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Abstract

People exposed to noise pollution may suffer from a wide range of physical and psychological
disorders. To reduce the noise level, porous materials are widely used because of their light
weight and excellent sound absorption capacity. However the sound attenuation in the low
frequency range is still a serious challenge, especially if one considers easy manufacturing
and low cost constraints for industrial applications.

To face this issue, a new metamaterial family obtained by shaping a homogeneous poroe-
lastic material is proposed. It allows to enhance the acoustic efficiency thanks to skeleton
resonances that are easily tuned without increasing the bulk density and sacrificing space.

Two configurations are addressed experimentally and numerically: the sound attenuation
in a duct and the sound transmission through a partition. In the case of the sound attenuation
in a duct, the metamaterial is a poroelastic lamella network, that provides an enhanced sound
attenuation around its first bending structural resonance. In the case of sound transmission
through a finite size panel or an infinite double panel partition, the metamaterial is a network
of poroelastic clamped beams, that provides an enhanced sound insulation when tuned to the
first mode of the finite size plate or to the mass-spring-mass resonance of the double panel
partition. For both configurations, numerical models accounting for the periodicity of the
structure allow to efficiently analyze the dissipation mechanisms and the effect of several pa-
rameters, like mass ratio, Young’s modulus and air flow resistivity. The double panel partition
with embedded resonators is also investigated by transfer matrix method for which effective
parameters of the host panel are derived. Dynamic behaviors are observed on the effective
density and modulus of the panel.

Keywords: metamaterial, metaporous, poroelastic material, finite element method, periodic
model, transfer matrix method, duct acoustics, silencer, sound transmission loss, single and
double panel partitions.



Résumé

La pollution sonore a des conséquences notables sur la santé des populations exposées. Pour
réduire le niveau sonore, les matériaux poreux sont largement utilisés en raison de leur faible masse
et de leur excellente propriété d’absorption acoustique. Cependant, l’atténuation du son en basses
fréquences reste un défi majeur, surtout si l’on considère les contraintes de fabrication et de coût pour
les applications industrielles.

Dans cette étude, une nouvelle famille de métamatériaux obtenus par en donnant une forme parti-
culière à un matériau poroélastique homogène est proposée. L’amélioration des propriétés acoustiques
s’appuie sur des résonances du squelette facilement ajustées sans ajouter de masse ou compromettre
l’espace.

Deux configurations sont étudiées expérimentalement et numériquement : l’atténuation du son en
conduit et l’isolation acoustique à travers une paroi. Pour l’application en conduit, le métamatériau est
un réseau de lamelles poroélastiques, qui procure une atténuation acoustique supplémentaire autour de
sa première résonance de flexion. Dans le cas de l’isolation acoustique d’une paroi de taille finie ou de
double paroi, le métamatériau est un réseau de poutres poroélastiques, accordé sur le premier mode de
la paroi ou sur la résonance masse-ressort-masse de la cloison double. Pour les deux configurations,
un modèle numérique prenant en compte la périodicité de la structure du matériau permet d’analyser
efficacement la dissipation et l’effet de plusieurs paramètres, comme le rapport de masses, le module
d’Young et la résistivité du passage de l’air. La double cloison, intégrant des résonateurs élastiques,
est également étudiée par la méthode des matrices de transfert avec laquelle les paramètres effectifs
du panneau sont dérivés. Des comportements dynamiques sont observés sur la densité et la rigidité de
flexion effective du panneau.

Mots-clés: métamatériau, matériau poroélastique, méthode des éléments finis, modèle periodique,
méthode des matrices de transfert, acoustique en conduit, silencieux, isolation acoustique, paroi simple
et double.
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Chapter 1

Introduction

This chapter gives the context of this work, an overview of sound absorbing techniques and

presents the outline of the manuscript.

1.1 Noise pollution

The noise is usually defined as ’unwanted or intrusive sound’ [139] like the noise from neigh-
bors and the barking of pets. Noise problem drastically increases after human-being entered
industrialized society due to population growth, urbanization, globalization of transportation
networks and expansion of resource extractions [110, 49] as depicted in Fig.1.1(a). In daily
life, the source of noise nuisance generally contains aircraft, road traffic, railways, building
infrastructure, industrial machinery and households [22].

The negative effects of noise on citizens are divided into two categories: pervasive phys-
iological effect and psychological impact. The noise pollution can cause annoyance, fatigue,
sleep disturbance, less efficiency and hearing loss. In addition it could increase incidence of
physiological diseases such as constriction of blood vessels, increased heart-rate, increased

Figure 1.1: (a) Noise pollution and change over time in the county of Stockholm [16]; (b)
Effectiveness of active and passive noise methods [81].
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Figure 1.2: (a) Diagram of a porous cross section[132]; (b) The scanning electron microscopy
image of a foam [46].

blood pressure, muscle tightness and dilation of eye pupils [22]. Hence, it is highlighted its
urgency by stating that the noise is a growing health problem and without enough attention,
which probably results in hazardous conditions [2].

There are numerous and relatively effective noise reduction treatments. They are gen-
erally classified into two aspects: passive and active noise control. The active noise control
method needs to apply external energy into the system to attenuate the original noise based
on the Young’s interference principle of sound wave. The concept is given by Lueg (1936) in
the patent of acoustic-oscillation elimination [100]. Over the last several decades, the active
method have been developed rapidly as mature and development of digital signal processing
and large scale integrated circuit technology. Now, many advanced and effective control algo-
rithms have been reported and widely applied into automobiles, aircraft and electric appliance
industries worldwide [68]. The active noise control effectively makes amends for the poor
sound absorption efficiency in low-frequency band of traditional passive noise treatments as
depicted in Fig.1.1(b). Moreover it is relatively easy to design or modify for the targeted fre-
quency regions, conveniently install and less effective on performance of the host. The most
popular application is the noise-canceling headphones.

Sound absorbing material is the most common passive noise control solution especially
to mitigate the mid and high-frequency noise. It can be classified into two types: porous
absorption materials and resonant absorption materials [165]. The porous sound absorption
materials mitigate most of the sound energy impinging them and reflect very little part by
transferring it into heat. Hence, the porous sound absorption material is found very helpful to
reduce the effect of noise and widely used on sound sources, paths and receivers [5].

A porous material is a heterogeneous media constituted by a relatively motionless or
elastic solid, saturated by a liquid or a gas. According to the availability of the external fluid,
like air, to go through the pores, porous material can be divided into closed and open pores

[5] as shown in Fig.1.2. The “closed” pore is isolated from its neighbors and influences the
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(a) (b)

Figure 1.3: (a): Classification of ordinary porous materials [27]; (b): Illustration of sound
power dissipation mechanisms in pores [128].

macroscopic bulk modulus and thermal conductivity of materials. In contrast, the “open” pores
produce significant effect on the sound absorption properties of material because of flow and
fluid-solid interface interactions like in the boundary layer.

There are two kinds of commonly used porous materials in industries as shown in Fig.1.3(a):
foam with cellular structure and fibrous. When the porous material is exposed to the sound
field, the fluid on porous surface or in pores will be forced to oscillate. Due to the existence of
viscosity and thermal conductivity in the fluid phase and viscoelasticity in the skeleton, part of
the sound energy is converted into heat during the motion of two phases. At high frequencies,
the viscous and thermal dissipation mainly occur in the vicinity of the solid surface, in the the
viscous and thermal boundary layers. In addition, for viscoelastic poroelastic materials, an-
other part of the energy attenuation is due to the damping effect of solid structure, as illustrated
in Fig.1.3(b).

The most common foams used as a sound absorption absorber are polyurethane and
melamine foams. In order to cope with strict environmental requirements, novel foams have
been developed such as metal foams which exhibit high stiffness, light weight, great fire resis-
tance and waterproof. Fiber materials can be classified as natural and synthetic [5, 148]. The
natural fiber is mainly generated from vegetable, animal or some minerals. The manufactured
fibrous materials made from minerals and polymers are widely applied to sound absorption
and thermal isolation. However, it is worth to mention that these porous materials especially
instantaneous foam spray also have a negative impact on public health and environment during
the production and installation.

Sound propagation in porous layer has been first described through empirical models.
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These models are mainly used to calculate the surface impedance and wave propagation con-
stant. One of the most popular approach to calculate the absorption properties of porous layer
is the empirical model by Delany-Bazley [38] improved by Miki [109], since it only requires
the airflow resistivity. Later, the emergence of the semi-phenomenological model, like the
so-called Johnson-Champoux-Allard (JCA) [73, 29] and its extension by Lafarge [78], offers
precise prediction of porous sound absorption but requires more parameters describing the
pores shape, e.g. the porosity, the viscous and thermal characteristic length, the tortuosity.
The sound absorption efficiency of porous materials depends not only on the properties of the
porous medium but also on its size and its shape. For instance, the surface impedance of a
finite size porous layer of thickness L backed by a rigid wall is

Z = i(ρpcp) cot kpL, (1.1)

where i =
√
−1, and cp, ρp stand for the sound speed and the density in the porous respec-

tively. The term cot kpL accounts for successive reflexions between the layer interface and the
rigid wall. Maximal absorption arises when the impedance Z is equal to the air impedance,
i.e., when there is no reflexion. For such configuration, this happens close to the quarter-wave
resonance [70] (and its multiple). The particle velocity at the porous surface reaches a max-
imum value at the quarter-wave resonant frequency, that induces the first maximum on the
sound absorption curve of a porous layer.

