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Titre : Etude Spatio-temporelle de Matériaux à transition de spin : modélisation électro-élastique dans 

des nanomatériaux bistables. 

Mots clés : Transitions de phases, Transition de spin, Nanostructures/particules (Coeur-coquille), Effets 

spatio-temporels, Magnétoélasticité, Interactions élastiques, Métode Monte Carlo.   

Résumé : Cette thèse est dédiée à la modélisation et 

à l’étude des comportements longue portée et des 

effets spatiotemporels accompagnant la transition de 

spin dans systèmes hystérétiques, le plus souvent 

pilotés par des phénomènes de frustration élastique.  

L’étude de différents systèmes à transition de spin 

(cœur-coquille, MEMS/NEMS) pour différentes 

formes géométriques durant leur transition thermo-

induite a été conduite en introduisant la frustration 

élastique dans une myriade de possibilités. Parmi ces 

dernières, il y a les systèmes cœur/coquille ayant 

différents champs de ligands, ou différents 

désaccords de paramètres de mailles dans le cœur et 

la coquille dans les phases HS et/ou LS, ainsi que le 

cas de cristaux contraints mécaniquement.    

Tous ces systèmes ont la particularité de présenter 

des transitions du premier ordre où nos études ont 

montré l’existence de différents mécanismes à travers 

lesquels les propriétés magnétiques (électroniques) 

et élastiques sont altérées.  Nous avons pu révéler les 

effets physiques du changement de l’épaisseur de la 

coquille et sa conséquence sur les effets élastiques 

(contrainte-déformation, pression) dans la 

nanostructure commutable. Une méthode analytique 

permettant de calculer simplement la moyenne de la 

distance entre proches voisins, dont les résultats sont 

en parfait accord avec les simulations MC, est aussi 

proposée. 

En outre, l’effet du désaccord de paramètre de maille 

entre le cœur et la coquille a été étudié pour les deux 

états de spins, HS et LS. Celui-ci a d’ailleurs montré 

des comportements riches et variés, tels que 

l’apparition de structures HS/LS labyrinthiques, les 

dilatations et les contractions de la nanostructure au-

delà des valeurs des paramètres de maille à 

l’équilibre, des transitions thermiques multi-étapes et 

des transitions réentrantes sur la fraction HS ainsi que 

sur le paramètre de réseau. L’ensemble de ces 

résultats a été étudié et hiérarchisé. Ce type de 

comportement, spécifique aux réseaux nanostructuré 

ainsi que la dissociation entre les synergies des  

interactions électro-élastiques de la nanostructure 

cœur-coquille est ici attribuée à l’existence d’une 

frustration dynamique induite dans les états HS et 

LS, qui de notre point de vue mériterait d’être 

approfondie dans de futurs travaux.    

Un autre type de systèmes à transition de spins 

étudié dans cette thèse est celui lié aux 

micro/nano-systèmes électromécaniques 

(MEMS/NEMS). Cette partie est centrée sur 

l’analyse théorique des aptitudes des systèmes à 

transition de spin en tant que commutateurs 

électro-élastiques. Ainsi, nous avons étendu nos 

modèles à l’étude des changements mécaniques à 

l’échelle macroscopique d’un cristal bistable 

doublement encastré. Le but est sa réaction à la 

dilatation en volume accompagnant le passage LS 

vers HS.  Ces investigations ont mis en évidence de 

nombreuses observations intéressantes au regard 

de la flexion du cristal lors de sa transition, de sa 

longueur totale, de sa dynamique spatio-

temporelle, de l’organisation des états de spin et 

de sa relation avec la distribution spatiale de 

l’énergie élastique. Les nouvelles perspectives 

acquises à travers cette étude prospective est un 

premier pas ouvrant la voie à des études plus 

réalistes à 3D.  

Tous ces résultats originaux ont été obtenus en 

utilisant un modèle spatiotemporel basé sur une 

description électro-élastique du phénomène de la 

transition de spin, incluant à la fois les degrés de 

liberté de spin et de distorsion. Ces études ont été 

conduites avec l’objectif de répondre à des 

questions fondamentales liées à la température de 

transition des systèmes à transition de spin, à leur 

comportement hystérétique, aux conditions 

d’apparition des transitions multi-étapes, et aux 

effets de stimuli externes ou internes divers et 

variés, tels que les contraintes mécaniques 

imposées, le désaccord de paramètres de maille, et 

aux différences de champs de ligand notamment 

dans les systèmes cœur coquille.  
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Title: Spatiotemporal study of Spin-Crossover materials: Electro-elastic Modelling in bistable 

Nanomaterials 

Keywords: Phase-transitions, Spin-transition, Nano-structure/particles (Core-Shell), Spatio-temporal 

effects, Magneto-elasticity, Elastic interactions, Monte-Carlo method. 

Abstract: This thesis work is devoted to the 

modelling and study of long-range behaviours and 

spatiotemporal effects occurring during thermal 

hysteresis primarily due to frustration driven phase 

transitions in Spin-Crossover (SCO) systems. The 

study of different Spin-Crossover systems (Core-

Shell, MEMS/NEMS) with different geometric forms 

during their thermo-induced spin transition have 

been conducted,  by introducing frustration in myriad 

of ways: having different ligand fields for core and 

shell entities and thus different transition 

temperatures, through lattice mismatch in High Spin 

(HS) or Low Spin (LS) state of shell lattice with respect 

to that of core lattice, or by simply clamping the 

single-crystal SCO in LS or HS state. 

All of these systems exhibit first-order phase 

transition where investigations showed different 

mechanisms through which magnetic (electronic) 

and elastic properties are altered. We have been able 

to reveal the effects of variation of shell width, the 

mechanism through which elastic properties (stress-

strain, pressure) are being distributed throughout the 

core-shell architecture and the ways it affects the 

magnetic behaviour of the SCO nanoparticle. An 

analytical method for calculating the average nearest 

neighbour distances is also presented, which almost 

perfectly agrees with the Monte-Carlo simulation. 

Furthermore, the effect of lattice mismatch in both LS 

and HS states of the shell lattice has been studied, 

and the origins of rich varieties of interesting 

behaviours regarding the nanostructure have been 

explained. Factors governing the appearance of 

labyrinth-like structures (domains) of HS and LS state, 

contraction or expansion of the nanostructure 

beyond the equilibrium lattice parameters, multistep, 

re-entrant phase transitions of HS fraction and lattice 

spacing have been studied and summarised.   

This type of behavior is impossible to obtain on a 

simple lattice.  

This disassociation between the synergies of the 

electronic and elastic coupling of the core-shell 

nanostructure due to the dynamically induced 

frustration in HS or LS state is very intriguing and 

would require further attention in future works. 

Another SCO system studied in this thesis is related 

to Micro/Nano-electro-mechanical systems 

(MEMS/NEMS). This part is focused on 

understanding actuating capabilities of the SCO 

system, to theoretically model the behavior of 

electronic and mechanic properties of SCO 

molecular switches, thereby contributing to the 

design of better micro/nano-electromechanical 

systems. Thus, we extend our previous theoretical 

work, and use microscopic electro-elastic model to 

explain non-negligible changes in the doubly 

clamped SCO beams due to stress generated 

through thermal expansion or contraction. Several 

interesting observations regarding the bending, 

average “crystal” length, spatio-temporal dynamics 

of the HS fraction, elastic energy distribution, and 

relaxation curves related to the stable states of the 

system have been discussed. The additional insight 

gained through this study will be a fundamental 

step toward the explanation of the effect of fixed 

edges on the structural and thermal properties of 

the crystal, and thus will be very helpful in 

modelling this behavior for the 3D lattice. 

All of these original results are obtained using a 

spatiotemporal model based on the description of 

the spin-crossover problem as an electro-elastic 

model, combining both electronic and lattice 

distortion degrees of freedom. These studies are 

conducted in order to answer some fundamental 

problems related to transition temperature, 

multistep transitions, effect of various external 

factors such as clamping, lattice mismatch and 

ligand field differences related to the SCO 

materials. 
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General Introduction 

At the Crossroads of Nobels: Spin-Crossover  

Vacuum tubes were hailed as the key to industrialization in the early 20th century. 
The invention (John Bardeen, Walter Brattain, and William Shockley) of the 
transistor (Nobel 1956) caused a tectonic shift in technological advancement, and 
the development of vacuum tubes became obsolete. Indeed we have come a long 
way from there thanks to pioneering work (Jack S. Kilby, Zhores I. Alferov and 
Herbert Kroemer)  in information and communication technology (Nobel 2000), 
at least 1018 operations per second is expected to be performed by the first 
“exascale” computer in 2019. Despite being the size of ten tennis courts, the 
computer’s electronic components will be as tiny as feasible. 333 million transistors 
per square millimeter are expected in the latest processors; this corresponds to an 
area of 2 nanometers for each transistor on the chip. 

 But will that be it? Or can we downsize even further? 

Over the years, it has been observed that the miniaturization of traditional 
electronics components is reaching its limit, not only because of manufacturing 
technological reasons but also because when a system achieves a minimal critical 
dimension, the physical phenomena driven by nanoscale material topology are 
typically substantially different. As a result, a bottom-up method is becoming more 
competitive in comparison to a top-down strategy, thus paving the way for a new 
research area centered on the development and study of “molecular systems”. This 
concept necessitates a thorough knowledge, manipulation, and good optimization 
of chemical and physical properties of various materials. We will need to shrink 
from microchips to the nanoscale in order to fit more information into fewer 
spaces; currently, the goal is to reach the molecular level. A renewed interest in 
building devices using molecular-scale components is being spurred on by the 
desire for even deeper downsizing of silicon-based electronics. 

In a wide array of disciplines, illuminating research is laying the groundwork for 
the impending technological revolution. The development (Alan Heeger, Alan 
MacDiarmid, and Hideki Shirakawa) of electrically conductive polymer (Nobel 
2000) could be considered as the first significant step toward more challenging 
molecular-scale electronics. Indeed, advances in designing and synthesis (Jean-
Pierre Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa) of molecular 
machines (Nobel 2016) can help us in answering the previously asked question 
(How small can you make machinery?).   

“In terms of development, the molecular motor is at about the same stage as the 
electric motor was in the 1830s when researchers proudly displayed various 
spinning cranks and wheels in their laboratories without having any idea that they 

https://www.sciencedirect.com/topics/computer-science/transistors
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would lead to washing machines, fans and food processors. So, 32 years after 
Feynman’s visionary lecture, we can still only guess at the thrilling developments 
ahead of us. However, we have a definite answer to his initial question: How small 
can you make machinery? At least 1,000 times thinner than a strand of hair.” 
(Taken from Popular Information provided by The Nobel Prize foundation 2016)  

Simultaneously breakthroughs of fundamental importance in both chemistry 
(Nobel 1998, 2007, 2010, 2013) and physics (Nobel 1977, 1982, 1991) are not to be 
forgotten. From an experimental point of view, palladium-catalyzed cross 
couplings in organic synthesis (Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki) 
have been of immense importance in developing organic light-emitting diodes 
(OLEDs). They have applications in the synthesis of ligands and catalysts. At the 
same time, from the theory side, investigations of the electronic structure of 
magnetic and disordered systems (Philip Warren Anderson, Sir Nevill Francis 
Mott, and John Hasbrouck Van Vleck) contributed immensely to current technical 
development, particularly in electronics.  In particular, Van Vleck, termed “the 
father of modern magnetism”, was the first to develop the crystal field theory and 
the ligand field theory. His work was also instrumental in understanding the Jahn-
Teller effect (Hermann Arthur Jahn and Edward Teller predicted it in the 1930s) in 
greater detail and in realizing its experimental importance.  

Similarly, work done in the theory of critical phenomena (Kenneth G. Wilson) and 
order phenomena (Pierre-Gilles de Gennes) at the phase transition, by building on 
the work done by L. Landau and L. Onsager, gave a complete theoretical 
description of the behaviour close to the critical point and also gave methods to 
calculate the crucial quantities numerically. Wilson’s analysis showed that 
sufficiently close to the critical point, most of the system’s variables become 
redundant. Two numbers essentially determine the critical phenomena: the 
dimensionality of the system and the dimensionality of a critical quantity called 
the “order parameter”, a quantity introduced already in Landau’s theory. This is a 
concrete example of the impact of broad generalization. According to this theory, 
a large number of completely unrelated systems can exhibit the same behavior 
when they are close to the critical point. Wilson’s theory was backed up by solid 
evidence derived from fundamental concepts. There have been numerous 
advances in the understanding of polymer order phenomena since De Gennes’s 
study was first published, which are based on general physical principles of phase 
transition. De Gennes’s has shown that there is a surprising amount of generality 
in the mathematical concepts used to describe phase transitions in seemingly 
disparate physical systems such as magnets, superconductors, liquid crystals, and 
polymer solutions. While these are some examples in pure theoretical research, 
they were of great relevance when it comes to creating a more solid foundation for 
the technical utilization of systems (materials). 

On equal footing is the work done in the direction of developing methods and 
theories, which in practice revolutionised the way in which science is conducted 
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by adding computations as another dimension (or tool) in the hands of 
theoreticians and experimentalists. Experimental techniques are increasingly 
frequently supplemented by computer-based simulations. They’ve been created 
and polished for decades, making it possible to study matter’s structure and 
property behavior up close. It was Walter Kohn’s theoretical contributions that laid 
the foundations for current Density-functional theory, while John Pople’s 
computational approaches and enhancements allowed chemists to apply quantum 
chemical methods, revitalizing interest in the field. Innovative multiscale models 
have been developed (Martin Karplus, Michael Levitt, and Arieh Warshel) and are 
now standard laboratory tools for chemists. This means that chemists now spend 
just as much time in front of their computers as they do in the laboratory. 
Molecular biology, medicine, and geology all rely on these quantum chemistry 
procedures that were once uncommon but are now practically universal in 
inorganic chemistry.  

While these methods were predominantly to bridge the gap between classical and 
quantum mechanical nature to solve many-body problems, another class of 
methods that can take into account a combination between 
classical/statistical/quantum mechanical nature are Monte Carlo methods. As a 
general class of computational techniques, Monte Carlo methods and experiments 
use repeated random sampling and randomization to tackle problems that might 
be deterministic. Even though the early pioneers like Stanislaw Ulam, John von 
Neumann, Enrico Fermi, and Nicholas Metropolis have their names attached to it, 
the field has been graced by numerous more luminaries from various fields who 
have made significant contributions as well. As a result, these methods have gone 
a long way since they were first created in the 1940s to examine physics-related 
problems (particularly neutron diffusion). Now their applicability transcends 
across disciplines, ranging from Natural science (Physics, Chemistry, Biology), 
Mathematics, Informatics (Artificial Intelligence) to Social Science (Economics, 
Finance, Business) and what not! Simulations are so realistic that they predict the 
outcome of conventional experiments. 

The point of laying over this historical context is to exemplify that the current 
advancement should not be seen in isolation in one particular domain but as an 
amalgamation of both minor and major improvements in various fields. Also, to 
instil confidence that the objective in question is not an exercise of “castle-building 
in the air”; instead, it has a solid underlying foundation formed over years of 
research and technological progress. Even though it’s yet unclear what the next-
generation “core element/material” (i.e., bronze, iron, steel, silicon) will be for 
modern industrial civilisation, but one thing’s for sure: it’ll be at the 
atomic/molecular scale. MOLETRONICS (molecular electronics) deals with 
assembling molecular electronic components and utilizing molecules as the 
building blocks. By piling molecules three-dimensionally, the overall efficiency of 
the system might be significantly improved. Molecular electronic devices are 
capable of exhibiting virtually unlimited capability. 
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Thus, we are at a point in time where we can safely presume that rather than 
delving in “If’s?”, it might be more fruitful to reach “How ?” and “When ?”. In 
coming years culmination of multiple other breath-taking breakthroughs in 
various domains would be required to envision this future. And indeed, we can see, 
the field of molecular electronics is teeming with results, rationalizations, and 
speculations. Reports of passive molecular electronics devices, such as tunnel 
junctions and rectifiers, as well as of active devices, for example, single-molecule 
transistors and molecular switch tunnel junctions, have withstood scientific 
scrutiny. Simple molecular electronic devices usually consist of organic molecules 
sandwiched between conducting electrodes. Liquid-crystal displays, conducting 
polymers, organic light-emitting screens, and electrophotography’s 
photoreceptors are examples of recent successes. In addition, other products such 
as organic photovoltaic devices, organic superconductors, chemical sensors, 
electronic nasal sensors, solid-state coolants are rapidly evolving. One of the most 
popular research topics is exploring molecular-scale technologies that could one 
day replace silicon-based electronics altogether. 

Impressive progress in increasingly sophisticated technologies has led to 
tremendous improvements in instrumentations and novel analytical techniques. 
These developments have impacted and encouraged the expansion of new 
scientific explorations in many different fields, and it is nowadays possible to 
observe, investigate and control phenomena at the ultrasmall and ultrafast scales. 
In 1988, the discovery of the giant magnetoresistance (GMR) by Albert Fert and 
Peter Andreas Grünberg (Nobel 2007) opened a new area of research in spintronics. 
While, the extraction (Andre Geim and Konstantin Novoselov) of the first two-
dimensional material, Graphene (Nobel 2010), revolutionised the field of Nano-
materials and electronics. Since then, there have been literally hundreds of other 
examples of functional two-dimensional materials demonstrating an extensive 
range of characteristics and functionalities.  Both of these discoveries set the tone 
in which the functionalities of this regime would be viewed and exploited in future 
applications. Thus, considerable research is going on to use the flexibility in 
electronic spin properties and the small size of the individual molecular building 
blocks to fabricate electronic components. When employed as building blocks for 
memory and logic components, organic molecules outperform bulk silicon; as 
flexible thin films, they can be easily manufactured and have a high switching 
speed potential with minimal power requirements. 

The use of organic molecules to manipulate the spin of the electrons and enhance 
spin-dependent transport through molecules opened a way towards a new kind of 
spintronics called molecular spintronics. This is one of the main reasons for the 
growing interest in using organic molecules in spintronic devices. The molecule’s 
spin transport and magnetoresistance are primarily influenced by modifying the 
molecular density of states (DOS) at the metal-organic interface. In this context, 
studies (Gerhard Ertl) conducted to understand chemical processes on solid 
surfaces (Nobel 2007) laid the methodological foundations for an entire field of 
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research (surface chemistry). This field aims to observe how individual layers of 
atoms and molecules behave on the extremely pure surface of a metal. Ertl’s 
painstaking and systematic investigation conducted created a methodology for 
surface chemistry. With his painstaking precision and remarkable ability to refine 
difficulties, the outstanding realism of his results is attributable to the fact that it 
has laid the groundwork for how different experimental approaches can be 
employed to create an all-encompassing picture of a surface reaction.  

 The recent developments in the field of organic spintronics show the possibility 
of creating efficient spintronic devices with different types of organic molecules. 
While these previous mentions constitute the essence of scientific trend and 
impressing achievements being made continuously while pushing back its 
frontiers toward smaller scales. For instance, it is astonishing the accuracy with 
which it is possible to control a single atomic layer deposition or to develop 
artificial molecular machines designed to perform work under an appropriate 
external stimulus. Similar efforts that were set to bring in a revolution in chemistry 
and related sciences was targeted at ultrafast scales. The pioneering work 
conducted to study transition states of chemical reactions (Ahmed H. Zewail) gave 
birth to a research area called femtochemistry (Nobel 1999), which spurred further 
interests in the investigation of elementary processes at the ultra-small and ultra-
fast time scales. Applications range from how catalysts function and how molecular 
electronic components must be designed to the most delicate mechanisms in life 
processes and how the medicines of the future should be produced. 

The active control of a molecule spin constitutes one of the biggest hurdles in 
molecular spintronics. The enduring fascination with the control of matter 
properties and applied functionalities has resulted in a frenzy of research on matter 
transformations, which are typically governed by varying macroscopic parameters 
such as temperature, pressure, electric or magnetic field. Till now, spin 
manipulation has been done by the alteration of the molecular structure either by 
chemical doping or by external stimulation. However, the use of light as a control 
parameter has been more and more preferred in the different disciplines of science. 
New emerging fields makes it now possible to understand and control the 
properties of molecules and solids by light. The light-control of molecular 
transformation found applications in various areas, from technological 
applications to biological systems and medicine  (biocompatible chromophores for 
drug delivery and cancer cure). 

Nevertheless, the opportunity to drive Photo-Induced Phase Transition (PIPT) in 
solid-state physics founds general excitement in impacting the macroscopic state 
of materials with light pulses. Innovating new spin-based technologies require the 
capacity to control and modify the molecular spin in a reversible manner. A 
promising approach would be to use multifunctional molecules. For example, a 
spin-active molecule that can change its spin state by external excitations, e.g., 
temperature, light, electric field etc., can be used as a spacer layer. But in all the 
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cases, a detailed understanding of the physics of the interfaces of the molecules is 
mandatory to go further. 

This discussion was vital as it sets the periphery of our context and domains in 

which we will view the available systems (i.e., complexes, materials, molecules, 

etc.), their dimensionality (0D, 1D, 2D, 3D), and functionality (Spintronics, 

devices/switches, magnetic/electronic/elastic, optical, etc.). Somewhere within the 

periphery of this discussion, we might find the solution, which might help us 

envision the prospects or update them.  

One such example which we will discuss in this context are our “shy” (changes 

colour), “heavyweights” (heavy metals), Spin-Crossover (SCO) 

materials/molecules/complexes, they certainly “punch above their weight” (multiple 

functionalities, and applications), as a prominent molecular class, and are well 

known “Sci-magnets”, both literally (diamagnetic and paramagnetic states), and 

figuratively (have admirers (researchers) across disciplines (Physics, Chemistry, 

Biology, Geology…)). Not to forget, they are very “down to earth” (effects in earth’s 

lower mantle) and easy to please (controlled by various stimuli: temperature, light, 

pressure, magnetic or electric fields,…).   

Spin-Crossover (SCO) complexes comprise a transition metal ion that can be 

switched between a low-spin (LS) and a high-spin (HS) state by external stimuli 

such as temperature, light, pressure, magnetic or electric fields. The two 

arrangements may result in different conductances, but the switchable spin of the 

metal ion has a significant potential for molecular spintronics. The SCO feature is 

connected to a sensitive energy balance between the HS and LS states associated 

with molecular conformational changes. Preserving this fragile truce for SCO 

molecules adsorbed onto surfaces necessitates careful regulation of the molecule′s 

interaction with the nearby electrodes in order to assure the SCO property.  

Switchable molecules have recently attracted a lot of interest as molecular 

machines and actuators because of the potential they hold. So that the molecules 

may generate useful work in an efficient manner, they must be integrated and 

interfaced with their surroundings so that they can be connected to an external 

source of energy. The energy is then transduced by the molecules and can be 

controlled. SCO complexes are very well known to exhibit volume transition 

accompanying the spin or electronic transition. Therefore SCO complexes can be 

seen flexing their “molecular muscles” in this arena too, and further investigations 

will establish “How hard a punch it can throw?”.   
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Another significant area where SCO complexes can be revolutionary is, magnetic 
memory domain; being a very crucial part of computer technology, it is not 
shrinking at the same rate as its processing counterparts. So far, the state of the art 
technology will store one bit of data in about a dozen magnetic grains, each of 
which is about 3nm in size (while the state of the art transistors has been 
downsized to 2 nm). As computing becomes quicker and more powerful, memory 
is becoming a bottleneck. 

A single molecule can be utilized to store information via a nanoscale molecular 
switch. Albeit the switching process can be monitored electrically as a change in 
the conductance of the molecule, incorporating spin functionality to molecular 
switches is a critical notion for creating molecular spintronic devices. One might 
very well ask, is it possible to imprint binary data on a magnetic molecule with a 
diameter of less than 1nm, replacing the existing solid magnetic grains? Until 
recently, this appeared to be science fiction, but that’s about to change. The single-
molecule magnet (SMM) is a result of advances in various domains of physics and 
chemistry. A single-molecule magnet can be thought of as a paramagnet the size 
of a single molecule. In general, SMMs are coordination complexes containing 
unpaired electrons that may transition between two opposed orientations of their 
magnetic moment, providing magnetic bi-stability below a specific ‘blocking 
temperature’. The concept is that one molecule at a time will be addressed for data 
storage applications in the future. SCO complexes can lead the way in this category 
too as for Fe (II) complexes the LS state is diamagnetic in nature while the HS state 
is paramagnetic, not just that since the transition could be controlled through 
various stimuli, they very well enrich the prospects of SMM devices.    

It’s important to remember that all the aforementioned “molecular boulevards” 
(molecular elec-/spin-tronics, memories, devices, and machines) are still being 
paved. For this reason, further research is needed to fully understand the physics 
at play. Only if its development is founded on sound scientific results that have 
been tried and tested at each stage will molecular avenues evolve into a powerful 
technology. A thorough understanding of various regulating mechanisms, as well 
as the development of procedures for manufacturing reliable devices and assuring 
their resilience, are required for these goals to be achieved. Because of this, the 
future generation of technologies will most likely include hybrid devices that 
integrate molecular and electronic components. Experimental verification and 
controlled device manufacture are two main challenges in moletronics. Molecular 
devices must be robustly modeled in order to close the gap between their synthesis 
and implementation in solid-state molecular devices. Improved electrical 
functionality and innovative multifunctional compounds can be developed by 
accurately predicting material behavior. In spite of the difficulty of experimentally 
verifying and simulating molecular devices, significant advances have been made 
in this area. 
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An overview of the PhD project’s context and purpose.  

New technological applications necessitate the creation of switchable materials. 

However, little is known about the mechanisms that take place throughout the 

process of switching. This investigation is complicated even further by the 

presence of multi-scale features in molecular materials. SCO materials are 

fascinating as prototypes in this context. With a discussion of the potential uses 

for such components, this thesis presents an in-depth description of SCO based 

switchable molecular complexes in the form of core-shell nanocomposite and 

actuator. We emphasise new breakthroughs and present a brief history of 

accomplishments in the field of molecular devices. 

There were numerous unanswered questions at the start of this PhD regarding the 

ability to construct multistep transitions. What role does structure-property 

relation play for a SCO system? What are the key parameters governing the 

switching?  What impact do various forms of frustration have on the switching 

mechanism? How do the various degrees of freedom react and their corresponding 

timescales? What role do other degrees of freedom related to symmetry and 

ordering play? Does this mean that new paths for the development of composite 

materials can be explored? Can strain engineering be used to uncover or improve 

new functionalities? 

This thesis attempts to explain the variety of empirically observed bulk 

characteristics and behaviors in SCO systems. We developed structure-property 

links, inferred the processes of multistep transitions, and described why and how 

intermolecular interactions play a role using a simple, yet elegant elastic model. 

New emergent traits and behaviors were also predicted, particularly for the core-

shell architectural design. In Chapters 2 and 3, we illustrate that this model can be 

utilized to predict and explain various observations made during experimental 

core-shell heterostructure transitions. We demonstrate clear structure-property 

relations that explain these results in terms of competition and cooperation by 

changing various misfit parameters or simply adjusting the core to shell entities 

ratio.  

In Chapter 4, we suggest using elastic models to investigate a new system called 

“molecular actuators.” Grasping and forecasting the behavior of these materials is 

crucial for optimal operation, and a detailed understanding of structure–property 

correlations are required. Various research has been undertaken over the last 35 

years to determine the stress profile of these devices. However, the effect of surface 

stresses on device rigidity is still poorly understood, and a controlled, quantitative 

measurement of surface effects and stress on cantilever stiffness with 
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commensurate theoretical interpretation remains out of reach. The purpose of this 

chapter is to theoretically comprehend the electronic and mechanical properties 

of SCO molecular switches, hence leading to the creation of improved 

microelectromechanical systems (MEMS). As a result, we extend our prior 

theoretical work by employing a microscopic electro-elastic model to describe 

non-negligible changes in doubly clamped SCO beams caused by stress generated 

by thermal expansion or contraction. This study’s further knowledge will be a 

critical step toward explaining the effect of fixed edges on the structural and 

thermal properties of the crystal.  

In Chapter 5, we shall discuss the research’s future prospects. As a result, this PhD 

thesis aims to open up new avenues for the development of new hybrid materials 

or devices by leveraging the current understanding of fundamental physical 

processes. 
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Chapter 1. 

Introduction to Spin-Crossover Systems 

1.1 Introduction 

In the solid-state, the local molecular distortions caused by the metal ions 
changing spin state couple to the long-range elastic interactions, which can lead 
to first-order transitions with hysteresis, indicating significant interactions 
between the metal centres. Consequently, over recent years, Spin Crossover (SCO) 
systems have emerged as both an experimental and theoretical playground of bulk 
properties. On the applied side, they are among the main class of switching 
materials. The unique functionality of SCO systems, getting triggered by different 
external stimuli [1]–[5], makes them highly sought after for their numerous 
applications as smart molecular devices, including reversible high-density 
memory, multi-bit electronics, quantum bits, optical displays and nanoscale 
sensing and various technological applications [6]–[15]. Moreover, the spin state 
switching phenomena have considerable importance in biological systems such as 
metalloproteins; isopenicillin N-synthase, deoxyhemerythin and ribonucleotide 
reductase [16] or geology [17]. Spin Crossover switchable magnetic materials have 
several advantages comparing with conventional magnets since most of them 
change the color and can be tailor-made; thus, they provide a unique tool for fine-
tuning the physical properties. On the fundamental side, the remarkable chemical 
versatility and variability of these systems allows for the manipulation of both the 
local chemistry and molecular structure to produce a diverse range of bulk 
properties and behaviours.  

So, this chapter treats the basic knowledge necessary to understand SCO materials. 
It begins with a brief discussion about coordination chemistry and various 
theories, which will be helpful in explaining the SCO. Next, we move on to general 
historical introduction of SCO materials and then continues with an overview of 
SCO phenomena. Then we discuss about various models developed with 
significant emphasis on the techniques and the model we are going to use in this 
thesis in order to encapsulate and portray the entire picture of the various 
phenomena occurring across the variety of SCO systems. Additionally, a brief 
review of the mode influence of external stimuli on SCO behavior is provided, and 
multiple detection techniques and applications are discussed succinctly.  
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1.2 Metal complexes and Ligand field theory: 
Overview 

Coordination complexes typically consist of a central transition metal ion (a metal 
with a partially filled d-shell), surrounded by several ligands. A ligand can be any 
atom, ion or molecule usually, with one or more lone electron pairs. The bond 
between the metal and ligands is a coordinate covalent or dative bond; a bond 
formed from the donation of two electrons from the same atom. Usually, with the 
ligand as the electron donor. Depending on whether one or many of the atoms in 
the ligand form a coordination covalent bond with the metal, the ligand is said to 
be either monodentate (one bond) or polydentate (many bonds) 

The chemistry of coordination complexes is usually dominated by the s- and p- 
orbitals of the ligands and the d- orbitals of the metal. This limits number of 
bonding and non-bonding electrons pairs to nine (five d-orbitals, three p-orbitals, 
one s-orbital). Consequently, the number of coordination bonds is limited to the 
number of empty s-, p- and d- orbitals. Although uncommon, f-orbitals can 
sometimes contribute to bonding, resulting in coordination complexes with more 
than nine ligands. The arrangement of ligands depends on the type of metal and 
the type, symmetry and position of the ligands. However, typically for transition 
metals, only the bonding electron pairs contribute to the molecular geometry. This 
results in complexes having a regular geometry that depends only on the number 
of coordination bonds (the coordination number). 

The presence of the ligands has a large influence on the structural, spectral and 
magnetic properties of the complex. For example, coordination complexes have a 
remarkable diversity of colours that arise from electronic transitions that are either 
d-d transitions or charge transfer bands. d-d transitions occur as a result of an 
electronic transition between d-orbitals, and charge transfer bands arise from the 
transfer of charge between the metal and ligands. Since the ligands are 
predominantly s- and p-orbitals, the d-d transitions must occur as a result of the 
splitting of the d-orbitals of the metal. This splitting has a significant effect on the 
magnetic properties of the complex. 

There are a host of theories that attempt to explain the influence of the ligands on 
the metal: crystal field theory, molecular orbital theory and valence bond theory. 
Interestingly, each of these theories correctly depicts certain aspects of a more 
complete approach. The current incarnation of this “more complete theory” is 
ligand field theory. However, ligand field theory is quite abstract by nature and 
does not lend itself to intuition. Instead, we will begin by applying a combination 
of crystal field theory (in Section 1.2.1) and molecular orbital theory (in Section 
1.2.2) to explain both the electrostatic and covalent nature of the bonding. We will 
then go on to explain the basics of Ligand field theory in Section 1.2.3. 
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1.2.1 Crystal Field Theory  

The chemistry of transition metal complexes is driven by the valence d-orbitals of 
the transition metal cations. In the free atom, all d orbitals are degenerate, and 
they have the same energy. When ligands are added, the atomic d orbitals interact 
with the s and p orbitals (typically) of the ligands relevant to the symmetry at hand, 
and they form molecular orbitals. Crystal field theory (CFT) was first developed to 
explain the influence of the ligands on the d-orbitals of a transition metal ion. CFT 
is predicated on the idea that metal–ligand interactions are entirely electrostatic. 
Despite the fact that this assumption is manifestly false for many complexes, such 
as those containing neutral ligands like CO, CFT allows chemists to describe many 
of the features of transition-metal complexes with reasonable precision. 
Consequently, CFT is typically only applicable when ligands are negatively charged 
ions or molecules with lone electron pairs. In these cases, the electrostatic field 
(formally, crystal field) generated by the ligands can be approximated by a set of 
point charges or dipoles. Where negative ions are replaced by negative point 
charges and molecules with lone electron pairs are replaced by dipoles. Since the 
symmetry of the crystal field will be lower than the symmetry of the d-orbitals, the 
presence of the ligands will break the symmetry of the d-orbitals. Consequently, 
electrons occupying orbitals with lobes closer to the surrounding charges will 
experience a greater electrostatic force, resulting in a splitting of the orbitals, ∆, 
relative to the average distance between the orbital lobes and the surrounding 
point charges or dipoles, see Fig. 1.1. Where ∆ measures the influence of the ligands 
on the d-orbitals of the central metal ion. 

An octahedral structure of six negative charges modifies the d orbital energies of a 
transition metal ion. Keep in mind that the five degenerate d orbitals are initially 
degenerate (have the same energy). The d orbitals will remain degenerate if six 
negative charges are distributed uniformly across the surface of a sphere. Still, their 
energy will be increased due to repulsive electrostatic interactions between the 
spherical shell of negative charge and electrons in the d orbitals (Figure 1a). Adding 
six negative charges to the vertices of an octahedron does not change the average 
energy of the d orbitals, but it does eliminate their degeneracy: the five d orbitals 
are divided into two groups whose energies depend on their orientations. As shown 
in Figure 1b, the dz2 and dx2−y2 orbitals point directly at the six negative charges 
located on the x, y, and z axes. An electron in these two orbitals (collectively 
referred to as eg orbitals) will have a higher energy than it will be for a spherical 
distribution of negative charge because of the increased electrostatic repulsions. In 
contrast, the other three d orbitals (dxy, dxz, and dyz, collectively called the 
t2g orbitals) are all oriented at a 45° angle to the coordinate axes, so they point 
between the six negative charges. An electron in any of these three orbitals has 
lower energy than a spherical distribution of negative charge. 
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Figure 1. 1 The five d Orbitals are split into two sets with different energies due to an octahedral 
arrangement of six negative charges around a metal ion. (a) Applying a uniform charge of -6 
to a spherical surface surrounding a metal ion increases the energy of all five d orbitals due to 
electrostatic repulsions, but the five d orbitals remain degenerate. Placing a charge of −1 at 
each vertex of an octahedron causes the d orbitals to split into two groups with different 
energies: the dx2−y2 and dz2 orbitals increase in energy, while the dxy, dxz, and dyz orbitals 
decrease in energy. The average energy of the five d orbitals is the same as for a spherical 
distribution of a −6 charge, however. Attractive electrostatic interactions between the 
negatively charged ligands and the positively charged metal ion (far right) decrease the energy 
of all five d orbitals but do not affect the orbital splittings. (b) The two eg orbitals (left) point 
directly at the six negatively charged ligands, increasing their energy compared to a spherical 
negative charge distribution. In contrast, the three t2g orbitals (right) point between the 
negatively charged ligands, lowering their energy compared to a spherical charge distribution. 
Adapted from [18]. 

 

Symmetry arguments show that the presence of the surrounding point charges 
splits the d-orbitals into 𝑒𝑔 and 𝑡2𝑔 orbital sets. The difference in energy between 

the two sets of d orbitals is called the crystal field splitting energy (Δ), 
Consequently, ∆ can be calculated from taking the energy difference between an 
electron in an 𝑒𝑔 and 𝑡2𝑔 orbital. 
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𝛥𝑜𝑐𝑡 = 𝐸(𝑒𝑔) − 𝐸(𝑡2𝑔)   (1) 

where oct is an abbreviation for octahedral. As we will see, the magnitude of the 
splitting is determined by the charge on the metal ion, the metal's position in the 
periodic table, and the nature of the ligands. It is important to note that splitting 
the d orbitals in a crystal field has no effect on the total energy of the five d orbitals:  
the two 𝑒𝑔 orbitals increase in energy by 𝟎. 𝟔 𝛥𝑜𝑐𝑡, whereas the three 𝑡2𝑔 orbitals 

decrease in energy by 𝟎. 𝟒 𝛥𝑜𝑐𝑡. Thus, the total change in energy is 

   2 (0.6 𝛥𝑜𝑐𝑡) + 3 (−0.4 𝛥𝑜𝑐𝑡) = 0  (2) 

As a result, the 𝑡2𝑔  orbitals are stabilised while the 𝑒𝑔 orbitals are destabilised. The 

spin-pairing energy (P) is the increase in energy caused by the addition of an 
electron to an already occupied orbital. A high-spin configuration occurs when the 
𝛥𝑜𝑐𝑡 is less than P, which results in complexes with the maximum number of 
unpaired electrons possible. Conversely, a low-spin configuration occurs when the 
𝛥𝑜𝑐𝑡 is greater than P, which produces complexes with the minimum number of 
unpaired electrons possible. Strong-field ligands interact strongly with the d 
orbitals of the metal ions and give a large 𝛥𝑜𝑐𝑡, whereas weak-field ligands interact 
weakly and give a smaller 𝛥𝑜𝑐𝑡. The magnitude of 𝛥𝑜𝑐𝑡 dictates whether a complex 
with four, five, six, or seven d electrons is high spin or low spin, which affects its 
magnetic properties, structure, and reactivity. As we noted, the magnitude of 
𝛥𝑜𝑐𝑡 depends on three factors: the charge on the metal ion, the principal quantum 
number of the metal (and thus its location in the periodic table), and the nature of 
the ligand. 

The experimentally observed order of the crystal field splitting energies produced 
by different ligands is called the spectrochemical series, shown here in order of 
decreasing 𝛥𝑜𝑐𝑡: 

strong field ligands {CO ≈ CN−}
>  intermediate field ligands {NO−2 > phen > en > NH3 > SCN−

> H2O > oxalate2 }
>  weak field ligands {OH− > F > acetate− > Cl− > Br− > I−}  

In general, halogens are weak ligands (a small value of 𝛥𝑜𝑐𝑡), water has a medium 
strength, ammonia has much higher strength, and the strong bonding ligands of 
cyanide and carbon monoxide have a very strong bonding strength. The size of the 
splitting will also depend on the nature of the metal. The following factors will play 
a role in the size of  𝛥𝑜𝑐𝑡 : 

 𝛥𝑜𝑐𝑡 increases with increasing oxidation number of the metal. This is due to the 
smaller size of the ion, which results in shorter metal-to-ligand distances and, as a 
result, a larger ligand field. 

 𝛥𝑜𝑐𝑡 increases as you go down a group.  This is due to the better bonding ability of 
expanded shells using the 4d or 5d orbitals. 
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The results of these trends are summarized in the list below.  The smallest values 
of 𝛥𝑜𝑐𝑡 occur with the +2 ions, with increasing values observed for higher charged 
ions which are in the series below. 

Mn2+<Ni2+<Co2+<Fe2+<V2+<Fe3+<Co3+<Mn4+<Mo3+<Rh3+<Ru3+<Pd4+<Ir3+<Pt4+ [19], 
[20] 

In general, since CFT neglects the finite size of the atomic orbitals and the covalent 
nature of the bonding, its successes are limited to explaining d-d transitions in 
systems where CFT is appropriate. A full explanation of the spectral and magnetic 
properties of coordination complexes requires both treatment of the electrostatic 
and covalent nature of the bonding. 

1.2.2 Molecular orbital theory 

Molecular orbital theory (MOT) was developed as a way of explaining covalent 
bonding in molecules. In MOT, the electrons are not assigned to individual atoms 
but “molecular orbitals” that are delocalized over the molecule. More accurately, 
MOT approximates the many-electron wave function as a product of single 
electron wavefunctions called molecular orbitals. Each molecular orbital can be 
thought of as an average field of nuclei and electrons. Essentially, MOT has the 
same theoretical foundation as the Hartree-Fock method [21]. Consequently, MOT 
is most accurate for molecules with strong covalent bonding. The molecular 
orbitals can be classified as either bonding, anti-bonding or non-bonding. Bonding 
and anti-bonding molecular orbitals are created from the superposition of atomic 
orbitals with similar energy and the same symmetry; one from the constructive 
interference (bonding) and one from destructively interference (anti-bonding) of 
the atomic orbitals (see Fig. 1.2). The anti-bonding orbitals are usually 
distinguished by an asterisk, for example 𝑒𝑔

∗. The atomic orbitals that do not have 

a symmetric counterpart are called non-bonding orbitals. 
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 Figure 1. 2 Molecular Orbitals for the H2 Molecule. (a) This diagram shows the formation of a 
bonding σ1s molecular orbital for H2 as the sum of the wave functions (𝛹) of two H 1𝑠 atomic 
orbitals. (b) This plot of the square of the wave function (Ψ2) for the bonding σ1s molecular 
orbital illustrates the increased electron probability density between the two hydrogen nuclei. 
(The probability density is proportional to the square of the wave function.) (c) This diagram 
shows the formation of an antibonding 𝜎1𝑠 

∗ molecular orbital for H2 as the difference of the 
wave functions (𝛹) of two H 1s atomic orbitals. (d) This plot of the square of the wave function 

(Ψ2)for the 𝜎1𝑠 
∗  antibonding molecular orbital illustrates the node corresponding to zero 

electron probability density between the two hydrogen nuclei. Adapted from [22]. 
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 Figure 1. 3 Molecular orbital energy level diagrams for ML6, showing (a) the influence of σ-
bonding and (b-d) π-bonding on the molecular orbitals. The energy difference between the 
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 
(LUMO) strongly depends on the type and strength of the π-bonding, decreasing for stronger 
(b) π-donation and increasing for stronger (d) π-acceptance. Adapted from [23] 

For bonding orbitals, the constructive interference of the atomic orbitals will result 
in an increase in the concentration of the electron density in the region between 
the nuclei (see Fig. 1.2b). The increased electron density will attract the atoms 
closer together, strengthening the bond between the atoms and increasing the 
molecular stability. Whereas, for anti-bonding orbitals, the destructive 
interference of the atomic orbitals will decrease the electron density in the inter-
nuclei regime and shift it further away from nuclei (see Fig. 1.2d). This decrease in 
the electron density increases the Coulomb repulsion between the atoms, pushing 
them away from each other, weakening the bond between them, and decreasing 
the molecular stability. Evidently, specific physical properties like the strength, 
length and stability of the metal-ligand bond will depend on the population of the 
bonding and anti-bonding orbitals. Typically, this can be quantified by the bond 
order  

𝑏𝑜𝑛𝑑 =  
𝑁𝐵0−𝑁𝐴𝐵𝑂

2
, (3) 

where 𝑁𝑥 is the population of electrons in the bonding (𝑥 = 𝐵𝑂) and antibonding 
(𝑥 = 𝐴𝐵𝑂) orbitals. The bond order indicates the number of free electron pairs and 
more loosely corresponds to the strength of the bond between electrons. The 
stronger the electronic interactions are, the more tightly held together the 
molecules are. And thus, a shorter metal-ligand bond distance and higher 
molecular stability.  

In the MOT description of octahedral molecular complexes, there is a host of 
different bonding, anti-bonding and non-bonding orbitals (see Fig. 1.3a). For a 
perfectly octahedral molecular complex, MOT arrives at the same conclusion as 
CFT. The highest occupied molecular orbitals (HOMO) will be the 𝑡2𝑔 orbital set 

and the lowest unoccupied molecular orbitals (LUMO) will be the 𝑒𝑔 orbital set. 

However, in the MOT description, the 𝑒𝑔 and 𝑡2𝑔 orbitals are formed from the 

bonding between the metal and ligands. The stability of 𝑡2𝑔  orbitals depend 

strongly on the nature of the 𝜎−and 𝜋− bonding (see Fig. 1.3b-d). 𝜎− bonding being 
the strongest type of bond formed from the head-on overlap of atomic orbitals. 
And, 𝜋− bonding being typically weaker, formed from the side-on overlap of 
atomic orbitals. In the absence of any 𝜋− bonding, the 𝑡2𝑔 orbitals will be non-

bonding (see Fig. 1.3c). Whereas, if the 𝜋−bonding orbitals of the ligand have 
similar energy and the same symmetry as the non-bonding 𝑡2𝑔 orbitals, then either 

the metal or ligand will donate an electron pair to form a 𝜋− bond. When the ligand 
donates the electron pair, it is referred to as 𝜋− donation, and when the metal 
denotes the electron pair, it is referred to as 𝜋− acceptance. This bond splits the 
non-bonding 𝑡2𝑔 orbitals into bonding 𝑡2𝑔 and anti-bonding 𝑡2𝑔

∗  orbitals. 
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Depending on whether the ligands are π-donors (see Fig. 1.3b) or π-acceptors (see 
Fig. 1.3d), the HOMO will be either the 𝑡2𝑔

∗  or 𝑡2𝑔 orbital sets, respectively. Since 

the 𝑡2𝑔
∗  orbitals will have higher energy than the non-bonding 𝑡2𝑔 orbitals, 

𝜋−donation will decrease 𝛥𝑜𝑐𝑡 (see Fig. 1.3b), and π-acceptance will increase 𝛥𝑜𝑐𝑡 
(see Fig. 1.3d).  

1.2.3 Ligand Field Theory 

Ligand field theory (LFT) was initially developed as a means of combining CFT and 
MOT to produce a complete version of MOT that includes electrostatic repulsions. 
It is a purely microscopic description of coordination complexes that take into 
account electron-electron interactions among the d electrons as well as metal-
ligand bonding and electrostatic repulsion. 

 

 
 Figure 1. 4 The Possible Electron Configurations for Octahedral d𝑛 Transition-Metal 

Complexes (n = 1–10). Two different configurations are possible for octahedral complexes of 
metals with d4, d5, d6, and d7 configurations; the magnitude of 𝛥𝑜𝑐𝑡~10𝐷𝑞 determines which 
configuration is observed. Depending on the strength of orbital splitting, 10𝐷𝑞 , and spin 
pairing energy, P, the 𝑒𝑔

∗ (10𝐷𝑞 > 𝑃 (𝐻𝑖𝑔ℎ 𝑆𝑝𝑖𝑛)) and 𝑡2𝑔 (10𝐷𝑞 < 𝑃 (𝐿𝑜𝑤 𝑆𝑝𝑖𝑛)) orbitals of 

an octahedral molecular complex with d4 − 𝑑7 can be filled according to either (a) Hund’s rule; 
maximise the spin multiplicity or (b) the aufbau principle; fill the orbitals in order of increasing 
stability, maximising the spin multiplicity of each [18]. 

