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I would like to dedicate this thesis to my parents

for their love and support.





Acknowledgements

First of all, I would like to thank my supervisor Professor Franck

Moraux for all his help and guidance over the past four years. He

trusted me and gave me a lot of freedom in my research.

My special thanks will go to Olesya Grishchenko for valuable ideas,

guidance in my research and interesting discussions we had together.

I am also very grateful to Delphine Lautier and Jean-Paul Renne

who accepted to review this thesis, to the examiners Jean-Jacques

Lilti and Olesya Grishchenko for their interest in my thesis and

for the honor they have conferred upon me by agreeing to be in my

thesis comity.

I would like to thank the laboratory CREM (UMR CNRS 6211) for the

financial support I have received to present my work at conferences.

Needless to say, I am extremely grateful to all professors and staff

members at IGR-IAE and IUT of Saint-Malo for various assistance.

I also thank the PhD students at IGR-IAE for good times spent to-

gether. They all contribute making this part of my life such a great

time.

Last but not least, special thanks to my parents for loving and sup-

porting me all my life. Also, thanks to my husband for being there

for me and making me smile.

Thanks for your support and encouragement.

Olga (October 2019)





Abstract

This thesis analyzes the term structure of interest rates, the debt manage-

ment and inflation-protected securities. The analysis is conducted through three

empirical studies. These investigations give some interesting results about gov-

ernment bond markets. Prior to these latter, we provide several theoretical no-

tions of the term structure of interest rates models; the three factors of the yield

curve known as the level, the slope and the curvature; the duration measure;

the organization of the fixed income securities market; different types of yields

as zero-coupon, par yield and forward rates; and inflation. Our first study ex-

amines four Nelson-Siegel style yield curve models for fitting the term structure

of interest rates on data about government bond prices. The dataset contains

bonds issued by four countries in Euro area. We compare these specifications

by their in-sample performance to match bond prices and find that the extended

Svensson specification performs better overall in bond price calculation. In our

second study we construct the French nominal yield curve using all available pub-

lic data of French nominal Treasury securities with maturities at issuance from 1

to 50 years. The French sovereign bond market has been functioning reasonably

well, especially since the launch of the euro, outside of a few episodes as (for

instance) the Global Financial Crisis period and the European sovereign crisis

period. Our third study investigates real rates on French government bond mar-

ket using the data on French inflation-protected Treasury securities. Our data set

includes both types of such securities, those indexed on the domestic consumer

price index and those indexed on the European inflation index. We backcast the

five-year five-year forward breakeven inflation rate before the appearance of any

inflation-protected securities on the market.

Keywords: Term structure of interest rates, fitting the yield curve, Euro area,

Svensson model, OTR premium, nominal rates, inflation-protected securities, real

rates, inflation.
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Résumé

Dans cette thèse, nous analysons la structure par terme des taux d’intérêt,

la gestion de dette publique et les obligations indexées sur l’inflation. Pour con-

duire notre analyse, nous avons effectué trois études empiriques. Ces trois études

empiriques donnent des résultats intéressants sur les marchés des obligations

d’État. Avant ces derniers, nous avons commencé par présenter plusieurs as-

pects théoriques tels que les modèles de la structure par terme des taux d’intérêt;

les trois facteurs de la courbe des taux qui correspondent au niveau, à la pente

et à la courbure; la mesure de la duration; l’organisation du marché des titres

à revenu fixe; différents types de rendements tels que zéro-coupon, par yield et

taux à terme et l’inflation. Notre première étude examine quatre modèles de

la structure par terme des taux d’intérêt de type Nelson-Siegel pour ajuster la

courbe des taux aux données des prix des obligations d’État. La base de données

contient des obligations émises par quatre pays de la zone euro. Nous comparons

ces spécifications en fonction de leur capacité à expliquer les prix des obligations

observés et constatons que le modèle extended Svensson, que nous proposons, of-

fre la meilleure performance sur les données de tous les quatre pays. Dans notre

deuxième étude, nous construisons la courbe des taux nominaux française en

utilisant toutes les données publiques disponibles sur les obligations émises par le

Trésor français avec des échéances au moment de l’émission comprises entre 1 et

50 ans. Le marché des obligations souveraines françaises fonctionne relativement

bien, en particulier depuis le lancement de l’euro, en dehors de quelques épisodes

comme la crise financière mondiale de 2007-2008 et la période de crise de la dette

de la zone Euro. Dans notre dernière étude nous examinons les taux réels du

marché des obligations d’État français en utilisant les données sur les titres in-

dexés sur l’inflation et émis par le Trésor français. Les données comprennent les

deux types de titres, ceux indexés sur l’inflation domestique et ceux indexés sur

l’indice européen d’inflation.

Mots-clés: La structure par terme des taux d’intérêt, l’ajustement de la courbe

des taux, la zone euro, les obligations d’état, modèle de Svensson, la prime

OTR, les taux nominaux, les obligations indexées sur l’inflation, les taux réels,

l’inflation.
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Résumé 185

Bibliography 195

ix



List of Figures

1.1 Loadings of Nelson-Siegel model . . . . . . . . . . . . . . . . . . . 17

2.1 Loadings of extended Svensson model . . . . . . . . . . . . . . . . 47

2.2 Number of government bonds within the dataset . . . . . . . . . . 51

2.3 Maturity Distribution of the government bonds . . . . . . . . . . 52

2.4 Fitting Errors (extended Svensson model) . . . . . . . . . . . . . 60

2.5 Par yield curve (NS specification) on August 16, 2018 . . . . . . . 61

2.6 Par yield curve (NS specification) on June 6, 2008 . . . . . . . . . 62

2.7 Par yield curve (eSv specification) on June 6, 2008 . . . . . . . . . 63

A.8 Fitting Errors (Nelson-Siegel model) . . . . . . . . . . . . . . . . 81

A.9 Fitting Errors (Svensson model) . . . . . . . . . . . . . . . . . . . 82

A.10 Fitting Errors (extended Bjork-Christensen model) . . . . . . . . 83

A.11 Par yield curve (Sv specification) on June 6, 2008 . . . . . . . . . 84

A.12 Par yield curve (eBC specification) on June 6, 2008 . . . . . . . . 85

3.1 Notional Amount of the French Nominal Debt . . . . . . . . . . . 90

3.2 Maturity Distribution of the BTANs and OATs . . . . . . . . . . 97

3.3 Fitting Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4 Par Yield Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5 Time Series of Zero-Coupon Yields . . . . . . . . . . . . . . . . . 112

3.6 Principal Components of the Yield Curve . . . . . . . . . . . . . . 114

3.7 Fleming On-the-run Premium . . . . . . . . . . . . . . . . . . . . 117

3.8 GSW On-the-run Premium . . . . . . . . . . . . . . . . . . . . . . 120

3.9 Noise Measure of the French Bond Market . . . . . . . . . . . . . 124

B.10 Maturity-specific Fitting Errors . . . . . . . . . . . . . . . . . . . 130

x



LIST OF FIGURES

B.11 Term Structures of the Zero-Coupon Rates and Forward Rates . . 131

B.12 Principal Component Loadings of Yield Curve . . . . . . . . . . . 132

B.13 Maturity-specific Fitting Errors: Pre-euro Sample . . . . . . . . . 133

B.14 Par Yield Curve: Pre-euro Sample Period . . . . . . . . . . . . . . 134

4.1 Maturity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.2 Notional Amount of the French Debt and Number of Bonds . . . 150

4.3 Time Series of Annual Inflation Rates . . . . . . . . . . . . . . . . 151

4.4 Noise Measure and Duration Cutoff for OATi . . . . . . . . . . . 152

4.5 Noise Measure and Duration Cutoff for OATei . . . . . . . . . . 153

4.6 Par Yield Curve for OATi sample . . . . . . . . . . . . . . . . . . 155

4.7 Par Yield Curve for OATei sample . . . . . . . . . . . . . . . . . 156

4.8 Time Series of Zero-Coupon Real Yields for OATi sample . . . . . 157

4.9 Time Series of Zero-Coupon Real Yields for OATei sample . . . . 158

4.10 Unconditional Zero-Coupon Real Yields . . . . . . . . . . . . . . 159

4.11 Zero-Coupon Real, Nominal and Breakeven Yields for OATi sample160

4.12 Zero-Coupon Real, Nominal and Breakeven Yields for OATei sample161

4.13 Actual and Fitted Five-to-ten Year Forward Inflation Compensation163

C.14 Fitting Errors for OATi sample . . . . . . . . . . . . . . . . . . . 171

C.15 Maturity-specific Fitting Errors for OATi sample . . . . . . . . . 172

C.16 Fitting Errors for OATei sample . . . . . . . . . . . . . . . . . . 173

C.17 Maturity-specific Fitting Errors for OATei sample . . . . . . . . . 174

C.18 Term Structure of the Zero-Coupon and Forward Rates for OATi

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.19 Term Structure of the Zero-Coupon and Forward Rates for OATei

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.20 Time series of 5 year Zero-Coupon Real, Nominal and Breakeven

Yields for OATi sample . . . . . . . . . . . . . . . . . . . . . . . . 177

C.21 Time series of 5 year Zero-Coupon Real, Nominal and Breakeven

Yields for OATei sample . . . . . . . . . . . . . . . . . . . . . . . 178

xi



List of Tables

2.1 Summary of term structure models . . . . . . . . . . . . . . . . . 44

2.2 Summary statistics of the model fitting errors . . . . . . . . . . . 57

2.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Correlation of zero-coupon yields . . . . . . . . . . . . . . . . . . 65

A.5 Summary of the Nominal Securities, France . . . . . . . . . . . . 71

A.6 Summary of the Nominal Securities, Germany . . . . . . . . . . . 72

A.7 Summary of the Nominal Securities, Italy . . . . . . . . . . . . . . 74

A.8 Summary of the Nominal Securities, Spain . . . . . . . . . . . . . 76

A.9 Descriptive statistics of estimated parameters . . . . . . . . . . . 77

A.10 Out-of-sample forecasting results . . . . . . . . . . . . . . . . . . 79

3.1 Summary Statistics of the Svensson Model Fitting Errors . . . . . 107

3.2 Summary Statistics about zero-coupon and instantaneous rates . . 110

3.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4 Principal Component Decomposition . . . . . . . . . . . . . . . . 115

3.5 On-the-Run/Off-the-Run Yield Spreads . . . . . . . . . . . . . . . 118

B.6 Summary of the Nominal BTAN and OAT Securities, 1987 - 1998 127

B.7 Summary of the Nominal BTAN and OAT Securities, 1999 - 2009 128

B.8 Summary of the Nominal BTAN and OAT Securities, 2010 - 2018 129

4.1 Summary of OATi Securities . . . . . . . . . . . . . . . . . . . . . 147

4.2 Summary of OATei Securities . . . . . . . . . . . . . . . . . . . . 148

xii





General Introduction

The term structure (spot) of interest rates is the relationship between the yield to

maturity of zero-coupon bonds and their time-to-maturity. This relationship is

among the most fundamental concepts in finance and is relevant to diverse fields

such as portfolio management, pricing of interest rate derivatives, and risk man-

agement. This relationship is also exploited by actors far beyond the discipline

of finance, such as regulators, economists, policymakers, and journalists. Despite

the broad use of the term “structure of interest rates,” which is also called the

yield curve, it is not directly observable in the market. Moreover, the yield curve

exhibits a wide range of shapes over time, and many theoretical frameworks are

trying to explain this phenomenon. However, we still need further analysis on the

behavior of the term structure of interest rates, specifically the intricate nexus

between interest rates and coupon bond prices.

While modeling or explaining the yield curve, a key challenge is to provide a

useful summary of the information at any given point in time. Many types of

bonds are traded in the market and, ideally, the model should be parsimonious.

Moreover, such a model should be able to reproduce both the historical stylized

facts (among those associated with the average shape of the yield curve) and

forecast the future level of interest rates. Another key challenge is to provide an

effective way to forecast the term structure of interest rates dynamics. In this

thesis, we investigate the French government bond market from 1988 to 2018

and address the challenge of understanding the inflation-protected securities that

France issued for the first time in 2000.

There are several motivations to study the term structure of interest rates, with

1



the first being the need for pricing fixed-income securities, which are loans made

by the investor to the government or a corporate borrower. The second is the need

for asset and risk management of bond portfolios. Investors include bonds in their

portfolios for different reasons such as income generation, capital preservation and

appreciation, and as a hedge against economic slowdowns and downturns. Finally,

it is important to analyze the information content, more precisely the ability of

the term structure of interest rates to predict recessions. As it is critical to

continue to investigate the term structure of interest rates, we conducted three

empirical studies to contribute to a better understanding of the latter.

In this thesis, we do the in-sample fit of the yield curve in order to provide

smooth functioning for a wide range of maturities. We also attempt to define an

optimal method to forecast the dynamics of the term structure of interest rates,

as government or sovereign bonds are related to national debt. We study the

term structure of the French nominal interest rates using data on government

bond prices. The estimated yield curve is expressed as zero-coupon yields, par

yields, and forward rates. Inflation-protected securities provide investors financial

instruments that are shielded from inflation risks.

The purpose of this thesis is to conduct empirical analysis of the term structure of

France’s real interest rates using data on inflation-protected securities. In the first

stage, we compare different approaches to model this phenomenon by considering

four models on a dataset of government bond prices from four eurozone countries.

In the second stage, we study the term structure of nominal interest rates in

France working with a thirty-year sample period and 179 French government

bonds. Finally, we consider the French inflation-protected securities to study

the term structure of real interest rates. We construct a dataset with prices of

government bonds linked to the domestic and European inflation index (OATi

and OATeI respectively).

This thesis contributes to the understanding of the term structure of interest rates

through three essays. The first essay implements different functional approaches

to model the yield curve using data on government bond prices. We work with

bonds issued by France, Germany, Italy, and Spain. This investigation aims at

2



finding the model that performs best in terms of fitting the term structure. The

exercise rests on two aspects: first, in a static environment, where we study the in-

sample fitting capacity of the term structure model; second, the ability to provide

a good out-of-sample forecast of the dynamics of the term structure of interest

rates. The second essay studies nominal interest rates in France, by exploiting

a thirty-year sample period from 1988 to 2018. Our investigation concludes the

absence of the on-the-run premium on the French government bond market. We

also document some significant improvements in the quality of the French govern-

ment bond market functioning after the introduction of the euro currency. The

third essay explores the French inflation-protected securities and the associated

term structure of real interest rates. This investigation aims at understanding the

interaction between government debt and inflation in the economy of a country,

for instance France. Our main contribution is that we can compute the five-

year forward five-year inflation compensation rate before the appearance of any

inflation-protected securities in the market using the backcasting method. The

rest of this thesis is organized as follows.

The first chapter describes the analytical framework. It presents some pre-

requisites for reading the following chapters. It also provides a robust foundation

for the topic and delimits the perimeter of the research. Readers who are familiar

with these aspects may omit it. In this chapter we present three popular fami-

lies of term structure models: equilibrium approach, no-arbitrage approach, and

dynamic approach. We also present the principal component analysis with three

yield curve factors known as the level, slope, and curvature. These factors ex-

plain most of the variations in the term structure of interest rates. Duration and

convexity, the two standard tools to manage the risk exposure of fixed-income in-

vestments, are discussed. We also provide a description of the institutional aspect

of the fixed-income securities market, for instance, the actors and products on the

market. At the end of the chapter, we present different types of yields as zero-

coupon, par yield, and forward rates and discuss government debt management

and liquidity in the fixed-income securities markets.

The second chapter considers the international aspect of term structure of

interest rates, and the choice of approach to model the dynamics. It compares
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the results provided by four specifications on the data taken from four countries.

For instance, Chan, Karolyi, Longstaff, and Sanders [1992] estimate and compare

a variety of continuous-time models of the short-term riskless rate. A few articles

compare several interest rates models on the dataset containing several countries,

but none of them use bond prices. Instead, most of them take zero-coupon

yield curves for granted focusing on one country and then analyze the different

models. For fixed income managers, macroeconomists, and financial economists

it is important to be able to produce an accurate forecast of the term structure of

interest rates. Moreover, bond portfolio optimization, pricing of financial assets

and their derivatives, as well as risk management, rely heavily on interest rate

forecasts. These forecasts are widely used by financial institutions, regulators,

and investors to develop macroeconomic scenarios. We propose a forecasting

investigation of the term structure of interest rates.

The starting point of our research is the term structure of interest rates model

proposed by Nelson and Siegel [1987]. For market participants, the main reference

for the term structure model is the Nelson-Siegel type approach. The Bank of

International Settlements (BIS) reports the list of countries that use the yield-

curve fitting methodology and indicates the term structure on interest rate models

used by the central banks of each country (see Ricart, Sicsic, and Jondeau [2005]).

For most countries, the Svensson [1994] model is the most popular. We compare

four different specifications including the Svensson model for extracting the yield

curve from observed coupon bond prices. The first two specifications are taken

from the literature: Nelson-Siegel model with four parameters and one hump,

and the Svensson model with six parameters and two humps. The last two are

introduced for the first time in this research and constitute our contribution: a)

the extended Bjork-Christensen with six parameters and two humps along with

the original Bjork-Christensen model proposed by Bjork and Christensen [1997]

with five parameters and some constraints on non-linear parameters; and b) the

extended Svensson with seven parameters and two humps.

Let us now consider the eurozone, officially called the euro area, which is a mone-

tary union of 19 of the 28 European Union member states (this number may vary)

and has adopted the Euro as the common currency and sole legal tender. The
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Euro system is the monetary authority of the eurozone. The other nine members

of the European Union continue to use their own national currencies, although

most of them would be obliged to adopt the euro in the future. From a practical

point of view, it is interesting to explore the eurozone. The early academic work

on the euro area goes back to 1987 with Campbell and Clarida [1987], who stud-

ied the predictability and co-movement of risk premium in the term structure of

euro market interest rates. More recently, Sander and Kleimeier [2004] aim at

unifying the empirical research on interest rate pass-through in the eurozone. The

interest rate pass-through describes how changes in a reference rate (monetary

policy, money market, or T-bill rate) are transmitted to bank lending rates.

For our study we collected data on government bond prices for four eurozone

countries, namely France, Germany, Italy and Spain over twenty years (from 1999

to 2018). Overall, our dataset of daily prices contains 800 bonds with different

coupon rates and maturities. By taking euro-denominated bonds, we avoid any

complications related to the exchange rate. We consider Obligation Assimilable

du Trésor (OATs) for France, Bundesobligation and Bundesanleihen (or Bund)

for Germany, Italy Buoni Poliennali Del Tesoro for Italy, and Bonos del Estado

and Obligaciones del Estado for Spain.

We explore the structural differences and the relative goodness of fitting the

coupon bond prices of functional term structure modelling using the Nelson-

Siegel type of model. Dai and Singleton [2000] study similar problems and show

theoretically and empirically that some subfamilies of affine term structure mod-

els are better suited than others to explain the historical interest rate behavior.

Diebold and Li [2006] address the practical problem of forecasting the yield curve

and propose autoregressive models for the yield curve factors and estimate the

corresponding parameters. They show that their models are consistent with a

variety of stylized facts regarding the yield curve. We use autoregressive models

to forecast the out-of-sample yield curve in contrast with Diebold and Li [2006]

who forecast the yield curve factors. More recently, Koopman and Wel [2013] ex-

tend the class of dynamic factor yields curve models by including macroeconomic

factors, and conclude that macroeconomic variables can lead to more accurate

yield curve forecasts.
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We propose two criteria to evaluate the performance of each term structure spec-

ifications: mean absolute error, and score measure, which is the number of days

when the considered model provides the best performance among others. Chris-

tensen and Wei [2019] recently used the Diebold and Li [2006] methodology to

test the general term structure of models. They developed a new empirical ap-

proach with both unobservable factors and factors identified as innovations to the

observed macroeconomic variables to test the time-varying risk premiums and

arbitrage opportunities. We conduct some forecasting exercises conforming to

Diebold and Li. Using the two performance criteria, we determine the best spec-

ification, which is used for out-of-sample forecasting. We test the random walk,

univariate, and multivariate autoregressive models to forecast the term structure

dynamics. Koo, Vecchia, and Linton [2019] recently developed a methodology to

estimate an additive nonparametric panel model that is suitable for the pricing

of coupon-paying government bonds over different time periods.

The third chapter analyzes the term structure of France’s nominal interest

rates. It is a very important area of study from an economic and finance per-

spective. This is the first comprehensive study of all publicly available data on

the French nominal debt that encompasses the 30-year period from 1988 to 2018.

Recently, markets worldwide faced the reality of negative interest rates, mostly

on the short-term end of the yield curve. Buiter [2009] addresses this problem

by considering three methods for eliminating the zero lower bound on nominal

interest rates and for restoring symmetry to the domain over which a central bank

can vary its official policy rate.

Smith [2002] considers data for the United States (U.S.), Canada, the United

Kingdom (U.K.), Germany, France, and Japan to investigate the market effi-

ciency by testing for seasonality and cointegration. Correlation analysis shows

considerable diversification opportunities for short-term investors. Cointegration

tests indicate that several markets share cointegrating vectors increasing the pos-

sibilities of using other endogenous bond markets to better predict movements in

a market. From a practical point of view, market participants use government

bond market data to study many interesting aspects of fixed-income markets. We

present two aspects. First, Abad, Chulia, and Gomez-Puig [2010] compare the
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importance of two sources of systemic risks (global and eurozone) on government

bond returns. The results show that the euro markets are less vulnerable to the

influence of global risk factors, but more vulnerable to eurozone risk factors. Es-

pecially, the markets of countries that decided to stay out of the Monetary Union

present a higher vulnerability to external risk factors. Second, Bernoth, Hagen,

and Schuknecht [2012] study the bond yield differentials among the euro area

government bonds based on a unique dataset of issue spreads in the U.S. and

the Eurobond market between 1993 and 2009. Interest differentials between the

bonds issued by EU countries and the U.S. contain risk premiums that increase

with fiscal imbalances and depend negatively on the issuer’s relative bond market

size.

We construct the French nominal yield curve using nominal quotations for se-

curities called Obligations assimilable du Trésor (OATs) and Bons du Trésor à

taux fixe et à intérêts Annuels (BTANs) on a daily frequency. These bonds have

maturities at issuance ranging from one to fifty years. Our sample period starts

in 1988, includes the launch of the euro in January 1999, and ends in April 2018.

Our study methodology relies on Gürkaynak, Sack, and Wright [2007], as their

study makes public the Treasury yield curve estimates of the Federal Reserve

Board at a daily frequency from 1961 to the present. We use a similar smoothing

method to fit the data and we show that the method fits very well. The resulting

estimates are used to compute yields and forward rates for any maturity.

We use the noise measure to assess the “quality” of the French market. This

measure is proposed by Hu, Pan, and Wang [2013] to capture episodes of liquid-

ity crises of different origins across the financial market. The measure provides

information on illiquidity beyond the existing liquidity proxies. Overall, using

the noise measure, we find that in the first decade of our sample period, arbi-

trage opportunities were not infrequent on the OATs market, and the situation

improved substantially with the introduction of the euro.

We also study the on-the-run premium for French data. Vayanos and Weill [2008]

provide a search-based theory in which assets with identical cash flows can trade

at different prices. The authors show that liquidity and specialness explain this
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phenomenon simultaneously via the short-selling activity. For a particular secu-

rity, we use the end-of-the-day quotes from Bloomberg. Using these quotes, we

compute the spreads between the yield to maturity of the most recently issued

bond (called on-the-run security) and the bond that already exists in the market

with the same characteristics (called off-the-run security). We find that both the

average and median spreads are negative. Moreover, the standard deviations are

relatively high for most maturity ranges as well, indicating the absence of on-the-

run premium in the French government bond market. D’Amico, Fan, and Kitsul

[2018] state that the repo transactions are important on the bond market and

they find a positive and significant scarcity premium for the on- and off-the-run

Treasuries that persist for approximately three months and is larger in magnitude

for short-term securities.

The fourth chapter analyzes the term structure of the French real rates.

We challenge the well-known approach that the real rates are constant and nomi-

nal rates and breakeven change. We find that the inflation compensation remains

constant while real rates change considerably. As highlighted in Barding and

Lehnert [2004], the U.K. was the first industrialized country to issue index-linked

government bonds. The authors study the efficiency of inflation-protected secu-

rity markets and test the information content of inflation forecasts to develop

trading strategies speculating on the movement of breakeven inflation. Their re-

sults indicate that the market for the French OATi offers the possibility of excess

returns.

There are several types of inflation-indexed securities, such as bonds, swaps, and

other derivatives.1 We use the dataset with market information about inflation-

protected bonds issued by the French government. The dataset is divided in two

parts. The first one comprises inflation-linked bonds protected from the domestic

inflation index. The second is inflation-linked bonds protected from the European

inflation index. We fully implement the methodology proposed by Gürkaynak,

Sack, and Wright [2010]. They work on Treasury Inflation-Protected Securities

(TIPS) and show that inflation compensation is not a pure measure of inflation

expectations as it also contains the inflation risk premium and liquidity premium

1see Deacon, Derry, and Mirfendereski [2004] for more details.
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components. From a practical perspective, TIPS are frequently considered to be a

form of risk-free real bonds. D’Amico, Kim, and Wei [2018] show that TIPS yields

exceeded risk-free real yields by as much as 100 basis points when TIPS were first

issued, and they rose up to 300 basis points during the 2007–2008 financial crisis.

The authors explain that this spread predominantly reflects the poor liquidity

of TIPS relative to nominal Treasury securities. Applying the Gürkaynak, Sack,

and Wright [2010] methodology, we observe that the fitting errors are quite small,

so that we obtain a good fit in the class of functional models. Westerhout and

Beetsma [2019] make a welfare comparison between the issuance of price-indexed

and nominal public debt in the presence of fiscal constraints. They conclude that

under a debt constraint, indexed debt is generally preferred, while under a deficit

constraint, the results are more mixed.

Christensen, Lopez, and Shultz [2017] study the on-the-run premium of TIPS

by studying yield spreads between pairs of TIPS with identical maturities but

of separate vintages. After adjusting for differences in coupon rates and values

of embedded deflation options, they find a small and positive premium on the

more recently issued TIPS, averaging between one and four basis points. It per-

sists even after new and similar TIPS are issued and, hence, is different from

the on-the-run phenomenon observed in the nominal Treasury market. Another

interesting investigation is suggested by Grishchenko and Huang [2013], who es-

timate inflation risk premium using a dataset on TIPS prices from 2000 to 2008.

The authors find that the inflation risk premium is time-varying and, on average,

considerably lower than suggested by various structural models. In our study, we

compute the breakeven rates and find that the inflation compensation is stable.

We also backcast the inflation compensation. For this, we find the combination of

nominal yields that best proxy a breakeven measure over the period for which we

have French inflation-protected securities and compute this proxy over a much

longer sample. Andreasen, Christensen, and Riddell [2018] study the liquidity

risk in TIPS. They introduce an arbitrage-free term structure model of nominal

and real yields and their model relies on the fact that, like most fixed-income

securities, the TIPS go into buy-and-hold investing portfolios as time passes.

The authors also find a sizable and countercyclical TIPS liquidity premium.
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Chapter 1

Fundamental aspects of the term

structure of interest rates

1.1 Introduction

In this chapter and the rest of the thesis, I review the fundamental aspects of the

term structure of interest rates (TSIR). First, it is interesting to know the different

types of models that can be used to work with the TSIR phenomenon (Section

2). Section 3 presents the so-called pure statistical approach called principal

component analysis (PCA). The PCA provides evidence that the variance of

the entire term structure can be captured by the variance of only three factors

that have important economic explanations as level, slope, and curvature. As

the TSIR provide information about what the output is to invest for specific

horizons, it is important to discuss about the fixed-income portfolio management

strategies. In Section 4, we review some basics of fixed income analytics such as

the concept of duration and some major sources of risk for bond investors and

conclude with an overview of the spectrum of bond portfolio strategies. We also

present some information about institutions that shape the fixed-income market.

Precisely, there is some information about products and actors participating in

the government bond market (Section 5). The different types of yields are worth

considering. Section 6 presents the spot rates, forward rates, and par yield. In

the next section, we provide some reflections about government debt management
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and inflation (Section 7). Section 8 concludes this chapter presenting information

about liquidity in fixed-income markets.

1.2 The term structure of interest rates models

Over the past four decades, several major developments have been made in the

field of term structure modeling; however, no superior model was proposed. In the

literature on term structure, all the existing approaches have diverged into three

popular families, namely equilibrium models, no-arbitrage models, and dynamic

models, and the main objective of these three approaches is to capture and explain

the TSIR. First, we briefly present these three fields. In each family of models

there are several different approaches, thus each field is presented in the manner

of a guided tour. Finally, we mention a purely statistical approach that is also

commonly used to define the term structure of interest rates.

• The family of equilibrium models includes two types: (i) affine models,

which include general and partial equilibrium models, and (ii) quadratic

models. In affine models of the partial equilibrium, we assume that the spot

instantaneous interest rate is an affine function of a set of state variables. In

the quadratic models, we proceed in the same way, but use the non-linear

function of state variables.

• In the family of arbitrage-free models, the absence of an opportunity of

arbitrage is central to design the term structure of interest rates. An im-

portant goal of this approach is to rely on a perfect fitting at each point in

time and the appropriate dynamics of the term structure of interest rates.

• In the family of dynamic models, we have a functional form with several

parameters. Studies in this field are based on the work of Nelson and Siegel

[1987], who introduced a parsimonious three-factor model that fits the yield

curve remarkably well.

11



1.2.1 Equilibrium approach

The basic idea for all the approaches in the family is that there is an underlying

economy to derive bond prices, this is not so in the case of arbitrage-free models

that take bond prices as given. At any point in time, term structure of interest

rates is a function of a small set of common state variables. Once the dynamics

of the state variables and their risk premiums are specified, the dynamics of the

term structure can be determined. Depending on the form of such a function, we

can define affine term structure models (ATSMs), if it is a time-invariant linear

function, or quadratic term structure models (QTSMs), if it is a second order

polynomial function.

The focus on ATSMs extends back to the pathbreaking studies by Merton [1973]

and Vasicek [1977] with the partial equilibrium approach followed by Cox, In-

gersoll, and Ross [1985] with the general equilibrium approach. For instance,

Cox, Ingersoll, and Ross (1985 a, b) consider a state variable while describing

the change in production opportunities over time, in other words, the state of

technology. Subsequently, they infer from the economy that the instantaneous

(spot) interest rates governing bond prices necessarily follow the mean reverting

stochastic process:

drt = κ(θ − rt)dt+ σ
√
rtdWt ,

where θ > 0 is a central location or a long-term mean value; κ > 0 is the speed

of adjustment (i.e., mean reversing toward θ) and σ is the level of instantaneous

volatility of the process. This positivity was viewed as a key feature in favor of this

approach, but currently short-term interest rates can be negative. The equation

corresponds to a continuous time first-order autoregressive process, where the

randomly moving interest rate is elastically pulled toward a central location. In

a partial equilibrium approach, the dynamics of the instantaneous (spot) interest

rate considered by Vasicek [1977] is:

drt = κ(θ − rt)dt+ σdWt ,

where κ > 0 determines the speed of a reversion to the constant mean, θ > 0, and
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σ is the level of the instantaneous volatility of the process. Vasicek [1977] was the

first to capture mean reversion, which is an essential characteristic of the interest

rate. These ATSMs gained in popularity with Duffie and Kan [1996], who general-

ize this class of models. They clarify assumptions underlying this framework and

their approach can be considered as the most general affine term structure model.

Ang and Piazzesi [2003] and Ang, Dong, and Piazzesi [2007] combine ATSMs

with some elements of the macroeconomy. Brandt and Chapman [2008] propose

a good summary of ATSMs by presenting two important advantages this model

has in comparison with other term structure models. The ATSMs provide ful-

fillment for the absence of arbitrage opportunities for bond prices and also allow

for flexible specifications of term premiums and their dynamics. Even though

this family of models was proposed almost four decades ago, there are still many

questions to deal with. For instance, Hamilton and Wu [2014] investigate ATSMs’

testable implications that were not previously explored and Creal and Wu [2015]

present new procedures for the maximum likelihood estimation of ATSMs with

spanned or unspanned stochastic volatility.

While discussing QTSMs, we assume that the instantaneous spot interest rate is

essentially a second-order polynomial of state variables. There are several seminal

contributions to this family of models. For instance, Longstaff [1989] presents a

double square-root model, Beaglehole and Tenney [1991, 1992] extend a multi-

variate quadratic model and formulate a univariate quadratic model. Constan-

tinides [1992] describes a squared autoregressive independent variable nominal

term structure model. The QTSMs overcome limitations inherent in ATSMs.

For example, Ahn, Dittmar, and Gallant [2002] state that QTSMs show better

performance than ATSMs in explaining historical bond price behavior in the U.S.

Thus, QTSMs assume that the instantaneous (spot) interest rate is defined by

the equation

rt = α + β
′
Xt +X

′

tγXt .

Here α is a constant, β is a vector, and γ is a matrix; Xt is a n-dimensional state

variable, which follows a diffusion process under the risk-neutral probability. This
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process is typically an Ito process such that

dXt = f(Xt)dt+ ρ(Xt)dW
Q
t ,

where WQ is a Wiener process under the risk-neutral probability. Regarding

the first equation, we can state that the affine model is a case of a quadratic

model, where matrix γ is vanishing. Chen, Filipovic, and Poor [2003] analyze

the QTSMs in terms of the Markov chain process. They deduce that no jumps

are allowed in the state processes of QTSMs. However, these state processes can

incorporate a quadratic potential, which enables the QTSMs to model the default

risk. Recently, Andreasen and Meldrum [2014] investigate the term structure

models for the U.S. nominal bond yields with QTSMs.

1.2.2 Arbitrage-free approach

The previous term structure models typically specify the instantaneous (spot)

interest rate as a function of a small set of state variables, which follow a time-

homogeneous Markov chain process. Such models have many advantages, but

they are generally inconsistent with the observed term structure of bond prices, as

pointed out by Kimmel [2004]. The no-arbitrage models focus on perfectly fitting

the term structure at a point in time to ensure that no arbitrage possibilities exist,

a condition which is important for pricing derivatives. Prominent contributions

to this family of models include the study by Ho and Lee [1986], where they

consider the spot interest rate dynamics as:

drt = µ(t)dt+ σdWt ,

where µ(t) is a function of t deduced from the current term structure of interest

rates. This approach is especially important since it was the first to model move-

ments in the entire term structure of interest rates. Next Hull and White [1990]

propose to extend Vasicek’s model with time-varying parameters. The general

specification for the Hull and White [1993] model is given as:

drt = [θ(t)− κ(t)rt]dt+ σ(t)rβt dWt .
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The functions θ(t), κ(t), and σ(t) are time-varying and can be used to calibrate the

model to the current market prices of bonds. Another arbitrage-free approach

proposed by Heath, Jarrow, and Morton [1992] is based on the forward rates.

The authors extend the Ho and Lee model in three directions as pointed out by

Gibson, Lhabitant, and Talay [2012]. First, they consider forward rates rather

than bond prices as their basic building blocks; second, they allow for continuous

trading; and third, they extend the initial one-factor approach to a multiple factor

method. Gombani and Runggaldier [2013] proposed an arbitrage-free multifactor

term structure models using a theory based on stochastic control.

1.2.3 Functional approach

The foundation for dynamic term structure models based on the representation

introduced by Nelson and Siegel [1987]. The next paragraph briefly presents the

main fitting result of this seminal paper. First, we fix the ideas and establish some

notations by introducing three key theoretical constructs and the relationships

among them: the discount curve, forward curve, and the yield curve. Denote

by Pt(τ), the price of a τ -period discount bond, which is the present value at

the time t of 1e that will be received τ periods ahead. Denote by yt(τ) the

corresponding continuously compounded zero-coupon nominal yield to maturity.

The relationship between the discount bond price and the yield-to-maturity is

given by

Pt(τ) = e−τyt(τ) .

As this relation is satisfied for all maturities, it provides a relationship between

the discount curve and the yield curve. From the discount curve, we can obtain

the forward curve

ft(τ) = −P
′
t (τ)

Pt(τ)
.

and the relationship between the yield to maturity and the forward rate is

yt(τ) =
1

τ

∫ τ

0

ft(u)du .
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Consequently, the zero-coupon yield to maturity is an average of forward rates.

Reverting to Nelson and Siegel [1987], the authors introduce a static fitting

methodology based on a functional form that is a convenient and parsimonious

three-component exponential function. The forward rate curve is

f(τ) = β1 + β2e
−λτ + β3λe

−λτ .

The corresponding yield curve is presented as

y(τ) = β1 + β2

(
1− e−λτ

λτ

)
+ β3

(
1− e−λτ

λτ
− e−λτ

)
,

where y(τ) is the interest rate for maturity τ . In this functional form we have four

parameters: β1, β2, β3 and λ. The λ parameter controls the exponential decay

rate. The small values of λ produce slow decay and can better fit the curve at

long maturities. The large values of λ produce fast decay and can better fit the

curve at short maturities. Parameter λ is assumed to be constant through time.

Parameters β1, β2 and β3 capture the cross-sectional level, slope and curvature

of the yield curve, respectively. Figure 1.1 plots the three factor loadings.

Let us return to the dynamic term structure models. The main idea of these

models is to modify the functional form to take into account the time evolution

and to explain the term structure of interest rates dynamics. Diebold and Li

[2006] were the first to adopt this technique. In fact, Diebold and Li [2006]

introduce time-varying parameters and repeat the Nelson and Siegel approach

every day/week/month so

yt(τ) = β1t + β2t

(
1− e−λτ

λτ

)
+ β3t

(
1− e−λτ

λτ
− e−λτ

)
.

The β parameters become the dynamic latent factors. Diebold and Li [2006] log-

ically interpret the time series of parameters (β1t)t, (β2t)t and (β3t)t as the level,

the slope and the curvature factors of the yield curve.

Nelson and Siegel introduce a parsimonious three-factor fitting approach. Svens-
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Figure 1.1: Loadings of Nelson-Siegel model
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This figure shows the factor loadings in the three-factor model, where
the three factors are β1, β2 and β3. The associated loadings are 1,
(1 − e−λτ )/λτ and (1 − e−λτ )/λτ − e−λτ where τ denoted maturity in
years. The λ parameter is fixed and equal to 0.0609.

son [1994] and Bjork and Christensen [1997] subsequently proposed four-factor

and five-factor extensions. De Pooter [2007] studies the in-sample and out-of-

sample performance of several Nelson-Siegel type models and finds the specifica-

tion of Svensson to show the best in-sample fit (albeit marginally better than the

Bjork-Christensen (BC) specification). Furthermore, the authors reveals that the

four-factor BC specification can provide the most accurate interest rate forecasts

at various forecasting horizons.

Diebold, Rudebusch, and Aruoba [2006] estimate the parameters of a model and

propose an approach to summarize the yield curve latent factors (i.e., level, slope,

and curvature) and include observable macroeconomic variables (i.e., real activity,

inflation, and monetary policy instrument). The authors find strong evidence of

the impact of macro variables on future movements in the yield curve, as well as
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the evidence of a reverse influence. Christensen, Diebold, and Rudebusch [2011]

propose an arbitrage-free Nelson Siegel approach, and we provide certain addi-

tional details on their work in this thesis.

Joslin, Priebsch, and Singleton [2014] propose an arbitrage-free dynamic term

structure approach, in which bond investment decisions are influenced by infla-

tion risks correlated with the information on the shape of the yield curve. Diebold

and Li [2006] emphasize the importance of interpreting the parameters β1t, β2t

and β3t as level, slope, and curvature and also discuss yield curve forecasting.

It is known that forecasting the interest rate point is crucial for bond portfolio

management. In the literature related to arbitrage-free family of term struc-

ture models, there is little information on the dynamics of forecasting. In the

family of equilibrium models, it is more common as in Jong [200] or Dai and

Singleton [2000] to favor in-sample fitting rather than out-of-sample forecasting.

Studies that focus on out-of-sample forecasting of equilibrium models, notably

Duffee [2002], conclude that these models forecast poorly. Diebold and Li worked

on the data from U.S. Treasuries, and their forecasting results are encouraging,

specifically, their models produce year-ahead forecasting that is noticeably more

accurate than the standard benchmarks.

