
HAL Id: tel-03612476
https://theses.hal.science/tel-03612476

Submitted on 17 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of an integrated pre-processing architecture for
smart-imaging-systems, in the context of lowpower

computer vision and embedded object detection
Luis Cubero Montealegre

To cite this version:
Luis Cubero Montealegre. Study of an integrated pre-processing architecture for smart-imaging-
systems, in the context of lowpower computer vision and embedded object detection. Micro and
nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2021. English. �NNT :
2021GRALT091�. �tel-03612476�

https://theses.hal.science/tel-03612476
https://hal.archives-ouvertes.fr

 THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES

Spécialité : Nano-Electronique et Nano-Technologies

Arrêté ministériel : 25 mai 2016

Présenté par

Luis Angel CUBERO MONTEALEGRE

Thèse dirigée par Gilles SICARD, Ingénieur de recherche, HDR,
encadrée par Arnaud PEIZERAT, Ingénieur de recherche et
Dominique MORCHE, Ingénieur de recherche, HDR.

préparée au sein du CEA-LETI dans l' Ecole Doctorale
d’Electronique, Automatisme et Traitement du signal (EEATS).

Etude d’une architecture intégrée de
prétraitement du signal pour les
imageurs intelligents, dans le contexte
de la vision embarquée pour la
détection des objets.

Study of an integrated pre-processing architecture
for smart-imaging-systems, in the context of low-
power computer vision and embedded object
detection

Thèse soutenue publiquement le 16/12/2021,
devant le jury composé de :

Pr. Alice CAPLIER
GIPSA-Lab, Grenoble INP, Grenoble, France, Présidente

Dr. Ricardo CARMONA GALAN
Chercheur, Instituto de Microelectrónica de Sevilla, IMSE-CNM, Séville,
Espagne, Rapporteur

Pr. Dominique GINHAC
Laboratoire ImViA – Université de Bourgogne, Dijon, France, Rapporteur
Dr. Gilles SICARD
Ingénieur de recherche HDR, CEA-LETI, Grenoble, France, Directeur de thèse

Dr. Arnaud PEIZERAT
Ingénieur de recherche, CEA-LETI, Grenoble, France, co-encadrant, invité

Dr. Dominique MORCHE
Ingénieur de recherche HDR, CEA-LETI, Grenoble, France, co-encadrant, invité

To my grandmothers.

 3

Abstract

Embedded Computer vision, as many applications of artificial intelligence and edge computing, is
subjected to hardware and power constraints. For instance, the object detection problem, consisting in finding
different objects of specific classes (types) in an image, turns out to be quite complicated to embed near the image
sensor as two complex tasks are required: multi-scale localization and multi-class classification (i.e. identifying
bounding boxes that perfectly enclose each object, whatever its size, and labeling the type of the detected object).
Today these tasks are often performed on general-purpose desktop machines. Nevertheless, attractive
applications like autonomous-driving, augmented reality or video surveillance are urging the need for low-power,
low-latency and compact low power devices.

The state of the art has approached this challenge by optimizing specific sections of the complete
processing-pipeline for a comparable object detection performance. A typical example in the last decade
corresponds to minimizing the computing precision, hence the power, to a minimal value. Diminishing the bit-
depth or image size has then been studied while implementing pre-processing steps that increase robustness
against the loss in bit and image resolution. An algorithm that does not require that kind of pre-processing stage
to be programmable is obviously desirable in order to simplify its implementation (e.g. no memory access to
learned weights). Another strategy has been to reduce power due to I/O communications amongst different chips
or devices thanks to a more exhaustive integration of specialized circuitry and thanks to more efficient memory
accesses and mathematical operations.

In that context of near-sensor computing, this work points towards a more energy efficient detection
pipeline. We target several specific key aspects:

1. We try to assess if a dedicated-class-agnostic region proposal algorithm, based on pre-
processed low-level features, could replace the typical sliding window approach for object localization in
integrated smart imaging systems, allowing to target more efficiently objects in the image. Then, we propose a
pipeline that takes into account near image sensor features extraction for Region Proposals with an embedded
version of an algorithm called Edge-Boxes.

2. We try to assess an optimal type of pre-processing (based on an efficient architecture) that
would allow extracting low level features (oriented gradients), and give the best trade-off between power
consumption, hardware complexity and object detection performance. Specifically, while being this architecture
fully compatible with region proposal algorithms beyond the sliding window.

3. Finally, we try to assess if non-standard, or neuromorphic, image acquisition techniques can be
exploited in order to further increase the detection efficiency in real case scenarios.

Our methodology relies on behavioral simulations carried out thanks to a custom framework written in
Python and C++ code. We propose a hierarchical model (and code architecture) of different image acquisition and
processing techniques, and we study their performance through specific metrics related to runtime, memory
usage, hardware complexity, I/O data-rate, localization performance and classification performance. We provide
comparison with the state of the art and several benchmarks giving guidance to choose one or another
architecture depending on the specific needs, and we conclude by stating which one would give, from our
perspective, the best trade-offs.

 4

Table of contents

Abstract ... 3

Table of contents ... 4

List of figures ... 7

List of tables .. 10

Chapter 1. Introduction ... 11

Chapter 2. State of the art ... 13

2.1. CMOS Image sensors .. 14

2.1.1. Typical system architecture ... 14

2.1.2. Pixel types .. 15

2.1.3. Typical design parameters ... 18

2.2. Smart CMOS image sensors ... 19

2.2.1. Frame-based smart-image-sensors ... 20

2.2.2. Edge or Oriented Gradients extraction ... 20

2.2.3. Embedded CNN-like features extraction ... 25

2.2.4. 3D-IC Smart Image Sensors ... 29

2.2.5. Event-based imaging-systems ... 32

2.3. Object detection pipelines ... 35

2.3.1. HOG and linear SVM .. 35

2.3.2. HOG and DPM ... 36

2.3.3. Fast R-CNN ... 36

2.3.4. Faster R-CNN ... 37

2.3.5. SDD and YOLO ... 38

2.4. Conclusions of chapter 2 .. 39

Chapter 3. Our simulation Framework .. 41

3.1. EdgeTon main architecture .. 42

3.1.1. Imager models structure ... 44

3.1.2. Imager model module ... 46

3.1.3. Simulation engine loop .. 47

3.2. Imager model examples ... 48

3.2.1. Ideal 8-bit-depth Sobel oriented-edges extractor ... 48

3.2.2. Analog linear oriented gradient extractor ... 49

3.2.3. Digital linear oriented gradient extractor ... 51

3.2.4. Logarithmic oriented gradients extractor ... 51

 5

3.2.5. Relative edge extractor ... 52

3.2.6. Dynamic vision imagers ... 52

3.3. Conclusions of chapter 3 .. 54

Chapter 4: Region proposals pipeline design .. 55

4.1. ROI proposals vs. typical sliding window approaches .. 56

4.2. Selecting a ROI detection algorithm ... 58

4.2.1. EdgeBoxes decortication ... 62

4.2.2. Preliminary memory estimation .. 68

4.3. Embedding oriented gradients generation .. 69

4.3.1. Canny Edge Detection ... 70

4.3.2. Our edge detection pipeline description ... 75

4.3.3. Dynamic range improvement .. 79

4.4 Conclusions of chapter 4 ... 80

Chapter 5: Embedded Edge Extraction Circuitry ... 81

5.1. Circuit stages .. 82

5.1.1. Correlated double sampling and first buffer ... 82

5.1.2. Low Pass Filter ... 83

5.1.3. Second buffer .. 84

5.1.4. Difference and absolute value... 85

5.1.5. Summation and quantization .. 86

5.1.6. Angular computation ... 87

5.2. Condensing power into a single formula .. 89

5.3. Estimation of the bias current .. 90

5.3.1. Band-width constraints on biasing current ... 90

5.4. Noise analysis ... 93

5.5. Conclusions of chapter 5 .. 98

Chapter 6. Object Localization benchmarks .. 99

6.1. Localization characterization methodology ... 100

6.1.1. Simulation Flow with EdgeTon .. 102

6.1.2. Edge extraction with a smart imager behavioral model ... 103

6.1.3. Localization with Edge-Boxes .. 104

6.1.4. Intersection over union metrics calculation .. 104

6.2. Benchmarks .. 105

6.2.1 Global ABIoU along jobs for each architecture .. 105

6.2.2 Memory estimation .. 112

6.2.3 Runtime estimation .. 118

 6

6.3. Empiric Figure of Merit ... 121

6.4. Conclusions of chapter 6 .. 125

Chapter 7. Dynamic Vision Pre-processing.. 127

7.1. Event-base data for object detection ... 128

7.2. Synthetic dataset generation ... 130

7.2.1. Polygon dataset ... 131

7.2.2. Three spheres over ground dataset .. 133

7.3. From circuit schematic to behavioral simulations ... 137

7.4. Pre-processing improvement for data-throughput reduction ... 139

7.5. Using dynamic vision for ROI proposals ... 145

7.6. Conclusions of chapter 7 .. 150

Chapter 8. Conclusion ... 152

References ... 155

List of Publications ... 160

Patents ... 160

 7

List of figures

FIGURE 1 : DIFFERENT APPROACHES FOR PIXELS PRE-PROCESSING AND/OR READ-OUT. “(A) SERIAL ARCHITECTURE; (B) COLUMN-

PARALLEL ARCHITECTURE; (C) PIXEL-PARALLEL ARCHITECTURE.” (TAKAYANAGI AND NAKAMURA 2013) 15
FIGURE 2 : ILLUSTRATION OF THE PASSIVE PIXEL IN CMOS TECHNOLOGY (THEUWISSEN 2007). .. 16
FIGURE 3 : ILLUSTRATIONS OF THE ACTIVE 3T (TOP) AND 4T (BOTTOM) PIXELS (EL GAMAL AND ELTOUKHY 2005). 17
FIGURE 4 : ILLUSTRATION OF THE IN 1.75T ARCHITECTURE (EL GAMAL AND ELTOUKHY 2005). .. 18
FIGURE 5 : LOGARITHMIC GRADIENTS OBJECT DETECTION PIPELINE (YOUNG ET AL. 2019). ... 21
FIGURE 6 : DISTRIBUTION OF POWER CONSUMPTION FOR THE IMPLEMENTED CIRCUIT FROM (YOUNG ET AL. 2019) 21
FIGURE 7 : CIRCUIT SCHEMATIC FOR LOGARITHMIC GRADIENTS EXTRACTION (YOUNG ET AL. 2019) .. 22
FIGURE 8 : CIRCUIT SCHEMATIC FOR SOBEL-LIKE EDGE-MAGNITUDE-EXTRACTION (SOELL ET AL. 2016) 22
FIGURE 9 : “(A) CONVENTIONAL FACE RECOGNITION SYSTEM (B) PROPOSED RECOGNITION SYSTEM” (J.-H. KIM ET AL. 2019). 26
FIGURE 10 : SYSTEM OVERVIEW OF THE PWM PIXELS-MATRIX AND PROGRAMMABLE PRE-PROCESSING (HSU ET AL. 2021) 27
FIGURE 11 : DIAGRAM OF THE IMPLEMENTED PRE-PROCESSING FOR MAC AFTER PWD READ-OUT (HSU ET AL. 2021) 28
FIGURE 12 : ILLUSTRATION OF THE IN PIXEL-MAC ARCHITECTURE (BOSE ET AL. 2019) .. 29
FIGURE 13 : ILLUSTRATION OF THE 3D-IC SMART-IMAGE SENSOR (MILLET ET AL. 2018) ... 29
FIGURE 14 : DIAGRAM OF THE UNITS IMPLEMENTED IN THE BOTTOM LAYER (MILLET ET AL. 2018) .. 30
FIGURE 15 : ILLUSTRATION OF THE PRINCIPLE OF FUNCTIONING OF THE DYNAMIC VISION SENSOR (POSCH ET AL. 2014) 32
FIGURE 16 : EXAMPLE OF THE EVENT-BASED READ-OUT “(A) BLOCK DIAGRAM. (B) TIMING FOR A COMMUNICATION CYCLE FOR A

SINGLE ON EVENT…” (LICHTSTEINER, POSCH, AND DELBRUCK 2008) ... 33
FIGURE 17 : PRINCIPLE OF FUNCTIONING OF THE TIME-TO-FIRST-SPIKE PIXEL (GUO, QI, AND HARRIS 2007) 34
FIGURE 18 : EXAMPLE OF A WEIGHTED AVERAGE CIRCUIT IN SPIKE-DOMAIN (RAVINUTHULA AND HARRIS 2004) 34
FIGURE 19 : EXAMPLE OF A SUBTRACTION AND THRESHOLDING CIRCUIT IN SPIKE DOMAIN (RAVINUTHULA AND HARRIS 2004). 35
FIGURE 20 : EXAMPLE OF AN OBJECT DETECTION PIPELINE WITH HOG AND SVM (DALAL AND TRIGGS 2005) 35
FIGURE 21 : ILLUSTRATION OF THE PRINCIPLE OF FUNCTIONING OF THE DMP MODEL. “(A) A COARSE FILTER, (B) SEVERAL HIGHER

RESOLUTION PART FILTERS, AND (C) A SPATIAL MODEL FOR THE LOCATION OF EACH PART RELATIVE TO THE ROOT…” (P. F.

FELZENSZWALB ET AL. 2010) ... 36
FIGURE 22 : DIAGRAM OF THE FAST R-CNN PIPELINE: “… AN INPUT IMAGE AND MULTIPLE REGIONS OF INTEREST (ROIS) ARE INPUT

INTO A FULLY CONVOLUTIONAL NETWORKS. EACH ROI IS POOLED INTO A FIXED-SIZE FEATURE MAP…” (GIRSHICK 2015) 37
FIGURE 23 : ILLUSTRATION OF THE “FASTER R-CNN” PIPELINE (REN ET AL. 2017) ... 38
FIGURE 24 : ILLUSTRATION OF THE PRINCIPLE OF THE YOLO-PIPELINE: “…IT DIVIDES THE IMAGE INTO AN S X S GRID AND FOR EACH

GRID CELL PREDICTS B BOUNDING BOXES, CONFIDENCE FOR THOSE BOXES, AND C CLASS PROBABILITIES…” (REDMON ET AL.

2016). ... 39
FIGURE 25 : MAIN EDGETON ALGORITHM. .. 42
FIGURE 26 : DIAGRAM OF EDGETON FRAMEWORK ARCHITECTURE FOR SIMULATING COMPLETE PROCESSING PIPELINES. 43
FIGURE 27 : IMAGER MODEL (CUBERO ET AL. 2019) .. 44
FIGURE 28 : EXAMPLE OF THE IMAGER MODEL IMPLEMENTED IN PYTHON MODULES (CUBERO ET AL. 2019). 46
FIGURE 29 : SIMULATION LOOP (CUBERO ET AL. 2019). .. 47
FIGURE 30 : EXAMPLE IMAGE OF HOW AN EVENT AT TIME STEP 𝑇𝑖 CAN DEPEND ON A TIME STEP SIMULATION 𝑇𝑡 − 2. 54
FIGURE 31 : EXAMPLE OF DIAGRAMS OF PIPELINES FOR EMBEDDED INTEGRATED DEVICES. .. 57
FIGURE 32 : “(A) CONVENTIONAL FACE RECOGNITION SYSTEM (B) PROPOSED FACE RECOGNITION SYSTEM" (J.-H. KIM ET AL. 2019).

 .. 59
FIGURE 33 : (A) OD IN GENERAL. (B) OD WITH EMBEDDED AND DIGITAL PRE-PROCESSING. (C) THEIR INNOVATIVE APPROACH WITH

EMBEDDED DIGITAL AND ANALOG PRE-PROCESSING. (OMID-ZOHOOR ET AL. 2018) ... 60
FIGURE 34 : PRINCIPLE OF FUNCTIONING OF EDGE-BOXES (ZITNICK AND DOLLAR 2014). .. 62
FIGURE 35 : EXAMPLE OF HOW EDGE-BOXES RELATES DISCONNECTED SEGMENTS. .. 64
FIGURE 36: EDGE-BOXES MEMORY ESTIMATION WHILE PROCESSING ONE IMAGE. ... 68
FIGURE 37: EDGE-BOXES INSTANCE VARIABLES SIZE ESTIMATION. .. 69
FIGURE 38: OUR PROPOSED COLUMN PARALLEL PRE-PROCESSING PIPELINE FOR GRADIENT COMPUTATION. 75
FIGURE 39: ILLUSTRATION OF WHY A SIMPLE GRADIENT COMPUTATION DEPENDS UPON 25 ORIGINAL-IMAGE-VALUES. 77
FIGURE 40 : ADAPTATION FROM FIGURE 38 FOR RELATIVE GRADIENTS. THE ARCHITECTURE SEGMENTS ADDED ARE COLORED IN RED.80

 8

FIGURE 41 : CORRELATED DOUBLE SAMPLING AND BUFFER CIRCUITRY PROPOSED BY (YOUNG ET AL. 2019). 82
FIGURE 42 : IMAGE SPATIAL-LOW-PASS (BLUR) FILTER WITH AN AVERAGING KERNEL. .. 83
FIGURE 43: INTERMEDIARY BUFFER SCHEMATIC. .. 84
FIGURE 44 : SCHEMATIC FOR COMPUTED GRADIENT MAGNITUDE COMPONENTS. .. 85
FIGURE 45 : EQUIVALENT DIFFERENCE AND ABSOLUTE VALUE CIRCUIT FROM FIGURE 44 IN SAMPLING PHASE. 86
FIGURE 46 : EQUIVALENT DIFFERENCE AND ABSOLUTE VALUE CIRCUIT FROM FIGURE 44 IN AMPLIFICATION STAGE. 86
FIGURE 47: CIRCUIT SCHEMATIC FOR THE SUMMATION AND QUANTIZATION STAGE. .. 86
FIGURE 48 : SIMPLIFIED CIRCUIT RESPECT TO THE ONE FROM (CHOI ET AL. 2014) FOR ANGULAR COMPUTATION. 88
FIGURE 49 : LOGICAL EXPRESSIONS AND RELATED TRUTH TABLES FOR ANGULAR COMPUTATION WITH THE CIRCUIT FROM FIGURE 48. 89
FIGURE 50 : EQUIVALENT NUMBER OF BITS FOR TWO DIFFERENT PIXEL-INTENSITY-VOLTAGE-SWINGS V_SIG=V_R, AS A FUNCTION OF

THE EQUIVALENT NUMBER OF SEQUENTIAL SIGNAL AMPLIFICATIONS N. C_H=100 FF,T=300 K. 96
FIGURE 51 : RMS THERMAL NOISE VOLTAGE (√(Σ^2)), AS A FUNCTION OF THE EQUIVALENT NUMBER OF SEQUENTIAL SIGNAL

AMPLIFICATIONS N. C_H=100 FF,T=300 K. .. 97
FIGURE 52 : ILLUSTRATION OF THE IOU SHOWING THE ROI PROPOSAL, GROUND-TRUTH-BOX, AND INTERSECTION AREAS. THE UNION

AREA IS DELIMITED BY BORDERS OF BOTH RECTANGLES WITHOUT TAKING INTO ACCOUNT BORDERS OF THE INTERSECTION

RECTANGLE. ... 100
FIGURE 53 : DIAGRAM OF SIMULATION FLOW FROM DATASET TO FINAL PLOTS. THE FIGURE IS DIVIDED IN UPPER AND BOTTOM

SECTIONS. THE FIRST ONE WAS COMPUTED IN A CLUSTER, WITH 10 JOBS (AVAILABLE TO RUN IN PARALLEL AND SCALABLE TO

MORE JOBS) OF 100 IMAGES EACH. THE SECOND (BOTTOM) ONE CORRESPONDED TO THE POST-PROCESSING MADE TO

GENERATE THE FINAL PLOTS. .. 102
FIGURE 54 : AVERAGE GLOBAL ABIOU OBTAINED WITH 10 JOBS. .. 106
FIGURE 55 : EXAMPLE OF AN INPUT IMAGE FROM PASCAL VOC2007 DATASET (M. EVERINGHAM ET AL. N.D.; N.D.; MARK

EVERINGHAM ET AL. 2015), AND CORRESPONDING REPRESENTATIONS OF THE ORIENTED EDGES MAP OUTPUTS FROM THREE

DIFFERENT EDGE-EXTRACTORS. THE GRAY/RED BOXES REPRESENT THE BEST ROI PROPOSALS AFTER RUNNING EDGE-BOXES ON

THE EDGES-MAPS. GREEN MEANS THAT THE OBJECT WAS CORRECTLY INCLUDING IN THE ROI, WHILE RED MEANS THAT THE

OBJECT WAS NOT FOUND (E.G. ALL ROIS WHERE SUCH THAT THEIR IOU < 0.5). ... 108
FIGURE 56 : GLOBAL AVERAGE BEST IOU COMPARISON FOR ARCHITECTURES USING AND NOT USING DE-NOISING. 109
FIGURE 57 : GLOBAL AVERAGE BEST IOU COMPARISON FOR ARCHITECTURES USING AND NOT USING 2X2 BINNING. 110
FIGURE 58 : GLOBAL AVERAGE BEST IOU COMPARISON FOR ARCHITECTURES USING RELATIVE AND SIMPLE LINEAR GRADIENTS (4

ENOB). .. 111
FIGURE 59 : GLOBAL AVERAGE BEST IOU COMPARISON FOR ARCHITECTURES USING RELATIVE AND SIMPLE LINEAR GRADIENTS (4

ENOB). .. 112
FIGURE 60 : NORMALIZED AFFINITIES VARIABLE SIZE AS A FUNCTION OF THE NORMALIZED NUMBER OF EGDE-CLUSTERS (SEGMENTS)

FOR DIFFERENT ARCHITECTURES. ALL PLOTS SHOW A POSITIVE CORRELATION BETWEEN THE TWO VARIABLES. 113
FIGURE 61 : AFFINITIES-VARIABLE-SIZE COMPARISON FOR ARCHITECTURES USING AND NOT USING DE-NOISING. 114
FIGURE 62 : AFFINITIES-VARIABLE-SIZE COMPARISON FOR ARCHITECTURES USING AND NOT USING 2X2 BINNING. 115
FIGURE 63 : AFFINITIES-VARIABLE-SIZE COMPARISON FOR ARCHITECTURES USING RELATIVE AND SIMPLE LINEAR GRADIENTS (4 ENOB).

 .. 116
FIGURE 64 : AFFINITIES-VARIABLE-SIZE COMPARISON FOR ARCHITECTURES USING RELATIVE LINEAR GRADIENTS (8 ENOB)............ 117
FIGURE 65 : NORMALIZED-RUNTIME COMPARISON FOR ARCHITECTURES USING AND NOT USING DE-NOISING. 119
FIGURE 66 : NORMALIZED-RUNTIME COMPARISON FOR ARCHITECTURES USING AND NOT USING 2X2 BINNING............................ 119
FIGURE 67 : NORMALIZED-RUNTIME COMPARISON FOR ARCHITECTURES USING RELATIVE AND SIMPLE LINEAR GRADIENTS (4 ENOB).

 .. 120
FIGURE 68 : NORMALIZED-RUNTIME COMPARISON FOR ARCHITECTURES USING RELATIVE AND 8-BIT LINEAR GRADIENTS. 121
FIGURE 69 : FIGURE OF MERIT FOR DIFFERENT ARCHITECTURES AT SELECTED THRESHOLDS (FROM TABLE []). 122
FIGURE 70 : GLOBAL ABIOU DEPENDANCE UPON THE GRADIEND THRESHOLD FOR DIFFERENT ARCHITECTURES. 123
FIGURE 71 : FIGURE OF MERIT AS A FUNCTION OF THE RELATIVE/LOG THRESHOLD FOR DIFFERENT ARCHITECTURES. 124
FIGURE 72 : DEPENDANCE OF THE FIGURE OF MERIT UPONG THE ABIOU FOR DIFFERENT ARCHITECTURES (BOTH QUANTITIES ARE

PARAMETRIC FUNCITONS OF THE ARCHITECTURE THRESHOLDS). .. 125
FIGURE 73 : EXAMPLE OF REGIONS PROPOSALS GENERATED IN (B) FROM (A) (ACHARYA, PADALA, AND BASU 2019). 128
FIGURE 74 : OUR ANIMATION SETUP FOR GENERATING OUR FIRST SYNTHETIC DATASET. ... 131
FIGURE 75 : EXAMPLE OF A RENDERED IMAGE FROM THE VIDEO SEQUENCE GENERATED WITH THE SIMULATION SETUP FROM FIGURE 74

(CUBERO ET AL. 2020). .. 132

 9

FIGURE 76 : LIGHT INTENSITY EVOLUTION FOR TWO PIXELS WHEN A COLOR-EDGE IS PASSING THROUGH. THE GRAY PLOT CORRESPONDS

TO A PIXEL FAR AWAY FROM THE POLYGON CENTER, WHEREAS THE RED ONE CORRESPONDS TO A PIXEL CLOSER TO THE CENTER

(CUBERO ET AL. 2020). .. 132
FIGURE 77 : OUR ANIMATION-SETUP FOR OUR SECOND DATASET GENERATED. ... 133
FIGURE 78 : FIRST (A) AND LAST (B) FRAMES RENDERED FROM THE VIDEO SEQUENCE RELATED TO THE SETUP IN FIGURE 74. 133
FIGURE 79 : EXAMPLE OF A RENDERED FRAME FROM THE OUTPUT OF THE RELATIVE-EDGES EXTRACTOR. COLORS INDICATE THE

DETECTED EDGE DIRECTION (BLUE: 90 DEG, RED: 0 DEG, YELLOW: 45 DEG, GREEN: 135 DEG). 134
FIGURE 80 : EXAMPLE OF HOW THE IMAGE PLANE IS PLACED INTO THE WORLD COORDINATE SYSTEM. 135
FIGURE 81 : EXAMPLE OF TWO RENDERED FRAMES WHEN ANIMATING A MOVING CHESS-BOARD PATTERN IN THE SCENE. 136
FIGURE 82 : RESULT FROM OPENCV FUNCTION FOR DETECTING THE CHESSBOARD PATTERN CORNERS AT FRAME 10 (A) AND AT FRAME

20 (B). .. 136
FIGURE 83 : EXAMPLE OF THE FIRST (A) AND LAST (B) RENDERED FRAME FROM THE ANIMATION-SETUP FROM FIGURE 77, AND WITH

GROUND-TRUTH BOUNDING-BOXES GENERATED WITH THE METHOD PREVIOUSLY DESCRIBED. ... 137
FIGURE 84 : “(A) ABSTRACTED PIXEL SCHEMATIC. (B) PRINCIPLE OF OPERATION. IN (A), THE INVERTERS ARE SYMBOLS FOR SINGLE-

ENDED INVERTING AMPLIFIERS.” (LICHTSTEINER, POSCH, AND DELBRUCK 2008) ... 138
FIGURE 85 : (A) EXAMPLE OF A RENDERED FRAME FROM OUR FIRST (VIDEO-SEQUENCE) SYNTHETIC DATASET, AND (B) EXAMPLE OF A

RENDERED FRAME AFTER BEHAVIORAL SIMULATIONS OF A DVS (CUBERO ET AL. 2020). .. 139
FIGURE 86 : OUR PROPOSED MODULATION SCHEME (CUBERO ET AL. 2020). ... 140
FIGURE 87 : ILLUSTRATION OF HOW AN ABRUPT CHANGING IN CT TRIGGERS UNDESIRED SPIKES AT THE MOMENT OF THE CHANGING

(CUBERO ET AL. 2020). .. 141
FIGURE 88 : DVS ORIGINAL SCHEMATIC (A) FROM (LICHTSTEINER, POSCH, AND DELBRUCK 2008) AND (B) OUR PROPOSED

MODIFICATION FOR INCLUDING THE MODULATION PRESENTED IN FIGURE 86, AND PUBLISHED IN (CUBERO ET AL. 2020). 143
FIGURE 89 : EXAMPLE OF OUTPUTS FROM THE THREE CHANNELS DURING ONE MODULATION PERIOD (CUBERO ET AL. 2020). 144
FIGURE 90 : INSTANTANEOUS DATA THROUGHPUT FOR THE ORIGINAL DVS AND FOR OUR THREE MODIFICATIONS. THE TABLE AT THE

TOP PRESENTS THE AVERAGE DATA THROUGHPUT. .. 144
FIGURE 91 : OUR DYNAMIC FEATURES EXTRACTION METHOD COMPARED WITH THE STATE OF THE ART. 145
FIGURE 92 : DIAGRAM ILLUSTRATING THE PRINCIPLE OF FUNCTIONING FOR EXTRACTING DYNAMIC FEATURES FROM TWO SUBSEQUENT

FEATURE MAPS. ... 146
FIGURE 93 : SIMULATION OUTPUT FROM THE DFVS (LEFT) AND A STANDARD DVS WITH CT = 3 % (RIGHT), AT TWO DIFFERENT TIMES

OF THE VIDEO SEQUENCE FROM THE THREE-SPHERES-OVER-GROUND DATASET. .. 148
FIGURE 94 : DIAGRAM SHOWING HOW WE MODIFIED EDGEBOXES IN ORDER TO INCLUDE DYNAMIC FEATURES IN THE ROI PROPOSALS

GENERATION... 149
FIGURE 95 : AVERAGE RUNTIME PER IMAGER FOR DIFFERENT ARCHITECTURES, SHOWING THE GAIN IN RUNTIME WHEN USING DYNAMIC

FEATURES ALONGSIDE WITH EDGEBOXES. ... 150

 10

List of tables

TABLE 1 : COMPARISON OF THE HYBRID-CNN IMPLEMENTATION AND PREVIOUS WORKS (J.-H. KIM ET AL. 2019). 26
TABLE 2 : THE HYBRID-CNN IMPLEMENTATION VERSUS PREVIOUS WORKS (J.-H. KIM ET AL. 2019). ... 60
TABLE 3 : BENCHMARK OF PERFORMANCES FOR DIFFERENT REGION PROPOSALS ALGORITHMS: “… FOR IOU THRESHOLD OF 0.7.

METHODS ARE SORTED BY INCREASING AREA UNDER THE CURVE (AUC). ADDITIONAL METRICS INCLUDE THE NUMBER OF

PROPOSALS NEEDED TO ACHIEVE 25%, 50% AND 75% RECALL AND THE MAXIMUM RECALL USING 5000 BOXES…” (ZITNICK

AND DOLLAR 2014). ... 61
TABLE 4 : MOST-RELEVANT-VARIABLES SIZE-ESTIMATION FOR THE FIRST EDGEBOXES STAGE; SEGMENTS = 2𝑖𝑛𝑡 = 216 (WORST-

CASE). ... 66
TABLE 5 : MOST-RELEVANT-VARIABLES SIZE-ESTIMATION FOR THE SECOND EDGE-BOXES STAGE; H = W = 500 PIXELS. 67
TABLE 6: TRUTH TABLE SUGGESTED BY (YOUNG ET AL. 2019) FOR APPROXIMATING LOGARITHMIC 2-BIT GRADIENT-COMPONENTS. . 79
TABLE 7: POWER ESTIMATION WHEN TAKING 𝑉𝑖 = 1,5 𝑉, 𝐼1 = 1 µ𝐴, 𝐻 = 𝑊 = 500 𝑝𝑖𝑥𝑒𝑙𝑠, AND 𝑓𝑝𝑠 = 60 𝑓𝑟𝑎𝑚𝑒𝑠/𝑠.

 .. 90
TABLE 8 : EXAMPLE OF VALUES CALCULATED FOR 𝐼𝐷 WHEN 𝐶𝐻 = 100 𝑓𝐹,𝑁𝑐 = 1 AND 𝐻 = 500 𝑟𝑜𝑤𝑠. 92
TABLE 9 : UPDATED POWER CURRENT ESTIMATION WHEN TAKING V_AMPDD=1,5 V,C_H=100FF,H=W=500 PIXELS,V_R=1 V, AND

FPS = 60. ... 92
TABLE 10 : UPDATED POWER ESTIMATION WHEN TAKING V_DD=1,5 V,C_H=100FF,H=W=500 PIXELS, AND FPS = 60. 93
TABLE 11 : CLASSES FOUND IN THE PASCAL VOC 2007 DATASET(M. EVERINGHAM ET AL. N.D.; N.D.; MARK EVERINGHAM ET AL.

2015), AND ONE EXAMPLE IMAGE WITH TWO CATS.. 101
TABLE 12 : DIFFERENT TYPES OF LIGHT-INTENSITY ORIENTED GRADIENT EXTRACTORS TYPES CONSIDERED IN OUR LOCALIZATION

BENCHMARK. ... 103
TABLE 13 : SELECTED THRESHOLDS VALUES ISSUED FROM SIMULATION (SELECTED AS DESCRIBED IN CHAPTER 3). 107
TABLE 14 : NORM-NUMBER-OF SEGMENTS, NORM-SEGAFFSIZE, AND GLOBAL-ABIOU FOR THE RELATIVE ORIGRAD WITH AVR. DE-

NOISING AND BINNING. ... 118
TABLE 15 : CUMMULATIVE TIME IN SECONDS PER IMAGE .. 149
TABLE 16: SUMMARY OF SYNTHETIC IMAGES RESOLUTION ... 150

 11

Chapter 1. Introduction

 Computer vision and artificial intelligence have opened a new range of applications. For

instance, machines have become able to solve complex problems for object localization and

classification, and also with high resolution images. That is, even if challenging characteristics such as

high dynamic range, occlusion and significant affine/projective transformations are present.

Moreover, most recent algorithms, based on deep convolutional neural networks (CNNs), have shown

capacity to classify objects from an elevated amount of different classes.

 Nevertheless, some of those new applications are simply incompatible with desktop-machine

computations and/or servers: typical limitations in latency, autonomy, size, weight and financial cost

constraint the computational unit to be compact and portable. Probably, one of the most common

use-case scenarios are mobile phones. In addition, other examples where such limitations are present

are drones, autonomous vehicles, video surveillance and wearable devices, among others. The

aforementioned means that such smaller devices are logically less equipped, and thus it is common to

say that they are under “hardware and power constraints”.

 Regarding the last sentence, power consumption restrictions typically arise when devices are

not connected to a “permanent” energy source, but they rather depend on a battery. Of course, for

being smaller, the battery size has to be reduced too, and thus its lifetime (before re-charging) as well.

Yet, computer vision tasks are often related to computationally intensive operations, and, for instance,

CNNs are not an exception. In parallel, each computation implies energy, and the faster the system

goes, the more power is drained from the battery. In the other hand, sending data out from the system

to a remote server is possible, but the energy cost of this I/O bus is significant and often unsuitable if

the data-rate is too high.

 Last paragraphs sets motivations for one entire research field: one that is focused on computer

vision and/or artificial intelligence on hardware/power constrained devices. The set of problems

addressed commonly cannot be reduced to simply “take” the exact same algorithm and then “run it”

on an embedded device. Typical reasons for that are that embedded devices have, for example, less

memory available, a reduced instruction set (e.g. summation, subtraction, bit-shifting, etc…), and less

energy compared to desktop computers or servers. Those reasons are why efforts are made in

optimizing, simplifying and/or adapting algorithms and hardware, so even embedded systems can

perform more complex computer vision tasks.

 Continuing with last ideas, our work focuses on optimizing the power versus AI performance

trade-off for object detection. Object detection is a known problem in artificial intelligence and

computer vision: the problem is giving bounding-boxes for objects in a still image as the algorithm

output, along with class labels for each object inside each bounding box. Moreover, as other groups

do, our approach is to include more complex/adapted operations on the same integrated chip, so the

I/O data-rate with remote servers and/or other chips is reduced. Furthermore, as other groups do as

well, we optimize the algorithm/hardware to make it more energy-efficient. We take into account the

development of newer microfabrication technologies allowing 3D-IC staking for justifying the addition

of more complex circuitry.

 More specifically, we tackle the last mentioned problem by optimizing the region-proposals

stage and the low-level-features generation in the object detection pipeline. We explore the inclusion

 12

of circuitry specialized on generating low-level hand-crafted features for region proposals. We also

explore both frame-based (classic) and asynchronous/neuromorphic (non-classic) pixel topologies for

achieving it. We believe that region proposals can replace other typical IC implementations that rely

on the older sliding window approach, and for energy efficiency. That is, since the computational

complexity of the sliding window makes it inefficient or even unsuitable for solving problems with a

high-scale-range or with high-resolution images. Indeed, with the so-called sliding window, embedded

object detection can be constrained to “small” images only, and with objects in positions and/or scales

that are relatively “easy” to solve, or in other works, incompatible with real-case/outdoors scenarios.

 This work has been made in a laboratory called CEA-LETI/L3I: a group specialized in CMOS

image-vision-sensor development, and also in integrated, low-power image pre-processing electronic

architectures. The laboratory is located in Grenoble, France, and it forms a part of a bigger entity called

the Commissary of Atomic Energy and Renewable Energies (CEA). The CEA counts with different

laboratories in a wide range of fields, from fundamental sciences to applied electronics.

 Our manuscript is composed of eight chapters (counting the introduction and conclusion).

Chapter two gives a brief view of the state of the art in CMOS image-sensors, smart-imagers and object

detection algorithms. Chapter three presents our simulation and modeling methodology, which we

use to derive conclusions for the electronic-architecture design. Chapter four explains which kind of

object detection pipeline we propose to use for embedded applications. Chapter five presents the low-

level features architecture that we propose to use for region-proposals-generation. Chapter six

presents a series of benchmarks that show (at simulation level) that our pipeline is suitable for region-

proposals-generation on constrained devices. Finally, chapter seven presents further models and

simulation results regarding the implementation of non-classic, neuromorphic pixels for optimizing the

region proposals generation as well.

 13

Chapter 2. State of the art

Chapter 2 describes the main theoretical concepts for the general understanding of this thesis.

We present a synthesis of our State of Art review, so the reader can find here a (non-exhaustive) list of

related works. The first principal subject mentioned is “CMOS” Image sensors: we cover from photo-

generation to digital-image-output. We do so for different light-sensing types, and for several pixel

architectures. However, we do not go into details, as we only cite relevant ideas for later in this work.

The second principal subject is what a “smart-image-sensor” is. We explain it by signaling key

differences with classic architectures, and by citing illustrative examples in the state of the art. The final

subject covered here is the “object-detection” problem: it comes from the fields of Artificial Intelligence,

Machine-learning and Computer-vision. We describe its formal definition, and later we relate it with

applications and implementations in the embedded-IC case-scenario.

 14

2.1. CMOS Image sensors

The term « CMOS » is an acronym for « complementary metal oxide semiconductor » (El Gamal

and Eltoukhy 2005). The name describes a specific type of electronics-related technology and physics

knowledge, allowing creating devices known as CMOS transistors. CMOS transistors are useful to

create simple or complex circuits, as switches, amplifiers and digital-processors, among many others.

During advances in imaging techniques, CMOS technology became attractive for devices that generate

a static image of a scene. In order to achieve that, transistors, combined with light-sensing devices

(photo-transductors), have been used for locally transforming impinging light into an electric signal.

This setup is known as a “pixel”. Pixels arranged into matrices are capable of generating an image. For

the present work, one needs to understand how the signal goes from photo-generation to a digital

image. In addition, the reader should know the behavior (operation) of the basic pixel types.

2.1.1. Typical system architecture

Classic CMOS image-sensors typically relate to a matrix of pixels. Each pixel transforms the

local impinging light into an electric signal. In this work, we refer to an imaging-system as the

combination of the image-sensor (including the pixels matrix), the optics that set how light rays are

directed to pixels, and the read-out that outputs a digital-image. Another aspect is how such signal

goes from the pixel to next stages. Indeed, this signal corresponds to a photo-generated electric-charge

stored into a capacitance -at each pixel. This charge gives rise to an output voltage for each pixel, which

directly relates to the amount of impinging light -into each pixel. For recovering the whole image, the

read-out stage, after the imaging-part, has to output the voltage read at all pixels. Nevertheless, later

stages normally are digital-based, whereas voltage-signals from pixels are analog values. Then, after

reading each pixel voltage, the image-sensor has to “transform” analog values to digital ones (e.g. the

analog-to-digital conversion). This process can be achieved in several manners, as shown in Figure 1.

 15

Figure 1 : different approaches for pixels pre-processing and/or read-out. “(a) serial architecture; (b) column-parallel

architecture; (c) pixel-parallel architecture.” (Takayanagi and Nakamura 2013)

FIg. [cmosArchitecture] :
In Figure 1, authors (Takayanagi and Nakamura 2013) explain three different image readout

and/or pre-processing schemes. Figure 1 takes into account signal-processing and read-out, but for

now we take only the read-out into account (letting more complex pre-processing types for section

2.2): one possibility (Figure 1 a) is to read pixels one by one, while using only one unit for carrying-out

the A-D conversion. Here, transistors are used as switches for selecting which pixel value goes to the

ADC. Typically, a digital controller circuit selects a row of pixels and allows them to store their values

in a column analog part. This part stores, “de-noises” and amplifies pixel values. Then, another digital

controller-circuit selects these pixel values, one by one, and sends them to the ADC. Another possibility

(Figure 1 b) is to have one ADC per column: a digital-controller selects only the row to convert, and

then all pixels of the selected row are read in parallel (with a stack of parallel ADCs). This architecture

is the current one in industry of image-sensors. Another possibility (Figure 1 c), is to perform the A-D

conversion at the pixel level by implementing one single ADC for each pixel. Notice that the name

“Signal processing circuit”, used in Figure 1, illustrates that more (pre-) processing can be performed

near sensor (or matrix of sensors). That can be done even without and/or beyond the standard A-D

conversion. In next section, we go a bit deeper into the inner structure of pixels, and we briefly explain

several of the most common variants.