In order to limit the impedance mismatch at the air porous interface, a standard approach
is to create a graded media by shaping the air-porous interface. Bolton and Kang [74] investi-
gated the sound absorption performance of shaped foam whose interface is arbitrarily oriented
with respect to global coordinate axis. They show that the optimizing geometrical parameter
like wedge angle can improve the sound absorption at low frequency in a waveguide. This
kind of material can also be described by layered double porosity media [121, 8]. Reference
[66] adopted an inverted wedge shape melamine foam backed with acoustically hard wall to
form partially linear phase shift porous metamaterial. This provides a better sound absorption
properties in wide a range of frequencies than uniform melamine layers with the same weight.

The attenuation of low-frequency sound by a porous layer is still a challenge since the
dynamic of dissipative system is almost governed by the rules of linear response, which indi-
cates that the frictional force and fluxes to be both linearly proportional to the rates. Therefore,
the dissipated power is quadratic in rates and results in the inherently weak absorption of low-
frequency for isotropic porous layer [108].
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1.2 Resonant sound absorbers

To improve sound absorption at low frequency, it is required to free the wavelength/thickness
relation to create a low frequency resonator. One way is to achieve it by partitioning parts of
the fluid. The best example of this is the well-known Helmholtz resonator, where the partition
allow to change arbitrarily the fluid local compressibility in order to reach compact system
with arbitrary low resonance frequency (if losses are neglected). Such systems are used since
many years as scatters or sound absorbers [65, 151]. Other approach based on membranes or
plate are also often used to create sub-wavelength resonators. Resonances are also associated
to phase shift, which are one of the corner stone of metamaterials.

1.2.1 Acoustic metamaterials and their properties

Metamaterials are generally defined as precisely designed artificial structures containing sub-
wavelength resonators [123, 47, 39, 130], which show unusual properties [102, 30] or outper-
form traditional materials in some aspects. Studies on acoustic metamaterials was originally
motivated by parallel research in electromagnetics which made it possible to obtain theoretical
solution to the invisibility cloak, superlens and other problems believed unsolvable. The use
of the metamaterial provides a potential solution to face less sound attenuation efficiency of
the traditional acoustic treatments in the low frequency range. Liu et al. [97] experimentally
investigated the first locally resonant sonic material as a prototype of acoustic metamaterial
and demonstrated that it has negative effective density.

The acoustic band structure with periodic acoustic lattice [23, 144] was developed in the
last twenty years and has shown some interesting properties such as wave manipulation and
high sound absorption [77, 45, 168]. In fact acoustic metamaterial can be categorized accord-
ing to two mechanisms: Bragg scattering and local resonance. The homogenized effective
parameters like effective density and modulus can almost represent the physical mechanism
within the acoustic metamaterial. These two parameters can determine the propagation charac-
teristics of acoustic waves in the medium. The nature of the resonance, monopolar or dipolar,
imposes which quantity become negative.

Both effective parameters are positive in common materials and exclusively rely on the
material composition and its microstructure. When the resonators are introduced into a host
material to enhance the acoustic-host interaction, the effective parameters possibly become
negative within its resonant regions[94, 45] as shown in Fig.1.4. The effective mass usually
expresses the inertial characteristic of a common material and the effective modulus reflects
the resistance of the object being deformed. The effective density for an artificial acoustic
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Figure 1.4: Acoustic metamaterial with various parameters [164]. (a): Ordinary materials
usually present positive density and modulus; (b): The metamaterial consisting of metallic
spheres, coated with layer of silicon rubber exhibits negative mass density [97]; (c): Acoustic
metamaterial consisting of acoustic waveguide and Helmholtz resonators shows negative bulk
modulus [45]; (d): A metamaterial integrating membrane and Helmholtz resonators reports
double negative parameters [85].
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(a) (b)

Figure 1.5: (a): Simulated effective bulk modulus for one-dimensional subwavelength
Helmholtz resonators [45]; (b): Real and imaginary parts of effective density for a sonic crys-
tal structure [98].

medium made with local resonators can be obtained by [107, 98]

ρeV = M0 +
mω2

0

ω2
0 − ω2

, (1.2)

where ρe is the effective density, V is the total volume, ω0 corresponds to the resonant fre-
quency of resonators, ω is the angular frequency, M0 and m are the mass of the host and the
resonators section respectively. In Fig.1.5(a), the real and imaginary parts of effective density
have a negative sign at frequencies near the resonance. The negative effective density indicates
that the objects move toward the left with the input force to the right.

When the damping of the system is negligible, the effective bulk modulus Ke of a
Helmholtz resonator which is used to built up a periodical daisy-chained Helmholtz resonators
can be obtained by [45]

1

Ke
=

1

K

(
1− ω2

0

ω2

)
(1.3)

where K is the bulk modulus of air, and ω0 is the resonant frequency. The negative effective
bulk modulus can be observed in Fig.1.5(b) on two frequency regions, which exactly corre-
sponds to two stop bands of the sonic crystal. The negative effective bulk modulus states
that the material expands with exerted pressure. Such properties can also be found on flex-
ural waves in plates and beams [163] (more details in Chap. 4). Most of early studies on
acoustic metamaterial, neglect losses. The systematic modeling of viscothermal dissipation
mechanisms and how to exploit them to maximize sound absorption yield to the metaporous
and metasurface field.
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1.2.2 Metasurface

The noise in the low-frequency range has a highly penetrating ability and slowly dissipate
during the propagation, which makes it difficult to deal with it in a limited space. The bulky
and heavy porous absorption materials are required to absorb noise in the low frequency range
which breaks down the thickness constraint during the application. The presence of metama-
terial provides a novel approach to design an efficient acoustic absorber with a sub-wavelength
dimension.

Many works have been performed by combining resonant and scattering phenomena with
the commonly viscous and thermal dissipation, see for instance [59, 115, 80, 21, 56, 57, 79],
to overcome the intrinsic limitation of porous in the low frequency range. Practical real-
ization of resonators are generally made with rigid or elastic inclusions, membrane or plate,
Helmholtz resonator, by space coiling-up of quarter wavelength resonator. Another approach
is to create slow wave channel. All approaches are detailed below. These metamaterials can be
regarded as metaporous which aim to integrate the dissipative properties of a porous matrix in
medium- and high-frequency regions and the excellent sound absorption of acoustic or elastic
resonators.

Membrane-type metamaterials achieve high absorption around their resonance frequen-
cies due to the flapping motion of the metallic platelets since the high energy density regions
in the membrane structure decorated with platelets couple minimally with radiation modes.
In addition, they also exhibit near-total reflection at the anti-resonance frequencies, which is
resulted from that the structure is definitely decoupled from the acoustic wave at the anti-
resonance frequency[108, 98]. The membrane resonator presents good sound absorption per-
formance in several selective resonance frequencies. Furthermore, the lightweight nature of
membrane can be used to design and fabricate lightweight noise treatments to battle low-
frequency sound which has been a longstanding challenge in industry. Conversely, the acous-
tic insulation performance of membrane is very sensitive to the tension applied on it. The
tension can change over time and with external environmental conditions such as temperature
and humidity. Consequently, it is hard to tune the target frequency by modifying the tension.
The hybridization of porous matrix and membrane resonator building-block elements has been
studied and relatively enhances the sound absorption in the low frequency range of the porous
host [1, 89].

In Helmholtz resonators, dissipation occurs by viscous friction nearby the neck or by
thermal losses in the cavity. Several predictive models has been built to estimate its reso-
nance frequency. One of the first patented works employing Helmholtz resonator as a resonant
acoustic protection was proposed in [19] to attenuate low frequency noise level inside payload
fairings of launch vehicles. Fang et al. [45] proposed an analytical expression of effective
bulk modulus for the metamaterial consisting of an array of Helmholtz resonators loading on
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Figure 1.6: (a): A sample of Helmholtz resonators embedded into porous; (b) The absorption
coefficient of relative configuration (black curve) and associated homogeneous sheet (dashed
curve)[57]

an acoustic duct. Boutin [21] proposed an analytic model through homogenization method
to describe the sound propagation in a porous matrix with inner Helmholtz resonators and
the associated negative compressibility. In the meantime, Groby et al. [57] investigated, nu-
merically and experimentally, the effect of Helmholtz resonator tuning on sound absorption
performance when it is embedded in a porous layer. As shown in Fig.1.6, it was pointed out
that the enhancement is large when resonance frequency is higher than the Biot frequency, i.e.,
the transition frequency from viscous to inertial regimes. Integrating the resonator induces
Helmholtz resonance and trapped mode between the resonators and rigid wall. Griffiths et al.

[54] presented the theoretical and experimental results of porogranular media made out of rigid
or elastic shells and Helmholtz resonators. Using elastic shell allows to lower the resonator
resonance frequency and to increase the density of states.

Latest works in this fields focus on the design of resonators and how to adjust the losses to
reach perfect absorption. This is achieved by the mechanism of critical coupling whereby the
leakage rate of energy out of the resonator and its inherent losses are properly balanced [131].
This yields to deep sub-wavelength absorbers [69] (λ/88). Several resonators can be used to
enlarge the bandwidth leading to rainbow trapping absorber even in transmission problems
[71]. The use of porous material is not mandatory as long as the neck of the Helmholtz res-
onator provides a sufficient amount of dissipation. Obviously, such approach can be extended
to other kind of resonators.