1.3 Factors of TSIR

Principal component analysis is a common technique applied to interest rate

markets to describe yield curve behavior in a parsimonious manner. First, three

principal components are frequently identified with the economically meaningful

shift, twist, and butterfly moves of the yield curve. As such, they relate inti-

mately to the level, slope, and curvature factors evidenced by Nelson and Siegel

[1987] and Diebold and Li [2006]. Litterman and Scheinkman [1991] use this pure

statistical approach to extract factors (called principal components) from the ob-

served interest rates because such factors may explain the deformations of the

yield curve. Moreover, the authors show that there are three factors explaining

most of the moves. However, there are certain constraints in the application of
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this approach. Nevertheless, one may find application of PCA, for example, in

the PhD thesis byMoungala [2013].

Principal component analysis helps to identify patterns in data, highlights their

similarities and differences, and is a powerful tool for analyzing data. The other

main advantage of PCA is that once these patterns are determined in the data,

the number of dimensions can be reduced without much loss of information.

The PCA model explicitly selects the factors based on their contribution to the

total variance of interest rate changes. Consequently, PCA may ease hedging by

using only a small number of factors. Factor analysis is a general name denoting

a class of statistical procedures that are primarily used for data reduction and

summarization. For factor analysis to be efficient, it is important that the sample

size used must be appropriate. As a rough guideline, there should be at least four

or five times as many observations as there are variables. In PCA, the total

variance in the data is considered and the technique is recommended when the

primary concern is to determine the minimum number of factors that will account

for maximum variance in the data.

Golub and Tilman [2000] propose an excellent overview of the use of PCA in

the areas of fixed income risk measurement and management. We divide the

advantages of PCA into three categories: risk estimation, risk reporting, and

scenario analysis. The ability to parsimoniously describe complex structures is

the benefit of using PCA in risk estimation. For the purpose of interest rate risk

measurement, the yield curve can be represented as a structure that comprises

of key individual rates, viewed as random variables. Risk reporting is simplified

because practitioners can see the contributions to portfolio risk from factors that

are not postulated a priori but are rather derived from actual market data. There

are two main benefits to using PCA for scenario analysis. First, it helps to under-

stand the shape and dynamics of yield curves movement and the benefit is similar

to the effect of risk reporting. Second, PCA enables users to describe the joint

distribution of the key rates. Therefore, the probability of any particular scenario

can be determined, which is important in designing an appropriate reaction to

the results of the scenario analysis.
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Even though PCA is a well-established technique for term structure, few attempts

have been made to apply it to estimate the distribution of the joint global term

structure. With international markets becoming more integrated, considering

the global yield curve is important to portfolio investors. Phoa [1999] briefly

refers to the topic of global joint structure behavior and uses PCA to decompose

international ten-year bond yields. He concludes that the global shift factor, while

it is somewhat visible, does not explain as much movement in the curves as it does

in the curve-specific models. Malava [1999] performs direct PCA of global term

structure and finds that fourteen are needed to explain 99% of the variability in

the joint term structure of the London Interbank Offered Rate (LIBOR) USD,

JPY, EUR, and GBP yield curves. Moraux, Perignon, and Villa [2002] analyze

international curves applying Common PCA (CPCA). However, CPCA requires

common eigenvectors and does not specify a joint distribution of the resulting

factors.

1.4 The duration

This section introduces the fundamental concepts and terminology for fixed in-

come portfolio management. It reviews the sectors of the bond market, basics of

fixed income analytics as the concept of duration and convexity, and the major

sources of risk for bond investors, concluding with a description of the spectrum

of bond portfolio strategies.

Duration and convexity are two standard tools that are used to manage the risk

exposure of fixed-income investments. Duration measures the bond’s sensitivity

to interest rate changes, while convexity relates to the interaction between a

bond’s price and its yield as it experiences changes in interest rates. With coupon

bonds, investors rely on a metric known as duration to measure a bond’s price

sensitivity to changes in interest rates. As a coupon bond makes a series of

payments over its lifetime, fixed income investors require techniques to measure

the average maturity of a bond’s promised cash flow, primarily to serve as a

summary statistic of the bond’s effective maturity. The duration accomplishes

this and thereby allows fixed income investors to effectively gauge uncertainty
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when managing their portfolios.

In 1938, Canadian economist Frederick Robertson Macaulay dubbed the effective

maturity concept the “duration” of the bond. He also suggested that this dura-

tion must be computed as the weighted average of the times to maturity of each

coupon, or principal payment, made by the bond. There are also the so-called

dollar duration and modified duration. Dollar duration is one of the several dif-

ferent measurements of bond duration and measures the dollar change in a bond’s

value to a change in the market interest rate. Professional bond fund managers

use dollar duration as a way of approximating the portfolio’s interest rate risk.

As duration measures the sensitivity of a bond’s price to interest rate changes,

dollar duration seeks to provide these changes as an actual dollar amount. Mod-

ified duration is a formula that expresses the measurable change in the value of

a security in response to a change in interest rates. Modified duration follows

the concept that interest rates and bond prices move in opposite directions. This

formula is used to determine the effect that a 100 basis points (1 percent) change

in interest rates will have on the bond’s present value or price.

Modified duration is an extension of the Macaulay duration, which allows in-

vestors to measure the sensitivity of a bond to changes in interest rates. In order

to calculate modified duration, the Macaulay duration must first be calculated.

The Macaulay duration calculates the weighted average time before a bondholder

would receive the bond’s cash flows. Conversely, modified duration measures the

price sensitivity of a bond when there is a change in the yield-to-maturity. Effec-

tive duration is a measure of the duration for bonds with embedded options (e.g.,

callable bonds). Unlike modified duration and Macaulay duration, effective dura-

tion considers fluctuations in the bond’s price movements relative to the changes

in the bond’s yield-to-maturity. In other words, the measure considers possible

fluctuations in the expected cash flows of a bond. There are three principles of du-

ration that must be considered. First, as maturity increases, duration increases,

and the bond becomes more volatile. Second, as a bond’s coupon increases, its

duration decreases, and the bond becomes less volatile. Third, as interest rates

increase, duration decreases and the bond’s sensitivity to further increases in the

interest rate diminishes. However, duration has limitations when used as a mea-
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sure of interest rate sensitivity. While the statistic calculates a linear relationship

between price and yield changes in bonds, in fact, the relationship between the

changes in price and yield is convex.

Convexity, a measure of the curvature of the changes in the price or value of a

bond in relation to changes in interest rates, addresses this error by measuring the

change in duration, as interest rates fluctuate. In general, the higher the coupon,

the lower the convexity; however, due to the call feature, callable bonds display

negative convexity if yields fall too low, indicating that the duration will decrease

when yields decline. Zero-coupon bonds have the highest convexity, where rela-

tionships are only valid when the compared bonds have the same duration and

yields-to-maturity. In fact, a high convexity bond is more sensitive to changes

in interest rates and must consequently witness larger fluctuations in price when

interest rates move. The opposite is true of low convexity bonds, where prices do

not fluctuate as much when interest rates change. Low-coupon and zero-coupon

bonds, which tend to have lower yields, show the highest interest rate volatility.

In technical terms, this implies that the modified duration of the bond requires a

larger adjustment to keep pace with the higher change in price after the interest

rate moves. Lower coupon rates lead to lower yields, and lower yields lead to

higher degrees of convexity.

Key rate duration measures how the value of a security or portfolio changes at a

specific maturity point along the entirety of the yield curve. When keeping other

maturities constant, the key rate duration can be used to measure the sensitivity

in a security’s price to a 1% change in yield for a specific maturity. Key rate

duration is an important concept in estimating the expected changes in value for

a bond or portfolio of bonds because it does so when the yield curve shifts in

a manner that is not perfectly parallel, which occurs often. Effective duration

(another important bond metric discussed above) is an insightful duration mea-

sure that also calculates the expected changes in price for a bond or portfolio of

bonds given a 1% change in yield, but it is only valid for parallel shifts in the

yield curve. Therefore, key rate duration is a valuable metric and is related t0

effective duration. For example, there are 11 maturities along the Treasury spot

rate curve, and a key rate duration may be calculated for each maturity. The
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sum of all the 11 key rate durations along the portfolio’s yield curve equal the

effective duration of the portfolio. As discussed later in the thesis, different key

rate durations are associated with various fixed-income portfolio strategies such

as bullet, barbell, and ladder.

There are several techniques investors can use to protect their portfolios from

interest rate risk, many of which involve simple yet effective fixed-income strate-

gies. A bond investment strategy can help to reduce risk or maximize income

in a way that is tailored to an individual’s risk/return needs. However, it takes

time and effort to realize the potential benefits of the bond investment strategies

listed below, but if an investor is willing to make the effort and has the patience

to see long-term gains, then these strategies can be beneficial. We introduce here

some terminologies. The ladder strategy consists of having bonds that mature at

different times and investors continually reinvest them. In the barbells strategy,

investors invest in a set of bonds that mature in the long- and short-term but

not in the medium term. In the bullets strategy, the bonds held are purchased

at different times but all have the same target maturity date.

1.4.1 Risk factors

The first risk factor is the change in yield levels, for instance the parallel shift.

Another factor affecting investment decisions is the yield curve risk. The three

factors (level, slope, and curvature) are systematic so they could be viewed as

market risk. The yield curve risk occurs due to changes in the slope or shape of the

yield curve. To measure this, investors use the notion of convexity and different

key rate duration measures (with corresponding active portfolio strategies, for

instance bullet, barbell, and ladder). A well-known risk is the exposure to market

volatility. Volatility can be historical, based on past actual prices or yields or

expected yields, as indicated by implied volatility of options Investors have the

convexity notion to measure bond responsiveness or sensibility to interest rate

movements. For example, a bond trading at higher yield-to-maturity will have

lower price volatility. Callable bonds are negatively convex assets, meaning that

a portfolio with such bonds is adversely affected by volatility (i.e., more volatility

makes less profit). Putable bonds are assets with positive convexity, meaning
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that a portfolio with such bonds benefits from volatility (more volatility makes

more profit).

A risk is associated with liquidity. Inherently, different securities have different

liquidity levels; for instance, government bonds are more liquid than corporate

bonds. The liquidity of all securities, particularly riskier securities, decreases

during periods of market turmoil (instability). The liquidity risk is typically

measured by the difference between the price at which a security can be bought

and sold at a point in time, the so-called bid/ask price spread. The liquidity

of a security refers to both the marketability and stability of the market price.

Marketability means the time it takes to sell a security at its market price. For

instance, a registered corporate bond takes less time to sell than a private place-

ment.

1.4.2 Investment strategies

This list summarizes the passive strategies and common active strategies. Active

strategies relate to various fixed-income risk factors, and an active fixed-income

manager may be active relative to any set of these risk factors, or all of them.

Indexing strategy is a passive strategy, that is, the main idea is to replicate all

the risk factors in the “index” or benchmark. The only certain way to accomplish

this is to buy all the securities in the index in amounts equal to their weight in

the index. While this can be easily done in the stock market, say for the S&P 500

(index by buying all 500 stocks in the appropriate amounts), it is difficult to do so

in the fixed-income market. For example, the Lehman Aggregate Bond Index is

based on approximately 6,000 bonds, many of them quite illiquid. Market timing

is another active strategy, and the main idea is to deviate from the duration

of the benchmark. If a portfolio has a greater duration than the benchmark,

then it outperforms the benchmark during market rallies (i.e., periods of good

performance) and underperforms during market contractions (i.e., recessions). A

yield curve trade is also an active strategy in this list, where the main idea is to

replicate the duration of the benchmark but vary the convexity and yield curve

exposure by altering the composition of key rate durations. The change in yield

curve slope factor is called flattening and steepening. When the yield curve is
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flat, the barbells strategy outperforms among others, but when the yield curve is

not flat, the bullets strategy outperforms among others.

Next, volatility trades are also an active strategy. The main idea is to use a bond

with some embedded options. Volatility increases the benefit to puttable bonds,

which is essentially a long call option, and negatively affects the callable bonds,

which are short call options. We consider the bullets strategy as the benchmark.

Due to the call feature, callable bonds display negative convexity if the yields fall

too low, meaning the duration will decrease when yields decrease. Bonds with

put options are more positively convex than straight bonds. Hence, an increase in

volatility benefits puttable bonds and diminishes the price of callable bonds. In a

stable yield curve environment, investors are willing to pay more for high-quality

callable bonds compared to straight bonds of similar quality.

Asset allocation or sector trades is another active strategy. The main idea is

to change portfolio components, either by taking different types of securities

or by changing the weights assigned to each security included in the portfolio.

Investors can undertake this strategy at different levels; for instance, deviate

from the macro- or micro-sector basic type of portfolios or change the security

weighting of a benchmark portfolio. At the macro level, we find several portfolio

components among government securities, the so-called Treasuries in the U.S.,

bonds issued by agencies1, corporate bonds, mortgage or asset-backed securities2

and bonds issued at the municipal level (e.g., it is possible to buy bonds issued

by Lyon city in France). On micro-components at a macro-sector level, investors

can switch between corporate bonds in the utilities sector and corporate bonds in

the industrial sector. To switch the securities trading level, investors can switch

allocation between overweight and underweight individual securities in a micro-

sector. This type of fixed income portfolio strategy profits from deviations based

on option-adjusted spread of sectors, subsectors, and securities. This deviation

1Agencies are affiliated with, but separate from, the U.S. government. Investors can buy
various securities issued by government-sponsored and government-owned corporations that,
strictly speaking, are not actually a part of the U.S. government.

2Mortgage-backed securities are investment opportunities that are secured by mortgages.
It allows investors to benefit from the mortgage business without ever having to buy or sell
an actual home loan (real estate loan for mortgage-backed securities and asset for asset-backed
securities).
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is relative to historical averages and fundamental projections and investors can

use breakeven spreads (i.e., based on option-adjusted spreads) as the basis for

deviations. If option-adjusted spreads become smaller (tightening), this produces

some gains to investors, and if option-adjusted spreads become larger (widening),

this leads to some losses. An investor must keep this in mind when he decides

to attribute new weights for some portfolio securities to profit from the market

conditions.

Credit risk allocation is also an active strategy. The main idea is to deviate from

the average credit rating of the macro- or micro-sectors and their composites.

Credit spreads typically widen (increase) when economic growth is slow or neg-

ative, and this (credit spread widening) benefits higher credit rating, and vice

versa. When investors hold a risky fixed income security (i.e., an asset with high

credit rating) in some sector of the economy and the economic growth of this

sector slows down, the situation is profitable for such investors. For instance,

the investor can use the spread of the duration as the basis for deviations. With

one more active strategy trading, we conclude this section. The main idea is

to profit from short-term changes in specific securities based on short-term price

discrepancies. Often, this means short-term technical, including short-term sup-

ply/demand factors that cause temporary price discrepancies.

1.5 Institutional aspects

The Federal Reserve (Fed) serves as the Treasury’s fiscal agent. In this role,

it is responsible for the primary dealer relationships, which are used not only

for Treasury auctions but also for other open market operations conducted in

accordance with the monetary policy. The Federal Reserve plays an important

role in the operational aspects of the auction process and payment mechanism

(see Subsection 1 of this section). In addition, the Fed is the holder of Treasury

securities. It is involved in the purchase and resale of these securities to the

secondary market through its open market operations.
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1.5.1 Auctions, actors, and secondary markets

Auctions are the cornerstone of the Treasury’s debt management strategy, and

their offering amounts are scheduled and announced in advance of the auction

date. Bidders in Treasury auctions may be either foreign or domestic and individ-

ual or institutional investors, federal, state, or local government entities. Auction

bids for Treasury securities may be submitted as noncompetitive or competitive.

With a noncompetitive bid, a bidder agrees to accept the discount rate (or yield)

determined at auction and is guaranteed to receive the full amount of the bid.

With a competitive bid, a bidder specifies the yield that is acceptable and the

investor may or not receive the bonds, depending on the competitor’s bids.

Primary dealers are securities brokers and dealers who are registered to operate

in the government securities market and have trading relationships with the Fed-

eral Reserve Bank of New York. Primary dealers are the largest purchasers of

Treasury securities sold to the public at auctions. In addition to their role in

the auction process, primary dealers also work closely with the Fed to execute

its monetary policy. These primary dealers are large financial institutions and

the Fed relies on them to act as intermediaries through which Treasury securities

are bought and sold and resold in the secondary market to either increase or de-

crease money supply. They are expected to maintain trading relationships with

the Fed’s trading desk and provide market information and analysis that may be

useful to the Fed in the formulation and implementation of the monetary pol-

icy. These primary dealers also use this system to help them meet their liquidity

demand by swapping securities with the Fed on an overnight basis. This type

of securities lending does not impact the general interest rate or money supply

as it does not involve cash but can affect the liquidity premium of the securities

traded.

Along with the primary dealers and the Fed, individual investors, other dealers

and brokers, private pension and retirement funds, insurance companies, invest-

ment funds, and foreign investors (private citizens and government entities) also

purchase Treasury securities through the auction process and in the secondary

market. Participants in the secondary market play an indirect role in determining
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the price of Treasury securities. Once the Treasury announces an auction, dealers

and market participants start trading securities on a “when issued” basis. This

means that once a security has been purchased and issued, it will be immediately

resold to the secondary market purchaser. As trading starts in the secondary

market before the actual auction takes place, “when issued” market participants

effectively determine the yield or discount rate of Treasury securities based on

what they are willing to pay.

1.5.2 Products, monetary policy, and maturity distribu-

tion

Currently, the U.S. Treasury offers five types of marketable securities: Treasury

bills, Treasury notes, Treasury bonds, inflation-protected securities (TIPS), and

floating rate notes (FRNs). For instance, in 2015, the Treasury sold securities

through 272 different public auctions, and each of them is dedicated to a spe-

cial issue. Treasury bills, Treasury notes, and Treasury bonds are fixed-income

investments issued by the U.S. Department of Treasury. They are the safest

investments in the world since the U.S. government guarantees them, and this

low risk means they have the lowest interest rates of any fixed-income security.

The difference between bills, notes, and bonds are the lengths until maturity.

Treasury bills are issued for terms less than a year. Treasury notes are issued

for terms of two, three, five, and ten years. Treasury bonds are issued for terms

of thirty years to maturity and were reintroduced in February 2006. The un-

certainty following the 2008 financial crisis heightened their popularity. In fact,

these securities reached record-high demand levels on June 1, 2012. The 10-year

Treasury note yield dropped to 1.46 percent, the lowest level in more than 200

years. This was because investors fled to ultra-safe securities in response to the

eurozone debt crisis. On July 25, 2012, the yield hit 1.43, a new record low. On

July 5, 2016, the yield fell to an intra-day low of 1.375, and these lows had a

flattening effect on the Treasury yield curve.

The Treasury also issues Treasury Inflation-Protected Securities in terms of five,

ten, and twenty years. They work similarly with regular bonds with the only
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difference being is that the Treasury Department increases their value if inflation

rises. During an inflation or even if inflation is expected, TIPS perform well. In

the secondary market, people pay higher valuations for the safety of TIPS if they

foresee an inflation. For this reason, TIPS also do well when the dollar value

is declining because a declining dollar usually leads to inflation. When TIPS

mature, investors receive the highest adjusted principal, which in most instances

is never less than the original principal. This provision protects investors against

deflation because they will not receive less even if prices drop. However, TIPS

are not a great investment when the economy is stable. In fact, TIPS return

the flat interest rate on a flat principal when the economy is doing well and is

not experiencing much of inflationary pressure. This situation describes the U.S.

economy since the 1970s, that is, the last time when double-digit inflation existed.

The U.S. Treasury began issuing floating rate notes (FRNs) in January 2014.

Issued for a two-year term, FRNs pay varying amounts of quarterly interest until

maturity. Interest payments rise and fall based on discount rates in auctions

of 13-week Treasury bills. Thus, an FRN is a debt instrument with a variable

interest rate, which is tied to a benchmark rate. Benchmarks include the U.S.

Treasury note rate, the Federal Reserve funds rate (known as the Fed funds

rate), and the LIBOR. Compared with fixed-rate debt instruments, floaters allow

investors to benefit from a rise in interest rates since the rate on the floater adjusts

periodically to current market rates. Floaters are usually benchmarked against

short-term rates like the Fed funds rate, which is the rate the Federal Reserve

Bank sets for short-term borrowing between banks.

The Fed’s monetary policy actions can affect interest rates on Treasury securities

in the short run. The Fed conducts its monetary policy by setting the federal

funds rate, that is, the price at which banks buy and sell reserves on an overnight

basis. The level of the federal funds rate is directly related to the supply and

demand for bank reserves. Monetary actions by the Fed generally affect short

term nominal interest rates (for more details see Thornton [1988]). If the Fed

lowers the federal funds rate, resulting in a lower short-term interest rate for

banks, long-term interest rates are also likely to decline, although they may not
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plummet as much or as quickly as observed.

Newly issued Treasury securities, sold to finance the operations of the federal

government, are offered at a mix of maturities or horizons in order to satisfy the

provisions of the regular and predictable debt management strategy and to min-

imize interest payments over time. The profile of securities is also important due

to its influence on liquidity. In addition, the Treasury must ensure that it has

adequate cash balance available to pay federal obligations. Balancing all these

objectives leads to a strategy that offers a mix of short- and long-term securi-

ties. However, longer term securities generally command higher interest rates.

The following chapters will offer some additional information about maturity dis-

tributions. Chapter 2 provides this information for several eurozone countries,

namely Germany, Italy, and Spain. Chapter 3 proposes maturity distribution

for the French nominal government securities, and Chapter 4 offers the same for

French inflation-protected securities.

1.5.3 Market supply and demand

Investors examine several key factors when deciding if they should purchase Trea-

sury securities. As with all types of investments, price, expected return, and risk

play a role in this process. Treasury securities provide a known and riskless stream

of income and offer greater liquidity than other types of fixed income securities.

Prices are determined by investors who place a value on Treasury securities based

on the characteristics of safety and liquidity afforded by this investment option.

As they are also backed by the full faith and credit of the U.S., they are often seen

as one of the safest investments available, although investors are not completely

immune to losses. Market behavior can also lead to price fluctuations, changes

in interest rates, or inflation, which can create some investment risk. The de-

mand for long-term investment opportunities is related to retirement strategies.

Despite the current economic conditions and financial market volatility, Treasury

securities continue to remain attractive to investors.

30



1.6 Types of yields

This section reviews the different types of yields, namely zero-coupon, par yields,

and forward rates. First, we discuss zero-coupon yields.

The term structure of the zero-coupon yield curve is a relationship between ma-

turity and interest rates. This notion starts from the basic premise of “time value

of money,” that is, a given amount of money today has a value different from the

same amount due at a future point in time. An individual willing to invest money

today must be compensated in terms of a higher amount in the future. The rate

of interest to be paid would vary with the time period that elapses between today

(when the principal amount is being foregone) and the future point of time (at

which the amount is repaid). A bond can be (or not) issued at par or at least in

principle, and it becomes the “premium” or “discount,” consequently the trading

process on the market. New bonds are sold in the “primary market” and existing

bonds are traded in the “secondary market.” A bond with the coupon rate equal

to zero percent is called a zero-coupon bond. A zero curve is a special type of

yield curve that maps interest rates on zero-coupon bonds to different maturities

across time.

Most fixed income instruments pay to the holder a periodic interest payment,

commonly known as the coupon, and an amount due at maturity or the redemp-

tion value. Using a technique known as the bootstrap, one could straightaway

derive the zero-coupon yield curve (for more details see Deaves and Parlar [2000]).

This technique is based on the idea that individual coupon-paying bonds can be

viewed as “packages” of pure discount or zero-coupon bonds. This suggests that

a bond’s value can be viewed as the present value of future cash flows discounted

at the yield to maturity. Or else, it can be viewed as the sum of the values of

individual pure discount bonds, each of which is the present value of a cash flow

discounted at its own time-specific yield. The classic explication of the bootstrap

method is based on the assumption of the existence of a set of perfectly spaced

bonds. If such bonds exist, the bootstrap renders the correct yield curve in a

straightforward manner; however, such a situation is not observed in the market.

Therefore, the problem with this method is that it relies heavily on the existence
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of suitable data. There are two main drawbacks in this method: illiquidity and

missing data points, and these factors are the reason for avoiding the use of the

bootstrap technique.

1.6.1 Par yield

A par yield curve is a graphical representation of the yields of hypothetical fixed

income securities with prices at par. On the par yield curve, the coupon rate

equals the yield-to-maturity of the security, which is why the bond trades at par.

The par curve gives the yield-to-maturity (YTM) for (coupon-paying) bonds at

each maturity: the single discount rate that is used to discount the bond’s cash

flows to obtain the current market price. In other words, it is the IRR (internal

rate of return) versus maturity curve for bonds. Thus, when the YTM equals the

bond’s coupon rate, then bond sales are at par, and this is called the par curve

as it gives the coupon rate that a bond with a given maturity must pay to sell at

par. Usually bonds are not available in the market at every maturity (e.g., a bond

is not likely to be available with exactly 4.5 years to maturity, and another with

exactly 13.5 years to maturity), and the par curve is constructed using whatever

maturities are available in the market applying some mathematical technique to

interpolate (or extrapolate) to obtain the remaining YTMs. Therefore, different

sources may lead to slightly different values for the yields.

1.6.2 Forward yield

There are two types of forward rates, the discrete forward rate and instantaneous

forward rate. The discrete forward rate, denoted by F (t, t + T1, t + T1 + T2), is

applied in T1 years to T2 tenor rate. One way to consider the forward rate is to

fix T2, and consider that it is equal to a very small value. By definition this is

the instantaneous forward rate. Furthermore, T1 as can be changed to observe

the instantaneous rates in one, two, three, and successive years in the future.

Another way to consider the forward rate is to fix T1, for example, equal to one

year and change T2. In this case, a term structure of interest rates one-year

ahead is obtained. There is also a special forward rate, known as the five-year
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forward five-year rate (for more details see Gürkaynak, Sack, and Wright [2010]

and Mehrotra and Mehrotra and Yetman [2018]).

A spot interest rate is conventionally associated to a fictitious transaction in a

zero-coupon bond that takes place immediately (it corresponds to the spot price).

A forward rate, on the other hand, is associated to a fictitious transaction in a

zero-coupon bond with terms set to the current rate but that will not take place

until a future predetermined date. The forward rate can be calculated from the

spot interest rates and vice versa. Forward rates are calculated from the spot

rate and adjusted for the cost of carry to determine the future interest rate that

equals the total return of a longer-term investment with a roll over short-term

investment strategy.

There are two interpretations of forward interest rates. First, a forward rate is the

interest rate that makes an investor indifferent to investing between the full in-

vestment horizon (one possibility) and part of the investment horizon and rolling

over the proceeds for the balance of the investment horizon (another possibility).

Second, it is a rate that allows the investor to lock a rate for some future period.

Many market participants consider that, by principle, forward rates reflect the

market’s consensus about future interest rates and forward rates can be used to

predict future interest rates. In fact, the interpretation of forward rates, which is

the market’s consensus of future rates, depends on the theory of the term struc-

ture of interest rates that one adheres to. Two major theories are the expectation

theory and market segmentation theory. The former theory develops the hypoth-

esis that the level of short-term forward rates (i.e., instantaneous forward rate) is

closely related to the market’s expectations about future short-term spot interest

rates1. The latter, expectation theory, has a serious drawback as it neglects the

risks inherent in investing in bonds (this view is debatable). The second the-

ory, namely the market segmentation theory, states that there is an imbalance

between the supply and demand for funds within a given maturity range. Al-

though market participants may prefer habitats dictated by the nature of their

liabilities, investors and borrowers will not be reluctant to shift their investing

1In our empirical study, we rely on this hypothesis. We construct the instantaneous forward
rates and state that these rates represent expected future short-term spot rates.
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and financing activities out of their preferred maturity sector to take advantage

of any imbalance.

Studies have demonstrated that forward rates are not good predictors of future

interest rates. However, forward rates can be relevant in deciding between two

alternative investments. Specifically, if an investor’s expectation about a rate in

the future is less than the corresponding forward rate, it would be better to invest

today to lock in the forward rate. Cibulka [2015] studies the implied efficiency of

forward rate in government bond yields. The author provides a comprehensive

view of the market by constructing the yield curve model. The implied yields

on government bonds contain considerable information. This study shows low

effectiveness of participants’ expectations on the government bond market via

decomposition of implied interest rates.

As mentioned earlier, there is one specific forward interest rate, which is the for-

ward five-year ahead for five-year rate, and this rate has shown importance for

inflation expectations. There are two types of market-based measures for gauging

inflation expectations: inflation compensation implied by the difference between

the yields on nominal, and the yields on inflation-indexed Treasury bonds. In-

flation swap rates are also used to measure inflation expectations. One measure

of interest is the five-year forward five-year inflation compensation rate. This

five-year forward breakeven inflation rate has been explicitly mentioned by Fed

policymakers, and the behavior of this measure is often used to gauge the Fed’s

inflation-fighting credibility. Policymakers consider this specific measure to as-

sess if and the extent to which near-term inflation pressures work their way into

longer-term expectations. The concern here is that such leakages would create

a more persistent inflation problem that would be costly to reverse. If the Fed

maintains its credibility, then the forward inflation compensation measure should

be relatively unresponsive to information about the near-term outlook. However,

forward inflation compensation rates cannot simply be understood as inflation

expectations because of the presence of an inflation risk premium and liquid-

ity premium. This provides some room for the measure to vary without raising

concerns among policymakers. However, risks to the inflation outlook are also

important and a large enough upswing would be of concern to a central bank,
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regardless of whether it was driven by inflation expectations or investors’ assess-

ment of considerable upside inflation risks.

1.7 Government debt and inflation

Governments need money to operate and borrow money when necessary1. A

government security is a bond or a type of debt obligation that is issued by a

government with the promise of repayment upon the security’s maturity date.

Government securities are usually issued for two different reasons, the primary

reason being raising funds for government expenditures. Also, federal govern-

ments issue treasury securities to cover short-falls (deficits) in annual budgets.

Additionally, cities will often issue bonds for construction of schools, libraries,

stadiums, and other public infrastructure programs. A central bank of a country

will sell or buy debt securities for another reason: to control money supply in

the economy. To increase money supply, a central bank purchases bonds from

banks to inject money into the banking system. Banks can use these funds to

provide loans to individuals and businesses. Greater loan activity reduces interest

rates and stimulates the economy. If a central bank sells bonds to banks, it takes

money out of the financial system, which increases interest rates, reduces demand

for loans, and slows the economy. In economics, money supply (or money stock)

is the total value of monetary assets available in an economy at a specific time.

There is strong empirical evidence of a direct relationship between money-supply

growth and long-term price inflation, at least for rapid increase in the amount of

money in the economy.

1A corporation has two options when it comes to raising money without taking a loan.
These two options issue corporate bonds or sell shares of a stock. Corporations can indeed raise
money by issuing both debt and equity, but issuing bonds or stock shares affect the corporation
in different ways. The sale of shares gives investors an implicit share in future profits. Currently,
the government has only one option to raise money, that is, issuing bonds. In a magazine
article in December 2009 (New York Times) we find a proposition that governments should do
something like corporations, and not just rely on debt. Thus, governments could sell a new type
of security that commits them to paying shares in national “profit”, as measured by the gross
domestic product. This proposition can be implemented in the future, but the government is
still issuing bonds to raise money.
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Issue of debt is a political decision, and government institutions hold the author-

ity to issue debt on behalf of the country. In case of the U.S., this institution

is the Congress through power granted by the Constitution. If spending exceeds

revenues, the Treasury determines the type of debt instruments that are used

to finance the borrowing required to fulfill all obligations. The Treasury ad-

heres to three debt management principles, and the first one is to issue debt in

a regular and predictable pattern. The second role is to provide transparency

in the decision-making process, and finally the third one is to seek continuous

improvements in the auction process. During the mid-1970s, the U.S. economy

experienced a period of rise in nominal federal budget deficits, which increased

debt issuance and disrupted financial markets. Presently, policymakers have im-

proved institutional practices to provide predictability in the debt sell process.

As a result, the Treasury was able to raise large amounts of money with a min-

imal impact on the financial markets. These policies also extended the average

maturity of the national debt and produced a better defined yield curve. If the

U.S. continues to issue Treasury securities to finance government operations, the

Treasury will continue to play a key role in maintaining stability in the financial

and credit markets and the U.S. economy.

1.8 Government bond market illiquidity

Trading costs and liquidity are inextricably linked through the bid-ask spread.

The cost of trading depends on this bid-ask spread, as well as the duration and

frequency of turnover. The uncertainty about the cost of trading creates risk

(liquidity risk) and liquidity risk, in turn, gives rise to a risk premium. Although it

is challenging to fully capture liquidity risk, it does not defy analysis. Our analysis

begins with a list of observations about liquidity. First, and obviously, investors

need to be rewarded for liquidity risk. Liquidity or, to be more precise, illiquidity

can be viewed as a risk that reduces the flexibility of a portfolio. Liquidity

risk should be reflected in the yield spread on a bond relative to a more liquid

benchmark: the greater the illiquidity, the wider the spread.

Trading generates costs, and it helps to explore the mechanics and structure of the
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secondary market. In the bond market, most trades are directed through bond

dealers, mainly investment banks, than exchanges or electronic platforms. Bond

dealers serve as intermediaries between investors, ready to buy and sell securities

in the secondary market. The cost of trading is measured by the bid-ask spread.

Most major bond dealers are willing to provide indicative “two-sided” (bid-ask)

quotes for all but the most obscure bonds. For example, a dealer may quote a

Ford 5-year bond as “80–78, 5-by-10”, indicating that the dealer would be willing

to buy $5 million of the Ford bond at a spread of 80 basis points above the 5-

year Treasury, and sell $10 million of the same bond at a 78-basis-point spread.

Clearly, bonds that have narrow bid-ask spreads have good liquidity. Liquidity

depends not only on the magnitude of the bid-ask spread but also on the depth

of the market, as measured by the number of dealers who are willing to make

markets, and by the size that can be transacted near the quoted market. For

example, an “80–78, 5-by-5” market quoted by three dealers is more liquid than

an “80–78, 1-by-2” market quoted by a single dealer.

When investing in a spread product, we need to be paid for what we know. We

know that yields on corporate bonds and other spread products must be high

enough to compensate for the cost of trading. Furthermore, we also know that

trading costs depend on duration, turnover, and the bid-ask spread. We also

demand to be paid for what we do not know. We do not know the frequency

of turnover or the magnitude of the bid-ask spread, and face the risk that the

bid-ask gap will widen the moment we want to trade in size. We need to be

paid for uncertainty. Rational portfolio managers understand that trading is

costly and, in effect, trading transfers performance from investors’ portfolios to

the bonus pools of bond dealers. Moreover, trading eats into the yield spread on

a non-Treasury or some other high-quality benchmark security, that is, it drives

a wedge between a bond’s spread and its expected excess return. However, this

is not to say that portfolio managers must abandon active portfolio strategies to

avoid trading costs. Rather, portfolio managers should merely recognize that the

benefits of active strategies must be weighed against the costs of trading.

The relationship between size and liquidity is complicated by the fact that size

has several dimensions. In dealer markets, liquidity is often supplied by market
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makers who not only provide quotes but also take positions. Thus, how far size

matters for liquidity hinges on the various economies of scale in market-making.

Those managing debt in the face of fiscal surpluses emphasize gross issuance in

specific securities by focusing issuance on fewer maturities, holding auctions less

frequently, and buying back illiquid issues. However, if important fixed costs are

involved in the production of information about the future path of interest rates,

the size of the entire market across maturities also matters. Similarly, if there are

scale economies in extracting information from order flows, the scale of trading

activities may also matter. Size does seem to matter, although it is clearly not

the only determinant of liquidity. Judging by the success of the government bond

futures markets as well as by bid-ask spreads in the G10 markets, there may be

a size threshold that lies around $100-200 billion. Below this, sustaining a very

liquid government bond market may not be easy.

An important but often neglected policy choice is between splitting and lumping

various forms of government debt. This choice has several dimensions: few versus

many maturities, nominal versus inflation-indexed bonds, and one versus many

public-sector obligors. In the case of industrialized countries, there seem to be

four maturities of choice: two, five, ten, and thirty years. France, Germany, and

the U.S. each conduct regular auctions of straight nominal bonds for only these

maturities. Italy and Spain have both opted for five maturities (including 15

years for Spain), while the U.K. issues conventional gilts in mostly 10-year and

30-year maturities. In addition to nominal bonds, the governments of Canada,

France, U.K., and U.S. have committed themselves to issuing inflation-indexed

bonds.

How will liquidity adjust in the short run to the changing supplies of tradable

government debt? In growing markets, increased supply should enhance liquidity

and contribute to smooth market functioning if other structural conditions are

present. In markets that are already well developed, it may be thought that

arbitrage activity would ensure that yields are little affected by declining supply.

In practice, however, liquidity requires market-making capital and this capital is

allocated based on a forward-looking calculation. Hence, liquidity may anticipate

rather than follow the market size.
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Chapter 2

Pricing government bonds in

Euro area: performance

evaluation of term structure

interest rate models 1

2.1 Introduction

The term structure (spot) of interest rates is a theoretical relationship between the

yields to maturity of zero-coupon bonds and their time-to-maturity. Supposedly,

this existing yield curve (for short) is a fundamental information from financial

markets. Market participants pay attention to the form of the term structure.

For example, the slope of the yield curve has proven to be a good proxy for

economic growth (see, e.g., Ang, Piazzesi, and Wei [2006]). The term structure

of interest rates is also essential to asset and risk management (see, e.g., Cochrane

and Piazzessi [2008] and Diebold, Piazzesi, and Rudebusch [2005]). Of course,

one can observe a finite set of spot interest rates because zero coupon bonds

are relatively rare. However, the yield curve is a theoretical concept that is

1This study is based on a working paper co-authored with Professor Franck Moraux. These
results were presented at the 33rd International Conference of the French finance Association
(May 2016) and the 23rd Forecasting financial Markets Conference (May 2016). We thank
participants of these conferences for the useful comments and discussion.
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not directly observable in the market. We can find several term structures of

interest rates provided by agencies and central banks for data providers (e.g.,

Bloomberg), based on which these different term structures are built. The values

of most interest rates with fixed tenors given by data providers are model-based

information as they are implied by the interpolation technique rather than direct

price information. Spot interest rates are more of outputs rather than observed

data.

The general concept of this research is to compare the results provided by four

specifications on data related to four countries. A few articles compare several

models on datasets containing several countries and none of them use bond prices.

Instead, most of them take zero coupon yield curves for granted, focus on one

country and analyze the different models on such a dataset.

There are several competing functionals here, namely model, approach, specifi-

cation, and function are used interchangeably to build the term structure (spot)

of interest rates, but the literature offers no clear and definitive results about the

model to be adopted. Here, we consider four Nelson-Siegel style specifications.

The first two models were taken from the literature, that is, Nelson and Siegel

[1987], and Svensson [1994]. The last two models are new and are explored in

this research for the first time. We use government bond prices of four countries

in the euro area and find the parameters of each model for each country on a

daily frequency. We then deduce the term structures of interest rates during the

sample period. The gap between predicted and observed prices provides evidence

on how well a specific model describes the reality. This is the in-sample fitting

comparison of a range of different term structure models. We collect data on

government bond prices denominated in the euro and issued by four eurozone

countries: France, Germany, Italy, and Spain. We take several countries in one

geographical area to find the best model for each country separately and then

provide analysis by comparing the models for all the countries together, irrespec-

tive of any currency issues. For this purpose, we study the euro area, which is

a good laboratory for such experiments as the currency is the same for all the

countries under study. Moreover, comparing various specifications allows us to

assess the model risk.
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Several clarifications deserve to be mentioned. First, we do not work with forward

rates, as they are by-products of the fitted functional, and we can compute such

rates explicitly. Second, this study is not a strictly speaking yield curve fitting

exercise, that is, we do not use any data on bond yields. Instead, we exploit

coupon bond prices for calibration. Most studies in fixed income securities work

with monthly data, whereas, in this study, we operate with daily prices and

relative to these studies (see, e.g., Diebold and Li [2006]), this is a rather high

frequency data. Our sample period spans twenty years from January 1999 to

December 2018. We exploit more than 515,000 bond prices in our research,

all taken from Bloomberg. Third, we calibrate the parameters continually in

the spirit of Diebold and Li [2006]. The functional defines the interpolation

specification. We consider four candidates and our criteria is the ability to match

bond prices, and the performance is assessed through various dimensions. For

instance, we compute the average pricing errors (in euros) as well as the best

relative model. The model comparison is organized in two steps. First, we find

the best model for each country separately; second, we provide analysis in the

best-model comparison for all the four countries. During the second step, there

are several possible results as we attempt to obtain the best model for all the

countries, or one best model for each country.

