related to the setup in Figure 74. 
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Since the video sequence corresponds to a list of frames, extracting edges for each frame can 

also be carried out (in order to simulate Origrad architectures), which we illustrate in Figure 79.  

 
Figure 79 : example of a rendered frame from the output of the relative-edges extractor. Colors indicate the 

detected edge direction (blue: 90 deg, red: 0 deg, yellow: 45 deg, green: 135 deg). 

Relative origrad 
Nevertheless, for object localization benchmarking, we need ground truth bounding boxes as 

well. Specifically, for each frame, we need to know the coordinates for the enclosing rectangle for each 

different object (sphere) in the image. However, in Blender, we specify object-locations in 3D World 

coordinates (X, Y, Z)33, and the size (radius) in simulation units for each object. Moreover, we define 

the camera position, a parameter related to the focal distance and the image (size) resolution. Notice 

also that Blender uses the pinhole camera model. Then, the problem we faced was to automatize the 

ground-truth bounding-box generation during the frames rendering, so we could compare the output 

from the object-localization algorithm (Edge-Boxes) with the ground-truth. The way we did it is 

described in the next paragraph. 

 Before we start solving the problem, we summarize it as follows: given the 3D World position 

and orientation coordinates of any object of any form and size, and given the camera position and 

orientation, we need to obtain the coordinates of the ground-truth bounding-box in the image plane. 

This is a problem of projective geometry, and we start from the classic camera calibration method 

described in (“Camera Calibration” 2021), which use the known formula for the pinhole camera model 

(OpenCV-dev-team 2012): 

𝑠 [ 
𝑢
𝑣
1
 ] = [

𝑓𝑥 1 𝑐𝑥

1 𝑓𝑦 𝑐𝑦

1 1 1

] [𝑟|𝑇] [

𝑋
𝑌
𝑍
1

] 

Equation 55 : pinhole-camera equation (OpenCV-dev-team 2012). 

 Last equation states the basic form of the pinhole camera model. In order to explain better 

how we used it, we will make reference to the illustration in Figure 80. There are two reference frames 

involved: one for the camera, represented by {C}, and one for the World represented by {W}. Those 

 
33 Aside the 3 rotation angles, which in this case are not relevant since our simulation objects are spheres.  
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two are not necessarily aligned. Now, considering a point p in Blender, we define the vector 𝑃⃗ {𝑊} of 

point p in World coordinates. We start with a point before we go into shapes that are more 

complicated. In addition, we define the position vector 𝐶 {𝑊} (not represented in Figure 80) of the 

camera origin respect to the World. There, we understand that there is another reference frame whose 

origin is at 𝐶 {𝑊} and that is aligned with the camera. Then, the image plane is at one focal distance 𝑓 

from the camera. Since we are dealing with a projective geometry problem, we have to express 𝑃⃗ {𝑊} 

in homogeneous coordinates, and then we have to transform from reference frame {W} to {C} by 

multiplying 𝑃⃗ {𝑊} by a rotation-translation matrix. That is : 

𝑃⃗ {𝐶} = [𝑟|𝑇]𝑃⃗ {𝑊}   

Equation 56 

 

𝑠 [ 
𝑢
𝑣
1
 ] = [

𝑓𝑥 1 𝑐𝑥

1 𝑓𝑦 𝑐𝑦

1 1 1

] 𝑃⃗ {𝐶} 

Equation 57 

 We observe that the pinhole-model equation represents the projection of the point in camera-

coordinates in the image plane. Coordinates 𝑢, 𝑣 represented the x, y position in the image. The factor 

𝑠 comes from the homogeneous coordinate’s normalization factor, so the third entry equals to 1. The 

matrix relating 𝑃⃗ {𝐶} and the left-side of the equation is the camera-matrix, which contains the intrinsic 

camera coefficients: 𝑓𝑥  and 𝑓𝑦 are the focal distances for their corresponding axis, and (𝑐𝑥 , 𝑐𝑦) 

correspond to the image center. In our case, 𝑓𝑥 = 𝑓𝑦 = 𝑓. Moreover, in order to simplify the problem, 

we can make {W} and {C} to correspond, thus making the derivation of [𝑟|𝑇] straightforward. Notice 

that this alignment is practical because we are working on a 3D-scene simulator. However, in realistic 

applications there may be scenarios that are more complicated.  

 

 
 
 

 
 
 
 
 
 
 

Figure 80 : example of how the image plane is placed into the World coordinate system. 

Fig. [pinholeModel]: 
 We have advanced in solving the problem stated before, yet there are questions unresolved: 

firstly, we have stated the equation for a point, but we have not yet generalized for more complicated 

3D-shapes. Secondly, how do we obtain the intrinsic camera parameters 𝑓, 𝑐𝑥 , 𝑐𝑦? 

We start by addressing the first issue by considering that Blender codifies objects of any 

complicated shape as collections of 3D points with different types of relations amongst them (3D-

𝑓 

{𝐶} 

𝑦̂ 

Image plane (top view) 

𝑣 
𝑌{𝐶} 

{𝑊} 
𝑃⃗ {𝑊} 

World coordinate system 

𝑝 
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meshes). Different relations can lead to the formation of lines, planes, and volumes. Thus, for avoiding 

a more complex geometric problem, what we did was to make a Python script that would output and 

save, for each object (sphere) the position of each vertex for each object34. Then, we expressed the 

object coordinates in camera coordinates, and finally used Equation 55 to get all projected points in 

the image. Finally, generating the ground-truth bonding box for each object was straightforward, since 

all we had to do is to take the maximum and minimum image point coordinates for each collection of 

vertices associated with each object.  