The coordination number of the resulting metal complex and the ligand structural 
arrangement depends on various parameters, the most important being the 
number of electrons in the d orbitals of the metal ion, the presence of double-
bonds and the relative sizes of the ligands and the metal ion: early and big 
transition metals, smaller ligands and few double bonds favor high coordination 
numbers. The presence of polydentate ligands, unequal bond lengths, spin-orbit 
coupling or structural distortions such as Jahn-teller distortions will slightly and 
sometimes dramatically lift the degeneracy of the orbitals [21]. The symmetry of 
the complex can range from the rare linear and trigonal planar geometries for 
respectively two and three-fold coordination to tri-capped trigonal prismatic for 
nine-fold coordination or even icosahedral geometries for some lanthanide and 
actinide complexes. Of course, one must keep in mind that these represent limiting 
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geometries: if all the ligands are different, asymmetrical steric repulsion and 
electrostatic interaction will distort the structure. The Jahn-Teller effect [24], [25] 
occurring in orbital nonlinear spatially degenerate molecules (most often of 
octahedral geometries) can also modify the structure, as in their case reducing the 
symmetry of the complex lifts a degeneracy in the electrons orbitals, reducing the 
energy of the complex. More geometries can be found in the book by Y. Jean [20].  

 A qualitative approach that can be used for octahedral metal complexes can be 
explained through these diagrams: We've already discussed two of them in (Fig. 
1.3). Only sigma bonding is examined in the first diagram (Fig. 1.3a), which depicts 
the combination of metal 3d, 4s, and 4p orbitals with occupied ligand group 
orbitals (using one orbital from each ligand). The metal electrons would then be 
fed into the, 𝑡2𝑔 and 𝑒𝑔

∗ molecular orbitals, which is identical to the CFT model 

except that the, 𝑒𝑔  orbital is now 𝑒𝑔
∗. The ligand 𝜋 orbitals are full and at lower 

energy than the metal 𝑡2𝑔 in the second plot (Fig. 1.3b) for scenario B. This causes 

a decrease in the size of Δ~10𝐷𝑞. The ligand 𝜋 orbitals in instance C are vacant 
and have higher energy than the metal 𝑡2𝑔. The size of Δ~10𝐷𝑞 increases as a result 

of this. 

 
 

 Figure 1. 5 The ligand group orbitals that would have the proper symmetry to overlap with the 
3d, 4s, and 4p metal ion atomic orbitals are displayed alongside them. The symmetry adapted 
linear combination of ligand orbitals are generated by taking 6 sigma orbitals from the ligands, 
designated as 𝜎𝑥 , 𝜎−𝑥 , 𝜎𝑦 , 𝜎−𝑦 , 𝜎𝑧 , 𝜎−𝑧 and then combining them to make 6 ligand group orbitals. 

(labelled 𝑎1𝑔, 𝑒𝑔, 𝑡1𝑢) [26] 

Metal ion atomic orbitals for 3d, 4s and 4p, are shown in Fig. 1.5, along with the 
orbitals of the ligand group that would be required to produce the correct 
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symmetry to be able to overlap with them. Complexes with strong π-acceptance 
are filled according to Hund’s rule; maximise the spin multiplicity. Whereas 
complexes with strong π-donation are filled according to the aufbau principle; fill 
each orbital set in order of decreasing stability, maximising the spin multiplicity of 
each. We can illustrate this phenomenon by considering two energy scales: 𝛥 𝑎𝑛𝑑 𝑃 
the energy required for an electron to form an electron pair. If 𝛥>𝑃, the electrons 
will preferentially form electron pairs instead of occupying higher energy orbitals. 
Whereas, if 𝛥<𝑃, it becomes preferable for the electrons to occupy higher energy 
orbitals instead of forming electron pairs. Depending on the number of d electrons, 
the different regimes correspond to either the same or different spin-states, see 
Fig. 1.4. For an octahedral molecular complex with 𝑑4 − 𝑑7, shown in Fig. 1.4, the 
ground state can be either the high-spin (HS) state if 𝛥<𝑃 or the low-spin (LS) 
state if 𝛥>𝑃. The HS state is filled according to Hund’s first rule, and the LS state 
is filled according to aufbau filling principle. 

In LFT, the 𝑛𝑑 orbitals of a transition metal ion, in a perfectly octahedral complex, 
are split into 𝑒𝑔

∗ and 𝑡2𝑔 orbital sets. The orbital splitting between the 𝑒𝑔
∗ and 𝑡2𝑔  

orbital sets is referred to as the ligand field splitting parameter 10𝐷𝑞. The value of 
the ligand field, the crystal field splitting energy, is often noted as 10𝐷𝑞 
“differential quanta” instead of ∆ to distinguish LFT from CFT and MOT, where 𝐷𝑞 
is a semiempirical parameter related to the crystal force field. The strength 10𝐷𝑞 
depends on the nature of the metal ion and the nature and symmetry of the 
surrounding ligands. In particular, the strength of 10𝐷𝑞 depends on the relative 
population of the bonding and anti-bonding orbitals (bond order) and the metal-
ligand bond distance. The former is a consequence of the metal-ligand bonding, 
while the latter is predominantly a consequence of electrostatic repulsion. More 

explicitly 10𝐷𝑞 ∝ 𝑟𝑀−𝐿
−𝑛 , where 𝑟𝑀−𝐿 is the metal-ligand bond length and 𝑛 ∈ 5,6 

[27].  

This relationship highlights an important structure-property relationship for spin-
crossover systems; spin crossovers (SCO/SC) and spin transitions (ST) are most 
commonly observed in complexes with the most prominent structural differences 
between the HS and LS states. We can illustrate this by considering the ratio  

10𝐷𝑞𝐿𝑆

10𝐷𝑞𝐻𝑆
= (

𝑟𝐻𝑆

𝑟𝐿𝑆
)
𝑛

         (1.3) 

An increase in 𝑟𝐻𝑆 𝑟𝐿𝑆⁄  leads to an increase in 
10𝐷𝑞𝐿𝑆

10𝐷𝑞𝐻𝑆
 . In turn, this leads to a more 

extensive regime in which spin crossovers and spin transitions can occur. In 
general, since the HS state has a higher population of anti-bonding orbitals than 
the LS state, the HS state will have a higher bond length, spin multiplicity, lower 
bond strength, and molecular stability. A secondary effect of this is a dramatic 
increase in the entropy of the HS state over the LS state. Evidently, the higher spin 
and orbital multiplicity of the HS state will result in a higher overall electronic 
entropy than the LS state. Less obviously, the lower molecular stability in the HS 
state is associated with a softening of the vibrational modes and a dramatic 
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increase in the vibrational entropy [9], [28].  

For complexes in the 𝛥𝐻𝑆 < 𝑝 < 𝛥𝐿𝑆 region, the significant differences in bond 
length and entropy between the HS and LS states allow small external 
perturbations to drive a spin-crossover or spin transition [27]. There are hundreds 
of known complexes that meet this criterion [27]. Most commonly, the molecular 

geometry is (near) octahedral with a central 𝐹𝑒2+, 𝐹𝑒3+
, 𝑜𝑟 𝐶𝑜2+ ion, or less 

commonly the central metal is 𝐶𝑜3+, 𝐶𝑟2+,𝑀𝑛2+, 𝑜𝑟 𝑀𝑛3+ [9], [27]. There are 
numerous possible ligands for the more common metals ions that can result in a 
spin-crossover and spin transition [9]. 

1.3 What is Spin Crossover: Historical Overview 

The SCO phenomenon was discovered by L. Cambi and L. Szego in the early 1930s 
while studying the magnetic susceptibility of 𝐹𝑒(𝐼𝐼𝐼) compounds[29]. The 
preliminary explanation for this unusual magnetic behavior (i.e., ST) was thermal 
equilibrium between two different magnetic isomers. Three years later, this 
phenomenon was discovered in 𝐹𝑒(𝐼𝐼) [30]–[32] compounds. Since then, many 
SCO materials with an electronic 3𝑑4 − 3𝑑7 configuration have been discovered 
with other metals such as: 𝐶𝑜(𝐼𝐼)(3𝑑7) [33], [34], 𝑀𝑛(𝐼𝐼𝐼)(3𝑑5) [35]–[38], 
𝑀𝑛(𝐼𝐼)(3𝑑4) [39], 𝐶𝑟(𝐼𝐼)(3𝑑4) [40]–[42], and 𝐶𝑜(𝐼𝐼𝐼)(3𝑑6) [43], [44]. Furthermore, 
many SCO materials are now produced synthetically due to industrial 
requirements [30], [45]. 

The term "Spin Crossover" was coined for the first time in 1964 [46] to refer to the 
spin change. Because of the way the 3𝑑 orbitals split in the octahedral ligand field, 
two distinct electronic configuration states can be distinguished: a diamagnetic 
low-spin (𝐿𝑆) state, which corresponds to the maximum spin paring configuration, 
and a paramagnetic high-spin (𝐻𝑆) state, which is achieved when the given ion has 
the maximum multiplicity. The study of the required electronic properties for a 
molecule to be switchable is the first step in understanding the SCO phenomenon. 
The molecular energy spectrum must first be determined. However, the 
complicated electronic structure of a SCO molecule prevents analytical solutions 
to Schrödinger's equation from being obtained. First principle and quantum 
chemical calculations adapted for SCO molecules have been intensively developed 
over the last few decades, and success in the simulation of molecular vibrational 
properties has been realized [47]. The systematic prediction of the ground state 
and the precise estimation of the ground energy level, on the other hand, remains 
a challenge. As a result, more simplified approaches are required. In this regard, 
crystal field and ligand field theories discussed in the previous sections are 
extremely useful for qualitatively describing the SCO electronic structure and spin 
conversion phenomenon [43]. 

A spin-crossover complex's general structure consists of a central transition metal 
atom (e.g., Fe, Co, etc.) surrounded by ligands formed by various organic groups. 
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The presence of ligands in a transition metal complex modifies the electronic and 
magnetic properties of the central metal atom to comprehend the structure, 
electronic, and magnetic properties of the transition metal complex to a certain 
extent, the ligand field theory (LFT) can predict this modification. The central 
transition metals in most spin-crossover molecules have an octahedral 
coordination geometry (i.e., 6 metal–ligand bonds) with electronic configurations 
ranging from 𝑑4 to 𝑑7. As we have discussed in the previous section at the 
molecular level, two major effects compete: on the one hand, electrons tend to 
occupy d orbitals (Hund's rule) due to exchange coupling. Electrons, on the other 
hand, tend to fill the 𝑡2𝑔 level, which is the lowest energy level. As a result of these 

antagonistic effects, there are two possible ground states depending on the 
strength of the ligand field, which is strongly spin state dependent in contrast to 
the electron pairing energy 𝑃, which is almost insensitive to spin state. 

In this section, we will look closely at the case of 𝐹𝑒(𝐼𝐼)-complexes in which the 𝑑-
orbital is partially filled with six 𝑑 electrons. The 3𝑑 orbitals in a 𝐹e(𝐼𝐼) compound 
are divided into two subsets [48], [49]. The first subset consists of three 𝑡2𝑔 orbitals 

(𝑑𝑥𝑦, 𝑑𝑦𝑧, 𝑑𝑧𝑥), while the second subset consists of the remaining two eg orbitals 

(𝑑𝑥2−𝑦2, d𝑧2). The complex's spin state will be determined by the placement of the 

electrons in the 𝑒𝑔 and 𝑡2𝑔 orbitals. The orbitals are shown in Fig. 1.1a. Depending 

on the system’s conditions (i.e., ligand field strength), the system balance can be 
skewed toward one of two states: the LS state or the HS state. If the spin-pairing 
energy (𝑃) (derived from electron-electron repulsion) is greater than the ligand 
field strength (10𝐷𝑞), the electrons will first occupy the five 𝑑 -orbitals singly 
according to Hund's rule, and then the sixth electron will pair with the first 𝑑 -
orbital (Fig. 1.4). This configuration leaves the system with four unpaired d-
electrons and changes the complex's net spin to 𝑆 = 2. This is the paramagnetic 

high-spin (HS) ground state 𝑇2𝑔(𝑡2𝑔
4 𝑒𝑔

2)5  (Fig. 1.4). If the spin-pairing energy (𝑃) 

is less than the ligand field strength (10𝐷𝑞), the electrons will no longer follow the 
Hund’s law, and electrons will pair and occupy the lowest energy d-orbitals (𝑡2𝑔) 

twice. In accordance with Pauli's principle, the orbitals will take an anti-parallel 

configuration; as a result, the diamagnetic low-spin (LS) ground state 𝐴1𝑔(𝑡2𝑔
6 𝑒𝑔

0)1  

has a net spin 𝑆 = 0 (Fig. 1.4). 

When the ligand field force is of the same order of magnitude as the electron 
pairing energy, any small external perturbation can reversibly switch the molecule 
from one spin state to the other in a reversible manner. This phenomenon is known 
as spin crossover (SCO/SC), spin equilibrium, spin conversion, or spin transition 
(ST). 

Through the Russel-Saunders coupling scheme, the complex's different spin states 

are represented by 𝐿𝐽
(2𝑆+1)

 (where (2𝑆 + 1): the spin multiplicity, 𝐽: the total 

angular momentum quantum number, and 𝐿: the total orbital quantum number 
in spectroscopic notation). The energies of the corresponding states are calculated 
as a function of the electron-electron repulsion Racah parameters (𝐵, 𝐶). 
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According to Tanabe Sugano's diagram, the range of ligand field values for which 
a SCO can be observed is limited. 

 

 Figure 1. 6 Tanabe-Sugano diagram for the transition metal ions having the electronic 
configuration 𝑑6 in an octahedral molecular geometry, showing only the relevant low lying 
energy states. The energy of the excited states (in the unit of Racah parameter B) has been 
plotted as a function of the ligand-field strength (10Dq) (also in the unit of Racah parameter 
B). The energy levels show a sharp discontinuity at 10Dq = 20B = P, in which the lowest energy 

state changes from the 𝑇2𝑔
5  (HS) (for 10Dq < 20B(P)) state to the 𝐴1𝑔

1  (LS) (for 10Dq > 20B(P)) 

state [50].  

The Tanabe-Sugano diagram depicts the splitting of metal ion electronic states in 
the presence of an octahedral ligand field. The Tanabe-Sugano diagram of the 
𝐹𝑒(𝐼𝐼)transition metal ion (electronic configuration 𝑑6) is shown in Fig. 1.6, where 
the energy of the different ligand-field states is plotted as a function of the ligand 
field strength (10Dq) in Racah parameter B units. The ground state of a free metal 

ion without a ligand field is 5𝐷 (𝑒𝑔 + 𝑡2𝑔). When the ligand field enters the picture, 

the free ion ground state splits into an excited state ( 𝐸5 ) and the HS ground state 

( 𝑇2𝑔
5 ) (𝑡2𝑔

4 𝑒𝑔
2).With 10Dq greater than the pairing energy (𝑃), the ground state 

transitions from the HS ( 𝑇2𝑔
5 ) to the LS ( 𝐴1𝑔

1 ). The transition to the ground state 

occurs at the energy where 10Dq equals. If the 10Dq energy in some 𝐹𝑒(𝐼𝐼)-
complexes is close to the pairing energy; then external stimuli can cause ligand 
state switching. The Tanabe-Sugano diagram in Fig. 1.6 also shows the possible 
transition to the other excited states and estimates the energy required for the 
transition. 

Furthermore, this distribution across all 𝑡2𝑔 and 𝑒𝑔 orbitals causes the first direct 

"consequence" of this electronic configuration change upon LS to HS conversion is 
an increase in metal-ligand distances of around 10%, corresponding to a 
25% increase in octahedron volume (Fig. 1.12). This variation suggests significant 
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differences in vibration modes, as determined by IR and Raman spectroscopy 
measurements (Fig. 1.7). For example, stretching vibrational modes 𝜈(𝐹e𝑁) are 
greater in the LS state than in the HS state in a 𝐹𝑒𝑁6 octahedron, with a typical 

ratio vLSFeN vHS⁄ FeN ranging from 1.1 to 1.9 [51]. 

 

 Figure 1. 7 Raman spectra    of 𝐹e(𝑝ℎ𝑒𝑛)2(𝑁𝐶𝑆)2 in the HS state (300 𝐾) and LS state 
(100 𝐾)  . In the range < 600 𝑐𝑚−1where the entropy values are maximized, the average of 
vibrational modes are νav,HS = 298 cm−1 and νav,LS = 393 cm−1 in the HS and LS states, 

respectively, leading to a ratio νav,HS/νav,LS ~1.3 . [51] 

We can gain a further understanding of what happens at 10Dq = P by considering 
the adiabatic potential energy surfaces for the HS and LS states, shown in Fig. 1.8. 
Here we have assumed that the vibronic modes for each electronic state can be 
approximated as a simple harmonic oscillator 

 

 Figure 1. 8 Energy level diagram showing the lowest vibronic levels of adiabatic potential wells 
of the LS and HS states of an octahedral SCO complex as the ratio of 10Dq and P is varied. The 
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potential energy of the HS and LS states are represented as a function of the metal-ligand 
distance. (Figure extracted from [23]) 

Based on Fig. 1.8, the condition for the thermal occupation of the higher energy 
spin-state (spin-crossover) becomes clear: When the difference between the zero-
point energies of the two spin states is of the same order of magnitude as the 
thermal energy, that 𝛥𝐸 = 𝐸0

𝐻𝑆 − 𝐸0
𝐿𝑆 ≈ 𝑘𝐵𝑇, thermo-induced spin conversion is 

possible. However, this definition requires some refinement since it does not 
account for the entropy differences between the spin-states. The zero-point energy 
in SCO compounds is the sum of electronic and vibrational contributions. Except 
for a few rare SCO compounds [52]–[55], the LS state has the lowest zero-point 
energy and thus is the ground state at zero temperature (Fig. 1.8). Due to the larger 
electronic and vibrational entropy of the HS state over the LS state, the HS will 
remain energetically favourable at all temperatures if it is the ground state. 
Whereas, if the ground state is LS, then there exists a critical temperature at which 
the HS state becomes energetically favourable, and a spin-crossover or spin 
transition can occur. This shift is caused by entropic contributions, which are 
stronger in the HS state than in the LS state. Indeed, the entropy difference has 
two origins: electronic origins due to increased spin multiplicity (and, to a lesser 
extent, orbital momentum) in the HS state, and particularly a vibrational origin 
due to lower vibrational frequencies [56]. This transition can occur as a result of 
changes in temperature, pressure, light irradiation, external fields and chemical 
environment when 𝛥𝐸𝐻𝐿

0 ~𝑇𝛥𝑆. It is widely assumed that the SCO is an entropy-
driven phase conversion. 

The thermodynamic picture of the spin crossover phenomenon will be discussed 
in the following section. 

1.4 On thermodynamics of spin-crossover systems 

Fundamental elements of spin-crossover (SCO) mechanisms are discussed using 
macroscopic – mesoscopic techniques and considerations of ligand/crystal field 
theory, thermodynamics, and modeling of the thermoinduced spin transition in 
the solid-state. When SCO molecules interact with their surroundings, the spin 
conversion phenomenon can be explained using axiomatic thermodynamic 
principles. In the first step, an isothermal and isobaric ensemble (𝑁, 𝑃, 𝑇) of 𝑁 non-
interacting (isolated) SCO molecules in contact with a thermal bath 𝑇 is 
considered with a possible control of the external pressure 𝑃. The spin conversion 
can be viewed as a thermal equilibrium between two phases at constant pressure. 
For such experimental conditions, the relevant state function is Gibbs energy 𝐺 =
𝐻 − 𝑇𝑆, where H and 𝑆 represent the system's enthalpy and entropy, respectively. 
The Gibbs energy difference between the HS and LS phases describes the system's 
thermodynamic properties: 

𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆 (1.4) 



34 
 

where 𝛥𝐻 = 𝐻𝐻𝑆 − 𝐻𝐿𝑆 is the enthalpy variation [57] and 𝛥𝑆 = 𝑆𝐻𝑆 − 𝑆𝐿𝑆  is the 
system's entropy variation We can define the equilibrium temperature T1∕2 as the 

temperature at which the proportions of HS and LS molecules are the same as 
when 𝛥𝐺 = 0: 

T1∕2 = 
ΔH

ΔS
   (1.5) 

According to Eq. 1.5, when T < T1∕2 , the enthalpic term is dominant, and the LS 

state is favored, whereas when T > T1∕2, the entropic term becomes dominant and 

the HS state is favored, thus justifying the term "entropy-driven conversion phase." 

1.4.1 Entropy driven spin-crossover 

Consider the various contributions to enthalpy and entropy variations. 𝛥𝐻 is 
divided into two parts: a temperature-independent electronic part called 𝛥𝐻𝑒𝑙 and 
a vibrational part called 𝛥𝐻𝑣𝑖𝑏. Similarly, 𝛥𝑆 can be arbitrarily divided into various 
contributions to the statistical disorder: 

𝛥𝑆 = 𝛥𝑆𝑒𝑙 +  𝛥𝑆𝑣𝑖𝑏 +  𝛥𝑆𝑡𝑟𝑎𝑛𝑠 +  𝛥𝑆𝑟𝑜𝑡 (1.6) 

The two final terms, 𝛥𝑆𝑡𝑟𝑎𝑛𝑠 and 𝛥𝑆𝑟𝑜𝑡, correspond to the entropy variation due to 
translation and rotation, respectively, and are mostly ignored in the solid state. 
The first term, 𝛥𝑆𝑒𝑙 =  𝛥𝑆𝑜𝑟𝑏 +  𝛥𝑆𝑠𝑝𝑖𝑛, represents the electronic entropy variation 

and arises from the difference in degeneracy (orbital and spin momenta) between 
the HS and LS electronic states: 

𝛥𝑆𝑜𝑟𝑏 =  𝑅[ln(2𝐿 + 1)𝐻𝑆 − ln(2𝐿 + 1)𝐿𝑆 ] (1.7) 

and 

𝛥𝑆𝑠𝑝𝑖𝑛 =  𝑅[ln(2𝑆 + 1)𝐻𝑆 − ln(2𝑆 + 1)𝐿𝑆 ] (1.8) 

where 𝑅 is the perfect gas constant. 𝐿 𝑎𝑛𝑑 𝑆 are, respectively, the total orbital and 
total spin momenta of the spin state. The contribution of spin degeneracy comes 
from the change in state degeneracy caused by the change in spin multiplicity as 
the system transitions from LS (HS) to HS (LS). 

In the ideal situation of a SCO 𝐹𝑒(𝐼𝐼) complex with perfect octahedral symmetry, 
we have 𝛥𝑆𝑠 = 𝑅 ln(5) = 13.38 𝐽 𝑚𝑜𝑙−1𝐾−1 and 𝛥𝑆𝑜𝑟𝑏 = R ln(3) =
9.13  𝐽 𝑚𝑜𝑙−1𝐾−1. In practice, there is no orbital degeneracy; the orbital 
momentum is “blocked” to 𝐿 = 0  as the local symmetry of the 𝐹𝑒(𝐼𝐼) is usually 
lower due to Jahn-Teller distortion; thus, the orbital contribution to the entropy 
change is usually neglected.  

Thus, the main contribution to 𝛥𝑆𝑒𝑙 is the change in entropy caused by spin 
degeneracy, which can be expressed as: 
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𝛥𝑆𝑒𝑙 =  𝑅[ln(2𝑆 + 1)𝐻𝑆 − ln(2𝑆 + 1)𝐿𝑆 ] (1.9) 

So, the change in entropy for 𝐹e(𝐼𝐼)-centered spin-crossover molecules in 
octahedral geometry with 𝑠 = 2 as HS and 𝑆 = 0 as LS is 𝛥𝑆𝑒𝑙 = 𝑅 𝑙𝑛(5/1) =
13.38 𝐽 𝑚𝑜𝑙−1𝐾−1 [58]. Temperature has no effect on electronic entropy, which 
favors the HS state. Vibrational entropy variation is the second term 𝛥𝑆𝑣𝑖𝑏 
(vibrational entropy) depends only on variation of intramolecular modes between 
the HS and LS states in the case of isolated molecules. In solid states the 
contribution to intermolecular vibrations must be added although it is often 
considered less important than intramolecular. Although, intermolecular and 
intramolecular vibrational contributions are difficult to distinguish as they are 
usually linked with each other. Vibratory entropy may be expressed as follows (see 
Ref. [55] for further analysis): 

𝑆𝑣𝑖𝑏(𝑇) = 𝑅 ∑ (−ln[1 − 𝑒−ℎ𝜈𝜆 𝑘𝐵𝑇⁄ ] + 
ℎ𝜈𝜆

𝑘𝐵𝑇
 

1

exp(ℎ𝜈𝜆∕𝑘𝐵𝑇)
)

𝜆
 (1.10) 

where the sum ∑𝜆 runs overall vibration modes. A convenient hypothesis is the 
low-frequency approximation (ℎ𝜈 << 𝑘𝐵𝑇), in which case Eq. 1.10 becomes 

𝑆𝑣𝑖𝑏 = −𝑅 ∑ (ln
ℎ𝜈𝜆

𝑘𝐵𝑇
)

𝜆
 (1.11) 

The vibrational contribution to the entropy change can be expressed in terms of 
the entropy of an ensemble of harmonic oscillators 

𝛥𝑆𝑣𝑖𝑏 = 𝑆𝑣𝑖𝑏
𝐻𝑆 − 𝑆𝑣𝑖𝑏

𝐿𝑆 =  𝑅 ∑ ln(𝑣𝜆
𝐿𝑆 𝑣𝜆

𝐻𝑆⁄ ) = 15 𝑅 ln(< 𝑣𝜆
𝐿𝑆 > < 𝑣𝜆

𝐻𝑆 >⁄ )
15

𝜆=1
  (1.12) 

Considering a perfect octahedron (𝜆 = 15 molecular vibrational modes) and taking 

< 𝑣𝜆
𝐿𝑆 > < 𝑣𝜆

𝐻𝑆 >⁄ = 1.3  (Fig. 1.7), we obtain 𝛥𝑆𝑣𝑖𝑏 = 32.7 𝐽 𝑚𝑜𝑙−1𝐾−1in agreement 
with the experimental measurements [51]. 

When there is a spin crossover, the lengths of the metal-ligand bonds change, 
resulting in different stretching frequencies. Changed phonon modes are 
responsible for the vibrational component of overall entropy change. In most spin-
crossover complexes, the vibrational contribution is the predominant contributor 
to the total entropy change [58]. 

There is a very least contribution to the entropy change due to the rotational 
degree of freedom of the complexes [59]. This can be calculated semi-classically as 

𝛥𝑆𝑟𝑜𝑡 = 𝑅 𝑙𝑛(𝑧𝑟𝑜𝑡 + 3 2⁄ ) (1.13) 

where 𝑧𝑟𝑜𝑡 = (
√2

𝜋
)
3

(
√𝜋

𝜎
) (𝑘𝐵𝑇)

3
2⁄   (𝐽1𝐽2𝐽3)

1∕2 and 𝐽𝑖 are the moments of inertia, and 

𝜎 is the symmetry number. The value of 𝜎 is 2 for 𝐶2 symmetry and 1 for 𝐶1 
symmetry. The typical value of the entropy change due to rotation is of the order 
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of 1 𝐽.𝑚𝑜𝑙−1. 𝐾−1[58]. 

This means that the vibrational contribution, and to a lesser extent the electronic 
contribution, account for the majority of the entropy change in thermal spin 
crossover. Both ∆H and ∆S are positive in a spin-crossover transition[59][60]. The 
variation in Gibbs free energy can be rewritten as- 

𝛥𝐺(𝑇, 𝑝) = 𝛥𝐻 (1 −
𝑇𝛥𝑆

𝛥𝐻
) =  𝛥𝐻 (1 −

𝑇

𝑇1/2
) (1.14) 

(In this case, we define a temperature 𝑇1/2 = 
𝛥𝐻

𝛥𝑆
 at which 𝛥𝐺 = 0. At this 

temperature (𝑇1/2), the Gibbs free energy for both spin states is equal, and they 

have an equal probability of being populated.  

This temperature is known as the transition temperature. The adiabatic potentials 
of the HS and LS states of a 𝐹e(𝐼𝐼) spin-crossover complex as a function of the 
totally symmetric metal-ligand stretching distance (𝑟(𝐹e − 𝐿)) are shown in Fig. 
1.18.  

Thermal spin-crossover requires a zero-point energy difference between the HS 
and LS states (𝛥𝐸𝐻𝐿

0 i.e., 𝛥𝐺) in the order of thermal energy 𝑘𝐵𝑇. At 𝑇 = 0 𝐾, 𝛥𝐺 =
𝛥𝐻 (from eq. 3.16), and thus the LS state is thermodynamically superior to the HS 
state (because 𝛥𝐻 > 0). In general, at temperatures below 𝑇1

2⁄
, the LS state is 

preferred (because 𝛥𝐺 > 0), while at temperatures above 𝑇1
2⁄
, the HS state is 

preferred (because 𝛥𝐺 < 0). During thermal spin-crossover, the metal-ligand bond 
length abruptly changes, causing the ligand field strength to change. The ligand 

field strength ratio in the LS and HS states is given by Eq. 1.3  [
10𝐷𝑞𝐿𝑆

10𝐷𝑞𝐻𝑆 = (
𝑟𝐻𝑆

𝑟𝐿𝑆
)
𝑛

] 

where 𝑛 is between 5 and 6. Because 𝑟𝐻𝑆 is greater than 𝑟𝐿𝑆, the ligand field strength 
decreases abruptly in the transition from LS to HS. The main driving force in this 
transition process is the change in entropy (𝛥𝑆), which modifies the value of (𝛥𝐺). 
As a result, thermal spin crossover is referred to as an entropy-driven 
phenomenon. 

We can draw two important conclusions from this result. First, the HS state has 
higher vibrational entropy, which is then favored at high temperatures. This means 
that the vibrational contribution, and to a lesser extent the electronic contribution, 
account for the majority of the entropy change in thermal spin-crossover. In 
general, the entropy variation ΔS ranges from 40 to 80 𝐽 𝑚𝑜𝑙−1𝐾−1 in comparison 
to 𝛥𝑆𝑒𝑙 = 13.38 𝐽 𝑚𝑜𝑙−1𝐾−1. All of these thermodynamic quantities can be 
extracted from calorimetric measurements [59], [61], [62] (Fig. 1.9), whereas 
vibrational properties can be evaluated using Raman and infrared spectroscopies 
[51], [63], [64]. 
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 Figure 1. 9 (a) Temperature dependence of the heat capacity of [𝐹𝑒(𝑝ℎe𝑛)2(𝑁𝐶𝑆)2] crystal. 
𝛥𝐶𝑝 corresponds to the discontinuity associated with the spin transition. (b) Temperature 

dependence of entropy variation of the same compound (full black circles). Straight line 
corresponds to a fit using the so-called domain model [59].  

Considering N noninteracting molecules, NHS are in the HS state, then we can 
define the HS fraction nHS = NHS ∕ N, which is erroneously referred to as the order 
parameter of the spin transition. The Gibbs energy of a SCO system can be 
expressed as 

𝐺 = 𝑛𝐻𝑆𝐺𝐻𝑆 + (1 − 𝑛𝐻𝑆)𝐺𝐿𝑆 − 𝑇𝑆𝑚𝑖𝑥 (1.14) 

Due to the vast number of possibilities for distributing NHS molecules in the HS 
state across N molecules, the mixing entropy equates to a loss of statistical 
information for the system. Mixing entropy can be written as in the 
thermodynamic limit.  

𝑆𝑚𝑖𝑥 = −𝑘𝐵𝑁[𝑛𝐻𝑆 ln(𝑛𝐻𝑆) + (1 − 𝑛𝐻𝑆)ln(1 − 𝑛𝐻𝑆)]     (1.15) 

The equilibrium condition corresponds to 

(
𝜕𝐺

𝜕𝑛𝐻𝑆
)
𝑇,𝑝

= 0                          (1.16) 

It is then possible to follow the thermal evolution of the HS fraction (Fig. 1.10): 

𝑇 =
𝛥𝐻

𝑅𝑙𝑛(
1−𝑛𝐻𝑆

𝑛𝐻𝑠
)+ 𝛥𝑆

  (1.17) 

Using the expression 𝛥𝑠 = 𝑅 ln𝛺  for the entropy change, where 𝛺 is the effective 

degeneracy, expression (1.17) can be rewritten as ln
𝑛𝐻𝑆

1−𝑛𝐻𝑆
= 𝛺𝑒−𝛥𝐻∕𝑅𝑇.  

https://www.sciencedirect.com/science/article/pii/S1631074818302303?via%3Dihub#fig9
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This leads to the Arrhenius law ln
𝑛𝐻𝑆

1−𝑛𝐻𝑆
= ln𝛺 − 𝛥𝐻 ∕ 𝑅𝑇  

 

 Figure 1. 10Thermal evolution of the HS fraction nHS (blue line) in the case of noninteracting 
SCO molecules. The equilibrium temperature T1/2, 

The only way to see a steady spin transfer from the LS to the HS state in non-
interacting SCO molecules is to raise the temperature. The emission or absorption 
of a latent heat whose existence is totally determined by interactions between SCO 
molecules is directly related to the occurrence of rapid first-order transitions with 
bi-stability occurrences. 

1.4.1 Mixed spin phases and co-operativity 

In the previous section, we assumed that there is no mixed phase of the molecules 
in HS and LS states. We saw in the previous section that when there is a spin-
crossover, the volume of the molecule changes. When considering molecules in a 
crystal, however, an additional entropy term must be added to the expression of 
Gibbs free energy to account for the coexistence of HS and LS. Generally, the 
volume of the HS molecule is greater than that of the LS molecule; a spin transition 
of a molecule at a given position can induce a transition to a nearby molecule via 
elastic interaction when they are in a crystal. This elastic interaction causes 
internal pressure in the crystal, causing the spin-crossover transition to grow inside 
the crystal. This is commonly referred to as cooperativity.  
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 Figure 1. 11 Simplified representation of collective mechanisms in the case of a highly 
cooperative SCO compound a) Molecules in the LS state. b) The central molecule transits 
towards the HS state, which implies a lattice deformation, and the molecule wants to expand 
(arrows). As a result, c) either the neighbors transit towards the HS state or d) the molecule 
returns to the LS state  

Cooperative behavior is one of the distinctive characteristics of spin transition in 
SCO materials, and it relies on the interactions between SCO centers to produce a 
macroscopic effect. However, the medium used by this cooperativity, namely the 
nature of the interactions between SCO molecules, can change from one system to 
the other. The various theoretical models of spin transition also consider different 
origins [65], but they can be combined to improve the predictions when the need 
arises [65], [66]. The spin transition itself can be considered either as a random 
event where the HS and LS molecules are dispersed regularly in the solid (Fig. 1.11), 
like in the original model used by Slichter and Drickamer (inhomogeneous, 
process controlled by nucleation), or as a domain growth where the HS and LS 
molecules form domains. The mean size of these domains provides insights into 
the cooperativity of the molecule, an approach pioneered by Sorai et al. [59], [67] 
(homogeneous, process controlled by propagation). Both of these models we will 
discuss in detail in the coming sections. The different spin transitions triggers 
mentioned in part 1.7 can favor one of those two types of transitions. For example, 
the light-induced excited spin state trapping (LIESST) excitation effect is 
considered to be intrinsically inhomogeneous, [68], [69] and non-cooperative 
process. 

The cooperative interactions between the metal ions are a result of elastic 
interactions [9], [28], [70]. The “elastic” interaction arises from the volume change 
concomitant to the spin transition. The local structural distortions caused by metal 
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ions changing spin-state creates a local elastic strain that couples to the long-range 
elastic interactions (acoustic phonons), generating a build-up of stress over the 
material [70]. The molecules are considered as spheres that interact with each 
other through the elastic medium and is comparable to a phase transition in a 
mean-field approach. Strong cooperative interactions typically occur when there is 
a direct covalent interaction between the metal ions, a large structural difference 
between the spin-states and the lattice and chemical environment is flexible 
enough to accommodate the molecular distortions [10]. How the structural 
changes occur on the molecular level does not seem to matter, for example, 
whether the change occurs as a result of an increase in metal-ligand distance or 
ligand distortion [10]. Typically, while the local molecular distortions are usually 
totally symmetric, the structural distortions of the lattice can either involve the 
expanding or contracting of the lattice or a significant spatial rearrangement of the 
metal ions as the transition occurs [70]. 

 

 Figure 1. 12 Changes in electronic configuration leads to LS to HS conversion and results in an 
increase in metal-ligand distances of around 10%, corresponding to a 25% increase in 

octahedron volume. Where (a) 𝑅0
𝐿𝑆 , (b) 𝑅0

𝐻𝐿and (c)𝑅0
𝐻𝐿 corresponds to distance between 

nearest-neighbor metal center and relative 𝑛𝐻𝑆 fraction ranging from 0 − 1. 

This forms the basis of the Spiering model [71]. It can be compared to an internal 
“pressure” exerted by each molecule on its neighbors [72], [73]. According to 
Kepenekian et al., electrostatic interaction from polarization of the metal centers 
play a primary role in the hysteresis of the spin transition of Fe(II) SCO molecules 
[74]. This approach has the advantage that it makes cooperativity dependent on 
the Madelung field of the molecule, which facilitates the predictions. Less is known 
about the role played by the intermolecular interactions in determining the 
cooperative behaviour. “Weak” bonds were also a traditional focus of the 
community [75], [76] in the context of cooperativity. They include notably π -π 
stacking, hydrogen bonds [77], [78], sulfur bonds, Van-der-Waals interactions the 
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presence of guest molecules [79], solvent atoms [80] and anions [81] and 
metallophilic interactions [76] have been shown to strongly modify the collective 
SCO behaviours [70]. 

 

 

 Figure 1. 13 Heating (red) and cooling (blue) SCO curves (the fraction of high spins, nHS, vs. 
temperature, T) for (a) a crossover, (b) a one-step transition with hysteresis, (c) a continuous 
crossover, (d) a two-step transition with two first-order transitions, (e) a two-step transition 
with one first and one second-order transition and (f) an incomplete one-step transition with 
hysteresis [23]. 

Plotting 𝑛𝐻𝑆 as a function of temperature is a good measure of the cooperativity – 
the extent to which the electronic and structural changes of a transition metal ion 
are propagated throughout the lattice. The cooperativity is usually measured by 
plotting 𝜒𝑇vs T. Typically, the plot of 𝜒𝑇vs T is referred to as the SCO or spin-
transition curve. The most commonly reported SCO curves are either crossovers 
(Fig. 1.13a) or first-order transitions (Fig. 1.13b). Although, in general, SCO curves 
can also be continuous (Fig. 1.13c), a multi-step process with many transitions (Fig. 
1.13d-e) or incomplete (Fig. 1.13f) [82]. An incomplete SCO curve refers to a SCO 
system with a low-temperature ground state with 𝑛𝐻𝑆 ≠ 0 or a high-temperature 
phase 𝑛𝐻𝑆  ≠ 1. Incomplete transitions and multi-step transitions often display 
antiferroelastic ordering of spin-states (see Fig. 1.13f). A detailed review of multi-
step transitions due to changes in SCO environment, frustration, and instabilities 
(nanocomposite) reported in experiments on SCO materials and frameworks is 
given in Chapter 2 and 3, also see Refs.[83]–[86]. For example, Murphy et al. [79] 
showed that changing the number and type of guest molecules changed the 
number of reported transitions from one-step to two and three- step. Although in 
general, any changes to the structural properties of the atomic architecture, 
including changes in polymorphism [87], can alter the bulk properties and 
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behaviours [70]. Very little is known about the role spin-spin interactions play in 
determining the bulk properties and behaviours of spin-crossover systems. 
Estimates of the strength of these interactions for tetra-and decanuclear molecular 
materials range from 4−6 K [88], two orders of magnitude lower than estimates of 
the strength of the elastic interactions 100 − 400 K [89]. Consequently, the effects 
of spin-spin interactions are typically ignored in the temperature regimes where 
spin-crossover occurs. 

Finally, since the cooperative behavior of SCO relies on inter-molecular 
interactions, it can be tuned by the addition of external molecules/solvents and/or 
metal dilution, by replacing the central Fe with other metals [90]. It is widely 
known that dilution in solution severely restricts cooperativity [91], but a less 
severe effect can be reached by including solvent molecules in the crystalline lattice 
[92]. Another way is to dilute the SCO compound in a polymer matrix [93]. These 
methods allow the individual study and tuning of the various cooperative 
interactions mentioned previously. For further studies in the field of SCO 
theoretical calculations, one can consult the reviews by Boča [65], [66] and 
Enachescu [94]. 

Deriving structure-property relations and determining the mechanisms that 
govern them has become one of the great challenges of the SCO community. 
Overcoming this challenge would allow for the rational design of SCO systems with 
enhanced applications and novel bulk properties and behaviours. Taking into 
account the complex interaction mechanism between SCO molecules, in contrast 
to the basic thermodynamic approaches describing the SCO phenomenon of 
isolated molecules, necessitates the introduction of phenomenological parameters 
whose links to measurable experimentally quantities are not always 
straightforward. These parameters mean that collective behavior mechanisms are 
drastically simplified in their solid-state. A summary of several 
macroscopic/thermodynamic models which simulate interacting SCO compounds 
is provided in the following section. 

1.5 Models and methods used to predict the spin 
crossover behaviour  

1.5.1 Modelling: Overview 

A model is an idealization [95] of a real-world behavior based on various physical 
or mathematical approximations. A model's overarching goal is to simulate real-
world behaviors while retaining the fundamental aspects of the theory. Theoretical 
treatments of models do not always present perfect physical realizations. In these 
cases, the only way to test an estimated theoretical solution is to compare it to data 
obtained through computer simulation [96]. There are physical systems today that 
are so complex that they cannot be studied within the framework of a theoretical 
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treatment, and only simulations can determine the properties of this system. If the 
simulation results differ from the experimental results, an innovative 
reconsideration must be defined. Even if simulations do not always provide a better 
understanding of behavior, their main advantage remains the ability to separate 
and isolate various physical effects. Given that the real world contains plethora of 
materials and understanding the ubiquitous behavior of these materials remains a 
challenge because a variety of factors must be studied (i.e., shape, size, entropy, 
flexibility, etc). In the case of simplified models, simulations can ‘turn off' or ‘turn 
on' the special effects produced by ubiquitous behavior, and thus the precise 
consequences of each contributing cause are determined. 

Concerning the simulations' purpose, we would like to emphasize that the 
simulations are not just to provide a better 'curve fitting' to experimental results 
than the analytic theory. It is hoped that simulations will provide a complete 
understanding of the physical properties and mechanisms that cause an observed 
phenomenon [97].  

1.5.1 Models used to characterize Spin Crossover Systems  

First and foremost, in this section, we will present and describe some models [4] 
that have been used to characterize spin transition materials. Many 
mathematicians, physicists, and chemists have worked hard over the last century 
to develop models and materials that can accurately predict what is happening in 
our system [98]. Over time, experimental data influenced theoretical studies and 
vice versa, resulting in a partial understanding of the mechanism underlying 
different complex spin transition behaviors. The chronologic order will be used to 
classify the mathematical models used to characterize the spin transition 
compounds because it is more practical and easier for the reader to understand the 
models that stayed on the "base" of developing other models. In the following lines, 
we want to make a brief description of the models that have been previously 
developed to explain the macroscopic evolution of the fraction (which is the 
number of molecules which are in HS state) under different external perturbations 
such as: temperature, pressure, etc. We must start from the quantum origin [99]–
[111] or from the thermodynamical hypotheses[112]–[117]  for each mathematical 
model. 

The Wajnflasz - Pick model, developed in the early 1970s, was the first to introduce 
the concept of intermolecular interaction capable of qualitatively simulating spin 
transition phenomena [103]. They presupposed that each metal center is a four-
level system (two ionic radii each having two spins states). A fictitious spin (𝜎 =
±1) was introduced to characterize each spin state. An Ising type coupling term 
between neighboring centers describes the interaction between ionic centers. The 
Hamiltonian is solved, In the mean-field approximation. The nature of the 
interaction term, which is not entirely justified, is the model's main limitation. 
However, this model was the first to predict continuous and discontinuous spin 



44 
 

transitions for interaction parameters greater than 𝑘𝛽𝑇1∕2 (where 𝑇1∕2 is the spin 

state's switching temperature). 

Bari and Sivardière [101] continued this work two years later, in 1972. They 
demonstrated and clarified some physical aspects that were overlooked in the 
Wajnflasz model. In fact, they demonstrated the relationship between the 
transition temperature and the intensity of ion interaction in their work. The 
primary goal of this model is to determine the partition function (Z), which allows 
the determination of all physical macroscopic parameters. Wajnflasz and Pick's 
1970 model and Bari and Sivardière's 1972 model explained the process of first-
order phase transition, which occurs between the low spin (LS) and high spin (HS) 
states; behaviour also obtained experimentally in octahedral complexes. In 
comparison to the models that will be discussed in this paper, both of the models 
presented above have a significant disadvantage: the entropy of the system is 
influenced by the degeneracy of the two states (LS and HS states), and the system 
does not exhibit a variation in entropy near the transition point, which is a critical 
issue[118]. 

The Slichter and Drickamer model[119], developed in the same year as Bari and 
Sivardière's model, is one of the main macroscopic models that accounts for 
intermolecular interactions. Slichter and Drickamer propose use of an external 
pressure perturbation factor to describe the spin transition phenomenon in this 
model. The application of pressure provided the foundation for many macroscopic 
models that attempt to specify the origin of interactions. Another intriguing 
feature of this model is that each molecule state is dependent on the neighbouring 
molecule states via the intermolecular interaction term “𝐽”. When this model was 
applied to some SCO materials, a discontinuous spin transition or a spin transition 
with hysteresis was obtained. 

Sorai and Seki [99] took a different approach in 1974, proposing an alternative 
thermodynamics model. They assumed that molecules in the same spin state are 
organized into domains. They calculate the critical size of the spin domain using 
calorimetric measurements and calorimetric data. This model is currently limited 
because it cannot reproduce a hysteretic transition. 

Zimmermann and Konig [102] proposed a model in 1977 that makes the vibration 
mode more explicit. While discussing this model, it is essential to note that the 
molar entropy increase upon spin conversion ΔS is quantitatively accounted for, 
and the intermolecular interactions are introduced via an Ising-like Hamiltonian. 
The Bragg-Williams approximation was used to solve this Hamiltonian. 

Concerning the vibration mode, it has been assumed in this model that it follows 
the Debye model, regardless of its character, which may be intra or inter molecular. 
Another point worth mentioning in Zimmermann's article is that he demonstrated 
the formal equivalence between two-level models treated in the mean-field 
approximation and macroscopic two states (LS and HS states) models based on 
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regular solution thermodynamics. 

Another significant step forward in model development occurred in 1979, when 
Kambara [120] used ligand field theory to demonstrate that the spin transition from 
the LS to the HS state is induced by the Jahn-Teller coupling. This coupling is 
caused by the difference in d electrons and a local distortion of 𝐹𝑒𝐼𝐼 complexes 
used in the random phase approximation and solved with mean filed equations. 
Within this model, a discontinuous LS-HS spin transition was observed, which was 
influenced by temperature, magnetic field, or pressure [121]. Gütlich et al. [113] 
proposed an extended Sorai and Seki model in 1979, establishing the link between 
the thermodynamic model and experimental results. They included calorimetric 
data on the thermal dependence of the HS fraction in this extended model. The 
first approach to the truly physical origins of cooperation was proposed in 1981 [113] 
by Onishi and Sugano, and in 1982 [116] by Spiering et al. As we've seen, the spin 
transition is accompanied by a volume change. This change will generate a stress 
field, which will spread throughout the network due to its elasticity. To address 
this issue, the authors envisioned molecules as hard spheres (i.e., isotropic) 
inserted in an elastic medium. These spheres were treated as if they were point 
defects. In 1984, Edwards and Purcell [122] proposed a new model in which a 
material is thought to be formed by chains of molecules. Only the molecules in the 
chains interact with one another, while the chains do not. Bousseksou et al. 
proposed a new approach to a two-level model in the 1990s [123], [124]. They believe 

that the ratio of degeneracies 𝑑𝑒𝑔 (𝑑𝑒𝑔 =
𝑑𝑒𝑔𝐻𝑆

𝑑𝑒𝑔𝐿𝑆
) of two states is much larger than 

the spin degeneracy. Such degeneration results from the change of entropy during 
the spin state transition. This new hypothesis allows for more precise adjustment 
of data from experimental calorimetric measurements. The Everett model [30], 
used by Konig et al. [125], [126] to characterize the major and minor hysteresis 
loops, and the Preisach model [127]–[129], used to fit hysteretic experimental data, 
are the other two models used to characterize spin transition materials. 