2.1.2. Pixel types

 In previous part, we have cited the overall (frame-based) image-sensor architecture(s). Here,

we go deeper into detail about pixel configurations and the main aspects for choosing amongst them.

Figure 2 shows one simple pixel: it consists in a p-n junction in reverse-biasing conditions, a RS (row-

select) switch, and a column bus (shared by all pixel on the same column). The reverse p-n junction is

the photo-sensitive area (i.e. where impinging photons give rise to photo-generated electron-hole

pairs). Holes drift to ground, and electrons cumulate in the junction capacitance. This charge generates

an electric signal that is temporarily stored in the junction-capacitance until the read. For reading one

 16

pixel, the row is selected by the RS switch, while the corresponding column bus is addressed, for

instance, by a column-decoder. For this particular case (called the passive pixel sensor PPS), when the

signal is read, charges “escape” from the junction capacitance, and thus the reading process is

“destructive”. The PPS has the advantages of being simple and compact, thus favoring the easiness of

higher fill factors. Nevertheless, it typically suffers from poor performances (e.g. regarding noise)

respect to later topologies (Theuwissen 2007).

Figure 2 : illustration of the passive pixel in CMOS technology (Theuwissen 2007).

Fig. [passivePixel] :

 After the PPS, CMOS imaging was improved with the introduction of the so-called “Active Pixel

Sensor” or APS, illustrated in Figure 3. We base our explanation from (El Gamal and Eltoukhy 2005),

which gives a good overview. The term “active” comes from the amplifier (buffer) between the electric

signal (the photodiode voltage) and the column bus. In this case, the readout is non-destructive.

Moreover, one reset switch controls when photo-generated charges, which are stored in the junction

capacitance, are discarded. The intermediate buffer-amplifier adds 1 transistor respect to the PPS, and

the Reset adds another extra transistor. This is why this pixel configuration is known as the 3T-APS.

This configuration allows improving the SNR respect to the PPS (El Gamal and Eltoukhy 2005), but still

presents an important noise contribution from the “reset-noise”. In order to circumvent that, a forth

transistor allows performing the so-called “correlated-doubled-sampling (CDS)” (El Gamal and

Eltoukhy 2005). The 4T-APS is shown in Figure 3, bottom. Then, this pixel is known as the 4T-APS. This

fourth transistor is, however, less conventional respect to the others in the pixel, since one of its

terminals can be made of the so-called “pinned-photodiode” (El Gamal and Eltoukhy 2005). The pinned

photodiode is the current industrial-standard pixel structure. Moreover, its dark-current is less

important with respect to non-pinned junction. In addition, and regarding Figure 3 (bottom), signal TX

allows splitting the photo-generated signal from the reading node FD. Thus, the reset signal is sampled

at FD (almost) immediately before the photo-generated signal “passes” to FD (thus enabling CDS). This

readout process is also non-destructive. Moreover, CDS can be set aside for the 4T-APS if a “global-

shutter” readout scheme is desired. Until now, pixels are read “one by one”, but photo-current-

integration is still happening during read time as well (a method known as the “rolling-shutter” reading

scheme). In general, this effect is not desired. For instance, one way for letting away the rolling-shutter

technique is by passing all photo-generated charges to the sensing node FD at once. That means that

 17

photo-current-integration stops at the same time for all pixels. This strategy is the so-called global-

shutter in the literature.

Figure 3 : illustrations of the active 3T (top) and 4T (bottom) pixels (El Gamal and Eltoukhy 2005).

Fig. [activePixel] :

 The last example we present is the 1.75T-APS (Figure 4). We base our description from (El

Gamal and Eltoukhy 2005). This pixel allows performing neighboring-pixels-binning and at pixel level.

Binning is important for us, since we want to assess the optimal image size for object localization /

classification, and the impact of image binning on algorithms performances (e.g. object localization).

 18

Figure 4 : illustration of the in 1.75T architecture (El Gamal and Eltoukhy 2005).

Figure [175T]:

In next section, we explain some important image-sensor design parameters that we mention

often during this work.

2.1.3. Typical design parameters

We base our explanation of typical design parameters from the work of (El Gamal and Eltoukhy

2005). (El Gamal and Eltoukhy 2005) explain several performance measures, and non-ideal-effects that

are often mentioned in this work. They separate those non-ideal-effects into “temporal” and “fixed-

pattern-noise (FPN)”. As its name suggests, temporal noise depends on time, and thus it can make the

signal to change between successive readings (instead of keeping steady until the reset). On the other

hand, FPN does not depend on time, but on space: it corresponds to differences in amplifiers offsets

and gains across (for instance) different pixels. In addition, (El Gamal and Eltoukhy 2005) explain that

temporal noise sources are (without being exhaustive) “shot noise, pixel reset circuit noise, readout

circuit thermal and flicker noise, and quantization noise” (El Gamal and Eltoukhy 2005).

 19

 (El Gamal and Eltoukhy 2005) also mention important design parameters, such as the “signal-

to-noise-ratio” (SNR) and the “dynamic-range” (DR). The SNR is 10 times the base-10 logarithm of the

ratio of signal power and noise power:

𝑆𝑁𝑅 = 10 ⋅ log (
𝑃𝑠𝑖𝑔

𝑃𝑛𝑜𝑖𝑠𝑒
)

Equation 1

Where 𝑃𝑠𝑖𝑔 is the signal power and 𝑃𝑛𝑜𝑖𝑠𝑒 is the noise power. The higher the SNR, the greater

is the signal respect to the noise. Moreover, the DR states the range of illumination (photons) that the

image-sensor can collect and read from each pixel, settling a minimum and a maximum value.

Mathematically the DR is 20 times the base-10 log of the ratio of maximum photo-current and the

minimum photo-current (El Gamal and Eltoukhy 2005). The last parameter cite here from (El Gamal

and Eltoukhy 2005) is the “spatial resolution”.

 So far we have mentioned classic architectures and parameters of image-sensors. In next

section, we introduce newer ideas, which try to include more complex signal (pre-) processing

schemes.

2.2. Smart CMOS image sensors

Smart-image-sensors differentiate from classic approaches due to the inclusion of integrated

signal (pre-) processing. These kind of devices go beyond the typical scheme of in-pixel buffer-

amplifier, column read/amplification and signal A-D conversion. The aim of integrated “smart”

capabilities can be further improving design parameters (SNR, DR, etc), and at the cost of an increasing

on-chip complexity. Another objective can be integrating (“embedding”) artificial-intelligence

algorithms, in order to optimize performance at the system level, e.g. allowing for higher speed and/or

attaining lower power consumption. This work is concerned by the second case scenario, related to

embedded/integrated artificial intelligence for computer vision applications.

There are several reasons for which “integrated-smart” capabilities are attractive. In the

context of internet of things, distributed sensor networks, mobile robots, wearable devices, etc,

devices have a limited battery that should last as long as possible without recharging. This rises the

interest for “low-power” devices, which can perform artificial-intelligence-related tasks but without

“draining” the battery. Reducing power has been tackled in different ways in the literature. Some

trends (without being exhaustive) are reducing inter-chip data throughput by including pre-processing

steps in the same chip as the image-sensor. For instance, (Verdant et al. 2020) integrated the full

object-recognition pipeline into one chip with an innovative (low-power) read-out. Other strategies

have been optimizing the ADC by reducing its bit-depth output, and by changing the image codification

as done by (Young et al. 2019). In addition, other works have tried performing more complex

computations in the analog domain (so the ADC workload is significantly reduced), such as CNN-layers,

like in (J.-H. Kim et al. 2019).

In this work, we focus on two main types of smart-image-sensors: namely, frame-based (FB)

image-sensors and event-based image-sensors. So far, concepts introduced apply for FB image-

sensors, whereas event-based image-sensors are just briefly explained in sub-section (2.2.2). We go

more into details about event-based-imaging in chapter 7.

 20

2.2.1. Frame-based smart-image-sensors

 Frame based (FB) image-sensors are characterized by a deterministic read-out scheme. In

other words, the pixel readout sequence is always the same and the frame rate is constant. Moreover,

each output is an image, which is acquired by two main stages: integration, and read-out. During

integration time, all pixels start sensing impinging photons. Then, during read-out, pixels voltages are

read by any of the schemes shown in Figure 1. For the case of FB smart-image-sensors, a (pre-)

processing stage can be included to the frame-time. In next subsections, we explain some topologies

in the literature following the latter idea. Notice that integration examples we found (in relation to our

work) were typically related to edges or oriented gradients extraction (and/or related pipelines).

2.2.2. Edge or Oriented Gradients extraction

 Edge-extraction1 consists in computing image intensity gradients, followed by a “thresholding”

operation: only pixels with a gradient magnitude higher than a certain threshold are kept. This kind of

task has been included in the ADC, and some examples are (H.-J. Kim et al. 2017) and (Young et al.

2019). For instance, (H.-J. Kim et al. 2017) implemented a read-out scheme for outputting both 5-level

edges data and a light-intensity-image. Furthermore, they reported a figure of merit of 70

pJ/pix/frame. For the case of (Young et al. 2019), they proposed an ADC capable of outputting

logarithmic light intensity gradients on the fly. Their proposed complete system (see Figure 5) allowed

detecting objects from different classes, such as humans. The logarithmic-gradients-output from their

smart-imaging-system allowed better robustness under illumination conditions (e.g. high dynamic

range). That was, even under strong quantization of the log-gradients, and which they linked to the

logarithm-based gradients (related to pixel-intensities ratios instead of differences). In their pipeline,

logarithmic-gradients were the input for another computing stage (only simulated). There, they

computed the HOG features (Dalal and Triggs 2005), which derived from the oriented-gradients image.

They used those with an object-detection framework and algorithm called the Deformable-Parts-

Model (P. F. Felzenszwalb et al. 2010) or DPM. The later uses a strategy based on pictorial structures,

and Support-Vector-Machines, to localize and classify objects in an image.

1 We take the convention of calling “edges” the image-gradients whose magnitude is higher to any threshold.

 21

Figure 5 : logarithmic gradients object detection pipeline (Young et al. 2019).

Fig. [youngetal2019]:

Figure 6 : distribution of power consumption for the implemented circuit from (Young et al. 2019)

Fig. [youngetal2019_2]:
Figure 6 shows their (Young et al. 2019) power consumption decorticated for their

implementation. Notice that they implemented only the pixels-array and the logarithmic ADC (called
“RDC” by them). From that figure, we observe that the orange, gray and yellow blocks are related to
the log-gradients ADC, which was capable of computing log-oriented gradients on the fly. Their
reported power per pixel per frame was of 99 pJ/pix/frame (including the blue block) in Figure 6. Their
log-gradients ADC is shown in Figure 7: Their circuit was capable of sampling two pixels from which the
local log-gradient was obtained. The circuit used a successive approximation strategy for addressing
each gradient-component magnitude and sign.

 22

Figure 7 : circuit schematic for logarithmic gradients extraction (Young et al. 2019)

Fig. [youngetal2019_3]:
 Other edge extractors have been proposed, which typically implement linear versions of the

gradient approximation (instead of log), and at the bottom-of-the-column level. For instance, (Soell et

al. 2016) proposed an analog edge-extraction circuitry for a matrix of 200x200 pixels that consumed

(in simulation) 5.5 mW@75 fps (2097 pJ/pix/frame). Their work was interesting for us since they show

clever circuit ideas for analog implementation (showed in Figure 8). Their architecture was based on

computing both gradient components with a Sobel kernel. Then, they used both components for

approximating their respective absolute value, and finally the magnitudes-sum. If the sum of both

absolute-values was higher than a reference threshold, then the 1-bit output was set to “high”

(indicating the present of an edge). One of the main drawbacks we found from this architecture was

that no angular information was output.

Figure 8 : circuit schematic for Sobel-like edge-magnitude-extraction (Soell et al. 2016)

Fig. [soelletal2016]:
Other edge extractors have computed gradients and angles in the digital side (after the ADC).

For instance, (Suleiman and Sze 2014). However, as mentioned by (Omid-Zohoor et al. 2018), digital

computations with the ASIC proposed by (Suleiman and Sze 2014) could imply using a standard CMOS

image sensor for extracting image intensities with 8-bit resolution images, which would consume more

power for the ADC than for the feature extraction. One argument can be that 8-bit intensity images

 23

are not really necessary, and that a reduced bit depth is possible. However, (Omid-Zohoor et al. 2018)

also shows that reduced-bit-depth-linear-gradients are more prone to fail under high dynamic-range

conditions. Another digital implementation of the edge extraction, after the ADC, was proposed by (Jin

et al. 2020): their implementation had 1920 x 1440 pixels and consumed 9,4 mW@60fps (57

pJ/pix/frame). However, their work does not address how to cope with high-dynamic-range

conditions, neither how power would change if the angular information is needed. (Choi et al. 2014)

proposed a digital block right after the A-D conversion, which can also calculate orientations.

Moreover, their implementation also computes HOG features right after oriented gradients

calculation. Their reported FOM was 51.94 pJ/pix/frame, but it cannot directly be compared with other

examples, since it also includes the HOG features generation from the oriented gradients. In the other

hand, they did not take into account high-dynamic range optimizations.

Indeed, when comparing the work of (Soell et al. 2016) (2097 pJ/pix/frame) with respect to

(Jin et al. 2020) (57 pJ/pix/frame) and (Young et al. 2019) (99 pJ/pix/frame), the increased power of

the analog Sobel implementation can be explained by several reasons : firstly, they read pixels several

times directly from the pixels matrix, implying the usage of amplifiers able to drive the column

capacitances. One possible improvement, already applied by other works such as (Young et al. 2019),

is buffering pixel values that are required more than once. Moreover, the Sobel filter mask is rather

complicated in comparison with, for example, the mask used by (Young et al. 2019), which only

requires 2 pixels per component computation. Finally, from their publication (Soell et al. 2016), we

understood that the analog Sobel computing unit was shared and not parallelized at the bottom-of-

the-column level. This increases significantly the bandwidth requirements for this unit, increasing the

power consumption. However, we still find the schematic from Figure 8 important since it gives an

insight of implementation and potential optimizations.

Other edge extractors have included corresponding electronics in pixel. Typically, the gain

happens potentially in latency or power, since signals do not have to be transmitted before being

processed. For example, (Valenzuela et al. 2021) proposed a smart-pixel array capable of computing

pixel differences, and in order to generate a kind of feature (related to gradients) proposed by them:

the Ringed Local Binary Patterns (Valenzuela et al. 2021). However, we did not find in their publication

the power related for the smart-pixels-array, and for the analog-to-digital conversion. Another

example is the work from (C. Lee et al. 2015): their implementation was able to detect edges, and with

a power consumption of 8 mW@30fps over a 105 x 92 pixels matrix (27605 pJ/pixel/frame). In

addition, (Yin, Chiu, and Hsieh 2016, 14) implemented an array of pixels with PWM read-out, and with

in-pixel circuitry for Imaging, edge-extraction and multi-point tracking. As an example, the edge-

extraction was based on pixel-intensity-comparisons (of a central pixel with its neighbors). This

comparison was made with in pixel-logic, and whose output was either 1 or 0 for reflecting the edge

magnitude. Their implementation consumed 34.4 µW@2160 fps for an array of size 64 x 64, giving a

FOM for edge extraction of ~3.89 pJ/pix/frame. Interestingly, in imaging mode, their implementation

consumed 154 µW@30 fps, giving a FOM of ~1253 pJ/pix/frame. The latter example reflects the gain

of three orders of magnitude after exchanging the image codification from intensity to edges. This

work is interesting from the point of view of having a very good FOM for edge extraction mode.

However, several drawbacks limit our interest about their approach: firstly, the pixel complexity,

containing 26 transistors per pixel, would be challenging to scale to bigger resolutions, and could show

very poor fill factors. Secondly, the way edges are extracted reflects a rather simplistic logic, which is

not justified to work in more complex computer vision algorithms. Finally, they do not output

orientation information if an edge is detected.

 24

One interesting question is how reported FOMs compare to a FPGA implementation. We found

an example of a Canny Edge Detection algorithm implementation on FPGA (J. Lee, Tang, and Park

2018). The Canny Edge Detection algorithm runs on standard desktop computers with libraries such as

OpenCV (“OpenCV, Canny Edge Detector” 2021). Continuing with last example, (J. Lee, Tang, and Park

2018) reported an optimized algorithm and implementation (on FPGA) of the Canny-Edge-Detection

algorithm. It consumed 5.48 mW@50 fps for a UHD image (3840 x 2160 pixels, giving a FOM of 13.1

pJ/pix/frame). This illustrates that features/edges computations is not necessary the most consuming

part. Moreover, last examples show as well that analog computations are not necessarily less power

consuming than, for instance, the more standard pipeline Image-array -> 8-bit ADC -> processing ASIC.

One example supporting this argument is the work from (Choi et al. 2014), and which had a good FOM

of ~52 pJ/pix/frame. Nevertheless, even though the work of (Young et al. 2019) has not the best FOM

(99 pJ/pix/frame), they are the only example we found that address high-DR for feature extractors

along with aggressive quantization, and that proves (with benchmarks) the interest for Object

Detection.

From last examples, we observed certain trends that served us as starting point: firstly, low

power optimizations seem to benefit most from near matrix-of-pixels integration of custom-ADCs. In

addition, they benefit from specialized circuitry for features extraction. From examples we have found,

we did not observe a conclusive reason to say that an analog or a digital implementation is more

performant. The work from (Choi et al. 2014) made us wonder if computing the edge-extraction at the

analog-side (and thus eliminating the need for 8-bit ADCs for A-D conversion of pixel-intensities) would

lead to a significant gain in power. Moreover, from the work of (Young et al. 2019), we observed that

column-parallel computations gave a much better significant FOM, and even for more complex

processing (of log-gradients) with respect to the work of (Soell et al. 2016). In our work, we wonder if

log-gradients could be implemented differently if we could implement another architecture which

potentially gives a better FOM for oriented-edges-extraction. We did not find any particular interest in

on-pixel edge-extraction, based on cited examples from the state of the art. Examples we found, like

(C. Lee et al. 2015; Yin, Chiu, and Hsieh 2016, 5) were related to at least a subset of issues such as:

relatively high power consumption, high pixel complexities, poor fill factors, and limited pre-processing

capabilities because of the on-pixel size constraints.

We also observed relevant aspects regarding implemented algorithms for object localization

or classification based on gradient-like features. Typically, different works choose a specific type of

computer vision problem (e.g. face detection, identity verification, classification / recognition, etc…)

and then they benchmark their implementation with a particular dataset (made by them or not).

Nevertheless, most of the works we found only focus on processing images with only one object

centered in them, like (Verdant et al. 2020). This might not be suitable for real case (“outdoors / out

of lab”) scenarios. In this work, we have chosen the Object Detection (OD) problem (localization +

classification), since it is still challenging due to its complexity, and because it may have a wide range

of applications that could be used in more specific contexts (autonomous driving, gaming, surveillance,

etc…). The work from (Omid-Zohoor et al. 2018) (Young et al. 2019) took such approach, and they also

chose OD for benchmarking the output from their imager. They used an algorithm called the

Deformable Parts Model (P. Felzenszwalb, McAllester, and Ramanan 2008) (DPM), which is further

explained in section 2.3.2. Nevertheless, in our work we wonder if there is a better pipeline respect to

the DPM model, which, for example, would be suitable for more modern algorithms such as low-power

CNNs.

Coming back to the work from (Verdant et al. 2020), their work is interesting for us, since they

implemented an end-to-end image-acquisition and object recognition on chip. For the image

 25

acquisition, they changed the standard image read-out for one that they called “Fastscan” (Verdant et

al. 2020), and then they fed the image to a quantized SVM to compute binary classification “on the

fly”. Their reported figure of merit for image acquisition plus object recognition was 53-59

pJ/pix/frame for “intra-frame processing” (Verdant et al. 2020). Thus, they achieved a good figure of

merit even with respect to works that only include the feature extraction. However, there are

questions that, from our point of view, are yet to be clarified: firstly, the problem they solve (object

recognition) is significantly simpler that problems tackled by, for example (Choi et al. 2014), and (Young

et al. 2019). That is, since they targeted multi-scale and multi-class object detection. Then, it is not

clear if the good FOM reported by (Verdant et al. 2020) comes from their read-out scheme and

quantized SVM implementation, or just from the more simplistic machine learning problem. Secondly,

and related to last sentence, there is not enough insight in the dataset they used. Therefore, we do

not know how difficult the dataset is (e.g. presence of high dynamic range, variation in object’s

position, occlusion, etc…). Finally, it is not clear if the edge-extraction performed on-the-fly can actually

profit from the full imaging-system-DR of 36 - 88.3 dB (Verdant et al. 2020), as targeted for example

by (Omid-Zohoor et al. 2018) with their logarithmic features.

 So far we have cited examples for edge-extractors. Those architectures are part of a bigger

family of features called in the literature “hand-crafted-features”. That is, they are human-made and

tuned. The opposite corresponds to algorithms that only “impose” shapes of operations performed on

data, but they do not set fixed coefficients that appear during the (pre-) processing. Instead, many of

those coefficients (and the logic behind them) are “learned” under a data-driven training-process,

known in the literature as “supervised learning” and explained in (Khan et al. 2018) (i.e. the algorithm

is trained by using example data, where each example is labeled with ground-truth annotations). In

next subsection, we cite several examples of smart-imaging-systems which implement one specific

kind of trained-algorithms: the so-called “Convolutional Neural Networks”.

2.2.3. Embedded CNN-like features extraction

 (J.-H. Kim et al. 2019) proposed a smart-imaging-system including a convolutional neural
network (CNN). CNNs typically require multiply-accumulation (MAC) operations for subsequent cross-
correlations of different kernels with the image. Moreover, the need memory access for kernel-
coefficients (weights) loading and for intermediary operations. Finally, they require units capable of
performing the activation-function (e.g. ReLu). In their work, (J.-H. Kim et al. 2019) implemented a CNN
distributed between the analog and the digital domain. One particularity of such approach, is that no
ADC is needed.

Figure 9 illustrates the difference between more classic face recognition approaches and

theirs. The ADC is not present, and instead, an analog unit computes the first convolution stage. The

output is a 2-bit low-level-features map (after a ternary quantizer), which is used by two CNNs in the

digital domain. One CNN is “always-on”, and it is in charge of finding faces. In one face is detected,

then another CNN is “woken-up” for the identity verification process.

 26

Figure 9 : “(a) Conventional face recognition system (b) Proposed recognition system” (J.-H. Kim et al. 2019).

Figure [kimetal2019]:
Table 1 : comparison of the hybrid-CNN implementation and previous works (J.-H. Kim et al. 2019).

9_2]:

Table 1 shows that the work from (J.-H. Kim et al. 2019) is viable of face detection and identity

verification at 96,18 % in their tests. Moreover, their implementation only consumed 0,6198 mW@1

fps for 320 x 240 pixels, from which 10.17 – 18.75 µW where due to the analog multiply accumulation

unit. The total analog part (imaging + convolution) was 0,0588 mW, giving a FOM of 765,5

pJ/pix/frame. This FOM was approximately one order of magnitude higher than the case of edge-

detectors like (Young et al. 2019). Moreover, we observe, from Table 1, that the CNN implementation

was not significantly better in power respect to a similar solution based on Haar-like features (for only

the face-detection). In addition, their reported accuracy was slightly lower for the CNN. For those two

 27

reasons, we do not observe a particular interest for going deeper into trainable kernels for low-level

features extraction, which have to handle memory access and functions such as max-poling, activation

and MAC with variable coefficients.

In addition to last example, (Hsu et al. 2021) implemented a PWM pixel array and an analog

convolution unit allowing 3 x 3 MAC operations (for applying the first layer of a CNN, or other kernels

such as the ones needed for edge extraction). The architecture allows programmability of the kernel

coefficients encoded in 4-bit weights (including the sign bit). The overall architecture is shown in Figure

10.

Figure 10 : system overview of the PWM pixels-matrix and programmable pre-processing (Hsu et al. 2021)

Fig. [hsuetal2021]:
The architecture from Figure 10 allowed reading, from the pixels-matrix, 9 neighboring pixels

(with a PWM scheme). Then, those pixels could be multiplied by programmable-coefficients and
accumulated on the fly in the analog domain. The processing steps applied by this architecture are in
Figure 11.

 28

Figure 11 : diagram of the implemented pre-processing for MAC after PWD read-out (Hsu et al. 2021)

Fig. [hsuetal2021_2]:
Figure 11 shows the sequence of operations performed on the image to achieve a 3x3

programmable kernel convolution with the input image. This architecture achieved a FOM of 9.8

pJ/pix/frame for imaging, and 14.8 pJ/pix/frame for the convolution, giving a total FOM of 9.8 + 14.8 =

24.6 pJ/pix/frame. This implementation achieved a significantly better (~ 10x) FOM than the work of

(J.-H. Kim et al. 2019). This might suggest that a PWM read-out plus analog-convolutions with current-

integration logic is a good approach for low-power feature extractors. Nevertheless, we observe the

fill factor was relatively low (36 %), which probably came from their more complex pixel. In contrast,

(Young et al. 2019) reported a fill factor of 60.4 % after using a more simple pixel type. Moreover, also

related with the last argument, the dynamic range was 52.3 dB, which was lower than the one reported

by (Young et al. 2019): 59.3 dB. Another potential drawback of this implementation is that they did not

take into account big changes in scene illumination and their impact in the reported accuracy, as done

by (Omid-Zohoor et al. 2018). That could suggest that this kind of linear pre-processing along with an

aggressive quantization could suffer from scenes that are not uniformly illuminated.

Another example of works for integrating CNNs is given by (Bose et al. 2019): they proposed

an implementation of “Pixel processor arrays” (Bose et al. 2019) for computing ternary convolutions

on the focal plane. Each pixel contained basic hardware, as illustrated by them in Figure 12, for

computing addition, subtraction and bit-shifting. In their work, they explain how to represent ternary

CNN convolutions with the limited hardware available.

 29

Figure 12 : illustration of the in pixel-MAC architecture (Bose et al. 2019)

Fig. [boseetal2019]:
In last paragraphs we have cited different works that show interesting applications of

integrated image pre-processing. One common trend is the increased circuit complexity, either at pixel

level or at the periphery. In next section, we cite examples that use 3D-IC technologies for integrating

relatively complicated and highly parallelized pre-processing algorithms.

In our work, we preferred to tackle hand-crafted near-matrix-of-pixels feature extractors

before going into more complicated implementations without having clear if they are really justified.

2.2.4. 3D-IC Smart Image Sensors

 (Millet et al. 2018) implemented a 3D-IC smart-image-sensor chip with two tiers (layers). Their

microfabrication technology allowed them to parallelize communications between the two layers, as

shown in Figure 13.

Figure 13 : illustration of the 3D-IC smart-image sensor (Millet et al. 2018)

Fig. [milletetal2018]:
Figure 13 shows the system overview implemented by (Millet et al. 2018): the top layer (tier)

included an array of what they called “macropixels”, which include a 16 x 16 arrays of pixels, plus an

 30

ADC. Each macropixel could communicate with a processing unit located right underneath, so local

operations could be performed with improved latency and with a high degree of parallelization. Figure

14 shows each processing-unit-architecture. Indeed, this same Figure 14 indicates that one unit was

dedicated for interfacing the pure computational unit (right) with the pixels on the top tier. Their

processing unit (called “PE” for processing element), contained hardware capable of 8-bit computation

of rather complicated functions (for near-sensor ICs) such as sinus, cosine and square root.

Figure 14 : diagram of the units implemented in the bottom layer (Millet et al. 2018)

Fig. [milletetal2018_2]:
The implementation from (Millet et al. 2018) allowed interesting figures of merit, especially

regarding latency : for an array resolution of 0.05 Mpixels with a 9 bit-depth encoding and a frame rate

of 5500 fps. However, power-wise, the consumption for this arrangement was 720 mW, giving a FOM

of ~166.5 pJ/pix/frame. This figure of merit is significantly less attractive than other works already

cited before, also considering that it only takes into account image acquisition. Moreover, for low

power applications, it is not clear for us how this system would benefit of such elevated frame rate

without prohibitive power consumption from data I/O.

 (Suarez et al. 2012) proposed and simulated a 3D-IC staked architecture for image acquisition

and feature extraction. They present optimized mixed-signal (top-tier) and digital (bottom tier)

electronics, for targeting complex algorithms such as interest-points detection. Interest-points is a

concept in computer vision, related to zones (points) in the image (along the scale-space pyramid) that

can be matched even if they re-appear later in a video sequence at another position. Those interest

points are found with known algorithms based on handcrafted descriptors. In their work, (Suarez et al.

2012) mentioned the Harris, Hessian and Difference of Gaussians descriptors. In their architecture, the

top tier was in charge of image acquisition and generating (in parallel, in mixed-signal) a Gaussian

pyramid. The bottom tier was in charge of computing the corresponding descriptor and of detecting

the interest-points based on the corresponding local descriptor value. They reported a simulated value

of 3600 pJ/pix/frame for image acquisition, Gaussian pyramid generation and A-D conversion. Without

A-D conversion, their reported FOM was 50 pJ/pix/frame. The relative difference between these two

FOMs suggests that removing or optimizing the A-D stage is critic for attaining figures of merit

comparable with 1 layer smart-imaging architectures for low power. Again, we observe that the gain

 31

from a 3D-IC implementation was the system being able to reach low latencies thanks to the high

parallelization, of 50 µs for Gaussian pyramid generation from a QVGA image.

 (Eki et al. 2021) implemented a two layer stacked IC with the imaging acquisition section on

the top tier. In addition, they implemented a dedicated CNN computation unit on the bottom. They

showed that their system was capable of computing a quantized version of Mobilenet (with latencies

of 3.1 ~ 3.4 ms). That shows the applicability of a relatively complex CNN for low-power and embedded

computer vision. However, as in previous examples, the power consumption due to the imaging part

was considerably higher, and with respect to the computing part. For instance, we can take into

account the energy related to 2 convolutions, and with kernels of size 3x3 (Sobel) like in (Soell et al.

2016). For a chip of 4056 x 3040 pixels, their reported power is 278.8 mW@30 fps, giving a FOM for

the image acquisition of 753.7 pJ/pix/frame. Their reported TOPS/W (“tera-operation per Watt”) was

4.97 TOPS/W. We consider that the convolution of one single kernel of size n x n = 3 x 3, and with an

image of size h x w = 4056 x 3040, gives a total amount of multiply-accumulation operations (MACS)

of 𝑀𝐴𝐶𝑆 = 𝑛2 ⋅ (ℎ − 2)(𝑤 − 2) ≈ 110.8 mega-operations. We can multiply this number by two

(considering that edge detection typically implies 2 kernels, one for each gradient component) and

divide it by the TOPS/W. That gives the power for convoluting 2 kernels with one single frame,

corresponding to ~22.3 µW/frame. For a frame rate of 30 fps, the corresponding FOM at the same

image size is ~54.3 pJ/pix/frame. The total estimated FOM for image acquisition and convolution with

2 kernels of size 3 x 3 is ~808,0 pJ/pix/frame, from which ~93 % comes from the image acquisition.

Indeed, this FOM is similar to the one from (J.-H. Kim et al. 2019). However, in their case, the analog

part consumed ~10x less than the digital CNN processor. In addition, (Hsu et al. 2021) also obtained a

better FOM thanks to the PWM image acquisition scheme. Those two examples suggest that the work

from (Eki et al. 2021) could be further improved by changing the column ADCs for an analog first stage

convolution (which could potentially reduce the FOM due to acquisition only).

 From 3D-IC staking technology examples we have cited so far, we observed that there is no

clear reason, power-wise, for 3D-IC stacking. As we cited before, figures of merit are worse than single

layered examples in the SoA. It is worth noticing that some works from 3D-IC staking have reported

high-frame rates, probably thanks to the strong parallelization. Nevertheless, it is not clear for us how

such high frame rates would be exploited in the context of low-power computer-vision-applications.

Another potential interest, is the possibility of embedding more complex CNN architectures such as

the case of benchmarks presented by (Eki et al. 2021), and with Mobilenet + SSD. Then, this is an

illustrative example of 3D-staking technologies combined with embedding more complex algorithms.

Another example supporting that argument is the work from (Millet et al. 2018): they can attain more

important memory storage, and more complex operations (such as cosines) in parallel. Thus, from our

perspective, the point of having a 3D-IC stack is to perform on chip (pre-) processing like

localization/classification algorithms. Then, only high-level (semantic) data is sent by I/O interface, and

so giving a potential power gain by reducing the data-rate with the “outside circuitry”.

 Until this subsection we have cited examples of frame-based approaches. The state of the art

presents many examples of this scheme being successfully used for computer vision purposes.

Nevertheless, there is a general problem that they all share: the entire image is always acquired and

processed, even if “nothing” has changed. That sets the need for a probably smarter approach, and in

which only portions of the image where changes are present are processed. For instance, local

processing only happens when local changes occur, instead of doing it regardless if nothing has locally

changed. Ideas such as that one have inspired a family of non-classic imaging acquisition techniques:

the “event-based” image sensors. In next subsection, we will explain them further and provide some

examples on the SoA.

 32

2.2.5. Event-based imaging-systems

 Event based image-sensors typically codify information as a stream of asynchronous events.

They do not output a stream of images, read “frame-by-frame” (by means of a rolling or global shutter),

like it is the case of FB imagers. Figure 15 shows an illustrative pixel schematic (left) and functioning

principle (right) of one example from those pixels: the dynamic vision sensor (DVS) (Posch et al. 2014).

The pixel corresponds to three main stages: firstly, there is a reversed biased photodiode for photo-

current generation plus amplification. Secondly, next stage permanently computes the approximated

relative difference between the instantaneous 𝐼𝑝ℎ, and the one sampled (as Voltage) at 𝐶1 at the last

reset. Finally, the third stage permanently computes the comparison of the absolute value of this

difference (with a double threshold) with a reference (set by comparators bias). When any of the two

comparators in Figure 15 switches to the active stage, an asynchronous-request-signal is sent to

activate the event-read. Figure 15 (right) shows how those events (codified as spikes) are sent each

time the voltage at the sensing node 𝑉𝑙𝑜𝑔 changes (up or down) sufficiently. Moreover, those spikes

can be accumulated during a time frame to render an image (such as the one represented in the same

Figure 15).

Figure 15 : illustration of the principle of functioning of the dynamic vision sensor (Posch et al. 2014)

Fig. [poschetal2014]:
Continuing with last idea, we no focus this paragraph on the work from (Lichtsteiner, Posch,

and Delbruck 2008), related to Figure 16. This figure shows a typical architecture of Dynamic Vision

Sensors: an array of pixels are constantly sensing the relative light intensity variation. When any of

them send an asynchronous request signal (a spike), blocks handshake logic and the arbiter are in

charge of “reading the event”. Moreover, they also manage events coming approximately at the same

time, and send back acknowledge signals (for each pixel separately) that trigger the local reset.

 33

Figure 16 : example of the event-based read-out “(a) Block diagram. (b) Timing for a communication cycle for a single ON

event…” (Lichtsteiner, Posch, and Delbruck 2008)

Fig. [lichtsteineretal2008]:
Event Based Vision sensors aiming to recover temporal data (such as the DVS pixel and

architecture from Figure 15 and Figure 16) are not the only non-standard scheme that has gained

popularity in the SoA. Other imaging acquisition techniques can benefit from the event based

codification for light intensity measurements. One example is the “time-to-first-spike” (Guo, Qi, and

Harris 2007) imager, or TTFS. This kind of imager codifies each pixel-light-intensity as the time for the

pixel-signal to reach a certain threshold. The principle of functioning is illustrated in Figure 17. The

pixel-signal is the voltage at the sensing node resulting from the photo-current integration after a

global-reset. Notice that, as the case of FB imagers, there is a global reset. However, pixels do not

output a voltage signal which then is transformed to the digital domain by means of analog-to-digital

conversion. Instead, they just send a request signal (a spike) to an arbiter circuit. Then, dedicated

circuitry takes into account the individual address and spiking time for converting such time to lighting

intensity.

 34

Figure 17 : principle of functioning of the time-to-first-spike pixel (Guo, Qi, and Harris 2007)

Fig. [guoetal2007]:
Examples mentioned before for event-based image-sensors made us wonder the following: is

it still possible to embed near sensor “logic” for performing computations? For instance, is it possible

to handle summations, subtractions, multiplications and divisions? Indeed, several works have

proposed logic units that work with spikes. For instance, (Ravinuthula and Harris 2004) proposed

electronics for performing smoothing operations on pixels (see Figure 18), or for computing pixels

differences which are then compared with a fixed threshold (see Figure 19). Moreover, they explain

how those can be implemented in order to perform edge detection with the output of TTFS imager.

Figure 18 : example of a weighted average circuit in spike-domain (Ravinuthula and Harris 2004)

Fig. [ravinuthula2004]:

 35

Figure 19 : example of a subtraction and thresholding circuit in spike domain (Ravinuthula and Harris 2004).

Fig. [ravinuthula2004_2]:
Until now, we have discussed integrated and embedded imaging-system architectures, and for

low-power computer-vision/artificial-intelligence. Some of them presented IC implementations as

well. Notice that this work points as well towards one specific problem of machine learning and

computer vision: object detection (OD). Next section will discuss further about it, before we start

making the link with sections 1.2 and 1.3.

2.3. Object detection pipelines

2.3.1. HOG and linear SVM

(Khan et al. 2018) explain that the object detection problem consists in solving to sub-problems

in computer vision: firstly, there is the classification problem (labeling each object where each label

corresponds to a particular object class). Secondly, there is the localization problem, which consists in

giving coordinates (e.g. bounding boxes) of the different objects. In next paragraphs, we give a very

general, non-exhaustive overview of the main object-detection pipelines in the state of the art.

Figure 20 : example of an object detection pipeline with HOG and SVM (Dalal and Triggs 2005)

Fig. [dalal2005]:
Figure 20 shows a relatively old pipeline (published in 2005), but that is still relevant for

embedded cases, like (Suleiman and Sze 2014) and (Choi et al. 2014). The algorithm takes an intensity

gray image from which it computes the local intensity gradients (magnitude and direction). This

derived gradient map is divided into blocks called “cells” by (Dalal and Triggs 2005), and for each cell

they proposed to obtain a feature called “Histogram of oriented gradients” (Dalal and Triggs 2005)

(HOG). Then, a “sliding window” with a template of the object of interest (in HOG representation) is

 36

compared in as much as possible regions of the image (scale and space wise). The template is “learned”

in their case, and by the implementation of a linear support vector machine.

2.3.2. HOG and DPM

 Later, (P. F. Felzenszwalb et al. 2010) presented a more complex model for object detection,

which takes into consideration that objects can be “understood” or “modeled” as a collection of sub-

parts. In their model, those sub-parts can move respect to the others. Figure 21 illustrates how objects

are “decomposed” into “parts” for the purpose of object detection. They (P. F. Felzenszwalb et al.

2010) proposed a model which they called the “Deformable Parts Model” (P. F. Felzenszwalb et al.

2010). This model has a similarity with the purely HOG approach from (Dalal and Triggs 2005), in the

fact that is uses HOG features, and it performs the detection over a “HOG space”. Nevertheless, it

changes the idea of a simple template representing each object, for a collection of templates that

represent each part. Moreover, sub-parts can move respect to each other. However, templates

allowing sub-part matching are limited in the range from which they can move respect to the “center

of the model” (called by them the “root”), and this limitation is represented by a penalty function.

Thus, the detection is determined by a global function taking into account the different templates-

matching, and their relative position to the “root”. This work was used indeed used for benchmark

purposes by the circuit implementation from (Young et al. 2019).

Figure 21 : illustration of the principle of functioning of the DMP model. “(a) a coarse filter, (b) several higher resolution

part filters, and (c) a spatial model for the location of each part relative to the root…” (P. F. Felzenszwalb et al. 2010)

Fig. [felzen2010]:

2.3.3. Fast R-CNN

In recent years, convolutional networks (CNNs) have gain popularity in computer vision,

including object detection. For instance, Figure 22 presents a brief of the “Fast R-CNN” (Girshick 2015)

 37

pipeline. It takes a colored input image, and then it takes it as input for a “Region proposal algorithm”

(not shown in the figure). The region proposal algorithm outputs a series of region proposals or

“bounding boxes” which are used later. Moreover, the colored image is also passed by a convolutional

neural network from which a “convolutional feature-map” is derived. Then, the region proposals are

projected into this feature map with an operation that they called the “RoI pooling layer” (Girshick

2015). From each RoI, there is one output from the RoI pooling layer, which is then used for classifying

the region proposal and for estimating the coordinates of the bounding box. This pipeline is interesting

for us since the idea of “Region proposals” can be potentially more efficient (power and computational

wise) than the sliding window approach when implemented, for instance, on a 3D-smart-image-sensor.