 The second question relates to a typical camera calibration problem. Indeed, we were not sure 

if we could obtain the physical value of the focal distance from Blender directly. Then, in order to be 

sure of the correct value, we proceed to a camera calibration process as explained in the OpenCV 

documentation for real case scenarios (“Camera Calibration” 2021). The process consists of using a 

grid of points whose relative position is fixed (relative to a reference frame attached to the grid origin). 

One typical example is a “chessboard” pattern, where the particular points are the intersection 

between squares. We modeled such pattern and animated it so we would have the chessboard at 

different positions respect to the camera. This process is illustrated in Figure 81. 

 
(a) Frame 10 

 
(b) Frame 20 

 

Figure 81 : example of two rendered frames when animating a moving chess-board pattern in the scene. 

Then, by keeping the camera fixed and moving the grid (so the particular points appear in the 

camera in a projected manner), one can use one of OpenCV’s functions for recovering the intrinsic 

camera parameters, if for each recorded frame the position of such points in the image plane is known. 

However, we still had to know the position of each particular corner point in the image plane. In order 

to simplify the problem, for each rendered image containing the chessboard, we used an OpenCV 

function for finding the chessboard points in the image (as showed in Figure 82). Then, we used those 

points (coming from the same grid, moved along different positions in different sequence frames) as 

input for the camera calibration function. 

 

 
(a) 

 

 
(b) 

Figure 82 : result from OpenCV function for detecting the chessboard pattern corners at frame 10 (a) and at frame 20 (b). 

 
34 In order to do so, we had to « move » the objects in the scene for animation programmatically as well.  
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 That last one gave approximated values for the focal distance and image center. Since this 

calibration process is not perfect, we had to refine the values (by trial and error) to match satisfactorily 

human-made ground-truth boxes.  

 After the process made in last paragraphs, we successfully obtained a synthetic dataset for 

object localization with ground-truth annotations generated automatically, as illustrated in Figure 83. 

Further works can exploit such strategy for modeling more complex and general problems, since 

Blender is currently capable of using photorealistic scenarios, including (for example) humans, animals 

and vehicles.  

 
(a) Frame 0 

 
(b) Frame 59 

Figure 83 : example of the first (a) and last (b) rendered frame from the animation-setup from Figure 77, and with 
ground-truth bounding-boxes generated with the method previously described. 

 

 In next sections, we explain how we used those synthetic datasets in order to simulate the DVS 

and several variations. 

 

 

7.3. From circuit schematic to behavioral simulations 
 

In order to make a fair behavioral model of the DVS, we studied first the basic circuit schematic 

for a single pixel. Notice that there are several DVS variations with different specifications and pixel 

complexities. We took, however, as reference the circuit proposed by (Lichtsteiner, Posch, and 

Delbruck 2008), and we present it in Figure 84: 
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Figure 84 : “(a) Abstracted pixel schematic. (b) Principle of operation. In (a), the inverters are symbols for single-ended 
inverting amplifiers.” (Lichtsteiner, Posch, and Delbruck 2008) 

Fig. [dvs-layout]: Image taken from [ref: dvs] 

 Part (a) Figure 84 shows the basic pixel schematic from (Lichtsteiner, Posch, and Delbruck 

2008), while Figure 84 (b) present its principle of operation: each time the relative temporal differences 

reaches the temporal contrast, a spike in sent and the reference value is reset. In Figure 84(a), the 

schematic is partitioned in three steps: photoreceptor stage, difference stage, and event-detection-

stage by means of a threshold comparison of the (relative) lighting difference. When the reset signal 

is closed, the voltage across capacitor 𝐶1 follows the logarithmic output 𝑉𝑝. Once the reset is open, the 

capacitor 𝐶2 starts cumulating the charge associated with the logarithm of the current intensity minus 

the logarithm of the intensity at the time the reset switch was open. Such signal is represented as 𝑉𝑑𝑖𝑓𝑓 

in part (a) of the last figure. That is: 

𝑉𝑑𝑖𝑓𝑓 = −𝐴
𝑘𝑇

𝑞
 (ln(𝐼) − ln(𝐼𝑟)) 

Equation 58 (Lichtsteiner, Posch, and Delbruck 2008) 

 Where 𝐼𝑟 corresponds to the intensity at last time the reset switch was opened (𝑡𝑟), and A is 

a factor reflecting the equivalent amplification showed in Figure 84 (a). Then, 

𝑉𝑑𝑖𝑓𝑓 = 𝐶𝑜𝑛𝑠𝑡 ⋅ ln (
𝐼

𝐼𝑟
) ≈ 𝐶𝑜𝑛𝑠𝑡 ⋅ (

𝐼 − 𝐼𝑟
𝐼𝑟

) 

Equation 59 (Posch et al. 2014) 

 So 𝑉𝑑𝑖𝑓𝑓 approximates the ratio of the relative lighting difference respect to the intensity 𝐼𝑟 at 

time 𝑡𝑟. The final stage compares the differentiating voltage with two thresholds. Those two thresholds 

relate (in absolute value) to values representing the so-called “temporal contrast” (Lichtsteiner, Posch, 

and Delbruck 2008). When |𝑉𝑑𝑖𝑓𝑓| is higher than the threshold, a “ON” request signal (e.g. a spike) is 

sent if 𝑉𝑑𝑖𝑓𝑓 > 0, and a “OFF” spike is sent otherwise. Moreover, when a spike is sent, the arbiter then 
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“acknowledges” the spike reception, and triggers the reset switch to close temporarily, so the 

reference lighting intensity updates. In the simulation, this process has to be followed for every pixel 

independently, since each pixel may follow a different intensity curve, have a different lighting-

intensity-reference, and spike at different time stamps (this is why simulating a DVS by only subtracting 

subsequent frames and comparing such difference with a positive, or negative, threshold is incorrect). 

