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<< Tu mostri non aver posto mente che la vita di quest'universo è un 

perpetuo circuito di produzione e distruzione, collegate ambedue tra sé 

di maniera, che ciascheduna serve continuamente all'altra, ed alla 

conservazione del mondo; il quale sempre che cessasse o l'una o l'altra 

di loro, verrebbe parimente in dissoluzione.>> 

Dialogo della Natura e di un Islandese- Giacomo Leopardi, 1824  

<< Evidently, you have not considered that in this universe life is a 

perpetual cycle of production and destruction, both functions being so 

closely bound together that one is continuously working toward the 

other, thus bringing about the conservation of the world, which, if either 

one of them were to cease, would likewise dissolve>> 

Dialogue between Nature and an Icelander- Giacomo Leopardi 

Operette Morali: Essays and Dialogues by Giacomo Leopardi,  

Translated by Giovanni Cecchetti, University of California Press, US, 1983    
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Over the last few decades, our society has developed new technologies and new materials that have 

led to progress thanks to the use of fossil carbon and petroleum-derived substances. Nevertheless, the 

use of this fossil fuel and the non-biodegradable materials are the main causes of pollution and climate 

change, which are problems that have become evident especially since the beginning of the last century.  

With the Kyoto Protocol first and the Paris Climate Agreements in 2015 then, one of the objectives 

was to reduce carbon emissions on a global scale. During this current year, 194 states have signed the 

agreements. The global economy is slowly shifting its attention from synthetic to natural and renewable 

materials, rediscovering ancient knowledge.  

Flax fibres are one of these materials, which have been used since ancient times for different 

purposes, such as clothing or sailing, and that are currently taking on new importance because of the 

production of biobased materials.  

 

 This thesis is a part of the FLOWER project, a European project carried out with funding by Interreg, 

that aims to study flax fibres and flax plants in order to use technical flax fibres in biocomposite materials 

for industrial purposes, with a particular focus on the production of a boat prototype, automotive 

headliners and advertising panels.  

The FLOWER project is a collaboration between France and England, consisting of four academic 

groups (University of Portsmouth, University of Cambridge, Université de Bretagne Sud and INRAE of 

Nantes with four PhD students) and four industrial companies (EcoTechnilin, Kaïros, Howa Tramico, 

Depestele), with the aim to study fundamental and applied research levels, the mechanical, chemical 

and morphological properties of raw flax fibres and the coupling between flax and polymer resins to 

produce prototypes of final products for various applications (automotive, advertising and sailing). 

Being one of the four theses, the one herein presented is principally focused on the study of raw flax 

fibres and plants, with particular attention to the micro-mechanic and ultrastructure of flax fibres, not 

only for engineering and industrial purposes but also to study the effects of the ageing process in fibres 

naturally aged from artefacts of the cultural heritage field. 

 

Chapter I is an overview that put in relationship the life cycle of flax plants and the structure and 

mechanical properties of flax fibres, presented in Section 1, with the history of the cultivation and use 

of this plant for fibres extraction from the past to the present day, described in Section 2. Sections 3 and 

4 summarize the main degradation mechanisms of flax fibres explored in cultural heritage and 

engineering fields and the most important techniques used to investigate this type of cellulosic material. 

Section 5 concludes with some points on future perspectives, and some of them will be treated in this 

PhD manuscript.  

GENERAL INTRODUCTION  
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Chapter II briefly describes the three main techniques used to study flax fibres at micro and nano-

scale level in this thesis: atomic force microscopy in PeakForce mode (AFM PF-QNM), second-

harmonic generation imaging microscopy (SHG) and deep-UV imaging/microspectroscopy. Other 

techniques are occasionally used, and some parameters adapted case by case will be described in the 

respective sections of each chapter.  

Chapter III explores some critical points of the flax fibres ultrastructure that are still debated in the 

literature and considered essential because they actively play a role in the fibres mechanical properties 

and plant fibre composites damage and ageing. These three points are i) the layer called middle lamella 

between fibres (Section 1), with a comparison of its mechanical properties from several plant species, 

ii) the microfibril angle that cellulose microfibrils form with respect to the fibre axis (Section 2) and, 

iii) the kink-bands defects all along the fibres axis (Section 3). Their study is mainly performed at nano-

scale and micro-scale levels. 

Chapter IV focuses on investigating ageing and degradation mechanisms of different artefacts: i) a 

piece of mortuary linen fabric from Egypt dated 2140–1976 BC (Section 1) and ii) four Italian paintings 

on canvas dated between the seventeenth and eighteenth century (Section 2). Furthermore, a modern 

flax/polylactic acid (PLA) biocomposite left in homemade compost for four weeks has been explored 

(Section 3).  

Chapter V links the past with the present day because ancient populations have been forced to adapt 

their cultivation methods. Some ancient populations have totally abandoned or almost completely 

replaced the use of flax fibres materials in favour of other materials to face drought environmental 

conditions, which is an adverse condition for flax crops. However, nowadays, this topic is relevant 

because the current flax fibres production is limited to a restricted area in Europe, mainly located in the 

north-west of France and mainly Normandy, that will probably face severe climate change and the 

increase of drought events in the coming decades. This chapter explores the effects of the drought 

conditions on flax plants and flax fibres at morphological, biochemical and mechanical levels.  

Conclusions and perspectives summarize the results and discuss the questions still open at the end 

of this three-year research project, which paves the way for future works both in engineering and cultural 

heritage domains.  

 

The chapters in this thesis have been already published in several international journals or are still 

under review in a peer-review process. The overview presented in Chapter I has been submitted to 

Industrial Crops and Products journal in a review format and is still under peer-review process [1]. 

Chapter II is composed of several “material&methods” chapters from published and not yet published 

articles related to this work [2–5] to describe the basic principles of the techniques used. Chapter III is 

composed of three original articles already published and available online [2–4]; Chapter IV is 

composed of three original articles, two accepted [5,6] and one under the final review process [7]. 

Chapter V is an original article in the first step of the per-review process [8].  
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Textiles are important inventions in human history, and the use of plant fibres, such as flax and hemp, 

have been used to produce not only clothes but also sails in sailing ships, flags, carpets or canvases, 

which are considered cultural heritage. Several of the first houses built by ancient civilisations were 

made with clay and straw in the form of mud bricks, which can be considered as the first biocomposite 

material in building construction. The use of mud bricks persists even today in several African countries 

as well as in India. Currently, there is renewed interest in the know-how and technologies of plant fibre 

composites for use in the material construction, automotive, sport and design industries as ecological, 

sustainable and cost-effective alternatives to common synthetic materials. This discovery and 

rediscovery of cellulosic fibres exhibits continuity in terms of technological progress. Consequently, an 

active exchange can be established between the engineering and cultural heritage to resolve problems in 

both domains and supplement the missing information, such as that of the evolution of degradation 

mechanisms. 

Linum usitatissimum L., which is the scientific name of the common flax plant, is derived from the 

Latin word “usitatus”, which means “commonly used” [1]. The Latin name of this plant highlights the 

importance of this plant throughout the history of civilisation. Flax is one of the oldest domesticated 

plants [2] because its oil and fibres can be exploited, and it has been fundamental in both ancient and 

modern times to create clothes and objects. Despite the continuity of its plantation and application from 

the ancient era to the contemporary era, the cultivation and fibre extraction methods have been 

improved, and the plant morphology has evolved. Currently, textile flax is mainly cultivated in Western 

Europe; however, for thousands of years, this plant has been cultivated from the Mediterranean region 

to India, as well as in the Fertile Crescent area. The habitat of this plant varies from moderately cold to 

moderately warm regions [3], which is an adaptive advantage contributing to its widespread use. 

Through human selection, flax plants have been optimised to obtain two main types of flax, the 

former suitable to produce linseed oil and the latter for fibres. In this context, several morphological 

characteristics of this plant have been modified. For example, the types of flax used to prepare fibres are 

taller with smaller capsules and fewer branches than those used to extract linseed oil [3]. 

Every year, new varieties of flax are commercialised, and the fibre yield and behaviour of each variety, 

as related to biotic (fungi, insects) or abiotic (wind, drought) stresses, are evaluated on an average of 

one to four years [4,5]. Therefore, this plant undergoes substantial changes annually, which accentuates 

the difference between the linseed and fibre producing varieties and between the ancient and modern 

varieties. 

1. Introduction: flax plants and flax fibres
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To understand the evolution of this plant and its fibres in terms of morphology, cultivation and 

extraction methods, as well as the geographical areas involved and current application in different fields, 

the historical aspects must be considered. 

Archaeological artefacts and historical objects can highlight the origin and use of flax and its fibres 

and explain the evolution of human interest in this plant, the reasons for the survival of the artefacts 

made from this organic material for several millennia and the type of techniques that can be used to 

study ancient and modern objects to compare them, describe their structure and quantify their quality. 

Considering these aspects, this review summarises the history of the use, cultivation and extraction of 

flax, compares these aspects in the present and past contexts, highlights the ageing mechanisms that can 

change the initial structure, morphology and chemistry of flax fibres and clarifies the characterisation 

techniques available at present to study these features. 

 

 Similarly to other vascular plants, flax stems have different histological tissues, as shown in Figure 

I-1a, which illustrates both young and mature steps. In this figure, it is possible to identify 1) the 

epidermis and cuticle, 2) cortical parenchyma, 3) sclerenchyma fibres, 4) phloem, 5) vascular cambium, 

6) xylem and 7) pith.  

 

1.1.1 Tissues and their roles: an overview of the flax stem   

Each tissue in the plant has a specific role, and the corresponding chemical composition is adapted 

according to this function. Xylem and phloem are vascular tissues. Xylem conducts water and raw sap 

and also contributes to the mechanical support of the stem [6]. Thus, the high lignin content of this tissue 

can help ensure the rigidity of the structure and hydrophobicity of the cells [7,8]. The phloem tissue has 

two types of cells: certain cells transport food resources such as the elaborated sap, while the primary 

sclerenchyma phloem fibres, which are flexible, support the structure of the stem. Flax fibres are 

grouped in 30–40 units and radially distributed in the whole stem. The chemical distribution examined 

through microspectroscopic techniques indicates that cellulose is more abundant in bast fibres than in 

the rest of the stem, while the content of lignin is lower but still detectable [9,10]. Moreover, the lignin 

present in fibres is mainly a G condensed epitope. In contrast, the lignin in the xylem is mainly a less 

condensed GS epitope [11]. 

The flax stem is composed of a vascular cambium (Figure I-1a) responsible for the secondary growth 

of the stem and which generates new xylem and phloem tissues. The cortical parenchyma, also called 

cortex or bark parenchyma, is richer in chlorophyll than xylem and bast fibres [12], and, for this reason, 

it is easily distinguishable from fibres and epidermis. 

1.1 Stem organisation and plant growth 
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Figure I-1a) Schema of a young flax stem at approximately 400 °C GDD and mature stem at 1000 °C GDD (© Erica 
Melelli); b) photo of two flax plants pulled out at 400 °C and 1000 °C GDD in the real scale; c) plant growth over 
time with flowering and browning of the capsules. 

 

The epidermis and cuticle, which are the external layers, are abundant in wax and phenolic groups, 

as they provide mechanical support and protect the innermost tissues of the stem from abiotic and biotic 

stress that may occur during plant growth [13]. Consequently, when the plant is injured, lignification 

occurs in the tissues involved [14] as lignin is a complex mixture of polyphenols and generally more 

difficult to metabolise by microorganisms than carbohydrates [15]. 

The epidermis is rich in polygalacturonates, which are components of pectins, the molecules 

responsible for plant elongation and porosity regulation. As a plant matures, pectins become less 

methylated and form more cross-links with Ca2+; these cross-links reduce the sensitivity to the 

polygalacturonase enzyme responsible for the degradation of cortical tissue during retting [16]. The pith, 

xylem, phloem [6] and epidermis of flax stems are commonly referred to as woody tissues. During fibre 

extraction, these parts of the stems are sacrificed and reduced in shives. 

Evolution of the ultrastructure, parietal composition and mechanical properties of flax fibres over time : when history meets science Alessia Melelli 2021



CHAPTER I. Literature Review 

16 

During plant growth, the biochemistry of the different tissues of the flax plant changes, and thus, it 

is important to consider the maturity of the stem to determine when the flax crop should be harvested 

and fibres must be extracted. 

 

1.1.2 Flax: a fast-growing plant 

Flax plants go through different steps of growth before becoming mature, and the cumulative 

growing degree day (GDD) value can be calculated to identify flowering, capsule browning and 

complete plant maturation. The GDD can be calculated as reported in Eq.I-1: 

              GDD= (
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
) − 𝑇𝑏         (Eq.I-1) 

The maximum temperature is added to the minimum value and divided by two to determine the mean 

value, and the temperature base (Tb), which is the minimum temperature at which a specific plant can 

grow, is subtracted [17,18]. Tb for flax plants is 5 °C. The first emergence after sowing occurs at 

approximately 50 °C growing degree days, flowering starts at 550 °C, followed by the growth of 

capsules, which are initially green, at approximately 650–700 °C. The capsules become brown at plant 

maturity (Figures I-1b, c) [19,20]. Flax plants reach fibre maturity between 850 °C and 1000 °C GDD, 

while the seeds are considered mature at 1000–1100 °C [20]. Thus, it can be estimated that flax maturity 

can be achieved at approximately 110 d after sowing in Europe [21].   

During the growth of flax plants, it is possible to recognise the “snap point” as a transition point 

between the rigid stem stage, in which the fibres reach maximum elongation, and the thickening process, 

which occurs at the top of the stems. The top of the stem is thus flexible because fibres are still involved 

in the elongation process and have not yet been lignified [22,23]. In general, the height of a flax plant 

may range from 80 to 150 cm at maturity (Figures I-1b, c), and this value also depends on the variety 

[4,21].  The root system is also of significance. The roots of flax cannot reach deep soils and therefore 

exploit the nutrients present in the first 70 cm of soil. Consequently, flax and linseed plants are sensitive 

to drought stress [24,25].  

 

1.2.1  General information on flax fibres 

Flax fibres are single unit cells that originate from the phloem region of the flax plant and, like jute 

and hemp, are among the commonly used bast fibres [26].  

Cells are the fundamental units of living organisms. In the context of technical fibres, the cell wall is 

of interest because it is responsible for the rigid structure of a plant and contributes to its mechanical 

1.2 Fibre organisation and properties 
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properties [27], allowing the use of the fibres as raw materials with suitable properties, for example, as 

composite material reinforcement. 

The diameter of flax fibres generally ranges from 8 to 25 μm [28], and its value changes throughout 

the cell [29]. The mean diameter can vary with several factors, such as the stage of maturity [30], variety, 

year and retting degree [31]. The diameter can vary depending on the fibre position in the stem. Fibres 

in the basal region have a larger diameter (approximately 25.2 ± 10.00 µm) than those on the top near 

the snap point (diameter of 11.4 ± 3.4 µm) [32].   

Although the length changes across varieties, the fibre length is usually between 5 and 80 mm [33,32] 

with an average value of approximately 20–30 mm. Ageeva et al. demonstrated that fibres with the 

smallest length lie in the basal part of the stem, and the longest fibres are present at the top of the stem 

[34].  

 

1.2.2  Hierarchical structure and ultrastructure of the fibre 

Flax fibres, like all cellulosic fibres, have a hierarchical structure composed of several layers (Figure 

I-2a). In engineering science, conventionally, the flax cell wall is divided into the primary layer (P), 

which is the outer layer and is approximately 0.2 µm thick [28], and the secondary layer, which is             

5–15 μm thick [35]. Moreover, the secondary wall is divided into three sublayers labelled S1, S2 and S3, 

specified for the first time by Roelofsen in 1951, who analysed flax, hemp and ramie fibres under a 

microscope in a polarised light environment after swelling in cuprammonium [36].  

Botanically, flax is a type of plant with gelatinous cell walls and well-defined characteristics. The 

difference between lignified fibres (type S, with common distinction among S1, S2 and S3) and gelatinous 

fibres (type G) has been described by [37], and the characteristics of the G layer can be summarised as 

follows [38,39]: i) the lignin and xylan content of the layer is extremely low or nearly zero, ii) the layer 

is rich in water, and cellulose is its main component, iii) in contrast to the S layers, the cellulose 

microfibrils in the G layer have a small microfibril angle and are nearly parallel to the fibre axis. A 

recent model by Gorshkova et al. [39], from which Figure I-2a is inspired and partially readapted, 

indicated the presence of a flax structure with a secondary wall composed of cellulose ~ 40%, lignin 

~30%, xylan ~25% and the inner layer, also known as the tertiary layer [39,40], and identified as the G 

layer, with a cellulose content of up to 85% and the presence of rhamnogalacturonan-I (approximately 

5–7%) with short galactan chains if the layer is mature and long chains if the layer is newly deposited 

[39].  

During plant growth, two mechanisms occur in flax fibre cells: intrusive growth and thickening of 

the cell wall layers. In the intrusive growth phenomenon, the elongation of certain flax fibres occurs 

faster than that of the surrounding fibres, and these fibres can penetrate adjacent fibres [23,34], forcing 

the growing fibre to push the other cells to find adequate space until the elongation process is complete.
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Figure I-2a) Schema of flax fibre ultrastructure and chemical composition, inspired and partially readapted from 
[39,41] and data from [19]; b) formation of the cell wall layers, inspired by [30], and the progressive filling and 
thickening with the Gn layer transformed to G; c) transversal section of a flax fibre bundle, in which the middle 
lamella is highlighted in yellow. A schema representing the cell corner (CC) between three fibres (F) is shown, 
along the compound middle lamella (CML) composed of the primary wall (P) and middle lamella between two 
adjacent fibres; d) bundle of two fibres (F1 and F2) with a visible kink-band and outermost primary cell wall layer. 

 

In the thickening process, the inner cell wall is divided into a mature layer, designated G, with Gn 

indicating the newly deposited layer (See Figures I-2a, b). During the development of the plant fibre, 

G and Gn coexist. Initially, only the Gn layer constitutes the cell wall, together with the S layer and the 

primary wall. However, with the maturity of the fibre, the Gn layer is subjected to a gradual thickening 

process that starts from the outer side and moves to the inner side of the cell, and this layer transforms 

to the G layer [30,42,43]. During this growing process, the lumen diameter is progressively reduced, in 

certain cases, almost replaced by the cell wall. As long as the fibre is alive, the lumen is filled with 

cytoplasm, which disappears upon cell death, leaving the lumen empty [44,45]. 

The different cell wall layers also have different chemistry [19,39], which also depends on the 

maturity of the fibre, as indicated by His et al. through immunogold localisation [46]. Since it is difficult 

to clarify the biochemical composition for each cell wall layer separately due to their reduced thickness, 

in the literature, a global percentage is usually defined as the total contribution of all the layers [47,26]. 

Table I-1 lists certain percentages reported in the literature. In addition to biochemistry, a key 

characteristic of the cell wall ultrastructure is the microfibril angle (MFA).
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Table I-1 Literature review of the biochemical global composition of the considered bundles of fibres. 

 
Cellulose 

(%) 

Hemicellulose 

(%) 

Lignin 

(%) 
Reference 

Linum usitatissimum L. 

(Flax) 
60–85 14.0–20.6 1–3 [48–50] 

Cannabis sativa (Hemp) 55–90 12 2–5 [51–54] 

Corchorus capsularis 

(Jute) 
58.0–71.5 13.6–24.0 11.8–16         [55,56] 

 

Cell wall layers are composed of several cellulose chains known as microfibrils, the size of which is 

of the order of a few nanometres [57], and assemblies of several microfibrils, realised through 

hemicellulose, pectin and variable amounts of lignin [58], form bundles known as macrofibrils. Each 

cell wall layer has microfibrils with different orientations against the fibre axis. This angle that cellulose 

microfibrils form with the fibre axis is known as the microfibril angle (MFA), illustrated in Figure I-

2a.  

In general, the primary wall is represented by a random orientation of the microfibrils [59–61]; 

however, certain recent studies indicated that mature flax fibres reorient the microfibrils inside the 

primary cell wall due to cell elongation [62,63]. 

The secondary wall has a complex structure and transition zones in which the microfibril angle 

gradually changes have been observed [32,64]. The S1 layer has a crisscrossed pattern of cellulose 

microfibrils [65,66]; however, for the secondary wall, a MFA between 5° and 10° for dry flax fibres has 

been reported in the literature associated with engineering [67,68] and botany [39]. In engineering, the 

S layer is considered the thickest main layer, and thus it should coincide with the G layer, as in the 

models reported by [26,32]. In botany, the microfibril angle of the G layer is close to 0° and almost 

parallel to the fibre axis, which is one of the main characteristics of gelatinous fibres that allow them to 

be distinguished from other S-fibres [23,37,39]. 

 

1.2.3  Middle lamella: the adhesive between fibres 

Several tens of flax fibres are grouped in bundles in the phloem region of the stem. These fibres are 

glued through another layer, known as the middle lamella (Figure I-2c), which is mainly composed of 

pectic polysaccharides (58%), lignin (38%), and a small amount of protein (approximately 4%) [69,70]. 

Moreover, it is possible to distinguish the tricellular junction or cell corner (CCML), which links three 

or four fibres, and the compound middle lamella (CML), which aggregates the middle lamellae and 

primary cell wall, thereby forming a composite system of both layers (Figure I-2c).   
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The middle lamella has often been considered the weakest layer, in which fractures can start to 

propagate when flax fibres are used in biocomposite materials and mechanically tested [71,72]. 

Nevertheless, certain researchers reported that fractures occur more often between the S1 layer and G 

layer or between the S1 layer and the primary wall than in the middle lamella [11,69]. 

 

1.2.4 Kink-bands: defects along the fibres that influence the mechanical 

properties of modern and historical objects     

An important characteristic of certain plant fibres, such as hemp and flax, is the local deformation of 

the cell wall along the axis. The associated defects are known as kink-bands, have a precise geometry 

(Figure I-2d) and often involve several fibres of the single bundle. These defects can be attributed to 

the environmental conditions during the growth of the plant and the fibre extraction process [73]. Hughes 

et al. demonstrated that hemp fibres carefully extracted from green stems have fewer kink-bands than 

the common fibres extracted in an automated extraction line [73]. 

The geometry of kink-bands is different from that of the remaining fibre, and according to Thygesen 

and Gierlinger’s work on Cannabis sativa (hemp), kink-bands have a less ordered microfibril network 

and higher microfibril angles [74]. Through FIB-SEM tomographic reconstruction, another team 

observed cavities in the kink-bands in flax fibres [75]. The abovementioned aspects are likely why kink-

bands are the weakest points of plant fibres from a chemical viewpoint, although they are the preferred 

points at which enzymatic hydrolysis can be initiated [76]. The density of these regions considerably 

influences the mechanical properties of fibres and composite materials [77–80] and has been known to 

limit the fibre strength in historical textiles and artworks [81,82]. The nature and structure of these 

defects along the fibres must be extensively investigated to confirm these observations. 

 

1.2.5  Small and strong: the mechanical properties of flax fibres  

Despite the presence of kink-bands, flax fibres exhibit remarkable mechanical properties, which have 

been deeply investigated [33,83]. Table I-2 presents a comparison of the mechanical properties of flax 

fibres reported in the literature and those of other natural and synthetic fibres. The G layer is the main 

layer responsible for the mechanical behaviour of cellulosic fibres, especially in the longitudinal 

direction [43]. According to the existing studies, a small microfibril angle, small lumen and small fibre 

diameter lead to a high Young’s modulus and superior performance [67,84]. For instance, although 

cotton has a high cellulose content (82–98%), its MFA ranges from 20° to 30° [26,68], and thus, the 

Young’s modulus and tensile strength are low; in contrast, the strain at break (in %) is high due to the 

increase in its MFA when subjected to tensile stress. Therefore, in ancient times, flax was used to prepare 

not only clothes but also sails that could resist the wind stress. 
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Table I-2 Typical mechanical properties of E-glass compared to flax, hemp and cotton. Mean values modified from 
[26,85–88].    

Fibre Density 

(g/cm3) 

Strain at 

break (%) 

Tensile 

strength 

(MPa) 

Stiffness/Young's 

modulus (GPa) 

Moisture 

sorption (%) 

E-glass 2.6 2.5–3 2000–3400 70–81 / 

Flax 1.4–1.5 1.3–3.6 595–1500 45–60 8–12 

Hemp 1.4–1.5 0.8–3.3 285–900 25–40 6–12 

Cotton 1.5–1.6 3.0–10 287–800 5.5–13 8–25 

 

Several studies have demonstrated that the variety [5,67] and growing conditions of the plant [89] 

and the fibre extraction process [90] can affect the fibre performance. In recent years, mechanical 

properties have been recorded at the cell level. For flax, the indentation modulus lies between 15 and  

24 GPa for a mature G layer and between 9 and 15.9 GPa for a newly deposited Gn layer [30,43]; these 

values also depend on the fibre position in the stem. When the flax plant is young, the thickness and 

local indentation moduli of flax fibres drastically change and increase from the bottom near the roots to 

the top near the snap point. However, the local indentation moduli and thickness become uniform when 

the plant reaches maturity [30]. Once the stem is cut and undergoes retting, the indentation modulus of 

flax fibres increases with the increase in the retting degree, defined in terms of days of retting [65]. 
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The interest in and use of flax plants for oil or fibres have been prevalent for several millennia. The 

domestication of flax has influenced the plant structure and properties as well as the area of cultivation 

and production. In this section, the history of flax cultivated for fibres and the evolution of the extraction 

methods are summarised from the origin of the use of flax through the contemporary era. 

 

The first evidence of the use of Linum usitatissimum is dated between 9,000 and 8,000 BC in the 

Near East, with other instances of flax seeds observed in Turkey and Syria [91]. Only later did the use 

of these seeds spread in Egypt [92–94]. However, in 2009, Kvavadze et al. published an article on 

several flax fibres discovered in Dzudzuana Cave, Georgia, dated to Upper Palaeolithic period (30,000 

years before present) through the radiocarbon dating of soil deposits [95]. The fibres were coloured, 

which suggests the beginning of a manufacturing process. This discovery can backdate the use of flax 

other than as a food source; however, the identification of these bast fibres is highly debated. The entire 

scientific community is not in consensus regarding the attribution to flax fibres, and this aspect must 

thus be further investigated [96].  

Although the use of flax is evident through archaeological findings, plant domestication likely 

occurred later in civilisations such as Mesopotamia and Egypt. These civilisations grew both 

domesticated and wild flax (or pale flax) as crops, as shown in Figure I-3, which illustrates the natural 

distribution of pale flax in addition to the approximate areas of dated archaeological findings. 

The history of the domestication and cultivation of this plant is not clear, and genetic diversity seems 

to suggest that independent episodes of domestication likely occurred in different geographical areas 

from Asia to the Mediterranean regions because of the vast geographical range of pale flax [92,97]. 

Before 1975, a hypothesis was presented regarding the relationship between Linum usitatissimum, which 

is domesticated flax, and Linum bienne as its wild progenitor, and van Zeist et Bakker-Heeres suggested 

that the first cultivations of flax were performed in dry soils as the natural habitat of Linum bienne [2].  

Diederichsen et Hammer compared the characteristics of the first progenitor pale flax                                 

(L. angustifolium Huds.) and cultivated flax L. usitatissimum [97]. Morphological evaluations were 

performed through direct observation of the plants cultivated and analysed for three years with different 

accession geographic origins. 

2. Flax through the Millennia in Europe and the 
Middle East 

2.1 Evolution of the flax variety and geographical localisation 
in Europe and the Middle East  
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Figure I-3 Map with the natural distribution of wild (pale) flax (in green) and the origin of the use of flax and its 
spread in Europe along with the first fabrics dated to the early Neolithic. The distribution of pale flax (green) has 
been obtained from [97–99]. The centres of archaeological findings have been adapted from [100–102]. 

 

The following aspects were considered: the length and width of petals, size of seeds, colour and shape 

of the flower, the height of plants and number of days until emergence from the soil or flowering. The 

authors concluded that most of the considered aspects for the two flax species were distinguishable, 

which highlighted the influence of the domestication of the plant on its morphology [97]. 

Muravenko et al. extracted the DNA of L. angustifolium (Huds.), L. bienne and L. usitatissimum, and 

performed evaluations considering the genetic polymorphism and the comparison of the chromosome 

C-banding and molecular markers [103]. The authors clarified the relationship between the three species, 

which are often confused and considered subspecies of one another: a dendrogram, as illustrated in 

Figure I-4, indicated that L. angustifolium (Huds.) was similar to the ancient cultivated flax, and                   

L. bienne was considered a subspecies of L. usitatissimum [103]. Two years after this publication, 

another team of researchers used DNA extraction, PCR amplification and sequencing to analyse the 

cultivated and pale flax [92]. The authors suggested that a single pale flax plant (L. angustifolium) was 

likely domesticated and was the only progenitor of the cultivated flax. In Europe, the domestication of 

flax fibres is dated to the Neolithic period with the Linearbandkeramik Culture (5500-4500 BC) ([104], 
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quoted in [100]). According to the map presented by Karg et al., simplified and readapted in               

Figure I-3, in contrast to that in the Middle East, only the domesticated plant was cultivated in southern 

and western Europe [100]. 

 

 

Figure I-4 Dendrogram from [103]. L. angustifoleum appeared as the progenitor of both L. bienne and L. 
usitatissimum. 

 

The use of cultivated flax increased rapidly and spread across Europe, and traces were observed in 

Switzerland [105] and Greece [106] during the Neolithic period.  

Herbig et Maier measured the size of several flax seeds and evaluated capsules and shives from 

different archaeological sites located around Lake Constance and Upper Swabia. The authors 

hypothesise that different varieties of flax were used for linseed and fibres [107]. The variety of flax 

linked to the Pfyn culture was mainly used in 4,000–3,800 BC, and despite the presence of shives and 

linen found in the archaeological sites, the larger number of capsules and seeds and larger seeds suggests 

that this flax variety was principally used to produce oil. Seeds with a drastically reduced size were 

observed along with a higher quantity of shives and threshing traces only in a later period, during the 

middle and latest phases of the Late Neolithic (3,400–2,500 BC). This finding supported the hypothesis 

that a new variety of flax, linked with the Horogen culture and likely introduced from the Balkans, was 

cultivated for fibre extraction [107]. Even in the present era, the size of capsules and seeds, as well as 

their number in the tillers, are important characteristics that allow flax to be distinguished from the 

linseed varieties [3]. The work performed by Herbig et Maier presented one of the earliest pieces of 

evidence of the use of different flax varieties for different purposes. 

The extensive use of flax began with Egyptians during the dynastic period, in which flax fibres were 

widely used for cloth and sail production and in funerary rites. The production of these objects required 

considerable effort to produce linen, and Egypt emerged as the “land of linen”. The 1st dynasty                 

(3,000 BC) corresponded to the first attempts at mummification, which was initially performed only for 

pharaohs and then successively extended to the remaining population [108]. This practice persisted 

across all subsequent dynasties and for a certain period even beyond the conquering of Egypt by the 

Romans and its annexure into the Roman Empire. The case of the mummy of Grottarossa discovered in 

Rome and dated between 150 and 200 A.D. must be mentioned; an embalmed young girl was found to 
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be treated with ancient knowledge of Egyptian mummification, and bandages of linen were identified 

[109]. 

In ancient Mesopotamia and other areas of the Near East, considered the cradle of flax cultivation, 

the use of flax crops gradually disappeared as this plant required highly fertile soils to grow, and, 

consequently, aggressive expansion policies, or due to a long period of drought, which occurred in the 

last part of the Middle Bronze Age and the first part of the Late Bronze Age [110,111]. In Mesopotamia, 

in the 4th–3rd millennium, flax fibres were replaced with wool fibres [110], while drought during the 

Bronze Ages seemed to have favoured a change of crops towards drought-tolerant plants [111]. 

Due to the flourishing trade between populations located in the Mediterranean regions, historians 

find it challenging to determine whether Romans or Phoenicians first introduced the use of linen in 

Europe; however, it is generally agreed that the expansion of the Roman Empire promoted the use of 

this plant for fibre extraction throughout northern Europe. In northern Europe, flax was primarily used 

to produce oil, and the most ancient remains of linen seem to suggest that they were originally imported 

from the Germans or Romans (Hald, 1950 as cited in [112] and Bender Jørgensen, 1986 as cited in 

[113]). In Denmark, there is evidence of linen fabric dated to 800 BC, and in Sweden, the first textile 

production is dated to approximately 200–300 AD [112–114]. 

In the 1st century BC, Pliny the Elder wrote the Naturalis Historia and dedicated a part of his opera 

to flax (Liber XIX), highlighting the importance of this plant in the production of sails that allowed 

commerce and contacts between populations around the Mediterranean Sea. Despite the flax cultivations 

in Europe, Egypt maintained primacy for centuries in the production and exportation of flax with the 

most advanced technology and expertise. Egyptian linen was cheaper and more abundant than other 

types of linen produced in the same period in Italy or by the Gallic population located in southwestern 

France (Carduci); however, Pliny the Elder also reported that the quality of this flax was inferior to that 

of the linen produced in Europe (NH 19, 13–14). This difference may have occurred because Egyptians 

sowed flax during the winter season, while to the north of the Mediterranean regions, flax was cultivated 

during spring [115], which likely facilitated the development of diversity in summer and winter varieties. 

Musselman reported that although flax was known to be used for both oil and fibres in the Bible, it was 

only associated with linen [116], which suggests the importance of these plant fibres in antiquity. 

Between the 9th and 10th centuries, in Zeeland and Flanders linen was generally preferred to wool 

for clothes because wool, although more easily produced, was considered too coarse, and Flanders 

became an important linen manufacturing centre [117]. As reported by Dixon in his opera dated 1854, 

at the end of the 13th century, Beatrice de Gaule introduced the coutil fabric in both northwestern France 

(Brittany, Main, Angers) and Flanders, where flax grew naturally [118]. During the Middle Ages, the 

fustian fabric, a mix of linen and cotton that probably originated from Egypt and was successively 

produced in Italy and Spain, emerged as an important entity throughout Europe, especially during the 

14th century [119]. This fabric was manufactured also in Britain, Germany and Switzerland because 
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European spinners could not produce cotton yarns that were strong enough to be used in the warp 

direction [119,120]. 

Additionally, during the 14th century, flax fibres were largely used to prepare cloths, sails, bags and 

fishing equipment; however, at the end of this century, a new use appeared in Europe as painting support 

not only for banners but also for pictures mounted on frames. The use of canvases for paintings began 

during the Late Middle Age, and Cennini mentioned the preparation of canvas supports in his treatise   

Il Libro dell’Arte (Chapter CLXII), written between the end of the 14th century and the beginning of 

the 15th century. One of the most ancient paintings on canvas surviving to this day is “The Madonna of 

Humility” by Lippo di Dalmasio, dated 1390 ca. and displayed at the National Gallery. However, the 

use of canvases especially coupled with the oil technique, mostly linseed oil, was popularised only 

during the Renaissance, with Italy being the main centre. The “Sistine Madonna” of Raffaello, dated 

1513–1514, is an example of oil on canvas. 

In the 15th and 16th centuries, other important centres of flax and linen production emerged in 

northern Europe, Britain and the Hanseatic area [121] as well as in Rus lands [122]. 

With the Renaissance, the main cultural centre was displaced in Italy, and although the linen fabric was 

widely used and modest families had numerous luxurious linens and tablecloths, as reported in [123], 

flax was mainly produced in central Europe. In the 16th century, Poland, Bohemia and Moravia became 

important areas of linen manufacture [124], while Brittany, one of the main centres of flax cultivation, 

established major imports of flax seeds from Zeeland and Baltic countries [125]. 

In approximately 1670, the Huguenots from France, Protestants who moved in large numbers to 

England and Ireland as well as Switzerland, Holland and Germany as religious refugees, introduced 

knowledge in England regarding textile production, as indicated by Louis Crommelin, a French 

Huguenot expert in linen manufacture, in the documents cited in [126,127]. During the 17th century in 

France, flax cultivations reached 300,000 ha, over double the area of cultivation in 2021 (140,000 ha) 

[128]. Baltic countries specialised in flaxseed production and supplied the product to the remaining 

European countries [125,128]. Between 1660 and 1700 in England, considerable quantities of flax and 

hemp were imported from Norway, Denmark and the Baltic, while linen and textile yarns were 

principally imported from Germany, Holland, Flanders and France [129].  

In the Encyclopédie dated 1751–1765, Diderot and D’Alembert reported the presence of three 

varieties of flax in the market: cold, medium and warm [130]. Although the warm variety grew faster 

during the first phases of plant growth, at maturity, the plant was lower in height than the other two 

varieties and produced numerous branches with seeds; therefore, the yield of the flax fibres was low. In 

contrast, the ‘cold’ flax grew slower but was stronger and more resistant to cold environments. At 

maturity, the flax plant of this variety produced fewer branches and capsules and was taller than the 

other varieties; therefore, fibre extraction was optimal [130]. The highest quality of seeds of the ‘cold’ 

flax variety came from Riga, but as this variety of flax plants produced a small number of seeds at 
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maturity, so farmers in France were obliged to buy the seeds from Riga once every three or four years 

[130]. 

In the second half of the 19th century, Holland and Belgium specialised in the luxury market with 

high-quality flax fibres, while Russia became the leader of the common quality of flax fibres for all uses 

with a monopoly in the West European market [131]. 

At the beginning of the 20th century, several main centres of linen manufacturing were located in 

Ireland, Scotland, France, Belgium, Germany and Bohemia [131]. Moreover, Ollerenshaw reported that 

with the Russian Revolution, Russian and Baltic flax production almost disappeared and re-emerged 

only after 1920, while the German occupation of northern Europe during the First World War affected 

the flax production in Belgium and France [131]. In both World Wars, the production of flax was of 

primary importance to supply the army; further details can be found in Ollerenshaw’s paper, as 

previously cited. In the Second World War, flax was widely used to build aeroplanes, parachutes and 

other military supplies [132], and sustained production was observed. Kozłowski et al. reported that 

Egypt doubled its cultivation to support the flax demand of the United Kingdom [132]. 

It must be highlighted that in Asia, India was one of the origins and/or diversification centres of flax, 

and production spread in the remaining continent between 5000–0 BC. In America and Australia, flax 

was introduced only with colonisation. The French exported flax cultivations and knowledge in Quebec 

approximately 400 y ago, and the English exported it in Australia less than 150 y ago [99]. 

 

Following the previous section, the history of flax cultivation is supplemented by a brief description 

of sawing practices and details of the extraction methods adopted by different populations across the 

centuries in Europe and the Middle East. 

Today, as in the past, several steps must be implemented to obtain long fibres from flax. Once flax 

plants are sown and reach maturity, they are pulled out. To extract the fibres, a retting stage is 

implemented in which stems are laid on the soil and subjected to the action of rain, sun and 

microorganisms (dew retting) for several weeks or immersed in water (water retting) for several days. 

The two retting modes have the common objective of degrading the pectic middle lamellae in the bast 

fibre bundles to facilitate their extraction. After the retting step, the woody part of the stem is 

mechanically broken (breaking), and the woody part of the stem and fibres are separated (scutching). 

Finally, the fibres are combed to remove the residual middle lamellae and separate the fibres (hackling 

or combing); see Section 2.3 of this Chapter.  

Starting from ancient Mesopotamia, flax was considered one of the most important plants and, as 

illustrated in the Warka vase (dated to c. 3200–3000 BC), it was often associated with dates as a symbol 

of fertility [133] because of its needs for rich soils and high moisture, which required irrigation. 

2.2 Ancient cultivation and extraction methods 
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Apparently, in ancient Mesopotamia, only small plots of lands were dedicated to flax as a winter crop 

[110,134]. However, Miller et al. [133] reported that, in ancient texts, flax was associated with concepts 

of both “field” and “garden”, while other important plants, for example, barley, were cultivated only in 

crop fields. Flax was associated with the goddess Inanna [133], and in general, weaving work was a 

prerogative of women, especially slaves and prisoners of war, as reported in [110] and its relative 

comments. In contrast, sowing and stem preparation, as well as fibre extraction, involved both women 

and men. 

In the 4th–3rd millennium, Mesopotamians used both dew and water retting, and the textiles were 

left under the sun to bleach fibres [110]. Moreover, the textiles were treated with certain plants that grow 

in the Middle East, such as Salsola kali and S. soda, Salicornia europaea and other glassworts and 

saltworts used to produce soda ash [116,135], as well as mineral clays such as Fuller’s earth [135]. 

In ancient Egypt, flax was cultivated in mid-November after the seasonal flood of the Nile River in 

August–September [110,136]. In the beginning, only water from floods and rainfall was used in 

cultivations without any human intervention. However, due to the scarce rainfall that did not promote 

crop growth and the vital Nile flood, which decided the state of abundance or famine for the whole 

population [137], a system of basins (probably starting from the Middle Kingdom) was built to channel 

the water from the Nile inundation into crops [138]. 

The water was allowed to enter the basins for almost one month to saturate the soil, which also 

promoted the deposition of fertile clays and silts, and then allowed to flow out [138]. Sowing occurred 

after this operation, and both Linum bienne and usitatissimum were sown [139]. At maturity, the stems 

were pulled out (not cut), grouped in bundles, and dried under the sun. Then the capsules were removed. 

As in Mesopotamia, stems were retained in flowing water between 10 and 14 d (water-retted) to 

eliminate pectin, and subsequently, the stems were successively broken with wooden mallets using 

stones as a work surface and a wooden knife to eliminate the rest of the bark [115,139]. Unfortunately, 

these work steps are not illustrated in ancient tombs or mentioned in texts, and no tools have been found 

in archaeological sites because of the high degradability of cellulosic objects [115,139]. 

In contrast, in the Egyptian Tombs of Dagi (Middle Kingdom TT103, details shown in Figure I-5) 

and Thutnefer (New Kingdom, TT104), the scutching process was illustrated: flax stems were passed 

through two sticks, and a wooden fan (or knife) was used as an alternative [139]. 

 

 

Figure I-5 Details of wall painting from Tombs of Dagi (TT103), where two women are shown to scutch flax stems 
(from the left) and probably splice flax into threads (right). Illustration from [139]. 
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Finally, the hackling step was implemented. In certain cases, this step was optional, especially when 

the thread was spliced rather than spun [115]. In general, an indicator of spliced thread is if two or more 

threads, which are composed of twisted fibres, are plied. If the thread is spun, the yarn is generally used 

alone [140]. Ancient Egyptian threads were prepared through S-direction twisting and plying, and a wet 

rotation technique was used [139,141]. 

In terms of the use of flax in ancient Egypt, flax threshing and shives were used in mud brick 

construction, and a mix of silt, clay, sand, straw and water was used to create blocks as building materials 

[142,143]. Linen was employed in cloths and tunics, such as the fabric investigated in [144] to prepare 

sails [145,146] and as bandages in the embalming process of dead bodies. As reported by Vogeslang-

Eastwood, clothes were mended or retransformed and reused in other ways if they were excessively 

worn and torn [139], and because linen production was particularly laborious, the same principle was 

likely also applied to other objects made of linen, as in the case of the linen shroud of a mummy that 

may have been previously used as a sail [147]. 

Another important use was in cartonnage, a multi-layered painted support made of different layers, 

with the first layer made of linen, as shown in [148], followed by plaster and paint. The first condoms 

were likely made of linen in ancient Egypt [149], but the attribution of that function to small pieces of 

ancient linen fabric is still controversial.  

As the use of flax spread from Europe through Egypt, the processing methods of flax were similar. 

In Upper Swabia and Lake Constance, during the Late Neolithic, the Horogen culture cultivated flax 

plants for fibres and oil [107]. Similar to Egypt and Mesopotamia, flax plants were pulled out and not 

cut, allowing the use of the entire length of the stem to extract fibres as long as possible. No traces of 

epidermis, cortex or phloem were found at the surface of the fibres, and Maier et Schlichtherle 

hypothesised that this could be attributed to the use of the retting process before the extraction of the 

fibre [150]. The same authors also observed that certain archaeological remains of the stems were 

flattened and broken at different points, suggesting the use of a breaking tool to beat them [150]. The 

combs for hackling and spindles found in the same sites indicate the use of a reasonably advanced 

method to produce linen. As reported by Maier et Schlichtherle and other authors cited in their paper, 

objects such as fabrics and fishing nets were preserved at the Constance Lake site. 

In Italy, during the pre-Roman period and successively during the Republic, flax was mainly exported 

from Egypt, although Spain and Gaul exported a certain amount as well. Although a small amount of 

flax was also cultivated and processed in Italy, the greatest quantity was produced in the Roman colonies 

and used not only for clothes but also as war material to prepare tents and sail clothes [151]. The climate 

in Italy can be divided according to the country shape: northern Italy has a climate similar to central 

Europe, and South Italy has an arid Mediterranean climate. In ancient times, in the northern half of the 

country, sowing was performed during spring, while in the southern half, sowing more closely followed 

Egyptian practices and was performed in autumn with abundant rainfall [151]. Additionally, as 
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Margarita Gleba reported, not all the soils in Italy were suitable for the cultivation of flax, and because 

linen production required more work than wool fibres, it was economically disadvantageous to produce 

it [151]. Furthermore, flax cultivation depletes the soil of resources, and thus, crop rotation was 

performed [152]. At present, due to the implementation of dew-retting and the release of organic matter 

during this stage, an opposite trend is observed and the soil is enriched. 

Similar to Egyptians, Romans used combs to remove capsules and wooden clubs to break stems after 

the dew or water retting process. To bleach the fibres, Margarita Gleba reported the exploitation of sun 

exposure, as in ancient Mesopotamia and Egypt, as well as the use of a sulfuric treatment [151] and it is 

known in the literature that also urine was used for this purpose [153]. 

Several spindles of different shapes were found in northern Italy [154], and in contrast to Egypt, in 

Europe, linen threads were mostly produced with a Z-twist [140] as noted in the Etruscan textile 

examined by Carroll [141]. Moreover, the fabric mainly appeared in-plane waves [151]. 

Tools similar to those used by the Romans to extract fibres were found in northern Europe. Because 

the use of flax fibres spread with the Romans, expectedly, at least initially, similar tools, such as clubs 

to beat the stems (Figures I-6a) and knives for scutching or combs for heckling (Figures I-6b), were 

adopted. An example pertains to the possible reconstruction and use of wooden clubs, as shown in 

Figure I-6a found in Sweden and dated to the Roman Iron Age (Item 447267. SHM 23159: K12, 

Historiska Museet), likely used to break flax stems.  

Between the period of the Roman Empire and the Middle Age, several instruments and methods to 

extract fibres were improved. For example, in the Middle Age, Vikings likely used breakers mounted 

on a stand with serrated teeth, such as that illustrated in Figure I-6a with missing legs [112]. 

Surprisingly, not even the symbols linked with this plant changed through populations, and in Sweden 

and Norway and the Norse religion, as reported by Viklund, flax was associated with femininity and 

goddesses and used in magical rituals linked with fertility and funerary rites [114]. 