Figure 22 : diagram of the Fast R-CNN pipeline: “… An input image and multiple regions of interest (RoIs) are input into a

fully convolutional networks. Each RoI is pooled into a fixed-size feature map…” (Girshick 2015)

Fig. [girshick2015]:

2.3.4. Faster R-CNN

Later, (Ren et al. 2017) proposed to replace the “external” RoI proposal algorithm by a CNN

called by them the “Region Proposal Network” (RPN) (Ren et al. 2017). Moreover, this RPN shared

convolutional layers with the classifier stage. Indeed, the input image was passed to a series of initial

convolutional layers, from which a feature map is derived. Then, this feature map is passed to the RPN,

and the output from the RPN is then used for “RoI pooling” the Region proposals before passing then

to the final stage: the classifier. This approach is similar to the one implemented by (J.-H. Kim et al.

2019), related to Figure 9. However, there are important difference to consider: firstly, the shared

convolutional layers were replaced by a single CNN layer in the analog domain. Secondly, the RPN was

changed by a face detection CNN, which could be understood as a “face-region-proposals stage”.

Thirdly, their implemented face recognition stage (which would be similar to the classifier in Figure 23)

was triggered only if the face was detected at a certain region of the image, and the classifier would

evaluate only this specific region as input.

 38

Figure 23 : illustration of the “Faster R-CNN” pipeline (Ren et al. 2017)

Fig. [ren2017] :

2.3.5. SDD and YOLO

Finally, other works, such as (Redmon et al. 2016) and (Liu et al. 2016) are other kind of

strategies that do not use the region proposals method. For instance, Figure 24 shows the working

principle of the work from (Redmon et al. 2016): the image is divided into equal regions, and for each

region there are C different “bounding boxes”. Then, for each bounding box in each region there is

always a prediction of the class (or no class at all). This kind of strategy is not our first choice since it

computes the classification stage in many regions (the number of image sub-regions multiplied by the

number of bounding-boxes per region) in spite of if there is potentially an object or not. Then, it is less

clear how to implement a wake-up or hierarchical system into which the portion expected to consume

most of the power (the classifier) is used only when there is a minimal chance of finding any object.

 39

Figure 24 : illustration of the principle of the YOLO-pipeline: “…It divides the image into an S x S grid and for each grid cell

predicts B bounding boxes, confidence for those boxes, and C class probabilities…” (Redmon et al. 2016).

Fig. [redmon2016] :
In this section, we have cited several illustrative works of the trending algorithms for object

detection, and for general purpose machines. In addition, we have cited works in the embedded vision

context that get inspiration from the aforementioned pipelines. From there, we have selected to target

Region Proposal Based pipelines since they could be compatible with hierarchical/wake-up

mechanisms for low power, and they could reduce the classifier power at the cost/overhead

introduced by the ROIs generation. For instance, our focus is to go deeper in a pipeline resembling

Fast-RCNN, where we use a secondary algorithm (non CNNs-based) for ROIs-generation. We preferred

to start from an algorithm that does not depend on CNNs for ROIs-generation, since it is not clear for

us if the low level implementation of a CNN for ROIs would be advantageous or not. Then, one

approach is to assess the best way of ROIs-proposals by studying both approaches (CNN-based with a

Faster-RCNN-like pipeline, or by with non-CNN-like ROIs-generation as in Fast-CNN). Nevertheless, in

this work we study only the non-CNN ROIs-generation, and we let the second case to further works.

Finally, we discard the DPM model, since it seems, from our perspective, a prior (not necessarily less

“heavy” in terms of computations) to CNN algorithms.

2.4. Conclusions of chapter 2

 In this chapter, we have presented an overview of the theoretical background (State of the art)

related to this work. We have cited illustrative works in the SoA that give us a point of departure. From

there, we have made the preliminary decisions that drive the rest of this work:

1. We focus our attention in bottom-of-the-column parallel pre-processing, letting the matrix of

pixels “untouched”. Indeed, it allows to split the optimization of the imaging part and the pre-

processing stage. Moreover, we do it in order to have simpler pixel architectures and classic

read-out schemes, such as the case of the 4T-APS/1.75-APS.

2. We focus on the generation of hand-crafted features by means of a dedicated, non-

programmable architecture, specialized for the kind of feature we want. Moreover, we follow

the trend we observed in the SoA regarding the gradient-based features (such as variants of

edge-extractors). However, we diverge from the SoA since we want to optimize the extraction

of those features for the purpose of Region Proposals Generation on another chip, or in the

bottom tier if 3D-IC staking is used.

 40

3. We take inspiration from the pipeline of Fast-RCNN for achieving a good trade-off of

hardware/computational-complexity and performance. We diverge from works in the SoA

which tackle the OD problem by using the sliding window approach like (Young et al. 2019;

Omid-Zohoor et al. 2018), or by using region-proposals (face-detection) with a CNN (J.-H. Kim

et al. 2019). We use the same strategy as (Girshick 2015), which corresponds to using an

algorithm for the Region Proposal generation.

In next chapter, we will present out methodology for behavioral simulations, which we use along

this thesis for obtaining our results and for driving our conclusions.

 41

Chapter 3. Our simulation Framework

In this chapter, we describe the framework developed during this thesis. Its objective is to allow

smart imager system behavioral simulations in order to optimize the image-processing-pipeline design.

One key aspect is that, for several specific stages (further developed in this chapter), it takes into

account hardware constraints (e.g. memory access constraints, quantization, noise, suitable

operations, etc). Moreover, we derive the impact of those constraints on relevant metrics related to

artificial intelligence and integrated systems.

The reason why we made our own simulation framework were the following: firstly, we wanted

a tool that takes into account both electronic schematics and rather complex signal processing

pipelines. Such tool would be in between a specific CAD tool like Cadence and a library such as OpenCV.

The second reason was that we wanted a software allowing separation of behavioral models into two

main groups: the ones that are integrated, and those that would run on a standard CPU or GPU. The

integrated stages would include hardware constraints, while the rest of the stages will run without

considering them, but their input is the output from integrated-behavioral-models (which do consider

hardware constraints). The third and final reason was that we wanted a framework capable of

simulating different kinds of standard and non-standard types of imagers.

We call our framework EdgeTon (“Edge” meaning that is for Edge-AI design, and “Ton”

referring to be Python code). In the next sections, we start developing the framework architecture and

functionalities. After, we discuss several imager system models that will be important in the next

chapters.

 42

3.1. EdgeTon main architecture

Figure 25 : main Edgeton algorithm.

Fig. [mainAlgorithm]:

Figure 25 shows the flow for any general EdgeTon simulation. Firstly, the framework allows

loading and customize an imager model, which is used by the simulation engine to simulate hardware-

constraints on the image acquisition/pre-processing. The output from there is later used by a standard

algorithm (with a standard framework such as OpenCV or Tensorflow) to assess the algorithm

performance when the input comes from a hardware-constrained/integrated image-sensor and pre-

processing. Finally, the simulation results are loaded by third module, which is in charge of calculating

all the metrics used for human interpretation. The figure below shows a more detailed structured of

the framework, which depicts different functional blocks important for the code-implementation.

Image aquisition +

hardware-constrained

pre-processing simulation

Simulation engine

Image processing

algorithm (non-

constrained)

CPU/GPU processing

AI Metrics calculation,

power, memory and

runtime metrics.

Metrics

 43

Computing machine (Installation Folder) Storing Machine (Nomada Folder)

Figure 26 : diagram of EdgeTon framework architecture for simulating complete processing pipelines.

Fig. [edgeton]:

Figure 26 presents a diagram of our framework for simulating (behaviorally) smart imaging

systems (integrated plus a portion potentially in another chip or device). The left side represents the

code architecture, the green color representing the starting point: the user, who provides a

configuration file. Then, the main program, called edgeTonRun.py, launches sequentially each portion

of the complete processing pipeline.

The first stage is the simulation engine, which is in charge of simulating the part of the system

that is hardware-constrained. Typically, this portion relates to the image acquisition and processing

integrated near (or in) the pixel array, and only performs several initial steps in the processing. More

User

edgeTonRun.py

Configuration file

Simulation Engine Imager

models

Integrated imager

system output

O
u

tp
u

t
re

n
d

er
s

Imager model

output

Imager model

output visualization

CPU/GPU

processing

D
at

a-
lo

ad
er

 Dataset

D
at

a-
lo

ad
er

O

u
tp

u
t

re
n

d
er

s

Processing step

output

AI metrics

calculation

D
at

a-
lo

ad
er

O

u
tp

u
t

re
n

d
er

s

Metrics step

visualization

Metrics step output

Simulation results

Processing output

Metrics output

 44

precisely, we make the difference (in our models, and corresponding code) between the pre-

processing that happens inside each pixel, and the one that happens after pixel readout (right before

or after the ADC). We refer to the first case as “deep pre-processing” (or near pixel processing), and

to the second one as “shallow pre-processing” (or near ADC processing).

In the next section, we focus on the general imager model.

3.1.1. Imager models structure

Figure 27 : imager model (Cubero et al. 2019)

Fig. [imagerModel]:

 Our imager model structure is presented in Figure 27. The image acquisition consists in 5

stages, typical of the state of the art. Depending on the imager type, one or more blocks can be

removed or by-passed. For example, blocks like event detection, spike generation, and arbitration are

typically related to specific types of neuromorphic sensors only. Next, we describe each of these

stages:

Photo-current integration

This stage, from the code point of view, relates to the module dataload in Figure 28. We

typically load a standard dataset that could include unknown pre-processing and compression

functions. Ideally, this step should be done with non-preprocessed or “raw” images. Nevertheless, in

this work we used 8-bit images from standard datasets as a first approximation.

In some cases, the image has to be pre-processed again from the dataset in order to make it

compatible with the application scenario, typically by converting it from color space to gray space.

 45

Event detection and Spike generation

Those stages relates to the module event in Figure 28. It encloses any functionality related to

what we called before the “deep pre-processing”, i.e. any sort of pre-processing happening at pixel

level or at matrix of pixels levels (not at column bottom or the periphery). One example is the Dynamic

Vision Sensor (Posch et al. 2014), which detects (on pixel) local light intensity changes and sends an

asynchronous signal (spikes) whenever this happens. Other kinds of pre-processing related to in pixel

pre-processing, such as edge-detection (Yin, Chiu, and Hsieh 2016, 1), local-binary-patterns-detection

(Gottardi and Lecca 2019), or Time-To-First-Spike (Guo, Qi, and Harris 2007) architectures are modeled

here. The input is the loaded image, and the output is the pre-processed image in any encoded format

related to the specific kind of pre-processing.

The reason why we separated the event detection from the spike generation was to prevent

cases that an event occurring on one specific pixel does not trigger immediately a spike. Indeed, the

spike can be triggered by the correspondence of several events of neighboring pixels such as the case

of the local-binary-patterns (Gottardi and Lecca 2019) architecture. Moreover, one could imagine a

general architecture that processes several events in neighboring pixels before sending any signal.

Arbitration

This stage relates to the module arbiter in Figure 28. It represents a specific functionality of

asynchronous-spiking-imagers: asynchronous and event-based imagers sends spiking signals

asynchronously. That means that a spike can be generated ideally at any time without being

synchronized with an internal clock rate. As explained by (Posch et al. 2014), when a spike is sent,

another circuit handles spike read-out, which normally consists in keeping information such as pixel

address, event type and time-stamp. This circuit also deals with cases of several spikes coming at very

similar times, for example, by establishing a priority order for reading each of them. The process just

mention before is closely related to the known “hand-shake” protocol for asynchronous read-out. This

functionality is included into this block. We decided to make a separated module for it, in order to

simulate very specific phenomena happening in the arbiter if required: for instance, delays and data

loss due to limitations in the arbiter circuitry (for instance, for simultaneous read-outs). As first

approximation (and as we explain further in chapter 7), we modeled the arbiter as a perfect one, and

we let this code architecture for being expanded more in detail in further works.

 For classic (or frame-based) architecture, clearly the arbiter is not needed (as is the case for

the event and spike generation stages in the model and respective modules). For those cases, the main

imager model simply bypasses the input to the output in the code.

Analog to digital interface

This step is related to the module analog-to-digital in Figure 28. Notice that in classic imagers,

this block would simply reflect the functionality of the analog to digital (ADC) converter. However, this

block also takes into account any functionality resembling what we called previously the “shallow pre-

processing”. Then, here we take into account models of pre-processing done right after the read-out

(analog side) or right after the ADC (digital side). Several types of shallow pre-processing are already

suggested in the state of the art. For instance, 1-bit-edges detection (Soell et al. 2016).

 46

Before we go more into details for specific architectures, we explain how the simulation engine

uses the imager model class in order to perform the behavioral simulation.

3.1.2. Imager model module

The simulation engine is in charge of creating an instance of a class “imager”, which is a sort of

“skeleton” that creates instances of 5 different subclasses for assembling all the parts of the imager

system. Notice that from now on, we refer to the “imager system” or to the “smart imager” as the

stages from image acquisition to the shallow pre-processing. All the rest is outside the imager (in

another layer for 3D IC technologies, or in another chip). Those 5 subclasses are contained in 5 different

modules represented in Figure 28 for code modularity. Each module defines a specific task inside the

imager2, and each class inside each module represent a different variation (e.g. different kinds of pre-

processing, image acquisition, etc). Moreover, the engine selects objects from which class to

instantiate based on the configuration file provided by the user.

Figure 28 : example of the imager model implemented in Python modules (Cubero et al. 2019).

Fig. [codeModularity]:

Once the imager model is ready to use, the simulation engine launches a simulation loop

(further discussed in 3.1.3. Simulation engine loop). The point is that, during this loop, the imager

simulates the behavior from image acquisition to imager system output. The input data for performing

the simulation comes from a dataset, for which a specific data-loader class is automatically

instantiated. Then, the output from this first stage is rendered (by a specific class-object in a secondary

module and selected accordingly to the simulation settings). Indeed, there are two kinds of outputs

generated (rendered) in this stage: one is a complete set of all outputs from this stage in a non-human-

friendly format that is buffered in the hard-drive before the next stage. The other kind of rendering is

for visualization purposes, so the user can see how the imager system output looks like and debug

issues if required.

Once the simulation engine is finished, the main program launches the second stage: the

processing. Notice that we call here processing everything that is after the imaging system. Similarly,

2 We decided to make this separation between modules in order to isolate different phenomena while making
code development easier. Moreover, the different modules are selected as they represent a good generalization
of different imager types in the state of the art.

 47

to the first stage, the processing follows the same kind of simulation loop, and has specific data-loaders

and renderers. The difference is that here, we only focused on applying state of the art algorithms,

without taking into account hardware constraints. For example, we used directly algorithms from the

OpenCV library, and only wrapped them with the rest of the whole simulation pipeline. Once the

processing is finished, its output is buffered again to save the intermediary steps (notice that this

buffering becomes important when the size of all outputs and internal variables becomes greater that

the RAM of the computer running the program). Since the output from this stage (in our cases) was

more abstract or harder to visualize respect to last stage, we did not create an automatic visualization

output for this stage. Notice that this stage could represent a CNN, a Random Forest, a Support Vector

Machine, ROI proposal algorithms, among others.

One important aspect was that sometimes we required specific information about memory

and runtime of the processing phase, in addition of the algorithm output. Moreover, sometimes

specific sections of code were written in C++ language. For those cases, we wrapped the C++ code by

executing it as a sub-process from Python. Moreover, we slightly modified the C++ code to output

relevant information about memory and runtime, in addition of the main output. Moreover, we added

an optional feature for executing compiled code in the processing stage in Figure 26. This optional

stage (not present in the figure) was between the simulation engine and the processing block, and

corresponded to a parsing task for solving any compatibility between our framework and external C++

code.

Once the processing is finished, its output becomes the input for the metrics (or third stage)

part of the main program. Again, different types of metrics are defined for the different classes inside

a module, and the program instantiates the right one depending on the simulation settings. One

example of metrics that are evaluated could be classification accuracy, detection rate, recall, and

others. The final output is a single file summarizing results as a Python dictionary. This file can be used

latter for statistical data post-processing, and visualizations leading to final conclusions.

3.1.3. Simulation engine loop

Figure 29 : simulation loop (Cubero et al. 2019).

Fig [simulationLoop]:

 48

 The simulation engine applies a loop as shown in Figure 29. The simulation engine uses the

imager object, which has been already setup following the user settings, in order to implement the

loop. Firstly, a frame is loaded as a way of representing the photocurrent in the matrix of pixels. Then,

the module state, which hold specific state variables such as the pixel equivalent voltage values, is

reset. Then, the loop wonders if the frame period is ended. This question is important for simulations

in which one tries to simulate more complicated phenomena. For instance, we could say that each

pixel sense-node voltage o, is linearly increased by a time step (which is a small fraction of the frame

period). This linear increase (or any increase represented in the state-interpolation module in Figure

28) happens during the update state phase. Then, the phase of find events starts. Continuing with our

example, after a linear increase in pixels voltages, we could simulate a sort of complicated event that

depends on values of neighboring events, and that somehow affects their values once it sends a spike.

In such, or even more complicated cases depending on transient phenomena, this small step linear

increasing during the step update is important. After events have been found for a specific small time

step, the arbiter is launched, then the shallow pre-processing (the analog to digital interface). After

several time increments, the reference time would be equal or higher than the frame period. Then,

the simulation loops renders and output, and starts loading a new image. If there are no more images

available, the simulation engine loop stops.

 For the case of simpler, classic (frame-based) imagers, the linear increase is typically not

required. Then, the loop works in a simpler manner: an image is loaded, then the pixels reads are reset.

After, the engine launches blocks from update stage to analog to digital interface only once. After that,

the loop moves on to the rendering frame output step.

3.2. Imager model examples

3.2.1. Ideal 8-bit-depth Sobel oriented-edges extractor

This model represents an ideal edge-extractor, in the sense that it assumes that all the pre-

processing is carried out with numbers in floating point representation (32 to 64 bit-depth3). All pre-

processing operations (which end with the edge-extractor output) are included in the shallow pre-

processing module (see Figure 28). Again, depending on the user settings, the simulation engine selects

the correct pre-processing class to use.

 For this ideal case, the user selects the “8-bit Sobel edge extractor” imager-type. Notice that

the 8-bit part comes from the fact that input images for the simulation engine are typically codified in

8-bit for a given color space. Nevertheless, we do not simulate any effect due to electronics

implementation in this model. The simulation engine selects the right imager-class to use, and the

imager class automatically instantiates the appropriate pre-processing class from the shallow pre-

processing module (notice that several types of pre-processing are possible along with the same

imager module, so this is also present in the user settings). We will go more in detail about the

3 Due to specific aspects of the Python language and its packages, floating point numbers can be either
represented in 32 or 64 bit-depth. In this work, we care about computations with low bit-depths (e.g. equal or
lower than 8) respect to “high-resolution-bit-depths” (e.g. 32 bits or more). Then, we do not make a distinction
in our analysis between 32 and 64 floating point representations in Python, and we refer to both in general as
“floating point representation”.

 49

mathematics and computations performed for the edge-extractor on chapter 4. Here, we specify how

computations happen from a programmatic point of view.

 The pre-processing class for the high-resolution edge-extractor contains a method that

embeds all its stages: the function detect. It implements other class methods to simulate behaviorally

the shallow pre-processing. The successive steps are:

1. Read and buffer the entire image

2. If binning is “True”, then apply 4x4 binning to the image (floating point). If binning is false,

bypass the output from last step.

3. If apply blur is “True”, then select kernel based on user settings. The options are the kernel

type (Gaussian, average) and size (given by a valid integer, e.g. 3, or 5). After that, apply the

blur kernel to the entire image (floating point). If apply blur is false, bypass the output from

last step.

4. Use the output from last step to obtain the gradient x component for each pixel. The gradient

kernel type comes from the user settings (e.g. simple linear as the one used by (Dalal and Triggs

2005), logarithmic like in (Omid-Zohoor et al. 2018), and Sobel as the one used by (Soell et al.

2016)), in this particular case the Sobel is used. Operation happens in floating point, and the

output are two matrices: one containing the absolute value (floating point) of the X

component, and other containing the sign).

5. Do the same as step 4, but for the y component.

6. Use outputs from steps 4 and 5 to computes (floating point) the pixel gradient magnitude, and

compare (floating point) the approximated gradient-magnitude with a threshold (provided in

user settings). If the gradient magnitude is higher, then the edge magnitude (for that pixel) is

the gradient magnitude itself (floating point). If the contrary occurs, the edge magnitude is

zero (Notice that then, the edge magnitude is the result after comparing the gradient

magnitude with a threshold). This step outputs a matrix of magnitudes, which are always either

a floating point value higher than the threshold, or zero.

7. Use outputs from steps 4 and 5 to approximate the gradient orientations. The angle is

approximated with the inverse tangent function in the gradient components (including the

sign), and projected into the I and II quadrants. Notice that each gradient angle corresponds

to one pixel-address, and the angle automatically is put to zero if the edge magnitude is zero.

The output from this step is a matrix with angles (floating point) for every pixel.

8. The class method “detect” outputs two matrices, the edges and orientations.

Notice that computing steps mentioned before do not take into account any IC implementation,

and they do not happen as they would in an integrated case. Nevertheless, steps mentioned before

only try to assess how a particularly hypothetical pre-processing circuit, with high-bit-depth capability,

compares with realistic architectures.

3.2.2. Analog linear oriented gradient extractor

In this case, we try to give a rough estimation of the output given by a more realistic edge-

extractor implemented in analog electronics. In order to do so, we add noise to the signal before the

output. This noise corresponds to a quantization noise related to a user defined (in the user settings)

“equivalent number of bits” (ENOB). The computation sequence goes as following:

 50

1. Steps 1 to 5 happen as for the high-resolution edge extractor (the simple linear kernel and an

average kernel of size 3 are always used).

2. Apply quantization noise to the x gradient component.

3. Apply quantization noise to the y gradient component.

4. Use outputs from steps 2 and 3 to compute the edge magnitudes. In this case, a floating-point

comparison between approximated gradient magnitudes and a user-defined threshold is the

edge magnitude. That means that the edge magnitude takes a Boolean value (1-bit).

5. Use outputs from steps 2 and 3 to calculate the orientations. This time, floating-point values

output from the inverse tangent are projected into 4 main directions: 0, 45, 90 and 135 degrees

(or automatically zero if the edge magnitude is zero).

6. The returned values are two matrices, one for the edge magnitudes and other for the

orientations.

In next sub-section we explain further how we apply the noise in steps 2 and 3.

The “apply quantization noise” function

Notice that this noise is supposed to represent the total noise coming from the analog pre-

processing, as well as the temporal noise. That is, because it was easier to model for our framework.

However, without a more detailed simulation we cannot know the spectral power function of the

noise, so we are limited to choose arbitrarily an ENOB that seems reasonable. For design purposes,

this ENOB states a first approximation of the noise budget for a particular pre-processing architecture.

We try to take into account temporal and FPN sources mentioned by (El Gamal and Eltoukhy 2005) in

a simplified form (e.g. by an equivalent quantization noise).

 The apply quantization noise function takes as input a matrix representing a signal (gradient

component along a specific axis for each pixel), and a value for the equivalent number of bits or ENOB.

Its output is a quantized signal. The objective is to introduce quantization noise in order to simulate

the impact of imperfections corresponding to analog electronics. We use the mid-thread quantization

approach as described by (Wannamaker et al. 2000):

1. Calculate de number of quantization steps 𝑛𝑆𝑡𝑒𝑝𝑠 = 2𝐸𝑁𝑂𝐵 − 1 (mid thread)

2. Let 𝑠𝑀𝑎𝑥 = 255.0, and 𝑠𝑀𝑖𝑛 = 0.0

3. Calculate in floating point:

𝛿 =
𝑠𝑀𝑎𝑥 − 𝑠𝑀𝑖𝑛

𝑛𝑆𝑡𝑒𝑝𝑠

Equation 2

4. Calculate the intermediary step 𝑞𝑆 (floating point):

𝑞𝑆 = ⌊
1

𝛿
⋅ 𝑰 +

1

2
⌋

Equation 3

 Where the brackets above represent the floor function (which spans for every single pixel),

and 𝑰 is the input image.

5. Finally, the output value is (floating point):

 51

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑞𝑆 ∗ 𝛿

Equation 4

3.2.3. Digital linear oriented gradient extractor

This model tries to emulate an edge extractor implemented in the digital domain. Then, we

firstly apply the quantization noise before computing the pre-processing steps. The only function that

happens before quantization is a 2x2 binning, since we assume that it happens directly in the matrix

of pixels. The programmatic model is similar to the analog edge extractor. The differences are that the

quantization is applied earlier, and the quantization function does not multiply by delta at the end.

Indeed, the last multiplication by delta (a float) is unrequired, since the quantized output would be a

matrix of integers. Later operations can be performed in integers only, which corresponds to digital

operation with a fix bit-depth (as long as the maximum number is not attained).

 The function detect goes as follows:

1. Buffer the 8-bit gray image.

2. Quantize the signal (image intensities) to a specific ENOB.

3. Apply blur and round output to integer values.

4. Obtain gradient (simple linear kernel) as integer operations.

5. Approximate gradient magnitudes by adding the two gradient components, and the edge

magnitudes are calculated by comparing gradient magnitudes with the floating-point value of

the threshold over delta (thus comparing an integer type with a float type).

6. Orientations are obtained with the inverse tangent applied on integer values and projected as

for the analog edge extractor.

3.2.4. Logarithmic oriented gradients extractor

This model represents the logarithmic gradients as calculated by (Young et al. 2019), and related

to Figure 5, Figure 6 and Figure 7. For this pre-processing type, we defined another attribute called

qMinEdgeMag and set it to 1.0. Moreover, we changed the threshold attribute, whose value depends

on the user settings, for the “ratio threshold”. In next paragraphs, we explain further those variables.

Now, we specify the steps in the detect method for the logarithmic edge extractor class:

1. Buffer the entire 8-bit image.

2. Apply 4x4 binning (floating point) is requested by the user settings.

3. Apply 3x3 average blur if requested by user settings.

4. Gradient components are calculated as follows:

a. The input of the function is a gray (potentially binned and blurred) image.

b. For the x component, each pixel-gradient-value is the division (floating point) of the

right neighbor-intensity-value over the left one. For the y component, the division is

(in floating point) of the lower neighbor over the top one.

c. Ratios (for either of the two components) are compared with the ratio-threshold

attribute. If the ratio is higher or equal than it, then the component-magnitude is set

to 1.0. If the ratio is lower than one over the ratio-threshold, then the component-

magnitude is set to -1. Otherwise, the component-magnitude is set to 0.

 52

5. Edge magnitudes are calculated by comparing the sum (in absolute value) of the two

components with the attribute qMinEdgeMag. Recall that this attribute is 1.0 by default,

meaning that the edge magnitude is 1.0 If either of the two components is not 0.

6. The orientations are also computed with the inverse tangent function, and projected to the I

and II quadrants (taking sign into account).

3.2.5. Relative edge extractor

This shallow pre-processing class for the relative-edge-extractor defines an attribute called

intensity-constant, which will be important during the edge magnitude calculation. The value for this

attribute is set by the user settings. The function detect goes as follows:

1. Buffer the entire 8-bit image

2. Apply 4x4 binning (floating point) if requested.

3. Apply 3x3 average blur (floating point) if requested.

4. Get gradient components identically as for the case of the analog edge extractor.

5. Apply quantization noise with a particular ENOB to each component (again, identically to the

analog edge-extractor).

6. Approximate edge magnitudes as follows:

a. Take the gray image (potentially binned and/or blurred), and the two gradient

components.

b. Calculate the gradient magnitudes as the sum (in absolute value) of the two

components. Then, calculate the edge magnitude by comparing the gradient

magnitude with the gray image multiplied by the intensity-constant attribute. Every

pixel address where the gradient is higher than the image times the constant, the edge

magnitude is 1, and otherwise it is zero. All computations happen in floating point

representation.

7. Orientations are calculated in the same way as for the analog edge-extractor.

3.2.6. Dynamic vision imagers

Dynamic Vision Imagers taken into account in (Posch et al. 2014), and related to Figure 15,

typically have a high temporal resolution thanks to the in-pixel pre-processing (event detection). Such

event corresponds to the local, and relative, light intensity change in time. Whenever such change is

detected, a spike encoding the event is generated asynchronously. For modeling the behavior of this

kind of imager, and in order to integrate it with our simulation framework, we observed the following:

The pre-processing happens in-pixel, so this is reflected in the code by models appearing in the deep

pre-processing modules (contrary to the shallow pre-processing module, typically used for edge

extractors).

We found actually two ways of simulating the dynamic vision sensor behavior: one possibility

was to take video frames (e.g. at 30 or 60 fps) and suppose that, for each frame, the intensity reading

reflects a linearly-increasing-impinging-light on the pixel. That means that, at time 0, the light intensity

is zero, and at time of read-out, the light intensity was at its final reading value. Then, for each frame,

a shorter time step (close to the temporal resolution) would be used for updating light-intensity-

change-reading for every pixel. Such update would assume a linear increasing of the total intensity as

 53

mentioned before (by using the state interpolation module). Then, when an event is detected, an

output is generated with the pixel address, the polarity (plus for increasing and minus for the opposite)

and the time stamp. At the same time that this output goes, the pixel difference value is reset to zero.

Nevertheless, the light intensity difference continues to grow after that until the frame period is

reached.

 The model mentioned in last paragraph presents one fundamental problem: it assumes that

light intensity impinging the pixel follows a linear increasing whose values are determined by zero and

the pixel value obtained from a frame based approach. Nevertheless, there is no physical reason to

assume that it is the case. Indeed, the pixel value corresponds to all photons that had impinged the

pixel during the integration time, which for an imager at 30 or 60 fps is much slower than the temporal

resolution of a typical DVS (in the order to micro-seconds). Other attempts to simulate the DVS from

frame based imagers could be to obtain a better interpolation of light intensity evolution along time,

however, that could lead to even more complicated models that are still trying to recover fast

phenomena from relatively small frequency image samplings.

To circumvent the issue mentioned in the paragraph above, we decided to synthesize a video

dataset at a high frame rate, as further explained in chapter 7, so we could better approximate the

instantaneous light intensity impinging at every pixel. Then, instead of using the state-interpolation

module, we used an external 3D-scene simulator (“Blender” n.d.) for creating a synthetic high frame

rate video, the frame rate being the temporal resolution of our simulated DVS. For this case, the

simulation loop in Figure 29 runs from update state to analog-to-digital-interface blocks only once for

every frame.

Continuing with the model for Dynamic Vision Sensors, we explain how events are detected.

Indeed, even though the instantaneous light intensity is approximated only with the current simulation

frame, the conditions of an event4 happening depend on the history of previous events in the image.

The reason is that each time that an event occurs at any pixel, its value for the cumulated intensity

difference resets to zero. Moreover, for calculating the intensity change after any event, the pixel takes

as reference value the instantaneous intensity at the moment of the last event. Thus, calculating

lighting differences by simply subtracting two subsequent frames would be incorrect. The right way to

do it, is by subtracting from the instantaneous intensity (from the current simulation frame) the values

of light intensity at the last event for each pixel separately (the reference value of each pixel is different

and may change asynchronously). For instance, in Figure 30 , light intensity evolves along time from

left to right. We take a look at a pixel highlighted in orange in the matrix of pixels (blue rectangle). At

time 𝑡2, there are two possible ways of calculating the gradient: one gives a difference of |a| and

another a difference of |b|. However, |b| is large enough to cause an event, whereas |a| is not. Then,

the pixel detects an event at time 𝑡2 only if the last event happened at time 𝑡0 (or possibly before 𝑡0),

but not if the last event happened at 𝑡1, which changes the reference lighting for computing the

gradient at time 𝑡2.

In order to take that into account, we defined a state variable that holds all reference

intensities for the pixels, and another state variable representing the instantaneous intensity (obtained

from the current simulation frame). Both variables can change for each event detected.

4 Recall that an event corresponds to a light intensity change higher than a certain threshold, defined by the
temporal contrast sensitivity.

 54

Figure 30 : example image of how an event at time step 𝑇𝑖 can depend on a time step simulation 𝑇𝑡−2.

We took into account several aspects for synthesizing the high frame rate video. Firstly, the

frame rate should be around or higher than 1000 frames/second. That would, at least, correspond to

1 ms of temporal resolution. Moreover, we used the Cycles (“Blender 2.93 Manual, Cycles” 2021)

renderer engine, which seemed to better simulate photonic noise with respect to the standard Blender

renderer. More details about the generated datasets will be given in chapter 6.

3.3. Conclusions of chapter 3

In this chapter we described the general models and code architecture for simulating different

types of imagers. We specified our simulation pipeline in order to produce A.I. benchmarks in chapter

6. Moreover, we explained how we simulated behaviorally specific imager types, and how we

approximated the impact of hardware constraints. Those specifications will be important when

benchmarks are presented, since conclusions derived from those are limited by the fidelity of our

models.

a

b

𝑡1

In
te

n
si

ty

?

𝑡2 𝑡0

 55

Chapter 4: Region proposals pipeline

design

In this chapter, we study the feasibility of implementing Object Detection (OD), either in real

time (e.g. at 30 fps or more) or not, on a dedicated near-sensor low power architecture (e.g. in the

range of tens of 𝑝𝐽/pixel/frame). We analyze methods that are more classical and power-hungry such

as approaches using desktop computers, or dedicated servers that can exploit powerful hardware, like

a graphics card unit (GPU), for massive runtime accelerations. However, our near-sensor approach

demands hardware-aware algorithms that consider both AI performance (e.g. classification accuracy,

intersection over union, runtime, etc...) and circuit architecture performance (power, speed, silicon

surface…). This often leads to an iterative algorithm-and-hardware development, in which changing

one of them may affect the other. For instance, if an algorithm relies on 32-bit division operations, but

the hardware can only support 8-bit summations, then one has to adapt the algorithm to a lower bit

resolution and simpler mathematical operations, or to increase-complexity / adapt the integrated

electronics, or to find an intermediary trade-off by changing both of them.

 The state of the art shows progress in implementing OD in embedded architectures. Some

examples like (J.-H. Kim et al. 2019) (Suleiman and Sze 2014) (Choi et al. 2014) (Omid-Zohoor et al.

2018), among others, start from a stable algorithm running on a complex hardware (e.g. a modern

desktop pc), and then try to adapt it to low power-integrated-architectures. Most of the works we found

rely on frame-based approaches, since frame-based (or just typical) cameras are user friendly and easily

supplied. Such approaches typically focus on solving A.I. computer vision problems by using single-static

images, one by one.

In that context, this chapter aims to explore another possible pipeline and architecture for

embedded OD, instead of the sliding window, namely, the usage of Regions of interest or Region

proposals methods to reduce time and power complexity. First we contrast ROI based OD algorithm

with the more classical sliding window approach. Then, we go deeper in selecting and understanding

one specific ROI proposal algorithm potentially suitable for embedded integrated electronics: Edge-

Boxes. Next, we discuss how to generate the input for the selected algorithm: the oriented gradients

map. Finally, we present a preprocessing pipeline for computing on the fly oriented gradients for low

power applications.

 56

4.1. ROI proposals vs. typical sliding window approaches

Frames have standardized representations on different color spaces: one can imagine a frame

(or simply, an image) as a 3D matrix. When seen from above, this 3D matrix looks like a 2D matrix and

each “entry” is a pixel. Then, if we turn around a little bit to the side, we will be able to see the third

matrix dimension (or its depth). This dimension (normally consisting in 1 to 4 values) are the pixel

values for a specific color encoding (e.g. RGB, gray, etc…). One can notice that each image (or frame)

only contains static information, and if one wants to recover dynamic information, such as the speed

at which objects (or borders, points, etc…) are moving, then one would need at least two frames.

 OD runs successfully on frames, and has interesting applications when information about

different objects in an imaged scene is important. More specifically, if one wants to know the location

(in a projected 2D image space) of several objects, and the nature (class) of each one as well. This

process is carried out with different main strategies in the state of the art. For instance, the simplest

is to train a classifier and “test it” as exhaustively as possible along the frame for finding objects (sliding

window) as made by (Dalal and Triggs 2005). Another option is first to generate potential regions with

objects in the scene with a lightweight algorithm (ROI proposals algorithm) and then to pass those

regions to a classifier5, as done for example by (Girshick 2015). This last example matches the Fast R-

CNN architecture (Girshick 2015). Continuing with the improved version of Fast R-CNN as example:

Faster R-CNN (Ren et al. 2017), one of the main ideas is to change the ROI proposals algorithm for a

CNN that is in charge of detecting such regions, and then using ROI pooling6 in the CNN-feature-

extractor output for passing selected regions to the classifier. Finally, one pipeline (that is the least

relevant for this work) is to remove the regions proposals section completely, but without having to

search exhaustively for every possible position and scale in the image. That is, by computing several

regions (ideally “at the same time”) and along a less dense grid in the image. Two known examples are

the single shot detector (Liu et al. 2016) (SSD) and You Only Look Once (Redmon et al. 2016) (YOLO)

CNN architectures.

 In Figure 31 we summarize some examples in the literature that we found closely related to

our work, and we present (in red) the processing pipeline (already mentioned in the SoA) that we found

interesting to implement in an embedded smart imager context.

5 Notice that those regions are projected from an intermediate feature space if ROI pooling is used (Ren et al.
2017).
6 ROI pooling is a way of using region proposals in a CNN-features-output and not directly in an input image
(Ren et al. 2017).

 57

Figure 31 : Example of diagrams of pipelines for embedded integrated devices.

Fig. [odPipelines]

Figure 31 shows three different examples of OD in embedded devices. The red arrows show

the pipeline of interest for this work. Figure 31 (a) corresponds to a sliding window approach with a

support vector machine (Suleiman and Sze 2014). Figure 31 (b) is a similar case to (a), but the classifier

is improved by adding the deformable parts model (DPM) (Omid-Zohoor et al. 2018). Figure 31 (c)

corresponds to an identity-verification system with a face detection network, and a subsequent face

classification network for verifying user identity (J.-H. Kim et al. 2019).

As mentioned in last paragraph, Figure 31 (a) and (b) show one possible approach for OD: the

sliding window. In order to explain it, we can start by hypothesizing simpler case scenarios: we can

assume that a target object will appear on the image with a specific size and aspect ratio. That is, if

one imagines a rectangle perfectly englobing the object7. For example, we can say such rectangle size

is 15 pixels high by 10 pixels wide. Then, one could train a classifier to label images of size 15 x 10, and

with the object of interest nicely centered on this small image. Finally, if we want to locate and classify

any object in a wider test image (for example, with size of 100 x 300 pixels), we can evaluate sub-

portions in this test image, by taking groups of pixels of size height x width (15 x 10 for our example).

We can do that with every possible group of pixels in the test image, with the condition that its size is

15 x 10, and then let the classifier to determine if such portion contains the desired object or not. This

method is the so-called Sliding window approach, used for example by (Omid-Zohoor et al. 2018) (Dalal

and Triggs 2005) (Suleiman and Sze 2014), and we can imagine it as a small rectangle of fixed size

sliding along a wider test image. Nevertheless, the amount of tests (e.g. when placing the small

rectangle on the test image for a test with the classifier) increases as 𝑂(𝑛2 = ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑤𝑖𝑑𝑡ℎ) with

the test image size. Indeed, this situation gets worse when there are several objects of different nature

to find, since the number of tests increases linearly (assuming one test, and model, per class) with that

quantity as well. Moreover, the fixed-object-size assumption (15 x 10 in our last example) is not valid

for many real scenarios. To circumvent that issue, works like (Omid-Zohoor et al. 2018; Dalal and Triggs

2005; Suleiman and Sze 2014) have implemented the so-called “Image scale pyramid” (“Pyramid

7 i.e. This rectangular zone perfectly encloses the object limits (rightmost, leftmost, top and bottom) in the image.

 58

(Image Processing)” 2021; “Scale Space” 2021): it consists on several sequential de-noising steps (for

example, with a Gaussian kernel) and down-sampling one already blurred image by a factor of two

along each height and width dimension. This process repeats several times, thus generating an image

scale pyramid, where each scale represents a different pair of blurring and down sampling (“Scale

Space” 2021; “Pyramid (Image Processing)” 2021). Then, the sliding window is applied exhaustively

along this scale pyramid, which means that the classifier-testing time complexity increases linearly with

the amount of scales as well. In addition, there is an overhead due to the scale pyramid generation

itself. Those aforementioned factors can make the OD pipeline too expensive in terms of time and

power for embedded devices targeting, for example, mega-pixel images as input and under challenging

scenarios.