Figure 85 illustrates the output from a DVS simulation with a temporal contrast threshold of 3 % (when 

events where cumulated during 15 µs.  

 
Figure 85 : (a) example of a rendered frame from our first (video-sequence) synthetic dataset, and (b) example of a 

rendered frame after behavioral simulations of a DVS (Cubero et al. 2020). 

 

7.4. Pre-processing improvement for data-throughput reduction 
 

Notice (if we want to make a correspondence with frame-based approaches) that we cumulate 

the stream of spikes during a short period, and render them in an image such as the one above (b). 

Then, the rendered image appears to follow the shape contours. From that perspective, rendering 

frames with spiking data and obtaining an edge-map from a static image could potentially be similar 

for object classification. The difference is that the edge-map contains also the edge orientations, which 

are not directly present in the spike-rendered-frame. On the other hand, with extra processing more 

dynamic information could be obtained, for example velocity directions for different particles in the 

scene. Nevertheless, that approach would require (to our knowledge) using temporal correlations, 

which goes further from the frame based approach that we have been using so far before this chapter.  

Regarding the localization task, one intuitive approach would be to cluster events from a 

rendered frame from spikes. The clustering criteria could be simply the Euclidean, or Manhattan, 

distance between pixel addresses, and we think (since we did not test it) that a simple-enough 

algorithms may do the task satisfactorily for this dataset. Nevertheless, this dataset is too simplistic for 

saying that basic clustering approaches would work in real datasets, which may present occlusion, 

complicated textures, lighting irregularities, shadows, and complex object motions. Such aspects may 

appear in the spike-stream as events whose nature is not directly known, and more post-processing 

(spatial or temporal) may be required in order to obtain meaningful information. Then, for us, it was 

not clear if the spikes processing required for dealing with specific issues related to a spike-stream 

output would actually be advantageous when comparing it to a standard frame-based approach.  

Indeed, we can formalize what was introduced in last two paragraphs as two problems that 

we address in this work: firstly, we wondered if we could reduce the amount of events or events data 
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throughput. However, at the same time we wanted to reduce the information loss of neglecting some 

events. Secondly, we wanted to be able to use both spatial and temporal processing at the same time. 

However, we observe that the frame based approach for Origrad differs significantly in pre-processing 

and architecture from the DVS approach. Moreover, Origrad gives directly meaningful information 

(e.g. edge magnitude and orientation) for localization and classification, whereas frames recovered 

from a DVS output may require potentially complex pre-processing before localization and 

classification could be performed. Nevertheless, the DVS output potentially allows attention based 

mechanisms for ROI proposals, and fast detection of moving objects. We tackle the first problem by 

introducing the modulation we proposed in our previous publication (Cubero et al. 2020), and 

represented in Figure 86: 

 

 
Figure 86 : our proposed modulation scheme (Cubero et al. 2020). 

Fig. [modulation] 

In Figure 86, we present our modulation scheme (Cubero et al. 2020). CT corresponds to the 

global contrast threshold, named “temporal contrast” (TC) for instance by (Lichtsteiner, Posch, and 

Delbruck 2008), which corresponds to a voltage reference used in the comparators in Figure 84(a). The 

reason for varying CT along time is inspired in the curve from Figure 76. Being 𝑡𝑙 the simulation time 

resolution (15 µs), numbers from 1 to 9 represent different time stamps at which the simulation 

updates. Those updates track new events, so they approximate an asynchronous behavior when the 

scene is evolving much slower than 𝑡𝑙. The modulation consists in a stepwise lowering of CT along 

several (in our case, 3) values. The amount of time a CT remains constant is 𝑡𝑐 or the “channel time”. 

For prove of concept, in our experiments we set 𝑡𝑐 = 3 ⋅ 𝑡𝑙. For practicality, we call each set of events 

corresponding to each 𝐶𝑇𝑖 𝜖 {1,2,3} a “channel”. Then, 3 channels relate to 3 different CT values along a 

complete modulation period. Indeed, a particle at the image plane that moves fast generates a higher 

intensity slope when passing by a particular pixel (in the circumference described by such particle 

motion). In practice, this higher slope could lead to more events detected per unit of time, and we may 

make the hypothesis that several events coming from the same intensity slope (e.g. the same pixel) 

are not adding relevant information, only redundant information. Of course, this hypothesis may only 

hold to a certain extent, since eventually the smart imaging system may “check” the state of motion 

or intensity evolution at a place of a high slope. One possible optimization is to just to “disable” spikes 

from pixels detecting events at a high rate (e.g. observing a high intensity slope). Nevertheless, that 
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introduces the problem of how to measure such frequencies per pixel without significantly changing 

the original pixel schematic. We did not take such approach, and instead we tried to lower the 

probability of high-slope pixels generating events by setting CT to a high value, namely 𝐶𝑇3 in Figure 

86. This action has two consequences, pixels with higher slopes will tend to spike less, and pixels with 

lower slopes will be much less likely to generate a spike. Then, channel 3 corresponds to pixels with 

high slopes, yet its throughput is statistically less due to the relatively high global CT. However, lower-

slope pixels may be also relevant, and they start appearing in other channels by stepwise lowering CT. 