Two miniatured manuscripts created in Belgium, one dated 1515 (Book of hours - Da Costa hours 

MS M.399 fol. 12v [155]) and the other dated 1525–1530 ca. (Book of hours MS M.1175 Fol. 014r 

[156]), currently available at the Pierpont Morgan Library, show two men surrounded by a circle of flax 

stems, breaking fibres with a manual tool (a schematic reproduction of the Book of hours dated 1515 is 

presented in Figure I-6c). In both miniatures, a woman scutches the broken flax stems placed in a 

wooden column by hitting them with a wooden tool. This action was reported to be performed during 

November, and therefore, in the manuscript of Bruges MS M.1175, the miniature of the fibre extraction 

process has been associated with a second miniature with the sagitta zodiac sign. However, another 

miniatured manuscript from France, Livre d'heures (L’Escalopier 22), dated 1555 and created for King 

Henri II, shows two women working on flax fibre extraction: the first woman is using a wooden breaking 

tool mounted on a stand to break the stems, while the other woman is scutching the fibres with a wooden 

knife, and the flax fibres are placed on a circular support (Figure I-6d). Apart from this difference, the 

extraction method did not seem to change across centuries. 
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Figure I-6 a) Left: reconstruction of the use of wooden clubs in Sweden to beat the flax stems on a plane surface 
(rock or wood). The club is schematised from the archaeological tool displayed at the Historiska Museet, original 
photo © Gabriel Hildebrand and right: another shape of a wooden club inspired from [112,157], and a schema of 
the breaking tool mounted on a stand found in Norway and reported in [112]; b) from the left: schema of a 
wooden knife found in Gloucestershire and dated to the middle Bronze Age (original photo © Cotswold 
Archaeology), and reconstruction of a heckle dated between 850–1000 AD found in Shetland, Scotland (Item X. 
HSA 318 © National Museums Scotland); c) schematic representation of the Miniature of the Book of Hours, 1515, 
Belgium (original photo © The Morgan Library & Museum, New York). On the left, a woman scutches a bundle of 
flax fibres with a wooden tool and a wooden column (highlighted in red) while two men beat the stems with 
breaking tools; d) Detail of the “Livre d'heures” L’Escalopier, hours in Latin with calendar, parchment of 16th 
century, f. 12 Ms LES 22 A, reproduced with the kind permission of © Bibliothèques d'Amiens Métropole and IRHT-
CNRS. 

In L’Encyclopédie, Diderot and D’Alembert indicate that in France, at the end of the 18th century, 

flax flowering occurred in June [130]. Next, plants were pulled out based on the maturity and quality of 

the fibres that the farmers wished to obtain. The stems were left to dry in the field for 24 h on soil and 

successively grouped in bundles. The bundles were placed on the ground, in an upright position, leaning 

against one another to form an inverted V-shape chain of stems to enhance the airflow. The authors also 

reported that a shorter chain corresponded to better airflow. Dried stems were successively placed in the 

granary, and once the seeds were dry, capsules were removed by beating the stems. For the retting 

process, three months were optimal: March, May and September. The retting process was performed in 

flowing water in which stems were left for approximately 8 d and turned every day at the same hour of 

the day. The retting step was judged to be optimal by extracting three or four stems, pulling them and 

observing if the woody part was easily separated from the fibres. Retted stems were arranged on the 

ground to dry and bleached under the sun for eight days (the stems were turned after four days). Once 

the stems were dry, they were broken using a breaking tool mounted on a stand. A wooden knife with a 

dull wooden blade was used to eliminate the remaining straw, and finally, the flax fibres were combed 

[130]. Diderot described another interesting method: flax was placed in a pot with boiling sea water, 

lime and ash in alternate layers, and the mixture was boiled for 10 h, with the addition of sea water when 

necessary. This method was used to prepare flax fibres to make them similar to cotton, and at the end of 

the process, flax fibres were ready for carding [130]. 
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William Hincks performed a series of twelve lithography on linen manufacturing in Ireland for King 

George III of Great Britain, dated 1783. The author represented the process of flax fibre extraction. In 

plate II (Figure I-7a) two women harvest the flax crop in the background, while two other women 

eliminate the capsules. The man in the foreground places the stems in water. Plate III (Figure I-7b) 

illustrates the successive step when stems are extracted from the water by the man in the foreground. In 

the background, a woman and two men dry the retted stems near a fire and break them using breaking 

tools such as the tools illustrated in the miniatures shown in Figure I-6c, d and described by Diderot 

[130]. 

In plate IV, ‘The Common Method of Beetling, Scutching and Hackling the Flax’ (Figure I-7c), a 

family is involved in the extraction process using the same tools as those in the Renaissance: a young 

girl uses a wooden mallet with stems placed in a plane support, two other women scutch the fibres on 

wooden columns using wooden knives and a man combs the fibres through several combs mounted on 

a wooden stand. In plate V, ‘Interior view of a Scutch Mill’  (Figure I-7d), the first automated industrial 

process is illustrated. 

Thus, even after the Industrial Revolution, manual extraction occurred. The French painter Jean-

François Millet in ‘Breaking Flax’ dated 1850–51 represented a woman performing the breaking process 

with the breaking tool mounted on a stand, although the tool appeared to be made of a larger and less 

elaborate wood piece. Fedot Vasilevich Sychkov, in the painting “Flax Combers” (Мяльщицы льна) 

dated 1905, represented a group of women breaking fibres using the same type of breaking tool. 

 

Figure I-7 Four lithography by William Hincks, dated 1783 a) Plate II “View near Hillsborough in the country of 
Downe, representing pulling the flax when grown, hooking or putting it up to dry, rippling or saving the seed, and 
bogging or burying it in water”. Two women remove the capsules and prepare the stems for water retting, while 
a man places bundles of stems in water. In the background, two other women harvest the flax plants, group them 
in bundles and place them upright with respect to the ground to dry before the retting step. b) Plate III “View in 
the county of Louth representing taking the flax out of the bog”. After the retting process, the retted stems are 
moved near a campfire to be dried. In the background, two men are breaking the dried stems; c) Plate IV “The 
common method of beetling, scutching and hackling the flax”. A family is represented as breaking the stems and 
combining the fibres; d) Plate V “A perspective view of a scutch mill, with the method of breaking the flax” 
represents one of the earliest industrial scutching mills. The four images are reproduced with the kind permission 
of the © British Library Board. 
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The global supply of fibres has grown yearly since the end of the 20th century; however, the demand 

for synthetic fibres, such as polyester fibres, has decisively attracted more importance than natural fibres. 

In 2020, approximately 120 million tons of natural and synthetic fibres were produced, and while cotton 

production was about 26 million tons, flax reached slightly over 1 million tons [158]. 

The global supply at present demands a high quantity of production, which requires several hectares 

of fertile, cultivable soil and industries that can process flax and sell fabrics and semi-finished products. 

According to the FAOSTAT data (www.fao.org), flax production is mainly concentrated in Europe, 

which alone produced 97.1% of the flax supply between 2018 and 2019, followed by Asia (1.6%), Africa 

(0.8%) and America (0.6%). The world leader is France, while Belgium, Belarus and Russia together 

cover approximately 16.5%, and the production of all the other countries completes the rest of the global 

supply (Table I-3).  

 

Table I-3 Summary of the world production of flax fibres and tows in year 2019. Data from FAOSTAT [159]. 

Country Tonnes 

France 850,350 

Belgium 94,000 

Belarus 46,245 

Russian Federation 38,464 

China, mainland 17,550 

Netherlands 13,360 

United Kingdom  8,199 

Egypt 7,525 

Chile 3,201 

Argentina 2,695 

Total 1,081,589 

 

Several flax varieties are currently in use, which can be divided into winter and summer types. The 

choice of the variety is extremely important, with each variety having a specific fibre yield, sensitivity 

to pests (oïdium and fusarium), sensitivity to drought stress and wind (lodging) and precocity to maturity 

[160]. Research teams of several laboratories have focused on genetic modifications. For example, 

Musialak et al. improved the retting process by reducing the pectin content; their transgenic flax was 

not only easier to ret but also more resistant to fusarium [161], but the cultivation of GMOs is prohibited 

or strictly limited in Europe, making it an exception for research purposes [162]. 

2.3 Actual sowing, production, and extraction methods and 
application  
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After selecting the variety, seeds are sown with an optimal density between 1600 and 1800 plants/m2. 

This density avoids competition between plants, which reduces the stem diameter and degrades the fibre 

mechanical properties and makes the plants sensitive to lodging [163]. For example, no remedy exists 

for Fusarium oxysporum f. sp. lini, which is a fungus that can penetrate from the soil to the root system 

and spread into vascular tissues (xylem and phloem) [164]. The plant dies slowly, and the fungus can 

affect the nearby plants. In other words, not only the mechanical properties of flax fibres are 

compromised, but fungal attacks can also cause the loss of the entire crop. Even if the diseased plants 

are eliminated, Fusarium can survive in the soil for several years. Therefore, crop rotation for flax is 

necessary, and a six-years intervalbetween two flax cultivations is suggested [165]. 

 At maturity, the plants are pulled out, and dew-retted between 3 and 6 weeks: the stems are left on 

the ground and turned to ensure retting in the whole stem. In Europe, the practice of water retting has 

been forbidden since the beginning of the 20th century due to induced water eutrophication, which refers 

to the pollution of freshwater with a high content of organic material generated by the action of anaerobic 

bacteria [166]; nevertheless, this practice is currently in use in other countries. Moreover, the cost of 

this process is high because fibres should be well dried once the retting is completed [167]. Thus, dew 

retting is preferred, although this process is highly dependent on the weather, and warm temperatures 

and rainfall with alternating sunny days are essential to ensure satisfactory retting [160,168]. Several 

countries that produce linen, such as England or Scandinavia, cannot implement dew retting because of 

their unfavourable climate [169]; climate change has also been responsible for inhomogeneous retting, 

especially in Western Europe in recent years. 

If the environment is excessively dry, the dew retting process is slow, and inferior retting yields stems 

with fibres that are difficult to extract; moreover, the well-glued cortical parenchyma is difficult to 

eliminate from the fibre surface, resulting in a low fibre quality (extremely coarse) and degraded 

mechanical properties [170,171]. In this case, the fibre bundles appear gold-coloured. In contrast, when 

fibres are over-retted for more time than necessary or excessive rainfall occurs, the extracted fibres are 

weak [171] and appear black. In extreme cases, the cellulose can be excessively degraded and the fibre 

properties are inadequate to be used [172]. Thus, although the retting process is the fundamental step, it 

cannot be controlled and evaluated only by an expert. Five organoleptic criteria are selected, based on 

the senses of sight and touch, listed in Table I-4: nature of flax (unctuous or dry), colour, strength, 

fineness, and homogeneity of retting with presence/absence of woody parts. For each criterion, a value 

between 1 and 7 is assigned, where 7 represents the highest quality [173]. 

 To improve this step and render it more reproducible, enzyme retting has been studied; however, 

currently, this alternative is expensive [169,174] and cannot be applied at the industrial scale, although 

the resulting fibres exhibit enhanced mechanical properties. Additionally, the use of fungal cultures was 

examined for the retting process. Akin et al. reported that among Rhizomucor pusillus, Fusarium 

lateritium and Epicoccum nigrum isolated from dew-retted flax, R. pusillus exhibited the highest 
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performance because it did not attack the flax fibre cell walls and divide them from the remaining stem, 

in contrast to the other two fungi that led to over-retting [175]. 

 

Table I-4 Five organoleptic criteria to establish the flax fibre quality. Table readapted from [173]. 

Criteria Value assigned 

Nature / / 3 

dry fibres or 

diseased 

fibres 

4 

fatigued 

fibres 

5 

standard 

6 

unctuous 

7 

unctuous/ 

silvered 

Colour 1 

blue/black 

(over-

retted) 

2 

bright 

yellow 

(under-

retted) 

3 

diseased 

fibres (e.g., 

fusarium) 

4 

golden 

tonality 

5 

blue 

6 

bright 

blue 

7 

grey/silvered 

Strength 1 

non-

resistant 

2 

medium 

3 

satisfactory 

4 

highly 

resistant 

/ / / 

Fineness 1 

low 

2 

medium 

3 

satisfactory 

4 

highest 

fineness 

/ / / 

Homogeneity 

of retting 

(colour) 

1 

large 

defect in 

colour 

(notable 

presence 

of straw) 

2 

a slight 

defect in 

colour 

(relative 

presence 

of straw) 

3 

high 

homogeneity 

4 

highly 

homogeneous 

/ / / 

 

In addition to the possibility of damaging flax cell walls, certain fungi are also pathogens, such as R. 

pusillus [175]. Moreover, fungal spores are difficult to control and eliminate and can potentially grow 

even after the fibre extraction process. Another way to ret the stem is by chemical retting with reagents 

[176]; however, this process is also expensive and cannot be used on an industrial scale [174]. 

Once flax fibres are retted and well dried, they are processed in a scutching/heckling line similar to 

that described by Gregoire et al. and shown in Figure I-8a [177]. Industrial extraction lines are based 

on ancient extraction methods transformed at a large scale and automated. The whole line is divided into 

different modules, as illustrated in Figure I-8a: a breaking module made of several rollers that crash the 

stems, a scutching module with turbines that scrap the broken shives from the fibres and a hackling 

module with combs in the last part of the line. For further explanation of the flax fibre extraction process, 

readers can refer to the review by Manian et al. [41]. After their extraction, fibres can be transformed 

into woven or non-woven preforms. An advantage is that the same lines can be used for the extraction 

of other bast fibres, such as jute and hemp. 
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Figure I-8 a) Taproot extraction line with three modules, and a schematic representation of the steps involved in 
general industrial extraction lines: 1. breaking module, 2. scutching module and 3. combing module; b) 
biocomposite made of flax fibres for automotive (© Ecotechnilin) and c) biocomposites reinforced with flax fibres 
employed for applicators used in cosmetic showrooms (© Kaïros). 

 

After fibre extraction, several products are obtained: dust, shives and tow, short fibres and long fibres. 

Although technical fibres are the products with the highest quality and strength, the other subproducts 

are currently considered for use in the industry in the context of recycling [6]. At present, long flax fibres 

are mainly used in the manufacturing industry, household linen and design objects, although a new 

market of biocomposites and technical textiles has begun emerging. 

The definition of biocomposite is generally extended to the coupling between synthetic or mineral 

materials, which have a matrix function, and natural fibres, in this case flax fibres, used to enhance the 

mechanical properties of the matrix. 

Countries worldwide are attempting to modify the practices in the industrial economy to reduce waste 

and carbon impacts, which are mainly responsible for climate change. This effort also involves 

substituting synthetic materials with natural materials when possible, such as the biodegradable plastic 

bags used presently for food waste [178]. Consequently, biocomposites have attracted interest to 

promote widespread use in the future. 

In contrast to blocks for building construction, such as kaolin and earth reinforced with plant fibres, 

the progenitors of which are ancient mud bricks [179–182], biocomposites created from a mixture of 

polymer resins and plant fibres are materials developed in the contemporary era. These biocomposites 

are used for automotive and sporting goods such as bicycles but also for musical instruments and other 

objects used in daily life, such as those shown in Figures I-8b, c. Hybrid fabric with mixed carbon and 

plant fibres has been also developed [183]. Because such biocomposites are novel products, their 

mechanical properties, durability and life cycle are not well known and are being collaboratively 

examined in the academic and industrial domains. 
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Additionally, agricultural practices have been influenced by global warming and the consequent 

climate change. Flax is highly sensitive to drought, and almost all flax production is localised in France, 

especially in north-west of France. According to the recent ARVALIS data, in 2020, almost all regions 

of flax production had less than 125 mm of rainfall between April and July compared to the mean 

calculated from the same period (April–July) of the last 20 y [160]. In addition to drought, extreme 

weather events are uncertain, and in the future, the production of flax in France may be threatened.   

Evolution of the ultrastructure, parietal composition and mechanical properties of flax fibres over time : when history meets science Alessia Melelli 2021



CHAPTER I. Literature Review 
 

38 

 

Flax fibre is an organic material with a complex structure and is naturally sensitive to changes over 

time. Consequently, the natural ageing process can easily modify the chemical composition, and such 

fibres are more susceptible to biological attacks and structural damage compared to inorganic materials. 

In the context of artworks, this phenomenon can lead to problems for museums, restorers and 

conservation scientists focused on stabilising and preserving objects. Moreover, the engineering domain 

is interested in understanding the plant fibre ultrastructure responsible for their high performance and 

biochemical changes that occur after exposure to thermal treatments, humidity and artificial ageing 

processes, as well as the modifications due to coupling with materials of different natures. 

This section summarises the factors that can contribute to the morphological, structural and chemical 

changes of flax fibres. 

 

In conservation science, water and high temperatures are the basis for almost all damage mechanisms 

of materials, and they mostly contribute to the ageing process. In particular, at high relative humidity 

and temperatures, several other degradation processes, such as biodegradation and chemical reactions, 

may occur. 

A direct effect of high relative humidity is fibre swelling, caused by new bonds formed between 

water molecules with hydroxyl groups present in hemicelluloses and amorphous celluloses in cell walls 

[184–186] and carboxyl groups of pectins, especially in the middle lamella, that lead to mechanical and 

structural changes [185]. Garat et al. indicated that at RH <10%, this type of absorption is prevalent, 

while at higher RH, between 10% and 65%, water is absorbed by pores and lumen through capillarity, 

leading to the abundance of free water, which are water molecules that are not chemically bonded [185]. 

In the context of museums and art galleries, a low relative humidity, RH 5–40%, causes the materials 

to become dry and brittle [187–189] in addition to the structural deformation due to the loss of water 

molecules. The effect is accentuated if several materials of different natures are coupled, such as in oil 

paintings [190]. In contrast, a relative humidity higher than 60% promotes the development of 

microorganisms: the first moulds appear after three months at RH 70% and after a few days at RH 90% 

[189]. Furthermore, to eliminate the stress that repetitive humidity cycles can cause on the fibre 

structure, fluctuations of the relative humidity should be avoided in museums. 

3.  Degradation of flax fibres: problems in modern 
and ancient objects  

3.1 Two main factors of the flax fibre degradation process: 
water and temperature 
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In Italy, the UNI10829 presented by Ente Italiano di Normazione suggests that ancient clothes, 

tapestries, natural fibres, etc. should be preserved at RH 30–50% with daily fluctuations limited to 

approximately 6%. Easel paintings on canvas (oils, tempera, gouache) should be preserved at                     

RH 45–60% with fluctuations limited to approximately 6%, as cited in [191]. 

The effect of temperature is often associated with relative humidity because of its strong correlation. 

High temperatures can break the cellulose chain of plant fibres, which acquire a brown colour [192]. In 

museums, following UNI10829, ancient clothes, tapestries and other artworks made of natural fibres 

and easel paintings on canvas should be preserved at T 19–24 °C with daily fluctuations limited to 

approximately 1.5 °C [191]. In the context of higher temperatures, Gassan and Bledzki reported that at 

60 °C, amorphous cellulose forms hydrogen bonds. At 150 °C, recrystallisation occurs, and 

hemicelluloses are more sensitive to the degradation process than lignin or α-cellulose [193]. The 

authors also observed that until 170 °C, only a slight difference occurs in the tenacity and degree of 

polymerisation (DP). Above this limit, the degree of crystallinity increases, indicating recrystallisation 

after chain breakage. However, the tenacity and degree of polymerisation dramatically decrease [193]. 

This change in flax fibres due to extremely high temperatures was also recorded through nanoindentation 

and atomic force microscopy tests. At 190 °C, the indentation modulus was approximately 21 GPa, and 

at higher temperatures, the fibre stiffness was noted to be 16 and 14 GPa at 210 °C and 250 °C, 

respectively [194]. 

 

Biodegradation is the first of the indirect effects of water and temperature on natural cellulosic fibres 

and the reason why the hygrometry and temperatures must be meticulously controlled in museums. 

Warm temperatures and high humidity content are ideal conditions for the development of most 

microorganisms and parasites that can degrade plant fibres. However, other parameters, such as pH, the 

presence of oxygen, light and availability of nutrients, may favour the growth of certain microorganisms 

and inhibit others, according to their limits of tolerance. 

Two notable studies on jute fibres performed by Basu and Ghose [195,196] demonstrated that 

different fungi can lead to different types of degradation and have different spread methods. Considering 

the type of spread, the authors divided the fungal species into two categories: one group can penetrate 

into the lumen, whereas the other group cannot [196]. 

Nugari et al. presented detailed tables of certain bacteria and fungi most frequently isolated from 

cellulose artworks and air of museums [197], and other research teams summarised the methods of 

identification of fungi [198,199] and bacteria [199] isolated from dew-retting, water retting and standing 

retting flax fibres. 

3.2 Biodegradation, light and pollution: other degradation 
mechanisms linked with water and temperature  
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Table I-5, presents the fungi and bacteria found in common between the retted flax and isolated from 

artworks. Fungi are more largely represented.    

 

Table I-5 Fungi and bacteria in common between fresh retted flax stems and cultural heritage objects made of 
cellulosic fibres. Table adapted from [197–199]. 

FUNGI BACTERIA 

Alternaria solani Bacillus cereus 

Alternaria tenuissima Bacillus subtilis  

Aspergillus flavus Pseudomonas aeruginosa 

Aspergillus niger  

Botrytis cinerea  

Cladosporium cladosporioides  

Cladosporium herbarum  

Epicoccum nigrum  

Fusarium oxysporum  

Humicola grisea  

Trichoderma virens  

Verticillium nigrescens  

 

Water activity aw (or free water) is essential to the growth of microorganisms and is expressed as the 

ratio of the partial vapour pressure of water in equilibrium with a solution (pequ) to the water vapour 

pressure of pure water (p°). Therefore, aw= pequ/p°, with aw=1 for pure water [200–202]. For materials 

such as food and other surfaces, the equilibrium relative humidity (ERH) indicates the capacity of a 

material to absorb and desorb water molecules in air at given temperature and under a total pressure of 

1 atm. Therefore, ERH = (pequ/psat)T, p = 1 atm, where pequ is the partial pressure of water vapour in 

equilibrium, and psat is the saturation partial pressure of water [200]. 

In general, fungi need lower water activity (aw between 0.75–0.99) than bacteria (aw > 0.90) to grow, 

and a higher fungal activity is expected in air [15,201]. In contrast, if artefacts, objects or biocomposites 

are buried in soil or compost, bacterial activity is generally prevalent [15]. However, in burial contexts, 

fungi (especially soft rot fungi) and bacteria may coexist [15] by attacking the same cellulosic materials 

and fibre cells [203]. Figures I-9a, b show certain over-retted fibres attacked by bacteria visible on the 

surface of the fibre and fungi; the hyphae, in the case of flax fibres, are almost completely embedded in 

a biofilm. 
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Figure I-9 a) Bacterial and b) fungal colonisation on the surface of over-retted fibres and c) silverfish Ctenolepisma 
lineata (© Erica Melelli). Unpublished images. 

 

 In summary, fungi and bacteria may lead to mechanical and structural damage of the fibre through 

the formation of tunnels, erosion and fractures in the cell wall. Moreover, these organisms can lead to 

changes in the pH (generally to more acidic) due to substances secreted due to the metabolic activities 

and pigmented spots [192,204]. This change in acidity caused by enzymes can promote the acid 

hydrolysis of cellulosic fibres, which is one of the most destructive processes for textiles and paper. 

Insects may also damage linen fabric, although their action is less frequent than that of fungi and 

bacteria. Two of the most well-known insects that can infest linen are silverfish (Lepisma saccharina, 

Ctenolepisma longicudata and Ctenolepisma lineata), shown in Figure I-9c, and firebrats (Thermobia 

domestica) [205,206]. The action of these insects is generally limited to hole production because they 

feed on cellulose fibres; however, silverfish can also produce yellowing spots [205]. 

Other indirect impacts of water and temperatures are chemical reactions, especially due to air 

pollution, and, in the case of seawater and aerosols, salt deposition. Air pollution is a current problem 

that has gained increasing attention in society. SO2 and NOx, generated because of oxygen in air and 

water molecules in moisture, can produce sulfuric and nitric acids, respectively, which react with 

cellulose fibres in the acid hydrolysis process [192]. Moreover, the complexity of artworks can also 

promote these chemical reactions because of the several layers of different natures often coupled in the 

same object, for example, in the form of pigments. 

The presence of moisture, together with the constant contact of cellulosic fibres with metals, can 

cause another phenomenon known as mineralisation. Metal corrosion caused by the reaction of water 

with metal cations creates minerals within cellulose fibres and leads to a partial substitution of the 

organic material [207–209]. Although fibre mineralisation causes structural modification of cellulose 

fibres such as flax, which become stiffer and brittle, metal cations, such as copper cations, can contribute 

to the preservation of textiles due to their biocidal activity, which limits the development of 

microorganisms [207–209]. 

In terms of salt deposition, water can contain dissolved salts, of which the most common salt is 

sodium chloride as in seawater. Salty water can penetrate between the cellulosic fibres, and into their 

pores and their lumen. The subsequent evaporation of the aqueous medium deposits salt, which 
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crystallises and the formed crystals exert pressure, causing fractures in the cell walls and cavities 

between fibres [210]. This phenomenon requires alternate wetting and drying cycles, and salt, being 

hygroscopic, modifies the hygroscopic stability of the whole object, together with its structure, in a self-

perpetuating process. Wood degraded with salt is also known as “fuzzy” wood because of its appearance 

[210]. 

In general, the problem does not arise because these conditions do not allow the preservation of 

cultural artefacts made of bast fibres. For example, cotton immersed in sea water can degrade in three 

weeks [211]. Therefore, although salt growth is documented in stone [212] and wood [213] 

conservation, this phenomenon is not considered for bast fibres. Notably, this aspect is considered to be 

examined in the engineering field in the future because one of the applications of plant fibre-reinforced 

composites is the production of aquatic sports equipment such as surfboards [214] and sailing 

equipment. 

The last parameter is light. Together with water and temperature, light can promote the growth of 

microorganisms and cause heating damage. UV radiation is particularly dangerous, especially in the 

presence of water molecules, because it causes photo-oxidation of cellulosic fibres, which not only alters 

the original colour but also produces carboxylic acid and breaks the cellulose chains [192,215]. 

Furthermore, oxidised cellulose promotes hydrolysis [216]. Therefore, UNI10829:1999 established 

illumination limits similar to the temperature and humidity parameters. Textiles and tapestries can be 

exposed to a maximum luminance of 50 lux (luminous flux to square metre = lm/m2), with a maximum 

UV radiation of 75 µW/lm and a maximum annual light dose of 0.2 Mlx • h/y. Different values are 

indicated for paintings on canvases, which are less sensitive to light than pure textiles (E=150 lx, UV 

max=75, annual light dose LO=0.2) [191]. 
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Several techniques are currently being used to characterise plant fibres at different scales and are 

briefly introduced in this section, followed by the types of information that can be obtained using these 

techniques. 

The simplest characterisation method is optical microscopy using visible light. Compound and stereo 

microscopes, which are fast, inexpensive and available in every laboratory, are suitable to obtain a global 

view of the sample. Optical microscopy can be adopted to measure the average diameter of flax fibres 

and evaluate the presence/absence of kink-bands and defects along the fibres (Figure I-10a). In the case 

of fabrics, this technique can be used to evaluate the thread count and type of weaving, as indicated by 

Helmi et al. [217]. As shown in Figure I-10b, polarised light microscopy enables the identification of 

kink-bands from different bast fibres [96] and their quantification through image processing [218,219]. 

For further explanation of the investigation of kink-bands under polarised light, Thygesen and 

Hoffmeyer’s paper is suggested [218]. 

Scanning electron microscopy (SEM) is one of the most commonly used characterisation techniques. 

This approach is principally used to scan the fibre surface (Figure I-10c) and, in the case of artworks, 

it can provide information regarding the elemental composition of foreign materials if coupled with 

energy-dispersive X-ray spectroscopy (EDX) or wavelength-dispersive X-ray spectroscopy (WDX) 

systems (https://www.eesemi.com/edxwdx.htm for more details). SEM analysis can be used to clarify 

the fibre shape and kink-band shape, signs of ageing [82] and presence of foreign materials and 

biological attacks [220]. Richter reported that textile fibres can be washed in boiling water and ether at 

40–60 °C to extract dust and foreign materials before SEM analysis [220]; however, this step is not 

always possible and is not exempt from the risk of causing further damage to the fibres. Additionally, 

certain important pieces of information that can be obtained from foreign materials may be lost. 

Consequently, this step is rarely executed for ancient textiles and is not necessary when modern samples 

are considered. 

Furthermore, although transmission electron microscopy (TEM) analysis is important, it is not 

commonly adopted because of the difficult sample preparation process; the sample must be as thin as 

possible (less than 100–150 nm). In contrast to SEM, this technique highlights the cell wall layers in 

sample cross-sections and can be used to investigate the biodegradation of the cell wall in archaeological 

findings [15,221]. 

4. Characterisation techniques to study ancient and 
modern flax yarns  

4.1 Morphological analysis  
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Figure I-10 a) Elementary flax fibre under optical microscopy and diameter calculation b) elementary flax fibre 
under polarised light that highlights kink-bands in white and c) SEM microscopy of an elementary flax fibre with 
three visible kink-bands. 

 

FTIR and Raman spectroscopies are vibrational spectroscopic techniques that are extensively used 

to analyse bast fibres, and these approaches are well known in the cultural heritage field because of their 

non-destructive nature. Nevertheless, in the case of plant fibre analysis, FTIR spectroscopy is generally 

preferred because the recorded spectrum is not influenced by the presence of fluorescence emission; in 

contrast, in the case of Raman analysis, fluorescence can hide signals of interest from the sample 

structure. Therefore, Raman spectroscopic analysis of bast fibres is generally preferred using an 

excitation wavelength of 785 nm in the case of micro-Raman spectroscopy [222,223] or 1064 nm for 

FT-Raman spectroscopy [224] to reduce fluorescence. Another method to decrease fluorescence, which 

is extremely high in ancient textiles, is the photo-bleaching method, which involves irradiating the 

sample with a laser for long periods, for example, 30 min, before the acquisition [223]. 

Micro-Raman spectroscopy performed using an excitation wavelength of 532 nm and a 100x oil 

immersion objective can have a spatial resolution of approximately 240 nm [74]. Infrared spectroscopy 

can be performed at the microscale level through µ-FTIR/ATR, which is an IR spectrometer technique 

involving a germanium crystal that allows a contact area of 100 µm with the sample surface [225]. 

With excitation wavelengths in the visible radiation or NIR (for Raman spectroscopy) range and IR 

range (for FTIR spectroscopy), the abovementioned techniques allow to obtain information on the 

sample molecular structure through the inelastic scattering of photons in the case of Raman, or 

absorption of the incident radiation that activate particular molecular vibrational modes of molecules 

present in the sample, in the case of FTIR. For further information regarding the application of 

vibrational spectroscopic techniques to plant cells, Gierlinger’s work is suggested [226]. Vibrational 

spectroscopic analysis of bast fibres allows to recognize plant species [223,224,227] and study ageing 

4.2 Study of parietal composition  
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process [222,228], biodegradation [229,230] and evaluate presence or absence of foreign materials, such 

as pigments and binders. 

These two spectral techniques can also be used to calculate relative intensity ratios between peaks to 

evaluate the crystallinity index (XcFT-Raman/%= (I1481/ I1481+I1462) ×102 in the Schenzel method or I380/I1096 

in the Agarwal method, XcFTIR= I1372/I2900) [229,231,232] and lateral order index (LOIFTIR=I1430/I897) 

[233,234], which can reflect the state of preservation of cellulose chains in the fibres. 

13C cross polarisation magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS 

NMR) is another technique used to evaluate cellulosic objects. NMR uses nuclei, such as 1H or 13C, and 

maps their position in the molecules by applying an external magnetic field that induces the nucleus 

resonance. An advantage of solid-state NMR is the possibility of studying solid samples in their native 

form. A recent and exhaustive review of the solid-state NMR technique can be found in [235]. This 

technique provides complementary information to that obtained using vibrational spectroscopy, 

regarding the abundance or change in the molecular composition of the sample. For example, for 

cellulosic materials, 13C NMR CP-MAS analysis was performed to evaluate naturally aged and 

artificially oxidised cotton and linen fibres to simulate fibres in ancient paper [236]. A notable parameter 

that can be calculated using the 13C NMR CP-MAS technique is the crystalline to amorphous ratio of 

cellulose. The values are calculated using the integrated areas of crystalline C4c (δ ~87–93 ppm) and 

amorphous C4a (δ~80–85 ppm) cellulose, through the formula R=I(C4c)/I(C4a) [237,238]. Moreover, 

the cellulose Iα and Iβ allomorphs [239–241] can be evaluated, along with the effects of mechanisms such 

as hydrolysis [242]. 

Other complementary information regarding the fibre structure can be obtained by the calculation of 

the average lateral fibril dimension [242], which is an estimate of the ultrastructure of the cellulosic 

fibres and their microfibril network. NMR is micro-destructive, and at least 30 mg of sample is needed, 

which is a key limitation of this technique in the cultural heritage field [243]. Other techniques, such as 

gas chromatography/mass spectrometry (GC/MS) or pyrolysis–gas chromatography/mass spectrometry 

(Py-GC/MS) can be used to obtain information regarding fibre treatments [244,245] or pigments [246] 

present at the fibre surface; however, the use of these approaches is limited. In botany and engineering 

fields, gas chromatography is widely applied, for example to determine the polysaccharide composition, 

but notably, the minimum amount of sample required is 5 mg and its destructive [247,248]. 

The last technique presented here that can be used to obtain information regarding the state of 

preservation and ageing of cellulose fibres is the degree of polymerisation (DP) [249–251]. This 

technique quantifies the monomers present in the cellulose chains through viscosity or sedimentation-

diffusion measurements [252]; thus, the technique is destructive and requires a considerably high 

amount of sample, i.e. between 60 and 120 mg [250]. In the past, there was disagreement regarding the 

polymerisation degree calculated using nitrate or cuprammonium and the preference for sedimentation-

diffusion and viscosity. However, at present, protocols have been established through norms as the ISO 

5351:2010, UNI 8282: 1994 in Italy or DIN 54270 in Germany, according to which, copper (II) 
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ethylenediamine is used for sample dissolution and successive calculation of relative viscosity. As 

reported by Rossi, for raw cotton and linen, the degree of polymerisation is higher than 2000–2500 DPw, 

while for bleached fibres, the degree of polymerisation is higher than 1200–1300 DPw. In ancient 

paintings, values less than 500 DPw are considered critical and a sign that cellulose fibres have lost their 

strength [250]. An interesting example of this application can be found in [249]. 

Notably, in the engineering field, other destructive techniques, such as thermogravimetric analysis 

TGA and derivative thermogravimetry DTG, can provide indirect and approximate information 

regarding the chemical composition of cellulose fibres and enable the comparison of the quantity of 

water, cellulose components and non-cellulosic material between two samples [253]. Flax fibres, heated 

at a well-defined interval of 10 °C to high temperatures (600 °C) with constant monitoring of their 

weight, exhibit loss of water at 60 °C, and successive degradation of cellulose and hemicellulose at  

300 °C, followed by lignin and pectin degradation at 400 °C [253,254]. 

 

X-ray diffraction (XRD) is based on a collimated and monochromatic X-ray beam that hits the 

sample and interacts with electrons of the atoms in the sample. The X-rays are elastically scattered, and 

if the sample has a crystalline and well-ordered structure, the crystalline lattice generates a diffraction 

pattern due to the constructive and destructive interferences following Bragg’s law: 2dsinθ=nλ. XRD 

analysis, performed with synchrotron radiation (SR-XRD) [82,255], can be used to examine the 

crystallinity index of cellulose fibres [256], microfibril angle of cellulose microfibrils [257], 

mineralisation process [258] and presence of unknown fibres [259].  

XRD can provide data in two formats: representations of the 2D diffraction pattern, and one-

dimensional profiles extracted from these representations. Flax fibres yield the typical signal of cellulose 

I with reflections at 110, 11̅0 and 200 [255]. Based on these reflection peaks in the one-dimensional 

profile extracted from the pattern, three methods can be used to calculate the crystallinity index: i) using 

height ratios between the reflection peak at 200 and minimum reflection intensity between the 110 and 

200 reflection peaks, ii) deconvolution of the reflection peaks and iii) amorphous subtraction. For more 

details regarding these three methods, readers can refer to the review presented by Rogpipi et al. [260] 

or the paper written by Park et al. [261].  

Notably, the crystallinity index measured using the three methods differs, and both the deconvolution 

and subtraction methods yield results closer to the NMR than the height method [261]. To study plant 

fibres, small-angle (SAXS) and wide-angle (WAXS) X-ray scattering techniques are used, as indicated 

by [262], to obtain information regarding the fibre structure. De Caro et al. performed WAXS analyses 

to realise the ageing characterisation of historical linen threads [251]. In engineering and botany, the use 

4.3 Ultrastructural modifications 
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of SAXS and WAXS is of significance to study the microfibril angle of cellulose microfibrils of plant 

fibres [257,262] because a lower angle corresponds to a higher tensile strength and modulus [263]. 

Another less common technique to investigate the internal structure of plant fibres is focused ion 

beam-scanning electron microscopy (FIB-SEM), which can be used to implement tomography on 

single elementary fibres [75,264]. 

 

As mentioned previously, the degree of polymerisation is a key method in the evaluation of the 

strength of cellulose fibres in cultural heritage fields, especially in the case of tapestries and canvases 

that are subjected to mechanical stress due to frames and/or their own weight due to the effect of gravity. 

This method has been used to evaluate the mechanical properties of Dalí’s paintings by Oriola et al. In 

a set of several paintings, only one painting demonstrated DP <600 and was consequently considered at 

risk [265]. 

An interesting and innovative method to study the strain and structural modifications of tapestries in 

a generalised manner is digital imaging correlation (DIC). Khennouf et al. [266], Malesa et al. [267] 

and Malowany et al. [268] mounted a system of two cameras capable of recording images and correlated 

the deformations of canvases and tapestries with time and environmental conditions. 

Other mechanical tests are less commonly performed in the cultural heritage field but are widely 

used in the engineering domains. A commonly employed test is the tensile test on unitary fibres. 

Between 30 and 50 elementary fibres are extracted from bundles, and each fibre is glued to a plastic 

support or in a paper frame, which has a gauge length of 10 mm according to ASTM C1557 [269]. The 

frame is successively mounted on a tensile testing machine, and a load cell of 2 N is used, which stretches 

the unitary fibre until rupture, allowing one to calculate its modulus and strength based on its diameter 

[163]. A larger number of elementary fibres leads to more reliable statistics and lower error; however, 

even few elementary fibres can indicate the fibre condition. 

Tensile testing can also be performed for small pieces of fabric. Nechyporchuk et al. compared the 

mechanical behaviour of a fragment of an acrylic painting on canvas dated 15 y to a new modern canvas 

appositely prepared in the laboratory. The authors also considered the use of nanocellulose treatments 

to increase the canvas strength [270]. Recently, a combined method of digital imaging correlation 

and tensile testing has been applied to study historic tapestries made of silk [271]. 

Nanoindentation is a characterisation technique that can provide information regarding the 

mechanical properties of a sample at the nanoscale level. Notably, the use of this technique is increasing 

in the cultural heritage field [272], for example, the nanoindentation analysis performed by Salvant et 

al. on cross-sections of  “Portrait du Docteur Paul Gachet” and “La Salle de danse à Arles” of Vincent 

Van Gogh [273]. Additionally, Tiennot et al. investigated a cross-section from a canvas painting using 

4.4 Multiscale estimation of mechanical properties 
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nanoindentation, although the approach was different from that of Salvant et al., as the authors mapped 

the mechanical properties of each tested layer and they concluded that the natural ageing process induce 

a stiffening of the painted layers [274]. 

 

The most commonly used dating method is radiocarbon dating using 14C isotopes. Probably one of 

the most discussed and controversial works involving radiocarbon dating is that of the Turin shroud 

made from linen [275]. It was recently concluded that a new radiocarbon analysis should be performed 

again in the Turin shroud only after the development of a stricter protocol [276]. In the already cited 

work of De Caro et al., the use of a new dating method by WAXS was proposed with promising results 

[251].  

Bonizzoni et al. observed that more aged textile corresponded to a greater amount of fluorescence 

emission, and although the authors were cautious because they considered that fluorescence can also be 

generated from impurities, they used laser excited micro-fluorescence for dating and compared the 

results obtained using the µ-Raman spectra [222]. To elaborate µ-Raman spectra, the authors adopted 

the ratio between peaks I1121/I1196, which correspond to the vibrational modes of symmetric and anti-

symmetric stretching of C-O-C of 1,4-β-glycosidic bond of cellulose [277,278], and correlated the 

values obtained with the age of the textiles [222]. 

Another method for dating cellulosic materials is the chemical method implemented using enzymatic 

biosensors developed by Campanella et al. [279,280]. These biosensors can recognize methyl and 

carboxyl groups of cellulosic materials, the amount of which increase with ageing. Notably, the authors 

warned that this type of method depends on the artwork conservation conditions, and the same analysis 

performed on fibres extracted in different parts of a single painting may give different results [280]. 

 

New technologies are being constantly developed, allowing the investigation of materials already 

studied for centuries, such as plant fibres, with novel methodologies and combinations. 

Atomic force microscopy (AFM) is a cutting-edge technique, which is based on a tip mounted on a 

cantilever with a laser focused on the probe reflected in a photodiode. The technique can be used in 

several modes, and the most commonly used application is to investigate the topography of ancient 

materials at the nanoscale level [281]. AFM has also been used with a spherical probe functionalised 

with several consolidants, such as nanocellulose (CNF), before scanning the cotton fibres of an 

artificially aged canvas to test the adhesion between the treatments and cotton fibres [282]. 

4.5 Dating 

4.6 Innovative techniques  
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Another example pertains to Reynaud et al., who coupled the AFM probe with IR spectroscopy to 

investigate 5,000 y old, mineralised flax fibres. The authors simultaneously obtained morphological and 

chemical information and clarified the mineralisation phenomenon [209]. This particular system has 

already been tested on plant cell walls for botanical purposes [283]. 

In the engineering domain, another AFM mode known as the peak force quantitative mechanical 

property mapping (PF-QNM®) mode has been recently employed to scan cellulose fibres, as illustrated 

in Figure I-11a [30,43]. With a probe mounted on the cantilever, this technique allows to scan the 

sample surface and record force–distance curves that provide information on the mechanical properties 

of the sample at micro- and nanoscale levels. Further details are reported in Chapter II. This method 

can distinguish the mechanical properties of thermally treated fibres used as reinforcement in composites 

[194] and the effect of retting on the mechanical properties [65] or cells with different mechanical 

properties at different stages of growth [30]. Because this characterisation technique requires only a 

small amount of the sample (few millimetres of a yarn or few fibres) and can be used to investigate 

complex systems in which several materials are coupled, it seems promising and suitable to investigate 

samples from the cultural heritage field. 

The second technique that is largely unknown in the cultural heritage and engineering fields despite 

its potential is the second-harmonic generation imaging microscopy (SHG). Based on a femtosecond 

pulsed laser in the NIR region, the non-centrosymmetric molecules in the sample can generate a second-

harmonic response, a non-linear optic phenomenon, if they have a well-ordered structure. Cellulose 

microfibrils of plant fibres can generate SH, and several teams have already explored the ultrastructure 

of Valonia [284,285]. Furthermore, it is possible to clarify the effect of acid hydrolysis on cellulosic 

materials [286]. For further explanations and other applications of this technique, the book of Pavone 

and Campagnola is suggested [287]. Reynaud et al. applied SHG to archaeological flax fibres that have 

undergone mineralisation, as illustrated in Figure I-11b [209]. There are three advantages of using this 

technique: i) a single yarn or few fibres can be analysed, ii) the approach is a non-destructive method 

because an infrared excitation wavelength is used, and iii) the method can be used to scan a sample in 

depth (Z-stack), thereby providing information regarding the inner structure of a fibre, complementary 

to the SEM analysis. More details can be found in Chapter II. 

 Synchrotron radiation is a technique that is gaining increasing attention. FTIR vibrational 

spectroscopic analysis can be performed using synchrotron radiation to characterise ancient plant fibres. 

The work performed by Kavkler et al. on biodegraded historical textiles is a representative example: the 

authors compared conventional FTIR microspectroscopy and synchrotron FTIR microspectroscopy 

techniques [288]. 
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Figure I-11 a) Map of indentation moduli of flax fibres obtained by atomic force microscopy in PF-QNM to study 
the mechanical properties at the cell wall level in [30]. The mean indentation modulus is approximately 18 GPa; 
b) archaeological mineralised flax fibres investigated by second-harmonic generation microscopy from [209]. 
Cellulose macrofibrils from the internal fibre structure are highlighted. 

 

In addition, at Synchrotron SOLEIL, the Dichroism, Imaging and mass Spectrometry for Chemical 

and biOlogical systems (DISCO) beamline has been specialised in the use of deep-UV (DUV) 

fluorescence to characterise plant cell walls. The autofluorescence present in plants due to waxes, 

protein, lignin and phenolics can be exploited through multi-spectral fluorescence imaging to compare 

cross-sections of flax stems grown in normal conditions or under gravitropism [289] or to track the 

effects of enzymes in maize. Maps of spectra can also be recorded by scanning fluorescence 

microspectroscopy and used to compare the chemical composition in different cells of the stems [290] 

as well as historical artefacts, as in the investigation of the coating of ancient lutes [291]. 

Finally, tomography is a characterisation technique useful for understanding the internal structure of 

samples and virtually reconstructing such structures. Using X-rays, it is possible to obtain high-

resolution tomographic images. Single flax fibres [292,293] and bundles or fabric, such as mineralised 

archaeological textiles [294], have already been examined using this method, especially in the cultural 

heritage field. For details regarding the use of synchrotron radiation for plant investigation, the review 

written by Vijayan is suggested [295]. 
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This review describes the historical timeline and problems encountered in the cultural heritage and 

engineering fields when flax fibres are employed to create objects. 

Section 1 describes the composition and fibre structure of flax fibres and explains their desirable 

mechanical properties and limitations from the perspectives of cultural heritage applications. Notably, 

certain aspects, often interconnected, such as the microfibril angle, kink-bands or the mechanical 

properties of the middle lamella between fibres, are still not fully understood by the scientific 

community. The microfibril angle is one of the most important parameters that influence the mechanical 

properties of plant fibres; however, the real value for flax fibres is still debated. The MFA is generally 

accepted to be small (8°), even though the XRD and SAXS techniques usually used for its estimation 

involve certain physical limitations in calculating such small angles. Furthermore, knowledge regarding 

the internal structure of kink-bands, which are the weakest points of bast fibres and are directly 

correlated with the fibre extraction method, is limited. Therefore, a more extensive investigation should 

be performed to better comprehend why such bands are susceptible to breakage. The first part also 

briefly describes plant growth and all the steps from sowing until maturity. 

Section 2 of the review discusses the history of flax cultivation and processes from the past to the 

contemporary era. This section highlights how and why the centres of flax production changed over the 

centuries in Europe and the Middle East which, in certain cases have been caused by episodes of drought 

or due to the adaptability of soils. The challenges in agricultural practices, especially in the case of flax 

crops in France, encountered due to climate change and increasingly frequent periods of drought are of 

interest even today. This section also treats the evolution of flax varieties and the methods used to extract 

the fibres from the first flax domestication to the present day. Today it is known that the extraction 

method impacts on the mechanical properties of flax fibres, in particular for the generation of kink-

bands, so the study of ancient extraction methods can teach us something more about the fibre 

ultrastructure and its response to several mechanical stress made with various tools. Moreover, some 

uses of flax fibres have evolved, for example from sails used in antiquity to whole boats built today with 

flax/resin sandwich, and others are still the same, like the linen used in fashion.  

Section 3 summarises the main degradation process of flax fibres, which is caused by several factors, 

such as water and temperature, with a focus on artworks. These degradation processes, which have been 

well studied in the cultural heritage field to preserve historical objects, are the same as those that flax 

fibres undergo when they are employed in the engineering field. Thus, artworks that have survived for 

centuries can be examined to predict the ageing process in new industrial objects.    

Section 4 provides a brief overview of the main characterisation techniques used to investigate flax 

fibres and several cutting-edge techniques currently employed in engineering and botany fields, such as 

5.  Summary and Conclusions  
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AFM and SHG, that can also be used to investigate historical textiles. Thus, a new combination of 

techniques can provide novel insights regarding the ultrastructure and degradation process of cellulosic 

fibres. The findings are expected to be useful to evaluate their state of preservation and possible 

treatments. Future research should be focused on developing and adapting these techniques to the field 

of cultural heritage. 
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 This chapter reports a simplified explanation of the techniques used and the parameters chosen to 

analyse the samples and the sample preparation. In each dedicated section of each chapter, the 

parameters that should have to be adjusted according to the sample and the calibration of each analysis 

session are reported. Besides, other characterisation techniques, which were occasionally used to 

examine the samples thanks to the collaboration with other external laboratories, will be described in 

each dedicated section.  