To save space, space coiling-up metamaterial was investigated and presents some high-
lighting properties such as negative refraction and sub-wavelength sound absorption [93]. The
idea consists in coiling up Fabry-Pérot (FP) channels which offers a easily tunable bandwidth
by adjusting the folding number and the absorber thickness [150]. Subsequently, similar prin-
ciples applied to porous layer were investigated through periodically and appropriately ar-
ranged rigid partitions into a hard-backed porous layer [159]. The introduction of rigid walls
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(a) (c)

Figure 1.7: (a): The lamella network in free field; (b): The absorption coefficient of lamella
network measurement setup in free field; (c): The absorption coefficient of lamella under
different oblique incidence [34].

in a porous layer shifts down the first thickness resonance mode and yields multiple thickness
resonances with higher absorption peaks. Another example is proposed in [20] where different
helicoidal cavities are filled with 3D printed porous.

The last category evoked here are Poroelastic resonators. Christensen et al. [31] pre-
sented a structured melamine porous material which shows complete absorption of sound with
a broadband response for any direction of incident wave. Lowering porous ratio makes the
system more absorptive compared to a fully filled one. Changing this ratio allows to adapt the
surface impedance of the architectured porous layer and can be related to weak contrast case
in double porosity porous media [121]. It is noteworthy that the targeted impedance generally
depends on the incidence angle.

Recently, Dauchez et al. [34] investigated the sound absorption performance of a poroe-
lastic lamella network experimentally and numerically as shown in Fig.1.7. An enhancement is
observed for oblique incidence due to the excitation of skeleton modes. Changing the lamella
shape, allows to control bending resonance frequencies, their quality factor and their coupling
with the air while keeping global broadband absorption.

1.3 Outline of the thesis

While various kind of metaporous has been developed and succeed in improving sound ab-
sorption compared to traditional solutions, they are built up on the expense of increasing the
complexity of the system. In this dissertation, we will focus on the sound absorption and trans-
mission in the low frequency range by taking advantage of the skeleton motion of a poroelastic
material as shown in [34].

Unlike other metaporous using inclusions, the lamellar poroelastic metamaterial only
needs some reshaping (cuts, air gaps, . . . ) to tune solid born resonances. The native diphasic
nature of the poroelastic lamella provides a natural way to combine the properties of the sound
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absorbing material and vibration control. In other word, the aim here is to operate a shift of
the metaporous from inclusion to architecture. The following application to duct acoustics and
to transmission through panels will be proposed.

The dissertation is organized as follows.

In chapter 2, the conceptual and theoretical backgrounds, which are necessary to under-
stand the main contents of the thesis, are reminded. In detail, the derivation of Helmholtz
equation to describe the acoustic propagation in fluid without flow is given. Then, the Biot-
Allard and equivalent fluid theories are presented to explain the wave propagation in dissipa-
tive porous media. Dissipation mechanisms and computation methods are finally introduced.

In chapter 3, the sound attenuation of an anisotropic metamaterial in a duct is investigated
numerically and experimentally. Subsequently, a simplified model based on pseudo-periodic
boundary conditions is built up to carry out the parametric study and optimization of its sound
attenuation.

In chapter 4, the effective parameters like density and modulus of a host thin panel with
embedded resonators is obtained based on the TMM method. The effect of resonators on the
sound transmission loss of an infinite double thin panel is studied based on TMM model. A
parametric study is then conducted.

In chapter 5, the lamellar poroelastic metamaterial concept is moved to a panel to face
the drop of sound insulation close to panel resonances. The sound insulation performance
of a finite size single panel is studied through both experimental and numerical approaches.
Then, this concept is extended to infinite double panel, in order to improve its sound insulation
efficiency at the well-known mass-spring-mass resonance, using a periodic numerical model.

The last chapter of the manuscript presents the general conclusions and gives perspectives
for this work.
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Chapter 2

Acoustic wave propagation in air and
porous media

This chapter primarily introduces the acoustic wave propagation in a free fluid and guided

waves in a duct (without flow). Then, sepcial attention is paid on the Biot-Allard equation

describing the wave propagation on an isotropic poroelastic material in terms of macroscopic

quantities. Finally, explanation and formulation of the dissipation mechanisms in poroelastic

media is detailed. This chapter refers to several Ph.D theses [122, 133, 116, 12, 88, 120, 33]

and books [24, 4, 25, 44] in the field.
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2.1 Acoustic waves propagation

This subsection presents the derivation of Helmholtz equation for sound propagation and its
application in duct.

2.1.1 Fundamental equations of acoustic in perfect gas

Let us consider a homogeneous perfect fluid at rest with reversible adiabatic transformation.
Fundamental equations of acoustics can be deduced from conservation law and constitutive
equations. Conservation of mass reads,

Dρ

Dt
+ ρ∇ · v = 0, (2.1)

where ρ is the fluid density, v is the particle velocity, and the convective derivative D
Dt =

∂
∂t + v · ∇. The second equation is the Newton’s second law, which involves velocity v and
pressure p

ρ
Dv

Dt
+∇p = 0. (2.2)

Energy conservation, expressed with the entropy, is given under the assumption of negligible
viscous effect and thermal transfer in fluid. This yields,

Ds

Dt
= 0. (2.3)

Then, it is necessary to introduce the state equation which relate the pressure p to other inde-
pendent variables like entropy s and mass density ρ

p = p (ρ, s) , (2.4)

which can be rewritten by
dp = c2

0dρ+ βds, (2.5)

where c2
0 = γ p0ρ0 = ∂p

∂ρ

∣∣∣
s

is defined as the adiabatic acoustic sound speed, β = ∂p
∂s

∣∣∣
ρ

is

the isentropic dilatation coefficient of the fluid, and γ is the ratio of specific heat at constant
pressure and volume. For a homogeneous fluid, Eq. (2.3) implies that the second right hand
side term vanishes and the pressure only depends on the density dp = c2

0dρ. Eq. (2.4) closes
the system of equations (2.1)-(2.3). In order to obtain the linear wave equation, the pressure
and density are separated into two components

p = p0 + p′, (2.6a)

ρ = ρ0 + ρ′, (2.6b)

v = 0 + v′. (2.6c)
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The first component is the reference value, which is assumed constant in space and time, while
the second component is the acoustic fluctuation, which is much smaller than the reference
value as shown in Fig. 2.1.

p0

p'

Figure 2.1: Pressure field perturbation.

The Taylor expansion of Eq. (2.4) can be written as

p = p (ρ0, s0) +
∂p

∂ρ
ρ′ +

1

2

(
∂2p

∂ρ2

)
ρ′2 + · · · . (2.7)

Substituting Eq. (2.7) into Eq. (2.6) with the assumption that only the first order terms are
considered leads to

p′ = c2
0ρ
′. (2.8)

Substituting Eq. (2.8) into equations of mass conservation and Newton’s second law and keep-
ing only first order perturbation, yields

1

c2
0

∂p′

∂t
+ ρ0∇ · v′ = 0, (2.9a)

ρ0
∂v′

∂t
+∇p′ = 0. (2.9b)

Taking divergence operator of Eq. (2.9) (b), and differentiating Eq. (2.9) (a) with respect to
time, and eliminating the velocity variable allows to derive the wave equation

∆p′ − 1

c2
0

∂2p′

∂t2
= 0, (2.10)

which describes the relation of spatial and temporal variation of pressure fluctuation.

In addition, the Euler’s equation (linearized Newton’s second law for perfect fluid) is
retained,

ρ0
∂v′

∂t
= −∇p′, (2.11)



16 Chapter 2. Acoustic wave propagation in air and porous media

Figure 2.2: A rectangular duct with of cross-section S.

which shows that acceleration of fluid is proportional to the pressure gradient. Fourier trans-
form of Eq. (2.10) gives the Helmholtz equation

∆p′ + k2p′ = 0, (2.12)

where k = ω/c0 is the wavenumber. For sake of clarity, ′ will be removed and p and v will
denotes the acoustic perturbations in the following. In free field, the solution of Helmholtz
Eq.(2.12) can be found in separable coordinate system. In cartesian coordinate system, the
solutions are plane waves eik·x, where the wavevector k must satisfy ‖k‖ = k.

2.1.2 Sound propagation in a duct

When the acoustic waves propagate in a semi-infinite medium like duct of cross-section S, the
acoustic pressure should satisfy the Helmholtz equation and boundary conditions. For a rigid
duct, the boundary conditions reflect that the normal velocity of particles vanishes at the duct
wall. In this section, we present application to a rectangular duct, as illustrated in Fig. 2.2.