Nevertheless, by decreasing CT, higher-slope pixels start increasing in frequency again. Even though 

there is already a data throughput reduction thanks to the implementation of a high CT during a certain 

time, the problem of data-throughput increasing after decreasing CT can be improved, as we explain 

later in this section.  For now, we will discuss about a caveat of abruptly changing CT as in Figure 86. 

 

The need of the stabilization window 

The reader may have notice that in Figure 86 we presented specific time steps in light-blue, 

which we indicated as “stabilization-time-windows”. In fact, during our experiments, we observed a 

relatively high peak of events throughput arising each time that CT was abruptly changed. Our 

explanation for such behavior is based on Figure 87: 

 

 
Figure 87 : illustration of how an abrupt changing in CT triggers undesired spikes at the moment of the changing (Cubero 

et al. 2020). 

Fig. [stabilizationwindow] 
Figure 87 presents a simplified version of an intensity curve as a straight line. The horizontal 

axis corresponds to time, and we include (below the plot) a representation of when spikes are 
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generated: for each moment that the curve attains a relative change equal to 𝐶𝑇𝑖, an event is detected 

and a spike is sent. Moreover, for each event, the local reference value for the light intensity updates 

to the value at the last event. Notice that, as 𝐶𝑇3 is relatively high, it “prevents” lower-slope pixels to 

detect events. However, their 𝑉𝑑𝑖𝑓𝑓 values could be increasing (decreasing) as well, but not enough to 

trigger a spike. Then, when CT decreases abruptly from 𝐶𝑇3 to 𝐶𝑇2, several pixels that were “in their 

way” to attain the threshold reach it simply because the global CT became suddenly significantly lower. 

One example is depicted by the red spike in Figure 87. Such spike might not be irrelevant, but its 

interpretation is less straight forward than in the case of spikes not happening due to sudden changing 

in CT. For keeping our solution simple, we propose to just discard events coming from the time 

stabilization window. Then, we do not take into account such events for benchmarking different 

imagers throughput.  

 

Further optimization with events inhibition 

As we mentioned before, when CT decreases, higher slope pixels increase their spiking 

frequency since they become more likely to attain the threshold. Nevertheless, they may have already 

generated at least one spike during the previous channel (with a higher CT). Then, if the hypothesis 

that the real scene is evolving much slower than 𝑡𝑙 (so that all intensity-curve-accelerations during a 

whole modulation period are approximately zero35), then it is reasonable to inhibit spikes coming from 

pixels that have already spiked in a previous channel. We observed two different ways of implementing 

this idea: firstly, any pixel that spikes during a channel is inhibited from spiking until next channel. 

Secondly, any pixel that spikes during a whole modulation period is inhibited until the next period. 

More specifically, the way the inhibition works is by changing the pixel schematic so it independently 

becomes “unable” to spike after generating a spike. This inhibition can only be removed by a global 

(synchronous) signal, which we call the synchronous enable (SE). Thus, pixels can get inhibited 

asynchronously and independently, but they are all reset to the abled state together and at the same 

time. In next subsection, we explain how to change the pixel schematic in order to implement both the 

modulation and the inhibition. 

 

Pixel schematic changes 

In Figure 88, we present both the original pixel schematic from (Lichtsteiner, Posch, and 

Delbruck 2008) (up) and then we depict the changes we suggest in red (below). The modulation is 

achieved by means of block A and the 𝑉𝑇𝐻 modulation with peripheral circuitry.  We expect that such 

abrupt changes in CT cannot be made by simply modulating 𝑉𝑇𝐻, since the voltage swing limits also 

the CT range. Then, since CT also depends on the capacitance value inside block A (as didactically 

explained by (Posch et al. 2014)), we can also “modulate” this capacitance by changing the original 

capacitor by two capacitances in parallel, and with one of them switched and “controlled” by the Mod 

signal. The inhibition can be implemented by “deviating” the reset signal sent by the arbiter to each 

individual pixel when a spike is sent. Typically, this reset signal closes the reset transistor and sets 𝑉𝑑𝑖𝑓𝑓 

to zero, so new events can be detected. In our case, the signal coming from the arbiter will instead 

charge a capacitor called 𝐶𝑖𝑛ℎ, which will hold the reset transistor closed while this capacitor is 

charged. This starts the inhibition state for a single pixel, since 𝑉𝑑𝑖𝑓𝑓 is permanently set to zero and the 

 
35 Or, in other words, that slopes are not changing during a modulation period. 



 143 

pixel becomes unable to spike. This inhibition can only be removed by a global synchronous enable 

signal, which discharges 𝐶𝑖𝑛ℎ for all pixels, and regardless of if they spiked or not. 

 

 
Figure 88 : DVS original schematic (a) from (Lichtsteiner, Posch, and Delbruck 2008) and (b) our proposed modification for 

including the modulation presented in Figure 86, and published in (Cubero et al. 2020). 

Fig. [newschematic] 
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Behavioral simulation results 

 
Figure 89 : example of outputs from the three channels during one modulation period (Cubero et al. 2020). 

Fig. [pixelsclustering] :  
In Figure 89, we present rendered images of events corresponding to time intervals of 𝑡𝑙 for 

each of the three channels. In this case, inhibition has not been applied yet. We observe that channel 

3, related to the highest CT, presents events spatially located near color edges further from the center. 

Those locations can be related to real world particles that are moving faster under approximately 

uniform lighting conditions and with similar projective transformations. Moreover, channels 2 and 1, 

with progressively decreasing CT, start showing even near the center and the polygon perimeter. In 

Figure 90, we present plots of whole image data throughput vs. time for four different pre-processing 

schemes: standard dynamic vision sensor (DVS), the DVS with CT modulation only (mDVS), the mDVS 

with inhibition and synchronous reset each channel (SE-ch-mDVS), and finally the mDVS with inhibition 

and synchronous reset only each modulation cycle (SE-cy-mDVS). 