 

 The atomic force microscopy (AFM) is part of a large family of techniques regrouped under the name 

of scanning probe microscopies (SPMs). They all have in common the use of a sharp probe mounted on 

a micrometric cantilever to scan the sample surface [1]. The Peak Force quantitative nanomechanical 

property mapping (PF-QNM) mode is of particular interest for the present study.  

 A laser beam is focused on the probe mounted on a cantilever. During the scan of the sample surface, 

the cantilever is deflected due to attractive and repulsive interactions created between the surface and 

the probe. Consequently, the change in the reflection of the laser is then recorded by a 4-quadrant 

photodetector to measure cantilever bending and torsion (Figures II-1a, b).  

 

 

Figure II-1 a) AFM instrument Nanoscope 8 (Bruker) and b) focus on the sample-cantilever system and laser path. 
A = laser, B = cantilever with a RTESPA 525 probe mounted, C = sample, D = mirror to focus the laser into the 
photodetector, E = photodetector. 

 

1. Introduction  

2. Atomic Force Microscopy in Peak Force mode 
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 In AFM analysis, the cantilever deflection due to tip-sample interactions can be converted into a 

force-distance curve when the tip indents the surface. In PF-QNM, the recording of force-distance curves 

is performed at a high rate (2 kHz) for a limited maximum load and, thus, a limited indentation depth 

(on the order of a nanometre in this case). This method is similar to the TappingMode™, where the time 

of contact between the sample and the probe is not continuous but limited so that probe wear is limited, 

maps can be obtained in a reduced time and a recorded force-distance curve at each pixel. 

 In complement to the topography, several mechanical parameters such as the adhesion and modulus 

can be extracted from the force-curve (Figure II-2 and Figures II-3a, b).    

 

 

Figure II-2 example of a force-distance curve and relative information extracted at different moments of tip-
sample interaction. Image inspired by [2].  

 

 

Figure II-3 topography (a) and indentation modulus (b) of an elementary flax fibre.  

 

Several different probe tips and cantilevers can be selected and mounted to adapt the AFM to the 

expected modulus of the sample to investigate. Each cantilever is characterised by a spring constant (k) 

and each tip by a radius (R) whose combination is adapted to the sample stiffness, i.e., the stiffness of 

the cantilever sample must be in the same order of magnitude as the contact stiffness between the tip 

and the sample surface. Three examples of different probes with the relative range of moduli that can be 

investigated are reported in Table II-1 [3].  
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Table II-1 comparison of three different probes provided by Bruker (CA, USA). Data from [3].    

Sample modulus 

expected 

Probe Spring constant 

(k) 

Tip radius  

(R) 

200<E<2000 MPa RTESPA-300 40 N/m 33 nm 

1 GPa <E<50 GPa RTESPA-525 200 N/m 33 nm 

10 GPa<E< 100 GPa Diamond probe (DNISP-HS) 450 N/m 40 nm 

 

In the case of the study of plant cell walls, the probe used is a RTESPA 525 probe (Bruker, CA, 

USA), which is a silicon tip and cantilever with a (first) natural frequency in bending of 525 kHz and a 

small tip radius (generally around 33 nm at the beginning, but always less than 100 nm during the 

measurements).  

The modulus from the plant cell walls can be extracted with several fitting contacts or indentation 

models. The tip apex, in this case, can be approximate as a sphere and the choice between the models to 

fit can be done thanks to the Tabor's parameter [4,5], which describes the ratio between the order of 

magnitude of the deformations of the sample surface, which is assumed in the normal direction and is 

related to the elastic modulus, and the spatial range of the interaction forces, i.e. adhesion forces, 

between the tip and the surface. 

In the case of plant cell wall layers, there is a solid-solid adhesion with the tip [6,7]. The indentation 

depth is limited to the first 2–3 nm of the sample surface for the applied load, which is much less than 

the tip radius considered, while the adhesion force is small (few tens of nano-Newton) compared to the 

applied load (that in the case of the protocol used here, it is set at a maximum load of 200 nN). Thus, 

because both sample and tip are stiff, in the order of several GPa or higher, the adhesion forces that play 

a role are predominantly weak capillary forces, resulting in a small value of Tabor's parameter and 

allowing the use of the Derjaguin-Muller-Toporov (DMT) model (i.e., Hertz model including the effect 

of adhesion without any change in the contact behaviour because the adhesion forces are limited to the 

external zones of contact between the tip and the surface) [4–6,8] to process the force–distance curves 

and extract the indentation or reduced modulus.  

The following equation (Eq.II-1) from [2] shows the relationship between the reduced modulus and 

Young’s modulus in the case of an isotropic sample:  

                            𝐸∗ = [
1−𝜈𝑠

2

𝐸𝑠
+

1−𝜈𝑡𝑖𝑝
2

𝐸𝑡𝑖𝑝
]

−1

                    (Eq.II-1) 

where E* is the reduced modulus, νs and Es are the Poisson’s ratio and Young’s modulus of the sample 

and νtip and Etip are the Poisson’s ratio and Young’s modulus of the tip. The contribution of the tip is 

assumed to be negligible because its modulus is higher than the sample one. In the case of anisotropic 

materials, such as most of the wood cell wall layers that are transverse isotropic with a misalignment 
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angle (i.e., MFA), it is not possible to obtain a Young’s modulus from the reduced, or indentation, 

modulus as this latter depends on several elastic constants (Young’s and shear moduli, Poisson’s ratios)  

[9–12]. Jäger et al. also concluded that the Poisson’s ratios have a negligible effect on the indentation 

modulus calculated for typical wood cell walls [11]. Therefore, the Poisson’s ratio was set to 0 in the 

AFM software to obtain the value of the indentation modulus. 

 It should be pointed out that the roughness of both sample and tip diminish the adhesion [4]. 

Furthermore, if the sample is highly rough and heterogeneous, the contact area between the sample and 

the tip, which ideally applies a load perpendicular to the sample surface, deviates from the ideal model 

and affecting the modulus calculated.  

 To calibrate the tip, it is necessary to calculate the cantilever's spring constant (k) first, and the Sader 

method is used thanks to the online application available in https://sadermethod.org/ [13].  

 Successively the deflection sensitivity is calculated using a highly stiff sample, such as sapphire, that 

cannot be indented/deformed by the tip. The maximum load is chosen, which in this case was set to 

200 nN as a trade-off to maximise the contact area and making the measurement stable enough to 

calculate the elastic modulus without damaging the cell walls or the tip. The tip radius is adjusted by 

using a standard sample with a well-known indentation modulus. The standard sample is dependent on 

the probe chosen and the sample to scan so that a standard sample with approximately the same range 

of moduli as those expected to be found in the real sample allows a better calibration.  

For the analysis presented in this thesis, the probes were calibrated using highly oriented pyrolytic 

graphite (HOPG) of 18 GPa distributed by Bruker, or an internal standard of aramid fibres K305 Kevlar 

21 Taffetas 305 g/m2 (Sicomin epoxy systems-France) embedded in epoxy resin (Agar low viscosity 

resin (LV); Agar Scientific, UK) and appositely prepared like the flax samples. This second standard 

sample, with indentation moduli of the same order as the flax fibres cell walls, was previously measured 

by nanoindentation (24.3 ± 2.0 GPa and 5.4 ± 0.16 GPa for the centre of aramid fibres and embedded 

resin, respectively), following the method in [12]. Once the calibration is completed it is possible to 

investigate the unknown sample.  

A Multimode 8 atomic force microscope (Bruker, Billerica, Massachusetts, USA) was equipped with 

an RTESPA-525 probe (Bruker probes, Billerica, Massachusetts USA) and used to perform the analyses 

presented in this work, with an oscillation frequency of 2 kHz and an acquisition angle of 90° with 

respect to the sample surface. The gain was set in automated mode. The peak force amplitude and the 

image resolution were adjusted based on the sample investigated, while the maximum fast scan velocity 

was constantly set at 8 μm/s. Nanoscope analysis (Bruker) and Gwyddion (http://gwyddion.net/, [14]) 

software were used, the former principally for data acquisition and the latter for data treatment. All the 

analyses have been performed in a room under a controlled atmosphere (T= 23 ± 2 °C; %RH= 50 ± 4%).  
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 Sample preparation  

Because the probe has a small radius, the technique is susceptible to the roughness of the sample.  

Therefore, the sample must be prepared to obtain a surface a flat as possible, at the nanometre scale, 

and, for this reason, it is generally embedded in resin, such as London Resin (LR)-white acrylic resin, 

Agar epoxy or other suitable resins, to minimise the sample deformation during its cutting. An 

interesting work compares the impact of different resins in the moduli obtained from wood cell walls 

[15].  

For the samples examined in this work, a low viscosity epoxy resin kit by Agar Scientific (UK) was 

chosen (Figure II-4a).  

Successively, the samples embedded are put in an oven at 60 °C overnight to ensure the correct 

polymerisation of the resin (Figure II-4b). Then, the surface of the resin block with the sample 

embedded is cut by an ultramicrotome equipped with diamond knives (Diatome Histo for trimming and 

Diatome Ultra AFM for final cutting) in thin sections of approximative 50 µm and at reduced speed 

(~1 mm/s) in order to have a roughness of the surface in the order of a few nanometres (Figure II-4c).  

 

 

Figure II-4 resin and sample preparation (a) polymerised blocks (b) and sample prepared with a mirror surface 

(c).  

 

Second-harmonic generation (SHG) is a coherent nonlinear optical phenomenon in which two 

photons, interacting with a nonlinear medium, are up-converted to a single photon with twice the 

incident frequency (2ω) as shown in Figure II-5 [16,17]. This effect is possible provided that the sample 

has non-centrosymmetric molecules that can be polarised and that they are in a well-ordered structure. 

One of the main advantages of this technique, which is suitable to characterise biological materials, is 

the use of low energy excitation range (700–1000 nm) that reduces damages and photobleaching of the 

sample [18]. 

The SH signal is dependent on the wavelength of the laser pulse and its frequency. The second-

harmonic generated has a wavelength equal to half of the wavelength chosen to excite the sample, and 

3. Second-harmonic generation imaging microscopy 
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the intensity is dependent on the pulse duration, which generates a higher SH when the duration is short 

[19,20]. 

 

 

Figure II-5 On the left, the energy level diagram for fluorescence emission; on the right, the energy level diagram 
for second-harmonic generation. Inspired by Gauderon et al. [17]. 

 

 

Figure II-6 Radiation pattern in backward and forward directions in different dipole arrays. Illustration inspired 
by Cox et Kable [18]. 

 

SH is generated in forward and backward directions. Although, in general, the forward direction 

shows the highest SH signal, the backward direction is used to obtain information on the sample 

structure by comparing the forward/backward radiations [21] or when the sample is too thick and the 

forward radiation cannot be detected. The well-known SHG radiation pattern is dependent on the dipole 

array (see Figure II-6).  

Thus, the SH signal is dependent on many factors, including the polarisation of the light used for 

imaging and the organisation of the sample, such as the collagen fibres that form well-ordered structures 

and generate different intensity of SH signal according to the laser polarisation with respect to the 

orientation of the fibres [20]. Cellulose microfibrils in plant fibres show a similar behaviour of collagen 

fibres.  

In the present work, a multiphoton Nikon A1 MP+ microscope (NIKON, France) equipped with a 

long working distance (LWD) 16x (NA 0.80) water immersion objective (NIKON, France) was used 

for the imzge acquisition, and a half-wave plate (MKS-Newport, USA) was rotated to change the laser 
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polarisation angle. The femtosecond laser used was a tuneable Mai Tai XF mode-locked Ti:sapphire 

femtosecond laser (SPECTRA PHYSICS, France), and an excitation wavelength of 810 nm was chosen. 

(The average power at 810 nm was 1.5 W.). All the tests were performed at a controlled temperature 

(21 °C), and Figure II-7 illustrates the optical scheme of the microscope configuration. 

 

Figure II-7 Experimental setup of the multiphoton confocal microscope (NIKON, France). The two SHG channels 
are marked in red.  

 

Both the backward and forward signals were collected with three bandpass filters at 460/60 nm 

(autofluorescence), 550/88 nm (autofluorescence) and 406/15 nm (SHG signal). GaAsP NDD (gallium 

arsenide non-descanned detectors) were used. 

The first acquisitions were performed on flax fibres and cotton trichomes to establish the maximum 

average excitation laser power before damaging the surface by the laser beam. Furthermore, a series of 

images were acquired by changing the polarisation angle step by step with the half-wave plate (HWP) 

to find the polarisation degree that generates the highest intensity of the second-harmonic signal.  

An average laser power percentage of 10% max was used for the acquisitions with a polarisation 

rotation step of 2°. However, damage due to the laser power was observed if the fibre had some 

thermolabile middle lamella pectic remnants on the surface in the case of under-retted fibres or the 

presence of small damages due to fibre extraction. Thus, to avoid any damage, the laser power was set 

at 5% for acquisitions obtained with a polarisation rotation step of 1°. 

Successively, before sample experiment, a comparative test between flax fibres and maise starch 

grains was made. Microfibrils present in plant fibre ultrastructure are constituted of molecules of 

cellulose, which are non-centrosymmetric and generate second-harmonic emission that allows the study 

of plant cell walls [22]. Therefore, the specific structure and arrangement of cellulose within flax cell 
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walls fully justify the use of SHG for the investigation of the microfibril angle of plant fibres. However, 

because the SHG depends on the polarisation angle, a calibration method to define the polarisation at 

each sample plane at different angles in the polarised second-harmonic generation (P-SHG) technique 

had already been developed using starch granules [23,24].  

Starch is mainly composed of amylopectins, amylose and other minor components, such as protein. 

Amylose is linear, while amylopectin has α (1–6) linked ramifications [25,26]. Consequently, in a starch 

grain, there are amorphous and semi-crystalline alternating layers called growth rings, and the radial 

distribution of amylopectins is the cause of the polarisation that can be detected with polarised light 

optical microscopy and P-SHG [23,24,27]. In Figure II-8a, a maise starch granule is illustrated, and the 

amylose and amylopectin structures are shown. Amylopectins are responsible for the SHG signals due 

to the crystallites arranged in a double helix structure [25]. Thus, a maize starch granule, accurately 

selected with a shape approximated as a sphere, can generate an SHG signal at each polarisation angle 

[24], allowing us to calibrate the laser polarisation at the sample plane (Figure II-8b).  

Two steps were used for this experiment, and the rotation range of the half-wave plate was from          

0°–135° (step of 1°)/0°–68° (step of 2°) for vegetal fibres and 0°–190° (step of 1°)/0°–68° (step of 2°) 

for the calibration with the maise starch grains. The scan line average was 8, the scan velocity was fixed 

at 1 (fps), and the scan size was 512*512 pixels. The software used for the imaging acquisition was NIS 

elements (NIKON, France), and the software used for the image processing was ImageJ (National 

Institute of Health, USA) [28]. 

 

 

Figure II-8 a) Schematic structure of a starch grain, inspired by [26,29]; (b) Second-harmonic generated by an 
approximately spherical maise starch grain at controlled polarisation angle. The starch grain can generate 
second-harmonic at each polarisation angle, based on the laser position. 
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 Sample preparation  

Another advantage of the second-harmonic generation microscopy is that it does not require 

particular sample preparation, except for the thickness of the samples that can interfere with the 

generation of the second-harmonic in the forward direction.  

Since plant fibres, such as flax fibres, are generally in the order of 20–30 µm thick, they can be 

examined without further manipulation. On the contrary, cross-sections of stems and wood tissues must 

be cut with a thickness of about 10–20 µm to be studied. 

Each fibre or fibre bundle extracted from the samples investigated was directly mounted on a           

150 μm thick paper support, commonly used for single fibre tensile tests (Figure II-9a) and the sample 

was placed between two coverslips to improve the observations and tuning of the microscope.          

Figure II-9b shows a single flax fibre glued on paper support commonly used for tensile tests according 

to ASTM C1557 [30] and the sample under the microscope (Figure II-9c).  

 

Figure II-9 Raw flax fibres (a), single flax fibre glued on a paper card for handling and testing (b) and SGH 
microscope (c). 

 

 UV-visible excitation beam to obtain autofluorescence response from plant tissues has been widely 

used in the literature [31] and the reviews done by García-Plazaola et al. [32] and Donaldson [33] resume 

the fluorescence emission in plants.     

 Two different microscopes at Synchrotron SOLEIL (Source Optimisée de Lumière d’Energie 

Intermédiaire du LURE) (Gif-sur-Yvette, France), DISCO beamline, were used to obtain different 

information: a full-field microscope, called TELEMOS, that allows multispectral fluorescence imaging 

analysis and an inverted microscope adapted to perform scanning fluorescence microspectroscopy, 

called POLYPHEME (Figure II-10) 

 

4. DEEP-UV Fluorescence imaging and microspectroscopy  

Evolution of the ultrastructure, parietal composition and mechanical properties of flax fibres over time : when history meets science Alessia Melelli 2021



CHAPTER II. General information on the main methods used 
 

82 

 

Figure II-10 Schema of the two microscopes at Synchrotron SOLEIL, POLYPHEME and TELEMOS respectively 
[34,35]. (©Frédéric Jamme, DISCO beamline). 

 

4.1   TELEMOS parameters 

The excitation wavelength used was in the deep UV range (275 nm), extracted from the white beam and 

monochromatised, thanks to a Czerny-Turner monochromator (iHR320, Jobin-Yvon, France) before 

reaching the end-stations, as described in [34–36]. The entire beamline is fully described in [37]. 

TELEMOS is a full field Axio Observer Z1 inverted microscope (Carl Zeiss GmbH, Germany) modified 

with quartz optic and equipped with a dichroic mirror at 300 nm (Omega Optical Inc., Brattleboro, 

USA), which allows the reflection of the excitation wavelength at 275 nm and cutting all the 

wavelengths above 300 nm, a back-illuminated CCD 16-bit camera (Pixis BUV, Princeton Instrument, 

USA) and a motorised sample plate (MS-2000 XY, Applied Scientific Instrument, USA), which allows 

movements in the X- and Y-axes. The Z-axis is directly controlled by the microscope. More details 

about the equipment can be found in [34,36,38,39]. Specific objectives for UV transmission, 10x         

(N.A. 0.2) and 40x (N.A. 0.6) Ultrafluar (Zeiss) with chromatic correction were used to investigate the 

samples. 

Three different passband filters at 327–353, 420–460, and 480–550 nm (Semrock, Rochester, USA) 

were used in this work to obtain information about: 1) protein, by probing their tyrosine and tryptophan 

amino acids, 2) small phenolic compounds called hydroxycinnamates (ferulic, p-coumaric and sinapic 
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acids), and 3) lignin, as a polymer composed of 3 phenyl propanoid units (G, H and S) respectively [38]. 

Time and offset for image acquisition were adjusted according to the objective used (Table II-2).  

 

Table II-2 Deep UV acquisition parameters with TELEMOS microscope and possible attributions. 

 

The acquired images must be corrected to quantitatively calculate the fluorescence intensity. Eq.II-2 is 

used to normalize the grey level to eliminate the variations linked to the CCD camera for each filter and 

acquisition time, as well as the heterogeneity of the intensity linked with the laser beam:   

                                                𝐼𝑐 =
𝐼𝑟−𝐷(𝑓,𝑡)

𝑊(𝑧)−𝐷(𝑤)
                                         (Eq.II-2) 

where Ic is the grey level in the corrected image, Ir is the level in the raw image acquired, D(f,t) is the 

“dark” level of the camera acquired depending on the filter used and the acquisition time, W(z) is the 

“white” level of the beam without filters depending on the Z stack position and objective used and D(w) 

is the “dark” level acquired to record the noise of the instrument without any filter [39]. To perform the 

‘white’ level, a small window of luminescent reference compound (Nd-YAG crystal) using only the 

dichroic mirror without any filter was used as a reference. 

The images acquired were ultimately processed using ImageJ/Fiji software [40,41]. Segment and 

area tools were used to select ROI and calculate the intensity of each filter in regions of the image where 

the beam intensity is focused, i.e. the centre of the image.  

 

4.2   POLYPHEME parameters 

POLYPHEME is an Olympus IX71 inverted microscope modified with a quartz optic suitable for 

deep UV (DUV) spectroscopy equipped with a triple monochromator (T64000, Jobin-Yvon) in 

subtractive mode to suppress Rayleigh scattering and another 280 nm beam splitter. To collect spectra, 

an iDus CCD detector (Andor) was used (Peltier cooling to -70 °C). The detector is a 1024x256 pixel 

Filter Acquisition time (s) Objective Main attribution Channel 

327–353 nm 
8 sec 

20 sec 

x10 

x40 

proteins 

(Tryptophan and Tyrosine)  
Red 

420–460 nm 
8 sec 

8 sec 

x10 

x40 

Phenolic compounds 

(hydroxycinnamic acids)  
Green 

480–550 nm 
8 sec 

8 sec 

x10 

x40 

Lignin 

(phenylpropanoid units) 
Blue 
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with 26x26 µm pixels [34]. The objective used was a 40x Ultrafluar (Zeiss) objective with N.A. 0.6 and 

a laser spot diameter of approximately 4 µm (Figure II-10). 

 Before collecting the spectra, a calibration using the Nd-YAG crystal was performed. Due to limited 

time, only two cross-sections, one drought and one control, were examined under POLYPHEME. After 

acquisition, the spectra were processed using LabSpec 6 (Horiba Scientific) software and a program file 

written in MATLAB, Polypheme v2.0. Each spectrum was cut in the range of 294–529 nm. A correction 

of dead pixels at 323.7–323.2 nm was performed followed by spike correction. No smoothing operation 

was performed. Subsequently, MATLAB was used to calculate the principal component analysis after 

concatenating the two images acquired from the two different samples, and spectra were normalised 

using a unit vector (
𝑥

√𝑆2
 ). The ‘modelling’ tool of LabSpec 5 (Horiba Scientific) software was 

successively used to create a normalised model where the score combination reached 100% by selecting 

three components identified as the three main signals of the spectra at approximately 335, 415 and       

500–530 nm, obtaining separate cartographies of protein, phenolics and lignin. 

 

Sample preparation for DEEP-UV analyses 

To investigate the samples by deep-UV multi-spectral fluorescence imaging or microspectroscopy, 

the sample thickness must be limited to 10 µm. Since paraffin does not fluoresce, it can be used as a 

medium to include the samples successively cut under microtome to reach the right thickness. Further 

details of the method used to prepare the samples studied in this work can be found in Chapter V.    
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In the last few decades, plant fibre-reinforced composites were progressively developed to replace 

composites where synthetic fibres are usually used or, in some cases, to create new families of 

composites having specific properties [1]. Their cost-effective production, low environmental impact, 

and specific mechanical properties, almost comparable to those of glass fibres, encourage industries to 

invest in this area [2,3]. 

Many plant species in nature produce fibres that can be employed for this purpose, but their 

structure, chemical composition, and properties differ greatly and depend on the type of plant [4–6]. An 

exhaustive summary of the plant fibres used for composite materials can be found in Bourmaud et al. 

[7]. The authors divided the fibres in wood and non-wood (e.g., bast), based on their location inside the 

plant. Bast fibres have high cellulose content, low microfibrillar angle (MFA), and consequently high 

mechanical performances in the fibre axis (or longitudinal) direction. Thus, they play a central role in 

new biocomposites, especially compared to leaf, xylem, or mesocarp fibres, and a clear example can be 

found in Wambua et al. [8]. The authors studied several poly-(propylene) composites reinforced with 

different plant fibres (sisal, kenaf, jute, hemp, and coir), and their results showed that coir fibres, 

extracted from seeds, have lower longitudinal mechanical properties than the others but, on the other 

hand, they exhibit a higher impact strength [8], which was also confirmed by Graupner et al. [9]. This 

result follows the functional evolution of the different types of cells in a plant; for example, bast fibres 

are responsible for the stiff structure of a plant and this specific role of mechanical support also explains 

their high mechanical performance.  

Bast fibres have a similar ultrastructural model even if they originate from different plants. An 

elementary fibre is a single cell, and several fibres are linked to each other to form a bundle of several 

dozens of single fibres having a multilayer structure, as illustrated in Figure III-1a based on the flax 

fibre model generally used in the engineering domain: (1) the lumen is the central hollow part of the cell 

and its shape and diameter vary with the maturity of the plant and the environmental conditions during 

growth; (2) the secondary cell wall is the thickest layer, divided into two to three sub-layers (S1, S2 or 

G, and S3) rich in cellulose where the thinner and not always visible S3 can also be assumed to be 

unmatured Gn layer instead of a real S3 [10]; (3) the primary cell wall is the external layer enriched in 

hemicelluloses, pectins, and lignin [11]. Between the fibres, there is another layer called middle lamella 

1. The middle lamella of plant fibres used as 
composite reinforcement: investigation by atomic 
force microscopy 

1.1 Introduction 
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(ML), which cements the primary cell walls of adjacent cells together and is mainly composed of pectic 

polysaccharides, lignin, and a small amount of protein [12–14]. This binder layer between two cells acts 

as a very thin and efficient interfacial matrix in the plant [13,15].  

In biocomposites, the conventional interface level between a polymer matrix and plant fibres, which 

often coincides with the secondary wall, has been deeply investigated. However, middle lamellae are 

widely present in plant fibre composite materials due to the specific arrangement of the fibres in bundles 

in plants. The amount of middle lamellae depends on the retting process, the fibre extraction process 

and, when used in biocomposites, also on the material processing conditions that influence the shear 

rate and the temperature experienced by the fibres during composite processing [16–18].  

Some studies demonstrated that this layer plays a central role in the mechanical behaviour of the 

final biocomposite product. Bourmaud et al. [19] noted several failure mechanisms in plant fibre 

biocomposite materials, and Monti et al. [20] showed that, in thermoset composites, cracks often 

propagate around the fibre bundles and through them, as illustrated in Figure III-1b, c. Recently, 

Beaugrand et al. showed that middle lamellae constitute an area of failure and that their behaviour is 

strongly related to their properties and cohesion with the fibres [21].  

 

Figure III-1 a) Diagrams illustrating the structural arrangement of a single flax fibre from [7]; (b) a crack (in red) 
that propagates along the perimeter of a bundle and (c) through the bundle in a plant fibre-reinforced thermoset 
composite under tensile tests. SCW S1, S2 or G, S3 or Gn = secondary cell wall, PCW = primary cell wall, ML = middle 
lamella. 

 

For a correct computational modelling of plant fibres, plant fibre bundles, and the mechanical 

behaviour of biocomposites, numerical values of mechanical properties of the middle lamella are 

required [22]. Some attempts were made to measure the mechanical properties of the ML of onion or 

flax cells using tensile tests [23,24], but this type of test remains challenging and difficult to interpret. 

Due to its reduced thickness in the order of the sub-micron, most of the measurements in the cell corner 

middle lamellae (CCML) were performed using micromechanical characterization techniques, such as 

nanoindentation, but, to the best of our knowledge, the studies are mainly limited to some wood samples 

[25–28]. In these cases, the average indentation modulus obtained ranges from around 5 to 11 GPa but 

with a generally high standard deviation. 
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Another technique used to investigate the middle lamellae is the atomic force microscopy (AFM) 

[28]. However, even though this technique is suitable for performing mechanical measurements in areas 

at the nanoscale level, like the CML layer, to the best of our knowledge, few researchers have focused 

on middle lamellae and often limited to wood using contact resonance-AFM (CR-AFM) [29,30] or AFM 

peak-force quantitative nanomechanical property mapping (PF-QNM) [31] with an average value 

ranging from 6 to 17 GPa, to bamboo with an average value around 14 GPa [32]  or onion [23] obtaining 

moduli ranging from around 8 to 11 GPa. Nanoindentation and almost all the mechanical AFM methods 

make it possible to obtain an indentation modulus that depends on all the elastic constants of the material 

(Young’s moduli, shear moduli, and Poisson’s ratios) in a complex combination for materials with an 

anisotropic behaviour such as the secondary cell-wall layers [33,34]. However, in this case, middle 

lamellae can be considered as a material with an isotropic elastic behaviour as there are no microfibrils 

into their structure which is therefore quite random [35], and the indentation modulus depends on a 

single Young’s modulus and a single Poisson’s ratio. 

In the case of an isotropic material, the indentation modulus M can be expressed according to the 

Hertz formula, M = E/(1 −  2), where E is the Young’s modulus and  is the Poisson’s ratio. The 

Poisson’s ratio of the middle lamella is not known but it should be lower than 0.5 like most amorphous 

polymer blends. Thus, in this case, the indentation modulus is quite close to the Young’s modulus. 

In previous papers, a protocol to study the mechanical properties of plant cells with the AFM PF-

QNM method was already tested and the results were validated [36–39], and in the present section of 

this study, AFM PF-QNM was used to investigate middle lamellae. Thus, a set of plant fibres commonly 

used in biocomposites, i.e., flax, hemp, jute, kenaf, nettle, and date palm leaf sheat was investigated with 

the aim of creating a database of indentation moduli obtained from middle lamellae of different plant 

species and implementing the knowledge on this layer to help future computational modelling works. 

 

Various plant fibres were considered to represent three of the main groups of fibres commonly used 

for biocomposite manufacturing, as reported in Figure III-2.  

For flax (Linum usitatissimum L.), stems of the Eden variety cultivated in the year 2015 (Terre de 

Lin, Normandy, France) were chosen and cut after the first ramification (120 days) [38]. The nettle 

(Urtica dïoica) samples were harvested in Lorraine (France) in 2014 and stored at room temperature in 

darkness; then, fibres were manually extracted. Hemp fibres from plants cultivated in 2016 (Fedora 17 

variety) in Bar-Sur-Aube (France) and field retted were chosen. Jute (Corchorus capsularis L) and kenaf 

(Hibiscus cannabinus L) fibres, provided by Derotex (Wielsbeke, Belgium), were grown in Bangladesh, 

and retted in water before being mechanically extracted from the stems; both were cultivated                         

1.2 Materials 
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in 2015 [36]. Date palm fibres (Phoenix dactylifera L.) were from Al-Ahsa (Eastern Province of Saudi 

Arabia), and the large bundle of the mesh surrounding the date palm tree stems were considered [40]. 

 

Figure III-2 SEM images and classification of date palm leaf sheath (a), jute (b), kenaf (c), hemp (d), nettle (e), 
flax (f) fibres investigated. (g) and (h) are zooms on middle lamellae area of nettle and flax, respectively (F = 
fibres, ML = middle lamella). Scale bars correspond to 50-µm lengths for all except (g) and (h) (10 µm). 

 

All the samples were dried for 2 h in an oven at 60 °C to eliminate the moisture; then, they were 

dehydrated in a graded series of ethanol and included in London Resin (LR)-white acrylic resin. The 

final polymerization of the resin was made in the oven at 60 °C overnight. Further details on the sample 

preparation method can be found in Chapter II.  

 

AFM PF-QNM investigations were conducted with a tip radius between 15 and 50 nm for 

all the probes and the peak force amplitude was set to 75 nm. For each sample, 3–4 images were acquired 

with a verification of the value of the indentation modulus in the embedding resin, following the method 

in [39]. For further details, see Chapter II.  

For each sample, some images were obtained at 512 × 512 pixels and other several images of            

256 × 256 pixels were acquired and considered to have a good image resolution and a statistically 

significant average. A small area of each image was selected according to the morphology of the middle 

lamella, and only the cell corner (tricellular junctions) was considered, as shown in Figure III-3. A 

1.3 AFM investigations  
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mean of the indentation modulus of the selected area was calculated using the software's “statistical 

quantities” tool.  

 

Figure III-3 Example of a flax middle lamella with a selected area masked to calculate the indentation modulus 
mean value and standard deviation. 

 

Figure III-4 shows the topography and indentation modulus mapping obtained through AFM PF-

QNM measurement of flax, nettle, jute, kenaf, hemp, and date palm fibres. These images provide values 

of the indentation modulus and information about the morphology of the middle lamellae. In the 

literature, the middle lamella (ML) is distinguished from the compound middle lamella (CML), 

especially referring to the wood cells [41,42], but this distinction is also applicable to other plant fibres 

[13]. In fact, the middle lamella between two primary cell walls of two different cells is often 

indistinguishable [13], and the small tripartite layer appears as a single layer, such as in Figure III-4b 

or 7a, and consequently defined as compound middle lamella. Therefore, in the present research the 

indentation modulus was measured in the tricellular junctions, usually called the cell corner middle 

lamella (CCML), where the middle lamella is well discernible. Moreover, the biochemical composition 

of the CCML may differ from the ML [13].  

In Figure III-4a, flax shows an interesting fracture (decohesion highlighted with white arrows), 

which probably occurred between the G and S1 cell wall layers during the handling of the green flax 

stem. In several other images of the same section of the flax stem investigated, other cells showed this 

type of fracture between S1 and G secondary layers, which was previously noted by Arnould et al. [39] 

and Goudenhooft et al. [38]. In addition, from Day et al.’s [43] pictures, it is possible to identify 

fractures, which occurred at the CML–S1 or S1–G level and their observations are in line with the results 

and conclusions reported in the present study. Le Duigou et al. [44] also observed peeling failures of the 

external fibre layer of flax fibres during a microdroplet debonding test, proving the low cohesion degree 

between structural layers. 

1.4 Results and Discussion 
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Moreover, the images collected in the present study confirm the observations done by Zamil and 

Geitmann [13] and Raghavan et al. [15] in the ML and S1–G layers. In particular, the latter authors 

reported that the middle lamella is stronger than the primary or secondary cell wall layers and not 

damaged from a mechanical stretch; on the contrary, fractures take place in the adjacent primary or 

secondary cell-wall layers [15] and, thanks to our AFM analysis, in Figure III-4a it is possible to 

observe the damaged cell wall while the middle lamella remains intact. This fact reinforces the generally 

accepted assumption in the plant fibre community that the mechanical behaviour of the ML is far from 

the brittle behaviour associated with cell wall layers.  

Middle lamellae in flax are well distinguishable and with an indentation modulus clearly lower than 

the other cell-wall layers, as can be expected given that middle lamella has a random organisation and 

composed of non-cellulosic polymers. For the same variety of flax investigated by our team [36,38], and 

although the measurements were done at a larger scale and not especially dedicated to the investigation 

of the ML, a similar contrast between values of indentation modulus obtained in G layer and ML was 

observed. Possible differences in thickness or arrangement of the ML area probably depend on the 

position of the fibres inside the same plant. In fact, as the lumen diameter and the cell wall thickness of 

flax fibres are influenced by the fibre position into the stem, it is possible to hypothesise that also the 

morphology, mechanical properties and biochemistry of middle lamella can change accordingly [45].  

 

 

Figure III-4 Topography (top) and Indentation modulus (bottom) of the cell corners of (a) flax with illustration of 
decohesion (highlighted with white arrows) likely between S1 and G cell wall layers; (b) nettle with values of 
indentation modulus close to the cell wall ones; (c) jute. 

 

The middle lamella of nettle (Figure III-4b) clearly shows a high indentation modulus, almost 

comparable to the surrounding cell walls. In general, the indentation modulus is highly influenced by 

the anisotropic character of the considered material; thus, in this case, of quasi-isotropic non-cellulosic 

polymer (NCP) middle lamellae, the indentation modulus can be in the same range as the G layer, which 
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is underestimated due to the highly anisotropic nature of the secondary cell wall [33]. However, the 

indentation modulus in the middle lamella is remarkably high here and could be linked to a specific 

biochemical composition that should be investigated in future work.  

The indentation modulus in the middle lamella is globally homogeneous, but one can note small 

areas where the indentation modulus is lower and other areas where it is higher, creating an irregular 

matrix like a grid or globular aspect. Considering the size of these nodules of a few tens of nanometers 

(Figures III-5a, b show zoomed-in view of the ML region, not corrected for the effect of tip dilation), 

they might be attributed to a high amount of lignin [31,46,47], or more likely to topographic effects that 

induce variations of the modulus measured in that area. As the roughness in that area is similar to the 

tip radius, it induces a strong correlation between the topography and the indentation modulus (Figure 

III-5), and consequently an apparently higher indentation modulus between two nodules and a lower 

one on top of them [48].  

Bourmaud et al. [36] hypothesised that the degree of lignification is an important factor in the middle 

lamella morphology; however, although it is known in the literature that this layer is enriched in lignin, 

a direct quantification remains a challenge because of its sub-micrometric scale. Moreover, as previously 

mentioned, in nettle, the primary cell wall is not well distinguishable from the middle lamellae, and they 

appear as a single unitary layer between two fibres.  

 

 

Figure III-5 (a) Surface topography and indentation modulus of nettle corresponding to those reported in 
Figure III-4. (b) Zoom of the ML region, corresponding to white rectangle in (a), in order to highlight the 
correlation between topography and indentation modulus.    

 

On the other hand, the middle lamellae of jute fibres are clearly distinguishable from the surrounding 

cell walls (Figure III-4c) thanks to their lower indentation modulus. In addition, the indentation 

modulus in CCML appears homogeneous with a fine texture that does not represent disconnections or 

asperities when compared with those of nettle. However, one can note that, in jute, there is a small 
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difference between the indentation modulus of the central area of the CCML and its edge (Figure III-

6) that is not due to an effect of topography. The indentation modulus gradually increases from the edge 

to the centre of the tricellular junction; this singular phenomenon was noted on each jute CCML 

investigated but not for other middle lamellae investigated here, such as nettle and palm sheath fibres. 

The AFM PF-QNM method, thanks to its high resolution, is able to clearly highlight this type of gradient 

in a restricted area (Figure III-6), confirming its potential for ultra-local mechanical investigations.  

 

Figure III-6 Middle lamella cell corner in jute fibres. Two profiles (in white) are marked on the indentation modulus 
mapping and graphics extracted are shown on the right, respectively. The middle lamella cell corner (CCML) shows 
an increment of the values of indentation modulus from the edge, near the fibre cells, to the core.   

 

In Figure III-7a, the primary walls of kenaf fibres show strong inhomogeneities with a globular 

aspect. In the present case, even more than in the nettle case, the nodules' topography induces a strong 

effect on the apparent indentation modulus. Moreover, the distinction between middle lamella and 

primary walls is difficult compared to other plant fibres.  

 

Figure III-7 Topography (top) and Indentation modulus (bottom) of the cell corners of (a) kenaf; (b) hemp that 
shows to have the highest indentation modulus and (c) date palm tree with the lowest indentation modulus but 
with a thicker and more homogeneous middle lamella. 
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The origin of these nodules is not clear but might be linked to the cutting behaviour and, therefore, 

to the mechanical properties of the different components of the cell wall layers during the sample surface 

preparation. Softer components make them harder to cut and leads to more irreversible deformation 

when cutting. These differences in behaviour induce variations in topography [29,49], such as steps 

between layers of the cell wall (as between S1 and G layer or between G layer and the embedding resin) 

and roughness or nodules, as in the case of lignin, within a layer. However, biochemical investigations, 

like Raman or Infrared spectroscopy at cell level, e.g. by AFM-IR, must be done to better understand 

this phenomenon. Figure III-7b illustrates a tricellular junction between three hemp fibres. The middle 

lamella of hemp, together with the nettle, shows the highest values of indentation modulus that are also 

well correlated with values found by Bourmaud et al. [36] on several plant fibres studied by AFM PF-

QNM mode. Nevertheless, both indentation modulus of middle lamella and fibre cell walls are high in 

nettle and hemp. The matrix inside the middle lamella of hemp is similar to the grid texture that was 

observed in nettle; however, in addition to this morphology and contrarily to the nettle, the primary cell 

wall is clearly distinguishable from the ML.  

In Figure III-7c, date palm CCML has the lowest values and an extreme homogeneity of the 

indentation modulus with easily distinguishable layers. This is especially visible in Figure III-8a-c 

where the middle lamellae of kenaf and date palm fibres are highlighted and compared. Both graphical 

representations and distributions of the indentation modulus (Figure III-8c) underline significant 

differences in terms of indentation modulus between the two plants considered. 

In kenaf (Figure III-8a), the non-uniformity of colour mapping clearly shows discontinuities with 

higher and lower values of the indentation modulus. These heterogeneities are partly due to a topography 

effect of the mechanical measurements caused by the huge globular aspect of the primary wall and 

possibly due to the cutting effects during the sample preparation between cell-wall layers or within a 

layer. Conversely, the indentation modulus in the date palm middle lamella is homogeneous, although 

the surface area analysed is larger than that for kenaf. 

 

Figure III-8 (a) Kenaf middle lamella with a non-uniform indentation modulus; (b) date palm middle lamella with 
a more uniform indentation modulus distribution inside the middle lamella of the tricellular junction; (c) 
distribution of indentation modulus in middle lamella area of kenaf and palm, showing a high difference into 
spreading of values. The investigated area is highlighted using solid (kenaf) and dotted (palm) black lines. 
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For some fibres such as flax and palm, it is possible to trace and identify all the layers present in the 

fibre bundles, which are underlined thanks to their different modulus in Figures III-9a, b, highlighting 

the typical hierarchical structure. Average numerical values of the indentation modulus calculated in a 

selected area of each middle lamella are summarised in Figure III-10 and Table III-1 with their 

respective standard deviation.  

 

Figure III-9 a) date palm leaf sheath and (b) flax middle lamella area; limits between layers are clearly identified 
and highlighted by dot lines. 

 

As previously mentioned, kenaf has the highest standard deviation since these measurements reflect 

the important inhomogeneity (see Figure III-8a) of the CCML region. Nevertheless, average values 

from flax, jute, and kenaf are comparable. Hemp and nettle have the highest indentation modulus for the 

middle lamellae. The morphology of these two ML is similar, probably because of the large amount of 

lignin. On the other hand, palm fibre CCML regions show the lowest indentation modulus. The different 

origin of the fibre elements is also visible in their overall chemical composition (Table III-2), which is 

related to their botanical functions or roles in the plant. Among the six plant species considered, some 

fibres ensure the role of conduction of raw or elaborated sap, while others support the stem and ensure 

its stability. For example, kenaf fibres are located in the bast (cortical layer) and core (woody) region.  

 

 

Figure III-10 Average values of indentation modulus calculated in each plant fibre middle lamella considered and 
respective standard deviation bars. 
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Table III-1 Mean and standard deviation of the indentation modulus obtained from the middle lamellae of the 
panel of the plant fibres considered. 

Plant species Indentation modulus (GPa) 

Linum usitatissimum L. (Flax) 10.2 (± 1.2)  

Cannabis sativa (Hemp) 16.1 (± 1.4) 

Corchorus capsularis (Jute) 10.9 (± 1.6) 

Hibiscus cannabinus (Kenaf) 10.2 (± 2.2) 

Urtica doïca (Nettle) 14.7 (± 1.3) 

Phoenix dactylifera (Date palm leaf sheath) 6.7 (± 0.9) 

 

The bast fibres constitute around 40% of the total amount of the fibres. Primary phloic fibres (PPF) 

from procambium in the protophloem region and secondary phloic fibres (SPF) from cambium are both 

developed in both jute [50] and kenaf. Thus, in these two plants, the chemical composition of the fibres 

is highly dependent on the tissue from which they originate. 

This type of cellular heterogeneity, in function of the tissue from which they arise, does not exist for 

flax and nettle, which have gelatinous and poorly lignified fibres that can be extracted only from the 

primary phloem region. In the case of hemp, a possible mix between primary and secondary fibres may 

occur; these two types of fibres have a role in the mechanical support of the plant. Consequently, their 

compositions and mechanical properties are fairly similar and the main difference is the length, which 

is significantly shorter for the secondary fibres because of their delayed growth that occurs after the 

structuration of the tissues.  

 

Table III-2 Literature review of the biochemical global composition of the bundles of fibres studied, not reflecting 
the specific ML compositions. 

Plant species 
Cellulose 

(%) 

Hemicellulose 

(%) 

Lignin 

(%) 
Reference 

Linum usitatissimum L. 

(Flax) 
60–85 14.0–20.6 1–3 [60–62] 

Cannabis sativa 

(Hemp) 
55–90 12 2–5 [63–66] 

Corchorus capsularis 

(Jute) 
58.0–71.5 13.6–24.0 11.8–16 [67,68] 

Hibiscus cannabinus 

(Kenaf) 
52.0–61.2 18.5–29.7 12.9–16.1 [69–71] 

Urtica doïca 

(Nettle) 
65.3–86.3 5.2–12.5 1.6–3.8 [72] 

Phoenix dactylifera 

 (Date palm leaf sheath) 
34–45.1 27.7–28.9 16.9–18.2 [51,73] 
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For flax, hemp, and jute, middle lamellae are often reported as lignin-enriched domains, which are 

often highlighted to explain the mechanical stiffness and cohesion of the fibre bundles employed as 

composite reinforcement. Nevertheless, cell-wall lignification generally appears after seed maturity and 

can be strongly limited according to the cultivation management. For flax pulled out after flowering or 

seed maturity, Day et al. [43] reported a low lignin labeling in the CML area, absent in the cell corner 

and tricellular junctions, regardless of the epitope considered. The flax fibres investigated in the present 

study come from the plant stem and they were collected before the lignification of the middle lamella; 

in addition, no retting or scutching processes were performed contrary to the hemp fibres. In this case, 

the lignification and the retting effect could explain the higher indentation modulus of hemp fibres 

compared to flax.  

As previously reported, the amount of lignin and the quality of links between the several layers 

influence the behaviour of the fibre bundles and, in the specific case of flax where decohesion between 

CML–S1 or S1–G level is noted, and these results are in line with the figure reported in Day et al.’s work  

[43]. These damages at the level of the middle lamella also have an impact on the biocomposite material 

when flax fibres are used as reinforcement. A second polymer well known to be an influent actor of the 

cell cohesion is the pectin family, precisely located in the ML. It has been demonstrated that the 

mechanical properties of the ML may vary with the degree of the esterified form of homogalacturonan 

[66]. This pectin is then more or less able to generate interchain interactions, for instance, by calcium 

cross-linking if homogalacturonans are de-esterified. From the panel of phenotype samples selected for 

this study, the backbone of the pectin methylation degree is arguably different, and some contrasting 

mechanical properties can be, therefore, expected due to susceptibility to cross-linking.  

Dhakal et al. [37] investigated the damage mechanisms after impact testing on palm/PCL composites 

and they reported that, even after testing, the morphology of the date palm bundles remained unaltered. 

This is due to the high content in lignin and the homogeneity of the middle lamella (Figure III-7f) that 

strongly links the single palm fibres together, more than in other plant fibres, despite the soft middle 

lamella (Figure III-10 and Table III-1). The silica-reinforced external paravascular or 

parafibrovascular parenchyma of palm bundles [40] is arguably too strong to be damaged, even after a 

high shear-rate process.  

However, Baley et al. [67] observed an opposite behaviour of flax bundles used in a reinforced 

polyester composite and significant cracks were visible on the CML after transverse tensile tests. Indeed, 

the individualization of the fibres can be more or less pronounced, according to the process used to 

produce the composite material [18] and the scutching or hackling degree of the fibres [68] during the 

fibre extraction process. Consequently, all these factors can introduce significant changes in the 

mechanical performance of the final composite. Furthermore, when the composite contains a large 

number of flax fibre bundles, damage preferably occur in the bundles, and especially in the CML area, 

during loading [19,20]. In this case, the fibre–matrix interface is not the most critical, even when the 

polyolefin matrix, which has a weak fibre–matrix interface, is used. Thus, even if the indentation 
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modulus of flax ML is higher than the palm one (Table III-1), the individualization of flax fibres is 

facilitated thanks to the specific organisation of the bundles and preliminary action of retting and 

scutching. 