Another popular example for embedded applications, showed in Figure 31 (c), is face

recognition and identity verification in mobile phones, like in (J.-H. Kim et al. 2019): firstly, the phone

“has to” determine where in the whole image the face is, or if there is a face at all (which is analogous

to the localization phase). However, this localization phase is not « class agnostic », since it is not

scoring any object presence, but rather a specific target class. In this case, the ROI localization is a low

power and weaker classifier, computed exhaustively along the image, and which is not capable itself

of determining if a detected face corresponds to the registered-user or not. Secondly, it has to assess

if the detected face corresponds to the registered user or not (with that being the classification phase).

The sliding window approach is simple and intuitive but the required computational

complexity increases for high-resolution images. To circumvent that, the Region proposals or ROIs

approach used for example by (Girshick 2015; Ren et al. 2017) could have advantages if the overhead

caused by the ROIs calculation is acceptable. The principle is that, instead of “testing densely or

exhaustively” the classifier, a previous algorithm is in charge of generating a certain amount of regions

that are most likely to contain objects. The first potential advantage is that the amount of tested ROIs

passed to the « energy hungry » classifier decreases enormously. The second advantage is that there

is time saved when processing each frame since (ideally) only the relevant regions are tested. Those

two reasons are critic in low power applications with objects of many different sizes. That is why we

chose to explore a pipeline such as the one exalted with red arrows in Figure 31.

4.2. Selecting a ROI detection algorithm

There are several ROIs algorithms in the literature targeting non-constrained devices. One example

is the Fast R-CNN (Girshick 2015). Afterwards it was improved and named Faster-R-CNN (Ren et al.

2017), and then Mask R-CNN (He et al. 2018) (the latter includes segmentation as well). Nevertheless,

their integrated circuit (IC) implementation remains difficult. One example in the SoA (J.-H. Kim et al.

2019) has already tried this idea along with a hybrid (analog / digital) Convolutional Neural Network

CNN (which resembles to an “embedded version of Faster R-CNN”), and for face detection/identity

verification on mobile devices.

This aforementioned idea, from (J.-H. Kim et al. 2019), was to use a low power CNN (they

implemented it in the analog domain, i.e. before the analog to digital converter) whose input are pixel

readings, while its output is (or allows to obtain easily) regions of interest. Their processing pipeline is

showed in Figure 32:

 59

Figure 32 : “(a) Conventional face recognition system (b) Proposed face recognition system" (J.-H. Kim et al. 2019).

Fig. [ccnkaist]: [ref: cnnkaist]
In their case, the regions of interest where related to potential faces, and when one region was

detected, another CNN (on the digital side) was triggered for performing the classification (identity

verification) phase. This approach is interesting, yet the justification for an analog CNN, complex to

design and implement, is not completely clear. For example, this analog CNN has to be simple enough

(i.e. just one convolutional layer in their work (J.-H. Kim et al. 2019)), and is aggressively quantized (3-

bit weights in their work). Nevertheless, in their results, they report a very similar accuracy for the

Hybrid CNN (for face detection) with respect to the usage of a Haar-Features (see Table 2). Then, this

made us wonder if such aggressive quantization actually makes a CNN implementation near the ADC

more interesting that a non-trainable approach. For instance, for implementing a trainable kernel (or

one CNN layer) their design had to take care of an analog unit capable of multiply-accumulation

operations. In addition, non-volatile memory reads for weights were required. Finally, the design had

to include analog implementations of the activation function: ReLu. That leads to trade-offs typical of

an analog design, such as fixed pattern noise, temperature-voltage variations, and non-negligible noise

sources introduced by all added transistors and capacitances (which can accumulate after each

operation).

 60

Table 2 : The hybrid-CNN implementation versus previous works (J.-H. Kim et al. 2019).

Based on factors mentioned previously, we decided to explore another approach (which resembles

to an “embedded version of fast R-CNN or R-CNN”): instead of a simple CNN in the analog domain, we

prefer to generate hand-crafted features that could be implemented on the sensor silicon die, like a

gray-light-intensity gradient computation. An example is offered by (Omid-Zohoor et al. 2018): they

showed a near sensor architecture that can improve dynamic range issues thanks to an approximation

of the gradient as a ratio8 instead of as a light intensity subtraction (or subtraction and addition,

depending on the gradient kernel). Their pipeline is showed in Figure 33, where they introduce the

ratio approximation by means of their “ratio-to-digital-converter” (RDC) (Omid-Zohoor et al. 2018).

Figure 33 : (a) OD in general. (b) OD with embedded and digital pre-processing. (c) Their innovative approach with

embedded digital and analog pre-processing. (Omid-Zohoor et al. 2018)

Fig. [hogstandford]: [ref: hogstandford]
 However, one question raises from the paragraph above: how to use hand-crafted features

for region proposals generation? Indeed, in our state-of-the-art compilation, we found several

algorithms that do not rely on CNNs for ROIs detection. Of course, such generated ROIs are good-

candidate inputs for a potential CNN classification (or other type of classifier). Among those ROIs

8 They (Omid-Zohoor et al. 2018; Young et al. 2019) called such approach the logarithmic gradients, since the
gradient representation as a ratio aims to approximate a logarithmic analog to digital conversion which is less
sensitive to local light intensity variations.

 61

proposals algorithms, we selected Edge-Boxes (Zitnick and Dollár 2014). The reasons are, firstly,

because its first stage depends upon an image of edges which could be feasible to extract with a low

power embedded architecture, as done for example by (Choi et al. 2014). Secondly, because chapter

6 will show that it has reasonably good performance even for gray images. From Table 3, we observe

Edge-Boxes has one of the lowest runtimes with good recall with respect to other approaches.

In order to avoid any confusion, in this work we call edges individual pixels with high local-intensity-

gradient-magnitude. In the other hand, segments are groups of edges that are “related” by a clustering

algorithm. Finally, contours, are groups of segments that form a more complex topology.

Table 3 : benchmark of performances for different region proposals algorithms: “… for IoU threshold of 0.7. Methods are
sorted by increasing Area Under the Curve (AUC). Additional metrics include the number of proposals needed to achieve
25%, 50% and 75% recall and the maximum recall using 5000 boxes…” (Zitnick and Dollár 2014).

 Introducing Edge-Boxes into the embedded OD pipeline raises the question of “how and where

to implement it” (e.g. analog or digital, the exactly same algorithm of a modified version, etc…). Notice

that Edge-Boxes digital implementation is not the objective of this work, but rather to assess if an

imager with specialized pre-processing for it would be worth. For that purpose, we decorticate it in

different stages, and try to estimate its complexity and associated speed in order to assess a potential

digital implementation. Moreover, we try to assess if the modifications targeting a low power

architecture do not degrade significantly the whole algorithm performance.

 In the next section, we go more into details about Edge-Boxes: we decorticate and compare it

with other approaches.

 62

4.2.1. EdgeBoxes decortication

Figure 34 : principle of functioning of Edge-Boxes (Zitnick and Dollár 2014).

Fig. [edge_boxes]:
EdgeBoxes (Zitnick and Dollár 2014) is a region proposal algorithm: it takes an edges-map as input,

and its output is a list of Region Proposals (ROIs). For instance, in Figure 34 (Zitnick and Dollár 2014)

they present their stages from input to output. The input is a colored image, from which the oriented

edges are extracted. Then, the algorithm tries to relate pixels into clusters (connected segments and

contours), and then uses them for scoring a series of hypothetical boxes distributed along the image.

Finally, it outputs those that are most likely to contain an object. The input edges map corresponds to

two 2D matrices of equal size: one filled with values between 0 and 1 (Mag), and another filled with

values between 0 and 𝜋 (Or). Typically, the edges map derives from a standard image frame. In

addition, both Mag and Or matrices-size (when projected into a 2D image9) are equal or smaller than

the original image used to obtain the edges map10. When rendered, the edges map appears to “follow”

the original image contours, and the more contrast is present along the contour, the brighter it will be.

Indeed, a value for Mag at the position ij can be interpreted as the local and spatial light-intensity-

gradient magnitude. The corresponding value in Or, at the same ij position, represents the local and

spatial gradient orientation (in a 2D image space). Values in Or go between 0 and 𝜋 and not to 2𝜋,

since two orientations pointing along the same straight line are considered as equivalent, even if they

go in opposite directions. For instance, if a gradient orientation points towards 5𝜋/4 𝑟𝑎𝑑, then its

9 Notice that Mag and Or are a 2D matrices both of the same size (height x width), while the input image can
have a more complex color encoding representation. Then, the original image size is (height x width x color-
encoding-depth).
10 The image size can be reduced due to border effects, or after down-sampling. Another case may be to up-
sample an image before extracting its contour map, but this is not relevant for the present work.

 63

corresponding value in the Or-matrix will be 𝜋/4 𝑟𝑎𝑑. Regarding EdgeBoxes output, it is a list of ROIs.

Each ROI corresponds to a 4-value-array containing information about the size and position (in image

space) of a rectangle englobing a potential object. Finally, a fifth optional value for each ROI represents

its score , which goes between 0 and 1, and estimates how likely an ROI actually contains an object

(Zitnick and Dollár 2014).

 In the next sections, we will go into more details about how to generate the input edges map

(both for the general and for the embedded case scenarios). Until then, we will assume it is available

for EdgeBoxes, and in order to decorticate it.

We base our explanation from both their publication (Zitnick and Dollár 2014) and source code

(Dollar and Zitnick 2015b), since several details were not completely clear for us directly from their

paper: EdgeBoxes is composed of 3 main pipelined stages: edge clustering, data structure preparation,

and boxes scoring. We will explain them briefly as follows:

Edge clustering

During edges clustering, each ij value-pair conceptually corresponds to an “edge” if 𝑴𝒂𝒈(𝑖𝑗) is

above a user defined threshold11. Besides, the algorithm tries to “merge” groups of edges into clusters

based on a specific strategy. Clustering is important for computational efficiency at later stages.

Regarding the merging criterion, it is as follows: starting from an edge ij, supposedly the only element

on cluster C, the algorithm finds the 8-connected pixel to ij, namely 𝑖 + 𝑥, 𝑗 + 𝑦 such as12:

𝑴𝒂𝒈(𝑖 + 𝑥, 𝑗 + 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Equation 5

 And,

𝑥, 𝑦 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝑥,𝑦 ϵ {−1,0,1}

|𝐎𝐫(𝑖𝑗) − 𝐎𝐫(𝑖 + 𝑥, 𝑗 + 𝑦)|

Equation 6

 The “argmin” function implies that the algorithm is “looking” for the 8-connected edge whose

orientation is the closest to ij ’s. Of course, the case in which 𝑥 = 𝑦 = 0 is not relevant. Once a new

edge is “added to the cluster”12, 𝑖 + 𝑥, 𝑗 + 𝑦 takes the role of the new starting point for a next

clustering iteration. This process stops when the cumulated orientation differences for C is higher than

another threshold, or when there are not 8-connected edges13 to the current ij-pair. If a clustering

process stops for a cluster C, then the algorithm continues to “scan” along the contour map “searching”

for individual edges that can start a new cluster (i.e. that have 8-connected edges, and which do not

belong to any cluster yet). In addition, after clustering, the algorithm tries to eliminate clusters whose

magnitudes are smaller than a user defined threshold. However, clusters with magnitudes lower than

this threshold can be merged with other clusters if possible.

11 Not to confuse with other thresholds, especially those that could have been previously used to generate the
edge map.
12 This is tracked by a matrix of id numbers, where each id maps to a specific cluster.
13 Here, we refer to 8-connected edges as edges that are only one pixel apart, no matter in which direction
(including diagonals). This is a distinction to other types of connectivity such as 4-connected edges that does not
take into account diagonals (“Pixel Connectivity” 2019).

 64

Once the clustering is done, the affinity parameter “𝑎” is introduced to estimate how likely two

segments (or edge clusters), whose “heads and tails” are not 8-connected, but that are “near

enough”14 from each other, can be deemed to “belong”15 to the same contour. The formula for 𝑎 is

given below:

𝑎(𝑠𝑖 , 𝑠𝑗) = |cos(𝜃𝑖 − 𝜃𝑖𝑗) cos(𝜃𝑗 − 𝜃𝑖𝑗)|
𝛾

Equation 7: (Zitnick and Dollár 2014)

In Equation 7, the affinity a of segments 𝑠𝑖 and 𝑠𝑗 is calculated as a function of a user defined

parameter 𝛾. Angles 𝜃𝑖 and 𝜃𝑗 are the overall angles for each segment, and 𝜃𝑖𝑗 is the angle between

the two segments. Another important aspect is that if segments are more than 2-pixel radius away,
they get an affinity of zero. One example is illustrated in Figure 35.

Figure 35 : example of how Edge-Boxes relates disconnected segments.

Fig. [Figure 35 shows an example of how Edge-Boxes relates disconnected segments throughout

the affinity variable. Orange squares represent pixels detected as Edges. The black arrows represent

segments average magnitude and direction. Finally, the blue, discontinued and smaller arrows

represent the affinity variable. Notice that segments on the lower right have higher affinity than the

two in the upper left, due to the similarity of average angle. Also, segments separated by two or more

pixels have no affinity between them.

During the clustering process, the algorithm creates new data structures (2D matrices) for holding

relevant cluster information, such as cluster id, cluster average orientation and cluster average

magnitude. In order to store and to further use the affinity, efficient data of non-fixed length are

defined. Firstly, two vector variables hold the bottom-right edge coordinates for each cluster (the index

corresponds to the cluster id). Secondly, a data structure, which is not a 2D matrix but rather “a list of

14 Inside a radius of 2x2 pixels in the Author’s source code (Dollar and Zitnick 2015b).
15 From our perspective, the notion of « belonging to a contour » is subjective or hard to define. We simplify this
by imaging that two segments are indeed forming a contour if it is very likely that a human- being would state it
as true, and by means of simple visual inspection.

 65

lists”16, is the segments Affinities (represented as _segAff and _segAffIds17 in the author’s source code

(Dollar and Zitnick 2015b)). Being those more abstract (complex) than the others, we dedicate the next

paragraph to explain them.

In order to know which pair of segments (clusters) relate to any entry in _segAff, another variable

(_segAffIds) becomes essential. Both _segAff and _segAffIds have the same shape. Moreover, since

they both are lists of lists, any value (entry) corresponds to an index pair, similarly to a 2D matrix. For

the case of _segAffIds, the first index x represents a particular cluster id or 𝐶𝑥 (thus the amount of lists

equals the number of clusters). The second index y iterates along a sub-list of all clusters that have a

non-zero affinity with 𝐶𝑥. Notice that 𝑦 ≠ segment id, and if one wants to obtain the second segment

id (the first id is x) for a value pair (x, y) in _segAff, this value lies on the variable _segAffIds at the same

index pair (x, y).

Aiming at a digital implementation, we enumerated the class variables created during this step and

estimated its memory size:

Table [clusteringVariables]

16 This distinction is important, since each « sub-list » within the list of lists, as well as the amount of sub-lists can
grow in size in runtime (as opposed to a fixed size image). In addition, different sub-lists are not restricted to
have the same length.
17 Typically, the underscore before the variable name is a convention to indicate that it is a C++ class variable.
This is not relevant for understanding this work, yet we clarify it to avoid confusion.

 66

Table 4 : most-relevant-variables size-estimation for the first EdgeBoxes stage; segments = 2𝑖𝑛𝑡 = 216 (worst-case).

Name Native type Derived type Size Formula Max size (kBytes)

_segIds int Array int*h*w 500

_segMag float std :: vector float*segments 262,144

_segAff float std :: vector float*segments*totalNeighbors*2*2 25165,824

_segAffIdx int std :: vector float*segments*totalNeighbors*2*2 12582,912

_segC int std :: vector int*segments 131,072

_segR int std :: vector int*segments 131,072

map int vector int*segments 131,072

meanX float vector float*segments 262,144

meanY float vector float*segments 262,144

meanOx float vector float*segments 262,144

meanOy float vector float*segments 262,144

vs float vector segments*float 262,144

cs int vector segments*int 131,072

rs int vector segments*int 131,072

In Table 4, we estimate the size of most “memory hungry” variables generated in the clustering

stage. Values for int and float are 16 and 32 respectively, the maximum amount of segments, or simply

segments is 216 = 65536, and totalNeighbors = 24 = (2 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 + 1)2 – 1, with radius = 2.

Notice the size formula for both _segAff and _segAffIdx is multiplied by 2 two times; the first factor

takes into account that any affinity is copied twice (for example, the affinity for segments 𝐶𝑥 and 𝐶𝑦

will appear in both _segAff[x] and _segAff[y] lists). The second factor takes into account that neighbors

can be at either at the head or at the tail of any segment. One can immediately notice the high memory

values (for instance, more than 25 Mbytes for _segAff) required. As we will show later, this example is

illustrative, but it lacks accuracy for selecting a realistic amount of segments. As we did not develop a

theoretical formula for a better amount-of-segments estimation, we decided to obtain it

experimentally as it will be shown later in section “4.2.2. Preliminary memory estimation”.

Once finished all those initial steps, the algorithm continues to the rest of data structures

preparation.

Data structures preparation

 This phase aims to maximize the computational efficiency for determining the “objectness”

(Zitnick and Dollár 2014; Alexe, Deselaers, and Ferrari 2012) of ROIs. From here, we find useful to

introduce already how Edge-Boxes estimates this objectness: the idea is to estimate it by “counting”

the amount of connected contours that trespass, or overlap, with the ROI borders (again, considering

the ROI as a rectangle). In other words, the algorithm considers that if an object is located inside any

hypothetical ROI, then most of the existing contours inside it would not trespass the ROI limits.

However, when applied, this concept brings several complications: For instance, several clusters

related by their corresponding affinities can form a contour, and then, a contour can appear to be

“disconnected”. Moreover, another question is how to handle contours that could have several

branches. One final example is the time complexity of searching contours along ROI borders when

estimating its objectness (box scoring): as discussed later in the profiling, this operation (box scoring)

happens many times during Edge-Boxes execution.

 67

Complications such as those mentioned above bring the importance of data structures

preparation. During this stage, several variables are created to increase the estimation speed for ROI

objectness (or, box scoring, which is the next stage). We do not enter into details of each variable’s

objective. Indeed, this is not necessary in order to have a first approximation of the memory usage,

and it could make the present writing too tedious18. We repeated the same steps as before in order to

obtain estimated variable sizes depicted in Table 5.

Table 5 : most-relevant-variables size-estimation for the second Edge-Boxes stage; h = w = 500 pixels.

Name Native type Derived type Size Formula Max size (kBytes)

_scaleNorm float std :: vector 1000*float 40

_segIImg float Array (h+1)*(w+1)*float 1004,004

_magIImg float Array (h+1)*(w+1)*float 1004,004

_hIdxs int std :: vector h*int 1

_hIdxImg int Array h*w*int 500

_vIdxs int std :: vector w*int 1

E1 float Array float*h*w 1000

From Table 4 and Table 5, one can observe that variables in the first one depend on the amount

to clusters or segments. On the other hand, the latter table presents space-complexities depending

only on image dimensions. Once this stage is completed, the algorithm move on to the box-scoring

stage.

Box scoring

In this phase, Edge-Boxes applies the same idea of the sliding window approach. However, the

benefit respect to a sliding window without Edge-Boxes, is that objectness calculation is expected to

be less “expensive”. Then, it can be densely (not necessary exhaustively) estimated along the image.

Edge-Boxes searches for ROIs almost exhaustively in the image: it “distributes” a series of hypothetical

ROIs along it. Those hypothetical ROIs correspond to groups with different sizes and aspect ratios19.

User parameters control boxes density (spacing), aspect ratios and sizes.

 During this stage, the algorithm “slides” across all hypothetical boxes and scores them. For the

scoring, Edge-Boxes adds borders completely inside the ROI, and the amount added depends on cluster

magnitudes. In addition, it penalizes when clusters intersect with the ROI borders, or when clusters

inside the ROI are likely to form a connected contour with clusters outside. In order to figure that out,

the affinities variables contain the required information to link groups of clusters. Notice that these

variables relate to clusters that could form a completely connected contour. In addition, even though

the scoring happens over a potentially big amount of boxes, not all of them are in the output. The user

can select the desired amount of ROIs, and Edge-Boxes will provide the top ones accordingly. Of course,

18 Those variables are further explained in the EdgeBoxes paper (Zitnick and Dollár 2014).
19 Actually, the process is more complicated than that, in the sense that after scoring a box, if a score is high
enough, then Edge-Boxes tries to « improve » that score by testing other boxes with the same size and aspect
ratio in the surroundings. This idea is called « box refining » by the author (Zitnick and Dollár 2014).

 68

in order to avoid redundant boxes in the output, a non-maximum-suppression20 step becomes

important (which is already done in the original algorithm).

4.2.2. Preliminary memory estimation

This sections aims to assess the feasibility of Edge-Boxes integration. We consider that this is

more likely to be possible in a 3D-IC architecture. For example, in a two-layer 3D-IC imaging system,

the top layer would target image acquisition and pre-processing (e.g. edge extraction). Then, the

bottom layer could be in charge of memory storage, ROIs detection and classification. For the moment,

we approximate memory requirements for Edge-Boxes. Nevertheless, we first use “worse-case”

scenario criteria for choosing the amount of segments, and bit-depths (int, float). That leads to values

that are potentially high and “over-conservative”. In the next sections, we show experimentally that

this first theoretical value reduces significantly in real images. Nevertheless, we present our

preliminary memory estimation scheme for later comparison.

 In order to estimate the total memory required by Edge-Boxes, we listed all variables used in

the source code (Dollar and Zitnick 2015b), and assigned an approximated21 size formula for each of

them. Moreover, we take into account that not all variables are required along the whole algorithm,

thus allowing to free some space during the execution runtime. We then tried to approximate the

behavior of an optimized and compiled code memory usage.

Figure 36: Edge-Boxes memory estimation while processing one image.

Fig [memoryEstimation]

20 For clarification, the term “non-maximum-suppression” is a general way of referring to algorithms that try to
minimize the amount of false positives of a detection algorithm (rather it be edges, objects, or anything else)
when there are close in a particular space (in our case, in the image space, closeness means spatially close). Then,
if several neighboring positives for a detection algorithm have a score estimation (regardless of it is objectness,
gradient magnitude, or other) the algorithm tries to only keep the local maxima and neglect the others. Notice
that this is a very general definition, and its specificities depend on the context of application.
21 In our total calculation, we take into account smaller variables and overheads related to data structures
(pointers, instance variables, etc…).

0

10

20

30

40

50

M
em

o
ry

 u
sa

ge
 (

M
b

yt
es

)

EdgeBoxes progression

Total memory (Mytes)

Instance variables plus h and w

Parameters

Input (Or, Mag, boxes container)

Other variables

 69

Figure 37: Edge-Boxes instance variables size estimation.

Fig [variablesSizeEstimation]

 In Figure 36 shows the Edge-Boxes memory estimation while processing one image. The x axis

indicates the algorithm progression divided in arbitrary checkpoints. This curve was obtained by listing

all variables inside the source code and trying to estimate the optimal memory handling from the C++

compiler along the algorithm execution. From that image, we observe that there is an abrupt increase

in the estimated memory. This relates to the affinities variable creation, whose size depends on the

number of segments. In addition, Figure 37 shows Edge-Boxes instance variables size estimation, and

derived from the Author’s source code (Dollar and Zitnick 2015b). Figure 37 clarifies that, when the

number of segments is big, the affinities variable takes the most important impact on memory usage.

This result is reasonable since the segments affinities variable grows linearly with the amount of

segments (when taking Table 4 as reference), and here we took as reference the worst case for the

amount of segments. Nevertheless, we expect those theoretical results to change after we get a better

statistical approximation of the practical segments amount. Then, the relative memory impact of the

rest of the variables can potentially increase. We think that the memory requirements as shown in

Figure 37 are too high, so going deeper for a better estimation of the segments amount is important.

If the segments amount in practice is significantly less, then the affinities size will reduce as well, thus

potentially making the embedded implementation feasible for embedded.

4.3. Embedding oriented gradients generation

In this section, we explain our approach to optimize the ROIs detection pipeline for embedded

applications. Our strategy consists in three parts: firstly, we evaluate the viability of computing a map

of oriented gradients near the matrix of pixels. That computation would exploit the pixel rolling-shutter

readout with a column-parallel architecture (so that the imager calculates oriented gradients on the

fly, at the rolling shutter readout speed). Secondly, we study the impact of different gradient

architectures (method, encoding, and implementation) on ROI proposals performance. Finally, for

each possible architecture, we extract experimentally the amount to segments generated. Then, we

0

5

10

15

20

25

30
Si

ze
 (

M
B

yt
es

)

Variable name

 70

derive a more realistic estimate of memory usage. In addition to the aforementioned steps, we

estimate the memory usage after taking into account that, given the quantized input, reducing bit-

depth inside Edge-Boxes computations could be possible as well. However, we do not test this idea

experimentally, and thus we let it for further works.

 As mentioned in the last paragraph, Edge-Boxes is fed with the map of oriented gradients as

input. In the original paper (Zitnick and Dollár 2014), they obtained such an input with a “structured

edge detection” (Dollar and Zitnick 2015a) algorithm. It used random forests, whose input was a 3-

channel (color) image, and whose output was a contour map. This map is composed of two matrices:

a first one containing the light intensity gradient magnitudes for every pixel (from 0 to 1), and a second

one containing the corresponding local orientation (from 0 to π). The implementation available at

OpenCV (“OpenCV, EdgeBoxes” 2021) used a 32 bit float type for representing them. From our

perspective, this solution is too complex for a near-matrix implementation. Nevertheless, Edge-Boxes’

authors mentioned that they tested the more classic Canny Edge Detection (“OpenCV, Canny Edge

Detector” 2021) approach. Even though this latter approach gave a lower detection rate reported by

(Zitnick and Dollár 2014), we estimated that the Canny Edge Detection was a good starting point, and

potentially a good performance-complexity trade-off. In next section, we present this algorithm in

more detail, as well as potential architectures that could allow to generate the contour map. Then, we

compare with other approaches in the state-of-the-art literature.

4.3.1. Canny Edge Detection

We now explain the Canny Edge Detection (“OpenCV, Canny Edge Detector” 2021) algorithm

in more detail, and then we start exploring how to integrate it near the matrix of pixels. The original

paper (Canny 1986) includes a dense theoretical background that is not essential in this work. So we

will base our explanation on OpenCV’s documentation (“OpenCV, Canny Edge Detector” 2021). The

algorithm takes a gray-image as input (each pixel contains one only value related to gray light

intensity), and outputs an edge map. The difference with the structured edge detection, is that now

the gradient magnitudes can only be either 0 or 1, and the orientations can only be 0, 𝜋/2, 3𝜋/2 and

𝜋.

 In OpenCV’s documentation (“OpenCV, Canny Edge Detector” 2021), the algorithm is

explained as a pipeline of 4 stages: spatial noise suppression, gradient estimation, “non-maximum

suppression”, and “hysteresis thresholding”. As a starting point, we explain briefly each on them based

on (“OpenCV, Canny Edge Detector” 2021):

Spatial noise reduction

 Our objective is not to provide a strict theoretical background on this subject, but rather to

explain the intuition behind and its practical implementation. The point of this first stage is to reduce

spatial noise caused by local intensity gradients that appear to be “erratic”, and thus that may not

belong to any contour. In our experiments (as will be further explained later), we observed that this

spatial “noise” is potentially related to textures, and other small details in the image that are often not

relevant (at least for a human) for understanding the overall morphology of different objects.

Regarding the implementation, it typically involves convolving an input image with a “blur” kernel of

fixed (e.g. non-trainable or handcrafted) parameters. The one suggested in OpenCV documentation

 71

(“OpenCV, Canny Edge Detector” 2021) is a Gaussian kernel22 of size 5x5 pixels. Notice that there is not

a specific Gaussian kernel for each size, since the kernel (2D-matrix) coefficients depend on a

parameter σ representing the standard deviation. In OpenCV documentation, the Gaussian kernel

coefficients can be obtained as (“OpenCV, Image Filtering” 2021):

𝐺𝑖 = 𝛼 ∗ 𝑒
−
(𝑖−

𝑘𝑠𝑖𝑧𝑒−1
2

)
2

2𝜎2 , 𝑖 = 0,… , 𝑘𝑠𝑖𝑧𝑒 − 1

Equation 8 (“OpenCV, Image Filtering” 2021)

∑𝐺𝑖 = 1

Equation 9 (“OpenCV, Image Filtering” 2021)

𝜎 = 0,3 ∗ ((𝑘𝑠𝑖𝑧𝑒 − 1) ∗ 0,5 − 1) + 0,8

Equation 10 (“OpenCV, Image Filtering” 2021)

 Where ksize is the number of kernel coefficients when taking into account one linear kernel

from which the 2D Gaussian kernel can be derived (since the Gaussian Kernel is compatible with

separable convolutions). For instance, for a 3x3 Gaussian Kernel:

𝒌𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏 = [

𝐺1

𝐺2

𝐺3

] [𝐺1 𝐺2 𝐺3]

Equation 11

 Alternatively to the Gaussian Kernel, there are other types of kernel that can be applied. One

possibility is to reduce the size, which may lead to a simple electronic implementation. Another

possibility is to use an average23 kernel (“OpenCV, Image Filtering” 2021): in this case, the output (de-

noised) pixel value is an average of the corresponding neighbor pixels (and itself) in the input image.

The amount of pixels that are “averaged” depends on the kernel size. We found this second option

interesting since it could simplify the electronic implementation with respect to a Gaussian kernel. That

is, because the average kernel has the same “entry” for every value, whereas the Gaussian Kernel has

different values for each entry, which can make symmetric layouts more challenging. The expression

of the average kernel can be found in the OpenCV documentation as (“OpenCV, Image Filtering” 2021):

𝒌𝒂𝒗𝒆𝒓𝒂𝒈𝒆 =
1

9
[
1 1 1
1 1 1
1 1 1

]

Equation 12 (“OpenCV, Image Filtering” 2021)

Gradient estimation

This step tries to estimate the local light intensity gradient (magnitude and orientation) at

every pixel from an input image 𝑰(𝑥, 𝑦) (with x and y being pixel coordinates). The image can be colored

or gray, and different algorithms accept one type or several codifications. In the original paper (Zitnick

22More details about the Gaussian Kernel documentation in OpenCV can be found at (“OpenCV, Image Filtering”
2021).
23 In OpenCV’s documentation, it is called the “normalized box filter” (“OpenCV, Image Filtering” 2021).

 72

and Dollár 2014), the gradient for Edge-Boxes is estimated with the “Structured Edge Detection”. It

relies on a Random Forest (Dollar and Zitnick 2015a) for obtaining both gradient magnitude and

direction with a float (32-bit) precision. For the Canny-edge detection, one common way is to convolve

the image with two kernels 𝒌𝑥 and 𝒌𝑦̂, made of handcrafted coefficients, and each kernel corresponds

to one image axis (𝑥, 𝑦̂). The resulting gradients maps are 𝑮𝑥̂ = |𝑮𝑥̂| , and 𝑮𝑦̂ = |𝑮𝑦̂| (one for each

axis, and both being functions of spatial coordinates x and y). For instance, if we represent the

convolution operation as ⊛, then |𝑮𝑥| = 𝑰 ⊛ 𝒌𝑥 , and |𝑮𝑦̂| = 𝑰 ⊛ 𝒌𝑦̂ . From there, the total

magnitude |𝑮(𝑥, 𝑦)| (or simply |𝑮|) of the gradient 𝑮(𝑥, 𝑦) (or simply 𝑮) is

|𝑮| = √|𝑮𝑥|
2 + |𝑮𝑦̂|

2

Equation 13 (“OpenCV, Canny Edge Detector” 2021)

 In addition, the orientation 𝜽(𝑥, 𝑦), or simply 𝜽 is:

𝜽 = arctan (
|𝑮𝒚̂|

|𝑮𝒙̂|
)

Equation 14 : orientation from gradient components magnitudes (“OpenCV, Canny Edge Detector” 2021)

 However, notice that Canny-edge-detection “expects” 𝜽(𝑥, 𝑦) ∊ [0, 𝜋],

whereas arctan(𝜃) ∊] − 𝜋/2, 𝜋/2 [. Moreover, several questions rise regarding how to implement

the expressions for both 𝑮 and 𝜽: firstly, which kernels to use, and how to deal with “complex

expressions” for a near-to-matrix of pixels implementation, such as squaring, square root and inverse

tangent. One approximation used for example by (Soell et al. 2016) is:

|𝑮| = |𝑮𝑥| + |𝑮𝑦̂|

Equation 15 : gradient magnitude estimation (Soell et al. 2016).

 For the case of 𝑶, (Choi et al. 2014) mentions the possibility of a digital “look up table” , which

has as inputs both |𝑮𝑥|, |𝑮𝑦̂| (represented with a particular bit-depth after analog-to-digital

conversion), and outputs a discrete value representing an angle. Another idea is to perform a

successive approximation in the analog domain (Choi et al. 2014): the authors explain that two

successive comparisons with fixed voltage values can approximate the inverse tangent (for a low

power application).

 Regarding the kernels 𝒌𝑥 and 𝒌𝑦̂ , the Sobel kernel 𝒌𝑖 ∊ {𝑥̂,𝑦̂}
𝑆 is for example used by (Soell et al.

2016):

𝒌𝑥
𝑆 = [

−1 0 1
−2 0 2
−1 0 1

] 𝒌𝑦̂
𝑆 = [

−1 −2 −1
 0 0 0
 1 2 1

]

Equation 16 : Sobel kernels (“OpenCV, Canny Edge Detector” 2021)

 Another simpler kernel have been used for example by (Dalal and Triggs 2005) to estimate

oriented gradients, such as:

 73

𝒌𝑥
𝐷 = |−1 0 1| 𝒌𝑦̂

𝐷 = |
−1
 0
 1

|

Equation 17: simple linear kernel (Dalal and Triggs 2005)

 Where the superscript D indicates “difference”, and it is only a convenient notation for better

clarity. Kernels 𝒌𝑖 ∊ {𝑥̂,𝑦̂}
𝐷 are simpler to implement, since they involve only differentiation of two pixels

that are adjacent to a central one. In this work, we try to compare the performance of both cases while

taking into account quantization.

 (Omid-Zohoor et al. 2018) proposed to approximate |𝑮𝑦̂|, |𝑮𝑦̂| as a “ratio” instead of a

difference. They implemented that in the ADC, which they called the “ratio-to-digital converter”

(Omid-Zohoor et al. 2018). They explained that by applying a logarithmic function on the image

followed by kernels similar to 𝒌𝑥
𝐷 , 𝒌𝑦̂

𝐷, then the ADC output is the logarithm of a ratio, instead of a

linear difference. For instance, |𝑮𝑥| = log(𝑰) ⊛ 𝒌𝑥
𝐷, where the expression log(𝑰) indicates that the

logarithmic function spans for every single pixel-value (if considering a gray image, then 𝑰 corresponds

to a 2D-matrix). For instance, log(𝑰) (𝑥, 𝑦) = log[𝑰(𝑥, 𝑦)]. Then,

|𝑮𝑥(𝑥, 𝑦)| = log[𝐈(𝑥 + 1, 𝑦)] − log[𝐈(𝑥 − 1, 𝑦)] ∀ 𝑥 ∊ {1,… ,𝑊 − 1}, 𝑦 ∊ {1,… , 𝐻 − 1}

 With W and H being the image width and height (in pixels) respectively. The expression

becomes:

|𝑮𝑥̂(𝑥, 𝑦)| = log [
𝑰(𝑥 + 1, 𝑦)

𝑰(𝑥 − 1, 𝑦)
]

Equation 18 (Omid-Zohoor et al. 2018)

 (Omid-Zohoor et al. 2018) explained that the obtained gradient is more robust to region light

intensity changes that are not related to the presence of a feature (i.e. to changes in illumination,

which can “fool” the algorithm to think that there is a feature where there is not). They illustrate it by

saying that, if multiplying 𝑰 along a spatial sub-region by a coefficient 𝛼, simply because such zone

received more photons (illumination), then 𝛼 no longer affects |𝑮𝑥̂(𝑥, 𝑦)| due to the division. That is:

|𝑮𝑥(𝑥, 𝑦)| = log [
𝛼 ∗ 𝑰(𝑥 + 1, 𝑦)

𝛼 ∗ 𝑰(𝑥 − 1, 𝑦)
] = log [

𝑰(𝑥 + 1, 𝑦)

𝑰(𝑥 − 1, 𝑦)
]

 Notice that the effect of 𝛼 would remain in the case of a linear subtraction operation on the

input image. Furthermore they show that such “pre-processing” in the analog domain enhances the

performance of the subsequent AI processing when applying an aggressive gradients quantization.

Finally they (Omid-Zohoor et al. 2018) also explain how to implement that idea by approximating the

logarithmic operation with a dedicated ADC (which they call “ratio-to-digital” converter (Omid-Zohoor

et al. 2018)). In this work, we take this kind or pre-processing into account, and we test it with Edge-

Boxes in order to assess the global ROI performance (or objectness).

Non-maximum suppression

 We explain the non-maximum-suppression (NMS) step based on OpenCV’s documentation

regarding the Canny Edge Detection (“OpenCV, Canny Edge Detector” 2021), and then we explain the

implications of embedding it near the pixel matrix. NMS “tries” to generate “thin contours” by

preserving pixels already taken as edges only if their corresponding |𝑮(𝑥, 𝑦)| is a local maximum along

 74

its local direction 𝜃(𝑥, 𝑦) ∊ {0, 𝜋/4, 𝜋/2, 3𝜋/2}. However, we found several issues when trying to

implement it (near the pixels-matrix, before the ADC). For example, one NMS iteration would be as

follows:

A. Before NMS

1. Calculate both gradient components for a 3x3 region around a pixel (x, y) and “buffer”

them.

2. Calculate gradient magnitudes from gradient components and “buffer” them.

3. Calculate the local gradient 𝜃(𝑥, 𝑦) orientation at (x, y), and,

B. During NMS

4. If 𝜃(𝑥, 𝑦) = 0, then pixel (x, y) is preserved as an edge only if 𝑮(𝑥, 𝑦) >

 𝑮(𝑥 + 1, 𝑦) 𝑎𝑛𝑑 𝑮(𝑥 − 1, 𝑦).

5. If 𝜃(𝑥, 𝑦) = 𝜋/4, then pixel (x, y) is preserved as an edge only if 𝑮(𝑥, 𝑦) >

 𝑮(𝑥 + 1, 𝑦 + 1) 𝑎𝑛𝑑 𝑮(𝑥 − 1, 𝑦 − 1).

6. If 𝜃(𝑥, 𝑦) = 𝜋/2, then pixel (x, y) is preserved as an edge only if 𝑮(𝑥, 𝑦) >

 𝑮(𝑥, 𝑦 + 1) 𝑎𝑛𝑑 𝑮(𝑥, 𝑦 − 1).

7. If 𝜃(𝑥, 𝑦) = 3𝜋/4, then pixel (x, y) is preserved as an edge only if 𝑮(𝑥, 𝑦) >

 𝑮(𝑥 − 1, 𝑦 + 1) 𝑎𝑛𝑑 𝑮(𝑥 + 1, 𝑦 − 1).

For one single pixel, step 1 implies obtaining local gradient components of a 3x3 region around.

Thus, considering any of the gradient kernels cited before, the architecture has to buffer (in the analog

side) a 5x5 pixels-region in order to calculate the gradient components (if one wants to minimize pixel

readings directly from the pixels-matrix). Then, step 2 implies computing the gradient components,

thus performing a summation in analog domain and then buffering the resulting values. Notice that at

this point, the architecture should buffer both total gradient magnitudes (for at least a 3x3 region

around the pixel of interest) and local gradient components (e.g. only at pixel (x, y)). Then, the local

angle is recovered from the local gradient components and buffered. After that, NMS begins in step 4.

For example, a combinatorial circuit should “decide” which values of the gradient magnitude to

compare with the local G(x, y), and then more electronics have to handle the comparison. Finally, the

output of the local gradient magnitude output (from the ADC) is G(x, y) if the pixel is effectively an

edge, or 0 for the contrary.

The paragraph above puts into evidence the potential additional complexity of implementing

NMS before the ADC: several buffers are required for different computational steps, and analog or

mixed-signal logic units for making decisions of which values to compare the local gradient magnitude

with. Moreover, it is less likely that column-parallel parallelization could be exploited. One could argue

that this could be easier to implement in the digital domain. However, the caveat is that, considering

a low power ADC with aggressive quantization (for example, with magnitudes being only 0 or 1), we

think that comparisons in steps 4 to 7 are likely to lose relevance and become harder to interpret. That

is due to the aggressive quantization in the gradient magnitude. For instance, in the gradient in

quantized to 1-bit, then the comparison of one gradient being bigger that another one becomes less

meaningful, and a gradient that would normally be detected as bigger might be classified as “equal”

due to quantization.