 

 
Figure 90 : instantaneous data throughput for the original DVS and for our three modifications. The table at the top 

presents the average data throughput. 

Fig. [datathroughput]: 
From Figure 90, we observe that DT is reduced by applying our modulation scheme. We explain 

the shape of the DT-vs-time curve in terms of the polygon circular motion: the polygon starts 

accelerating (under a circular motion only) after begin motionless, and after it starts deaccelerating 

until it reaches a null angular velocity. Then, the DVS-DT curve (represented as black in last figure) may 
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be correlated to the polygon angular speed. The modulation (green curve) decreases DT by limiting it 

under a period of time for each modulation period, and thus it appears to decrease and increase 

abruptly while the overall curve shape follows the same as the DVS. Notice that we did not include 

stabilization-time-window-events in this plot. The inhibition, however, generated a sort of “flattening” 

or “stabilization” around a maximum DT regardless of the polygon speed. The difference between per-

channel, and per-cycle synchronous enable, was the maximum settling point for the DT peaks in each 

period. Then, the minimum DT obtained in our simulation came from the SE-cy-mDVS, corresponding 

to only 5,9 % of the DT obtained from the standard DVS.  

 In last paragraphs we have discussed about how to reduce DT from a standard DVS by means 

of a convenient CT modulation. Nevertheless, this exercise only allowed us to better understand 

dynamic vision principles, and to observe that even after the potential DT reduction, the 

implementation for object detection is far from being completed. Moreover, we did not find a way 

which is simple enough and that allows combining functionalities of a standard DVS alongside with 

edge detection complying with characteristics mentioned in chapter 6 (low spatial noise, enhanced 

feature-DR and orientation information). Actually, besides complications due to electronic-overhead 

for event detection and processing, we did not find an embedded algorithm that combines ideas from 

both approaches. The problem stated here, is the reason why we introduce the “Dynamic Features 

Vision Sensor”, further explained in next subsection.  

 

7.5. Using dynamic vision for ROI proposals  

  

Retinomorphic 
imagers 

 
 
 
 
 
 
 
 
 
 
 

Us 

Figure 91 : our dynamic features extraction method compared with the state of the art. 

Fig. [dfvs-principle]: 

Figure 91 presents a scheme of our proposed pre-processing pipeline for mixing both spatial 

and temporal features for low power object localization and classification. In Figure 91, the block 

“Image” represents the matrix of pixels. The block “static features detector” corresponds to a feature 

extractor such as a parallelized edge extractor. Then, event detection blocks relate to how motion is 

detected along the image. For a DVS, motion is detected by comparing, at pixel level, the relative light 

changing with a reference. In our case, we detect motion by comparing feature magnitudes codified 

in 1-bit per pixel. Indeed, we lay on the hypothesis that the equivalent frame-rate resulting from 

rendering event-frames from an asynchronous dynamic vision sensor is too high and unnecessary. The 

justification is that a very high frame rate also imposes a bigger load on further processing, and this 
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situation may not be compatible with low power applications. Then, it becomes logical to reinforce 

pre-processing stages in order to diminish the amount of bits passed to other processing layers. 

Moreover, by accepting a reduced frame rate, we suspect that the asynchronous nature of the DVS 

becomes less important, and that a standard frame based approach may be simpler to implement and 

effective for OD. Nevertheless, frame-based approaches can make challenging to recover dynamic 

information, contrary to a DVS approach. So, our idea to circumvent this dichotomy is to derive 

dynamic data from feature map instead of from the light intensity map (standard image frame). In our 

case, feature is a 1-bit edge, so dynamic features can be obtained with simple 1-b XOR comparisons 

between successive features frames, in contrast with the in-pixel light intensity change detection that 

would require n-bit operations.  Figure 92 explains more in detail how dynamic data is obtained in our 

case: 
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Figure 92 : diagram illustrating the principle of functioning for extracting dynamic features from two subsequent feature 
maps. 

The scheme in Figure 92 shows the principle of the dynamic feature vision sensor: it relies on 

the incoming feature-magnitudes, output from the edge-detector, and the last feature-map. For the 

first frame after the imager is powered, or after a convenient amount of time (much higher than the 

frame period), the dynamic-features-map is initialized as a copy of the 1-bit feature-magnitudes-map 

𝐹𝑖=0. Then, for each new incoming feature-magnitudes-map 𝐹𝑖+1, the new dynamic-feature-map 𝐷𝑖+1 

(bottom right in figure) is updated as 𝐷𝑖+1 = 𝐹𝑖  ⊕ 𝐹𝑖+1. With “⊕” representing the 1-bit XOR 

function spanned for every single pixel. The result is that 𝐷𝑗 can be rendered as an image of locations 

where feature magnitudes changed (1 → 0, 0 → 1). Thus, we interpret 𝐷 as an approximation of the 
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feature magnitude derivative with respect to time. We observed some advantages of such scheme 

with respect to the standard DVS: 

1. Since dynamic features are constrained to appear in locations where a static-spatial 

feature was present, dynamic outputs are sparser than DVS outputs (when thinking of 

rendering an image of events at the same frame rate).  

2. The pre-processing allows tracking directly moving edges in the scene. 

3. The feature derivative is represented by a simple 1-bit XOR operation, in contrast with the 

in-pixel light intensity change detection.  

4. The edges output, alongside with the dynamic output, makes compatible the 4-bit output 

for OD with algorithms already tested in the state of the art and in this work (for object 

localization with Edge-Boxes with reduced bit-depth input).  