Over time, it was discovered that the Ising model is the simplest to apply in SCO 
studies. In addition, some models based on elastic properties have been proposed. 
In this case, we can distinguish between the two approaches. Boukheddaden et al. 
[130] and Enachescu et al. [131], [132] proposed the first approach. This model is 
based on the realistic idea that the difference in molecular volumes between the 
two states (LS and HS) causes elastic interactions and causes molecules in the 
system to shift during the transition. 

The second approach is that of Nasser et al. [107], [133]. The uniqueness of the 
current model stems from the Hamiltonian's simple structure, in which the elastic 
constant connecting two SC units depends on their electronic states. Until now, 
the atom phonon coupling model has been studied using the mean-field method 
or Monte Carlo simulations for chain and square lattice systems.[100], [104]–
[106][134]–[139] present a wide range of behavioral characteristics of spin transition 
compounds that were reproduced. 
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1.5.1.1 Ising model: Wajnflasz and Pick approach 

Ising's model was first suggested by Wilhelm Lenz in 1920 [140] then studied by 
Ernst Ising [141] in his thesis on the study of one-dimensional magnetic systems, 
the results of which were published in 1925 [142]. Originally developed to study 
magnetic systems on a regular network, its simplicity has made it very popular, 
and we find adaptations in all areas of statistical physics. Important Developments 
due in particular to the works of Onsager and Kaufman [143]–[145] and of Yang and 
Lee [146], [147] allowed simulation in the description of phase transitions. Use of 
mean-field variational theories [148] Bethe-Peierls [149], or CVM (Cluster 
Variational Method) [150], [151] also led to important developments which have 
structured the statistical physics of interactive systems. For spin transition 
systems, the Hamiltonian proposed by Wajnflasz and Pick (WP) is written as: 

𝐻 = 𝛥0 ∑ 𝑠𝑖
𝑁
1 −  𝐽 ∑ 𝑠𝑖𝑠𝑗

⟨𝑖,𝑗⟩
  (1.18) 

where 𝑠 = ±1 is the fictitious spin state where 𝑠 = + 1and 𝑠 = −1 are associated 
with the HS and LS states respectively, 𝛥0 is the energy of the ligand field acting 
on the isolated molecule and 𝐽 the strength of interactions. The first sum traverses 
the 𝑁 molecules of the system and the second sum over the pairs ⟨𝑖, 𝑗⟩ traverses all 

the pairs of close neighbors in the network. This sum is rewritten as 𝛴⟨𝑖,𝑗⟩ =
1

2
𝛴𝑖𝛴𝑗

𝑞 

, where 𝑞 is the number of neighbors of molecule 𝑖. To obtain analytical expressions 
allowing us to study the thermodynamics of this model, we simply use the mean 
field approximation. It's important to point out here that this approximation, 
although rough, allows us to qualitatively find most of the thermodynamic 
properties. It is therefore very often a useful prerequisite for Monte-Carlo 
calculation, for example. We develop the product of fictitious spins as 

𝑆𝑖𝑆𝑗 = 𝑚2 + 𝑚(𝛿𝑆𝑖 + 𝛿𝑆𝑗)  +  𝛿𝑆𝑖 × 𝛿𝑆𝑗 = −𝑚2 + 𝑚(𝑆𝑖 + 𝑆𝑗)  +  𝛿𝑆𝑖𝛿𝑆𝑗 (1.19) 

where 𝑚 = ⟨𝑠𝑖⟩, the fluctuations 𝛿𝑆𝑖𝛿𝑆𝑗  are neglected in the mean-field 

approximation, which allows us to rewrite the Hamiltonian 

𝐻𝑀𝐹 = 𝛥0 ∑ 𝑠1
𝑁
𝑖 + 𝐽𝑚2𝑁𝑞 ∕ 2 − Jm𝑞 ∑ 𝑆𝑖𝑖  (1.20) 

The partition function in the canonical set of this Hamiltonian, taking into account 
𝑔ℎ𝑠 degeneracies for state 𝑠 = + 1 and 𝑔𝑙𝑠 for state 𝑠 = −1, is written as, 

𝑍𝑀𝐹 = 𝑒−𝛽𝐽𝑚2𝑁𝑞∕2 ∏ (𝑔𝐻𝑆𝑒
−𝛽(𝛥0−𝐽𝑚𝑞) + 𝑔𝐿𝑆𝑒

𝛽(𝛥0−𝐽𝑚𝑞) )
𝑖

 (1.21) 

𝑍𝑀𝐹 = 𝑔𝐿𝑆
1 2⁄ 𝑒−𝛽𝐽𝑚2𝑁𝑞 2⁄ ( 2𝑐𝑜𝑠 ℎ[𝛽(𝛥0 − 𝑘𝐵  𝑇 ln 𝑔 2⁄ − 𝐽𝑚𝑞)])𝑁 (1.22) 

where 𝛽 =
1

𝑘𝐵𝑇
. Free energy is then given for 

𝐹 = −𝑘𝐵𝑇 ln𝑍𝑀𝐹  (1.23) 
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The mean value of the fictitious spin is then easily obtained by minimizing the free 

energy 
𝜕𝐹

𝜕𝑚
= 0, which leads to the self-consistent equation  

𝑚 = tanh[𝛽(𝛥0 − 𝑘𝐵 𝑇 ln 𝑔 2⁄ − 𝐽𝑚𝑞)]     (1.24) 

By rewriting the temperature, 𝑇, as a function of the fictitious magnetization 𝑚, 
we obtain,  

𝑇 =
2𝑞𝐽𝑚−𝛥0          

𝑘𝐵 ln(
1+𝑚

1−𝑚
)−𝑘𝐵 ln𝑔∕2

   (1.25) 

which gives us the value of the transition temperature for 𝑚 = 0:  

𝑇𝑒𝑞 = 2𝛥0 ∕ 𝑘𝐵 ln 𝑔  (1.26) 

J. Wajnflasz and R. Pick pioneered the application of this model in spin transition 
research in 1970-71 [152], [153]. Wajnflasz warns the reader in his early theoretical 
work that the interaction between spin transition ions is not of magnetic origin. 
As stated in the article, the use of Ising's model is thus a simplification, which 
explains the many subsequent developments attempting to model the interactions 
between the molecules of spin transition compounds in a more realistic manner. 

 

 Figure 1. 14 Thermal behavior in reduced coordinates calculated from equation (1.25) for 𝑔 =

150 and the values of 𝑑 =
𝛥0

𝑞⁄ 𝐽 = 1, 2, 3, 4, 5 𝑎𝑛𝑑 6 in the mean field approximation. The 

point C obtained for 𝑑𝑐 = 𝛥0 𝑞𝐽⁄ = 𝑙𝑛 𝑔 ~5.0 1 is the critical point. Hence for 𝑑 < 𝑑𝑐 there is 
no longer any first order transition. The solid line is the spinodal curve. Adapted from reference 
[154] 
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1.5.1.2 Slichter and Drickamer model 

In 1972, Slichter and Drickamer[119] proposed a mean-field model which illustrates 
different types of spin transition observed in solids. They supposed that a solid is 
formed by a mixture of LS and HS states. If we define the   𝑛𝐿𝑆  and   𝑛𝐻𝑆  spin 
fraction corresponding to LS or HS states, the entropy of the system can be writtten 
as: 

𝐺 = 𝑛𝐿𝑆𝐺𝐿𝑆 + 𝑛𝐻𝑆𝐺𝐻𝑆 − 𝑇𝑆𝑚𝑖𝑥 + 𝛤𝑛𝐻𝑆(1 − 𝑛𝐻𝑆)                                                (1.27) 

Where, 𝛤  = the intermolecular interaction;   

𝑆𝑚𝑖𝑥 = −𝑅(𝜂𝐿𝑆 ln(𝑛𝐿𝑆) + 𝑛𝐻𝑆 ln(𝑛𝐻𝑆))  (1.28) 

If we consider the origin energy   𝐺𝐵𝑆  as:     𝐺𝐵𝑆 = 0  and 𝛥𝐺 = 𝐺𝐵𝑠 = 𝛥𝐻 − 𝑇𝛥𝑆  
(where 𝛥𝐻 =  𝐻𝐻𝑆 − 𝐻𝐿𝑆 is the difference of enthalpy and 𝛥𝑆 =  𝑆𝐻𝑆 − 𝑆𝐿𝑆 is the 
difference of entropy during the transition); the eq. (1.27) can be written as follows:   

𝐺 = 𝑛𝐻𝑆𝛥𝐻 + 𝛤𝑛𝐻𝑆(1 − 𝑛𝐻𝑆) − 𝑅𝑇 [(1 − 𝑛𝐻𝑆)ln(1 − 𝑛𝐻𝑆) + 𝑛𝐻𝑆 ln 𝑛𝐻𝑆 + 𝑛𝐻𝑆
𝛥𝑠

𝑅
]    

(1.29) 

The equilibrium condition of the system,  (
𝛥𝐺

𝛥𝑛𝐻𝑆
)
𝑇,𝑃

 gives the possibility to write 

the temperature (𝑇) in function of high spin fraction 𝑛𝐻𝑆 as:   

𝑇 =
𝛥𝐻+𝛤(1−2𝑛𝐻𝑠)

𝑅 𝑙𝑛(
1−𝑛𝐻𝑆

𝑛𝐻𝑆
)+Δ𝑆

        ( 1.30) 

Again, we can easily write this expression into the form of special Arrhenius 

ln (
𝑛𝑠

1−𝑛𝑦
) = ln𝛺 − (

𝛥𝐻+𝛤(1−2𝑛𝐻𝑠)

𝑅T
). We recall that when we have defined the 

transition temperature as 𝑇1∕2 = 𝛥𝐻/𝛥𝑆 at which the proportion of HS and LS are 

equal, no cooperativity was considered. If we consider no cooperativity, then the 
thermal spin crossover follows smooth Gibbs-Boltzmann statistics. As soon as 
cooperativity comes into play, the transition is more abrupt than without 
cooperativity. The threshold between second-order and first-order phase 
transition is given by 𝛤 = 2𝑅𝑇1∕2 which is fulfilled for (d𝑇 ∕ d𝑥𝐻𝑆)𝐻𝑆=0.5 = 0. 

When 𝛤 < 2𝑅𝑇1∕2 then the inter-molecular interaction is fragile, and the transition 

is smooth without any hysteresis (with no cooperativity). The transition is abrupt 
as 𝛤 = 2𝑅𝑇1∕2. At 𝛤 > 2𝑅𝑇1∕2, the transition is even more abrupt and is consisting 

of two extrema points which can be interpreted as the opening of the thermal 
hysteresis. The inclusion of the cooperative term by Slichter and Drickamer [119] 
in the thermodynamic model helps a better understanding of the thermal SCO 
processes. The nucleation of domains and evolution of the phase boundaries due 
to cooperativity in SCO complexes in solid form during thermal spin crossover is a 
fascinating phenomenon to study. 
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If we consider 𝛤 = 0, the expression of  𝑛𝐻𝑆 dependent on the temperature can be 
written as: 

𝑛𝐻𝑆 =
𝑒𝑥𝑝(Δ𝑆∕𝑅)

𝑒𝑥𝑝(Δ𝑆∕𝑅)+𝑒𝑥𝑝(Δ𝐻∕𝑅𝑇)  
                                   (1.31) 

 

 

 Figure 1. 15 (a) Fraction of HS-state molecules 𝑛𝐻𝑆 as function of temperature,  
(𝛥𝐻 = 7𝑘𝐽.𝑚𝑜𝑙−1, 𝑎𝑛𝑑 𝛥𝑆 = 50 𝐽. 𝐾−1. 𝑚𝑜𝑙−1). (b) Fraction of HS-state molecules 𝑛𝐻𝑆 as 
function of temperature,  (𝛥𝐻 = 7𝑘𝐽.𝑚𝑜𝑙−1 𝑎𝑛𝑑 𝛥𝑆 = 50 𝐽. 𝐾−1. 𝑚𝑜𝑙−1) [46].    

In the Fig. 1.15a, because the intermolecular interaction is zero, there will be a 
gradual transition. If the intermolecular interaction is different from zero, there 
will be different types of transition in function of the interaction strength (Fig. 
1.15b).    

1.5.1.3 Domain model: Sorai and Seki 

Sorai and Seki [99] take as a starting point the hypothesis that the population of 
the centers HS and LS is not distributed randomly but is concentrated in domains, 
thus the name domain model attributed to this approach. In this case, too, the 
authors employ macroscopic thermodynamics to linearize the Gibbs free energy: 

𝐺 = 𝑁(𝐺𝐻𝑆𝑛𝐻𝑆 +𝐿𝑆 (1 − 𝑛𝐻𝑆)) − 𝑇𝑆𝑚𝑖𝑥 (1.32) 

where the mixing entropy is 𝑆𝑚𝑖𝑥 for the No domains of size n is written: 

𝑆𝑚𝑖𝑥 = 𝑘𝐵 𝑙𝑛
𝑁0!

(𝑛𝐻𝑆𝑁0)!([1−𝑛𝐻𝑆]𝑁0)!
 (1.33) 

𝑆𝑚𝑖𝑥 = −𝑘𝐵𝑁0((1 − 𝑛𝐻𝑆) ln(1 − 𝑛𝐻𝑆) + 𝑛𝐻𝑆 ln 𝑛𝐻𝑆) (1.34) 
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As in the case of the Bari and Sivardière model, we can determine the stationary 
states by minimizing the free energy with respect to the order parameter, that is, 
𝜕𝐺

𝜕𝑛𝐻𝑆
|
𝑇

= 0 and 𝑁 = 𝑛𝑁0, which leads to  

                                                     𝑛𝐻𝑆 =
1

1+𝑒𝑥𝑝(
𝑛𝛥𝐺

𝑘𝐵𝑇
)
   (1.35) 

To establish the value of 𝑁0, the heat capacity is calculated, which leads to,  

𝐶𝑝 =
𝜕

𝜕𝑇
(𝑛𝐻𝑆𝐻𝐻𝑠 + (1 − 𝑛𝐻𝑆)𝐻𝐿𝑆) (1.36) 

= 𝑛𝐻𝑆𝐶𝑝,𝐻𝑆 + (1 − 𝑛𝐻𝑆)𝐶𝑝,𝐿𝑆 + 
(𝐻𝐻𝑆−𝑛𝐿𝑆)2 exp(𝛥𝐺∕𝑁0𝐾𝐵𝑇)

𝑁0𝐾𝛽𝑇2(1+exp(𝛥𝐺∕𝑁0𝐾𝐵𝑇))2
 (1.37) 

At the transition temperature, 𝑇1∕2, the free energy of the two phases HS and LS 

are equal, is so we have 𝛥𝐺 = 0, which allows us to calculate 

𝑁0 =
(𝐻𝐻𝑆−𝐻𝐿𝑠)

2

4𝑘𝐵𝑇1∕2
2 [𝐶𝑝 (max)−0.5(𝐶𝑝,𝐻𝑆+𝐶𝑝,𝐿𝑆)]

 (1.38) 

An example of the fit of the experimental specific heat curve is shown in Fig. 1.16

 

 Figure 1. 16 Heat capacity for a spin transition compound [𝐹𝑒(𝑝ℎ𝑒𝑛)2(𝑁𝐶𝑆)2] The circles are 
experimental data, and the solid line is the solution of equation 1.37. Adapted from reference 
[99]. 

The use of this model has resulted in the assumption that as the number of 
molecules increases, the transition becomes more abrupt (Fig. 1.17). Despite the 
fact that this model cannot reproduce a hysteretic transition, it does have some 
advantages in terms of solid structure. It should be noted that the domain structure 
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hypothesis implies the existence of intermolecular interactions that facilitate the 
spin transition even if no interaction is explicitly introduced in the free energy 
expression. Temperature [155][48] or light [156], [157] induced an LS-HS transition, 
according to X-ray diffraction measurements on a single crystal. 

 

 Figure 1. 17 Fraction of HS-state molecules 𝑛𝐻𝑆 as function of temperature (𝛥𝐻 = 7𝑘𝐽.𝑚𝑜𝑙−1  
and 𝑇𝑐 = 140 𝐾) [158] 

It is important to note that the different models presented are all isomorphic to 
the Ising type model in its mean-field version, as demonstrated by Nishino et al. 
[159] 

1.5.1.4 Ising models 

1.5.1.4.1 Ising with short-range interactions:     

Despite its apparent simplicity [160]–[163], the Ising model's mathematical 
structure is difficult, if not impossible, to solve exactly for the 2D [164] and 3D [165] 
systems. Because it is simple and allows one to understand many features of phase 
transitions, the Ising models are now the most widely used basis for quantitative 
interpretation of the SCO phenomenon. This model could be thought of as an 
extension of the Wajnflasz and Pick model. The Ising model is applicable to a 
variety of crystallographic systems, including 3D (three-dimensional lattices) [166], 
[167], 2D (two-dimensional lattices) [168], [169], and 1D (one-dimensional lattice) 
[166], [170], [171]. In order to study the behavior of SCO compounds, an Ising-like 
model is often used by associating to each molecule a fictitious spin operator σ 
with eigenvalues 𝜎 = +1 corresponding to the HS state and 𝜎 = −1 for the LS 
state. The two molecular states are usually degenerated and from this purpose the 
degeneracies by 𝑔𝐻𝑆 and 𝑔𝐿𝑆, respectively are denoted. In order to associate non-
degenerated states to the fictitious spin a temperature dependent “field” can be 
introduced in the Ising-type Hamiltonian which takes into account the original 
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state degeneracies. Thus, for non-interacting molecules, the associated effective 
Hamiltonian can be written as follows: 

𝐻 = −ℎ𝑖𝑠 ∑ 𝜎𝑖
𝑛
𝑖=1    (1.39) 

With, 

ℎ𝑖𝑠 = −
𝛥

2
+

𝑘𝐵𝑇

2
 ln (

𝑔𝐻𝑆

𝑔𝐿𝑆
)  (1.40) 

Where 𝑁 is the number of molecules (spins) in the system, 𝑘𝐵 is Boltzmann 
constant, while 𝑇 is the temperature. 𝑇0 = 𝛥 ∕ [𝑘𝐵 ln(𝑔𝐻𝑆 ∕ 𝑔𝐿𝑠)] is known as 
equilibrium temperature for the system. It is apparent that negative spin values are 
expected at low temperature, 𝑇 < 𝑇0, where the energy difference between the 
states is dominant in the effective field formula. For high temperatures, positive 
spin values are expected since their higher degeneracy is higher, and the right term 
becomes dominant. 

For interacting molecules, the Ising exchange-type is usually considered, as 

𝐻 = −ℎ𝑖𝑠 ∑𝜎𝑖

𝑁

𝑖=1

− 𝐽∑𝜎𝑖

⟨𝑖,𝑗⟩

𝜎𝑗  

Where ⟨𝑖, 𝑗⟩,  denotes that the sites 𝑖, 𝑎𝑛𝑑 𝑗 are adjacent neighbors, the second sum 
takes into account the strength of the nearest neighbors interaction, which is 
denoted by 𝐽. The Wajnflasz model is with a temperature dependent field and a 
short-range interaction given in (13). The critical temperature at which phase 
transition occurs for the purely Ising ferromagnetic model formed by the last term 
in Hamiltonian [107] with 𝐽 positive is denoted by 𝑇𝐶. 

If the equilibrium temperature for the non-interacting model (𝑇0) is larger than 
this critical temperature (𝑇𝐶) the system (13) has a gradual spin transition from LS 
state to HS state generated by the variation of temperature. If (𝑇0 < 𝑇𝐶) the spin 
transition is discontinuous associated to a first-order phase transition. 

1.5.1.4.2. Ising model with short and long-range interactions: Ising –like model: 

However, no phase transition can be theoretically obtained for such systems in one 
dimension (𝑇0 = 0), although they have been experimentally observed in SCO 
molecular chains. In order to resolve this inconsistency, long-range interactions 
between molecules have been considered in various forms [108] [117]. Here, it is 
considered that long-range interactions act on each spin as a uniform field 
proportional to the average spin ⟨𝜎⟩ of the system while the proportionality 
constant is denoted by 𝐺.  The long-range interaction mimics the elastic 
interaction among molecules. In fact the long-range interactions, in spin crossover 
solids, originate from the molecular volume expansion or decompression over all 
the crystal [117]. In crystals, a volume change of only some molecules is 



53 
 

accompanied by an internal pressure which replicate at the surface of the crystal. 
This pressure acts on all molecules of the crystal with the same strength [172] even 
if they are at different distances.  The former is treated by one-dimensional nearest 
neighbor coupling, and the latter is taken into account as a mean-field 
approximation though a temperature–dependent term which takes the form of an 
external “field”.   

So is adopted the following Ising Hamiltonian: 

𝐻𝑠𝑦𝑠 =
𝛥−𝑘𝐵𝑇 ln𝑔

2
∑ 𝜎𝑖

𝑁
1=1 − 𝐺 < 𝜎 > ∑ 𝜎𝑖

𝑁
𝑖=1 − 𝐽 ∑ 𝜎𝑖𝜎𝑖+1

𝑁−1
𝑖=1  (1.40) 

The Ising model is not difficult to solve in the 1D dimension if we apply the 
following techniques: matrix transfer, series expansions, and the renormalization 
group. For the 2D and 3D systems, no exact solution has been found until now. For 
these systems, Monte Carlo Metropolis [168] [173], [174] Monte Carlo Arrhenius 
[170] [175] Monte Carlo entropic sampling [170][176], [177], Molecular Dynamics 
[178], [179] represent good choices.  

The general Ising Hamiltonian for SCO is given by: 

𝐻𝑠𝑦𝑠 =
𝛥−𝑘𝐵𝑇 𝑙𝑛𝑔

2
∑ 𝜎𝑖

𝑁
𝑖=1 − 𝐺⟨𝜎⟩∑ 𝜎𝑖

𝑁
1=1 − 𝐽∑ 𝜎𝑖⟨𝑖,𝑗⟩ 𝜎𝑗 (1.41) 

1.5.1.5. Elastic models 

In recent years the growth in computing power assisted the researchers in 
employing the use of stochastics methods like Monte-Carlo Metropolis to solve the 
Hamiltonians of theoretical models without linearizing them. More sophisticated 
microscopic models were therefore developed by adding the elastic nature of 
interactions reserved until now to macroscopic or mesoscopic models. To describe 
the mechanisms of the spin transition, one must take into account structural 
aspects. The difference in the volume of the molecules between the HS and LS 
states suggests different rigidities of the lattice in the two states which must be 
considered in the elastic constants. These novel class of cooperative SCO models 
based on the so-called ball and spring concept [180], largely reuse the Ising type 
model by changing the interaction by an elastic potential. This innovative 
theoretical description of SCO materials, using this model starts from the idea: 
when a molecule switches from one state to the other (i.e., LS to HS or HS to LS), 
its volume varies (Fig. 1.11 and 1.12). This variation will produce, at first, an 
instantaneous force in the springs connecting the switching molecule with its 
closest neighbors. This force will determine the shift in position of these neighbors 
and subsequently of all molecules in the system. From this point of view, they are 
therefore similar to compressible Ising models. In general, the Hamiltonian of the 
system is written as: 

𝐻 = 𝛥𝑒𝑓𝑓
∑ 𝑆𝑖

𝑁
𝑖 + ∑ 𝑉⟨𝑖,𝑗⟩ (𝑟𝑖𝑗, 𝑠𝑖, 𝑠𝑗̇) (1.42) 



54 
 

Where 𝑟𝑖𝑗 = ‖𝑟𝑖⃗⃗ − 𝑟𝑗⃗⃗ ‖ is the distance between neighboring molecules and 𝛥𝑒𝑓𝑓 =

(𝛥0 − 𝑘𝐵𝑇 ln𝑔) ∕ 2. Here, the potential 𝑉(𝑟𝑖𝑗, 𝑠𝑖, 𝑠𝑗̇) can have different possible 

forms. The model of Nicolazzi et al. [168] assumes a Lennard-Jones type 
anharmonic interaction, at the origin of the expansion thermal crystal; the other 
models use a harmonic potential [181] which accounts for also elastic effects and 
abrupt volume change of the system at the transition phase but other models also 
treat the molecule as an elastic oscillator interacting with a crystal lattice modeled 
via anharmonic potentials, or other. The potential describes the interaction with 
nearby neighbors as dependent on the state of spin. However, the elastic 
interaction produces long-range effects during relaxation network mechanics. This 
gives a richness and a complexity that does not exist in the model Ising type. The 
distances, 𝑟𝑖𝑗, can be treated by the Monte-Carlo method also [179] or by molecular 

dynamics [182]. The Monte-Carlo Metropolis method for positions is equivalent to 
the method of MC for spin state. We go through all the molecules and we propose 
a different position, we then calculate the probability of the two states (current and 
proposed) and we accept or reject the new position accordingly. The biggest 
difference is that the state value of spin is a discrete variable with two possible 
eigenvalues 𝑠 = ±1 and the position of the molecules 𝑟  is a continuous variable. To 
propose a new position, we draw a perturbation of the position between 𝛿𝑟 ∈
(−d𝑟 , d𝑟 ), or d𝑟  is the greatest possible perturbation for a single step of the MC 
method. The probability of passing is then, 

𝑃(𝑠𝑖, 𝑠𝑗 , 𝑟 𝑖, 𝑟𝑗⃗⃗ → 𝑠𝑖, 𝑠𝑗 , 𝑟 𝑖 + 𝛿𝑟 , 𝑟𝑗⃗⃗ ) =  
e−𝛽𝐻(𝑠𝑖,𝑠𝑗,𝑟𝑖⃗⃗⃗  +𝛿𝑟 ,𝑟𝑗⃗⃗  ⃗)

e−𝛽𝐻(𝑠𝑖,𝑠𝑖,𝑟𝑖⃗⃗⃗  ,𝑟𝑗⃗⃗  ⃗)
 

These models with this type of digital resolution allow us to observe the 
spatiotemporal aspects and the change in volume as can be seen in Fig. 1.18 

 

 Figure 1. 18 Results showing the elastic behavior of a spin transition system during transition 
(adapted from reference [183]) 

This stochastic method has the advantage of bringing into play the temperature of 
the system and therefore to take into account position fluctuations, to determine 
the state of the network but the calculation of probability using the exponential is 
very costly in terms of computation, especially that the mechanical relaxation of 
the network takes a large number of MC (Monte-Carlo) steps. The deterministic 
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method for calculating the positions of molecules consists in solving the Newton's 
equations for a system subjected to viscous friction. The force produced by the 
potential due to neighbors is 

𝐹𝑖⃗⃗ = −𝛻⃗ 𝑉(𝑠𝑖, 𝑠𝑗 , 𝑟 𝑖 , 𝑟𝑗⃗⃗ ) (1.44) 

Positions are recalculated between MC steps for spin state in order to mechanically 
relax the network. Solvable using Monte Carlo procedure [175][184], [185] or 
Molecular Dynamics [182] simulations, the elastic model have been used for the 
first time to study HS-LS relaxation processes[186], [187]. The advantage of this 
method is a significant performance gain in computing time but also the possibility 
of knowing the speed of molecules. This gives access to the study of shock waves 
and precursor phenomena of the spin transition. In the recent years the elastic 
model has been continuously adapted for the study of the light-induced hysteresis 
phenomenon [187], or the study of the evolution of clusters during the thermal 
transition [188]. Furthermore, the elastic model has also been helpful in showing 
the role of impurities during the Spin transition process [184], the domain wall 
propagation[189], the deformation field and local stress propagation [179], or in the 
study of core-shell systems [190]. 

 

 

 Figure 1. 19 Network configurations corresponding to 15% of molecules in the LS state (yellow 
color) for different interaction values with the corresponding hysteresis cycles. [65]  
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1.6. Methods used to solve the Ising – like model  

1.6.1. Overview: 

The growing popularity of new programming languages and tools [191], [192]  has 
increased the demand for complex and powerful computational solutions, and its 
application of speculating in different fields has excellent benefits [193]–[195]. 
Nowadays, “computer simulations” have evolved into a complementary third 
division that complements the two traditional approaches (i.e., theoretical and 
experimental part). Researchers from various fields (such as natural sciences, 
engineering, social-sciences, finance, business, and so on) can now illustrate and 
present results in new, innovative ways, thanks to computer simulations. In 
physics, it is well known that the analytical theory's results are only precise in a few 
very exceptional cases and that in almost all other cases, approximations are 
required to facilitate valid results.  

Even when there are models that do not have exact solutions (for example, the 
two- and three-dimensional Ising models in an applied field), computer 
simulations allow the correctness of the approximations made in the analytical 
treatment of these models to be verified. Similarly, the information provided by 
experiments contains some inaccuracies. For example, depending on the 
impurities in the material, the measurements yield varying and sometimes 
contradictory results. Considering the preceding examples, we can conclude that 
simulations serve as a link between experiment and theory, providing decisive 
outcomes to physical problems. It is now recognized that computer simulation 
methods are valid scientific approaches that contribute significantly to our 
understanding of nature [138].  

Over the previous half-century, phase transitions in a wide range of statistical 
physics models have been extensively revised. From a theoretical standpoint, this 
has resulted in an expansion of simple models whose primary purpose is to look 
for and capture the fundamental qualitative characteristics of a natural system 
[98]. A wide range of analytical techniques has been developed to determine the 
phase behavior of these models. These approaches have recently been gradually 
supplemented by computer simulations [97]. Once the partition function is 
known, statistical mechanics demonstrates that the calculations of 
thermodynamic properties can be evaluated. However, the partition function is 
defined as the sum of all the microstates of a system and, in most cases (except in 
small systems), cannot be estimated due to a large number of microstates. We 
should also mention that an exact listing of the partition function is impossible. 
Knowing the difficult way of precisely solving Hamiltonian systems, Monte Carlo 
(MC) simulations are frequently used as a tool to obtain information about the 
thermodynamic properties of these systems. MC methods have proven to be very 
flexible and powerful routines for studying the phase transition problem in 
statistical physics.  
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In this section, we review the traditional MC simulation methods, which allow us 
to understand the behaviour of the SCO systems. We wish to emphasize that our 
methods presentation is only meant to be an introduction to our research work, 
and a more detailed treatment of these methods are accessible in the specialized 
literature. 

1.6.2 Monte Carlo Methods  

1.6.2.1. Choice of Boundary Conditions  

The importance of comprehending complex systems has been recognized in a 
variety of fields. In simulations, depending on the structure and geometry to be 
modeled, periodic boundary conditions (PBCs) or open boundary conditions 
(OPBs) can be used (also known as free boundary conditions -FBCs). Furthermore, 
because the goal of the simulations is to achieve or complete the experimental 
work, there are combinations of OBCs and PBCs (i.e. APBCs). One example of 
where OBCs may be used successfully in place of PBCs is in the study of sample 
surface effects. 

OBCs considerations have become very common in almost all studies in recent 
years, owing to the fact that the miniaturization of materials and devices has 
become a priority axe in research. Because simulations are applied to limited 
systems, the manner in which the lattice's "edges" or boundaries are considered is 
essential. OBCs are a type of boundary condition in which there is no connection 
between the end of a row and any other row on the lattice. In this case, the spins 
at the end of a row cannot see any neighbors on their path. These OBCs not only 
introduce finite-size smearing but also surface and corner effects as a result of the 
"dangling bonds" at the atoms' edges. Furthermore, when studying surface or 
corner behavior, OBC considerations are critical. OBCs may be more reasonable in 
some cases (for example, when modeling the behavior of nano-systems or grains), 
but the properties of systems with OBCs change more frequently than the 
properties of unlimited systems. In thin films modeling it’s used a combination 
between PBCs and OBCs. These conditions are used in the study of various 
phenomena, e.g. wetting, interface localization delocalization transitions, surface 
induced ordering and disordering, etc.  

A final example of conditions used in modeling SCO systems is the so-called “Edge 
effects” conditions. The edge atoms in this system [Figure 3.6d] are fixed in the HS 
state. The goal of fixing edge atoms in the HS state is to simulate polymeric-matrix 
roll (in which SCO can be embedded) and to understand incomplete spin-
transition behaviour [97][168][171][190][196]. 

1.6.2.2. Monte Carlo Metropolis  

More than 70 years ago, Metropolis [197] introduced the Monte Carlo method [185], 
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which is now used in a variety of fields. The canonical ensemble was used in the 
early simulations to approximate the average of physical size values given by Gibbs 
law. Using a Markov chain in the following form: 𝑥0, 𝑥1, … . . 𝑥𝑛, where a 
configuration, 𝑥𝑖+1. depends only on an immediate previous configuration 𝑥𝑖, the 
transition probability of obtaining 𝑥𝑖+1 from 𝑥𝑖 is given by 𝑝(𝑥𝑖+1|𝑥𝑖).  

For example, if it is desired to compute magnetization of the system, there must 

be taken the configurations of the spins, where the Boltzmann factor 𝑒−𝜔∕𝑘𝐵𝑇  has 
the highest value (a peak). The probability of the energy for a particular 

configuration is equivalent to 𝑒−𝜔∕𝑘𝐵𝑇 , which means that the acceptance of a 
configuration of the Markov chain, is weighted by a frequency proportional to the 
Boltzmann factor. The accepted configurations are then averaged to obtain an 
equilibrium property using an appropriate switching probability from one 
configuration to another. However, because time is not an explicit variable, this 
method of determining different physical properties of systems has drawbacks. 

Markov chains, in general, provide a discrete series of steps for a finite set of states 
{𝑁}. An N-state Ising model, for example, has 2𝑁 possible states, and the transition 
probability is chosen to facilitate the Boltzmann distribution 𝑃(𝑥) ≈ 𝑒𝑥𝑝(−𝑊(𝑥) ∕
𝑘𝐵𝑇). Assuming we have free energy, when a spin is turned from 𝑆𝑖to −𝑆𝑖, we 
should admit a move with a probability, because we want to be close to the ground 
state all the time. In contrast to an energy decrease, the Monte Carlo approach 
samples a set of molecular states with increasing energy states that vary with 
temperature. The very high energy states, on the other hand, will make only minor 
contributions to the system's stability because as the system's energy increases, the 
Boltzmann term decreases. In contrast to molecular dynamics, Monte Carlo allows 
for a larger jump in system optimization. Furthermore, for each step, we can have 
different steps for rotations, translations, internal coordinates, and optimization. 
The process of molecular dynamics is rather deterministic. Except for the Langevin 
algorithm, there is no randomness in the calculations because everything is 
determined at the start, and we can then leave the system to progress. 

The sampling algorithms' operation can be summarized as follows: After using a 
random number generator or a regular algorithm to move a spin (i.e., the program 
starts with all the spins in −𝑆𝑖 and then switches the spins from 

−𝑆𝑖(𝐿𝑠) 𝑡𝑜 𝑆𝑖(𝐻𝑆) , one by one), the energy of the new configuration can be 
calculated. If this energy is less than that of the previous configuration, the novel 
configuration is accepted. In the opposite case, if the energy of the new 
configuration is greater than the energy of the previous configuration, the 
Metropolis algorithm can decide whether or not to keep the new configuration. 

The probability ( 𝑃(𝑥) = 𝑒−𝜔∕𝑘𝐵𝑇 ) that the new configuration to be retained 
depends on the Boltzmann factor and of a random number 𝑅 (randomly chosen 
from the {0, 1} interval). If the value of P is inferior to the value of 𝑅, the new 
configuration is accepted. Otherwise, the new configuration will be refused and 
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the former configuration is again submitted to another elementary perturbation. 
All the selected configurations are progressively built and fashioned as a Markov 
chain. It is a usual technique to search in the conformational space. The obtained 
structures can become the initial point for a novel minimization. 

 As presented in the above discussion, the Metropolis algorithm can be designed 
in the following way:  

Firstly, the system's initial spins configuration is generated at random or based on 
the user's preferences. Then the initial configuration's energy is calculated. 
Secondly, by reversing a single spin, a new configuration is generated (proposed). 
Then energy for the new configuration calculated. The energy difference, (𝛥𝑊), 
between the initial and new configurations is calculated and analysed as follows:  

If 𝛥𝑊 < 0 the new configuration is accepted. If 𝛥𝑊 > 0 then, the program chooses 
a random number R with uniform probability over the [0, 1] interval.  

If 𝑒−𝜔∕𝑘𝐵𝑇 <  R , the new configuration is accepted.  

If 𝑒−𝜔∕𝑘𝐵𝑇 >  R, the previous configuration is kept and the algorithm is restarted 
beginning with the first step.  

Other Monte Carlo methods which are popular for studying complex system are 
Monte Carlo Entropic Sampling, and Monte Carlo Arrhenius. Although we won’t 
go into detail of these methods for brevity concerns and review them very briefly. 
Monte Carlo entropic sampling (MCES) is based on a system probability 
distribution and depends on the system entropy [93]. MC methods haven’t allowed 
the access of some configurations of the system and, in this way, didn’t display the 
whole spectrum distribution. The origin of this behavior boils down to high-energy 
barriers that connect two configurations because the barrier is a function of several 
parameters such as energy gap, temperature, the strength of interactions, Lee [93] 
introduced an equivalent method of Berg’s multicanonical method [94], in which 
these parameters as mentioned earlier have no influence. This new method, called 
entropic sampling, builds the distribution of states by using the system’s entropy 
of the. In this way, a uniform probability distribution can be obtained. Before 
starting a discussion about the Arrhenius algorithm, we must recall the Arrhenius 
equation. It is well known that in the case of a chemical reaction between two 
reactant molecules, there must be a low amount of energy called activation energy 
(𝐸𝑎) in order to become possible, the effective collisions between them. The 
Arrhenius algorithm uses a probability in order to pass from the HS state to the LS 
state or vice-versa [173] [175] [185] [198].  
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1.7 How to switch “ON” and “OFF” Molecular 
Switches: A brief review of various stimuli-based 
responses in SCO. 

Before we move on to the application part, it is crucial to understand what other 
factors can affect or are used to govern the SCO process. As other requirements are 
necessary because the temperature is insufficient for a good characterization of the 
recording materials. To be a good recording material, the compounds must have 
two states: LS and HS, both of which must be stable and easily detectable. Another 
vital factor to consider is that the transition must occur near room temperature 
and be abrupt with hysteresis [199] [200]. The width of the hysteresis loop varies 
depending on the application. A large hysteresis loop width (> 40K) is required for 
data storage, whereas for sensor devices, a linear dependence of the 𝑛𝐻𝑆 as function 
of the external stimulus is required because the user must be informed about the 
change of a parameter (i.e., pressure, temperature) instantly [201]. Only if these 
elements are present will the system be able to provide accurate and precise 
information.  

Now we will discuss briefly various factors or stimuli which could be optimised in 
order to harness the SCO material potential. 

1.7.1 Temperature  

Temperature [202]–[204] is the most commonly used external factor to trigger the 
transition from an LS to an HS state or vice versa. Different types of behaviors can 
be distinguished by the interaction strength between the molecules and their types 
in the SCO compounds ranging from spin-conversion to a multistep spin 
transition. Depending on the temperature variation, in SCO compounds, various 
ST behaviours can be observed including: Abrupt Transition with or without 
hysteresis [205]; Complete or incomplete transition [196] [168] [190] at high or low 
temperature; Two-step [170] [167] [169] or multi-steps [166] [171] transition. 

1.7.2 Pressure driven spin-crossover 

At constant pressure (e.g. atmospheric pressure) and zero temperature, the 
variation of the enthalpy (∆H) between the HS and LS states originate from the 
zero-point energy difference between the potential energy minima of the HS and 
LS states.  

Thermodynamically, the enthalpy (H) of a system is given by 𝐻 = 𝑈 + 𝑝𝑉, where 𝑈 
is the system's internal energy, 𝑝 is the pressure, and 𝑉  is the system's volume. 
When the pressure on the system differs from the atmospheric pressure, the 
variation of enthalpy can be expressed in terms of the work done by the pressure 
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(𝑝𝛥𝑉) and variation of internal energy (𝛥𝑈) as: 

𝛥𝐻 = 𝛥𝑈 + 𝑝𝛥𝑉      (1.45) 

where 𝛥𝑉 = 𝑉𝐻𝑆 − 𝑉𝐿𝑆 can be approximated to be pressure independent. 𝛥𝑉 > 0 in 
most spin-crossover systems (since 𝑉𝐻𝑆 > 𝑉𝐿𝑆). With the change in pressure, the 
variation of metal-ligand bond length and the ligand field strength is negligible 
compared to the change in 𝑝𝛥𝑉 value [206], [207]. Since 𝛥𝑉 > 0, thus an increase 
in pressure increases 𝛥𝐻 also and hence the LS state is favored over the HS phase 
[208], [209] [210]–[212]. The influence of pressure can even impact the shape of the 
spin transition itself, as a unit cell contraction increases the number and the 
strength of intermolecular contacts [209], favoring cooperativity. However, some 
complexes like[𝐹𝑒(𝑃𝑀 − 𝑃𝑒𝐴)2(𝑁𝐶𝑆)2]] form a new stable phase at high pressure, 
and this phase has a lower spin transition temperature, which yields an apparent 
decrease in the spin transition temperature when pressure is applied[93] . 
Furthermore, it is known that the application of pressure leads mostly to a general 
reversible behavior of the system, although there are situations when the behavior 
generated by pressure is irreversible [101-103]. Concerning this factor, the first study 
was made in 1969 by A.H. Ewald [213] on a series of SCO compounds based on 
𝐶𝑜(𝐼𝐼) in solution. 

The application of pressure on liquid or solid complexes has as main effect the 
change of the compound’s fundamental state [214], [215]. Studying compounds, 
Slichter and Drickamer [119] have shown that the transition between the 
diamagnetic state and the paramagnetic state can occur, even if the external 
pressure is not very big and the switching temperature is shifted to higher 
temperatures with 15 − 20𝐾/𝐾𝑏𝑎𝑟. The application of an external pressure on a 
SCO material can also produce the modification of the electronic or the 
crystallographic structure (Fig. 1.20) [216], [217]. 

 

 Figure 1. 20 Representation of the molecular configurationally diagram, i.e., a plot of the 
adiabatic energy versus the distortion coordinate (metal-ligand distance) showing the shift of 
HS potential well on the application of pressure.  
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The effect can also depend on the hydrostatic or non-hydrostatic origin of the 
application of the pressure[212] 

1.7.3 Electric field 

Electrostatic field control of the spin transition is still an open field. When an 
electrostatic field is applied to a spin-crossover system, it can drive a spin-crossover 
via the coupling with the dipole moment present in the molecule or by charging 
the molecular ligands [218]. In the process of cooperative spin transition electric 
field can play an important role for some SCO complexes [72], and therefore in the 
hysteresis, as seen for SCO molecules dispersed in polymeric matrices [219]. Results 
were obtained with linear junctions[218] and multi-metal complexes [220], but 
electrostatic field control of the spin state of bulk SCO samples still remains to be 
seen. One route of spin-crossover using electric field can be feasible with 
nanometric junctions or STM where appropriate voltages applied to the STM tip 
can produce enough electric field for the spin transition to occur in a film of SCO 
complexes. 

1.7.4 Magnetic field 

In a diamagnetic or paramagnetic system, the magnetization is defined by 𝑀⃗⃗ =

𝜒𝑀𝐻⃗⃗ , where 𝜒𝑀 is the magnetic susceptibility and 𝐻⃗⃗  is the external magnetic field. 

In the presence of the external magnetic field (𝐻⃗⃗ ), the variation of magnetic energy 
per unit volume is:  

𝐸𝑛(𝐻) = −𝜇0𝑀⃗⃗ . 𝐻⃗⃗ =   −𝜇0𝜒𝑀𝐻2 (1.46) 

Now, in the case of a spin-crossover system, magnetic field control of the spin 
transition was observed for bulk samples [221].  The magnetic susceptibility of the 

HS species (𝜒𝑀
𝐻𝑆) is higher than that of the LS species (𝜒𝑀

𝐿𝑆)) [222][206]. Thus, from 
equation 1.46 we can observe that the application of an external magnetic field will 
favor the HS state as it has the minimum magnetic energy, due to Zeeman effect. 
A significant drawback is that, similar to the pressure stimuli; intense fields have 
to be used to witness a sizable effect: a shift of only 2K is observed for a 5𝑇 field 
[222]. It is also to be noted that experiments [223] based on the use of pulsed 
magnetic field (30𝑇), shows shifts of only few kelvins. These experiments also pose 
serious problems on the type of dynamics of the SCO: adiabatic or isothermal 
regimes in the triggering of the SCO transition. 

1.7.5 Light-induced spin-crossover 

Light irradiation can also induce a spin transition in the spin-crossover complexes. 
McGravey et al.(in the year 1982)[224] were the first to observe a laser-pulse 

induced transition from LS ( 𝐴1𝑔
1  ) to HS ( 𝑇2𝑔

5 ) state on several 𝐹𝑒(𝐼𝐼) spin 
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crossover complexes in solution [224]. The relaxation from the metastable HS state 
to the LS state at around room temperature (with 𝑇1/2~𝑅𝑇) was occurred at the 

timescale of nanoseconds to microseconds. This discovery opened up new 
possibilities to trap the spin state of the spin crossover complexes at lower 
temperatures. This was first done by Decurtins et al. in 1984 [225]. They have 
observed a light-induced transition from LS state to HS state of a 𝐹𝑒(𝐼𝐼)SCO 
complex in solid form at temperatures below 50 𝐾. Below this temperature the 
complex was trapped in the HS state after the light induced transition and it stayed 
at this state for few hours. The decay rate was extremely slow and at around 50 𝐾 
the system relaxed back to the normal LS state from the excited HS state. These 
experiments showed that at cryogenic temperatures, the spin state of a SCO 
complex can be trapped in HS state upon light irradiation with very slow relaxation 
rate [226][227]. They proposed this unknown photophysical phenomenon back at 
that time as "Light-Induced Excited Spin State Trapping (LIESST)". Since their 
discovery, a great deal of research has been carried out to study the light-induced 
switching of the 𝐹𝑒(𝐼𝐼) SCO complexes in the form of solid, thin films and ultrathin 
films [228]–[233]. One of the consequences of the LIESST effect was the discovery 
of LITH phenomenon by A. Desaix et al. in 1998, which is driven by the competition 
between light and temperature and thus produced non-equilibrium first-order 
phase transition. 

1.7.6 X-rays 

The exposure of the soft X-rays to the spin-crossover complexes can give rise to a 
soft X-ray induced excited spin state trapping (SOXIESST) of the system. This 
phenomenon, first observed by Collison et al. [234], can be attributed to the similar 
trapping of the metastable HS state through a cascade of excited states as observed 
in the case of LIESST effect. An important drawback of this effect is that in some 
cases the effect might not be reversible. The exposure of the X-ray might 
permanently damage the molecules or break some of their ligands [234] and hence 
causing irreversibility of the spin state switching. While the use of X-rays (X-ray 
diffraction, EXAFS, XANES...) to study SCO molecules and processes have met a 
lot of success[235]–[243] effect in itself has not received a lot of attention. 