Hysteresis-thresholding

 This step “tries” to estimate if pixels are (or not) edges based on their local gradient

magnitude 𝑮(𝑥, 𝑦). While edge-detection ideas for near pixels-matrix implementation, such as (Soell

et al. 2016), detect edges if |𝑮(𝑥, 𝑦)| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, OpenCV’s implementation (explained by them in

 75

(“OpenCV, Canny Edge Detector” 2021)) is more complex. First, all gradients are compared with two

fixed thresholds 𝑇1, 𝑇2, with 𝑇2 > 𝑇1. Then, pixels with 𝑮(𝑥, 𝑦) > 𝑇2 are immediately classified as

edges and pixels with 𝑇1 < 𝑮(𝑥, 𝑦) < 𝑇2 are classified as edges only if they are connected with a pixel

in which 𝑮(𝑥, 𝑦) > 𝑇2. For all other cases, the edge-detector outputs 𝑮(𝑥, 𝑦) = 0.

 From previous paragraph, we notice that this last stage presents similar issues with the

previous one (non-maximum-suppression). Thus, in our approach we try to assess if a near pixel-matrix

gradient architecture could work without those two lasts steps. In next section, we will continue

developing the edge detection pipeline to find which one is most suitable for object detection with ROI

proposals.

4.3.2. Our edge detection pipeline description

In this section, we describe in detail our pipeline for oriented gradient generation. We discuss

each stage in terms of image processing, and we try to take into account IC-implementation

phenomena as well. For example, we introduce more specifically where we perform quantization, and

how the signal (information) goes from the pixels-matrix to the ADC.

Figure 38: our proposed column parallel pre-processing pipeline for gradient computation.

Fig [generalPipeline]

In Figure 38 we represent a series of stages for near pixel-matrix edge-extraction (i.e. extraction of

oriented gradients at individual pixels and which are higher than a reference threshold). It is important

that this is not the first architecture proposed to perform this task, thus we will make emphasis on

differences with the state to art when required. Continuing with the overall description, our approach

targets column-parallel computations, instead of inside-pixel architectures as in (Bose et al. 2019). Our

motivation is to be able to separate pixel-matrix design from pre-processing, then allowing optimizing

both independently. Moreover, in-pixel architectures have important issues with fill-factor, fixed-

pattern-noise and pixel complexity: all of which make it more difficult to implement (and model) a pre-

processing pipeline like the one we chose.

 76

According to Figure 38, the different stages are:

1. Image-acquisition (a standard H x W pixels-matrix with column parallel read-out).

2. Correlated double sampling, and 5x5-pixels circular-image-buffer

3. Average 3x3-kernel de-noising.

4. Gradient components calculation with kernels as in Equation 17.

5. Gradient and orientation:

a. Gradient magnitude estimation as in (Soell et al. 2016).

b. Orientation estimation with the approach suggested by (Choi et al. 2014)24 (with

successive approximations).

The remainder of this section describes the behavior of each of the stages, starting step 2 in the

list above.

CDS and circular buffer

We think that correlated-double-sampling (CDS) is important to mitigate FPN and temporal noise,

especially because the architecture is multi-staged, and noise “propagates” during pre-processing. We

took the CDS plus buffering architecture from (Young et al. 2019), and we slightly modified it to adapt

for including the de-noising (include capacitances to change kernel size). As they (Young et al. 2019)

explain, with the right amount of capacitances, this block also allows performing “binning” if needed.

The importance of a circular buffer is that gradient calculations depend on values of neighboring pixels,

and we wanted to avoid at maximum to read pixels directly from the matrix several times. Indeed,

different values of pixels are required several times, and one gradient value (magnitude plus direction)

depends on 25 values in the original image. For example, in Figure 39, the yellow (thick border)

rectangle in (a) englobes original values needed for computing the de-noised value 𝐼(4, 4) in (b), which

is needed for gradient computation at pixel (4, 5). The thick borders in (b) represent all de-noised

values needed for computing the Gradient G at pixel (4, 5) (the gradient matrix is not shown). At the

same time, the light-blue background in (a) represent all original values used for computing one single

gradient value at pixel (4, 5). That is, one entry in the gradient matrix “expands” to a 5x5 matrix in the

original pixel-values-matrix. Now, we center our attention at location (4, 5), where our goal is

calculating the gradient. From that figure, we observe that due to the 2-stages (image acquisition and

de-noising), this gradient value depends on values from a 5x5-matrix in the original image. That is, we

want to buffer those 25 values for a simple gradient computation. Moreover, when computing gradient

at other locations, like at (3, 5), original-pixels-values that were used before are required again. That

is, the buffer has to “keep” pixels values while they are still needed.

24 We represented it as a trigonometric ADC for clarification. However, (Choi et al. 2014) did not implemented
this idea for an ADC. In fact, they use values already in the digital domain, transferred it to the analog domain,
and then went backwards to the digital side. All of that only for calculating the gradient orientation.

 77

(a) Original pixel values (b) De-noised values

I(1, 1) I(1, 2) I(1, 3) I(1, 4) I(1, 5) I(1, 6) I(1, 7) I(1, 8)

I(2, 1) I(2, 2) I(2, 3) I(2, 4) I(2, 5) I(2, 6) I(2, 7) I(2, 8)

I(3, 1) I(3, 2) I(3, 3) I(3, 4) I(3, 5) I(3, 6) I(3, 7) I(3, 8)

I(4, 1) I(4, 2) I(4, 3) I(4, 4) I(4, 5) I(4, 6) I(4, 7) I(4, 8)

I(5, 1) I(5, 2) I(5, 3) I(5, 4) I(5, 5) I(5, 6) I(5, 7) I(5, 8)

I(6, 1) I(6, 2) I(6, 3) I(6, 4) I(6, 5) I(6, 6) I(6, 7) I(6, 8)

I(7, 1) I(7, 2) I(7, 3) I(7, 4) I(7, 5) I(7, 6) I(7, 7) I(7, 8)

I(8, 1) I(8, 2) I(8, 3) I(8, 4) I(8, 5) I(8, 6) I(8, 7) I(8, 8)

I(1, 1) I(1, 2) I(1, 3) I(1, 4) I(1, 5) I(1, 6) I(1, 7) I(1, 8)

 I(2, 1) I(2, 2) I(2, 3) I(2, 4) I(2, 5) I(2, 6) I(2, 7) I(2, 8)

I(3, 1) I(3, 2) I(3, 3) I(3, 4) I(3, 5) I(3, 6) I(3, 7) I(3, 8)

 I(4, 1) I(4, 2) I(4, 3) I(4, 4) I(4, 5) I(4, 6) I(4, 7) I(4, 8)

I(5, 1) I(5, 2) I(5, 3) I(5, 4) I(5, 5) I(5, 6) I(5, 7) I(5, 8)

I(6, 1) I(6, 2) I(6, 3) I(6, 4) I(6, 5) I(6, 6) I(6, 7) I(6, 8)

I(7, 1) I(7, 2) I(7, 3) I(7, 4) I(7, 5) I(7, 6) I(7, 7) I(7, 8)

I(8, 1) I(8, 2) I(8, 3) I(8, 4) I(8, 5) I(8, 6) I(8, 7) I(8, 8)

 Fig. [bufferExample]

Figure 39: Illustration of why a simple gradient computation depends upon 25 original-image-values.

De-noising

In our simulations results (depicted in detail in the benchmarks chapter), we found that de-noising

has an important impact in the amount of pixels that are detected as edges. Moreover, this stage

improves the performance for ROI proposals with Edge-Boxes and with quantized gradients. We think

this relates to the mitigation of high spatial gradients corresponding to textures and not to overall

topologies. However, when de-noise is not present, the elevated amount of edges increases the

amount of clusters of edges in Edge-Boxes, which increases memory and runtime as, will be shown in

chapter 6. Thus, de-noising allows to decrease memory and runtime, at the same time that ROIs are

obtained with the same or even better accuracy.

We selected an average kernel because it was the simplest to implement, and our decision is

supported by results that will be presented at the benchmarks chapter (chapter 6). Indeed, in our tests,

a more complex kernel type did not change significantly the accuracy for ROI proposals.

Another important aspect is that we have not found another work which proposes a column-

parallel staged-pipeline pre-processing including both de-noising and gradient computation (i.e.

without a “standard computational unit” or a standard addressable memory). This column architecture

exploits parallelism and computes gradients on the fly. In chapter 5 we go deeper in how we propose

to achieve that. We found works, for example (Hsu et al. 2019; Soell et al. 2016; Young et al. 2019),

proposing analog computing architectures for image pre-processing. However, they only computed

one single stage (either de-noising or pixels differences) before the ADC, or they implemented a more

complex computational unit resembling a standard processor. In that case, it is less obvious to exploit

parallelism and compute gradients on the fly.

 78

Gradient components

We selected the kernels showed in Equation 17 because of their simplicity, and since results (in

the benchmarks section) support that this kernel is “good enough” for ROI proposals. Indeed, a more

complex type of gradient, such as a Sobel (Equation 16), did not lead to significant improvements.

Hence, we propose calculating each gradient component with two separate blocks (one for each

component) as proposed by (Soell et al. 2016). In their work, however, they did not use a de-noising

stage previous to the gradient extraction. We also keep the idea from (Soell et al. 2016) of calculating

the absolute value for each component for the next stage, yet we add two additional signals respect

to (Soell et al. 2016), sx and sy, the gradient signs, that are important for the angle.

Gradient magnitude

Similarly to (Soell et al. 2016), we simply “add” the gradient magnitude from each component and

we compare the sum with a fixed threshold (𝑽𝒓𝒆𝒇). This comparison outputs either 1 (high) or 0 (low)

values, thus quantizing the magnitude to 1 bit values. During our experiments, we often observed that

many pixels (between 80 to 90%) are not detected as edges (when the threshold is set correctly). Then,

we concluded that the architecture should compute the angle only when the magnitude equals 1

(high). That could save power and speed up gradients computation. For instance, by exploiting the

edge map sparsity: if the gradient magnitude is 0, the angular calculation is not performed, and only 1

bit is read from the ADC. Two possible ways of exploding that (that are let to be studied in further

works) are to reduce the trigonometric ADC activity by approximately 90 % for angular calculation.

Secondly, to allow the system to run in a simpler (probably faster) mode by only detecting edges and

not angles. That could be attractive for autonomous systems with adaptive behaviors.

Angle computation

 For the angular computation, we propose to adapt the block from (Choi et al. 2014) to carry out

the inverse tangent approximation. The principle consists in comparing the ratio Gx/Gy to tan()

where  is a threshold angle that can be adjusted. As an example, if we want to discriminate 4 angles

from 0 to 180°, you need the comparison results from:

- Comp1 : |Gy| > |Gx|.tan(22.5°), meaning  >22.5° if Gy/Gx> 0, or  <177.5° if Gy/Gx< 0,

- Comp2 : |Gy |> |Gx|.tan(67.5°), meaning  >67.7° if Gy/Gx> 0, or  <132.5° if Gy/Gx< 0,

For simplicity, we call this block “trigonometric ADC plus an encoder” in Figure 38. From (Choi

et al. 2014) , we took into account several differences that we had to adapt for our case. Firstly, in their

implementation (Choi et al. 2014) the angular computation was after the ADC (thus, in the digital side).

Then, they had to include the digital to analog conversion. Our implementation will be simpler as we

already are in the analog domain. Secondly, since the angle depends on gradient-components signs,

they used the previously obtained signs from the gradients calculation in the digital side. In our case,

we use the sign signals output from the analog absolute value function instead, based on the

architecture proposed by (Soell et al. 2016). Finally, for our implementation, the whole circuitry can be

simplified, since they (Choi et al. 2014) projected the angle into 9 bins, whereas we are interested in 4

angular values (or 4 bins).

 79

4.3.3. Dynamic range improvement

 The ratio-to-digital converter architecture proposed by (Young et al. 2019; Omid-Zohoor et al.

2018) is more robust to high-dynamic-range effects related to gradient-components-quantization.

They (Young et al. 2019; Omid-Zohoor et al. 2018) approximated logarithmic gradient-component-

conversion with two successive comparisons. To explain this process, we take into account one

gradient component along x (it could be y as well) 𝑮𝒙(𝑥, 𝑦). It depends on image values (not de-noised,

in the case of (Young et al. 2019; Omid-Zohoor et al. 2018)) 𝑰𝒙(𝑥 − 1, 𝑦) and 𝑰𝒙(𝑥 + 1, 𝑦). In the analog

domain, those two image values are voltages corresponding to (respectively) are 𝑽𝒊−𝟏 and 𝑽𝒊+𝟏. Then,

the first comparison is 𝑽𝒊−𝟏 < 𝑽𝒊+𝟏. If true, then the second comparison is 𝑽𝒊−𝟏 < 1/2 𝑽𝒊+𝟏. If the

first comparison result is false, the second one is similar, but the sub-indexes are switched. Then, for

their case (Young et al. 2019), gradient components where obtained with Table 6:

Table [youngtruthtable]

Table 6: truth table suggested by (Young et al. 2019) for approximating logarithmic 2-bit gradient-components.

Comparison 1 Output 1 Comparison 2 Output 2 𝑮𝒊=𝒙,𝒚

𝑽𝒊−𝟏 < 𝑽𝒊+𝟏

1 𝑽𝒊−𝟏 < 1/2 𝑽𝒊+𝟏
1 1

0 0

0 𝑽𝒊+𝟏 < 1/2 𝑽𝒊−𝟏
1 -1

0 0

From Table 6 presents truth table suggested by (Young et al. 2019) for approximating

logarithmic 2-bit gradient-components with successive approximation (comparison). From Table 6, we

observed that this dynamic range improvement is related with comparing voltages (light intensities)

that are spatially close. The idea of a fixed threshold for “simple or linear gradients” is changed for a

“fixed factor”, which is multiplying one on the two voltages. We then wondered if we could apply a

similar idea to our pipeline (depicted in Figure 38). In order to do so, we also observed that:

𝑽𝒊−𝟏 <
1

2
𝑽𝒊+𝟏 ⇒ 2𝑽𝒊−𝟏 < 𝑽𝒊+𝟏 ⇒ 𝑽𝒊−𝟏 + 𝑽𝒊−𝟏 < 𝑽𝒊+𝟏 ⇒

𝑽𝒊+𝟏 − 𝑽𝒊−𝟏 > 𝑽𝒊−𝟏

On the left hand side of this expression is the linear gradient component. What has changed is

the right hand side, which is a variable voltage (representing light intensity) instead of a fixed value.

From here, we consider a second approximation, by changing the threshold from 𝑽𝒊−𝒊 to 𝑽𝒊 :

𝑽𝒊+𝟏 − 𝑽𝒊−𝟏 > 𝑽𝒊

𝑮𝒙 = 𝑽𝒙+𝟏 − 𝑽𝒙−𝟏 , 𝑮𝒚 = 𝑽𝒚+𝟏 − 𝑽𝒚−𝟏

Then, if we apply the condition the gradient magnitude, we obtain:

|𝑮𝒙| + |𝑮𝒚| ≈ |𝑮| > 𝟐𝑽𝒊

We interpret that last condition as: in order to detect an edge at pixel location (x, y), the

estimated local gradient magnitude has to be higher than twice the local light intensity value. We did

not find any particular justification for the factor of 2. Then, the last inequality can be generalized as:

|𝑮𝒙| + |𝑮𝒚| > 𝛼𝑽𝒊 ⇒ 𝐸𝑑𝑔𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

Equation 19

 80

 We call the gradients detected by last inequality as “relative gradients”, since its magnitude

depends on the local light intensity value instead of a fixed threshold. Again, only if an edge is detected,

then we proceed to compute the angle. Another important difference, which will be relevant in the

benchmarks section, is that estimating the angle based on “logarithmic-gradient-components” is not

the same as estimating it with “linear gradient components”. The reason is that, theoretically,

estimating the angle from linear gradient component is an approximation of the inverse tangent of the

Figure 40 : adaptation from Figure 38 for relative gradients. The architecture segments added are colored in red.

Figure [relativePipeline]:
ratio of linear gradients. Nevertheless, obtaining the angle from logarithmic components, is an

approximation of the inverse tangent of the logarithm of the ratio of the components. Those two

functions are not (to our knowledge) to be mathematically equivalent. In addition, based on results

that will be shown and explained in the benchmarks section, using linear gradients for angle

approximation gave better results in overall for ROI proposals with Edge-Boxes. Notice that

“logarithmic-gradient-components” refers to the architecture proposed by (Young et al. 2019), in

which they only calculated angles based on two gradient components in the X and Y axis. Nevertheless,

if four gradient components were calculated (X and Y axis and the 2 diagonals), the angle assessment

could be reduced to only finding the maximum of the four gradients (which was not studied in this

work, since we found that it was interesting after discussing the results).

4.4 Conclusions of chapter 4

In this chapter we discussed the feasibility of ROI proposals generation in an embedded

(hardware-constrained) architecture. We observed that, due to complexity of state of the art

algorithms, it is not obvious to implement them near the sensor. However, a good candidate is the

algorithm called Edge-Boxes. We decorticated this algorithm to have a first assess of memory usage as

first estimation of implementation viability. We found that using worst case criteria gives rather

elevated memory requirements (~50 Mbytes), but that may not be realistic, since in practice a much

smaller number of contour segments could be required (for now we let this as an open question until

we address it our benchmarks chapter). After that, we explained different methods for obtaining, at

the column level, the Edge-Boxes input: the edge map. Moreover, we selected a specific pipeline for a

possible implementation based on power constraints, but also for optimizing the A.I. performance. In

the next chapter, we will dig into each block of our proposed gradient computation scheme by

presenting possible electronics schematics, functioning, and power consumption approximations. In

the next chapter, we will start by decoupling all the processing in stages.

 81

Chapter 5: Embedded Edge Extraction

Circuitry

In this chapter, we focus on describing the different stages for edges extraction, which we call

Origrad, at the schematic level. Our principal objective is to get first approximations for power

consumption, bandwidth and noise. Those approximations are based on the behavioral functioning of

each stage, associated with estimated parameters (stray capacitances, intrinsic transistor gain, …). As

presented in chapter 4, and for the sake of clarity, we divide the whole pipeline into five stages. The

first one, the correlated doubled sampling and circular buffer circuit, is the one proposed by (Young et

al. 2019). The only difference is that we added two sampling capacitors to buffer two more pixels per

column (and again 1 more if binning is required). We proposed the next two stages, the low pass filter

and the intermediary buffer, inspired from typical sampling and capacitive charge recombination

circuits. We took the circuitry from (Soell et al. 2016) for the final two stages: difference plus absolute

value, and summation plus quantization. The only difference we made was to adopt sampling-

capacitances and switched-capacitor topologies.

For our analysis, we assume that the matrix of pixels outputs a gray intensity image of size H x

W (rows times columns). In addition, we foresee that there is one pipeline circuit for each column.

Nevertheless, if area constraints impose it, the circuitry could be further adapted so that several image

columns share one pipeline circuit.

 82

5.1. Circuit stages

5.1.1. Correlated double sampling and first buffer

Figure 41 : Correlated double sampling and buffer circuitry proposed by (Young et al. 2019).

Fig. [firstState]:

This circuit was taken from (Young et al. 2019), related to the pipeline in Figure 5, with the only

difference being that we use 5 capacitances 𝐶𝐻 instead of 4. If n x n binning is desired, a sixth

capacitance 𝐶𝐻 should be added in parallel to the circuit in Figure 41. The reader can find more details

about n x n binning with this architecture in (Young et al. 2019). In addition, as explained by (Young et

al. 2019), this circuit performs a CDS, removing the pixel reset noise and the low-frequency noise, by

sampling onto any of the capacitances 𝐶𝐻 the difference between the pixel-signal value and the pixel-

reset value. Switches S31 to S35 determine the capacitance at which each pixel value goes. Each 𝐶𝐻

samples one row at a time and a digital-state-machine controls the row corresponding to each

capacitance such that the circuit behaves as a circular buffer of 5 rows. 5 rows are needed as explained

in chapter 4. Taken into account that this happens for every column, the whole first preprocessing

stage buffers 5 complete rows at the same time during the preprocessing. Then, when a new row is

read and sampled, the rest of the pipeline computes new features, a row output (of features) is

generated, and then a new row is sampled again (overwriting a row that is no longer used for

preprocessing). In the next paragraph, we try to estimate the power consumption for this stage.

 Let fps be the number of frames per second output by the image sensor, and 𝑓𝑠1 be the pixel-

value sampling-frequency at 𝐶𝑠 during reading. Since there is one pipeline circuitry per column,

then 𝑓𝑠1 = 𝐻 ⋅ 𝑓𝑝𝑠, where 𝐻 is the number of rows in the original matrix of pixels. We approximate

the power for this stage, per column, as 𝑃1 = 𝛼 ⋅ 𝑉 ⋅ 𝐼 (idle factor, times voltage, times current), so 𝑃1

is in units of 𝑊/𝑐𝑜𝑙𝑢𝑚𝑛.

𝑃1 = 𝛼𝐼𝑖𝑛𝑣𝑉𝑖𝑛𝑣

Equation 20

 83

 In last equation, 𝛼 represents a sort of “activity factor” (similar to digital electronics) which

takes into account that the inverter biasing can be “set to off” when it is not in use (duty-cycling). This

is not rare since, for example, autonomous systems can lower the frame rate in order to save energy.

Moreover, for a whole object detection pipeline the feature map acquisition could use just a small

portion of the whole A.I. processing time.

5.1.2. Low Pass Filter

Figure 42 : image spatial-low-pass (blur) filter with an averaging kernel.

Fig [secondStage]:

The aim of this circuit is to convolve (on the fly) the gray-intensity-image with a 3x3 averaging

kernel. This stage adds a complexity and power overhead respect to other edge-detectors such as

(Young et al. 2019; Soell et al. 2016). Nevertheless, in the benchmarks (chapter 6) we will discuss

further about the interest of this stage. One can note that this stage is not critical as the edge detector

will still “work” even if the average kernel is not applied. Indeed, the objective of this stage two is to

enhance or optimize the A.I. performance vs. runtime trade-off.

The principle of functioning is the following: during the sampling phase, switch S6 is closed

whereas S10 is open. Switches S71 to S79 select which capacitance the value is sampled on, and the

mapping between the sampling capacitance and the row, column positions in the original image is

carried by a digital-state-machine. Thus, a 9 x 9 window of the original image is sampled in those

capacitances. For the second stage, S6 opens and S10 closes, such that the output voltage at node y

represents an average of sampled values. In next paragraph we start estimating the power

consumption.

Let 𝑓𝑠2 be the frequency at which values are sampled in any of the switched capacitances in

Figure 42. Then, this frequency has to be nine times the frequency at which values are sampled in next

and previous stages (e.g. nine sampled “pixel positions” in this stage correspond to “just one” averaged

value). Then 𝑓𝑠2 = 9 ⋅ 𝑓𝑠1, and:

 84

𝑃2 = 𝛼𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝

Equation 21

Where 𝐼𝑎𝑚𝑝 and 𝑉𝑎𝑚𝑝 correspond, respectively, to the current and voltage biasing for the unity

gain buffer 𝐴1.

5.1.3. Second buffer

Figure 43: intermediary buffer schematic.

Fig [thirdStage

This stage (Figure 43) allows to store 3 averaged values corresponding to 3 pixels from 3

consecutive rows (when thinking of the original image). This obeys the pipeline introduce in chapter 4,

with this intermediary buffer between the de-noising and the subtraction. Since it is implemented in

every column, three whole rows are sampled in this stage as the next stage carries out the gradients

components computation with a 3x3 kernel. The intermediary buffer performs a first sampling, switch

S12 is open while S11 is closed. Switches S131 to S133 select the corresponding capacitance for

sampling the denoised pixel value. This is controlled by a digital state machine on the periphery, since

switching signals are the same for all columns. For the reading phase, switch S11 is open, while switch

S12 is closed. Again, switches S13i select the value to read.

By keeping a logic similar to last stage, one value sampled at any of the capacitors in Figure 43

corresponds only to one pixel address at the pixel matrix. Then, the value storing frequency is 𝑓𝑠3 =

𝑓𝑠1, with 𝑓𝑠1 the frequency of sampling at 𝐶𝑠 in Figure 41. Then, the power consumption is:

P3 = 𝛼𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝

Equation 22

 Once values are « de-noised », they are ready to be used for gradient components

computation. Then, next stage « reads » 2 values sequentially to compute the difference and the

absolute values of the gradient components. In addition, notice that in last chapter, stages 2 (low pass

filter) and 3 (intermediary buffer) are merged into one single block. Indeed stage 3 comes specifically

from implementation details only. We decided to separate stages 2 and 3 only to facilitate our analysis.

 85

5.1.4. Difference and absolute value

Figure 44 : schematic for computed gradient magnitude components.

Fig. [fourthStage]:

 This stage can be accomplished with a sequential computation of the two main axes

components. Nevertheless, if area constraints allow it, the same architecture can be repeated twice.

We take the second option for our further analysis, since it is interesting to explore a more aggressive

parallelization. This stage is based on the publication from (Soell et al. 2016), where the subtraction

was changed for taking switched-capacitance amplifiers into account. The absolute value circuit was

left completely as presented in (Soell et al. 2016).

The functionality of the circuit in Figure 44 is as follows: firstly, at sampling stage (Figure 45),

switches S16, S21 are closed, while S201, S202 and S18 are opened. Switches S171 and S172 select the

capacitance for sampling the previously de-noised value hold in the intermediary buffer. Two values

are required to compute each component. Then, corresponding switches to read/sample each value

are controlled by an external digital-state-machine placed on the periphery. Once the two values are

sampled, the second stage is the subtraction and absolute value computation. There (Figure 46),

switches S16, S171, S172, S192 and S21 are opened, while S201, S02, S18 and S191 are closed. Notice

that S18 allows changing the polarity of the read value from the capacitor below it in Figure 44. Then,

during subtraction, charges from both capacitors at the left of amplifier A4 (Figure 44) are subtracted

and the resulting charge is stored in the capacitor below S21. Then, one gradient component (as an

analog voltage) has been computed, and the rest of the circuitry carries the absolute value function as

explained by (Soell et al. 2016).

 86

Figure 45 : equivalent difference and absolute value circuit from Figure 44 in sampling phase.

Figure 46 : equivalent difference and absolute value circuit from Figure 44 in amplification stage.

For estimating the power consumption, we assume that all amplifiers are biased with the same

parameters. Moreover, for each pixel address in the original image, two values are sampled for the

gradient calculation at capacitors to the left from A4, whereas the one below S21 charges only once

per subtraction. Then 𝑓𝑠41 = 2𝑓𝑠1 and 𝑓𝑠42 = 𝑓𝑠1. Moreover:

𝑃4 = 2 ⋅ (𝛼5𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝) = 10𝛼𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝

Equation 23

 Once the two components are calculated in parallel, they can be used to calculate the total

gradient magnitude in next stage.

5.1.5. Summation and quantization

Figure 47: circuit schematic for the summation and quantization stage.

 87

This circuit computes (see Figure 47), firstly, the summation of both gradient-components

absolute-values. Secondly, it estimates the 1-bit gradient magnitude by comparing the later

summation with a fixed reference (Vref_1 in Figure 47). The functioning of this circuit is as follows: for

the sampling phase, switches S241 and S242 are opened, while the rest are closed. Then, the abs-

component-values are sampled at capacitances at the left of amplifier A7 and the capacitor above it is

(ideally) set to zero voltage (charge). For the next stage, switches S221, S222 and S25 open, while

switches S231, S232, S241, S242 are closed. Then, the charge from capacitors at the left of A7 is

« transferred » to the capacitance above it, completing the amplification (summation). The summation

is then compared by means of a simple comparator amplifier. Then, 𝑓𝑠5 = 𝑓𝑠1.

 The power consumption can be thus estimated as:

𝑃5 = 2𝛼𝐼𝑎𝑚𝑝𝑉𝑎𝑚𝑝

Equation 24

5.1.6. Angular computation

Figure 48 shows the circuit schematic, inspired from (Choi et al. 2014), for sorting the gradient

angle among the four values {0°, 45°, 90° and 135°}. The principle of functioning is as follows: during

sampling time, switches 611, 612, 621, 622 are ON for sampling the gradient component values. Also,

S641, S642 are ON for reset of capacitors C1 and C2. |Gx| is sampled twice, at C01 and C02, and the

analog happens for |Gy|. During the logic phase, all switches previously ON pass to OFF, and switches

S631, S632 pass from OFF to ON. The result is that two key comparisons are performed, in order to

assess the angle. Compared to (Choi et al. 2014), since we only needed 4 angular values (2 bits), the

schematic and functioning was simplified, while preserving the same key ideas. During the logic phase,

the two logic comparisons performed are |𝐺𝑦| > |𝐺𝑥| ⋅ tan (67.5°), and |𝐺𝑥| < |𝐺𝑦| ⋅
1

tan(22.5)
.

Similarly as suggested by (Choi et al. 2014), those values are determined by C01, C1, C12 and C2. The

result from those two comparisons are fed to an encoder, along with logic signals sx, sy, which contain

the gradient components sign. Figure 49 shows the truth table for projecting the angle on only the first

quadrant, according to the results of the two comparisons mentioned before. For including the second

quadrant as well, an extended truth table (considering sx, sy) is showed as well.

 88

Figure 48 : simplified circuit respect to the one from (Choi et al. 2014) for angular computation.

Fig. [angleApproximation]:
Regarding the power consumption, we approximate it by taking into account the power from

the two amplifiers (comparators). We neglect the power consumed by the digital part (the encoder).

The bandwidth of both comparators is 𝑓𝑠6 = 𝑓𝑠1.

𝑃6 = 𝛼(2 ⋅ 𝑉6𝐼6)

Equation 25

 89

Figure 49 : logical expressions and related truth tables for angular computation with the circuit from Figure 48.

Fig. [angleApproximation_2]:

5.2. Condensing power into a single formula

The total power is the sum of all stages multiplied by the number of columns. We are also

interested at the “energy per pixel per frame”, which is a figure of merit reported by other works such

as (Young et al. 2019). Then,

𝑃𝑡𝑜𝑡𝑎𝑙

𝑊
[
𝑊𝑎𝑡𝑡𝑠

𝐶𝑜𝑙𝑢𝑚𝑛
] = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 + 𝑃5 + 𝑃6

Equation 26

𝑃𝑡𝑜𝑡𝑎𝑙

𝑊
= (𝛼𝐼1𝑉1) + (𝛼𝐼2𝑉2) + (𝛼𝐼3𝑉3) + (10𝛼𝐼4𝑉4) + (2𝛼𝐼5𝑉5) + (2𝛼𝐼6𝑉6) = 𝛼(𝐼1𝑉1 + 𝐼2𝑉2 +

𝐼3𝑉3 + 10𝐼4𝑉4 + 2𝐼6𝑉6)

Equation 27

 90

In last equation, we assume that the inverter amplifier in first stage is also biased with the

same parameters as the rest of amplifier in other stages. For selecting the factor 𝛼, we first set it to 1

and observe the implications of doing so. Some calculations are presented below:

Table 7: power estimation when taking 𝑉𝑖 = 1,5 𝑉, 𝐼1 = 1 µ𝐴, 𝐻 = 𝑊 = 500 𝑝𝑖𝑥𝑒𝑙𝑠, and 𝑓𝑝𝑠 = 60 𝑓𝑟𝑎𝑚𝑒𝑠/𝑠.

alpha Total power (mW) E per pixel (pJ/pix)

1 12,750 850,0

0,1 1,275 85,0

0,01 0,128 8,5

0,001 0,013 0,9

0,0001 0,001 0,1

 In Table 7, we illustrate the effect of alpha in reducing the energy per pixel, assuming alpha

does not depend on the bandwidth. We chose arbitrary values for the bias, based on values reported

by (Young et al. 2019) for the CDS plus circular buffer stage. Notice that those are not the final

theoretical values, since they have to be consistent with the required bandwidth. That will be derived

in next section. Also, the energy per pixel is calculated by dividing the total power by the frame rate

and the total number of pixels W times H. We chose a typical value for the fps, but again, this value is

just illustrative, and it will be derived in next section. From one can observe that for a α equal to 1, the

energy per pixel is one order of magnitude higher than the one reported by (Young et al. 2019). Then,

we observe that power can be reduced either by duty-cycling, or by reducing the biasing (voltage or

current). Indeed, that will be our objective in next subsection.

5.3. Estimation of the bias current

In last section, the bias current was selected as a rounded value from the CDS plus buffer stage

proposed by (Young et al. 2019). This selection, however, is still arbitrary and here we try to go deeper

in how to assess better the expected order of magnitude for the biasing current. Please consider that

our objective is to study a rather simplistic test scenario for delimiting the reasonable range of the

biasing current 𝐼𝑑. Up to now, we let this current for all previously described stages equal to one

Ampère. Then, we consider the minimal value imposed by the worst-case band-width, and signal-to-

noise (SNR) ratio.

5.3.1. Band-width constraints on biasing current

We take as reference (for a fist approximation) the switched-capacitance non-inverting

amplifier, which is well know from basic electronics, like from (Razavi 2001). Notice that, as explained

for example from (Razavi 2001), in a simple amplifier, the first pole of the transfer function is defined

by the output node small-signal resistance 𝑟𝑜 and the target load capacitance 𝐶𝐿 = 𝐶𝐻. For instance,

the open loop bandwidth in Hertz is 𝐵𝑤 = (2𝜋𝑟𝑜𝐶𝐿)
−1, and the closed loop bandwidth (and the

 91

respective time constant) can be obtained by the gain-bandwidth-product relation. Nevertheless, our

circuitry considers switched-capacitor-amplifiers. Then, we have set our biasing current to meet the

time constants for the equivalent circuits in both sampling and amplification modes. From general

knowledge about electronics design, the settling time for the output signal (e.g. the time constant 𝜏

multiplied by 6) must be smaller than the clock semi-period. Then, for the sampling and amplification,

respectively, we have the following relation:

6 ⋅ 𝜏𝑠𝑎𝑚𝑝/𝑎𝑚𝑝 <
𝑇𝑐𝑙𝑘

2
⇒ 6 ⋅ 𝜏𝑠𝑎𝑚𝑝/𝑎𝑚𝑝 <

1

2 ⋅ 𝐻 ⋅ 𝑓𝑝𝑠

Equation 28

 Notice that 𝑇𝑐𝑙𝑘 = (𝐻 ⋅ 𝑓𝑝𝑠)−1 since we assume that one row is processed during each clock

period. This, however, is not correct when the several sampling stages are required, such as the circuit

in Figure 42. In such case, a faster clock tick is required (for following the output speed of adjacent

stages), and the fps is multiplied by a factor reflecting several sampling steps. We represented this

factor as 𝑁𝑐. We assume that one stage can have a faster clock if required. From fundamental

electronics, such as from (Razavi 2001), the equivalent sampling time constant is:

𝜏𝑠𝑎𝑚 = (𝑅𝑜𝑛1 +
1

𝐺𝑚
)𝐶𝐻

Equation 29 : the time constant “𝜏𝑠𝑎𝑚”, for a detailed explanation, see (Razavi 2001)..

Where 𝜏𝑠𝑎𝑚 is based on the equivalent circuit of the unity-gain sampler in sampling mode. In

Equation 29, we neglect 𝑅𝑜𝑛 as a first approximation. 𝐺𝑚 corresponds to the input transistor

transconductance, which we approximate as 𝐺𝑚 = 𝑔𝑚 = 10 ⋅ 𝐼𝐷. Then,

𝜏𝑠𝑎𝑚 =
𝐶𝐻

10𝐼𝐷

Equation 30

 As explained in (Razavi 2001), for the amplification phase, the equivalent small signal circuit

has a resulting time constant 𝜏𝑎𝑚𝑝 as in Equation 31.

𝜏𝑎𝑚𝑝 =
𝐶𝐿𝐶𝑒𝑞 + 𝐶𝐿𝐶2 + 𝐶𝑒𝑞𝐶2

𝐺𝑚𝐶2

Equation 31 : time constant 𝜏𝑎𝑚𝑝, for a detailed explanation, see (Razavi 2001).

In Equation 31, 𝐶𝑖𝑛 represents the operation amplifier input capacitance (Razavi 2001), which

we neglect (compared to 𝐶𝐻) for a first approximation. For simplification, we assume that 𝐶𝐿 = 𝐶2 =

𝐶1 = 𝐶𝐻. Then:

𝜏𝑎𝑚𝑝 =
3𝐶𝐻

𝑔𝑚
≈

3𝐶𝐻

10𝐼𝐷
= 3𝜏𝑠𝑎𝑚𝑝

Equation 32

From last equation, we notice that the amplification phase is the critic one for selecting the

biasing current. Then,

 92

6𝜏𝑎𝑚𝑝 <
1

𝑁𝑐 ⋅ 2 ⋅ 𝐻 ⋅ 𝑓𝑝𝑠

Equation 33

Where the factor 𝑁𝑐 reflects that some stages have a faster clock. Also:

3𝐶𝐻

10𝐼𝐷
<

1

𝑁𝑐 ⋅ 12 ⋅ 𝐻 ⋅ 𝑓𝑝𝑠
 ⇒

𝐼𝐷 > 3,6𝐶𝐻𝑁𝑐𝐻 ⋅ 𝑓𝑝𝑠

Equation 34

Table 8 : example of values calculated for 𝐼𝐷 when 𝐶𝐻 = 100 𝑓𝐹,𝑁𝑐 = 1 and 𝐻 = 500 𝑟𝑜𝑤𝑠.

fps I_D (nA)

30 5,4000

60 10,8000

120 21,6000

300 54,0000

500 90,0000

From last table, we observe that the previous choice of 𝐼𝐷 = 𝐼𝑎𝑚𝑝 = 1 𝜇𝐴 was rather high in

comparison with overall values calculated. For a typical smart imager, 500 pixel-rows and 60 fps is

reasonable, leading to a bias current in the order of nA. Taking into account over-simplification made

in this exercise, we can elevate again by one order of magnitude for a more conservative reference

value. In last section, and in Table 7, we took the biasing current as 𝜇𝐴. Now, we will exchange this by

values found in Table 8, as presented in Table 9:

Table [updatedPowerEstimation]:

Table 9 : updated power current estimation when taking V_ampDD=1,5 V,C_H=100fF,H=W=500 pixels,V_R=1 V, and fps =
60.

Nc for each stage Current (nA)

Stage
1

Stage
2

Stage
3

Stage
4

Stage
5

Stage
6

Stage
1

Stage
2

Stage
3

Stage
4

Stage
5 Stage 6

1 9 1 2 1 1 10,80 97,20 10,80 21,60 10,80 10,80

1 9 1 2 1 1 10,80 97,20 10,80 21,60 10,80 10,80

 From Table 9, we have enough information for calculating the total estimated power

consumption. The calculation summary is presented in Table 10.

Table [update

dPowerEstimation_2]:

 93

Table 10 : updated power estimation when taking V_DD=1,5 V,C_H=100fF,H=W=500 pixels, and fps = 60.

Power

Total power
(nW)

Power per pixel
(fJ/pix)

Alph
a

Stage
1

Stage
2

Stage
3

Stage
4

Stage
5

Stage
6

1 16,20 145,80 16,20 324,00 32,40 32,40 850,50 56,7

0,1 1,62 14,58 1,62 32,40 3,24 3,24 85,05 5,67

 Next section will be dedicated to an analysis on noise, in order to assess if such multi-staged

preprocessing is reasonable in terms of SNR degradation before the ADC.

5.4. Noise analysis

In this section, we study the impact of thermal noise on the SNR. The effect of flicker noise,

fixed pattern noise, and charge injection in switched-capacitors can be added in further works. Here,

we will take into account only the thermal component.