The Helmholtz equation can be rewritten in the cartesian coordinate system by

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
+ k2p = 0. (2.13)

The pressure p(x, y, z) can be written as p = px(x)py(y)pz(z)e
−iωt through separation of

variables and substituted into Eq. (2.13). One obtains

∂2pi
∂x2

i

+ k2
i pi = 0 where i = x, y, z, (2.14)

where ki is the wavenumber along the direction i. Helmholtz equation implies that
∑3

i=1 k
2
i =

k2. Along z, solution are propagative and contra-propagative waves. Along x and y, the



2.2. Sound propagation in porous material 17

boundary conditions read,

∂px(x)

∂x
= 0 at x = 0 and lx, (2.15a)

∂py(y)

∂y
= 0 at y = 0 and ly. (2.15b)

which imply that the solutions of wave in x and y directions are standing waves and can be ex-
pressed as cos(kxx) and cos(kyy) respectively. Then, the general solution of wave propagation
in a rigid duct is the sum of all the transverse modes

p =

∞∑
m=0

∞∑
n=0

A+
mnφmn(x, y)eikmnz +A−m,nφmn(x, y)e−ikmnz. (2.16)

where A+
mn and A−mn are the amplitude fraction of each modes for forward and backward

waves. The transverse modes φmn can be expressed as,

φmn(x, y) = cos(kx,mx) cos(ky,ny) (2.17)

with
kx,m =

mπ

lx
, ky,n =

nπ

ly
, and kz =

√
k2 − k2

x,m − k2
y,n. (2.18)

When kz is an imaginary number, the corresponding mode is evanescent and rapidly attenu-
ates, while when kz is real, the mode is propagative. For each duct mode, there is a cut-off
frequency given by fmn = c0

2π

√
k2
x,m + k2

y,n. The modes (m,n) becomes propagative when
f > fmn.

The transverse mode, satisfies orthogonality relation∫
S
φ∗mnφij dS = δmn,ij , (2.19)

with δ the Kronecker symbol.

2.2 Sound propagation in porous material

This subsection briefly introduce the principal models for sound propagation in a porous ma-
terial. Quasi static behavior of flow though porous material is well described by Darcy’s Law
(1856), who introduces the permeability concept. The model proposed by Zwikker and Kosten
[25] (1949) is usually considered as the starting point of acoustical porous material modeling.
They introduced effective density and compressibility by averaging the solution of Stokes flow
in a straight circular pore. Another significant contribution of their work is the definition of the
decoupling frequency above which the acoustic propagation in fluid does not induce a wave
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in the solid phase. Then, the famous sound propagation model within a fluid-saturated porous
material was introduced by Biot (1956) [14]. The Representative Elementary Volume (REV)
is built up at a macroscopic scale where a homogenized description of the superposed solid
and fluid phases with interactions can be derived. Biot subsequently pointed out the existence
of three propagative waves in the media: a slow and fast compression waves propagating in
both phases, as well as a shear wave originated from the skeleton.
Delany and Bazley (1970) [38] proposed an empirical model for fibrous material based on ex-
perimental results. It only depends on two parameters, the flow resistivity and the frequency,
and can predict the general tendency of acoustic properties of fibrous materials. Hence, it is
still widely used among engineers and scientists and an updated version has been proposed by
Miki [109].
Over the past decades, Biot model was further developed on two main topics dealing with vis-
cous and thermal effects considering the fluid as air. For more general pore shape, Johnson et

al (1987) [73] developed an effective density formula dependent on frequency by taking into
account the viscous effect. In parallel, Champoux and Allard (1991) [29] give the definition
of effective bulk modulus of fluid saturating in pores by considering thermal effect dominated
by a additional parameter such as the thermal characteristic length. These two features rise to
the Johnson-Champoux-Allard (JCA) model that is widely used now. Then, the Biot model
accounting for JCA model is referred as the Biot-Allard theory [4].

2.2.1 General assumptions

Poroelastic model

The poroelastic model of Biot-Allard is based on the Biot theory that proposed constitutive
relation of fluid-saturated porous media to describe the elastic wave propagation in it by means
of a Lagrangian formulation. The basic assumption for the Biot-Allard theory are summarized
below [4, 14]:

• the heterogeneous medium is isotropic and the porosity is uniform throughout;

• the wavelength of interest is much larger than the characteristic dimension of the porous
microstructure such as diameter of fibrous and pores;

• the deformation of both solid and fluid phase are assumed to be small. Hence the con-
stitutive equation and dissipation force are linear; the strain energy, kinetic energy and
dissipation potentials are quadratic in respect of variables;

• most of pores are open and interaction between fluid and closed pores is ignored;

• there is no mean flow and fluid phase is at rest;

• the viscous and thermal effect are independent [25];
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• the displacement and pressure are defined on each points in the porous media;

• the solid phase of media is elastic.

2.2.2 Biot-Allard model

In this subsection, we present the sound propagation in a poroelastic material from the Biot
theory [14] to extended models reported by Allard and Atalla[4].

Stress-strain relation

The stress-strain relation of the fluid and solid phase of isotropic material in the Biot theory
are given by these two constitutive equations

σsij = [Aθs +Qθf ]δij + 2Nesij , (2.20a)

σfij =
(
Qθs +Rθf

)
δij , (2.20b)

where θs and θf are the solid and fluid volumetric strains that can be respectively obtained
from divergence of displacement of the solid phase u and of the fluid phase U

θs = ∇ · u and θf = ∇ ·U. (2.21)

and with

Q =Kf (1− φ), (2.22a)

A =
(1− φ)2

φ
Kf −

2

3
N +Kb, (2.22b)

R =φKf , (2.22c)

Kb = (2/3) ∗N ∗ (1 + ν)/(1− 2 ∗ ν). (2.22d)

The parameter Q accounts for the coupling effect between the volume change of the solid and
that of the fluid [14]. A corresponds to the first Lamé coefficient andN is the shear modulus of
the skeleton. R is the effective bulk modulus of the fluid, i.e., an estimation of the pressure on
the fluid required to force a further amount of fluid into the aggregate while the total volume
stay constant [7, 14, 3]. Biot and Willis proposed the principle of an experimental method to
determine the static parameter Q and R [13]. φ is the porosity of the material which is only
related to open pores. Kf is the bulk modulus of the fluid which depends on frequency because
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it accounts for the thermal exchange at the wall of pores. εsij is the strain of solid phase

εsij =

 εx γz γy

γz εy γx

γy γx εz

 , (2.23)

where

εi =
∂ui
∂xi

, (2.24a)

γi =
1

2

(
∂uj
∂xk

+
∂uk
∂xj

)
. (2.24b)

Equations of motion

Once these constitutive equation established, the motion equations for both phases are obtained
using Lagrangian approach. The viscous dissipation is then introduced by Biot assuming
Poiseuille flow for the relative flow through

∂σsij
∂xj

= ρ11
∂2ui
∂t2

+ ρ12
∂2Ui
∂t2

+ b
∂

∂t
(ui − Ui) , (2.25a)

∂σfij
∂xj

= ρ22
∂2Ui
∂t2

+ ρ12
∂2ui
∂t2

+ b
∂

∂t
(Ui − ui) , (2.25b)

where the apparent density are,

ρ1 = (1− φ)ρs , (2.26a)

ρ12 = −φρ0(α∞ − 1) , (2.26b)

ρ11 = ρ1 − ρ12 , (2.26c)

ρ22 = φρ0 − ρ12. (2.26d)

Here, ρ11 is the total apparent density of the skeleton moving in the fluid. ρ12 is the opposite
of the apparent density due to the inertial coupling of both phases. Finally, ρ22 is the total
effective mass of fluid by adding inertial term from skeleton. These effective densities are
defined from the density of the skeleton material ρs and the density of the fluid ρ0 and related
to the high frequency limit of the tortuosity α∞. This parameter accounts for the geometric
irregularity of the pore network (see Fig. 2.3).
Beside, the final term on the right-hand side of the Eq. (2.25a) is related to viscous dissipation
between the two phases that is linearly related to relative velocity of skeleton and fluid. For
a non viscous fluid, b = 0. For a viscous fluid, Biot gave the static value estimation by using
permeability coefficient in Darcy’s law or the airflow resistivity σ. Thus, b is a constant. To
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Figure 2.3: Diagram of tortuosity concept α∞ = `
AB from [116].

enhance the model behavior when the boundary layer becomes smaller than the pore size [14],
correction can be added and b becomes frequency dependent. This frequency dependance can
be estimated by

b(ω) = σφ2G(ω), (2.27)

whereG(ω) is a frequency-dependent function, which will be discussed later using the Johnson-
Champoux-Allard model (see Eq. (2.49) ). If time harmonic version of (2.25a) are considered,
it is common to recast inertial and viscous effect in effective complex density, such as

ρ̃11 = ρ11 +
ib(ω)

ω
, (2.28a)

ρ̃12 = ρ12 −
ib(ω)

ω
, (2.28b)

ρ̃22 = ρ22 +
ib(ω)

ω
. (2.28c)

For a sake of clarity,˜will be removed in the following and all densities are assumed to
be complex valued. Other equivalent formulation of Biot model have been proposed, see [4,
Chap. 6] for a complete review. It is worth mentioning that the (u, p) [6] formulation (Eq.3.4)
will be used here for FEM computation.