5. The dynamic feature map initialization allows detecting also static objects. 

For instance, in Figure 93, we present 4 different output frames obtained with EdgeTon 

(Cubero et al. 2019). The right side corresponds to the DFVS with relative-Origrad (with average 

denoising and without binning), and the right side corresponds to a DVS with CT = 3 %. The colored 

pixels indicate static features (edges whose magnitude is 1), and white/black pixels indicate dynamic 

features. Notice that the right side is at time-stamps of one frame after the left side. That is, since the 

simulation was configured to automatically visualize (render) frames 0 and 20 from the output, but 

from the way we simulate the DVS makes that the output frame 20 corresponds to the frame 21 of the 

dataset. Nevertheless, this time-stamp difference is not important for the conclusions we drive: firstly, 

the top of Figure 93 indicates that the fist DFVS output corresponds only to static features, which is 

not different at all to the output of a simple edge-extractor. In the DVS case, we observe only the two 

spheres that are moving, whereas the one in the center was not seen since it is not in motion. Then, 

the DFVS allows obtaining static objects by analyzing the first frame on the image as for the case of 

one typical edge-extractor. The bottom of Figure 93 indicates that, as expected, dynamic features 

(illustrated in white or black) appear only where spheres are moving. Nevertheless, the important 

difference to notice is the population of events in both images. The DFVS is constrained to show motion 

only where there is an edge, whereas the DVS outputs events coming from lighting effects such as 

shadows. 
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(a) 𝑡 = 0 

 
(b) 𝑡 = 1 

 

 
(c) 𝑡 = 20 

 
(d) 𝑡 = 21 

 
Figure 93 : simulation output from the DFVS (left) and a standard DVS with CT = 3 % (right), at two different times36 of 

the video sequence from the three-spheres-over-ground dataset. 

  

We also observed advantages of our scheme with respect to standard edge-detector 

approaches: 

1. By using the edge-detector architecture presented in chapter 4, we can separate the edge-

magnitude-extraction from the angular approximation. Then, there are two potential 

modes of functioning: one for complete oriented edges extraction, and one for only the 

magnitude extraction. The latter allows to obtain only edges magnitudes alongside with a 

potentially sparse map of dynamic features. 

2. Attention based mechanisms based on dynamic data can be used directly in the frame 

based algorithm in order to make it more efficient.  In contrast to other works which target 

only wake-up mechanisms like (Choi et al. 2014), which turns detection on and off 

depending on the scene overall motion, dynamic features can be used to discriminate 

boxes that do not contain relevant dynamic information (motion). That is, instead of 

completely turning on/off the system, we observe regions in the image where edges are 

moving, and then we can modify Edge-Boxes to skip scoring boxes when there are not 

enough features that changed respect to last time-stamp. The modified part of Edge-Boxes 

is presented in orange in Figure 94 (the blue part represents the state of the art): 

 

 

 
36 The time-stamps of the two imagers (left respect to right) are not exactly the same, those time stamps are distanced 1 frame respect to 

each other, since the DFVS outputs the frame 0 corresponding to the frame 0 of the dataset, while the DVS outputs the Frame 0 from the 
frame 1 of the dataset. The reason is that the DVS needs at least two sequential frames to generate one simulation output frame.  
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Figure 94 : diagram showing how we modified EdgeBoxes in order to include dynamic features in the ROI proposals 
generation. 

Fig. [boostedEdgeBoxes]: 

 In Figure 94, we use the dynamic features detector to obtain a 1-bit dynamic features map. 

We obtain the integral image of such dynamic map in order to calculate fast the amount of changing 

features in any hypothetical box inside Edge-Boxes. Then, for each hypothetical box, we skip the box 

scoring if such box does not contain an amount of changing edges higher than a threshold. If a box is 

not scored, then it is discarded. 

  

Table 15 shows runtime results in a desktop pc, on the Three Spheres Over Ground dataset, 

for both Edge-Boxes and the Boosted Edge-Boxes version, and when taking into account different 

architectures. We observe a runtime improvement in all architectures, which is up to 85 % for the 

relative oriented edges extractor. Moreover, the impact is less important (67 % for the relative Origrad) 

when binning is used, which could suggest that when the image size is reduced the dynamic features 

are less important. Notice that this percentage is with respect to the original EdgeBoxes in the state of 

the art (Zitnick and Dollár 2014). In Table 16, we summarize the resolution used in this dataset: 

Table [dfvs-table]:  
                                   Table 15 :  Cummulative time in seconds per image  

Architecture Edgeboxes Boosted EdgeBoxes Improvement 

HighRes Origrad 1,30 0,70 85% 

HighRes Origrad + BINN 0,31 0,19 59% 

LogHog 1,84 1,18 56% 

LogHog + BINN 0,47 0,31 52% 

Relative Origrad 1,55 0,86 80% 

Relative Origrad + BINN 0,38 0,23 67% 
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Table: [res-summary]:  
                 Table 16: Summary of synthetic images resolution 

 Pixel cols Pixel rows 
Resolution in 
MegaPixels 

Original Res 1920 1080 1,17 

Binned resolution 960 540 0,29 

 

 
Figure 95 : average runtime per imager for different architectures, showing the gain in runtime when using dynamic 

features alongside with EdgeBoxes. 