 For a first approximation, we observe the spectral input-referred-noise (thermal) per unit of

bandwidth (or 𝑃𝑆𝐷𝑖𝑛) intrinsic to a differential pair (based on (Razavi 2001)) with a capacitive load at

the output 𝐶𝐻. Firstly, we take into account only the open loop case:

𝑃𝑆𝐷𝑖𝑛 = 8𝑘𝑇 (
2

3𝑔𝑚
+

𝑔𝑑𝑠

𝑔𝑚
2)

Equation 35 (Razavi 2001)

 If the overdrive voltage 𝑉𝑜𝑣 = 𝑉𝑔𝑠 − 𝑉𝑡ℎ = 0,2 𝑉, then 𝑔𝑚 = 10𝐼𝐷. Also, 𝑔𝑑𝑠 = 𝜆𝐼𝐷. If 𝜆 =

0,1 𝑉−1, then 𝑔𝑑𝑠 = 0,1 𝐼𝐷 = 0,01 𝑔𝑚. Then,

𝑃𝑆𝐷𝑖𝑛 = 8𝑘𝑇 (
2

3 ⋅ 10𝐼𝐷
+

𝐼𝐷
10 ⋅ (10𝐼𝐷)2

) ≈ 8𝑘𝑇 (
2

3 ⋅ 10𝐼𝐷
)

Equation 36

 The noise-spectral-density 𝑃𝑆𝐷𝑜𝑢𝑡 (thermal) is obtained from the product of 𝑃𝑆𝐷𝑖𝑛 and the

square of the transfer function magnitude |𝐻(𝑓)|2. Firstly, we derive the output noise equation for

the open loop case, and then we proceed for the closed loop case. For the open loop case, the gain

𝐴 = 𝑟𝑜𝑔𝑚, 𝐵𝑤 = (𝐶𝐻𝑟𝑜)
−1 = 𝜔 in radians per second. Notice that 𝑟𝑜 is the open loop output resistance

such that 𝑟𝑜 = 𝑟𝑜𝑛 | | 𝑟𝑜𝑝 of the differential pair. From common knowledge, the transfer function is:

𝐻(𝑠) =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝐴0 (

1

𝑠𝜏0 + 1
)

Equation 37

 94

|𝐻(𝑠 = 𝑗𝜔)|2 = 𝐴0
2 (

1

4𝜋2𝐶𝐻
2𝑟𝑜

2𝑓2 + 1
)

Equation 38

 From common knowledge, we can make the replacement 𝑥 = 2𝜋𝐶𝐻𝑟𝑜𝑓, with 𝑓 𝜖 [0,∞[,

then:

|𝐻(𝑠 = 𝑗𝜔)|2 = 𝐴0
2 (

1

𝑥2 + 1
)

Equation 39

 From common knowledge, the open loop output noise power is:

𝜎0
2 = ∫ 𝑃𝑆𝐷𝑖𝑛|𝐻|2𝑑𝑓 , 𝑑𝑓 =

𝑑𝑥

2𝜋𝐶𝐻𝑟𝑜

Equation 40

 Then,

𝜎0
2 = 𝑃𝑆𝐷𝑖𝑛 ∫ 𝐴0

2 (
1

𝑥2 + 1
) ⋅

𝑑𝑥

2𝜋𝐶𝐻𝑟𝑜
=

∞

0

𝑃𝑆𝐷𝑖𝑛

𝐴0
2

2𝜋𝐶𝐻𝑟𝑜
 ∫ (

1

𝑥2 + 1
) ⋅

∞

0

𝑑𝑥

∫ (
1

𝑥2 + 1
) ⋅

∞

0

𝑑𝑥 =
𝜋

2
 ⇒

𝜎0
2 = 𝑃𝑆𝐷𝑖𝑛

𝐴0
2

2𝜋𝐶𝐻𝑟𝑜
⋅
𝜋

2
=

𝑃𝑆𝐷𝑖𝑛𝐴0
2

4𝜏0

Equation 41

 With 𝜏0 = 𝐶𝐻𝑟𝑜25. We now take the closed loop case, in which the transfer function can be

expressed as (Razavi 2001):

𝐻1(𝑠) =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝐴0
𝑠𝜏0 + 1

1 + 𝛽
𝐴0

𝑠𝜏0 + 1

Equation 42 (Razavi 2001)

 With 𝛽 begin the feedback gain. Last equation can be re-arranged as (Razavi 2001):

𝐻1(𝑠) =

𝐴0
1 + 𝛽𝐴0

1 +
𝑠𝜏0

1 + 𝛽𝐴0

Equation 43 (Razavi 2001)

 We can now make some convenient replacements:

25In (Razavi 2001), page 252, they use 𝜔0 in Equation 42 and Equation 43 instead of 𝜏0. Here, we take 𝜏𝑖 = 𝜔𝑖

−1

 95

𝐴1 =
𝐴0

1 + 𝛽𝐴0

Equation 44

𝜏1 =
𝜏0

1 + 𝛽𝐴0

Equation 45

 From equations above, the so-called (in the literature) gain-bandwidth product 𝐺𝐵𝑊 can be

derived:

𝐺𝐵𝑊 =
𝐴1

𝜏1
=

𝐴0

𝜏0

Equation 46

 Then, the closed loop transfer function 𝐻1 becomes:

𝐻1(𝑠) =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 𝐴1 (

1

𝑠𝜏1 + 1
)

Equation 47

 By comparing with equations from the open loop case, we can immediately conclude that:

𝜎2 = 𝑃𝑆𝐷𝑖𝑛 (
𝐴1

2

4𝜏1
) =

𝑃𝑆𝐷𝑖𝑛 (
𝐴0

1 + 𝛽𝐴0
)
2

4 (
𝜏0

1 + 𝛽𝐴0
)

= 𝑃𝑆𝐷𝑖𝑛 (
𝐴0

2

4𝜏0
)(

1

1 + 𝛽𝐴0
)

Equation 48

 If we take a simply unity gain buffer as reference, then 𝛽 = 1, and:

𝜎1
2 =

𝑃𝑆𝐷𝑖𝑛𝐴0

4𝜏0
= 𝑃𝑆𝐷𝑖𝑛 ⋅

𝑟𝑜𝑔𝑚

4𝐶𝐻𝑟𝑜
= 𝑃𝑆𝐷𝑖𝑛 ⋅

𝑔𝑚

4𝐶𝐻
≈ 8𝑘𝑇 (

2

3 ⋅ 10𝐼𝐷
)(

10𝐼𝐷
4𝐶𝐻

)

𝜎1
2 ≈

4𝑘𝑇

3𝐶𝐻

Equation 49

 The effective number of bits ENOB is (Maloberti 2007):

𝐸𝑁𝑂𝐵 =
𝑆𝑁𝑅𝑇 − 1.78

6,02

Equation 50 (Maloberti 2007)

 Where 𝑆𝑁𝑅𝑇 is the signal to total-noise ratio (not only quantization noise) (Maloberti 2007).

The typical formula in the literature for the signal to noise ratio is:

 96

𝑆𝑁𝑅 = 20 ⋅ log (
𝑉𝑠𝑖𝑔

√𝜎1
2
)

Equation 51

Some example calculations are presented in Figure 50 and Figure 51, where 𝜎2 is the calculated

noise-power 𝜎1
2 multiplied by the “equivalent number of sequential amplifications n”:

Figure 50 : Equivalent number of bits for two different pixel-intensity-voltage-swings V_sig=V_R, as a function of the
equivalent number of sequential signal amplifications n. C_H=100 fF,T=300 K.

Fig. [enob]:

8

8.5

9

9.5

10

10.5

11

11.5

12

1 6 11 16 21 26

Eq
u

iv
al

en
t

n
u

m
b

er
 o

f
b

it
s

(E
N

O
B

)

Equivalent number of sequential amplifications n

Swing = 0,5 V

Swing = 1,0 V

 97

Figure 51 : RMS Thermal noise voltage (√(σ^2)), as a function of the equivalent number of sequential signal amplifications
n. C_H=100 fF,T=300 K.

Fig. [noise]:

This number of amplifications n was inferred from circuits presented from stages 1 to 5. For

our focus pipeline, 𝑛 = 24, if we assume that all amplifications had a noise value close to the noise

value of a closed-loop gain of 1. For the case of the subtraction and addition operations in stages 4 and

5, the noise propagates in two branches before those two branches are added again for performing

the operation. That is why 𝑛 = 24 is higher than the total number of amplifiers in any non-cyclic

sequential path from CDS to quantization. Then, Figure 50 and Figure 51 illustrate how the signal

degrades due to thermal noise through the sequential amplifications. We also evaluate the ENOB for

two different values of 𝑉𝑅, 0.5V and 1V, in order to a reasonable voltage range for biasing the pipeline.

We can guess that this range could be divided by 2 at the end of the pre-processing, meaning that the

area between the two curves in Figure 50 is the expected calculated interval. We observe that ENOB

drops from 10,76 (n = 1) to 8,47 (n = 24) if the useful swing is 0,5 V. If the useful swing is 1 V, then

ENOB drops from 11,76 to 9,47. Then, for n = 24, from previous estimations the resulting ENOB should

be among 9,47 and 8,47. If we further consider 1/f noise and switches charge injection, we can just

keep in mind that our analog pipeline can be approximated to an 8-bit digital pipeline.

 From last paragraph we infer that the noise-power only due to thermal power from the multi-

staged analog pre-processing has an significant contribution. Nevertheless, here is when one of the

“powerful” characteristic of oriented gradients as “low level static features” comes in: since those

correspond to a relatively high local and spatial gradient, then they are more robust to noise if the

expected gradient variation is significantly higher than noise signal in rms. In addition, we can compare

the worst estimated ENOB of 8,47 with the amount of bits codifying the gradient magnitude (1 bit) or

the gradient angle (2 bits). Moreover, this features still allow to perform low power object detection.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 6 11 16 21 26

Th
er

m
al

 n
o

is
e

vo
lt

ag
e

R
M

S
(m

V
 r

m
s)

Equivalent number of sequential amplifications n

 98

5.5. Conclusions of chapter 5

In this chapter, we explained and analyzed the circuit stages to achieve the pre-processing

pipeline mentioned in chapter 4. We differ from (Young et al. 2019; Soell et al. 2016) as we introduced

the average denoising stage in order to alleviate the memory and runtime of the next processing stage,

the Edge Boxes algorithm. We obtained first estimations of power consumption, and we refined such

estimations by taking into account the required biasing current for the desired bandwidth. This lead to

an ideal power consumption of ~851 𝑛𝑊 (at 500 x 500 resolution, 60 fps and without duty-cycling the

amplifiers), corresponding to a FOM of 56.7 fJ/frame/pix. We also discussed that duty-cycling with a

low value of 𝛼 is especially interesting when the smart imager “decides” to reduce the frame rate in

order to save power.

 Next, we made an analysis on the impact of thermal noise in the final gradient computation. It

showed that our analog pipeline can be approximated to an 8-bit digital pipeline. This is a critical

analysis since a complex analog pre-processing architecture with several sequential stages might

significantly degrade the output signal. We observed that indeed that is the case, obtaining a drop

11,76 - 10,76 to 9,47 - 8,47 equivalent bits. However, even though this could be critical for standard

CMOS imagers, typically aiming for high quality images, in chapter 6 we show that this does not prevent

our proposed pipeline from functioning, even if the output gradient magnitude is codified in 1 bit, and

the angle in 2 bits.

 In next chapter, we will benchmark different variations of edge-extractors architectures

already detailed in the two previous chapters. We will focus on a specific dataset so we can quantify

performance, mainly in terms of runtime, memory usage and Intersection-Over-Union.

 99

Chapter 6. Object Localization benchmarks

In this chapter, we try to assess the optimal pre-processing architecture by characterizing the

system performance for object localization. As mentioned in chapter 4, a variety of object detection

(OD) algorithms behaves as a two-staged process: firstly, the localization of potential objects in the

scene, and secondly, the classification of the content inside each object proposal or region of interest

“ROI”. Moreover, each task (localization or classification) performs as a “black box”, and their contents

can change as long as they maintain the expected input and output variables.

 100

6.1. Localization characterization methodology

When classification and localization are indeed two separate stages, a metric for each stage

can be relevant and simpler to carry out. For the localization phase, the “intersection over union” (IoU)

or “Jaccard index” (“Jaccard Index” 2021) is typically used in the literature. Conceptually, it measures

how well an individual ROI proposal overlaps with a ground-truth-bounding-box thanks to a scalar

between 0 (no overlap at all) to 1 (perfect overlap). Mathematically, we can express it by considering

two rectangular areas in the image: one corresponding to a single ROI proposal 𝑹𝒑, and another one

corresponding to the ground-truth-bounding-box for a particular object 𝑹𝒈 (both represented in Figure

52). Then,

𝐼𝑜𝑈(𝑅𝑝, 𝑅𝑔) =
𝑅𝑝 ∩ 𝑅𝑔

𝑅𝑝 ∪ 𝑅𝑔

Equation 52 (“Jaccard Index” 2021)

Figure 52 : Illustration of the IoU showing the ROI proposal, ground-truth-box, and intersection areas. The union area is
delimited by borders of both rectangles without taking into account borders of the intersection rectangle.

Fig. [iou]:

 Typically, dataset annotations provide ground-truth-boxes (in plural, if there are several

objects in the image), whereas a computer algorithm gives the ROI proposals. Notice that only one

proposal may be insufficient, thus the algorithm may output a certain number of them. For instance,

Edge-Boxes has a parameter controlling the amount of output boxes. In this work, we fix it to 1000

boxes in all benchmarks, since it was a value used by (Zitnick and Dollár 2014). If the reader wants to

go deeper in the effect of the amount of boxes, the Edge-Boxes paper (Zitnick and Dollár 2014) explains

the trade-off between IoU and the amount of proposals.

 In order to benchmark different architectures in term of IoU, we require a dataset compatible

with OD. We selected the dataset Pascal VOC 2007 (M. Everingham et al. n.d.; n.d.; Mark Everingham

et al. 2015) since it is a well-known dataset, with illustrative classes of objects (person, cat, dog, car,

among others). Indeed, it has 20 classes in total (see table Table 11). The dataset has a set of images,

and for each image, there is a file containing the annotations. Inside that file, one can find, for each

object, a category (corresponding to one of each class), and image coordinates for the ground-truth

object bounding-box. Table 11 presents a summary of the classes provided by this dataset. In next

section, we start by explaining how we use our simulation framework EdgeTon (described in chapter

3) to characterize different architectures followed by the Edge-Boxes algorithm.

𝑅𝑝 ∩ 𝑅𝑔 : intersection of two areas

𝑅𝑝 ∪ 𝑅𝑔 : union of the two areas

𝑅𝑂𝐼 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑅𝑝

𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑅𝑔

𝑅𝑝 ∩ 𝑅𝑔

 101

Table [pascalVOCclasses]: classes found in the Pascal VOC 2007 dataset, and one example image with two cats.

Table 11 : classes found in the Pascal VOC 2007 dataset(M. Everingham et al. n.d.; n.d.; Mark Everingham et al. 2015), and
one example image with two cats.

(a) Classes (b) Example

aeroplane

Image 000019.jpg in the PASCAL VOC 2007 dataset (M. Everingham et al. n.d.; n.d.;
Mark Everingham et al. 2015), the image contains two objects, both of category

‘cat’, and the bounding boxes for each are given in a XML file corresponding to this
image. On the right, we provide the original image. On the left, we draw

(inaccurately) the bounding boxes for an illustrative purpose.

bicycle

bird

boat

bottle

bus

car

cat

chair

cow

diningtable

dog

horse

motorbike

person

pottedplant

sheep

sofa

train

tvmonitor

 In the case of Edge-Boxes, we do not train the algorithm, and we just keep the parameters by

default, and with the amount of proposals set to 1000. Then, for localization benchmarking with Edge-

Boxes, we only use the training portion of the dataset26. Next, we must take into account that along

the training-dataset there are images with several objects of different categories, and so we proceed

as follows:

26 For readers that are not familiar with the term « training dataset », we clarify that for training machine learning
algorithms (e.g. with parameters that are learned), the dataset is typically split in three portions: firstly, the
training dataset, which is used to learn the parameters (for instance, by means of an optimization algorithm).
Secondly, the validation dataset, which is used to tune algorithm parameters that are not directly learned (e.g.
the number of layers in a CNN, regularization parameters, the learning rate, etc.). Finally, there is the test dataset,
which is used to characterize the performance of the already trained model with samples that haven’t been
« seen » before.

 102

6.1.1. Simulation Flow with EdgeTon

Figure 53 : Diagram of simulation flow from dataset to final plots. The figure is divided in upper and bottom sections. The
first one was computed in a cluster, with 10 jobs (available to run in parallel and scalable to more jobs) of 100 images each.

The second (bottom) one corresponded to the post-processing made to generate the final plots.

Fig. [simFlow]:

Figure 53 shows the overall simulation flow from dataset to final plots. The simulation was

made such that several metrics could be obtained: firstly, the IoU for localization. Secondly, variables

showing (indirectly) the relative time and space complexity of Edge-Boxes when using different

extractors. All stages show in previous figure, except for the Edge-Boxes source code (Dollar and Zitnick

2015b), which was not changed, were coded in this work (on top of known libraries such as OpenCV,

Numpy, Pandas, Matploblib, etc). All stages regarding the cluster (including the management of

parallelization of batches of images) are a part of a bigger simulation scheme comprised in EdgeTon.

The simulation is scalable to more jobs if desired, yet we arbitrarily chose 10 jobs, each containing 100

images chosen each time randomly from the original dataset.

Notice that EdgeTon runs in Python code, yet the source code for EdgeBoxes (Dollar and Zitnick

2015b) is provided in C++ code. Since we did not want to change it, we took the source code, from

which a main class for generating ROI proposals was defined. We instantiated this class inside another

script for loading the parsed images from the .txt files and wrapping with the rest of the simulation

(i.e. to output files in the desired path and format), and for counting the approximated runtime of

100 images

100 images

Job

1

10

Dataset

Dataloader
Edge extractor

model

Python Numpy

to txt parser
C++ EdgeBoxes

Metrics calculation

Results loader (all jobs)

R
em

o
te

 C
lu

st
er

Lo

ca
l m

ac
h

in
e

Results file Runtime Memory

Python Pandas post-processing

Matplotlib automatic visualization

plots

Threshold selection

Compute data to plot

Condense data

into tables

ROIs

Simulation

Output

 103

EdgeBoxes with C++ std::chrono library. In order to approximate the memory usage, we focused on

obtaining two variables that we found to be most relevant for comparisons: the segment-affinities

variable size, and the amount of segments clustered by Edge-Boxes. In order to access them, we

modified the source code (Dollar and Zitnick 2015b) with functions that allow to output in a file the

values of those variables during runtime. Then, we had to slightly change the source code, but such

changes do not affect the behavior of Edge-Boxes, except for the overhead to write the output ROI

proposals, runtime, segment-affinities size, number of segments, number of columns and number of

rows per image.

In next sections, we describe our simulation flow with more details.

6.1.2. Edge extraction with a smart imager behavioral model

For this stage, we use our framework EdgeTon to simulate an approximation of different smart imager

architectures. Here, the overall input is an image from the dataset, and the output is the edge map

containing magnitudes and orientations. The way those imagers are modeled is described in chapter

3, where the idea is to model different kinds of oriented gradients (or edge-map) extractors for

integrated/embedded smart imagers. The types of edge extractors we took into account are

summarized below in Table 12.

Table 12 : different types of light-intensity oriented gradient extractors types considered in our localization benchmark.

Oriented Gradient
extractor type

Description Output to EdgeBoxes
backend bit-depth

Threshold type

Linear (Digital) Uses kernels in Equation 17 and the
digital model described in chapter 3.

1 bit for magnitude
2 bits for orientation

Fixed (4-bit digital)

Linear (Analog) Uses kernels in Equation 17 and the
linear analog model described in chapter
3.

1 bit for magnitude
2 bits for orientation

Fixed (32 bit-analog)

Relative Uses kernels in Equation 17 with
dynamic range enhancement described
in chapter 4, and the analog model
described in chapter 3.

1 bit for magnitude
2 bits for orientation

Light intensity
dependent, with a

fixed factor

Logarithmic Uses logarithmic kernels as in (Omid-
Zohoor et al. 2018; Young et al. 2019),
and is modeled as described in chapter
3.

1 bit for magnitude
2 bits for orientation

Light intensity
dependent, with a

fixed factor

8-bit Sobel Uses the Sobel kernel as in Equation 16,
and outputs 8-bit (ENOB) oriented edges
in floating point representation map as
described in chapter 3.

8 bits (ENOB) for
magnitude and

orientation (32-bit float
representation)

Fixed (32-bits)

Moreover, for each extractor type we take into consideration two variants, namely if a blur

kernel is applied before the intensity derivative (or gradient) extraction (with one from previous table),

or no blur-step at all. In addition, we study the effect of 2x2 binning for an illustrative purpose. Once

the output is obtained, it is passed to next stage: Edge-Boxes. One important aspect is that each

extractor type has one parameter that we did not fixed, but that we optimized from simulations: the

threshold. Indeed, whether it is constant, or proportional (factor) to a local average (for logarithmic

and relative types), we did not have any particular design criteria to choose them. Then, we performed

a parameter sweep for each architecture and chose a specific threshold (factor) to report our results.

 104

In order to do so, we obtain the localization performance for all extractor types and several variants

(regarding blur kernel and binning). We obtained results for several thresholds (factors) values and for

10 jobs (iterations). Each iteration could give different values of the optimal threshold, since they used

different sub-sets of 100 images. Then, we chose the threshold that repeated the most from all jobs.

Next, for reporting benchmark results, we only use the threshold that was chosen, regardless if it was

optimal or not for any particular job.

6.1.3. Localization with Edge-Boxes

 We now feed the edges-maps from previous section to a compiled binary containing the source

code for Edge-Boxes from (Dollar and Zitnick 2015b), and some wrapping code. For each image, the

corresponding edge map is loaded. Since quantization was already taken into account, the pixel values

(both for gradient and magnitude) can be converted to floating point or integer C++ types and

quantization is still preserved. This is analogue to saying that the smart imager output has been passed

to a dedicated computed hardware running on 32-bit floating point resolution.

The localization stage output a file per image, containing 1000 ROI proposals coordinates and

their associated objectness scores. Moreover, another file (one per job) contains the computational

complexity required for those 1000 ROI proposals: the runtime for each image, the size (in number of

elements) of the segments-affinities variable, the number of segments clustered by Edge-Boxes, and

the number of columns and rows for each image for normalization (so the runtime and memory

estimation do not depend on image resolution).

6.1.4. Intersection over union metrics calculation

 We already introduced the IoU as a metric for characterizing performance for object

localization. Now, we go deeper into how we used it in conjunction with the Pascal VOC 2007 dataset.

Notice that IoU simply gives a relation between a single ROI proposal and a single object ground-truth-

box. However, there are 1000 ROI proposals per image, potentially several objects per image, and 20

different classes of objects. One problem we faced is that a single object in the image can be

“proposed” several times with different boxes from Edge-Boxes. This can happen because the

algorithm distributes hypothetical boxes of different sizes and aspect ratios along the image, and it is

possible that two near boxes (that were similar enough) both score high in objectness. Then, one

question rises: which of all of those potential boxes do we take for calculating the IoU with the ground-

truth-box? In this work, we took as reference the “best IoU” or BIoU, which we will further develop in

next paragraph.

 For BIoU calculation of a single object of a single image, we considered boxes that had an IoU

equal or greater than 0.5, called 𝑅𝑝𝑘 , with a particular ground-truth-box 𝑅𝑔. Then we selected, among

those 𝑅𝑝𝑘, the one with the best IoU score, noted 𝑅𝑝𝑧 . In other words 𝑅𝑝𝑧 verifies 𝐼𝑜𝑈(𝑅𝑝𝑧, 𝑅𝑔) >

𝐼𝑜𝑈(𝑅𝑝𝑘 , 𝑅𝑔) , 𝑅𝑝𝑘 ≠ 𝑅𝑝𝑧. Rejected 𝑅𝑝𝑘 are considered as false positive. Another interesting case is if

there is no ROI proposal 𝑅𝑝 such that (𝑅𝑝, 𝑅𝑔) ≥ 0,5 , in which case 𝑅𝑔 was counted as a “false

negative”. Thus, for every 𝑅𝑔 , 4 pieces of information are returned: a specific bounding box 𝑅𝑝, a

related IoU score (BIoU) (it could be zero in case of no overlapping), a number of false positives and a

number of false negatives. The performance of object localization can thus be assessed independently

 105

of the classifier, by assuming that the best chance that the algorithm (classifier) had of classifying

properly the object inside the proposal, was for the 𝑅𝑝 related to the BIoU.

 Another relevant aspect is that, after processing all images, our metrics tool is able to calculate

a metric per class. Indeed, even though the localization with Edge-Boxes is class agnostic, there was a

change that some types of objects could score higher in objectness respect to others. Another reason

for spreading performance results into classes is to avoid biasing results if the dataset is “unbalanced”:

if there are much more samples of one class respect to another, then the average along one class will

have a greater impact on the final performance score27. For instance, suppose we have a dataset with

only persons and pets, and which contains 1000 samples of persons and 10 samples of pets. Then,

assume that the average best IoU, referred to as ABIoU, for all persons was 0,5 and 0.1 for pets. The

global average is:

𝐴𝐵𝐼𝑜𝑈(𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠) =
0,5 ∗ 1000 + 0,1 ∗ 10

10 + 1000
= 0,49604

 The last calculation reflects that even though the performance for pets localization was very

bad (0,1), the ABIoU for all classes was minimally impacted. In order to have a global metric

independent of the class sizes, we take first the ABIoU for all samples of the same class, then, the global

ABIoU is the average of the averages per class. Coming back to the case of the hypothetical persons

and pets dataset, we would have:

𝐴𝐵𝐼𝑜𝑈(𝑝𝑒𝑟𝑠𝑜𝑛𝑠) = 0,5

𝐴𝐵𝐼𝑜𝑈(𝑝𝑒𝑡𝑠) = 0,1

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 2

𝑔𝑙𝑜𝑏𝑎𝑙 𝐴𝐵𝐼𝑜𝑈 =
∑𝐴𝐵𝐼𝑜𝑈𝑖

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠
=

0,5 + 0,1

2
= 0,3

Equation 53

 In last calculation, we can observe that now the fact that pets were badly localized is better

reflected. In our benchmarks, we use the global ABIoU as metric for each behavioral model.

6.2. Benchmarks

6.2.1 Global ABIoU along jobs for each architecture

 Our benchmark is illustrated in Figure 54 with a bar plot summarizing results for the average

(along jobs) global ABIoU for several edge extraction variants. Figure 54 presents the average global

ABIoU obtained with 10 jobs, each job processing 100 randomly selected images. Bar labels indicate

27 Notice that our objective with the tool we developed was to use and charaterize (fastly) other datasets aside
from Pascal VOC 2007 in future works.

 106

the edge extractor type and variants (BINN refers to 4x4 binning). The red bars indicate the Average

ABIoU for each (notice the range in the x axis not starting at zero), and the black lines indicate the

standard deviation along the 10 jobs.

Figure 54 : average global ABIoU obtained with 10 jobs.

Fig. [abiouAlljobs]:

In addition, in Table 13, we summarize the selected thresholds for each architecture (with the

method mentioned previously):

 107

Table 13 : selected thresholds values issued from simulation (selected as described in chapter 3).

archName selectedThres

analogOrigrad_averageBlur 30

analogOrigrad_gaussianBlur 30

analogOrigrad_noBlur 30

digitalOrigrad_averageBlur 30

digitalOrigrad_gaussianBlur 30

digitalOrigrad_noBlur 30

relativeOrigrad_averageBlur 0,3

relativeOrigrad_averageBlur_withBinning 0,3

relativeOrigrad_gaussianBlur 0,3

relativeOrigrad_noBlur 0,3

relativeOrigrad_noBlur_withBinning 0,6

logHog_averageBlur 1,8

logHog_averageBlur_withBinning 1,8

logHog_gaussianBlur 1,8

logHog_noBlur 1,8

logHog_noBlur_withBinning 1,8

highResOrigrad_gaussianBlur_sobelGradient 50

highResOrigrad_noBlur_sobelGradient 60

 From Figure 54, we observe that, for all architectures, the global ABIoU (from here, we call it

simply the ABIoU) was higher than 0.5, which is typically the minimum expected for “sufficient” ROI

proposal (Zitnick and Dollár 2014). Yet, (Zitnick and Dollár 2014) suggests that this values may not be

good enough, and proposes targeting higher IoUs. For instance, they (Zitnick and Dollár 2014) targeted

IoUs of 0.5, 0.7 and 0.9 (which can be tunned with Edge-Boxes parameters). In this work, we take

intermediate values from ~0.5-0.7 as target for Edge (Boxes parameters and we hypothesize without

further demonstration that this is good enough for embedded applications. Of course, we observe the

impact of gradients quantization falling down from 0.7 especially for the linear and logarithmic cases.

We also observe that best performances come from the 8-bit Sobel case and the relative gradients.

ROI proposals can face “difficult cases”, due to small, partially-occluded, or surrounded by fine-

textures objects (such as grass). An image example is given on Figure 55 (a). The resulting Edge map

and ROI proposal are on Figure 55 (b): the first two architectures give good proposals for one person

and the horse, whereas they missed the second person that is partially occluded. In this case, the

relative pre-processing failed to give a good proposal for both persons and only gave a good one for

the horse.

 108

(a)

(b)
8-bit Sobel Linear (Analog) Relative

Figure 55 : example of an input image from PASCAL VOC2007 dataset (M. Everingham et al. n.d.; n.d.; Mark Everingham et
al. 2015), and corresponding representations of the oriented edges map outputs from three different edge-extractors. The
gray/red boxes represent the best ROI proposals after running Edge-Boxes on the edges-maps. Green means that the object
was correctly including in the ROI, while red means that the object was not found (e.g. all ROIs where such that their IoU <
0.5).

 We now focus in answering four key questions:

1. Is the average blur necessary or critical?

2. What is the impact of a 4x4 pixels binning?

3. Could an analog edge extractor have better performance than a similar complexity digital

one?

4. What is the performance of the best possible analog extractor in comparison with a digital

architecture running with 8-bit depth computations?

 109

In the next paragraphs we will cover those questions from the point of view of ABIoU, memory

and runtime. Finally, we will provide a FOM for estimating the optimal architecture in terms of those

three metrics.

Blur vs. no blur impact on ABIoU

 Figure 56 shows that, for most of the cases, the average blur improved the ABIoU. For readers

that are not familiar with this kind of plot (box plot (“Box Plot” 2021)), the rectangles englobe the

percentiles 25, the vertical smaller bars englobe the percentile 50, and values outside are represented

with dots (considered as outliers). The red bar indicates the median value. Logarithmic gradients gave

a lower performance respect to the relative ones, one reason could be a deteriorated angular

approximation from the logarithmic gradient components. Indeed, during our experiments, we

observed that edge maps for logarithmic gradient contained low occurrences of 45° and 135° edge

orientations. The majority of detected edge-angles were 0 degrees (Gx = 1 or -1, Gy = 0) or 90 degrees

(Gx = 0, Gy = 1 or -1). Thus, we think that this makes harder for Edge-Boxes to link different edges into

segments and different segments into connected contours. We observed that, except for the case of

logarithmic gradients, the average filter (blur) positively affects the ABIoU. Our explanation of why this

happens (for the increasing cases), is that the blur step reduces (statistically speaking) the amount of

false edges, which makes it easier for Edge-Boxes to generate meaningful segments and connected

contours. In the case of the logarithmic gradients, this reduction may be too drastic, having then a

negative impact.

Figure 56 : global average best IoU comparison for architectures using and not using de-noising.

 110

Binning vs. no binning impact on ABIoU

From Figure 57 we observed that binning has different impacts on relative and logarithmic

gradients. Binning consistently improves the performance for logarithmic gradients, whereas the

average denoising tends to have a negative impact. For relative gradients, both Binning and denoising

have a positive impact. However, the best case scenario for relative gradients was when only the

average denoising is applied. Our explanation of why the logarithmic gradients benefit of binning (in

the contrary with relative gradients) is that Binning has two different impacts on the image. On one

side, it reduces the amount of false edges, and the 2x2 averaging contributes in reducing false edges

(yet it can give place to bounding effects since the averaging zones do not overlap). On the other side,

it reduces the image resolution, thus neglecting small details which could have been used to recover

the overall contour topology of any object. The first impact is positive, and the second is negative. We

then think that the noise reduction due to binning is beneficial for logarithmic gradients in terms of

the ABIoU. Notice that for the case of relative gradients, if the average blur is applied then binning

decreased slightly the performance, meaning that in that case the noise reduction due to binning was

less important than details lost due to the loss in image resolution.

Figure 57 : global average best IoU comparison for architectures using and not using 2x2 binning.

Relative vs 4-bit linear gradients

Figure 58 shows results when comparing relative and simple linear gradients. As explained in

chapter 3, relative gradients were calculated as follows: firstly, 8-bit input images were pre-processed

in floating point resolution. Then, a first quantization to 4 bits (ENOB) was introduced, as described in

chapter 3, before the final quantization to 3 bit edge maps was obtained. For the case of linear-analog

 111

gradients, the same was performed, but with equation related to the simple linear edge-extractor. For

the case of the linear-digital edge-extractor, the 8-bit image was first quantized into 4 bits, and then

all operations until right before generating the 3-bit edge map are done in 4 bits. We observe from

Figure 57 that relative gradients have a tendency towards greater values when an average blur is

applied. Nevertheless, it is expected that there is no exceptional enhancement respect to linear

gradients, since the PASCAL VOC 2007 dataset is not particularly made for testing high dynamic range

image with very different illumination conditions along the same image.

Figure 58 : global average best IoU comparison for architectures using relative and simple linear gradients (4 ENOB).

Relative vs 8-bit linear gradients

 As a recall, 8-bit-linear gradients were calculated as follows: they were calculated similarly to

the simple linear analog edge-extractor, with the difference that the Sobel kernel was used for the

derivative. Moreover, right before generating the 3-bit edge map, a quantization noise with an ENOB

of 8 bits was introduced instead of 4 bits (as explained in chapter 3). In Figure 59, we observed that

the effect of the average filter (blur) was more important when the number of bits was lower (like for

the relative case). However, when the average blur was applied, the performance of the relative

gradients was as good as the equivalent 8-bit-Sobel architecture.

 112

Figure 59 : global average best IoU comparison for architectures using relative and simple linear gradients (4 ENOB).

6.2.2 Memory estimation

After our analysis in chapter 4, we found that (theoretically) the affinities variable is the one

consuming the most memory during Edge-Boxes runtime. Moreover, after Edge-Boxes decortication,

we observed the possibility that the size of this variable is correlated with the amount of segments

clustered during the first Edge-Boxes phase. Recall that such segments are generated due to contours

that appear to be disconnected after the edge extraction, and thus they can be related (as a contour

as a whole) throughout the affinities variable only. Ideally, those disconnected contours should not

appear, and thus we can say that the edge extractor quality is somehow linked to the amount of

segments that are clustered. Nevertheless, staying that the lesser the amount of segments, the better

the edge extractor, would be also false. For instance, when using an arbitrarily high threshold (or

factor) for the magnitude, no edge or segment would be detected, but neither will be any object in the

image. Another important point is that the affinities variable grows during runtime, as the number of

segments is unknown previously to the clustering. Then, this is why it was difficult to have a better

estimation (not based in a worst case) in our previous analysis in chapter 4.

 113

Figure 60 : normalized affinities variable size as a function of the normalized number of egde-clusters (segments) for
different architectures. All plots show a positive correlation between the two variables.

 114

 In Figure 60, we observe that there is a clear positive correlation between the normalized

affinities-variable-size and the normalized-number-of-segments. Remember that we normalized to the

number of pixels to eliminate the dependency upon pixels amount.

Blur vs. no blur impact on memory (segment affinities variable size)

 In Figure 61, we plot the average of all normalized affinities sizes along each batch of 100

images, and then we average again along the 10 jobs. For the considered architectures, we clearly

observe a positive impact of the average blur in reducing the size of the affinities variable.

Figure 61 : affinities-variable-size comparison for architectures using and not using de-noising.

Binning vs. no binning impact on memory (segment affinities variable size)

 In Figure 62, we observed that, with respect to edge-extractors without an average blur,

binning significantly reduced the segments affinities variable size. Moreover, the combination of

average blur and binning did not improve significantly (or even increased memory slightly) compared

to only binning. Binning alone gives a significant boost for memory, and the averge blur improved it as

well. Nevertheless, denoising and binning at the same time gives slightly poorer results when

compared with denoising alone. Recall, however, that improving (reducing) memory by means of

binning/de-noising could be at the expense of decreasing the ABIoU (performance in localization).

 115

Figure 62 : affinities-variable-size comparison for architectures using and not using 2x2 binning.

Relative vs 4-bit linear gradients

 We observe that the memory performance for the architectures in Figure 63 is rather similar

for those that did not use a blur step, and for those that use a specific type of blur. For this case, the

only point to take into account is that for significant memory reduction either binning of a blur step is

needed.

 116

Figure 63 : affinities-variable-size comparison for architectures using relative and simple linear gradients (4 ENOB).

Relative vs 8-bit linear gradients

 As in cases before, Figure 64 shows that memory performance for Edge-Boxes execution is

similar for ENOBS before edge map generation of 4 and 8 bits, if an average blur is applied before

gradients extraction. In this benchmark, the best performance was the relative gradients with an

average blur, even surpassing the 8-bit-ENOB case.

 117

Figure 64 : affinities-variable-size comparison for architectures using relative linear gradients (8 ENOB).

 So far in this subsection we have shown mostly qualitative tendencies regarding dynamic

memory requirements, and with through an estimation of the affinities-variable size. Now, we go into

a more qualitative analysis, and for which we recall the reader an unsolved problem mentioned in

chapter 4: indeed, we tried to estimate the total memory required for running Edge-Boxes.

Nevertheless, some variables grow in runtime since the number of segments is not known before the

program execution. Then, for a preliminary estimation, we hypothesized a worst-case number of

segments, equal to the maximum number that can be represented by a non-signed integer data type

of 16 bits. Nevertheless, we obtained the average number of segments along all images and jobs

(normalized to the image-size) for each architecture and threshold combination. This number

corresponds to a coefficient that, once multiplied by the image-size, provides an overall estimation of

the number of segments detected by Edge-Boxes. Once we have this number of segments, we can

modify it in our estimation from chapter 4. As an example, we present in table # the coefficients we

found for the relative oriented gradients (with average blur and with binning):

 118

Table 14 : norm-number-of segments, norm-segAffSize, and global-ABIoU for the Relative Origrad with avr. de-noising and
binning.

Threshold No. of segments (norm) segAffSize (norm) Global-ABIou

0.3 0.01620484263724415 0.05186999892981794 0.6948367046975842

0.4 0.012804822681744824 0.03586742498866486 0.6904189331054339

0.5 0.010263935545649961 0.02554154369488491 0.6854328357236822

0.6 0.008351933262945569 0.018695970491177476 0.6737017146185899

0.7 0.006862945858983502 0.013993912559256309 0.6672997980522251

0.8 0.005691222468060574 0.010638890556151607 0.6550939843676324

0.9 0.004759960442535616 0.008248585213333473 0.6434149945568532

1.0 0.004029531099946791 0.006536805260365127 0.6285615565304473

1.2 0.002953513479478474 0.0042213371827614764 0.6030951228860276

In Table 14 we present coefficient allowing estimating the overall number of segments and

affinities-variable-size after multiplying them by the image size. For instance, for a 500 x 500 resolution,

which we took into account for memory approximation in chapter 4. The overall expected amount of

segments is 0,01620484263724415 ∗ 500 ∗ 500 ≈ 4051,51 segments. Notice that for the worst-

case we used segments as 216 = 65536, which is
65536

4051,51
≈ 16 times bigger than the

empiric/experimental average value. Moreover, when repeating the exercise from chapter 4, where

we approximated the optimal behavior of the C++ compiler, and in order to approximate the memory

usage. We obtained an experimental/empiric peak memory of ~5,2 Mbytes (or ~5,52 Mbytes if we just

add the memory requirements for all variables, without trying to simulate the compiler), instead of the

~50 Mbytes related to the worst-case. We also took into account that the input size memory drops to

3 bits times the image size, since we use relative oriented gradients in this example.

The conclusion from this section, is that Edge-Boxes could run on an embedded device having

around 5,2 Mbytes of available memory for ROIs generation. Moreover, the pipeline of using Edge-

Boxes with strongly quantized oriented gradients is compatible with several architectures, including

our relative-oriented-gradients architecture (presented in chapter 5), as well as other in the state of

the art (such as logarithmic gradients from (Young et al. 2019). We have presented the impact of two

key pre-processing stages, namely binning and de-noising. In general, either binning or de-noising

improve the memory usage for our relative-oriented-gradients, where the best performance comes

with both combined.

6.2.3 Runtime estimation

In addition, aside from the memory dependence upon the number of segments, we observed

that there might be also a link between the runtime (per image and per pixel), the number of segments,

and with the affinities size variable. Indeed the more the number of segments, the longer will be the

time for scoring each box. As a result, plots for the runtime estimations have the same tendencies as

for the affinities variables size. We show the respective benchmark plots below:

 119

Figure 65 : normalized-runtime comparison for architectures using and not using de-noising.

Figure 66 : normalized-runtime comparison for architectures using and not using 2x2 binning.

 120

Figure 67 : normalized-runtime comparison for architectures using relative and simple linear gradients (4 ENOB).

 121

Figure 68 : normalized-runtime comparison for architectures using relative and 8-bit linear gradients.

 In this work, we do not try to specifically approximate the runtime of Edge-Boxes, and we only

show the difference of running the algorithms with different pre-processing types, and simulated on

the same desktop/server machine. Exact runtime values are not so meaningful, and only the relative

improvement from one pre-processing to another is useful for design/optimization purposes. The

reason is that the runtime depends on the specifics of the system (hardware, and software) into which

the algorithm is running. We understand as well that even the shapes/values of plots regarding

runtime could vary when changing, for instance, the source-code, the operating system, and the

hardware architecture. Thus, runtime-plots are to be considered as only preliminary, and conclusions

driven for them are to be taken with caution. That said, we observed that there is a notable positive

impact in runtime when using de-noising and/or binning, where the best performance is when both

are combined.