 However, as reported in Zamil et Geitmann’s reveiw [13], ML in flax are not directly involved in 

the failures, but the weak area seems to be between the different layers (S1–G) rather than in the middle 

lamella, even if ML exhibits a lower stiffness. A hypothesis for this result is that the softness and the 

cohesion of the ML are probably an advantage for the energy dissipation, and they limit the cell-wall 

damage during mechanical loading or shear rate stress. To support that assumption, a parallel can be 

done with the nacre, where the microstructure displays some homologies with the lignocellulosic 

bundles. Indeed, stiff and large structures of ceramic, as the fibre cell wall in the present study, are 

embedded in a thin and weak mortar made of unfolded protein and chitin biopolymers. The latter is the 

middle lamella of the bundles. During loading, in the nacre, the thin interface is able to deform, with 

most of the fracture occurring at the interfaces, providing more inelastic regions and favoring more 

energy dissipation and higher work of fracture, thereby giving nacre an elevated damage tolerance [69]. 

From the set of plant samples investigated in this study, palm sheath fibres, which have CCML 

with a lower indentation modulus, are probably less damaged in contrast to the flax fibres.  

On the other hand, if we consider the jute fibres, it is clear that they have an indentation modulus 

similar to flax here investigated (see Table III-1), but their mechanical behaviour inside a composite 

material is very different. This is probably due to their high lignin content, as well as to their short length, 

and, as a consequence, high volume content of middle lamellae. The cohesion in bundles is strong, 

inducing a specific behaviour and a flow orientation in extrusion or injection molding [70]. Moreover, 

a high lignification is in favor of a good fibre–matrix interface, and Graupner et al. [71] noted that lignin 

may be an interesting adhesion promoter. Thus, flax, jute, and kenaf have similar CML indentation 

modulus (Table III-1), but their mechanical and morphological behaviour differs widely. 

Finally, other fibres, such as hemp, have a strong tendency to be divided or fibrillated during the 

composite production process. This phenomenon was highlighted in extruded or injected compounds 

[72–74]. Interestingly, the difference between CML and G layer modulus is lower for hemp compared 

to other plants, and this might introduce a strong link between these two layers, whereby a weaker 

interface could possibly be identified at the intra G layer level. 

Nevertheless, it is important to keep in mind that the morphology of the fibres may be involved in 

the breaking mechanism, and that the length of fibres and the ratio between the cell wall and lumen area 

may affect the critical shear rate, leading to irreversible damage. In addition, the indentation modulus is 

not necessarily correlated to the structural cohesion between layers, and the hardness investigated by the 

nano-indentation technique can be a better indicator even though it has a lower resolution than AFM 

PF-QNM. It is interesting to note that Wimmer et al. [28] studied the relationship between the 

longitudinal indentation modulus and hardness of CCML and S2 in spruce wood, and they found a strong 

relationship between the indentation modulus of the CCML with its hardness, i.e., stiffer denoting 
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harder, unlike the S2. In this article, the indentation modulus of the CCML ranges from 4 to 12 GPa, 

whereas the hardness ranges from 0.12 to 0.47 GPa, with a mean value close to that of the S2. As the 

hardness depends on the inelastic behaviour of a material, it is linked to its plastic behaviour and property 

at break. If we assume that these results can be transposed here, it would mean that nettle and hemp fibre 

middle lamellae have a higher hardness in relation to a higher secondary wall longitudinal property, 

contrary to palm leaf sheath fibres. This seems to make sense mechanically, but needs to be confirmed 

by additional hardness measurements in the samples here investigated and mechanical strength tests of 

ML [23] or bioinspired films [31]. 

For this reason, the results presented here revealed huge differences in the indentation modulus of 

the middle lamella according to the plants considered, but it is difficult to correlate them directly to the 

differences in their mechanical behaviour or damage mechanisms when fibres are employed in 

biocomposites. In fact, these complex phenomena are impacted not only by the nature and cohesion of 

this middle lamella, but also by the morphology and the biochemical composition or structure of the 

fibres and bundles. 

 

The results obtained in this section show differences in both the elastic mechanical behaviour and 

the morphology of the middle lamellae in fibre bundles from six different plants commonly used as 

biocomposite reinforcements: flax, hemp, jute, kenaf, nettle, and date palm leaf sheath. The AFM PF-

QNM was used here as it is probably the only technique available today capable of providing semi-

quantitative mechanical values of very thin layers at the nanoscale level, such as middle lamellae. 

 This allowed us to propose a comparative database of the indentation modulus of the cell corner middle 

lamella of the six plant fibres considered with three different groups: the first one (flax, jute and kenaf) 

with intermediate indentation modulus (on average between 8 and 12 GPa) close to values already 

obtained in previous studies on wood fibre middle lamellae, the second one (hemp and nettle) with very 

high values (in average between 13 and 17 GPa), surprisingly close to those of the secondary cell wall, 

and the last one (date palm leaf sheath) with low values (in average between 6 and 9 GPa), close to the 

lowest values obtained on wood fibre middle lamella. Moreover, the sample topography highlights 

morphological differences and heterogeneities between the middle lamella, as well as the primary and 

the secondary wall structure, with, on the one hand, very clear sublayers in the case of flax, date palm 

leaf sheath, and jute and, on the other hand, hardly distinguishable sublayers in the case of hemp and 

nettle with an irregular matrix like a grid for the cell corner middle lamella and sometimes a strong 

globular or nodular aspect for the primary wall in the case of kenaf.  

The global biochemical composition or the origin and the role of each type of fibre in its respective 

plant does not completely explain the different type of CCML encountered here, and local biochemical 

1.5 Conclusions 
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analysis will be necessary for the future. Nevertheless, the present results give complementary 

information for future modeling of plant fibre bundles and the design of better performing 

biocomposites. In addition to the semi-quantitative values provided, these results open new perspectives 

for future studies on the natural variability of the bundle intra plant (in the same stem all along its height) 

and inter plant (comparing similar locations in different stem samples) properties.  
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Cellulose fibrils are cellulose crystallites assembled into longitudinal nanofibres, and hemicellulose 

and pectin glue several nanofibres together to form a single microfibril with a helical disposition [75–

77]. The thickness of the layers and the orientation and morphology of the cellulose microfibrils vary 

between botanical species, as do the chemical composition and mechanical properties. For example, it 

is known that cotton trichomes have a microfibril angle of 25–30° in the S2 layer [6,78], which is higher 

than that of flax. Moreover, the microfibrils in the G layer for flax have a diameter between 10 and 20 

nm [79], and Ansell and Mwaikambo [6] reported that the thicknesses of cellulose microfibrils of 

different origin, for example, cotton or hemp, are of the same order of magnitude as that of flax.  

Literature shows that plant fibres used for composite reinforcement exhibit strong differences into 

their intrinsic characteristics [80] and structure [7]. Chemical composition and structure of some 

varieties of flax were correlated with the mechanical properties [81]. The results showed a relationship 

between the MFA and Young’s modulus, while there seems to be no correlation between the MFA and 

the strain at break of elementary fibres. Another study on hemp and sisal fibres highlighted the 

relationship of the MFA with the stress-strain curve, and the authors noted a linear trend for sisal 

(MFA=20°), while hemp has a less linear behaviour (MFA=10°) [82]. Thus, the MFA is strongly linked 

to the mechanical properties or behaviour of plant fibres and consequently to those of associated 

composites.  

MFA of wood fibres has been extensively studied, from the role inside the plant to the mechanical 

properties correlated and the environmental impact on their variability [83]. This holistic review written 

by Donaldson offers a complete overview of MFA investigation methods; some, such as the pit method 

or confocal microscopy, are adapted to elementary fibres, but the most popular technique is X-ray 

Diffraction (XRD), despite it is mostly limited to fibre bundles. Thus, there is little information about 

the microfibril angle of bast fibres, particularly at the single fibre scale. In general, if the angle is too 

small, the resolution of the analytical techniques is often insufficient to evaluate it for an elementary 

fibre [81]. Nevertheless, Müller et al. successfully applied micro-small-angle X-ray scattering/wide-

angle X-ray diffraction (μSAXS/WAXD) to elementary flax fibres [84,85]. In Table III-3, a summary 

of the MFA values found for flax fibres (measured at room temperature and relative humidity) are 

reported along with the method used. A more complete table with other methods used to evaluate                

2. Microfibril angle of elementary flax fibres 
investigated with polarised second-harmonic 
generation microscopy 

2.1 Introduction 
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the microfibril angle of a range of plant fibres can be found in the chapter written                                                      

by Ansell and Mwaikambo [6].  

Recently, Wang et al. [86] mechanically removed the outer layer of flax fibre bundles to directly 

investigate the MFA by scanning electron microscopy (SEM) and X-ray diffraction (XRD); they 

reported MFA values between 5.8° and 7.3°, which is consistent with the literature data (Table III-3). 

They hypothesised that uncertainties in MFA values may be due not only to the use of fibre bundles but 

also to an additional signal induced by refraction effects at the fibre edge. Other differences in the MFA 

of flax were noted between dry and wet fibres and the results showed an increase in the angle when wet 

fibres were considered [87,85].  

 

Table III-3 Some of the most used methods to calculate the microfibrillar angle of flax fibre elements. 

 

The development of new tools for material characterisation has provided the possibility of more 

accurately studying the ultrastructure of plant fibres. This is the case for second-harmonic generation 

(SHG) imaging, which can be considered as a new tool for accurately investigating the orientation of 

the microfibrils.  

In the last decade, SHG imaging has emerged as a powerful tool in biology, and it has been applied 

to the study of collagen and in vivo samples [89–92]. In particular, in the study of rat-tendon fascicles, 

Goulam Housen et al. [93] concluded that a reconfiguration of the collagen microstructure occurs after 

mechanical tests (uniaxial tensile tests).  

In plant research, some aspects have been already investigated using the second-harmonic generation 

imaging. Cellulose from two different organisms, the Acetobacter xylinum and the Valonia algae, can 

be detected thanks to the high SHG intensity due to the cellulose molecules that are chiral and in a well-

ordered structure [94]. The same team also used the light polarisation control to investigate the 

dependence of the signal response of the cellulose microfibrils to the laser orientation and showed that 

this response is not linear, as expected from the nature of the SHG signal. 

The objective of the study presented in this section is to estimate the MFA of single flax fibres using, 

unprecedented in the literature, a novel approach offered by the potential of SHG measurements. 

Detailed results are shown for flax fibres; besides, cotton trichomes were analysed due to the contrasted 

value of their MFA, which makes them clearly distinguishable from flax. The method is a direct 

Technique used MFA of flax References 

μSAXS 3.5°–6.4° [84,85] 

SAXS 11° [87] 

XRD (Cu source)   6.2°– 9.5°    [86,81] 

SEM/ESEM 5.8°–10° [86,88] 
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measurement of the MFA from an image of the cellulose microfibrils and showed heterogeneities of 

MFA that could be related to mechanical properties of the fibres.  

 

Elementary flax fibres were extracted from a batch of the Bolchoï variety (year 2018, 

classification number 66233) cultivated in Normandy by the Depestele group. After growth, flax fibres 

were pulled out, dew-retted for 6 weeks and mechanically scutched. The diameter of each flax fibre was 

approximately 20 μm. Besides, cotton trichomes were investigated to increase the range of MFA 

measurements and validate the method. The cotton trichomes were issued from G3 BRS 293 and were 

cultivated in Ntarla, Mali, in 2017. For further details on the sample preparation, see Chapter II. 

 

2.3.1 SHG parameters and calibration  

To avoid any damage, the laser power was set at 5%. The scan line average was 8, the scan velocity 

was fixed at 1 (fps) and the scan size was 512*512 pixels. For further details, see Chapter II.   

To evaluate the microfibril angle, the half wave plate (HWP) was rotated to estimate the range of 

angles with the maximum intensity of the second-harmonic generation emitted for each flax fibre and 

cotton trichome. The signal was optimised to select the depth of the fibre that showed the maximum 

intensity, and finally, an image was collected at the rotation angle that better highlighted the pattern of 

the cellulose microfibrils. The four images collected at different polarisation angles illustrate a flax fibre 

with a starch granule of spherical shape deposited on the surface (Figure III-11).  

 

 

Figure III-11 Flax fibre with a maize starch grain manually deposed on the surface. It is possible to compare their 
signals at different polarisation angles. Backward (green) and forward (red) SHG signal combination. Acquisition 

parameters: 5% laser power and acquisition range of 0–135°, which represent the laser position as a function of 
the fibre axis. The edge of the fibre is highlighted with a dotted white line. 

2.2 Materials 

2.3 SHG analysis  
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A maize starch grain can generate a second-harmonic signal at each angle of the HWP [95]. Thus, it 

is possible to compare the SHG signal of a maize starch grain with the SHG signal of fibres and 

trichomes, as reported in Figure III-11. The angle measured in the starch grain approximately 

corresponds to the angle of the cellulose microfibrils inside the fibre.  

 

2.3.2 Development of a data processing method  

To evaluate the microfibril angle, a MATLAB script has been written to identify and calculate the 

angles of microfibrils and create histograms of their frequency. The microfibril angle was evaluated by 

an image analysis procedure that computed the histogram of the preferred orientation of pixels, using 

an approach developed in Gager et al. [96]. Briefly, the preferred orientation is computed by 

(1) applying grey-level granulometry curves with various orientations, (2) computing a typical size in 

each direction, (3) and estimating the preferred orientation from typical sizes. Grey-level granulometry 

is an approach for image texture analysis based on the application of morphological operators (typically 

opening or closing) using a family of structuring elements of increasing size (Figure III-12A-H) [97–

99]. Measuring the differences in grey levels of images after each opening or closing step results in a 

granulometry curve that depicts the size distribution of the structures within the image.  

 

 

Figure III-12 Principe of the image analysis workflow for estimating preferred orientation of fibres. (A), (B), (C), 
(D): Results of morphological openings applied on image (A) using horizontal line structuring with lengths 10, 20 
and 40 pixels. The size of the structuring elements is represented in the bottom part of each image. (E), (F), (G), 
(H): Results of morphological openings using 7-degrees oriented line structuring elements with the same sizes. 
(I), (J): Mapping of the typical linear size in the direction 0° and 7°, obtained by computing mean size from oriented 
granulometry curve of each pixel. (K) Profile of the typical linear size depending on the orientation for a sample 
pixel shown as a black cross in images (I) and (J). For this pixel, the profiles exhibit a peak around 5 degrees. (L) 
Parametric mapping of the preferred orientation for each pixel. Red colours correspond to preferred horizontal 
directions. 
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Granulometry curve computed for the whole image can be summarised by a grey-level mean size 

corresponding to the typical size of the structures within the image. The grey level mean size can also 

be computed for each pixel to investigate the typical size of the structure it belongs to, resulting in a 

local granulometry [99,100]. In order to assess the preferred orientation of the microfibrils, linear 

structuring elements with orientations ranging from 0 to 180 degrees were used [97,98,100,101]. The 

computation of granulometry curves for each orientation results in a function that depicts the typical 

size of each pixel depending on the orientation (Figures III-12I, J). For pixels belonging to a 

microfibril, this function presents a peak for the angle corresponding to the microfibril orientation 

(Figure III-12K). The preferred orientation of each pixel is estimated by integrating the typical size 

function over the range (0, 180) degrees, and represented using a colour code that considers both the 

orientation and the intensity of the pixel (Figure III-12L). Finally, the distribution of the microfibril 

angles is obtained by computing the histogram of the preferred orientation of the microfibril pixels. 

 

The SHG emitted in the forward direction is higher than the SHG emitted in the backward direction 

due to the coherent nature of the process [91,102]. The difference between backward and forward images 

from Valonia algae, which highlight differences in cellulose microfibrils, was already reported in [103].  

In the present study, both flax fibres and cotton trichomes show a high intensity SH signal in the 

forward direction and therefore it was selected to investigate the samples (Figure III-13). In the images 

acquired, cellulose microfibrils present a characteristic pattern perpendicular to the microfibril length 

with alternating bands due to their highly ordered arrangement. A similar pattern was observed for 

nematode muscle by Campagnola et al. [104]. The authors reported that the lower limit for harmonic 

emission from the electric dipole interaction is λ/10; for a smaller distance, the asymmetric condition is 

broken, and SHG emission does not occur.  

 

Figure III-13 Backward (green) and forward (yellow) SHG emission of a flax fibre at 2°. 

2.4 Result and discussion  
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Nevertheless, due to the MFA orientation, cellulose microfibrils are visible only over a specific range 

of the HWP rotation angle, and to identify this range, it is necessary to investigate flax fibres and 

trichomes at each polarisation angle using the P-SHG technique. As expected, it was found an angle of 

approximately 2°–3° for flax and approximately 25°–26° for cotton microfibrils.  The microfibrils are 

well distinguishable, and it is possible to acquire images and precisely measure the orientation taking 

the fibre axis as the reference X-axis. The visible patterns of microfibrils of flax and cotton are shown 

in Figures III-14a and 14b, respectively.  

Besides, a range of elementary flax fibres was investigated, and even when their MFAs have a 

preferential orientation in agreement with the literature [81,87,85], it was observed that the microfibril 

orientation changes according to the area considered. This is particularly evident in flax fibre 

investigated in Figures III-15a, b where the MFA is close to 5° in some specific spots while in others 

it is almost parallel to the fibre axis (0°). This is a clear advantage of the SHG microscopic imaging 

technique where local areas of single elementary fibres can be analysed, oppositely to XRD, for 

example.  

 

Figure III-14 Flax fibres (a) and cotton trichomes (b). The angle θ marked on flax is 7°, while for cotton, it is 28°. 

Acquisition parameters: 10% laser power, acquisition range of 0–68°, and forward second-harmonic emission. 
The angle is defined based on the orientation of the fibre axis taken as X-axis. 

 

 

Figure III-15 SHG investigations of several flax fibres (a) and different areas of a single flax fibre (b). One can 
observe the changes in the MFA depending on the zone (red arrows). Acquisition parameters: 5% laser power and 
forward emission (yellow), 2° HWP. 
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In Figure III-16 the same image reported in Figure III-15b was processed thanks to a MATLAB 

script specifically created to estimate the local orientation of microfibrils and compute the histogram of 

the orientations.  

 The whole image has been processed, as well as the three sections separately, and slight 

heterogeneities in the orientation of microfibrils can be revealed. Ninety percent of the values measured 

are less than 10° with respect to the fibre axis (Figure III-16A) and the mean value over the whole area 

is 5.3 ± 3.3°. Interestingly, the histograms highlight differences between zones with a progressive 

diminution of the microfibril angle (Figures III-16E, F) near a dislocation (kink-band) that is present 

along the fibre (Figure III-16B, grey arrow). 

 

 

Figure III-16 Imaging process by MATLAB with histograms of the relative microfibril angle detected from the 
Figure III-15b. The first histogram (A) is related to the whole fibre (B); the grey arrow indicates the dislocation 
zone (kink-band). The areas 1, 2 and 3 (D, E and F) are processed separately. The scale of colours according to the 
orientation is shown in (C). 

Under these observations, it is difficult to establish a single microfibril angle for a single 

elementary fibre and, consequently, for a fibre variety, as is often reported in the literature. 

This diversity in the organisation of cellulose cannot be determined by averaged measurements, as is 

the case with X-ray diffraction, for example; it is therefore rarely discussed in the literature. For example, 

for flax fibres, it has been shown by TEM analysis [105] that transition zones of angles exist, which also 

supports the hypothesis of misalignments such as those shown here. Thus, the relatively small angle 

value that was highlighted here compared to the data in the literature (Table III-3), takes on its full 

meaning when it is related to the inherent nature of flax walls.  

 The low values of microfibrillary angles found here, as well as their dispersion, are particularly 

important data, especially for the biocomposite community when fibres are used as reinforcements. 

Indeed, fibre stiffness and Young’s modulus are inversely correlated with MFA [81], also demonstrated 
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by wood community using nanoindentation [33,106]. The results presented here allow to conceive a 

more detailed exploration of the evolution of MFA, whether it is a function of the varieties studied, but 

also of growing conditions, environmental stress and fibre extraction or processing conditions as in 

wood [83]. Finally, during a tensile test on elementary fibre, it has been shown that MFA decreases in 

the first part of the tensile stress, being marked by a reorientation of the cellulose macro fibrils [107]. 

This phenomenon results in a non-linearity at the beginning of the stress-strain curve, which represents 

a strong signature of single plant fibres mechanical behaviour.  

 For cotton trichomes, by changing the polarisation angle, two different and opposite orientations 

(right-handed Z and left-handed S helix, respectively) of the microfibrils were observed, forming a criss-

cross pattern (see Figures III-17a, b). The sample plane in the Z direction (depth of the trichome) is the 

same, but, because the cotton trichomes are twisted [108], different layers can be involved, and their 

interpretation become more difficult. 

 

 

Figure III-17 a) Cotton trichomes observed at two different polarisation angles (6° and 44°), where two microfibril 
orientations (Z and S) are observed. Acquisition parameters: 10% laser power, acquisition range of 0-135°, and 
forward emission (yellow). (b) Cotton trichome structure from [7]. 

 

Other interesting information can be found by scanning at different Z values as second-harmonic 

microscopy is plane selective and allows the analysis of a single level without or with little interference 

from the other levels [94]. Figures III-18a, b shows that fibres are surrounded by an external layer on 

the edges, identified as the primary cell wall (P) and the S1 layer. 

The lumen in the middle (L) is delimited by the Gn layer that makes it visible. The lumen is visible 

only at a specific depth of the fibre. Interestingly, a fluorescent signal is observed at the edge of the 

lumen, helping in focusing and discerning this hollow structure. The origin of this fluorescence is 

arguably the vestiges of cytosolic fluorescent components left at the surface of the apoplasm through 

fibre senescence or apoptosis. Indeed, in such multinucleate fibres, it is likely that membrane-bound 

“apoptotic bodies” formed [109], were engulfed and more or less degraded into nucleic acid. 
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Additionally, fluorescence signals can be from mitochondria, which are well known to liberate many 

fluorescent cytochrome components after the programmed cell death [110]. 

The combination of the two SHG channels (forward and backward signals) does not show these 

details, and an autofluorescence signal is needed to highlight them. Indeed, in plant cell walls, suberin, 

lignin, cutin and a small number of proteins produce autofluorescence emission, as reported by Berg 

[111]. Day et al. measured the lignin inside the different layers of flax bast fibre cell walls and found 

GS lignin in the secondary cell wall as well as a significant amount of condensed G lignin in the S1 layer 

together with the other two GS epitopes [43]. 

 

 

Figure III-18 Two different flax fibres investigated with different autofluorescence channels (R460/60 and 
T460/60 TNDD blue-cyan; R550/88 and T550/88 TNDD magenta) combined to highlight their different layers. It 
is possible to identify the lumen (L) in the middle (b) and two small layers at the edge of the fibre due to the 
primary cell wall (P) with the S1 layer (a). The thicknesses of the lumen surrounded by the Gn layer and the P+S1 
layers (b) were measured with ImageJ software, and the different diameters of the lumen can be due to the 
different maturities of the fibres analysed. 

 

Microfibrils are also present in the P and S1 layers, but they cannot be detected and correctly visualised 

due to their small thicknesses. 

Regarding the lumen, flax fibre cell walls change their structure during growth. In a not fully 

developed flax fibre, two types of layers have been identified: the G (S2) layer, which is the mature part 

of the cell wall, and the Gn (S3) layer, which is the newly deposited layer of the gelatinous cell wall 

[38]. The Gn layer is deposited from the outer to the inner side of the cell, and with maturation, the Gn 

layer changes its cell wall density and non-cellulosic polymer arrangement, becoming a mature G layer; 

these two layers mainly differ in the length of galactan chains, as reported by Rihouey et al. [10]. Thus, 

the more mature the fibre is, the smaller the lumen, and its diameter varies between fibres. The size of 

the lumen may also depend on environmental conditions. In the case of low temperature or the lodging 

phenomenon, conversion of Gn into the G layer may be stopped, inducing a large lumen. Nevertheless, 
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even for a fully developed fibre, a small part of the Gn layer is still present. Regarding both the 

macromolecules and the small size molecules that compose the cell wall, they are undoubtedly 

heterogeneously distributed over the layers described earlier [7]. In line with the scope of this study, 

phenolic structures are present in these layers, and with the particular G–rich lignin quantified and 

immunolocalised across flax fibres [43], these structures arguably emit fluorescence detectable at 

approximately 550 nm (pink). The literature also reported small molecules based on solid-state 13C NMR 

[112], namely, anthocyanins and ferulates (hydroxycinnamics), which are supposed to emit a detectable 

fluorescence signal, for instance, a blue signal at approximately 460 nm. 

This method has several important advantages: i) several areas of the same fibre can be investigated, 

so the variation in the microfibril organisation can be highlighted, ii) the MFA is measured and not 

estimated and iii) it is possible to change the environment and collect images to estimate the modification 

in the structure.  

 

To date, researchers have used several techniques to evaluate the microfibril angle, such as X-ray 

diffraction (XRD), scanning electron microscopy (SEM) and microbeam small-angle X-ray scattering 

(μSAXS), but each of these techniques has some disadvantages. 

In this section, the MFAs of elementary flax fibres and cotton trichomes were successfully calculated 

for the first time using second-harmonic microscopy under controlled polarisation light (P-SHG). The 

MFAs of flax and cotton were calculated using a direct evaluation of the microfibril angle observed in 

P-SHG images. 

In fact, the resolution of this technique is such that macrofibrils are visible in the images collected, 

and their angles can be directly measured. This method not only allows us to obtain precise angles of 

the cellulose macrofibrils, when other techniques can only measure an average (confirming, however, 

the preferential orientations between 2° and 7° for flax fibres and approximately 26° for cotton trichomes 

already reported in the literature), but also allows us to investigate a length of several tens of micrometres 

for a single elementary fibre. Considering these new results, it is clear that the microfibril organisation 

in a fibre is inhomogeneous, depending on the zone analysed, and can have an orientation parallel to the 

axis of the flax fibre or a specific angle. This fact can also explain the large range of values found by 

other research teams, regardless of the methodology used. 

Several planes in the Z-axis can also be analysed, and the second-harmonic emission for each position 

can be evaluated to compare the behaviour of the whole fibre. A limit we face is the need for non-twisted 

fibre elements, and the cotton trichome taken as a reference illustrates it with its numerous twists. 

However, if the whole length of the fibre elements cannot be observed, then a limited area is enough for 

the SHG measurement. 

2.5 Conclusions 
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In conclusion, in this section, new important information on the ultrastructure of plant fibres is 

presented, and P-SHG demonstrates high potential for studying the variation in the MFA under different 

environmental conditions and at local defects, i.e., few µm kink-bands, owing to its high resolution. 

Future work will focus on evaluating the inhomogeneities of the microfibril organisation and, more 

specifically, the specific ultrastructure in critical areas, such as kink-bands and structural defects. Several 

environmental conditions will also be tested to investigate the reorganisation of the microfibrils, as well 

as possible MFA variation into the thickness of the fibre thanks to Z-stack explorations. 
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 Composites are often considered to be the materials of the future, owing to their high-performance 

mechanical properties, low weight and applicability in several domains, from buildings to automotive 

or sport and leisure fields [113]. To design eco-friendly composite materials, plant fibres, especially 

hemp and flax in Europe, have attracted attention as renewable, biodegradable and cost-effective 

resources [2,114,115]. Nevertheless, they exhibit certain limitations compared to synthetic fibres 

[114,116]. Moreover, the mechanical properties of plant fibres are dependent on the plant growing 

conditions and on the overall agricultural and mechanical extraction process (e.g., harvesting time, 

retting, scutching, hackling) where the decortication step has the main impact. 

 More specifically, living plants are subjected to specific abiotic stresses when growing, such as wind 

conditions or dried soils, which can cause deformations and damage to fibres [117–119]. Additional 

defects are also introduced during the retting and scutching processes [118,120–123]. Such defects 

appear under the optical microscope as local morphological deformations along the entire length of the 

cell, and they are commonly termed kink-bands, defects or dislocations, although several other terms 

have been used in the literature; a list of these terms can be found in [124]. In the present study, the term 

“kink-band” was chosen. 

 In this study, according to the poorly lignified and gelatinous characteristics and the low MFA of 

flax secondary cell walls and Gn, based on precise descriptions in the literature [125,126], the botanical 

model was adopted, which divided the layers in P, S1 and G (see Figure I-2 of Chapter I).  

 In the centre of a single elementary fibre, a lumen is present as an empty cavity, whose diameter 

depends on the botanical species, variety, maturity and location along the plant stem [7]. These layers 

differ from each other in terms of the chemical composition and cellulose microfibril orientation [127]. 

The microfibril  angle (MFA) is defined as the  angle between the cellulose microfibrils and the fibre 

axis and has been generally reported to be approximately 8° in the G layer of flax [81]. However, 

observations through SHG microscopy technique demonstrated that the MFA of the flax G layer varies 

between 0° and 7°, depending on the area examined (see Section 2 of this Chapter).  

 Experimentally speaking, when SHG, scanning electron microscopy or atomic force microscopy are 

used, the observed angle does not directly correspond to the angle measured in microfibrils themselves 

but rather to the angle between the fibre axis and a bundle of microfibrils, i.e., a macrofibril, with 

diameter from 14 to 200  nm  [128–130]. Indeed, in biology, a microfibril corresponds to several glucan 

chains (18–40 units) and to a diameter ranging from 2 to 4 nm [130,131]. They could be estimated in a 

3. Extensive investigation of the ultrastructure of 
kink-bands in flax fibres  

3.1 Introduction 
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relevant way only by more in-depth investigative methods such as Nuclear Magnetic Resonance (NMR) 

[16]. 

 However, this well-defined and ordered hierarchical structure present in flax cells can be modified 

when kink-bands occur. The inner structure of a kink-band in plant fibres has not yet been clarified. 

Thygesen and Gerlinger demonstrated that kink-bands have the same chemical composition as in the 

homogeneous areas of the hemp fibres [132]; however, around the largest kink-bands, transition areas 

were observed, in which the cellulose orientation was modified, and thus, the microfibrils were less 

oriented. The same authors also estimated that  the MFA within and at the periphery of the kink-band in 

hemp was 30° and 10°–15°, respectively [132].  

 The evolution of kink-band area behaviour and structure during mechanical loading has also been 

explored by various research groups. By using polarised light microscopy, Thygesen et al. evidenced a 

disappearance of kink-band areas on hemp fibre by realignment and straightening of macrofibrils under 

tensile loading [133] followed by a subsequent reappearance after one month. Another team developed 

numerical modelling of cellulose microfibrils with local misorientation under tensile loading and 

showed a slight realignment of dislocated chains after a specific strain in the kink-band region but 

without leading to the full recrystallisation of the dislocated regions [134].  

 Generally, the presence of significant kink-bands corresponds to a lower tensile strength inside the 

fibres because kink-bands are weak points at which the cracks begin to propagate until the elementary 

fibre breaks during tensile testing [133,135–137]. Aslan et al. hypothesised that fractures were initiated 

in the outer layer of the region with the largest kink-band and subsequently propagated inside the cell 

wall until they reached the nearest small kink-band [136]. Using a focused ion beam-scanning electron 

microscope (FIB-SEM), Zhang et al. observed that the kink-band regions in flax fibres consisted of a 

main cavity composed of several voids assembled and separated by membranes. Moreover, small pores 

were regrouped in the area close to the kink-band, and this phenomenon did not occur in other areas of 

the fibre [138]. 

 The influence of the kink-bands is also demonstrated when fibres are used in biocomposites, as the 

kink-band geometry renders a single fibre strongly inhomogeneous. During mechanical testing, for 

example, stress concentration occurs in these areas, resulting in fibre-matrix debonding and matrix 

micro-cracking [118]. Le Duc et al. also demonstrated the sensitivity of the kink-band regions when flax 

fibres  are compounded with a thermoplastic matrix [74]. The overall weakness of flax kink-bands was 

numerically confirmed by Sliseris et al. in both cases at both the isolated bundle and the composite scale 

[139]. This negative effect of kink-bands on plant fibres and associated composite material properties 

leads to a research path that aims at avoiding the formation of kink-bands by improving the fibre 

decortication process and investigating new extraction methods, such as the use of aqueous ammonia 

[122]. In parallel, the nature of kink-bands has been studied to describe the physical mechanism of their 

origin [140,141]  and to artificially reproduce these bands by subjecting the fibres to bending or 

compression loads [135,142]. 
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 Despite all this research, only limited data are available in the literature on the internal ultrastructure 

or internal mechanical properties of the cell walls involved in kink-bands. For this reason, an extensive 

investigation of these specific regions is necessary. Therefore, in this section, a range of kink-bands of 

flax fibres, representing 8 bundles and 12 single fibres, were examined with the main objective of 

providing additional and more in-depth information by using two cutting-edge investigation methods: 

i) AFM in peak force quantitative nanomechanical mapping mode (AMF PF-QNM), to investigate the 

indentation modulus in kink- band regions at a microscale level, and ii) second-harmonic generation 

microscopy at polarised controlled light (P-SHG), to explore the MFA and ultrastructural changes in 

kink-band areas. In addition, SEM micrographs were acquired to obtain complementary information.  

 

 Flax fibres of the Bolchoï textile variety, organoleptic classification number 66233, cultivated in 

2018, Normandy, France, by the Depestele group, were retted for 6 weeks and then mechanically 

scutched. 

 

3.3.1   SEM 

 A fibre bundle with a thickness of a few millimetres was extracted and glued on the sample holder 

by using conductive carbon tape. A thin gold-sputter coating was performed for 180 s by using an 

Edwards Scancoat Six device, and the sample was successively scanned using a Jeol JSM 6460LV 

scanning electron microscope. Furthermore, observations on other flax bundles were carried out after 

cryofracturing; to induce cryofracturing, several flax bundles, different from those used in AFM and 

SHG, were embedded in agar resin (epoxy resin agar low viscosity resin (LV); Agar scientific UK) and 

placed in an oven at 60 °C overnight to ensure complete polymerisation. Subsequently, the blocks were 

frozen in liquid nitrogen and mechanically broken using hand pliers, with fibres submitted to a pull-out 

phenomenon. The broken sections were successively gold-sputtered and investigated. 

 

3.3.2   SHG 

 To perform investigations using the SHG microscopy technique, flax single fibres and bundles were 

extracted from the Bolchoï fibre batch and mounted on paper support according to ASTM C1557.  

3.2 Materials 

3.3 Methods 
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 The scan line average was set to 8 and 16, the scan velocity was fixed at 1 (fps), and the scan size 

was 512×512 pixels. Before each acquisition, the half-wave plate (HWP) was set parallel to the fibre 

axis, following the previous study presented in Section 2 of this Chapter. Several images in air were 

acquired before adding distilled water between the two coverslips with a pipette and waiting for 5 min 

to saturate the fibres. 

 

3.3.3   AFM in PF-QNM mode 

 Sample preparation 

 To perform the atomic force microscopy examination, another set of bundles embedded in resin 

without using ethanol bath and thus limit embedding resin penetration [143]. The flax bundles were cut 

to a length of less than 5 mm and placed in a flat silicone embedding mould (Polysciences) in the 

transverse direction (Figure III-19), and the surface was prepared by cutting several flax fibres along 

their length to highlight the inner structure. For further details on resin and sample preparation, see 

Chapter II.  

 

 

Figure III-19 Schematic illustrating the sample preparation process for the AFM PF-QNM analysis. Several nearly 
aligned fibre bundles were embedded in agar resin in the transverse direction. The thickness of the steel disc and 
the mounted block are not scaled to present an enlarged view of the fibre bundles. 

 

 AFM measurements 

 The average normal spring constant ranged between 147 and 203 N/m. The obtained tip radius ranged 

between 40 and 55 nm and the image resolution was 512×512 pixels. For further information see 

Chapter II. Different kink-band areas of the fibres were accurately selected and investigated; to design 

the distribution figures of the indentation modulus (IM), data were calculated for each AFM force curve, 

representing between 3,300 and 16,700 points for each image analysed.  
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3.4.1   SEM results in the kink-band area 

 The surface of a bundle of flax fibres was initially analysed using the SEM technique; first, it is 

necessary to define the vocabulary and type of kink-bands investigated here. In the fibre bundle, kink-

bands were present in the entire group of fibres and appeared as a single continuous deficient area 

(Figures III-20a, b), as already reported in the literature [144,137]. In Nyholm et al., a fine description 

of the most common forms of kink-bands is listed [124]; schemes of the kink-band region in a flax fibre 

bundle and elementary flax fibres are depicted in Figures III-20c and 20d, respectively. In the present 

work, kink-bands were distinguished according to their size using the terms type A (TA) and type B 

(TB) for the most and less pronounced, respectively. 

 

 

Figure III-20 SEM micrographs of a flax fibre bundle (a, b), in which all the fibres exhibit kink-bands located in the 
same area indicated by the red circle in (b); schematic representation (c) of a kink-band region in a bundle and 
(d) two different common types of kink-bands in a single fibre; the kink-band regions are indicated in red in (c) 
and (d). 

 

3.4 Results and discussion 
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 Then, the local structure and defects in each type of kink-band were deeply investigated by SEM; 

SEM observations of peeled and cryo-fractured flax fibres and bundles are shown in Figure III-21. The 

significant differences in the organisation and orientation of the cellulose macrofibril network shown in 

Figures III-21c, d and e could suggest that different layers of the fibre are exposed. This observation 

allowed us to hypothesise a distinction of the visible layers by identifying them as primary cell walls 

(PCWs), S1 and G. Indeed, the pattern of the surface of G appeared to have a highly ordered structure, 

which is in agreement with the one defined using almost all the existing models [127]. Regarding S1, 

several studies reported the presence of a crisscrossed network of cellulose microfibrils at a significant 

angle to the axis [86,145].  

 The images obtained in Zhang et al. by using FIB-SEM also suggested the presence of a layer with 

a similar pattern, although each pattern was not attributed to a corresponding layer [138]. This 

crisscrossed cellulose network in the layer expected to correspond to S1 was less visible in the 

micrograph, although it is clearly observable that cellulose orientation is not homogenous                   

(Figure III-21c) or even in the opposite direction (Figure III-21d) than that observed in the G layer 

(Figure III-21e). Nevertheless, both layers of the secondary wall exhibited a deviation in the orientation 

of their macrofibrils in the kink-band region. This deviation occurred with a well-defined angle, 

following the shape of the kink-band (Figure III-21b); it is clearly visible in Figure III-21e with a 

significant local orientation change for G layer macrofibrils. 

 Figure III-21h shows a typical flax fibre after a cryofracture process, with the innermost cell wall 

layers exposed and the lumen (white arrow) clearly observable. The main advantage of investigating 

cryo-fractured fibres is that the fibres' deformation is limited and allows us to examine sections with a 

clean break. It was noted that fractures due to the cryofracture process often occurred in the kink-band 

region, indicating that kinks are the weakest areas of the fibres. Figure III-20f and 21g show a focus on 

kink-bands of Type A and Type B, respectively. Figures III-21i and k show the corresponding inner 

layers of the flax cells where the areas selected are the regions at higher magnification illustrated in 

Figures III-21j and 21l, respectively.  

 The macrofibrils were highly deviated, following the shape of the kink, and all the layers were 

involved up to the lumen in both the TA and TB kink-bands. Figure III-21j highlights that certain 

macrofibrils were detached and less deviated than others, thereby creating cavities (see red arrows) 

between them and the other bundles of macrofibrils. These cavities are numerous and detectable in the 

largest TA kink-bands. On the other hand, inside the TB kink-band illustrated in Figure III-21l, one can 

notice a low number of cavities, probably due to the less drastic deviation of the macrofibrils from their 

natural angle. 

 The impact of the preparation mode and the original existence of these cavities can be debated; to 

better understand the internal architecture of kink-band regions and provide matching elements, the 

following sections aim to explore these areas by SHG and AFM microscopy. 
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Figure III-21 SEM micrograph of a peeled elementary flax fibre (a) and magnified area showing details of the kink-
band region (b); sub-details of this area are given on S1 layer (c), S1/G transition (d) zone and G layer structure 
(e). (h) is a SEM micrograph of a cryofractured fibre broken in the kink-band region, the lumen (white arrow) and 
the inner layers are clearly visible. The images (i, j) and (k, l) correspond to kink-bands type A (f) and B (g), 
respectively. It can be noted that the macrofibrils deviated and followed the shape of the kink-band in all the 
layers. In (j), certain macrofibrils were detached and less deviated than the surrounding macrofibrils, which led 
to the creation of cavities between them (indicated with the red arrows). 

 

3.4.2  Multiphoton study of the cellulosic kink-band architecture 

 Multiphoton microscopy was used to deeply investigate the organisation of cellulose macrofibrils 

within the kink-band area; two different elementary flax fibres were analysed in air and water 

environments; the resulting images are shown in Figure III-22. Autofluorescence and SHG channels 

were separated to better examine the results obtained, and both autofluorescence and second-harmonic 

signals were visible in the two environments. 

 In air, the microfibril angle of the cellulose macrofibrils appears to be interrupted in the kink-band 

area and emits a lower second-harmonic signal, which suggests a lower cellulose organisation compared 

to that in the area of the fibres free of defects, in line with the investigations conducted by other teams 
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[132,146]. The SHG strongly depends on the polarisation angle of the laser, and various SHG signals in 

the kink-bands can be collected by changing the polarisation angle with the HWP; however, the detected 

signals are lower than those in the remaining part of the fibre. 

 Few studies have examined the impact of moisture on the structure and mechanical behaviour of 

elementary plant bast fibres; in fact, the hygroscopicity has been principally studied only when plant 

fibres are used in composites to characterise the final product [147]. Using the small-angle X-ray 

diffraction technique, Astley and Donald noted that the MFA in flax fibres increased from 11° in a dry 

state to 15° in a wet state [87]. 

 

 

Figure III-22 SHG microscopic imaging on two elementary flax fibres (a), mounted in air and water, with the 
signals collected considering the autofluorescence (merge channels of R460/60, T460/60, R550/88 and T550/88 
TND) and SHG channels. The autofluorescence channels 460/60 (blue) and 550/88 (magenta) highlight the lumen 
coupled with the Gn layer, which is primarily responsible for the fluorescence signal, in the middle of the fibre; in 
contrast, the SHG channel shows the second-harmonic emission due to the macrofibrils, and it can be noted that 
the MFA in the air and water environments is the same. The kink-band region, however, exhibits a higher SHG 
emission in water than that in air, due to the more orderly macrofibril network. In (b), a bundle of three fibres, 
two of which are in foreground, immersed in water was investigated at different depth. Kink-bands area show a 
different macrofibril orientation in the SHG channel, as well as the presence of a lumen+Gn layer in the 
autofluorescence channel. 
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 In the present study, one can argue that there is a difference in contrast between the kink-band region 

and the rest of the fibre (Figure III-22a). The dark area between the kink-band and defect-free areas 

was less contrasted in the water environment than that previously observed in air. 

 Toba et al. and Célino et al. examined fibre bundles (wood and flax, hemp and sisal) through XRD 

and Fourier transform infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR) 

[148,149]. In both of these studies, the authors first examined the wet samples and successively the 

dehydrated state, and they found that the crystallinity increased owing to the sorption of water. This 

increase in crystallinity linked with sorbed water was also observed by Nakamura et al., who examined 

cotton by using differential scanning calorimetry and XRD [150]. Nakamura et al. [150], followed by 

Célino et al. [149], suggested that the amorphous phase of cellulose likely became more crystalline with 

moisture. The increase in crystallinity when the fibres were in a wet state likely occurred due to the 

hydrogen bonds that water formed with cellulose or hemicellulose, which broke after dehydration, 

thereby causing relaxation of the cellulose structure and a consequent decrease in crystallinity. 

 The SHG observations in the kink-band areas support the hypothesis that an amorphous region may 

evolve towards a more crystalline region after wetting, resulting in a more ordered structure that led to 

the collection of a higher SHG signal corresponding to a lower contrast (with the remaining fibre). 

However, a second hypothesis for the smaller difference in contrast when considering the fibres mounted 

in water is a partial re-organisation of the macrofibril network, which was previously disoriented during 

the formation of the kink-band and due to the swelling of the fibre.  

 In Figure III-22b, the SHG was used to analyse a bundle consisting of three elementary fibres, two 

of them visible in the foreground and the third one hidden by the two, mounted in water. Here, 4 images 

along the Z-axis were acquired with a step of 8 µm. Measurements were recorded in water. Different 

macrofibril orientations in the SHG channel, along with the lumen+Gn layer on the autofluorescence 

channels, can be observed. On both foreground fibres, the lumen appears progressively, approximately 

in the middle plane of the fibre. This latter phenomenon is highly visible due to the autofluorescence 

channels in blue/cyan (R460/60 and T460/60) and magenta (R550/88 and T550/88 TNDD), which 

highlight the Gn layer around the lumen that follows the shape of the kink-band. This fluorescent signal 

is attributed to the remaining cytosolic fluorescent components or cytochrome components liberated 

after cell death [109,110]. 

 Occasionally, it was observed an accumulation of the fluorescent material at the lumen/Gn level in 

the kink-band region, as shown in Figure III-23, or irregular interruptions of the fluorescence signal in 

this layer along the fibre length, which can be attributed to a localised reduced thickness of the Gn cell 

wall or a localised modification of the composition that can lead to lower fluorescence emission. 

Interestingly, it is possible to note that even this innermost layer deviates following the kink-band.  

The images reported in Figures III-22 and 24 demonstrate the continuity of the lumen along the kink-

band area and allow the detection of darker areas, with less SHG response, throughout the fibre 

thickness. 
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Figure III-23 SHG investigation; in the kink-band area, material accumulation from the Gn layer has occurred. 

 

 This finding demonstrates that the kink-band is not only a volumetric and localised geometric defect 

in the fibre periphery but also in the entire volume of the fibre, including the G and Gn layers. 

 To evaluate the MFA in the kink-band regions, Figure III-24 shows a focus of SHG analysis in the 

bundle and one of the elementary fibres already illustrated in Figure III-22, both mounded in a water 

environment; Figures III-24a and 24b correspond to the TA and TB kink-bands, respectively. MFA 

values are generally included between 0° and 10° in defect-free areas (Section 2 of this Chapter); here, 

with this complementary study, it was observed that stronger deviations exist in kink-band regions, but 

they are mainly not an increase in the helix angle of the microfibrils to the fibre axis but rather an 

additional radial angular offset (Figure III-24). Nevertheless, in connection with the literature, in the 

present study was denoted MFA as the whole microfibril angle between the fibre longitudinal axis and 

the macrofibril orientation. 

 

 

Figure III-24 SHG imaging of a bundles of three elementary flax fibres with two visible fibres in foreground (a) and 
a single elementary fibre (b) mounted in water where TA and TB kink-bands are identified, respectively. The MFA 
is approximately and manually estimated, following the macrofibrillar orientation and taking the fibre axis as a 
reference (blue arrow). The difference in terms of values between TA (a) and TB (b) is clearly observable.   
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 The MFA was manually estimated to range from 6° to 47° and 4° to 17° for type A (Figure III-24a) 

and type B kink-bands (Figure III-24b), respectively. These values are well correlated with the MFA 

reported by Thygesen and Gierlinger [132], who examined hemp kink-bands through Raman 

polarisation.  

 Although the lack of spatial resolution of the SHG microscopy may lead to misinterpretation, it 

allows the in situ investigation of the local MFA, as the macrofibrils are clearly visible in the acquired 

images. In contrast, when the MFA is measured using the X-ray scattering diffraction technique, various 

limitations are encountered: i) the values are deduced by fitting the signals, ii) they are a mean of the 

whole fibre bundle, and iii) MFA < 8°–9° cannot be measured without specific calibration. These limits 

can be overcome using SHG microscopy, as the MFA is directly measured. 

 In this study, variability was noted between the angles of deviation in the large (TA) and small (TB) 

kink-bands, influencing the entire macrofibrillar network. In the type B kink-band, the deviation angle 

of the macrofibrils is lower, and the network is still ordered even inside the kink-band. In contrast, the 

type A kink-band exhibits dark areas in which the network is not detected even when the fibre is mounted 

in water, possibly linked to the presence of detached macrofibrils that create cavities, as previously 

evidenced by SEM observations. 