This chapter is organized as follows. Section 2.2 reviews the literature on the

subject and briefly presents the results obtained in the field of multiple-model

comparison and on taking datasets from several countries in the euro area. Sec-

tion 2.3 describes the models. Section 2.4 describes the algorithm and presents

the multi-criteria description. Section 2.5 describes the dataset. Section 2.6 deals

with the empirical results, and Section 2.7 investigates the out-of-sample fore-

casting of the yield curve dynamics. Section 2.8 presents the concluding remarks.

2.2 Literature review

Bliss [1997] tests and compares five distinct methods. To estimate the term

structure of interest rates in the U.S., the author collects monthly prices of bills,

coupon-bearing notes, and bonds and implemented various parametric and non-
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parametric tests. The model parameters are estimated monthly to build a term

structure of interest rates. This term structure for a given month is then used

to compute the fitted prices and to assess the pricing errors of Treasury securi-

ties. The author uses two criteria for evaluating and comparing the fitted-term

structure. The first one is the duration-weighted mean of the absolute fitted-

price errors. The second one is the “hit rate”, which is intuitive. Ioannides

[2003] compares seven methods for estimating the term structure of interest rates

from a daily dataset comprising the prices of U.K. Treasury bills. The author

investigates two mainstream approaches: a parsimonious representation relying

on an exponential decay term and a spline representation that may be further

specified into parametric and nonparametric splines. He runs both in-sample and

out-of-sample performance analysis. Based on the obtained residuals, he sug-

gests that the parsimonious specifications perform better than the linear spline

counterparts. Kalev [2004] works with two models for curve fitting together with

two specifications to estimate the zero-coupon yield curve of Australian trea-

suries. The dataset contains treasury notes and the Commonwealth Government

treasury bonds. The author studies a ten-year sample period containing nineteen

monetary policy change decisions made by the Reserve Bank of Australia. All the

previous studies used only a single country’s dataset, whereas, in this research,

we investigate four countries belonging to a single geographic area.

Some studies in the relevant literature explore the term structure of interest

rates of eurozone countries. Most of them pursue different goals, employing dis-

tinctively different techniques. For example, Koukouritakis and Michelis [2006]

collect the yield curve of the original 15 countries of the eurozone to test the ex-

pectation hypothesis of the term structure of interest rates. Using cointegration

analysis and common trend techniques, they decompose the dynamics of the term

structures into transitory and permanent components. Focusing on central and

eastern European countries by using the Diebold, Rudebusch, and Aruoba [2006]

dynamic version of the NS model, Hoffmaister, Roldos, and Tuladhar [2010] ex-

plore the dynamics of the yield curves and analyze the impact of macro shocks on

the term structure of interest rates of these countries. Sopov and Seidler [2010]

examine the dynamics of the yield curve of central European countries (i.e., the
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Czech Republic, Slovakia, Poland, and Hungary). To account for some possi-

ble regional latent factors, they propose a state space approach coupled with a

Kalman filtering technique.

Finally, studies focusing on monetary policy issues in the eurozone use the term

structure of interest rates, as the concept provides important information on the

economy for policy-makers. First, the term structure of interest rates may itself

be the target of the monetary policy. The level of interest rates has strong impli-

cations and significance for the banking sector and industry. Second, the shape of

the yield curve (level, slope, and curvature) is known to reveal information about

the expectations and preferences of the market participants. Third, any change

in the term structure of interest rates following a monetary policy decision may

be viewed as a market judgment of that decision. Estrella and Mishkin [1995]

examine the relationship of the term structure of interest rates with monetary

policy instruments in the U.S. and the eurozone.

2.3 Yield Curve Models

In this study, we compare four different specifications for extracting the yield

curve from the observed coupon bond prices. The first two specifications we

consider are taken from the relevant literature, while the next two are proposed for

this research. We denote by τ the time to maturity measured in years. Table 2.1

summarizes the key features of the models such as the number of parameters to

estimate, and the linear and non-linear loadings for all the models.

2.3.1 The NS approach

The dynamic Nelson-Siegel (hereafter DNS) approach is based on the model in-

troduced and developed by Diebold and Li [2006] (hereafter NS) and the yield

curve specifications of Diebold, Rudebusch, and Aruoba [2006]. Summing up this

approach, the instantaneous forward rates are supposed to be correctly described

at time t as:

fNS (t, τ) = β1t + β2te
−λtτ + β3tλte

−λtτ . (2.1)
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Table 2.1: Summary of term structure models

Linear Loadings NS Sv eBC eSv BC

1 ∗ ∗ ∗ ∗ ∗

1−e−λτ
λτ

∗ ∗ ∗ ∗ ∗

1−e−λτ
λτ
− e−λτ ∗ ∗ ∗ ∗ ∗

1−e−γτ
γτ

∗ ∗ γ = 2× λ

1−e−γτ
γτ
− e−γτ ∗ ∗

Linear parameters 3 4 4 5 4
Non-linear parameters 1 2 2 2 1

This table summarizes information about term structure models. The abbre-
viations NS, Sv, eBC, eSv, and BC represent the Nelson-Siegel model, Svens-
son model, extended Bjork-Christensen model, extended Svensson model, and
Bjork-Christensen model, respectively.

It is straightforward to deduce from equation (2.1) the yield to maturity given

as:

yNS (t, τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
. (2.2)

Here β1t, β2t, β3t and λt are time-dependent parameters that must be estimated.

The main difference between the original NS specification and the DNS approach

is that the structural parameters are time-dependent. As the NS model is widely

accepted and used among practitioners, the DNS approach becomes one of the

most popular methods to estimate the term structure of interest rates. The DNS

approach is attractive because it inherits the precise features of the “static” NS

specification. In short, the DNS approach is simple, intuitive, and parsimonious
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with only four parameters to fit at each period 1.

2.3.2 Dynamic Svensson approach

The dynamic Svensson (hereafter Sv) approach is based on the model introduced

and developed by Svensson [1994] specifications for the yield curve. He suggests

increasing the flexibility of the seminal “static” NS specification by adding a

fourth term with two additional parameters, namely βSv4t and γt. His goal is to

improve the curve fitting performance on Swedish data. In the Svensson [1994]

specification, the forward curve is described by

fSv (t, τ) = β1t + β2te
−λtτ + β3tλte

−λtτ + β4tγte
−γtτ (2.3)

and the yield to maturity curve is given as:

ySv (t, τ) = β1t+β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ β4t

(
1− e−γtτ

γtτ
− e−γtτ

)
,

(2.4)

where β1t, β2t, β3t, β4t, λt and γt are the six time-dependent parameters to be

estimated. By adding a second hump shape to the original specification, perhaps,

a better fit can be obtained.

2.3.3 Extended Bjork and Christensen approach

We include a couple of dynamic approaches. First, we propose the “extended

Bjork & Christensen” (hereafter eBC) model that is inspired by the Bjork and

Christensen [1997] specification (hereafter BC). This dynamic version is indeed

a modified version, that is, we include a parameter γt to the BC approach that

defines the position of the second hump. Here, we do not have an additional

curvature element, but we retain the additional slope element.

f eBC (t, τ) = β1t + β2te
−λtτ + β3tλte

−λtτ + β4te
−γtτ . (2.5)

1Among the popular competitors, we mention the spline curve fitting approach of McCulloch
[1971] and McCulloch [1975].
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The associated yield to maturity is given as:

yeBC (t, τ) = β1t+β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ β4t

(
1− e−γtτ

γtτ

)
,

(2.6)

where β1t, β2t, β3t, β4t, and λt are the five time-dependent parameters to be

estimated. The special case where γt = 2λt corresponds to the original BC

specification.

Bjork and Christensen propose to revisit the “static” NS model specification to

address some consistency concerns between the shapes of the forward rate curve

this specification can provide and the possible dynamics of future interest rates.

They suggest including an additional exponential term, that is, e−2λtτ to the NS

specification, so that the forward curve is described as:

fBC (t, τ) = β1t + β2te
−λtτ + β3tλte

−λtτ + β4te
−2λtτ . (2.7)

The associated yield to maturity is given as:

yBC (t, τ) = β1t+β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ β4t

(
1− e−2λtτ

2λtτ

)
,

(2.8)

where β1t, β2t, β3t, β4t, and λt are the five time-dependent parameters to be

estimated.

2.3.4 Extended Svensson approach

In addition to the eBC approach, we propose an “extended Svensson” (hereafter

eSv) model that is inspired from Svensson [1994]. This dynamic version is indeed

a modified version as we include a parameter β5t associated with γt to the Sv

approach for additional slope loading. We plot the factor loadings associated
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Figure 2.1: Loadings of extended Svensson model
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This figure shows the factor loadings in the extended Svensson model where the factors
are β1, β2, β3, β4 and β5. The associated loadings are 1 for β1, (1− e−λτ )/λτ for β2,
(1−e−λτ )/λτ−e−λτ for β3 where λ parameter is equal to 0.0609, (1−e−γτ )/γτ for β4,
and (1−e−γτ )/γτ−e−γτ for β5 where γ parameter is equal to 0.03045. The parameter
τ denotes maturity in years.

with γt and λ parameters in Figure 2.1. The forward curve is given as:

f eSv (t, τ) = β1t + β2te
−λtτ + β3tλte

−λtτ + β4te
−γtτ + β5tγte

−γtτ (2.9)

and the corresponding yield to maturity is given as:

yeSv (t, τ) = β1t+β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ β4t

(
1− e−γtτ

γtτ

)
+ β5t

(
1− e−γtτ

γtτ
− e−γtτ

)
,

(2.10)

where β1t, β2t, β3t, β4t, β5t, λt, and γt are the seven time-dependent parameters

to be estimated.
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2.4 Empirical methodologies

All the specifications previously discussed allow us to price government coupon

bonds. Consequently, the general principle of an empirical fitting methodology is

to find parameters so that the prices predicted by the model fit the ones observed

in the market as closely as possible.

2.4.1 Parameter estimation

Consider at time t, a set of N coupon bonds with prices denoted byBi(t), where

i = 1, . . . , N . Each of them promises some payments Ciq at time tiq where

q = 1, . . . , Ki and Ki are the number of promised payments. The payments Ciq

are typically constant Ci for q strictly less than Ki and CK equal to Ci + F ,

where F is the face value (equal to 100). Denoted by Θ, the set of parameters

and y(t, tiq; Θ) the yield to maturity at time t associated with horizon tiq provided

by the specification under security. Then, the price of the coupon bond at time

t is given by

Bi (t,Θ) =

Ki∑
q=1

Ciqe
−(tiq−t)y(t,tiq ;Θ) , i = 1, . . . , N. (2.11)

The main goal of our research is to select the model from the list presented in

the previous section that provides accuracy in bond price calculation. At time t,

on the market we observe real coupon bond prices B̂i (t). The parameter vector

Θ̂t at time t may be, in principle, chosen to minimize the sum of squared errors

between the values predicted by the model and the observed prices.

Θ̂t = argmin
Θ

N∑
i=1

(
Bi (t,Θ)− B̂i(t)

)2

. (2.12)

In fact, we consider some potential heterogeneity in the observed errors. More

specifically, we weigh the squared errors in (2.12) to minimize the sum of the
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weighted squared errors at time t

SSE (t) = min
Θ

N∑
i=1

pi(t)
(
Bi (t,Θ)− B̂i(t)

)2

, (2.13)

where

pi(t) =
1

(Di(t))2
(2.14)

with Di(t) the modified duration of the ith bond captured by

Di(t) =

Ki∑
q=1

tiq
Ciqe

−(tiq−t)Y TM(t)

B̂i(t)
. (2.15)

Here Y TM(t) represents the yield-to-maturity for this bond at time t. The

modified duration allows to convert the pricing errors into the fitted yield curve

errors. The concept of duration provides a useful method for understanding the

relationship between the price and yield-to-maturity of a bond. That is, for a

given change in a bond’s yield-to-maturity, the change in price will be greater

for a longer-term bond than for a shorter-term bond, and duration attempts to

quantify this impact. Adding weights in the minimization function, results in a

better fit to yield curves (see Bolder and Streliski [1999]).

2.4.2 Performance evaluation

The above optimization process to estimate parameters is repeated for our sample

period daily. Denote M as the total number of days in the sample period. Let

Bi(t,Θ
∗()) be a price of the bond i calculated for day t in the framework of

one of the models for each country. In order to formulate a criterion to identify

the model that describes the real market bond prices with the best accuracy, we

define the quantity as:

X(country,model) =
1

MN

M∑
t=1

N∑
i=1

∣∣∣Bi(t,Θ
∗(model))− B̂i(t)

∣∣∣ , (2.16)

where | · | represents the absolute value.
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To investigate the robustness of our performance results, we consider a second

performance evaluation criteria. Recall that for a given country we have N bonds.

For each specification j = 1, 2, 3, 4 we compute the estimated bond price Bi(t,Θ
∗
j)

at time t, where i = 1, . . . , N . The mean absolute error is given by:

MAEj(t) =
1

N

N∑
i=1

∣∣∣Bi(t,Θ
∗
j)− B̂i(t)

∣∣∣ . (2.17)

For each day t of the sample period, we define the specification that produces the

smallest mean absolute error. For each model j, we compute the score as follows:

Scorej =
M∑
t=1

Ij(t) , (2.18)

where Ij(t) is an indicator that the specification j performs the best during the

day t.

Ij(t) =

1, MAEj(t) < MAEh(t) ∀h 6= j ;

0, otherwise .
(2.19)

Finally, for one country we obtain the score for each NS term structure specifi-

cation. This score corresponds to the number of days in the sample period when

the given model performs the best among others.

2.5 Data Description

We collect data on government bonds for four eurozone countries over a twenty-

year (1999–2018) period. The set of daily prices contains 800 different bonds with

different coupon rates, maturities, and countries (i.e., France, Germany, Italy, and

Spain). We only select the coupon “fixed rate” type and the “bullet” type bonds.

We consider only euro-denominated bonds to avoid any problems associated with

the exchange rates. Figure 2.2 shows the total number of available securities on a

specific day for a given country. It shows that, from 2001, the number of available

French government securities increased in the market. For Italy, after decreasing

until 2007, the number of bonds increased up to 90 available bonds at the end of

the sample period. We can observe that Germany has 60 available government
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securities at the beginning of the sample period and this number decreased in the

following years. From 2005 to 2011, the number of available German bonds have

remained stable. Thereafter, there was an increase; however, since 2015 a decrease

is observed in the number of available bonds. This contrasts with France, Italy,

and Spain. For Spain, since 2009, the number of available government securities

increased almost linearly and, by 2018, there were about 45 bonds in the market.

Figure 2.2: Number of government bonds within the dataset

 

This figure shows the total number of available securities on a particular
day for a given country. Sample period: January 4, 1999, to December 28,
2018. Frequency: Daily.

The terms and functioning of the government securities market are not the same

in the eurozone. We consider Obligation Assimilable by Trésor (OATs) for France,

Bundesobligation and Bundesanleihen (or Bund) for Germany, Italy Buoni Poli-

ennali DelTesoro for Italy, and Bonos del Estado and Obligaciones del Estado
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for Spain. In Germany, the Federal government issues bonds because there also

exist very powerful leaders, but this issuer is not like the centralized French gov-

ernment. All the bonds have yearly coupon rates, and the number of bonds is

different for each country. The dataset has 158 bonds for France, 261 bonds for

Germany, 258 bonds for Italy, and 123 bonds for Spain. Tables A.5, A.6, A.7 and

A.8 in the Appendix provide the complete list of the considered bonds and other

details about these bond issues: ISIN code, issue and maturity date, coupon rate

and tenor for France, Germany, Italy, and Spain, respectively.

Figure 2.3: Maturity Distribution of the government bonds

This figure shows the maturity structure of the nominal government securities for a
given country. The first bond issue for France was in 1985, for Germany in 1986, for
Italy in 1990 and for Spain in 1989. Source: Bloomberg.

Figure 2.3 shows the maturity distribution of government securities for a given

country. The first bond issue for France was in 1985, for Germany in 1986, for

Italy in 1990, and 1989 for Spain. We can clearly see that each country most

often issues 10-year bonds. Government securities with time to maturity equal
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to thirty years at the time of issuance also represent an important part of all the

issued bonds. We notice the presence of bonds with tenor less than ten years,

five years, and two or three years. In addition, France, Italy, and Spain propose

15-year securities; however, this is not the case for Germany. Unlike France, Italy,

and Spain, Germany issues very long-term bonds. France issues these securities

with fifty-year tenor, while Spain issues for two years, and Italy issues for three

years. Italy has also issued some bonds with a time to maturity of 40 years at

issuance.

The first issue to address when dealing with a bond database is to either choose

between living bonds only and avoid bonds that are paid back before the end

of the period and, therefore, disappear from the database. We used a set of

bonds that remain identical over the sample period. Our objective, nevertheless,

is to consider as many available bonds as possible. The sample period for all the

countries is from January 4, 19991 to December 28, 2018.

Alternatively, there is also the possibility of considering yields-to-maturity of

zero-coupon bonds provided by Bloomberg. However, for two reasons, we do not

consider these available interest rates as suitable for our study. First, zero-coupon

bonds are infrequent, consequently, the yield-to-maturity of zero-coupon bonds

provided by Bloomberg is deduced from coupon-bearing bonds using a stripping

method (e.g., bootstrap), therefore, there is a quality concern. Second, we may

not know which model was used to compute the provided interest rates, and this

is a supplementary source of problems. The bottom line is to avoid using the

provided bond yields.

2.6 Results

In this section, we present the results and discuss the model fit. The two perfor-

mance criteria described earlier provide the method to compare the term struc-

ture models and identify the answer that is best to price government bonds in

the eurozone area. Finally, we discuss the time series of the fitted errors and the

1This data corresponds to the launch of the EURO currency.
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implied par yields for the four countries and the four-term structure specifications

to closely study the differences between twenty such cases.

2.6.1 In-sample model fit

We compare how different NS style specifications describe the bond prices ob-

served in the market. We take the datasets on government bond prices and

compute the parameters, and calculate the bond prices for each model and coun-

try. Market practitioners tend to favor a term structure model equipped with

several characteristics1: it must be flexible, simple, specified appropriately, and

realistic. Econometricians would add to this list that a term structure model

must provide a good fit to data, while a theoretical economist would also require

an equilibrium derivation of the model. Hereafter, we stay close to the market

participants’ point of view and, among the four specifications, we search for the

one that provides the best fit for government securities prices.

We fit all the four term structure models using daily bond prices issued by the four

respective countries. For France and Germany Panel A and B of Table A.9 in the

appendix provide the descriptive statistics for the estimated set of parameters

and Panel C and D give the same information for Italy and Spain. In order

to discuss our results, we propose to define one term structure of interest rates

specification and observe the differences across the four countries.

• First we describe the Nelson and Siegel model.

Factor β1 corresponds to the yield curve level. For theoretical reasons, essentially,

this value is considered as positive. Accordingly, we add a restriction in the

parameter space considered by the estimation process. For France and Germany

the value is about 4 percent, for Spain it is 5.28 percent, and for Germany the

value is 9.22 percent. The non-linear parameter λ defines the hump position.

Our parameter estimation procedure keeps it free, unlike most of the previous

literature that fixes it in advance. For all the counties, its average value is about

3. The factor β2 is associated with the slope loading and the factor β3 with

1For more details see Rogers [1995].
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curvature loading. Both parameters have negative mean values across the sample

period and for all the countries.

• Second we describe the Svensson model.

Factor β1 corresponds to the yield curve level. According to the restrictions used

in the estimation process, this value must be positive. It is highest for Italy at 4.2

and lowest for Germany at 1.2 percent. There are two non-linear parameters λ

and γ that define the position of the hump. For all the four countries, parameter

λ is about 2 and defines the position of the first hump. For France and Germany,

the γ parameter is about 13 and 19 for Italy and Spain, and it defines the position

of the second hump. Factor β2 is associated with the slope loading, factor β3 with

curvature loading, and both are related to λ parameter. Parameter β3 value is

negative across all the countries; parameter β2 is positive for Germany and Spain

and negative for France and Italy. Factor β4 is associated with curvature loading

related to the γ parameter. Compared to β2 and β3 parameter values, β4 value

is more important and is about 9 for France and Spain and 13 for Germany and

Italy.

The two following term structures of interest rate specifications are new in the

literature and introduced in this research.

• Next we describe the extended Bjork and Christensen model.

Factor β1 corresponds to the yield curve level. According to restrictions used in

the estimation process, this value must be positive. It is lowest for Germany at

2.3 and highest for Italy at 9.4 percent. The two non-linear parameters, namely

λ and γ, define the position of humps. For all the four countries, parameters λ,

which defines the position of the first hump, is about 3, except in the case of Italy

where the value is 5.23. Parameter γ, which defines the position of the second

hump, is the smallest value for Italy at 14.2. For France and Germany, the γ

parameter has values close to about 16 and, finally, the greatest value is for Spain

at 20.46. Factor β2 is associated with the slope loading, factor β3 with curvature

loading, and both are related to the λ parameter. We see that for all the four

countries, these two parameters are negative. Factor β4 is associated with slope
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loading and is related to γ parameter. Its value is positive for all the countries,

except Italy where β4 is negative.

• Finally, we describe the extended Svensson model.

Factor β1 corresponds to the yield curve level. According to the restrictions used

in the estimation process, this value must be positive. It is lowest for Germany

at 0.8 and highest for Italy at 9.2 percent. There are two non-linear parameters

λ and γ that define the position of humps. For all the four countries, λ is about 3

and defines the position of the first hump, while γ ranges from 12 for France and

18 for Italy. Factor β2 is associated with slope loading, factor β3 with curvature

loading, and both are related to the λ parameter. Parameter β2 is positive and β3

is negative for all the four countries. Factor β4 is associated with slope loading,

factor β5 with curvature loading, and both are related to the γ parameter. In

contrast to β2 and β3, parameter β4 is negative and β3 is positive across all the

four countries.

Table 2.2 presents the descriptive statistics for fitting errors. The measure of

the overall fitting error on a particular day is the average of the absolute errors

between the predicted and market yields across all the available securities during

that day. It is computed by

MAEt =
1

Nt

Nt∑
i=1

∣∣∣ŷ (t, i)− y
(
c, Ti; Θ̂t

)∣∣∣ , (2.20)

where Nt is the number of available government securities for that day. The table

shows that the models face difficulties to fit the data for Italy. For this country,

the mean fitting error across the entire sample period is about 22–24 basis points,

whatever be the specifications. This is confirmed by the median fitting error that

is twice smaller and equal to 10 basis points. The mean fitting error for France is

about 11 basis points. The median fitting error for France is six times less than

its mean value. This suggests that the distribution is highly skewed, as confirmed

by the maximum. For these two countries, the range of the average fitting error is

quite large compared to Germany and Spain for all the term structures of interest
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Table 2.2: Summary statistics of the model fitting errors

Mean Std. Dev. Median Minimum Maximum
France

NS 11.720 29.924 2.335 0.672 187.167
Sv 10.682 29.472 1.573 0.553 173.146

eBC 10.743 29.145 1.661 0.585 168.055
eSv 10.484 28.878 1.541 0.553 167.910

Germany
NS 3.406 3.355 3.082 0.763 10.166
Sv 2.351 6.163 1.768 0.546 8.349

eBC 2.494 3.711 1.961 0.642 8.639
eSv 2.337 8.937 1.759 0.523 7.855

Italy
NS 24.005 29.338 10.262 1.680 122.359
Sv 22.996 28.161 10.056 1.631 126.002

eBC 23.876 29.463 10.241 1.632 124.815
eSv 22.549 27.166 9.987 1.633 118.957

Spain
NS 3.977 2.012 3.677 0.744 11.501
Sv 3.339 1.724 3.183 0.570 11.042

eBC 3.496 1.738 3.299 0.579 10.835
eSv 3.202 1.636 3.054 0.566 10.863

This table reports the descriptive statistics (i.e., the mean, standard deviation, me-
dian, min and max) of the daily fitting errors for securities issued by the four countries
and the four term structure models for the sample period from January 4, 1999, to
December 28, 2018.

rate specifications. The model fit for German data is better than the model fit

for the Spanish market data.
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2.6.2 Identifying the best model

To identify the best model we use two criteria, which are criteria (2.16) and

(2.18). Table 2.3 presents the results. For all the four countries and both criteria,

the best model is the extended Svensson model. Panel A of Table 2.3 provides

the results of performance analysis with the mean absolute errors. The criterion

value for all the four countries, corresponding to the eSv term structure model, is

lower than the same values for other models. Of course, the average value taken

for all the four countries for each model concludes the same in the last row of

Table 2.3. For both fitting criteria, ordering of the four specifications is given

as: eSv, Sv, eBC, and NS term structure model. Panel B of Table 2.3 provides

the score values calculated by the equation (2.18). For each country and for each

model, we calculate the number of days when the given model produces the least

mean absolute bond price errors taken for all the government bonds. Yet again,

we observe that for all the four countries, the eSv model is the best fit for most

days of the sample period.

2.6.3 A closer look at the fitting errors over the sample

period

This section presents an alternate method to compare the specification. For the

given specification, we provide two figures, where one plots the fitted errors and

the other plots the implied par yield curve with the observed and fitted yield

to maturity for all the available government securities for a specific day of the

sample period. The time series of fitting errors provide information about the

ability of the term structure model to fit the data for each day of the sample

period.

Figure 2.4 plots the time series of fitting errors across all the available securities

for a specific day for a given country for the advanced Svensson specifications

(Figures A.8 to A.10 plot the time series of the fitting errors for the remaining

three specifications and are presented in the appendix). For all the figures, panel

A corresponds to France, panel B to Germany, panel C to Italy, and panel D to

Spain. There are two different y-axis limits ranging from minimum to maximum
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Table 2.3: Performance analysis

Panel A: Mean Absolute Errors
DNS Sv eBC eSv

France 0.7254 0.5976 0.6013 0.5802
Germany 0.3508 0.1994 0.2177 0.1938
Italy 1.7279 1.6835 1.7221 1.6651
Spain 0.2928 0.2239 0.2319 0.2088
Mean 0.7740 0.6759 0.6931 0.6618

Panel B: Score Measure
DNS Sv eBC eSv Total

France 150 828 442 3912 5332
Germany 119 1041 462 3767 5389
Italy 733 1307 625 2632 5297
Spain 210 911 672 3492 5285

This table shows two performance criteria. The first one is a comparison of
the term structure models and defines with NS specification to provide the
calculated bond prices that are closest to the observed bond prices via the
mean absolute errors. The second performance criterion gives the number
of days when a given term structure model produces the smallest absolute
error between the observed bond price and model prediction.

fitting errors. In figure 2.4, on Panels A and C, the fitting errors range from zero

to 200 basis points; on Panels B and D, the fitting errors range from zero to 20

basis points.

We propose to define one country and compare the four figures across different

term structures of interest rate models. In the case of France, the fitting errors

are relatively important at the beginning of the sample period. Precisely, this

happens over a two-year period from 1999 to 2001. We observe a decrease in

the plotted values from about 170 basis points to 1.8 basis points on January 22,

2001.1 After that date, the fitted errors range from zero to about 3–4 basis points

for all the specifications. In the case of Italy, the figure displays large fitting errors

during the global financial crisis (2007–2008). The two pics probably reflect some

11This will be explained in more detail in Chapter 3 with reference to the French market.
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Figure 2.4: Fitting Errors (extended Svensson model)

 

This figure shows the total fitting error implied by the extended Svensson model.
The fitting error is computed as the mean absolute error between the predicted
and the market yields across all the available securities on a particular day for a
given country. The fitting errors are shown in basis points. The sample period:
January 4, 1999 to December 28, 2018. Frequency: Daily.

market events. The first one may correspond to the global financial crisis in

2007–2008, and the second to the 2012 European debt crisis.

For Germany and Spain, the range of fitting errors varies from 10 times less up

to 20 basis points instead of 200 basis points. Germany experiences a decrease in

fitting errors from 2000 to 2007, an upsurge associated with the financial crisis in

2007–2008, followed by a decreasing trend in the fitting errors from 2009 onward.

Germany was less impacted by the European debt crisis in 2012, while Spain has

fitting errors that are more relative than other countries.
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Figure 2.5: Par yield curve (NS specification) on August 16, 2018

 

This figure shows the Nelson-Siegel par yield curve and fit of individual securities
for August 14, 2002, for a given country during the sample period. The curve is
reported in annualized percent.
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Figure 2.6: Par yield curve (NS specification) on June 6, 2008

 

This figure shows the Nelson-Siegel par yield curve and the fit of individual
securities as on June 6, 2008, for a given country during the sample period. The
curve is reported in annualized percent.
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Figure 2.7: Par yield curve (eSv specification) on June 6, 2008

 

This figure shows the Svensson par yield curve and the fit of individual securities
for April 14, 2008, for a given country during the sample period. The curve is
reported in annualized percent.
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2.6.4 A closer look at the par-yield curves

We plot the par yield curve for a given day (August 16, 2018) of the sample pe-

riod to compare how a term structure specification performs in different countries.

Figure 2.5 presents the implied par yield curve and the fit of individual securities

with actual and predicted yield-to-maturity for all available government securi-

ties using the NS term structure of interest rate model. The flexibility of NS

specification with only four parameters is sufficient to provide a good fit on this

day. For all the four countries we see the classical shape of the term structure of

interest rates, meaning the upward-sloping yield curve.

Second, we choose June 6, 2008, as another day. Figure 2.6 and Figure 2.7 present

the implied par yield curve and the fit of individual securities for the NS and eSv

models. We see that the NS term structure of interest rate model does not reflect

the complexity of the yield-to-maturity values. In contrast the extended Svensson

specification with seven parameters is flexible with two possible yield curve humps

to adjust to the reality of the selected day (June 6, 2008). We see two yield curve

humps in the case of France and Germany. Even more complex shapes of the

term structure of interest rates are presented in the case of Italy and Spain. One

mode difference between Figure 2.6 and Figure 2.7 is that the NS specification

suggests the upward-sloping yield curve for all the countries on June 6, 2008 and,

at the same time, the eSv specification provides downward-sloping curves for all

the countries.

Figure A.11 and Figure A.12 in the Appendix show the respective implied par

yield curve for Sv and eBC specifications for a given country on June 6, 2008. The

Svensson term structure of interest rates provides the possibility of defining two

humps of the yield curve. We can clearly see the presence of two humps across

all the countries. Moreover, this date corresponds to the crisis period; thus, we

notice that the model fit is noisy.

2.6.5 Correlation

Table 2.4 reports the correlations among the different rates of maturities. The

correlation coefficients vary by country: for France the variation is from 0.615
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Table 2.4: Correlation of zero-coupon yields

3 months 1 year 3 years 5 years 10 years
France

3 months 1.0000 0.7991 0.6150 0.6227 0.6158
1 year 1.0000 0.9393 0.9175 0.8820
3 years 1.0000 0.9910 0.9581
5 years 1.0000 0.9817
10 years 1.0000

Germany
3 months 1.0000 0.9058 0.8958 0.8818 0.8457

1 year 1.0000 0.9857 0.9651 0.9180
3 years 1.0000 0.9944 0.9646
5 years 1.0000 0.9859
10 years 1.0000

Italy
3 months 1.0000 0.6245 0.4333 0.4119 0.3282

1 year 1.0000 0.9232 0.8822 0.7771
3 years 1.0000 0.9914 0.9358
5 years 1.0000 0.9695
10 years 1.0000

Spain
3 months 1.0000 0.7658 0.6836 0.6498 0.5655

1 year 1.0000 0.9620 0.9171 0.8138
3 years 1.0000 0.9888 0.9289
5 years 1.0000 0.9722
10 years 1.0000

This table reports the correlation of eSv fitted zero-coupon yields for three months,
one, three, five, and ten year maturities implied by our sample of government nominal
securities issued by France, Germany, Italy, and Spain. The sample period is from
January 4, 1999 to December 28, 2018, with daily frequency.

to 0.99; Germany from 0.846 to 0.99; Italy from 0.328 to 0.99; and Spain from

0.565 to 0.99. The correlations are computed for a daily series throughout the

sample period. Across all the countries, we see that the correlation between the
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three-year and five-year zero-coupon rates is the maximum value among other

values in the corresponding correlation matrix. In particular, Table 2.4 shows

that the less correlated time series of interest rates is the correlation between the

three-month and ten-year Italian zero-coupon rates and the value is 0.3282.

2.7 Out-of-sample forecast performance

This section proposes a forecasting investigation of the term structure of interest

rates in the spirit of Diebold and Li [2006]. An approximation description of the

dynamics of the yield curve should not only be able to fit the data appropriately

(in-sample). It should also be able to forecast the data (out-of-sample). Caldeira,

Moura, and Santos [2016] explore the performance of several forecasts for the yield

curve. The main benchmark model adopted in their paper is the random walk

(RW) model. Authors consider that, in practice, it is difficult to beat the RW

method in terms of out-of-sample forecasting accuracy.

2.7.1 Forecasting method

We consider three alternative forecasting methods including the RW, univariate,

and multivariate autoregressive specifications.

• Random walk

The t+ h-step-ahead forecast for a yield of maturity τ is given by

yt+h(τ) = yt(τ) + εt(τ) (2.21)

where

εt(τ) ∼ N(0, σ2(τ)).

The RW is the simplest and yet important model in time series forecasting.

We assume that during each period, the interest rate for the given maturity

τ takes a random step away from the previous value, and the steps are

independently and identically distributed in size.

• Univariate autoregressive specification
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A first-order univariate autoregressive model AR(1) allows forecasting the

yield for maturity τ using the available data for that maturity as

yt(τ) = α + βyt−1(τ) + εt. (2.22)

The forecast for h-step ahead horizon is obtained as:

ŷt+h|t(τ) = α̂
(

1 + β̂ + β̂
2

+ ...+ β̂
h−1
)

+ β̂
h
yt(τ)

where the one-step ahead forecast is produced as ŷt+1(τ) = α̂ + β̂yt(τ).

• Multivariate autoregressive specification

A first-order unrestricted vector autoregressive model VAR(1) can be seen

as the extension of the AR(1) model and the estimation model is:

yt = A+Byt−1 + εt, (2.23)

where yt = (yt(τ1), yt(τ2), ..., yt(τN))′. The forecast for h-step ahead horizon

is obtained as:

ŷt+h|t = Â
(
I + B̂ + B̂2 + ...+ B̂h−1

)
+ B̂hyt

where the 1-step ahead forecast is produced as ŷt+1 = Â + B̂yt. For this

model N = 5 since we take five maturities with τ equal to three months,

one, three, five and ten years; thus, vector yt has the dimension of 5 ×
1.Once we estimate a multivariable regression of yt on yt−1, the vector A

has the dimension of 1× 5, and matrix B has the dimension of 5× 5.

2.7.2 Forecasting results

In this section, we describe our results on the evaluation of forecast combinations

for yield curves. first, we provide information on the correlation between the time

series of interest rates for the set of maturities and compute popular error metrics

to evaluate the out-of-sample forecasts. Given a sample of three out-of-sample

forecasts for h-period ahead forecast horizon, with h equal to one, six, and twelve
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months, we compute the root mean squared forecast error (RMSE) and several

sample autocorrelation coefficients.

In Table A.10 we report the h-month-ahead out-of-sample yield curve forecasting

results using the advanced Svensson specification. Panels A, B, and C compare

three competitors for maturities of quarter, one, three, five, and ten years and

forecasting horizons of h = one, six, and twelve months respectively. The forecast

errors at t+ h are defined as

yt+h(τ)− ŷt+h|t(τ).

We present several descriptive statistics for the forecast errors, including mean,

standard deviation, root mean squared error (RMSE), and autocorrelations at

various displacements. The results for the one-month ahead forecasts are reported

in Panel A of Table A.10. The mean forecasting errors are higher in the case of

the VAR(1) model and lower in case of the AR(1) for horizons longer than one

year. For three-month maturity, the mean forecasting error using RW is equal to

0.0059, and it is less than the mean forecasting error using AR(1) model, which

is equal to 0.0093. Time series of forecasting errors are highly autocorrelated

in the case of VAR(1) model and less autocorrelated in case of RW and AR(1)

competitors.

Results for the six-month and twelve-month ahead forecasts are reported in Panel

B of Table A.10 and Panel c of Table A.10 , respectively. Since we are keen to un-

derstand which forecast model produces the smallest mean forecasting error, the

results reported in the last three tables suggest that the AR(1) model produces

the best term structure of interest rates forecast. The autocorrelation coeffi-

cients have important values in the case of VAR(1) model, indicating that this

forecasting model is not applicable.

Our results show that AR(1) provides more accurate forecasts, in fact, the mean

forecast errors are lower compared to the two other competitors. Many other

studies that consider interest rate forecasting show that it is difficult to con-

sistently outperform RW; thus, this question suggests that further research is

required on yield curve forecasting.
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2.8 Conclusion

Despite the widespread use of the term structure of interest rates, it is not clear

which specification is the best fit for the data. To answer this question, we

compare different specifications to fit the term structure of interest rates for the

eurozone four countries based on daily observations. We select a list of gov-

ernment bonds denominated in the euro and issued by eurozone countries. We

examine four Nelson-Siegel style models, given that one of them allows us to test

the Bjork-Christensen (BC) restriction λ = 2×γ. The main conclusion emerging

from our investigation is that an extended Svensson specification has the best

performance to price bonds for the four countries studied.

This result is expected because the eSv model has the largest number of param-

eters compared to other specifications. We work with data from four eurozone

counties. Our empirical results confirm that all the models do a good job in

estimating government bond prices.