1.7.7 Chemical stimuli 

Different from the physical triggers reviewed until this point, the chemical stimuli 
can also be used to switch the spin state of SCO molecules. Since the ligand field 
determines the spin state of the molecule, it is natural that the nature of the solvent 
in solutions of SCO molecules impacts the spin state, either directly [244] or by 
ligand exchange [76,95]. For the first time, the influence of a reversible solvent up 
to the ST regime has been illustrated for 1D coordination polymer by Garcia et al. 
[245] for [𝐹𝑒(ℎ𝑦𝑒𝑟𝑡𝑧)3(3 − 𝑛𝑖𝑡𝑟𝑜𝑝ℎ𝑒𝑛𝑦𝑙𝑠𝑢𝑙𝑓𝑜𝑛𝑎𝑡𝑒)2, 3𝐻2𝑂(1.3𝐻2𝑂)], with 
ℎ𝑦𝑒𝑟𝑡𝑧 =  4 − (2′ − ℎ𝑦𝑑𝑟𝑜𝑥𝑦𝑒𝑡ℎ𝑦𝑙) − 1,2,4 − tr 𝑖𝑎𝑧𝑜𝑙𝑒 compound. In 2004, a 
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bistable behavior for some temperatures has been reported by Real et al. [246], 
[247] as a response generated by cooperative phenomena met in some 𝐹𝑒(𝐼𝐼) based 
SCO compounds. A reversible LS-HS spin state change was observed with the 
uptake of guest molecules. In compounds such as 𝐹𝑒(𝑝𝑦𝑟𝑎𝑧𝑖𝑛𝑒)𝑁𝑖(𝐼𝐼)(𝐶𝑁), 
𝐹𝑒(𝑝𝑦𝑟𝑎𝑧𝑖𝑛𝑒)𝑃𝑑(𝐼𝐼)(𝐶𝑁), or 𝐹𝑒(𝑝𝑦𝑟𝑎𝑧𝑖𝑛𝑒)𝑃𝑡(𝐼𝐼)(𝐶𝑁), the HS state presents a 
yellow color and can be stabilized with a hydroxilic solvent. The LS state has a red-
brown color and can be stabilized with 𝐶𝑆2 solvent. In 2009, Kepert et al. [248] 
reported a guest-dependent spin crossover property for the same Hofmann-type 
system. Usually, bond-breaking leads to irreversible spin-crossover. Nevertheless, 
some recent examples of bridged compounds that exhibit a reversible bond-
breaking/-making SCO [249] exist. Chemical stimuli are sometimes used in 
conjunction with physical methods, such as the strategy to alter the ligands by 
optical stimulus in order to obtain a similar effect as the LIESST but still present at 
higher temperatures, a promising effect called ligand-driven light-induced spin 
change [76][226]. 

Among all these external stimuli for spin crossover, the most studied ones are 
temperature, pressure, electric field and light.  

1.8 Detection and Applications  

1.8.1 Detection of the Spin Crossover  

The physical characterization of the spin transition in molecular systems is a 
critical task in the field of scientific research. Regardless of the stimulus used to 
initiate the spin crossover phenomenon (temperature change, pressure, magnetic 
field, or light), it can be monitored using a variety of experimental techniques that 
can reveal the electronic state of the SCO centre directly or indirectly. Indeed, the 
transition spin is accompanied by various variations in micro- and macroscopic 
properties, such as the density of electronic states, the magnetic moment, metal-
ligand distance, vibrational properties, crystal lattice volume, etc. All these 
properties mean that the spin transition can be detected by various 
characterization techniques and involves physicists, chemists, crystallographers, 
theoreticians, etc. [250]–[254]. The more simple, accurate, and robust these 
techniques become, the more valuable they are, as many SCO applications rely on 
the precise detection of phenomena. In this part, we will introduce some 
experimental techniques allowing the study and investigation of this transition 
phenomenon spin. 

1.8.1.1 Magnetic Susceptibility Measurements 

 It is one of the most popular characterization techniques for SCO materials. One 
of the essential properties of spin transition materials is, of course, the 
magnetization, 𝑀, of compounds. When the compound is exposed to a 
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homogeneous external magnetic field, 𝐻, magnetization is then induced in the 
system. The change from the HS state to the LS state (or vice versa) as a function 

of temperature is reflected in a variation of the magnetic susceptibility (𝜒𝑚(𝑇)) of 

the material. According to the Curie’s law, the product 𝜒𝑚. 𝑇 for a paramagnetic 
material is constant for all values of temperature 𝑇. Hence, if the magnetic 
susceptibilities at each spin state are not accurately known, the product 𝜒𝑚. 𝑇 vs T  
is often plotted. This way, any variation of the product will be due to the SCO 
phenomenon in the material. Several experimental techniques allow this 
magnetization to be measured, such as the Faraday balance [40] or the SQUID 
magnetometer [255], [256]. In Fig. 1.21, we represent an example of measurement 
of the product 𝜒𝑚. 𝑇 according to the temperature of the spin transition compound 
[{𝐹𝑒(2 − 𝑝𝑦𝑡𝑟𝑧)2[𝑃𝑑(𝐶𝑁)4]}] ⋅ 3𝐻2𝑂 that is studied using this technique, showing 
an incomplete spin transition with a hysteresis cycle around 161 𝐾 [257]. 

 

 Figure 1. 21 Thermal evolution of the product 𝜒𝑚 . 𝑇 for the compound [{𝐹𝑒(2 −
𝑝𝑦𝑡𝑟𝑧)2[𝑃𝑑(𝐶𝑁)4]}] ⋅ 3𝐻2𝑂 [257]. 

1.8.1.2 M𝒐̈ssbauer Spectroscopy  

It is the spectroscopic method of choice for the study of the SCO in Fe based 
complexes. This type of spectroscopy allows to distinguish the molar fractions of 
𝐹𝑒(𝐼𝐼) or 𝐹𝑒(𝐼𝐼𝐼) centers at each spin state. By the same token, this technique 
provides valuable insights into the local structure of the material around the iron 
centers and lattice dynamics information. 

1.8.1.3 Crystallography 

The spin transition is always accompanied by various changes in physical 
properties due to the variation of the ligand field and the occupation of atomic 
orbitals. X-ray diffraction techniques can be employed to deduce the structural 
evolution of the compounds upon the SCO, which can be done as a function of 
temperature, allowing to characterize the change in the elongations of the metal-
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ligand distances between the two spin states, the increase in volume and angular 
distortions. Additionally, elastic properties such as the bulk moduli can be 
inferred. In general, these types of observations are widely used in the SCO field in 
order to establish structure-property correlations. This thermal investigation of X-
rays can be performed on powder or a single crystal, making it possible to obtain 
information on the type of transition (gradual, abrupt ..), the space group and the 
atomic distances. [258], [259] 

1.8.1.4 Heat Capacity Measurements  

Thermodynamical parameters such as changes of enthalpy and entropy can be 

estimated. Differential Scanning Calorimetry (DSC) is an experimental technique 

used to identify the presence and the nature of phase transitions in solid materials. 

It makes it possible to determine, for example, the glass transition temperature 

(𝑇𝑔), melting and crystallization temperature, enthalpy of reaction, specific heat, 

oxidative stability and various other physical properties in most materials (plastics, 

rubber trees, resins, powders, fibers, textiles ...). DSC is about measuring the 

change in the material's heat capacity as a function of the temperature variation 

while comparing it by the heat flow. Among the various existing transitions, the 

transition spin can also be detected using DSC; the typical behavior for a spin 

transition material corresponds to an endothermic peak in heating of LS towards 

HS and an exothermic peak in cooling from HS towards LS [260]–[262]. We present 

the example of the compound [{𝐹𝑒(2 − 𝑝𝑦𝑡𝑟𝑧)2[𝑃𝑑(𝐶𝑁)4]}] ⋅ 3𝐻2𝑂 [257], in Fig. 

1.22. 

 

 Figure 1. 22 DSC measurements showing the peaks of exo-, and endothermal transformations 
for the compound [{𝐹𝑒(2 − 𝑝𝑦𝑡𝑟𝑧)2[𝑃𝑑(𝐶𝑁)4]}] ⋅ 3𝐻2𝑂 [257]. 

1.8.1.5 Vibrational Spectroscopy 

The variation of vibration spectra in spin transition materials between the HS and 
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LS states allow characterization by Raman or infrared spectroscopy [263], [264]. 
Infrared absorption or Raman spectroscopies are actively used since the 
frequencies of metal-ligand vibrations, induced by the variation of the Fe-ligand 
distances at the transition, are of higher energies in the state LS than in the HS 
state. Currently, these techniques have been extended and coupled to optical 
microscopes in order to perform localized micro-Raman and micro-IR 
spectroscopies. 

 

 Figure 1. 23 Raman spectrum of particles [𝐹𝑒(𝐻𝑡𝑟𝑧)2(𝑡𝑟𝑧)](𝐵𝐹4). 𝐻20 in the state LS (298 K) 
and the state HS (393 K) obtained with excitation at 532 nm. Figure adapted from reference 
[265]. 

Indeed, Fig. 1.23 shows the example of a Raman spectrum of the compound 
[𝐹𝑒(𝐻𝑡𝑟𝑧)2(𝑡𝑟𝑧)](𝐵𝐹4) ⋅ 𝐻2𝑂 studied in reference [265]. This compound performs 
a spin transition with hysteresis cycle at an equilibrium temperature around 𝑇 =
358 𝐾. This spectrum is obtained using an excitation at 532 𝑛𝑚, starting from 
particles deposited on a glass slide. It was noticed, as the authors have pointed out, 
that at room temperature 𝑇 = 298 𝐾, (system in LS state) vibrational modes are 
detected at 200, 214, 287, and 301 𝑐𝑚−1. These bands which constitute the 
fingerprints of the LS state disappear at high temperature when the system reaches 
the HS state. 

1.8.1.6 Optical Microscopy Measurements 

 One of the most remarkable properties of spin transition materials is their 
thermochromism (usually pronounced) due to the change of the electronic 
configuration of the SCO centers. In fact, the visible UV and IR absorption bands 
are affected by the spin transition, thus allowing an excellent optical 
characterization of these materials by optical microscopy [266].  

A multitude of physical information can be deduced from the analysis of optical 
microscopy images like the HS fraction, 𝑁𝐻𝑆, allowing us to go back to the nature 
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of the transition, the propagation speed or speed field of the HS / LS interface, 
length variations in single crystals between the two phases [267]–[279]. As a result, 
it is possible to monitor the SCO phenomenon utilizing optical reflectivity 
absorption spectroscopies. Since the absorbance is closely proportional to the 
concentration of the colour centres when normalized appropriately, these 
absorption spectra directly yield the temperature dependence of the molar fraction 
of the metal ions in the LS or HS states. 

 

 Figure 1. 24 Selection of images of a single crystal of the compound [{𝐹𝑒(𝑁𝐶𝑆𝑒)(𝑝𝑦)2}2(𝑚 −
𝑏𝑝𝑦𝑧)] placed under vacuum in a cryostat and illuminated by a light source of 2.47𝑚𝑊 during 
the heat-induced transition. The images are taken during the heating phase with a thermal 
scan of 0.2 𝐾𝑚𝑖𝑛−1 [280] 

In Fig. 1.24, we have represented images of a single crystal of the compound 
[{𝐹𝑒(𝑁𝐶𝑆𝑒)(𝑝𝑦)2}2(𝑚 − 𝑏𝑝𝑦𝑝𝑧)] studied as part of Mouhamadou SY's thesis (team 
P2MC) [24]. These images are obtained through the light microscope and show a 
first-order phase transition with an HS/LS interface propagation nucleation 
regime. The crystal appears lighter in the HS state and darker in the LS state. An 
analysis of the optical density according to the methodology described above 
makes it possible to go back to the hysteresis cycle of the thermal transition that 
we have shown in Fig. 1.25. 
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 Figure 1. 25 Thermal evolution of the green optical density of a single crystal of the compound 
[{𝐹𝑒(𝑁𝐶𝑆𝑒)(𝑝𝑦)2}2(𝑚 − 𝑏𝑝𝑦𝑝𝑧)] (Fig. 1.24), showing the hysteresis cycle of the spin transition. 

Compared to the magnetic measurements, the optical microscopy studies allow 
the characterization of the spatiotemporal aspects of the SCO transition on a 
unique single crystal. The orientation of the interface connects to the 
crystallographic changes and gives crucial information about the anisotropic 
character of the structural changes. 

1.8.1.7 Refractive Index Change 

 Spin crossover thin films can be used to modulate the propagation of 
electromagnetic waves in plasmonic or other types of guided-wave devices. ref. 
[281] for example of a surface plasmon polariton (SPP) wave. For an appropriate 
combination of the wavelength, polarization and incidence angle of the exciting 
light beam, a resonance is observed in the reflectance spectra. This is the so-called 
“simultaneous wave vector and frequency matching condition”. When the 
temperature of the multilayer is increased, the spin state of the SCO layer changes 
from HS to LS, and the associated increase of the refractive index leads to a shift of 
the resonance to lower angles. This temperature-dependent behavior occurs due 
to both ordinary thermal expansion of the material as well as due to the SCO 
phenomenon. [282] However, these two phenomena can be differentiated due to 
the observed discontinuity of the shift of the minimum of the angular reflectance 
around the transition temperature of the film.  

1.8.1.8 Electrical Measurements 

 A number of recent papers have been devoted to the study of the transport 
properties of SCO materials from the single molecule or nanoparticle [218], [283]–
[286] to the macroscopic level [287], [288] with promising perspectives in 
nanoelectronics and spintronics. In particular, the characterization of a single 
object placed in a “nano-gap” has been complicated. There is always a considerable 
uncertainty for assessing the real origin of the variations in the electrical current 
changes measured on the samples as a function of a bias voltage; these could be 
due to the SCO or other unrelated phenomena. Furthermore, it is not trivial to 
extrapolate the different physical properties observed on a macroscopic ensemble 
of (nano) objects to those observed in the single object measurements. There are 
theoretical calculations in the early stages of development for the description of 
the electrical transport in SCO materials that will surely provide useful help. For 
example, it has been observed that the thermal hysteresis loop in the dc electrical 
conductivity of the compound [𝐹𝑒(𝐻𝑡𝑟𝑧)2(𝑡𝑟𝑧)](𝐵𝐹4) is clearly associated to the 
SCO phenomenon [287]. It was observed that the LS phase of the compound is 
more conductive than the HS phase due to a lower activation barrier of the LS 
form. It was shown that the possibility to observe a spin state dependence of the 
conductivity in the highly insulating SCO materials is very dependent on the 
interplay between the spin transition temperature and the activation parameters 
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of the compound. Additionally, it was also demonstrated that by modifying the 
conditions of the synthesis, it is possible to modify drastically the charge transport 
behavior of the sample without affecting the SCO properties of the material. In 
consequence, small variations in the morphology or composition of the measured 
objects can lead to dramatic changes in the conductance behavior. All these studies 
reveal the electrical measurements as a promising characterization tool for 
performing size effect studies of SCO materials 

 

1.8.2 EMERGING APPLICATIONS USING MOLECULAR SPIN 

CROSSOVER COMPOUNDS 

As a result of their importance in the natural world and their potential application 
as molecular-scale switches, molecules with bistable spin states are widely studied. 
Different physical-chemical events are involved in molecular switches, and the 
switching event is usually accompanied by a major rearrangement in the locations 
of atoms.  In this section a review of emerging properties and applications of spin-
crossover (SCO) materials in a wide range of technologies, SCO materials and 
frameworks have been sought after for their many potential applications including 
molecular electronics [199]–[201], [286], [289]–[293], high-density reversible 
memory [7], [8], [13], [15], [72], [219], [286] actuators [12], ultrafast nanoscale 
switches, [13], [15], [72], [219], [286], [294] sensors [13], [219], [286], [295] and 
displays [8], [13], [15], [72], [219], [286]. Understanding the mechanisms that control 
the collective behaviours of SCO materials could significantly enhance their 
potential to be engineered for specific applications. 

Nowadays, it is evident that SCO compounds are among the most promising 
innovative materials. SCO compounds have opened a new branch in the field of 
material science with significant well-adapted properties, such as room-
temperature operating range, chemical stability, short addressing time, low 
addressing power, and complete reversibility behavior, which represent potential 
functionalities in the context of upcoming technologies [16]. These remarkable 
developments in the SCO area have been amplified in the last two decades, thanks 
to intense theoretical and experimental investigations [17] [29]. Today, research 
and development are focusing on nanotechnology, and as a result, basic research, 
as well as, profit-oriented industrial development laboratories’ slogan, is “go nano”. 
The study of SCO materials at a reduced scale has become feasible, thereby 
envisioning fascinating insight into spin transition (ST) phenomena.  

1.8.2.1 Molecular electronics or Spintronics 

Use of spin-crossover (SCO) complexes as building blocks for molecular 
spintronics are promising because the spin state of the molecules can be switched 
reversibly between low spin (LS) and high spin (HS) by external excitations like 



71 
 

temperature, light, pressure, magnetic field [72], [227], [286]. In bulk and thin 
films, spin transition of different SCO complexes has been documented for such 
external stimuli [229], [231], [296]. However, for potential application in spintronic 
devices, the molecules need to retain their spin-crossover properties when 
deposited on surfaces. More importantly, for a single molecular device application, 
it has to be preserved at the first molecular layer or even for single molecules in 
contact with the substrate [297]. SCO transition by means of voltage pulses was 
possible for single 𝐹e − 𝑝ℎ𝑒𝑛 spin crossover molecules on 𝐶𝑢𝑁 ∕ 𝐶𝑢(001) owing to 
the weaker hybridization between the molecule and 𝐶𝑢𝑁. But the switching was 
not possible for the molecules on bare 𝐶𝑢(001) because of the strong coupling 
between the molecule and 𝐶𝑢(001) [297]. In an ultrathin film of another SCO 
complex [𝐹𝑒(𝑏𝑝𝑧)2(𝑝ℎ𝑒𝑛)] the transition has been observed only in the second 
layer of molecules, the first molecular layer was working as a decoupling layer from 
the substrate [232]. These studies show that in order to have spin crossover for the 
single molecules or in a monolayer of molecules on a substrate, the molecule 
substrate interaction has to be rather weak. Passing a current through a molecule 
[298], [299] or mechanically stretching or squeezing its ligands [300], [301] can 
reversibly change its spin-state; a voltage can switch between the two broken 
symmetry states of an antiferro-elastically ordered chain [302]; and strain can 
induce the motion of domain walls in ordered phases of SCO materials [303]. These 
experiments suggest that applying a voltage or strain could also induce motion of 
the defects somewhat analogous to the current induced motion of skyrmions [304], 
[305]. Either of these effects would make a valuable resource for spintronic 
applications. With such a wide range of environment-sensitive properties and 
spintronic capabilities [306]–[308], it is not surprising that SCO molecules have 
attracted significant interest from the community.  

Thin films and nanoparticles can be patterned to suit the needs of device 
elaboration in a complementary approach to those developed as described above 
[309]. It is interesting to note the diversity and the complementarity of the 
techniques used in this purpose: for example, the combined SAM/lithography 
technique of Molnár et al. [309] to produce nanoparticles of desired shape and size, 
or the combined drop-casting/stamp technique of Cavallini et al. [310] to produce 
1-D type structures. The use of this latter technique has further allowed them to 
reproduce CD-patterns with 𝐹𝑒 − 𝑝ℎ𝑒𝑛 on silicon substrates [311] as shown on Fig. 
1.26 
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 Figure 1. 26 Schematic representations of (a) the micro-inject moulding in capillaries process 
and (b) stamp-lithography controlled wetting process, and on the left optical microscopy 
(insert AFM, vertical scale 0-80nm) picture of the pattern obtained by this latter process using 
a CD-pattern mould. Adapted from [311]. 

 

1.8.2.2 Spin Crossover in Nanoparticles, Thin Films and Nanocomposites 

The appealing properties of thin films [312] or nanoparticles [291], [313]–[320] 
confer a promising market for industry while simultaneously bridging the gap 
between the understanding of single molecules and bulk macroscopic materials 
behaviours. When individual materials and technologies achieve their limits in 
terms of application needs, new technological strategies are introduced to 
substitute or turn their value in a different manner. One of the ways to overcome 
the drawbacks of a given material is attained by making it work in combination 
with other materials in composites and nanocomposites. This requires obviously a 
more complex, interdisciplinary approach. Basically, a composite material is 
defined as a material made from two or more constituents with different properties 
which, when combined, produce a material with different characteristics from the 
individual components. Regarding this aim, the manufacture of thin films, 
nanoparticles and other nano-objects together with a nanoscale understanding of 
the material properties is of central interest [196], [281], [291], [293], [321]–[327]. 
The evolution in the understanding of ST at the nanoscale level has been 
stimulated through instrumental improvements in nanoscale manipulation [292], 
measurement methods [328]. Simultaneously, a continous boost in computing 
power has permitted the modelling of the materials and their properties at the 
nanoscale level. New attractive progress has been made in the area of SCO 
complexes with infinite one-, two- or three-dimensional (1D, 2D, 3D) networks, the 
so-called coordination polymers [329]. The major goals of that approach are to 
enhance and fine-tune cooperative properties by the strong covalent links between 
the metallic cores in the polymers.  

In recent literature, several highly cooperative polymer systems have been 
reported displaying hysteretic behaviour (thermal and piezo) even, in some cases, 
at room temperature. It is generally accepted that the SCO phenomenon depends 
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on the molecular environment (anion, solvent, packing) [330]. Among the “exotic” 
SCO nanoparticles system, one can cite the nanoball reported by Duriska et al. 
[131], a 𝐹𝑒(𝐼𝐼)(𝑁𝐶𝑆)2 − 𝐶𝑢(𝐼)(𝑇𝑝4−𝑝𝑦)(𝐶𝐻3𝐶𝑁) association that exhibit thermally-
induced, light-induced, and guest-induced (by complexation with an external, 
“guest” molecule) spin transition. 1-D nanowires or nanotubes of SCO systems have 
not been successfully produced [286]  before 2012 (although enhanced shape 
anisotropy by confined growth [331] and patterning of nanocrystals [310], [311] into 
1-D-like systems were known), when the first example of the template assembly of 
a mononuclear SCO molecule into nanowires was reported by Martinho et al. [332]  

Some surprising developments have come from an unexpected exchange with 
biology, as Naik et al. have used a biomembrane to grow [𝐹𝑒(𝑝𝑡𝑧)6](𝐵𝐹4)2 
nanocrystals, using it as a natural stencil to transfer the patterns on Si wafers by 
conformational contact [333]. The practical applications range from moisture 
sensors [334] to digital displays [335]. 

 

1.8.2.3 Actuators (MEMS/NEMS) 

Microelectromechanical systems (MEMS) are microscale devices able to transform 
a mechanical signal into an electrical one and vice-versa. The long-range order of 
switching molecules results in a collective or cooperative volume shift at the 
macroscopic level, which can be easily exploited for actuation purposes. The 
combination of SCO materials and MEMS opens up new possibilities for MEMS 
actuation as well as the study of SCO mechanical characteristics. Although SCO 
compounds that act at room temperature are now widely available[336], their 
deposition on delicate mechanical parts and reliable performance remain a 
significant issue. The potential of SCO materials as actuators necessitates a 
thorough understanding of their mechanical properties, as well as, their effective 
integration into practical devices and appropriate transduction mechanisms.  
Recently M.D Juarez et al. has been able to achieve MEMS devices in which the 
SCO molecules are not only used to tune the device mechanical properties but also 
perform controlled and reversible macroscopic work under ambient conditions 
[337]–[343].  

In the future, nano-systems will provide new opportunities for the selective and 
sensitive recognition of a wide range of measuring capabilities. Furthermore, the 
development of new stable and processable compounds as well as a new dedicated 
procedure have allowed for significant progress, opening up new technological 
perspectives for SCO compounds and reviving interest in the field. For instance, 
miniaturized sensors for detecting diverse physical contact such as tiny weights, 
pressure, radiation (electromagnetic or simple light), and chemical and biological 
substances may be realized with nano-systems or nano-elements. There is no 
doubt that the trend is to create nano-systems, and in this context, systems that 
are superior in energetic efficiency, easily integrable, environmentally friendly, and 
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cost-efficient. However, these real-world applications have just not yet reached 
industry, primarily because there are still scientific and technological barriers 
[235]. The parameter space where bistability can be reached is still too small 
compared to industrial needs, and triggered effects such as LIESST happen at too 
low temperatures. It could be a possibility that a pure SCO system might not be 
able to satisfy all the requirements [344]. However, more exotic systems can be 
devised to make use of the high sensitivity to the environment of SCO centres, for 
example, in molecular sensing by guest-dependent SCO in a SCO framework [345]. 
Research applications, notably in the field of non-linear optics [344], are also 
considered. 

Therefore, this work aims to reduce the gap between the theoretical understanding 
of the phenomenon and the practical applications. 
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Chapter 2. 
Magnetoelastic modelling of core-shell 

spin-crossover composites 
 

 Adapted from article “Magnetoelastic modeling of core-shell spin-crossover nanocomposites” 

 Hassane Oubouchou, Yogendra Singh, and Kamel Boukheddaden Phys. Rev. B 98, 014106 

2.1 Introduction 

Core–shell nanoparticles have garnered a lot of interest in recent years owing to 
their fascinating properties and extensive choice of applications in a variety of 
fields ranging from catalysis, photocatalysis, drug delivery, sensors, electronic 
device applications, surface plasmon resonance[1], and other phenomena[2][3]. In 
recent years different core-shell gold nanostructures have been studied regarding 
their catalytic properties[4][5], gas storage and separation, information storage[6-
10]. Core-Shell nanostructures falls into a special category of materials which could 
be wisely modified and designed to tune the cores and the shells material and 
morphology to serve our purpose. Various core–shell nanostructures can be 
created with tunable properties that can perform vital roles in several 
developments and promise sustainable solutions to current problems. The core–
shell nanostructured materials present tremendous opportunities as we can couple 
different or same types of materials of diverse shapes and sizes while varying 
core/shell widths, which could support different structural morphologies. These 
nanoparticles could be fabricated into any shapes such as: centric, eccentric, 
spherical, star-shaped, fibrous or tubular and so on, to name a few[8]. The control 
which could be exerted over the physicochemical properties of the core–shell 
nanostructures, simply by modifying or adjusting their size and shape is truly 
exciting[9][10]. Different core–shell nanostructures correspond to many distinct 
characteristics which are being exploited in various fields of biomedical and 
nanomedicine, like drug delivery,[11] bioimaging[12], cancer treatment, so on and 
so forth[13]. Metal-based magnetic core-shell nanoparticles would provide 
excellent magnetic sensitivity and biocompatibility. 

Interestingly, there are various kinds of core–shell nanostructures possible, 
ranging from the permutation and combination of various types and classes of 
metal, semiconductor, non-metal, and polymeric materials. Owing to their 
benefits, such as scalability, cost-effectiveness, and stress-free device fabrication 
capabilities [17- 20], core–shell have amassed reputation as a class of innovative 
nanomaterials with numerous advantages in already advanced and saturated field 
of electronics containing organic photovoltaic solar cells, sensors, organic light-
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emitting diodes, and field-effect transistors. 

The well-established synthesis methods afford good reproducibility, narrow size 
distribution, and good control over the shape and size of the nanoparticles 
(NPs)[16]. Different chemical and physical properties of the core-shell interface 
and their components contribute to the system's complexity and attract efforts to 
understand them. The various fabrication methods employed for designing core–
shell nanoparticles such as: sol–gel process, hydrothermal production, emulsion 
polymerization technique, microemulsion polymerization, solvothermal synthesis, 
and chemical vapor deposition method etc.[17-26].The core-shell architecture is 
typically fabricated by a dual-step or many-step synthesis route, firstly core is 
prepared and then shell is formed on the core particle through various techniques 
subjected to the variety of core – shell nanostructured materials and their surface 
morphologies.[19] 

It is important because many of the core-shell properties depend on the size, shape 
and composition. The collective behavior associated with the interparticle, dipolar 
and/or exchange interactions is critically important to understand the magnetic 
response of an ensemble of nanoparticles. However, there is scarcity of research 
related to magnetostatic, magnetoelastic, and magneto-dynamic properties of 
core-shell structures. In the case of nanoparticles, interfaces play a very crucial role 
in these systems for example let’s say diamagnetic cores and magnetic shells, the 
exchange-coupling between two different magnetic regions such as a disordered 
surface layer and a magnetically ordered core drives to exciting effects. The 
Interface region, which plays a crucial role in the core-shell structure could be used 
to moderate or amplify the magnetic frustration through various mechanism, as 
this is the region where we see a breakdown in translation symmetry. This could 
be either manufactured through lattice mismatch or due to the inherited 
randomness in the system, which increases the probability of broken bonds at the 
interface, thus lowering the coordination number, which changes the local 
exchange interaction and drives to magnetic frustration. As we are already working 
in the nano regime [20- 22], the effect of surface spins disorder could be controlled 
through tweaking the surface to volume ratio. Taking into account that high 
anisotropy nanoparticles have weaker surface effects, with further reduction in 
size, it is expected that they will demonstrate further reduction in exchange bias 
effect, thus, in turn, inheriting furthermore complexity to the magnetic response 
of the system, which is reflected in a shift of the hysteresis loop during field-cooling 
processes[23][24] 

Recently the occurrence of such effects has been revealed in bicomponent systems; 
for instance, in Au/Fe3O4 core-shell nanoparticles, it is related to the presence of 
a spin-glass-like layer at the particle surface[25]. While for the single-phase 
magnetic nanoparticles, this effect is ascribed to surface spin disorders[26-28]. 
Thus, we have various parameters through which we can attune the magnetic 
response of multicomponent nanostructures such as the atomic structure of the 
interface (uncompensated spins), finite-size effect, morphology, surface 
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effects[29][30], shell thickness or differences between effective anisotropies[31] are 
crucial factors, as they determine the strength of the exchange bias effect in 
nanoparticles. The dependence of the exchange bias field on temperature can be 
used to probe whether the magnetic response arises from finite-size effect or the 
surface layer with canted spins are to be suspected. 

One of the promising strategies to achieve such multifunctionality is combining 
several coordination networks of different chemical compositions into core-shell 
heterostructures. Such approaches have been used in the last decade, for instance, 
on micron-scaled MOFs giving heterogeneous core-shell MOFs[31-35] or “MOFs-
on-MOFs” crystals[36][37] exhibiting optimized porosity, enhanced storage 
capacity and multifunctionality. Another approach to designing original 
multifunctional materials consists in combining coordination networks with 
inorganic materials of completely different nature. Among the major 
breakthroughs in the field, most of the studies concern the formation of metal or 
metal oxide nanoparticles embedded in various MOFs using either, post-synthetic 
incorporation methods or growth of a MOF shell at the surface of metal, metal 
oxide (Fe3O4), quantum dots or rare-earth nanoparticles.  

Among the various types of core-shell structures, system exhibiting molecular 
magnetism are also attracting huge scientific interest because of the extraordinary 
variety of their physical properties (electrochromism, ferromagnetism, 
photomagnetism, piezomagnetism, spin crossover), which opens up prospects for 
original functional materials [38-50]. An upside of using these materials is that we 
can use molecular chemistry to our advantage, which allows us to use soft synthetic 
routes, providing greater flexibility in designing and tuning physical properties of 
the molecule-based materials.  

In addition, the control of their size and morphology at the nanoscale permits not 
only to investigate the impact of the size-reduction effect on physical and chemical 
properties, but also opens new perspectives for technological applications. The 
idea is to utilize various platforms available (MOFs, PBA,….), while designing 
multifunctional nano-systems so that we can combine various physical aspects or 
give rise to new exotic features through synergetic effect. 

2.2 Core–Shell Spin Crossover 

During the last decade, compounds with multistep spin conversion remained quite 
rare and attracted increasing attention in theoretical and experimental studies[51-
55] due to their possibility of building up three-byte electronics. Multistep SCO 
behavior results from structural ordering or/and the existence of multistability in 
the molecule itself, like in binuclear SCO systems[56][57] In contrast, some 
multistep SCO systems consist of an asymmetric unit containing two or more non-
equivalent sites [58][59], having different local environments. At the macroscopic 
scale, the competition or the interplay between the two types of SCO sites manifest 
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through the existence of an intermediate phase associated with partial conversion 
from HS to LS states. It is worth noticing that the processing of SCO materials with 
two inequivalent sites, although possible, is hardly controllable, and most of the 
time, the behavior of the high-spin fraction is hardly predictable. That is why 
recently, chemists and physicists started designing well controllable and 
reproducible SCO core-shell nanocomposites made of two SCO materials, thus 
combining the SCO properties of both the core and the shell components in the 
same system[60]. Till now, the interest in the finite-size effects properties[61-64] 
and the manipulation[65], the design and visualization[66] of small objects at the 
nanoscale is rapidly growing since the adapted near-field technologies are now 
available. This was the case, for example, of Prussian Blue Analogs for which core-
shell nanoparticles have been synthesized, and their thermal and photo-striction 
properties have been investigated as a function of the thickness and the nature of 
the core and the shell[67-70][59]. With the development of nanotechnologies and 
the availability of experimental results, several types of nanocomposites 
integrating the SCO properties have been designed by embedding SCO 
nanoparticles within organic polymers[71-74] in biopolymers [75] or in mesoporous 
silica matrices[72][76-78]. 

However, the critical function of the matrix and interface has been the crux of 
debate for years and is still being investigated. In the first studies devoted to SCO 
nanoparticles (NPs), puzzling and intriguing trends between SCO behaviors were 
identified, such as 7 nm NPs of Hoffman clathrate family [Fe(pz)M(CN)4] (M = Pt, 
Ni) showing a partial and gradual SCO transition without any hysteresis[79]. In 
contrast, 4 nm particles of [Fe(pz)Ni(CN)4] embedded in chitosan beads revealed 
a large thermal hysteresis loop close to room temperature[80][81]. Having the same 
environment poses a significant challenge for chemists because tuning size 
necessitates the use of various methods or surfactant-based approaches. 
Surfactants, even in trace amounts, can interact with and change the behavior of 
the SCO [82].  Also, later it was found that even in the absence of any 
contamination, the role and effect of environment cannot be fully explained, and 
it is not just the content of the interface (chemical nature) but the interface as a 
whole (rigidity and thickness) [83] might play a much more crucial role than 
anticipated. Which has been illustrated effectively using an electro-elastic model 
by Boukheddaden and co-workers[84][85]; the authors suggest that acoustic 
impedance mismatch between the core and the shell may be detrimental to the 
cooperativity. 

2.2.1 Experimental observations 

A lot of work has been done experimentally on the core-shell architecture in the 
SCO field; among the numerous synergies that can be targeted, the most studied 
one is related to SCO[46] / CTIST synergistically combined with ferromagnetism. 
As it is well-known, PBAs [86]exhibit electron transfers accompanied by a spin 
shift that are caused by light and/or temperature, a wide range of magnetic 
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properties, including ferro/ferrimagnetic ordering, are also observed at high Curie 
temperatures[87]. Since most PBAs have minute variation in cell parameters, 
growth of the similar or different PBA networks could be achieved. Single-step 
synthesis of self-standing charged PBA particles and core-shells/heterostructures 
without the use of a surfactant by homo- and heteroepitaxial growth on PBA 
charged seeds demonstrated by Catala et al. [46], Fig. 2.1 enables the development 
of heterostructures with control over PBA thicknesses. 

 

 Figure 2. 1 (Left) Example of STEM-EELS mapping of CsFeCr@CoCr showing the coreeshell 
architecture. (Right) Example of a high-resolution TEM micrograph of a 
CsCoCr@CsFeCr@CsNiCr heterostructure and the elemental profile across the particle. 
Adapted from Ref. [46]. 

It is crucial during the growth to avoid the contamination of the interface and 
various mechanisms are employed to avoid it[88].  Growth mode may also get 
affected if the lattice misfit between the core and shell entities is well above a 
specific critical value (~ 4 − 5 %), formation of islands on the edges may start 
appearing in order to relax the strain[89]. Various studies [36][90][91] regarding 
heterostructures with a core that exhibits a CTIST (either photoinduced or 
thermoinduced) and ferromagnetic shells were conducted, which discussed about 
the role strain played in shifting the magnetization of core entities[90]  (Co IIFe III 
pairs ), towards higher temperatures which were closer to that of shell (CsNiCr) 
entities. This synergy between core and shell was explained through magnetic 
dipolar interactions between the core and the shell entities 
(CsNiCr@CoIIIFeII@CsNiCr particles, 10 nm photoactive shell sandwiched 
between a 12 nm ferromagnetic core and 5 nm external ferromagnetic shell).  

However, almost no photo-transformation was observed by Presle et al. [91] for 
larger particles (Rb0.5CoIIIFeII 0.8@Rb0.2NiCr0.7 45 nm core and 26 nm shell), 
for a similar misfit range, which was again explained due to strong coupling 
between the core and shell and the ratio between the core and shell thicknesses 
(shell layers affecting the expansion of core). Although, studies conducted on 
larger heterostructures (greater than 200 nm, of Rb0.2CoIIFeIII@RbMCr, where M 
= Ni, Co, and Cr), with low misfits (~ 0.9 %)  by Talham and co-workers [36][91-
93], shows a 90 K decrease in magnetization, due to CTIST induced switching in 
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core from HS to LS state during the cooling regime. A strained layer with a 
thickness of 24 nm for KCoCr and 43 nm for KNiCr was proposed [94] see Fig. 2.2, 
above which a bulk behavior could be considered. This highlights the importance 
of the volume ratios between the core and the shell in optimizing these mechanical 
effects, for both SCO core's impact on the shell and vice-versa. This is a simple 
demonstration of mechanical coupling caused by the CTIST's volume transition. 
The most significant argument is that, even though CsNiCr shell exerts strain over 
the core, SCO transition is sustained at a slightly lower transition temperature 
(though without hysteresis) while the core remains contracted. These examples 
show how synergies can be obtained by elastically binding the center to a magnetic 
shell. 

 

 Figure 2. 2 RbCoFe@KCoCr heterostructures and scheme showing the presence of a strained 
region released by light. (Bottom left) XRD diagrams showing the contraction of the core and 
strained shell at 160 K and the released strain under light. (Bottom right) 𝜒𝑇 = 𝑓(𝑇)plots for 
heterostructures comprising a 137 ± 12 nm core and thicknesses of 11 nm (1), 23 nm (2), and 37 
nm (3) showing SCO of the core at the same temperature. Adapted from Ref. [94] 

Aside from PBA-based core-shells, an interesting illustration was given on iron 
triazole-based core-shells [52], which combine a [Fe(NH2trz)3](BF4)2 core and a 
[Fe(Htrz)2 (trz)](BF4) shell with the aim of coupling different SCO behaviors. The 
rods (crystallites that make up the shell) on the upper/lower sides of the core are 
shorter than the rods rising on the core sides (see Fig. 2.3). 
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 Figure 2. 3 SEM images of the SCO@SCO particles at an early stage (a) and final stage (b). cT 
¼ f(T) plots for the core alone (c), the shell alone (d), and the resulting core shells (e). Adapted 
from Ref.[52]. 

The authors propose a mixed-composition shell with [Fe(NH2trz)3z(Htrz)3-3z](BF4)2 

instead of pure [Fe(Htrz)2(trz)] (BF4). The total SCO behavior indicates the existence of 

three SCO transitions (core, shell, and interface layer) on the ascending branch, while 

the [Fe(NH2trz)3z (Htrz)3-3z](BF4)2 shell has intermediate temperatures, resulting in a 

very gradual conversion around 285 K. 

2.2.2 Theoretical observations 

In a pioneering work, Kawamoto and Abe[95] were the first to point out the value 
of surface relaxations, demonstrating that the hysteresis width decreases with size 
reduction in a different manner depending on the nanoparticle form. At the same 
time, the equilibrium temperature remains unchanged (Fig. 2.4). However, 
experimental observations of phase stability in some coordination nanoparticles 
have revealed a clear size dependence, resulting in a downshift of the equilibrium 
temperature and the existence of incomplete transitions[79][81]. Surface chemical 
reactions, structural disorder, and/or ligand modification by the external 



98 
 

environment may all be blamed for various physical and chemical properties at the 
surface. Such observations have been taken into account by adding specific 
boundary conditions (surface molecules fixed in the HS state [96]or a weakening 
of the ligand field at the surface[97][98]. An investigation of local surface effects 
using the Ising-like model has shown that the HS surface sheet acts as a "negative 
pressure" [96], but pressure effects can be grasped through an effective 
modification of the model (Fig. 5). 

 

 Figure 2. 4 (a) The fraction of the unit in the HS state in an equilibrium state, nH, for various 
sizes of cubic particles. For comparison, the result at N ¼ 48 with the PBC is also shown. (b) 
Size dependence of the width of the thermal hysteresis DTc for cubic particles (CN), spherical 
ones (SN) and the PBC case. 

 

 

 Figure 2. 5 Calculated temperature dependence of the HS fraction for square-shaped 
nanoparticles of different sizes in the framework of the Ising-like model with fixed boundary 
conditions (HS state fixed at the surface). From left to right, L = 4, 7, 10, 40, 200 (quasi-infinity). 
Insert: Lattice configuration in the case L = 6. Blue filled circles are HS-fixed (edge) atoms. All 
inside atoms are active: filled red (black) circles stand for atoms having two (one) inactive HS 
as nearest neighbors, and open circles stand for atoms surrounded by only active sites. 

Since the thermodynamic method can allow direct comparisons with experimental 
observations [99], the existence of surface physical properties different from those 
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of the nanoparticle core has been integrated in terms of surface energies in a simple 
nano-thermodynamic model [61]. The so-called core-shell approach is used to 
create spherical SCO nanoparticles with a bulk (core-like) and a surface (shell-
like). As the nanoparticle radius is reduced, the size reduction causes either a 
downshift or an upshift of the transition temperature (Fig. 2.6b) and follows the 
same decay as presented in Ref. [96] (Fig. 2.6a). Incomplete transitions and the 
inactivity of molecules at the surface can also be predicted using thermodynamic 
models, so the fixed boundary conditions suggested in Ref. [97] are retrieved; 
however, the possibility of fixing the surface in the LS state is not ruled out. Main 
conclusions derived thus far from these models are that the surface energy plays a 
significant role as the driving force of the spin transition at the nanoscale, and 
downshifting of the transition temperature with the occurrence of a residual HS 
fraction at low temperature appears to be much more prevalent than upshifting of 
the transition temperature with the occurrence of a residual LS fraction at low 
temperature [99]. 

Continuation is essential to keep enriching the future prospects of any field. 
Similarly, here spin-phonon models [100- 103]and the extension of these models 
accounting for the volume change during spin transition designed by several 
groups[104-106] leads to the electro-elastic model[107], which takes into account 
the coupling between the spin state change of the molecule (from LS to HS) and 
the change of the local molecular volume in the course of the spin transition and 
other models including the role of surface relaxations [108][109] and the particle 
environment[85][110-111]. Oubouchou et al. [107] conducted Monte Carlo 
simulations using the electro-vibrational model, with a nanoparticle embedded in 
an external environment whose elastic properties and structure were chosen to be 
close to the HS phase (“soft” matrix). The strain and local pressure mappings show 
that raising the thickness of the surrounding medium causes the elastic strain at 
the nanoparticle/matrix interface to be released and the transition temperature to 
be lowered (Fig. 2.7).This work result in predicting the thermal hysteresis, which 
moves according to the atomic surface/volume ratio and is in excellent agreement 
with the available experimental data of Volatron et al[79]. Since this pioneering 
work, the electro-elastic model has been extended to incorporate the case of core-
shell SCO nanoparticles, made of an active SCO core and an inert shell, where SCO 
core is investigated in detail as a function of the elastic properties (rigidity, lattice 
parameter misfit, and size) of the shell[84][112-115] 
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 Figure 2. 6 (a) Evolution of the equilibrium temperature with the size reduction. Insert: 
schematic representations of a spherical core-shell nanoparticle; (b) simulation of spin 
transition curves with the nano-thermodynamic model. The symbols display the spin 
transition for the bulk material. The lines show the transition for an 8 nm nanoparticle with 
different surface energy density differences between the HS and LS phases 𝛥𝜎 = 𝜎𝐻𝑠 − 𝜎𝐿𝑠. 

All of these experimental and theoretical findings of the physical properties of 
hybrid nano-objects and hollow nanoparticles pique enough curiosity and interest 
to warrant further research for both functional and fundamental reasons, as these 
structures depict the fundamental role of the external environment and interfacial 
interactions on phase stability at the nanoscale.  

 

 

 Figure 2. 7 (a) Thermal dependence of the HS fraction for square-shaped nanoparticles at 
constant core size surrounded by a various number of HS shell layers (0-20). The hysteresis 
shifts downwards as a result of the negative elastic pressure induced by the shell. (b) Evolution 
of the equilibrium temperature for different shell thickness (LS) 

 

Slimani et al. [112] used a similar method to show that if the matrix/nanoparticle 
couplings are strong enough, the external matrix will retain the bistability property 
in the SCO nanoparticle. To simulate SCO heterostructures, a further extension of 
the electro-elastic model was used [85]. Monte Carlo simulation was used to 
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examine the thickness and rigidity effect of the surrounding shell on the spin 
transition properties of the core. The SCO core's thermal hysteresis is found to be 
heavily influenced by the shell rigidity. Furthermore, when the shell rigidity is 
similar to that of the core, resonance activity is observed (Fig. 2.8). 

 

 

 

 Figure 2. 8 (a) Example of a simulated squared core-shell nanoparticle using the electro-elastic 
model. The elastic misfit between the core and the shell induces a strain in the heterostructure, 
which the deflection calculation can quantify. (b) Effect of the shell stiffness on the 
thermoinduced spin transition of the core-shell nanoparticle: hysteresis width (green line) and 
equilibrium temperature (black line). 

Felix et al.[97] used the spin-phonon model and Monte Carlo simulations to 
simulate core-shell nanoparticles. The interfacial energy is zero when the core and 
shell have identical elastic properties, and no change in phase stability shift is 
observed when compared to the corresponding nanoparticle or hollow 
nanoparticle. The elastic misfit, on the other hand, causes a compressive 
(respectively tensile) stress on the SCO core, resulting in an upshift (respectively 
downshift) in the transition temperature. Despite the fact that elastic models 
provide an origin for the core-shell coupling process, establishing a relation 
between Hamiltonian parameters and experimentally accessible quantities 
remains difficult. As a result, a continuum medium mechanism-based analytical 
method for modeling a core-shell nanoparticle with a coherent interface has been 
developed [116]. To optimize the elastic coupling between the core and the shell, a 
quantitative analysis of the effect of the interfacial elastic energy on phase stability 
can be carried out, and thus by injecting the interfacial energy density into the 
model, the spin transformation of the core-shell nanoparticle can be simulated. 
Since the elastic interaction between molecules is not explicitly taken into account 
in the model[117] (Slichter and Drickamer), and the elastic interfacial stress cannot 
be coupled with the distortions occurring during the spin-state transition, the 
effect of the elastic misfit on collective behavior and bistability cannot be grasped 
with this model. This is the key disadvantage of this method. 

Elastic models are a step forward in understanding the behavior of cooperative 
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SCO materials and providing a full explanation of the SCO material's interaction 
with its environment. They are more accurate and functional than mean-field or 
Ising-like models for simulating phenomenological behaviors of bulk SCO in all of 
their various yet convergent ways, vastly improving previous models. One of the 
most challenging tasks is to thoroughly monitor and evaluate the design of the 
interface in ultrasmall nanosystems (defects, types of bonds, etc.). Computational 
methods will be crucial in evaluating certain surface/interface energies and guiding 
chemists in nanostructure optimization. 

Experimental investigations in this field have been performed by several 
groups[52][118-121] among whom,Wang et al. [52] (see Fig. 2.3), in particular, have 
succeeded to grow high-quality spin-crossover nano-composites, which have 
different SCO properties since the former has a transition temperature T1 = 260 K 
and a hysteresis width of 4 K, while the latter shows a transition temperature T2 =
368 K and an associated thermal hysteresis width of 46 K. Thus, these two 
materials have different ligand fields and most likely different strengths of 
cooperativity between the molecules. In the experiment, the core is constituted by 
the material which has the smaller ligand field, which was then covered by the 
second material (stronger ligand field) in rather hetero-epitaxial conditions. The 
magnetic studies of the formed nanocomposite, reported by the authors in two 
References[52][119], showed the occurrence of clearly two transition temperatures 
on heating, located at 288 K and 314 K. Thus, the transition temperature of the first 
constituent (the core) increased by 28K while that of the second material (the 
shell) decreased by 54 K, due to the elastic interplay between the core and the shell 
nanostructures. Furthermore, a very gradual and third transition involving a small 
fraction of molecules occurs at 347 K. 

In this contribution, we propose to describe an ideal situation of active core-shell 
SCO nanoparticle, made of two SCO constituents able to convert between LS and 
HS states, using the electro-elastic model, with electronic and elastic parameters 
adapted to emulate as far as possible realistic data of SCO nanocomposites. Thus, 
we have chosen the core to have a smaller transition temperature than that of the 
shell, as core and shell constitute two different SCO compounds with specific 
ligand fields and elastic constants. The study of the core-shell nanoparticles is 
realized by Monte Carlo simulations in 2D lattices with square symmetry, with the 
aim to reveal the role of the elastic interaction between the two constituents on 
their transition temperatures on the one hand and the effect of their interplay on 
the mode of the nucleation and growth of their spin states during their thermal 
switching on the other hand. 