Wave equation

Substituting stress-stain relations Eq. (2.21), Eq. (2.24), and Eq. (2.20) into Eq. (2.25) yields
the wave equation

−ω2(ρ11u + ρ12U) = (A+N)∇∇ · u +N∇2u +Q∇∇ ·U, (2.29a)

−ω2(ρ22U + ρ12u) = R∇∇ ·U +Q∇∇ · u. (2.29b)
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Assuming the porous material is isotropic, the longitudinal and transversal wave equa-
tions can be obtained by using scalar and vector displacement potentials respectively, as in the
case of an elastic solid. Firstly two scalar displacement potentials ψs and ψf for the skeleton
and fluid are introduced [4, chap. 6]

u = ∇ψs, (2.30a)

U = ∇ψf . (2.30b)

Substitution Eq. (2.30) into Eq. (2.29) yields

−ω2M−1ρψ = ∇2ψ, (2.31a)

where ψ, ρ, andM are given respectively

ψ = [ψs, ψf ]T , (2.32a)

ρ =

[
ρ11 ρ12

ρ12 ρ22

]
, (2.32b)

M =

[
P Q

Q R

]
. (2.32c)

In the above equations, P = A+2N . Eq. (2.31) is an eigenvalue problem where the wavenum-
ber δ is the eigenvalue and eigenvector is ψ

δ2
1 =

ω2

2(PR−Q2)

[
Pρ22 +Rρ11 − 2Qρ12 −

√
∆
]
, (2.33a)

δ2
2 =

ω2

2(PR−Q2)

[
Pρ22 +Rρ11 − 2Qρ12 +

√
∆
]
, (2.33b)

where
∆ = [Pρ22 +Rρ11 − 2Qρ12]2 − 4(PR−Q2)(ρ11ρ22 − ρ2

12). (2.34)

Eq. (2.33) indicates that two kinds of compressional waves are obtained with different
wave velocities in both phases. In addition, the wave preferentially propagating in solid or
fluid can be estimated through coefficient µ =

ψf

ψs
, such as

µi =
Pδ2

i − ω2ρ11

ω2ρ12 −Qδ2
i

, with i = 1, 2. (2.35)

In the same way, the wave equation for rotational wave component is obtained by using
vector potentials. The displacement equals the curl operator of these potentials. Only one
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shear wave is derived and its wavenumber δ3 is given by

δ2
3 =

ω2

N

(
ρ11ρ22 − ρ2

12

ρ22

)
. (2.36)

Effect of viscous dissipation

In Eq. (2.25), the parameter b is introduced to account for the viscous effect resulting from
relative motion air versus skeleton. It is generally determined by the static airflow resistivity σ
and the dynamic parameter G(ω). σ is defined by the ratio of the pressure differential across
a sample of the material to normal flow velocity through the material and can be estimated
experimentally from

σ = (p2 − p1)/V h, (2.37)

where V is the mean flow per unit area of material and h is the thickness of the sample.

Johnson et al. [73] introduced the concept of dynamic tortuosity combining the effect
of inertial coupling and viscous dissipation. For an ideal fluid, whose properties are real val-
ued and frequency independent, the definition of dynamic tortuosity is given by the modified
Euler’s equation,

α̃(ω)ρf
∂v

∂t
= −∇p, (2.38)

where ρf = ρ0 is the density of the fluid in the pores. Meanwhile, the dynamic permeability
was proposed by analogy with steady-state definition in the modified Darcy equation,

φv = − k̃(ω)

µ
∇p, (2.39)

where µ is the fluid viscosity. The static limit of the permeability k0, as defined in Darcy’s
law, is related to the airflow resistivity σ is

k0 =
µ

σ
. (2.40)

The dynamic permeability and tortuosity are related by

α̃(ω) =
iµφ

k̃(ω)ωρf
. (2.41)

Towards low frequencies, the dynamic permeability and tortuosity collapse to their static value

lim
ω→0

k̃(ω) = k0, lim
ω→0

α̃(ω) =
iµφ

k0ρfω
. (2.42)
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For high frequencies, both quantities were estimated, assuming Stokes boundary layer, as

lim
ω→∞

k̃(ω) =
iµφ

α∞ρfω

[
1−

(
iµ

ρfω

) 1
2 2

Λ

]
, (2.43a)

lim
ω→∞

α̃(ω) = α∞

[
1 +

(
iµ

ρfω

) 1
2 2

Λ

]
, (2.43b)

introducing a new paramater, called characteristic viscous length Λ, defined by

2

Λ
=

∫
v2(rw) dA∫
v2(r) dV

. (2.44)

The numerator of Eq. (2.44) is the integration of the velocity v(rw) of a inviscid fluid over the
walls of the pores. The denominator is the integration of this velocity over the pores volume.
It only depends on geometrical property of the skeleton and is independent of frequency.

Then, a new compact and simple expression of dynamic tortousity was proposed by John-
son et al. [73], which covers most of the properties reported above and is function of the four
parameters α∞, k0, Λ, and φ

α̃(ω) = α∞ +
iµφ

ωρfk0
F (ω), (2.45)

where

F (ω) =

{
1− i

4α2
∞k

2
0ρfω

µΛ2φ2

} 1
2

. (2.46)

The limitation ofF (ω) for high and low frequency regions insures thatα(ω) satisfies Eq. (2.43)
reminded here

F (0) = 1 and lim
ω→∞

=
2k0α∞

Λφ

[
−iωρf
µ

] 1
2

. (2.47)

Finally, the dynamic mass density [73], with dependent-frequency properties, is defined
by

ρe(ω) = ρf α̃(ω) = α∞ρf

[
1− 1

iω̂
G(ω)

]
, (2.48)

with

G(ω) =

√
1− iω̂

M

2
, (2.49)

and ω̂ is a dimensionless factor given by

ω̂ =
ωα∞ρf
φσ

. (2.50)

The airflow resistivity σ is used instead of permeability k0 by substituting Eq. (2.40) into
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Eq. (2.46) and the shape factor M = 8α∞µ
φΛ2σ

(1 for a cylindrical shape pore). The parameter b
in Eq. (2.27) accounting for viscous dissipation can be writen as [122]

b(ω) = σφ2

√
1− i

ω

H
with H =

σ2Λ2φ2

4α2
∞µρf

. (2.51)

This modified coefficient will be used in effective densities appearing in the Biot’s equations
(2.28).

Effect of thermal dissipation

The thermal dissipation is mainly governed the widest pores in the porous material [29]. La-
farge et al. [78] proposed to treat thermal dissipation in an analogue of viscous dissipation,
introducing the thermal permeability k′ defined by

φ〈τ〉 =
k′(ω)

κ

∂

∂t
〈p〉, (2.52)

where k′ is the dynamical thermal permeability, 〈τ〉 is the macroscopic excess temperature in
air, and κ is the thermal conduction coefficient.
The semi-analytical formulation of the frequency dependent parameter k′(ω) was obtained by
following the similar approach as for the dynamic viscous permeability k(ω). This yields,

k′(ω) =
k′0

(1− (M ′/2)iω̃′)
1
2 − iω̃′

, (2.53)

with the dimensionless shape factor M ′ =
8k′0
φΛ′2 and the reduced frequency ω̃′ = ω

ν′
k′0
φ . Here,

k′0 is a real valued constant corresponding to the low frequency limit of k′(ω). Λ′ is a char-
acteristic length associated with the temperature effects present in the thermal Stokes layer at
high frequency. This is a purely geometrical parameter, defined as

Λ′ = 2

∫
dV∫
dA

. (2.54)

This parameter corresponds to the effective hydraulic radius of the pores. Normally the viscous
characteristic length Λ is smaller than thermal ones Λ′ because of the weighting by the fluid
velocity which is higher in small size pores as shown in Fig. 2.4.

Champoux et al. finally introduced the expression of the effective bulk modulus related
to φ and Λ′

K̃f =
γP0

γ − (γ − 1)

[
1− 8µ

iΛ′2Prωρf

√
1− i

Λ′2Prρfω
16µ

]−1 , (2.55)
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where P0 is the atmospheric pressure (P0 = 1013 hPa), γ is the fluid specific heat ratio and
Pr is the Prandtl number. Tilde symbol on variables state for complex value and frequency
dependence. This effective bulk modulus will be used inR andQmodulus in the consistitutive
law (2.20).

Λ
Λ'Fluid

Skeleton

Figure 2.4: Illustration of viscous and thermal characteristic lengths relation.

Dissipation mechanism in poroelastic material

In the following, the computation of dissipated powers related to structural, viscous and ther-
mal losses are presented. Dazel et al. [35] derived the expression of dissipated power and
stored energy inside elastic porous domain for several formulations of the Biot’s equations.
We present here those based on (u, p) formulation using similar formalism as (u,U). The
derivation stems from the kinetic energy theorem and the first law of thermodynamic [119].
The kinetic energy theorem presents that for actual or virtual velocity field, the sum of external
power Pext, inertia power DKDt , and internal power Pint equals zero giving

Pext = Pint +
DK

Dt
, (2.56)

where K is the kinetic energy. The first law of thermodynamic states that the material deriva-
tive of total energy DEtot

Dt always equals the sum of external heat supply Q and work rate Pext
added in the expression of

DEtot

Dt
= Q+ Pext. (2.57)

The dissipation power can be obtained by integrating Eq. (2.56) and (2.57) over a time
cycle in the porous domain. Three kinds of dissipation powers, due to viscous (vsic), thermal
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(the) and to viscoelastic losses in the frame (str) are defined as

Wstr = π

∫
Ω
σ̂si (u0) : ε(u∗0) dΩ, (2.58)

Wvisc = −πω2

∫
Ω
=(ρ̃)|u0|2︸ ︷︷ ︸
In solid phase

−=
(

φ2

ρ22ω4

)
|∇p0|2︸ ︷︷ ︸

In fluid phase

+
2

ω2
=
(
φ

α̃

)
<(u∗0∇p0)︸ ︷︷ ︸

Interaction of phases

dΩ, (2.59)

Wthe =
φ2πRi
|R|2

∫
Ω
|p0|2 dΩ. (2.60)

Here, ρ̃ = ρ11 −
ρ212
ρ22

and we recall the definition of the dynamic tortuosity α̃ = ρ22/ρ2 using
definition from (2.26a) and (2.28). In these expressions, = and < refer to imaginary and real
part of the quantities in bracket, the star superscript represents the complex conjugate. The
subscript 0 represents the complex amplitude u = u0e

−iωt. In order to make a distinction
between the conservative and dissipative parts of the stress tensor, σsi and σsr are introduced
and computed respectively with the imaginary part and real part of ‘elastic’ constant.