 

3.4.3   AFM PF-QNM mapping to explore the mechanical properties 

and topography of kink-band areas 

 The micromechanical properties of the kink-band are a crucial aspect. Nevertheless, although several 

papers suggest that kink-bands are the weakest point, structurally or mechanically speaking, relevant 

information regarding the mechanical behaviour of this region compared to that in the defect-free areas 

of the same fibre is not available in the literature. 

The AFM PF-QNM technique and other very similar fast force-distance curve modes can be used to 

evaluate the indentation modulus of plant cell walls at the micro- and nanoscale levels [36,38,39,151–

153]; however, to the best of our knowledge, until now, mechanical information pertaining to the kink-

band areas of bast fibres has not been provided. Although the AFM technique has been applied in other 

fields to investigate kink-bands in collagen [154] and polymeric fibres [155], conventional AFM modes 

have been applied and do not provide mechanical information. 

 Figure III-25 shows two maps of the indentation modulus of kink-band regions in a bundle 

consisting of at least two single flax fibres (Figure III-25a) and an elementary fibre (Figure III-25b). 

In the bundle, three homogenous areas were selected in the kink-band, indicated by blue squares, and 

these areas were considered to calculate the mean indentation modulus inside the kink-band region. In 

addition, four areas (black squares) were selected to calculate the mean indentation modulus in a 

homogeneous area without defects. Similar work was performed in the single fibre kink-band by 
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selecting two areas inside the kink-band (red squares) and three areas outside (black squares). All the 

regions of interest were carefully selected in the areas of the image that showed no evidence of 

accumulated material or roughness generated during the sample preparation, especially during the 

cutting step with the ultramicrotome. 

 

 

Figure III-25 Indentation moduli of a bundle consisting of at least two flax fibres (a) and of a single fibre (b) cut 
along their length and with a well-defined kink-band area; the blue and red squares represent the areas used to 
calculate the mean indentation modulus inside the defects, and the black squares represent the areas used to 
calculate the mean indentation modulus in the defect-free area. The graphic on the right represents the frequency 
distributions of the calculated indentation modulus in fibre and bundle. Approximately 7,000 and 24,800 
measurements points were used for the kink-band region and defect-free areas, respectively. 

 

 A small difference is observed in the indentation modulus calculated on the defect-free areas of the 

two fibre elements, approximately 6.2 GPa for the bundle and 7.3 GPa for the elementary fibre (mean 

indentation modulus calculated using these and other images not shown in this study: 6.9 ± 1.2 GPa), 

which could be due to a difference in the MFA or the cutting angle. In all cases, the indentation modulus 

distributions of the kink-band region and the region without defects are similar, with values of 

approximately 6.8–7.0 GPa for the kink-band areas (mean indentation modulus calculated using these 

and other images not shown in this study: 6.5 ± 1.5 GPa).  

 The small difference likely occurs as the topography is considerably more inhomogeneous inside the 

kink-band and affects the values of the indentation moduli. If two neighbouring points with the same 

indentation modulus have a marked difference in the topography at the scale of the tip radius, their 

indentation moduli are expected to be underestimated or overestimated due to an erroneous, implicitly 
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used contact area in the indentation stiffness formulae [48,156]. The fact that the indentation modulus 

is similar in all areas, while the apparent MFA measured by SHG is not the same, could be mainly 

explained by the fact that the measured surface is parallel to the microfibril direction and their rotation 

in the kink-bands is in this plane. 

 

 

Figure III-26 Topography images (a) in the kink-band region of Figure III-25a with a focus on two areas (white 
dashed squares) in (b) and (c); (d) 3D topography of the same area presented in (c) where a system of crest-
depression is identified inside the kink-band region with red and blue arrows. (e) Topography of the single fibre 
showed in Figure III-25b and (f) the associated 3D topography where the same crest-depression system already 
noted in the bundle is observable (blue and red arrows). 

 

 Figure III-26a shows the topography of the bundle, and specific areas analysed in detail are indicated 

with white dashed squares. Figures III-26b, c show the details of the area affected; the kink-band 

topography exhibits a particular morphology corresponding to a transition region, which involves 

depression of the cell wall alternated by a crest-like structure, as illustrated in the 3D topography   

(Figure III-26d) and indicated by blue and red arrows, respectively. Similar morphology was also 

observed in Figures III-26e, f, which show the topography and the 3D of the single fibre previously 

analysed in Figure III-25b. 

 This particular crest-depression system seems to be a specific feature of TA kink-bands. However, 

the hypothesis that it can be attributed to a pull-out phenomenon occurring during the cutting of the 

sample with the diamond knife cannot be completely ruled out due to the greater misalignment of the 

microfibril with the cutting direction. 
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Figure III-27 SHG microscopic image of a kink-band in a bundle of flax fibres; the transition zone with a crest (red 
arrow) and depression (blue arrow) identified in the AFM topographic images is assumed to be in morphological 
contrast to the SHG analysis. Fibre bundle mounted in water. 

 

 The crest-depression structure can be correlated with the image of the bundle obtained using the SHG 

microscopy technique (Figure III-27), in which certain folds are visible. In contrast to SHG microscopy, 

which performs measurements within the core of the fibre, AFM measurements are performed at the 

surface of the fibre cut in two parts along its length, albeit above or below the lumen. It was assumed 

that the structures observed in the AFM likely resulted from the cutting of the kink-bands. Nevertheless, 

the crests in the AFM could correspond to the area with the most misaligned macrofibrillar network in 

the SHG. 

 

 Through this study, a set of structural and mechanical information was obtained using three different 

techniques. In TA kink-band areas, heterogeneous zones located in the transition zones between kink-

band and defect-free areas were highlighted by SEM (Figure III-21j) and confirmed with SHG and 

AFM observations. In these regions, there is no or very poor SHG emission signal (Figure III-27), 

indicating a more disordered structure. These observations are in line with literature assessments and, 

in particular, with the hypothesis of Zhang et al. [138], where the authors noted that the kink-band region 

included a main cavity consisting of several voids assembled and separated by membranes, also 

associated with the presence of small pores regrouped in the area close to the kink. By using AFM, it is 

possible to further explore these defect regions inside the kink-band zone. 

 According to this goal, Figure III-28a shows the same bundle of Figures III-25a and 26a-d, with 

the areas analysed in detail represented by white dashed squares.  

 

3.5 Kink-band areas, a complex and sensitive structure 
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Figure III-28 Indentation modulus of several areas at different scales of the flax fibre bundle and kink-band area: 
(a) whole bundle and areas investigated (white squares); (b) and (c) focus on one of the central defects and (d) 
focus on the macrofibrils network; (e) and (f) other defects in the fibre on the right, which highlight a well-ordered 
network of macrofibrils in the transition zone. 

 

 In Figures III-28b-d, inhomogeneities at the transition zones located at the limit between the kink 

band and the defect-free areas are clearly highlighted. Macrofibrils have a highly ordered structure in 

the depression regions, even though they are deflected with a well-defined angle; however, at the top of 

the crest, the macrofibrillar network appears less ordered, and it is impossible to distinguish the single 

macrofibrils from each other (Figures III-28b, e and f).  

 The cavities that alternate with the crest-like inhomogeneities may suggest a weaker point at which 

the stress during tensile loading may accumulate until failure [157]. The observations made here on a 

TA kink-band contrast with the much smaller defects and cavities observed on the TB kink-band    

(Figure III-29). This observation can support the hypothesis of Aslan et al. [136]: the large kink-bands 

are likely the areas where failures begin because they exhibit the most considerable heterogeneities. The 

indentation modulus maps shown in Figures III-28b-d indicate that, in some cases, a discontinuity may 

occur between macrofibrils, which may result in a break with the lines having a lower indentation 

modulus. In the topography, these lines, which appear as a detachment between the macrofibril bundles, 
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correspond to small depression regions, as observed in the SEM micrographs presented                                   

in Figures III-21i, j. 

 

 

Figure III-29 Topography and indentation modulus acquired using the AFM PF-QNM technique, by analysing 
another small kink-band region in the same fibre bundle as that examined in the study. The kink-band region is 
highlighted as a red line and through white arrows in the topography and indentation modulus map, respectively. 

 

 Therefore, the kink-band areas show more or less disordered structures depending on their 

morphology, with sometimes marked cavities resulting from the deformations at the origin of the 

formation of kink-bands. The latter also leads to very significant changes in the local MFA values, as 

shown by SEM and SHG (Figure III-21e and 24). Nevertheless, cell wall mechanical properties are 

little affected, regardless of the considered area and the kink-band type (Figure III-25a, b and 29).  

 Thanks to these analyses, it was possible to measure the G transverse indentation modulus ranging 

from 6.2 to 7.3 GPa, which includes both kink-band and defect-free areas; these values are significantly 

lower than the local longitudinal indentation modulus obtained by Arnould et al. by using AFM in PF-

QNM mode [39], confirming the highly anisotropic structure of fibres [82]. Here, AFM PF-QNM 

measurements can be used to directly determine the transverse indentation modulus of flax cell walls. 

Our results are well correlated with the direct measurements obtained by nanoindentation on wood [33] 

or sisal and hemp [82] but are more reliable due to the large number of measurement points (between 

11,800 and 20,000 points for each image) and the method of sample preparation, which allows direct 

testing of the cell wall. Considering wood cell walls and by tilting the fibres to estimate their different 

stiffness tensor components, Jäger et al. [106] calculated the transverse indentation modulus of spruce 

wood cell walls to be 6.02 ± 0.38 GPa, which is in accordance with the presented values, given the 

difference in the chemical composition and MFA. 

 Therefore, the kink-band areas exhibit (almost) unchanged G cell wall mechanical performance 

compared to defect-free zones but an altered ultrastructure, whether in terms of porosities or MFA 

changes, suggesting that they appear after the cell wall structuration and explaining the differences in 

mechanical behaviour observed on fibres with a large number of defects [133,135]; the cavities can also 
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lead to easy-going breaks, as observed after cryofracture (Figure III-21h), the ruptures occurring 

preferentially in the kink-band areas. This is also the case when flax fibres are mixed with a 

thermoplastic matrix [74]. It is important to keep in mind that the properties estimated through AFM 

PeakForce are local properties, which in this study were measured in homogenous areas                         

(Figure III-25) and below the scale of the cell wall; by definition, the stiffness of cavities cannot be 

estimated, even if this latter could have an impact on the mechanical properties or behaviour of the 

whole fibre element. 

 

 The use of three different techniques with different resolutions raises questions about the nature of 

the objects measured in each case. Several models for the ultrastructure of plant fibres have been 

reported in the literature. However, conclusions are sometimes contradictory when describing the 

hierarchy from a fibril to the fibre bundle in terms of the elementary unit with the relative diameter 

[158–160] and when describing the ultrastructure of a single elementary fibre and the cellulose 

microfibril orientation inside the layers [7,127,105,161,162]. 

 In the classical attribution currently used in biology [163], several glucan chains (18–40 units) 

constitute a single elementary fibril of crystalline cellulose, and several elementary fibrils are regrouped 

in a structure known as a microfibril, which has a diameter of a few nanometres [164–167]. Despite the 

disagreement pertaining to the smallest unitary fibril structure and the terminology (for instance, the 

term “elementary fibril” is often used to indicate a microfibril), it is generally accepted that microfibrils 

have a diameter ranging from 2 to 4 nm [130,131,145], although some researchers have reported on 

microfibrils having a diameter of approximately 20 nm for certain plants [167,168]. Nevertheless, this 

aspect is irrelevant for our results, and furthering this debate is beyond the scope of this study. 

 In contrast, it has been confirmed that several microfibrils are grouped to form bundles named 

macrofibrils (or mesofibrils). These structures have been examined using several analytical techniques, 

such as AFM, SEM or transmission electron microscopy (TEM), and it has been noted that they have a 

diameter ranging from 14 to 200 nm [128–130]. 

 Furthermore, the SEM, SHG microscopy, and AFM techniques can help to understand the hierarchy 

between the micro/macrofibrils and the relationship with the MFA. Figure III-30 shows the comparison 

between the three techniques used to investigate the thickness of the micro/macrofibrils, and the 

corresponding results are shown in the graphics on the right. SEM microscopy can resolve the elements 

at the nanometre scale, and a single fibrillar unit (profile in white) has a thickness of approximately     

150 nm, typical of macrofibrils. 

3.6 Three investigative techniques but also three scales of 
measurement; what are the cell wall elements 
measured? 
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Figure III-30 SEM micrograph, SHG image and topographic map obtained using the AFM PF-QNM. The images 
are compared to measure the fibril diameter. The grey value in the Y-axis of the SEM and SHG profiles indicates 
the brightness of the pixels in the image. 

 

 In contrast, SHG microscopy exhibits bands with a thickness of approximately 1.0 µm, which is 

extremely large. However, since the SHG response depends on the order and geometry of the structure, 

the signal is likely the result of a whole separate bundle of macrofibrils. 

 AFM has the highest resolution compared to the other techniques used in this study, and can correctly 

resolve an object of a few nanometres [128,129,169]. The smallest fibril structure examined in this study 

has a size range of 40–60 nm (Figures III-30-32); however, in the literature, microfibrils have been 

defined to have a diameter of approximately 4–10 nm. In addition, the tip of the AFM probe has a finite 

dimension that leads to the well-known ‘dilation or convolution effect’ [170,171], i.e., the size of an 

isolated object measured by AFM is enlarged by the size of the tip diameter. Moreover, the microfibrils 

may be embedded or coated with a slight layer of the cell wall matrix, making them appear larger than 

they are. In this study, the tip radius ranges from 40 to 55 nm; consequently, the size of the objects 

measured is comparable to that of the microfibrils, in line with the findings of Donaldson [130].                    

In particular, Donaldson reported that the smallest microfibril found in the wood had a diameter of         

14 nm; the measurements were performed using field emission scanning electron microscopy (FESEM), 

which, in this case, can resolve objects of a few nanometres, similar to the AFM technique. 

 Thus, AFM confirms its potential use as a powerful structural investigation tool. In Figure III-32,   

6 microfibrils are grouped to form a single macrofibril visible from the drawn profile traced. The 
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microfibrils, as well as the associated macrofibrils, are well distinguishable on the image of topography 

and the corresponding profile. 

 

 

Figure III-31 Topography of the area selected in Figure III-28d after image processing for the local contrast to 
clearly highlight the bundles. The profile line (white) is shown in the graphic on the right, and 6 microfibrils can 
be identified (red arrows). The dotted lines indicate the edge of certain macrofibrils. 

 

 

Figure III-32 Topography of a small area selected from Figure III-28f; two profiles are considered to measure the 
microfibril diameter. 

 In the present section, cutting-edge techniques, such as AFM PF-QNM and SHG, were combined to 

study the structural and mechanical properties of flax fibre kink-band regions. SEM analysis was also 

performed to consolidate and provide additional understanding elements. The main conclusions of this 

integrated study are as follows: SEM and AFM investigations evidenced the presence of cavities in large 

kink-bands, which was supported by a low SHG signal, proving a deficiency of crystalline cellulose or 

a simply more disordered network in these specific zones after the formation of the kink-band. 

  

 In kink-band areas, strong deviations of MFA were visually highlighted with the three techniques. 

SEM exhibited significant MFA evolution in the G layer, and these observations were quantified through 

3.7 Conclusions 
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SHG imaging; interestingly, these changes were more pronounced in TA kink-bands (6°–47°) than in 

TB kink-bands (4°–17°). 

Despite its deviation, continuity of the lumen in areas affected by kink-bands was demonstrated through 

SHG and AFM observations, which suggests that the kink-band also involves the inner structure of the 

cell. 

 Deep mechanical characterisation of kink-band transverse stiffness was addressed using AFM in          

PF-QNM mode; no substantial differences were observed between the kink-band and defect-free 

regions. 

 This original combination of techniques may give rise to a debate on the size and nature of the objects 

measured, which is different according to the tool used, from nanofibrils through AFM to aggregates of 

macrofibrils by using multiphoton microscopy. 

 The elements provided in this section contribute to a better knowledge of these areas of defects; using 

an integrated approach, relevant information was obtained on the MFA in this specific zone; more than 

just the cell wall mechanical properties, weakness of kink-band areas is attributed to defects in local 

structure, inducing an easier rupture under stress. The present work does not pretend to be exhaustive. 

In future work, it would be interesting to widen the panel of defects studied by focusing on their origins. 

Indeed, environmental conditions, abiotic stress during growth or the process of fibre extraction can also 

influence the shape and morphology of the kink-band region. 
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Flax has a long and fascinating history. This plant was domesticated around 8,000 BCE [1], in the 

Fertile Crescent area [2], first for its seeds and then for its fibres [1,3]. Although, its uses existed long 

before domestication, residues of flax yarn dated 30,000 years ago have been found in the Caucasus area 

[4]. However, it is Ancient Egypt which laid the foundations for the cultivation of flax as a textile fibre 

crop [5]. Today, flax fibres are used in high-value textiles, as well as natural actuators [6] or 

reinforcements in composite materials [7].  

Flax is therefore a bridge between ages and civilizations.  

 The most beautiful fabric pieces of flax date from Ancient Egypt (Figure IV-1), their highly-

preserved state a result of their optimal conservation over millennia in coffins or tombs with remarkably 

stable moisture and thermal conditions, as well as sheltering from UV light. Flax textiles were 

particularly prized by the Egyptians because of its comfort and the fineness of its fibres [8].  

 

 

Figure IV-1 Examples of the uses of flax in ancient Egypt. Child’s vest with dyed blue edges, 800–720 or 700–540 

BCE (a); Mummy of man with flax agglomerated and stuccoed fabric, 332–30 BCE (b); Flax hypocephalus, 305–
30 BCE (c); Fragment of flax shroud, 1550–1295 BCE (d); Hairnet cap, AD 5th or 6th century (e); Unspun flax hank, 

1420–1230 BCE (f) and Mortuary linen, 2140–1976 BCE (g). Objects c and d are exposed at the British Museum 

(London–UK); a, b, e, f and g are exposed (b) or in the store room (a, e, f and g) at Le Louvre Museum (Paris-F). 
All images are from the authors’ personal collection. Images of a, e , f and g objects were obtained with the 
specific permission of Le Louvre Museum. 

1. Lessons on textile history and fibre durability 
from a 4000-year-old Egyptian flax yarn  

1.1 Introduction 
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 Flax was widely used for clothing (Figure IV-1a) and in the fishing sector for work clothes, felucca 

sails and nets. The funerary uses included mummy strips (Figure IV-1b), funeral linen (Figures IV-1c, 

d, g) as well as ornaments (Figure IV-1e). In terms of cultivation, the fertile Nile valley with its light 

and rich or sandy soils was particularly suitable for flax. After growing, the stems were pulled out, as 

shown in illustrations found in the tomb of Sennedjem (Deir el Medineh, Egypt) and then probably 

water-retted. Over the past century or so, growth conditions have changed and varietal selection has 

significantly increased the crop's fibre yields [9]. It is therefore difficult to compare varieties across the 

ages.  

 Even so, an in-depth study of 407 flax genotypes of different origins has shown that regions that have 

been the centre of origin of the crop, such as the Mediterranean or Abyssinia, highlight haplotypes that 

are more unique than the temperate group and are representative of oil-seed plants [10]. According to 

Braun [11], the flax found in the lake dwelling does not belong to the species now cultivated (Linum 

usitatissimum L)  but to the Linum angustifolium which is not cultivated at the present time. Today’s 

cultivated flax Linum usitatissimum L. is considered as being domesticated from the wild progenitor 

pale flax Linum angustifolium Huds. Both have phenotypic characters of great heritability, and are 

distinguishable by several characteristics, such as the length and width of petals, size of seeds, colour 

and shape of the flower, height of plants but also the number of days until emergence from the soil or 

flowering [12]. However, the height of the plants shown on the Egyptian bas-reliefs [13] as well as the 

size of the seeds found during excavation [1] suggests that the species cultivated by the Egyptians were 

morphologically close to those we know today. 

 For several decades, the development of non- or micro-destructive analysis techniques has led to 

numerous works on the conservation of ancient textiles. Non-destructive methods such as optical 

microscopy [14], or vibrational techniques [15,16] have been largely used to investigate archaeological 

textiles, principally to evaluate their degradation mechanisms and state of conservation. Vibrational 

spectroscopy studies can now benefit from synchrotron radiation [17] as well X-ray diffraction (XRD) 

measurement in the archaeometric study of historical textiles [18,19]. Conservation of mechanical 

performance and the ultrastructural differences between ancient and modern flax varieties have not been 

examined thus far. 

Here, in order to assess the quality and durability of ancient flax fibres and relate this to their 

processing methods, the morphological, ultrastructural and mechanical characteristics of a yarn from an 

Egyptian mortuary linen, dating from the early Middle Kingdom (Eleventh dynasty,                                        

ca. 2033–1963 BCE) were examined and compared against a modern flax yarn. Advanced microscopy 

techniques, such as nano-tomography, multiphoton excitation microscopy and atomic force microscopy 

were used. Our findings reveal the cultural know-how of this ancient civilization in producing high-

fineness fibres, as well as the exceptional durability of flax, which is sometimes questioned, 

demonstrating their potential as reinforcements in high-tech composites. 
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 Two samples of flax yarns were studied (Figure IV-2), an ancient and a contemporary sample, 

referred to as old and modern flax, respectively, in the manuscript. The large linen tabby, bordered with 

a fringe (inv. E 13595, Figure IV-2a) was given in 1929 by Georges Daressy, former General Secretary 

of the Antiquity Service in Egypt, to the Louvre Museum (Paris, France). Its provenance is unknown 

but this piece of shroud most likely came from a tomb, because all the textiles of ancient Egypt were 

found in cemeteries. These cemeteries were located in the desert in order to ensure dryness and optimal 

conservation of the burials. Indeed, in the valley, the annual flooding of the Nile was too risky. Thus, 

the Egyptian climate of the desert areas, which was exceptionally dry and favourable to the proper 

conservation of organic materials, made it possible to find many fabrics in excellent condition.  

 The linen was radiocarbon dated in 2009 (Laboratoire de Mesure du Carbone 14, CEA-Saclay,        

Gif-sur-Yvette Cedex, France): it had been harvested between 2140 and 1976 BC (with 95.4% 

probability), during the 9th, 10th or 11th dynasties, a period known as the First Intermediate Period and 

the beginning of the Middle Egyptian Kingdom. Morphological characteristics of the ancient yarn were 

calculated from mass measurements and from image analysis. The linear density and twist of this old 

yarn are 122 tex and 180 tpm, respectively. In addition, a contemporary yarn was used (Figure IV-2b). 

It was produced from textile flax (Melina variety) cultivated in 2018 in Normandy (France) by Teillage 

Saint-Martin company; this flax was dew-retted conventionally over 6 weeks and then scutched and 

hackled [20]. Then, it was wet spun by Safilin Pionki (Poland) with a linear density and twist of 105 tex 

and 320 tpm, respectively. 

 

 

Figure IV-2 Samples used for yarn sampling. Mortuary linen, 2140–1976 BCE (a) and spool of yarn, 2019 AD (b). 
The yarn collected is indicated by an arrow in (a). Images of an object was obtained with the specific permission 
of Le Louvre Museum. 

1.2 Materials 
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1.3.1   SEM observations 

 For each of the two yarns, a sample of a few millimetres was used. A Jeol JSM 6460LV scanning 

electron microscope was used to analyse the flax yarns; secondary emission electrons were used, and 

the accelerating voltage was 3.0 kV. They were glued to a sample holder using a conductive adhesive 

and then metallized with a thin layer of gold using an Edwards Scancoat Six device for 180 s. 

 

1.3.2   Multiphoton microscopy 

 Sample preparation 

 An elementary fibre of the modern yarn was extracted and mounted on paper support commonly 

used for tensile tests according to ASTM C1557 and fixed with universal glue. The sample prepared 

was placed between two coverslips and scanned. In contrast, the preservation state of the Egyptian yarn 

does not allow to extract elementary fibres, which are more brittle, so a whole collective of less than      

1 cm was mounted on paper support commonly used for tensile tests but glued in the horizontal direction 

in order to use the aperture of 5 mm. The sample prepared was placed between two coverslips and 

scanned by the multiphoton microscope. The samples were mounted at 90° to the initial laser 

polarisation position.  

 Parameters 

 The half-wave plate was rotated to change the laser polarisation angle until to reach the maximum 

intensity SHG signal of both flax yarns (maximum signal reached 2°–3°). The maximum laser power 

percentage used was 2% for the Egypt yarn and 5% for the modern yarn to avoid the bleaching of the 

surface. Both autofluorescence and SHG signals were collected by GaAsP NDD (gallium arsenide non-

descanned) detectors. The scan line average was 16, the scan velocity was fixed at 1 (fps) and the scan 

size was 512x512 pixels. All the measurements were performed at room temperature and dry ambient.  

 

1.3.3   X-ray tomography measurements 

 The yarns’ microstructure was characterised using X-ray nanotomography. Image acquisition was 

realised on an EasyTom RX Solutions micro/nano tomograph (RX Solutions, Chavanod, France). A 

Lanthanum hexaboride (LaB6) filament was used as cathode with a voltage of 50 keV and a current of 

100 µA, leading to a resolution of 0.5 µm. The anode was in beryllium and has a thickness of 0.5 mm. 

1.3 Methods 
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Resolution of the micro-CT images was set to 4.44 μm/pixel. The imager used was a Fluoroscopic High 

Speed imaging sub-system PaxScan 2520DX and the scintillator was produced with a direct deposition 

of Cesium Iodide (Csl).  

 To obtain optimum measurement contrast, the framerate has been set to 0.25 fps. In addition, in order 

to minimize the measurement noise, each projection obtained was the result of the averaging of                 

15 acquisitions. Finally, in order to obtain the most faithful reconstruction possible, the flax fibers were 

measured in 1440 different positions (angles). The yarn centering was carried out using a perforated 

carbon tube. The tube outside diameter was 1 mm and the inside hole diameter was 0.5 mm. A little bit 

of glue was used to maintain the yarns. The measured volume was 0.5 mm in diameter over a height of 

0.8 mm with a resolution of 500 nm.  

 In order to allow maximum beam stability from the start of the measurement, the wire was preheated 

3 hours before the start of the measurement. In total, each measurement therefore lasted approximately 

27 hours. An X-ray radiograph is given in Figure IV-3a to illustrate the measurement (the yarn is hardly 

perceptible). The reconstruction was carried out using Xact software using the filtered back-projection 

method. For the noise filtering, the apodization was done using a sine window with a threshold of 75% 

for the low pass filter. For the border filter a Tukey window type was used with a non-filtered area of 

46%. For more information on filters and the effects of reconstruction filter on CBCT image quality see 

[21]. Once the reconstruction has been carried out, the result is stored in the form of a slices stack.  

 An illustration is given Figure IV-3b. Finally, the analyses and reconstruction of surfaces were 

carried out using the VGSTUDIO MAX software as illustrated on Figures IV-4a and 4b at two different 

scales. 

 

 

Figure IV-3 Tomographic protocol. Example of X-Ray radiograph on the modern yarn: in Z direction (a) and a slice 
after reconstruction in Y Direction (b).  
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Figure IV-4 Yarn after volume reconstruction at overall (a) and local (b) scale. Nano Tomographic images were 
acquired from a measured volume of 0.5 mm in diameter over a height of 0.8 mm and each projection obtained 
was the result of the averaging of 15 acquisitions.  

 

1.3.4   Nano-mechanical investigations 

 Sample preparation 

 A subsample of less than 1 cm was cut from the ancient flax yarn (Louvre) and modern flax yarn 

samples and prepared as reported in Chapter II.   

 In Figures IV-5a, b are reported the topography of an elementary fibre from the ancient flax yarn 

and the topography of a bundle from the modern one. 

 

 

Figure IV-5 A good flatness of the images is observed; a more heterogeneous zone appears at the level of the 
cortical residues for modern flax (b); the structure and the constituents of these regions are different from those 
of the fibres which can lead to disturbances during cutting. In (a) a single flax fibre can be seen, while in (b) a fibre 
bundle can be identified. The fibre bundle consists of individual plant cells (fibres) connected by the middle lamella 
(dark lines). In the lower-left part of the picture, remains of the parenchyma can be found. Two to three different 
areas of each sample (old and modern respectively) were measured to obtain a better statistic.  

 

 Nanoindentation parameters 

 Preliminary to the atomic force microscopy measurements, nanoindentation measurements with a 

Nanoindenteur XP (MTS Nano Instruments, Oak Bridge, Tennessee, USA) used at room temperature 

and equipped with a three-side pyramid indenter (Berkovich-Berko XPT-12761-0) were used to evaluate 
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the indentation modulus of the samples. Once the indenter touched the surface, the strain rate was set at 

0.05 s-1 (i.e., 1 µN/s) during loading to reach a depth limit of 120 nm. The load was held at the maximum 

value for 60 s and then the withdraw was done with the same loading rate up to 10% of the maximum 

load. The Poisson’s ratio was set to 0.  

 

 AFM PF-QNM investigations 

 The range of the stiffness of the cantilevers used was between 109 and 161 N/m and the tip radius 

between 15 and 30 nm at the beginning of the measurements.  

The Poisson’s ratio used was set to 0 as the tested cell walls are anisotropic, thus the modulus measured 

is the indentation modulus. The maximum fast scan velocity was selected at 8 µm/sec and the image 

resolution set to 512x512 pixels.  

 Two to three different areas of each sample (old and modern respectively) were measured to obtain 

a better statistic but only one representative area for each sample is reported here (Figures IV-5 and 6). 

Figure IV-5 shows the topography images corresponding to the investigated areas. To obtain the 

indentation modulus values, the entire surface of the G (or S2) cell wall layer of each fibre was selected; 

indentation modulus data were automatically calculated for each point from the force-distance curves 

with a DMT contact model using NanoScope Analysis software (Bruker, Billerica, Massachusetts, 

USA). 

 Consequently, for each sample, the indentation modulus calculated were obtained from two or three 

separate images and from between 80,000 and 140,000 points for each image. Figure IV-6 shows the 

calculation mask, covering the investigated area. For each sample, histograms were plotted and 

represented the data obtained from all the images analysed; 206,613 and 364,575 AFM force curves 

were used for old and modern flax indentation modulus calculation, respectively. 

 

 

Figure IV-6 Data treatment of AFM PF-QNM investigations. The purple mask represents the areas used to collect 
the data. Similar calculations were performed on the other images for modern and old yarn. Two to three different 
areas of each sample (old and modern respectively) were measured to obtain a better statistic. The indentation 
modulus calculated were obtained from two or three separate images and from between 80,000 and 140,000 
points for each image analysed. 
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1.3.5   FTIR-ATR spectroscopy  

 Sample preparation 

 A small subsample of around 5 mm from both the modern and the ancient flax yarn were directly 

analysed with a FTIR-ATR spectroscope.  

 Parameters 

 Spectra were acquired at room temperature with a Vertex70v vacuum Fourier Transform Infrared 

spectrometer (Bruker, USA) equipped with a DLaTGS detector, a KBr window, the KBr beamsplitter 

and an Attenuated Total Reflection golden gate accessory (germanium cell). Spectra were acquired in 

absorbance mode with a spectral resolution of 4 cm-1 and in a range from 4000 to 600 cm-1. 

 Both spectra from modern and old yarns were acquired with an accumulation of 64 scans after the 

background subtraction of a spectrum “in air” with OPUS software (Bruker, USA). The acquisition 

range was from 500 to 4000 cm-1. The spectra were elastic baseline corrected and unit vector normalised 

using Opus software (Version 7.5).  

 

1.3.6  XRD investigations 

 Wide-angle X-ray diffraction (WAXD) measurements were performed under ambient conditions on 

a Siemens D500 diffractometer CuKα radiation. Scans were collected from 2θ = 5 to 60° with step size 

of 0.03° at 4 s/step. The beam was directed perpendicular to the fibre yarn length. 

 Crystallinity was calculated using Eq. IV-1, where Itot is the intensity at the primary peak for cellulose 

I (at 2θ = 22.5°) and Iam is the intensity from the amorphous portion evaluated as the minimum intensity 

(at 2θ = 19.0°) between the primary and the secondary peaks (see Figure IV-11). 

              C =  
Itot−Iam

Itot
 ×  100          (Eq. IV-1) 

1.3.7  NMR analysis 

 NMR investigations were performed on modern and old yarns according to the protocol described in 

[22]. Solid state 1H/13C CP/MAS NMR experiments were performed on a Bruker Avance III 400 MHz 

spectrometer with a 13C frequency of 100.62 MHz by using a double resonance H/X CP/MAS 4 mm 

probe. The cellulose cell wall crystallinity was calculated by dividing the area of the four peaks of the 

crystalline region by those of the seven peaks for the cellulose C4 region. The lateral dimensions of the 

fibrils (LFD) and the lateral dimensions of the fibril aggregates (FLAD) were then estimated using a 

square model of a cross-section of cellulose microfibril. This analysis is based on the total cellulosic 

surfaces of amorphous cellulose and a microfibril model with cellulosic chains 0.57 nm wide [23]. 
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1.3.8  Statistical analysis 

 A t-test was performed to quantify the statistical differences in fibre diameters and indentation 

moduli values between the old and modern fibres. P value was calculated for the two cases, with 

significance level α = 0.05. 

 Figures IV-7a and 7d compare the overall architecture, observed by SEM, of old and modern flax 

yarn, respectively. Despite a lower level of twist (about 180 turns per metre (tpm) against 320 tpm for 

the modern flax), the old flax possesses a similar metric number (about 122 tex or 8.2 km/kg), showing 

the mastery of the Egyptians in manual spinning.  

 Figure IV-7b reveals the level of individualisation of the fibres. In the flax stem, fibres are 

aggregated in cohesive bundles made of several tens of fibres, the latter being more or less divided after 

retting and extraction stages. The old yarn is mainly made up of elementary flax fibres; the residues of 

cortical parenchyma and middle lamellae are very few. This demonstrates the effectiveness of the water-

retting process utilised at the time as Pliny the Elder explained [24]. Water-retting enables homogeneous 

retting and, when it is well executed, enables the production of very fine fibres. One can notice that the 

low fibre yield in ancient flax varieties can also lead to easier retting and fibre division [25]. 

 In modern flax fibre extraction processes, stems undergo field retting over several weeks. Dependent 

on natural weather conditions, this can lead to retting heterogeneity. As a consequence, numerous 

residues of pectic intermediate lamellae or cortical parenchyma are visible on the modern flax yarn 

(Figures IV-5b and 7e, h). Such residues increase roughness of the yarn and are detrimental to the 

sensation of comfort (e.g. softness). This is in contrast to the reputation of Egyptian flax fabrics, whose 

most beautiful specimens were reserved for members of high society. These observations validate the 

important know-how of ancient Egyptians in textile manufacturing. The scanning electron micrographs 

(Figures IV-7a, b) also reveal the excellent general conservation of the ancient fibrous yarns.  

 Figures IV-7g and 7h present cross-sections of the old and modern yarn observed in nano-

tomography and Figure IV-7i illustrates the analysed distribution in elementary fibre diameters for the 

two materials. The mean diameters are 14.3 ± 3.3 m for the fibres in the old yarn (n = 523) and 

17.6 ± 3.6 m for the modern yarn (n = 208); both diameter values are consistent with typically reported 

values on flax fibres [26]. A significant difference in elementary fibre diameters is observed and 

confirmed by a student test with P ≤ 0.001. The smaller diameters of old flax may be related to the plant 

variety, the weather conditions during growth (hydric stress, for example) [27], and/or even the sampling 

area within the stem, with larger diameter fibres being generally located in the middle section of the 

stem height [28]. The retting method utilised may also explain the differences and scatter in elementary 

fibre diameters between the old and modern flax yarn (Figure IV-7i). 

1.4 Results and Discussion  
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 The use of water-retting for the old flax yarn, leads to completely separated fibres and free from 

surface residues (Figure IV-7b). This further demonstrates the skill of the ancient Egyptians in 

obtaining fine yarns and textiles. However, it is not possible to exclude that the ageing process can also 

lead to degradation of these pectic residues, contributing to separate the fibres. 

 

 

Figure IV-7 Scanning electronic microscopy and nano-tomographic images of modern and 4000-year-old flax. 
Overview of yarn (a, d) and fibres within the yarns (b, e); Tomographic overview of fibres highlighting the larger 
lumen size for old flax (c, f) and tomographic yarn cross-section showing the lower diameter of old flax fibres (g, 
h). Histograms (i) present the distribution of single fibre diameter for both old and modern flax. For SEM, at least 
5 areas were investigated; nano-tomographic images were acquired from a measured volume of 0.5 mm in 
diameter over a height of 0.8 mm and each projection obtained was the result of the averaging of 15 acquisitions.  

 

 Differences are also visible in the size of the lumens, with SEM and tomographic images            

(Figures IV-7c, f, g and h) showing larger ones for old flax fibres. While the lumens of modern flax 

fibres represent only a few percent of the total surface area [29], here, old fibres possess lumens of the 

order of 30–40%, comparable to wood or coconut fibres [29]. It is possible to speculate that these low 

wall thicknesses of old flax may be due to a premature halt in the cellulose filling process of the cell 

walls following the intrusive growth phase [28]. This filling can be interrupted by extreme weather 

conditions, such as lodging or marked periods of hydric stress [30]. The artificial selection over the 

centuries may also be responsible for changing the shape of the fibre cells and their current diameter.  
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 Flax fibres are characterised by their multi-layered structure and their generally polygonal shape, as 

well as by the presence of structural defects known as kink-bands [31], distributed along the fibre length.  

Notably, the relative quantity and size of these kink-bands is particularly large on old fibres                  

(Figure IV-7b, Figures IV-8a, b) in comparison to modern fibres (Figures IV-8d, e). The origin of 

these defects is not well known but the plant fibre community generally attributes them to mechanical 

stresses induced during the extraction or processing of the stems, but also to residual stresses that may 

be released during periods of stem or fibre drying, possibly during the retting stage [31,32].   

 

Figure IV-8 Focus on kink-band (defect) regions in the fibres. Scanning electron microscopy images showing 
differences between kink-bands structure and intensity in old (a, b) and modern (d, e) flax. SHG microscopy 
observations highlighting the local disorganisation of cellulose macrofibrils in the kink-band region (dotted grey 
line) for old flax (c) compared to modern flax (f). For SEM and SHG, at least 5 areas were investigated and the 
most representative images selected for publication.   

 

 The large quantity of kink-bands on old flax fibres may be the result of aggressive decortication, 

scutching or spinning processes used by the Egyptians following water-retting, but may also be caused 

by progressive release of internal stresses over the 4 millennia. In flax fibres, kink-bands modify the 

aesthetics and regularity of the fibres, and are also considered as zones of weakness, especially when 

utilised in a fibre-reinforced composite [33]. Kink-bands also make the fibre more susceptible and 

sensitive to ageing by acting as entry points for microorganisms or moisture to access the inner layers 

of the cell walls [34]. Kink-bands were specifically examined through multiphoton microscopy with 

second-harmonic generation imaging, which highlights crystalline cellulose within the plant cell walls. 

Figure IV-8c shows discontinuity and disorganisation of crystalline cellulose in the kink-band of old 

flax, and possibly indicate areas of low crystallinity in this region. Both these factors would cause kink-

band rich ancient flax fibres to be more brittle [19]. Indeed, these old fibres have proved to be very 

fragile during handling, and impossible to isolate without breaking/damaging them for any single-fibre 

tensile testing. 

 Finally, atomic force microscopy tests in peak force quantitative nano-mechanical (AFM PF-QNM) 

mode were conducted on transverse cross sections of old and modern flax fibres. Such measurements 
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allow estimation of the indentation modulus of flax plant cell walls (Figures IV-9a-e), i.e., do not 

depend on the relative lumen size and are a useful measure for highlighting mechanical property 

gradients or heterogeneities within cell walls [35].  

  

 

Figure IV-9 AFM peak force measurements in old and modern flax fibres. One can notice larger lumen size on old 
flax fibre (a) and residue of cortical parenchyma on modern flax (b). Figure (c) and (d) show the profile of 
indentation modulus in old and modern flax, respectively, according to the position on the white line (a and b). 
Distributions of indentation modulus are shown in (e).  

 

 Interestingly, it was found that the AFM mechanical properties are slightly higher for cell walls of 

old flax than those of modern flax, i.e., 23.7 ± 0.2 GPa and 20.3 ± 0.1 GPa, respectively; for each batch, 

2,500 indentation moduli values were statistically compared, and the student t-test confirmed that the 

two sets of moduli are different with P ≤ 0.001. Values of modern flax are in line with the measurements 

in the literature [20] and measured by nanoindentation (Table IV-1). Moreover, the measured 

indentation moduli are homogeneous in the fibre sections and show little dispersion, suggesting no 

ageing gradient across a fibre transverse section. Such quantitative nano-structural measurements, never 

before conducted on such ancient fibres, reveal the durability of these flax plant cell walls. Even though 

at the fibre-scale, the kink-bands are regions of pronounced damage, the cell walls themselves exhibit a 

moderate change in their elastic performance despite their age; only a slight increase in their stiffness, 

connected to the evolution of their non-cellulosic polysaccharide composition, is demonstrated. 
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Table IV-1 Nanoindentation modulus and hardness obtained on fibre and resin for old and modern flax samples. 

Sample 
Number of 

tests 

Indentation 

modulus in 

GPa 

Standard 

Deviation 

in GPa 

Hardness 

in MPa 

Standard 

Deviation 

in MPa 

Old Sample 
Fibre 23 23.9 ± 3.48 430 ± 70 

Resin 15 5.10 ± 0.20 236 ± 5 

Modern fibre 
Fibre 35 20.7 ± 2.93 396 ± 55 

Resin 23 5.30 ± 0.25 250 ± 19 

  

 Measurements by infrared spectroscopy (Figure IV-10 and Table IV-2) revealed a lower intensity 

of peaks attributed to parietal hemicelluloses for old flax. It has been shown that the longitudinal and 

transverse shear moduli of the fibres [36] and especially the stiffness of the non-cellulosic matrix of the 

plant cell walls [37] have a major effect on the indentation modulus; our results confirm this important 

influence of hemicelluloses, even though they are the softest component of the cell wall, on the 

indentation modulus. Higher indentation modulus has previously been recorded on old wood samples 

and is attributed to a loss of pectins, as well as modification of the ligno-cellulosic cell wall polymers 

[38]. The wider literature supports the hypothesis of a significant evolution in the ageing sensitive 

hemicellulosic polymers over 4,000 years. Surprisingly, the lower intensity of the band at 1730 cm-1 in 

the old yarn can suggest that the Egyptian yarn did not undergo severe oxidation, but the loss of 

hemicellulose, highlighted by the lower intensity at 1250 cm-1, was also confirmed by NMR analysis. 

The lower band at 1636 cm-1 in the old yarn also indicate a loss of absorbed water that can contribute to 

increase its stiffness.  

 

 

Figure IV-10 FTIR-ATR spectra of modern (blue) and red (Egyptian) flax yarn.  baseline subtraction and 
normalization have been done. Three zones are specifically marked to better highlight differences between the 
spectra. The main differences between spectra of the modern and ancient flax yarns are in esters carbonyl 
absorbances (~1730 cm-1) due to the hemicellulose, in the absorbance at ~1247 cm-1 of the C-O stretching of the 
hemicellulose and, around 2920 cm-1 and 2850 cm-1, in the CH stretching of alkyl groups of cellulose and 
hemicelluloses [39,40]. All these peaks are extremely low in the Egyptian flax yarn compared to the modern one. 

Evolution of the ultrastructure, parietal composition and mechanical properties of flax fibres over time : when history meets science Alessia Melelli 2021



CHAPTER IV. Ageing and degradation 

166 

Table IV-2 Correspondence between the peaks recorded in FTIR and the main constituents of the flax cell walls. 
All of these data come from literature. The shaded lines correspond to the peaks highlighted in Figure IV-10; they 
underline the main differences related to peaks attributed to hemicelluloses, between spectra of the modern and 
old flax yarn.  

Position (cm-1) in Egyptian 

and modern flax yarn   

Position (cm-1) 

assigned in 

literature 

Assignment (literature)   Reference  

~ 3334 to 3286  ~ 3600 to 3000  Hydrogen bonded OH (hydroxyl 

group) stretching vibration in 

cellulose, hemicellulose and lignin 

[40–43] 

~ 2920 ~ 2920 νC–H stretching vibration in 

cellulose and hemicellulose 

[41,42] 

~ 2895 ~ 2900 

 

νC–H general organic material 

content of the fibre, polysaccharides   

[40,44] 

 

~ 2850 ~ 2850 νC–H2 in cellulose, hemicellulose 

and lignin 

[40–42, 44] 

    ~ 1730 ~ 1730–1735 Carbonyl C=O and carboxyl 

stretching of carboxylic acid or ester 

group of hemicelluloses. A high 

intensity of this band can also be due 

to degradation by oxidation process  

[16,39–42,45] 

~ 1635 ~ 1635 Absorbed water  [40,45,46] 

~ 1595 (present in modern 

but absent in old flax yarn) 

~ 1595 νC=C aromatic in plane, lignin  [39,40,46,47]  

~ 1515 present in modern 

but absent in old flax yarn) 

~ 1510 νC–C aromatic in plane, lignin  [39, 40,47]  

~ 1450 ~ 1455 δC–H; δC–OH 1° and 2° alcohol  [40,41] 

~ 1425 ~ 1420 δOCH and δHCH in plane, 

crystalline cellulose  

[40,48–50] 

~ 1365 ~ 1365–1370 δC–H and δCOH of cellulose, 

hemicellulose 

[49,51] 

~ 1334 ~ 1335 δCH2 and δCOH, mainly cellulose [40,44,49,52] 

~ 1315 ~ 1315 δCH2 wagging and δCOH of 

cellulose, hemicellulose  

[50] 

~1280 ~1280 δCH   [51,52] 

~ 1247 ~ 1250 νC–O hemicellulose 

polysaccharides, lignin 

[48,49, 50] 

~ 1234 ~1235 νC–O in lignin and δC–OH in 

cellulose 

[49,52] 

~ 1203 ~ 1200 δC–OH; δC–CH   [40,49,52] 

~ 1157 ~ 1155 νasC–O–C; νC–C ring breathing  [49,51] 

~ 1105 for old flax yarn 

~1099 for modern flax yarn 

~ 1105 νC–O 2° alcohol; νC–O–C 

glycosidic (mainly cellulose) 

[49,53] 

~ 1050 ~ 1050 νC–OH 2° alcohol  [53] 

~ 1025 ~ 1025 νC–OH 1° alcohol [40,44,49,53] 

~ 1005 ~ 1005 νC–O [49,53] 

~ 985 ~ 985 νC–O [49,52] 

~ 895 ~ 895 ν(C–O–C) in plane in β–Glycosidic 

bond 

[16,40,44,50] 
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 Differences in crystallinity were also checked through both nuclear magnetic resonance (NMR) and 

X-ray diffraction (XRD) measurements; Figure IV-11 shows that the cellulose crystallinity measured 

by both NMR (58.0% for Egyptian yarn and 56.0% for the modern yarn) and XRD (59.6% for Egyptian 

yarn and 58.4% for the modern yarn) techniques is comparable between the ancient and modern flax 

yarns. By 13C NMR it was also confirmed a loss of hemicellulose of the old flax, due to the disappearance 

of the band at 32 ppm, visible, however, in the modern one.  

 

Figure IV-11 XRD spectra of old and modern flax (a) and comparison between crystallinity degree obtained 
through NMR and XRD investigations (b). 

 

 Our structural examination of 4000-year old Egyptian flax fibres in comparison to modern flax fibres 

has offered a number of insights on the textile know-how of the Egyptians, as well as on the temporal 

evolution of flax fibres. Through water retting and manual processing, the ancient Egyptians could 

separate the flax into very fine fibre bundles and in most cases even into single fibres to make soft and 

luxurious quality textiles despite fully-manual processing.  