2.3 The Model 

As we have discussed in detail about the experimental and theoretical challenges 
and studies conducted previously. Here, we attempt to simulate a SCO 
nanocomposite core-shell nanoparticle constructed as a square lattice, where both 
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the core and the shell atoms can switch between the LS and the HS states. The core 
geometry is that of a square comprising NC × NC sites, while the shell lattice forms 
a hollow square formation around the core geometry (see Fig. 2.9a). The number 
of   atomic layers along the width, after the core boundary is considered as shell 
width and is denoted by Ns. As a result, the number of shell atoms is easily derived 

as, (NC + 2NS)
2 − NC

2 = 4 NS(NC + NS), and the total number of atoms of the 
composite is N2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. 9 (a) Schematic structure of the SCO nanocomposite. Blue and red dots are two spin-
crossover sites belonging to different materials. (b) The configuration of the elastic interaction 
in the two dimensions square model considered in this study.  

As we have already discussed in detail the original electro-elastic model with some 

Ns Nc 

N 

(a) 

(b) 
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of its thermodynamic properties in recent works. In this model we have introduced 
coupling between the electronic and elastic state properties which will account for 
the change in the local volume of the SCO molecules while switching from one 
state to another. Each atom at site “i, j” is characterized by its spin state Si = ±1 
and its coordinates (𝑥i, 𝑦𝑖). The atoms are constrained to move only in the x-y plane 
while their spin state and positions are being updated, by taking into account 
various local and global changes taking place in the lattice, which in turn 
determine the equilibrium of the system as whole.  

In this SCO core-shell nanocomposite (Fig. 2.9a) both core and shell entities have 
two accessible states, thus the system could be described by two-states fictitious 
spin S, where  Si = +1 or HS and Si = −1   or LS. In order to represent the 
thermodynamic features of SCO nanocomposites, we extend the general electro-
elastic model, which takes into account the coupling of two SCO materials in a 
particular lattice configuration. The general Hamiltonian[113] describing  SCO 
lattices is written as follows, 

H = Hcore + Hshell + Hinter               (2.1) 

Where, the core, shell and interface contributions write as follows 

Hcore = ∑
1

2i [∆c − kBT ln g]Si + Ac ∑ [rij − R0(Si, Sj)]
2nn

(i,j) + Bc ∑ [rik −nnn
(i,k)

R0
′ (Si, Sk)]

2  (2.2)  

Hshell = ∑
1

2i
[∆S − kBT ln g]Si + AS ∑ [rij − R0(Si, Sj)]

2nn
(i,j) + BS ∑ [rik −nnn

(i,k)

R0
′ (Si, Sk)]

2 (2.3) 

Hinter = Ai ∑ [rij − R0(Si, Sj)]
2nn

(i,j) + Bi ∑ [rik − R0
′ (Si, Sk)]

2      nnn
(i,k)           (2.4) 

In the shell and core Hamiltonians, the first term expresses the effective ligand 
field energy which contains the contribution of the ligand field Δ (∆S for the shell 
and ∆Cfor the core) and that of the entropy kBT ln g, where, g, is the degeneracy 
ratio between the HS and the LS states and is assumed to be same for the core and 
shell constituents. The origin of this degeneracy lies in the change of intra and 
inter-molecular vibrations spectra during the LS to HS conversion of the spin 
states. 

 In the present model, AC, and BC (resp. AS, BS, and Ai, Bi) represent the elastic 
constants between the first nearest neighbors (nn) and the next nearest neighbors 
(nnn) of the core (resp. the shell and the interface). For simplicity’s sake, all elastic 
constants are taken as constant over the whole lattice, to reduce the number of 
free parameters in the model, we have chosen AC = AS = Ai and BC = BS = Bi.  

An added benefit of the present model as we have previously introduced in[107] is 

that we can account for the change in the equilibrium distances between two 
neighboring sites depending on the spin states, or during the spin transition 
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between LS and HS states. If we take two nodes between nearest- or next-nearest 
neighbors of the lattice, located at sites (i, j) and (i′, j′), which are supposedly 
connected through springs or spring mimicking entities (polymeric chains) in this 
case, the instantaneous distance between them is written as r(i, j| i′, j′)  = |r (i′, j′)  −
 r (i, j)|, whose indexes for the nn are (i′ =  i, j′ =  j ±  1 and i′ =  i ±  1, j′ =  j) and 
for the nnn are (i′ =  i ±  1, j′ =  j ±  1). This arrangement of molecules (here, the 
sites) interacts via elastic springs, as depicted in Fig. 2.9b, and the equilibrium 

bond-lengths of which, denoted R0(Si, Sj)(resp. R0
′ (Si, Sk)) between two nn (resp. 

nnn) spin-crossover atoms located at sites i and j (resp. i and k) and having the spin 
state Si and Sj (resp. Si and Sk ) are given by 

R0(Si, Sj) = R0
HL +

δR

4
(Si + Sj)          (2.5a) 

R0
′ (Si, Sk) = √2R0

HL +
δR√2

4
(Si + Sk)            (2.5b) 

Where the quantities R0
HLand δRare, the equilibrium distance of HS-LS 

configuration and the lattice parameter misfit of two nn sites, between the HS and 
LS states respectively. They are obtained as a function of the nn equilibrium 

distances, R0
HH = R0(+1,+1), R0

HL = R0(+1,−1) and R0
LL = R0(−1,−1) as follows, 

R0
HL =

R0
HH+R0  

LL

2
,              (2.6a) 

δR = (R0
HH − R0

LL).         (2.6b) 

In view of the complex structure of Hamiltonian of the nanocomposite, in which 
spin and distortion variables are intricate, which prevents any possible analytical 
resolution, we employ Monte Carlo to our aid in order to solve this model 
Hamiltonian and study its thermal properties. We can achieve this through 
different mechanisms, we can visit these sites sequentially, randomly, or choose 
the sites randomly but relax both the spin and position for a given site 
simultaneously, although each procedure has its downside and benefits revolving 
around metastability and computational time involved. For the current scenario 
we chose to go with computationally intensive process so as to not compromise on 
the behalf of metastable states generated. The simulations are performed on the 
square lattice, by using a sequential procedure in terms of first updating spin and 
then relaxing lattice position variables, although the sites to update are chosen 
randomly.  

We used stochastic algorithm to conduct these investigations[122] by firstly 
selecting a site, 𝑖, randomly among the N2 sites of the lattice and calculated its total 
energy (both electronic and elastic), then its spin state is flipped i.e., if initially spin 
Si = ±1 and position, r i, a new spin value Si

′ = −Si is set without any change in its 
position, energy is recalculated after each flip. As now we have the energy for both 
the spin states, next step naturally is to compare the energy of the system in both 
the states and then employ usual Monte Carlo Metropolis algorithm to decide for 
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the final outcome. Subsequently, we proceed in the similar fashion to employ 
second MC process, this time applied on the positions of the sites in order to 
mechanically relax the lattice. For that, we move over the whole lattice randomly 
visiting each lattice site, while nudging each site from its instantaneous position 

by a small displacement δR (<< R0
LL) in this case δr = 0.001 nm, which is much 

smaller than the average distance between two neighboring sites (~1 nm). 
Afterwards, we compute the difference in total energy due to the change in final 
and the initial positions and accordingly accept or reject the final outcome 
employing the same mechanisms used during spin flips. This procedure although 
computationally intensive can be repeated several times for each spin flip in order 
to reach the equilibrium from both electronic (spin) and elastic (equilibrium 
distances) degrees of freedom. For this particular case we repeat the procedure of 
the lattice relaxation 10 times for each spin flip. Afterwards, a new site will be 
selected, randomly, and so on. Once all nodes of the lattice are visited for the spin 
change, we define such step as the unit of the Monte Carlo step and denoted 
“MCS”. In the present simulations, the thermal properties are calculated. At each 
temperature, we perform 105 MCS to reach the equilibrium state and we use 1000 
other MCS for the statistics. Within this procedure, each site is displaced 10 × Ntot

2  
times for 1 MCS. So, at each temperature, each spin state and lattice position are 
updated ~105 and 106 × Ntot

2 , times, respectively. We have checked that increasing 
the simulation time does not affect the final results, which ensures that we reached 
the stationary state for spin and lattice position variables.  The system is warmed 
up from T =  5 to 200 K in steps of increment 1 K, and then cooled down to the 
initial temperature. 

2.4 Results and Discussions  

2.4.1 Thermal Properties of the uncoated core 

To begin with we will start from investigating the individual core and shell lattice 
as a function of the temperature for different sizes, we will start from the square 
shaped core lattice size with cross section ranging from 10 × 10 to 40 × 40, as can 
be seen in Fig. 2.10a. The parameter values of the model, ∆C= 450 K, g = 150, AC =
BC = 105 K. nm−2 are chosen so as to reach the behavior of a first-order thermal 
transition with relatively small sizes. 

The LS R0
LL = 1 nm and HS R0

HH = 1.05 nm (RHL =
RHH+RLL

2
= 1.025 nm), lattice 

parameter distances, are selected after consulting the structural experimental 
data[123], so that they should reproduce relative lattice expansions ~ 1-5%, 
depending on the molecular crystal packing (presence of pi-pi strong π − π 
stacking, “weak” hydrogen-hydrogen bonding, etc.). Although these distances 
should not be confused with the Fe-ligand distances of the molecular coordination 
sphere. 
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Eventhough we consider an isotropic deformation of the crystal lattice, anisotropy 
in unit cell deformations may arise due to elastic constraints imposed by the 
interactions between ligands of adjacent molecules who have extended spatial 
occupations[124-126], as observed in several SCO systems and reported in recent 
theoretical investigations[127][128]. If we survey the experimental data we can find 
through Brillouin scattering performed on the single crystals of [Fe(ptz)6](ClO4)2 
we have estimates of bulk modulus values ranging from 5−20 GPa [129][130], we 
have taken this into account  while choosing the values for the elastic constants, 

so that they can lead to an estimated average bulk modulus, G ≈
AC

R0
~10 GPa. 

It is evident by observing Fig. 2.10a that increase in the size of lattice (core) leads 
to increase in the width of thermal hysteresis, which could be explained 
considering the increase in the lifetime of the metastable states, which are 
stabilized by the long-range elastic interactions between the SCO particles. The 
transition temperature of MC simulations in Fig 2.10a is more or less near 90 K, 
which is in excellent agreement with the one given by the relation, Teq =

∆C

kB ln g
 ~ 90 K. 
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 Figure 2. 10 (a) Thermal variation of the HS fraction of the bare 2D nanoparticle (with square 
symmetry) for different sizes, showing the occurrence of a first-order transition and the 
increase of the thermal hysteresis width with the nanoparticle size. (b) Snapshots showing the 
spatial distribution of the HS fraction along the thermal hysteresis for the particle 40 × 40. (c) 
and (d) provide the average HS fraction, 𝑛𝐻𝑆, and nn distance, < 𝑑𝑖𝑗 >, over concentric square 

perimeters (the center is that of the lattice) as a function of their distance from the center of 
the nanoparticle for the configuration 𝑇 = 92 𝐾 of panel (b). The parameter values are given 
in the text. 

The spatial distribution of domain nucleation and the HS fraction along the 
heating and cooling branches of the thermal hysteresis of a bare core lattice of 
size 40 × 40 is depicted in Fig 2.10b. As we can see surface effects aids in the 
propagation of nucleation from the corners toward the center of the lattice, the 
nucleation cannot start from the center due to the excessive energy barrier it has 
to face to grow the stable phase inside the metastable one. 

To clearly demonstrate and emphasize the role of boundary effects in the present 
results, we calculate the average nn distance, < 𝑑𝑖𝑗 >,  and the average 

magnetization (or HS fraction 𝑛𝐻𝑆), over concentric square perimeters, of size 2ℓ +
1(where ℓ goes from 0 to (𝑁 − 1)/2), for the temperature 𝑇 = 92 K during cooling 
cycle, which are then plotted in Figs. 2.10c and 10d as a function of their distance 
(= ℓ) from the center of the nanoparticle. Prima facie, one can clearly remark the 
effect of boundary conditions over the HS fraction and average nn distances 
(sigmoidal) which are decreasing in synergy as one move farther from the HS (𝑅0

𝐻𝐻) 
dominated bulk towards the LS (𝑅0

𝐿𝐿) populated surface of the lattice.  

Now that we have studied the core lattice in detail we will see the same for square 
shaped shell lattice size with layer width ranging from 3 to 10, as can be seen in 
Fig. 2.11. The parameter values of the model, ∆C= 450 K, g = 150, AC = BC =
105 K. nm−2 are chosen same as that of the core. It is again evident by observing 
Fig. 2.11a that increase in the size of lattice (shell) leads to increase in the width of 
thermal hysteresis. The transition temperature of MC simulations in Fig 2.11a is 
more or less near 90 K. 
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 Figure 2. 11 (a) Thermal variation of the HS fraction of the hollow 2D nanoparticle (with square 
symmetry) for different sizes, showing the occurrence of a first-order transition and the 
increase of the thermal hysteresis width with the nanoparticle size.  

2.4.2 Case of active core and shell spin-crossover nanoparticles 

Now that we have studied the core and shell lattices in seclusion, we can move on 
to spin-crossover nanocomposite, schematically described in Fig. 2.9a. To begin 
with, we start from 2D lattice with core lattice size, 40 × 40, with the same model 
parameters as those of the uncoated core of Fig. 2.10, although this time it is 
coupled with a shell lattice, which have a ligand field ∆𝑆 = 200 𝐾 with the same 
degeneracy ratio as that of the core (𝑔 = 150), whose width is varied from 0 to 10 
layers. 

We used the same Monte Carlo procedure to solve the thermodynamic properties 
of this composite system, which we used for the uncoated core and the hollow 
shell. The results of the simulations are summarized in the following sections in 
Figs. 2.12-2.15. To begin with, we study the effect of shell width, by varying the 
temperature to observe its effects on the total HS fraction of the nanocomposite in 
Fig. 2.12. Indeed we see that, the difference in ligand fields of the core and the shell 
of the nanocomposite start playing crucial role as we keep increasing the shell 
width, a two-step transition behavior is becoming more and more pronounced, 
with transition temperatures which are constrained between that of the uncoated 

core (𝑇𝑒𝑞
𝐶𝑜𝑟𝑒 =

∆𝐶

𝑘𝐵 ln𝑔
 ≈ 90 𝐾) and that of a free shell 𝑇𝑒𝑞

𝑆ℎ𝑒𝑙𝑙 =
∆𝑆

𝑘𝐵 ln𝑔
 ≈ 40 𝐾. Indeed, 

synergy between the two components of the SCO nanocomposite affects the 
transition of the whole system leading to the spin transitions appearing in Fig. 2.12 
shift to lower temperatures as a function of shell thickness. Evidently, the value of 
HS fraction in the plateau region of the total nanocomposite increases linearly with 
the shell-core ratio, this could be understood considering that as we keep 
increasing the shell width, we affect the HS fraction in two ways: (i) we directly 
add entities with lower ligand field value i.e., low-temperature transition (around 
50 K) in the shell region, (ii) we lower the transition temperature for nano-
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composite as whole by the increase in the number of layers will affect the distance 
of interface region(core surface) from the surface of the composite (shell region), 
which shift the high-temperature transition (around 100 K) relating to the core to 
lower temperatures.  

 Interestingly in Fig. 2.13, we can see these shifts in the equilibrium transition 
temperatures of both core and shell regions, which behaves almost linearly with 
the variance in the shell width,  as we calculate the average value between the 
upper and lower transition temperatures, however a difference in slope emerges 

for both the regions, bigger slope (
𝑑𝑇𝑒𝑞

𝑐𝑜𝑟𝑒

𝑑𝑁𝑆
= − 1 𝐾), for the core region which is 

more affected by the shell thickness, than the shell part (
𝑑𝑇𝑒𝑞

𝑠ℎ𝑒𝑙𝑙

𝑑𝑁𝑆
= − 0.25 𝐾).  

This difference is attributed to the inherent architectural geometry of the core-
shell system, and thus the role played by elastic configurations of the two systems 
become much more pronounced. By design core which is supposed to be 
completely bounded by the shell loses its free boundaries and thus any propagation 
of excess energy (stress, strain) has to be released through shell, and thus the 
behavior of relaxation will be dependent on the state of the shell (HS and LS 
relaxation dynamics). Also, depending on the transition dynamics of each region 
they in turn can affect (favor or disfavor) the transition of the other part, in this 
case we can see the shell favoring or inciting the LS to HS transition or disfavoring 
the HS to LS transition in the core.   

Since, the shell has a free surface, which helps the relaxation of the elastic energy 
excess it is only minorly affected from the core behavior. Overall, these aspects, 
lead to a different behavior for the core and the shell with the change in 
temperature.  

 
 

 Figure 2. 12Thermal variation of the total HS fraction (a) and the average lattice parameter (b) 
of the SCO nanocomposite for different shell thicknesses for a core size 40 × 40. The 
parameter values are: ∆𝑆= 200 𝐾, 𝑇𝑒𝑞

𝑆ℎ𝑒𝑙𝑙 ≈ 40 𝐾, ∆𝐶  =  450 𝐾, 𝑇𝑒𝑞
𝐶𝑜𝑟𝑒 ≈  90 𝐾. The used values of 

the elastic constants are: 𝐴𝐶 = 𝐴𝑆 = 105 𝐾. 𝑛𝑚−2 for nn interactions and 𝐵𝐶 = 𝐵𝑆 =
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105 𝐾. 𝑛𝑚−2 for the nnn interactions in the core and the shell. The equilibrium lattice 
parameter values were 𝑅0

𝐻𝐻 = 1.05 nm, 𝑅0
𝐿𝐿 = 1 nm and 𝑅0

𝐻𝐿 = 1.025 nm for both constituents. 

However, the transition temperature of a spin-crossover nanocomposite, where 
SCO core is surrounded by an inert matrix, which have already been studied[71], 
for core-shell spin crossover and Prussian Blue analogs, behaves differently: it can 
rise or decrease depending on the sign of the lattice parameter misfit between the 
core and the shell as a result of the shell's elastic effect, which causes the core to 
undergo compressive or tensile stress. 

 

 Figure 2. 13Average equilibrium transition temperatures of the shell and the core components 
of the nanocomposite deduced from MC simulations of Fig. 2.12. Bold lines are the best linear 

fitting. 

2.4.3 Electronic properties of the SCO nanocomposite 

To better understand the SCO nanocomposite, we will now dissect the system 
further into two sub-systems core and shell, and asses the effect of one on the 
other. In order to get a better perception regarding the synergy between the two 
SCO subsystems, we plotted the thermal behavior of the average value of the HS 

fraction of the core (nHS
Core) and the shell (nHS

Shell), for different shell thicknesses. 
Figures 2.14a and 2.14b show a summary of the findings. 

Let’s begin with the core system (Figs. 2.14a). It is evident that upon increasing the 
shell thickness, the entire hysteresis of the core region is shifted towards lower 
temperatures. This behavior is in fact bit intuitive if we consider the fact that the 
transition in shell will induce some elastic effects in both regions, and depending 
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on the nature of these effects, it may alter the local ligand field by exerting pressure 
on each connected site at the interface and further connected region during 
expansion/contraction when heated (resp. cooled), the LS (resp. HS) core benefits 
from the shell's HS (resp. LS) state, which drives its transition at lower temperature 
due to the elastic field induced by the shell on the core, which expands (resp. 
contracts) the core network.  

However, Fig. 2.14b differs somewhat. Depending on the results from sec. II, it is 
easy to deduce that the spin transition made by a free shell (shell without core) is 

around, Teq
shell =

∆s

kB ln g
~ 40 K. In this scenario, we see that as a function of shell 

width the thermal hysteresis will either have enhancing of its width or will have 
more of a gradual transition. The latter senses the effect of the core when reducing 
the size of the shell, as the switch to HS(LS) is hindered by the LS (HS) core state 
when the shell is heated (cooling), which 'opposes' the expansion (contraction) of 
the shell.   Since the shell is smaller in comparison to core lattice, the benefits of 
having free surface is easily overpowered by the size effects (ability to 
accommodate/dissipate excess stress/strain) of the core lattice, and the balance is 
thus shifted when the shell lattice further grow in size. This point is thus worth 
noticing that even though a thin shell layer which has much easier access to the 
surface is found to be more affected by the core elastic strain effect than the thick 
shell layer thus pointing toward the importance of both surface and size effects, 
and the roles they play in altering the shell's effective ligand field, which 
increases/decreases its transition temperature, as shown in Fig. 2.13. 

Other than aforementioned processes, other factors are also affecting the 
transition temperature of the shell lattice, such as core exerting pressure on the 
shell lattice which prevents single domain nucleation from developing in the thin 
shells. This could be controlled by enhancing the cooperative character of the shell, 
resulting in a decrease in its transition temperature towards that of the infinite free 

shell i.e., Teq
shell =

∆s

kB ln g
~ 40 K. One simpler way to do this is simply increasing the 

shell thickness, which in turn reduces the effect of the core, and improves the 
cooperativity, thus effectively resulting in the emergence of thermal hysteresis.  

Thus, in theory we have another way to control the transition temperature and 
tailoring the thermal hysteresis. Although it should be taken into account, that in 
this study, we treated the mechanical properties of the core and the shell as equal, 
which means that we used the same elastic constants for both elastic networks. 
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 Figure 2. 14: Thermal response of the HS fraction of the core (a) and shell (b) of the SCO 

nanocomposite, for different shell thicknesses (from Ns = 0 to 10), corresponding to the 
results of Fig. 2.12.  

2.4.4 Mechanical properties of the SCO nanocomposite 

Now done with the magnetic behavior of the core-shell architecture, we deep dive 
into the elastic properties of the SCO nanocomposite. To do so, we examine the 
thermal dependence of its mechanical properties by plotting its average nearest-
neighbor (nn) distances for the entire lattice, as shown in Fig. 2.12b. It is interesting 
to note the similarity between the HS fraction in Fig. 2.12a, and avg. lattice 
parameter in Fig. 2.12b, with a clear presence of the two-step transitions character 
in both the hysteresis as a function of shell thickness, depicts a well-coupled 
magneto-elastic architecture. 



114 
 

To have a better foothold on the SCO nanocomposite behavior, we further dissect 
the whole architecture into core and shell lattice and examine the thermal 
dependency of their avg. nn distances as shown in Fig. 2.15a and 2.15b. Moreover, 
if we look closely, we can see the unfolding of role mechanical coupling plays in 
this problem, comparing the mechanical responses of the core and the shell in Fig. 
2.15a and Fig. 2.15b with the HS fraction of Figs. 2.14a and 2.14b for Ns = 5 (for 
example), shows that on heating (resp. cooling) the avg. nn distances of the core 
(resp. shell) starts responding to the change of that of the shell (resp. core) before 
T=50K, while in this temperature range, its corresponding HS fraction is still 
insensitive to this change. This behavior undoubtedly emphasizes the crucial role 
of the mechanical coupling between the two subsystems in the resulting thermal 
behavior of the whole system.  

We would now like to focus on the avg. nn parameters values of the core-shell 
architecture. For different thickness of the shell in Fig. 15, every lattice parameter 
changes between the LS (1.0) and HS (1.05) nm for the nn values. However, the 
values of the relaxed shell and core parameters in the plateau area, which stem 
directly from antagonistic interactions between the core and the shell and within 
it, are interesting to understand. By using a simple analysis to predict the shell 
thickness, the next section will better clarify the relevant physical parameters in 
relation to this aspect. 
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Figure 2. 15Thermal-dependence of the average nearest-neighbors distance of (a) the core < d >core 
and (b) the shell< d >shell, for different shell thickness values. Insets represent the average nn 
distance in the plateau region as a function of the shell’s thickness. (c) The thermal dependence of 
the whole core-shell system in the phase space, (< d >core , < d >shell) where the temperature is a 
hidden variable. The associated inset displays the HS fraction of the core vs that of the shell. The 

parameter values are the same as those of Fig. 2.12. 

To emphasize the elastic interaction between the core and the shell, we plot the 
dependence of the average nn parameter of the core, < d >core, as a function of 
that of the shell, < d >shell, in Fig. 2.15c, while in the inset of the figure, we report 

the dependence of the HS fraction of the core, nHS
Core vs that of the shell, nHS

Shell 
during the thermal transitions for the case of a shell width Ns = 5. 

Surprisingly, the two HS fractions shown in the inset of Fig. 2.15c seems to be 
completely separate, as the HS fraction of the core begins to shift only after the 
entire shell has been converted to the HS state. Figure 2.15c, on the other hand, 
shows a strong correlation among the structural evolutions of the shell and core 
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lattice parameters. The changes in the shell's lattice parameter affects the core's 
lattice parameter. As a result, we can easily see that the shell (resp. the core) 

experiences a positive (resp. negative) pressure between point A with  nHS
Shell = 0  

and nHS
Core = 0, and point B with nHS

Shell = 1  and nHS
Core = 1, since < d >shell < R0

HH 

(resp. < d >core > R0
LL).  

As we can clearly see the transition plays out in two different regime in the core-
shell architecture, in the first regime i.e., A to B, when the shell transforms from 
LS to HS, the lattice parameter of the shell (resp. core) approaches 1.037 nm (resp. 
1.0047 nm) instead of 1.05 nm (resp. 1.0 nm). The retroaction of the core to the spin 
conversion of the shell creates a non-uniform distribution of compressive and 
tensile strain within the shell. The core is then transformed in the HS state between 
points B and C, from both electronic and elastic degrees of freedom. The latter 
drives the shell, which completes its elastic conversion, in this regime, where the 
main elastic changes occur in the core drive. 

Thus, in the first regime where the shell converts from LS to HS, the shell’s (resp. 
core’s) lattice parameter reaches the value 1.037 nm (resp. 1.0047 nm) instead of 
1.05 nm (resp. 1.0 nm). This nonuniform distribution of compressive strain inside 
the shell and tensile strain is the result of the retroaction of the core to the spin 
conversion of the shell. Between point B and C, the core is then converted in the 
HS state from both electronic and elastic degrees of freedom. In this regime, 
transformations in the core be the major tour de force in driving the shell 
transformation and finishing the lagging elastic conversion.  

2.4.5 Analytical expressions of the relaxed lattice parameters 

To resolve the behavior of the model's elastic properties, which govern the HS 
fraction, we try analytical model to study the shell-thickness dependency of the 
mechanically relaxed lattice parameters of the core and shell sections of the 
nanocomposite. 

Although, it's worth noting that the interplay between the elastic properties of the 
core and the shell SCO parts is quite intriguing, even though bit complicated, and 
certainly lies in domain where the exact analytical treatment is beyond reach at 
least for now. By design, the avg. nn distances of the core and shell in the LS and 

HS states are, R0
LL, and R0

HH respectively. Thus, in these two states, the system is 
considered in perfectly relaxed state both electronically and elastically.  

However, as shown by MC simulations in the previous section, the relaxed lattice 
parameters of the core and shell in the plateau region, which correspond to a core 
in the LS state and a shell in the HS state (from an electronic standpoint), are not 
the same as the pure LS and HS states of free core or shell (from an elastic 
standpoint). 

We present an approximate method for evaluating the relaxed lattice parameters 
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of the core and shell using analytical expressions. In order to simplify, the strategy 
is to consider uniform instantaneous nn distances, 𝑥𝑐, 𝑥𝑠 and 𝑥𝑖 for the core, shell 
and interface respectively. Then, for each of these three areas of the 
nanocomposite, we count the number of nn and nnn bonds. Table 1 gives a list of 
these expressions. This knowledge is then used to calculate the elastic energy, 
which allows for the determination of equilibrium distances on the one hand, and 
the expression of transition temperatures on the other hand, using the total energy 
(elastic + electronic). 

 Table 2. 1Number of nn and nnn distances of the core, shell and interface that are used to 
evaluate the analytical expression of the elastic energy of Eq. (2.7). 

Number of 

bonds 

Core Shell Interface 

nn bonds NC
nn = 2 × NC(NC − 1) NS

nn = 2 × N × (N − 1) − NC
nn

− Nint
nn 

Nint
nn = 4 × NC 

(=  0 if Ns = 0) 

nnn bonds NC
nnn =  2 × (NC − 1)2   NS

nnn =  2 × (N − 1)2 − NC
nnn

− Nint
nnn 

Nint
nnn = 8 × NC 

(=  0 if Ns = 0) 

  

In Table 1, N = NC + 2NS, represents the total number of atoms along the edge of the 

core-shell system. On the other hand, the total numbers of atoms in the composite are, 

Nt
2 = (NC + 2Ns)

2, while inside the core and the shell they are respectively equal to, 

NC
2 and 4Ns(Ns + NC).  

Since we know that the total elastic energies in the pure LS and HS states are equal 
to zero, under this assumption, we calculate the expression of the lattice's total 
elastic energy in the plateau field. As previously stated, we consider a 2D 
homogeneous lattice with the uniform average nn distances "x" in the core, shell 
and interface.  In the plateau area, however, the equilibrium distances between 

core nn (resp. nnn) is equal to R0
LL (resp.  R0

LL√2), that of the shell is R0
HH (resp. 

R0
HH√2) and that of the sites located at the interface is R0

HL (resp. R0
HL√2). The 

instantaneous and equilibrium nn and nnn distances of the core, shell and 
interface are summarized in Table 2.2. 

Table 2. 2 instantaneous and equilibrium nn and nnn distances of the core, shell and interface, 
considered in the analytical calculations are developed in Eqs. (2.7) and (2.8). 

 

 nn 

distance  

nnn  

 distance 

Nn equilibrium 

distance 

nnn equilibrium 

distance 

Core x x√2 R0
LL R0

LL√2 

Shell x x√2 R0
HH R0

HH√2 

Interface x x√2 ½ (R0
LL + R0

HH) ½ (R0
LL + R0

HH) √2 
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Using the data of Tables 1 and 2, one can easily calculate the total elastic energy in 
the plateau region, whose expression is given by 

Eelas = (
A

2
Nc

nn + BNc
nnn) (x − R0

LL)2 + (
A

2
Ns

nn + BNs
nnn) (x − R0

HH)2 + (
A

2
Ni

nn +

BNi
nnn) (x − R0

HL)2                               (2.7) 

Minimizing the elastic energy Eq. (2.7) with respect to the average lattice 
parameter, x, gives the average relaxed lattice parameter, 𝑥𝑟𝑒𝑙𝑎𝑥, as follows: 

xrelax =
1

ANtot
nn +2BNtot

nnn [(ANc
nn + 2BNc

nnn)R0
LL + (ANs

nn + 2BNs
nnn)R0

HH + (ANi
nn +

2BNi
nnn)R0

HL]            (2.8) 

Where, Ntot
nn = Nc

nn + Ns
nn + Ni

nn and Ntot
nnn = Nc

nnn + Ns
nnn + Ni

nnn are the total 
numbers of nn and nnn bonds inside the whole lattice. 

In the plateau area, the relaxed parameter, 𝑥𝑟𝑒𝑙𝑎𝑥, is dependent on the shell-
thickness, as shown in Fig. 2.16, where the relaxed parameter avg. nn distance is 
equal to the LS state for a bare core and tends to be similar to the HS lattice 
parameter for thicker shells. 

It's reasonable to wonder why these 0 K calculations perform so well in comparison 
to MC data, given that the lattice relaxation in the MC simulations is done at fixed 
temperatures. In fact, the nanoparticle has a particular spin configuration in the 
plateau region (all shell atoms are HS and all core atoms are LS), and the aim was 
to find the lowest elastic energy of this configuration. The analytical approach used 
here is analogous to lattice relaxation using deterministic Newton equations, given 
the presence of a high viscosity. This method was first implemented in Miguel et 
al[128], and its utility was recently evaluated in Traiche et al[127], while analyzing 
frustrated SCO lattices.  

The main reason of its efficiency comes from the fact that, when the right spin 
configuration is fixed, relaxing the lattice using deterministic mechanics or 
Molecular Dynamics or Monte Carlo simulations on positions leads to the same 
average results. However, significant differences will emerge between local and 
global fluctuations of the average distance (or elastic energy), which are not taken 
into account in the analytical procedure. 
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 Figure 2. 16Average lattice parameter, < d >,  in the plateau region as a function of the shell’s 
thickness. Black crosses are the results of the MC simulations data and open red circles are the 
prediction of the analytical treatment, derived from Eq. (2.8).  

2.4.6 Spatial distribution of the HS fraction 

We monitor the spatial distribution of the HS fraction in the core and shell during 
the formation of the spin states along the thermal hysteresis of the whole lattice 
(see Fig. 2.17a), for shell width  NS = 5, to gain more insight into the spatiotemporal 
character of dynamics of the SCO transition. Fig. 2.17b depicts selected snapshots 
of the system's electronic state along the heating and cooling branches of the 
related thermal hysteresis. The red (respectively blue) dots represent HS 
(respectively LS) atoms. During heating, the HS phase domain nucleation appears 
in the shell portion of the nanocomposite from the corners and spreads around the 
edges, while the core lattice stays in the LS state, despite the lattice's global volume 
increasing, causing the core to experience tensile strain from the shell. On the 
spatial dependence of the lattice parameter along the x-direction for the atomic 

line located at the coordinatej =
N

2
, in the plateau region, the latter is easily 

readable (see Fig. 2.17c). 

We can see that the nn distances in the shell part are higher than that of the 
equilibrium distances for the HS state in the shell region, decreases slightly as we 
get closer to the core-shell interface region (due to the core's mechanical 
retroaction), and then decreases abruptly in the core region. However, the relaxed 

lattice parameter remains bigger than its equilibrium values,  R0
HH = 1.05 nm in 

the shell, while for the core, it is a bit tricky because in the centre of the core, the 

distances are higher than that of R0
LL = 1 nm while as we move toward the core-

shell interface, the nn distances plunge lower than the in the R0
LL = 1 nm core. 

These findings, of course, are dependent on the thickness of the shell, but the 
conclusions drawn here are qualitatively valid for other sizes. 

The tensile stress exerted by the shell on the core is presented Fig. 2.17e through 
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the plot of the spatial map of the local pressure, calculated on each site of the 
lattice. In Fig. 2.17b, where we report the spatial distribution of the HS and LS 
states, we can observe a significant change in the growth mode of the HS fraction 
of the core. Indeed, the transition of the core does not lead to the usual single 
domain nucleation, in spite of being of first-order (due to the existence of a thermal 
hysteresis). In fact, the shell facilitates the formation of core nucleation sites, which 
leads the nucleation to start from everywhere, to form a ramified HS structure, as 
seen in snapshots (D 90).  

On the other hand, following the same procedure as in Fig. 2.10c and 2.10d, to 
compare the behavior of the bulk and surface sites, we plot in Fig. 2.17d, the average 
lattice parameter (calculated over concentric square perimeters) as a function of 
their distance from the center of the core-shell nanoparticle. The obtained results 
show a continuous increase of the lattice parameter following two regimes: (i) a 
slow regime in the bulk and (ii) an “explosive” growth starting from the core-shell 
interface and reaching its maximum at the surface, where the spin state combined 
with the open boundary effects allow the interatomic distance to reach its 
maximum value.  

On cooling from the snapshot (E180), the core surrounded by a HS shell switches 
first to the LS state (G 67). Here, the shell prevents mechanically the HS to LS 
switching of the core. However, the nucleation of the LS state is initiated 
preferentially in the vicinity of the interface region (F 80), where the LS state 
experiences less tensile strain due to the retroaction of the core (see Fig. 2.17c). As 
a result, the LS domains grow rapidly along the interface region and then propagate 
towards the center of the lattice.  

After the complete transformation of the core, the shell starts to convert from HS 
to LS from the edge atoms which are favored compared to those of the shell’s 
corners. Indeed, each shell atom situated in the edge connects to three (one nn 
and two nnn) HS core atoms, while those of the corner connect only to one HS 
core atom. 
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 Figure 2. 17 (a) Temperature dependence of the SCO nanocomposite showing a plateau 
behavior, obtained for NC = 40 andNS = 5. (b) HS fraction snapshots showing the spatial 
distribution of the HS and LS states corresponding to the thermal hysteresis given in (a). (c) 
Spatial dependence of the nn distance along the x-direction in the plateau region of the 
thermal hysteresis of (a). (d) Average nn distance, < dij >, calculated over concentric square 

perimeters (the center is that of the lattice) as a function of their distance from the center of 
the core-shell for T = 49 K on heating. Remark the abrupt increase of the nn distance near the 
surface. (e) Spatial map of the distribution of the local pressure over the lattice along the 
thermal hysteresis  (a) corresponding to the snapshots of (b). 

 

2.4.7 Elastic energy and spatiotemporal behavior of the 

nanocomposite at the transition 

To continue in the detailed investigations on the physical mechanisms underlying 
the previous behaviors, we have first calculated the thermal dependence of the 
total elastic energy density for different shell thicknesses, the results of which are 
presented in Fig. 2.18a. The contributions from the core and the shell are 
summarized in Fig. 2.18b and 2.18c. First of all, we observe that the thermal 
behavior of the total elastic energy exhibits a similar behavior as that of the HS 
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fraction since it shows the existence of three regions. On heating, the elastic energy 
density suddenly increases at the transition temperature of the shell (~50 K) then 
its slope smooths significantly in the region 50-90 K, to increase again before 100 
K and to fall down at a higher temperature. These regions ((1), (2) and (3)) fit well 
with the spatiotemporal behavior of the nanocomposite during the heating 
process, presented in Fig. 2.18a.  We then find that the first abrupt increase of the 
elastic energy at 50 K corresponds to the nucleation of the HS fraction in the shell 
part, causing an increase of the misfit elastic energy. While in the plateau region 
of Fig. 2.18a, we observe deceleration in the increase of elastic energy, which we 
attribute to the saturation of the HS state in the shell. . However due to the 
connection of the shell with the core, which is still LS, the former experiences a 
complex tensile/compressive strain spatially distributed over both parts of the 
nanocomposite. The presence of these strains creates the plateau-like (2nd region) 
in the thermal behavior of the elastic energy. In this region, the thermal 
fluctuations increase, leading to the transformation of the core.  
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 Figure 2. 18 Thermal variation of the total elastic energy density in the whole nanocomposite 
(a), (b) shell and (c) core, for different shell thicknesses, for the same core size, 40 × 40, along 
with the heating branch of the thermal hysteresis.  

2.5 Conclusion 

In conclusion, we have analyzed the thermodynamic properties of a spin-crossover 
nanocomposite made of two different spin-crossover units in the core-shell 
configuration. We have seen that this configuration allows an efficient mechanical 
coupling between the two spin-crossover materials since they influence the 
thermodynamic of each other. Due to this mechanical coupling, the thermal 
dependence of the total nanocomposite is far from the sum of each of its 
constituents. To describe this phenomenon, we have adapted our electro-elastic 
model to the case of a nanocomposite made of two elastically coupled SCO 
materials having different transitions temperatures and thermal hysteresis widths. 
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The results showed that according to the difference of transition temperatures and 
elastic interactions, the nanocomposite may lead to all possibilities of spin 
transitions: two-step, gradual, one step with thermal hysteresis, etc. In the case of 

a two-step spin transition, with Teq
Shell < Teq

Core, we found that the transition of the 

shell part at low temperature does affect significantly the elastic properties of the 
core (and vice-versa), whose lattice parameter starts to change long before any 
variation of its spin state. We found that the interplay between the electro-elastic 
properties of both constituents leads to a complex distribution of a pressure (or 
elastic energy) inside the lattice. In practice, we have demonstrated that although 
the thermal spin-transition of the core (in the nanocomposite) is of first-order, the 
growth of HS macroscopic domains is prevented by the presence of the shell, which 
changes this mechanism to that  of  homogenous ramified structures, in a similar 
way as those observed in the Ising models[131]. 

Finally, the model results are qualitatively comparable with the available 
experimental results of Wang et al[52]. Moreover, the quantitative approach to go 
towards the experimental results should include the size distribution of the 
nanocomposites (shell/core), the effect of shape [112][132][133]as well as their 3D 
character[134]. Here, we have considered a square-shaped SCO core nanoparticle 
surrounded by a regular shell width. However, several parameters may affect the 
switching properties of the nanoparticles. Among them, one may quote: (i) the 
existence of voids which occurs in nanoparticles as reported by Lacroix et 
al[120][135], in magnetic nanoparticles and the presence of microstructural defects. 
Moreover, as we have emphasized in H.Oubouchou et al[107], the stability of the 
bulk structure for small particles is questionable, as reported in nanoparticles of 
Co-Pt bimetallic clusters[136] that have shown different structures, depending on 
their size. In addition, real nanoparticle materials, involve surface relaxation and 
surface reconstructions, which may play on the geometric features and act as 
boundary effects, leading to irregular shapes or widths of the shell. On another 
level, we mention that to our best knowledge, there were no experimental proofs 
leading to discriminate between these possible causes. Indeed, most of the 
experimental studies on SCO nanoparticles, if not all, have been performed have 
been realized on a large number of nanoparticles. As long as experimental studies 
on one single nanoparticle, as it was done in magnetic nanoparticles, are not 
realized in switchable SCO solids, this issue will be still a matter for debate. 

Furthermore, an interesting extension of the current model related to the 
consideration of 2D core-shell triangular lattices[110], which do not require the use 
of nnn interactions to keep their stability is very appealing, especially if we consider 
antiferromagnetic interactions between the spin states. Their competition with the 
magneto-elastic interactions which stabilize long-range ferromagnetic order may 
lead to nontrivial behaviors; a very interesting problem from both elastic and 
magnetic point of views, deserving to be investigated in the future. 

Finally, we would like to emphasize, that when the rigidities of the core and the 
shell are significantly different and require the use of different elastic constants 
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and lattice parameters for the two media, we expect a less efficient core-shell 
mechanical coupling, due to the existence of an acoustic impedance. The use of 
SCO materials having different transition temperatures and similar elastic 
properties is then of interest to generate new multistabilities (two-three or even 
more steps), which can be used as q-bit systems for memories. SCO 
nanocomposites made of several multilayers with different transition temperatures 
constitute an excellent way to design multi-stable SCO materials with high tailored 
performances. 
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Chapter 3. 
Elastic Frustration Driven Unusual 

Magnetoelastic Properties in a Switchable 
Core-Shell Spin-Crossover Nanostructure 

 

 Adapted from article “Elastic-frustration-driven unusual magnetoelastic properties in a 
switchable core-shell spin-crossover nanostructure” Yogendra Singh, Hassane Oubouchou, 
Masamichi Nishino, Seiji Miyashita, and Kamel Boukheddaden Phys. Rev. B 101, 054105 

3.1 Introduction 

Heteroepitaxial modification of nanomaterials has become a powerful means to 
create novel functionalities for various applications. One of the most elementary 
factors in heteroepitaxial nanostructures is the misfit strain arising from 
mismatched lattices of the constituent parts. Misfit strain is often used to alter 
material properties in applications ranging from bandgap tuning for 
semiconductor electronics to performing work through mechanical actuation and 
thus provides rational control over materials properties. Spin transitions are 
accompanied by volume changes in the solid state and are being explored in 
actuation as a source of mechanical strain inducible by the many controllable 
stimuli known to trigger spin state changes. The elastic response of dynamic 
heterostructures depends on a number of factors beyond the simple choice of 
materials, including the structural dimensions/geometry of the system and the 
specific nature of the interface. 

The lattice mismatch between core and shell regions induces strain, affecting the 
electronic properties of the shell and core material. The resulting strain modifies 
the d-band orbital overlap and, thus, the electronic structure of the surface metal 
[1]. Thus by precise tuning of the misfit parameters as well as by taking advantage 
of the interaction and/or synergy of the constituent parts, electronic band 
structure, chemical bonding, and magnetic exchange coupling of heterostructures, 
a diversity of novel core–shell nanostructures have been prepared with 
unprecedented optical, and magnetic properties [2-13].  

Core–shell structural engineering is one of the most successful strategies for 
controlling the property of functional nanomaterials. In recent years, advances in 
chemical synthesis along with the rapid development in experimental (electron 
microscopy, and X-ray diffraction) and modeling methods have provided an 
accurate quantification of misfit strain with picometer sensitivity, thereby enabling 
an extensive understanding of strain build-up and relaxation processes in core–
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shell nanocrystals. However, still a detailed understanding of these factors is 
lacking at small length scales. Another feature frequently observed in such systems 
is that in general these systems are driven out of equilibrium, and thus the pattern 
formation is a consequence of instabilities governed by competing forces [14]. The 
variation in pattern types and length scales is striking, yet one also finds that 
seemingly unrelated processes may produce patterns with similar characteristics 
[15-16]. As in most other pattern-forming systems, the instability develops as a 
compromise between competing forces. Previous work using core−shell 
heterostructures explored how interfacial strain can be used to modify electronic 
and phase transition behavior [17–23] in either the core or the shell, often with 
dramatic results. For the significant stresses encountered in many spin-transition 
heterostructures, the strain induced in one component is determined in large part 
by the stiffness of the other, but the stiffnesses of both are determined not only by 
their chemical nature but also by the heterostructure geometry [24]. 

As strain is closely related to the property and stability of heteroepitaxial 
nanostructures, the knowledge of strain evolution can provide additional insights 
into the behavior of core–shell nanostructures [25-28]. Accordingly, strain 
engineering is gaining popularity for deliberate control of core–shell nanocrystals 
[29-35]. Multicomponent hierarchical core/shell configurations may provide 
enhanced control over misfit strain for maximizing the overall performance of 
nanomaterials and generate new topics for future research in the meantime. The 
approach of strain engineering is developing and will continue to expand the 
controllability of core–shell nanocrystals. However, these studies have largely 
focused on the strain induced in one of the components, rather than taking a 
holistic view of the strained heterostructure, and therefore neglected the factors 
controlling the partitioning of elastic strain between the components [36].  

Further progress in utilizing strain effect will hinge on a deepened understanding 
of strain dynamics and strain distribution. Theoretical efforts modeling spin-
transition particles in a matrix provide significant insights, but this remains an area 
where systematic experimental studies are limited. Intensive studies by both 
experimental and theoretical means are required to offer theoretical foundation 
and practical guidance for researchers to refine heteroepitaxial nanostructures and 
their properties. 

Herein, recent investigations on heterogeneous core–shell nanocrystals containing 
lattice misfit in either of their spin states (High/ Low spin) are summarized. We 
analyze this strain in core-shell nanocomposite as a function of lattice mismatch 
with a focus on the mechanistic understanding of strain and strain-induced effects 
such as shift in its transition temperature, behavior of the transition itself (i.e., 
gradual/multistep/re-entrant transition),  coupling/decoupling of its electronic 
and elastic synergies. So, the present study of the active core-shell nanoparticles is 
realized by Monte Carlo simulations, conducted on spin and lattice positions in 2D 
lattices with square symmetry for simplicity.  Core and shell are allowed to switch 
thermally between Low Spin (LS) and High Spin (HS) states and have different 
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ligand-fields. We have chosen the core and shell to have equal lattice parameters 
in the LS (HS) state, while they are different in the HS (LS) state. Moreover, an 
elastic frustration is considered at the interface, by imposing for the interface 
bonds antagonist values depending on whether the considered atom belongs to 
the core or shell parts. Elastic parameters are kept the same for both core and shell 
in both LS and HS state. We investigate the effect of this lattice misfit in order to 
study their mechanical (average lattice parameters) and electronical (HS fractions) 
responses around the transition region with respect to temperature. In this 
exploratory work, we aim to investigate original situations that have not yet been 
studied in the experiments; by considering a core with a higher ligand field than 
that of the shell. The objective here is to draw new predictions on the influence of 
the magnetoelastic coupling in switchable SCO nanostructures, looking for 
unprecedented thermal behaviors of HS fraction lattice parameter, emerging from 
the interplay between the SCO transitions of the core and the shell constituting 
the nanoparticle. 

The manuscript is organized as follows: in Sec. II, we present the model, describe 
the simulation technique, justify the choice of 𝑇𝑒𝑞 for core and shell. Sec. III is 

devoted to the presentation and discussion of the obtained results for the case 
where we have lattice misfit in HS state and in Sec. IV we discuss the results for 
the misfit in LS state, finally in Sec. V we conclude and outline some possible 
developments in the present work. 