The structural dissipation is due to the deformation of the viscoelastic skeleton phase
[167] and is proportional to viscoelastic properties of the solid phase, i.e., the loss factor. The
viscous dissipation derives from the interaction between the two phases and the air viscosity.
It is function of the imaginary part of the effective densities [14, 73]. The thermal dissipation
results from heat gradient in the fluid phase, and is function of the imaginary part of the fluid
bulk moduls Kf [78] involved in R.

2.2.3 Equivalent fluid model

In some case, the Biot’s model can be simplified to an equivalent fluid, where only one kind of
wave can propagate instead of three. Generally, it can be done when the skeleton is considered
as motionless, i.g., the rigid frame model, or when the skeleton is considered as infinitly soft,
like the limp model. Such approach may be useful to save computational time or to find
analytic solution. From a historical point of view, equivalent fluid model is older [25] than the
Biot model but can also be derived from it. Some empirical model, like Delany and Bazeley
model, are also presented.

Rigid frame model

When the skeleton is motionless or its motion is negligible when compared to the fluid dis-
placement, the rigid frame model is a good alternative. This hypothesis is valid above the
decoupling frequency, as stated by Zwikker and Kosten [25] ,

fd =
1

2π

(
φ2σ

ρ1

)
. (2.61)
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This assumption is all the more valid as the material has heavy skeleton and small airflow
resistivity. When the frequencies is higher than fd, the visco-inertial coupling between solid
and fluid phases is so weak that an acoustic wave propagating in the fluid phase would not
induce a sufficient force to excite the skeleton. The most important ratio is σ/ρ1 for judging
the visco-inertial coupling of the two phases [125]. However, this analysis must be nuanced
close to frame resonances.

The rigid skeleton model can be derived from Biot model assuming that the displacement
u of the solid phase equals zero in Eq. (2.29). Then, Eq. (2.29)(b), recast in the Helmholtz
equation, and is written in term of pore pressure p

Kf∆p+ ω2ρep = 0. (2.62)

Here, Kf is the equivalent bulk modulus of the fluid accounting for thermal dissipation and
ρe = ρ̂22/φ is the equivalent density of fluid accounting for viscous dissipation. The waves
propagates with the wavenumber

krf = ω

√
ρe
Kf

. (2.63)

The effective density and bulk modulus are usually obtained from the Johnson-Champoux-
Allard model using Eq. (2.48) and (2.55) respectively.

Limp model

Some soft porous material like fibrous materials have a skeleton bulk modulus smaller than the
fluid phase bulk modulus and the rigid frame model is no more suitable. The limp model makes
the assumption that the solid phase has no bulk modulus P̂ = 0. Applying this condition in
the wave equation Eq. (2.29) and combining Eq. (2.29a) - QR× Eq. (2.29b) gives

− ω2 ρ12

φ
Γu− ω2 ρ22

φ
γU = P̂∆u, (2.64)

with

P̂ = P − Q2

R
, (2.65a)

Γ = φ

(
ρ11

ρ12
− Q

R

)
, (2.65b)

γ = φ

(
ρ12

ρ22
− Q

R

)
, (2.65c)

where P̂ is the bulk modulus of the solid phase in vaccum and γ is the notation given by Attala
et al. [129] in the mixed pressure-displacement formulation Eq.3.4. When the skeleton of the
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porous material is ’soft’ (P̂ = 0), the displacement between the two phases is given by

u =
ρ22

ρ12

γ

Γ
U. (2.66)

Substituting the solid displacement u into Eq. (2.29b) introduces the new wave equation for
the fluid phase

Kf∆U + ω2ρlimpU = 0, (2.67)

with
ρlimp =

B

A
ρe , A =

(
1− Qρ22γ

Rρ12Γ

)
and B =

(
1− γ

Γ

)
, (2.68)

where ρe is the equivalent density of the fluid as in Eq. (2.48). It implies that the solution of
wave equation involves only one compressional wave, characterized by the wavenumber

k2
limp =

B

A
k2
rf , (2.69)

where krf is the wavenumber of the rigid frame model. The limp model is less restrictive than
the rigid frame model since it takes into account the inertia of the solid phase in its modified
effective density ρlimp and can be an alternative to The Biot’s model when the frame born
wave has weak influence [9, 41], and the mass of the skeleton should not be ignored like in
transmission loss problems.

Delany-Bazley model

Delany and Bazley [38] proposed one of the first empirical model by determining expression of
the acoustic impedance Ze and wavenumber ke for fibrous materials with motionless skeleton.
The model is derived from impedance measurement of many fibrous materials. The quantities
Ze and ke are functions of the angular frequency ω and the air flow resistivity σ of the porous
material as

Ze = ρ0c0[1 + 0.057X−0.754 + i0.087X−0.732], (2.70a)

ke =
ω

c0
[1 + 0.0978X−0.700 + i0.189X−0.595], (2.70b)

where ρ0 and c0 are the density and speed of sound in air. The dimensionless quantity X is

X = ρ0f/σ. (2.71)

The main drawback of this model is that the porosity of material has to be close to 1.0 and it
is only valid for 0.01 < X < 1.0 . Further improvements of this model has been proposed by
other authors [10, 48, 109].
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2.3 Conclusion

In this part, we presented wave propagation in air and porous media. The Biot model allows
to account for viscous, thermal and viscoelastic dissipations. It will be used in the following
to study architectured poroloelatic metamaterials.
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Chapter 3

Poroelastic lamellar metamaterial for
sound attenuation in a rectangular
duct

This chapter corresponds to the paper published in Applied Acoustics journal [91], dealing

with the sound attenuation in a duct by means of a sound absorbing material. Common porous

materials produce a broadband sound attenuation but lack of efficiency in the low frequency

range. To overcome this limitation, the poroelastic material is shaped onto a lamellar network

to take benefit of its structural resonances. The metamaterial is easy to manufacture and tune

to the targeted frequency. The numerical results considering the global system or accounting

for the geometerical periodicity are both compared to experimental results. The effect of

geometrical and physical parameters, like the dimensions of the lamellas, Young’s modulus,

and air flow resistivity is investigated.
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3.1 Introduction

The control of low frequency noise remains a challenge for the automotive, aircraft and build-
ing industries. In many instances, the noise is produced by various airflow systems and is
transmitted in ducts which act as acoustic waveguides.

The mitigation of these noise disturbances is usually accomplished using passive treat-
ments by either using acoustic liners which consists in treating the wall of the duct adequately
or by inserting dissipative splitter silencers in the duct. In the latter case, silencers are made
with fibrous materials such as rock wool or glass fibre and are thus less efficient at low fre-
quency and for best sound attenuation, it is normally required that the thickness of the treat-
ment should be of the same order as the acoustic wavelength [76, 11, 117]. Traditional acoustic
liners, made of a resistive perforated plate coupled to a quarter-wavelength resonator, some-
what suffer from the same limitation as low frequency performances are typically limited by
the cavity depth. The geometric structure of these liners, which consist of a periodic arrange-
ment of acoustic resonators, makes the direct ancestor of acoustic metasurfaces or metamate-
rials which have experienced a continuous and robust development for the last twenty years.
Because these materials have effective dynamic quantities with negative values, like negative
mass density [162] and bulk modulus [45, 63], that cannot be observed in natural materials,
they break the traditional design rules for acoustic treatment.

The corner stone of these materials relies on subwavelength resonators and its associated
phase shift. Here, we can mention quarter-wavelength and space-coiling structures [92, 93,
118], Helmholtz resonators [26, 158, 58, 63] or membranes [162, 131]. The geometrical
configuration of the resonators network can also play a crucial role, like in slow sound channels
[83, 72]. Another major ingredient, which must be considered in order to design efficient
sound absorbing materials, is the losses. Viscothermal losses in porous materials [4] have been
combined with the inclusion of small resonators in the so-called metaporous materials [21, 55,
159, 160, 54], showing improvement at low frequency while keeping broadband absorption.
Perfect absorption can also be achieved by the mechanism of critical coupling whereby the
leakage rate of energy out of the resonator and its inherent losses are properly balanced [131].

Recently, Christensen et al. [31] proposed a structured material fabricated out of porous
lamellas backed by a reflecting support. The increase in dissipation is explained by the fact
that sound is trapped more efficiently than for a homogeneous porous layer. It is reported that
complete absorption of sound within a two octave band can be obtained though the concept is
not optimal within the long wavelength regime and at grazing incidence. Dauchez et al. [34]
studied sound absorption of a large scale poroelastic lamella network under oblique incidence
in free field. Results show that this type of structured material, which bears similarity with
[31], permits to gain extra absorption in the low frequency range by taking advantage of the
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resonance of the elastic frame of the foam. This particular effect, which is often ignored in the
literature, is indeed not studied in [31].

Silencers and sound attenuation in waveguides by metamaterial have been less investi-
gated than for panels dedicated to acoustic room corrections. The grazing incidence of sound
waves which, depending on the duct dimensions, may propagate in a multimode context makes
the design of appropriate acoustic treatments more complex and less understood.