Fig. [dfvs-plot]:  
Figure 95 summarizes the runtimes when applying the boosting technique on EdgeBoxes, 

showing graphically that for the tested architectures, there was in general a gain in runtime 

performance. The reason for such improvement is that less boxes are tested, since they do not contain 

edges that are moving. We expect this method to reduce power consumption at similar runtime and 

detection rate, since less redundant data is processed. Of course, this reduction has to be 

experimentally justified, since our method also has an overhead for generating and processing the 

dynamic features. Respect to the localization performance, we verified that the spheres where always 

localized with ROIs with and IoU > 0.5, which was the case in the frames we verified.  

 

7.6. Conclusions of chapter 7 
 

In this chapter we have discussed the need of generating synthetic datasets for modeling non-

standard smart image sensors. We explained basic requirements for such datasets, namely the 

simulation of light rays, high temporal resolution, and automatic labels (bounding boxes) generation. 

In addition, we explained our method for automatic labels generation using Blender, Python scripting, 

and projective geometry with the pinhole camera model. Thanks to such datasets, we propose possible 

improvements for Dynamic Vision Sensors aiming for low power and embedded object localization and 

classification. We observed that our modulation scheme significantly reduced the data throughput 

down to 5,9 % in our simulation respect to a standard DVS with a constant CT, and stabilized the 

instantaneous data throughput along time regardless of the speed of different particles in a simplistic 
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scene. Moreover, we observed a dichotomy between DVS schemes and frame based oriented edges 

extractors, from the point of view of implementation. Then, we have proposed a way to circumvent 

this issue by obtaining dynamic data in the digital domain (1-bit logic operations) from feature 

magnitudes, instead of performing in pixel lighting-derivate approximations. Our proposition 

drawback is the need for memorizing the last feature-magnitude map (so the required memory is of 

columns x rows bits). However, we showed, by means of a behavioral simulation, that our dynamic 

features can be successfully incorporated in more classic algorithms for object localization such as 

Edge-Boxes. Moreover, we found that dynamic features allow to increase localization efficiency by 

neglecting hypothetical boxes (ROI proposals) which do not contain enough dynamic information.  For 

example, using our Relative Oriented Gradients architecture, we found a runtime reduction of 60 % 

(with binning) and 80 % (without). 
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Chapter 8. Conclusion  
 

 We have studied, and preliminary characterized (with behavioral simulations and on-paper 

electronic-models) the use of a ROI-proposals with Edge-Boxes for hardware-constrained devices. That 

is, in the context of integrated-IC smart-image-sensing architectures. Our motivation was to replace 

the typically used “sliding-window-approach” in embedded smart-image-systems scenarios. 

Moreover, we targeted a more general and potentially energy-efficient approach. We took also into 

account the potential inclusion of principles from event-based-cameras for improving the energy 

efficiency of ROI-proposals generation. Nevertheless, we did not rely in event-based cameras for ROI 

proposals, since they present problems such as less mature algorithms of event-based OD, and high 

pixel/read-out complexities.  

 In chapter 2, we have introduced the theoretical background and some state of the art 

examples that we found closely related with our work. We cited standard (frame-based) pixel 

topologies, and contributions from the SoA for event-based architectures (which capture efficiently 

the dynamic data).   Moreover, from our survey in embedded OD, we observed that some works have 

embedded/adapted different kinds of OD pipelines already tested for general purpose (e.g. desktop) 

computing machines. There are in general two kind of approaches: some that rely in the so-called 

“hand-crafted-features” (typically based on light-intensity gradients, when taking into account the 

integrated-IC context), and others using “learned-features” (with for example quantized-

convolutional-neural-networks). The point of generating features so soon is to reduce power-

consumption due to image analog-to-digital conversion and high data-rates. There are also two main 

trends in OD for general purpose machines: firstly, the ones base on first region proposal stage, and 

others that compute both classification and localization in parallel along the entire image. We cited 

those since other research groups have taken inspiration from them as well for implementing OD in 

hardware-constrained contexts. 

From our survey in chapter 2, we took preliminary decisions for settling the path of our work:  

1. Firstly, we preferred using hand-crafted features generated near the pixels-array (instead 

of learned-features computation). Our justification was that hand-crafted features do not 

require weight-access for multiply-accumulation operations, max-pooling and activation 

functions so soon at the pre-processing level. Also, supervised learning (e.g. with SVM, 

CNNs, etc…) can be used at later stages with those hand-crafted-features. In addition, we 

could focus on optimizing an electronic-architecture for a specific feature type.  

2. Secondly, we selected a ROI-proposals based pipeline instead of a fully parallelized one. 

Our motivation was that computing ROI-proposals, and then running a classifier only on 

those ROIs could be potentially more energy efficient than testing the classifier along many 

image sub-regions in parallel. In addition, the two stage approach (localization and then 

classification) seems easier to combine with typical wake-up approaches for power 

savings. 

3. Thirdly, we decided to take one (often used) figure of merit in the SoA for our comparisons: 

“the power per pixel per frame”, which represents the power consumption normalized to 

frame rate and number of pixels. Of course, this power consumption is related to one 

specific task (e.g. feature extraction, image-acquisition, classification, etc…), or a particular 

combination of them.  This figure for merit allows comparing smart-imaging-systems 

regardless of if they are implemented with different pixels-amounts, and/or frame-rates. 



 153 

The drawback is that it neglects some design parameters such as bandwidth (systems 

optimized to run at high frame-rates could potentially consume more power due to 

bandwidth constraints). Another drawback is that many works report this figure of merit 

for different tasks, which makes the comparison less evident. 

4. Finally, we decided to use event-based approaches only as inspiration for improving the 

frame-based pipeline, since, at first glance, we did not find a particular motivation to use 

a fully event-based system for embedded OD. That is, one motivation that compensates 

the pixel/read-out/asynchronous-processing complexities. 