3.2 The Model  

An example of a core-shell structure is schematized in Fig. 3.1a. The core has a 
square shape containing 𝑁𝐶 × 𝑁𝐶 sites and the shell has the shape of a thick frame 
of width 𝑁𝑠 surrounding all the core. As a result, the number of shell atoms is 
(𝑁𝐶 + 2𝑁𝑆)

2 − 𝑁𝐶
2 = 4 𝑁𝑆(𝑁𝐶 + 𝑁𝑆), and the total number of atoms of the 

nanocomposite is 𝑁𝑡𝑜𝑡
2 , where 𝑁𝑡𝑜𝑡 = 𝑁𝐶 + 2𝑁𝑆.  
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 Figure 3. 1 (a) Schematic structure of the SCO nanocomposite. Blue and red dots are two spin-
crossover sites belonging to different materials. (b) The configuration of the elastic interactions 
in the two dimensions’ square model considered in this study showing a central red ball 
connected by springs to grey and blue sites, representing the nearest and next-nearest 
neighbors respectively. (c) The blue, green and red solid lines denote 𝑅0

𝑆 (𝑆𝑖 , 𝑆𝑗), 

(b) 
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𝑅0
𝑖𝑛𝑡  (𝑆𝑖 , 𝑆𝑗), and 𝑅0

𝐶  (𝑆𝑖 , 𝑆𝑗), respectively. The blue, green and red dashed lines denote  

𝑑0
𝑆 (𝑆𝑖 , 𝑆𝑗), 𝑑0

𝑖𝑛𝑡  (𝑆𝑖 , 𝑆𝑗), and 𝑑0
𝐶(𝑆𝑖 , 𝑆𝑗), respectively. As a reference lattice, we take 𝑅0

𝑆  (−1, −1) =

𝑅0
𝑖𝑛𝑡  (−1, −1)  =  𝑅0

𝐶  (−1, −1) = 1 (𝑅0,𝑆
𝐿𝐿 = 𝑅0,𝐶

𝐿𝐿 = 𝑅0,𝑖𝑛𝑡
𝐿𝐿 = 1).  

Each core or shell sites, 𝑖, may have two states, HS or LS with respective fictitious 
spin values 𝑆𝑖 = +1 (HS) and 𝑆𝑖 = −1 (LS). The present model includes the change 
of the local volume of the SCO molecules during their switching from one state to 
the other. Each atom located at site "𝑖" is described by its spin state 𝑆𝑖 and its 
coordinates (𝑥𝑖, 𝑦𝑖). The atoms are constrained to be in the plane. The position and 
spin state change in the MC simulation depends on the energetic situation. The 
reader can find a review of the original electro-elastic model, for which we have 
already discussed in detail some of its thermodynamic properties in recent works 
[37-39].   

 

The Hamiltonian [40]describing the core-shell system is written as, 

𝐻 = 𝐻𝑐𝑜𝑟𝑒 + 𝐻𝑠ℎ𝑒𝑙𝑙 + 𝐻𝑖𝑛𝑡𝑒𝑟,         (3.1) 

where the core and shell contain electronic (𝐻𝑐𝑜𝑟𝑒
𝑒𝑙𝑒𝑐  and 𝐻𝑠ℎ𝑒𝑙𝑙

𝑒𝑙𝑒𝑐 ) and elastic 

(𝐻𝑐𝑜𝑟𝑒
𝑒𝑙𝑎𝑠𝑡 and 𝐻𝑠ℎ𝑒𝑙𝑙

𝑒𝑙𝑎𝑠𝑡) contributions, while the interface has only elastic interactions, 
written as follows: 

𝐻𝑐𝑜𝑟𝑒
𝑒𝑙𝑒𝑐 = ∑

1

2𝑖 [∆𝑐 − 𝑘𝐵𝑇 ln𝑔]𝑆𝑖  ,      (3.2a)  

𝐻𝑐𝑜𝑟𝑒
𝑒𝑙𝑎𝑠𝑡 = 𝐴𝑐 ∑ [𝑟𝑖𝑗 − 𝑅0

𝐶(𝑆𝑖, 𝑆𝑗)]
2𝑛𝑛

(𝑖,𝑗) + 𝐵𝑐 ∑ [𝑟𝑖𝑘 − 𝑑0
𝐶(𝑆𝑖, 𝑆𝑘)]

2𝑛𝑛𝑛
(𝑖,𝑘)       (3.2b) 

𝐻𝑠ℎ𝑒𝑙𝑙
𝑒𝑙𝑒𝑐 = ∑

1

2𝑖 [∆𝑆 − 𝑘𝐵𝑇 ln 𝑔]𝑆𝑖 ,      (3.3a) 

𝐻𝑠ℎ𝑒𝑙𝑙
𝑒𝑙𝑎𝑠𝑡 = 𝐴𝑆 ∑ [𝑟𝑖𝑗 − 𝑅0

𝑆(𝑆𝑖, 𝑆𝑗)]
2𝑛𝑛

(𝑖,𝑗) + 𝐵𝑆 ∑ [𝑟𝑖𝑘 − 𝑑0
𝑆(𝑆𝑖, 𝑆𝑘)]

2𝑛𝑛𝑛
(𝑖,𝑘)      (3.3b) 

𝐻𝑖𝑛𝑡𝑒𝑟
 𝑒𝑙𝑎𝑠𝑡 =

1

2
(𝐻𝑖𝑛𝑡𝑒𝑟

𝐶,𝑒𝑙𝑎𝑠𝑡 + 𝐻𝑖𝑛𝑡𝑒𝑟
𝑆,𝑒𝑙𝑎𝑠𝑡)                                  (3.4a) 

where, 

𝐻𝑖𝑛𝑡𝑒𝑟
𝐶,𝑒𝑙𝑎𝑠𝑡 = 𝐴𝑖𝑛𝑡 ∑ [𝑟𝑖𝑗 − 𝑅0 𝐶−𝑆

𝑖𝑛𝑡 (𝑆𝑖, 𝑆𝑗)]
2𝑛𝑛

(𝑖,𝑗) + 𝐵𝑖𝑛𝑡 ∑ [𝑟𝑖𝑘 − 𝑑0 𝐶−𝑆
𝑖𝑛𝑡 (𝑆𝑖, 𝑆𝑘)]

2𝑛𝑛𝑛
(𝑖,𝑘) ,          

(3.4b) 

𝐻𝑖𝑛𝑡𝑒𝑟
𝑆,𝑒𝑙𝑎𝑠𝑡 = 𝐴𝑖𝑛𝑡 ∑ [𝑟𝑖𝑗 − 𝑅0 𝑆−𝐶

𝑖𝑛𝑡 (𝑆𝑖, 𝑆𝑗)]
2𝑛𝑛

(𝑖,𝑗) + 𝐵𝑖𝑛𝑡 ∑ [𝑟𝑖𝑘 − 𝑑0 𝑆−𝐶
𝑖𝑛𝑡 (𝑆𝑖, 𝑆𝑘)]

2
.𝑛𝑛𝑛

(𝑖,𝑘)     (3.4c) 

Hamiltonians are given in Eqs. (3.2a, 3.2b) (resp. Eqs. (3.3a, 3.3b)) account 
exclusively for the energetic contribution of core (resp. shell) atoms only. The 
elastic interface energy (Eq. (3.4a)) is split in two contributions related to the core 
(Eq. (3.4b)) and the shell (Eq. (3.4c)) parts. Here, we consider that a core imposes 
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its equilibrium distances at the interface to its neighboring shell atoms, and vice-
versa for the shell. The situation is similar to that of two adversaries sharing the 
same extended border and where everyone considers it belongs to him. 

  In the Hamiltonians of core (3.2a) and shell (3.3a), the first term expresses the 
effective ligand field energy (∆𝑐 for the core and ∆𝑠 for the shell) and that of the 
entropy effects, 𝑘𝐵𝑇 ln 𝑔, where 𝑔 is the degeneracy ratio between the HS and the 
LS states, which is assumed here as same for both constituents and temperature-
independent. 𝐴𝐶  and 𝐵𝐶 (resp. 𝐴𝑆 and 𝐵𝑆) are the elastic constants of the core (resp. 
the shell) of the first nearest neighbors (nn) and the next nearest neighbors (nnn), 
respectively. Similarly, the elastic constants in the interface region are noted by 
𝐴𝑖𝑛𝑡 and 𝐵𝑖𝑛𝑡 and are considered the same whatever the nature (core or shell) of 
the considered atom. In addition, to reduce the number of free parameters in the 
model, we have chosen 𝐴𝐶 = 𝐴𝑆 = 𝐴𝑖𝑛𝑡 and 𝐵𝐶 = 𝐵𝑆 = 𝐵𝑖𝑛𝑡.  

To account for the volume change at the transition obtained in experimental 
structural studies61, which reported relative lattice expansions of ~ 1-5%, the 
equilibrium bond lengths (the equilibrium distance) between two neighboring 
sites depend on their spin states, as already introduced in previous work [40]. Here, 
the molecules interact via elastic springs (see Fig. 1b). The equilibrium bond-

lengths are denoted 𝑅0
𝑥(𝑆𝑖, 𝑆𝑗) (resp. 𝑑0

𝑥(𝑆𝑖, 𝑆𝑘)) for two nn (resp. nnn) atoms 

𝑆𝑖, 𝑆𝑗  (𝑟𝑒𝑠𝑝.  𝑆𝑖, 𝑆𝑘). For the core and the shell bonds, they are given by 

𝑅0
𝑥(𝑆𝑖, 𝑆𝑗) = 𝑅0,𝑥

𝐻𝐿 +
𝛿𝑅

𝑥

4
(𝑆𝑖 + 𝑆𝑗),                      (3.5a) 

𝑑0
𝑥(𝑆𝑖, 𝑆𝑘) = √2(𝑅0,𝑥

𝐻𝐿 +
𝛿𝑅

𝑥

4
(𝑆𝑖 + 𝑆𝑘)),            (3.5b) 

where 𝑥 = 𝐶, 𝑆 stands for the core and shell, respectively.  The quantities 𝑅0,𝑥
𝐻𝐿 and  

𝛿𝑅
𝑥 are respectively the nn equilibrium distance in the HS-LS configuration and  the 

misfit between the lattice parameters of the HS and LS phases (𝛿𝑅
𝑥 = 𝑅0

𝑥(+1,+1) −
𝑅0

𝑥(−1,−1), where,  𝑥=S, C. 

 These quantities are obtained as a function of the different lattice parameters, 
𝑅0,𝑥

𝐻𝐻 = 𝑅0
𝑥(+1,+1), 𝑅0

𝐻𝐿 = 𝑅0
𝑥(+1,−1) and 𝑅0

𝐿𝐿 = 𝑅0
𝑥(−1,−1) as follows, 

𝑅0,𝑥
𝐻𝐿 =

𝑅0,𝑥
𝐻𝐻+𝑅0,𝑥  

𝐿𝐿

2
,              (3.6a) 

𝛿𝑅
𝑥 = (𝑅0,𝑥

𝐻𝐻 − 𝑅0,𝑥
𝐿𝐿 ).           (3.6b) 

For interface bonds, made of core and shell atoms, the equilibrium bond lengths, 

𝑅0 𝐶−𝑆
𝑖𝑛𝑡 (𝑆𝑖, 𝑆𝑗) (resp. 𝑅0 𝑆−𝐶

𝑖𝑛𝑡 (𝑆𝑖, 𝑆𝑗)) where 𝑆𝑖 is the spin state of the core (resp. shell) 

site and 𝑆𝑗 is that of the shell (resp. core), is given by 

𝑅0 𝑥−𝑦
𝑖𝑛𝑡 (𝑆𝑖, 𝑆𝑗) = 𝑅0,𝑥

𝐻𝐿 +
𝛿𝑅

𝑥

4
(𝑆𝑖 + 𝑆𝑗)                      (3.7a) 
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𝑑0 𝑥−𝑦
𝑖𝑛𝑡 (𝑆𝑖, 𝑆𝑘) = √2(𝑅0,𝑥

𝐻𝐿 +
𝛿𝑅

𝑥

4
(𝑆𝑖 + 𝑆𝑘)),            (3.7b) 

Where (𝑥, 𝑦) = (𝐶, 𝑆) or (𝑆, 𝐶) provides information about the location (core or 
shell) from which the bond is considered. The quantities 𝑅0,𝑥

𝐻𝐿 and  𝛿𝑅
𝑥 are the same 

as those defined in Eqs. (3.6a) and (3.6b). 

 In the Montecarlo simulations, the system is warmed up from 𝑇 =  5 to 200 K 
(390 K for 𝑅0,𝑆

𝐻𝐻 = 1.0 ) in steps of increment 1 K, and then cooled down to the 

initial temperature for the situation when we have misfit in the HS state. While, 
for the case when we have a misfit in the LS state the system is first cooled down 
from 𝑇 =  100 to 1 K in steps of decrement 1 K, and then heated again to the initial 
temperature. At each temperature step, we evaluate the HS fraction, nHS, that is 
the fraction of molecules occupying the HS state, given by, 

 𝑛𝐻𝑆 =
1+<𝑆>

2
,    (3.8) 

where < 𝑆 > is the average value of the spin state, and the average nn distance, <
𝑟 >, defined as: 

< 𝑟 >=  
∑ √(𝑥𝑖−𝑥𝑗)

2
+(𝑦𝑖−𝑦𝑗)

2
i≠j

𝑁𝑏
𝑥 ,    (3.9) 

where 𝑁𝑏
𝑡𝑜𝑡 = 2𝑁𝑡𝑜𝑡(𝑁𝑡𝑜𝑡 − 1) is the total number of bonds. These two quantities, 

which can be viewed as order parameters characterizing the electronic and the 
elastic state of the system, are calculated for the core 𝑁𝑏

𝑐 = 2𝑁𝑐(𝑁𝑐 − 1), the shell 
𝑁𝑏

𝑠 = 2𝑁𝑠(𝑁𝑠 + 2𝑁𝑐 − 1) and the whole lattice. The next section gives a description 
and explanation of the numerical procedures leading to solving Hamiltonian (1). 

3.2.1 Technical details of Monte Carlo simulations. 

The stochastic procedure was alternatively performed on spin and lattice positions 
of the square lattice, with free boundary conditions. The stochastic algorithm is 
performed in the following way: for a site, 𝑖 randomly selected (among the 𝑁2 
lattice sites), with spin 𝑆𝑖 = ±1 and position, 𝑟 𝑖, a new spin value 𝑆𝑖

′ = −𝑆𝑖 is set 
without position change. This spin change is accepted or rejected by the usual 
Metropolis criterion. Whatever the result of this first step (spin state accepted or 
rejected), a new MC procedure is performed on the lattice positions. The lattice 
sites are selected randomly and slightly moved from their previous position with a 
random quantity whose maximum value is 𝛿𝑟 = 0.001 𝑛𝑚 (<< 𝑅0

𝐿𝐿), which is much 
smaller than the distance between two nn (~1 𝑛𝑚). This procedure of the lattice 
relaxation is repeated 10 times for each spin flip. Afterwards, a new site will be 
selected randomly, and so on. Once all sites are updated on average, we define such 
step as the unit of the Monte Carlo step and denote “MCS.” At each temperature, 
we perform 105 MCS to reach the equilibrium state, and we use 1000 other MCS 
for the statistics. Within this procedure, each site is displaced 10 × 𝑁𝑡𝑜𝑡

2  times for 
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1 MCS. So, at each temperature, each spin state and lattice position is updated 
~105 and 106 × 𝑁𝑡𝑜𝑡

2 , times, respectively. We have checked that increasing the 
simulation time does not affect the final results, ensuring that we reached the 
stationary state for spin and lattice position variables. 

In a previous chapter [41], we have considered the study of a core-shell SCO 
nanoparticle, schematically represented in Fig. 3.1a, where both constituents are 
active from the point of view of spin transitions. There, we studied the effect of the 
shell thickness on the thermal properties of the core and the shell as well. In this 
previous work, we assumed equal core and shell lattice parameters in their 
respective HS and LS states.  

3.3 Results and discussion  

3.3.1 Thermal behavior of uncoated core and hollow shell  

The analysis of the thermodynamic properties of this spin-crossover nanostructure 
showed the existence of an efficient mechanical coupling between the core and the 
shell moieties, which influences the thermodynamic behavior of each other. Due 
to this mechanical coupling, the temperature dependences of the total 
nanocomposite is far from the sum of each of its constituents. Indeed, according 
to the difference of transition temperatures and elastic interactions between core 
and shell, the whole nanocomposite may lead to several possibilities of spin 
transitions (two-step, gradual, one step with thermal hysteresis, etc.) as a result of 
an interplay between the electro-elastic properties of both constituents, resulting 
in a complex distribution of pressure (or elastic energy) inside the lattice. In the 

first part of this study, we started with the thermal investigations of the uncoated SCO 

core of size 𝑁𝑐 × 𝑁𝑐 = 40 × 40 and hollow shell of the same size and five layers 

thickness. The parameter values used throughout this study are for the core part, ∆𝐶=
450 𝐾, 𝑔 (degeneracy ratio)= 150,  𝐴𝐶 = 𝐵𝐶 = 105 𝐾. 𝑛𝑚−2 and for the shell: ∆𝑆 =
200 𝐾   and 𝐴𝑆 = 𝐵𝑆 = 105 𝐾. 𝑛𝑚−2. For simplicity, the equilibrium bond-lengths 

between nearest-neighboring atoms of spin configurations HS-HS, HS-LS and LS-LS 

were considered as respectively equal to 1.05 nm, 1.025 nm and 1.0 nm for the core. For 

the present simulations on the uncoated shell, the equilibrium distances between LS-LS, 

HS-LS and HS-HS nearest neighbors are taken equal to 1.03 nm, 1.015 nm and 1.0 nm, 

respectively.  

The transition temperatures of the isolated core (resp. shell) are given by the relation, 

𝑇𝑒𝑞
𝐶 =

∆𝐶

𝑘𝐵 ln𝑔
 ~ 90 𝐾 (resp. 𝑇𝑒𝑞

𝑆 =
∆𝑆

𝑘𝐵 ln𝑔
 ~ 40 K).  

 As a reference, Fig. 3.2 summarizes the temperature dependences of the HS fraction of 

shell (Fig. 3.2a) and core (Fig. 3.2b), which undergo first-order phase transitions, 

accompanied by thermal hysteresis. Moreover, one can easily see that the transition 

temperatures arising from the MC simulations are confirmed to be the ones predicted by 
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the simple relation 𝑇𝑒𝑞 =
∆ 

𝑘𝐵 ln𝑔
 .  

 

 

 

 

 

 Figure 3. 2Thermal variation of the HS fractions and lattice parameters of the uncoated 2D 
hollow (a) and core (b) nanoparticle (with square symmetry). The core size is 40 × 40, and the 
hollow shell has five layers of thickness. The equilibrium nn distances in HS-HS, HS-LS, and 
LS-LS configurations are respectively equal to 1.05 nm, 1.025 nm and 1.0 nm for the core, and 
1.03 nm, 1.015 nm and 1.0 nm, for the shell. For both cases, the spatial distributions of the HS 
(red dots) and LS (blue dots) sites along the spin transition phenomenon are shown in the 
right panels. 

3.3.2 Case of spin-crossover nanostructure with active core and 

shell  

Now we turn to the case of the spin-crossover nanocomposite, schematically 
represented in Fig. 3.1a, in which core and shell consist of active spin-transition 
materials. For that, we decorate the uncoated core of Fig. 3.2b by the hollow spin-
crossover shell (Fig. 3.2a), of 5 layer’s thickness (𝑁𝑆=5). The used Monte Carlo 
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procedure to solve the thermodynamic properties of this hybrid system is the same 
as that used for the uncoated core.  

In the MC simulations, a lattice site is randomly selected. This site is inside the 
core (i.e., surrounded by core atoms only) or inside the shell (i.e., surrounded by 
shell atoms only) or at the interface, belonging to the core or shell parts. If the 
atom is inside the core or the shell, we calculate its elastic energy using 
Hamiltonians (3.2b) and (3.3b), combined with the spin-dependence of 
equilibrium distances, given in expressions (3.5a) and (3.5b). In contrast, in the 
interface region, if we select in the MC process a site belonging to the core (resp. 
shell) part, its elastic energy is calculated using Eq. (3.4b) [resp. (3.4c)] with the 
corresponding equilibrium distances are given by Eq. (3.7a) [resp. (3.7b)]. This 
constraint causes an elastic frustration that deploys over the lattice, whose 
consequences are discussed below.  

3.3.2.1 Effect of the core-shell lattice parameter misfit in HS state on the 

whole system 

In the previous chapter [41], we admitted that the core and the shell have the same 
equilibrium bond-lengths in HS and LS states. In the present work, we take, 𝑅0,𝑆

𝐻𝐻, 

as a variable, which causes the change:  𝑅0,𝑆
𝐻𝐿 =

𝑅0,𝑆
𝐻𝐻+𝑅0,𝑆

𝐿𝐿

2
 .  

Now let us summarize the situation: 𝑅0,𝑆
𝐿𝐿 = 𝑅0,𝐶

𝐿𝐿 = 1, 𝑅0,𝐶
𝐻𝐻 = 1.05  are kept  

invariant while 𝑅0,𝑆
𝐻𝐻 changes from the value of 𝑅0,𝐶

𝐿𝐿  to that of 𝑅0,𝐶
𝐻𝐻. The values of all 

nn lattice distances are summarized in Table I. Owing to the 2D character and 
square symmetry of  the lattice, the nnn equilibrium distances corresponding to 
the electronic configurations given in Table I are obtained from the nn equilibrium 

distances multiplied by √2.  

Now, we focus on the imposed equilibrium distances at the core-shell interface. It 
can be easily checked that the core-shell interface contains 4𝑁𝐶 nn bonds and 
4(2𝑁𝐶 − 1) nnn bonds.   

It is important to stress here on the individual definition of the equilibrium 

distances, 𝑅0
𝑖𝑛𝑡(𝑆𝑖, 𝑆𝑗), at the core-shell interface. In a previous work [41], where the 

equilibrium nn distances of HH, HL and LL configurations were the same for the 
core and the shell, those of the interface was simply calculated as the average 
values of those of core and shell atoms, taking into account for their spin states.  
Here, we consider a different scenario, for which the equilibrium bond lengths at 
the interface are summarized in Table I. Thus, a chosen atom belonging to the 
core-shell interface and located in the core side wants to impose to its nn (or nnn) 
shell atom the equilibrium core bond length and similarly for shell atoms. Within 
this condition, bonds at the interface viewed from the core (resp. shell) have the 

equilibrium bond lengths 𝑅0
𝐶(𝑆𝑖, 𝑆𝑗) [resp. 𝑅0

𝑆(𝑆𝑖, 𝑆𝑗)], given in Table I. As a result, 

the same bond at the core-shell interface is asked to have the equilibrium distance 
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of the core (resp. shell) when calculating the energy of the core (resp. shell) atom.  
For example, an HS-LS interface bond constituted of a HS core site and a shell LS 

site has the apparent equilibrium distance 𝑅0 𝐶−𝑆
𝑖𝑛𝑡 (+1,−1) =

𝑅0,𝐶
𝐿𝐿 +𝑅0,𝐶

𝐻𝐻

2
  (= 1.025 nm) 

from the point of view of the core side and 𝑅0 𝑆−𝐶
𝑖𝑛𝑡 (−1,+1) =

𝑅0,𝑆
𝐿𝐿 +𝑅0,𝑆

𝐻𝐻

2
  when viewed 

from the shell side. When the value of 𝑅0,𝑆
𝐻𝐻 is different from that of  𝑅0,𝐶

𝐻𝐻 an elastic 

frustration immediately takes place at the core-shell interface in bonds unless its 
connecting sites are not in the LS state, as it appears in Table I, where we 
summarize the expressions of the different equilibrium distances corresponding to 
the various bond configurations in the core, shell and interface regions.  

 

 Table 3. 1 Equilibrium nn distances used for the core, shell, and core-shell bonds. The HS shell 
nn bond-length (𝑅0𝑆

𝐻𝐻) is used here as a variable.  

nn configurations HH HL LL 

core nn distance  (nm) 𝑅0,𝐶
𝐻𝐻 = 1.05 

𝑅0,𝐶
𝐻𝐿 =

1 + 𝑅0,𝐶
𝐻𝐻

2
= 1.025 

𝑅0,𝐶
𝐿𝐿 = 1.0 

shell nn distance (nm) 𝑅0,𝑆
𝐻𝐻 

𝑅0,𝑆
𝐻𝐿 =

1 + 𝑅0,𝑆
𝐻𝐻

2
 

𝑅0,𝑆
𝐿𝐿 = 1.0 

nn distance (nm) at interface 

viewed from the shell  

𝑅0,𝑆
𝐻𝐻 

𝑅0,𝑆
𝐻𝐿 =

R0,S
LL + R0,S

HH

2
 

𝑅0,𝑆
𝐿𝐿 = 1.0 

nn distance (nm) at interface 

viewed from the core 

𝑅0,𝐶
𝐻𝐻 = 1.05 

𝑅0,𝐶
𝐻𝐿 =

𝑅0,𝑆
𝐿𝐿 + 𝑅0,𝐶

𝐻𝐻

2
= 1.025 

𝑅0,𝐶
𝐿𝐿 = 1.0 

 

The simulations are performed for different values of the equilibrium lattice 
parameter of the shell in the HS phase, going from 𝑅0,𝑆

𝐻𝐻 = 1.05 nm (nn bond length 

value of the core in HS) to 𝑅0,𝑆
𝐻𝐻 = 1.0 nm (nn bond length value of the core in LS). The 

change in 𝑅0,𝑆
𝐻𝐻 values cause the change of HL configurations of the shell as well as those 

of HH and HL configurations of core-shell bond lengths located in the interface region. 

The other lattice parameters are kept invariant, as shown in Table I. 

Thus, we now examine the general situation where the nanocomposite comprises 
two SCO materials with different HS lattice parameters. Due to the elastic nature 
of the spin transition phenomenon, it is expected that this difference of the lattice 
parameter between the core and the shell will play an important role in the thermal 
behavior of the HS fraction of the whole system.  

The results of the simulations are summarized in Fig. 3.3 which reports the thermal 
variation of the total HS fraction and average lattice parameter of the whole 
nanocomposite for various values of 𝑅0,𝑆

𝐻𝐻. It is observed that the change in 

𝑅0,𝑆
𝐻𝐻 affects the thermal behavior of the entire system. This is due to the fact that 
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the elastic interaction energy, Δ𝐸, responsible for the SCO transition of the shell, 
depends on the lattice parameter misfit inside the shell between the LS and HS 

states: Δ𝐸 =
1

2
(𝐴𝑆 + 2𝐵𝑆)(𝛿𝑅

𝑆)2 =
1

2
(𝐴𝑆 + 2𝐵𝑆)(𝑅0,𝑆

𝐻𝐻 − 𝑅0,𝑆
𝐿𝐿 )

2
.  These changes are 

then mechanically communicated to the core through the core-shell interface. 
Thus, the decrease in 𝑅0,𝑆

𝐻𝐻 shifts the whole thermal response of the system to 

higher temperature and causes interesting behaviors on the thermal dependence 
of the average bond lengths, which transforms through several steps. The origin of 
this behavior will be discussed in the next section, where we examine the thermal 
behavior of the core and the shell individually.  

 

 

 Figure 3. 3: Thermal variation of (a) the total HS fraction and (b) average lattice parameter of 
the whole SCO nanocomposite for different equilibrium lattice parameter of the shell, which 
was varied from 𝑅0𝑆

𝐻𝐻 = 1.00 to 1.05 nm. The other lattice parameter values are given in Table 
I. The used values of the elastic constants are: 𝐴𝐶 = 𝐴𝑆 = 𝐴𝑖𝑛𝑡 = 105 𝐾. 𝑛𝑚−2 for nn 
interactions and 𝐵𝐶 = 𝐵𝑆 = 𝐵𝑖𝑛𝑡 = 105 𝐾. 𝑛𝑚−2 for the nnn interactions in the core (C), the 
shell (S) and interface (int).  

3.3.2.2 Thermal properties of shell and core components 

Now, we examine the thermal behavior of the electronic and mechanical responses 
of the core and the shell separately as a function of 𝑅0,𝑆

𝐻𝐻.  Figure 3.4 shows the 

thermal dependences of the average HS fraction and the average lattice distance, 

< 𝑟 >𝑆,  of the shell (Figs. 3.4a and 3.4b) for different R0,S
HH values going from 1.05 to 

1.00 nm (i.e. from 𝑅0,𝐶
𝐻𝐻 to 𝑅0,𝐶

𝐿𝐿 ), while 𝑅0,𝑆
𝐿𝐿 , 𝑅0,𝐶

𝐿𝐿 , 𝑅0,𝐶
𝐻𝐻 and 𝑅0𝐶

𝐻𝐿 are kept invariant as 

given in Table I. The associated HS fraction and lattice spacing, < 𝑟 >𝐶, of the core 
are depicted in Figs. 3.4c and 3.4d, respectively.  

It is interesting to mention that, for used 𝑅0,𝑆
𝐻𝐻 values, the HS fraction of the shell 

(Fig. 3.4a) has a large plateau for 𝑅0,𝑆
𝐻𝐻 = 1.00, 1.02 and 1.03 nm, which drastically 

reduces for 𝑅0,𝑆
𝐻𝐻 = 1.04 and almost disappears for 𝑅0,𝑆

𝐻𝐻 = 1.05. The existence of this 

plateau is caused by the misfit between the equilibrium nn distance of the core, 
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𝑅0,𝐶
𝐻𝐻 = 1.05 and that of the shell 𝑅0,𝑆

𝐻𝐻, thus originates from the mechanical 

compressive strain exerted by the LS core on the shell. This prevents its complete 
transformation during the thermal transition process. As a consequence, the 
average shell nn distance in the HS state decreases (Fig. 3.4b) as 𝑅0,𝑆

𝐻𝐻 decreases, 

leading to a delay in the transition temperature of the core, whose volume 
expansion between LS and HS states is hindered by the shell. On the other hand, 
for 𝑅0,𝑆

𝐻𝐻 < 1.05, the expansion or the contraction of the shell during its first-step 

transition is accompanied by the systematic contraction of the core (Fig. 3.4d), 
while its expansion starts only when its corresponding HS fraction increases (Fig. 
3.4c).  This behavior indicates that the first contractions of the core are the result 
of its mechanical response to the shell’s behavior.  

 

 Figure 3. 4 Thermal variations of (a) the shell HS fraction and (b) average nn distance for 
different 𝑅0𝑆

𝐻𝐻 values, varied from 𝑅0𝑆
𝐻𝐻 = 1.0 to 1.05 nm. (c) and (d) are the temperature 

dependences of the core HS fraction and average nn distance for the same 𝑅0𝑆
𝐻𝐻 values. The 

other lattice parameter values are given in Table I. The other model parameters are given in 
the text.   

Interestingly, while the first transition temperature of the shell shows only a slight 
shift towards 50 K as a function of 𝑅0,𝑆

𝐻𝐻 (see Fig. 3.4a), that of the core, displayed in 

Fig. 3.4c, is significantly affected. That is, the center of the thermal hysteresis 
moves from 75 K to ~230 K, by decreasing 𝑅0,𝑆

𝐻𝐻 from 1.05 to 1.00 nm.  Due to this 

critical change, the thermal hysteresis width of the core diminishes from 17 K to 0 
K.  
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Furthermore, it is clear from Fig. 3.4a that the HS fraction of the shell makes the 
transition in one step for 𝑅0,𝑆

𝐻𝐻 = 1.05 nm, which converts to two-steps with a 

plateau for 𝑅0,𝑆
𝐻𝐻 = 1.04, 1.03, 1.02 and 1.0 nm, while the temperature dependences 

of the average bond length, < 𝑟 >, depict a double step transition for all 𝑅0,𝑆
𝐻𝐻. The 

first step is related to an incomplete electronic transformation of the shell due to 
compressive strain induced by the core, which is still in the LS state, while the 
second step which takes place around 70 K for 𝑅0,𝑆

𝐻𝐻 = 1.03, for example, relates to 

the change in the bond lengths of the shell, which hardly reach their equilibrium 
values in the HS state as 𝑅0,𝑆

𝐻𝐻 decreases.  

An interesting situation arises from the comparison between the thermal 
dependence of the HS fraction (Fig. 3.4a) and the bond lengths of the shell, shown 
in Fig. 3.4b. The temperature-dependence of the bond lengths of the shell exhibit 
thermal hysteresis for 𝑅0,𝑆

𝐻𝐻 = 1.02, 1.03 and 1.04, which are absent in the thermal 

behavior of the HS fraction. In addition, as previously indicated, more marked 
plateaus appear in Fig. 3.4b, compared to those of Fig. 3.4a. This situation is even 
more pronounced for the core part where the temperature-dependence of the HS 
fraction (Fig. 3.4c) giving the temperature dependence of the HS fraction, 𝑛𝐻𝑆, 
shows a single-step first-order transition for 𝑅0,𝑆

𝐻𝐻 = 1.05, 1.04, 1.03, 1.02 while the 

corresponding average core nn distance leads to multi-step transitions (Fig. 3.4d).   

This point is important and demonstrates that the magnetic response can be silent 
to the interplay between the core and shell structural changes. Indeed, the 
behavior of the HS fraction of the core (Fig. 3.4c) is blind regarding the multi-step 
transitions occurring in the core bond lengths (Fig. 3.4d), which are mostly 
sensitive to the changes of elastic parameters of the shell (Fig. 3.4a). This point 
contrasts with the usual elastic models of SCO where the HS fraction and the 
average bond lengths are linked linearly [42].  

It is worth noticing that the temperature dependence of the average core bond 
length shows very unusual and non-monotonous trends around the temperature 
region of the transition of the shell. These behaviors are unique and of merit to be 
discussed in a detailed way.  

To thoroughly understand the unconventional thermal behavior of < 𝑟 > in Fig. 
3.4d, for 𝑅0,𝑆

𝐻𝐻 ≥ 1.04, one has to consider that the expansion of the shell part during 

its phase transition, induces tensile stresses on the core. For equal equilibrium HS 
lattice parameters of core and shell (i.e. 𝑅0,𝑆

𝐻𝐻 = 𝑅0,𝐶
𝐻𝐻 = 1.05 nm), the two 

subsystems form a unique and uniform elastic lattice (same bond lengths and 
elastic constants in LS and HS states). As a result, a ferroelastic interaction takes 
place between the shell and the core. Indeed, the first expansion of the shell (Fig. 
3.4b) below 70 K, is accompanied by an expansion of the core (Fig. 3.4d). That is, 
the average nn distance of the core increases monotonously with temperature from 
the value of the LS state (𝑅0,𝐶

𝐿𝐿 = 1.0 nm) until that of HS (𝑅0,𝐶
𝐻𝐻 = 1.05 nm), with 

the presence of a small plateau around T=75 K (on heating) at which < 𝑟 >𝐶 
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reaches the value 1.005. This effect is attributed to the transition of the shell, thus 
causing a negative pressure on the LS core’s lattice. It is worth mentioning that this 
plateau is hardly visible in the temperature dependence of the core HS fraction of 
Fig. 3.4c.  

In contrast, for 1.00 ≤ 𝑅0,𝑆
𝐻𝐻 ≤ 1.04,  the first expansion of the shell, on heating, 

induces a compressive stress on the core, which then contracts (see Fig. 3.4d). This 
contraction continues as long as the core HS fraction keeps the value 𝑛𝐻𝑆 = 0 (Fig. 
3.4c). When the HS fraction of the core starts to increase (due to thermal effects), 
< 𝑟 >𝐶 goes through a minimum and finally increases towards the value 𝑅0,𝑆

𝐻𝐻 

instead of 𝑅0,𝐶
𝐻𝐻 (> 𝑅0,𝑆

𝐻𝐻). In that sense, the core remains under high compressive 

pressure even in the HS state.  

The observed contractions of the core are also due to the strong lattice misfit 
existing between the core and the shell lattice spacing. It is essential to mention 
that the amplitude of this core contraction also depends on the ratio of core/shell 
elastic constants, which are taken in the present case as equal to 1. Thus, a more 
compressible core may show significant mechanical responses, while a rigid one 
will prevent the transition of the shell. This exciting aspect will be investigated in 
further work. 

On the other hand, the thermal behavior of the average shell and core bond length 
(Fig. 3.4b and 3.4d) clearly demonstrates that for small lattice spacing of the HS 
shell, the transition temperature is shifted upwards, recalling the effect of pressure 
on SCO materials. Indeed, it is crucial to keep in mind that, on heating, the shell 
makes the LS to HS transition before the core. As a result, when the shell reaches 
the HS state, two different processes emerge: (i) the core experiences compressive 
or tensile stress depending on the misfit lattice parameter and (ii) the expansion 
of core lattice under the inhibited boundary conditions set by shell part which in 
turn prevents the conversion of the core which needs space to expand all the bond 
lengths. Thus, it delays the emergence of the thermally-induced spin-state 
switching, which appears at higher temperatures.  
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 Figure 3. 5 Variation of different HS equilibrium lattice parameters, (a) shell and (b) core, along 
the total HS fraction (a) core and (b) shell, for different HS shell equilibrium lattice parameters, 
which is varied from 𝑅0𝑆

𝐻𝐻 = 1.00 to 1.05 nm.  

So, to summarize, the weak effect of the core on the shell lattice parameter (Fig. 
3.4b) is attributed to the existence of a free surface of the shell, which allows 
relaxing of elastic strain. For example, for the case 𝑅0,𝑆

𝐻𝐻 = 1.02 nm, the shell 

switches from LS to HS (whose corresponding average nn distances are 1.0 nm and 

~1.02 nm) around 𝑇𝑆
𝑒𝑞 ≃  41 K, which is very close to the transition temperature of 

the isolated shell, given by 𝑇𝑆
𝑒𝑞 =

Δ𝑆

𝑘𝐵 ln𝑔 
= 40 K. In contrast, the behavior of the 

core part with 𝑅0,𝐶
𝐻𝐻 = 1.05 nm and 𝑅0,𝐶

𝐿𝐿 = 1.0 nm, is significantly affected by the 

change of 𝑅0,𝑆
𝐻𝐻, particularly when the misfit (𝑅0,𝐶

𝐻𝐻−𝑅0,𝑆
𝐻𝐻) increases. Several 

observations can be drawn: (i) the transition temperature of the core is clearly 
shifted to higher temperatures; (ii) depending on the value of 𝑅0,𝑆

𝐻𝐻, the temperature 

dependence of the average core lattice parameter may follow a non-monotonous 
trend, (iii) the thermal hysteresis width progressively vanishes with decreasing the 
𝑅0,𝑆

𝐻𝐻  values. In Fig. 3.5 we can clearly see the correlation between the HS state of 

core and shell with respect to the average lattice parameter of shell and core.  

 

 Figure 3. 6 High-spin shell lattice parameter dependence of the upper (𝑇+) and lower (𝑇−) 
transition temperatures of the core components, showing a clear vanishing of the thermal 
hysteresis for below the value, 𝑅0,𝑆

𝐻𝐻 = 1.01 nm, as a result of pressure effects exerted by the 

shell on the core due to the lattice parameter misfit.  

To confirm the pressure effect of the shell on the transition of the core, we analyze 
the dependence of the upper and lower core transition temperatures on 𝑅0,𝑆

𝐻𝐻 in Fig. 

3.4c and 3.4d. It shows (see Fig. 3.6) a clear linear trend, reminiscent of the behavior 
of SCO systems under an applied isotropic pressure [43], 𝑃, following the law 

𝑇𝑒𝑞
0 (𝑝) =

2Δ

𝑘𝐵 ln𝑔
+

𝑝|Δ𝑉| 

𝑘𝐵 ln𝑔
, and |Δ𝑉| is the volume change  between LS and HS states. 

In Fig. 3.7 we can observe that when the whole system is in the HS state, the 
differences between the average instantaneous bond length and the corresponding 
equilibrium distances for the shell and core in the HS state (< 𝑟 >𝑆ℎ𝑒𝑙𝑙) and (<
𝑟 >𝑐𝑜𝑟𝑒), clearly show that the core is under a large stress compared to the shell, 
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thus confirming the fact that the relaxation of the core lattice is obstructed by the 
HS shell lattice, which in turn shifts the transition temperature of the core to 
higher temperature.   

 

 Figure 3. 7 Difference, < 𝑟 >𝐻𝑆− 𝑅𝑒𝑞
𝐻𝑆, between the instantaneous average bond length, <

𝑟 >𝐻𝑆, in the HS state of the shell (a) and core (b) and their equilibrium nearest-neighbors 
distances in HS (𝑅𝑒𝑞

𝐻𝑆 = 𝑅0𝐶
𝐻𝐻 and 𝑅𝑒𝑞

𝐻𝑆 = 𝑅0𝑆
𝐻𝐻) as a function of the shell lattice parameter in HS. 

According to the scale of the 𝑦-axis, it appears that the core of the nanoparticle is under 
enormous stress compared to the shell part. Red dashed curves are the shell (a) and core (b) 
equilibrium lattice parameters. 

3.3.2.3 Spatial distribution of the HS fraction and evidence of labyrinth 

formation inside the core 

Here we analyze the spatial dependence of the HS fraction in the core and the shell 
along with the thermal hysteresis of Fig. 4 and discuss the effect of lattice misfit, 
𝑅0,𝑆

𝐻𝐻 − 𝑅0,𝐶
𝐻𝐻, on the nucleation mode of the HS fraction. Selected snapshots 

depicting the spatial distribution of the HS fraction are presented in Fig. 8 for the 
values 𝑅0,𝑆

𝐻𝐻 = 1.00, 1.02, 1.03, 1.04, 1.05 nm and temperature 𝑇 =

229, 174, 144, 115  and 87 K, respectively. According to Fig. 3.4, this corresponds 
to the situation where the interplay between the elastic properties of the core and 
the shell is maximum. At these temperatures, the shell exerts highly anisotropic 
constraints on the system, which results in special spatial self-organization of the 
spin states through labyrinths structures (see Fig. 3.8) during the growth of the HS 
fraction. Such behavior is fascinating and could be correlated to the lattice shape 
and the spatial distribution of the elastic strain in the lattice. The formation of HS 
and LS stripes is attributed here to the coexistence of directional ferroelastic and 
antiferroelastic interactions, which can also be evidenced by the spatial behavior 
of the average lattice parameter inside the lattice. In addition, the fact that these 
1D structures can be formed along both 𝑥- and 𝑦-directions indicates the absence 
of any anisotropic effects in the growth modes of these strings. Theoretically, it has 
been demonstrated that the herringbone mode has the lowest strain energy for a 
planar film under equibiaxial compression [44], which justifies its existence in 
various natural circumstances [45]. The feature of the labyrinth-like pattern is also 
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dependent on the anisotropy of the film stress [46–48], implying that the patterns 
can be controlled by constraining the film-substrate system, thus creating non-
equibiaxial stresses [49–51]. 

 

 

 

 Figure 3. 8 Selected snapshots depicting the spatial distribution of the HS fraction presented 
in Figs. 4 and 5 for the case 𝑅0,𝑆

𝐻𝐻 = 1.00, 1.02, 1.03, 1.04, 1.05  nm and temperature 𝑇 =

229, 174, 144, 115 and 87 K, respectively. The corresponding HS fraction (0.60, 0.52, 0.47, 0.43, 
0.40) and lattice parameter (0.98, 0.99, 1.00, 1.01, 1.01) values can be easily read on Fig. 4c and 
Fig. 4d for the core lattice and Fig. 3a and Fig. 3b for the shell lattice. Remark the emergence 
of labyrinth HS structures inside the core as a result of the spatial distribution of the strain. 
Here HS (in red) and LS (in blue) depicts total HS occupation in the shell, and spatial 
distribution of HS fraction in the core. 
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3.3.2.4 Spatial profiles of the lattice bond lengths 

To get more insights into the magneto-elastic interplay between the electro-elastic 
properties of the core and the shell, we monitor the spatial distribution of the 
atomic bond lengths along a horizontal line located at the middle of the lattice (at 

coordinate 𝑗 =
𝑁

2
) in the case of a HS shell and LS core, for several values of 𝑅0,𝑆

𝐻𝐻. 

The results are summarized in Fig. 3.9, which indicates that with 𝑅0,𝑆
𝐻𝐻 values 

between 1.0 and 1.04, the core experiences a strong non-uniform compressive stress 
along the 𝑥-direction (Figs 3.9a-d), which increases as 𝑅0,𝑆

𝐻𝐻 decreases, enhancing 

the elastic misfit at the core-shell interface. In contrast, for 𝑅0,𝑆
𝐻𝐻 = 1.05 nm (Fig. 

3.7e), we observe that the central part of the core experiences tensile stress while a 
residual weak compressive stress remains at the lattice borders. On the other hand, 
the shell part shows that the outer layers (close to the surface) are constantly under 
tensile stress, while the inner layer (close to the interface) is always under 
compressive stress, whatever the 𝑅0,𝑆

𝐻𝐻 value. More precisely, one may notice that 

for all cases shown in Fig. 3.9, that or shell layers close to the surface, the distance 
between successive sites, 𝑑𝑖𝑗, is bigger than the equilibrium value, 𝑅0,𝑆

𝐻𝐻  which 

makes then the shell under tensile stress. For 𝑅0,𝑆
𝐻𝐻 = 1.0, only the shell layer at the 

interface with the core experiences the compressive stress (𝑑𝑖𝑗 ≃  0.98 < 𝑅0,𝑆
𝐻𝐻). 

However, as 𝑅0,𝑆
𝐻𝐻 value increases, other inner shell layers start to feel the 

compressive strain exerted by the elastic core-shell misfit, as clearly depicted in 
Figs. 3.9b-e through the number of red points situated below the dashed line 
indicating the 𝑅0,𝑆

𝐻𝐻 value. Similarly, the behavior of LS core crucially depends on 

𝑅0,𝑆
𝐻𝐻. For  1.00 ≤ 𝑅0,𝑆

𝐻𝐻 ≤ 1.04 nm, the nn distances, 𝑑𝑖𝑗 , along the considered 

horizontal line in the core are always smaller than 𝑅0,𝑆
𝐻𝐻, denoting that the core is 

under compressive stress. However, it is interesting to notice the non-uniform 

character of the spatial dependence of the distance, |𝑑𝑖𝑗 − 𝑅0,𝐶
𝐿𝐿 |, along the core’s 

center. This quantity indeed decreases in a symmetric way when coming from both 
sides, meaning that the center of the core experiences weaker compressive stress, 
compared to the outer core layers located at the core-shell interface. As a result, 
the formation of HS core species from the outer core layers is prevented, at the 
benefit of the core center part. In addition, it is clearly seen in Figs. 3.9 that the 
amplitude of this compressive stress decreases as the value of  𝑅0,𝑆

𝐻𝐻 increases. This 

effect is important and helps in the formation of long HS strings at the origin of 
the emergence of the labyrinth structures, obtained for all 𝑅0,𝑆

𝐻𝐻 values, as depicted 

in Fig. 3.8. However, it is worth noticing that the lengths of the HS string forming 
the labyrinth, as well as the topology of the latter, depend on 𝑅0,𝑆

𝐻𝐻 values. Indeed, 

for the case, 𝑅0,𝑆
𝐻𝐻 = 1.05 nm, the central part of the core experiences now tensile 

stress (𝑑𝑖𝑗 > 𝑅0,𝐶
𝐿𝐿 ), which enhances the HS string’s length inside the core.           
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 Figure 3. 9 lattice parameter profile along a horizontal line located at coordinate 𝑗 =
𝑁

2
, in the 

middle of the lattice, for several HS shell lattice parameters and temperatures corresponding 
to the plateau regions of Figs. 3.4b and 3.4d. The data of the HS shell part are represented with 
red squares, and those of the LS core part are represented with blue filled circles. All curves 
correspond to a LS core surrounded by a HS shell. The horizontal dashed lines corresponding 
to 𝑑𝑖𝑗 = 𝑅0𝑆

𝐻𝐻 and 𝑑𝑖𝑗 = 1.0 nm, are respectively associated with the equilibrium bond lengths 

of the HS shell and LS core.  
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3.3.2.5 Lattice distortion and spatial distribution of elastic stresses 

Now we focus on the stresses generated by the nucleation and growth process, 
which is vital for the self-organization of the HS and LS states. For that, we 
determine the displacement field, 𝑢⃗ (𝑖, 𝑗), associated with the lattice site, (𝑖, 𝑗), 
given by  

𝑢⃗ 𝑖𝑗 = 𝑟 𝑖𝑗 − 𝑟 𝑖𝑗
0,      (3.10) 

where, 𝑟 𝑖𝑗
0 and 𝑟 𝑖𝑗 are the initial and final atomic positions of the site (𝑖, 𝑗). In the 

present analysis, we used the positions in the perfect LS state of the whole 
nanostructure as a reference state because it is common to all the simulations. We 
have calculated the displacement field and its spatial distribution, of the core and 
shell atoms, for several values of 𝑅0,𝑆

𝐻𝐻 for the cases of Fig. 3.9. The obtained results 

are summarized in Fig. 10, and correspond to selected electro-elastic snapshots in 
the plateaus regions. Overall, they are in agreement with the conclusions drawn 
from Fig. 3.9. First, Fig. 3.10a corresponds to the situation where 𝑅0,𝑆

𝐻𝐻 = 1.0. 