Generally the best attenuation is obtained when two guided modes of the silencer are
close to merge [145, 157, 127]. This can be achieve by exploiting Fano resonances [156, 51]
or the high tunability of metamaterial [157]. Another lever is to take advantage of poroelastic
frame elastic resonances. Their strong impact on the sound attenuation have been shown
in [114, 112, 67] in the poroelastic silencer.

The present chapter is in the wake of previous work published by the authors [114, 112,
34] on the role of the frame elasticity for the passive sound control. More precisely, our aim
is to devise and investigate a new duct silencer concept made of a specific arrangement of
lamellas, here made of melamine foam, inserted in a rectangular duct. The lamella bending
motion provides a natural sub-wavelength resonator, without any other inclusions. The interest
of this configuration rely on its simple manufacturing, its high tunability and its broadband
efficiency.

The chapter is organized as follows. First, the experimental setup and material properties
are described. Two configurations with different orientations of the lamellas, i.e., parallel or
perpendicular to the duct axis, are investigated and compared to the homogeneous case.

Experimental results are given in terms of the Transmission Losses (TL) of the silencer
and are compared with numerical simulations obtained either from a full model, i.e., a 3D
finite element model (FEM) of the whole silencer, or from a simplified and idealized periodic
FEM model. This simplified model is then used to carry out a parametric study in order to
identify the effect of different geometrical parameters as well as physical parameters such as
the airflow resistivity and Young elastic modulus of the poroelastic material. Taking advantage
of the modal description given by periodic model, the paper ends with a discussion which
highlights the fact that best attenuation are nearly-optimal when modes are close to veering.
This phenomena which was established earlier by Tester [145] for locally reacting liners is
also described in recent papers [157, 127].
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Figure 3.1: Poroelastic lamellar metamaterial.

Figure 3.2: Orientations of the lamellar material; (a): homogeneous; (b): parallel; (c): per-
pendicular.
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Porosity Airflow resistivity Viscous length Thermal length Tortuosity Density Young’s modulus Loss factor Poisson ratio
φ σ Λ Λ′ α∞ ρ1 E η ν

(Nm−4s) (µm) (µm) kg.m−3 kPa
0.982 7920 132.6 149.9 1 6.11 120 0.075 0

Table 3.1: Properties of the poroelastic material [34].

3.2 Experimental approach

3.2.1 Description of the poroelastic lamellar metamaterial

The poroelastic lamellar metamaterial shown in Fig. 3.1 is made up of several melamine foam
strips which properties are given in Table 3.1. Each lamella has a nominal thickness h1 = 25

mm along the y-axis, a width w1 = 15 mm and a length of 200 mm. The air gap between
two lamellas is 5 mm. There are ten parallel strips glued on a 20 cm × 20 cm stiff plate.
Four samples are fabricated and arranged with different orientations. The two configurations
investigated, parallel and perpendicular, are shown in Fig. 3.2. In the parallel arrangement,
with 10 lamellas, each lamella is parallel to the duct axis, which is also the direction of the
incident pressure field. In the perpendicular arrangement, with 20 lamellas, each lamella is
perpendicular to the duct axis. In all cases, the sample covers both bottom and top surfaces of
the duct over a 40 cm length in the z-direction (see Fig. 3.3).

3.2.2 Experimental setup

The experimental set-up used to measure the Transmission Loss (TL) of the lined duct is also
shown. The test bench has been designed for the acoustic multi-modal characterization of a
test section in presence of a low Mach number flow within the frequency band [200 Hz–3.5
kHz]. In this work, we consider the no flow case and only the incident plane wave is accounted
for. The duct has a rectangular section of 0.2 m × 0.1 m with an anechoic termination at both
ends. The scattering matrix, which contains the modal reflection and transmission coefficients
is measured using a multi-source method described in [147]. Note that the symmetry of each
configuration tested prevents the existence of the first transverse duct acoustic mode so in the
frequency range of interest, here up to 1500 Hz, only the plane wave mode is allowed to prop-
agate in the rigid duct.

3.2.3 Results

In order to illustrate the influence of the orientation and of the filling fraction, parallel and
perpendicular orientations are compared to an homogeneous layer made of the same material.
These results are given in Fig. 3.4. The TL obtained with the homogeneous layer exhibits a
peak around 850 Hz. Attenuation peaks can be related to the cutoff frequency of Lamb-like
waves. Because of the motionless boundary condition on the bottom, all elastic modes in
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Figure 3.3: Experimental setup for transmission loss measurement (a) and lamellas orienta-
tions (b-d).
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the slab problem have a cutoff frequency, whereas classical Lamb waves are associated with
pressure release conditions on both sides. Exact solutions for fully coupled systems can be
found numerically in [17, 114]. It is sufficient in the present analysis to remind the following
approximation which holds if the coupling with the fluid is neglected [17]:

fi,m ≈ (2m+ 1)
ci

4h1
, for i = s, l, (3.1)

where cs =
√

E/2(1+ν)
ρ1

and cl =
√

E(1−ν)/[(ν+1)(1−2ν)]
ρ1

are the in vacuo shear and longitu-
dinal bulk velocities, respectively. These cutoff frequencies correspond to quarter wavelength
(or its multiple) resonances of the shear and compression wave of an homogeneous layer, as
mentioned in [34] for absorbing panels.

The parallel configuration exhibits the same trend, with a lower TL due to the air gaps
that increase the macro-porosity of the sample.

The perpendicular configuration exhibits also a peak, but at a lower frequency around 440
Hz, resulting from the excitation of the first bending resonance of the lamella [34]. Based on
a simple cantilever beam model, its first frequency can be approximated by

fb ≈ 0.56
w1

h2
1

√
E

12 ρ1
. (3.2)
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3.3 Numerical models

3.3.1 Model of the silencer

In order to further interpret experimental results and analyze absorption mechanisms taking
place in the porous material, the wave propagation in the silencer is computed numerically
using Finite Element Method. Typical FEM meshes used in our calculations are illustrated in
Fig. 3.5 showing the poroelastic domain Ωp and the air domain Ωa for the three configurations.
The dimensions of the duct and the silencer are the same as the experimental one.

In the air domain of density ρ0 and sound speed c0, the acoustic pressure p obeys the
Helmholtz equation

∆p+ k2
0p = 0, (3.3)

where k0 = ω/c0 is the wavenumber (time dependence e−iωt is considered here). On the rigid
wall, the acoustic normal velocity vanishes. In the porous domain Ωp, the classical mixed
(u, pp) formulation [4, Chap. 13] is used as it allows to reduce the number of degrees of
freedom and permits to ease the treatment of the transmission conditions at the air-porous
interface. The formulation is reminded here:

∇ · σ̂s(u) + ω2ρ u + γ ∇pp = 0, (3.4a)

∆pp + ω2 ρ22

R
pp − ω2 ρ22

φ2
γ ∇ · u = 0. (3.4b)

Here, pp is the pore pressure, φ is porosity of the porous material, γ = φ
(
ρ12
ρ22
− Q

R

)
and

ρ = ρ11 −
ρ212
ρ22

. Coefficient R is the effective bulk modulus of the fluid phase and takes
into account the thermal dissipation, Q couples the two phases by volumic dilatation. The
effective density coefficient ρ11 and ρ22, respectively for the solid phase and the fluid phase,
and the coupling density coefficient ρ12 are complex-valued, and their imaginary part takes
into account viscous losses. The first two terms in (3.4a) and in (3.4b) describe respectively
the dynamics of the elastic skeleton and equivalent fluid. The last term in both equations
couples the two phases. The in vacuo stress tensor σ̂s is given by

σ̂s(u) = I

(
Kb −

2

3
N

)
∇ · u + 2Nεs(u). (3.5)

Here, Kb is the complex dynamic bulk modulus of the frame, N is the shear modulus and
includes the structural damping. All these coefficients are related to the poroelastic struc-
tural parameters (see Table 3.1) by the Johnson-Champoux-Allard model and can be found in
Ref. [4, Chap. 6]. At the interface between the fluid and the porous material, the coupling
conditions impose the continuity of normal displacement, of the pressure, and of the normal
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Figure 3.5: Meshes and boundary conditions for the three tested configurations: homogeneous
(a), parallel (b), perpendicular (c).

stress (see for instance [4, Chap. 13]). Since the poroelastic material is clamped, the skele-
ton and the normal fluid displacements vanish on the duct wall. Radiation conditions at both
ends of the duct and the incident pressure field have been implemented using the Dirichlet-to-
Neumann (DtN) map [61] using the expansion of the pressure in terms of duct acoustic modes
(see Section 3.6.1). Duct modes are also used to compute the The transmission loss (TL),
defined as the ratio between the transmitted and incident power.

For completeness, the final form for the weak formulation is reminded in the section
3.6.2. Note that the pressure, in the air and in the pore, and solid displacements are discretized
using Lagrange quadratic finite elements. In all cases, the mesh size was chosen to ensure a
good trade-off between accuracy and computational time.