 Local nanomechanical measurements show an increase in cell wall stiffness of old fibres, probably 

induced by the alteration of non-cellulosic polymers, as cellulose retained a crystallinity close to that of 

contemporary fibres. In addition, a larger presence of structural defects – stress-concentrating kink-

bands with low cellulose crystallinity – is notable on the old, fragile fibres. In future and in work-in-

progress, the aim is to go further by exploring the microfibrils angle (MFA) values of ancient flax 

(through single fibre XRD and SHG), the internal structure of kink-bands (by nanotomography) and if 

possible, to gain information on the Linum used by ancient Egyptians thanks to genetic analysis. To 

improve durability at the fibre scale, producing fibres with low quantities of defects is necessary, in 

particular if they are to be used as reinforcements of next-generation environmentally-friendly 

composite materials. Intriguingly, the ancient Egyptians had also dabbed there hands in making the first 

linen/plaster cartonnage biocomposites for death masks, a number of which survive to date (Figure IV-

1b) 

1.5 Conclusions  
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 Flax (Linum usitatissimum L.) is one of the oldest domesticated plants [1], used for its fibres and in 

the food sector for its seeds. In Europe, starting from the Late Middle Age, a number of plant fibres, 

such as hemp and flax, have played a key role as a support for paintings on canvas, especially flax for 

its great homogeneity and fineness coupled with excellent mechanical properties, suitable to face the 

stresses and deformations that paintings undergo. 

 One of the methods used by artists to prepare the textile support before painting is reported in 

Cennino Cennini’s treatise, dated to circa 1400 [54]. However, each artist had his own method and used 

materials of different qualities often linked to his social rank and his clientele [55], though common 

characteristics can be found by geographical area and historical period [56]. 

 In general, the textile layer of a canvas has the function of supporting several other layers of different 

natures, since pigments are not applied directly on it. For centuries, the first layer was composed of glue, 

usually of animal origin, as also mentioned in Cennini’s treatise [54], followed by the ground layer 

(gypsum or calcium carbonate and glue or flour, oil and pigments), but around the 17th century, the first 

layer of glue, in contact with the textile support, was sometimes omitted because artists tried to preserve 

the recto of the canvas support from humidity [56]. Currently, it is known that animal glue promotes the 

growth of mould and bacteria [55,57]. 

 Several studies have focused their attention on the mechanical properties of textile supports by 

measuring the vibrations or tension of canvases [58–61]. Two important methods to evaluate the state 

of preservation of the textile support are the calculation of the degree of polymerization (DP) of cellulose 

(by viscometry or GPC) [62] and the determination of the cellulose morphology and microstructural 

heterogeneities with solid-state nuclear magnetic resonance spectroscopy (13C CP-MAS NMR).               

In particular, the last technique only requires small amounts of material, namely 25 μL [63,64], which 

corresponds to approximately 30 mg of sample. Due to the small amount of sample usually available 

from cultural objects such as paintings, a combination of techniques is usually necessary to have a clear 

evaluation of the state of preservation of artworks. 

2. Chemical, morphological and mechanical study 
of the ageing of textile flax fibres from 
17th/18th-century paintings on canvas 

2.1 Introduction 
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 For example, scanning electron microscopy (SEM) or optical microscopy  have been combined with 

techniques capable of obtaining information on cellulose crystallinity and chemical modifications, such 

as X-ray diffraction (XRD), Fourier transform infrared (FTIR) or Raman spectroscopy [19,65,66]. 

 Furthermore, other techniques generally used in the engineering and biology fields can also be 

employed for the study of cultural heritage, especially regarding the study of cellulosic fibres, such as 

atomic force microscopy and nanoindentation, which allow us to investigate the micromechanical 

properties of the cell walls [67], and SHG [49], which offers data on the fibre, especially cellulose 

ultrastructure as presented in Chapter III. 

 This section aims to establish the state of preservation of four 17th/18th-century Italian canvases and 

to elucidate possible degradation using a new combination of techniques that thus far has found very 

limited application in the conservation field. The canvases were first imaged by optical and scanning 

electron microscopy to obtain information on their morphology. Successively, local mechanical 

properties were examined by nanoindentation and AFM techniques, while chemical information was 

obtained by FTIR-ATR spectroscopy and 13C CP-MAS NMR to obtain an overview of the state of 

preservation of each canvas. Finally, SHG microscopy was used to assess the state of the fibre 

ultrastructure. 

 Our results can help curators recognize canvases in the worst condition that require immediate 

intervention or more in-depth investigation by conservators; at the same time, this new pairing of 

techniques can support the study of other ancient artefacts made of plant fibres, such as clothing and 

tapestries. 

 

 Yarns from four oil paintings dated between the 17th and 18th centuries were examined. The 

paintings are currently stored at the Civic Art Gallery of Ascoli Piceno. Details about the paintings are 

given in Table IV-3. Yarn samples were taken from the recto of each canvas in excess areas beyond the 

mounting frame to avoid, as much as possible, the ground and paint layers. The sample amount taken 

from each painting was on the order of 50 mg. 

 A contemporary yarn was used as a reference sample. It was produced from textile flax (Melina 

variety) cultivated in 2018 in Normandy (France) by the Teillage Saint-Martin company; this flax was 

dew-retted conventionally over 6 weeks and then scutched and hackled. Then, it was wet spun by Safilin 

Pionki (Poland) with a metric number of 9.7 km/kg and a targeted twist of 320 tpm.  

 Figure IV-2b of Section 1 of the present chapter shows the yarn taken as reference sample, the same 

that was compared with the Egyptian yarn.  

  

2.2 Samples 
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Table IV-3 Dimensional and historical data on four canvases on display at the Civic Art Gallery of Ascoli Piceno. 

Sample Author Title and date Origin Dimensions (cm) Picture 

GB 
Giulio Benso 

(1592–1668) 

San Cristoforo (first 

half of the 17th 

century) 

From the collection of Antonio Ceci, acquired by the 

Gallery in 1920. 
74x99 

 

NM 
Nicola Monti 

(1736–1795) 

Madonna col Bambino  

(18th century) 

Commissioned for the Annunziata church (Ascoli 

Piceno) and exposed there until 1870, then acquired 

by the Gallery. 

100x72 

 

TS1 
Tommaso Sciacca 

(1734–1795) 

Crocefissione  

(18th century) 

 

The two paintings were commissioned by the 

Camaldolese order of Sant’Angelo Magno convent 

(Ascoli Piceno) for the abbot’s lodging and 

transferred into the Gallery in 1861.  

During the 19th century, Santa Francesca Romana 

painting (TS2) has undergone a re-lining 

intervention: a new canvas was glued to the back of 

the old one, which was in a bad state of 

preservation, to reinforce and support it. 

104x75 

 

  

TS2 

Tommaso Sciacca 

(1734–1795) 

 

Santa Francesca 

Romana 

(18th century) 

64x46 
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Several microscopic and spectroscopic techniques were applied and here briefly described.   

 

2.3.1 Scanning Electron Microscopy (SEM) 

 To examine the fibre surface morphology, a small piece of yarn approximately 5 mm long was cut 

from each sample, and the modern yarn was adhered to a conductive sample holder and successively 

gold sputter-coated (Edwards Scancoat Six device for 180 seconds) to perform SEM micrographs. 

 

2.3.2 Atomic force microscopy and nanoindentation 

 To the best of our knowledge, no literature exists regarding the use of AFM PF-QNM to investigate 

archaeological objects. Conversely, nanoindentation (NI) measurements are more widespread and are 

done with a deeper (i.e., several tens of nanometres up to more than a hundred nanometres) indent than 

AFM (i.e., indentation depth of a few nanometres here). Since the minimum spatial distance between 

two measurement points is much smaller in AFM than in Ni, the nanoindentation leads to a lower spatial 

resolution than that of AFM but, on the other hand, it allows to obtain more qualitative and accurate 

mechanical properties. NI has already been used to investigate cultural artefacts [68,69], although the 

available literature is still scarce. 

 To prepare the samples for AFM analysis, a small piece of yarn approximately 5 mm long was cut 

from each canvas and embedded in low viscosity epoxy resin (see Chapter II). At least four AFM 

images were obtained from each sample and the modern yarn. An averaged indentation modulus was 

calculated as a mean of the pixels included in the region of interest manually delimited by mask, as 

shown in Figure IV-12. Successively, a further average was calculated using the values obtained from 

the various figures of each yarn. 

 Nanoindentation measurements of the indentation modulus and hardness were performed on the 

same blocks of epoxy resin with embedded yarns previously prepared for AFM analysis. At least                

30 points were tested for each yarn embedded in epoxy resin and representative of each canvas 

investigated, except for yarn TS1: here, 16 points were tested because the block had a lower number of 

fibres embedded and had a smaller diameter. In addition, approximately 20 points were recorded in the 

epoxy embedding resin of each block to check the stability of the measurements. The obtained 

indentation moduli were compared to the average calculated by AFM: in practice, the averaged AFM 

results were validated by nanoindentation, which operates at a higher scale. 

 

2.3 Experimental methods 
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Figure IV-12 Two examples of the masks applied to AFM maps to calculate a mean value of the indentation 
modulus. 

 

2.3.3 Second-harmonic generation microscopic imaging 

 Second-harmonic generation (SHG) is plane selective, and different levels in the Z-direction can be 

analysed independently from one another and allow us to investigate the inner structure of the samples, 

such as the angle formed by cellulose microfibrils in plant fibres [49]. For SHG analysis, a small bundle 

of each yarn was manually extracted and mounted on a paper frame used for traction tests according to 

technical standard ASTM C1557 [70]. This standard explains the preparation, mounting and testing of 

elementary fibres to determine tensile strength and Young’s modulus; the sample support described in 

the technical standard is illustrated in Chapter II. 

 The ancient yarns were glued in the standard support but in the transverse direction to use a 5 mm 

gauge length instead of 10 mm, successively placed between two coverslips and studied with a 

multiphoton microscope. 

 

2.3.4 Solid-State 13C CP-MAS NMR Spectroscopy 

 13C cross-polarisation magic angle spinning NMR spectroscopy is an NMR technique that allows 

samples to be studied directly in the solid-state without having to dissolve them in a suitable solvent. 

This allows the study of small fragments of the object and their subsequent reuse for other investigations. 

In addition, the rotation around the angle defined as the “magic angle” allows sharpening of the 

resonance lines that, in the case of solid samples, are very wide. 
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13C CP-MAS NMR spectroscopy has been used to investigate structural changes in cellulose-based 

materials, allowing the determination of the crystalline/amorphous ratio and the detection of 

hemicellulose, cellulose oligomers and noncellulosic compounds, such as organic additives. 

 Flax yarns were finely cut using a microcutter and packed into 4 mm zirconia rotors with an available 

volume set to 25 µL and sealed with Kel-F caps. Cross-polarisation was achieved by applying the 

variable spin-lock sequence RAMP–CP-MAS [71]. Spectra were acquired using 1024 data points in the 

time domain, zero filled and Fourier transformed to a size of 4096 data points applying exponential 

multiplication with a line broadening of 16 Hz. 

 The deconvolution of 13C CP-MAS spectra was performed using the dm2004 program [72], and the 

integrals of the resonances obtained from the deconvolution allow a semiquantitative evaluation. Each 

resonance was modelled by the following parameters: amplitude, position, width at half height and 

Gaussian line shape. Applying the best fitting procedure, the area and the chemical shift of all resonances 

were obtained. The sum of the integral of all resonances in each spectrum was normalised to 100.              

Figure IV-13 illustrates the details of the deconvolution of C1 and C4. The crystallinity index (CI) of 

cellulose was calculated as a percentage of the integrals of the C–4 peaks at 86–92 ppm (C4c) and            

80–86 ppm (C4a) [72]: CI(%) = 100 C4c/(C4c +C4a).    

 The resonance at approximately 106 ppm (C1 carbon) reveals the presence of Iα and Iβ crystalline 

forms and can be used to evaluate the ratio R= Iα/Iβ, which depends on the source of the cellulose [64]. 

 

 

Figure IV-13 Details of the deconvolution of C1 and C4 resonances obtained for sample TS1. The profile of the C1 
resonance is characterised by three sharp resonances centred at 106.6, 105.8 and 105 ppm and two very broad 
bands at 107 and 104 ppm. The central sharp resonance at 105.8 (magenta) is due to Iα, whereas the two lateral 
sharp resonances at 106.6 (green) and 105 ppm (cyan) are due to Iβ. 

 

2.3.5 Fourier-Transform Infrared Spectroscopy (FTIR) 

 A linear baseline correction was performed using three points at 4000, 3700 and 1800 cm-1. The 

spectra were normalised setting the minimum absorbance measured between 4000 and 1800 cm-1 to        

0 and the area (integral) measured between 1080 and 884 cm-1 to 1, since this latter is sensible to 

crystalline and amorphous cellulose. 
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Table IV-4, summarises all the setup and parameters chosen for each analysis. 

 

Table IV-4 Summary of the techniques and parameters used 

Characterization 

Technique 

Instrument    Parameters  

Scanning electron 

microscopy (SEM) EDX 

Jeol JSM 6460LV 

scanning electron 

microscope 

Accelerating voltage: 3 kV 

Working distance: 29.3–30.5 mm 

Atomic Force 

Microscopy in Peak 

Force Nanomechanical 

property mapping mode 

(AFM PF-QNM) 

Multimode 8 atomic 

force microscope 

(Bruker, USA) equipped 

with RTESPA-525 

probes (Bruker, USA) 

 

Spring constant (Sader method): 101–161 N/m 

Deflection sensitivity: calibrated on Sapphire 

Tip radius (relative method on Aramid fibres): 

20–85 nm 

Peak force setpoint: 200 nN 

Oscillation frequency: 2 kHz 

Resolution: 512×512 pixels  

Nanoindentation  Nanoindenter XP (MTS 

Nano Instruments)  

Indenter: three-side pyramid indenter (Berkovich-

Berko XPT-12761–0) 

Surface approach velocity: 10 nm/s 

Frequency target: 45 Hz  

Loading rate: 0.05 s-1 (i.e., 1 µN/s) 

Unloading rate: 10 µN/s 

Depth limit: 120 nm 

Second-harmonic 

Generation Microscopic 

Imaging (SHG) 

Multiphoton Nikon A1 

MP+ microscope 

(NIKON, France) 

equipped with a long 

working distance (LWD) 

16x (NA 0.80) water 

immersion objective 

(NIKON, France), a 

tuneable Mai Tai XF 

mode-5 locked Ti: 

sapphire femtosecond 

laser (SPECTRA 

PHYSICS, France) and a 

GaAsP NDD detector 

Excitation wavelength: 810 nm (average power 

1.5 W) 

Laser power used: 3% and 5% to investigate 

ancient and modern flax fibres, respectively to 

avoid bleaching 

Bandpass filters: 460/60 nm (autofluorescence), 

550/88 nm (autofluorescence), 406/15 nm (SHG 

signal)  

Scan line average: 16  

Scan velocity: 0.25 (fps) 

Scan size: 512×512 pixels 

13C CPMAS NMR Bruker Advance III 

spectrometer operating at 

the proton frequency of 

400.13 MHz 

Spin rate: 12 KHz 

Contact time for cross polarisation: 1.5 ms 

Recycle delay: 3 s 

1H π/2 pulse width: 3.5 µs 

FTIR-ATR Spectrum 100 Perkin-

Elmer spectrophotometer 

equipped with ATR 

system with Zinc 

Selenium crystal (ZnSe) 

Accumulation scans : 16  

Acquisition range 4000–600 cm-1  

Resolution : 4 cm-1 
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2.4 Results and Discussion 

2.4.1 Morphological description of yarns and flax fibres 

 Thread count is an important parameter to characterize canvases and textile fabrics, and it plays an 

important role in the mechanical properties of the canvases [73,74]. All the canvases except TS1 had a 

plane weave structure (Figures IV-14A, D, G, J), and GB appeared tauter than the others. GB and TS2 

had similar thread counts (29/28 for the first one and 29/27 for the second one), and were coarser and 

more open-weave fabrics than NM (47/47) and TS1 (38/32), as shown in Figure IV-14A. 

 

 

Figure IV-14 Photos and macrographs of the different yarns (A,D,G,J - the weave count was measured over 4x4 
cm2) and SEM observations of yarns from canvas GB (B, C), NM (E, F), TS1 (H, I) and TS2 (J,K). 

 

 For all the yarns investigated by SEM, the morphology indicated that they were flax fibres due to 

their polygonal shape (Figures IV-14C, F and I) and the presence of characteristic structural defects, 

i.e., kink-bands (Figures IV-14C, F, I and L). Generally, fibres appeared well separated, although 

residues of middle lamellae or cortical parenchyma sometimes remained glued to the fibre surface 
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(Figure IV-14B), suggesting a possible sub-retting degree for the GB sample. Nevertheless, the overall 

fibre separation was good, probably thanks to the retting mode, which in the past was carried out in 

water, as in ancient Egypt [75]. This method consists of soaking the fibres in water for approximately 

two weeks before scutching them, but since the second half of the 20th century, water retting has been 

replaced in Europe by dew retting, which produces less pollution, even if the quality of the fibre 

produced is lower [76]. 

 In all the yarns, kink-bands were highly visible, especially on yarn NM, as shown in Figure IV-14F. 

These defects are considered areas of weakness [77] and possible origins of fractures [78]. Other teams 

also observed that both enzymatic and acid hydrolysis start and act mainly in these regions [79,80] and 

can lead to fibre fragmentation. Thus, it can be assumed that cracks and porosities in kink-bands could 

facilitate the attack of microorganisms, which penetrate into the internal structure of the fibre to reach 

the lumen where they grow and then spread to the rest of the fibre cell [81]. 

 Finally, in samples TS2, an adhesive from likely due the past re-lining intervention (Figure IV-15a) 

and large residues from the ground layer (as indicated by SEM-EDX analysis, Figure IV-15b) were 

detected. During the 19th century, in Europe, the adhesive used for re-lining interventions was glue 

paste, a mix of animal glue, flours and Venice turpentine or other components [55,74]. 

 

 

Figure IV-15 a) SEM micrograph of yarn TS2 with fibres covered by the adhesive and (b) SEM-EDX analysis with 
three layers of fibres, layer 1 (L1) made of organic material and reach in Carbon and layer 2 (L2) which is the 
ground layer rich in lead and probably due to lead white pigment.  

 

 The presence of this adhesive in yarn TS2 is particularly important in this case because today, it is 

known that glue paste can have dramatic consequences for paintings. It causes the canvas to have a 

greater susceptibility to humidity but also results in shrinkage and greater rigidity, and it is also highly 

sensitive to microbiological attack, especially in the case of animal glue [82–84]. 

An interesting study was recently performed by Fuster-López et al. in which the authors tested the glue 

paste on canvases and observed its ageing process [74]. They found that, in aged samples, the glue paste 

appeared more crystallised, dryer and sometimes delaminated. Tensile test analysis showed that the 
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canvases with aged glue paste were as sensitive to low relative humidity as the canvases treated with 

unaged glue paste. Fuster-López et al. also observed that the sensitivity to biodegradation, structural 

modification and the loss of mechanical properties were also dependent on the type of flour used in glue 

paste and the weave density of the linen canvas [74]. 

2.4.2 Investigation of local mechanical properties 

 Images obtained by AFM PF-QNM (Figure IV-16) show that ancient fibres can have a stiffness 

similar to that of a modern flax, which is in general approximately 18–20 GPa [67,85], and which was  

measured to be about 19.4 ± 0.9 GPa by AFM and 20.7 ± 2.9 GPa by nanoindentation. However, in 

most cases, the indentation moduli obtained from ancient yarns are higher than those obtained from the 

modern yarn, clearly illustrated in the profile extracted from TS1 in Figure IV-16. where the stiffness 

is calculated as approximately 24 GPa. 

 Despite their ageing, the flax fibres of ancient yarns still appeared homogeneous and had an intact 

structure (Figure IV-16). Nevertheless, a high indentation modulus can be indicative of a chemical 

change due to ageing that occurs mainly in the cell wall matrix, as reported in [38]. It should also be 

pointed out that the flax fibres compared in this section are neither from the same variety nor harvested 

at the same maturity or retted in the same manner. These differences play a central role in the mechanical 

properties and chemical composition of the fibres [25,86], and the results obtained must be regarded 

with caution. 

 In general, the average data obtained by both AFM and nanoindentation techniques were in 

agreement (Figure IV-17a). Yarn GB showed indentation moduli in line with those of the modern flax 

in both AFM (19.2 ± 3.3 GPa) and nanoindentation (19.3 ± 5.2 GPa) analyses. However, some flax 

fibres from this yarn showed fractures (see Figure IV-17c), which were probably generated during the 

surface preparation by the diamond knife, and their appearance could be indicative of a higher brittleness 

than in the modern yarn. 

 In canvas NM, most of the fibres appeared intact with indentation moduli of approximately 20 GPa 

(20 ± 6 GPa by AFM and 17.5 ± 4.5 GPa by nanoindentation), but, in the bottom right of the map shown 

in Figure IV-16, an extremely low indentation modulus (approximately 11 GPa) was recorded in one 

fibre, which indicates a great loss of local mechanical properties probably as a consequence of a 

chemical change not only in the matrix but also in the crystalline cellulose. This confirmed the suitability 

of the AFM technique to study aged yarns, as it is sensitive to the variable state of preservation of a 

canvas. 

 Fractures similar to those of the yarn GB were found in the yarn NM (Figure IV-17c), for which the 

lowest hardness was also recorded (Figure IV-17b). Paintings TS1 and TS2 were painted for the abbot’s 

lodging and were probably exposed to similar environmental conditions. 
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The highest indentation moduli were recorded in yarn TS1 (23.4 ± 3.4 GPa by AFM and 23.9 ± 5.4 GPa 

by nanoindentation), which could correspond to a change in the chemical composition of the 

hemicellulose matrix, as hypothesised in a previous study [38]. Some fibres of this yarn were fractured, 

such as yarn GB, but with signs of biological attack highlighted by a loss of mechanical properties            

(~ 11 GPa) around a cavity, as illustrated in Figure IV-17c. 

 

 

Figure IV-16 Topography and indentation modulus maps of the surface of each yarn, as obtained by AFM in PF-
QNM mode. Each profile corresponds to the red line indicated on the corresponding modulus map. 

 

 In terms of morphology, the best preserved fibres were found in yarn TS2, where no fractures were 

noted inside the cells (Figure IV-16). However, this canvas underwent a past restoration intervention, 

and it was relined because of its poor state of preservation. In this last yarn investigated, the standard 

deviation of indentation moduli was comparable to that of the modern yarn (20.9 ± 3.9 GPa by AFM 

and 20.8 ± 3.7 GPa by nanoindentation), but the hardness is the highest recorded, probably because of 
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a different ageing process of the cellulose matrix caused by the coating. A hypothesis could be that the 

exchange of water molecules and oxygen between the fibres and the environment was reduced by the 

coating, leading to a different ageing process of the cells than that found in the other canvases. As 

previously discussed, this canvas was relined, and traces of animal glue were found by FTIR and NMR, 

while SEM analysis confirmed that the fibres of this canvas were coated. During the AFM analysis, 

some fragments were noticed on the fibre surface, probably due to the glue paste, as illustrated in Figure 

IV-17c. The fragment did not cause visible changes to the mechanical properties of the fibres, which 

were still homogeneous in their indentation moduli, even in their external layers (primary and S1 cell 

walls). 

 

 

Figure IV-17 a) Indentation modulus obtained by AFM and nanoindentation on the different samples, (b) hardness 
values measured by nanoindentation (c) indentation modulus maps with fractures into the cell wall indicated by 
blue arrows; the white circle and zoom indicate traces of a possible biological attack near the lumen in the TS1 
sample (lowered indentation modulus); the white arrow points to a fragment of a coating layer (preparation layer 
or re-lining intervention) in the TS2 sample (the interface with the cell wall is homogeneous, and the cell wall 
indentation modulus does not seem to be affected). 
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2.4.3 Chemical and structural modifications 

 FTIR results   

 The spectra and their attributions are reported in Figures IV-18a, b and Table IV-5, respectively. 

Traces of gypsum (3525 and 3394 cm-1) and calcite (874 and 713 cm-1) were found in samples NM, TS1 

and TS2 (Figure IV-18a). The increase in the peak at 1735 cm-1 in spectra collected from the yarns of 

the canvases can be due to the oxidation process [87]. The band at 1595 cm-1 due to lignin [40,44] was 

noted only in the modern yarn. The absence of this peak in the canvas samples, together with the 

presence of the band at 2954 cm-1 (Figure IV-18b), could suggest a form of lignin degradation. 

 Two bands at 1577 and 1540 cm-1 were particularly visible in yarn TS1 (Figure IV-18b and Table 

IV-5), less visible in NM and probably also present in GB. These two bands are not documented in the 

literature for cotton or flax fibres and fabrics and are thus apparently not generated by the fibres. Zotti 

et al. observed them in ancient prints where fungal colonies were isolated, and the authors attributed 

these bands to a possible calcium stearate [88]. These two peaks can be an indicator of the presence of 

microorganisms. Furthermore, the increase in the band at ~1640 cm-1 and the new band formed at       

1540 cm-1 were also noted in linen and cotton fibres degraded after two weeks in soil and attributed to 

protein produced during microbial attack [89]. In biodegraded archaeological textiles, Kavkler et al. 

observed a downshift from 1430 cm-1 to 1420 cm-1 [16] of a contribution that is known to be sensitive 

to the cellulose lattice [90]. The shift, coupled with an increased intensity, was attributed to the presence 

of cellulose II [16], in line with Oh et al. [52]. In our yarns, both a shift and increased intensity were 

observed in TS1 and TS2, but only in TS1 was severe biodegradation activity confirmed by AFM 

(Figure IV-17c) and SHG (Figures IV-20 and 21), where cavities and partial loss of fibre cells are 

visible. It should also be mentioned that the peak at 1420 cm-1 could be the contribution of the νC–O of 

calcium carbonate in calcite form [91]. 

 The presence of a coating was observed in TS2 by SEM (Figures IV-14L and 15a), and the high 

intensity of the amide bands at 1540 and 1644 cm-1 in its spectrum are indicative of a proteinaceous 

material, which supports the hypothesis of animal glue, probably from the glue paste. 

 The spectra of GB and NM are similar to that of the modern reference yarn, with the three bands at 

1370, 1335 and 1315 cm-1, sensitive to the cellulose lattice [90] clearly present, which are absent in TS1 

and TS2. Furthermore, the bands between 1030 and 982 cm-1 merge in TS1 and TS2, while, in GB and 

NM, the peaks can still be distinguished despite a lower intensity than in the modern yarn. The same 

bands merged in a broad feature and were observed in naturally aged modern fabric [92]. At the same 

time, the decrease in the intensity of C–O vibrations between 1160 and 1030 cm-1 found in 

archaeological textiles was linked with cellulose hydrolysis [49]. In each yarn from the canvases 

investigated in this study, a decrease in the intensity of these bands was noted. 
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 Additionally, the band at 898 cm-1, which is indicative of the cellulose structure [90], was observed 

to decrease in intensity in a biodegraded archaeological cotton fabric [16]. In GB and NM, this peak is 

still present but small and broad; in contrast, it is totally absent in TS1 and TS2. 

  In conclusion, FTIR-ATR observations allowed us to confirm the presence of animal glue in TS2 

and highlight that TS1 underwent the greatest modifications in the cellulose structure. In contrast, yarns 

from GB and NM seem better preserved. 

 

 

Figure IV-18 a) FTIR spectra of canvases and modern flax yarn with a break in the region between 1890 and     
2550 cm-1; (b) focus on three regions of interest. 
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Table IV-5 Summary of the bands considered in the FTIR analysis. 

s= strong; m= medium; w=weak; vw= very weak; sh=sharp; br=broad 

 

Assignment and position 

Wavenumber/cm-1 
Possible Attribution 

MO

D 

GB NM TS1 TS2 

~3525 and ~3394 OH Gypsum [87,93] - - w w vw 

3600–3100 
OH of free cellulose/ 

hemicellulose/lignin [40,43] 

sh sh sh br br 

~2954 CH3 of lignin [94] - w w w vw 

~1735 

 

C=O of carboxylic acid or esters 

groups of pectin and hemicellulose 

[40,43] 

w, br m, sh m, sh m, sh w, sh 

~1635 

or 

~1644 (Amide I) 

δOH of absorbed water [50,95]   

or C=O (Amide I) of a protein 

binder [96,97] or produced by 

microorganisms [89,98] 

w, br w, br w, br w, br m, sh 

1644 

cm-1 

~1595  
C=C aromatic in plane of lignin 

[40,44] 

br - - - - 

 

~1577 

 

C=O from oxidised phenolic 

lignin [99] 

or COO- of calcium stearate 

[88,100] with doublet at 1540 cm-1 

- vw vw w - 

~1540 

COO- of calcium stearate 

[88,100] or C-N and δN-H in 

plane (Amide II) 

of protein binder [96,97,101] or 

produced by microorganisms 

[89,98] 

- vw vw w, sh m, sh 

~1470 δCH2 [40,94] 
- sh sh sh sh 

 

~1462 δOH in plane [40,50] 
br 

 

sh sh sh sh 

 

~1425 
δO–C–H and δH–C–H in plane 

[16,48,49,52] 

m m m s 

1419 

cm-1 

s 

1419 

cm-1 

~1375 
δC–H and δCOH of cellulose, 

hemicellulose [16,49,53] 

m m m - - 

~1335 
δCH2 and  δCOH mainly cellulose 

[40,44,49,52] 

w, sh w, br w, br - - 

~1315 
δCH2 wagging and  δCOH of 

cellulose, hemicellulose [49,50,52] 

m, sh m, sh m, sh w, br - 

~1027 C–O [44,49] 

s, sh s,sh s,sh s, br s, br, 

1019 

cm-1 

~1002 C–O [49,53] w, sh - vw, br - - 

 

~982 
C–O [49,52] 

sh - br - - 

~898 
C–O–C of β–Glycosidic bond 

[16,40,44] 

w vw vw - - 

~874 and ~713 Calcite [99] - w s s s 
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 NMR results 

 The 13CP-MAS spectrum can be considered as a "fingerprint" of solid cellulose components, and all 

four canvases exhibit typical cellulose resonances (Figure IV-19). The resonance at approximately         

106 ppm is ascribed to anomeric carbon C1 of the glucose unit in cellulose and reveals the presence of 

two crystalline forms, namely, Iα and Iβ. The weak shoulder at approximately 102 ppm can be attributed 

to the anomeric carbon of hemicellulose polysaccharides [22]. 

 

Figure IV-19 13C CP-MAS NMR spectra of canvas GB, NM, TS1 and TS2 and modern flax. On the spectrum of 
modern flax, a detailed assignment of the main resonances belonging to cellulose (in red) and to hemicellulose 
(in green) is given. 

 

 In general, the cellulose matrix exhibits easily separable resonances from crystalline and less-ordered 

domains for the C4 and C6 atoms of the glucose unit. Resonances at 90.3 and 66.8 ppm labelled C4c 

and C6c are due to C4 and C6 of the crystalline phase, whereas those at 85.4 and 64.5 ppm labelled C4a 

and C6a are due to C4 and C6 of the amorphous phase. 
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 Moreover, other resonances were also identifiable: in particular, the resonance at 30 ppm ascribable 

to CH2 belonging to cutin, a waxy substance that covers cell walls, the resonances at 21 ppm and              

18 ppm, ascribable to the acetyl and fucose groups of hemicellulose, respectively, and resonance at        

177 ppm due to carboxyl groups of hemicellulose. In Table IV-6, the integrals (I) of resonances obtained 

from the deconvolution procedure of all spectra are reported together with the crystallinity index 

obtained from the ratio of the integrals C4c and (C4c+C4a). The deconvolution of C1 resonance allowed 

us to obtain the amounts of Iα and Iβ, the two allomorphs of cellulose. Our analysis showed that, in both 

modern and ancient flax yarns, the Iβ allomorph was more abundant than the Iα allomorph. The ratio R 

between Iα and Iβ depends on the origin of the cellulose [102]. Cellulose Iα is believed to be the dominant 

form in bacterial and algal celluloses, and cellulose Iβ is the dominant form in higher plants, such as 

cotton ramie [103].  

 The R values for both modern and ancient flax yarns analysed in this study were found to be 

approximately 0.5–0.6, in accordance with the literature data on flax [104] and corresponding to the 

values that are usually assigned to non-lignified materials [105]. The normalised area of hemicellulose 

peaks at 20 and 30 ppm was found to be approximately 1.6 in modern flax, 2.4 in GB and 2.3 in TS1, 

while the area greatly increased in the case of canvases NM and TS2. In the case of NM, it could be 

probably due to a degradation process, while, in the case of canvas TS2, a change in the fingerprint of 

the resonances between 20–40 ppm was observed, which indicates the presence of another substance 

with resonances overlapping those of hemicellulose. In the same spectral region, there are resonances 

attributed to the protein of the animal glue. 

 

Table IV-6 Normalised integrals of resonance (in % of total area), crystallinity index CI (in %) and R ratio of 
cellulose crystalline forms obtained by applying the deconvolution procedure to 13C CP-MAS spectra of modern 
flax and canvases GB, NM, TS1, TS2. 

Sample I (Iα) I (Iβ)  I (C4c) I (C4a) I (Hemicellulose) I (COO-) CI R= Iα/Iβ 

modern  

flax 

5.1 9.2  8.5 6.1 1.6 0.8 57 0.55 

GB 5.3 9.2  8.2 6.6 2.4 n.d. 55 0.58 

NM 4.7 8.6  8.5 5.8 4.7 2.8 59 0.55 

TS1 5.0 9.4  9.2 6.1 2.3 0.7 60 0.53 

TS2 4.2 8.4  7.6 7.3 7.7 3.2 51 0.50 

 

 Thus, a hypothesis could be that animal glue is present on the flax fibres of yarn TS2, which was also 

confirmed by FTIR. The amount of carboxyl groups, which is approximately 0.8% in the modern flax, 

increased in canvases NM and TS2 and can be due to oxidation processes or, in the case of canvas TS2, 

to the presence of animal glue. 
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 Another result concerns the crystallinity index CI. The CI value obtained for canvases GB, NM, TS1 

varied in a range between 53–58%, very similar to that found in modern flax (57% in Ref [106], 55% in 

this study), suggesting a good state of preservation for these ancient yarns. A slight but significant 

decrease in crystallinity was observed in the TS2 canvas (see Table IV-6). 

 

 SHG results 

 The second-harmonic is generated in the backward and forward directions, but a previous study 

showed that the forward direction is more suitable to investigating the network of cellulose microfibrils 

present in the cell walls of plant fibres (Chapter III, Sections 2 and 3), so in the present study the latter 

one was chosen (Figure IV-20). The ultrastructure of flax fibres in yarns GB, NM and TS2 was well 

preserved and comparable to that of modern yarn (Figures IV-20 and 21), with a visible cellulose 

macrofibril network, but some pits and other forms of degradation were occasionally observed as a result 

of oxidation and/or hydrolysis and a possible localised biological attack (highlighted in Figure IV-22). 

In GB, traces of a different material were also found, which emitted a high-intensity second-harmonic 

signal, as shown in Figure IV-20 (white arrows), but the structure of the underlying fibres was intact, 

as highlighted by autofluorescence channels (Figure IV-21, white arrows). Since the foreign material 

generates a second-harmonic but no fluorescence, this could suggest the presence of minerals or salts, 

as in the archaeological textiles studied previously [49]. The identification of this material is beyond the 

scope of this study. Concerning yarn TS2, despite the increased rigidity caused by glue-paste 

vitrification and the presence of some fractures into kink-bands, the cellulose microfibril network 

appeared intact under multiphoton microscopy. 

 All the ancient flax yarns presented sporadic degradation, identified with lacunae in the fibre 

structure, but yarn TS1 was in the worst state of preservation, and SHG analysis confirmed the AFM 

results: a severe biological attack was observed in the whole yarn. The fibre ultrastructure of this last 

sample was found to be highly degraded and compromised by cavities and lacunae, not only on the 

surface of the fibres but also into their inner structure down to the lumen. 

 To support the results, some additional tests were performed. Flax yarns from the four paintings were 

compared with modern flax fibres extracted (Bolchoï variety, cultivated in 2018 by Depestele group, 

see Chapter III-Section 2.2) and appositely used to reproduce a biological attack and acid hydrolysis 

and obtain a fast and approximative reference of the SH response of the two main degradation 

mechanisms responsible for the degradation of cellulosic fibres.  
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Figure IV-20 Forward SHG images of the flax yarns. GB, NM and TS2 have a generally well-preserved 
ultrastructure with an intact cellulose network. White arrows indicate the presence of a foreign material in GB 
yarn (probably minerals or salts) and cavities/pits resulting from a severe biological attack in yarn TS1. Several 
kink-bands with a well-defined angle are found in TS2 (square inset), suggesting brittle behaviour. A palette of 
false colours is used to highlight the cellulose network.  

 

 

Figure IV-21 Autofluorescence maps recorded in backward (R) and forward (T) configurations. In each case, the 
blue/cyan (R460/60 and T460/60 TNDD) and red/magenta (R550/88 and T550/88 TNDD) channels were merged 
into a single image. White arrows correspond to the zones considered in Figure IV-20 under the SHG channel. The 
yarn GB shows an intact fibre structure where a high second-harmonic was recorded, suggesting that salts or 
minerals are probably the cause of the second-harmonic signal. In TS1, fibres partially degraded and metabolised 
by microorganisms are also observed in the autofluorescence maps.
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 To reproduce a biological attack and promote a fast over-retting process, 5 g of soil were collected 

from the garden and put in a petri dish where 5 g of water were added. A bundle of fibres was left on 

the surface of the closed petri dish for 5 d at room temperature and humidity. After 5 d some fibres were 

extracted and mounted on paper support for SHG investigation (Figures IV-22a, b).  

 Other fibres from the same batch of Bolchoï flax variety were investigated by SHG in acidic 

environment. A bundle was extracted and mounted on a metal support and investigated by SHG 

microscopy. A solution of H2SO4 (1M) was then carefully injected with a syringe between the two 

coverslips where the sample was mounted. Fibres were left in acid environment for 8 h and images were 

collected before (image not shown) and after (Figure IV-22c) the injection of the solution.  

 Figure IV-22a show modern fibre under biological attack. The presence of fungal hyphae is 

observed with a similar SH response noted in Figures IV-22d from yarn NM. In Figure IV-22b a detail 

of a modern over-retted fibre with a degraded lumen due to the growth of microorganisms in the 

innermost layer shows lacunae comparable with fibres from TS1 (Figures IV-22d), and the fast acid 

hydrolysis in Figure IV-22c highlights a fibres fragmentation that has a similar degradation pattern 

observed in TS2 (Figures IV-22d). 

 

Figure IV-22 SHG images of a) the surface of a modern flax fibre over-retted in soil, with fungal colonization (white 
arrows); b) the same fibre with focus on the lumen; c) a modern flax fibre treated with H2SO4 (1 M) for 8 hours, 
which causes fibre fragmentation; d) fibres from yarn NM, TS1 and TS2. The white arrows in NM highlight mould 
on the fibre surface. TS1 shows degraded inner layers, as observed for the over-retted fibres. TS2 shows a fibre 
with a similar degradation as observed in (c), probably due to hydrolysis. All the channels are merged in both 
backward and forward directions to create a single image. 
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 Through this new combination of techniques, four Italian canvases dated between the 17th and 18th 

centuries have been investigated. The yarns extracted from each canvas were compared to a modern flax 

yarn to evaluate their state of preservation and highlight possible issues related to their chemical and 

mechanical conditions. Information on local mechanical properties obtained by nanoindentation and 

AFM helped to establish the state of preservation of cellulosic fibres, giving support and being 

complementary to chemical analyses such as FTIR and NMR. In addition, the SHG technique has proven 

to be fundamental to confirm the hypotheses of oxidation and biological attack formulated by the other 

techniques. 

Yarn TS1 was found to be highly compromised by microorganisms, and future investigations should 

focus on assessing biological attack in the rest of the painting to avoid further degradation. 

 Despite the ageing, yarn GB appeared well preserved and comparable to the modern yarn. This could 

suggest that it was preserved in more favourable conditions before its acquisition and does not require 

immediate intervention. 

 Yarn NM showed some fibres with low mechanical properties recorded by AFM and 

nanoindentation, and the large amount of hemicellulose and carboxyl groups obtained by NMR 

suggested the presence of an oxidation process. However, thanks to the SHG, it was noted that, in this 

sample, the fibre ultrastructure was mainly intact. 

 The fibre ultrastructure of yarn TS2 was generally preserved, as well as the mechanical properties 

that were comparable to those of the modern sample. On the other hand, the yarn of this last painting 

was the most brittle, and the increased rigidity of the canvas due to the vitrification of the glue paste 

could be responsible for the lacunae and loss of the painting layer in the future. Furthermore, the                  

re-lining process with glue paste could also trigger biodeterioration; however, in this case, it was 

observed a rather limited number of fibres with signs of mould growth. 

 

 

 

 

 

 

 

 

 

 

 

2.5 Conclusions 
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3.1 Introduction 

 Our collective need for sustainable development, driven by environmental regulations, encourages 

innovation in materials. Flax fibres, thanks to their specific mechanical properties, enable the design of 

functional, eco-friendly composite materials [29]. To design fully biodegradable or compostable 

composites, flax fibres must be embedded in biodegradable matrices such as poly-(butylene-succinate) 

(PBS), poly-(hydroxy-alkanoates) (PHA) or poly-(lactide) (PLA) [107]. In this case, an extended range 

of end-of-life routes can be planned, avoiding incineration, notably by recycling and by composting. 

 This study focuses on non-woven flax-PLA composites, due to their availability and the general 

interest of industry in these two bio-based components, especially for short life applications or when 

degradation at end of life is expected, such as specific parts for the advertising sector. During 

composting, degradation mechanisms of the composite material are naturally impacted by 

environmental conditions but also by the composite structure and the nature (physical, biochemical, 

thermal) of the polymer and fibre.  

 Composting is a bioprocess involving microorganisms and their colonization capacities as well as 

their arsenal of enzymatic degradation. The polymeric chains of materials can be split and, at 

macroscale, the composites will undergo macro- and micro-fragmentation. In compost conditions, PLA 

degradation is strongly affected by temperature, which substantially impacts the extent and rate of 

decrease in composite mass and molecular weight [108,109]. Morphologically speaking, degradation 

induces macro- and micro-fragmentation of the polymer matrix and, when plant fibres are incorporated, 

structural degradation is often boosted due to the fibres’ hydrophilicity, leading to extensive interfacial 

damage [107]. At the composite scale, the impact of flax fibre content and preform architecture on the 

kinetics of degradation has been previously explored [110,111]. Moreover, mechanical properties of non-

woven flax-PLA composite materials have been monitored during garden composting, showing a 

sudden decrease in tensile properties, but thereafter preservation of residual mechanical performance 

(vis. strength) at around 50% of initial strength even after six months in compost [107]. 

 To our best knowledge, no existing studies focus specifically on the mechanical and structural 

degradation, and associated mechanisms, of the plant fibre constituents during the compost ageing 

process of biocomposites. Indeed, such investigations within a composite, at microscale, are challenging 

due to difficulties in sample preparation and the limited number of sufficiently precise and resolved 

3. Investigations by AFM of ageing mechanisms in 
PLA-flax fibre composites during garden 
composting 
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characterization tools. The development AFM PF-QNM [67] paves the way for original investigations 

with high precision and resolution allowing semi-quantitative indentation modulus mapping at the cell 

wall scale. 

 Here, following more than four months in a garden compost, a flax-PLA non-woven composite was 

examined using AFM PF-QNM technology. The mechanical properties of the composite material, its 

constituent flax fibres, PLA matrix and fibre-matrix interfaces, were compared before and after 

composting. Specifically, cross-sections of flax cell walls were mechanically mapped in different areas 

of composite sections to understand flax fibre degradation mechanisms within a biocomposite.  

 

3.2.1    Flax-PLA non-woven preform 

 The industrial flax-PLA non-woven preform (100 ± 15 g/m²) was provided by Ecotechnilin (Yvetot, 

France). This light non-woven mat is made with a needle-punching line and extracted before the napping 

step, prior to consolidation. PLA 3001 D from NatureWorks was used to produce films with a thickness 

varying from 50 to 100 µm. 

 

3.2.2   Composite manufacturing and composting stage  

 Composite plates of 2 mm thickness were manufactured by a film stacking process and using thermo-

compression, as described in a previous work [107]. Ten plies of flax preform were alternated with 

several plies of PLA to produce a sandwich by lay-up process, which was successively dried at 40 °C 

and at pressure of 60 kPa for 24h. A fibre volume fraction of 30 ± 1% was fixed and after 

thermocompression by a hydraulic press LabTech Scientific 50T (Labtech, Samutprakarn, Thailand) 

equipped with plates heated to 200 °C, in the composite a porosity less than 2% was achieved [107]. 

Dog-bone shaped samples drawn from ISO 527 were cut from these plates by a milling machine; due to 

the milling process, the edges of the specimen are not protected and therefore the flax fibre section is 

accessible (see Figure IV-23). Specimens were then aged in a garden compost made of green and brown 

plant waste [107]. Samples were buried at a depth between 20 and 40 cm; sampling was done after       

125 days in the compost. 

3.2.3   Sample preparation for AFM study   

 One composite sample was cut from a tensile specimen (Figures IV-23c, d, e) after 125 days of 

composting. The sampling region (area and orientation; Figures IV-23e, f) was selected to include both 

3.2 Materials 
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‘exposed’ flax fibres (near the composite edge/surface, close to the compost) and ‘protected’ flax fibres 

(in the core of the composite sample). The sample was embedded in agar resin (epoxy resin agar low 

viscosity resin (LV); Agar scientific UK) and prepared for nanoindentation and microscopy as described 

in [112] (Figure IV-23g). Before micromechanical analysis, the sample was observed under an Olympus 

AX70 optical microscope equipped with a 5x (N.A. 0.15) BD objective to create a mosaic of the full 

surface (Figure IV-23h).  

 

 

Figure IV-23 Manufacturing of the composite plates: a) Stacking of PLA-flax non-woven layers for hot 
compression, (b) is the obtained composite plate, (c) is the plate after the specimen cutting process and (d) focuses 
on the structure of the edge of the specimen with apparent flax fibres cross-section after cutting. (e) is a schema 
of the dog-bone sample indicating the region of sampling; The green face C (f, g) was specifically investigated in 
this study; the extracted sample was embedded in agar low viscosity resin and glued on an AFM sample holder 
(g). Face A represents the most porous ‘exposed’ face (h), in contact with the compost, as the dog-bone sample 
was cut by milling machine, whereas face B are less porous external faces in contact with thermo-compression 
plates, and the green face C was the one investigated by optical, electronic and atomic force microscopy. 

 

3.3.1   Composite tensile test 

 Static tensile tests were performed on an Instron 5500R machine (Instron, Norwood, MA, USA) 

where displacement was recorded by an EIR LE-05 laser extensometer. The gauge length was 25 mm 

and the displacement speed was set at 1 mm/min. At least 5 valid experiments points (e.g. ignoring grip 

failures) were used for statistical analysis. The tangent modulus was calculated in the strain range of 

0.02% to 0.15%. 

3.3 Methods  
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3.3.2   AFM investigations 

 The indentation modulus is derived from the unloading part of the force-distance curve using an 

appropriate contact model. A DMT model was used, which corresponds to the Hertz contact model 

(small indentation depth compared to the tip apex radius) modified to take into account the adhesion 

force (mainly due to water capillarity in this case) between the tip and the sample surface [113]. The 

indentation modulus obtained is similar to that obtained by nanoindentation measurements, but with the 

required resolution to study mechanical gradient within cell wall layers [114]. For further information, 

see Chapter II.  