6.3. Empiric Figure of Merit

Given that we have three different metrics to characterize (behaviorally) the smart imager

system, we then wondered if we could use an empiric figure of merit to jointly characterize each edge

extractor type. We thought that the most intuitive way was to take the ratio between the ABIoU and

the memory times the runtime (both normalized). However, to improve the range of values, and to

give more importance to the ABIoU, we modified it as follows:

 122

𝐹𝑂𝑀 = log(
𝐴𝐵𝐼𝑜𝑈10

𝑛𝑜𝑟𝑚𝑅𝑢𝑛𝑡𝑖𝑚𝑒 ∗ 𝑛𝑜𝑟𝑚𝑆𝑒𝑔𝐴𝑓𝑓𝑆𝑖𝑧𝑒
)

Equation 54

Figure 69 : Figure of merit for different architectures at selected thresholds (from table []).

 In Figure 69, we observe that the best FOM was for the logarithmic architecture, with an

average blur kernel and with binning. However, this architecture also had one of the worst ABIoU. That

is why we observed that even though we used an exponent of 10 for the ABIoU in the FOM, yet the

equation makes the impact of the normalized segments affinity size and the normalized runtime more

important. This also raised the question that, in the case that this FOM was accepted since memory

and runtime are the most important parameters, then one could change the initial strategy for

threshold selection before in the chapter, since it was based uniquely on ABIoU performance. That is

illustrated in Figure 70.

 123

(a)

(b)

Figure 70 : Global ABIoU dependance upon the gradiend threshold for different architectures.

In Figure 70 (a) and (b) we observe the ABIoU tendency for different relative and log

architectures when varying the threshold value (log cases) or the threshold gain (relative cases). As

expected, and systematically, the ABIoU reduces when increasing the threshold, since a lower amount

 124

of edges is detected and more disconnected contours appear. Now, we can observe what happens

with the FOM when we increase the threshold:

Figure 71 : figure of merit as a function of the relative/log threshold for different architectures.

 In Figure 71, we observe that the FOM systematically increases (except cases in which the

relative/log threshold is so high that it starts significantly diminishing the performance), reflecting thus

the impact of runtime and memory reduction, but does not reflect (clearly enough) the diminishing on

the ABIoU. To circumvent this issue, we finally decided to plot the FoM versus the ABIoU:

 125

Figure 72 : dependance of the figure of merit upong the ABIoU for different architectures (both quantities are parametric
funcitons of the architecture thresholds).

 In Figure 72, we plotted the FOM when varying the ABIoU (being the threshold factor the

hidden parameter). Then, we can “draw” an imaginary vertical line representing a desired ABIoU, and

for this ABIoU we then have the corresponding FOM for each architecture. From this plot we observed

that not all architectures (at least in the parameter sweep we did28) achieve the maximum ABIoU.

6.4. Conclusions of chapter 6

In this chapter, we presented our scalable simulation scheme. In addition, we provided

benchmarks for system performance in terms if IoU, memory usage through affinities-variable-size,

and runtime estimation. We proposed a way of choosing each architecture threshold for benchmarking

based on the ABIoU. Benchmarks illustrated as box plots allow a first estimation of memory usage and

relative time complexity in comparison to other edge-extractors (in correlation with corresponding

ABIoUs). Moreover, we proposed a FOM based on those three variables, and we studied it in order to

to give it a proper interpretation. We plot the FOM vs. the ABIoU when the architecture threshold is

varying. Then, we draw an imaginary vertical line representing a constant (desired) ABIoU. Thus, each

28 It is possible that, for example, the logarithmic gradients could achieve a higher ABIoU, which, based on the
figure of ABIoU vs. threshold factor, would mean decreasing the threshold factor. That, however, could lead to
higher memory and runtime needs. Such case scenario could be analyzed if found relevant in further works.
Notice as well that for the case of logarithmic gradients, we did a factor sweep around the value 2, recommended
by the original authors (Omid-Zohoor et al. 2018; Young et al. 2019).

 126

intersection with the vertical line with each architecture curve gives the FOM. The upmost architecture

corresponds to the best architecture, corresponding (for the parameter sweep we made) to the

relative variant of our model, with an average blur before edge extraction, and with a 4x4 pixel binning.

Indeed, since the output from the edge-extractor is aggressively quantized, one reasonable

question is if Edge-Boxes could also exploit such quantization to reduce the bit-depth during

computations. We think that this could be possible, but we let this question for further works.

 127

Chapter 7. Dynamic Vision Pre-processing

 In last chapters, we have discussed about classic or frame-based approaches for object

detection. However, there is a specific motivation to assess the viability of OD with neuromorphic or

dynamic-sensing imagers. Indeed (Gori 2018) mentions that solutions for OD based on single static

frames is far from how nature copes with this challenge. Specifically, living beings seem to benefit from

motion information as well. That’s the reason why they say that using both static and dynamic

information could make OD an easier problem to solve. In this chapter, we will explore such idea.

 128

7.1. Event-base data for object detection

 One possible way to use dynamic sensors for OD is to use their inherent motion detection to
obtain set of region proposals like done by (Acharya, Padala, and Basu 2019). Their mechanism aims
at spotting regions containing clusters of events potentially containing an object, as shown in figure
Figure 73.

Figure 73 : example of regions proposals generated in (b) from (a) (Acharya, Padala, and Basu 2019).

Moreover, examples like (Deng, Li, and Chen 2020; Deng, Chen, and Li 2021) show that

classification tasks are also possible with dynamic data codified as asynchronous spikes. In addition, in

they work, they propose generating frames (or more complex data-structures similar to frames) from

the asynchronous event-streams, and then use more conventional, frame-based learning approaches.

Another way of using machine-learning with events, and which could exploit the asynchronous events-

behavior, is by using a family of approaches called Spiking Neural Networks (SNNs). For instance,

(Lamba and Lamba 2019) present a comparison between CNNs and SNNs for handwritten-digit

classification. However, as mentioned by (Barchid, Mennesson, and Djeraba 2021), SNNs algorithms

are not as mature as FB counterparts, and so it is not clear for us how to use SNNs for multi-class and

multi-scale object detection, and at the same time exploiting neuromorphic (event-based) imaging-

systems. Indeed, (Barchid, Mennesson, and Djeraba 2021) show an example of SNNs performing

single-object detection, but their work is, from our perspective, still only a prove of concept which has

to be further studied at algorithm level. In addition, (S. Kim et al. 2019) showed that SNNs can indeed

accomplish complex tasks beyond classification, such as OD. They (S. Kim et al. 2019) used a way of

converting deep neural networks to spiking neural networks and attained good performance for OD.

Nevertheless, they used the PASCAL VOC dataset (Mark Everingham et al. 2015), which is frame-based,

and then it is not obvious for us how to map this technique to neuromorphic imaging systems. Because

of the reasons mentioned in this paragraph, we think that, at the time of the present work, algorithms

for OD (with supervised learning techniques) are not mature enough when using neuromorphic

(spiking-based or event-based) algorithms. However, neuromorphic image-systems are still interesting

in this work since they allow obtaining dynamic data in the image directly, which could allow, for

instance, exploiting such dynamic information for attention-based mechanisms for more efficient ROI

proposals generation. In next paragraph, we start covering the state of the art for the so-called

Dynamic Vision Sensors (DVS).

There are several imager variations trying to recover dynamic information. Such sensors

typically correspond to the DVS family as they share several features: firstly, “scene-motion” is

 129

captured by detecting temporal light-intensity variations for every pixel. Secondly, the sensing of those

changes happens at pixel level. Thirdly, the way for communicating those changes (namely events) is

as spikes, from which the system recovers specific information (pixel address, time stamp, and

polarity29). Finally, the DVS scheme abandons (although the asynchronous read-out is not mandatory,

as implemented by (Li et al. 2019)) the routine of sequential-synchronous-photo-integration plus read-

out, for a spike-asynchronous-read-out. This asynchronous read-out of incoming events, codified as

spikes, is managed by a dedicated digital-circuitry called the arbiter.

Regarding last paragraph, one interesting question is why the DVS scheme could be more

interesting that just subtracting image frames. Firstly, the event-based approach, where only pixels

detecting events send a spike, allows saving data-throughput from regions where nothing is

happening. Secondly, the combination of in-pixel event-detection, plus asynchronous reading allows

outstanding low event-detection latencies (in the order to tens of us (Lichtsteiner, Posch, and Delbruck

2008; Berner et al. 2013)). Finally, DVS pixels have been shown to achieve temporal contrast

sensitivities for instance between 1% (Yang, Liu, and Delbruck 2015) and 0.3 % (Delbruck and Berner

2010) . The temporal contrast (TC) of a dynamic vision sensor is the threshold at which the pixel

“detects a change” and sends a spike (Posch et al. 2014). Such change is typically described as the

relation between the light intensity changing respect to the last spiking time, and the light intensity

changing also at the last spiking time (Posch et al. 2014). However, for us, it is not clear if a more

sensitive TC is essential for OD. Nevertheless, achieving the aforementioned features by subtracting

frames (in an embedded and frame based manner) implies somehow buffering images, and subtracting

them at an elevated frame-rate for a later comparison with a threshold (where this threshold can vary

for each pixel alone depending on the intensity at the local last event). For instance, considering the

15 µs spike latency reported by (Lichtsteiner, Posch, and Delbruck 2008), the equivalent frame rate for

achieving a similar latency would be of (15 µ𝑠)
−1

 ~ 66.7 𝑘𝑓𝑝𝑠. In addition, subtracting images one

after the other is not enough since events can be related to changes slower than the frame rate (an

event at time 𝑇𝑖 can depend on light intensity at time 𝑇𝑖−2, if we imagine a fine-grained discretization

of the continuous time-line, with time steps30 Δ𝑇 = 𝑇𝑖 − 𝑇𝑖−1). Thus, there has to be added logic for

handling pixel-values-updating in the previous buffered-image. Finally, the subtraction should happen

at a SNR or bit-resolution (depending on the implementation being analog or digital) sufficient for the

required contrast sensitivity or temporal contrast TC. Those constraints do not make obvious for us

the implementation of a low power imaging device with a classic frame-based approach.

 In this chapter, we try to assess if a DVS sensor could improve the OD pipeline we have studied

so far. We preferred to have an imager that does not rely specifically on SNNs, since they are still young

research topic, whereas Convolutional Neural Networks or Support Vector Machines are extensively

proven to work for frame-based OD. Moreover, another solution could be collecting events during a

period and then performing classic, FB based OD on this output, but then this seems more like a FB

type of processing, and it is not clear for us why to use a DVS in such case. In addition, the in-pixel read-

out significantly degrades the fill factor, while the asynchronous read-out imposes a complicated read-

out scheme. Thirdly, the event data-throughput, measured in events per second (e/s), can easily

increase not only due to motion along the scene, but also because of photonic-noise, illumination

changes, shadows and texture-artifacts, making the power saving or the OD not that efficient. In fourth

place, the stream of events, if coming from different occluded objects, has to be somehow segmented

29 The polarity is a Boolean value indicating whether the light intensity derivative is positive of negative.
30 That is, indeed, the strategy we adopted for simulating this kind of neuromorphic imaging-systems.

 130

for each particular object (if not, then it would be more difficult to know how each object is moving).

Finally, the last question is how to perform OD if the scene is (sometimes) static.

 Our strategy for coping with the complications mentioned above was the following: we

proposed a simulation scheme with synthetic datasets. From our simulations, we expect to see if we

can improve one specific problem: the high event data throughput, because, from our point of view, it

was critic for reducing redundancies and the corresponding power consumption. Then, we try to create

a Frame Based imager that efficiently “emulates” part of the behavior of the DVS, so the emulated

dynamic vision part will make the FB one more efficient and fast regarding the object localization task.

7.2. Synthetic dataset generation

As mentioned in chapter 3, our preferred strategy for behavioral DVS simulations was using

synthetic datasets at a high frame rate (~ 1 kfps or more). The reason why we had to create our

datasets is that we wanted to evaluate the impact of changing the system at pre-processing level (pixel

level, or at bottom-column). Moreover, we wanted to evaluate specific points, all at the same time,

that were hard to attain in datasets in the state of the art. For instance, at the same time that we

wanted to simulate changes at pixel or column-bottom level, we also wanted to evaluate the behavior

of different edge extractors (and Edge-Boxes) when objects are of different size, when shadows are

present, when lighting conditions around the image differ significantly, and when there are both

moving and static objects. Also, we wanted to start from rather simplistic datasets which could allow

to drive simpler and preliminary conclusions, instead of using real-life video-datasets from which,

potentially, observations would be harder to interpret. Then, for approaching as much as possible to

the real behavior, we preferred using a simulator taking into account light phenomena on a custom

scene. For such purpose, we hypothesize that each frame represents the instantaneous photocurrent

generated at each pixel. In this section, we focus on how we generated the two datasets we used in

this work.

 131

7.2.1. Polygon dataset

Figure 74 : our animation setup for generating our first synthetic dataset.

Fig. [polygonSimulation]:
 The simulation setup in Blender is shown in Figure 74. It corresponds to a cylinder that is

rotating around its main axis, a camera capturing only the top view, and a light source. As mentioned

in our previous publication (Cubero et al. 2020), we rendered 1000 frames for a 37-degree rotation of

the cylinder along the Z axis. In Blender, we configured the amount of frames and the motion, but the

frame rate can be chosen arbitrarily. For our case, the fps can be derived by considering a hypothetic

event read latency (which dictates the time resolution of the simulation, and that is why we relate it

with the frame rate for simulation purposes). In our paper (Cubero et al. 2020), we used 15 𝜇𝑠, inspired

by (Lichtsteiner, Posch, and Delbruck 2008). Then, the fps is the inverse of the time resolution, giving

approximately 66,7 kilo-frames per second, which gives to our cylinder a rotating speed equivalent to

that of a car-wheel, with 0,5 m diameter, going forward at ~77,5 km/h. In addition, for rendering the

video sequence, we used the Cycles renderer, and contrast threshold of 3 %, which was an arbitrary

yet illustrative value chosen to be in the range of reported values from (Lichtsteiner, Posch, and

Delbruck 2008) and (Berner et al. 2013). One example of a rendered frame from the setup presented

in Figure 74 is presented in the Figure 75.

Light source

Camera

Background plane

 132

Figure 75 : example of a rendered image from the video sequence generated with the simulation setup from Figure 74

(Cubero et al. 2020).

One interesting experiment was to observe the resulting light-intensity curve evolution in time

for one particular pixel. In the figure below, that is what we present for two particular pixel positions:

one pixel was closer to the center and it corresponded to a smoother (lower gradient) curve. The

second one was closer to the polygon perimeter, and it corresponded to a higher gradient curve. Both

pixels where in the same radial line and their values were taken during the same period of time.

Figure 76 : light intensity evolution for two pixels when a color-edge is passing through. The gray plot corresponds to a
pixel far away from the polygon center, whereas the red one corresponds to a pixel closer to the center (Cubero et al.

2020).

Fig. [pixelevolution]
From Figure 76, we observe that we arrive to generate a light-intensity curve at high frame

rate. This kind of curve is the one that will be used to approximate the events for each pixel. Notice

also that the pixel that is closer to the perimeter corresponds not only to a higher slope in the intensity

versus time curve, but it also has a higher linear speed31. Then, last experiment agrees with the

hypothesis that (at constant and approximately uniform illumination conditions) the curve slope is

correlated to the particle-speed in the image32.

31 As a reminder, the linear speed (magnitude of velocity) of a particle describing a circular motion in 2 dimensions
is the scalar multiplication of the radial distance times the angular speed.
32 Saying that the slope is correlated to the speed in the 3D World is incorrect, since that would not take into
account projection effects. Then, we cannot obtain directly the object speed in the real World with such simplistic
approach.

 133

7.2.2. Three spheres over ground dataset

Our synthetic dataset consisted in three spheres of the same size located in front of the

camera. Each one was at a different depth distance from the camera, so their size in the image plane

would change respect to the others. In addition, we rendered a video-sequence, in which each sphere

showed a different type of motion. One sphere moved faster than the others, another one was the

slow sphere, and another laid static. We also located a background plane perpendicular to the image

plane, so the shadows would be visible. From this dataset, we wanted to be able to simulate it with

both edge-extractors, but also with a DVS architecture. Moreover, we made the scene (see Figure 77)

such that objects would appear at different sizes because of the distance from the camera, they would

move differently (or not move at all), and there would be different lighting conditions along the

rendered images (see Figure 78). As mentioned before, all those requirements made hard for us to

find a datasets that would comply with them at the same time.

This dataset was generated similarly to the case of the polygon dataset. Nevertheless, this

dataset was for testing the object localization task, besides of behavioral simulation of DVS imagers.

Figure 77 : our animation-setup for our second dataset generated.

(a) Frame 0

(b) Frame 59

Figure 78 : first (a) and last (b) frames rendered from the video sequence related to the setup in Figure 74.

Camera

Sphere

Directed

light source

 134

Since the video sequence corresponds to a list of frames, extracting edges for each frame can

also be carried out (in order to simulate Origrad architectures), which we illustrate in Figure 79.

Figure 79 : example of a rendered frame from the output of the relative-edges extractor. Colors indicate the

detected edge direction (blue: 90 deg, red: 0 deg, yellow: 45 deg, green: 135 deg).

Relative origrad
Nevertheless, for object localization benchmarking, we need ground truth bounding boxes as

well. Specifically, for each frame, we need to know the coordinates for the enclosing rectangle for each

different object (sphere) in the image. However, in Blender, we specify object-locations in 3D World

coordinates (X, Y, Z)33, and the size (radius) in simulation units for each object. Moreover, we define

the camera position, a parameter related to the focal distance and the image (size) resolution. Notice

also that Blender uses the pinhole camera model. Then, the problem we faced was to automatize the

ground-truth bounding-box generation during the frames rendering, so we could compare the output

from the object-localization algorithm (Edge-Boxes) with the ground-truth. The way we did it is

described in the next paragraph.

 Before we start solving the problem, we summarize it as follows: given the 3D World position

and orientation coordinates of any object of any form and size, and given the camera position and

orientation, we need to obtain the coordinates of the ground-truth bounding-box in the image plane.

This is a problem of projective geometry, and we start from the classic camera calibration method

described in (“Camera Calibration” 2021), which use the known formula for the pinhole camera model

(OpenCV-dev-team 2012):

𝑠 [
𝑢
𝑣
1
] = [

𝑓𝑥 1 𝑐𝑥

1 𝑓𝑦 𝑐𝑦

1 1 1

] [𝑟|𝑇] [

𝑋
𝑌
𝑍
1

]

Equation 55 : pinhole-camera equation (OpenCV-dev-team 2012).

 Last equation states the basic form of the pinhole camera model. In order to explain better

how we used it, we will make reference to the illustration in Figure 80. There are two reference frames

involved: one for the camera, represented by {C}, and one for the World represented by {W}. Those

33 Aside the 3 rotation angles, which in this case are not relevant since our simulation objects are spheres.

 135

two are not necessarily aligned. Now, considering a point p in Blender, we define the vector 𝑃⃗ {𝑊} of

point p in World coordinates. We start with a point before we go into shapes that are more

complicated. In addition, we define the position vector 𝐶 {𝑊} (not represented in Figure 80) of the

camera origin respect to the World. There, we understand that there is another reference frame whose

origin is at 𝐶 {𝑊} and that is aligned with the camera. Then, the image plane is at one focal distance 𝑓

from the camera. Since we are dealing with a projective geometry problem, we have to express 𝑃⃗ {𝑊}

in homogeneous coordinates, and then we have to transform from reference frame {W} to {C} by

multiplying 𝑃⃗ {𝑊} by a rotation-translation matrix. That is :

𝑃⃗ {𝐶} = [𝑟|𝑇]𝑃⃗ {𝑊}

Equation 56

𝑠 [
𝑢
𝑣
1
] = [

𝑓𝑥 1 𝑐𝑥

1 𝑓𝑦 𝑐𝑦

1 1 1

] 𝑃⃗ {𝐶}

Equation 57

 We observe that the pinhole-model equation represents the projection of the point in camera-

coordinates in the image plane. Coordinates 𝑢, 𝑣 represented the x, y position in the image. The factor

𝑠 comes from the homogeneous coordinate’s normalization factor, so the third entry equals to 1. The

matrix relating 𝑃⃗ {𝐶} and the left-side of the equation is the camera-matrix, which contains the intrinsic

camera coefficients: 𝑓𝑥 and 𝑓𝑦 are the focal distances for their corresponding axis, and (𝑐𝑥 , 𝑐𝑦)

correspond to the image center. In our case, 𝑓𝑥 = 𝑓𝑦 = 𝑓. Moreover, in order to simplify the problem,

we can make {W} and {C} to correspond, thus making the derivation of [𝑟|𝑇] straightforward. Notice

that this alignment is practical because we are working on a 3D-scene simulator. However, in realistic

applications there may be scenarios that are more complicated.

Figure 80 : example of how the image plane is placed into the World coordinate system.

Fig. [pinholeModel]:
 We have advanced in solving the problem stated before, yet there are questions unresolved:

firstly, we have stated the equation for a point, but we have not yet generalized for more complicated

3D-shapes. Secondly, how do we obtain the intrinsic camera parameters 𝑓, 𝑐𝑥 , 𝑐𝑦?

We start by addressing the first issue by considering that Blender codifies objects of any

complicated shape as collections of 3D points with different types of relations amongst them (3D-

𝑓

{𝐶}

𝑦̂

Image plane (top view)

𝑣
𝑌{𝐶}

{𝑊}
𝑃⃗ {𝑊}

World coordinate system

𝑝

 136

meshes). Different relations can lead to the formation of lines, planes, and volumes. Thus, for avoiding

a more complex geometric problem, what we did was to make a Python script that would output and

save, for each object (sphere) the position of each vertex for each object34. Then, we expressed the

object coordinates in camera coordinates, and finally used Equation 55 to get all projected points in

the image. Finally, generating the ground-truth bonding box for each object was straightforward, since

all we had to do is to take the maximum and minimum image point coordinates for each collection of

vertices associated with each object.

 The second question relates to a typical camera calibration problem. Indeed, we were not sure

if we could obtain the physical value of the focal distance from Blender directly. Then, in order to be

sure of the correct value, we proceed to a camera calibration process as explained in the OpenCV

documentation for real case scenarios (“Camera Calibration” 2021). The process consists of using a

grid of points whose relative position is fixed (relative to a reference frame attached to the grid origin).

One typical example is a “chessboard” pattern, where the particular points are the intersection

between squares. We modeled such pattern and animated it so we would have the chessboard at

different positions respect to the camera. This process is illustrated in Figure 81.

(a) Frame 10

(b) Frame 20

Figure 81 : example of two rendered frames when animating a moving chess-board pattern in the scene.

Then, by keeping the camera fixed and moving the grid (so the particular points appear in the

camera in a projected manner), one can use one of OpenCV’s functions for recovering the intrinsic

camera parameters, if for each recorded frame the position of such points in the image plane is known.

However, we still had to know the position of each particular corner point in the image plane. In order

to simplify the problem, for each rendered image containing the chessboard, we used an OpenCV

function for finding the chessboard points in the image (as showed in Figure 82). Then, we used those

points (coming from the same grid, moved along different positions in different sequence frames) as

input for the camera calibration function.

(a)

(b)

Figure 82 : result from OpenCV function for detecting the chessboard pattern corners at frame 10 (a) and at frame 20 (b).

34 In order to do so, we had to « move » the objects in the scene for animation programmatically as well.

 137

 That last one gave approximated values for the focal distance and image center. Since this

calibration process is not perfect, we had to refine the values (by trial and error) to match satisfactorily

human-made ground-truth boxes.

 After the process made in last paragraphs, we successfully obtained a synthetic dataset for

object localization with ground-truth annotations generated automatically, as illustrated in Figure 83.

Further works can exploit such strategy for modeling more complex and general problems, since

Blender is currently capable of using photorealistic scenarios, including (for example) humans, animals

and vehicles.

(a) Frame 0

(b) Frame 59

Figure 83 : example of the first (a) and last (b) rendered frame from the animation-setup from Figure 77, and with
ground-truth bounding-boxes generated with the method previously described.

 In next sections, we explain how we used those synthetic datasets in order to simulate the DVS

and several variations.

7.3. From circuit schematic to behavioral simulations

In order to make a fair behavioral model of the DVS, we studied first the basic circuit schematic

for a single pixel. Notice that there are several DVS variations with different specifications and pixel

complexities. We took, however, as reference the circuit proposed by (Lichtsteiner, Posch, and

Delbruck 2008), and we present it in Figure 84:

 138

Figure 84 : “(a) Abstracted pixel schematic. (b) Principle of operation. In (a), the inverters are symbols for single-ended
inverting amplifiers.” (Lichtsteiner, Posch, and Delbruck 2008)

Fig. [dvs-layout]: Image taken from [ref: dvs]

 Part (a) Figure 84 shows the basic pixel schematic from (Lichtsteiner, Posch, and Delbruck

2008), while Figure 84 (b) present its principle of operation: each time the relative temporal differences

reaches the temporal contrast, a spike in sent and the reference value is reset. In Figure 84(a), the

schematic is partitioned in three steps: photoreceptor stage, difference stage, and event-detection-

stage by means of a threshold comparison of the (relative) lighting difference. When the reset signal

is closed, the voltage across capacitor 𝐶1 follows the logarithmic output 𝑉𝑝. Once the reset is open, the

capacitor 𝐶2 starts cumulating the charge associated with the logarithm of the current intensity minus

the logarithm of the intensity at the time the reset switch was open. Such signal is represented as 𝑉𝑑𝑖𝑓𝑓

in part (a) of the last figure. That is:

𝑉𝑑𝑖𝑓𝑓 = −𝐴
𝑘𝑇

𝑞
 (ln(𝐼) − ln(𝐼𝑟))

Equation 58 (Lichtsteiner, Posch, and Delbruck 2008)

 Where 𝐼𝑟 corresponds to the intensity at last time the reset switch was opened (𝑡𝑟), and A is

a factor reflecting the equivalent amplification showed in Figure 84 (a). Then,

𝑉𝑑𝑖𝑓𝑓 = 𝐶𝑜𝑛𝑠𝑡 ⋅ ln (
𝐼

𝐼𝑟
) ≈ 𝐶𝑜𝑛𝑠𝑡 ⋅ (

𝐼 − 𝐼𝑟
𝐼𝑟

)

Equation 59 (Posch et al. 2014)

 So 𝑉𝑑𝑖𝑓𝑓 approximates the ratio of the relative lighting difference respect to the intensity 𝐼𝑟 at

time 𝑡𝑟. The final stage compares the differentiating voltage with two thresholds. Those two thresholds

relate (in absolute value) to values representing the so-called “temporal contrast” (Lichtsteiner, Posch,

and Delbruck 2008). When |𝑉𝑑𝑖𝑓𝑓| is higher than the threshold, a “ON” request signal (e.g. a spike) is

sent if 𝑉𝑑𝑖𝑓𝑓 > 0, and a “OFF” spike is sent otherwise. Moreover, when a spike is sent, the arbiter then

 139

“acknowledges” the spike reception, and triggers the reset switch to close temporarily, so the

reference lighting intensity updates. In the simulation, this process has to be followed for every pixel

independently, since each pixel may follow a different intensity curve, have a different lighting-

intensity-reference, and spike at different time stamps (this is why simulating a DVS by only subtracting

subsequent frames and comparing such difference with a positive, or negative, threshold is incorrect).

Figure 85 illustrates the output from a DVS simulation with a temporal contrast threshold of 3 % (when

events where cumulated during 15 µs.

Figure 85 : (a) example of a rendered frame from our first (video-sequence) synthetic dataset, and (b) example of a

rendered frame after behavioral simulations of a DVS (Cubero et al. 2020).

7.4. Pre-processing improvement for data-throughput reduction

Notice (if we want to make a correspondence with frame-based approaches) that we cumulate

the stream of spikes during a short period, and render them in an image such as the one above (b).

Then, the rendered image appears to follow the shape contours. From that perspective, rendering

frames with spiking data and obtaining an edge-map from a static image could potentially be similar

for object classification. The difference is that the edge-map contains also the edge orientations, which

are not directly present in the spike-rendered-frame. On the other hand, with extra processing more

dynamic information could be obtained, for example velocity directions for different particles in the

scene. Nevertheless, that approach would require (to our knowledge) using temporal correlations,

which goes further from the frame based approach that we have been using so far before this chapter.

Regarding the localization task, one intuitive approach would be to cluster events from a

rendered frame from spikes. The clustering criteria could be simply the Euclidean, or Manhattan,

distance between pixel addresses, and we think (since we did not test it) that a simple-enough

algorithms may do the task satisfactorily for this dataset. Nevertheless, this dataset is too simplistic for

saying that basic clustering approaches would work in real datasets, which may present occlusion,

complicated textures, lighting irregularities, shadows, and complex object motions. Such aspects may

appear in the spike-stream as events whose nature is not directly known, and more post-processing

(spatial or temporal) may be required in order to obtain meaningful information. Then, for us, it was

not clear if the spikes processing required for dealing with specific issues related to a spike-stream

output would actually be advantageous when comparing it to a standard frame-based approach.

Indeed, we can formalize what was introduced in last two paragraphs as two problems that

we address in this work: firstly, we wondered if we could reduce the amount of events or events data

 140

throughput. However, at the same time we wanted to reduce the information loss of neglecting some

events. Secondly, we wanted to be able to use both spatial and temporal processing at the same time.

However, we observe that the frame based approach for Origrad differs significantly in pre-processing

and architecture from the DVS approach. Moreover, Origrad gives directly meaningful information

(e.g. edge magnitude and orientation) for localization and classification, whereas frames recovered

from a DVS output may require potentially complex pre-processing before localization and

classification could be performed. Nevertheless, the DVS output potentially allows attention based

mechanisms for ROI proposals, and fast detection of moving objects. We tackle the first problem by

introducing the modulation we proposed in our previous publication (Cubero et al. 2020), and

represented in Figure 86:

Figure 86 : our proposed modulation scheme (Cubero et al. 2020).

Fig. [modulation]

In Figure 86, we present our modulation scheme (Cubero et al. 2020). CT corresponds to the

global contrast threshold, named “temporal contrast” (TC) for instance by (Lichtsteiner, Posch, and

Delbruck 2008), which corresponds to a voltage reference used in the comparators in Figure 84(a). The

reason for varying CT along time is inspired in the curve from Figure 76. Being 𝑡𝑙 the simulation time

resolution (15 µs), numbers from 1 to 9 represent different time stamps at which the simulation

updates. Those updates track new events, so they approximate an asynchronous behavior when the

scene is evolving much slower than 𝑡𝑙. The modulation consists in a stepwise lowering of CT along

several (in our case, 3) values. The amount of time a CT remains constant is 𝑡𝑐 or the “channel time”.

For prove of concept, in our experiments we set 𝑡𝑐 = 3 ⋅ 𝑡𝑙. For practicality, we call each set of events

corresponding to each 𝐶𝑇𝑖 𝜖 {1,2,3} a “channel”. Then, 3 channels relate to 3 different CT values along a

complete modulation period. Indeed, a particle at the image plane that moves fast generates a higher

intensity slope when passing by a particular pixel (in the circumference described by such particle

motion). In practice, this higher slope could lead to more events detected per unit of time, and we may

make the hypothesis that several events coming from the same intensity slope (e.g. the same pixel)

are not adding relevant information, only redundant information. Of course, this hypothesis may only

hold to a certain extent, since eventually the smart imaging system may “check” the state of motion

or intensity evolution at a place of a high slope. One possible optimization is to just to “disable” spikes

from pixels detecting events at a high rate (e.g. observing a high intensity slope). Nevertheless, that

 141

introduces the problem of how to measure such frequencies per pixel without significantly changing

the original pixel schematic. We did not take such approach, and instead we tried to lower the

probability of high-slope pixels generating events by setting CT to a high value, namely 𝐶𝑇3 in Figure

86. This action has two consequences, pixels with higher slopes will tend to spike less, and pixels with

lower slopes will be much less likely to generate a spike. Then, channel 3 corresponds to pixels with

high slopes, yet its throughput is statistically less due to the relatively high global CT. However, lower-

slope pixels may be also relevant, and they start appearing in other channels by stepwise lowering CT.

Nevertheless, by decreasing CT, higher-slope pixels start increasing in frequency again. Even though

there is already a data throughput reduction thanks to the implementation of a high CT during a certain

time, the problem of data-throughput increasing after decreasing CT can be improved, as we explain

later in this section. For now, we will discuss about a caveat of abruptly changing CT as in Figure 86.

The need of the stabilization window

The reader may have notice that in Figure 86 we presented specific time steps in light-blue,

which we indicated as “stabilization-time-windows”. In fact, during our experiments, we observed a

relatively high peak of events throughput arising each time that CT was abruptly changed. Our

explanation for such behavior is based on Figure 87:

Figure 87 : illustration of how an abrupt changing in CT triggers undesired spikes at the moment of the changing (Cubero

et al. 2020).

Fig. [stabilizationwindow]
Figure 87 presents a simplified version of an intensity curve as a straight line. The horizontal

axis corresponds to time, and we include (below the plot) a representation of when spikes are

 142

generated: for each moment that the curve attains a relative change equal to 𝐶𝑇𝑖, an event is detected

and a spike is sent. Moreover, for each event, the local reference value for the light intensity updates

to the value at the last event. Notice that, as 𝐶𝑇3 is relatively high, it “prevents” lower-slope pixels to

detect events. However, their 𝑉𝑑𝑖𝑓𝑓 values could be increasing (decreasing) as well, but not enough to

trigger a spike. Then, when CT decreases abruptly from 𝐶𝑇3 to 𝐶𝑇2, several pixels that were “in their

way” to attain the threshold reach it simply because the global CT became suddenly significantly lower.

One example is depicted by the red spike in Figure 87. Such spike might not be irrelevant, but its

interpretation is less straight forward than in the case of spikes not happening due to sudden changing

in CT. For keeping our solution simple, we propose to just discard events coming from the time

stabilization window. Then, we do not take into account such events for benchmarking different

imagers throughput.

Further optimization with events inhibition

As we mentioned before, when CT decreases, higher slope pixels increase their spiking

frequency since they become more likely to attain the threshold. Nevertheless, they may have already

generated at least one spike during the previous channel (with a higher CT). Then, if the hypothesis

that the real scene is evolving much slower than 𝑡𝑙 (so that all intensity-curve-accelerations during a

whole modulation period are approximately zero35), then it is reasonable to inhibit spikes coming from

pixels that have already spiked in a previous channel. We observed two different ways of implementing

this idea: firstly, any pixel that spikes during a channel is inhibited from spiking until next channel.

Secondly, any pixel that spikes during a whole modulation period is inhibited until the next period.

More specifically, the way the inhibition works is by changing the pixel schematic so it independently

becomes “unable” to spike after generating a spike. This inhibition can only be removed by a global

(synchronous) signal, which we call the synchronous enable (SE). Thus, pixels can get inhibited

asynchronously and independently, but they are all reset to the abled state together and at the same

time. In next subsection, we explain how to change the pixel schematic in order to implement both the

modulation and the inhibition.

Pixel schematic changes

In Figure 88, we present both the original pixel schematic from (Lichtsteiner, Posch, and

Delbruck 2008) (up) and then we depict the changes we suggest in red (below). The modulation is

achieved by means of block A and the 𝑉𝑇𝐻 modulation with peripheral circuitry. We expect that such

abrupt changes in CT cannot be made by simply modulating 𝑉𝑇𝐻, since the voltage swing limits also

the CT range. Then, since CT also depends on the capacitance value inside block A (as didactically

explained by (Posch et al. 2014)), we can also “modulate” this capacitance by changing the original

capacitor by two capacitances in parallel, and with one of them switched and “controlled” by the Mod

signal. The inhibition can be implemented by “deviating” the reset signal sent by the arbiter to each

individual pixel when a spike is sent. Typically, this reset signal closes the reset transistor and sets 𝑉𝑑𝑖𝑓𝑓

to zero, so new events can be detected. In our case, the signal coming from the arbiter will instead

charge a capacitor called 𝐶𝑖𝑛ℎ, which will hold the reset transistor closed while this capacitor is

charged. This starts the inhibition state for a single pixel, since 𝑉𝑑𝑖𝑓𝑓 is permanently set to zero and the

35 Or, in other words, that slopes are not changing during a modulation period.

 143

pixel becomes unable to spike. This inhibition can only be removed by a global synchronous enable

signal, which discharges 𝐶𝑖𝑛ℎ for all pixels, and regardless of if they spiked or not.

Figure 88 : DVS original schematic (a) from (Lichtsteiner, Posch, and Delbruck 2008) and (b) our proposed modification for

including the modulation presented in Figure 86, and published in (Cubero et al. 2020).

Fig. [newschematic]

 144

Behavioral simulation results

Figure 89 : example of outputs from the three channels during one modulation period (Cubero et al. 2020).

Fig. [pixelsclustering] :
In Figure 89, we present rendered images of events corresponding to time intervals of 𝑡𝑙 for

each of the three channels. In this case, inhibition has not been applied yet. We observe that channel

3, related to the highest CT, presents events spatially located near color edges further from the center.

Those locations can be related to real world particles that are moving faster under approximately

uniform lighting conditions and with similar projective transformations. Moreover, channels 2 and 1,

with progressively decreasing CT, start showing even near the center and the polygon perimeter. In

Figure 90, we present plots of whole image data throughput vs. time for four different pre-processing

schemes: standard dynamic vision sensor (DVS), the DVS with CT modulation only (mDVS), the mDVS

with inhibition and synchronous reset each channel (SE-ch-mDVS), and finally the mDVS with inhibition

and synchronous reset only each modulation cycle (SE-cy-mDVS).

Figure 90 : instantaneous data throughput for the original DVS and for our three modifications. The table at the top

presents the average data throughput.

Fig. [datathroughput]:
From Figure 90, we observe that DT is reduced by applying our modulation scheme. We explain

the shape of the DT-vs-time curve in terms of the polygon circular motion: the polygon starts

accelerating (under a circular motion only) after begin motionless, and after it starts deaccelerating

until it reaches a null angular velocity. Then, the DVS-DT curve (represented as black in last figure) may

 145

be correlated to the polygon angular speed. The modulation (green curve) decreases DT by limiting it

under a period of time for each modulation period, and thus it appears to decrease and increase

abruptly while the overall curve shape follows the same as the DVS. Notice that we did not include

stabilization-time-window-events in this plot. The inhibition, however, generated a sort of “flattening”

or “stabilization” around a maximum DT regardless of the polygon speed. The difference between per-

channel, and per-cycle synchronous enable, was the maximum settling point for the DT peaks in each

period. Then, the minimum DT obtained in our simulation came from the SE-cy-mDVS, corresponding

to only 5,9 % of the DT obtained from the standard DVS.

 In last paragraphs we have discussed about how to reduce DT from a standard DVS by means

of a convenient CT modulation. Nevertheless, this exercise only allowed us to better understand

dynamic vision principles, and to observe that even after the potential DT reduction, the

implementation for object detection is far from being completed. Moreover, we did not find a way

which is simple enough and that allows combining functionalities of a standard DVS alongside with

edge detection complying with characteristics mentioned in chapter 6 (low spatial noise, enhanced

feature-DR and orientation information). Actually, besides complications due to electronic-overhead

for event detection and processing, we did not find an embedded algorithm that combines ideas from

both approaches. The problem stated here, is the reason why we introduce the “Dynamic Features

Vision Sensor”, further explained in next subsection.

7.5. Using dynamic vision for ROI proposals

Retinomorphic
imagers

Us

Figure 91 : our dynamic features extraction method compared with the state of the art.

Fig. [dfvs-principle]:

Figure 91 presents a scheme of our proposed pre-processing pipeline for mixing both spatial

and temporal features for low power object localization and classification. In Figure 91, the block

“Image” represents the matrix of pixels. The block “static features detector” corresponds to a feature

extractor such as a parallelized edge extractor. Then, event detection blocks relate to how motion is

detected along the image. For a DVS, motion is detected by comparing, at pixel level, the relative light

changing with a reference. In our case, we detect motion by comparing feature magnitudes codified

in 1-bit per pixel. Indeed, we lay on the hypothesis that the equivalent frame-rate resulting from

rendering event-frames from an asynchronous dynamic vision sensor is too high and unnecessary. The

justification is that a very high frame rate also imposes a bigger load on further processing, and this

Image

𝑑𝐼(𝑥, 𝑦)

𝑑𝑡
> 𝐼𝑟𝑒𝑓? Events map

Static features

𝐹(𝑥, 𝑦) detector

𝑑𝐹(𝑥, 𝑦)

𝑑𝑡
> 𝐹𝑟𝑒𝑓?