The main contributions are (1) there are no major differences between the models

in terms of performance fit, (2) all the functionals provide a good fit so that the

Neslon-Siegel type is appropriate for use, and (3) the best specification is the eSv

approach, but the Svensson model is not far from it in terms of performance fit;

thus, the conclusion is to use the Svensson term structure model.
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Table A.5: Summary of the Nominal Securities, France

ISIN Coupon Issue Maturity Term ISIN Coupon Issue Maturity Term

FR0000570095 10 14/06/1985 27/05/2000 14.95 FR0010163543 3.5 08/02/2005 25/04/2015 10.21

FR0000570178 7.5 25/08/1986 25/07/2001 14.92 FR0107489959 2.25 22/02/2005 12/03/2007 2.05

FR0000570244 8.5 26/01/1987 25/11/2002 15.83 FR0010171975 4 28/02/2005 25/04/2055 50.15

FR0000570780 8.5 25/02/1987 26/12/2012 25.83 FR0010192997 3.75 10/05/2005 25/04/2021 15.96

FR0000570921 8.5 25/01/1989 25/10/2019 30.75 FR0107674006 2.5 21/06/2005 12/07/2010 5.06

FR0000570327 8.25 27/02/1989 27/02/2004 15 FR0010216481 3 12/07/2005 25/10/2015 10.29

FR0000570038 8.125 26/12/1989 25/05/1999 9.41 FR0108197569 2.75 22/11/2005 12/03/2008 2.3

FR0000570053 8.5 25/01/1990 28/03/2000 10.17 FR0108354806 3 24/01/2006 12/01/2011 4.97

FR0000570152 10 26/11/1990 26/02/2001 10.25 FR0010288357 3.25 07/02/2006 25/04/2016 10.21

FR0000570145 9.5 25/01/1991 25/01/2001 10 FR0108847049 3.5 20/06/2006 12/07/2011 5.06

FR0000570194 8.5 10/05/1991 15/03/2002 10.85 FR0109136137 3.5 25/07/2006 12/09/2008 2.14

FR0000570061 9.5 13/06/1991 25/04/2000 8.87 FR0010371401 4 12/09/2006 25/10/2038 32.12

FR0000571085 8.5 27/01/1992 25/04/2023 31.24 FR0010415331 3.75 09/01/2007 25/04/2017 10.29

FR0000571044 8.25 12/02/1992 25/04/2022 30.2 FR0109970386 3.75 23/01/2007 12/01/2012 4.97

FR0000570665 8.5 25/06/1992 25/10/2008 16.33 FR0110979178 4 24/04/2007 12/09/2009 2.39

FR0000570277 8.5 20/07/1992 25/04/2003 10.76 FR0010466938 4.25 09/05/2007 25/10/2023 16.46

FR0000570285 8 27/07/1992 25/04/2003 10.74 FR0110979186 4.5 26/06/2007 12/07/2012 5.05

FR0000570301 6.75 26/04/1993 25/10/2003 10.5 FR0010517417 4.25 11/09/2007 25/10/2017 10.12

FR0000570343 6 11/10/1993 25/04/2004 10.54 FR0113087466 3.75 22/01/2008 12/01/2013 4.97

FR0000570368 5.5 25/11/1993 25/04/2004 10.41 FR0010604983 4 08/04/2008 25/04/2018 10.05

FR0100059486 4.75 14/02/1994 12/04/1999 5.16 FR0113872776 3.75 20/05/2008 12/09/2010 2.31

FR0000571150 6 25/02/1994 25/10/2025 31.66 FR0114683842 4.5 22/07/2008 12/07/2013 4.97

FR0000570228 6.75 25/05/1994 25/04/2002 7.92 FR0010670737 4.25 07/10/2008 25/10/2018 10.05

FR0000570400 6.75 27/06/1994 25/10/2004 10.33 FR0116114978 2.5 27/01/2009 12/01/2014 4.96

FR0000570434 7.5 25/10/1994 25/04/2005 10.5 FR0116843519 1.5 26/05/2009 12/09/2011 2.3

FR0100059502 7 12/01/1995 12/11/1999 4.83 FR0116843535 3 23/06/2009 12/07/2014 5.05

FR0000570467 7.75 25/04/1995 25/10/2005 10.5 FR0010773192 4.5 30/06/2009 25/04/2041 31.82

FR0100059528 7.75 12/07/1995 12/04/2000 4.75 FR0010776161 3.75 07/07/2009 25/10/2019 10.3

FR0100059544 7 11/08/1995 12/10/2000 5.17 FR0117836652 2.5 26/01/2010 15/01/2015 4.97

FR0000570491 7.25 25/10/1995 25/04/2006 10.5 FR0010854182 3.5 09/02/2010 25/04/2020 10.21

FR0000570731 6.5 26/02/1996 25/04/2011 15.16 FR0010870956 4 17/03/2010 25/04/2060 50.11

FR0000570533 6.5 25/04/1996 25/10/2006 10.5 FR0118153370 0.75 25/05/2010 20/09/2012 2.32

FR0000570509 7 23/05/1996 25/04/2006 9.92 FR0118462128 2 22/06/2010 12/07/2015 5.05

FR0100059551 5.75 12/06/1996 12/03/2001 4.75 FR0010916924 3.5 06/07/2010 25/04/2026 15.8

FR0100059577 5.5 12/08/1996 12/10/2001 5.17 FR0010949651 2.5 12/10/2010 25/10/2020 10.04

FR0100059478 5 26/09/1996 16/03/1999 2.47 FR0119105809 2.25 25/01/2011 25/02/2016 5.08

FR0100059569 6 27/12/1996 16/03/2001 4.22 FR0119580019 2 24/05/2011 25/09/2013 2.34

FR0000570574 5.5 23/01/1997 25/04/2007 10.25 FR0011059088 3.25 07/06/2011 25/10/2021 10.38

FR0100059585 4.75 12/03/1997 12/03/2002 5 FR0119580050 2.5 21/06/2011 25/07/2016 5.1

FR0000570590 5.5 10/07/1997 25/10/2007 10.29 FR0011196856 3 07/02/2012 25/04/2022 10.21

FR0100059593 4.5 24/07/1997 12/07/2002 4.97 FR0120473253 1.75 21/02/2012 25/02/2017 5.01

FR0000570632 5.25 15/01/1998 25/04/2008 10.28 FR0120634490 0.75 24/04/2012 25/09/2014 2.42

FR0100059601 4.5 26/02/1998 12/07/2003 5.37 FR0120746609 1 24/07/2012 25/07/2017 5

FR0000571218 5.5 12/03/1998 25/04/2029 31.12 FR0011317783 2.75 11/09/2012 25/10/2027 15.12

FR0100059510 4 26/03/1998 12/01/2000 1.8 FR0011337880 2.25 09/10/2012 25/10/2022 10.04

FR0100059536 4 28/05/1998 12/07/2000 2.12 FR0011394345 1 22/01/2013 25/05/2018 5.34

FR0000571432 4 08/10/1998 25/04/2009 10.55 FR0011452721 0.25 26/03/2013 25/11/2015 2.67

FR0100802273 3.5 28/01/1999 12/07/2004 5.45 FR0011461037 3.25 04/04/2013 25/05/2045 32.14

FR0100877812 3 25/03/1999 12/07/2001 2.3 FR0011486067 1.75 07/05/2013 25/05/2023 10.05

FR0000186199 4 12/05/1999 25/10/2009 10.46 FR0011523257 1 25/06/2013 25/11/2018 5.42

FR0101465831 4 28/10/1999 12/01/2002 2.21 FR0011619436 2.25 12/11/2013 25/05/2024 10.53

FR0101659813 5 27/01/2000 12/07/2005 5.46 FR0011708080 1 28/01/2014 25/05/2019 5.32

FR0000186603 5.5 08/02/2000 25/04/2010 10.21 FR0011857218 0.25 23/04/2014 25/11/2016 2.59

FR0102325695 5 17/08/2000 12/01/2003 2.4 FR0011883966 2.5 06/05/2014 25/05/2030 16.05

FR0000187023 5.5 12/09/2000 25/10/2010 10.12 FR0011962398 1.75 10/06/2014 25/11/2024 10.46

FR0102626779 5 24/10/2000 12/01/2006 5.22 FR0011993179 0.5 24/06/2014 25/11/2019 5.42

FR0000187361 5 06/02/2001 25/10/2016 15.72 FR0012517027 0.5 09/02/2015 25/05/2025 10.29

FR0103230423 4.5 24/04/2001 12/07/2006 5.22 FR0012557957 0 23/02/2015 25/05/2020 5.25

FR0000187635 5.75 12/06/2001 25/10/2032 31.37 FR0012634558 0 23/03/2015 25/02/2018 2.93

FR0000187874 5 11/09/2001 25/10/2011 10.12 FR0012938116 1 07/09/2015 25/11/2025 10.22

FR0103536092 4 25/09/2001 12/01/2004 2.3 FR0012968337 0.25 21/09/2015 25/11/2020 5.18

FR0103840098 3.75 27/11/2001 12/01/2007 5.13 FR0012993103 1.5 05/10/2015 25/05/2031 15.64

FR0000188328 5 12/03/2002 25/04/2012 10.12 FR0013101466 0 25/01/2016 25/02/2019 3.09

FR0104446556 4.75 16/05/2002 12/07/2007 5.16 FR0013131877 0.5 07/03/2016 25/05/2026 10.21

FR0000188690 4.75 10/09/2002 25/10/2012 10.12 FR0013154028 1.75 19/04/2016 25/05/2066 50.1
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FR0104756962 3.5 24/09/2002 12/01/2005 2.3 FR0013154044 1.25 19/04/2016 25/05/2036 20.1

FR0105427795 3.5 28/01/2003 12/01/2008 4.96 FR0013157096 0 25/04/2016 25/05/2021 5.08

FR0000188989 4 11/03/2003 25/04/2013 10.12 FR0013200813 0.25 05/09/2016 25/11/2026 10.22

FR0000474413 3.75 02/05/2003 25/04/2010 6.98 FR0013219177 0 21/11/2016 25/05/2022 5.51

FR0000189151 4.25 10/06/2003 25/04/2019 15.87 FR0013232485 0 23/01/2017 25/02/2020 3.09

FR0105760112 3 24/06/2003 12/07/2008 5.05 FR0013234333 1.75 31/01/2017 25/06/2039 22.4

FR0010011130 4 09/09/2003 25/10/2013 10.13 FR0013250560 1 10/04/2017 25/05/2027 10.12

FR0106589437 3.5 22/01/2004 12/01/2009 4.97 FR0013257524 2 25/05/2017 25/05/2048 31

FR0010061242 4 09/03/2004 25/04/2014 10.13 FR0013283686 0 25/09/2017 25/03/2023 5.49

FR0106589445 2.25 23/03/2004 12/03/2006 1.97 FR0013286192 0.75 09/10/2017 25/05/2028 10.63

FR0010070060 4.75 06/04/2004 25/04/2035 31.05 FR0013311016 0 22/01/2018 25/02/2021 3.09

FR0106841887 3.5 22/06/2004 12/07/2009 5.05 FR0013313582 1.25 05/02/2018 25/05/2034 16.3

FR0010112052 4 07/09/2004 25/10/2014 10.13 FR0013341682 0.75 11/06/2018 25/11/2028 10.46

FR0107369672 3 23/11/2004 12/01/2010 5.14 FR0013344751 0 25/06/2018 25/03/2024 5.75

This table shows the sample of the nominal securities issued by France from 1985 to 2018. Column “ISIN” refers to the ISIN number

and Column “Coupon” to the coupon rate of the security in percent. Column “Issue” reports the issue date of the bond and Column

“Maturity” provides the expiration date. Column “Term” specifies the term-to-maturity at issuance of the security. Source: Bloomberg.

Table A.6: Summary of the Nominal Securities, Germany

ISIN Coupon Issue Maturity Term ISIN Coupon Issue Maturity Term

DE0001134468 6 20/06/1986 20/06/2016 30 DE0001135267 3.75 26/11/2004 04/01/2015 10.11

DE0001134492 5.625 20/09/1986 20/09/2016 30 DE0001137081 2.25 10/12/2004 15/12/2006 2.01

DE0001134708 7 22/02/1989 22/02/1999 10 DE0001135275 4 28/01/2005 04/01/2037 31.93

DE0001134716 7 20/04/1989 20/04/1999 10 DE0001137099 2.5 18/03/2005 23/03/2007 2.01

DE0001134724 6.75 07/07/1989 21/06/1999 9.95 DE0001141463 3.25 01/04/2005 09/04/2010 5.02

DE0001134732 7 12/09/1989 20/09/1999 10.02 DE0001135283 3.25 20/05/2005 04/07/2015 10.12

DE0001134740 7 16/10/1989 20/10/1999 10.01 DE0001137107 2 17/06/2005 15/06/2007 1.99

DE0001134757 7.125 09/11/1989 20/12/1999 10.11 DE0001137115 2.25 16/09/2005 14/09/2007 1.99

DE0001134765 7.25 04/01/1990 20/01/2000 10.04 DE0001141471 2.5 23/09/2005 08/10/2010 5.04

DE0001134773 7.75 09/02/1990 21/02/2000 10.03 DE0001135291 3.5 25/11/2005 04/01/2016 10.11

DE0001134799 8.75 22/05/1990 22/05/2000 10 DE0001137123 2.75 16/12/2005 14/12/2007 1.99

DE0001030005 8.75 10/07/1990 20/07/2000 10.03 DE0001137131 3 10/03/2006 14/03/2008 2.01

DE0001134807 8.5 03/08/1990 21/08/2000 10.05 DE0001141489 3.5 24/03/2006 08/04/2011 5.04

DE0001134815 9 11/10/1990 20/10/2000 10.03 DE0001135309 4 19/05/2006 04/07/2016 10.13

DE0001134823 8.875 07/12/1990 20/12/2000 10.04 DE0001137149 3.25 23/06/2006 13/06/2008 1.97

DE0001134831 9 03/01/1991 22/01/2001 10.05 DE0001137156 3.5 15/09/2006 12/09/2008 1.99

DE0001030013 8.5 12/02/1991 20/02/2001 10.02 DE0001141497 3.5 29/09/2006 14/10/2011 5.04

DE0001134849 8.375 13/05/1991 21/05/2001 10.02 DE0001135317 3.75 17/11/2006 04/01/2017 10.13

DE0001030021 8.75 05/08/1991 20/08/2001 10.04 DE0001137164 3.75 15/12/2006 12/12/2008 1.99

DE0001134856 8.25 11/10/1991 20/09/2001 9.94 DE0001135325 4.25 26/01/2007 04/07/2039 32.44

DE0001030039 8 07/01/1992 21/01/2002 10.04 DE0001137172 3.75 16/03/2007 13/03/2009 1.99

DE0001026508 8 07/05/1992 02/05/2002 9.98 DE0001141505 4 30/03/2007 13/04/2012 5.04

DE0001134864 8 14/07/1992 22/07/2002 10.02 DE0001135333 4.25 25/05/2007 04/07/2017 10.11

DE0001134872 7.25 09/10/1992 21/10/2002 10.03 DE0001137180 4.5 15/06/2007 12/06/2009 1.99

DE0001134880 7.125 05/01/1993 20/12/2002 9.95 DE0001137198 4 14/09/2007 11/09/2009 1.99

DE0001134898 6.75 07/05/1993 22/04/2003 9.96 DE0001141513 4.25 28/09/2007 12/10/2012 5.04

DE0001026516 6.75 21/05/1993 02/05/2003 9.95 DE0001135341 4 16/11/2007 04/01/2018 10.14

DE0001134906 6.5 06/08/1993 15/07/2003 9.94 DE0001137206 4 14/12/2007 11/12/2009 1.99

DE0001134914 6 12/10/1993 15/09/2003 9.92 DE0001137214 3 14/03/2008 12/03/2010 1.99

DE0001134922 6.25 04/01/1994 04/01/2024 30 DE0001141521 3.5 28/03/2008 12/04/2013 5.04

DE0001141109 5.375 15/03/1994 22/02/1999 4.94 DE0001135358 4.25 30/05/2008 04/07/2018 10.09

DE0001141117 6.125 20/06/1994 20/05/1999 4.91 DE0001137222 4.75 13/06/2008 11/06/2010 1.99

DE0001134930 6.75 22/07/1994 15/07/2004 9.98 DE0001135366 4.75 25/07/2008 04/07/2040 31.94

DE0001141125 6.75 15/09/1994 15/09/1999 5 DE0001137230 4 12/09/2008 10/09/2010 1.99

DE0001134955 7.5 11/11/1994 11/11/2004 10 DE0001141539 4 26/09/2008 11/10/2013 5.04

DE0001134963 7.375 03/01/1995 03/01/2005 10 DE0001135374 3.75 14/11/2008 04/01/2019 10.14

DE0001141133 7 13/01/1995 13/01/2000 5 DE0001137248 2.25 12/12/2008 10/12/2010 1.99

DE0001136737 6.875 24/02/1995 24/02/1999 4 DE0001137255 1.25 13/03/2009 11/03/2011 1.99

DE0001141141 6.5 15/03/1995 15/03/2000 5 DE0001141547 2.25 27/03/2009 11/04/2014 5.04

DE0001134971 6.875 12/05/1995 12/05/2005 10 DE0001135382 3.5 22/05/2009 04/07/2019 10.12

DE0001141158 5.875 15/05/1995 15/05/2000 5 DE0001137263 1.5 29/05/2009 10/06/2011 2.03

DE0001136745 5.75 28/05/1995 28/05/1999 4 DE0001137271 1.25 11/09/2009 16/09/2011 2.01

DE0001141166 5.75 22/08/1995 22/08/2000 5 DE0001141554 2.5 25/09/2009 10/10/2014 5.04

DE0001134989 6.5 20/10/1995 14/10/2005 9.98 DE0001135390 3.25 13/11/2009 04/01/2020 10.14
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DE0001141174 5.125 21/11/1995 21/11/2000 5 DE0001137289 1.25 20/11/2009 16/12/2011 2.07

DE0001134997 6 08/01/1996 05/01/2006 9.99 DE0001141562 2.5 15/01/2010 27/02/2015 5.12

DE0001135002 6 16/02/1996 16/02/2006 10 DE0001137297 1 19/02/2010 16/03/2012 2.07

DE0001141182 5.25 21/02/1996 21/02/2001 5 DE0001141570 2.25 16/04/2010 10/04/2015 4.98

DE0001135010 6.25 26/04/1996 26/04/2006 10 DE0001135408 3 30/04/2010 04/07/2020 10.18

DE0001141190 5 21/05/1996 21/05/2001 5 DE0001137305 0.5 14/05/2010 15/06/2012 2.09

DE0001141208 5 20/08/1996 20/08/2001 5 DE0001135432 3.25 23/07/2010 04/07/2042 31.95

DE0001141216 4.75 20/11/1996 20/11/2001 5 DE0001137313 0.75 13/08/2010 14/09/2012 2.09

DE0001135028 6 10/01/1997 04/01/2007 9.98 DE0001135416 2.25 20/08/2010 04/09/2020 10.04

DE0001141224 4.5 22/02/1997 22/02/2002 5 DE0001141588 1.75 24/09/2010 09/10/2015 5.04

DE0001136778 3.75 20/03/1997 19/03/1999 2 DE0001137321 1 12/11/2010 14/12/2012 2.09

DE0001135036 6 25/04/1997 04/07/2007 10.19 DE0001135424 2.5 26/11/2010 04/01/2021 10.11

DE0001141232 4.5 17/05/1997 17/05/2002 5 DE0001141596 2 14/01/2011 26/02/2016 5.12

DE0001136786 3.5 20/06/1997 18/06/1999 1.99 DE0001137339 1.5 25/02/2011 15/03/2013 2.05

DE0001135044 6.5 04/07/1997 04/07/2027 30 DE0001141604 2.75 26/04/2011 08/04/2016 4.95

DE0001141240 4.5 19/08/1997 19/08/2002 5 DE0001135440 3.25 29/04/2011 04/07/2021 10.18

DE0001136794 4 26/09/1997 17/09/1999 1.97 DE0001137347 1.75 13/05/2011 14/06/2013 2.09

DE0001141257 5 12/11/1997 12/11/2002 5 DE0001137354 0.75 19/08/2011 13/09/2013 2.07

DE0001136802 4.25 19/12/1997 17/12/1999 1.99 DE0001135457 2.25 26/08/2011 04/09/2021 10.03

DE0001135051 5.25 09/01/1998 04/01/2008 9.98 DE0001141612 1.25 30/09/2011 14/10/2016 5.04

DE0001135069 5.625 23/01/1998 04/01/2028 29.95 DE0001137362 0.25 18/11/2011 13/12/2013 2.07

DE0001141265 4.5 18/02/1998 18/02/2003 5 DE0001135465 2 25/11/2011 04/01/2022 10.11

DE0001136810 4 20/03/1998 17/03/2000 1.99 DE0001141620 0.75 13/01/2012 24/02/2017 5.12

DE0001141273 4.5 19/05/1998 19/05/2003 5 DE0001137370 0.25 24/02/2012 14/03/2014 2.05

DE0001136828 4 26/06/1998 16/06/2000 1.97 DE0001135473 1.75 13/04/2012 04/07/2022 10.22

DE0001135077 4.75 10/07/1998 04/07/2008 9.98 DE0001135481 2.5 27/04/2012 04/07/2044 32.19

DE0001141281 3.75 26/08/1998 26/08/2003 5 DE0001141638 0.5 11/05/2012 07/04/2017 4.91

DE0001136836 3.25 18/09/1998 15/09/2000 1.99 DE0001137388 0 25/05/2012 13/06/2014 2.05

DE0001135085 4.75 09/10/1998 04/07/2028 29.74 DE0001137396 0 24/08/2012 12/09/2014 2.05

DE0001135093 4.125 30/10/1998 04/07/2008 9.68 DE0001135499 1.5 07/09/2012 04/09/2022 9.99

DE0001141299 3.5 11/11/1998 11/11/2003 5 DE0001141646 0.5 14/09/2012 13/10/2017 5.08

DE0001136844 3 18/12/1998 15/12/2000 1.99 DE0001137404 0 16/11/2012 12/12/2014 2.07

DE0001135101 3.75 08/01/1999 04/01/2009 9.99 DE0001141653 0.5 11/01/2013 23/02/2018 5.12

DE0001136851 3 19/03/1999 16/03/2001 1.99 DE0001102309 1.5 18/01/2013 15/02/2023 10.08

DE0001135119 4 26/03/1999 04/07/2009 10.28 DE0001137412 0.25 15/02/2013 13/03/2015 2.07

DE0001141315 3.25 19/05/1999 19/05/2004 5 DE0001141661 0.25 10/05/2013 13/04/2018 4.93

DE0001141307 3.25 21/05/1999 17/02/2004 4.74 DE0001137420 0 17/05/2013 12/06/2015 2.07

DE0001136869 3 18/06/1999 15/06/2001 1.99 DE0001102317 1.5 24/05/2013 15/05/2023 9.97

DE0001135127 4.5 04/07/1999 04/07/2009 10 DE0001137438 0.25 23/08/2013 11/09/2015 2.05

DE0001141331 4.25 25/08/1999 26/11/2004 5.26 DE0001141679 1 06/09/2013 12/10/2018 5.1

DE0001141323 4.125 27/08/1999 27/08/2004 5 DE0001102325 2 13/09/2013 15/08/2023 9.92

DE0001136877 3.5 17/09/1999 14/09/2001 1.99 DE0001137446 0 15/11/2013 11/12/2015 2.07

DE0001135135 5.375 22/10/1999 04/01/2010 10.2 DE0001141687 1 17/01/2014 22/02/2019 5.1

DE0001141349 4.25 17/11/1999 18/02/2005 5.26 DE0001102333 1.75 31/01/2014 15/02/2024 10.04

DE0001136885 4 17/12/1999 14/12/2001 1.99 DE0001137453 0.25 14/02/2014 11/03/2016 2.07

DE0001135143 6.25 21/01/2000 04/01/2030 29.95 DE0001102341 2.5 28/02/2014 15/08/2046 32.46

DE0001141356 5 16/02/2000 20/05/2005 5.26 DE0001141695 0.5 09/05/2014 12/04/2019 4.93

DE0001136893 4.5 17/03/2000 15/03/2002 1.99 DE0001137461 0.25 16/05/2014 10/06/2016 2.07

DE0001135150 5.25 05/05/2000 04/07/2010 10.16 DE0001102358 1.5 23/05/2014 15/05/2024 9.98

DE0001141364 5 17/05/2000 19/08/2005 5.26 DE0001137479 0 22/08/2014 16/09/2016 2.07

DE0001136901 5 16/06/2000 14/06/2002 1.99 DE0001141703 0.25 05/09/2014 11/10/2019 5.1

DE0001141372 5 16/08/2000 17/02/2006 5.51 DE0001102366 1 12/09/2014 15/08/2024 9.92

DE0001136919 5 15/09/2000 13/09/2002 1.99 DE0001137487 0 14/11/2014 16/12/2016 2.09

DE0001135168 5.25 20/10/2000 04/01/2011 10.21 DE0001102374 0.5 16/01/2015 15/02/2025 10.08

DE0001135176 5.5 27/10/2000 04/01/2031 30.19 DE0001141711 0 23/01/2015 17/04/2020 5.23

DE0001136927 4.75 13/12/2000 13/12/2002 2 DE0001137495 0 13/02/2015 10/03/2017 2.07

DE0001141380 4.5 14/02/2001 18/08/2006 5.51 DE0001104602 0 08/05/2015 16/06/2017 2.11

DE0001136935 4.25 16/03/2001 14/03/2003 1.99 DE0001141729 0.25 03/07/2015 16/10/2020 5.29

DE0001135184 5 25/05/2001 04/07/2011 10.11 DE0001102382 1 17/07/2015 15/08/2025 10.08

DE0001136943 4.25 15/06/2001 13/06/2003 1.99 DE0001104610 0 21/08/2015 15/09/2017 2.07

DE0001136950 3.75 14/09/2001 12/09/2003 1.99 DE0001104628 0 20/11/2015 15/12/2017 2.07

DE0001136968 3.5 14/12/2001 12/12/2003 1.99 DE0001102390 0.5 15/01/2016 15/02/2026 10.09

DE0001135192 5 04/01/2002 04/01/2012 10 DE0001141737 0 05/02/2016 09/04/2021 5.17

DE0001141398 4 22/02/2002 16/02/2007 4.98 DE0001104636 0 12/02/2016 16/03/2018 2.09

DE0001136976 4.25 15/03/2002 12/03/2004 1.99 DE0001104644 0 13/05/2016 15/06/2018 2.09

DE0001136984 4 28/06/2002 25/06/2004 1.99 DE0001102408 0 15/07/2016 15/08/2026 10.08

DE0001135200 5 05/07/2002 04/07/2012 10 DE0001141745 0 22/07/2016 08/10/2021 5.21
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DE0001141406 4.5 16/08/2002 17/08/2007 5 DE0001104651 0 05/08/2016 14/09/2018 2.11

DE0001141414 4.25 19/08/2002 15/02/2008 5.49 DE0001104669 0 11/11/2016 14/12/2018 2.09

DE0001136992 3.25 27/09/2002 24/09/2004 1.99 DE0001102416 0.25 13/01/2017 15/02/2027 10.09

DE0001137008 3 13/12/2002 10/12/2004 1.99 DE0001141752 0 03/02/2017 08/04/2022 5.17

DE0001135218 4.5 10/01/2003 04/01/2013 9.98 DE0001104677 0 02/03/2017 15/03/2019 2.03

DE0001135226 4.75 31/01/2003 04/07/2034 31.42 DE0001104685 0 25/05/2017 14/06/2019 2.05

DE0001137016 2.5 28/03/2003 18/03/2005 1.97 DE0001141760 0 07/07/2017 07/10/2022 5.25

DE0001141422 3 16/05/2003 11/04/2008 4.91 DE0001102424 0.5 14/07/2017 15/08/2027 10.09

DE0001137024 2 27/06/2003 17/06/2005 1.97 DE0001104693 0 31/08/2017 13/09/2019 2.03

DE0001135234 3.75 04/07/2003 04/07/2013 10 DE0001102432 1.25 22/09/2017 15/08/2048 30.9

DE0001137032 2.5 26/09/2003 16/09/2005 1.97 DE0001104701 0 16/11/2017 13/12/2019 2.07

DE0001141430 3.5 10/10/2003 10/10/2008 5 DE0001102440 0.5 12/01/2018 15/02/2028 10.09

DE0001135242 4.25 31/10/2003 04/01/2014 10.18 DE0001141778 0 02/02/2018 14/04/2023 5.19

DE0001137040 2.75 12/12/2003 16/12/2005 2.01 DE0001104719 0 22/02/2018 13/03/2020 2.05

DE0001141448 3.25 13/02/2004 17/04/2009 5.17 DE0001104727 0 25/05/2018 12/06/2020 2.05

DE0001137057 2 26/03/2004 10/03/2006 1.95 DE0001102457 0.25 13/07/2018 15/08/2028 10.09

DE0001135259 4.25 28/05/2004 04/07/2014 10.1 DE0001141786 0 27/07/2018 13/10/2023 5.21

DE0001137065 2.75 25/06/2004 23/06/2006 1.99 DE0001104735 0 23/08/2018 11/09/2020 2.05

DE0001141455 3.5 27/08/2004 09/10/2009 5.12 DE0001104743 0 15/11/2018 11/12/2020 2.07

DE0001137073 2.5 24/09/2004 22/09/2006 1.99

This table shows the sample of the nominal securities issued by Germany from 1986 to 2018. Column “ISIN” refers to the ISIN number

and Column “Coupon” to the coupon rate of the security in percent. Column “Issue” reports the issue date of the bond and Column

“Maturity” provides the expiration date. Column “Term” specifies the term-to-maturity at issuance of the security. Source: Bloomberg.

Table A.7: Summary of the Nominal Securities, Italy

ISIN Coupon Issue Maturity Term ISIN Coupon Issue Maturity Term

XS0015168338 10.75 18/04/1990 18/04/2000 10 IT0003877708 2.5 01/07/2005 15/06/2008 2.96

IT0000126778 12.5 05/03/1991 01/03/2001 9.99 IT0003934657 4 19/10/2005 01/02/2037 31.29

IT0000126794 12 03/06/1991 01/06/2001 10 IT0004009673 3.75 01/02/2006 01/08/2021 15.5

IT0000126836 12 04/09/1991 01/09/2001 9.99 IT0004008121 3 01/02/2006 01/02/2009 3

IT0000126877 12 07/01/1992 01/01/2002 9.98 IT0004019581 3.75 01/03/2006 01/08/2016 10.42

IT0000126885 12 17/01/1992 17/01/1999 7 IT0004026297 3.5 15/03/2006 15/03/2011 5

IT0000366051 12 04/05/1992 01/05/2002 9.99 XS0247541971 4.425 28/03/2006 28/03/2036 30

IT0000366077 12 18/05/1992 18/05/1999 7 IT0004085244 3.75 03/07/2006 15/06/2009 2.95

IT0000366143 12 03/09/1992 01/09/2002 9.99 IT0004112816 3.75 18/09/2006 15/09/2011 4.99

IT0000366234 12 08/01/1993 01/01/2003 9.98 IT0004164775 4 02/01/2007 01/02/2017 10.08

IT0000366325 11.5 03/03/1993 01/03/2003 9.99 IT0004196918 4 01/03/2007 01/03/2010 3

IT0000366424 11 04/06/1993 01/06/2003 9.99 IT0004235559 4.49 05/04/2007 05/04/2027 20

IT0000366515 10 04/08/1993 01/08/2003 9.99 IT0004220627 4 17/04/2007 15/04/2012 5

IT0000366606 9 05/10/1993 01/10/2003 9.99 IT0004254352 4.5 01/08/2007 01/08/2010 3

IT0000366655 9 18/11/1993 01/11/2023 29.95 IT0004273493 4.5 03/09/2007 01/02/2018 10.41

IT0000366721 8.5 22/12/1993 22/12/2023 30 IT0004284334 4.25 15/10/2007 15/10/2012 5

IT0000366713 8.5 22/12/1993 22/12/2003 10 IT0004286966 5 23/10/2007 01/08/2039 31.77

IT0000366762 8.5 05/01/1994 01/01/2004 9.99 IT0004332521 3.75 03/03/2008 01/02/2011 2.92

IT0000366846 8.5 05/04/1994 01/04/2004 9.99 IT0004356843 4.75 16/04/2008 01/08/2023 15.29

IT0000366929 8.5 02/08/1994 01/08/1999 5 IT0004361041 4.5 02/05/2008 01/08/2018 10.25

IT0000366937 8.5 03/08/1994 01/08/2004 10 IT0004365554 4.25 16/05/2008 15/04/2013 4.91

IT0000367083 9.5 03/01/1995 01/12/1999 4.91 IT0004404973 4.25 01/09/2008 01/09/2011 3

IT0000367091 9.5 04/01/1995 01/01/2005 9.99 IT0004423957 4.5 03/11/2008 01/03/2019 10.32

IT0000367174 10.5 02/05/1995 01/04/2005 9.92 IT0004448863 3.75 16/01/2009 15/12/2013 4.91

IT0000367166 10.5 03/05/1995 01/04/2000 4.91 IT0004467483 3 02/03/2009 01/03/2012 3

IT0000367190 8.25 24/05/1995 24/05/2000 5 IT0004489610 4.25 04/05/2009 01/09/2019 10.33

IT0000367281 10.5 02/08/1995 15/07/2000 4.95 XS0431307221 3 29/05/2009 29/11/2013 4.5

IT0000367315 10.5 01/09/1995 01/09/2005 10 IT0004505076 3.5 15/06/2009 01/06/2014 4.96

IT0000367414 10.5 03/11/1995 01/11/2000 5 IT0004508971 2.5 01/07/2009 01/07/2012 3

IT0000367497 9.5 01/02/1996 01/02/2006 10 IT0004513641 5 15/07/2009 01/03/2025 15.63

IT0000367471 9.5 02/02/1996 01/02/1999 3 IT0004532559 5 16/09/2009 01/09/2040 30.96

IT0000367489 9.5 02/02/1996 01/02/2001 5 IT0004536949 4.25 01/10/2009 01/03/2020 10.41

IT0000367612 9.5 03/05/1996 01/05/2001 4.99 IT0004564636 2 04/01/2010 15/12/2012 2.95

IT0000367604 9.5 03/05/1996 15/04/1999 2.95 IT0004568272 3 15/01/2010 15/04/2015 5.25

IT0000367687 8.75 01/07/1996 01/07/2006 10 IT0004594930 4 01/04/2010 01/09/2020 10.42

IT0000367679 8.25 02/07/1996 01/07/2001 5 IT0004612179 2 01/06/2010 01/06/2013 3

IT0000367661 8.25 02/07/1996 01/07/1999 3 XS0515753183 4.85 11/06/2010 11/06/2060 50

IT0000367786 7.75 02/10/1996 15/09/2001 4.95 IT0004615917 3 15/06/2010 15/06/2015 5
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IT0000367778 7.5 02/10/1996 01/10/1999 3 IT0004634132 3.75 01/09/2010 01/03/2021 10.5

IT0000367810 7.75 04/11/1996 01/11/2006 9.99 IT0004644735 4.5 29/09/2010 01/03/2026 15.42

IT0000367851 6 03/01/1997 01/01/2000 2.99 IT0004653108 2.25 01/11/2010 01/11/2013 3

IT0000367844 6.25 03/01/1997 01/01/2002 4.99 IT0004656275 3 16/11/2010 01/11/2015 4.96

IT0001086567 7.25 03/02/1997 01/11/2026 29.74 XS0572691979 4.45 23/12/2010 23/12/2021 11

IT0001086559 6.75 03/02/1997 01/02/2007 9.99 XS0595269365 4.45 24/02/2011 24/08/2020 9.5

IT0001092367 6 18/02/1997 15/02/2000 2.99 IT0004695075 4.75 01/03/2011 01/09/2021 10.51

IT0001096491 6.25 04/03/1997 01/03/2002 4.99 IT0004707995 3 01/04/2011 01/04/2014 3

XS0075039114 6 02/04/1997 02/04/2004 7 IT0004712748 3.75 18/04/2011 15/04/2016 4.99

IT0001119509 6 20/05/1997 15/05/2000 2.99 IT0004750409 4.25 01/08/2011 01/07/2014 2.92

NL0000121739 6.125 29/05/1997 29/05/2012 15 IT0004759673 5 01/09/2011 01/03/2022 10.5

IT0001124251 6.25 03/06/1997 15/05/2002 4.95 IT0004761950 4.75 15/09/2011 15/09/2016 5

IT0001132098 6.75 01/07/1997 01/07/2007 10 IT0004780380 6 01/12/2011 15/11/2014 2.96

FR0000572026 5.875 02/07/1997 02/07/2007 10 IT0004793474 4.75 01/02/2012 01/05/2017 5.25

DE0001937209 5.75 10/07/1997 10/07/2007 10 IT0004801541 5.5 01/03/2012 01/09/2022 10.5

IT0001156394 5.75 18/09/1997 15/09/2002 4.99 IT0004805070 2.5 16/03/2012 01/03/2015 2.96

IT0001156386 5.5 18/09/1997 15/09/2000 2.99 IT0004820426 4.75 01/06/2012 01/06/2017 5

IT0001174611 6.5 01/11/1997 01/11/2027 30 IT0004840788 4.5 17/07/2012 15/07/2015 2.99

IT0001170007 6 03/11/1997 01/11/2007 9.99 IT0004848831 5.5 03/09/2012 01/11/2022 10.16

IT0001195491 5 20/01/1998 15/01/2001 2.99 IT0004867070 3.5 01/11/2012 01/11/2017 5

IT0001206066 5 18/02/1998 15/02/2003 4.99 IT0004880990 2.75 17/12/2012 01/12/2015 2.95

IT0001220851 4.5 17/04/1998 15/04/2001 3 IT0004889033 4.75 22/01/2013 01/09/2028 15.61

IT0001224309 5 04/05/1998 01/05/2008 9.99 IT0004898034 4.5 01/03/2013 01/05/2023 10.17

IT0001224283 4.75 05/05/1998 01/05/2003 4.99 IT0004907843 3.5 02/04/2013 01/06/2018 5.16

IT0001239588 4.5 02/07/1998 01/07/2001 3 IT0004917792 2.25 15/04/2013 15/05/2016 3.08

IT0001244638 4.5 17/07/1998 15/07/2003 4.99 IT0004923998 4.75 22/05/2013 01/09/2044 31.28

XS0089766942 8.625 10/08/1998 10/08/2001 3 XS0936805612 4.75 28/05/2013 28/05/2063 50

IT0001260808 4 19/09/1998 01/09/2001 2.95 IT0004953417 4.5 01/08/2013 01/03/2024 10.58

IT0001263844 4 02/10/1998 01/10/2003 5 IT0004957574 3.5 02/09/2013 01/12/2018 5.25

XS0091852243 4 26/10/1998 26/10/2005 7 XS0970703772 5.05 11/09/2013 11/09/2053 40

IT0001273363 4.5 02/11/1998 01/05/2009 10.49 IT0004960826 2.75 16/09/2013 15/11/2016 3.16

IT0001278511 5.25 18/11/1998 01/11/2029 30.95 IT0004966401 3.75 16/10/2013 01/05/2021 7.54

IT0001278503 3.5 18/11/1998 01/11/2001 2.95 IT0004987191 1.5 15/01/2014 15/12/2016 2.92

XS0093227014 7 04/01/1999 04/01/2002 3 IT0004992308 2.5 03/02/2014 01/05/2019 5.24

IT0001305454 3.25 02/02/1999 01/02/2004 5 IT0005001547 3.75 03/03/2014 01/09/2024 10.5

IT0001310363 3 17/02/1999 15/02/2002 3 IT0005023459 1.15 15/05/2014 15/05/2017 3

IT0001326567 3.25 16/04/1999 15/04/2004 5 IT0005024234 3.5 21/05/2014 01/03/2030 15.78

IT0001326575 3 16/04/1999 15/04/2002 3 IT0005028003 2.15 16/06/2014 15/12/2021 7.5

IT0001338612 4.25 01/06/1999 01/11/2009 10.42 IT0005030504 1.5 01/07/2014 01/08/2019 5.08

IT0001344057 3 15/06/1999 15/06/2002 3 IT0005045270 2.5 01/09/2014 01/12/2024 10.25

IT0001352803 4 16/07/1999 15/07/2004 5 IT0005058463 0.75 15/10/2014 15/01/2018 3.25

IT0001376141 3.75 04/10/1999 01/09/2002 2.91 IT0005069395 1.05 01/12/2014 01/12/2019 5

IT0001413936 4.75 05/01/2000 01/07/2005 5.49 IT0005083057 3.25 22/01/2015 01/09/2046 31.61

IT0001423844 4.5 02/02/2000 15/01/2003 2.95 XS1180157544 1.862 02/02/2015 02/02/2028 13

XS0108632018 5.25 10/03/2000 10/03/2005 5 XS1180459395 2.192 02/02/2015 02/02/2032 17

IT0001444378 6 17/03/2000 01/05/2031 31.12 IT0005086886 1.35 16/02/2015 15/04/2022 7.16

IT0001448619 5.5 03/04/2000 01/11/2010 10.58 IT0005090318 1.5 02/03/2015 01/06/2025 10.25

IT0001453262 4.75 18/04/2000 15/04/2003 2.99 XS1199008670 2 05/03/2015 05/09/2032 17.51

IT0001477386 5 16/06/2000 15/06/2003 3 XS1199014306 1.771 05/03/2015 05/03/2029 14

XS0112900351 5.25 19/06/2000 19/06/2003 3 IT0005094088 1.65 24/03/2015 01/03/2032 16.94

IT0001488102 5.25 14/07/2000 15/12/2005 5.42 IT0005106049 0.25 15/04/2015 15/05/2018 3.08

IT0003023550 5.25 18/10/2000 15/10/2003 2.99 IT0005107708 0.7 04/05/2015 01/05/2020 4.99

XS0123431677 4.75 23/01/2001 23/01/2006 5 XS1227831382 1.666 06/05/2015 06/05/2028 13

IT0003074991 5 16/02/2001 15/02/2004 3 XS1236858657 2.127 22/05/2015 22/05/2027 12

IT0003080402 5.25 01/03/2001 01/08/2011 10.42 IT0005127086 2 01/09/2015 01/12/2025 10.25

IT0003088959 4.75 16/03/2001 15/03/2006 5 IT0005135840 1.45 15/09/2015 15/09/2022 7

IT0003101992 4.5 17/04/2001 15/03/2004 2.91 IT0005139099 0.3 15/10/2015 15/10/2018 3

IT0003141741 4.5 02/07/2001 01/07/2004 3 IT0005142143 0.65 02/11/2015 01/11/2020 5

XS0133144898 5.75 25/07/2001 25/07/2016 15 IT0005162828 2.7 09/02/2016 01/03/2047 31.06

IT0003171946 4.5 17/09/2001 01/03/2007 5.45 IT0005170839 1.6 01/03/2016 01/06/2026 10.25

IT0003178446 4 01/10/2001 01/10/2004 3 IT0005172322 0.95 15/03/2016 15/03/2023 7

IT0003190912 5 01/11/2001 01/02/2012 10.25 IT0005175598 0.45 01/04/2016 01/06/2021 5.17

IT0003231146 4 17/01/2002 15/07/2005 3.49 IT0005177271 0.1 15/04/2016 15/04/2019 3

IT0003242747 5.25 14/02/2002 01/08/2017 15.46 IT0005177909 2.25 26/04/2016 01/09/2036 20.35

IT0003248512 4 01/03/2002 01/03/2005 3 XS1413812881 1.913 18/05/2016 18/05/2029 13

IT0003256820 5.75 18/03/2002 01/02/2033 30.88 XS1435990863 1.901 22/06/2016 22/06/2031 15

IT0003271019 5 15/04/2002 15/10/2007 5.5 IT0005210650 1.25 01/08/2016 01/12/2026 10.33
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IT0003288864 4.5 15/05/2002 15/05/2005 3 IT0005215246 0.65 15/09/2016 15/10/2023 7.08

IT0003357982 4.75 02/09/2002 01/02/2013 10.42 IT0005216491 0.35 03/10/2016 01/11/2021 5.08

IT0003364566 3.5 16/09/2002 15/09/2005 3 IT0005217390 2.8 11/10/2016 01/03/2067 50.38

IT0003413892 3.5 15/01/2003 15/01/2008 5 XS1505666815 1.448 17/10/2016 17/04/2027 10.5

IT0003424485 2.75 03/02/2003 01/02/2006 3 IT0005217929 0.05 17/10/2016 15/10/2019 2.99

IT0003472336 4.25 02/05/2003 01/08/2013 10.25 IT0005240350 2.45 25/01/2017 01/09/2033 16.6

IT0003477111 2.75 16/05/2003 15/05/2006 3 IT0005240830 2.2 01/02/2017 01/06/2027 10.33

IT0003493258 4.25 25/06/2003 01/02/2019 15.61 IT0005244782 1.2 01/03/2017 01/04/2022 5.08

IT0003522254 2.75 01/09/2003 01/09/2006 3 IT0005246340 1.85 15/03/2017 15/05/2024 7.17

IT0003532097 3.5 17/09/2003 15/09/2008 5 IT0005250946 0.35 18/04/2017 15/06/2020 3.16

IT0003535157 5 24/09/2003 01/08/2034 30.85 IT0005273013 3.45 14/06/2017 01/03/2048 30.71

IT0003611156 2.75 16/01/2004 15/01/2007 3 IT0005274805 2.05 04/07/2017 01/08/2027 10.08

IT0003618383 4.25 02/02/2004 01/08/2014 10.49 IT0005277444 0.9 01/08/2017 01/08/2022 5

IT0003621460 5.125 06/02/2004 31/07/2024 20.48 IT0005282527 1.45 15/09/2017 15/11/2024 7.17

IT0003621445 4.5 06/02/2004 31/07/2014 10.48 IT0005285041 0.2 16/10/2017 15/10/2020 3

IT0003644769 4.5 24/03/2004 01/02/2020 15.86 IT0005321325 2.95 17/01/2018 01/09/2038 20.62

IT0003652077 3 15/04/2004 15/04/2009 5 IT0005323032 2 01/02/2018 01/02/2028 10

IT0003674238 3 01/06/2004 01/06/2007 3 IT0005325946 0.95 01/03/2018 01/03/2023 5

IT0003685093 5.2 06/07/2004 31/07/2034 30.07 IT0005327306 1.45 15/03/2018 15/05/2025 7.17

IT0003719918 4.25 01/09/2004 01/02/2015 10.42 IT0005330961 0.05 16/04/2018 15/04/2021 3

IT0003799597 3 17/01/2005 15/01/2010 4.99 IT0005340929 2.8 01/08/2018 01/12/2028 10.34

IT0003804850 2.75 01/02/2005 01/02/2008 3 IT0005344335 2.45 03/09/2018 01/10/2023 5.08

IT0003844534 3.75 02/05/2005 01/08/2015 10.25 IT0005345183 2.5 17/09/2018 15/11/2025 7.16

IT0003872923 2.75 17/06/2005 15/06/2010 4.99 IT0005348443 2.3 15/10/2018 15/10/2021 3

This table shows the sample of the nominal securities issued by Italy from 1990 to 2018. Column “ISIN” refers to the ISIN number

and Column “Coupon” to the coupon rate of the security in percent. Column “Issue” reports the issue date of the bond and Column

“Maturity” provides the expiration date. Column “Term” specifies the term-to-maturity at issuance of the security. Source: Bloomberg.