 The tip radius was adjusted between 20 and 80 nm. The image resolution was 512×512, 384×384 or 

256×256 pixels depending on the aim of the image captured. The peak force amplitude was set at 30 nm 

for PLA measurements and between 50 and 100 nm for fibres, depending on the region investigated. At 

least three images were used to calculate the average moduli and roughness of PLA. The root means 

square (RMS) roughness was calculated after a flatten treatment (order 1) to remove the tilt of the sample 

beneath the tip.   

 

3.3.3   SEM analysis  

 Two different samples were prepared for SEM analysis: i. a composite sample, cryo-fractured in 

nitrogen, for interface observation and also, ii. the sample prepared for AFM and described in Figure 

IV-23 was SEM observed after AFM investigations. All samples were gold-sputtered using a Scancoat6 

from Edward. Then, these samples were observed under a JEOL SEM (JSM- IT500HRSEM) at an 

acceleration voltage of 3 kV.   

 

3.4.1 Evolution of overall composite microstructure with composting 

stage 

 After spending 125 days in a garden compost, flax/PLA non-woven composites have undergone 

notable microstructural and mechanical property changes. As the interface region is a critical zone for 

stress transfer, the strength of aged composites is harshly impacted with a decrease of 51 ± 4% after 

composting. The degradation of the composite impacts not only its strength but also Young’s modulus, 

which decreased by 66 ± 7% (Figure IV-24a).   

3.4  Results and discussion 
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 As is visible in Figures IV-24b and 24c, the degradation of the interfacial region, induced by a loss 

in the flax/PLA cohesion after ageing, plays an unarguable role in this drop in mechanical properties. 

This result is confirmed by previous results, for which a weight loss of 5.75 ± 0.57% was recorded [107] 

and the presence of internal porosity was observed. Looking at the position and geometry of this 

porosity, they appear to be mainly located at the interface between flax fibres and PLA. It is, therefore, 

relevant to also question the evolution in mechanical properties and ultrastructure of the flax fibres 

during this degradation, as they are largely responsible for the stiffness of the composite. 

 

 

Figure IV-24 a) Mechanical property evolution of a non-woven flax/PLA composite after spending 125 days in a 
garden compost; (b-c) SEM micrographs of nitrogen cryo-fractured samples, showing the interface between flax 
fibre and PLA before (b) and after (c) compost ageing. 

   

3.4.2 Morphology of the composite section after composting  

 Figure IV-25 presents a view of the investigated face (Figure IV-25a), as well as SEM images of 

flax fibres elements (Figures IV-25b, c and d) and PLA matrix (Figures IV-25e, f and g) at specific 

locations of the sample.  

 The sample was in direct contact with the compost at three faces (Figure IV-23a): face A and the 

two lateral faces B. Face A presented the worst conditions, as this face was milled during the specimen 

preparation resulting in a large number of fibre sections, devoid of PLA encapsulation, that are in direct 

contact with the compost. In contrast, as the upper and lower faces B of the specimens were in contact 

with platens during thermo-compression specimen manufacture, the surface and fibres would be well-

permeated with PLA. Thus, the porous face A is more likely to promote the physical conditions 

necessary for the entry and proliferation of microorganisms [115] and, in this specific case, broken flax 

fibres provide an optimal access point and molecular resources for microorganisms. After 125 days in 

compost, degradation of PLA-flax fibre interface is noticed (Figure IV-25d), even in the core of the 
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composite, as in Figure IV-24c, this creates voids at the fibre-matrix interfaces, probably induced by 

moisture sorption and desorption of flax fibres during ageing combined with the low deformation 

capacity of PLA. These interfacial cavities may further facilitate the penetration of microorganisms 

through “channels” to the core of the sample. 

 

Figure IV-25 a) Optical micrograph of the investigated Face C (see Figure IV-23) which is divided in edge, middle 
and core areas following visual observation of fibre degradation; b-d) SEM images of fibres collected in edge, 
middle and core, respectively. The complete degradation of the fibres leaves phantom cavities with the same 
shape of the degraded fibre (b). Different stages of degradation can be recognised in (c). In (d) fibres in core 
appear intact; e-f) SEM images of PLA matrix investigated in edge, middle and core, respectively. Some porosities 
visible in edge (e) and middle (f), probably due to degradation, are absent in core (g). For each SEM image, 
corresponding investigation area is indicated with red circles in (a). 

 

 Figure IV-25a, one can notice that fibres closest to the compost exposed face have a black colour in 

contrast to that of the fibres located in the core of the material which are less accessible. Three stages of 

fibre degradation were identified: i. mostly black fibres at an advanced stage of degradation that often 

result into large empty cavities, in some cases with a cell wall residue in the periphery (Figure IV-25b); 

ii. partially degraded cell walls characterised by a grey colour often associated with channels and pits 

(Figure IV-25c), and; iii. apparently intact fibres still aggregated in bundles with a clear colour (Figure 

IV-25d). Following this observation, for the purpose of discussions in this study, the composite sample 

was ideally divided into three specific regions: edge, middle and core (Figure IV-25a).   
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 Visually, at the SEM microscale, the PLA matrix is relatively less damaged in all three regions, 

though one finds an increase in porosity from the core to the edge (Figures IV-25e-g), with porosity 

size also increasing the closer they are to the edge. Development of progressive pores has already been 

documented for PLA, in case of immersion in a degradation medium (i.e. pH 7.4, 37 °C phosphate 

buffer) due to solubilisation of oligomers during 15 weeks, which is consistent with the duration of our 

composting stage [116]; it was evidenced that conjugated decrease of PLA molecular weight and water 

sorption were the key factors for this morphological degradation. 

 

3.4.3 Assessment of the flax fibre degradation using AFM   

 In literature, bacteria responsible for wood and plant fibre degradation are divided into tunnelling, 

erosion and cavitation bacteria based on the characteristic pattern they create during their attack 

[81,115,117]. The tolerance limits of bacteria, especially dependent on temperature, oxygen and high 

values of water activity (water molecules not-chemically bonded to the material) [115], can make their 

proliferation difficult. However, in compost and in burial environments, optimal conditions allow 

bacteria to dominate over fungi [115,118]. An exception are the soft-rot fungi, particularly tolerant to 

these environmental conditions, which can coexist with bacteria, sometimes even degrading the same 

wood cell wall [119]. In general, it is possible to distinguish between fibre decay caused by fungi or 

bacteria, but sometimes their marks of degradation are similar especially at an advanced stage of the 

attack, as demonstrated in archaeological wood in burial conditions [118]. The three stages of fibre 

degradation previously identified (Figures IV-25b-d) were successively investigated by AFM, for 

which results are shown in in Figure IV-26. 

 After 125 days in compost, in the sample core, some fibres were found to be still intact                      

(Figures IV-26b, e and h) and with an indentation modulus around 18–23 GPa, (average indentation 

modulus calculated also using images of different areas not shown in this manuscript: 23.2 ±1.3 GPa) 

in line with indentation moduli generally found for flax fibres recorded in other papers by AFM or 

nanoindentation [67]. Nevertheless, one can notice a beginning of degradation in these core fibres, with 

low indentation modulus area around the lumen (Figure IV-26h, average indentation modulus 

calculated also using images of different areas not shown in this manuscript: 12.1 ±1.5 GPa) inducing a 

bimodal distribution of indentation modulus (Figure IV-26i) with two main peaks around 23 and            

10 GPa. A progressive degradation, with first an attack of more labile polymers such as hemicellulose 

and pectins can be hypothesised. It should be considered that the section investigated in this study 

represents only a slice of the whole sample. Fibres and fibre bundles at different planes can be more or 

less degraded than the one investigated, as was demonstrated by Björdal et al. [120] thanks to 

tomographic analysis. In general, degraded regions were found at the edge of the fibres (rarely), 
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randomly distributed in the secondary layers (typical in soft-rot decay, type I) [121] as shown in            

Figure IV-27d, or more often starting from the lumen (Figures IV-25c and 26h). 

 Fibres investigated in the middle region of the sample show more pronounced decay                   

(Figures IV-25c and 26g) than those in the core (Figure IV-25d), with an increase of the degraded area 

from the lumen region. More precisely, mechanical properties of the gelatinous G layers decreased 

considerably (range of 5–7 GPa using the image illustrated; average indentation modulus calculated 

also using images of different areas not shown in this manuscript: 5.7 ±1.2 GPa) in the degraded regions 

(Figures IV-26g and 26i). However, a part of the secondary wall in Figure IV-26i still appeared intact 

with stiffness around 18 GPa (average indentation modulus calculated also using images of different 

areas not shown in this manuscript: 17.9 ±1.6). 

 

 

Figure IV-26 a) 3D AFM topographic image of a fully degraded fibre, located at the extreme edge of the sample; 
(b) Face C investigated through AFM PF-QNM; black and red circles indicate the fibres selected for AFM 
measurements; (c), (d) and (e) are AFM topographic images of edge, middle and core areas, respectively and (f), 
(g) and (h) the corresponding indentation modulus maps. (i) shows the indentation modulus distribution for each 
investigated region, indicated in white dot lines in (f), (g) and (h); In (f) no data was recorded in the hatched area. 
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 The third step of fibre decay, especially in the edge of the biocomposite, consists in the complete 

degradation of the cell wall fragments (mean indentation modulus 4.9 ±1.4 GPa), until only one cavity 

remains. Despite the advanced state of degradation of the whole cell, S1 and the last parts of the G layer, 

seemed to be partially preserved at the periphery of the fibre (Figures IV-26f and 27f, mean indentation 

modulus of 19.2 ±3.9 GPa). When fibre located at the extreme edge of the sample is considered           

(Figure IV-26a), cell walls are fully degraded. This loss of fibre material is mainly responsible for the 

increase in porosity of the biocomposite and its consequent loss of weight [107]. Thus, the described 

degradation mechanisms, from the lumen of the fibre, is a typical behaviour for tunnelling and erosion 

bacteria [81] but several fungi can also grow into the lumen (Figures IV-27e and f) and successively 

intrude into the rest of the fibre [122]. The progressive decrease in indentation modulus observed here, 

from the lumen to fibre periphery, is linked to the severity of the biological attack. It confirms also the 

predominant role of the lumen in plant fibre degradation; it enables the transport and propagation of 

water and microorganisms.  

 

Figure IV-27 Surface topography (a, b and c) and indentation modulus mapping (d, e and f) of specific degraded 
areas. (a) and (d) are details of some fibres randomly degraded in G layer as typical degradation of soft-rot fungi; 
(b) and (e) focus on some typical degradation marks found in flax fibres, red circles highlight the presence of 
bacteria and a probable fungal mycelium; (c) and (f) focus on tunnel between inner and outer layers of the cell 
with a fungal mycelium that has grown in the exterior of the fibre and macrofibrils of the cell that are fragmented 
in packets with a low indentation modulus. 

 

 Moreover, flax fibres are cellulose and hemicellulose-rich and these components are high value 

resources for chemo-organotrophic microorganisms. Degradation is also promoted by their low lignin 

content, as lignin is known to inhibit the attack of fungi and bacteria.  
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 In Figure IV-26g one can note that fibres investigated in the middle of the biocomposite lose their 

mechanical properties following the fibre shape, confirming that the gelatinous layers of flax, rich in 

cellulose and poor in xylan and lignin [123,124] are easily degraded; in the present case, cell wall 

degradation is probably initiated by structural hemicelluloses, less recalcitrant than crystalline cellulose. 

3.4.4 Degradation of PLA   

 Contrary to flax fibres, PLA exhibits a low difference in indentation moduli between edge, middle 

and core regions (Figures IV-28e, f and g) with average values ranging from 4.70.2 GPa to            

5.20.2 GPa. In contrast, a strong decrease in roughness, probably induced by the specific behaviour of 

the PLA during the cutting stage, from the core to the edge is evidenced with a ratio of 4.2 between core 

and edge mean values. The topography observed in the core region is comparable to that of PLA 

investigated in other studies [125,126], where the polymer appears as a complex matrix of fibrils, 

aggregated together. In the present study, the polymer formed filaments around 150–400 nm in length 

(Figure IV-28d). 

 During the first days of compost, the temperature under the compost can reach 60 °C [107] and this 

can cause a possible evolution of post-process local residual stresses as well as re-arrangement and 

recrystallisation of PLA during composting [107] that is visible in the core region (Figure IV-28d), with 

higher roughness, and disappeared at the edge where the degradation is more severe (Figure IV-28b 

and c). This supports the results in Xu et al. [125], where the authors observed a similar change in the 

surface topography of PLA film subjected to hydrolysis after 60 and 90 days at 60 °C. In other research, 

an increase in crystallisation and mineralization were noted after biodegradation and weathering process 

in PLA/plant fibre composites [127–129] that correlate with this phenomenon of re-crystallisation. This 

increase in crystallisation may induce a minor improvement in the indentation modulus as evidenced in 

our sample (Figure IV-28), even though the change in roughness may interfere with the measurement 

of the indentation modulus. 

 In the present study, the morphological change observed by AFM and decrease in RMS indicate an 

evolution in the organisation of PLA in the edge area in comparison to the core region, suggesting a role 

of microorganisms in secreting enzymes that degrade the polymers in oligomers, dimers and monomers 

being absorbable as nutrient [130,131]. Pits present in the PLA matrix, as observed by SEM          

(Figures IV-25e, f) or AFM (Figure IV-28c), are additional proof of this structural evolution, but it was 

not possible to attribute them to mechanical degradation caused by fungi or other types of ageing 

mechanisms such as self-catalysis hydrolysis [132].  

 A list of fungi and bacteria capable of degrading PLA are reported in [133] but, in Suyama et al. 

[134], PLA has been shown to be particularly resistant to biodegradation compared to other plastics. 

These authors also reported that only up to 0.04 % of bacterial colonies present in soil have the capacity 

to degrade PLA. Despite its low sensitivity to biodegradation, it is interesting to note that, in the 
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literature, PLA [131,135] and bast fibres [122,136,137] have some bacteria, such as Bacillus brevis, 

Bacillus licheniformis, Paenibacillus amylolyticus, and fungi, such as Trichoderma viride and Fusarium 

moniliforme, in common that are responsible of their biodegradation, but also used (or isolated) during 

the retting process for fibre extraction. 

 

Figure IV-28 Maps of PLA topography and indentation modulus in the edge (b, e), middle (c, f) and core regions 
respectively (d, g). Red and black circles on the investigated composite section (a) represent the areas examined 
through AFM. Average values of roughness (Ra) and indentation modulus (IM) are given. Average roughness was 
calculated through topography acquisition in the areas delimited by white squares (55 x 55 px) and average 
modulus was calculated in the whole image avoiding the defects when possible (around, 65,500 force curves); at 
least three images were used to calculate the mean roughness and modulus in each region.  

 

 In the present study, the compost ageing of PLA-flax non-woven composite materials was 

investigated. After a period of over four months in a garden compost, flax fibres within a PLA-flax 

composite undergo drastic degradation with a significant decrease in indentation modulus and 

progressive increase in cavities from the inner part, the lumen, to the periphery of the fibre. It was 

shown that the lumen is a preferential degradation channel, with cell wall degradation occurring 

through well-known tunnelling and erosion effects. In contrast, the indentation modulus of the PLA 

matrix is not particularly affected, but a significant evolution in PLA morphology and change in 

roughness, from the core to the edge of the sample are highlighted. These phenomena are conjugated 

with the development of pits, induced by water ingress and microorganism attack

3.5 Conclusions 
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 In the last 20 years, the production of textile flax fibres and tows has increased considerably, and in 

2019, the Food and Agriculture Organisation of the United Nations (FAOSTAT, www.fao.org) 

estimated the total world production to be up to 1,000 k tons, led by France with 85% of the world textile 

flax fibre production [1,2]. The renewed interest in flax and other plant fibres used in areas other than 

textile applications, such as design and engineering, is due in part to global warming and the low 

environmental impact of flax fibre production, especially compared to synthetic fibres [3]. 

 Climate change is strongly linked to greenhouse gas emissions, especially CO2, and other types of 

factors, such as eutrophication, generated during the whole material lifecycle, from the production of 

raw materials to the end of life of the final product. Many industries and companies are focusing their 

efforts on reducing their footprint and adapting to new standards of the European Union but also 

maintaining the quality and competitive pricing of their products. For this reason, current research is 

focused on life cycle analysis that compares natural and synthetic materials as well as takes into account 

the intrinsic properties that are suitable for their use, as in the case of biocomposites reinforced with flax 

fibres [4–6]. 

 However, as the production demand for plant fibres continues to grow with the goal of replacing 

synthetic fibres wherever possible, during the coming years, agriculture will have to increasingly 

contend with the effects of climate change. The reduced rainfall and the increment in temperatures 

implies the risk of abiotic stress such as drought, as well as various biotic stresses, for example, the 

emergence of new diseases and pests [7]. Moreover, this same document also reports that the risks of 

heavy rainfall events and flooding, which contribute to crop damage, are increasing. Thus, to meet 

market demand, not only for flax but also for agricultural production more generally, farmers might be 

forced to use more irrigation or even phytochemical products to increase crop production, which may, 

at the same time, contribute to the drivers of climate change (Figure V-1).   

 Focusing on France, textile flax crops are mainly located in Normandy and northern France          

(Figure V-2a). The rapid increase in flax technical fibres and production during the last two years is 

reported in Figure V-2b. It is worth noting that during 2001 and, particularly 2011, production recorded 

a violent decrease, and these years coincided with severe periods of drought [8,9]. Consequently, total 

world production was affected. Several models in the literature show the possible impact of climate 

change in European countries. Habets and Viennot reported a scenario with an increase in temperatures 

between 0.6 °C and 1.3 °C in 2021–2050 and a general decrease in rainfall in the entire country of 

approximately 6%, as illustrated in Figure V-2c with a schematic readaptation of their maps [10].  

1. Introduction 
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Figure V-1 Synthetic representation of interactions between climate change, agricultural markets and crop 
management. 

 

  

Figure V-2 a) Map of flax production in France, adapted from FrD and IAR [11], b) Production in France of tow 
and fibres between 2000–2019, data and graphic elaborated from FAOSTAT [12]. ; the yellow arrows indicate the 
drought that occurred in 2001 and 2011; c) Models of rainfall, temperature and crop yield readapted from [10] 
and [13]. Temperature and crop yield maps are simulations of changes compared to the years 1961-1990. Maps 
inspired from "PRUDENCE" and "PESTEA" EU projects [13]. 

 

 The European Commission has also published an official document in which several models are 

proposed to forecast the years 2070 to 2100 [13]. In the worst-case scenario, if no actions are taken, 
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northern France could be subjected to a temperature increase of approximately 4–5 °C compared to the 

years 1961-1990. Moreover, in two different simulations, HadCM3/HIRHAM and ECHAM4/RCA3, 

compared with 1961-1990, northern France appears particularly impacted in terms of crop yield, with 

the highest loss of approximately 15%–30% due to drought and water deficiency [13]. Figure V-2c 

shows a schematic synthesis elaborated from the temperature and crop yield maps that can be found in 

the official document by Kelemen et al. (2009). All these data suggest that, in the future, flax fibre 

production could be particularly impacted since the cultivations are rather limited to a small area 

(northwestern France) that would be particularly subjected to the impact of climate change due to global 

warming. Thus, composite materials reinforced with plant fibres, especially flax, which appears to be a 

good alternative to other synthetic fibres, would no longer be sustainable in terms of CO2 emissions, 

water irrigation and crop cultivation. 

 The effect of water deficit on plants has already been studied for several fibre plant species, such as 

ramie, flax or hemp. At the crop level, the consequences of particularly hot and dry years were observed 

with a decrease in the yield and quality of the product, as in the case of linseed oil [14]. For other species, 

such as hemp, drought leads to the formation of morphologically thinner and heterogeneous cell walls, 

probably caused by a delay in their maturity and thickening process [15]. 

 In the case of flax, it has been observed that moderate soil drought affects plants that produce a low 

number of ramifications, with a reduction in the number of leaves and a decrease in stem length [16–

18] and roots [19]. In the case of severe drought, cessation of metabolic processes was observed [16]. 

At the cell scale, flax fibres extracted from drought-stressed plants were found to be shorter than those 

extracted from plants grown in nonstressed conditions. Moreover, a modification of the polysaccharides 

was observed with a decrease in the galactose/rhamnose ratio (monosaccharides), a change in the 

number and length of rhamnogalacturonan-I chains and, consequently, an increase in the disorder of the 

cellulose microfibril network [16]. 

 However, flax is a plant that can grow and survive in different environments, and its adaptability 

allows its cultivation from Russia to the Mediterranean regions [20]. The origin of this plant is ancient; 

it was cultivated for millennia in Mesopotamia, Syria and Egypt [21,22]. Nevertheless, these regions are 

particularly dry and hot, much more than the climate we find in northern France. Since flax needs 

approximately 400 mm of rainfall in 120 days of growth [23], depending on the water-holding capacity 

of the soil, and since drought or temperatures higher than 35 °C during and after flowering reduce the 

yield and quality of both fibres and linseed oil, certain practices were used in ancient times to 

compensate for the lack of water. For instance, in the ancient Near East, flax was sown in irrigated soils 

[21]. In the case of ancient Mesopotamia, the culture of flax was limited to very small lots rich in water 

and clays [21], and in ancient Egypt, flax cultivation started in November following the Nile floods [24]. 

 At the economic level, the effect of global warming on the yield or quality of technical fibre is a 

growing issue. Hence, industries that cultivate and produce flax and semiproducts and industries that 
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employ biocomposites are demanding an increasing number of scientific studies able to predict the 

impact of global warming on their production. 

 In this context, the present work aims to investigate the consequences of drought on flax plants and 

the impact on the mechanical properties of elementary flax fibres for industrial batches of the same 

variety sown on the same date in two different selected areas of Normandy (France), one subjected to 

drought conditions and the other well irrigated when necessary and taken as a control, to evaluate the 

response to drought stress at both the plant and fibre levels. After a morphological study of the stems, 

synchrotron deep ultraviolet (DUV) imaging microscopy for polysaccharide and lignin biochemistry 

and solid-state nuclear magnetic resonance (ssNMR) analysis to decipher the ultrastructural assemblies 

of polymers were innovatively coupled with a multiscale mechanical assessment performed by AFM at 

the fibre cell wall scale and with tensile testing on elementary flax fibres extracted from the two batches. 

 

2. Materials: flax plants and fibres  

 Two batches of the Damara flax industrial variety were sown at the end of March 2019 by the 

Depestele Group, a French company specializing in flax culture and processing, in two different growing 

areas located in Ernes (control; irrigated) and Fourches (at risk of drought, not irrigated), in Normandy 

(France). The two areas are approximately 20 km away from each other and sowing was done with the 

same seed rate per ha. During the whole fibre growth period, rainfall was constantly recorded until 

harvesting (Figure V-3a) together with temperature and relative humidity (Figure V-3b).  

 It is important to note that the problem of defining drought from a meteorological or agricultural 

point of view was already discussed in [25], with the conclusion that a lack of precipitation does not 

necessarily coincide with agricultural drought, expressed as the water demand of the plant. In the present 

study, it was defined drought as the batch that received less than 100 mm of cumulated rainfall and 

without irrigation, contrary to the 400 mm generally required. In contrast, the control batch was grown 

with nearly 250 mm of cumulative rainfall and irrigated when necessary, in order to reach the water 

demand of flax. 

 A group of approximately 100 plants were sampled from both cultivations before harvesting and at 

the beginning of July after approximately 103 days of growth. Fifteen stems were randomly selected to 

calculate height and diameter to obtain a representative sample, and the other 3 stems were randomly 

selected and prepared for observations at the DISCO (Dichroism, Imaging and mass Spectrometry for 

Chemical and biOlogical systems) beamline. The rest of the crop was harvested, and dew was retted      

in situ by the Depestele Group until the middle of August. Fibres were successively extracted using pilot 

(lab-scale) scutching/combing equipment equipped with a small line with three modules for breaking, 

scutching and combing (more precisely described in [26]. Stems passed three times through the breaking 

module, once in the scutching module and two times in the hackling module. 
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Figure V-3 a) Daily (histograms) and cumulative (dotted lines) rainfall for the two cultivation areas; b) 
Temperatures and relative humidity recorded during the plant growth of the two crops in selected cultivation 
areas. 

 

3. Methods  

3.1 DISCO Beamline Synchrotron Facility   

 Sample preparation  

 A segment of 6 cm was cut at the middle height of the plant of the three fresh stems selected from 

each of the two batches (Figure V-4a). Three small segments of 0.5 cm were successively obtained 

from the small portion of each individual stem, avoiding the first millimetres in direct contact with air, 

and then fixed at 4 °C for 24 h in a FAA (formalin acetic acid alcohol) fixative mixture of 10:5:85 v/v 

composed of formaldehyde (37%), glacial acetic acid (60%) and ethanol (95%). Samples were then 
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transferred to an automatic tissue processor (Automatic Tissue Tek VIP 3000, Sakura, MI, USA) for 

ethanol dehydration and successive inclusion in paraffin. Sections were successively cut with a thickness 

of 10 µm and placed between two quartz coverslips (Circular-Quartz, Ref. R525000, Esco Optics, USA). 

The sections were treated with a HistoChoice Clearing Agent (H2779, Sigma) solution to remove 

paraffin. To detect lignin, stem samples were stained using Wiesner (phloroglucinol-HCl) reagent as 

described in Bouvier d’Yvoire et al. [27]. Cross-sections were immediately observed using a 

macroscope (AZ100 M, NIKON, Japan) under bright-field conditions. 

 

 

Figure V-4 Overview of the sample route analysis for Synchrotron DISCO beamline exploration. 

 

 TELEMOS parameters 

 As explained in detail in Chapter II, three different passband filters at 327–353 (assigned to the red 

channel, R), 420–460 (assigned to the green channel, G) and 480–550 nm (assigned to the blue channel, 

B) were used to detect tyrosine and tryptophan amino acids (protein), hydroxycinnamates (ferulic, p-

coumaric and sinapic acids) and lignin respectively. The choice of these three filters was made after 

previous investigations on flax stems [28]. The suitability of the three filters has been discussed in terms 

of their appropriateness to capture the most important differences in the biochemical composition of 

flax stems under stress. 

 With TELEMOS, the three stems of the two batches, each with three cross-sections, were analysed 

in a total of 18 cross-sections, 9 from drought plants and 9 from control plants. Using ImageJ/Fiji 

software, segment and area tools were used to select the region of interest (ROI) and calculate the 

intensity of each filter in regions of the image where the beam intensity was focused, i.e., the centre of 

the image with the control sample (Figure V-5). For further information on the method, see [28]. A 

range of display values for each channel and each objective was fixed (10x objective: red 0–1500; green 

0–2500; blue 0–2500; and 40x objective: red 0–1500; green 0–4000; blue 0–4000) to obtain similar 

colour intensity in images acquired with the two different objectives. Red, green and blue (RGB) 

channels were assigned as described in Chapter II, using red to better highlight tyrosine/tryptophan, 
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which are less fluorescent than lignin and phenolic compounds. A t-test using Sigmaplot was calculated 

to establish the confidence of the calculated values. The images presented in this work are composite 

images resulting from the sum of the three filters assigned to the RGB channels. 

 

  

Figure V-5 TELEMOS images acquired and processed. Illustration given for the control sample. The images are 16-
bit (65536 grey levels) composite images resulting from the three filters. The region of interest (ROI) where 
fluorescence intensity was calculated is highlighted in red. Images acquired with a 40x objective.   

 

 POLYPHEME parameters 

 For details on the parameters and methods used, see Chapter II. With POLYPHEME one cross 

section of a one drought-stressed stem and one cross section of a control sample were investigated. Here, 

an example of the corrected spectra and a table with the proposed fluorescence emission assignments 

are illustrated in Figure V-6 and Table V-1.  

Table V-1 Possible attribution of fluorescence emission collected with POLYPHEME microscope. 

 

 

Figure V-6 Fluorescence spectra extracted from the cross section of the control and drought stem sample. 
Illustration of the epidermal cell type and paraffin, which does not fluoresce (background). 

Emission Main attribution Reference 

≈ 306 nm Tyrosine [29,30] 

≈ 335 nm Tryptophan [29,30] 

≈ 415 nm Ferulic Acid [30] 

≈ 435 nm Caffeic Acid [31] 

≈ 480 nm Lignin [30] 

≈ 500–530 nm Lignin Disco beam line team personal communication 
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3.2 Single fibre tensile tests   

 Between 58 and 60 flax fibres were extracted from each batch and glued with universal glue on paper 

support according to ASTM C1557 [32], with a gauge length of 10 mm. The average diameter of each 

fibre (approximating the fibre to be perfectly cylindrical) was manually calculated considering five 

points of measurement under an optical microscope, as described in [33]. The sample elementary fibres 

were tensile tested by a universal MTS Synergy testing machine equipped with a load cell of 2 N under 

a controlled atmosphere (T= 23 ± 2 °C; %RH = 50 ± 4%) thanks to a Liebert Hiross indoor room cooling 

unit. The crosshead displacement rate was set at 1 mm/min until the fibre broke. The determination of 

the tensile properties, i.e., Young’s modulus (E, GPa), strength at rupture (, MPa) and strain at rupture 

(r, %) were determined by taking into account the compliance of the loading frame. 

 

3.3 Mechanical investigation of flax cell walls by AFM and 

nanoindentation  

 AFM PF-QNM analysis 

 After that the stems of the two batches were scutched with the scutching line machine, several 

technical fibres extracted with a scutching line machine after the stem dew retting process were 

embedded using a low viscosity epoxy resin kit from Agar Scientific (UK) using a flat mould. The full 

procedure concerning the sample preparation lightly dried in an oven, the final polymerization of the 

blocks and the surface preparation by ultramicrotome is described in Chapter II.  

 The peak force amplitude was set at 50 nm, the maximum load was 200 nN, and a tip radius between 

25 and 99 nm was obtained by calibration with a spring constant between 111 and 194 N/m following 

the same procedure described in Chapter II. The gain was set to automatic. At least 8 images of different 

fibres and bundles for each batch were acquired and used to calculate the mean indentation modulus. 

All the acquisitions were made at controlled temperature (T= 23 ± 2 °C) and relative humidity                  

(% RH= 50 ± 4%).    

 

 Nanoindentation  

 Nanoindentation analysis was performed on the same blocks prepared for AFM, and 24 tests for the 

control and 38 tests for drought-stressed flax fibres were performed. Nanoindentation analysis was 

carried out by a Nanoindenteur XP (MTS Nano Instruments, Oak Bridge, Tennessee, USA) used at 

controlled atmosphere (T= 23 ± 2 °C; %RH= 50 ± 4%). The instrument was equipped with a three-sided 

pyramid indenter (Berkovich-Berko XPT-12761–0) and a 40x objective. The strain rate was set at        

Evolution of the ultrastructure, parietal composition and mechanical properties of flax fibres over time : when history meets science Alessia Melelli 2021



CHAPTER V. The effect of the drought stress on flax plants and fibres extracted 

221 
 

0.05 s-1 (i.e., 1 μN/s) during loading to reach a depth limit of 120 nm. The load was held at the maximum 

value for 60 s, and then withdrawal was performed with the same loading rate up to 10% of the maximum 

load. At least 20 locations in each sample for each batch were tested. 

 

3.4 Biochemistry  

 Sample preparation for biochemical analysis 

 Ten flax stems were cut into 3 segment equivalents in length, and the middle part was retained for 

further biochemical analysis. The middle segment was manually peeled, and both the flax bundles and 

the shive part were collected and pooled by sample nature. The content of the monosaccharides was then 

quantified by operating a homogenization step by cryogrinding (SPEX 6700 freezer Mill) approximately 

1 g of the sample. 

 

 Monosaccharides (sugars) 

 The protocol was slightly modified from Barteau et al. [34] in the presence of inositol as an internal 

standard. Neutral monosaccharides were analysed as their alditol acetate derivatives [35] by gas 

chromatography-flame ionization detection (GC-FID) (Perkin Elmer, Clarus 580, Shelton, CT, USA). 

For calibration, standards of carbohydrate solutions were used. Analyses were performed in three 

independent assays. The total monosaccharide content is the sum of each monosaccharide amount and 

is expressed as the percentage of the dry matter mass. 

 

 Lignin 

 The lignin content was quantified in homogenised powdered particles of samples. Lignin was 

assessed by spectrophotometry following the acetyl bromide method [36] on samples of approximately 

20 mg in mass weight per assay. The chemicals were laboratory grade from Sigma Aldrich, and the 

analyses were performed with four independent assays, with the lignin content expressed as a percentage 

of the dry matter mass. 

 

 Protein 

 The total C and N contents of the samples were determined on cryogrinded powders via the Dumas 

method using an elemental analyser (VarioMicro, ELEMENTAR). Protein contents were determined 

from N contents multiplied by a 5.7 coefficient usually applied for non-reserve proteins. Experiments 

were run in triplicate with a calculated experimental error of less than 5%. 
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 Hydroxycinnamic acids 

 Ester-linked phenolics from bast fibre and shives were analysed after mild alkaline hydrolysis 

according to the protocol in [37]. For this purpose, 1 mL of 1 N NaOH was added to the ground samples 

(approx. 10 mg per assay) in centrifuged tubes and incubated for 4 h at 40 °C in a ventilated oven. Tubes 

were then centrifuged to discard the remaining particles, and the reaction media was acidified with       

200 μL of 6 M HCl. After centrifugation (12,000 rpm, 10 min), supernatants were deposited onto a solid-

phase extraction cartridge (Waters Sep-Pak Plus Short tC18 cartridges) that were preconditioned before 

use. Washes and elution were conducted with 1 mL solutions. The samples were then concentrated six 

times using an air evaporator concentrator, filtered (0.45 μm) and analysed by high-performance liquid 

chromatography (HPLC) combined with UV diode array detection (HPLC-DAD). The samples (2 µL) 

were injected onto an RP18 column (Macherey Nagel 2 × 50 mm 2.7 μm particle size, Nucleoshell 

RP18plus) with a flow rate of 0.3 mL.min–1. The eluents were 0.1% formic acid in water (A) and 0.1% 

formic acid in acetonitrile (B), with a gradient of B until 60%. Peak assignment from chromatograms 

was performed at 320 nm according to their retention time by comparison with well-characterised 

samples of maize bran and UV absorption spectra [38]. A calibration curve with ferulic acid at different 

concentrations was used for quantification. 

 The supramolecular organisation of macromolecules was investigated by two complementary 

techniques: i) 13C NMR cross polarisation-magic angle spinning (CPMAS), and ii) variable contact time 

cross-polarisation magic angle spinning 13C VCT-CPMAS. 

 

3.5 1H and 13C NMR CPMAS 

 Solid-state NMR (ssNMR) spectra were registered on a Bruker Advance III 400 spectrometer on 

rehydrated AIM to approximately 30% (w/w) with ultrapure H2O. Spectra were recorded at a proton 

frequency of 400.13 MHz and a carbon frequency of 100.62 MHz. A double resonance 1H/X CPMAS 

4 mm probe was used. The magic-angle-spinning (MAS) rate was fixed at 12 kHz, and each acquisition 

was recorded at room temperature (293 K). CPMAS experiments were realised using a 90° proton pulse 

of 3.3 µs, a contact time of 1.5 ms and a 10 s recycling time for an acquisition of 34 ms during which 

dipolar decoupling (SPINAL64) of 37.8 kHz was applied. Typically, 2048 scans were accumulated per 

spectrum. Chemical shifts were calibrated with external glycine, assigning the carbonyl at 176.03 ppm. 

The approach developed by [39] was used to evaluate the cellulose crystallinity from the deconvoluted 

C4 peaks in the region 77–92 ppm. In the crystalline part of the region (Cr), the Larsson et al. method 

was performed thanks to the use of three Lorentzian peaks corresponding to cellulose Cr(Iα) (89.1 ppm), 

cellulose Cr(Iα+Iβ) (88.2 ppm) and cellulose Cr(Iβ) (87.2 ppm) [39]. An additional Gaussian peak 

representing the paracrystalline (PCr) contribution (88.1 ppm) is also used.  
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 Three peaks were used in the amorphous C4 region: two Gaussian peaks corresponding to accessible 

surface cellulose C4 (AS; 82.7 and 83.7 ppm) and another peak corresponding to inaccessible surface 

C4 (IAS; 83.4 ppm). The proportion of crystalline cellulose in the different samples was determined by 

dividing the area of the three peaks of the crystalline region by those of the six peaks for the cellulose 

C4 region. The lateral dimensions of the fibrils (LFD) and the lateral dimensions of the fibril aggregates 

(LFAD) were then estimated assuming a square cross-section of cellulose microfibrils. These estimates 

assumed that all amorphous cellulose was on the fibril surface. The cellulosic chain width was taken as 

0.57 nm [40]. 

The chemical shift, half-width and area of peaks were determined using a least-squares fitting method 

using Peakfit® software (Systat Software Inc., USA). 

 

3.6 13C VCT-CPMAS 

 By varying the contact time  of cross-polarisation (20 points between 10 µs and 9000 µs, with         

512 accumulations per experiment), the dynamics of cross-polarisation were investigated. It is often 

presumed that magnetisation in 13C rises exponentially with time constant TCH and then decays with time 

constant 𝑇1𝜌
𝐻  so that the two time constants can be extracted by fitting a dual exponential function [41]. 

Nevertheless, it has become clear that the rising part of the curve is too complex to be described by a 

single exponential but rather comprises a rapid and a slower phase. Depolarisation of 13C in the rotating 

frame is described by single-phase kinetics. The cross-polarisation kinetics were fitted with the 

following formula (Eq. V-1)  [41], and minimization was performed with the Excel solver: 

𝐼(𝜏) = 𝐼0𝑒−𝜏 𝑇1𝜌
𝐻⁄ ∗ {1 − 𝜆𝑒−𝜏 𝑇𝐻𝐻⁄ − (1 − 𝜆)𝑒−3𝜏 2𝑇𝐻𝐻⁄ 𝑒−𝜏2 2𝑇𝐶𝐻

2⁄ }            (Eq.V-1)  

where 𝐼(𝜏) is the area of the carbon peak according to the contact time , 

𝐼0 is the maximum carbon signal intensity (associated with the optimal contact time), 

 is a parameter that depends on the number of protons (n) carried by carbons (=(n+)), 𝑇𝐶𝐻 is the 

mean dipolar coupling between carbon and proton covalently link, 𝑇𝐻𝐻 is the spin diffusion between 

the two proton reservoirs, and 𝑇1𝜌
𝐻  is the rotating-frame spin–lattice relaxation time. 

 

4.1 Impact of drought on overall stem architecture  

 The first observations were performed by collecting data on the height and diameter of 15 stems 

sampled at plant maturity. Despite the same seeding rate, the difference in height between the stems 

selected from the two batches was significant (t-test with p ≤ 0.001) and was approximately 28%, with 

4. Results 
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average length values of 81.8  4.3 cm and 59.0  6.5 cm for normal and droughted stems, respectively. 

In contrast, the difference in diameter, measured every 5 cm until the first branches, was less pronounced 

but still significant (Figure V-7), especially in the middle and bottom of the stems. In the present study, 

control stems presented a height in line with the height of the Damara variety measured for 2019 in other 

flax lots [42]. 

 An important criterion to evaluate drought stress in flax plants is the yield after fibre extraction. In 

this case, the plants grown under drought conditions had a yield of 4.49 t/ha and a scutching yield of 

13.8% against 7.19 t/ha and scutching yield of 17.2% of the control one; in general, the yield in terms 

of tonnes for the Damara variety is 8.54 t/ha, and the scutching yield should be approximately 20–28% 

under normal conditions [42]. 

 

 

Figure V-7 The height and diameter of 15 stems from the two batches with the relative standard deviations. 

4.2 Impact of drought on biochemical composition of the stem 

 An overview of a cross-section of a control or drought stem does not show a huge major contrast 

between the two batches. Wiesner staining revealed coniferaldehyde end groups in lignin by red–purple 

colouration. An overview of a cross section of a control and drought stem does not show huge 

differences contrasted between the two batches (Figure V-8) but highlight the xylem rich area on both 

control and drought stressed stems. Higher fluorescence emission in DUV fluorescence collected at 

480–550 nm suggests more lignin in the drought-stressed stems (Figures V-9a-f), but it is contradicted 

by direct lignin quantification with the acetyl bromide method. No significant difference in lignin 

content appeared in the bast fibre region under naked eye observation (Figure V-8). 
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Figure V-8 Overview of control and drought-stressed cross sections. Lignin is highlighted by phloroglucinol 
staining, and xylem is particularly rich in lignin. Three main tissues of interest are labelled here: Ep=epidermis, Fi= 
fibres, and Xy= xylem in white. The cambium (c) is highlighted in yellow. The cortical parenchyma between 
epidermis and fibres and the phloem between the fibres and the cambium are not considered in this case because 
they do not show any strong staining and their cells are too small to be evaluated. Objective 5x (a-c) and using 5x 
digital zoom (b-d). 

  

Using synchrotron DUV, fluorescence imaging showed similar results obtained from images acquired 

under 40x (Figure V-9e) and 10x (Figure V-9f) objectives with TELEMOS microscope. The mean 

values from the control and drought-stressed plants were calculated using the three sections from each 

of the three stems. 

 Despite the important standard deviation, the fluorescence intensity collected between 480–550 nm, 

attributed to lignin, appeared higher in the epidermis of the stressed stems, while the cortical parenchyma 

did not show any particular changes, except that a higher variability was observed in the control stems 

than in the stressed stems. The bast fibres were particularly interesting because in the drought-

stressed stems, it was observed a higher fluorescence intensity at 480–550 nm, attributed mostly to lignin 

(Figure V-9f). Additionally, the fluorescence intensity due to tyrosine and tryptophan (327–353 nm) 

appeared higher in the drought-stressed fibres, but the p value calculated with the t-test indicated a 

nonsignificant difference, and for this reason, complementary direct biochemical analyses were 

performed. The phloem region from the control stems, as in cortical parenchyma, was demonstrated to 

have greater variability than that in the drought-stressed stems, especially regarding protein and phenolic 

compounds. In the xylem of the drought-stressed stems, a higher fluorescence intensity due to lignin 

and protein was noticed when calculated under the 40x objective. This trend was also recorded for the 

phenolic compounds. 
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Figure V-9 TELEMOS images under 10x and 40x objectives with the three channels merged to create a single 
image in RGB of a-b) control stems and c-d) stressed stems. e-f) Graphs of the mean and standard deviation of 
the fluorescence intensity values calculated in each tissue considered. 
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 The results obtained under DUV imaging were confirmed using POLYPHEME, recording a map of 

spectra of two cross-sections, one for each batch, chosen from the dataset. Figure V-10 shows averaged 

spectra, normalised using the integrals of the three main signals 300–340 nm (attributed to protein),         

415 nm (attributed to ferulic acid) and 500–530 nm (attributed to lignin) and decomposed in three 

different mappings. 

 Signals attributed to protein (red map) seemed less well distributed in the drought stem cross-section. 

In the cortical parenchyma of the control stem, a high concentration of protein was observed, while in 

the drought-stressed stem, the distribution was inhomogeneous, and the fluorescence was apparently 

less intense. Only some of the drought-stressed fibres gave protein autofluorescence, while in the control 

stem, the fluorescence was extended to all the fibres.  

 

²  

Figure V-10 Two cross sections of the stems were investigated under fluorescence microspectroscopy 
(POLYPHEME). The spectra were averaged and normalised and three mappings were extracted to highlight 
signals attributed to protein (red), phenolic compound (green) and lignin (blue) distributions. Ep=epidermis, 
CP=cortical parenchyma, Fi=fibres, Ph=phloem, and Xy=xylem. 

 

 The distribution of fluorescence attributed to phenolic compounds (green map) and lignin (blue map) 

is more interesting. In the control stem, the epidermis was rich in phenolic compounds, while no 

fluorescence was recorded in the stressed stem. On the other hand, technical fibres and xylem of the 

drought-stressed stem appeared much more enriched in phenolic compounds than those of the control 

stem. Fluorescence attributed to lignin content did not seem to visibly change in the xylem of the two 
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batches, but lignin was observed to be less localised and better distributed in the cortical parenchyma 

and epidermis cells of the drought-stressed stem. 

 

4.3 Impact of drought on fibres composition and structure 

 Biochemical analysis of fibres extracted with GC-FID quantification showed a decrease of 

approximately 10% in total monosaccharide, approximately 15% of uronic acid and approximately 13% 

in glucose expressed in dry matter material for drought-stressed fibres (Figure V-11 and Table V-2). 

Lefeuvre et al. [43] attributed arabinose, rhamnose and galactose to RG-I and xylose, mannose and 

glucose to “hemicellulose”. In contrast to Lefeuvre et al., Akin et al. [44] attributed glucose to cellulose 

content and designed the rest as noncellulosic polysaccharides, abbreviated as NCP [44]. These last 

authors calculated a ratio between glucose and the sum of xylose, rhamnose, galactose, mannose and 

arabinose (NCP), to which a small amount of fucose was added. In the present study, glucose was 

assumed to be indicative of cellulose. 

 In drought-stressed flax fibres, the mannose content was increased by 28% and the ratio of 

Glucose/NCP in stressed flax bundles was lower, 4.9 in stressed fibres compared to 6.5 in control fibres 

as reported in Table V-2. This is probably due to both a higher quantity of NCP and a slight decrease in 

cellulose. These observations are consistent with those of Lefeuvre et al., who reported an increase in 

hemicellulose polysaccharides [43].  

 Regarding lignin, a significant increase of 29% was quantified, in line with data obtained under DUV 

analyses, particularly by TELEMOS, which recorded a higher lignification in stressed fibres in response 

to abiotic stress. One must recall that both autofluorescence and biochemical analyses have the same 

limitation, i.e., values are calculated on signals including the middle lamellae surrounding the 

elementary fibres, describing then the bundle. Middle lamellae are known to be enriched in lignin [45] 

and can therefore cause an overestimation of the lignin content when speaking about elementary fibre 

in biochemical or fluorescence analyses. 

  Another important piece of information is obtained with the galactose/rhamnose (Gal/Rha) ratio, 

which is an indicator of ramification in the matrix and RG-I [43,46]. In the present study, the Gal/Rha 

ratio calculated was 3.8 in the control fibres versus 2.8 in the stressed flax fibres. According to Lefeuvre 

et al. [43], this lower ratio means that the ramification is less extended, arguably with a shorter galactose 

side chain length. Notably, long side galactose chains were purified from bast fibre G layer [47]. 

 Regarding the protein, despite the large standard deviation, the multispectral imaging showed a trend 

towards a higher content in the drought-stressed fibres, whereas the direct protein content quantified 

with the Dumas method clearly shows an increment of almost 50% in the stressed fibres. 

Shives extracted from non-retted stems showed an increased amount of xylose in drought-stressed stems, 

while, unlike fibres, the amount of glucose barely changed between the two batches. Furthermore, a 
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drastic decrease in the amount of lignin and protein in the xylem of drought-stressed stems compared to 

the control flax plants was observed. 

 

 

Figure V-11 Biochemical analysis of monosaccharide with a) or without b) glucose, protein c) and lignin d) and 
content in fibres and shives (xylem). Values are given in % of dry mass. xyl: xylose; glc: glucose; gal: galactose; 
man: mannose; rha: rhamnose; ara: arabinose; fuc: fucose; and Uronic A: uronic acid. 

 

Table V-2 Detailed data of sugar analysis from fibres and shives. xyl: xylose; glc: glucose; gal: galactose; rha: 
rhamnose; ara: arabinose; fuc: fucose; and man: mannose. Gal/Rha and glucose/noncellulosic polysaccharide 
(NCP) ratios are also reported, SD standard deviation. All values are given in % of the dry mass. 