Dynamic

features map

1-bit XOR operations

Event detection

 146

situation may not be compatible with low power applications. Then, it becomes logical to reinforce

pre-processing stages in order to diminish the amount of bits passed to other processing layers.

Moreover, by accepting a reduced frame rate, we suspect that the asynchronous nature of the DVS

becomes less important, and that a standard frame based approach may be simpler to implement and

effective for OD. Nevertheless, frame-based approaches can make challenging to recover dynamic

information, contrary to a DVS approach. So, our idea to circumvent this dichotomy is to derive

dynamic data from feature map instead of from the light intensity map (standard image frame). In our

case, feature is a 1-bit edge, so dynamic features can be obtained with simple 1-b XOR comparisons

between successive features frames, in contrast with the in-pixel light intensity change detection that

would require n-bit operations. Figure 92 explains more in detail how dynamic data is obtained in our

case:

Frame Image Aquisition
Feature (spatial gradients)

detector

Feature change detector
𝑑𝐹(𝑥, 𝑦)

𝑑𝑡
> 𝐹𝑟𝑒𝑓?

i

F = (1 bit Magnitude + 2 bit Orientation)

F

 F

 F

 F

 F

i + 1

F

 F

 F

 F

D = Feature magnitude change

 D

 D

 D D

 D

Figure 92 : diagram illustrating the principle of functioning for extracting dynamic features from two subsequent feature
maps.

The scheme in Figure 92 shows the principle of the dynamic feature vision sensor: it relies on

the incoming feature-magnitudes, output from the edge-detector, and the last feature-map. For the

first frame after the imager is powered, or after a convenient amount of time (much higher than the

frame period), the dynamic-features-map is initialized as a copy of the 1-bit feature-magnitudes-map

𝐹𝑖=0. Then, for each new incoming feature-magnitudes-map 𝐹𝑖+1, the new dynamic-feature-map 𝐷𝑖+1

(bottom right in figure) is updated as 𝐷𝑖+1 = 𝐹𝑖 ⊕ 𝐹𝑖+1. With “⊕” representing the 1-bit XOR

function spanned for every single pixel. The result is that 𝐷𝑗 can be rendered as an image of locations

where feature magnitudes changed (1 → 0, 0 → 1). Thus, we interpret 𝐷 as an approximation of the

1bit

XOR

Magnitude

 147

feature magnitude derivative with respect to time. We observed some advantages of such scheme

with respect to the standard DVS:

1. Since dynamic features are constrained to appear in locations where a static-spatial

feature was present, dynamic outputs are sparser than DVS outputs (when thinking of

rendering an image of events at the same frame rate).

2. The pre-processing allows tracking directly moving edges in the scene.

3. The feature derivative is represented by a simple 1-bit XOR operation, in contrast with the

in-pixel light intensity change detection.

4. The edges output, alongside with the dynamic output, makes compatible the 4-bit output

for OD with algorithms already tested in the state of the art and in this work (for object

localization with Edge-Boxes with reduced bit-depth input).

5. The dynamic feature map initialization allows detecting also static objects.

For instance, in Figure 93, we present 4 different output frames obtained with EdgeTon

(Cubero et al. 2019). The right side corresponds to the DFVS with relative-Origrad (with average

denoising and without binning), and the right side corresponds to a DVS with CT = 3 %. The colored

pixels indicate static features (edges whose magnitude is 1), and white/black pixels indicate dynamic

features. Notice that the right side is at time-stamps of one frame after the left side. That is, since the

simulation was configured to automatically visualize (render) frames 0 and 20 from the output, but

from the way we simulate the DVS makes that the output frame 20 corresponds to the frame 21 of the

dataset. Nevertheless, this time-stamp difference is not important for the conclusions we drive: firstly,

the top of Figure 93 indicates that the fist DFVS output corresponds only to static features, which is

not different at all to the output of a simple edge-extractor. In the DVS case, we observe only the two

spheres that are moving, whereas the one in the center was not seen since it is not in motion. Then,

the DFVS allows obtaining static objects by analyzing the first frame on the image as for the case of

one typical edge-extractor. The bottom of Figure 93 indicates that, as expected, dynamic features

(illustrated in white or black) appear only where spheres are moving. Nevertheless, the important

difference to notice is the population of events in both images. The DFVS is constrained to show motion

only where there is an edge, whereas the DVS outputs events coming from lighting effects such as

shadows.

 148

(a) 𝑡 = 0

(b) 𝑡 = 1

(c) 𝑡 = 20

(d) 𝑡 = 21

Figure 93 : simulation output from the DFVS (left) and a standard DVS with CT = 3 % (right), at two different times36 of

the video sequence from the three-spheres-over-ground dataset.

We also observed advantages of our scheme with respect to standard edge-detector

approaches:

1. By using the edge-detector architecture presented in chapter 4, we can separate the edge-

magnitude-extraction from the angular approximation. Then, there are two potential

modes of functioning: one for complete oriented edges extraction, and one for only the

magnitude extraction. The latter allows to obtain only edges magnitudes alongside with a

potentially sparse map of dynamic features.

2. Attention based mechanisms based on dynamic data can be used directly in the frame

based algorithm in order to make it more efficient. In contrast to other works which target

only wake-up mechanisms like (Choi et al. 2014), which turns detection on and off

depending on the scene overall motion, dynamic features can be used to discriminate

boxes that do not contain relevant dynamic information (motion). That is, instead of

completely turning on/off the system, we observe regions in the image where edges are

moving, and then we can modify Edge-Boxes to skip scoring boxes when there are not

enough features that changed respect to last time-stamp. The modified part of Edge-Boxes

is presented in orange in Figure 94 (the blue part represents the state of the art):

36 The time-stamps of the two imagers (left respect to right) are not exactly the same, those time stamps are distanced 1 frame respect to

each other, since the DFVS outputs the frame 0 corresponding to the frame 0 of the dataset, while the DVS outputs the Frame 0 from the
frame 1 of the dataset. The reason is that the DVS needs at least two sequential frames to generate one simulation output frame.

 149

Figure 94 : diagram showing how we modified EdgeBoxes in order to include dynamic features in the ROI proposals
generation.

Fig. [boostedEdgeBoxes]:

 In Figure 94, we use the dynamic features detector to obtain a 1-bit dynamic features map.

We obtain the integral image of such dynamic map in order to calculate fast the amount of changing

features in any hypothetical box inside Edge-Boxes. Then, for each hypothetical box, we skip the box

scoring if such box does not contain an amount of changing edges higher than a threshold. If a box is

not scored, then it is discarded.

Table 15 shows runtime results in a desktop pc, on the Three Spheres Over Ground dataset,

for both Edge-Boxes and the Boosted Edge-Boxes version, and when taking into account different

architectures. We observe a runtime improvement in all architectures, which is up to 85 % for the

relative oriented edges extractor. Moreover, the impact is less important (67 % for the relative Origrad)

when binning is used, which could suggest that when the image size is reduced the dynamic features

are less important. Notice that this percentage is with respect to the original EdgeBoxes in the state of

the art (Zitnick and Dollár 2014). In Table 16, we summarize the resolution used in this dataset:

Table [dfvs-table]:
 Table 15 : Cummulative time in seconds per image

Architecture Edgeboxes Boosted EdgeBoxes Improvement

HighRes Origrad 1,30 0,70 85%

HighRes Origrad + BINN 0,31 0,19 59%

LogHog 1,84 1,18 56%

LogHog + BINN 0,47 0,31 52%

Relative Origrad 1,55 0,86 80%

Relative Origrad + BINN 0,38 0,23 67%

Image

I(x,y)

Parallel features

detector

Parallel dynamic

features detector

3-bit edges map 1-bit dynamic

features map

EdgeBoxes first

stages

Motion detected

at ROI?
Integral image A

llo
w

 p
as

s
?

EdgeBoxes Bo

x scoring

ROI

proposals

 150

Table: [res-summary]:
 Table 16: Summary of synthetic images resolution

 Pixel cols Pixel rows
Resolution in
MegaPixels

Original Res 1920 1080 1,17

Binned resolution 960 540 0,29

Figure 95 : average runtime per imager for different architectures, showing the gain in runtime when using dynamic

features alongside with EdgeBoxes.

Fig. [dfvs-plot]:
Figure 95 summarizes the runtimes when applying the boosting technique on EdgeBoxes,

showing graphically that for the tested architectures, there was in general a gain in runtime

performance. The reason for such improvement is that less boxes are tested, since they do not contain

edges that are moving. We expect this method to reduce power consumption at similar runtime and

detection rate, since less redundant data is processed. Of course, this reduction has to be

experimentally justified, since our method also has an overhead for generating and processing the

dynamic features. Respect to the localization performance, we verified that the spheres where always

localized with ROIs with and IoU > 0.5, which was the case in the frames we verified.

7.6. Conclusions of chapter 7

In this chapter we have discussed the need of generating synthetic datasets for modeling non-

standard smart image sensors. We explained basic requirements for such datasets, namely the

simulation of light rays, high temporal resolution, and automatic labels (bounding boxes) generation.

In addition, we explained our method for automatic labels generation using Blender, Python scripting,

and projective geometry with the pinhole camera model. Thanks to such datasets, we propose possible

improvements for Dynamic Vision Sensors aiming for low power and embedded object localization and

classification. We observed that our modulation scheme significantly reduced the data throughput

down to 5,9 % in our simulation respect to a standard DVS with a constant CT, and stabilized the

instantaneous data throughput along time regardless of the speed of different particles in a simplistic

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

HighRes
Origrad

HighRes
Origrad +

BINN

LogHog LogHog +
BINN

Relative
Origrad

Relative
Origrad +

BINN

A
ve

ra
ge

 r
u

n
ti

m
e

p
er

 im
ag

e

Classic Edge Boxes Boosted Edge Boxes

 151

scene. Moreover, we observed a dichotomy between DVS schemes and frame based oriented edges

extractors, from the point of view of implementation. Then, we have proposed a way to circumvent

this issue by obtaining dynamic data in the digital domain (1-bit logic operations) from feature

magnitudes, instead of performing in pixel lighting-derivate approximations. Our proposition

drawback is the need for memorizing the last feature-magnitude map (so the required memory is of

columns x rows bits). However, we showed, by means of a behavioral simulation, that our dynamic

features can be successfully incorporated in more classic algorithms for object localization such as

Edge-Boxes. Moreover, we found that dynamic features allow to increase localization efficiency by

neglecting hypothetical boxes (ROI proposals) which do not contain enough dynamic information. For

example, using our Relative Oriented Gradients architecture, we found a runtime reduction of 60 %

(with binning) and 80 % (without).

 152

Chapter 8. Conclusion

 We have studied, and preliminary characterized (with behavioral simulations and on-paper

electronic-models) the use of a ROI-proposals with Edge-Boxes for hardware-constrained devices. That

is, in the context of integrated-IC smart-image-sensing architectures. Our motivation was to replace

the typically used “sliding-window-approach” in embedded smart-image-systems scenarios.

Moreover, we targeted a more general and potentially energy-efficient approach. We took also into

account the potential inclusion of principles from event-based-cameras for improving the energy

efficiency of ROI-proposals generation. Nevertheless, we did not rely in event-based cameras for ROI

proposals, since they present problems such as less mature algorithms of event-based OD, and high

pixel/read-out complexities.

 In chapter 2, we have introduced the theoretical background and some state of the art

examples that we found closely related with our work. We cited standard (frame-based) pixel

topologies, and contributions from the SoA for event-based architectures (which capture efficiently

the dynamic data). Moreover, from our survey in embedded OD, we observed that some works have

embedded/adapted different kinds of OD pipelines already tested for general purpose (e.g. desktop)

computing machines. There are in general two kind of approaches: some that rely in the so-called

“hand-crafted-features” (typically based on light-intensity gradients, when taking into account the

integrated-IC context), and others using “learned-features” (with for example quantized-

convolutional-neural-networks). The point of generating features so soon is to reduce power-

consumption due to image analog-to-digital conversion and high data-rates. There are also two main

trends in OD for general purpose machines: firstly, the ones base on first region proposal stage, and

others that compute both classification and localization in parallel along the entire image. We cited

those since other research groups have taken inspiration from them as well for implementing OD in

hardware-constrained contexts.

From our survey in chapter 2, we took preliminary decisions for settling the path of our work:

1. Firstly, we preferred using hand-crafted features generated near the pixels-array (instead

of learned-features computation). Our justification was that hand-crafted features do not

require weight-access for multiply-accumulation operations, max-pooling and activation

functions so soon at the pre-processing level. Also, supervised learning (e.g. with SVM,

CNNs, etc…) can be used at later stages with those hand-crafted-features. In addition, we

could focus on optimizing an electronic-architecture for a specific feature type.

2. Secondly, we selected a ROI-proposals based pipeline instead of a fully parallelized one.

Our motivation was that computing ROI-proposals, and then running a classifier only on

those ROIs could be potentially more energy efficient than testing the classifier along many

image sub-regions in parallel. In addition, the two stage approach (localization and then

classification) seems easier to combine with typical wake-up approaches for power

savings.

3. Thirdly, we decided to take one (often used) figure of merit in the SoA for our comparisons:

“the power per pixel per frame”, which represents the power consumption normalized to

frame rate and number of pixels. Of course, this power consumption is related to one

specific task (e.g. feature extraction, image-acquisition, classification, etc…), or a particular

combination of them. This figure for merit allows comparing smart-imaging-systems

regardless of if they are implemented with different pixels-amounts, and/or frame-rates.

 153

The drawback is that it neglects some design parameters such as bandwidth (systems

optimized to run at high frame-rates could potentially consume more power due to

bandwidth constraints). Another drawback is that many works report this figure of merit

for different tasks, which makes the comparison less evident.

4. Finally, we decided to use event-based approaches only as inspiration for improving the

frame-based pipeline, since, at first glance, we did not find a particular motivation to use

a fully event-based system for embedded OD. That is, one motivation that compensates

the pixel/read-out/asynchronous-processing complexities.

In chapter 3, we have presented our methodology for performing behavioral simulations, and

from which our conclusions are driven. Indeed, the problem we wanted to solve implied taking into

account metrics and design parameters from both Machine Learning and Embedded-IC contexts. The

difficulty we found is that Machine Learning tools are typically too “high level” in comparison with

tools for circuit-architecture design. Then, we took that as motivation for developing our own

simulation framework, which we called EdgeTon. With EdgeTon, we could take into account

(behaviorally) circuit-architecture constraints on the feature extraction stage, while automatically

passing the smart-image-system-output to computer-vision/machine learning algorithms (for

benchmarking the AI performance). Then, we could set general design parameters for the feature-

extractor (such as equivalent number of bits or ENOB for the pre-processing stage) and relate it to

object-detection-related metrics such as Intersection-over-union for the localization stage.

 In chapter 4, we have studied the feasibility of an implementation of ROIs-proposals with Edge-

Boxes in constrained devices. For such objective, we decorticated Edge-Boxes and estimated a worst

case scenario memory usage of ~25 Mbytes. Moreover, we present a possible pipeline optimized for

low-level features generation for Edge-Boxes, namely the oriented edges. We proposed to obtain

those oriented edges in 3 bits (1 bit for the magnitude, and 2 for the orientation). In contrast with the

SoA, we propose generating high-dynamic range low-level-features but still computing the angle in a

linear way, which has the advantage of generating angular information better suited for Edge-Boxes.

Moreover, we propose a cascaded de-noising plus subtraction pre-processing at bottom-column, in

order to diminish the number of false-edges detected, and thus significantly reducing memory and

runtime footprints for Edge-Boxes execution in comparison with other embedded edge-extractors.

 In chapter 5, we have introduce the low-level-features or oriented-edges extractor analog

circuitry. We have divided the pre-processing in 5 main stages, for which we approximate –

theoretically, on paper-, design parameters such as bandwidth and biasing current. We base our

calculations on arbitrary yet illustrative values of biasing Voltage (1.5 V), matrix of pixels size (500 x

500 pixels), sampling/amplification capacitances (100 fF) and frame-rate (60 fps). Our theoretical

calculation gives an ideal value of ~56.7 fJ/pixel/frame, which is ~103 times better in power

consumption than other analog or digital low-level oriented-edge extractors we found in the SoA. We

think that the reason of such result is that we do not try to achieve an unnecessary high ENOB before

quantization of the low-level features, since even with a relatively low theoretical ENOB of ~8 bits

before quantization, the oriented-edges are sufficient for ROI proposals, as shown in chapter 6.

Moreover, our architecture exploits a dense parallelization of pre-processing without the need of any

programmability, and it is based on simpler computations (averaging, and subtraction) instead of the

more complex ratio to digital conversion (which implies a division-operation on the mixed-signal part).

 In chapter 6, we presented benchmarks characterizing the performance of different pre-

processing architectures (namely, oriented-edges extractors) and by means of the IoU. Moreover, we

presented benchmarks characterizing the memory/runtime dependence of Edge-Boxes upon the

edge-extractor architecture. The main result from this chapter is that we show that ROI proposals

 154

generation with aggressively quantized low-level features is still possible, with a global average IoU

(with the default Edge-Boxes parameters) higher than 0.5 and which approximates to 0.7 in some

cases. We proposed a figure of merit that takes into account the global average best IoU, memory and

runtime to characterize different edge-extractors performances, and we found that the best FOM

corresponds to the relative Origrad with Average De-noising and 2x2 Binning.

 In chapter 7, we have proposed modification to the dynamic vision sensor in order to reduce

data throughput with a minimal electronics overhead. Moreover, we have proposed a way to

efficiently obtain dynamic data in a frame-based manner, and we have shown how to include this

dynamic data to boost the runtime performance of region proposals generation with Edge-Boxes. For

instance, we found a runtime reduction of 60 % (with binning) and 80 % (without binning) when using

our relative oriented gradients architecture (with respect to not using dynamic data for ROI-proposals).

Moreover, we have presented a programmatic approach to generate labeled datasets for supervised

learning and object detection in Blender.

 This thesis has explored, at behavioral simulation level, the inclusion of a Region Proposals

algorithm in embedded smart imagers. Nevertheless, the path we took for approaching the subject let

still many points that can be addressed by further works. One idea is to continue this thesis by targeting

the Edge-Boxes digital implementation. We believe that at least some stages of Edge-Boxes can be

“rethought” and parallelized (but keeping the essential ideas), which could significantly speed-up the

ROI proposals generation. Another idea to explore is reducing Edge-Boxes bit-depth computations in

order to reduce the memory required. In addition, it could be interesting to explore the Faster-RCNN

pipeline in an embedded context, which uses CNN-like features for ROI-proposals (and thus for

replacing Edge-Boxes with a CNN in an embedded context). One possible way of doing that could be

by using the edge-map output from Origrad as input to a digital CNN which generates a feature map

from low bit-depth hand-crafted features, and not directly from light intensity. Furthermore,

generating an edge-map from each color channel could present advantages for recovering color-

information in the edge-map, and potentially improving localization/classification performance.

Finally, our approach used in chapter 7, of boosting runtime of ROIs generation with dynamic data,

could be potentially used with CNN features or other kinds of features as well, thus opening doors for

exploring more elaborated algorithms for low-power object detection.

 155

References

Acharya, Jyotibdha, Vandana Padala, and Arindam Basu. 2019. “Spiking Neural Network Based Region
Proposal Networks for Neuromorphic Vision Sensors.” In 2019 IEEE International Symposium
on Circuits and Systems (ISCAS), 1–5. Sapporo, Japan: IEEE.
https://doi.org/10.1109/ISCAS.2019.8702651.

Alexe, B., T. Deselaers, and V. Ferrari. 2012. “Measuring the Objectness of Image Windows.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 34 (11): 2189–2202.
https://doi.org/10.1109/TPAMI.2012.28.

Barchid, Sami, Jose Mennesson, and Chaabane Djeraba. 2021. “Deep Spiking Convolutional Neural
Network for Single Object Localization Based On Deep Continuous Local Learning.” In 2021
International Conference on Content-Based Multimedia Indexing (CBMI), 1–5. Lille, France:
IEEE. https://doi.org/10.1109/CBMI50038.2021.9461880.

Berner, Raphael, Christian Brandli, Minhao Yang, Shih-Chii Liu, and Tobi Delbruck. 2013. “A 240x180
10mW 12us Latency Sparse-Output Vision Sensor for Mobile Applications.” 2013 Symposium
on VLSI Circuits, pp. C186–C187.

“Blender.” n.d. Blender. Accessed July 20, 2021. https://www.blender.org/.
“Blender 2.93 Manual, Cycles.” 2021. Blender 2.93 Manual. July 20, 2021.

https://docs.blender.org/manual/en/latest/render/cycles/index.html.
Bose, Laurie, Jianing Chen, Stephen J. Carey, Piotr Dudek, and Walterio Mayol-Cuevas. 2019. “A

Camera That CNNs: Towards Embedded Neural Networks on Pixel Processor Arrays.”
ArXiv:1909.05647 [Cs], September. http://arxiv.org/abs/1909.05647.

“Box Plot.” 2021. Wikipedia. July 7, 2021. https://en.wikipedia.org/wiki/Box_plot.
“Camera Calibration.” 2021. Documentation. OpenCV, Open Source Computer Vision, 4.5.3-Dev. June

8, 2021. https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html.
Canny, John. 1986. “A Computational Approach to Edge Detection.” IEEE Transactions on Pattern

Analysis and Machine Intelligence PAMI-8 (6): 679–98.
https://doi.org/10.1109/TPAMI.1986.4767851.

Choi, Jaehyuk, Seokjun Park, Jihyun Cho, and Euisik Yoon. 2014. “A 3.4-μW Object-Adaptive
CMOS Image Sensor With Embedded Feature Extraction Algorithm for Motion-Triggered
Object-of-Interest Imaging.” IEEE Journal of Solid-State Circuits 49 (1): 289–300.
https://doi.org/10.1109/JSSC.2013.2284350.

Cubero, Luis, Arnaud Peizerat, Dominique Morche, and Gilles Sicard. 2019. “Smart Imagers Modeling
and Optimization Framework for Embedded AI Applications.” In 2019 15th Conference on
Ph.D Research in Microelectronics and Electronics (PRIME), 245–48. Lausanne, Switzerland:
IEEE. https://doi.org/10.1109/PRIME.2019.8787750.

Cubero, Luis, Arnaud Peizerat, Dominique Morche, and Gilles Sicard. 2020. “Event Threshold
Modulation in Dynamic Vision Spiking Imagers for Data Throughput Reduction.” Electronic
Imaging 2020 (7): 145-1-145–46. https://doi.org/10.2352/ISSN.2470-1173.2020.7.ISS-145.

Dalal, N., and B. Triggs. 2005. “Histograms of Oriented Gradients for Human Detection.” In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1:886–
93. San Diego, CA, USA: IEEE. https://doi.org/10.1109/CVPR.2005.177.

Delbruck, Tobi, and Raphael Berner. 2010. “Temporal Contrast AER Pixel with 0.3%-Contrast Event
Threshold.” In Proceedings of 2010 IEEE International Symposium on Circuits and Systems,
2442–45. Paris, France: IEEE. https://doi.org/10.1109/ISCAS.2010.5537153.

Deng, Yongjian, Hao Chen, and Youfu Li. 2021. “MVF-Net: A Multi-View Fusion Network for Event-
Based Object Classification.” IEEE Transactions on Circuits and Systems for Video Technology,
1–1. https://doi.org/10.1109/TCSVT.2021.3073673.

 156

Deng, Yongjian, Youfu Li, and Hao Chen. 2020. “AMAE: Adaptive Motion-Agnostic Encoder for Event-
Based Object Classification.” IEEE Robotics and Automation Letters 5 (3): 4596–4603.
https://doi.org/10.1109/LRA.2020.3002480.

Dollar, Piotr, and C. Lawrence Zitnick. 2015a. “Fast Edge Detection Using Structured Forests.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 37 (8): 1558–70.
https://doi.org/10.1109/TPAMI.2014.2377715.

Dollar, Piotr, and Larry Zitnick. 2015b. “Edge Boxes Source Code.” Code repository. Github. February
15, 2015. https://github.com/pdollar/edges/blob/master/private/edgeBoxesMex.cpp.

Eki, Ryoji, Satoshi Yamada, Hiroyuki Ozawa, Hitoshi Kai, Kazuyuki Okuike, Hareesh Gowtham,
Hidetomo Nakanishi, et al. 2021. “9.6 A 1/2.3inch 12.3Mpixel with On-Chip 4.97TOPS/W CNN
Processor Back-Illuminated Stacked CMOS Image Sensor.” In 2021 IEEE International Solid-
State Circuits Conference (ISSCC), 154–56. San Francisco, CA, USA: IEEE.
https://doi.org/10.1109/ISSCC42613.2021.9365965.

El Gamal, A., and H. Eltoukhy. 2005. “CMOS Image Sensors.” IEEE Circuits and Devices Magazine 21
(3): 6–20. https://doi.org/10.1109/MCD.2005.1438751.

Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. n.d. “The PASCAL Visual
Object Classes Challenge 2007.” The PASCAL Visual Object Detection Challenge 2007.
Accessed July 26, 2021a. http://host.robots.ox.ac.uk/pascal/VOC/voc2007/.

———. n.d. “The PASCAL Visual Object Classes Challenge 2007 Results.” PASCALNETWORK.ORG.
Accessed July 26, 2021b. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

Everingham, Mark, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. 2015. “The Pascal Visual Object Classes Challenge: A Retrospective.” International
Journal of Computer Vision 111 (1): 98–136. https://doi.org/10.1007/s11263-014-0733-5.

Felzenszwalb, P F, R B Girshick, D McAllester, and D Ramanan. 2010. “Object Detection with
Discriminatively Trained Part-Based Models.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 32 (9): 1627–45. https://doi.org/10.1109/TPAMI.2009.167.

Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. 2008. “A Discriminatively Trained,
Multiscale, Deformable Part Model.” In 2008 IEEE Conference on Computer Vision and
Pattern Recognition, 1–8. Anchorage, AK, USA: IEEE.
https://doi.org/10.1109/CVPR.2008.4587597.

Girshick, Ross. 2015. “Fast R-CNN.” In 2015 IEEE International Conference on Computer Vision (ICCV),
1440–48. Santiago, Chile: IEEE. https://doi.org/10.1109/ICCV.2015.169.

Gori, Marco. 2018. “What’s Wrong with Computer Vision?” In Artificial Neural Networks in Pattern
Recognition, 3–16. Lecture Notes in Computer Science. Siena, Italy: Springer.

Gottardi, Massimo, and Michela Lecca. 2019. “A 64×64 Pixel Vision Sensor for Local Binary
Pattern Computation.” IEEE Transactions on Circuits and Systems I: Regular Papers 66 (5):
1831–39. https://doi.org/10.1109/TCSI.2018.2883792.

Guo, Xiaochuan, Xin Qi, and John G. Harris. 2007. “A Time-to-First-Spike CMOS Image Sensor.” IEEE
Sensors Journal 7 (8): 1165–75. https://doi.org/10.1109/JSEN.2007.900937.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2018. “Mask R-CNN.”
ArXiv:1703.06870 [Cs], January. http://arxiv.org/abs/1703.06870.

Hsu, Tzu-Hsiang, Yen-Kai Chen, Tai-Hsing Wen, Wei-Chen Wei, Yi-Ren Chen, Fu-Chun Chang,
Hyunjoon Kim, et al. 2019. “A 0.5V Real-Time Computational CMOS Image Sensor with
Programmable Kernel for Always-On Feature Extraction.” In 2019 IEEE Asian Solid-State
Circuits Conference (A-SSCC), 33–34. Macau, Macao: IEEE. https://doi.org/10.1109/A-
SSCC47793.2019.9056945.

Hsu, Tzu-Hsiang, Yi-Ren Chen, Ren-Shuo Liu, Chung-Chuan Lo, Kea-Tiong Tang, Meng-Fan Chang, and
Chih-Cheng Hsieh. 2021. “A 0.5-V Real-Time Computational CMOS Image Sensor With
Programmable Kernel for Feature Extraction.” IEEE Journal of Solid-State Circuits 56 (5):
1588–96. https://doi.org/10.1109/JSSC.2020.3034192.

 157

“Jaccard Index.” 2021. Wikipedia, The Free Encyclopedia. August 27, 2021.
https://en.wikipedia.org/wiki/Jaccard_index.

Jin, Minhyun, Hyeonseob Noh, Minkyu Song, and Soo Youn Kim. 2020. “Design of an Edge-Detection
CMOS Image Sensor with Built-in Mask Circuits.” Sensors 20 (13): 3649.
https://doi.org/10.3390/s20133649.

Khan, Salman, Hossein Rahmani, Syed Afaq Ali Shah, and Mohammed Bennamoun. 2018. A Guide to
Convolutional Neural Networks for Computer Vision. Synthesis Lectures On Computer Vision.
Morgan & Claypool.

Kim, Hyeon-June, Sun-Il Hwang, Jae-Hyun Chung, Jong-Ho Park, and Seung-Tak Ryu. 2017. “A Dual-
Imaging Speed-Enhanced CMOS Image Sensor for Real-Time Edge Image Extraction.” IEEE
Journal of Solid-State Circuits 52 (9): 2488–97. https://doi.org/10.1109/JSSC.2017.2718665.

Kim, Ji-Hoon, Changhyeon Kim, Kwantae Kim, and Hoi-Jun Yoo. 2019. “An Ultra-Low-Power Analog-
Digital Hybrid CNN Face Recognition Processor Integrated with a CIS for Always-on Mobile
Devices.” In 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5.
Sapporo, Japan: IEEE. https://doi.org/10.1109/ISCAS.2019.8702698.

Kim, Seijoon, Seongsik Park, Byunggook Na, and Sungroh Yoon. 2019. “Spiking-YOLO: Spiking Neural
Network for Energy-Efficient Object Detection.” ArXiv:1903.06530 [Cs, Stat], November.
http://arxiv.org/abs/1903.06530.

Lamba, Sahil, and Rishab Lamba. 2019. “Spiking Neural Networks Vs Convolutional Neural Networks
for Supervised Learning.” In 2019 International Conference on Computing, Communication,
and Intelligent Systems (ICCCIS), 15–19. Greater Noida, India: IEEE.
https://doi.org/10.1109/ICCCIS48478.2019.8974507.

Lee, Changhyuk, Wei Chao, Sunwoo Lee, James Hone, Alyosha Molnar, and Sang Hoon Hong. 2015.
“A Low-Power Edge Detection Image Sensor Based on Parallel Digital Pulse Computation.”
IEEE Transactions on Circuits and Systems II: Express Briefs 62 (11): 1043–47.
https://doi.org/10.1109/TCSII.2015.2455354.

Lee, Juseong, Hoyoung Tang, and Jongsun Park. 2018. “Energy Efficient Canny Edge Detector for
Advanced Mobile Vision Applications.” IEEE Transactions on Circuits and Systems for Video
Technology 28 (4): 1037–46. https://doi.org/10.1109/TCSVT.2016.2640038.

Li, Chenghan, Luca Longinotti, Federico Corradi, and Tobi Delbruck. 2019. “A 132 by 104 10ȝm-Pixel
250ȝW 1kefps Dynamic Vision Sensor with Pixel-Parallel Noise and Spatial Redundancy
Suppression,” 2.

Lichtsteiner, Patrick, Christoph Posch, and Tobi Delbruck. 2008. “A 128x128 120 DB 15 µs Latency
Asynchronous Temporal Contrast Vision Sensor.” IEEE Journal of Solid-State Circuits 43 (2):
566–76. https://doi.org/10.1109/JSSC.2007.914337.

Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C. Berg. 2016. “SSD: Single Shot MultiBox Detector.” ArXiv:1512.02325 [Cs] 9905:
21–37. https://doi.org/10.1007/978-3-319-46448-0_2.

Maloberti, Franco. 2007. Data Converters. Springer.
Millet, L., S. Chevobbe, C. Andriamisaina, E. Beigne, F. Guellec, T. Dombek, L. Benaissa, et al. 2018. “A

5500FPS 85GOPS/W 3D Stacked BSI Vision Chip Based on Parallel in-Focal-Plane Acquisition
and Processing.” In 2018 IEEE Symposium on VLSI Circuits, 245–46. Honolulu, HI: IEEE.
https://doi.org/10.1109/VLSIC.2018.8502290.

Omid-Zohoor, Alex, Christopher Young, David Ta, and Boris Murmann. 2018. “Toward Always-On
Mobile Object Detection: Energy Versus Performance Tradeoffs for Embedded HOG Feature
Extraction.” IEEE Transactions on Circuits and Systems for Video Technology 28 (5): 1102–15.
https://doi.org/10.1109/TCSVT.2017.2653187.

“OpenCV, Canny Edge Detector.” 2021. Documentation. OpenCV, Open Source Computer Vision. July
21, 2021. https://docs.opencv.org/3.4/da/d5c/tutorial_canny_detector.html.

“OpenCV, EdgeBoxes.” 2021. Documentation. Open Source Computer Vision (OpenCV). July 21, 2021.
https://docs.opencv.org/master/d4/d0d/group__ximgproc__edgeboxes.html#ga226d8e1a2
dee5dfb58708b97f490b18a.

 158

“OpenCV, Image Filtering.” 2021. Documentation. Open Source Computer Vision (OpenCV). July 22,
2021. https://docs.opencv.org/3.4/d4/d86/group__imgproc__filter.html.

OpenCV-dev-team. 2012. “Camera Calibration and 3D Reconstruction.” OpenCV 2.3.2
Documentation. March 30, 2012.
http://www.opencv.org.cn/opencvdoc/2.3.2/html/modules/calib3d/doc/camera_calibration
_and_3d_reconstruction.html?highlight=findfun.

“Pixel Connectivity.” 2019. Wikipedia, The Free Encyclopedia. September 17, 2019.
https://en.wikipedia.org/wiki/Pixel_connectivity.

Posch, Christoph, Teresa Serrano-Gotarredona, Bernabe Linares-Barranco, and Tobi Delbruck. 2014.
“Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras With Spiking Output.”
Proceedings of the IEEE 102 (10): 1470–84. https://doi.org/10.1109/JPROC.2014.2346153.

“Pyramid (Image Processing).” 2021. Wikipedia, The Free Encyclopedia. June 4, 2021.
https://en.wikipedia.org/wiki/Pyramid_%28image_processing%29.

Ravinuthula, V., and J.G. Harris. 2004. “Time-Based Arithmetic Using Step Functions.” In 2004 IEEE
International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), I-305-I–308.
Vancouver, BC, Canada: IEEE. https://doi.org/10.1109/ISCAS.2004.1328192.

Razavi, Behzad. 2001. Design of Analog CMOS Integrated Circuits. International Edition 2001.
McGraw-Hill.

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. “You Only Look Once: Unified,
Real-Time Object Detection.” In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 779–88. Las Vegas, NV, USA: IEEE.
https://doi.org/10.1109/CVPR.2016.91.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. 2017. “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 39 (6): 1137–49. https://doi.org/10.1109/TPAMI.2016.2577031.

“Scale Space.” 2021. Wikipedia, The Free Encyclopedia. June 1, 2021.
https://en.wikipedia.org/wiki/Scale_space.

Soell, C., L. Shi, J. Roeber, M. Reichenbach, R. Weigel, and A. Hagelauer. 2016. “Low-Power Analog
Smart Camera Sensor for Edge Detection.” In 2016 IEEE International Conference on Image
Processing (ICIP), 4408–12. Phoenix, AZ, USA: IEEE.
https://doi.org/10.1109/ICIP.2016.7533193.

Suarez, Manuel, Víctor M. Brea, J. Fernandez-Berni, R. Carmona-Galan, G. Linan, D. Cabello, and
Ángel Rodriguez-Vazquez. 2012. “CMOS-3D Smart Imager Architectures for Feature
Detection.” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2 (4): 723–
36. https://doi.org/10.1109/JETCAS.2012.2223552.

Suleiman, Amr, and Vivienne Sze. 2014. “Energy-Efficient HOG-Based Object Detection at 1080HD 60
Fps with Multi-Scale Support.” In 2014 IEEE Workshop on Signal Processing Systems (SiPS), 1–
6. Belfast, United Kingdom: IEEE. https://doi.org/10.1109/SiPS.2014.6986096.

Takayanagi, Isao, and Junichi Nakamura. 2013. “High-Resolution CMOS Video Image Sensors.”
Proceedings of the IEEE 101 (1): 61–73. https://doi.org/10.1109/JPROC.2011.2178569.

Theuwissen, Albert. 2007. “CMOS Image Sensors : State-Of-The-Art and Future Perspectives.”
ESSDERC 2007 - 37th European Solid State Device Research Conference, pp. 21–27.
https://doi.org/10.1109/ESSDERC.2007.4430875.

Valenzuela, Wladimir, Javier E. Soto, Payman Zarkesh-Ha, and Miguel Figueroa. 2021. “Face
Recognition on a Smart Image Sensor Using Local Gradients.” Sensors 21 (9): 2901.
https://doi.org/10.3390/s21092901.

Verdant, Arnaud, William Guicquero, Nicolas Royer, Guillaume Moritz, Sebastien Martin, Florent
Lepin, Sylvain Choisnet, et al. 2020. “A 3.0μW@5fps QQVGA Self-Controlled Wake-Up Imager
with On-Chip Motion Detection, Auto-Exposure and Object Recognition.” In 2020 IEEE
Symposium on VLSI Circuits, 1–2. Honolulu, HI, USA: IEEE.
https://doi.org/10.1109/VLSICircuits18222.2020.9162854.

 159

Vivet, Pascal, Gilles Sicard, Laurent Millet, Stephane Chevobbe, Karim Ben Chehida, Luis Angel
Cubero, Monte Alegre, et al. 2019. “Advanced 3D Technologies and Architectures for 3D
Smart Image Sensors.” In 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), 674–79. https://doi.org/10.23919/DATE.2019.8714886.

Wannamaker, R.A., S.P. Lipshitz, J. Vanderkooy, and J.N. Wright. 2000. “A Theory of Nonsubtractive
Dither.” IEEE Transactions on Signal Processing 48 (2): 499–516.
https://doi.org/10.1109/78.823976.

Yang, Minhao, Shih-Chii Liu, and Tobi Delbruck. 2015. “A Dynamic Vision Sensor With 1% Temporal
Contrast Sensitivity and In-Pixel Asynchronous Delta Modulator for Event Encoding.” IEEE
Journal of Solid-State Circuits 50 (9): 2149–60. https://doi.org/10.1109/JSSC.2015.2425886.

Yin, Chin, Chin-Fong Chiu, and Chih-Cheng Hsieh. 2016. “A 0.5 V, 14.28-Kframes/s, 96.7-DB Smart
Image Sensor With Array-Level Image Signal Processing for IoT Applications.” IEEE
Transactions on Electron Devices 63 (3): 1134–40.
https://doi.org/10.1109/TED.2016.2521168.

Young, Christopher, Alex Omid-Zohoor, Pedram Lajevardi, and Boris Murmann. 2019. “A Data-
Compressive 1.5/2.75-Bit Log-Gradient QVGA Image Sensor With Multi-Scale Readout for
Always-On Object Detection.” IEEE Journal of Solid-State Circuits 54 (11): 2932–46.
https://doi.org/10.1109/JSSC.2019.2937437.

Zitnick, C. Lawrence, and Piotr Dollár. 2014. “Edge Boxes: Locating Object Proposals from Edges.” In
Computer Vision – ECCV 2014, edited by David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, 8693:391–405. Lecture Notes in Computer Science. Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-10602-1_26.

 160

List of Publications

Cubero, Luis, Arnaud Peizerat, Dominique Morche, and Gilles Sicard. 2019. “Smart Imagers Modeling
and Optimization Framework for Embedded AI Applications.” In 2019 15th Conference on Ph.D
Research in Microelectronics and Electronics (PRIME), 245–48. Lausanne, Switzerland: IEEE.
https://doi.org/10.1109/PRIME.2019.8787750.

Cubero, Luis, Arnaud Peizerat, Dominique Morche, and Gilles Sicard. 2020. “Event Threshold
Modulation in Dynamic Vision Spiking Imagers for Data Throughput Reduction.” Electronic
Imaging 2020 (7): 145-1-145–46. https://doi.org/10.2352/ISSN.2470-1173.2020.7.ISS-145.

Vivet, Pascal, Gilles Sicard, Laurent Millet, Stephane Chevobbe, Karim Ben Chehida, Luis Angel Cubero,
Monte Alegre, et al. 2019. “Advanced 3D Technologies and Architectures for 3D Smart Image
Sensors.” In 2019 Design, Automation Test in Europe Conference Exhibition (DATE), 674–79.
https://doi.org/10.23919/DATE.2019.8714886.

(Cubero et al. 2019; 2020; Vivet et al. 2019)

Patents

(Request deposited, and answer pending) Cubero, Luis. (2021). “CMOS IMAGING PRE-

PROCESSING FOR LOW POWER DYNAMIC AND STATIC FEATURES FOR ARTIFICIAL INTELLIGENCE”.