Table A.8: Summary of the Nominal Securities, Spain

ISIN Coupon Issue Maturity Term ISIN Coupon Issue Maturity Term

ES0000011165 10.75 30/01/1989 30/01/1999 10 ES00000121I8 2.75 13/01/2009 30/04/2012 3.29

XS0047970784 9 26/07/1989 26/07/1999 10 ES00000121L2 4.6 10/02/2009 30/07/2019 10.46

ES0000011249 12.25 25/03/1990 25/03/2000 10 ES00000121O6 4.3 02/06/2009 31/10/2019 10.41

ES0000011355 11.3 15/11/1991 15/01/2002 10.17 ES00000121P3 3.3 07/07/2009 31/10/2014 5.32

ES0000011371 10.3 15/04/1992 15/06/2002 10.17 ES00000121S7 4.7 28/09/2009 30/07/2041 31.84

ES0000011413 10.9 15/02/1993 30/08/2003 10.54 ES00000121T5 2.3 06/10/2009 30/04/2013 3.56

ES0000011421 10.5 17/05/1993 30/10/2003 10.45 ES00000122D7 4 20/01/2010 30/04/2020 10.28

ES0000011470 8.2 15/12/1993 28/02/2009 15.21 ES00000122E5 4.65 24/02/2010 30/07/2025 15.43

ES0000011488 8 17/01/1994 30/05/2004 10.37 ES00000122F2 3 09/03/2010 30/04/2015 5.14

ES0000011504 7.4 15/02/1994 30/07/1999 5.45 ES00000122R7 2.5 15/06/2010 31/10/2013 3.38

ES0000011512 10 15/11/1994 28/02/2005 10.29 ES00000122T3 4.85 13/07/2010 31/10/2020 10.3

ES0000011546 10.15 15/09/1995 31/01/2006 10.38 ES00000122X5 3.25 09/11/2010 30/04/2016 5.47

ES0000011538 10.1 15/09/1995 28/02/2001 5.46 ES00000123B9 5.5 24/01/2011 30/04/2021 10.26

ES0000011553 9.4 15/12/1995 30/04/1999 3.37 ES00000123C7 5.9 15/03/2011 30/07/2026 15.38

ES0000011561 8.4 15/03/1996 30/04/2001 5.13 ES00000123D5 3.4 12/04/2011 30/04/2014 3.05

ES0000011579 8.8 15/03/1996 30/04/2006 10.12 ES00000123J2 4.25 06/09/2011 31/10/2016 5.15

ES0000011587 7.8 17/06/1996 31/10/1999 3.37 ES00000123K0 5.85 22/11/2011 31/01/2022 10.19

ES0000011595 8.7 15/07/1996 28/02/2012 15.62 ES00000123L8 4 17/01/2012 30/07/2015 3.53

FR0000108656 6.625 31/07/1996 31/07/2006 10 ES00000123P9 25/09/2012 31/10/2015 3.1

ES0000011603 7.9 15/10/1996 28/02/2002 5.37 ES00000123Q7 4.5 13/11/2012 31/01/2018 5.22

ES0000011611 6.75 15/11/1996 15/04/2000 3.41 ES00000123R5 4.75 29/11/2012 30/09/2017 4.84

ES0000011629 7.35 16/12/1996 31/03/2007 10.29 ES00000123T1 2.75 15/01/2013 31/03/2015 2.2

ES0000011660 6.15 15/07/1997 31/01/2013 15.55 ES00000123U9 5.4 29/01/2013 31/01/2023 10

ES0000011637 5 15/07/1997 31/01/2001 3.55 ES00000123W5 3.3 09/04/2013 30/07/2016 3.31

ES0000011645 5.25 15/07/1997 31/01/2003 5.55 ES00000123X3 4.4 21/05/2013 31/10/2023 10.44

ES0000011652 6 15/07/1997 31/01/2008 10.55 ES00000124B7 3.75 09/07/2013 31/10/2018 5.31

ES0000011868 6 15/01/1998 31/01/2029 31.04 ES00000124C5 5.15 16/07/2013 31/10/2028 15.29

ES0000012064 5.15 10/07/1998 30/07/2009 11.06 ES00000124H4 5.15 16/10/2013 31/10/2044 31.04

ES0000012072 4.25 07/08/1998 30/07/2002 3.98 ES00000124I2 2.1 26/11/2013 30/04/2017 3.43

ES0000012080 4.5 10/08/1998 30/07/2004 5.97 ES00000124V5 2.75 14/01/2014 30/04/2019 5.29

ES0000012098 4.75 07/12/1998 30/07/2014 15.64 ES00000124W3 3.8 29/01/2014 30/04/2024 10.25

ES0000012239 4 11/05/1999 31/01/2010 10.73 ES0202762003 3.82 30/01/2014 31/01/2022 8

ES0000012254 3.25 12/07/1999 31/01/2005 5.56 ES0302762127 2.45 30/01/2014 31/10/2018 4.75

ES0000012247 3 13/07/1999 31/01/2003 3.55 ES00000126B2 2.75 20/06/2014 31/10/2024 10.37

76



ES0000012379 4.95 14/02/2000 30/07/2005 5.46 ES00000126C0 1.4 08/07/2014 31/01/2020 5.57

ES0000012361 4.6 15/02/2000 30/07/2003 3.45 ES00000126D8 4 08/09/2014 31/10/2064 50.15

ES0000012387 5.4 19/09/2000 30/07/2011 10.86 ES00000126V0 0.5 23/09/2014 31/10/2017 3.1

ES0000012411 5.75 23/01/2001 30/07/2032 31.52 ES00000126Z1 1.6 27/01/2015 30/04/2025 10.26

ES0000012437 4.65 12/03/2001 31/10/2004 3.64 ES00000127A2 1.95 04/03/2015 30/07/2030 15.41

ES0000012445 4.8 09/04/2001 31/10/2006 5.56 ES00000127D6 0.25 26/05/2015 30/04/2018 2.93

ES0000012452 5.35 12/06/2001 31/10/2011 10.38 ES00000127G9 2.15 09/06/2015 31/10/2025 10.4

ES0000012783 5.5 11/03/2002 30/07/2017 15.39 ES00000127H7 1.15 16/06/2015 30/07/2020 5.12

ES0000012791 5 14/05/2002 30/07/2012 10.21 ES00000127Z9 1.95 19/01/2016 30/04/2026 10.28

ES0000012825 4.25 09/09/2002 31/10/2007 5.14 ES00000128A0 0.25 26/01/2016 31/01/2019 3.01

ES0000012841 3.2 13/01/2003 31/01/2006 3.05 ES00000128B8 0.75 08/03/2016 30/07/2021 5.39

ES0000012866 4.2 15/04/2003 30/07/2013 10.29 ES00000128C6 2.9 15/03/2016 31/10/2046 30.63

ES0000012882 3.6 19/01/2004 31/01/2009 5.03 ES00000128E2 3.45 18/05/2016 30/07/2066 50.2

ES0000012908 3 11/05/2004 30/07/2007 3.22 ES00000128H5 1.3 26/07/2016 31/10/2026 10.26

ES0000012916 4.4 28/06/2004 31/01/2015 10.59 ES00000128O1 0.4 24/01/2017 30/04/2022 5.26

ES0000012932 4.2 17/01/2005 31/01/2037 32.04 ES00000128P8 1.5 31/01/2017 30/04/2027 10.24

ES00000120E9 3.25 12/04/2005 30/07/2010 5.3 ES00000128Q6 2.35 01/03/2017 30/07/2033 16.41

ES00000120G4 3.15 20/09/2005 31/01/2016 10.36 ES00000128X2 0.05 06/06/2017 31/01/2021 3.66

ES00000120H2 2.9 17/01/2006 31/10/2008 2.79 ES0000012A89 1.45 04/07/2017 31/10/2027 10.32

ES00000120J8 3.8 18/10/2006 31/01/2017 10.29 ES0000012A97 0.45 10/10/2017 31/10/2022 5.06

ES00000120L4 3.9 16/01/2007 31/10/2012 5.79 ES0000012B39 1.4 30/01/2018 30/04/2028 10.25

ES00000120N0 4.9 20/06/2007 30/07/2040 33.11 ES0000012B47 2.7 27/02/2018 31/10/2048 30.67

ES00000120Z4 4.1 15/01/2008 30/04/2011 3.29 ES0000012B62 0.35 22/05/2018 30/07/2023 5.19

ES00000121A5 4.1 19/02/2008 30/07/2018 10.44 ES0000012B88 1.4 03/07/2018 30/07/2028 10.08

ES00000121G2 4.8 16/09/2008 31/01/2024 15.37 ES0000012C46 0.05 09/10/2018 31/10/2021 3.06

ES00000121H0 4.25 07/10/2008 31/01/2014 5.32

This table shows the sample of the nominal securities issued by Spain from 1989 to 2018. Column “ISIN” refers to the ISIN number

and Column “Coupon” to the coupon rate of the security in percent. Column “Issue” reports the issue date of the bond and Column

“Maturity” provides the expiration date. Column “Term” specifies the term-to-maturity of the security. Source: Bloomberg.

Table A.9: Descriptive statistics of estimated parameters

Panel A: France Panel B: Germany

Mean Std. Dev. Minimum Maximum Mean Std.Dev. Minimum Maximum

NS NS

β1 4.81 2.26 1.54 17.60 β1 4.14 1.57 0.00 9.81

β2 -2.80 3.06 -20.00 19.86 β2 -2.40 1.10 -6.31 14.88

β3 -4.17 3.88 -20.00 20.00 β3 -3.02 2.05 -16.04 20.00

λ 2.52 1.40 0.10 30.00 λ 2.86 2.48 0.16 30.00

Sv Sv

β1 2.71 1.18 0.00 10.41 β1 1.20 1.90 0.00 25.00

β2 -1.20 3.95 -20.00 20.00 β2 0.98 3.60 -20.00 20.00

β3 -4.76 10.70 -20.00 20.00 β3 -7.12 9.77 -20.00 20.00

β4 9.77 8.58 -23.73 43.56 β4 13.94 8.94 -125.08 34.33

λ 2.22 1.45 0.10 12.15 λ 2.98 1.87 0.10 13.74

γ 13.05 6.77 0.48 30.00 γ 13.69 7.07 2.03 30.00

eBC eBC

β1 3.86 3.26 0.00 25.00 β1 2.36 2.57 0.00 10.48

β2 -8.67 10.44 -20.00 25.00 β2 -5.69 11.59 -20.00 20.00

β3 -5.9 6.99 -20.00 25.00 β3 -5.55 5.93 -20.00 20.00

β4 6.74 11.58 -29.19 26.07 β4 5.57 12.02 -26.72 24.84
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λ 3.65 2.70 0.10 26.07 λ 3.91 2.59 0.10 18.22

γ 16.35 10.92 0.76 30.00 γ 16.6 10.47 0.96 30.00

eSv eSv

β1 2.73 2.84 0.00 25.00 β1 0.81 1.53 0.00 14.56

β2 5.40 12.36 -20.00 20.00 β2 10.02 10.04 -20.00 20.00

β3 -5.71 11.08 -20.00 20.00 β3 -6.45 11.07 -20.00 19.94

β4 -5.86 12.06 -27.63 18.16 β4 -8.40 10.43 -22.39 30.65

β5 11.55 11.56 -37.25 52.62 β5 17.73 9.56 -98.28 37.46

λ 2.46 1.64 0.10 10.23 λ 3.07 2.08 0.10 19.78

γ 12.02 8.59 2.83 30.00 γ 13.28 7.75 2.88 30.00

Panel C: Italy Panel D: Spain

Mean Std. Dev. Minimum Maximum Mean Std.Dev. Minimum Maximum

NS NS

β1 9.22 7.28 2.50 25.00 β1 5.28 1.11 2.62 8.44

β2 -2.40 7.31 -20.00 7.97 β2 -3.26 1.56 -6.30 15.44

β3 -3.02 6.34 -20.00 1.58 β3 -2.79 2.52 -20.00 6.51

λ 2.86 4.18 0.36 23.07 λ 2.88 2.06 0.38 30.00

Sv Sv

β1 4.20 5.30 0.00 24.61 β1 2.72 2.42 0.00 23.49

β2 -1.26 9.06 -20.00 20.00 β2 0.16 5.29 -20.00 20.00

β3 -5.72 12.14 -20.00 20.00 β3 -3.70 7.89 -20.00 20.00

β4 12.68 16.86 -50.07 78.33 β4 9.15 8.47 -51.09 39.09

λ 2.74 3.20 0.10 20.99 λ 2.35 1.82 0.10 27.63

γ 19.14 10.71 2.39 30.00 γ 18.57 8.32 1.56 30.00

eBC eBC

β1 9.42 8.76 0.00 25.00 β1 4.63 2.29 0.00 19.48

β2 -2.86 13.98 -20.00 20.00 β2 -4.13 10.55 -20.00 20.00

β3 -8.53 9.31 -20.00 20.00 β3 -3.94 5.79 -20.00 20.00

β4 -2.82 17.62 -45.66 24.16 β4 2.21 10.89 -36.29 24.65

λ 5.23 4.83 0.10 23.84 λ 3.20 2.73 0.10 21.49

γ 14.21 10.71 0.10 30.00 γ 20.46 11.54 1.13 30.00

eSv eSv

β1 9.23 9.41 0.00 25.00 β1 3.81 3.76 0.00 25.00

β2 7.52 14.35 -20.00 20.00 β2 1.79 14.23 -20.00 20.00

β3 -2.07 15.66 -20.00 20.00 β3 -5.17 9.58 -20.00 20.00

β4 -12.4 19.73 -45.42 18.27 β4 -1.81 12.12 -29.35 20.36

β5 12.68 19.32 -57.49 68.56 β5 5.39 13.68 -58.12 43.11

λ 2.75 2.74 0.10 30.00 λ 2.19 1.74 0.10 17.35
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γ 18.18 10.83 1.32 30.00 γ 15.77 9.48 1.87 30.00

We fit all four term structure models using daily market data on government securities

prices. This table reports descriptive statistics (i.e., the mean, standard deviation, min and

max) for all parameters for given country, i.e., Italy (panel C) and Spain (panel D). The

sample period from January 4, 1999, to December 28, 2018.

Table A.10: Out-of-sample forecasting results

Maturity (τ) Mean Std. Dev. RMSE ρ̂(h) ρ̂(h+ 12)

Panel A: 1-month-ahead forecasting results

RW

0.25 0.0059 1.7746 1.7744 -0.0563 -0.1082

1 -0.0094 0.4384 0.4385 0.0307 -0.1359

3 -0.0187 0.2021 0.2029 0.1574 0.0053

5 -0.0175 0.1935 0.1943 0.1066 0.0140

10 -0.0172 0.1966 0.1973 0.0939 -0.0374

AR(1)

0.25 0.0093 1.8077 1.8075 0.3557 0.1573

1 0.0022 0.4362 0.4362 0.0474 -0.1131

3 0.0000 0.2019 0.2019 0.1608 0.0086

5 -0.0003 0.1934 0.1934 0.1095 0.0167

10 0.0002 0.1964 0.1964 0.0977 -0.0340

VAR(1)

0.25 2.4229 2.7075 3.6331 0.7932 0.4286

1 0.4665 0.6802 0.8248 0.6992 0.6301

3 0.0598 0.2072 0.2156 0.2224 0.0718

5 0.5998 0.4726 0.7636 0.8828 0.8080

10 0.0353 0.2118 0.2147 0.2587 0.1315

Panel B: 6-months-ahead forecasting results

RW

0.25 0.0434 3.0195 3.0195 -0.4130 0.2132

1 -0.0636 1.0044 1.0063 -0.1716 -0.0286

3 -0.1154 0.5540 0.5658 -0.1033 -0.0084

5 -0.1072 0.4969 0.5082 -0.1779 -0.0322

10 -0.1091 0.4854 0.4975 -0.1964 -0.0368

AR(1)

0.25 0.1012 2.5634 2.5651 0.5962 0.5705

1 0.0106 0.9766 0.9766 0.0004 0.1168
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Maturity (τ) Mean Std. Dev. RMSE ρ̂(h) ρ̂(h+ 12)

3 -0.0006 0.5491 0.5491 -0.0841 0.0029

5 -0.0011 0.4945 0.4944 -0.1579 -0.0175

10 -0.002 0.4832 0.4831 -0.1717 -0.019

VAR(1)

0.25 2.4838 2.5828 3.5831 0.6142 0.5772

1 1.4038 1.7412 2.2365 0.9188 0.7814

3 0.3387 0.6003 0.6892 0.1987 0.2170

5 1.9502 1.4506 2.4304 0.9343 0.8847

10 0.1866 0.6333 0.6601 0.4638 0.4815

Panel C: 12-month-ahead forecasting results

RW

0.25 -0.2423 2.7997 2.8099 -0.3831 -0.1173

1 -0.2511 1.1127 1.1406 0.0176 -0.2449

3 -0.2487 0.7517 0.7917 -0.12 00 -0.1260

5 -0.2321 0.6433 0.6839 -0.2158 0.0091

10 -0.2433 0.6123 0.6588 -0.3591 0.1841

AR(1)

0.25 -0.1138 2.094 2.0969 0.6336 0.5086

1 -0.0934 1.0383 1.0424 0.2343 -0.0068

3 -0.0158 0.7371 0.7372 -0.0934 -0.0867

5 -0.0166 0.6375 0.6376 -0.1768 0.0510

10 -0.0254 0.6058 0.6063 -0.3145 0.2353

VAR(1)

0.25 2.2648 2.0853 3.0782 0.6374 0.5100

1 1.4521 1.7707 2.2899 0.8706 0.6913

3 0.6089 0.8512 1.0465 0.3372 0.2950

5 2.2235 1.6537 2.7709 0.9236 0.8652

10 0.3006 0.9104 0.9587 0.6216 0.7241

This table reports the results of out-of-sample h-month-ahead forecasting using

three models, h = 1, 6, 12, as described in detail in the text. We report the mean,

standard deviation and root mean squared errors of the forecast errors, as well as

their sample autocorrelation coefficients.
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Figure A.8: Fitting Errors (Nelson-Siegel model)

 

This figure shows the total fitting error implied by the Nelson-Siegel
model. The fitting error is computed as the mean absolute error
between the predicted and the market yields across all available se-
curities on a particular day for given country. The fitting errors are
shown in basis points. Sample period: January 4, 1999, to December
28, 2018. Frequency: Daily.
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Figure A.9: Fitting Errors (Svensson model)

 

This figure shows the total fitting error implied by the Svensson
model. The fitting error is computed as the mean absolute error
between the predicted and the market yields across all available se-
curities on a particular day for a given country. The fitting errors are
shown in basis points. Sample period: January 4, 1999, to December
28, 2018. Frequency: Daily.
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Figure A.10: Fitting Errors (extended Bjork-Christensen model)

 

This figure shows the total fitting error implied by the extended
Bjork-Christensen model. The fitting error is computed as the mean
absolute error between the predicted and the market yields across
all available securities on a particular day for a given country. The
fitting errors are shown in basis points. Sample period: January 4,
1999 to December 28, 2018. Frequency: Daily.
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Figure A.11: Par yield curve (Sv specification) on June 6, 2008

 

This figure shows Svensson par yield curve and the fit of indi-
vidual securities for one day of the sample period, June 6, 2008,
for a given country. The curve is reported in annualized percent.
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Figure A.12: Par yield curve (eBC specification) on June 6, 2008

 

This figure shows extended Bjork-Christensen par yield curve
and the fit of individual securities for one day of the sample
period, June 6, 2008, for a given country. The curve is reported
in annualized percent.
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Chapter 3

The Term Structure of the

French Nominal Government

Debt 1

3.1 Introduction

As in a number of OECD countries, the French sovereign bond debt market

was constantly growing over the past few decades. Figure 3.1 plots the year-

end notional outstanding amount of the French short-, medium-, and long-term

securities since 1993.2 The market has grown almost sixfold, from about e300

million in 1993 to about e1,700 million in 2018. As of April 2018, the total

outstanding amount of the French government negotiable debt securities was

e1,725 billion, 92 percent of which was represented by medium- and long-term

1 This paper is based on a working paper co-authored with Olesya Grishchenko and Franck
Moraux. These results were presented while the 6th Paris Financial Management Conference
in December 2018 and 36th International Conference of the French Finance Association in June
2016. 7th Paris Financial Management Conference in December 2019. We thank participants
of these conferences for the useful comments and discussion. The opinions expressed in this
paper are those of the authors and do not necessarily reflect the views of the Federal Reserve
System.

2We did not find outstanding notional amounts for earlier dates, as the first publicly avail-
able AFT newsletter was issued in January 1998; the end of 1993 is the earliest outstanding
amount reported there. Note also that, in order to plot this graph, we convert into euros the
notional amounts of bonds that were issued in French francs prior to the euro launch. The
conversion rate of ECU to euros is 1:1.
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debt securities.1

Figure 3.1: Notional Amount of the French Nominal Debt
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This figure shows the outstanding notional amount of the French nominal govern-
ment debt (BTF, BTANs, and OATs)from December 1993 to December 2017. Data
are hand-collected and merged from the monthly newsletters released by the Agence
France Trésor.

1Source: https://www.aft.gouv.fr/files/archives/attachments/26686.pdf. For
general discussions on the budget and the financing policies of the French state, one may
consult monthly newsletters (so-called Bulletins Mensuels) published by the Agence France
Trésor (AFT) and working papers provided by Banque de France on its website. Established
in February 2001, the AFT is an important institution whose goal is to manage the French
government treasury (including a day-to-day perspective), define for the government the debt
strategy, control and manage the risk and provide back-office services, provide macroeconomic
and financial analysis and expertise, collect and diffuse economic information, and cooperate
with international sister organizations. It has been engaged for years in a strategy to refinance
the total debt and to benefit from the favorable low financing conditions. Many statistical fig-
ures and general comments we present hereafter are based on the October 2017 technical notes
of the ECB [2017] and also BFS. See also a recently published report by the OECD [2017].
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The French public bond market is known to be very liquid: “The market is also

very highly regarded worldwide as a benchmark reference because of the regularly

held auctions and fungibility, it is already the second most liquid in the world after

its American equivalent.” [see Batten, Fetherston, and Szilagyi, 2004]. Despite

its size, the French public debt market is not well studied in the academic liter-

ature. Because the interest rate is considered to be one of the basic components

in both financial economics and macroeconomics, the availability of the historical

French yield curve should be an incredibly useful tool for researchers in these

areas. Our paper aims to fill this gap.

To our knowledge, we are the first to comprehensively study more than 30 years

of all available public data of French government securities prices. To that end,

we have constructed the nominal yield curves at a daily frequency during this

sample period, thus making it possible to study the evolution of French interest

rates in detail.

In particular, we fully implement the Gürkaynak, Sack, and Wright [GSW, 2007]

empirical methodology on all available and eligible OATs and BTANs we found on

Bloomberg since the first issuance of the OAT on October 8, 1984. Consequently,

this research heavily relies on the yield curve fitting methodology of Svensson

[1994], our goal is to obtain some reliable estimates of intermediate/long-horizon

yields that would reflect fundamentals.1 We document a number of interesting

facts about the French government bond market and French interest rates.

Our first result is related to the recurrent and open question about the existence of

the so-called on-the-run premium on government debt markets. This phenomenon

refers to the fact that investors are willing to pay a (liquidity) premium for the

newly issued government obligations, which, therefore, trade at higher prices

relative to the previous most recent issues of the debt. Based on two different

empirical strategies, we find no evidence of the on-the-run premium on the French

market. Statistically, we find that the French on-the-run premium has been, on

average, negligible and within the bounds determined by the model mean absolute

1Starting with Ricart and Sicsic [1995], the Svensson approach is used by the Banque de
France, when it passes the test against the Nelson-Siegel curve fitting model.
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fitting errors. This is clearly a distinct feature compared with the U.S. nominal

Treasury securities market, where various researchers document a sizable on-the-

run premium [see Fleming, 2003; Gauthier and Simonato, 2012; Gürkaynak, Sack,

and Wright, 2007; Krishnamurthy, 2002; Pasquariello and Vega, 2009; Warga,

1992]. The absence of such a premium may be explained by the already mentioned

deep liquidity of the market, but it is also directly imputable to the existence of

so-called souches.1 This result complements the early empirical evidence of Ejsing

and Sihvonen [2009], who find no on-the-run premium in the German sovereign

bond market.

Our second result shows the dynamics of the French nominal yield curve. Fitted

zero-coupon yields indicate a clear downward trend in interest rates since the

Global Financial Crisis (GFC), consistent with declining interest rates in other

countries, particularly the United States. Toward the end of our sample, interest

rates in France appeared to have reached a zero-lower-bound level. In addition,

the slope of the term structure as measured by, for example, the difference in the

10- and 2-year yields has been declining as well. Numerous studies [such as Ang,

Piazzesi, and Wei, 2006] find that the changes in the slope predict the changes in

the GDP growth, so our findings may be useful to macroeconomic forecasters in

future research.

Our third result is related to the functioning of the French sovereign bond mar-

ket that has considerably improved since the introduction of the euro, which we

relate to the influx of outside investors to the French market. In fact, accord-

ing to the noise measure of Hu, Pan, and Wang [HPW, 2013], that reflects the

(un)availability of arbitrage capital on a market, our findings suggest that the

French market development can be decisively separated into pre-euro (1988 to

1998) and post-euro (1999 to 2018) periods in our sample.

The rest of the paper is organized as follows. Section 3.2 describes some insti-

tutional details of the French government bond market. Section 3.3 describes

our data set. Section 3.4 describes the methodology behind the Svensson curve

1These different arguments have been confirmed by interviews and informal discussions
with market participants in the French government bond market and bond portfolio managers
in insurance companies.
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estimation. Section 3.5 reports the results and investigates the shape and the

dynamics of the fitted zero-coupon yield curve. Section 3.6 focuses on the on-the-

run premium issue of the French government bond market. Section 3.7 explores

the period preceding the euro’s 1999 launch. Section 3.8 concludes.

3.2 The French government bond market

The French treasury (FT hereafter) has a long history of bond issuance and se-

curity innovations as different marketable debt securities have been issued by

the French government for years. BTFs, BTANs, and OATs are emblematic

acronyms for this market that stand respectively for Bons du Trésor à Taux Fixe

et à intérêt précompté, Bons du Trésor à taux fixe et à intérêts Annuels and Obli-

gations Assimilables du Trésor, note that in general these definitions are viewed

as almost meaningless. These acronyms are nevertheless useful to discriminate

short-, medium-, and long-term securities, respectively.1 BTFs are standard bills

issued on a discount basis and redeemed at par. Their maturity is expressed in

weeks, and the most frequently maturities are 13, 26, and 52 weeks. Hence, their

initial maturity is equal to or less than one year. In principle, these bonds are

issued to manage short-term operations. Both BTANs and OATs are, in general,

coupon bonds although there exist some zero-coupon bonds, too. BTANs, first

issued on February 11, 1986, were debt securities with initial maturities between

2 and 5 years. However, as of January 1, 2013, the FT stopped issuing BTANs

and started issuing only two types of sovereign securities, BTFs and OATs. The

last BTAN debt was fully reimbursed on July 25, 2017, and the total BTAN debt

amounted to e1188 billion during its period of existence. The goal of stopping

the issuance of BTANs under their original name was to simplify the structure

of the issued French public debt. Since then, medium-term securities have been

renamed as OATs. Currently, all OATs and BTANs are euro-denominated French

debt securities. Most of the marketable government debt has a residual maturity

of more than one year, and the current average duration, as of April 2018 equals

1Just like one finds T-bills, T-notes and T-bonds in the United States and Bubills,
Schaetze/Bobls and Bunds in Germany.
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7 years and 288 days.1

The term “assimilable” in OATs is technical. It first refers to the fact that these

securities are fungible with some vintage bonds with identical characteristics: the

same expiration date, the same coupon rate and the same face value.2 This also

means that newly issued bonds blend in with the bond debt issue that contains

these vintage bonds. At first sight, this may appear very similar to the U.S.

reopening device. However, they are not exactly the same. First, in France,

bond debt management relies explicitly on an initial souche, which is the very

first debt issue that will serve as a matrix for the following ones. The newly

issued bonds are so fungible that vintage bond and newborn bonds are effectively

indistinguishable, and it is not really appropriate to talk about a new tranche.

Second, two mechanisms differ with respect to the usage policy. In France, it is

a general way to respond to the demand. In the United States, reopenings are

used to manage the short debt squeezes (see the Joint Report on the Government

Securities Market, 1992). Third, they differ in terms of issuance features. In the

United States, both standard auctions and “tap” issues are used by the Treasury

for reopening purposes. In France, new bonds that contribute to an existing

souche are offered by auction (adjudication).

A limited portion of the French public bond debt (e200 million) is adjusted to

inflation according to two indexes: the French CPI index (l’indice des prix à la

consommation en France) and the HICP euro index (l’indice des prix de la zone

Euro). The first inflation-adjusted French government bond, Obligations As-

similables du Trésor indexée sur l’indice des prix à la consommation en France

(OATi), was issued on September 15, 1998. In October 2001, the French govern-

ment issued the first for Obligations Assimilables du Trésor indexée sur l’indice

1 The full list of a given debt can be found in the monthly newsletter of the AFT:
https://www.aft.gouv.fr/files/archives/attachments/26686.pdf. More information
on characteristics of OAT securities can be found here: https://www.aft.gouv.fr/fr/

presentation-oat.
2Two exceptions to this general principle are worth discussing. The first one arises when the

newly issued bonds are restricted to certain investors as individuals (that is, particuliers). The
second one comes from the inclusion, as of January 1, 2013, of some collective action clauses in
the debt contract. Now, like all bonds issued in the euro area after January 1, 2013, OATs have
some collective action clauses. As a result, they are not entirely fungible with bonds issued
prior to this date.
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des prix de la zone Euro (OATei). At last, some bond debts are denominated

in other currencies (USD and GBP), but they represent less than 3 percent of

the total outstanding amount. These specific segments of the French government

bond market are out of the scope of the present research, because they deserve

tailored investigations. We do not consider currently these bonds in our dataset

for the purposes of this paper.

The French OATs/BTANs bond market experienced a number of different periods

since its onset in 1984. During the first period, the bond market was regularly ex-

posed to some political events and institutional changes. From a macroeconomic

perspective, the French franc-denominated debt was exposed to the French po-

litical risk factor during a number of economic episodes. From a microeconomic

perspective, the market increased gradually in credibility and liquidity. As an

example of these changes, the marché à terme international de France (MATIF)

opened in 1986 and proposed a number of interest rate derivatives. Later, the

OATs bond stripping was authorized in 1991, which allowed people to make ar-

bitrage between zeros and coupon bonds and one may also refer to floating-rate

OATs, called OAT TEC 10 that were first issued on April 9, 1996, and to the

regular improvement of the legal and market environment for repos transactions

(including the technique of “pension livrée” in 1988, the designation of 20 mar-

ket makers in 1994 from merging Spécialistes en Valeurs du Trésor (SVTs) and

Spécialistes en Pensions sur Valeurs du Trésor (SPVTs), and the use of the ISMA

Master Agreement for repos since the euro launch). The Agence de la Dette then

renamed Agence France Trésor was created on February 8, 2001. All of these

innovations contributed to a better-functioning French bond market, making it

highly attractive for investors. It is nowadays a very liquid place to invest.

The investor clientele on the French bond market has profoundly changed over

the 35 years of the market’s existence. In the 1980s, large investors were mainly

French institutional investors sometimes called zinzins1 as well as some large

1According to Af2i - the Association Française des Investisseurs Institutionnels, institu-
tional investors are investors collecting private funds and they are required to invest a large
part of their stake with a long-term perspective: “Organismes collecteurs de l’épargne qui pla-
cent leurs fonds sur les marchés pour leur compte propre ou celui de leurs clients (particuliers,
fonds de pensions, assurés,. . . ). Ils sont tenus institutionnellement de placer à long terme
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state-owned companies. By law, zinzins are required to be engaged in some

long-term strategies such as the buy-and-holds of OAT securities. For their part,

insurance companies are concerned by asset-liability management issues. In the

1980s, no one had incentive to actively trade these bonds or even to lend them

on the repo market. With the launch of the euro, such political and institutional

issues largely disappeared and new outside investors came into the market. In

fact, nonresident holdings of French government negotiable debt securities regu-

larly increased from about 15 percent of the total negotiable debt outstanding in

early 1998 (about one year before the euro) to almost 30 percent at the end of

2000. Nonresident participation in the market reached its peak of 71 percent in

June 20101.

3.3 Data

We identify the list of all French government marketable debt securities available

on Bloomberg by their ISIN number. We then select all BTANs and OATs with

fixed coupons.2 Each ISIN number refers to a specific issuance of bonds. In the

case of OATs, the very first issue of securities with some given characteristics

is called a souche. Souches are therefore uniquely identified by the ISIN num-

ber associated to first OATs issued. Later on souches can be reopened several

times. Actually, in the case of a reopening, each additional issue would have

another ISIN, but with no available data on Bloomberg. Indeed, this would be

redundant information because, by design, these new OATs are just similar and

they can be “assimilated” to the vintage ones. Before the launch of the euro, the

straight coupon bonds we collect were denominated at issuance in FF (French

francs), and in a very few cases in XEU (or ECU for European Currency Unit).

They are denominated in euros starting January 1, 1999. All of them pay an-

nual fixed coupons to bondholders and have neither special nor optional features.

une part importante de leurs ressources. [...] Cette dénomination d’Investisseurs Institution-
nels regroupe sous le même vocable des institutions fort diverses (caisses de retraite, institut
de prévoyance, compagnies d’assurance, mutuelles, associations, fondations, caisses de congés
payés, institutions spéciales. . . ).”

1In a situation where debt is far larger (see Figure 3.1).
2Neither OATs nor BTANs are callable. When appropriate, the AFT can try to buy back

the debt.
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Figure 3.2: Maturity Distribution of the BTANs and OATs

This figure shows the maturity structure of the French nominal government securi-
ties, BTANs and OATs issued from 1984 to 2018. The vertical line corresponds to
January 1, 1999, the beginning of the euro-area sample. Source: Bloomberg.

We randomly check that the information from Bloomberg is consistent with the

information in the AFT monthly newsletters.12

1These newsletters are available at the AFT’s website https://www.aft.gouv.fr/fr/

bulletins-mensuels since the January 2010 issue. At the start of our project, we manu-
ally collected newsletters for earlier years, starting from January 1998, from which we obtained
the outstanding notional amount of the OAT market. The January 1998 newsletter contained
the OAT notional debt amount that was dated back to December 1993 (start of the sample
in Figure 3.1). Unfortunately, currently the AFT site provides newsletters only from January
2010.

2It appears that the information recorded by Bloomberg (especially for bonds issued before
1999) does not necessarily match.
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Ultimately, our data set consists of 179 bonds and daily available (bid) prices for

these bonds from July 1, 1987, through April 10, 2018. Thus, our data set contains

300,105 price quotes in total. Tables B.6, B.7, and B.8 in the appendix provide

a detailed description of all the individual securities in our sample from 1987 to

1999, 2000 to 2008, and 2009 to 2018, respectively. For a given bond, we provide

the following information: the security type (as it can be a BTAN or an OAT

before January 1, 2013), the ISIN number, the coupon rate of the security, the

first date on which the quotes for the security are available, the expiration date of

the security (maturity), the term-to-maturity of the bond, and the total number

of available observations for the security. Bond debts mature most frequently at

the end of April or October, and the expiration dates of BTANs and OATs have

occurred on the 12th and 25th day of a particular month, respectively.

The ranges of time-to-maturities available for estimation over our sample period

are plotted in Figure 3.2. Each line represents one security. The date is shown on

the horizontal axis and the remaining time-to-maturity is shown on the vertical

axis in years. The upper-left point of the line corresponds to the first date for

which the quote is available on Bloomberg. The lower-right point of the line

corresponds to the bond expiration date. As one can see from this graph, most of

the issuance is concentrated in the maturity range of 5 to 10 years. An interesting

feature of the OAT market (and different from U.S. Treasury securities) is that

there are currently three 50-year (ultra-long) bonds, issued in 2005, 2010, and

2016. The vertical line on the figure corresponds to the January 1, 1999—the

first trading day in euros in our sample.