FIBRES 

% fuc ara rha gal glc xyl man 
Uronic 

Acid 

total 

sugars 

Gal/ 

Rha 

Glc / 

NCP 

Control 0.31 1.06 0.85 3.27 62.8 1.17 2.99 5.32 77.8 3.84 6.5 : 1 

SD 0.17 0.04 0.59 0.26 1.85 0.13 0.03 0.80 3.81 - - 

Drought

-stressed 
0.11 1.00 1.18 3.36 54.3 1.17 4.17 4.50 69.9 2.86 4.9 : 1 

SD 0.00 0.11 0.12 0.16 0.34 0.11 0.03 0.28 0.21 - - 

SHIVES 

Control 0.06 0.85 0.53 0.82 33.95 14.22 0.98 / 51.40 / / 

SD 0.00 0.07 0.07 0.03 0.43 1.89 0.04 / 1.66 / / 

Drought

-stressed 
0.04 0.73 0.58 0.95 36.71 19.15 1.45 

/ 
59.62 

/ / 

SD 0.08 0.06 0.10 0.02 1.63 0.59 0.07 / 2.43 / / 
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 Direct quantification of some hydroxycinnamic acids linked in the cell wall by ester bridges has been 

performed on technical fibres and shives (Table V-3). This quantification includes ferulic acid as a form 

of monomer (major component) or one dimer (the 8–5’ benzofuran) and both coumaric and sinapic 

acids. A slight increase in FA, sinapic and p-coumaric acids can be monitored in bast fibre from the 

drought-stressed plants and a decrease in o-coumaric acid. No traces of dimer of 8–5’ ferulic acid dimer 

can be found in technical fibres. For shives, o-coumaric acid was not detected, and a dimer of 8–5’ 

ferulic acid was quantified in a similar amount in the drought and control plant shives. A general slight 

decrease is observed in ferulic acid, p-coumaric and sinapic acids in drought plant shives. 

 In addition to biochemical quantifications, ssNMR investigations were conducted. Flax fibres from 

the two batches did not show differences in crystalline cellulose content under NMR analysis, with a 

value of approximately 55–57%; however, the Nuclear Magnetic Relaxation Time Analyses 𝑇1𝜌
𝐻  

demonstrated a higher value of almost 50% in fibres extracted from drought-stressed plants compared 

to that of control samples. This value is due to the molecular organisation in the range of a few 

nanometres (2–30 nm) around the cellulose fibres, and a higher value in drought-stressed fibres could 

suggest a more organised structure in components other than crystalline cellulose, i.e., pectin or 

hemicellulose (Table V-4) which appeared altered in the drought-stressed fibres, as discussed above. 

However, at the ultrastructural level, the cellulose LFD and LFAD parameters, representing the size 

parameters of both cellulose fibril and fibril aggregates, remained on the same order for both the control 

and drought-stressed fibres. 

 

Table V-3 Amounts of hydroxycinnamics (monomers and dimer) released by mild alkaline hydrolysis of the control 
and drought technical fibres and shives. Values are expressed as % of dry matter. FA-E: ferulic acid in E or Z 
isomers; pCA: coumaric acid; oCA: o-coumaric acid; SA: sinapic acid; and DiFA8–5’C 8,5’-DiFerulic acid benzofuran 
form. DM is the dry matter. 

  
in % of the 

DM 
FA-E pCA SA oCA DiFA8–5’C 

Technical 

fibres 

Control 1.5×10-5 1.4×10-5 1.6×10-6 2.7×10-6 0 

SD 1.6×10-6 5.4×10-7 8,5×10-8 1.4×10-7 0 

Drought 1.9×10-5 2.1×10-5 1.8×10-6 7.0×10-7 0 

SD 5.9×10-7 1.1×10-6 1,2×10-7 1.3×10-7 0 

Shives 

Control 3.6×10-5 3.3×10-5 2.5×10-6 0 5.3×10-7 

SD 1.8×10-6 2.4×10-6 1.2×10-7 0 1.3×10-7 

Drought 1.7×10-5 2.2×10-5 1.2×10-6 0 6.4×10-7 

SD 2.7×10-7 3.5×10-8 7.1×10-8 0 1.8×10-7 
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Table V-4 NMR data. Relaxation times associated with C4 phase areas for control and drought-stressed samples, 
𝑇1𝜌

𝐻  is the spin lattice in the rotating frame relaxation times for protons. Crystallinity index (CI), LFD and LFAD are 

the crystallinity ratios obtained from the C4 and C6 region deconvolution of 13C CP/MAS spectra, the lateral fibril 
dimension, the lateral fibril aggregate dimension and the hemicellulose content, respectively. 

 𝐓𝟏𝝆
𝑯   (ms) 

 Control Drought 

C4 20 36 

                                13C CP/MAS 

CI (%) 57 55 

LFD (nm) 4.6 4.5 

LFAD (nm) 20 19.2 

 

4.4 Impact of drought on fibres and cell wall mechanical properties 

 Mechanical properties were investigated at the single fibre scale by tensile testing but also at the cell 

wall scale by AFM PF-QNM and NI. Table V-5 shows the tensile properties obtained on the two batches 

of fibres as well as the number and diameters of the fibres considered. 

 Previous results showed that drought stress has a clear impact on flax fibre biochemical content but 

also on their morphology. The diameters measured under an optical microscope on approximately 60 

fibres demonstrated a significant difference (p < 0.5) between the control (19.3 ± 4.5 µm) and drought-

stressed fibres (16.1 ± 3.5 µm), tested using Welch's t-test. However, neither the morphology nor the 

biochemical modifications seem to affect the longitudinal mechanical properties, which are still 

comparable between the two batches. Interestingly, these mechanical performances are fully in line with 

literature data collected on 50 batches of single flax fibres [48], characterised with the same protocol 

and equipment in our lab (Figure V-12); our batches have an average Young’s modulus very similar to 

the average value of these 50 batches of elementary fibres and a strength at break slightly higher.  

 

Table V-5 Mean diameters and tensile properties of individual flax fibres tensile-tested in tension. 

 
Number of 

fibres 

Diameter  

(µm) 

Young’s 

Modulus (GPa) 

Strength at 

break (MPa) 

Elongation at 

break (%) 

Control 58 19.3  4.4* 55.2  25.4n.s. 1268  588 n.s. 2.37  0.62 n.s. 

Drought 

stressed 
58 16.1  3.5* 57.3  23.6 n.s. 1230  515 n.s. 2.26  0.61 n.s. 

* statistically significantly different (p<0.5), n.s.= not significant  
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Figure V-12 Comparison of the tensile Young’s modulus and strength at break of the control and stressed flax 
fibres with literature data [48]. 

 

 Thus, at the elementary fibre scale, the tensile properties were not significantly affected, and they 

maintained their potential as composite material reinforcement, although the crop yield of the fibres 

extracted from the stressed plants was drastically reduced; this stability of flax fibre mechanical 

performance has already been demonstrated on a panel of 4 varieties with significantly different fibre 

yields [49].   

 At the cell level, the topography and indentation modulus obtained by AFM of fibres from control 

and stressed batches are reported in Figure V-13. The average indentation modulus obtained by AFM 

PF-QNM in control flax fibres was 19.3 ± 1.4 GPa and 19.0 ± 1.4 GPa in drought-stressed fibres, 

resulting in a nonsignificant difference (p value > α), without any mechanical gradient in the G or S1 

layers in both cases. In light of the significant biochemical variations between the control and drought 

samples, this lack of contrast in indentation modulus emphasizes the hypothesis of a compensation effect 

of the plant metabolism to maintain its internal mechanical specifications in accordance with the in-

planta function. Further experiments run with nanoindentation confirmed the results obtained by AFM 

with an average indentation modulus of 19.1 ± 3.5 GPa and 19.5 ± 2.7 GPa obtained for control and 

drought-stressed fibres, respectively, with again a nonsignificant difference (p value > α).  

 This stability in the indentation modulus, obtained by both nanoindendation and AFM tests, provides 

pertinent indications of a poor evolution of both cellulose macrofibrils (crystallinity and MFA) and 

possible moderate changes in the polysaccharidic matrix ultrastructure, which can impact the transverse 

and shearing cell wall properties and, consequently, the indentation modulus. Conversely, the hardness 

Evolution of the ultrastructure, parietal composition and mechanical properties of flax fibres over time : when history meets science Alessia Melelli 2021



CHAPTER V. The effect of the drought stress on flax plants and fibres extracted 

233 
 

(H) measured is contrasted, being statistically significant between drought-stressed and control fibres 

(341 ± 34 MPa in stressed fibres against 296 ± 35 MPa in control), with a clear higher hardness recorded 

in the drought fibres (Table V-6). Gindl et al. [50] and Stanzl-Tschegg et al. [51] have evidenced that 

the hardness of plant cell walls is a good indicator of noncellulosic polymer evolution; here, hardness 

measurements confirm the biochemical changes, which has been shown to be more sensitive than the 

indentation modulus to highlight matrixial changes. 

 

 

Figure V-13 Indentation modulus mapping and topography of control and drought-stressed flax cell walls 
obtained by AFM PF-QNM experiments.  

 

Table V-6 mean values of indentation modulus and hardness recorded by AFM and nanoindentation.  

Characterisation technique  Control  Drought-stressed 

AFM PF-QNM 

Indentation Modulus (GPa) 
19.3 ± 1.4 n.s. 19.0 ± 1.4 n.s. 

Nanoindentation 

Indentation Mudulus (GPa) 

Hardness (MPa)* 

 

19.1 ± 3.5 n.s. 

296  ± 35* 

 

19.5 ± 2.7 n.s. 

341 ± 34* 

* statistically significant (p value < 0.5), n.s.= not significant  
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 All the results obtained in this work are summarised in Table V-7. Flax plants grown under drought 

conditions have undergone important modifications in terms of morphology, as indicated by a reduction 

of both the height and stem diameters. This was already observed for linseed by Kariuki et al. [17], who 

also documented an important decrease in the number of leaves under water stress. 

Abot et al. studied Cannabis sativa under water stress conditions and recorded a delay in stem maturity 

for stressed stems [15]. Conversely, it was observed that other plants anticipated their maturity by trying 

to shorten their growing cycle to prevent drought stress during critical periods, such as flowering [52,53]. 

In drought-stressed flax plants, it was observed delays in flowering and maturation (not shown in this 

paper). 

 Under drought stress, it is known that flax plants reduce their fibre diameter, and both the fibre 

number and length are affected [16]. This fact, together with the reduced height and diameter of the 

plant, has a direct impact on the fibre yield and can explain the lower fibre yield obtained from drought-

stressed plants (13% versus 17% under normal conditions, and approximately 20–28% in the literature). 

A similar loss of yield was already reported in Lefeuvre et al. for drought-stressed stems of the Marylin 

flax variety [43]. 

 Histochemical analysis with phloroglucinol demonstrated a slight colouring of flax fibres from the 

two batches, but no differences between the drought and control fibres were detected in their cell walls 

or in their middle lamellae, where lignin is arguably mainly present. 

 Lignin is a complex polyphenolic constituent of different monolignols with the role of providing 

stiffness to the plant as a mechanical function as well as hydrophobicity [54] and, in the case of stress, 

serving as encrusting polymers with the aim of increasing the resistance of plants to unfavourable 

environments. Indeed, hyperlignification was also observed in the growth of other plant species under 

drought stress [55,56], and a role of a physical barrier was observed in stressed maize leaves, where 

higher lignification was attributed to the plant response to limit water transpiration [57]. However, 

hyperlignification due to stress is not systematic in all tissues of the plant, and it also differs among the 

plant species investigated [58]. Nevertheless, since the lignin content in flax fibres is very low, it is 

difficult to link the presence of lignin to the stiffness of the cell wall. Thanks to UV fluorescence analysis 

and direct biochemical quantification, it was possible to deeply investigate proteins (especially tyrosine 

and tryptophan) and hydroxycinnamic acids. Tyrosine and tryptophan are amino acids belonging to 

protein and are essential for plant metabolism. Indeed, tyrosine, as a tyrosine phosphorylation, is linked 

to the capacity of cell division, which is reduced when the plant undergoes drought conditions [59,60]. 

Furthermore, protein tyrosine phosphatase is a negative regulator of the phytohormone abscisic acid 

(ABA), which is responsible for the movement of stomata and, under drought stress, induces their 

closure [60,61]. Tryptophan is an amino acid used for the synthesis of protein and other compounds with 

5. Discussion 
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a different role in plant growth, resistance and reproduction; in particular, it is the precursor of auxin 

biosynthesis, a hormone directly linked to growth capacity [62,63]. Extensive research on wheat growth 

under drought stress conditions showed that plants had an increase in both tryptophan and tyrosine in 

their leaves [64]. 

 

Table V-7 Summary table of observations divided by techniques.   

Flax plant DAMARA 

variety (2019)  
Drought-stressed (Fourches) 

Rainfall <100 mm cumulated rainfall 

Height (mm) 59.0  6.5  (-28%) * 

Technical fibre Yield 13.8 %       (-3.4 %) * 

DUV imaging 

Fibers (10x) 

Protein:      + (n.s.) 

Phenolic:    + (n.s.) 

Lignin:    729.5±51.7 (+16%)*  

Xylem (40x) 

Protein: 384.9 ± 46 (+32.5%)* 

Phenolic:    + (n.s.) 

Lignin: 1244.6 ± 66 (+14.6%)* 

DUV microspec. 

Fibres  

Prot.: less intense, less 

homogeneous 

PC: more intense, well 

distributed 

Lignin:  ND 

Xylem 

Prot.: less intense, less 

homogeneous 

PC: more intense, well 

distributed 

Lignin: n.s. 

Total Monosaccharides * 

(% dry mass)  

Fibres  

69.89 ± 0.21         (-10%)  

(Glc= -13%, Man= +28%) 

Xylem 

59.62 ± 2.43              (+14%)  

(Xyl= +26%, Man= +33%) 

Lignin * 

(% dry mass) 

Fibres  

4.37 ± 0.40          (+29%)  

Xylem 

24.4 ± 0.30                 (-14%)  

Protein * 

(% dry mass)  

Fibres  

2.8 ± 0.1               (+47%)  

Xylem 

1.6 ± 0.1                     (-27%) 

Hydroxycinnamic * 

 

Fibres  

+12%/+30%  

(except oCA= -74%)  

Xylem 

-35%/-50% 

(except DFA8-5C= +17%) 
13C NMR CP/MAS 

CI (%) 

LFD & LFAD 

 

55 % (n.s.) 

4.5 (n.s.); 19.2 (n.s.) 

13C VCT-CP/MAS 𝐓𝟏𝝆
𝑯  = + 45–50% * 

Diameter fibres (µm) 16.1 (-17%) * 

Tensile test 

Young’s modulus (GPa) 

Strength at break (MPa) 

 

54.4 ± 22.8 (n.s.) 

1180 ± 503 (n.s.) 

AFM PF-QNM  

Indentation Modulus (GPa) 

 

19.0 ± 1.4  (n.s.) 

Nanoindentation 

Indentation Modulus (GPa) 

Hardness  (MPa) 

 

19.5 ± 2.7 (n.s.) 

341 ± 34 * (+13%) 

* statistically significantly different (p<0.5), n.s.= not significant, ND= not determined  
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A large increase in tyrosine and tryptophan was also observed for tree stems of elm and oak wood species 

subjected to moderate to extremely severe drought conditions [65].  

 Hydroxycinnamic acids are well known to be antioxidants [66], and their biosynthesis directly 

involves tyrosine and phenylalanine, which are their precursors [67,68]. At the same time, lignin is 

biosynthesised from hydroxycinnamic acids [69,70]. In flax plants, hydroxycinnamic acids play several 

roles, such as cross-linking and mechanical support, and are directly involved in the plant response to 

biotic and abiotic stress. [71]. Most likely, for these reasons, other teams found that the amount of 

hydroxycinnamic acids seems to increase when plants grow under drought stress [67,72]. 

 In general, the cutin and waxes in the external part of leaves and stems of plants, which can generate 

autofluorescence [73], are partially responsible for water transpiration, and their thickness seems to 

increase with drought, as in the case of tea leaves [74]. 

In the epidermis of drought-stressed flax stems examined here, a slightly higher fluorescence intensity 

of lignin was observed than that in control stems, while the fluorescence intensity of protein and 

hydroxycinnamic acids tended to decrease (Figures V-9 e, f and 10).  

 In cortical parenchyma, the difference in thickness was evident and apparently higher in the stressed 

stems with also larger cells, as one can note in Figures V-9a-d. Control stems, on the contrary, had a 

dense, thin and more compact cortical parenchyma. In terms of molecular distribution, high variability 

was found in the cortical parenchyma of the control, while the stressed stems showed a more 

homogeneous response in all three stems investigated, especially regarding tyrosine and tryptophan 

(Figures V-9e, f). As in cortical parenchyma, phloem showed extremely high variability in controlled 

plants, while the standard deviation was reduced in the stressed stems. Unfortunately, in the literature, 

there is a lack of information regarding the response of these tissues to drought stress. The greatest 

differences between the two flax batches were found in the xylem and fibres. In the xylem, it was 

observed an increase in fluorescence intensity in all three filters for the stressed stems, especially for the 

filter assigned to protein (327–353) and lignin (480–550), as reported in Figures V-9e, f. This seems to 

be in line with the literature because a higher xylem lignification appears to be beneficial for drought-

stressed plants of other species [55,56,58]. However, to the best of our knowledge, there is no literature 

on flax xylem lignification under drought stress. Nevertheless, UV fluorescence results were 

contradicted by direct biochemical quantification, where a lower content of protein, lignin and 

hydroxycinnamic acids was measured in drought xylem than in the control flax plants (Tables V-3 and 

Figures V-11c, d). A hypothesis to explain this discrepancy relies on the method of quantification. 

 The specificity of the fluorescence of lignin has already been questioned [28,31], and an hypothesis 

is that nonlignin molecules capable of fluorescing in the range of 480–550 nm may have overestimated 

the lignin amount by the autofluorescence method. On the other hand, the direct method of quantification 

can be influenced by the contrasting affinity of reagents with fine molecule structures. For instance, 

lignin quantification by acetyl bromide may be sensitive to the lignin ratio of G/H and S monomers, and 

when lignin is stained by phloroglucinol [75] in flax, it shows a contrasting location and distribution 
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compared to safranin-based quantification [76]. Quantification for accurate and specific measurements 

of complex structures is still a challenge. 

  Similar limitations of both techniques were also observed for the quantification of protein and 

hydroxycinnamic acids. Deep UV fluorescence investigations allow the detection of only a few amino 

acids capable of fluorescing, such as tryptophan, while the biochemical method is based on the 

quantification of all the azote contents of the sample and reflects all 20 amino acids constituting proteins. 

Thus, if the draught samples have a high protein content but are not enriched in aromatic amino acids 

that can fluoresce, then DUV imaging may underestimate the real amount of protein. 

 In stressed xylem, for example, the biochemical quantification approach also recorded a lower 

amount of protein than the control one (Figure V-11c). It is possible to conclude that although drought 

stress could have caused an enrichment in tryptophan and tyrosine in the xylem observed under 

fluorescence, the overall amount of protein calculated by direct quantification, therefore also considering 

nonaromatically enriched amino acids, probably decreased. 

Contrary to protein, for the analysis of hydroxycinnamic acids, direct quantification can only quantify 

ester bonds, and only certain forms, but does not exhaustively quantify all hydroxycinnamics. For this 

reason, in this case, DUV quantification is certainly more representative of the overall hydroxycinnamic 

acids if the two methods are compared. 

 Regarding flax fibres, under DUV light, a higher fluorescence intensity for all three filters was 

recorded in stressed flax fibres (Figures V-9e, f) and fluorescence microspectroscopy clearly shows 

enrichment, especially in hydroxycinnamic acids (Figure V-10). The higher amounts of protein, 

hydroxycinnamic acids and lignin were confirmed by direct quantification (Figures V-11c, d and       

Table V-3). An increase in lignin was expected in response to drought stress, as already reported in the 

literature for both flax and hemp fibres [15,43], but no literature data have been found on protein and 

hydroxycinnamic acids. 

 Monosaccharides were also investigated and linked to cellulose and hemicellulose. Biochemical 

analysis by wet chemistry (GC-FID) also demonstrated a moderate decrease in glucose content for 

stressed flax, probably compensating for the biosynthesis of mannose, whose content increased. In 

extracted drought-stressed flax fibres, Lefeuvre et al. found more xylan as a structured polysaccharide 

and a decrease in gel/matrix polysaccharides (rhamnogalacturonan and homogalacturonan), a decrease 

in uronic acid, a decrease in the Gal/Rha ratio and a decrease in total sugars extracted in acid compared 

with control flax fibres [43]. The presented results are generally in line with their observations          

(Figures V-11a, b and Table V-2), and a lower Gal/Rha ratio in drought-stressed fibres means a 

modification in the RG-I polymer responsible for the order of the microfibril network [16].  

 Increased quantities of mannose and galactose were observed by Bowne et al. in leaf tissues of wheat 

growth under drought conditions, and the authors hypothesised that mannose and galactose are 

correlated with plant defence in an attempt to avoid loss of water in unfavourable environmental 

conditions [64]. This may also be a valid explanation in the case of flax fibres. 
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 Rihouey et al. reported on flax fibres that mannose is currently known only in the form of 

glucomannans and that glucomannans play a main structural role in fibre cells I [77]. In the present 

study, mannose was the main monosaccharide that changed between the two batches and became more 

abundant in the drought-stressed fibres. Because mannose content is extremely low in both lots 

compared to glucose and glucomannans are mainly located in the G layer [78–80], as illustrated in  

Table V-8, the stressed flax fibres are apparently enriched in glucomannans.   

 

Table V-8 Flax fibre cell wall layers and approximative composition readapted from [78–80]. 

Fibre cell wall layer Approximative composition 

PW 

~ 25–30% Cellulose  

~ 30% Hemicellulose (xyloglucan and less amount of arabinoxylan) 

~ 30% Pectins (homogalacturonan and less amount of RG-I and RG-II) 

~ 5% Proteins 

 

S1 

 

~ 40% Cellulose  

~ 25% Hemicellulose (mainly xylan, small amount of glucomannans) 

~ 5% Pectins (homogalacturonan) 

~ 20–30% Lignin 

 

G 

~ 80–90% Cellulose  

~ 5–10% Pectins (mainly RG-I, probably also a small amount of 

homogalacturonan) 

Traces of xyloglucans; small amount of glucomannans and proteins, 

including arabinogalactans 

 

 The amount of glucose, on the other hand, decreases in drought-stressed fibres and the xyloglucan 

content first, which are calculated with the ratio Glc/Xyl=1.5 with the rest of glucose after the estimation 

of glucomannans [77], and xylans then, which are calculated with the remaining xylose content [77], 

probably decrease as well because in both batches investigated here, the xylose is constant. 

Thus, hemicelluloses in the S1 layer are particularly reduced in drought-stressed fibres and probably 

partially replaced by other molecules, such as lignin, protein and hydroxycinnamic acids. 

Regarding pectins, using the Gal/Rha ratio, it was found that drought-stressed fibres had a smaller ratio 

and, consequently, the stressed fibres had RG-I with shorter galactan chains [43,46]. This result confirms 

the results obtained by Lefeuvre et al. [43], who observed the same smaller ratio in drought-stressed 

flax fibres than in the controls. 

 Despite all these important biochemical modifications at the stem and fibre levels, the mechanical 

properties of flax fibres in terms of both indentation measured at the nanoscale level and Young’s moduli 

measured by tensile testing were preserved, and stressed and control fibre mechanical properties were 

comparable at both the local and fibre scales (Figures V-12 and 13). Our results are in agreement with 
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the study of Lefeuvre et al., where batches of flax fibre growth under drought and control conditions 

were measured by tensile testing, and the authors did not observe any significant differences [33]. It can 

be argued that tensile test behaviour and properties are mainly driven by cellulose content and 

arrangement due to the poor MFA and high crystalline cellulose content of falx fibres; consequently, 

changes in the polysaccharidic matrix are not easily perceptible with this method. In fact, in the present 

study, thanks to the NMR analysis, it was observed that the crystallinity index was the same as the 

microfibril network between the two batches (Table V-4), which can explain why the longitudinal 

mechanical properties of the fibres measured by the single fibre tensile test were quite the same, except 

for the hardness.  

 Hardness measured by nanoindentation was higher in the drought-stressed fibres than in the control 

fibres. Eder et al. reported that hardness is mainly due to the matrix behaviour of the fibre cell [81]. 

Indentation is a much more complex loading that leads to the fact that the indentation modulus depends 

on the longitudinal Young’s modulus but also to the transverse and shear moduli [82]. Hence, 

indentation modulus is sensitive to the cellulose microfibrils elastic properties, such as the longitudinal 

Young’s modulus, but also to the cell wall matrix viscoelastic properties. Despite the changes in the 

chemical composition and organisation of the matrix observed here, this modulus is not significantly 

altered. Conversely, the hardness measured by nanoindentation was higher in drought-stressed fibres 

than in control one. Eder et al. reported that the hardness is mainly due to the matrix viscoplastic 

(irreversible) behaviour of the cell wall [81]. Similar trends were addressed by Gindl et al. [50] and 

Stanzle-Tschegg et al. [51], by comparing lignification of spruce tracheids for different maturity degrees 

and thermally treated wood, respectively. 

 The longitudinal elastic modulus and strength are due to the crystalline cellulose and are unchanged 

as well as the indentation modulus, which depends on the viscoelastic properties of the cell wall matrix. 

Conversely, the hardness, which mainly depends on the viscoplastic properties of the cell wall matrix, 

varies between control and stressed fibres. Therefore, it can be hypothesised that biochemical changes 

would mainly impact the viscoplastic behaviour of the cell wall matrix.  

 Besides, the relationship between lignin and nanomechanical properties requires particular attention. 

The role of lignin in the mechanical properties of cell walls with cellulose microfibrils having a high 

microfibril angle has been deeply studied in wood, and a high lignin content has been observed to 

increase the shear modulus and strength of the matrix by filling the space between cellulose and 

hemicellulose [83,84,50], and the hardness measured resulted particularly sensible to the lignin 

concentration [50].  

 Following the hypothesis in Rihouey et al. [77], together with the observations done by Gindl et al. 

and Özparpucu et al. [84,83], it is possible to hypothesise that: i) the higher amount of glucomannans 

and probably less branched RG-I in G layer, ii) the higher lignin content in S1 layer and probably also 

iii) the lower Uronic Acid content (the more the Uronic Acid the more is the fibre strength [85]) play a 

central role in the increased hardness of drought-stressed flax fibres helped to improve the hardness of 

Evolution of the ultrastructure, parietal composition and mechanical properties of flax fibres over time : when history meets science Alessia Melelli 2021



CHAPTER V. The effect of the drought stress on flax plants and fibres extracted 

240 
 

drought-stressed flax fibres. However, the impact of homogalacturonans, protein and hydroxycinnamic 

acids on the fibre mechanical behaviour is still unclear.   

 

 In the present study, a range of deep techniques was used to investigate the morphological, 

biochemical and mechanical properties of flax stems and fibres when submitted to severe drought. 

Particular attention was given to the study of single flax fibres because of their wide use in different 

industrial sectors and especially as composite material reinforcements. 

 At the biochemical level, direct and indirect exploration of the main molecule family showed 

contrasts between the control and drought-stressed flax fibres. A huge increase in the protein and lignin 

content was found in the bast fibre drought-stressed lot, as well as an increase in hydroxycinnamates. 

This fact calls into question the interconnection between the cell wall polymers of drought-stressed 

fibres because some hydroxycinnamates are known to be able to interconnect covalently heterogeneous 

polymers. Additionally, the morphology of the stems and fibres was found to differ, and although the 

stressed flax fibres are smaller in diameter than those of plants grown under normal conditions, their 

mechanical properties do not seem to be impacted.  

 The stiffness measures, both through tensile and indentation values, do not evolve with drought 

stress; these properties are mainly driven by cellulose arrangement and ultrastructure, which remain 

quite unchanged here. In contrast, indentation hardness confirms its role as a pertinent indicator of 

noncellulosic component changes. Thus, thanks to the stability of their mechanical properties at the fibre 

scale, fibres submitted to drought are still suitable for biocomposite and textile production, although 

their production yield drastically decreases. 

Here, a flax variety rather tolerant to drought was selected, but future work will focus on flax varieties 

with a higher sensitivity to drought, such as the Aretha variety. Other parameters, such as the cell wall 

thickness and lumen size and the number of defects along the fibres, should also be explored to better 

understand the mechanical properties of the drought-stressed fibres. 

 

 

 

 

 

 

6. Conclusion 
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 The aim of this study was to relate art, engineering and flax industry.  

With the state-of-the-art presented in Chapter I, all the topics addressed in the text are slowly 

introduced, laying the groundwork to all the questions opened that this thesis aimed to answer. 

Successively, Chapter II describes the three principal cutting-edge techniques used during these three 

years of research. 

 

 Thanks to the deep investigation of the flax fibres ultrastructure in Chapter III, it was confirmed 

that kink-bands are one of the weakest points for two main reasons related to one another: i) they cause 

the deviation of cellulose microfibrils and ii) the detached microfibrils create cavities and 

inhomogeneities into the microfibril network, and, thus, into the fibre structure. Kink-bands resulted 

weak and fractured after a natural ageing process both in the mortuary linen dated several millennia and 

in some fibres of yarns from Italian paintings dated several centuries.  

 The extraction method plays a central role in the formation of these defects all along the fibres. The 

different extraction tools, which have evolved over time, can probably change the kink-band frequency 

along the fibre and also their shape and size. Unfortunately, no existing literature compares ancient and 

modern tools and their ability to create kink-bands. The new international ANR project “ANUBIS” is 

going to start in the year 2021; thanks to a collaboration between the University of South Brittany, 

INRAE, University of Cambridge, Synchrotron SOLEIL and the Oriental Archaeology French Institute 

in Cairo, this project will focus on kink-bands evolution and also in a more in-depth study of the ageing 

process of cellulosic flax fibres.  

 Contrary to kink-bands, middle lamellae, which are considered susceptible to fracture when plant 

fibres are used to reinforce biocomposite materials, have been demonstrated to be stronger than 

expected. The indentation modulus obtained can be either much lower or almost comparable to the 

indentation modulus measured in fibres cell walls, depending on the plant species and the retting process 

that the fibres have undergone. From this point of view, a future work that can compare middle lamellae 

from green and processed stems by atomic force microscopy, could better explain the micromechanical 

evolution of middle lamellae before and after the retting process.      

 

 Chapter IV focused on the study of the degradation mechanisms on both historical and modern 

objects that showed a very similar process. Thanks to the investigation of ancient flax fabrics, it was 

possible to confirm that the crystalline cellulose undergo slight modifications even after millennia if the 

artworks are preserved in favourable conditions. Contrary to the cellulose microfibrils, the polymer 

matrix of flax fibre cell walls, mainly composed of hemicellulose, pectin and a small amount of lignin, 

is more susceptible to degradation and biochemical modifications, especially under biological attack. 

 A biological attack is the main factor that plays an active and dramatic role, together with water, in 

cellulosic fibre degradation. From this perspective, the yarn from the Egyptian mortuary linen resulted 

much better preserved than the yarns from canvases, except for kink-bands where fractures have been 
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observed in almost all the fibres from the Egyptian yarn contrarily to the yarns from the canvases where 

these regions appeared mainly intact. The fact that no traces of fungi were observed on the fibre's surface 

from the Egyptian fabric, could be ascribed to the most suitable environmental conditions in which the 

mortuary linen was preserved.  

 Regarding the canvases, the oldest canvas investigated between the four considered, the ‘San 

Cristoforo’ by Giulio Benso (GB), was subjected to a lower degradation process than the other three 

canvases. Clear traces of fungal colonization and fibre degradation due to hydrolysis and/or oxidation 

were principally found in the other three canvases and, interestingly, in the ‘Crocefissione’ by Tommaso 

Sciacca (TS1), not only the surface of the fibre was involved, but also the internal structure appeared 

degraded. In this particular sample, degradation mechanisms were observed both starting from the lumen 

and from the surface of the fibres. Some fractured kink-bands can promote not only the penetration of 

bacteria and fungi, but also of water molecules, essential for biodegradation activity, in the innermost 

cell wall layers. 

 Thanks to the study of the modern biocomposite left in compost for several months, it was possible 

to focus on some fungi and bacteria degradation marks. In this case, bacteria were able to create tunnels 

and degrade the fibres starting from the lumen. An important observation of this work is that the loss of 

the mechanical properties principally involves the G or the P layers first and only successively the S1 

layer, which is more slowly degraded than the other two layers. The mechanical properties of the S1 

layer can be almost intact even in an advanced state of fibre degradation.  

 Future works should focus on identifying fungi and bacteria from degraded PLA/flax biocomposites 

starting from the core of a sample for a future industrial application. In parallel, thanks to the literature, 

it has been shown that fungi and bacteria present during the retting stage of flax stems can survive even 

after the fibre extraction and that some of these microorganisms are in common with artworks, and, 

hypothetically, also with modern flax objects. This observation opens up the question of their origin and 

whether some microorganisms that degrade objects made of linen are not already inside the fibres from 

the very beginning and develop when favourable environmental conditions are reached. 

 

 To conclude, another important link can be drawn between the past and the present days. History 

teaches us that changes in the flax cultivation areas and production of flax fibres were often linked to 

unfavourable environmental conditions and the cost/benefit ratio in terms of time and workforce that 

force human populations to find ways to improve the production or abandon it in favour of other types 

of textiles, such as wool and cotton. Nowadays, our society faces global warming and frequent extreme 

weather events in Europe often result in drought or sudden and abundant storms and floods. Currently, 

flax fibre production is mainly located in a very small area in the north-west of France, which means 

that the effects of climate change can have a major impact on the flax fibre production if this area is 

concerned. The study presented in Chapter V shows that, due to a moderate drought, the fibre yield is 
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lower and that despite biochemical changes in the flax fibre cells, the mechanical properties are still 

similar to those of flax plants grown under normal conditions.  

 However, the variety of flax must be considered in regard to the response to this type of stress since 

human selection resulted in some varieties being more sensitive than others to changes in environmental 

factors. For this reason, another future research may focus on comparing varieties and their relative 

response to this abiotic stress to help future industries select the more resistant fibres in case of flax 

cultivations in drought-risky areas.  

 

These findings suggest a very promising and constructive relationship between art and engineering. The 

ANUBIS project is now designed to continue this research project and find answers to new questions 

opened with this work, such as the effects of the ancient extraction tools and treatments on fibres 

ultrastructure and morphology. Furthermore, the study of the natural ageing process of plant fibres over 

time and its impact on the fibre structure (in particular in kink-bands regions), achieved by the 

comparison between ancient and modern objects, will be one of the main topics that this project intends 

to address. The final objective being to better understand the flax fibres ageing behaviour to design 

sustainable biobased composites for tomorrow. 
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 Le principal objectif de cette thèse était de mettre en relation art, ingénierie et industrie de lin. Grâce 

à l’état de l’art présenté dans le Chapitre I, toutes les bases nécessaires aux questions ouvertes 

auxquelles cette recherche a essayé de répondre sont progressivement introduites.  

 Ensuite, les trois principales techniques utilisées pour cette étude sont brièvement décrites dans le 

Chapitre II.   

 

 Grâce à l’étude approfondie de l’ultrastructure des fibres de lin présentée dans le Chapitre III, les 

genoux ont démontré être des points faibles pour deux raisons principales qui se sont révélées être liées 

: i) ils causent une déviation des microfibrilles qui, en s’écartant du reste du réseau de microfibrilles, 

génère des cavités et hétérogénéités dans la structure des parois et,  ii) es genoux se sont révélés être 

particulièrement fragiles et endommagés, même après le processus de vieillissement naturel étudié sur 

les deux types d’œuvres d’art examinées, que ce soit un fil du lin en provenant d’un tissu mortuaire et 

datant de quelques millénaires ou que ce soient des fils de lin provenant des tableaux Italiens et datant 

de quelques centaines d’années.  

 La méthode et les outils d’extraction des fibres jouent un rôle central sur la formation de ces défauts 

tout au long des fibres ainsi que sur leur évolution au fil du temps. De plus, leur fréquence, leur taille et 

leur forme géométrique varie aussi grandement selon les cas étudiés. Malheureusement, aujourd’hui il 

n’y a pas dans la littérature une étude qui compare les instruments d’extraction modernes aux anciens et 

leur faculté à créer ce type de défaut tout au long des fibres. Un nouveau projet ANR, ANUBIS, va 

démarrer à la fin de cette année 2021. Grâce à la collaboration entre l’Université de Bretagne Sud, 

INRAE, l’Université de Cambridge, le Synchrotron SOLEIL et l’Institut Français d’Archéologie 

Orientale, ce projet sera focalisé sur l’investigation plus approfondie du processus de dégradation des 

fibres de lin, grâce à l’étude de fils de lin anciens de diverses structures et origines. 

 Au contraire des genoux, les lamelles moyennes, qui sont souvent considérées comme des zones de 

rupture privilégiée quand les fibres de plantes sont utilisées dans des matériaux biocomposites, ces 

lamelles ont montré avoir des propriétés mécaniques plus élevées qu’attendu. Les modules d’indentation 

obtenus peuvent être beaucoup plus faibles ou, au contraire, quasiment similaires aux modules 

d’indentation des parois secondaires des fibres, en accord avec les espèces des plantes considérées et 

leur processus de rouissage. Forts de ce constat, un travail futur de comparaison par microscopie à force 

atomique des lamelles moyennes entre des tiges vertes et des fibres extraites pourrait permettre de mieux 

expliquer l’évolution micromécanique des lamelles moyennes avant et après rouissage.  

 Le Chapitre IV se focalise sur les mécanismes de dégradation, en étudiant des objets anciens issus 

du patrimoine culturel. L’étude des textile anciens a confirmé que la partie cristalline peut se modifier 

de manière significative, même si un objet et préservé dans des conditions favorables comme cela 
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pouvait être le cas dans des tombeaux. Toutefois, ce n’est pas le cas pour la matrice non cellulosique 

des fibres, composée surtout par des hémicelluloses et pectines dans le cas des fibres de lin, et qui est 

plus susceptible de se dégrader et se modifier au niveau compositionnel, spécialement par attaque 

biologique. L’attaque biologique, comme l’eau, comptent parmi les principaux facteurs jouant un rôle 

actif et dramatique sur la dégradation des fibres cellulosiques.  

 De ce point de vue, le fil provenant d’un tissu mortuaire d’époque du Moyen Empire Egyptien s’est 

révélé être mieux préservé que les fils extraits des quatre tableaux italiens. Néanmoins il y a une 

exception, les genoux, dont des profondes fractures ont été observées sur quasiment toutes les fibres du 

fil égyptien par rapport aux autres quatre fils pour lesquels ces régions apparaissaient intactes.  

 Le fait que ni les champignons et ni les bactéries n’ont été observés sur la surface des fibres, peut 

être attribué aux meilleures conditions environnementales dans lesquelles le tissu égyptien a été 

préservé. 

 Concernant les toiles des tableaux, la toile la plus ancienne parmi les quatre considérées, issue du 

tableau « San Cristoforo » peint par Giulio Benso (GB), a subi un processus de dégradation plus faible 

que les trois autres. Dans les autres trois toiles, des traces de colonisation fongique et de dégradation des 

fibres par hydrolyse et/ou oxydation ont été trouvées, et l’attaque biologique n’était pas limitée à la 

surface; dans la « Crocefissione » peint par Tommaso Sciacca (TS1), même la structure la plus interne 

des fibres était dégradée. Sur ce dernier échantillon, nous avons observé des formes de dégradation soit 

à partir du lumen, soit à partir de la surface des fibres. Les fractures dans les genoux, qui sont parfois 

trouvées sur les fibres vieillies, peuvent faciliter la pénétration de bactéries et de champignons jusqu’aux 

couches les plus internes, ainsi que des molécules d’eau dont la présence reste une condition 

fondamentale pour l’activité de biodégradation. Ce travail a initié l’étude d’un biococomposite actuel 

dégradé en compost pendant plusieurs mois, nous nous sommes ensuite focalisés sur les mécanismes de 

dégradation des parois des fibres de lin par les champignons et les bactéries. 

Nous avons montré que les bactéries étaient capables de créer des tunnels et dégrader les fibres par 

l’intérieur, à commencer par le lumen. Une observation importante à la suite de cette étude est que la 

perte des propriétés mécaniques est limitée dans un premier temps à la couche de parois gélatineuse (G) 

située à l’intérieur de la fibre ou, plus rarement, à la couche de parois primaire extérieure (P) ; au 

contraire la couche S1 se dégrade de manière plus lente que les autres couches, probablement en raison 

de son taux de lignine plus élevé. Les propriétés mécaniques de la couche S1 peuvent ainsi rester 

quasiment intactes même si la fibre est dans un état de dégradation avancé.  

 Dans un travail futur, il sera opportun d’identifier le type de champignons et bactéries qui sont 

capables de dégrader un biocomposite de PLA/lin à partir de la section intérieure d’une fibre, en vue 

d’une application industrielle.   

 En parallèle, dans la littérature il a été démontré que champignons et bactéries colonisant les plantes 

lors de l’étape de rouissage des tiges de lin peuvent survivre à l’extraction et que certains d’entre eux 

sont similaires à ceux identifié dans les objets d’art et, hypothétiquement, même au sein les objets 
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fabriqués aujourd’hui. Cela soulève la question de leur origine et si certains micro-organismes qui 

dégradent les objets en lin ne sont pas déjà présents au sein des parois des fibres dès le début et se 

développent lorsque des conditions environnementales favorables sont atteintes.   

 Pour conclure, un autre lien important peut être tracé par l’histoire du lin entre le passé et le présent. 

L’histoire nous a appris que les évolutions des zones de culture du lin et de production des fibres de lin 

étaient surtout liées aux conditions environnementales et au rapport coût/bénéfice en termes de temps 

de production et de la main-d’œuvre. Cela obligeait les populations à trouver des méthodes pour 

améliorer la production en fibres de lin ou, au contraire, à l’abandonner en faveur d’autres textiles plus 

faciles à produire et/ou travailler, comme le coton et la laine.  

 Aujourd’hui, notre société doit faire face au réchauffement climatique et aux évènements 

météorologiques extrêmes rencontrés en Europe. Ils sont surtout liés aux épisodes prolongés de 

sécheresse ou des tempêtes et inondations soudaines et abondantes qui causent la destruction des récoltes 

dans l’agriculture. Actuellement, la plus grande partie de la production mondiale actuelle des fibres de 

lin est limitée à une zone bien localisée au nord de la France.  Cela signifie que dans le futur, les effets 

des changements climatiques pourraient affecter énormément la production des fibres de lin si cette zone 

est touchée par des épisodes météorologiques extrêmes, et en particulier des épisodes de sécheresse.     

 L’étude présentée dans le Chapitre V montre qu’une sécheresse modérée provoque une diminution 

du rendement de lin et un changement biochimique autant au niveau de la plante qu’au niveau des fibres. 

Malgré cette évolution de la composition biochimique des fibres, les fibres testées mécaniquement ont 

montré avoir des bonnes propriétés mécaniques même si les plantes ont été cultivées sous stress 

hydrique. Celles-ci se sont révélées comparables aux propriétés mécaniques des fibres ayant reçu des 

quantités conventionnelles de pluie.  

 Toutefois, la variété de lin joue un rôle important sur la réponse  au stress hydrique car certaines 

d’entre elles sont plus sensibles que d’autres, ayant bénéficié de la sélection variétale très développée 

dans le secteur du lin depuis environ un siècle.  Pour cette raison, un travail futur pourrait éventuellement 

comparer la réponse de deux ou plus variétés connues pour avoir une sensibilité complétement opposée 

au stress hydrique. Un des objectifs d’un tel travail serait de mieux comprendre les mécanismes des 

défenses de la plante et d’aider les chercheurs et les cultivateurs de lin à sélectionner les variétés de lin 

les plus résistantes, ainsi que leurs caractéristiques en prévision de cultures conduites dans des zones de 

potentielle sécheresse. 

 

Les résultats de ce travail multidisciplinaire suggèrent une relation très prometteuse entre l’art et 

l’ingénierie ; ANUBIS est le projet désigné pour prendre la suite de cette recherche et trouver les 

réponses aux questions restant encore ouvertes, par exemple les effets des différents anciens instruments 

et méthodes d’extraction sur l’ultrastructure des fibres. Le processus de vieillissement naturel des fibres 

végétales au fil des siècles, l’étude de l’impact du temps sur la structure des fibres (et particulièrement 

dans les zones de genoux) et la comparaison entre objets anciens et modernes sont les principaux sujets 
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que ce projet ambitionne d'aborder. L'objectif final étant de mieux comprendre les mécanismes de 

vieillissement des fibres de lin afin de concevoir des composites biosourcés durables pour demain.
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Résumé :  Les fibres de lin sont utilisées par la 
civilisation humaine depuis des millénaires. Mais 
le réchauffement climatique et la pollution causés 
par les matériaux pétro sourcés suscitent un 
regain d’intérêt pour les fibres végétales et leur 
utilisation pour de nouvelles applications, en tant 
que renforts de matériaux composites par 
exemple.  
Ce travail de recherche fait le lien entre passé et 
présent, en tentant de mieux comprendre le 
comportement des fibres de lin moderne à travers 
l’étude d’objets anciens.  
Grâce à une combinaison originale des 
microscopies électronique, à force atomique et 
bi-photon, des investigations faites sur fibres 
modernes, ont mis en évidence des 
hétérogénéités dans leur ultrastructure, 
essentiellement dans les zones de genoux. Par 
ailleurs, ces régions ont démontré être sensibles 
aux mécanismes de vieillissement que ce soit 
dans un tissu funéraire égyptien vieux de plus de 
4000 ans ou dans des toiles de tableaux Italiens,  

datés entre le XVII et le XVIII siècle. 
Les microfibrilles de cellulose de ces fibres 
anciennes apparaissent quasiment intactes à 
travers le temps, au contraire de la matrice 
polymérique des parois végétales, 
particulièrement sensible au vieillissement, et 
présentant des évolutions biochimiques et 
mécaniques, notamment, une rigidification 
significative. Sur ces fibres anciennes, des 
signes d’attaque biologique ont été observés de 
manière similaire aux mécanismes relevés sur 
des fibres utilisées pour un biocomposite lin/PLA 
dégradé en compost. Ainsi, champignons et 
bactéries dégradent préférentiellement les 
hémicelluloses et la cellulose des parois 
cellulaires des fibres de lin. Pour conclure ce 
travail, les effets de sécheresse sur les plantes 
de lin et les fibres extraites ont été évalués, afin 
de se projeter vers l’avenir et de mieux 
comprendre des évolutions climatiques à venir 
sur les propriétés de cette plante, qui représente 
plus que jamais un pont entre les civilisations. 
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Abstract :  Flax fibres have been used by human 
civilization for millennia. But global warming and 
pollution caused by non-biodegradable materials 
have aroused renewed interest in plant fibres and 
their use in new applications, such as 
reinforcements of biocomposite materials.  
This research is focused on drawing a line of 
continuity between the past and the present day, 
trying to understand the behaviour of flax fibres in 
modern objects through the study of the ancient 
ones.  
Thanks to an original combination of atomic 
force, electronic and multi-photon microscopies, 
investigations on modern flax fibres highlighted 
heterogeneous in their ultrastructure, especially 
in kink-band area.  Moreover, these regions have 
been proved to be sensitive to ageing 
mechanisms, whether in an Egyptian funerary 
fabric that is more than 4,000 years old or  

in Italian paintings dated between the 17th and 
18th centuries. 
The cellulose microfibrils of these old fibres 
appear almost intact over time, in contrast to the 
polymeric matrix of the plant cell walls, which is 
particularly sensitive to ageing, and shows 
biochemical and mechanical changes, including 
significant stiffening. On these ancient fibres, 
signs of biological attack were observed in a 
similar way to the mechanisms noticed on fibres 
used for a flax/PLA biocomposite degraded in 
compost. Thus, fungi and bacteria preferentially 
degrade the hemicelluloses and cellulose of the 
cell walls of flax fibres. To conclude this work, 
the effects of drought on flax plants and 
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future and better understand the impact of 
possible climate changes on the properties of 
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