Compared to Figs. 3.10b-3.10e, it shows a loss of center symmetry, which is 
attributed to the randomly selected electronic configuration, which is affected by 
the fluctuations of the spin states induced by the stochastic aspect of the MC 
procedure.  On the other hand, Figs. 3.10b and 3.10c, corresponding respectively to 
𝑅0,𝑆

𝐻𝐻 = 1.02 and 1.03 nm, show strong compressive stress acting in the core, since 

all core displacement vectors are directed towards the center of the lattice. 
Furthermore, the coexistence of tensile and compressive stresses takes place in 
shell regions. Indeed, it is remarked that the compressive stresses in the shell are 
located around the shell-core interface, while the tensile stresses occur near the 
shell surface, where the orientation of the displacement vectors changes along the 
shell lattice, which then slightly deforms.  As a result, the system exhibits 
compressive but non-uniform stress along the 𝑥- and 𝑦-directions. When the HS 
shell lattice parameter is increased, as for 𝑅0,𝑆

𝐻𝐻 = 1.04 nm (Fig. 3.10d), a different 

stress distribution feature is obtained. The nanostructure displays coexisting 
regions of dilatational strain in the shell region and around the core-shell interface 
and weak compressive strain in the core. Indeed, the displacement field for the 
shell is outwards, i.e. shell is expanding, while, at the same time, for the core, the 
displacement is inwards, i.e. core is experiencing contraction. As a consequence, 
one can quickly identify a “circular” boundary wall of displacement fields formed 
between the core and shell lattice structure, varying in width along the corners and 
edges. This boundary wall formation clearly portrays the two different mechanisms 
going in the whole lattice structure simultaneously. The first is the expansion of 
shell lattice parameters at the stake of contraction in core lattice parameters. The 
second is the stabilization of the LS state in the core due to the contraction. 
Consequently, the transition temperature of core lattice shifts to higher 
temperatures, which in turn also withhold the complete transition of shell from LS 
to HS as can be seen in Fig. 3.5. Finally, for 𝑅0,𝑆

𝐻𝐻 = 1.05 (Fig. 3.10e), a pure 

dilatational strain, acting everywhere in the lattice, stabilizes the HS state and 
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decreases the spin transition temperatures of both moieties.  

 

 

 Figure 3. 10: Displacement fields for the different HS shell lattice parameter values a) 𝑅0,𝑆
𝐻𝐻 = 1.00 

nm b) 𝑅0,𝑆
𝐻𝐻 = 1.02 nm c) 𝑅0,𝑆

𝐻𝐻 = 1.03 nm d) 𝑅0,𝑆
𝐻𝐻 = 1.04 nm and e) 𝑅0,𝑆

𝐻𝐻 = 1.05 nm, corresponding 

to the situations depicted in Figs. 3.9a-e. The LS state, common to all figures, was used as a reference 

state for the calculations of the displacement field (see Eq. (3.10)).   

To confirm the previous conclusions drawn from the discussion of Fig. 3.10, we 
calculate the divergence and rotational of the displacement field, which 
corresponds to the trace of the strain tensor, describing the pure relative volume 
expansion, while the rotational part evidences the enhancement of the shear 
stresses. The spatial distribution of the divergence of the displacement field 



157 
 

depicted in Fig. 3.11, clearly shows a more or less homogenous distribution of the 
compressive stress inside the core for 𝑅0𝑆

𝐻𝐻 ≤ 1.04 nm, which enhances for smaller 
𝑅0𝑆

𝐻𝐻 values. In contrast, for the case,  𝑅0𝑆
𝐻𝐻 = 1.05 nm, the core experiences tensile 

stress in the plateau region due to no lattice misfit between the HS core and the 
HS shell which plays in favor of the HS state, which shifts the transition 
temperature downward, as we saw in Fig. 3.4. 
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 Figure 3. 11 The four figures a1 to a5 (resp. b1 to b5) are the spatial distribution of the divergence 
(resp. rotational) of the displacement fields corresponding to panels of Fig. 10, i.e., obtained 

for 𝑅0𝑆
𝐻𝐻 = 1.0, 1.02, 1.03, 1.04 and 1.05 nm, respectively. The quantity, ∇⃗⃗ . 𝑢⃗ (𝑟 ) (panels a1-a5) 

relates to the dilatation field. Red areas are under tensile stress, and blue areas are under 
compressive stress. Remark the decrease (resp. increase) of the compressive (resp. tensile) in 
the core (resp. shell) part with increasing the shell’s lattice parameter in the HS state, 𝑅0𝑆

𝐻𝐻. The 

quantity, ∇⃗⃗ × [𝑢⃗ (𝑟 )] (panels b1-b5), expresses the spatial distribution of the shear stress, whose 
maximums are located at the same special positions for all figures, and enhances as 𝑅0𝑆

𝐻𝐻 
increases. 

Having information about the spatial distribution of the displacement field from 
Fig. 3.10, 𝑢⃗ 𝑥(𝑥, 𝑦) and 𝑢⃗ 𝑦(𝑥, 𝑦) on each lattice node, we obtain the components of 

the strain tensor, given by the formula  
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𝜖𝛼𝛽 =
1

2
(
𝜕𝑢𝛼

𝜕𝑥𝛽
+

𝜕𝑢𝛽

𝜕𝑥𝛼
) .   (3.11) 

Here 𝛼 and 𝛽 may be 𝑥 or 𝑦 and 𝑥𝑥  =  𝑥, 𝑥𝑦  =  𝑦, which leads to  𝜖𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥 
, 𝜖𝑦𝑦 =

𝜕𝑢𝑦

𝜕𝑦
, and 𝜖𝑥𝑦 = 𝜖𝑦𝑥 =

1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
). It is well known [52] that 𝜖𝑥𝑥 and 𝜖𝑦𝑦 provide 

information about the local relative volume change, while 𝜖𝑥𝑦 and 𝜖𝑦𝑥 connect to 

the pure shear strains, through the following “dilatation” and “distortion” fields, 
respectively: 

𝑑𝑖𝑣[𝑢⃗ (𝑟 )]  = 𝜖𝑥𝑥(𝑟 )  +  𝜖𝑦𝑦(𝑟 )  and  𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗[𝑢⃗ (𝑟 )] = 𝜖𝑥𝑦(𝑟 ) − 𝜖𝑦𝑥(𝑟 )    (3.12) 

The rotation of the displacement field, shown in the bottom panel of Fig. 3.11, 
expresses another aspect of the strain acting inside the core-shell nanoparticle. The 
maximum rotational field takes place in the interface regions between HS and LS 
phases inside the core and the shell and propagates until the nanostructure's 
surface. These peculiar points constitute brittle regions in the nanostructure.  

3.3.2.6 Effect of the core-shell lattice parameter misfit in HS state on the 

whole system  

As we have discussed in detail the general situation where the nanocomposite is 
made of two SCO materials having different HS lattice parameters. Now, moving 
onto the general situation where the nanocomposite is made of two SCO materials 
having different LS lattice parameters, but as we move towards the section for avg. 
High spin fraction (NHs) and avg. bond length, it might be fruitful to recall our 
previous results regarding core-shell interface dynamic [41], [43], in which we 
discussed at length the effect of width and interface misfit in HS state of the shell, 
respectively. From these two study we could expect that introducing the misfit in 
LS state would also lead to expected multistep and further prolonging the HS state 
or delay in achieving the LS state, which is shifting it to far lower temperatures. In 
fact, that was the motive to carry out this study to see the symmetric effect of the 
applied misfit at the HS and LS state interface. However, instead of unearthing our 
expected presumption, we end up uncovering more intriguing features of core-
shell architecture. 

Coming back to our results for core -shell nanocomposite, as we can see in the Fig. 
3.12a and Fig. 3.12b, we see counter-intuitive behaviour in both these order 
parameter (avg. bond length and HS fraction) from what expected. We have 
plotted the total avg. Nhs (𝑁𝐻𝑆

𝑡𝑜𝑡) and avg. lattice parameter (< 𝑅𝑡𝑜𝑡(𝑛𝑛) > ), which 
we have divided in two categories on the basis of 𝑁𝐻𝑆

𝑡𝑜𝑡, category “I” where we have 
a mix of multistep and re-entrant transition which can reach the total LS state 
(except for 𝑅0,𝑠

𝐿𝐿 = 1.03), and category “II”  where we can see strong re-entrant 

phenomena for all the cases having 𝑅0,𝑠
𝐿𝐿 ≥ 1.03, i.e. for these cases, we don’t have 

stabilised LS state in core, in low-temperature regime; thus we see that either 
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whole (𝑅0,𝑠
𝐿𝐿 ≥ 1.04) or partial (𝑅0,𝑠

𝐿𝐿 = 1.03) core is transformed into HS state as we 

arrive at low temperature with the average bond length, higher than that of  

equilibrium bond lengths in HS states (𝑅𝐻𝐻) for some cases.  

 Table 3. 2 Equilibrium nn distances used for the core, shell, and core-shell bonds. The LS shell 
nn bond-length (𝑅0𝑆

𝐿𝐿) is used here as a variable.  

nn configurations HH HL LL 

core nn distance  (nm) 𝑅0,𝐶
𝐻𝐻 = 1.05 

𝑅0,𝐶
𝐻𝐿 =

1 + 𝑅0,𝐶
𝐻𝐻

2
= 1.025 

𝑅0,𝐶
𝐿𝐿 = 1.0 

shell nn distance (nm) 𝑅0,𝑆
𝐻𝐻 = 1.05 

𝑅0,𝑆
𝐻𝐿 =

1.05 + 𝑅0,𝑆
𝐿𝐿

2
 

𝑅0,𝑆
𝐿𝐿  

nn distance (nm) at interface 

viewed from the shell  

𝑅0,𝑆
𝐻𝐻 = 1.05 

𝑅0,𝑆
𝐻𝐿 =

R0,S
LL + R0,S

HH

2
 

𝑅0,𝑆
𝐿𝐿  

nn distance (nm) at interface 

viewed from the core 

𝑅0,𝐶
𝐻𝐻 = 1.05 

𝑅0,𝐶
𝐻𝐿 =

𝑅0,𝑆
𝐿𝐿 + 𝑅0,𝐶

𝐻𝐻

2
= 1.025 

𝑅0,𝐶
𝐿𝐿 = 1.0 

 

 Figure 3. 12 Thermal variations of (a) the total HS fraction and (b) average lattice parameter of 
the whole SCO nanocomposite for different equilibrium lattice parameters of the shell, which 
was varied from 𝑅0𝑆

𝐿𝐿 = 1.00 to 1.06 nm. The other lattice parameter values are given in Table 
II. The used values of the elastic constants are: 𝐴𝐶 = 𝐴𝑆 = 𝐴𝑖𝑛𝑡 = 105 𝐾. 𝑛𝑚−2 for nn 
interactions and 𝐵𝐶 = 𝐵𝑆 = 𝐵𝑖𝑛𝑡 = 105 𝐾. 𝑛𝑚−2 for the nnn interactions in the core (C), the 
shell (S) and interface (int).  



161 
 

3.2.2.7 Thermal properties of shell and core components 

In order to understand these responses, we dissect further and move on to the 
individual responses of the core and shell lattices. We examine the thermal 
behavior of the electronic and mechanical responses of the core and the shell 
separately as a function of 𝑅0,𝑆

𝐿𝐿 .  Figure 3.13  shows the thermal dependences of the 

average HS fraction and the average lattice distance, < 𝑟 >𝑆,  of the shell (Figs. 4a 

and 4b) for different R0,S
LL  values going from 1.00 to 1.06 nm (i.e. from 𝑅0,𝐶

𝐿𝐿  to 𝑅0,𝐶
𝐻𝐻), 

while 𝑅0,𝑆
𝐿𝐿 , 𝑅0,𝐶

𝐿𝐿 , 𝑅0,𝐶
𝐻𝐻 and 𝑅0𝐶

𝐻𝐿 are kept invariant as given in Table II. The associated 

HS fraction and lattice spacing, < 𝑟 >𝐶, of the core are depicted in Figs. 3.13, and 
3.13, respectively.  

An interesting situation arises when we compare between the thermal dependence 
of HS fraction and bond lengths of the shell and core, in Fig. 3.13 and Fig. 3.13. As 
we can see the results this time have more variation than the results, previously 
discussed for the High spin misfit (𝑅0,𝑠

𝐻𝐻), thus we will first divide the results into 

two sections “Category I” for the results depicting multistep transition and 
“Category II” for the results demonstrating re-entrant behavior. We will further 

discuss each case individually for the varying misfit range i.e., (𝑓𝑟𝑜𝑚 R0,S
LL = 1.0 −

1.06) and will term them as Case 0 - Case 6 respectively.      

It is worth noticing that the temperature dependence of the average core bond 
length shows very unusual and non-monotonous trends around the temperature 
region of the transition of the shell. These behaviors are unique and of merit to be 
discussed in a detailed way. The temperature dependence of the avg. bond lengths 
of shell < 𝑟 >𝑆  (Fig. 3.13 exhibits), plateau region, multistep and re-entrance 
behavior while the HS fraction (Fig. 3.13 behavior to thermal change is majorly 

silent (except for case 0, R0,S
LL = 1.0 ) to all these phenomena and only depicts 

normal hysteresis behavior with some changes in its width and a slight indication 

of plateaus as we keep changing the R0,S
LL . However, if we check the core part, we 

find perfect synergy between the magneto-elastic coupling, where we can see the 
comparison between HS fraction and bond lengths is showing strongly coupled 
behavior. It is worth noticing that although this behavior of shell HS fraction 
turning blind eye to its elastic counterparts is in contrast with the usual elastic 
models of SCO where, in general, both of these parameters are strongly linked, the 
even more intriguing part is that this situation is just inverse of our previous 
studied situation [53] with lattice misfit in the HS part of the bond lengths, where 
we observed the delinking in the core part of the system.    

Thus, it will be very beneficial to understand what exactly is happening in the 
system as a whole (core-shell) and regionally (core & shell), which disrupts this 
magneto-elastic synergy in either of the core or shell lattice, as it will help us in 
understanding under what circumstances, we can expect the coupling to be 
synergic or silent.  
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It is interesting to mention that, for used 𝑅0,𝑆
𝐿𝐿  values, the HS fraction (𝑁𝐻𝑆

𝑆ℎ𝑒𝑙𝑙) of the 

shell (Fig. 3.13) experiences an increase in hysteresis width for 𝑅0,𝑆
𝐿𝐿 = 1.00, 1.02 and 

1.03 nm, which is drastically reduced for 𝑅0,𝑆
𝐻𝐻 ≥ 1.04 and almost disappears for 

𝑅0,𝑆
𝐿𝐿 = 1.06.  

The switching on/off of the synergy (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑁𝐻𝑆
𝑆ℎ𝑒𝑙𝑙, & < 𝑟 >𝑆), 

widening/disappearance of the thermal hysteresis, caused by the misfit between 
the equilibrium nn distance of the core, 𝑅0,𝐶

𝐿𝐿 = 1.00 and that of the shell, 𝑅0,𝑆
𝐿𝐿 , 

originates from the mechanical stress/strain exerted by the transition of core 
(shell) on the shell (core). This interference generated by either of lattices on the 
transformation of other prevent its complete transformation during the thermal 
transition process.  

So, beginning from that of “Case 0” as indicated in Fig. 3.13, we see a similar trend 
as that found in previous studies, where the expansion of the shell part during its 
phase transition induces tensile stresses on the core. For equal equilibrium HS 
lattice parameters of core and shell (i.e., 𝑅0,𝑆

𝐿𝐿  = 𝑅0,𝐶
𝐿𝐿 = 1.00 nm), the two subsystems 

form a unique and uniform elastic lattice (same bond lengths and elastic constants 
in LS and HS states). As a result, a ferroelastic interaction occurs between the shell 
and the core, which makes the core expand a little bit before its transition 
temperature and facilitates its transition to the HS state as the core lattice is feeling 
negative pressure. It is worth mentioning that this plateau is hardly visible in the 
temperature dependence of the core HS fraction of Fig. 3.13, which is in agreement 
with our previous studies [41], [43] where we found the core HS fraction and avg. 
bond lengths to be in disagreement with each other, while the behavior of shell 
lattice HS fraction and avg. bond length is weakly synergic for this situation. 
However, it should be noted this is the case where there is no misfit in the LS or 
HS state, and as we introduce this misfit in the LS regime of the shell lattice, we 
find this situation to be reversed entirely that is we will see that slowly core lattice 
will become synergetic while the shell lattice turns silent to the coupling between 
HS fraction and the bond lengths. But before we move on to that, we will like to 
discuss Case 1, which is also quite a special case, as it is kind of turning point for 
this behavior. 
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 Figure 3. 13 Thermal variations of (a) the shell HS fraction and (b) average nn distance for 
different 𝑅0𝑆

𝐿𝐿 values, varied from 𝑅0𝑆
𝐿𝐿 = 1.0 to 1.06 nm. (c) and (d) are the temperature 

dependences of the core HS fraction and average nn distance for the same 𝑅0𝑆
𝐻𝐻 values. The 
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other lattice parameter values are given in Table II. The other model parameters are given in 
the text.   

In this case we can see in Fig. 3.13 that both shell and core lattice HS fraction 
responds to the changes in the avg. bond length. However, the core lattice shows 
high degree of correlations between its order parameters (HS fraction & avg. bond 
length), whereas the order parameters corresponding to shell lattice, which is 
weakly co-related, shows the departure from this trend. Intriguingly enough, as we 
have seen in the Case 0 and previous studies [41], [43] that the mechanism through 
which the core’s transition temperature is shifted downwards is through the shell 
exerting negative pressure on the core lattice, which in turn, affects the avg. bond 
lengths of the core lattice, and we can see a monotonous increase and emergence 
of the plateau, however in this case, we don’t arrive at any such situation in the 
core lattice, but we can see that the HS fraction and avg. bond length for core are 
good resemblance of each other.  For Cases 2 and 3 (𝑅0,𝑆

𝐿𝐿 =  1.02 & 1.03) Fig. 3.13, 

we have an interesting scenario where core and shell lattice are competing for their 
dominance, as we can see that in these situations, the shell lattice have a very wide 
hysteresis for both the cases, compared to all other. From these situations, we see 
clear departure of synergy between shell lattice order parameters, while core 
lattice’s order parameters complement with each other very well.  If we see core 
parameters for Case 2 (𝑅0,𝑆

𝐿𝐿 =  1.02) we can see that core is continuously trying to 

reach the LS state, as we can see in the HS fraction that during cooling, it starts to 
fall around 64 K till a value close to 0.6 and then again in a 20 K interval it rises till 
0.9, portraying the re-entrant behavior. After which it plateaus around 0.9 HS 
fraction, then gradually get lowered till 0.7 approx. and finally reaching its LS state, 
this consecutive rise and falls of HS fraction of core lattice, very effectively portrays 
the hardships core lattice is going through to reach the LS state.  Although in this 
case we could also see shell lattice also have to wait a more extended period of time 
to reach its LS state, that is the reason why we see such a wide hysteresis for this 
case, this is the perfect case where we can see both core and shell inhibiting each 
other’s relaxation after which we see that for shell lattice transition begin around 
30K,  as both the lattice are coupled we can see a steeper decrease in core lattice in 
both of its parameters, but very interestingly if we see the shell lattice parameters 
closely, we can see that the shell’s avg. bond lengths try to approach its LS state 
but then again rise back to the core’s HL state value (i.e. 1.03) rather than the shell’s 
LS state value. This behavior is peculiar because although this explains the reason 
for wide hysteresis, the reason for its cause is not very apparent. As we can see, the 
total HS fraction was able to approach zero, but as we consult their respective avg. 
bond lengths, we see that the respective bond length parameters are in frustrated 
state for both core and shell, as for the core value of avg. bond length is found to 
be 1.02, while for the shell it is 1.03 nm. These numbers are particularly interesting 
because we can see that for the shell lattice the avg. bond lengths first drop to 1.02 
and then again rise to 1.03, it is somewhat similar to Case 1 (𝑅0,𝑆

𝐿𝐿 =  1.01) where 

shell relaxed avg. bond length is 1.0 while core’s is 1.01. It is like frustration is shared 
within the whole lattice and is not just dumped into core or shell lattice. Whereas, 
this was not the case when we misfit in the HS state, where only core lattice has to 
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compromise with its avg. bond length. Another fact that is magnified in this case 
is how well the core and shell lattice are coupled elastically for this case.  Now, as 
we move on to Case 3, in the shell part, we can see the hysteresis for HS fraction is 
wider than the rest of the graphs except for the Case 2. When we view the 
parameters of the core lattice, we can see a nice correlation between both the 
parameters, also in this case we can see that core lattice go through re-entrant 
phase transition almost twice in both heating and cooling cycle. Though more 
predominantly in the cooling cycle from HS fraction point of view, whereas as far 
as avg. bond lengths are concerned, we can see the re-entrant effect in both heating 
and cooling branches for the core lattice. 

Now, as we move on to other part where we have the cases having 𝑅0,𝑆
𝐿𝐿 ≥  1.04 Fig. 

3.13, we will see a similar kind of behavior for all of them. As we increase the misfit 
in the LS state, we see a predictive behavior for the core and shell lattices 
individually and core-shell structure as a whole, which we were not able to see in 
the cases for 𝑅0,𝑆

𝐿𝐿 ≤  1.04. So, for temp. greater than 60 K, we can see that we find 

similar behavior and transition temperature for HS and LS transition during 
heating and cooling cycles for all three cases.  Although what is surprising in these 
cases is that in core lattice, at lower temperatures, we have no LS state and their 
respective avg. bond lengths are even higher than that of its HS states at higher 
temperatures. Whereas for the shell lattice, the situation is the same with respect 
to avg. bond length, i.e., they can reach values higher than their equilibrium LS 
state or even than their HS state for these cases, but still, for shell lattice, we can 
reach its electronic LS state, which is a bit counterintuitive. 
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Figure 3. 14 Selected snapshots are depicting the spatial distribution of the HS fraction 
presented in Figs. 12 and 13 for the case 𝑅0,𝑆

𝐿𝐿 = 1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 𝑎𝑛𝑑 1.06 𝑛𝑚, and 

temperature 𝑇 = 66,63,42,38,47,53, and 49 K, respectively. The corresponding total HS 
fraction (0.28, 0.61, 0.93, 0.07, 0.63, 0.64, and 0.59) and lattice parameter (1.01, 1.03, 1.06, 1.02, 
1.04, 1.04, and 1.03) values can be easily read on Fig. 3.12 and Fig. 3.13 can be consulted for the 
core and the shell lattice. Remark the emergence of labyrinth HS structures inside the core as 
a result of the spatial distribution of the strain. Here HS (in red) and LS (in blue) depicts total 
HS occupation in the shell and spatial distribution of HS fraction in the core. 

 

3.3.2.8 Spatial distribution of the HS fraction and evidence of labyrinth 

formation inside the core 

We examine the spatial dependence of the HS fraction in the core and shell, along 



167 
 

with the thermal hysteresis of Fig. 3.12, and address the effect of lattice misfit, 
𝑅0,𝑆

𝐿𝐿 − 𝑅0,𝐶
𝐿𝐿 , on the HS fraction nucleation mode. Selected snapshots of the spatial 

distribution of the HS fraction are shown in Fig. 3.13 for   𝑅0,𝑆
𝐿𝐿 =

1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 𝑎𝑛𝑑 1.06 nm and temperature 𝑇 =
66,63,42,38,47,53, and 49 K , respectively. These correspond to the situation in 
which the interplay between the elastic properties of the core and the shell is 
maximum, as shown in Fig. 3.13. The shell exerts highly anisotropic constraints on 
the system at these temperatures, resulting in special spatial self-organization of 
the spin states via labyrinth structures (see Fig. 3.14) during the growth/decay of 
the HS fraction. Such behavior is intriguing and may be related to the lattice shape 
and the spatial distribution of elastic strain in the lattice. The formation of HS and 
LS stripes is attributed to the coexistence of directional ferroelastic and 
antiferroelastic interactions, as evidenced by the spatial behavior of the average 
lattice parameter within the lattice. Furthermore, the fact that these 1D structures 
can be formed along both the x and y axes indicates that there are no anisotropic 
effects in the growth modes of these strings. 

Because of the mechanical anisotropy of the structure, the deformation is smaller 
towards the corners than the edges [53]. As a result, the core-shell interface bends 
inwards, creating extra transversal tension. The curvature of the interface is 
directly related to the sinusoidal variation of the transversal deformation. To 
preserve the orthogonal relationship between the interface and the column of 
atoms spanning through, the curvature imposes a distortion locally. This condition 
opens the lattice towards the core, resulting in the core's expansive deviation of 
the transversal lattice parameter. 

 

3.3.2.9 Lattice distortion and spatial distribution of elastic stresses 

Now we focus on the stresses generated by the nucleation and growth process, 
which is important in the self-organization of the HS and LS states. For that, we 

determine the 𝑟 𝑖𝑗
0 and 𝑟 𝑖𝑗, the initial and final atomic positions of the site (𝑖, 𝑗). In 

the present analysis, we take these two positions and then plot the distances 
between these two points for the whole lattice. 

𝑑 =  √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
,  (3.13) 

 In this case, the usual displacement field, 𝑢⃗ (𝑖, 𝑗),  as discussed in equation (3.10) is 

plotted with other plots because the lattice seems to drift/rotate (or both) across the 
plane, and thus for some situations, it becomes complicated to see how 
displacement is really taking place in the system. We have calculated the distances 
and its spatial distribution, of the core and shell atoms, for several values of 𝑅0,𝑆

𝐿𝐿 . 

The obtained results are summarized in Fig. 3.15. As we can see they reveal a 
possible presence of strong vortices like formations in the core-shell architecture. 
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  Figure 3. 15 Displacement fields for the different LS shell lattice parameter values  𝑅0,𝑆
𝐿𝐿 =

1.00 (𝑎) − 1.06 (𝑔) nm. The HS state, common to all figures, was used as a reference state for 
the calculations of the displacement field and difference in distance between Initial and Final 
position (see Eq. (3.10 & 3.13)).  Figures are divided into three sections the first section refers to 
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the initial and final position of the two lattices, the second section is for the displacement field, 
while the third is for differences in the distances between their atomic positions. 

3.3.2.10 Centre of mass  

In order to confirm whether the core-shell lattice is just drifting across the plan or 
have a certain movement, we plot the trajectory for the center of mass for core-
shell lattice and indeed for Case 3 (𝑅0,𝑆

𝐿𝐿 =  1.03) we can see the vortex gyration for 

this particular case. This particular behavior is very intriguing, and more study into 
it is needed to understand the origin of such behavior. In Fig. 16a, we see the centre 
of mass for Case 3 making a semicircular motion around the end of the cooling 
branch of the hysteresis starting around 40 K and finishing around 10 K. In Fig. 
3.16b, we plotted the summation of the distances between subsequent position for 
the centre of mass, with respect to the number of positions we have for the centre 
of mass, and is then compared with the thermal hysteresis for this case and we can 
see an uncanny resemblance between the two. In Fig. 16c we plotted the vortex 
gyration with respect to temperature and can clearly see the effect of temperature 
on the movement of the core-shell lattice. These Fig. clearly indicates that we need 
to study this system in detail in order to understand how the misfit and strain offset 
a particular motion in the core-shell lattice.  

 

 

 Figure 3. 16 (a) Showing the path traced by the center of mass for Case 3. (b) Showing the 
correlation between the thermal hysteresis and the total length for the center of mass with 
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respect to the number of positions we have for the centre of mass. (c) Showing the path traced 
by the center of mass during thermal hysteresis for Case 3. 

3.4 Conclusion 

This work was devoted to the study of SCO nanostructures made of a core-shell 
nanoparticle, where both constituents are spin active and have different transition 
temperatures. To investigate the interplay between the magneto-elastic properties 
of these two subsystems, which interact elastically through their common elastic 
interface, we adopted the case where the lattice parameters of the two constituents 
are the same in the LS (HS) state and let them be different in the HS (LS) state. To 
realize this situation, we fixed the LS (HS) lattice parameter to 1.0 (1.06) nm for the 
core and the shell, the HS (LS) lattice parameter of the core is set equal to 1.05 (1.0) 
nm, and we change the HS (LS) shell parameter of the shell in the interval 1.00 and 
1.05 (1.0-1.06) nm. When HS (LS) core and shell lattice parameters are different, an 
elastic frustration occurs, which causes a significant alteration in the thermal 
hysteresis for both core and shell. 

One of the most intriguing results emerging from the magneto-elastic interactions 
within the nanostructure concerns the core's reaction. Indeed, for a strong lattice 
parameter misfit between the shell and core in HS, the shell shows thermally-
induced multistep transitions on both the HS fraction and lattice parameter. In 
contrast, the core exhibits a multistep transition on its lattice parameters but a 
simple transition on its HS fraction behavior. Similarly, when there is a strong 
lattice parameter misfit between the shell and core in LS, the core shows thermally-
induced multistep transitions on both the HS fraction and lattice parameter. In 
contrast, the shell exhibits a multistep transition on its lattice parameters but a 
simple transition on its HS fraction behavior. The coupling and decoupling of 
electronic and elastic behavior depend on both values, and the misfit state is very 
novel and impossible to obtain on a simple lattice.  

Consequently, for the present specific case, for misfit in HS (LS) state, the HS 
fraction of the core (shell) cannot be directly extracted from the behavior of the 
lattice parameter, and the fact that the lattice parameter converts in two steps does 
not mean that the spin transition does the same behavior. In addition, although 
the thermal dependence of the HS fraction of the core (shell) shows a single step 
transition, the corresponding average bond length exhibits multistep (multi-step 
and re-entrant) transitions with plateau regions. Spatial self-organization of the 
spin states with labyrinths formation stabilizing longitudinal or transversal HS and 
LS strings, anti-ferromagnetically coupled to surrounding strings, is evidenced. 
This type of organization of the spin states is new and deserves further 
investigations. Moreover, the case of a spin-crossover core-shell nanostructure, 
with core and shell having the same lattice parameter in the HS state and a lattice 
parameter misfit in the LS state, shows very intriguing features such as vortex 
formation and drifting and rotation of the core-shell lattice is also very interesting. 
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This particular case is being studied, and the results will be submitted in a separate 
work.  

Finally, it should be noted that the core-shell structure is defined in a finite size, 
and thus the system does not have phase transitions that are defined in the 
thermodynamic limit. The transitions studied here give characteristic changes of 
physical quantities depending on the frustrated situation, which may benefit from 
finite-size scaling investigations. It is worth mentioning that recent developments 
on the elastic studies of 3D nanoparticles open the way to interesting studies on 
3D core-shell nanoparticles with the aim to investigate the role of the shape’s effect 
and the magnetoelastic coupling at the interface on the thermodynamic properties 
of the switchable SCO nanostructures.   
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Chapter 4. 
Thermal and mechanical properties of a 

spin crossover crystal in elastically 
bounded media. 

4.1 Introduction 

The advent of nano-era will not be genuinely feasible until we can formulate 
methods to assert power over nanomaterials and devices and harness useful work 
from them (motors, actuators, muscles). Because of the significance and 
perspective, various strategies and materials with a high level of sophistication 
were created. These 'molecular actuators' have distinct molecular geometries that 
can be interconverted reversibly in response to chemical or physical stimuli with a 
wide variety of ranges [1]. Because of their broad amplitude of motion, they are 
sometimes considered analogous to biological or mechanical machines depending 
on their flexibility and are thus aptly referred as "molecular machines" or 
"molecular muscles"[2-4]. Since there is a diverse range to choose from (chemo-
mechanical, biomimetic, and other complex systems)[5], we can exercise the 
liberty to transcend from purely mechanical application at molecular scale and 
include mesoscopic and truly macroscopic structures. The interest in these stimuli-
responsive materials[6-8], such as electroactive polymers, shape memory alloys, 
and piezoelectric ceramics, have been primarily driven by the unique requirements 
of emerging robotics[9-11], biomedical[12-13] and micro-nanomechanical[14] 
technologies. 

Historically, materials used for the fabrication of MEMS were typically restricted 
to silicon, ceramics, metals and polymers. Since the 1970’s MEMS based on silicon 
technology showed a significant development, mainly for sensor and actuator 
technologies and were a commercial success. However, that was just the start, and 
evidently, “there's plenty of room at the bottom”, the possibility of further 
miniaturization, wide field of application and more sensitive 
nanoelectromechanical systems and devices (NEMS), sounds even more lucrative 
to the scientific community. As demand for systems with stringent size 
requirements and increasing complex functionality grows, it is necessary to 
develop and identify new materials with different properties that are able to 
operate on these minuscule scales. 

Understanding and predicting the behavior of these materials is critical for 
optimizing operation and necessitates a thorough understanding of structure–
property relationships. During the last 35 years, various studies have been 
conducted in order to establish the stress profile of these devices. Yet, the effect of 
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surface stresses over the device rigidity lacks proper understanding, and a 
controlled, quantitative measurement regarding the surface effects and stress on 
cantilever stiffness with commensurate theoretical interpretation is still out of 
bounds. The theoretical axial-force model proposed by Lagowski et al. [30] works 
well for explaining the stress generated in the doubly clamped beams and give 
similar results derived using Euler-Bernoulli beam theory[31]. However, the axial 
force model, when applied to cantilever beams, has been shown to the 
fundamental physical principle of force equilibrium[32]–[34]. Although 
demonstrated to be unphysical, there have been many experimental studies, which 
comply with the axial force model in cantilever beams [24], [26]–[30]. However, it 
is important to note that it is not entirely clear whether these measurements were 
solely due to stress changes on the beam surface of the cantilever beam or other 
unknown effects originating from unspecified changes in the resonator's 
mechanical properties[30], [35] are at play.  Anyhow, the situation is in contrast to 
doubly-clamped beams, where the change in stress-induced stiffness can be 
systematically observed and theoretically predicted [31], [36]. 

The study conducted by R. B. Karabalin et al. discusses all these points in detail 
and strongly suggest that previous reports of stress-induced changes in cantilever 
beams originate from other uncontrolled surface phenomena. Specifically, an 
emphasis is laid on the cantilever thickness, as devices made of ultrathin materials 
allow for gigantic tunability in their resonance properties. It suggests a change in 
the transduction mechanism that is different from the one observed in the present 
devices.  However, there is no significant detail on what this transducing 
mechanism looks like or its behavior.  

Clearly, there are several challenges and bottlenecks to overcome[37]; the primary 
is enhancing synergy between molecules and their surroundings to produce useful 
output while maintaining or devising possibilities for external control. Due to these 
challenges and others highlighted in recent reviews[38–41], despite being the 
scientific frontier, the nascent field of 'molecular actuators' is still shrouded by 
concerns since most of the breakthroughs are concerning simple devices and 
technologies and have yet to reckon in terms of strain, efficiency, durability, 
scaling, and control for their effective deployment in these disruptive 
applications[42-48].  

Nevertheless, the development of NEMS calls for major issues, including the 
inclusion of smart actuating materials in nanoscale systems[14]. The challenges of 
processes for the production of MEMS/NEMS are well known; few high-
performance materials for NEMS operations are available.  

In this regard, Spin crossover (SCO) material can be of substantial help to the field 
of molecular actuators as it can add a variety of smart features (e.g. shape memory), 
a high degree of synthetic versatility, and multifunctionality, such as the coupling 
of optical, electrical, magnetic, and mechanical properties, since the SCO 
molecules have the ability to be operated via different stimuli routes [49], such as 
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pressure[50], [51], temperature [52], electric field [53], magnetic field [54], and light 
[55]. Furthermore, it has been demonstrated that as far as SCO phenomenon i.e., 
switching between low-spin (LS) and high-spin (HS) electronic configurations, 
accompanied by a dramatic change of molecular volume, is concerned is size-
independent i.e. SCO complexes or molecules can exhibit useful mechanical 
response, which ranges from microscopic crystal to the single-molecule level [56], 
implying that there are no fundamental limitations to their functionality at the 
nano-scale (eric collet). 

The spin transition between LS and HS is usually accompanied by an increase of 
the Fe-ligand bond length by 10%, a weakening of the metal-ligand bonds, causing 
local volume changes [57-58], as well as ligand-metal-ligand bond angles by 0.5° −
80° which affects magnetic, vibrational and optical [59] properties. In the solid 
state, the thermal properties of SCO materials, gives rise to a rich variety of 
behaviors, ranging from (i) first-order thermally-induced spin transition 
(cooperative behavior), accompanied with thermal hysteresis [60], (ii) gradual spin 
transition [61] described by a simple Boltzmann distribution between the two 
states, also obtained in highly diluted crystals, or in weak cooperative systems, as 
well as many other exotic behaviors such as (iii) like multistep [62] or incomplete 
spin transition [61].  

SCO materials, in particular, have a high potential for strain and work density and 
can offer a high level of versatility and multifunctionalism through molecular and 
supramolecular design [63-64].  A lot of work has been done in this field where 
SCO complexes are studied by various groups [65]. From the theoretical point of 
view, different models were introduced as the Ising-like model with forced high 
spin (HS) molecules at the surface [66], atom-phonon (APC) model [67-68] and 
elastic models [69-82]. 

This article aims to theoretically understand the electronic and mechanic 
properties of SCO molecular switches, thereby contributing to the design of better 
microelectromechanical systems (MEMS). Thus, we extend our previous 
theoretical work and use microscopic electro-elastic model [78-81] to explain non-
negligible changes in the doubly clamped SCO beams due to stress generated 
through thermal expansion or contraction. The additional insight gained through 
this study will be a fundamental step toward explaining the effect of fixed edges on 
the structural and thermal properties of the crystal. This study is based on Monte 
Carlo (MC) simulations in two dimensions lattice. 

The manuscript is organized as follows: In section II, we present the electro-elastic 
model and describe the simulation procedure.  In section III, the effect of edge 
obstruction on a deformable spin-crossover crystal is reported, as well as the 
thermo-induced spin transition of crystal, structural properties are studied, and 
the spatio-temporal aspects were discussed. In section IV, we conclude the paper, 
and outline the possible developments of the present work. 
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4.2 Hamiltonian  

We investigated a distortable 2 D rectangular lattice with a fixed topology and fixed 
boundary conditions. Each SCO site is represented by a fictitious spin state; 𝑆𝑖 =
±1, where  𝑆𝑖 = +1 refers to the HS state and  𝑆𝑖 = −1 to the LS state. 

The SCO molecules interact via elastic springs, including nearest-neighbors (nn) 
and next nearest-neighbors to maintain lattice stability, as illustrated in Fig.1. The 
electro-elastic Hamiltonian is written as follows: 

H = ∑ (∆ − kBTlng)Sii + A∑ (rij(i,j) − R0(Si, Sj))² + B∑ (rik(i,k) − R0
′ (Si, Sk))²  (4.1) 

The first term in (1) represents the electronic contributions and contains the 
energetic contributions of the ligand fields in the HS and LS states, such as ∆=
𝐸𝐻𝑆 − 𝐸𝐿𝑆 corresponding 0 𝐾 and the entropic contribution originating from the 

electronic and vibrational degeneracy ration, 𝑔 =
𝑔𝐻𝑆

𝑔𝐿𝑆
, between the HS and LS 

states. The second and the third terms describe the elastic contributions between 
the nn and nnn of spins-crossover units, respectively. 

 

 Figure 4. 1  Configuration of the elastic interactions in the two-dimensional square model 
considered in this site. 

The quantity 𝑟𝑖𝑗(resp. 𝑟𝑖𝑘) is the instantaneous distance between the nn (resp. nnn) 

nodes i and j (resp. i and k), 𝑅0(𝑆𝑖, 𝑆𝑗) and 𝑅0
′ (𝑆𝑖, 𝑆𝑘) are the equilibrium bond 

lengths for the nn and nnn which depend on the spins involved in the interaction. 

We set the average value of the lattice parameter between nnn neighboring HS 
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(LS) atoms as equal to √2𝑅0(𝑆𝑖, 𝑆𝑗). The equilibrium bond lengths are defined as 

follow:  R0(−1,−1) = R0
LL, R0(+1,+1) = R0

HH and R0(+1,−1) = R0(−1,+1) =

R0
HL  for the LS-LS, HS-HS and HS-LS sites configurations, respectively. For 

simplicity, we consider, R0
HL =

1

2
 (R0

HH + R0
LL). The general expression of the nn 

distance writes: 

R0(Si, Sj) = R0
HL +

δR

4
(Si + Sj)    (4.2) 

 Where δR = R0
HH − R0

LL is the lattice misfit between the LS and HS phases. 𝐴 and 
𝐵 are the nn and nnn elastic constants, assumed independent on the spin states. 

The simulations performed in the present work have been done using the following 
parameters values: g = 150, ∆= 450 K, [81-83] leading to an enthalpy change ∆H =
3.5 kJ. mol−1 and entropy change  ∆S =   41.63 J. K−1mol−1.Within these values, the 

transition temperature is Teq =
∆H

∆S
=

∆

kBlng
≈ 88.87 K. 

The lattice parameter values of the LS and HS states are respectively equal to R0
LL =

1 nm and  R0
HH = 1.05 nm. For a HS atom with a LS neighbor, the equilibrium bond 

length is taken as 
R0

HH+R0
LL

2
= 1.025 nm. In addition, the equilibrium lattice 

parameters between nnn in the LS and HS configurations are taken equal to 

√2R0(−1,−1) = 1.414 nm  and  √2R0(+1,+1) = 1.484 nm, respectively. On the 
other hand, the bulk modulus values have been evaluated by the Brillouin 
spectroscopy in the range 5 − 30 GPa. Considering the uniaxial elongation of a 
cubic unit cell, with a lattice parameter, a, and omitting the transverse effects, the 
simple relationship A + 2B = E. a holds, where E is the bulk modulus. So, choosing 

A = 150 000 K. nm−2 = 150 meVÅ−2 and B ≅ 0.3 A leads to a bulk modulus 
value, E ≅ 15 GPa. 

The Hamiltonian (1) is investigated here by MC simulations [84]. For each site 
randomly selected, with spin (Si = ±1) and at position r⃗⃗ i, a new spin value (Si

′ =
−Si) will be set without position change. This new spin value would be accepted or 
rejected by the usual Metropolis criterion. Once the random spin change is 
accepted or rejected, the lattice is relaxed mechanically by a slight motion of each 

node, selected randomly, with a quantity ‖δr i‖ ≪ ‖r ij‖ where ‖r ij‖ is the distance 

between nn. In the present study, we take the amplitude of the random 
displacements as δr = 0.005 nm, which is small enough compared to the bond 
lengths. In the next step, we choose again randomly a new site and the procedure 
is repeated for each of the Nx × Ny = (200 × 5) spins where Nx and Ny are the 

number of atoms along the length and the width of the lattice. Once all the lattice 
sites are inspected for the spin change, we define such a step as the Monte Carlo 
step (MCS). 

We used 500 MCS in order to average the physical quantities, like the high spin 
fractionnHS, the average lattice parameter, < 𝑟 >, etc. 
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4.3 Results and discussion 

In the present study, we consider a rectangular lattice of size (NxxNy =

200 nm by 5 nm) is initially built with the equilibrium lattice parameter. The 
simulation strategy is as follow: at 1 𝐾 (resp.300 𝐾), the system is built with the 
lattice parameter, respective to that of its initial state, i.e., the LS (resp. HS) state, 
and then either of its vertical or horizontal borders are fixed, and then we vary the 
temperature by 1K at each step, as we approach the transition temperature system 
is expected to transition from its initial state to the expected state. As it is well 
known that spin transition in SCO is accompanied by volume expansion or 
contraction depending on the material's spin states, fixing the edges will then 
realize in the generation of excess stress in the lattice as we approach transition. 
In the present study, we studied how lattice accomplish spin transition, how the 
initial state affects this realisation, the effect of lattice size, and the ratio between 
length and width affect its transition temperature. 

It is worth mentioning that the present 2D lattice is an oversimplified description 
that has the merit of being numerically tractable. However, it masks several 3D 
effects, but even being simple serves the object of building intuition by revealing 
some crucial factors that might play a role in confined transition for 3D lattice. 
From the point of view of simulations, the study of elastic 3D systems was 
conducted out in prior work in order to study the crumpling effects created by the 
volume change during the spin transition [85] and, more recently, intensive 
simulations on cubic and spherical shaped lattices have been conducted by 
Enachescu et al. [86] 

4.3.1 Boundaries effects 

4.3.1.1 Thermo-induced spin transition 

In this section, we analyze the effect of the edge obstruction on the thermal 
transition of the SCO lattice. Starting from stable state, the temperature is varied 
from 1 to 300 K on heating and cooling process with a thermal step of 1 𝐾. The 
thermo-induced spin transition for different case, are illustrated in Figs 2(a) and 
(b) in terms of 𝑛𝐻𝑆  and average lattice bond lengths < 𝑟 >, respectively. 

It is worth mentioning that the confinement applied at the edges and the initial 
conditions considerably influence the thermal hysteresis's global shape. Fig. 2(c & 
e) shows that without boundaries condition, we have an abrupt transition with 
hysteresis width (∆𝑇 ≈ 22 𝐾). The presence of breadth (resp. length) obstruction, 
starting from the HS or LS states, reduces the cooperativity leading to gradual or 
incomplete transition. These behaviors are attributed to the role of the stress 
applied in the edge. We can also denote, starting from the LS state, a shift of the 

equilibrium temperature 𝑇𝑒𝑞 =
𝑇𝐻𝑆→𝐿𝑆+𝑇𝐿𝑆→𝐻𝑆

2
, towards higher values which reaches 
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184 K. (Here, 𝑇𝐻𝑆→𝐿𝑆 and 𝑇𝐿𝑆→𝐻𝑆 are the transition temperatures from HS to LS and 
LS to HS, respectively.) Whereas, starting from the HS state, the transition 
temperature is considerably reduced. 

Furthermore, to understand the mechanical effects of the stress, we followed the 
average 𝑛𝑛 distance, depicted in Fig. 2(d&f). We can easily notice a difference in 
the shape of the hysteresis loop and lattice parameter, especially for obstruction 
along the length. We see that average nn distances are kept the same as that of its 
initial state, while the spin-state transition is still achievable either partially or fully 
depending on the initial conditions.   

To express the equilibrium temperature as a function of the different parameters 
studied above, we introduce a simple solution based on the working assumption 
that the equilibrium temperature of the system results from the average value of 
the ligand fields. To express analytically the equilibrium temperature 𝑇𝑒𝑞, we 

consider only the nearest and next-nearest neighbors in our development. In our 
system, the interactions depend on their positions. 