3.4 Methodology

In this section, we first define basic concepts that we use in the paper, then

introduce Svensson [1994] methodology, describe various filters used for our data

set, and discuss our estimation procedure.
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3.4.1 Basic concepts

The first and most basic concept for pricing any fixed-income asset is the discount

function or the price of a zero-coupon bond that represents the value at time t

of paying e1 at a future point of time T . We denote this bond price as B (t, T ),

and it is worth introducing the continuously compounded zero-coupon yield on

this bond denoted by y (t, T ). The zero-coupon bond price and this zero-coupon

bond yield are linked via the relationship

B (t, T ) = exp [−y (t, T )× (T − t) , ] . (3.1)

or equivalently

y(t, T ) = − 1

T − t
lnB (t, T ) . (3.2)

Assume now that we observe a number of zero-coupon bond prices. We can then

price any coupon-bearing bond. Actually, by using the no-arbitrage argument,

the time t−price of a coupon bond maturing in T−t years, promisingNc,t identical

coupon payments c, and paying e1 in T − t years, is given by

p (c, t, T ) =

Nc,t∑
i=1

c×B (t, ti) +B (t, T ) . (3.3)

In this formula, ti stands for the i − th coupon payment date and tNt is the

last payment date. Therefore, tNt = T . Because OATs and BTANs pay annual

coupons, the set of payment dates also satisfies ti− ti−1 = (ti − t)− (ti−1 − t) = 1

for all i ≥ 1, that is, two cash flow payments are separated by one year. It is

worth noting finally that the face value of French securities is not of course e1,

but this issue is straightforward to address.1 In what follows, one will denote by

Y the yield-to-maturity of the coupon bond; Y makes the present value of future

(annual) cash flows equal to the coupon bond price. And one has

p (c, t, T ) =

Nc,t∑
i=1

c

(1 + Y )ti−t
+

1

(1 + Y )T−t

1In contrast, nominal Treasury securities pay semiannual coupons so the cashflows would
be in this case c/2.
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It is straightforward to convert this yield to maturity into its continuously com-

pounded counterpart (y = ln (1 + Y )). Another popular way among market

participants is to express and quote bond prices in terms of par yields. The

par yield over a certain horizon T is the coupon rate at which a coupon bond

security maturing at T will trade at par. Setting the price of the coupon bond

in equation (3.3) to p(c, t, T ) = $1, we obtain the solution for the coupon rate

c ≡ yc(t, T ):

yc(t, T ) =
1−B(t, T )∑Nt
i=1 B(t, ti)

. (3.4)

While zero-coupon yields represent a mathematically simpler concept, market

participants usually quote yields to maturity on coupon-bearing bonds and use

par yields. We compute both par yields and zero-coupon yields in this paper.

The yield curve can also be expressed in terms of forward rates. A forward rate

is the rate that an investor is able to lock in some time in the future by trading

zero-coupon bonds of different horizons now. For example, if an investor wishes

to lock in a m−period rate between T and T +m years in the future, this forward

rate, denoted as f(t, T,m), can be obtained as follows:

f(t, T,m) = − 1

m
ln
P (t, T +m)

P (t, T )
=

1

m
((T +m)y(t, T +m)− Ty(t, T )) . (3.5)

Taking the limit m→ 0, we obtain the instantaneous forward rate f(t, T, 0):

f(t, T, 0) = lim
m→0

f(t, T,m) = y(t, T ) + Ty′(t, T ) = − ∂

∂T
lnP (t, T ). (3.6)

Equation (3.6) essentially means that if the forward rate is above (below) the

yield at a certain maturity, then the yield curve is upward (downward) sloping

at that maturity. The zero-coupon yield over time T − t can be thought of as a

continuous rollover of the instantaneous forward rate investments and therefore

can be expressed as the average of the forward rates over the horizon T − t:

y(t, T ) =
1

T − t

∫ T

t

f(t, x, 0)dx. (3.7)

It is useful to think of the forward rates rather than yields themselves as describing
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the yield curves. For example, the 30-year OAT yield can be represented as

the average of the one-year forward rates over 30 years. While forward rates

at shorter horizons might be influenced by cyclical factors (such as monetary

policy expectations), at longer horizons forward rates appear to be reflecting more

fundamental factors like changes in the risk attitudes of investors. Zero-coupon

yields combine information about these two types of factors in one number, while

forward rates disentangle this information.

Finally, we introduce the concept of the modified duration used in our yield curve

estimation:

D =
DMac

1 + Y
, (3.8)

where Y stands for the yield-to-maturity and DMac is the Macaulay duration. It

is well known that the Macaulay duration is the weighted average of the time (in

years) that the investor must wait to receive the cash flows of a coupon bond. It

is computed by

DMac =
1

p(c, t, T )

Nc,t∑
i=1

(ti − t)× c×B(t, ti) + (T − t)× F ×B(t, T ).

The modified duration is very popular among participants because it connects

more explicitly the change in yields to the change in prices, see, e.g., Martellini,

Priaulet, and Priaulet [2003] for additional information about duration.

3.4.2 Svensson methodology

We broadly follow GSW to fit the nominal (BTAN- and OAT-based) par yield

and zero-coupon yield curves using the Svensson [1994] methodology, which may

be viewed as an augmented (and therefore more flexible) version of the Nelson

and Siegel [1987] approach. The Svensson curve fitting approach relies on the

premise that the curve associated with the instantaneous forward rates f(t,m, 0)

m periods ahead at time t and is correctly described by the following functional

form:

f (t,m; Θ) = β0 + β1 exp
[
−m
τ

]
+ β2

m

τ1

exp

[
−m
τ1

]
+ β3

m

τ2

exp

[
−m
τ2

]
, (3.9)
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where Θ = {β0, β1, β2, β3, τ1, τ2} are six Svensson parameters that need to be

estimated. The instantaneous forward rate (3.9) starts at the level β0 + β1 at a

horizon zero and eventually converges to β0 asm approaches infinity. Thus, β0+β1

and β0 have a natural interpretation of the short rates at the short and long end of

the yield curve. The functional form (3.5) is also flexible enough to accommodate

two potential humps in the shape of the forward curve (observed, for example, in

the U.S. Treasury forward rate curves). The third and fourth terms in the above

equation control two humps of the curve, given that the respective parameters

(β2, τ1) and (β3, τ2) specify the size and the location of these humps.

Zero-coupon yields are obtained by integrating f (t,m; Θ) over the interest rate

horizon [t, t+m] using (3.7) and (3.9):

y (t, t+m; Θ) = β0 + β1
1− e−

m
τ1

m
τ1

+β2

[
1− e−

m
τ1

m
τ1

− e−
m
τ1

]

+β3

[
1− e−

m
τ2

m
τ2

− e−
m
τ2

]
.

(3.10)

Therefore, for a given set of parameters Θ, the Svensson curve (3.9) defines the

forward rate curve. From the latter, we can obtain the zero-coupon yields using

(3.10) and par yields defined in (3.4). We use zero-coupon yields to price zero-

coupon bonds and, consequently, compute the model-implied prices of the OAT

coupon securities with a specific coupon rate and a specific maturity date. The

next two subsections discuss certain data filters and estimation details.

3.4.3 Filters

In fitting the curve, we impose the following filters, following GSW.

1. First, we confine our database only to regular bonds with no special or

option features. We therefore exclude floating-rate bonds, inflation-linked

bonds, and bonds that were denominated in currencies other than FFs,

ECUs, or euros. In addition, following GSW, we exclude STRIPS of OATs

known as the “certificats zéro-coupon fongibles” that are available on the

secondary market.
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2. We exclude BTFs from our investigation. As Duffee [1996] points out, with

U.S. Treasury bills, it is not clear how innocuous is the use of the BTFs. 1

3. We exclude the short-duration securities—that is, all securities with less

than 12 months to maturity—to prevent particular institutional details, un-

related to movements reflecting fundamentals, to affect the fit of the curve.

For example, some long-term asset (pension or insurance) fund managers

tend to sell off shorter-duration bonds in rebalancing their portfolios.2

4. Unlike GSW, we did not exclude the on-the-run bond (that is, the most

recently issued bond) and the first off-the-run bond (that is, the most recent

bond after the on-the-run bond).3

3.4.4 Estimation

We collect at time t a set of observed bond prices (p̂c (t, Tk))k=1,...,Nb,t
where Nb,t is

the number of coupon bond prices we observe at that time. Observed and model

bond prices are related via the following relationship:

p̂c (t, Tk) = p (c, Tk; Θt) + εk, (3.11)

where εk is the error term with zero mean. One assumes that the vector of

error terms ε′ =
(
ε1, ..., εNb,t

)
has a diagonal covariance matrix with possibly

different variances on the diagonal. The set of parameters Θt is estimated by

minimizing a weighted sum of squared errors whose weights are the inverses of

the squared modified duration D defined in equation (3.8) for each coupon bond.

1In this way, we also avoid selecting a particular approach among the (discordant and
sometimes debatable) empirical strategies found in the literature to deal with the French short-
term debt securities. For example, Ricart and Sicsic [1995] select BTFs, BTANs, and OATs
with time-to-maturity larger than one month and one year, respectively (for liquidity concerns),
and they force the yield curve to fit exactly the yield of the next-to-repay BTF.

2GSW exclude bonds with remaining time to maturity of less than 18 months. We adopted
a shorter threshold because initially the OAT market was not sufficiently mature. Using the
18-month threshold would have excluded, in relative terms, considerably more bonds from the
model estimation.

3 In fact, we have fit the curve excluding these two bonds but did not find significant
differences. We discuss these findings in detail in Section 3.6.
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More formally, the solution set satisfies

Θ̂t = arg min
Θt

Nb,t∑
k=1

[
p̂c (t, Tk)− p (c, Tk; Θt)

Dk

]2

(3.12)

where Dk is the modified duration of the k−th bond. This particular weighting

scheme is an appropriate way to deal with the nonlinear relation between yields

and prices (see Svensson 1994; GSW; Gauthier and Simonato 2012). As explained

by GSW (see their footnote 4 on page 2296), this way to proceed avoids converting

bond prices into yields and therefore speeds up the calibration exercise. 1

We place some constraints on the parameters according to their economic mean-

ing. For instance, τ1, τ2, and β0 are constrained to be positive numbers in our

estimation. Note that we do not constrain β0 + β1 to be positive to allow for the

short negative rates, a feature prevalent in the advanced economies toward the

end of our sample.

We then compute, at a given time t, mean absolute error (MAE) of the model

fit for particular maturity bins. MAE simply averages the differences between

the observed yield-to-maturity of the coupon bond and the one predicted by the

model:

MAEt (τ) =
1

Nt (τ)

Nt(τ)∑
k=1

∣∣∣ŷ (t, k)− y
(
c, Tk; Θ̂t

)∣∣∣ , (3.13)

where τ represents the range of maturities over which the MAE has been com-

puted; Nt (τ) is the number of different bonds within a particular range τ ; ŷ (t, k)

is the observed yield-to-maturity of the kth bond; Tk is the time-to-maturity of

the kth bond; and y
(
c, Tk; Θ̂t

)
is the yield-to-maturity of the kth bond predicted

by the model that makes use of the fitted parameters Θ̂t.

1 Note that some other authors use more standard durations. For example, HPW use the
Macauley duration in estimating the curve.
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3.5 Results

In this section we discuss our estimation results—namely, we discuss the model

fit and the implied term structure of OAT interest rates.

3.5.1 Model fit

Figure 3.3 plots the time series of the overall fitting errors. The measure of the

overall fitting error on a particular day is the average of absolute errors between

the predicted and market yields across all available securities that day. It is

computed by

MAEt =
1

Nb,t

Nb,t∑
i=1

∣∣∣ŷ (t, i)− y
(
c, Ti; Θ̂t

)∣∣∣ , (3.14)

or equivalently, MAEt = 1
Nb,t

∑Nτ
τ=1 Nt (τ)MAEt (τ), where Nτ is the number of

maturity ranges (we also call them bins interchangeably). We show these errors

for our benchmark sample, which is the sample period after the euro was intro-

duced, from January 1, 1999, onwards.1 One can see that the model does a very

good job of fitting the cross section of OAT securities with only six parameters.

Indeed, pricing errors do not exceed 5 basis points in the post-euro sample. This

magnitude is definitely reasonable and consistent with GSW findings of the U.S.

Treasury securities yields curve in the post-1980s sample period. In particular,

the model fit has been improving from the onset of the euro area until the begin-

ning of the 2007-08 subprime mortgage crisis period and the following 2008-09

GFC period. Then, the model fit has deteriorated temporarily. Consequently,

the errors spiked again during the 2011-12 sovereign bond crisis (when, in partic-

ular, France has lost its AAA Standard & Poor’s rating on January 9, 2012). A

possible explanation for such variation throughout the post-euro sample period,

consistent with the views of OAT market participants, is that the liquidity and

attractiveness of OATs has generally improved over time after the launch of the

euro area but deteriorated during the turmoil of the global financial and sovereign

bond crises.

1We discuss the behavior of the model in the pre-euro period in Section 3.7.
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Figure 3.3: Fitting Errors
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This figure shows the total fitting error implied by the Svensson [1994] model. The
fitting error is computed as the mean absolute error between the predicted and the
market yields across all available BTAN and OAT securities on a particular day.
The fitting errors are shown in basis points. Sample period: January 4, 1999, to
April 10, 2018. Frequency: Daily.

Figure B.10 in appendix plots the time series of fitting errors (3.13) for six matu-

rity bins: 0 to 2 years, 2 to 5 years, 5 to 10 years, 10 to 20 years, 20 to 30 years,

and 30 to 50 years. Interestingly, the fitting error magnitude and behavior differ

according to the maturity interval. In particular, fitting errors in the 2 to 5 years

maturity range (top-right chart) appear to be notably higher than overall during

the U.S. subprime mortgage crisis period, while fitting errors in the 5 to 10 years

range indicate the deterioration in the model fit during the 2011-12 sovereign

debt crisis in the euro zone. For longer-term securities (the low row of panels in

Figure B.10), the model fit has worsened, particularly during the GFC period.
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Table 3.1: Summary Statistics of the Svensson Model Fitting Errors

The table reports descriptive statistics of the daily fitting errors for securities in the indicated
maturity bins for the full sample period, from January 4, 1988, to April 10, 2018 (Panel A) and
for the euro sample period, from January 4, 1999, to April 10, 2018 (Panel B). The fitting errors
are mean absolute errors between observed and predicted yields of the Svensson [1994] model. The
errors are reported in basis points. Frequency: daily.

0-2yr 2-5yr 5-10yr 10-20yr 20-30yr 50yr

Panel A: Full sample period

Mean 2.90 4.74 5.92 4.42 4.66 3.38
Max 29.14 43.54 40.64 30.96 37.60 25.40
Min 0.07 0.32 0.30 0.00 0.01 0.00
Std. Dev. 3.90 6.43 7.27 4.11 6.11 4.59

Panel B: Post-euro sample period

Mean 1.75 1.50 1.87 2.52 1.97 1.64
Max 14.27 6.02 11.34 9.00 10.84 10.89
Min 0.07 0.32 0.30 0.23 0.11 0.00
Std. Dev. 1.21 0.75 1.04 1.40 1.36 1.46

In addition, we report descriptive statistics of the overall fitting errors and fitting

errors for different maturity bins in Table 3.1 for the full sample period (Panel

A) and the post-euro sample period (Panel B). The numbers confirm our visual

representation in Figures 3.3 and B.10 that fitting errors became smaller in the

post-euro period (on average not exceeding 3 basis points) than in the full sample

period (on average 5 basis points). While the maximum fitting error has reached

44 basis points in the pre-euro period, it was only 13 basis points in our benchmark

period. The fit also became much more stable in the post-euro period: volatility

of the fitting errors did not exceed 2 basis points during this period of time,

but it was very high before the launch of the euro (as demonstrated by the full-

sample average of 8 basis points). Finally, we observe the worst fit in the full

sample period in the 5 to 10 years maturity range of OAT securities, while in the

post-euro sample we observe it for the 10 to 20-year maturities.

Figure 3.4 shows the estimated Svensson nominal par yield curve on three dif-

ferent dates, which we picked in the three broadly defined periods: on March
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Figure 3.4: Par Yield Curve
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This figure shows the par yield curve and the fit of individual securities (left charts)
along with security-specific fitting errors (right charts) of the securities for three
days in our sample: March 25, 2003, June 10, 2008, and April 2, 2018. The curve
is reported in annualized percent, the fitting errors are reported in basis points.
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25, 2003 (during the “before the crisis” period), on June 10, 2008 (during the

“crisis” period), and on April 2, 2018 (during the “after the crisis” period). The

left-hand side of the figure shows the model-implied par yield curve along with ob-

served (blue round circles) and predicted (red crosses) continuously compounded

yields. The predicted yields are computed using parameters that are estimated

using BTAN/OAT quotes on the indicated day. The right-hand side of the figure

shows security-specific pricing errors computed as differences between observed

and predicted yield to maturity. Thus, positive errors correspond to higher ob-

served than predicted yields and, thus, lower observed than predicted bond prices.

Therefore, in this case the model overprices bonds relative to observed prices. Al-

ternatively, negative errors correspond to model underpricing relative to observed

prices. Overall, we find that before and after the crisis, the range of values for the

fitting errors remains relatively narrow, not exceeding 3 basis points in absolute

values. However, during the crisis period, the fit of the curve worsened notably,

likely reflecting a shortage of arbitrage capital and overall deteriorated market

functioning.

3.5.2 The term structures of zero-coupon and forward

rates

We then investigate the term structures of zero-coupon and forward rates to doc-

ument the different shapes and behaviors of the French yield curves we estimated.

3.5.2.1 Shapes of the yield curve

Table 3.2 reports the summary statistics of the fitted zero-coupon rates and as-

sociated instantaneous forward rates implied by the price quotes of BTAN and

OAT securities. For six different horizons, it displays the average, maximum, and

minimum values; volatility; skewness; kurtosis; and the autoregressive of order

1 coefficient, AR(1). On average, zero-coupon rates increase up to a horizon of

30 years and forward rates increase up to a horizon of 10 years. The volatility

of zero-coupon rates is decreasing at short-to-intermediate horizons and then in-
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Table 3.2: Summary Statistics about zero-coupon and instantaneous rates

This table reports summary statistics of the Svensson [1994] fitted zero-coupon yields (Panel A)
and instantaneous forward rates (Panel B) for 2-, 5-, 7-, 10-, 30-, and 50-year maturities implied by
our sample of the nominal BTAN and OAT securities. All statistics are reported in the annualized
percent. Sample: January 1, 1999, to April 10, 2018. Frequency: daily.

2yr 5yr 7yr 10yr 30yr 50yr

Panel A: Zero-coupon rates

Mean 1.9479 2.5307 2.8724 3.2724 4.0152 3.8687
Max 5.1929 5.2737 5.3698 5.6587 6.3592 6.0439
Min -0.6854 -0.4390 -0.2281 0.0812 1.0099 1.3050
Std. Dev. 1.7179 1.6415 1.5649 1.4747 1.2721 1.0402
Skewness 0.0230 -0.3257 -0.4725 -0.6002 -0.5388 -0.4773
Kurtosis 1.6567 1.8358 2.0114 2.2388 2.4323 2.5500
AR(1) coeff 0.9997 0.9997 0.9996 0.9996 0.9994 0.9965

Panel B: Forward rates

Mean 2.3147 3.4560 3.9631 4.3916 4.0310 3.3305
Max 5.3084 5.8455 6.1765 6.6639 6.3982 5.6260
Min -0.6878 0.0282 0.4885 0.9842 1.4695 1.2821
Std. Dev. 1.7585 1.5151 1.3886 1.2968 1.0249 0.6775
Skewness -0.2411 -0.7569 -0.8827 -0.8416 -0.1699 0.1479
Kurtosis 1.7420 2.3778 2.7320 2.8636 2.5159 2.9619
AR(1) coeff 0.9995 0.9995 0.9994 0.9993 0.9960 0.9123

creasing. However, the volatility of forward rates is strictly decreasing with the

horizon. We find nevertheless that the zero-coupon rate curve has had different

shapes over our sample period as shown in Figure B.11 in the appendix, which

plots zero-coupon yield curves and instantaneous forward rate curves on the same

days as Figure 3.4 does—namely, on March 25, 2003, June 10, 2008, and April 2,

2018. The zero-coupon rate curves appear on the left side of the figure and the

forward rate curves are on the right side of it. These plots show various shapes

yield curve shapes implied by the OATs. For example, the term structure on

March 25, 2003, is upward-sloping until about the 30-year maturity point, after

which it slopes down. This is a typical behavior of the term structure, as the

very long end of the curve is affected by convexity and can be captured by the

second hump in the Svensson function (3.10). Indeed, on March 25, 2003, the
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Table 3.3: Correlation

This table reports correlations of Svensson [1994] fitted zero-coupon yields (Panel A) and instanta-
neous forward rates (Panel B) for 2-, 5-, 7-, 10-, 30-, and 50-year maturities implied by our sample
of the nominal BTAN and OAT securities. Sample: January 1, 1999 to April 10, 2018. Frequency:
daily.

2yr 5yr 7yr 10yr 30yr 50yr

Panel A: Zero-coupon rates

2yr 1.0000 0.9776 0.9547 0.9237 0.8727 0.8469
5yr 1.0000 0.9955 0.9813 0.9414 0.9136
7yr 1.0000 0.9950 0.9637 0.9368
10yr 1.0000 0.9812 0.9559
30yr 1.0000 0.9871
50yr 1.0000

Panel B: Forward rates

2yr 1.0000 0.9381 0.8872 0.8526 0.8617 0.3777
5yr 1.0000 0.9894 0.9673 0.9061 0.4604
7yr 1.0000 0.9919 0.9113 0.4855
10yr 1.0000 0.9224 0.4907
30yr 1.0000 0.6547
50yr 1.0000

zero-coupon and forward yield curves have only one hump, but they experience

changes in the sign of curve convexity (first negative and then positive for very

long horizons). In general, the Svensson specification allows the term structure

to have two humps and thus the Svensson formulation is more flexible relative to

the Nelson-Siegel model.

The yield curve and forward rate curve on June 10, 2008, have two humps. In ad-

dition, the term structure for both zero-coupon and forward curves is downward-

sloping, likely indicating worsening economic conditions. This in turn supports

the widespread view that the financial crisis was indeed global and affected the

growth prospects in many advanced economies, including France. Finally, toward

the end of our sample, and as indicated by the graph on April 2, 2018, the yield

curve becomes upward sloping.
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3.5.2.2 Dynamics of the yield curve

Figure 3.5: Time Series of Zero-Coupon Yields
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This figure shows the time series of the Svensson [1994] fitted 2-, 10-, and 30-year
zero-coupon yields implied by the price quotes of BTANs and OATs from January
1, 1999, to April 10, 2018, at daily frequency.

Figure 3.5 plots 2-, 10-, and 30-year zero-coupon yields in our sample, from
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1988 to 2018. It is obvious that the movements in the rates at these three tenors

are highly correlated, although not perfectly correlated. Table 3.3 reports corre-

lations among rates of different maturities, which vary from about 0.85 to about

0.99. The correlations are computed for daily series in the post-euro sample.

In particular, the table shows that the correlations between the 2- and 10-year,

10- and 30-year, and 2- and 30-year zero-coupon rates are 0.92, 0.98, and 0.85,

respectively. Figure 3.5 also indicates that all series declined following the peak

of the GFC. In the beginning of 2015, the 2-year yields reached the zero-lower

bound and declined further down into negative territories from then on, support-

ing the trend of declining and negative interest rates in other advanced economies

in Europe.1

Turning to specific maturities, in our sample period the 2-year yield stayed in the

range of 3 percent prior to the GFC period. It shortly reached five percent around

2001. The 2-year yield rose during the pre-crisis period in 2006 and 2007 and then

started declining almost monotonically from about 4 percent level. Later in our

sample, the 2-year yield increased shortly in 2010 and then declined sharply again

around the 2011-12 sovereign debt crisis in Europe. The 10- and 30-year yields

also declined similarly to the 2-year yield starting from about 4 or 5 percent levels

depending on the maturity. At the end of the sample period, the 10- and 30-year

zero-coupon rates had values of around 1 and 2 percent, respectively. We leave

it to further research to investigate to what extent the decline in OAT-implied

rates was due to the decline in expected short-term rates, the decline in term

premiums, or both.

3.5.3 Factors of the yield curve

We investigate the dynamics of the yield curve by running a principal component

analysis (PCA). It is widely known that most variations in U.S. Treasury yields

can be explained by a few factors—namely, the first three principal components of

the yield curve, loosely labeled as the level, slope, and curvature factors [see Bliss,

1Our OAT-implied zero-coupon yields and those available at the ECB website have corre-
lations close to 1 and thus have also shown similar trends, although ECB reported yields were
slightly higher during the sovereign financial crisis.
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Figure 3.6: Principal Components of the Yield Curve
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This figure shows time series of the first three principal compo-
nents of the French zero-coupon rate curve. The principal com-
ponent analysis used the zero-coupon yields of maturities from 1
to 10 years. Sample period: January 1, 1999, to April 10, 2018.
Frequency: Daily.

1997; Litterman and Scheinkman, 1991]. We also derive the principal components

from 1- to 10-year zero-coupon OAT yields in the 1999-2018 sample. According

to Table 3.4, the first principal component explains 97.56 percent of the variation

in OAT yields, and the second one explains 2.34 percent. Naturally, the rest

of the yield curve variation is explained by the third and higher-order principal
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components. Note that the level of a rate curve can be proxied by computing

the arithmetic average of available interest rates (we select yields with maturities

from 1 to 30 years). The slope can be proxied by the spread between a long-term

rate and a short-term rate (and we select for this the 2- and 30-year yields). The

curvature can be proxied by multiplying a middle-term yield by 2 and then by

subtracting from the result the sum of a short-term yield and a long-term yield

(we select the 5-, 18-, and 30-year yields). Factors constructed in this way yield

a similar conclusion.

Table 3.4: Principal Component Decomposition

This table reports the percent of variance in Svensson [1994] fitted
zero-coupon yields explained by the first three principal compo-
nents. Full Sample: January 4, 1988, to April 10, 2018; Euro
Sample: January 1, 1999, to April 10, 2018. Frequency: daily.

PC Full Sample Euro Sample

PC1 0.9572 0.9754
PC2 0.0395 0.0236
PC3 0.0030 0.0010

Figure B.12 in the appendix plots the factor loadings for the principal components

with non-normalized variance (Panel A) and the unit variance (Panel B). From

the figure it is obvious that the first principal component is essentially a level

factor because the yields at all maturities load similarly on this factor (the blue

curve is roughly flat across maturities), and that the second principal component

essentially captures the slope factor (red curve) because the loadings on short- and

long-term maturities have different signs and magnitudes, while the relationship

between loadings and maturities remains monotonic. Finally, the curvature factor

is close to zero at all maturities (yellow curve on Panel B).

Figure 3.6 shows times series for the first three principal components. First, the

level factor shows that, on average, the downward trend in French interest rates

is consistent with declines in other advanced economies. Second, the level factor

became slightly negative at the end of this period. This is in line with declining 2-

, 10-, and 30-year yields, shown on Figure 3.5. Third, the slope factor also shows
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significant variations. In the United States, the slope factor is known to be an

important predictor of future GDP growth. In particular, the decline in the slope

corresponds to the flattening of the yield curve that is found to be associated with

a slowdown in future economic activity [Ang, Piazzesi, and Wei, 2006]. Finally,

the curvature factor is also highly time-varying, although this variation appears

to be on a much smaller scale in absolute values. Thus, the third factor appears

to be a relatively less important factor given that it explains less than 1 percent

of the variation in yields in our sample.

3.6 Is there any on-the-run premium on the French

bond market?

In this section we explore the phenomenon of the on-the-run premium on the

French government bond market. The phenomenon refers to the fact that, in

general, newly issued bonds are sought by market participants and therefore are

more expensive than other bonds with similar time-to-maturity characteristics

that were issued earlier. The existence of the sizeable on-the-run, or liquidity,

premium has been well established on the U.S. nominal Treasury securities market

(see, Fleming 2003; Pasquariello and Vega 2009, and GSW). To assess how large

the on-the-run premium could be on the French market, we use two approaches:

the approach of Fleming [2003] and then the GSW approach.

We start with the definition of the premium. The most recently issued security

is called the “on-the-run” security and the one issued right before it is called the

“first off-the-run” security. Thus, we define the spread between the on-the-run

security and the first off-the-run security for a particular maturity n as:

OTRt,n = yoff−the−run
t,n − yon−the−run

t,n . (3.15)

The spread in (3.15) is expected to be positive when market participants seek

the on-the-run security that would be traded, therefore, at a higher price (and a

lower yield) than the first off-the-run security, everything else being equal.
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Figure 3.7: Fleming On-the-run Premium
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This figure shows the time series of the on-the-run/off-the-run yield spreads for securities
in the indicated maturity bins for the post-euro sample period. The spreads are calculated
as in Fleming 2003 as the differences between the end-of-day yields of the on-the-run and
the first off-the-run BTAN or OAT securities. The differences are reported in basis points.
Sample period: January 1, 1999, to April 10, 2018. Frequency: Daily.

Figure 3.7 plots the time series of the on-the-run premium for the 5- and 10-year

maturity bonds. Following Fleming [2003] methodology, we define 6 categories of

bonds according to their time to maturity at issuance (less than 5 years, around

5 years, around 10 years, around 15 years, around 30 years and 50 years). The

on-the-run premium is calculated as the difference in yield for the off-the-run and

on-the-run securities. Once there is a new security issue, we define this newly

issued bond as on-the-run. The bond that was recently on-the-run becomes off-

the-run. During the period of time between two issues, on-the-run and off-the-run

securities remain the same. Once there is a new issue, we define a new pair of

on-the-run and off-the-run securities.
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Table 3.5: On-the-Run/Off-the-Run Yield Spreads

The table reports descriptive statistics of the on-the-run/off-the-run yield spreads
for securities in the indicated maturity bins for the full sample period (Panel A) and
the post-euro sample period (Panel B). The spreads are calculated as in Fleming
[2003] as the differences between the end-of-day yields of the on-the-run and the
first off-the-run BTAN or OAT securities. The differences are reported in basis
points. Frequency: daily. Source: Bloomberg.

Maturity bin,
yrs

Mean Median St.Dev

Panel A: Full sample period: March 8, 1988 - April 10, 2018
1 - 4 -7.22 -11.95 55.23
4 - 6 -9.80 -8.70 17.47
8 - 12 -5.07 -5.20 15.62
15 - 16 -17.44 -17.10 9.07
20 - 32 -1.05 -1.40 20.97

Panel B: Euro-area period: January 4, 1999 - April 10, 2018
1 - 4 -14.49 -13.40 35.78
4 - 6 -10.17 -10.10 6.30
8 - 12 -6.76 -6.10 4.52
15 - 16 -17.07 -16.40 9.62
20 - 32 -3.90 -1.70 10.99

We report in Table 3.5 the average and median in these spreads and their associ-

ated standard deviation. We report these statistics per maturity ranges. For this

table, we compute the spreads using the Bloomberg end-of-the-day quotes for a

particular security. We find that both average and median spreads are negative.

The standard deviations are relatively high for most of maturity ranges as well,

suggesting the absence of the on-the-run premium on the French government

bond market.

The drawback of this finding is that the yields compared in equation (3.15) may

have (slightly) different maturities, meaning that the first off-the-run security

tends to have a shorter duration. This difference in duration may distort the on-

the-run-off-the-run spread.1 To address this concern, we also compute the on-the-

run premium following the GSW approach, where the observed yield-to-maturity

1See also GSW on this point.
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of the on-the-run security is compared to the predicted yield-to-maturity of a

so-called synthetic bond with identical characteristics (expiration date, coupon

rate, and coupon frequency).

To fit the yield curve for this purpose, we exclude from the cross section of

available bonds both the on-the-run and the first off-the-run bonds from each

maturity range provided in Table 3.5. We refit the Svensson par yield curve,

obtain the predicted price of the synthetic security, compare to the observed

prices of the security with the same characteristics and compute the on-the-run

premium as the difference between the two.

Figure 3.8 plots the time series of the on-the-run premium for the 5- and 10-year

maturity bonds. We compute the premium for the current on-the-run bond, then

for the next on-the-run bond when the new bond is issued, and so on. Thus, we

obtain the time series of the on-the-run premium, as we rollover the on-the-run

securities in our sample. Therefore, the on-the-run premium is not related to a

particular bond, but only to a particular-maturity security. As it is obvious from

Panel A, the 5-year premium varies between negative 8 basis points and positive

6 basis points, but most of the time it does not exceed 3 to 4 basis points (in the

absolute value). The order of the magnitude of the 5-year on-the-run premium

broadly corresponds to the fitting error magnitude of that same maturity (see the

top-right panel of Figure B.10 in the appendix). During the GFC, the premium

briefly reached 6 to 7 basis points; however, during the European sovereign debt

crisis the premium appeared to be even slightly negative.

As Panel B shows, the 10-year on-the-run premium has also been hoovering within

the 5 basis points band, but it also reached briefly 15 basis points at the time

of the GFC. However, according to Table 3.5, the premium remains small on

average. Our findings are in contrast to the numbers reported by GSW for the

U.S. on-the-run premium that was as high as 30 to 40 basis points during several

periods—for example, in the early 2000s—but appeared to have declined toward

the end of its sample in 2006 to about 10 basis points. However, our results

appear to be in line with some evidence of the absence of on-the-run premium in

the German sovereign bond market [Ejsing and Sihvonen, 2009]. These authors
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Figure 3.8: GSW On-the-run Premium
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This figure shows the time series of the 5-year (Panel A) and 10-year (Panel
B) on-the-run premiums of the BTAN and OAT securities, respectively,
following GSW methodology using synthetic bond. Sample period: January
1, 1999, to April 10, 2018. Frequency: Daily.

relate it to the existence of a mature futures market and the set of deliverable

bonds in the futures contracts. In the French OAT market, this explanation

potentially differs as the French OAT market has employed a futures market to

which OATs could be delivered. The MATIF has proposed for years a “contrat

notionnel”. Moreover, anecdotal evidence suggests that OATs (and BTANs when

relevant) were essentially perceived by investors as commodities. More recently, in
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2012 and 2013, the EUREX exchange launched the Euro-OAT Futures (FOATs)

and the Mid-Term Euro-OAT Futures (FOAMs). The very active repo market

as well as the French OAT-based futures market can, at least in part, explain

the attractiveness of all, not only the most recently issued bonds. However, these

two markets are far too recent to explain the absence of the on-the-run premium

entirely.

Overall our findings of the negligible on-the-run premium motivates us to keep

recently issued bonds in the cross section of OAT securities for our benchmark

curve estimation.

3.7 A closer look at the pre-euro era

In this section we report some results related to the period preceding the launch of

the euro. We would like to emphasize some observable and significant differences

between the periods preceding and following January 1, 1999. We examine the

functioning/illiquidity of the French BTAN/OAT bond market through the lens of

the noise measure of introduced by HPW. Their proxy for illiquidity is defined as

the root mean squared error between the market yields ŷ (t, i) and model-implied

yields yp

(
c, Ti; Θ̂t

)
:

Noiset =

√√√√ 1

Nt

Nt∑
i=1

(
ŷ (t, i)− yp(c, Ti; Θ̂t)

)2

, (3.16)

where Nt is the number of considered bond securities on day t. The idea behind

the noise measure (3.16) is that it indicates the availability of arbitrage capital on

the bond market (or, on a different closely related market). When the arbitrage

capital is abundant, arbitrage opportunities disappear quickly, so the prices con-

verge quickly to the fundamentals, and observed prices are relatively close to the

predicted prices estimated by the arbitrage-free model than in the periods when

there is a shortage of such capital. Therefore, an increase in the noise measure

indicates deterioration in market functioning conditions; conversely, a decrease re-

flects an improvement in market functioning conditions. This measure has been
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used widely by various researchers as a proxy for the liquidity measure in the

U.S. Treasury securities market [see Andreasen, Christensen, and Riddell, 2017;

Grishchenko and Huang, 2013; Malkhozov, Mueller, Vedolin, and Venter, 2017].

Naturally, the noise measure (3.16) and the mean absolute error measure (3.13)

are closely related.

3.7.1 Model fit

Similar to Figure B.10, Figure B.13 in the appendix shows the MAEs (3.13) in

the pre-euro period per maturity bins for our model (3.7). There are blank spaces

in the period from 1988 to 1994 (for the 0 to 2 years range) and from 1988 to

1992 (for the 2 to 5 years range), as the OAT market was at its early stage

of development. At that time, there were no OATs with remaining maturities

of less than 5 years, and also there were no shorter term OATs issued at that

time. At that time, pricing errors were sometimes as high as 20 to 40 basis points

depending on the maturity. In comparison, GSW report that the average absolute

errors were quite high in their early part of their sample period, ranging from 40

to 80 basis points across different maturity ranges.

Similar to Section 3.5, we also demonstrate the model fit in the pre-euro area for

several days. Figure B.14 in the appendix shows the estimated Svensson nominal

par yield curve on two different dates preceding the euro launch—January 4, 1988,

and September 20, 1995—and also in the beginning of the sample following the

Euro launch, January 5, 1999. The left-hand side of the figure shows the model-

implied par yield curve along with observed (blue round circles) and predicted

(red crosses) yields on these three days. The predicted yields to maturity are

computed by using parameters that are estimated on that day. The right-hand

side of the figure shows security-specific pricing errors. The two upper graphs

that are associated with January 4, 1988, highlight the fitting consequence of

using only a few securities whose maturities are concentrated around the 10-year

tenor. One of the securities appears to be especially poorly priced (with the

pricing errors of negative 40 basis points).1 With the exception of this security,

1Informal interviews of practitioners confirm that the arbitrage opportunities were not in-
frequent at that time.
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the pricing errors ranged between zero and 10 basis points. As the middle charts

that correspond to September 20, 1995, show, in the mid 1990s the French market

appeared to have been far more developed than in the late 1980s, as the number

of available bond price quotes were larger and the maturity of these bonds was

more diverse.1 However, the range of pricing errors was, though smaller, still

quite large, at between negative 10 to positive 15 basis points. Finally, the

bottom charts present the yield curve and curve fit on January 5, 1999. Although

the fitting errors still ranged from negative 10 to positive 15 basis points, it is

interesting to observe the yield curve in the very beginning of the euro period.

3.7.2 Noise measure

We also assess and compare the quality of the functioning of the French market

before and after the launch of the euro using the noise measure (3.16). Fig-

ure 3.9 demonstrates quantitatively how the market functioning improved after

the launch of the euro. The noise measure fluctuated between 5 and 20 basis

points before 1999 and reached 35 basis points at certain times in the pre-euro

period. Upon the introduction of the euro, the noise measure plummeted al-

most instantaneously to levels around or below 5 basis points. Thus, the large

“noise” values before 1999 can indicate mispricing and, therefore, the existence

of arbitrage opportunities. The volatility of the noise measure can be indica-

tive of some arbitrage activities. It is interesting to note that the noise measure

never exceeded 35 basis points, suggesting that, in general, the fitting ability

of the Svensson model is reasonable (as it was illustrated by the discussion of

Figure B.14 in the previous subsection).

3.8 Conclusion

Our study is the first comprehensive study of all publicly available data of the

French nominal debt that encompasses the 30-year period from 1988 to 2018.

In particular, we construct the French nominal yield curve using quotes of the

French nominal government bond securities called OATs and BTANs, at a daily

1We showed a usual day at that time period for the middle charts on Figure B.14.
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Figure 3.9: Noise Measure of the French Bond Market

year
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This figure shows the noise measure, which is computed as the root mean
squared error between the observed and predicted yields across all avail-
able OAT/BTAN securities on a particular day. Frequency: daily. Sample
period: January 4, 1988, to April 10, 2018.

frequency. These bonds have maturities at issuance ranging from 1 to 50 years.

Our sample period starts in 1988, includes the launch of the euro in January 1999

and ends in April 2018. We use the Svensson smoothing method to interpolate

the curve and manage to fit the curve quite well.

Overall, we find that in the first decade, the arbitrage opportunities were not

infrequent on the OAT market, but that the situation improved substantially

since the euro introduction. Since then, the market functioned reasonably well

outside of a few episodes—notably, the GFC period and the European sovereign

crisis period. We also find that, in sharp contrast to the U.S. nominal Treasury

securities market, on-the-run securities have, on average, a negligible liquidity

premium. Lastly, we provide evidence that, similar to other developed economies,
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French interest rates have been declining since the GFC, and the slope of the

French yield curve declined as well, potentially signaling some downside risks to

the growth of the French economy.