In chapter 3, we have presented our methodology for performing behavioral simulations, and 

from which our conclusions are driven. Indeed, the problem we wanted to solve implied taking into 

account metrics and design parameters from both Machine Learning and Embedded-IC contexts. The 

difficulty we found is that Machine Learning tools are typically too “high level” in comparison with 

tools for circuit-architecture design. Then, we took that as motivation for developing our own 

simulation framework, which we called EdgeTon. With EdgeTon, we could take into account 

(behaviorally) circuit-architecture constraints on the feature extraction stage, while automatically 

passing the smart-image-system-output to computer-vision/machine learning algorithms (for 

benchmarking the AI performance). Then, we could set general design parameters for the feature-

extractor (such as equivalent number of bits or ENOB for the pre-processing stage) and relate it to 

object-detection-related metrics such as Intersection-over-union for the localization stage. 

 In chapter 4, we have studied the feasibility of an implementation of ROIs-proposals with Edge-

Boxes in constrained devices. For such objective, we decorticated Edge-Boxes and estimated a worst 

case scenario memory usage of ~25 Mbytes. Moreover, we present a possible pipeline optimized for 

low-level features generation for Edge-Boxes, namely the oriented edges. We proposed to obtain 

those oriented edges in 3 bits (1 bit for the magnitude, and 2 for the orientation). In contrast with the 

SoA, we propose generating high-dynamic range low-level-features but still computing the angle in a 

linear way, which has the advantage of generating angular information better suited for Edge-Boxes. 

Moreover, we propose a cascaded de-noising plus subtraction pre-processing at bottom-column, in 

order to diminish the number of false-edges detected, and thus significantly reducing memory and 

runtime footprints for Edge-Boxes execution in comparison with other embedded edge-extractors.  

 In chapter 5, we have introduce the low-level-features or oriented-edges extractor analog 

circuitry. We have divided the pre-processing in 5 main stages, for which we approximate –

theoretically, on paper-, design parameters such as bandwidth and biasing current. We base our 

calculations on arbitrary yet illustrative values of biasing Voltage (1.5 V), matrix of pixels size (500 x 

500 pixels), sampling/amplification capacitances (100 fF) and frame-rate (60 fps). Our theoretical 

calculation gives an ideal value of ~56.7 fJ/pixel/frame, which is ~103 times better in power 

consumption than other analog or digital low-level oriented-edge extractors we found in the SoA. We 

think that the reason of such result is that we do not try to achieve an unnecessary high ENOB before 

quantization of the low-level features, since even with a relatively low theoretical ENOB of ~8 bits 

before quantization, the oriented-edges are sufficient for ROI proposals, as shown in chapter 6. 

Moreover, our architecture exploits a dense parallelization of pre-processing without the need of any 

programmability, and it is based on simpler computations (averaging, and subtraction) instead of the 

more complex ratio to digital conversion (which implies a division-operation on the mixed-signal part).  

 In chapter 6, we presented benchmarks characterizing the performance of different pre-

processing architectures (namely, oriented-edges extractors) and by means of the IoU. Moreover, we 

presented benchmarks characterizing the memory/runtime dependence of Edge-Boxes upon the 

edge-extractor architecture. The main result from this chapter is that we show that ROI proposals 



 154 

generation with aggressively quantized low-level features is still possible, with a global average IoU 

(with the default Edge-Boxes parameters) higher than 0.5 and which approximates to 0.7 in some 

cases. We proposed a figure of merit that takes into account the global average best IoU, memory and 

runtime to characterize different edge-extractors performances, and we found that the best FOM 

corresponds to the relative Origrad with Average De-noising and 2x2 Binning. 

 In chapter 7, we have proposed modification to the dynamic vision sensor in order to reduce 

data throughput with a minimal electronics overhead. Moreover, we have proposed a way to 

efficiently obtain dynamic data in a frame-based manner, and we have shown how to include this 

dynamic data to boost the runtime performance of region proposals generation with Edge-Boxes. For 

instance, we found a runtime reduction of 60 % (with binning) and 80 % (without binning) when using 

our relative oriented gradients architecture (with respect to not using dynamic data for ROI-proposals). 

Moreover, we have presented a programmatic approach to generate labeled datasets for supervised 

learning and object detection in Blender.  

 This thesis has explored, at behavioral simulation level, the inclusion of a Region Proposals 

algorithm in embedded smart imagers. Nevertheless, the path we took for approaching the subject let 

still many points that can be addressed by further works. One idea is to continue this thesis by targeting 

the Edge-Boxes digital implementation. We believe that at least some stages of Edge-Boxes can be 

“rethought” and parallelized (but keeping the essential ideas), which could significantly speed-up the 

ROI proposals generation. Another idea to explore is reducing Edge-Boxes bit-depth computations in 

order to reduce the memory required. In addition, it could be interesting to explore the Faster-RCNN 

pipeline in an embedded context, which uses CNN-like features for ROI-proposals (and thus for 

replacing Edge-Boxes with a CNN in an embedded context). One possible way of doing that could be 

by using the edge-map output from Origrad as input to a digital CNN which generates a feature map 

from low bit-depth hand-crafted features, and not directly from light intensity. Furthermore, 

generating an edge-map from each color channel could present advantages for recovering color-

information in the edge-map, and potentially improving localization/classification performance. 

Finally, our approach used in chapter 7, of boosting runtime of ROIs generation with dynamic data, 

could be potentially used with CNN features or other kinds of features as well, thus opening doors for 

exploring more elaborated algorithms for low-power object detection. 
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