Such analysis leads to the following expression of the equilibrium temperature 
derived from ℎ𝑖 = 0: 

𝑇𝑒𝑞 =
∆

𝑘𝐵𝑙𝑛𝑔
−

(𝐴+2𝐵)

𝑘𝐵𝑙𝑛𝑔
∆𝑅 (< 𝑟 >𝑇𝑒𝑞− 𝑅𝐻𝐿);  𝑅𝐻𝐿 =

𝑅𝐻𝐻+𝑅𝐿𝐿

2
       (4.3) 

One can notice when we have a breadth (resp. length) obstruction and starting 
from the HS state, 𝑇𝑒𝑞 = 34.27 𝐾 (resp. 𝑇𝑒𝑞 = 60.69𝐾 )values that agree pretty well 

with that of the simulation. However, starting from the LS state, with a breadth 
(resp. length) obstruction, 𝑇𝑒𝑞 could be evaluated as 𝑇𝑒𝑞 = 96.55  𝐾 (resp. 𝑇𝑒𝑞 =

162.5 𝐾) values that agree with that of the simulation. 
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 Figure 4. 2 Schematic views of the SCO crystal showing a breadth and length obstruction, 
starting from the HS(a) (resp. LS(b)) state. (c&d) Thermal dependence of the HS fraction, 
nHS and average bond lengths < 𝑟 > starting from the HS state for different obstructions. (e&f) 
Thermal dependence of the HS fraction, nHS and average bond lengths < 𝑟 > starting from the 
LS state for different obstructions. 

4.3.1.2  Spatiotemporal aspects 

We have also analyzed the effect of edge obstruction on the spatio-temporal 
aspects of the thermo-induced spin transition. The results are summarized in Figs. 
4.3, where we display the snapshots of the spin state configuration and the lattice 
deformation along the thermal hysteresis loop of Fig. 2 for free system (a),  and 
width and length obstruction, starting from the HS (b&c), and LS (d&e) 
respectively.  

Fig.3 (a) reveals that upon cooling process (nHS = 0.25) for the free system, the LS 
phase grows exclusively and quite easily (due to surface effects) from the free 
corners, extending over the entire crystal by an isotropic way along the edges and 
avoiding the middle, which converts only at the end of the process. We can explain 
why nucleation in the model starts from the corners by simple energetic 
considerations. The Spatio-temporal aspects of the LSHS transition (on-heating 
branch) are similar to those observed on cooling. 

On the other hand, starting from the HS states with breadth (resp. length) 
obstruction, the nucleation and growth processes are almost opposite to those 
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observed in the first case. Indeed, the nucleation of the LS phase, with breadth 
obstruction, starts (Fig. 3(b) near the centre, and then propagates longitudinally 
towards the blocked edges. However, the stress generated through a confined 
transition in the crystal delays their thermal switching; they have longer relaxation 
times because they are stabilized by the tensile stress (check) induced by the 
confinement. While, during heating processes, the HS phase appear to nucleate 
near the bounded edges and then propagating towards the centre of the lattice 
(add figure). In fact, it should be expected, as the lattice was initially prepared in 
HS state and thus at the edges, the lattice parameter due to the obstruction are 
very similar to that of 𝑅0

𝐻𝐻 which facilitates the nucleation to the HS states. 

In case (c), when we have confinement along the length of the crystal, we could 
clearly see a completely different mechanism to approach transition, first of all, as 
we can observe, concavity at the edges along the width (higher resolution, with 
zoom at concavity), which suggests that the contraction is maximizing as we 
approach toward the center line, and decreases as we move away from it. Similarly, 
for the spin states, we can see a large string of LS states forming along the edge 
(length); but it is not expected as this edge is not free to move and is confined. 
Thus, it is not intuitive that the spin relaxation initiates along the length of the 
lattice, as these were the edges which were fixed as per their initial states which in 
this case is HS, thus the average lattice parameter are expected to be close to that 
of the HS equilibrium lengths, 𝑖. 𝑒. 𝑅0

𝐻𝐻, thus it could be expected that atoms 
located at the edges along the length should always remain in HS or will be the last 
one to reach LS, but as we can see, that is not the case. 

Similarly, for Fig. 3(d), if we start from the LS states with obstruction along the 
breadth, the process of nucleation and growth are almost opposite to those 
observed for the system with free corners. In fact, the nucleation of the HS phase, 
with breadth obstruction, begins from the middle of the crystal, the HS state starts 
accumulating in the bulk and start forming some perturbations, which takes 
shapes of crest and trough of the waveform and thus a new arrangement of HS and 
LS domain appears, which then propagates longitudinally by an anisotropic way. 

While for case (e), where we start from LS state and have set obstruction for the 
edges along the length, we can see that as the lattice wants to expand itself in this 
case, we can see convexity at the edges along the width, we have maximum 
expansion as we approach the centre and it reduces as we move away. Similar to 
case (c) at the edges along the length, we start to see the formation of chain of HS 
states, which, then are propagated inwards the lattice during heating cycle, 
similarly for the cooling cycle, as we would have expected(in the free lattice case) 
the nucleation would have started from edges along the width as they are free and 
thus should be the first one susceptible to change but as we can see that the LS 
propagation starts from the edges along the length and then move towards the 
centre. In fact we can say that as we move towards the center line along the width 
there must be many atoms which have lattice parameters much closer to that of 
the HS, while as we move towards the edges, majority of atoms could still remain 



185 
 

more closer to LS state lattice parameters; thus we can understand this 
asymmetricity along the central line for the cases (c and e), although what could 
not be understood is that the edges along the length which were specifically fixed 
to the LS lattice parameters are the first to transition to HS state.      
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 Figure 4. 3 Snapshots of the crystal during the heating and the cooling process for (a) free 
system. Snapshots of the crystal during the cooling and the heating process starting from HS 
state with width (b) and length (c) obstruction. Snapshots of the crystal during the heating 
and the cooling process starting from the LS state with width (d) and length (e) obstruction. 
The red (blue) dots are associated with HS (LS). 𝑁𝑥 and 𝑁𝑦 were chosen as follows: 𝑁𝑥 =

200 𝑛𝑚 and 𝑁𝑦 = 5 𝑛𝑚. 

Now, we focus on the stress generated by the thermal hysteresis. The elastic stress 
was evaluated at 0 K. To do so, we estimated the displacement field u⃗ (i, j) 
associated with the lattice site (i, j) defined as: u⃗⃗⃗  (i, j) = r (i, j) − r 0(i, j), where 
r 0(i, j) is the initial atomic position of the sites (i, j) and r (i, j) is the final position 
at HS state. In the present data analysis, we used the positions of the perfect LS 
lattice as a reference state: r⃗⃗ 0(i, j) = (𝑖 × 𝑅0

𝐿𝐿 , 𝑗 × 𝑅0
𝐿𝐿). 

4.3.2 Size effects 

4.3.2.1 Length effects of crystal 

In this part, we will study the size effect on the thermo-induced spin transition. 
For this, the crystal, with breadth obstruction and starting from the LS state, was 
built with different surface ratios, 𝑆 = 𝑁𝑥. 𝑁𝑦, where 𝑁𝑥 is changed from 40 to 

200 𝑛𝑚 and 𝑁𝑦 is fixed to 5 𝑛𝑚. The thermal evolution of nHS for different sizes is 

shown in Fig. 4.4. 

One can notice from Fig. 4.4(a) that the presence of breadth obstruction induces 
an increase of hysteresis width for the case of avg. lattice parameter < 𝑟 > with 
respect to the increase in 𝑁𝑥/𝑁𝑦 ratio. However, starting from the LS state: upon 

increasing the length of the crystal, the transition temperature for the nHS fraction 
during the heating cycle is relatively unchanged, while for the cooling cycle, we 
can see the difference between transition temperatures for decrease in 𝑁𝑥/𝑁𝑦 

ratios, and thus could see the difference between the hysteresis width. Indeed, the 
equilibrium temperature and the hysteresis are presented in Fig. 4.4(c). It shows a 
linear behavior as a function of 1/𝑁𝑥. 
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One can quickly notice a distinct difference in the shape of the hysteresis loop of 
nHS Fig. 4.4(a), and average nn distance Fig. 4.4(b). Indeed, Fig. 4.4(b) reveals that 
due to the confinement, the LS to HS transition is realized in a frustrated lattice 
since the lattice parameters are different from its equilibrium parameter and is 
approaching its equilibrium parameter as we increases the length of the lattice. 
Interestingly for cases of length ≧ 120 we notice that while decreasing the 
temperature that is in the cooling cycle, we still have increase in avg. nn distances. 
Even though there is decrease in total HS fraction, which make this behavior even 
more puzzling, as it would have been expected that during the cooling regime 
especially during the reintroduction of LS states in the lattice the lattice will try to 
relax a bit from its agitated state, but as we can see in Fig. 4.4(b) instead of going 
down we see a rise in avg. nn distances. (for explanations, we have to plot the 
differences between max. avg nn during heating cycles and during cooling cycles 
with respect to NX)  

In figure 5, we have analyzed the effect of length on the nucleation and growth of 
the HS fraction associated with the hysteresis of Fig. 4.4(a). One can notice from 
Fig.5, the nucleation of the HS phase is very interesting in this case, as we can see 
the crystal lattice acts as a wave and is deformed in a similar fashion, where the 
crest and trough of the wave have HS population, while the remaining is 
predominantly LS in the beginning. As we kept increasing the temperature, these 
HS domains formed at crests and troughs kept growing and then covered the whole 
lattice.  

One can notice that deformation starts to appear during the cooling process for 
𝑆 = 40 × 5 as we can see in Fig. 4.5(a), and the deformation naturally keeps getting 
dominant for big crystals, 𝑆 = 120 × 5  Fig. 4.5 (b), and for 𝑆 = 200 × 5 (Fig. 
4.3(d)). In Fig. 4.5(c), we plotted the total length, given by  

< 𝐿 > = ∑ √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑗+1 − 𝑦𝑗)
2

𝑖,𝑗         (4.4) 

along X-axis for a crystal in the HS phase, with a width obstruction, with the initial 
state being that of the LS state, as a function of 𝑁𝑥, for different values of 𝑁𝑦. Since 

we have fixed length along the X-direction through placing obstruction along its 
breadth, therefore, stunting its possibility to grow along X-direction, thus in such 
scenario, total length < 𝐿 >  gives us an intuition to contemplate how is increment 
along Y-direction through bending helping the crystal to achieve its HS state 
length. This characterization helps us to depict the presence of two regimes: a 
linear behavior where the length increases with an increase in 𝑁𝑥, and then its 
convergence to a specific value which will depend on its ratio of 𝑁𝑥/𝑁𝑦. 

While for bending, we choose to define it through the following expression: 

𝑢𝑖𝑗 = ∑ √
(𝑦𝑖+1−𝑦𝑖)²

𝑅𝐻𝐻
𝑖          (4.5) 



188 
 

In Fig. 4.5(d), one can notice that bending, calculated for a crystal in the HS phase, 
with a width obstruction and starting from the LS state, increases with, for 
different values of 𝑁𝑦 and then it reaches a saturation value. The Fig. 4.5(d) behaves 

almost in a similar fashion to Fig. 4.5(c) the only difference being that the value of 
avg. length saturation < 𝐿 >  is different with each value of 𝑁𝑦. While in the case 

of bending for all 𝑁𝑦,  for the large 𝑁𝑥, converges to the same avg. bending 

parameter  𝑢𝑖𝑗. It is to be noted that both the < 𝐿 >  and 𝑢𝑖𝑗 are calculated for the 

same ratios of 𝑁𝑥/𝑁𝑦 with different random seeds and then averaged.  

 

 

 Figure 4. 4 Thermal dependence of the (a) HS fraction, nHS and (b) average bond lengths 

< 𝑟 > starting from the LS state for different sizes with a width obstruction. (c) Equilibrium 
temperature 𝑇𝑒𝑞  and hysteresis width ∆𝑇 as a function of 1/𝑁𝑥. We changed 𝑁𝑥 from 

40 𝑡𝑜 200 𝑛𝑚. 
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 Figure 4. 5 Snapshots of the crystal during the heating and the cooling process starting from 
the LS state with width obstruction for (a) 𝑁𝑥𝑥𝑁𝑦 = 40 × 5(b), 𝑁𝑥𝑥𝑁𝑦 = 120 × 5. The red 

(blue) dots are associated with HS (LS). (c) The average length of crystal 
<𝐿>

𝑵𝒙−𝟏
 as a function of 

𝑁𝑥for different value of  𝑁𝑦 = 3,5, 7 𝑎𝑛𝑑 10. (d) Bending as a function of 𝑁𝑥 for different value 

for 𝑁𝑦 = 3,5, 7 𝑎𝑛𝑑 10. Average length and bending are calculated for a crystal in the HS state 

at T = 300 K. 
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4.3.2.2 Thickness effects of crystal 

In this part, we will study the size effect on the thermo-induced spin transition. 
For this, the crystal was built in different surface 𝑆 = 𝑁𝑥. 𝑁𝑦, where 𝑁𝑦 is changed 

from 1 to 30 𝑛𝑚 and 𝑁𝑥 is fixed to 200 𝑛𝑚. The thermal evolution of nHS for 
different size is shown in Fig. 4.6. 

Starting from the LS state: upon increasing the thickness of the crystal, the 
transition is shifted towards high temperatures, and the width of the hysteresis 
becomes significant for 𝑁𝑦 = 6 then decreases. Indeed, the equilibrium 

temperature and the hysteresis are presented in Fig. 4.6(c). It shows a linear 
behavior for equilibrium temperature as a function of 𝑁𝑦 and a maximum for the 

width ∆𝑇 then it decreases linearly. What is attractive with this figure is that when 
we plotted the same in Fig. 4.4(c), we found a linear behavior for both the 
equilibrium temperature and the hysteresis width ∆𝑇; however, this time we can 
clearly see in Fig. 4.6(c) that the behaviour is no more linear and at first reaches 
some maximum and then decreases. Thus, help us in understanding the effect of 
thickness on the thermal hysteresis. Such behavior can be explained by the thermal 
dependence of < 𝑟𝑥 > and < 𝑟𝑦 >.  In fact, < 𝑟𝑥 > 𝑎𝑛𝑑 < 𝑟𝑦 >  are given by the 

following expressions: 

< 𝑟𝑥 >=
<𝐿>

𝑁𝑦(𝑁𝑥−1)
   (6) 

< 𝑟𝑦 > = {[𝑁𝑦(𝑁𝑥 − 1) + (𝑁𝑦 − 1)𝑁𝑥] < 𝑟 > −𝑁𝑦(𝑁𝑥 − 1) < 𝑟𝑥 >} ∗ 1/𝑁𝑥(𝑁𝑦 − 1) 

(7) 

Where < 𝐿 > is the total length of the system. From Fig. 4.6 (e) and (f), increasing 
the thickness of the crystal leads to a decrease in the value of < 𝑟𝑦 >𝐻𝑆, while that 

of  < 𝑟𝑥 >𝐻𝑆 almost remain constant, this is particularly important since now we 
can identify whether the major challenge in increase or decrease of average length 
is anisotropic or isotropic in nature. Fig. 4.6 (e) and 6 (f) shade an essential light 
on this nature, and we can see that as the thickness increases, it is essentially the 
value of < 𝑟𝑦 >𝐻𝑆, which takes the major blow while that of the <

𝑟𝑥 >𝐻𝑆  stays the same. Also, if we look back at the Fig. 4.4 (b) where we had already 
noted the peculiar behavior for the average distance for 𝑁𝑥 = 120, in which while 
decreasing the temperature (i.e. in the cooling cycle), we could see the increase in 
avg. nn distances even if there is a decrease in avg. HS fraction. Now we could see 
in Fig. 4.6 (e) and 4.6 (f) and pin-point this increase in avg. distances during cooling 
is specifically associated to the distances along the Y-direction and its value could 
vary depending on the ratio of  𝑁𝑥/𝑁𝑦.    

One can easily notice a distinct difference in the shape of hysteresis loop of nHS 
Fig. 4.6 (a), and lattice parameter Fig. 4.6 (b). Indeed, Fig. 4.6 (b) reveals that the 
LS to HS transition is realized in a frustrated lattice due to the confinement, since 
the lattice parameters are different from its equilibrium parameter and are 
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approaching its equilibrium parameter as we decrease the thickness of the lattice. 
In Fig. 4.7, we have analyzed the effect of thickness on the nucleation and growth 
of the HS fraction associated with the hysteresis of Fig. 4.6(a). One can notice that 
substantial deformation appears process for 𝑆 = 200 × 5 and decreases for an 
increase in the thickness 𝑆 = 200 × 20. In Fig. 4.7 (c), we plotted the average 
length along X-axis for a crystal in the HS phase, with a width obstruction and 
starting from the LS state, as a function of 𝑁𝑦, for different values of 𝑁𝑥, it shows 

the presence of two regimes: a linear (resp. exponential) behavior for 𝑁𝑥 =
200, (𝑟𝑒𝑠𝑝.  𝑁𝑥 = 50)then it converges to ≈ 1 when 𝑁𝑦 ≥ 20. 

In Fig. 4.7 (d), one can notice that bending, calculated for a crystal in the HS phase, 
with a width obstruction and starting from the LS state, is almost the same for the 
lower values of 𝑁𝑦 for different 𝑁𝑥, but starts to separate for certain values of 𝑁𝑦, 

and then again meet each other as they  converges to zero as we keep on increasing 
𝑁𝑦. This give an interesting insight into the occurrence of  bending in the lattice, 

as it indicates toward a region where there is a difference in the rate of changing 
in bending vs the rate of change of avg. length (Fig. 4.7 (c) ) with an addition of 
extra layer in thickness for the case of 𝑁𝑥 = 200, till there is no more bending 
observed due to the additional layer, and as we can see the amount of layers 
required to reduce the bending to zero depends on the ratio of   𝑁𝑥 𝑎𝑛𝑑 𝑁𝑦. 
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 Figure 4. 6 Thermal dependence of the HS fraction, nHS (a) and average bond lengths < 𝑟 > 
(b) starting from the LS state for different sizes with a width obstruction. (c) Equilibrium 
temperature 𝑇𝑒𝑞  and hysteresis width ∆𝑇 as a function of 𝑁𝑦. (d) ∆< 𝑟 > as a function of 𝑁𝑦. 

We changed 𝑁𝑦  from 1 𝑡𝑜 30 𝑛𝑚. Thermal dependence of the average bond lengths < 𝑟𝑥 > and 

< 𝑟𝑦 > starting from the LS state with width obstruction for (𝐞)𝑁𝑦 = 5 𝑛𝑚 and (𝐟)𝑁𝑦 = 15 𝑛𝑚 

. 𝑁𝑥 was fixed to 𝑁𝑥 = 200 𝑛𝑚. 
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 Figure 4. 7 Snapshots of the crystal during the heating and the cooling process starting from 
the LS state with width obstruction for (a) 𝑁𝑥 × 𝑁𝑦 = 200 × 10 and (b) 𝑁𝑥 × 𝑁𝑦 = 200 × 20. 

The red (blue) symbols are associated with HS (LS). (c) Average length of crystal 
<𝐿>

𝑵𝒙−𝟏
 as a 

function of 𝑁𝑦 for different value of 𝑁𝑥 = 50,100 𝑎𝑛𝑑 200. (d) Bending as a function of 𝑁𝑦 for 

different value for 𝑁𝑥 = 50, 100 𝑎𝑛𝑑 200. Average length and bending are calculated for a 
crystal in the HS state at T = 300 K. 

4.3.3 Relaxation Dynamics 

In this part, we studied the relaxation dynamics of the SCO crystal with width 
obstruction in different ways. Here, we prepare our SCO crystal initially in an 
electronically HS state, while the avg. nn distances are kept those of LS state, with 
width obstruction in place. Naturally, the system is in a frustrated state, and we 
don’t interfere with the electronic part and keep it as such, but will start to relax 
the crystal mechanically. It is to be noted that this time we did not work on a simple 
straight rectangular crystal, but instead, we made it have an initial curvature so 
that we can have crystal bending with different normal modes. Thus the symbols 
2 L, L, 0.5 L, and 0.25 L corresponds to normal mode (N.M) 1, 2, 4, 8, respectively. 

 The objective behind this study is to see whether the system would prefer to have 
multiple stable configurations for a given 𝑁𝑥 × 𝑁𝑦 or will have a preference for a 

particular standing wave configuration. As we can see in the Fig. 4.7 (a), with 
different initial normal modes the SCO crystal (of 𝑁𝑥 × 𝑁𝑦 = 200 × 5)  seems to 
side with a particular wavelength (i.e. with normal mode = 2 or symbol L) for the 
bending period, it could be clearly seen that for this particular wavelength, the 
relaxation time for the crystal is smallest (~ approx. 0.5 million Montecarlo Steps 
(MCS)) and without any plateaus, while for all other normal modes the relaxation 
curves goes through some plateaus and where the rate of relaxation is affected 
adversely or slowed down. Similar inferences could be drawn from the Fig. 4.7 (b), 
where we could see the time (MCS) taken for the SCO crystal to reach its HS state 
avg. nn distances, which is again shortest for the  𝑁.𝑀 = 2 while longest for the 
𝑁.𝑀 = 1. 

 Now, it is important to understand what does these particular plateaus with 
different 𝑁.𝑀 corresponds to; they correspond to change in the 𝑁.𝑀 of the system. 
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At each plateau, the peaks of the plateau are collapsing in order to reduce the 
number of 𝑁.𝑀 in the system until it reaches 𝑁.𝑀 = 2. Thus, we can see that after 
some MCS, the relaxation curve of the higher 𝑁.𝑀 follows or overlap with the 
relaxation curve of lower 𝑁.𝑀. Thus, if we see the relaxation curve for 0.5 L (𝑁.𝑀 =
4) in Fig. 8 (a), we see this plateau, which takes almost an extra 1.5 million MCS to 
converge with the curve of  𝑁.𝑀 = 2  (L), this corresponds to the time the four 
peaks in the SCO crystal takes to converge to two and then increase in amplitude. 
Similarly, for the curve for 0.25 L (𝑁.𝑀 = 8), take the same number of MCS as that 
of 0.5 L, to converge with the curve of  𝑁.𝑀 = 2  (L), but this time we go through 
two plateaus first one corresponds to the time taken for the eight peaks in the SCO 
crystal to converge to four and then the second plateau to take it further down to 
two and then increase in amplitude.  

At this point, a curious reader might be wondering, if that is so, then why does 
𝑁.𝑀 = 1 (or 2L) is following or overlapping with the relaxation curves of 0.25 L in 
both the Fig. 4.8 (a) and (b). To answer this, first, we have to understand what is 
going in the SCO crystal for the orange dashed line termed N.C (No Curvature) in 
Fig. 4.8 (a) and (b), which correspond to the simple straight rectangular crystal 
without any initial curvature or N.M associated with it and is allowed to relaxed 
mechanically, while all else is similar to previously discussed curves. As we can see, 
the relaxation curve for this system is somewhat between that of 0.25 L and 0.5 L 
(N.M = 4 & 8) for the first million steps, while for the next two million steps, it has 
different relaxation dynamics compared to the rest of the curves. This is because 
when we do not initiate the relaxation from a chosen N.M, the system itself starts 
bending from different places in order to increase the avg. nn distances and thus 
in this process different N.M starts appearing in the system for few initial steps 
(which, of course, will depend on 𝑁𝑥 × 𝑁𝑦 ) for this case, it happens to be six. This 

is why we see some resemblance for the first million steps (six N.M to four) and 
then see the divergence from the rest, while ultimately converging to the same 
values as that for the L (𝑁.𝑀 = 2).   

This result is significant as it sheds light and helps us understand the relaxation 
dynamics of the bounded SCO crystal. Even though we started from different 
initial states, we reached the same relaxed state and almost went through the same 
path. Now coming back to our dilemma regarding the 𝑁.𝑀 = 1 (L), what we are 
seeing is because of the low amplitude of the single arch or 𝑁.𝑀, the system 
behaves almost like a rectangular system with little bit of curvature. Therefore, in 
order to relax, we see the appearance of different N.M in the system initially, thus 
at first we can see the increase in N.M from one to five and then its convergence to 
three over the course of MCS and is the only relaxation curve that has not reached 
the lowest Elastic energy.        
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 Figure 4. 8 Showing the mechanical relaxation curves for a High Spin  SCO crystal with the 
Low Spin average nn distances for a system size 𝑁𝑥 × 𝑁𝑦 = 200 × 5 with width obstructions. 
The symbols 2 L, L, 0.5 L, and 0.25 L corresponds to normal modes 1, 2, 4, 8, respectively. (a) 
Showing the elastic relaxation curve for the crystal with different initial bending periods.   (b)  
Showing the avg. nn distances relaxation for different initial bending periods.    

Now that we understood the relaxation dynamics of the bounded SCO crystal and 
demonstrated the presence of standing wave depending on the size and other 
factors, it will be crucial to establish an added layer of bistability to the system, i.e., 
regarding the shape of the system. Since each size will be corresponding to a 
certain N.M, for each value of N.M, there will be two ways to rearrange or reorder 
the crystal, and thus may lead to another order of control over SCO crystal and 
devices.   

4.4 Conclusion 

We investigated in the thermo-induced spin transition of spin-crossover crystal 
through the electro-elastic model. The study was focused on the properties of the 
macroscopic nucleation, growth and propagation mechanisms. The Spatio-
temporal aspects of the transformation were studied as a function of the position 
of obstruction (length or width) and the initial state of the lattice. We found that 
fixed edges prevent the nucleation from the corner of the crystal at the beginning 
of processes; however, starting from the HS states with breadth (resp. length) 
obstruction, the nucleation of the LS phase, with breadth (resp. length) 
obstruction near the centre, and then propagates longitudinally towards the edges. 

We have also analyzed the effect of obstruction on the thermal and structural 
properties of the spin crossover crystal, starting from the HS and LS states. Indeed, 
for length obstruction, we reduce the cooperativity and leads to gradual or 
incomplete transition, while in the case of breadth obstruction, it seems we 
increase the cooperativity when we start from LS state while reducing it when we 
start from HS state and thus leading to broader and narrower hysteresis 
respectively. We noticed a distinct difference in the shape of the hysteresis loop of 
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𝑛𝐻𝑆 and avg. nn distances. Indeed, starting from the HS (resp. LS) states, a residual 
lattice parameter appears at low (resp. high) temperature. We studied the size 
effects on the thermal and mechanical properties of the spin crossover crystal. We 
found that the increase of the length of crystal leads to a change in the thermo-
induced spin transition and shift towards lower temperatures, and we see that 
increase or decrease in the ratio of 𝑁𝑥 × 𝑁𝑦 affects the bending and total length of 

the lattice in different ways and is key in understanding the lattice behavior. 

The spatiotemporal arrangement of spin states is also quite important as we can 
see that in the cases where we have the obstruction along the breadth, and we start 
from the LS state, during the heating cycle for very low bending, we can see the 
occurrence of stripes (Turing like pattern), which might be helpful in explaining 
the origin of such patterns in many experimental works if we follow the curvature 
of the crystal. Similarly, for the case where we start from the HS state during the 
length obstruction, we see that a core-shell like structure for a spin state is formed 
where we have high spin states at the center of lattice while the edges are all low 
spin, which is interesting considering that the edges along the length are fixed to 
the distance that of HS and thus should be the last to make this transition. Thus 
we can safely assume that the frustration in this system is propagated inwards, and 
thus we see at the center a big domain of HS  with some LS states trapped 
alternatively.   

Such behaviors underline the crucial role of the obstruction in the magnetic and 
mechanical properties of the crystal. It is interesting to mention that the reasoning 
developed here could be extended to the effect of misfit between the LS and HS 
phases on the nucleation, growth and propagation mechanisms. 
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Chapter 5. 
Conclusion and Perspectives 

 

5.1 General Conclusion  

With the trend for ever faster and smaller devices, there are considerable critical 
pressures (environmental, energy consumption, etc.), technological challenges like 
the end of Moore’s law, bottlenecks (data storage, energy storage, etc.). 
Furthermore, economic benefits to meet these new demands and develop new 
switchable macro/micro/nano-materials, to be used in different applications as 
spintronic, nano-electronic, nano-photonic or even nano-mechanical actuators 
devices. Nowadays, one of the most promising and stimulating research areas, 
pertaining to molecular electronics is represented by Spin Crossover (SCO) 
materials in which different stimuli drive the memory effect. This thesis deals with 
the SCO phenomenon and provides specific and flexible models and methods to 
describe SCO compounds, with a primary focus on specific questions related to the 
use of SCO materials and nanomaterials in technological applications. Looking at 
the increasing progress made in the past years, in all experimental, theoretical and 
computational fields, also from the chemical and physical aspects, regarding the 
understating of SCO processes in solids, liquids, nanoparticles, and thin-films, will 
not be just crucial for this field but also would be functionally essential and 
enriching for physics in general and future of the broad class of domains (i.e., 
nanomaterials, molecular-, magnetism, Elec-/spin-tronics, etc.). Thus, we can 
forecast that the SCO materials embedded in devices is going to be mainstream 
very soon. While the hysteretic thermal spin transition has been well documented, 
the recently novel behaviors (i.e., incomplete transition multi-step transition) 
displayed by these materials are much less common, which prompted us to work 
on them to better understand the related observed phenomena. Our present work 
is devoted to the fundamental aspect of 𝐹𝑒(𝐼𝐼) compound and aims to offer some 
high-tech “characterizations” tools that help understand the spin transition 
phenomena. In order to introduce SCO materials in technological devices with 
various architectures, the geometrical characteristics of the material are very 
important. Moreover, controlling the cooperative nature of SCO represents a 
significant challenge in materials-device technologies, nowadays. Based on the 
results reported recently in the literature we have analyzed, and shown that the 
cooperativity of a SCO system depends not only on short- and long-range 
interactions but also strongly on the lattice architecture.  

During this work we tried to bring theoretical elements both in the description by 
macroscopic and microscopic models of the spatio-temporal aspects, statistics, and 
thermodynamics making it possible to understand and reproduce recent 
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experimental observations, and to predict new behaviors in the theme of spin 
transition. We have proven the validity of the elastic models to describe the 
macroscopic behavior of spin transition crystals in the thermal hysteresis cycle 
during the first-order phase transition. The model presented here is developed 
from the Hamiltonian of Ising's model. The elastic model still has a lot of secrets 
to reveal to us, which will surely help to better understand the essential role of 
elasticity and magneto-elastic coupling in the leading phenomena of the spin 
transition.  

Here, we have exposed the various behaviors obtained via the competition or 
effects arising at the boundary (or interfaces) due to the change of variables (i.e., 
ligand field (transition temperature), elastic parameters (equilibrium distances, & 
elastic rigidity, etc.), either due to different lattice geometries (square, rectangle, 
etc.), architecture (core-shell, membrane-substrate), or simply due to the 
externally introduced barriers (such as clamping, along length, or breadth). Elastic 
frustration emerges as the parameter responsible for the appearance of an 
antiferro-elastic phase in a plateau, causing a transition in two or multi-steps, re-
entrant, or incomplete. These organized patterns of the spin state, with a 
periodicity, emerge from a spatial variation of the network parameter, periodic or 
aperiodic, which could be the key to understanding the incommensurable phases 
recently found experimentally by various authors. The general perspective of this 
work lies in using the elastic Hamiltonian to study and enrich the understanding 
of various phenomena that arise, when frustrations in one form or another are   
introduced in the system, while simultaneously taking thermal effects into 
account. So, although limited, the atomistic description by Monte Carlo has merit 
when it comes to taking into account the microscopic structure. Chapter Two and 
Chapter Three of this thesis are dedicated to the study of rich features of magneto-
elastic coupling in SCO active core-shell nanocomposite, where both core and shell 
have different transition temperatures and interact elastically through their 
common elastic interface.  

5.1.1 Chapter 2 

In this Chapter, we have investigated the thermodynamic properties of a spin-
crossover nanocomposite made of two different spin-crossover units in the core-
shell configuration. We have seen that this configuration allows an efficient 
mechanical coupling between the two spin-crossover materials since they 
influence the thermodynamic properties of each other. Due to this mechanical 
coupling, the thermal dependence of the total nanocomposite is far from the sum 
of each of its constituents. To describe this phenomenon, we have adapted our 
electro-elastic model to the case of a nanocomposite made of two elastically 
coupled SCO materials having different transitions temperatures and thermal 
hysteresis widths. We found that the shell part's transition at low-temperature 
significantly affects the elastic properties of the core (and vice-versa), whose lattice 
parameter starts to change (precursor phenomena) long before any variation of its 
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spin state. We found that the interplay between the electro-elastic properties of 
both constituents leads to a complex distribution of pressure (or elastic energy) 
inside the lattice. In practice, we have demonstrated that although the thermal 
spin-transition of the core (in the nanocomposite) is of first-order, the growth of 
HS macroscopic domains is prevented by the presence of the shell, which changes 
this mechanism to that of homogenous ramified structures, in a similar way as 
those observed in the Ising models. The model results are qualitatively comparable 
with the available experimental results. Finally, we would like to emphasize that 
when the rigidities of the core and the shell are significantly different and require 
the use of different elastic constants and lattice parameters for the two media, we 
expect a less efficient core-shell mechanical coupling due to the existence of a 
misfit acoustic impedance. The use of SCO materials having different transition 
temperatures and similar elastic properties is then of interest to generate new 
multistabilities (two three or even more steps), which can be used as q-bit systems 
for memories. SCO nanocomposites made of several multilayers with different 
transition temperatures constitute an excellent way to design multi-stable SCO 
materials with high tailored performances. 

5.1.2 Chapter 3 

The results discussed in this chapter stems from the questions asked in the 
previous chapter. What does the coupling of elastic interface for two spin active 
SCO lattices results in, if misfit is introduced in the system? How does the nature 
and manner in which this misfit is included affects the outcome?   

 To realize this situation, for first scenario, we fixed the LS lattice parameter to 1.0 
nm for both core and the shell. The HS lattice parameter of the core is set equal to 
1.05 nm, and we change the HS parameter of the shell in the interval 1.00-1.05 nm. 
While in another case, we fixed the HS lattice parameter to 1.06 nm for both the 
core and the shell. The LS lattice parameter of the core is set equal to 1.0 nm, and 
we change the LS parameter of the shell in the interval 1.0-1.06 nm.   

One of the most intriguing results emerging from the magneto-elastic interactions 
within the nanostructure concerns the core's reaction. Indeed, for a strong lattice 
parameter misfit between the shell and core in HS, the shell shows thermally-
induced multistep transitions on both the HS fraction and lattice parameter. In 
contrast, the core exhibits a multistep transition on its lattice parameters but a 
simple transition on its HS fraction behavior. Similarly, when there is a strong 
lattice parameter misfit between the shell and core in LS, the core shows thermally-
induced multistep transitions on both the HS fraction and lattice parameter. In 
contrast, the shell exhibits a multistep transition on its lattice parameters but a 
simple transition on its HS fraction behavior. The coupling and decoupling of 
electronic and elastic behavior depends on both values, and the misfit state is very 
novel and impossible to obtain on a simple lattice. Spatial self-organization of the 
spin states with labyrinths formation stabilizing longitudinal or transversal HS and 
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LS strings, anti-ferromagnetically coupled to surrounding strings, is evidenced. 
This type of organization of the spin states is new and deserves further 
investigations. Moreover, the case of a spin-crossover core-shell nanostructure, 
with core and shell having the same lattice parameter in the HS state and a lattice 
parameter misfit in the LS state, shows very intriguing features such as vortex 
formation and drifting and rotation of the core-shell lattice is also very interesting. 
This particular case is still being investigated, and the results will be submitted to 
publication in a separate work.  

Switchable molecules have also garnered a lot of attention recently for the 
possibility to use them as molecular machines and actuators. To achieve this aim, 
one has to be able to integrate and interface the molecules with their environment 
in order to connect them to an external source of energy, which is then transduced 
by the molecules to produce useful work in a controllable manner. It will be of 
primary importance to study the size reduction capability of the integrated SCO 
layers by means of a simple nanomechanical structure before addressing more 
complex NEMS devices. Thus, for further applications, it is of fundamental 
importance to understand all the phenomena hidden in the overall macroscopic 
thermo-induced transformations, to achieve this aim, alongside experiments, 
increasingly accurate and efficient modelling will be indispensable. The aim and 
underlying motivation of work done in Chapter Four was derived from the 
aforementioned perspective.  

5.1.3 Chapter 4 

This study was focused on the properties of the macroscopic nucleation, growth 
and propagation mechanisms. The Spatio-temporal aspects of the transformation 
were studied as a function of the position of obstruction (length or width) and the 
initial state of the lattice. We have as well analyzed the effect of obstruction on 
thermal and structural properties of the spin crossover crystal, starting from the 
HS and LS states. Indeed, for length obstruction, the cooperativity is significantly 
reduced, which leads to gradual or incomplete transition. In contrast, in case of 
breadth obstruction, it seems we increase the cooperativity when we start from LS 
state, while reduce it when we start from HS state, and thus leading to wider and 
narrower hysteresis respectively. We noticed a distinct difference in the shape of 
the hysteresis loop of 𝑛𝐻𝑆 and avg. nn distances. Indeed, starting from the HS (resp. 
LS) states, a residual lattice parameter appears at low (resp. high) temperature. We 
studied the size effects on the thermal and mechanical properties of the spin 
crossover crystal. We found that the increase of the length of crystal leads to a 
change in the thermo-induced spin transition and shift towards lower 
temperatures, and we see that increase or decrease in the ratio of 𝑁𝑥 × 𝑁𝑦 affects 

the bending and total length of the lattice in different ways, and is key in 
understanding the lattice deformation. The Spatio-temporal arrangement of spin 
states is also quite important as we can see that in the cases where we have the 
obstruction along the breadth, and we start from the LS state, during the heating 



205 
 

cycle for very low bending, we obtain the occurrence of stripes (Turing like 
pattern), which might be helpful in explaining the origin of such patterns in many 
experimental works if we follow the curvature of the crystal. Similarly, for the case 
where we start from the HS state during the length obstruction, we see that a core-
shell like structure for a spin state is formed where we have high spin states at the 
center of lattice while the edges are all low spin, which is interesting considering 
that the edges along the length are fixed to the distance that of HS and thus should 
be the last to make this transition. Thus we can safely assume that the frustration 
in this system is propagated inwards, and thus we see at the center a big domain 
of HS  with some LS states trapped alternatively.   

Such behaviors underline the crucial role of the elastic constraints in the magnetic 
and mechanical properties of the crystal. Interestingly, the reasoning developed 
here could be extended to the effect of misfit between the LS and HS phases on the 
nucleation, growth and propagation mechanisms. 

The findings obtained within this PhD project aim to extend the knowledge and 
possibly open new doorways and ideas for further developments and the design of 
novel materials.  A clear understanding of the pathway together with all the 
accessible intermediate electronic and structural states is both demanding and of 
vital importance for shaping further research in this field. This PhD work pointed 
out the variety and complexity of the multi-scale processes around magnetoelastic 
phenomena in molecular solids in this context. The “experiments” reported in the 
previous pages focused on the particular case of SCO molecular crystals. SCO solid 
systems show a large variety of phase transitions as well as different changes in 
their physio-chemical properties (magnetic susceptibility, color, volume, etc.).  

Investigations conducted in previous chapters certainly offer some insights and 
perspectives to control material properties via strong and cooperative interactions 
and feedback effects. Some prosepectives that may reach conclusions from these 
insights will be revealed in the next section and possibly shared very soon in the 
form of publications.  

5.2 Perspectives 

5.2.1 Thermal and mechanical properties of a 3-dimensional SCO 

crystal in elastically bounded media:  

We already discussed in detail the valuable insights and conclusions for the 2-D 
counterpart in Chapter Four. We would like to extend this work further to study 
its 3-D counterpart (Fig. 5.1), which will clearly be interesting since now SCO lattice 
have one more degree of freedom, so it would be logical to expect changes in 
flexural rigidity and thus in normal modes, and domain propagations. 
Understanding these effects and their origin would be helpful in addressing more 
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complex NEMS devices. 

 

  Figure 5. 1 Showing two possible orientations for a 3-D SCO doubly clamped lattice. 

 

5.2.2 Core-Shell Architecture:  

Even though two chapters have been dedicated core-shell architectures, we can 
always imagine new scenarios or question previous assumptions through which we 
viewed our previous investigations. One such question which might be asked 
regarding these results might be that for the previous studies, we let the interface 
decide what will its equilibrium distances will be during or after the transition, but 

it could very well be defined initially, something like in Fig. 5.2  (
𝑅0,𝐶

𝑥𝑥+𝑅0,𝑆
𝑥𝑥

2
), where 

𝑅0
𝑥𝑥 is the equilibrium distances at the interfaces, something as the average of 

distances between core and shell counterparts for the required configuration 𝑥𝑥 =
𝐻𝐻,𝐻𝐿, 𝐿𝐿 . So, this time, the interface has its own properties rather than flipping 
between core and shell equilibrium parameters. Surely, we can also choose the 
interface to be partial toward either shell or core. As we can see in Fig. 5.2, we have 
the behavior similar to the behavior which we observe in the case discussed in 
Chapter three with misfit in the HS state.   

 



207 
 

Another critical point is the study of the photomagnetic properties of these 
nanostructures and particularly the impact of the lattice misfit at the interface on 
the photo-induced magneto-structural properties between the core and the shell. 

 

 Figure 5. 2 Showing total 𝑛𝐻𝑆 fraction, and ⟨𝑟𝑖,𝑗⟩ avg. bond lengths for core-shell architecture 

for a predefined interface with misfit in HS state of SCO, which qualitatively is similar to what 
we observed and discussed in chapter 3, with some differcences such as hysteresis width, 
transition temperature, etc.     

These are just some examples, but currently, we have even more exciting questions 
to answers, such as investigating the origin of vortex formation, drifting and 
rotation of the core-shell lattice, the origin of this behavior, and how do 
instabilities in the lattice generate movement and how could it be harnessed to 
have directed movement in the SCO materials or nanocomposites. If found, it 
could be helpful in fields such as targeted medicine through core-shell architecture 
and others.   

5.2.3 Metal-organic framework Spin Crossover materials:  

Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are 
being frequently studied nowadays due to their easily tunable adaptability (i.e. 
structure, composition, functionality, porosity etc. ).  All these characteristics find 
their applications in various fields such as, catalytic activity, luminescence, 
conductivity, magnetism, and promising applications in energy storage, gas 
storage, molecular separation, sensing, biomedicine, etc.    

Incorporating the advantages of MOFs with the properties of SCO appears to be 
very appealing crossovers.  As we will have one more external parameter to alter 
and thus more finely tune the spin transition and thus increase the horizon of 
application of SCO to molecular sensing, molecular sieves and many more.   

It has been widely reviewed and observed experimentally that the 
correlation/synergy between the electronic and the structural features of SCO 
material are important for coupled structural phase transition. If these changes are 
assisted, for example, by symmetry breaking, it can induce stepped SCO behavior. 
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Although much is said and done about these classes of transition experimentally, 
a lot is yet to be determined theoretically. As a first attempt, we started to 
investigate the coupling between a SCO transition and an order-disorder transition 
arising due to anion (host-guest or ion/solvent molecules) moieties' orientation 
order/disorder). The following study is the first step in the direction of 
understanding the underlying principles for such transition and its effect on the 
spin transition. It will be exciting to study SCO (guest) induced guest (SCO) effect 
as it may lead to more control over the hysteresis and thus the properties of the 
SCO. In recent reported experimental studies, it has been observed that when the 
structural order/disorder of the lattice occurs near the spin-crossover transition, 
clear effects are observed on the thermal hysteresis of the SCO. As we know, in 
spin crossover systems generally, we have a lot of spin-inactive components such 
as solvents and counter anions, but during modelling of these systems, we just 
consider the spin-active centres, which limits us to develop a profound 
understanding for this phenomenon. In this paper, we will tackle this challenge by 
incorporating the anion lattice in the electro-elastic model.  

In the previous studies, we have very well tested the robustness of this model as it 
has been very efficient in providing the qualitative understanding for the 
experimental results of the SCO materials (the macroscopic nucleation, growth 
and propagation of the front transformation and the reproducibility of the thermal 
hysteresis loop, two-step transition and mechanical relaxation at lower 
temperature have been well described with this model. )  

5.2.3.1  Description of the model: 

The Anion-SCO model accounting for the volume and structure orientation 
change between the spin transition units is written as a set of fictitious spins, as 
they mimics the 2 states of SCO (HS-LS) and anion (Right Tilt (RT) – Left Tilt (LT)) 
model.  
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 Figure 5. 3 Figurative representation of Anion-SCO model representing the two possible 
orientations for the anions, RT where  𝜎𝑖  = +1  and LT where 𝜎𝑖  = −1. 

To simulate a SCO-Anion lattice, we consider two interpenetrated lattices with a 
SCO lattice (Fig. 5.3) in the center of each cell, we have an anion atom. As usual, 
SCO atoms may have two spin states HS or LS, while for anion atoms two states 
are possible either the anion elongates along the right diagonal (RT) or along the 
left diagonal (LT); this elongation of anion have effect on the next nearest neighbor 
bonds of the SCO as schematized in Fig. 5.4 . Of course, a more sophisticated 
model with a continuous reorientation of the anions is possible, but here we start 
with this simple two-state model for the anion orientation. The bond length of 
these next-nearest neighbors’ bonds increases in the direction of elongation while 
decreases in the opposite direction (Fig. 5.4).  

The total Hamiltonian, in 2D square symmetry, is given by  

𝐻𝑡𝑜𝑡𝑎𝑙 =  𝐻𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + 𝐻𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝐻𝑎𝑛𝑖𝑜𝑛       (5.1) 
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 Figure 5. 4  Showing two possible states for each HS and LS state of SCO lattice due to the 
effect of anion orientation. 

Here, 𝐻𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + 𝐻𝑒𝑙𝑎𝑠𝑡𝑖𝑐 part is the contribution from the SCO lattice, while the 
𝐻𝑎𝑛𝑖𝑜𝑛 anion part is the contribution from anion lattice on further dissection of the 
Hamiltonian we have SCO and Anion part. As we have discussed, the anion lattice 
have two stable states, i.e. RT (plus) and LT (minus), but this orientation perturbs 
our SCO lattice as SCO atoms want the lattice to be square symmetric, while 
orientation freedom of the anion atom leads to stretch in one diagonal direction 
while shrink in other. This stretching and shrinking depend on their orientation, 
for example:  𝜎𝑖  = +1 (RT) wants to stretch along the right diagonal while shrink 
along the left diagonal and vice versa for 𝜎𝑖  = −1 (LT). This conflict of symmetries 
between the SC lattice and Anion lattice generates a new interaction and also a 
frustration of both sublattices. It is important to notice here that the interaction 
between the two subsystems is considered in the elastic part of the SCO 
Hamiltonian, which depends on the “orientation states”  of the anions. 

 
 

  Figure 5. 5 Schematic of one such thought experiment of (a) confrontation between anion, and 
SCO lattice, where we begin with a SCO lattice RT but due to some external field anions have 
switched to LT.  Either of the two (SCO, or anion) have to adapt now (i.e., (b) anions adapt to 
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the SCO orientation, or (c) SCO adapts to the anion preference), otherwise we might end up 
with situation(d) where both or either of the lattice descend to disorder. 

 

Figure 5. 6 Effect of structural and spin relaxation for SCO, and spin (i.e., orientation) 
relaxation for anion (as anion always remains in centre), on the structural and spin state of 
SCO lattice (a) showing the formation of ridges at the boundaries of SCO lattice, but no 
changes in its spin state (i.e., it remains in HS state). (b) Change in both structural and spin 
orientation for SCO lattice, but as we can see lattice is still relatively ordered. (c) Changes in 
spin and structural orientation of SCO lattice, also major deformations and many interesting 
orientations of structural ordering can be observed. 

Indeed, we can imagine many exciting situations (Fig. 5.5), among which the case 
of anti-ferro interactions between the anions which leads to frustrate the SCO 
sublattice (Fig. 5.5d), and preliminary investigations on the mechanical and spin-
state relaxations shows some intriguing (Fig. 5.6) and promising results like self-
organized structural deformations (Fig. 5.6c). However, a more detailed study 
regarding the nature of SCO thermal hysteresis due the order-disorder transition 
of the anion lattice has to be conducted in order to shed more light on the coupling 
between these two transitions.   

With all of these fascinating results and insights now discussed, this thesis is 
submitted with the understanding that it only scratches the surface. Deep 
underlying connections that intertwine various complex phenomena that may 
appear unrelated at first, but gradually unraveling these connections in any of 
these systems may reveal profound insights in another or a better footing and 
understanding in the behavior of emergent phenomena as a whole. Thus, in the 
hope that the work done will be useful/insightful or relevant to a large community 
of researchers and students. 
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