Our results and available yield curve data should be valuable to monetary policy-

makers as well as financial and macroeconomic researchers of European fixed

income markets. We plan to update our results regularly.
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Figure B.10: Maturity-specific Fitting Errors
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This figure shows the fitting errors of the Svensson [1994] model implied by the BTANs and OATs.
The fitting error is computed as the mean absolute error between the predicted and the market
prices in a certain maturity bin. We report the errors for six maturity bins: 0-2-year, 2-5-year,
5-10-year, 10-20-year, 20-30-year, and 30-50-year bin. The fitting errors are shown in basis points.
Sample period: January 4, 1999, to April 10, 2018. Frequency: Daily.
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Figure B.11: Term Structures of the Zero-Coupon Rates and Forward Rates
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This figure shows Svensson [1994] zero-coupon yield and instantaneous forward rate
term structures on three days in our sample: March 25, 2003, June 10, 2008, and
April 2, 2018.
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Figure B.12: Principal Component Loadings of Yield Curve

1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Panel A: Factor loadings

level
slope
curve

Maturity
1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

1.5

2
Panel B: Factor loadings with sigma = 1

level
slope
curve

This figure shows the loadings of the first three principal components for the non-
normalized variance (top chart) and normalized variance (bottom chart) cases. The
principal component analysis used the zero-coupon yields of maturities from 1 to
10 years. Sample period: January 1, 1999, to April 10, 2018. Frequency: Daily.
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Figure B.13: Maturity-specific Fitting Errors: Pre-euro Sample
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This figure shows the fitting errors of the Svensson [1994] model implied by the
BTANs and OATs computed as the mean absolute error between the predicted and
the market prices in a certain maturity range. We report the errors for six maturity
ranges: 0 to 2 years, 2 to 5 years, 5 to 10 years, 10 to 20 years, 20 to 30 years,
and 30 to 50 years. The start of the sample in the charts depends on the selected
maturity range. For all charts shown, the sample ends on December 30, 1998. he
fitting errors are shown in basis points. Frequency: Daily.
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Figure B.14: Par Yield Curve: Pre-euro Sample Period
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This figure shows the par yield curve and the fit of individual securities (left-hand
side charts) along with security-specific fitting errors (right-hand side charts) in two
days in the pre-euro-area period—January 4, 1988, and September 20, 1995—and
following the onset of the euro area, January 5, 1999. The curve is reported in
annualized percent, the fitting errors are reported in basis points.

134



Chapter 4

French Inflation-Protected

Government Bonds 1

4.1 Introduction

A real interest rate is the interest that takes into account inflation. In an economic

system, inflation results in the increase of consumer prices and the decrease of

debt prices. The sum of real interest and inflation rates is the nominal interest

rate, according to the well-known Fisher equation. It is agreed that the inflation

rate must be positive to maintain the country’s economic system. There is even

a point of view that without positive inflation there cannot be economic growth,

but this is not true — economic growth comes from scientific progress. The

fundamental task of a central bank is to preserve the value of the currency. Today,

many central banks across the world use inflation targeting — a monetary policy

regime when there is an explicit target inflation rate. Also, inflation targeting

can provide maximum economic growth, optimal employment, and exchange-rate

and financial stability. Inflation targeting was pioneered in New Zealand in 1990,

Canada in 1991, and the United Kingdom in 1992. For example, Japan, the

United States, and some other countries have an inflation rate target of 2%. In

1 This chapter is based on a working paper co-authored with Olesya Grishchenko and
Franck Moraux. These results will be presented at the 7th Paris Financial Management
Conference in December 2019. The opinions expressed in this chapter are those of the authors
and do not necessarily reflect the views of the Federal Reserve System.
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the euro area, the target is below 2% for the 2017–19 period.

The term structure of real interest is the subject of this chapter. We overview the

real interest rates in the French government debt market. The study of inflation

compensation using data on inflation-protected securities issued by the French

Treasury is addressed in this research. With Gürkaynak, Sack, and Wright [2010]

methodology, we also study the spread between nominal and real yields—the

so-called breakeven inflation rate. The term structure of real interest rates and

related inflation-protected securities are of interest in academic literature. Chen,

Liu, and Cheng [2010] take a multifactor, modified quadratic term structure

model to study inflation risk and the term structure of inflation risk premia

in the U.S. market. Grishchenko and Huang [2013] also study the inflation risk

premium. Authors obtain inflation risk premium estimates by using a simple and

easy-to-implement method that takes into account the impact of the indexation

lag on real yields and the liquidity adjustment of the real yields. Fleckenstein,

Longstaff, and Lustig [2014] study the relative pricing of nominal and inflation-

protected securities. A simple no-arbitrage argument places a strong restriction

on the relation between the prices of these securities. Authors show that this

no-arbitrage relation is frequently violated in markets, and that the mispricing

can exceed $20 per $100 notional amount. Thus, while there is literature about

U.S. Treasury Inflation-Protected Securities (TIPS), there are not many articles

that study the French market (for TIPS, see D’Amico, Kim, and Wei [2014] and

Chang [2019]; for the French market, see Kita and Tortorice [2018]). Our work

aims to fill this gap and investigate all available public data of French inflation-

protected securities. Our database covers securities from their inception launch.

Inflation-indexed securities are designed to help protect borrowers and investors

from changes in the general level of prices in the real economy. The United King-

dom, Australia, and Canada first issued such securities in 1981, 1985, and 1991,

respectively. Countries in the euro area also introduced inflation-protected secu-

rities. In particular, France issued inflation-protected securities in 1998. Usually,

such bonds are indexed to a domestic consumer price index (CPI), but they can

also be indexed to other inflation indices, such as wholesale prices, average earn-
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ings, or the GDP deflator. While indexed bonds aim to provide investors with a

certain real return, it is not exactly the case in practice due to several reasons. The

first fundamental reason is that whatever the given inflation index, it is only an

approximation to any individual investor’s particular consumption basket. The

second reason is that there is a lag between the relevant period for which an index

value is computed and the date when its value is published, making it impossible

to provide continuously and instantaneously price index series. The third rea-

son is taxes. Despite these imperfections, inflation-protected securities still offer

a high degree of protection against unexpected inflation. For completeness, it

is worth mentioning that there is also a parallel market for inflation derivatives

that has evolved quite rapidly; for example, in the largest inflation-linked deriva-

tives market for contacts linked to the euro-area Harmonised Index of Consumer

Prices excluding tobacco (HICP excluding tobacco, henceforth HICP), turnover

is estimated to be 25% of the turnover of the corresponding OATei market (see

Deacon, Derry, and Mirfendereski [2004]).

The biggest issuer in the world of inflation-protected securities is the United

States. Its outstanding value in March 2019 was 1.421 trillion USD. The United

States issues two types of inflation-protected securities: TIPS and inflation-

indexed savings bonds for domestic retail purposes. Both securities are issued by

the U.S. Treasury and linked to the U.S. CPI. The other important inflation-linked

market is the United Kingdom, which has two types of inflation-protected secu-

rities: index-linked gilts issued by the U.K. Debt Management Office and index-

linked savings certificates issued by National Savings and Investments for domes-

tic retail purposes. Both securities are related to the retail price index. Among

European countries, France and Italy have the biggest markets for inflation-

protected securities. A particularity of these two markets is that there are se-

curities related to two indices: the domestic inflation index and the HICP. In

the case of France, there are OATi and OATei. For Italy, there are BTP Italia

linked to the Italian CPI and BTPei related to the HICP. Other countries in

the euro area take only one index to issue inflation-protected securities. Sweden

issues inflation-protected securities related to its domestic index only. Germany

and Spain issue inflation-protected securities related to the HICP only. This is
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the same situation for countries around the world. In Canada, Australia, Russia,

Hong Kong, India, Japan, and Mexico, only the domestic inflation index is used

to issue inflation-protected securities. Brazil has two indices, IPCA and IGP-M,

but both are domestic indices with different methods to compute them.

We first fit the term structure of real rates. This research heavily relies on the

yield-curve-fitting methodology of Svensson [1994]. We obtain some reliable es-

timates of intermediate and long-horizon yields that would reflect fundamentals.

We obtain the day-to-day evaluation and different shapes of the term structure

of real rates. We also obtain the dynamics of the French real yield curve. We

repeat the fitting exercise for each day, so for a period we have the day-to-day

evaluation of the term structure. D’Amico, Kim, and Wei [2014] study the “true”

dynamic model, meaning that they take a vector with three latent variables to

explain the real yields, expected inflation, and nominal yields. This approach

is not covered by our research. Nevertheless, we document different shapes of

the term structure of real rates according to different situations on the market.

Finally, we compute some breakeven rates for inflation.

The rest of this chapter is organized as follows. Section 4.2 describes some in-

stitutional details of the French government debt linked to the inflation index.

Section 4.3 describes the methodology to deal with inflation-linked bonds. Sec-

tion 4.4 describes our data set with French inflation-protected securities. Next

there is a section devoted to result description with several subsections in it.

Section 4.5 reports the results and investigates the duration cutoff issue using

the noise measure. Subsection 4.5.1 focuses on the shape and the dynamics of

the fitted zero-coupon yield curve. Subsection 4.5.2 explores the breakeven rates.

Section 4.8 concludes.

4.2 Literature review

The academic literature assumes that the real interest rate is constant, yet empir-

ical estimates for the real interest rate show that this is not true. Ang, Bekaert,

and Wei [2008] establish a comprehensive set of stylized facts about real rates,

expected inflation, and inflation risk premium. They study the U.S. market and
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document that the term structure of real rates has a flat shape of around 1.3%,

with a slight hump at around the one-year maturity mark. Inflation expectations

play an important role in policymaking and in research on asset pricing. Chernov

and Mueller [2012] propose a dynamic macrofinance model that incorporates the

behavior of inflation, real activity, nominal yields, and survey-based forecasts of

inflation. They find that model-based inflation expectations are driven by in-

flation, output, and one latent factor. There is also literature about different

aspects of inflation—for example, inflation expectations. Buraschi and Jiltsov

[2005] study the ability of a general equilibrium model to explain deviations from

the expectations hypothesis of interest rates. They estimate the structural pa-

rameters of the economy using panel data on U.S. Treasury bonds and find that

the inflation risk premium plays an important role in explaining deviations from

the expectations hypothesis of interest rates. Grishchenko, Mouabbi, and Renne

[2016] investigate the joint estimation of inflation expectations in the United

States and the euro area. They exploit surveys of professional forecasters to fit

the first two moments of future inflation rates and find that, since 2010, inflation

expectations decreased in both economies. In addition, over the sample period,

the United States displayed larger inflation uncertainty relative to the euro area.

Claiming that splines are preferable to other popular methodologies, such as the

Nelson and Siegel [1987] model, because they are more stable when the number of

bonds is small, Pericoli [2014] uses a spline methodology to estimate the real term

structure for the euro area implied by French index-linked bonds. Christenses,

Lopez, and Shultz [2017] study whether the U.S. market of inflation-protected

securities displays the on-the-run premium, which is related to the situation when

the most recently issued security trades at a price above those of more seasoned

but otherwise comparable securities. They document a small, positive premium

on recently issued TIPS that averages between 1 and 4 basis points. Fleming and

Krishnan [2012] investigate the microstructure of the U.S. market of inflation-

protected securities and use some high-frequency data to analyze announcement

effects. They find that price volatility spikes at the time of a major announcement

and also document the existence of the on-the-run premium. They suggest that
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trading activity and quote incidence may be better cross-sectional measures of

liquidity in the TIPS market than bid-ask spreads or quoted depth. Ermolov

[2017] uses inflation-linked government bonds prices data from nine countries to

study the market-implied real yields. He finds that the unconditional real yield

curves are upward-sloping and that, across countries, real yields are strongly

positively correlated while liquidity premium.

Inflation-protected securities were introduced by the French Treasury in Septem-

ber 1998. The face value of such bonds is adjusted for inflation over time according

to the nonseasonally adjusted CPI. A price index is a measure of the proportion-

ate changes in a set of prices over time. The CPI measures changes in the prices

of goods and services that households consume. Inflation-linked bonds issued by

the French Treasury are called OATi, which stands for Obligations Assimilables

au Trésor, and these bonds are indexed to the domestic CPI. The CPI is the in-

strument used to measure inflation. The first generation of indices dates back to

1914. In January 2016, the reference year in the CPI changed to 2015. The pre-

vious index values were calculated with 1998 as the reference year. Several years

later, in October 2001, after the issuance of the first OAT, the French Treasury

proposed the first inflation-protected security, OATei, linked to the HICP. In the

euro area, consumer price inflation is measured by the HICP, which measures the

change over time in the prices of consumer goods and services acquired, used, or

paid for by euro-area households.1 Both OATi and OATei make annual interest

payments, which are a fixed percentage of the inflation-adjusted principal. The

value of the paid coupon is equal to the multiplication of the coupon rate, the

face value, and the indexation coefficient. The indexation coefficient is the ratio

of today’s inflation level to the reference inflation level. Today’s inflation level is

calculated as linear interpolation between the index value three months ago and

the value two months ago. The reference level of inflation is the inflation level of

some given year. The reference year is 2015 for both the CPI and HICP.

Overall, CPIs most often contain seasonal patterns. Seasonal price movements are

1The term “harmonized” means that all the countries in the European Union follow the
same methodology. This ensures that the data for one country can be compared with the data
for another.
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intra-year changes occurring to a similar extent in successive years. Some seasonal

adjustments are therefore needed to correct for the regular movements in the time

series that occur every year during the same period. Traditionally, statistical

institutes do not calculate price indices in a seasonally adjusted format. The

European Central Bank (ECB) started to compile seasonally adjusted euro-area

HICPs in 2000. In 2016, the ECB established in its monthly economic bulletin

that the seasonal fluctuations in the euro area have become more pronounced

over time, in particular due to the gradual harmonization of statistical concepts

and methods related to prices that exhibit seasonality (see ECB [2016]). Ejsing,

Garcia, and Werner [2007] claim that accounting for the seasonality in consumer

prices is an important issue both for the correct pricing of inflation-linked bonds

and for extracting breakeven interest rates. They give two examples of seasonality

in the euro area. First, the January price level is below the trend level of prices

due to the winter sale prices taken into account in the calculations. Second, in

contrast, index price levels in the second quarter of the year are above the general

trend level of prices. In this work we do not take into account the seasonal

adjustment. The bottom line from the literature is that the shorter the maturity

of the bond, the stronger the impact of seasonality. We eliminate bonds with

short time to maturity from the estimation process. Therefore, we suppose that

our results are not affected by the impact of seasonality. There is another reason

that affects our decision. Our data set has two samples—one related to French

inflation and one related to euro-area inflation. While seasonally adjusted HICP

is widely discussed, the situation with seasonally adjusted CPI in France is not

clear.

4.3 Methodology

We follow the Gürkaynak, Sack, and Wright [2010] methodology in which the

U.S. TIPS yield curve is estimated using a simple and parsimonious approach.

The methodology is quite effective at capturing the general shape of the yield

curve while smoothing through idiosyncratic variation in the yields of individual

inflation-protected securities.
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Under Svensson [1994] parametrization, m-period continuously compounded zero-

coupon yield at time t is

y (t, t+m; Θ) = β0 + β1
1− e−

m
τ1

m
τ1

+β2

[
1− e−

m
τ1

m
τ1

− e−
m
τ1

]

+ β3

[
1− e−

m
τ2

m
τ2

− e−
m
τ2

] (4.1)

where Θ = {β0, β1, β2, β3, τ1, τ2} are six parameters that need to be estimated. We

estimate these parameters by minimizing the sum of squared deviations between

observed and predicted bond prices weighted by the inverse bond duration. We

take BID quotes from Bloomberg for bond prices, although some authors take

MID quotes (see, for example, Ermolov 2017).

Given the prices of inflation-linked bonds, we fit Svensson [1994] yield curves

to construct zero-coupon yields. There is a possibility to use Nelson and Siegel

[1987] model with only four parameters. The tradeoff is that either we have fewer

parameters and thus need a smaller number of available bonds to accomplish the

fitting exercise, or we use a more flexible model to accommodate two potential

humps in the shape of the zero coupon and forward yield curve but need more

available bonds. We choose the Svensson [1994] methodology instead of Nelson

and Siegel [1987] for its flexibility.

We denote the price of a zero-coupon bond that represents the value at time t of

paying e1 at a future point of time t+m as B(t, t+m):

B(t, t+m) = exp [−y(t, t+m; Θ)×m] . (4.2)

We assume a coupon bond maturing in m periods of time, promising Nc,t identical

coupon payments c and paying some face value F at the maturity. The price of

such a coupon bond at time t can be written as

p (c, t, t+m) =

Nc,t∑
i=1

c×B (t, ti) + F ×B (t, t+m) . (4.3)
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In this formula, ti stands for the i− th coupon payment date and tNt is the last

payment date. We can express the coupon bond price in terms of continuously

compounded zero-coupon yield as

p (c, t, t+m) =

Nc,t∑
i=1

c× exp [−y(t, ti; Θ)× (ti − t)]

+ FV × exp [−y(t, t+m; Θ)×m] .

(4.4)

Prices of inflation-protected securities are observed in the market. We use these

prices to estimate parameters by minimizing the sum of squared deviations be-

tween observed and predicted bond prices weighted by the inverse bond duration.

The concept of the modified duration used in our yield curve estimation is

D =
DMac

1 + Y
, (4.5)

where Y stands for the yield-to-maturity and DMac is the Macaulay duration.

The Macaulay duration is computed by

DMac =
1

p(c, t, T )

Nc,t∑
i=1

(ti − t)× c×B(t, ti) + (T − t)× F ×B(t, T ).

The Macaulay duration is very popular among participants because it connects

more explicitly the change in yields to the change in prices; see, for example,

Martellini, Priaulet, and Priaulet [2003] for additional information about dura-

tion.

4.3.1 About inflation

The index factor is used to adjust the cash flows of inflation-linked bonds for

inflation, and it expresses the change in the related index between two dates.

The index factor is calculated as the ratio between the “reference index,” meaning

the index value for a given date, and the “base index,” meaning the historical

index value, for the bond. The base index is determined when the bond is issued

and it never changes. The reference index is its value on a given date. The
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CPI and HICP are updated once a month and published in the middle of the

following month. The reference index for the first day of every month is equal

to the corresponding CPI or HICP three months earlier. The reference index for

all other days in the month is calculated by linear interpolation between the two

index values corresponding to one in the beginning of the current month and one

in the beginning of the next month:

Index factor =
Reference index

Base index

For example, suppose the settlement date is April 17, 2015, for a bond. The

reference index for April 1, 2015, is 115.13, corresponding to the January 2015

CPI value. The reference index for May 1, 2015, is 115.87, corresponding to

the February 2015 CPI value. On April 17, 2015, we can compute the in-

dex by linear interpolation between 115.13 and 115.87; the result is 115.52467

(=115.13+(115.87-115.13)×(17-1)/30). Assume the bond was issued on July 25,

2010. We can compute the inflation reference for this date using two values (the

reference index on July 1, 2010, and on August 1, 2010). These two values are

109.58 and 109.71 given the CPI for April and May, respectively. The result of

this calculation is 109.68065, which gives the reference index value for July 25,

2010. The base index for the given bond stays fixed during the bond’s life. For a

bond that was issued on July 25, 2010, the base index is 109.68065, and now one

can calculate the index factor on April 17, 2015. To compute the index factor,

just divide 115.52467 by 109.68065.

The coupon amount to be disbursed on the coupon day is calculated by multi-

plying the index factor by the “real” coupon, which gives us the nominal coupon

expressed in percentage terms. To find its value, multiply it by the face value:

Coupon = Reference coupon (in %)× Index factor

Coupon amount = Coupon (in%)× Reference face value

The amount to be disbursed on the maturity date (excluding the last coupon) is

calculated by multiplying the face value by the index factor. All French-linked

bonds have deflation protection, which means that the index factor on the matu-
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rity date cannot be less than 1:

Redemption amount = Reference face value×max [index factor; 1]

To calculate the settlement amount, one must first calculate the price, which is

done by multiplying the index factor by the sum of all future real cash flows

discounted by the real yield. Based on this price, one can calculate the clean

price by subtracting the accrued interest and rounding the result to three decimal

points. The settlement amount is calculated by adding back the accrued interest

on the clean price and then multiplying it by the face value.

4.3.2 Yield mathematics

Another popular way for market participants to express and quote bond prices is

in terms of par yields. The par yield over a certain horizon T is the coupon rate

at which a coupon bond security maturing at T will trade at par. Setting the

price of the coupon bond in equation (4.3) and F to 1 e, we obtain the solution

for the coupon rate c ≡ yc(t, T ):

yc(t, T ) =
1−B(t, T )∑Nt
i=1 B(t, ti)

. (4.6)

While zero-coupon yields represent a mathematically simpler concept, market

participants usually quote yields to maturity on coupon-bearing bonds and use

par yields. We compute both par yields and zero-coupon yields in this chapter.

The yield curve can also be expressed in terms of forward rates. A forward rate

is the rate that an investor is able to lock in some time in the future by trading

zero-coupon bonds of different horizons now. For example, if an investor wishes

to lock in a m−period rate between T and T +m years in the future, this forward

rate, denoted as f(t, T,m), can be obtained as:

f(t, T,m) = − 1

m
ln
B(t, T +m)

B(t, T )
=

1

m
((T +m)y(t, T +m)− Ty(t, T )) . (4.7)
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Taking the limit m→ 0, we obtain the instantaneous forward rate f(t, T, 0):

f(t, T, 0) = lim
m→0

f(t, T,m) = y(t, T ) + Ty′(t, T ) = − ∂

∂T
lnB(t, T ). (4.8)

The Svensson curve fitting approach relies on the idea that the curve associated

with the instantaneous forward rate f(t,m, 0) m periods ahead at time t and is

correctly described by the following functional form:

f (t,m; Θ) = β0 + β1 exp
[
−m
τ

]
+ β2

m

τ1

exp

[
−m
τ1

]
+ β3

m

τ2

exp

[
−m
τ2

]
. (4.9)

4.4 Data description

Securities related to inflation were proposed on the French bond market starting

from 1998. The first time the French Treasury issued an OAT indexed to the

French CPI was on September 15, 1998. Another innovation took place in October

2001, with the issuance of the first OAT indexed to the euro-area price index.

We identify all indexed bonds, and in our data set there are 24 securities with

13 bonds linked to euro-area inflation and 11 bonds linked to French inflation.

Tables 4.1 and 4.2 provide a detailed description of all the individual securities

in our sample related to the French CPI and to the euro-area price index, respec-

tively. For a given bond, we provide the following information: the ISIN number,

the security type (OATi if indexed to the French CPI or OATei if indexed to

the euro-area price index), the issue date of the security, the coupon rate, the

expiration date of the security (maturity), the term to maturity of the bond at

the issuance, and the total number of available observations for the security. We

collect observed bond prices on a daily basis. We take the end -of-day BID prices.

In total, we have about 25,000 bond prices for securities indexed to the French

CPI and about 28,000 bond prices for securities indexed to the euro-area CPI.

We observe that coupon rates were more important for bonds issued in the nineties

with a 3% value. Recent bonds have much lower coupon rates, with 0.1% val-

ues for securities issued in 2012, 2014, 2016, and 2017. Almost all bond debts

mature on July 25, with the exception of three securities that mature on March
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Table 4.1: Summary of OATi Securities

This table shows our sample of the inflation-linked (related to the CPI) Obligation
Assimilables du Trésor (OATi) securities. Source: Bloomberg.

ISIN Type Issue Coupon Maturity Term Obs
FR0000571424 OATi 29/09/1998 3 25/07/2009 10.82 2736
FR0000186413 OATi 25/07/1999 3.4 25/07/2029 30.00 4859
FR0000188955 OATi 11/02/2003 2.5 25/07/2013 10.45 2733
FR0010094375 OATi 22/06/2004 1.6 25/07/2011 7.09 1854
FR0010235176 OATi 20/09/2005 1 25/07/2017 11.84 3096
FR0010585901 OATi 25/07/2007 2.1 25/07/2023 16.00 2837
FR0010850032 OATi 25/07/2009 1.3 25/07/2019 10.00 2334
FR0119105791 OATi 25/01/2011 0.45 25/07/2016 5.50 1435
FR0011347046 OATi 25/07/2012 0.1 25/07/2021 9.00 1620
FR0012558310 OATi 01/03/2014 0.1 01/03/2025 11.00 1009
FR0013238268 OATi 01/03/2016 0.1 01/03/2028 12.00 490

1. Issuance dates vary more compared to maturity dates, but July 25 is still the

most frequent issuance date. We notice that the French Treasury issued securities

indexed to the euro-area CPI yearly from 2009 to 2013. Concerning the term to

maturity of the bond at the issuance, we have several observations. For OATi

bonds, this feature has an average value of 12.15 years, and its minimum and

maximum values are 5.50 years and 30 years, respectively. For OATei bonds,

this feature has an average value of 16.26 years, and its minimum and maximum

values are 4.25 years and 34 years, respectively. It is worth noting that on the

nominal bond market, one can find ultra-long OAT bonds with term to maturity

at the issuance equal to 50 years.

The ranges of time-to-maturities available for estimation over our sample period

are plotted in panel A of Figure 4.1 for securities indexed to the French CPI

and panel B for securities indexed to the euro-area CPI. Each line represents one

security. The date is shown on the horizontal axis and the remaining time to

maturity is shown on the vertical axis in years. The upper-left point of the line

corresponds to the issue date. The lower-right point of the line corresponds to

the bond expiration date. As previously mentioned, we have data for about 11

147



Table 4.2: Summary of OATei Securities

This table shows our sample of the inflation-linked (related to the HICP) Obligation
Assimilables du Trésor (OATei) securities. Source: Bloomberg.

ISIN Type Issue Coupon Maturity Term Obs
FR0000188013 OATei 31/10/2001 3 25/07/2012 10.73 2793
FR0000188799 OATei 25/07/2002 3.15 25/07/2032 30.00 4215
FR0010050559 OATei 25/07/2003 2.25 25/07/2020 17.00 3902
FR0010135525 OATei 23/11/2004 1.6 25/07/2015 10.67 2787
FR0108664055 OATei 25/04/2006 1.25 25/07/2010 4.25 1111
FR0010447367 OATei 25/07/2006 1.8 25/07/2040 34.00 3079
FR0010899765 OATei 25/07/2009 1.1 25/07/2022 13.00 2250
FR0011008705 OATei 25/07/2010 1.85 25/07/2027 17.00 2057
FR0011237643 OATei 25/07/2011 0.25 25/07/2018 7.00 1636
FR0011427848 OATei 25/07/2012 0.25 25/07/2024 12.00 1530
FR0011982776 OATei 25/07/2013 0.7 25/07/2030 17.00 1188
FR0013140035 OATei 01/03/2016 0.1 01/03/2021 5.00 730
FR0013209871 OATei 25/07/2016 0.1 25/07/2047 31.00 588
FR0013327491 OATei 25/07/2017 0.1 25/07/2036 19.00 198

OATi securities and 14 OATei securities. We also can see that the first bond

indexed to the French CPI was issued in 1998, and the first bond indexed to the

euro-area price index was issued in 2001.

Figure 4.2 plots the year-end notional outstanding amount and the number of

securities of the French real securities indexed to the French CPI (panel A) and

indexed to the euro-area price index (panel B). Values in blue represent the num-

ber of bonds on the market, and the corresponding axis is on the left side. Values

in red represent the notional outstanding amount of French real government debt,

and the corresponding axis is on the right side. We see that the volume of French

debt related to the HICP has stable growth. At the same time, the French debt

related to the CPI had stable growth until 2008 and since then it remains on the

same level.

Figure 4.3 plots the historical inflation values for both indices. We present these

values from 1999 to 2018. Data on ICP existed well before 1999; for instance, it
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Figure 4.1: Maturity Distribution

This figure shows the maturity structure of the French real government securities
related to the CPI issued from 1998 to 2018 (i.e., the OATi) and to the HICP issued
from 2001 to 2018 (i.e., the OATei). Source: Bloomberg.

is available from January 1956. Data on the HICP are available from the moment

of creation of the European Union—i.e., from January 1, 1999. It is relevant to

report historical inflation values measured by two indices during the same period.

The correlation between these two time series is 99.36%.

4.5 Results

When a bond is close to its maturity date, its price becomes special and it no

longer reflects the situation on the market. It is known from the literature that

to estimate parameters, one needs to eliminate from the estimation bonds with

short time to maturity (see Sarig and Warga [1989]). This duration cutoff can
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Figure 4.2: Notional Amount of the French Debt and Number of Bonds
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This figure shows the outstanding amount of the French real government debt (OATi
and OATei) on the right-hand scale and the number of available inflation-protected
government bonds on the market on the left-hand scale. Data are hand-collected
and merged from the monthly newsletters released by the Agence France Trésor.

have different sizes. It is common in the literature to take the duration cutoff

equal to one year. To find the optimal size, we propose to use the noise measure.

This is a market-wide liquidity measure proposed in HuPanWang. To compute

150



Figure 4.3: Time Series of Annual Inflation Rates
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This figure shows historical inflation rates for the CPI and HICP. Panels A and B
report French annual inflation rates starting from their first observation in January
1956 and starting from January 1999, which corresponds to the introduction of
ecurrency. Panel C shows European annual inflation rates from January 1999.

the noise measure, we take the root mean squared distance between the market

yields and the model-implied yields:

Noiset =

√√√√ 1

Nt

Nt∑
i=1

(
ŷ (t, i)− yp(c, Ti; Θ̂t)

)2

, (4.10)

This measure is related to illiquidity on the market. As discussed in Ang, Pa-

panikolaou, and Westerfield [2014], most asset classes are illiquid, in the sense

that trading is infrequent. They precise that most assets are characterized by

long periods between trades, low turnover, and difficulties to find counterparts.
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These difficulties are present in most markets with the exception of “plain vanilla”

fixed-income securities and public equities. Even within the fixed-income secu-

rities there are subclasses that are illiquid. It is fairly obvious that bonds with

short time to maturity are illiquid on the market. Thus, it is necessary to set up

the relevant duration cutoff.

Figure 4.4: Noise Measure and Duration Cutoff for OATi
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This figure shows the time series of the noise measure, which is computed as the
root mean squared error between the observed and predicted yields across all avail-
able OATi with a different duration cutoff. Sample period: February 13, 2008, to
December 31, 2018. Frequency: daily.

Using the noise measure, we try to establish the best duration cutoff to consider.

We use several duration cutoff sizes. First, we exclude bonds with less than 6

months to maturity; second, we exclude bonds with less than 12 months to matu-

rity; finally, we exclude bonds with less than 18 months to maturity. Figures 4.4

and 4.5 plot the noise measure on a daily frequency for securities indexed to the

French CPI and indexed to the euro-area price index, respectively. Each figure
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Figure 4.5: Noise Measure and Duration Cutoff for OATei
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This figure shows the time series of the noise measure, which is computed as the root
mean squared error between the observed and predicted yields across all available
OATei with a different duration cutoff. Sample period: March 7, 2007, to December
31, 2018. Frequency: daily.

has three panels that correspond to three duration cutoff sizes. It is worth noting

that there is no such securities on the French real bond market. Moreover, we

treat OATi and OATei securities separately. The Svensson term structure model

has six parameters; thus, to accomplish the yield curve fitting exercise, we need

to have at least six available bonds. With an 18-month duration cutoff, we often

find ourselves with less than six available securities. In this case, it is impossible

to realize the parameters estimation; thus, there is no noise measure. Periods on

the figures when the noise measure is zero correspond to this situation.

Let’s compare three panels on one figure. One can conclude that there is no

significant difference between the duration cutoffs. Thus, we deduce that it is
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still important to exclude bonds with short time to maturity from the fitting

exercise, but there is no clear evidence for one particular size of the duration

cutoff. For the following steps in this chapter, we set the duration cutoff at 12

months. This is a compromise between a small duration cutoff size, when we

leave securities with particular prices in the parameter estimation, and an 18-

month duration cutoff, when we exclude so many bonds that finally we do not

have enough to accomplish the yield curve fitting exercise.

4.5.1 Fitting the yield curve

To fit the French term structure of real interest rates, we use a duration cutoff

of one year. Figures C.14 and C.16 plot the time series of the overall fitting

errors for securities indexed to the French CPI and indexed to the euro-area price

index, respectively. The measure of the overall fitting error on a particular day

is the average of absolute errors between the predicted and market yields across

all available securities that day. Figures C.15 and C.17 plot the time series of

fitting errors for four maturity bins for securities indexed to the French CPI and

indexed to the euro-area price index, respectively. We fix four maturity bins as

follows: 0 to 5 years, 5 to 10 years, 10 to 20 years, and 20 to 40 years.

Figures C.14 and C.16 have the same limits on the horizontal axis, from 0 to

10 basis points, to point out that the model fit for the OATi sample is better

than for the OATei sample. The total error for securities related to the French

CPI does not exceed 3 basis points during all sample period. While the total

error for securities related to the euro-area price index goes up to 10 basis points

during 2009, it is about 6 basis points during 2012, which corresponds to the

2012 sovereign bond crisis. Starting from 2015, the total fitting error for OATei

securities has a rising trend and a value between 2 and 3 basis points at the end

of 2018.

Figure C.15 shows that almost all OATi securities have time to maturity of less

than 20 years. There are not enough bonds to accomplish the fitting exercise from

the middle of 2008 to the beginning of 2010. The maturity bin of 5 to 10 years

contains the most important values for errors. Figure C.17 shows that OATei
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Figure 4.6: Par Yield Curve for OATi sample
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This figure shows the par yield curve and the fit of individual OATi securities (left-
hand side charts) along with security-specific fitting errors (right-hand side charts)
in three days across the sample period: March 26, 2008, July 21, 2008 and April 15,
2010. The curve is reported in annualized percent, the fitting errors are reported in
basis points.

securities are present in all maturity bins, even the last one. For all maturity bins,

we observe the same pattern for the errors. There are important error values in

2009, which can be related to the 2008 Global Financial Crisis (GFC). There are

not enough bonds to accomplish the fitting exercise from the middle of 2009 to

the middle of 2010. The next period is from the middle of 2010 to the beginning

of 2012, where we see errors with values up to 5 basis points. Then errors are

more present according to the sovereign bond crisis in 2012. We have perfect

fit and, as a consequence, small values for errors in all maturity bins during the

period from the middle of 2012 to the beginning of 2016. After this point, the

behavior in error values becomes different in each maturity bin.
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Figure 4.7: Par Yield Curve for OATei sample
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This figure shows the par yield curve and the fit of individual OATei securities
(left-hand side charts) along with security-specific fitting errors (right-hand side
charts) in three days across the sample period: Octobre 16, 2007, September 23,
2008 and June 17, 2010. The curve is reported in annualized percent, the fitting
errors are reported in basis points.

Figure 4.6 shows the estimated Svensson nominal par yield curve for OATi se-

curities on three different dates, which we picked from the three broadly defined

periods: March 26, 2008, July 21, 2008, and April 15, 2010. Figure 4.7 shows the

estimated Svensson nominal par yield curve for OATei securities on the three

different dates, which we picked from the three broadly defined periods: Octo-

ber 16, 2007, September 22, 2008, and June 17, 2010. The left-hand side of

these figures shows the model-implied par yield curve along with observed (blue

round circles) and predicted (red crosses) continuously compounded yields. The

predicted yields are computed using parameters that are estimated using bond

quotes on the indicated day. For Figure 4.6 we take securities indexed to the
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Figure 4.8: Time Series of Zero-Coupon Real Yields for OATi sample
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This figure shows the time series of the Svensson [1994] fitted 2-, 5-, and 10-year
zero-coupon real yields implied by the price quotes of OATi securities from February
13, 2008, to April 10, 2018, at daily frequency.

French CPI, and for Figure 4.7 we take securities indexed to the euro-area price

index. The right-hand side of these figures shows security-specific pricing errors

computed as differences between observed and predicted yield to maturity.

4.5.2 Term structure of real and breakeven rates

We find nevertheless that the zero-coupon rate curve has had different shapes

over our sample period as shown in Figure C.18 for the OATi sample and in

Figure C.19 for the OATei sample. These figures plot zero-coupon yield curves

and instantaneous forward rate curves on the same days as Figures 4.6 and 4.7

respectively do—namely, on March 26, 2008, July 21, 2008, and April 15, 2010,

for securities indexed to the French CPI, and on October 16, 2007, September
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Figure 4.9: Time Series of Zero-Coupon Real Yields for OATei sample
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This figure shows the time series of the Svensson [1994] fitted 2-, 5-, and 10-year
zero-coupon real yields implied by the price quotes of OATei securities from March
7, 2007, to April 10, 2018, at daily frequency.

23, 2008, and June 17, 2010, for securities indexed to the euro-area index. The

zero-coupon rate curves appear on the left side of the figure, and the forward rate

curves are on the right side of the figure. These plots show that various shapes

yield curve shapes implied by the OATi and OATei.

Figures 4.8 and 4.9 plot time series of 2-, 5-, and 10-year zero-coupon real yields

in our OAT sample and OATei sample, respectively. For Figure 4.8, the sample

period is from February 13, 2008, to December 31, 2018. For Figure 4.9, the

sample period is from March 7, 2007, to December 31, 2018. Periods when the

zero-coupon rate is zero on these figures correspond to periods when there is not

enough securities to accomplish the fitting exercise; thus, there are no parameters

to compute the zero-coupon rate.
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Figure 4.10: Unconditional Zero-Coupon Real Yields
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Panel B: Unconditional zero coupon term structure for OATei sample

This figure shows the unconditional zero-coupon real yield curve. These values are
the simple average of all the yields across the sample period. Panel A reports the
unconditional zero-coupon real yield curve for the OATi sample and Panel B for
the OATei sample.

Figure 4.10 plots the unconditional real term structure. This term structure was

computed as the mean value in each horizon point across the sample period.

Figures 4.11 and 4.12 plot zero-coupon yields for breakeven rates. We can see the

same nominal zero-coupon yield curve on November 23, 2015, on both figures.

The breakeven rate is the difference between the nominal and the real rate on one

day for a given maturity. For Figure 4.11, we plot the real zero-coupon yield curve

for the OATi sample. For Figure 4.12, we plot real zero-coupon yield curve for

the OATei sample. Figures C.20 and C.21 plot time series of 5-year zero-coupon

yields for breakeven rates. We see that it is on the 2% level.
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Figure 4.11: Zero-Coupon Real, Nominal and Breakeven Yields for OATi sample
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Panel B: zero coupon breakeven rate for OATi sample, 23-Nov-2015

This figure shows zero-coupon yields for the OATi sample. Panel A reports the
nominal and real yield curve on a specific date, November 23, 2015. Panel B reports
the breakeven rate for the same day of the sample period calculated as the difference
between real and nominal rates.

4.6 Backcasting inflation

In this section we propose a proxy for the five-year forward, five-year inflation

compensation rate and conduct a backcasting exercise. While forecasting involves

predicting the future based on current trend analysis, backcasting approaches the

challenge of discussing the future from the opposite direction. More specifically,

forecasting means making statements regarding the future based on explicit or

implicit assumptions from the present situation and observed trends. On the

other hand, backcasting is a strategic problem-solving framework, searching for

the answer of how to reach specified outcomes in the future.
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Figure 4.12: Zero-Coupon Real, Nominal and Breakeven Yields for OATei sample
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This figure shows zero-coupon yields for the OATei sample. Panel A reports the
nominal and real yield curve on a specific date, November 23, 2015. Panel B reports
the breakeven rate for the same day of the sample period calculated as the difference
between real and nominal rates.

4.6.1 Methodology aspect

Inflation compensation is the difference between the nominal and real interest

rate. There are longer sample periods for nominal rates on the French govern-

ment securities market. When inflation-linked securities were issued around 2000

in France, it became possible to construct the real yields. Knowing that inflation

compensation is the difference between real and nominal rates, one can com-

pute or estimate inflation compensation starting only from 2000. To overcome

this issue, we present a backcasting inflation compensation exercise. We notice

that the relationship between nominal yields and inflation compensation tends

to be stable over years. For our exercise, we estimate this relationship with a
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multiple regression tool by regressing the inflation compensation on three princi-

pal components of nominal rates. Once this is done, we produce fitted inflation

compensation for a period when nominal rates are available. This gives us the

period with actual inflation compensation, equal to the period when real rates are

available (i.e., from 2007 to 2018 for the EU sample, and from 2008 to 2018 for

the FR sample), and the larger period with fitted inflation compensation, equal

to the period when nominal rates are available (i.e., from 1999 to 2018 for both

samples).

We follow the Gürkaynak, Sack, and Wright [2010] methodology to conduct

the backcasting exercise with inflation compensation. They suggest that three

principal components of nominal yields provide the best proxy for a particular

breakeven measure. In the literature, these factors are called the level, the slope,

and the curvature, but we can also interpret them with a macroeconomic expla-

nation. We pick the five-year forward, five-year inflation compensation rate for

a particular breakeven measure. We conduct the multiple regression with the

five-year forward, five-year inflation compensation rate as the variable to explain

and three principal components of nominal yields as three explanatory variables.

There are two data samples—one with OATi securities and one with OATei se-

curities. We find that the R-squared is 85% for the OATi sample and 84.84%

for the OATei sample. These values are high enough to indicate an important

relationship between the nominal and breakeven rates. Figures 4.13 plots the

five-year forward, five-year breakeven rate for the OATi sample (panel A) and for

the OATei sample (panel B). Blue indicates actual inflation compensation—i.e.,

calculated as the difference between the nominal and real rates. Gray and or-

ange indicate the fitted five-year forward five-year inflation compensation rate,

which we compute using regression parameters and the available three principal

components of nominal yield curve back to 1999—i.e., the post-euro period.

4.6.2 Results of backcasting

When we use the Svensson model, we need to have at least six available quotes

to produce the parameter estimation. Starting from the first issuance of linked
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Figure 4.13: Actual and Fitted Five-to-ten Year Forward Inflation Compensation
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This figure shows the actual and fitted five-year forward five-year inflation compensation rate.
We follow the Gürkaynak, Sack, and Wright [2010] methodology to conduct the backcasting
investigation. Panel A reports the result for the OATi sample with out-of-sample period from
January 4, 1998, to February 13, 2008. Panel B reports the results for the OATei sample with
the out-of-sample period from January 4, 1998, to March 7, 2007.

securities in the French government bond market, the first moment when there

is enough data points for parameter estimation is February 13, 2008, for the

OATi sample and March 7, 2007, for the OATei sample. Due to the fact that

sometimes there are not enough security issues and that there are those that

arrive to maturity, we can easily drop below the minimum number of available

data points—i.e., six quotes. This is the reason why one can see the empty spaces

in the time series of the actual five-year forward, five-year inflation compensation

rate (blue). This is not the case for fitted rates; thus, we note the absence of

empty spaces on the orange and red lines.

Fitted inflation compensation for the OATi sample stays between 2.5% and 3%

163



through the end of 2004. Then we observe the drop to quite a low level—i.e.,

below 2% in the beginning of 2006. This rate returns to its comfortable level,

2.5%, in February 2008, where it stays until August 2012. Then we observe a fall

so dramatic that one can say that it is a regime-changing moment. The fall is

most certainly related to the GFC in 2012. There are also two drops before the

five-year forward, five-year inflation compensation rate arrives at a 1.5% level at

the end of 2018.

To resume the figure description above, we propose that the five-year forward,

five-year inflation compensation rate was approximately at a 2.5% level until the

GFC, and then this rate changed its regime to a new comfortable level of 1.5%.

Once the inflation compensation rate is 2.5% or 1.5%, we say that the nominal

rates are higher than the real rates for this value. When the breakeven rate

is negative, it gives us the information about instability on the market. The

actual breakeven rate goes below the zero level twice: March–April 2015 and

June–October 2016. These dates were detected when the inflation rate hit the

1% level. When the actual inflation compensation rate goes below its comfortable

value and, even more, goes below the zero level, we see that the fitted inflation

compensation rate remains at more reasonable values.

The time series of five-year forward, five-year breakeven rate for the OATi and

OATei samples are quite similar. Indeed, the correlation coefficient between the

two actual rates is 98.6%. The correlation coefficient between the two fitted rates

is 99.5%, meaning that all the descriptions above for the OATi sample are also

relevant for the OATei sample.

4.7 Managerial aspect and discussion

In this section we discuss how our results can be used in the future. We already

documented our results in previous sections and now there are two motivations.

First, we show that our results are in line with the existing literature. Second,

we point out the utility of investigation on the real interest rate topic—in other

words, how our results can be used in future research. We will document the

asset pricing case and then the risk-management aspect.
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4.7.1 Asset pricing and real rates

Boyd, Levine, and Smith [2001] find a significant and economically important

negative relationship between inflation and the ability of the financial sector to

allocate resources effectively. Even a predictable increase in the rate of inflation

impacts both banking-sector developments and equity market activity. With em-

pirical investigation, they document that this negative relationship is nonlinear.

They present two important findings. The first finding is if inflation rates exceed

15%, it decreases the performance for the whole financial sector of the economy.

The second finding shows the difference between low-inflation and high-inflation

countries. In low-inflation economies, more inflation does not mean greater nomi-

nal equity returns, while in high-inflation countries, marginal increases in inflation

increase nominal stock returns in a one-for-one proportion.

These relationships are true for any economy. Huybens and Smith [1999] resume

some known relationships between inflation and market performance. There are

three strongly positively correlated values: (1) real activity, (2) the volume of

bank lending activity, and (3) the volume of trading in equity markets. There

are also two strongly negatively correlated values: (1) inflation and financial

market activity in the long run, and (2) inflation and the real rate of return

on equity. Huybens and Smith highlight a critical role of banks and secondary

capital markets in the allocative function of the financial sector of economy. They

propose a monetary growth model such that model predictions are consistent with

empirical observations about inflation, finance, and long-run real activity.

One can also investigate the relationship between expected inflation and money

growth. Stulz [1986] proposes an equilibrium model to explain that negative

relationship between expected real returns on common stocks and money growth.

The decrease in real wealth leads to an increase in expected inflation, a decrease

in real interest rates, and, as a consequence, a decrease in the expected real rate

of return of the market portfolio. Again we see the empirical evidence of the

effect of a change in expected inflation on the cross-sectional distribution of asset

returns. The model proposed is consistent with a negative relation between stock

returns and inflation and presents clear evidence that assets that have positive

165



covariance with expected inflation have lower expected returns.

Stehle [1977] tests some hypotheses about national and international pricing of as-

sets. He investigates asset pricing with an integrated world capital market model

when there were no barriers to international capital flows. He discusses also a

model of segmented capital markets when financial transactions were not possible

on the international level. His problematics is whether a valuation model assum-

ing no barriers to international capital flows predicts rates of return better than a

model that assumes complete market segmentation. This study is important for

international portfolio investment management. The investor’s portfolio decision

only depends upon the real rates of return, which are identical for all investors,

regardless of the currency area in which they live. Stehle explains that exchange-

rate changes reflect different inflation rates (i.e., different monetary policies) in

the case of a single commodity world.

To return to the importance of inflation in the economy and the implications

of real rates, Harvey [1988] investigates a linear relation between expected re-

turns and expected consumption growth. To forecast the consumption growth,

he suggests the use of an expected real term structure. This proposition is based

on strong empirical evidence between the 1970s and 1980s. Moreover, two al-

ternative measures: lagged consumption growth and lagged stock returns, which

contain less information to forecast the consumption growth. Thus, Harvey con-

cludes that the real term structure has more forecasting power than the leading

commercial econometric models.

Finally, Bakshi and Chen [1996] study the fact that everything is linked in an

economy with a tractable monetary asset pricing model. They list several vari-

ables—for instance, price level, inflation, asset prices, and real and nominal in-

terest rates. All of these variables have to be determined simultaneously and in

relation to each other in monetary economics. Bakshi and Chen relate each of the

dependent entities to the underlying real and monetary variables. They find that

the process followed by the real term structure is independent of that followed by

its nominal counterpart. Our results are in line with this result.
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4.7.2 Real rates and inflation risk

Inflation-hedging portfolio strategies aim to build a portfolio that offers protection

against inflation. Both individuals and institutional investors aim to preserve the

purchasing power of savings. Developed countries tend to apply the expansion-

ary monetary policies that seek to expand money supply to encourage economic

growth or combat inflation through stimulus packages and liquidity injections

into money markets. This situation is even more true after the subprime crisis in

2007 and 2008. In the case of emerging markets, there is a dilemma. They can

commit to stabilizing either the exchange rate or domestic output, but not both.

The central banks in emerging economics are no longer focusing on combating

inflation. A country has monetary policy autonomy if its central bank has the

freedom to make changes to the country’s money supply, therefore allowing us to

use that tool to impact the country’s economy. Greater monetary autonomy is

associated with a higher level of inflation, while greater exchange-rate stability

and greater financial openness could lower the inflation rate.

In principle, only inflation-linked bonds provide protection from uncertainty about

real interest rates and inflation. But not all developing countries issue inflation-

linked bonds, and these markets are still narrow and less liquid compared to

their nominal counterparts. Moreover, the current low-yield regime makes it

more challenging to obtain high real returns. These concerns raise the interest of

reconsidering how to build a portfolio that protects investors from inflation risk.

Piazzesi and Schneider [2009] document that the Great Inflation led to a portfolio

shift by making housing more attractive than equity. The starting point of their

research was a 20% shift away from equity and into real estate during the 1970s.

This was related to the surprising surge of inflation. They explore three different

channels through which inflation expectations can induce negative co-movement

of stock and house prices. Their quantitative analysis suggests that both inflation

and growth expectations were relevant for asset prices and household positions

in the 1970s.

Barr and Campbell [1997] study expected future real interest rates and inflation

rates from observed prices of U.K. government nominal and index-linked bonds.
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They suggest that expected real interest rates and inflation follow simple time-

series processes whose parameters can be estimated from the cross-section of

bond prices. Barr and Campbell find that the extracted inflation expectations

forecast actual future inflation more accurately than nominal yields do. They

also find that the estimated real interest rate is highly variable at short horizons

but comparatively stable at long horizons. Finally, they document that changes

in real rates and expected inflation are strongly negatively correlated at short

horizons but not at long horizons.

To conclude, we return to the analysis of the corporate financing decision in the

case of debt and not equity. A firm can issue debt of different maturities and,

given the decision to use debt, each time the firm contemplates borrowing to

meet its need for capital it faces a decision regarding the term to maturity for its

debt. The debt maturity decision involves a consideration of both cost and risk

elements as shown in Morris [1976], which explores the effects of bond maturity

upon the variance of net income. This is one dimension of the risk associated

with different maturity policies. Firms can deal with this risk following a hedging

policy when the maturity of the debt is approximately equal to the life of the

asset. By matching debt maturity to asset life, it is expected that the cash flows

generated by the asset will be sufficient to service and retire the debt by the end

of the asset’s life. Debt of maturity shorter than asset life is considered more

risky since there is some possibility the asset will not have generated sufficient

cash flows by the maturity date to retire the debt. Debt of a maturity longer

than the asset life is considered risky due to the uncertainty of the source and

volume of the cash flows that are necessary to service the debt after the asset is

retired.

4.8 Conclusion

The term structure of real interest is the subject of this chapter. The observation

that inflation has the potential to greatly affect investment outcomes is our main

motivation. French-linked government bonds—so-called inflation-protected secu-

rities—were first issued at the beginning of the 21st century. This study follows
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the Gürkaynak, Sack, and Wright [2010] methodology. On the French inflation-

protected securities market, we find securities related to two inflation indices.

There are securities linked to (1) domestic inflation rates, or the CPI, and to (2)

European inflation rates, or the HICP. Throughout our study we split the data

sets into two broad categories: OATi and OATei markets.

Our first result is the good fitting of the term structure of real rates with the

Svensson [1994] model. We find that this model does a very good job in reflecting

the reality of the market. Our second result is the day-to-day evaluation and

different shapes of the term structure of real rates. We do not use any dynamic

approach for real rates. Our static model with parameter estimation for each day

in the sample period gives us the time series of the studied phenomenon. Thus,

we document the time series of zero-coupon, par yield, and forward rates. And

our results are in line with Bakshi and Chen [1996]. We propose the valuable

proxy for the five-year forward, five-year inflation compensation rate. In future

research we plan to incorporate the seasonal adjustment to see how it can impact

the breakeven rate estimation.
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Figure C.14: Fitting Errors for OATi sample
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This figure shows the total fitting error implied by the Svensson [1994]
model. The fitting error is computed as the mean absolute error be-
tween the predicted and the market yields across all available OATi
securities on a particular day. The fitting errors are shown in basis
points. Sample period: February 13, 2008, to December 31, 2018. Fre-
quency: Daily.
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Figure C.15: Maturity-specific Fitting Errors for OATi sample
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This figure shows the fitting errors of the Svensson [1994] model implied
by the OATi securities. The fitting error is computed as the mean
absolute error between the predicted and the market prices in a certain
maturity bin. We report the errors for four maturity bins: 0-5-year,
5-10-year, 10-20-year, 20-40-year bin. The fitting errors are shown in
basis points. Sample period: February 13, 2008, to December 31, 2018.
Frequency: Daily.
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Figure C.16: Fitting Errors for OATei sample
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This figure shows the total fitting error implied by the Svensson [1994]
model. The fitting error is computed as the mean absolute error be-
tween the predicted and the market yields across all available OATei
securities on a particular day. The fitting errors are shown in basis
points. Sample period: March 7, 2007, to December 31, 2018. Fre-
quency: Daily.
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Figure C.17: Maturity-specific Fitting Errors for OATei sample
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This figure shows the fitting errors of the Svensson [1994] model implied
by the OATei securities. The fitting error is computed as the mean
absolute error between the predicted and the market prices in a certain
maturity bin. We report the errors for four maturity bins: 0-5-year,
5-10-year, 10-20-year, 20-40-year bin. The fitting errors are shown in
basis points. Sample period: March 7, 2007, to December 31, 2018.
Frequency: Daily.
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Figure C.18: Term Structure of the Zero-Coupon and Forward Rates for OATi
sample
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This figure shows Svensson [1994] zero-coupon yield and instantaneous
forward rate term structures on three days in the OATi sample: March
26, 2008, July 21, 2008, and April 15, 2010.
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Figure C.19: Term Structure of the Zero-Coupon and Forward Rates for OATei
sample
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This figure shows Svensson [1994] zero-coupon yield and instantaneous
forward rate term structures on three days in the OATei sample: Oc-
tobre 16, 2007, September 23, 2008, and June 17, 2010.
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Figure C.20: Time series of 5 year Zero-Coupon Real, Nominal and Breakeven
Yields for OATi sample
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Panel B: time series of 5 year zero coupon real rate for OATi sample

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

year

-2

0

2

4

pe
rc

en
t

Panel C: time series of 5 year zero coupon breakeven rate

This figure shows the time series of the Svensson (1994) fitted 5-year
zero-coupon nominal, real and breakeven yields implied by the price
quotes of OATi securities from February 13, 2008, to December 31,
2018, at daily frequency.
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Figure C.21: Time series of 5 year Zero-Coupon Real, Nominal and Breakeven
Yields for OATei sample
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Panel A: time series of 5 year zero coupon nominal rate
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Panel C: time series of 5 year zero coupon breakeven rate

This figure shows the time series of the Svensson (1994) fitted 5-year
zero-coupon nominal, real and breakeven yields implied by the price
quotes of OATei securities from March 7, 2007, to December 31, 2018,
at daily frequency.
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General Conclusion

The domestic bond market is critical to the economy and financial system for the

following reasons. First, sovereign debt issued by either the central bank or the

federal government plays a major role in the development of the credit market,

which is safer than debt instruments issued by private parties. Second, the yield

on sovereign debt serves as the baseline from which all other debt instruments can

be priced by adding appropriate risk premium (e.g., liquidity) and term premium

to the underlying pure interest rate. Third, high-quality securities aid in market

development by providing quality collateral to secure financial transactions. Fi-

nally, a well-developed domestic bond market helps the government to finance its

fiscal deficit in a non-inflationary way. In this thesis we present three in-depth

empirical studies, all related to the government bond markets.

Prior to this, we present the introductory chapter, which is the basis for all the

investigations that follow. Chapter 1 presents several theoretical aspects that

are necessary for future empirical studies. First, it is interesting to know the

type of models that can be used to work with term structure of interest rates

(TSIR) phenomenon. We also present a pure statistical approach called principal

component analysis (PCA). Applying PCA, it is possible to explain the dynam-

ics of the entire term structure with only three factors, which in addition have

precise interpretation as the level, slope, and curvature. As the TSIR provides

information on what is the output to invest for a specific horizon, it is important

to discuss the duration measure. We also present information about the differ-

ent institutions regarding TSIR, precisely, information about the products and

actors in the government bond market. There are different types of yields that
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we can construct. The next section presents the spot rates, forward rates, and

par yield curves. In Chapter 1 conclusion, we present information about debt

management and the problem of inflation, and the dynamics of government bond

market liquidity.

Chapter 2 examines several Nelson-Siegel style yield curve models for fitting the

term structure of interest rates. During the last four decades, no superior model

was clearly identified. We collect data on government bond prices issued by the

four eurozone countries. Unlike previous research, we do not consider available

interest rates as suitable. We restrict ourselves to the limits of the Nelson Siegel

class of term structure models in order to consider four specifications with the

same structure. We compare these specifications by their in-sample performance

to match bond prices. We find that the extended Svensson specification perfor-

mance is overall suitable to calculate bond prices. Our result is robust to several

criteria to compare all the four competitors.

In Chapter 3 we construct the French nominal yield curve using available public

data on the maturities of French nominal Treasury securities at issuance from one

to fifty years. Our investigation period starts in 1984, includes the advent of the

euro in January 1999, and concludes in April 2018. The analysis of fitting errors

shows that the Svensson model fits the data appropriately. The French sovereign

bond market has been functioning reasonably well, especially since the launch

of the euro, outside of a few episodes such as the global financial crisis and the

European sovereign debt crisis. In sharp contrast to the nominal U.S. Treasury

securities market, on-the-run securities have, on average, nil or negligible liquidity

premium. Both the level and slope of the French zero-coupon rates have been on

a decline since the financial crisis.

Chapter 4 investigates the real rates in the French government bond market. The

French Treasury has been issuing inflation-linked debt since the start of the 21st

century. This chapter provides a comprehensive overview of the market by con-

structing the real yield curve. We use the Svensson model to compute the implied

real zero coupon, real par yield, and real forward rates. Our dataset includes both

French government securities OATi (indexed on the domestic consumer price in-
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dex in France), first issued on September 15, 1998, and the French government

securities OATe(indexed to the euro area price index) that were issued in Octo-

ber 2001. We use the noise measure to detect the reasonable duration cut off for

government bonds. First, the calibration results show good fit by the Svensson

model. Second, we backcast the five-year forward five-year breakeven inflation

rate before the appearance of any inflation-protected securities on the market.

These three empirical studies provide interesting results about the term struc-

ture of French interest rates, debt management, and government bond markets.

This work is subject to limitations which, at the same time, suggest potentially

promising avenues for future research. We have left some open questions when

various term structures are similarly considered. Finally, this thesis focuses on

understanding the nominal and real interest rates and fitting the term structure

of interest rates. Future research can investigate the pricing of related derivatives

and risk management issues. However, these topics require different modeling

technologies.

Investors and economists strongly believe that the shape of the yield curve reflects

the conditions for monetary policy and the market’s future expectation about

interest rates. In other words, understanding the term structure of interest rates

is important because it integrates the market’s anticipation of future events by

offering a complete schedule of interest rates across time. The various models of

the term structure provide us ways to derive this information and predict how

the changes in the underlying variables will affect the yield curve. In conclusion,

it is hoped that this thesis is of interest to the reader and will encourage future

research in the field.
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Résumé

La structure par terme des taux d’intérêt est une relation entre les rendements

à l’échéance des obligations à zéro-coupon et leur maturité respective. Cette re-

lation et son contenu informatif font partie des concepts les plus fondamentaux

de la finance. Elle est essentielle pour de nombreux domaines tels que la ges-

tion de portefeuille, les options sur taux pour la détermination des prix et la

gestion des risques. Elle est également exploitée par des acteurs bien au-delà du

strict domaine de la finance, tels que les régulateurs, les économistes et même

les journalistes. Malgré la large utilisation de la structure par terme des taux

d’intérêt (appelée aussi courbe des taux), cette relation n’est pas directement

observable sur le marché. De plus, la structure par terme des taux d’intérêt peut

admettre de différentes formes au fil du temps. De nombreux cadres théoriques

tentent d’expliquer ce phénomène. Aujourd’hui, il reste encore beaucoup à faire

pour étudier le comportement de la structure par terme des taux d’intérêt et plus

précisément le lien complexe entre les taux d’intérêt et les prix des obligations à

coupon.

Il y a plusieurs motivations pour étudier la structure par terme des taux d’intérêt.

La première est qu’elle est nécessaire pour déterminer le prix des titres à revenu

fixe. Les titres à revenu fixe sont des prêts consentis par un investisseur à un em-

prunteur (gouvernement ou entreprise). La deuxième motivation est la nécessité

de gérer les actifs et les risques des portefeuilles obligataires. Les investisseurs in-

cluent des obligations dans leurs portefeuilles pour différentes raisons, notamment

la génération de revenus, la préservation et la plus-value du capital et la protec-
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tion contre le ralentissement économique. Enfin, le contenu de l’information et,

plus précisément, la capacité de la structure par terme des taux d’intérêt à prévoir

les récessions. Il est donc important de poursuivre les recherches empiriques sur

la structure par terme des taux d’intérêt.

Cette thèse contribue à la compréhension de la structure par terme des taux

d’intérêt à travers trois essais. Le premier met en œuvre plusieurs modèles de

structure par terme de taux d’intérêt sur les données d’obligations d’état émises

par quatre pays de la zone euro. Cette enquête vise à déterminer quel modèle

est le plus performant. Cette question a deux aspects. Premièrement, en envi-

ronnement statique, lorsque nous étudions la capacité d’adaptation du modèle de

structure par terme. Deuxièmement, la capacité de fournir une bonne prévision

de la structure par terme des taux d’intérêt. Le deuxième essai étudie la struc-

ture par terme des taux d’intérêt nominaux en France, en exploitant une période

d’échantillonnage de 30 ans. Notre enquête montre que la prime on-the-run

(OTR) est absente du marché obligataire français. Nous documentons également

quelques améliorations significatives de la qualité du marché des obligations d’état

français après l’introduction de l’euro. Le troisième essai analyse les titres français

protégés contre l’inflation et la structure par terme des taux d’intérêt réels. Cette

enquête vise à comprendre l’interaction entre la dette publique et l’inflation dans

l’économie d’un pays, par exemple la France. Nous obtenons principalement

deux observations. D’abord le modèle que nous utilisons se montre performant

pour capter les prix de titres français protégés contre l’inflation domestique et

européenne. Deuxièmement, nous avons réussi à calculer le five-year forward

five-year breakeven rate avec la méthode de backcasting sur une période avant

l’apparition de tout titre protégé contre l’inflation sur le marché.

Notre travail est divisé en quatre chapitres. Le premier chapitre est un

chapitre introductif. Il présente le cadre d’études dans lequel se déroulera notre

travail et constitue un point de départ pour les enquêtes suivantes. Il présente

plusieurs aspects théoriques à rappeler pour les études empiriques futures. Tout

d’abord, il est intéressant de savoir quel type de modèle existe pour expliquer la

structure par terme des taux d’intérêt. Dans la famille des modèles d’équilibre,

il existe, d’une part, des modèles affines, qui incluent des approches d’équilibre
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général et partiel, et, d’autre part, des modèles - quadratiques. Dans les modèles

affines du type à équilibre partiel, nous supposons que le taux zéro-coupon est une

fonction affine d’un ensemble de variables d’état. Dans les modèles quadratiques,

nous procédons de la même manière, en utilisant toutefois la fonction non linéaire

des variables d’état. Dans la famille des modèles dits sans arbitrage, l’absence

d’opportunité d’arbitrage est essentielle pour concevoir la structure par terme

des taux d’intérêt. L’un des objectifs de cette approche est de s’appuyer sur

un ajustement parfait à chaque instant, puis sur la dynamique appropriée de la

structure par terme des taux d’intérêt. Dans la famille des modèles dynamiques,

nous avons une forme fonctionnelle avec plusieurs paramètres. Les articles de

recherche dans ce domaine sont basés sur les travaux de Nelson and Siegel [1987]

qui ont présenté un modèle parcimonieux à trois facteurs qui s’avère parfaitement

épouser la courbe des taux. Nous y présentons également une approche purement

statistique appelée l’analyse des composantes principales (ACP). Avec ACP, on

peut expliquer la dynamique de la structure de terme entière avec seulement 3

facteurs qui, en plus, ont une interprétation intéressante comme le niveau, la

pente et la courbure de la courbe des taux.

Comme la structure par terme des taux d’intérêt nous donne des informations

sur le rendement prévu à l’échéance spécifique, il est important de parler de la

mesure de la duration. La duration et la convexité sont deux outils standard

utilisés pour gérer l’exposition au risque pour des investissements à revenu fixe.

La duration mesure la sensibilité de l’obligation aux variations de taux d’intérêt.

Nous présentons également des informations sur les institutions qu’on trouve

sur les marchés des titres à revenu fixe. Précisément des informations sur les

produits et les acteurs sur le marché des obligations d’état. Sur le marché des

obligations, le marché primaire est le lieu où les dettes arrivent en premier. Il

existe des mécanismes particuliers pour vendre ces dettes, appelées vente aux

enchères. Mais une fois qu’une action ou une obligation émise sur marché a

été achetée par un investisseur, nous avons affaire à un marché secondaire. Un

marché secondaire est le lieu de rencontre d’investisseurs désireux de vendre et

d’investisseurs désireux d’acheter. Ce processus donne lieu à un cours déterminé

par le niveau de l’offre et de la demande à un moment donné. Il existe différents
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types de courbes de taux que nous pouvons construire, notamment les taux zéro-

coupon, les taux à terme et par yield. Nous présentons quelques informations sur

l’aspect gestion de la dette avec les problèmes d’inflation. Dans la conclusion du

premier chapitre de cette thèse, nous présentons l’aspect liquidité sur le marché

des obligations d’état.

Le deuxième chapitre compare la performance de quatre modèles de struc-

ture par terme des taux d’intérêt sur des données relatives à quatre pays dans

la zone euro: la France, l’Allemagne, l’Italy et l’Espagne. Peu d’articles compar-

ent plusieurs modèles de taux d’intérêt sur des ensembles de données contenant

plusieurs pays. Presque aucun d’entre eux n’utilise les prix des obligations. Pour

les gestionnaires de titres à revenu fixe, les macroéconomistes et les économistes

financiers, il est très important de pouvoir établir une prévision précise de la struc-

ture par terme des taux d’intérêt. De plus, l’optimisation du portefeuille obli-

gataire, l’estimation du prix des actifs financiers et de leurs dérivés, ainsi que la

gestion des risques, reposent largement sur les prévisions de taux d’intérêt. Nous

proposons une étude prévisionnelle de la structure par terme des taux d’intérêt.

Le modèle de structure par terme de taux d’intérêt proposé par Nelson and Siegel

[1987] constitue le point de départ de nos recherches. Pour les participants au

marché, les modèles de type Nelson Siegel sont les modèles de référence. La Bank

of International Settings (BIS) présente la liste des pays qui utilisent la méthode

d’ajustement de la courbe des taux et, pour chaque pays, elle indique le modèle de

la structure par terme des taux d’intérêt utilisés par les banques centrales. Pour

la majorité des pays, le modèle de Svensson [1994] est le plus populaire. Dans le

deuxième chapitre de cette thèse, nous comparons quatre modèles de la structure

par terme des taux d’intérêt pour extraire la courbe des taux à partir des prix des

obligations à coupon observés. Les deux premiers modèles que nous considérons

sont pris de la littérature: (1) Nelson-Siegel à 4 paramètres et une bosse possible;

(2) Svensson avec 6 paramètres et deux bosses possibles. Les deux derniers sont

nouveaux et introduits dans cette recherche: (3) extended Bjork-Christensen avec

6 paramètres et deux bosses possibles ainsi que le Bjork-Christensen original

proposé par Bjork and Christensen [1997] avec 5 paramètres et une contrainte

sur les paramètres non linéaires; (4) extended Svensson avec 7 paramètres et deux
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bosses. Pour évaluer les performances de chaque modèle de structure par terme

des taux d’intérêt, nous proposons deux critères. Le premier est l’erreur absolue

moyenne. La seconde donne le nombre de jours où le modèle donné a fourni les

meilleures performances parmi les autres. Ainsi, nous pouvons trouver un modèle

qui décrit les prix réels des obligations sur le marché avec la meilleure précision.

Nous collectons des données sur les obligations d’état de quatre pays de la zone

euro: la France, l’Allemagne, l’Italie et l’Espagne sur une période d’environ 20

ans, de 1999 à 2018. Notre ensemble de données de prix quotidiens contient au

total 800 obligations assorties de taux de coupon et d’échéances différents. En

prenant des obligations libellées en euros, nous évitons toute complication liée

au taux de change. Nous comparons la manière dont quatre modèles de struc-

ture par terme des taux d’intérêt de type Nelson Siegel arrivent à décrire les

prix des obligations d’état observés sur le marché. Nous prenons des données sur

les prix des obligations d’état et calculons des paramètres. Ensuite, nous calcu-

lons les prix des obligations pour chaque modèle et chaque pays. La principale

conclusion de notre enquête est qu’un modèle de structure par terme des taux

d’intérêt extended Svensson offre les meilleures performances en matière de prix

des obligations pour tous les quatre pays. Les erreurs d’ajustement montrent

que tous les modèles rencontrent des difficultés pour s’ajuster aux données itali-

ennes. Pour ce pays, l’erreur d’ajustement moyenne sur l’ensemble de la période

d’échantillonnage est d’environ 22-24 points de base, quels que soient les modèles

de structure par terme des taux d’intérêt. Pour comparer, l’erreur d’ajustement

moyenne pour la France est d’environ 11 points de base. Pour l’Italie et la France,

la marge d’erreur d’ajustement moyenne est assez large par rapport à l’Allemagne

et à l’Espagne. L’ajustement du modèle aux données allemandes est mieux par

rapport aux données du marché espagnol.

Une description de la dynamique de la courbe des taux ne devrait pas seule-

ment permettre d’ajuster très bien les données (dans l’échantillon). Il devrait

également être capable de prévoir les données (hors échantillon). Nous pro-

posons une étude prévisionnelle de la structure par terme des taux d’intérêt dans

l’esprit de Diebold and Li [2006]. Les auteurs abordent le problème pratique de la

prévision de la dynamique de courbe des taux. Nous considérons trois méthodes
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de prévision alternatives, notamment les spécifications de marche aléatoire, les

spécifications autorégressives univariées et multivariées. Nos résultats montrent

que la spécification autorégressive univariée donne une prévision plus précise, à

savoir que les erreurs de prévision moyennes sont plus petites que celles de deux

autres concurrents.

Le troisième chapitre examine la structure par terme des taux d’intérêt

nominaux français. C’est un domaine d’étude très important du point de vue fi-

nancier et économique. Notre étude est la première étude exhaustive de toutes les

données publiques disponibles sur la dette nominale française couvrant la période

de 30 ans allant de 1988 à 2018. Récemment, les marchés du monde entier ont

été confrontés à la réalité avec des taux d’intérêt négatifs, principalement à court

terme de la courbe des taux. Nous construisons la courbe des taux nominaux

français en utilisant des cotations des titres nominaux français appelés “Obliga-

tion Assimilable du Trésor” (OAT) et “Bons du Trésor à taux fixe et Intersets

Annuels” (BTAN) à une fréquence quotidienne. Ces obligations ont des échéances

à l’émission allant de 1 à 50 ans. Notre période d’échantillonnage commence en

1988 et inclut le lancement de la devise euro en janvier 1999 et se termine en avril

2018. La méthodologie de notre article repose sur Gürkaynak, Sack, and Wright

[2007]. Ces auteurs comblent ce vide en publiant quotidiennement les estimations

de la courbe des taux du Trésor de la Réserve fédérale américaine de 1961 à nos

jours. Nous utilisons une méthode de lissage similaire pour ajuster les données et

nous montrons que cet ajustement est très bon. Les estimations résultantes sont

utilisées pour calculer les taux à terme pour n’importe quel horizon.

Le terme “assimilable” dans les OAT est technique. Il fait référence au fait que

ces titres sont fongibles avec des obligations anciennes aux caractéristiques iden-

tiques: même maturité, même taux nominal et même valeur nominale. Cela signi-

fie également que les obligations nouvellement émises se mélangent avec l’émission

de dette qui contient ces obligations anciennes. À première vue, cela peut parâıtre

très semblable au dispositif de réouverture de la dette américaine. Cependant,

ils ne sont pas exactement les mêmes. En France la gestion de la dette obli-

gataire repose explicitement sur une première souche, qui est la toute première

émission de dette qui servira de matrice pour les émissions suivantes. Les obli-
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gations récemment émises sont si fongibles que les obligations anciennes et les

nouvellement émises sont effectivement impossibles à distinguer. Par conséquent

il n’est pas vraiment approprié de parler d’une nouvelle tranche.

Les principaux résultats du troisième chapitre sont les suivants. Nous exploitons

la mesure de bruit pour évaluer la “qualité” du marché français. Cette mesure

est proposée par Hu, Pan, and Wang [2013] pour saisir les épisodes de crise de

liquidité d’origines différentes sur le marché financier. Il fournit des informations

sur l’illiquidité au-delà des procurations de liquidité existantes. Globalement, au

moyen de la mesure du bruit, nous constatons que, durant la première décennie de

notre période d’échantillonnage, les opportunités d’arbitrage n’étaient pas rares

sur le marché des OAT, mais que la situation s’était considérablement améliorée

depuis l’introduction de l’euro.

Nous étudions également la prime on-the-run (OTR) sur les données françaises.

Vayanos and Weill [2008] proposent une théorie fondée sur la recherche dans laque-

lle des actifs dotés de flux de trésorerie identiques peuvent être négociés à des prix

différents. Les auteurs montrent que la liquidité et les particularités expliquent

ce phénomène simultanément via l’activité de vente à découvert. Pour un titre

financier particulier, nous utilisons le cours de clôture fourni par Bloomberg. En

utilisant ces cotations, nous calculons les écarts entre le rendement à échéance de

la dernière obligation émise (appelé on-the-run security) et l’obligation qui existe

déjà sur le marché avec les mêmes caractéristiques (appelé off-the-run security).

Nous constatons que les écarts moyens et médians sont négatifs. De plus, les

écarts-types sont relativement élevés pour la plupart des fourchettes de matu-

rité, ce qui suggère l’absence de prime OTR sur le marché des obligations d’état

françaises.

Le quatrième et dernier chapitre analyse les obligations protégées de

l’inflation et examine la structure par terme des taux réels français. Nous con-

testons l’approche bien connue selon laquelle les taux réels sont constants et les

taux nominaux évaluent dans le temps. Nous constatons que la différence en-

tre les taux réels et les taux nominaux (qui correspond à la compensation de

l’inflation) reste constante et que les taux réels varient dans le temps. La particu-
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larité de nos recherches est que nous travaillons avec deux échantillons différents

dans l’ensemble de données de marché sur les titres protégés contre l’inflation

émis par le gouvernement français. L’ensemble de données est divisé en deux

parties, la première comprenant les obligations indexées sur l’inflation domes-

tique La seconde comprend les obligations indexées sur l’inflation européenne.

Nous mettons pleinement en œuvre la méthodologie proposée par Gürkaynak,

Sack, and Wright [2010]. En appliquant cette méthodologie, nous observons que

les erreurs d’ajustement sont assez petites, et ça nous montre la qualité du modèle

à expliquer les données.

Notre premier résultat est le bon ajustement du modèle de la structure par terme

des taux d’intérêt sur les taux réels français qui sont donnés implicitement par

les prix des obligations indexées sur l’inflation. Cette recherche s’appuie sur la

méthodologie de calcul de la courbe des taux de Svensson [1994] et nous trou-

verons que ce modèle arrive à très bien décrire la réalité du marché. Nous obtenons

des estimations fiables de taux réels intermédiaires et à long terme. Nous répétons

chaque jour l’exercice d’ajustement et nous avons donc une évaluation quotidi-

enne de la forme de la structure par terme des taux d’intérêt.

Le breakeven rate, aussi appelé point mort de l’inflation, représente la différence

de rendement entre le taux nominal (le rendement à l’échéance d’une obliga-

tion classique) et le taux réel (le rendement à l’échéance d’une obligation de

même émetteur et avec même échéance, mais indexée sur l’inflation). Parmi nos

résultats, on calcule le breakeven rate et on peut dire que cette valeur ne varie

pas beaucoup dans le temps. Nous faisons également un exercice de backcasting

sur les valeurs de point mort de l’inflation dans le temps. Pour ce faire, nous

trouvons la combinaison de taux nominaux qui reflète le mieux les recherchées

sur la periode pour laquelle nous avons des données sur les titres français protégés

contre l’inflation, puis nous calculons ces valeurs sur un échantillon beaucoup plus

long.

En conclusion on peut préciser qu’une contribution a été apportée à l’étude de

la structure par terme des taux d’intérêt avec trois études empiriques approfondies

portant toutes sur les marchés des obligations d’état. Ces trois études empiriques
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donnent des résultats intéressants sur la structure par terme des taux d’intérêt

français, de la gestion de la dette et des marchés des obligations d’état. Ce travail

est soumis à certaines limitations qui suggèrent en même temps des pistes poten-

tiellement prometteuses pour des recherches futures. Nous avons laissé ouvertes

quelques questions lorsque différentes structures de termes sont considérées de la

même manière. Enfin, cette thèse porte sur la compréhension des taux d’intérêt

nominaux et réels et l’ajustement de la structure par terme des taux d’intérêt sur

les données de prix d’obligations.

Mots-clés: La structure par terme des taux d’intérêt, l’ajustement de la courbe

des taux, la zone euro, les obligations d’état, modèle de Svensson, OTR pre-

mium, les taux nominaux, les obligations indexées sur l’inflation, les taux réels,

l’inflation.
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Titre : Les modèles de la structure par terme des taux d’intérêt, la dette publique et les obligations          
indexées sur l’inflation 

 Mots clés : La courbe des taux, modèle de Svensson, les taux nominaux et réels. 

Résumé : Cette thèse présente trois études 
empiriques afin d’étudier la structure par terme 
des taux d’intérêt. Ces trois enquêtes empiri-
ques donnent des résultats intéressants sur la 
structure par terme des taux d’intérêt français, 
de la gestion de la dette publique et des 
marchés des obligations d’état. La thèse 
présente des aspects théoriques tels que les 
modèles de la structure par terme des taux 
d’intérêt, les trois facteurs de la courbe des 
taux qui correspondent au niveau, à la pente et 
à la courbure, la mesure de la duration, 
l’organisation du marché des titres à revenu 
fixe, différents types de rendements et enfin la 
notion de l’inflation. La thèse examine quatre 
modèles de la structure par terme des taux 
d’intérêt de type Nelson-Siegel pour ajuster la 

courbe des taux sur les données de marché 
avec les prix des obligations d’état. Les 
données contiennent des obligations émises 
par quatre pays de la zone euro.  La thèse 
construit la courbe des taux nominaux 
française en utilisant toutes les données 
publiques disponibles sur les obligations 
émises par le Trésor français avec les 
échéances au moment de l’émission de 1 à 50 
ans. Enfin, la thèse examine les taux réels du 
marché des obligations d’état français en 
utilisant les données sur les titres indexées sur 
l’inflation et émis par le Trésor français. Une 
contribution a été apportée à l’étude de la 
structure par terme des taux d’intérêt avec trois 
études empiriques approfondies portant toutes 
sur les marchés des obligations d’état. 

 

 

Title : Term structure of interest rates models, nominal government debt and inflation-protected           
securities 

Keywords : Fitting the yield curve, Svensson model, OTR premium, nominal and real rates 

Abstract : This thesis investigates the term 
structure of interest rates via three empirical 
studies. These three empirical investigations 
give some interesting results about the term 
structure of French interest rates, debt 
management and government bond markets. 
This thesis provides several theoretical aspects 
of term structure of interest rates models, the 
three factors of the yield curve known as the 
level, the slope and the curvature, the duration 
measure, the organization of the fixed income 
securities market, different types of yields as 
zero-coupon, par yield and forward rates and 
finally the inflation. This thesis examines four 
Nelson-Siegel style yield curve models for fitting 
the term structure of interest rates on data about 
government bond prices. The dataset contains 

bonds issued by four countries in Euro area.  
This thesis constructs the French nominal yield 
curve using all available public data of French 
nominal Treasury securities of maturities at 
issuance from 1 to 50 years. Finally, this thesis 
investigates real rates on French government 
bond market using the data on French inflation-
protected Treasury securities. This study 
provides a comprehensive view on the market 
by the construction of real yield curve.	Our data 
set includes both types of such securities, 
those indexed on the domestic consumer price 
index and on the european inflation index. A 
contribution was made to the understanding 
the term structure of interest rates with three 
in-depth empirical studies, all dealing with 
government bond markets.  
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