3.3.2 Periodic model

Here, we shall use the periodic structure of the silencer and consider a single periodic cell.
The two configurations, parallel and perpendicular, are depicted in Fig. 3.6. A typical cell of
dimensions w, d and h is periodic in the x and z directions whereas rigid wall conditions are
imposed at y = 0, h and, by invoking symmetry reasons, we take h=5 cm which corresponds
to the half-width of the rectangular duct. The dimension d is arbitrary here and we take d =
6 cm. Dimensions of the porous material are w1 × h1 × d (recall that experimental values
are w1=1.5 cm and h1=2.5 cm). The periodic model not only allows to diminish drastically
the computational burden but also provides a new insight into the absorbing properties of the
silencer with a view of optimisation, this will be exploited in Section 4.
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 Lamella strip
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Figure 3.6: Periodic cell model; (a): perpendicular case; (b): parallel case

The starting point stems from the Bloch theorem that states that all fluctuations, i.e.,
pressure and solid displacements, call it X , can be written as [32]

X(x) = X̂(x)eikB ·x, for x = [x, y, z]t , (3.6)

where X̂ is a periodic function with X̂(x+d)=X̂(x) where d = [w, 0, d]t and kB is the Bloch
wavevector which can also be expressed as kB = kBκ with unit vector κ = [κx, κy, κz]

t and
the norm kB = ‖kB‖. Thus, Bloch waves are d-periodic functions modulated by plane waves
involving the Bloch wavevector. The real part of kB is the phase change across the cell, and
more importantly, the imaginary part is related to the wave attenuation. Each configuration,
i.e. parallel and perpendicular, is easily obtained by simply setting κ = [0 , 0, 1]t or κ =

[1 , 0, 0]t, respectively.

To solve the periodic problem with the FEM, the sytem of equations need to be rewritten
for the periodic field X̂ . This can be done in a systematic way, from the original equations
Eq. (3.3) and Eq. (3.4). For instance, in the air domain Ωa, using the expansion (3.6) yields
the new wave equation

∆p̂+ 2ikBκ · ∇p̂+
(
k2
B − k2

0

)
p̂ = 0. (3.7)

The wave equation in the poroelastic domain can be derived and a similar manner. The asso-
ciated weak formulation is presented in section 3.6.2. Finally, the problem takes the form of a
quadratic eigenvalue problem with eigenvalue kB ,

[K0(ω) + kBK1(ω) + k2
BK2(ω)]X̂ = 0, (3.8)
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where X̂ contains the FEM unknowns and Ki (i = 0, 1, 2) are FEM matrices detailed in sec-
tion 3.6.2. The computation of Eq. (3.8) is performed after transformation into a generalized
eigenvalue problem and the latter is solved using standard sparse solver libraries. The TL of
the silencer is estimated, by assuming that (i) the lowest attenuated Bloch wave should provide
a fair description of the wave field (both in the air and poroelastic domains) as it propagates
in the silencer and (ii) the reflected waves at the entrance of the silencer can be neglected, and
thus

TL ≈ 8.68 Im(k0
B)L, (3.9)

where k0
B corresponds to the eigenvalue of Eq. (3.8) with smallest imaginary part and L =

0.4 m is the length of the silencer.

3.3.3 Comparison with experimental results

The TL of the three configurations are compared in Fig. 3.7 showing good agreement between
numerical, here using the full FEM model, and experimental results. A convenient way to
determine more precisely the influence of the solid frame is to investigate the relative con-
tribution of the different dissipation mechanisms involved in the sound attenuation. Three
mechanisms are considered: viscous, thermal and structural [40, 35]. Viscous loss is due to
the viscosity of the air and the relative movement air-skeleton in the porous material. Thermal
dissipation is due to the heat exchange between the air and the skeleton. Structural dissipation
is due to the viscoelasticity of the skeleton and its strain energy. Results are presented for the
three configurations in Fig. 3.9. Generally, through the whole range of frequency, the viscous
dissipation is dominating and has similar trend. Thermal dissipation is the second important
attenuation mechanism. Structural dissipation is generally smaller except close to the frame
resonances, around 900 Hz for the parallel and homogeneous configurations where the first
shear resonance occurs. For the perpendicular configuration, the structural dissipation reaches
its maximum around 450 Hz which corresponds to the first bending mode of the lamellas and
is more pronounced. Thermal dissipation is found to increase steadily with frequency and is
less affected by the frame resonance.

Clearly, the additional enhancement in sound attenuation due to the frame resonance,
which cannot exist with rigid frame porous materials, offers an interesting alternative for low
frequency noise control. The resonance frequency of the first bending mode of the poroelastic
lamella is simply determined by its dimensions, Young’s modulus and density, thus allowing to
design tailored solutions as shown in Ref. [34]. To have a better understanding of the physical
mechanisms taking place, it is instructive to illustrate the horizontal displacement field of the
skeleton, see Fig. 3.8, when the skeleton of the silencer resonates. For the parallel configura-
tion, one sees the shear motion along one lamella, and for the perpendicular configuration, the
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Figure 3.7: Comparison of experimental (black dashed line) and numerical (black solid line)
results for the three configurations: (a): homogeneous, (b): parallel and (c): perpendicular
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Figure 3.8: Displacement fields (color and motion) in the poroelastic material: (a) parallel
configuration at shear resonance around 900 Hz; (b) perpendicular configuration at bending
resonance around 450 Hz. Normalized color scale.

bending motion of each lamella. The color allows to see the phase shift and the wavelength
close to the acoustic wavelength that is 38 cm at 900 Hz and 75 cm at 450 Hz.

Finally, using the periodic model, Bloch wave attenuations calculated from Eq. (3.9)
are also shown in Fig. 3.10. Comparisons with the full model show very good agreements
and the skeleton resonances are well captured. Small discrepancies stem mainly from the
reflected waves at the entrance of the silencer which are not taken into account in the simplified
model. In addition, the reduced periodic FEM model allows thinner mesh that better capture
the skeleton motion.

3.4 Parametric study

In this section, we shall benefit from the last observations and analyze the efficiency of the
silencer with the periodic model, thus avoiding the computational burden of the full model.
Our aim is to conduct a parametric study and show the influence of some parameters, geomet-
rical and physical which can be gathered in two groups. First, we study parameters related
to the bending resonance, that is the Young’s modulus, the lamella’s width, and the structural
damping. Then, we study the influence of air-skeleton coupling parameters, characterized by
the air gap width and the air flow resistivity.
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Figure 3.9: Contribution of viscous (blue dashed line), thermal (black dash-dotted line) and
structural dissipation (red dashed line) for the three configurations: (a) homogeneous layer,
(b) parallel and (c) perpendicular.
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Figure 3.10: Comparison of full and periodic model based on hypothesis of elastic skeleton;
parallel:(a); perpendicular :(b).
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Figure 3.11: Comparison of TL performance for lamella network with different modulus from
30 000 to 240 000 Pa. For parallel (a) and perpendicular (b) configurations.

3.4.1 Bending resonance related parameters

Young modulus

Fig. 3.11 shows the effect of Young’s modulus on the attenuation for both parallel (a) and
perpendicular configurations (b). The nominal value isE = 120 kPa. Resonance peaks, which
can be anticipated using the approximation Eq. (3.1) and (3.2) for parallel and perpendicular
configurations respectively, is proportional to the square root of the Young’s modulusE as can
be observed. The loss factor is constant in the analysis so the attenuation also increases with
E near the resonance.

Width of lamella

The width of lamella w1 (see Fig. 3.6) is modified from 6 mm to its nominal value 15 mm,
keeping the air-gap w − w1 constant. The results are shown in Fig. 3.12. For the parallel
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Figure 3.12: Attenuation for different lamella width w1 =[6 mm, 9 mm, 12 mm, 15 mm].
parallel (a); perpendicular (b).

configuration (Fig. 3.12a), the location of the peak is not affected as expected from the theo-
retical estimate Eq. (3.1). However, the attenuation increases with w1 since the filling fraction
of the porous liner increases and tends to behave like the homogeneous configuration. For
the perpendicular configuration (see Fig. 3.12b), the frequency of the peak increases almost
linearly with w1, according to Eq. (3.2). This means that it is possible to match a specific
frequency by merely choosing the width of the lamella. Of course reducing the width has a
negative impact on the attenuation but this can be partly limited by reducing the width of air
gap as shown later.

Loss factor

The effect of the loss factor is shown in Fig. 3.13. Reducing the loss factor tends to produce
a higher peak of attenuation followed by a more pronounced dip. This is observed for both
configurations. A too large loss factor will reduce the motion of the lamella at the resonance
and therefore diminishe the associated additional dissipation.

3.4.2 Air-skeleton coupling related parameters

The effective coupling bewteen the air and the porous frame plays an important role in the
sound attenuation of the lamella network. The effect of air gap width and air flow resistivity,
which is the most influential coupling parameter in the low frequency range as it is related to
viscous dissipation, are now investigated.

Air gap width

We study the effect of the air gap w − w1 ranging from 1 mm to 10 mm, keeping the lamella
width constant w1 = 15 mm. Reducing the air gap increases the volume ratio of sound
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Figure 3.13: Attenuation of lamella network under different loss factors (LF) [0.01, 0.10,
0.20]. (a): parallel; (b): perpendicular.
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Figure 3.14: Attenuation of lamella network for different airgap width [1 mm, 4 mm, 7 mm,
10 mm]. (a): parallel; (b): perpendicular.

absorbing material. This can be observed in Fig. 3.14 in both configurations. Note that the
air gap width has a stronger impact at the resonance for the parallel configuration, showing a
variation of 8 dB whereas effects on the perpendicular configuration are more moderate. This
can be explained by the different coupling mechanism between the movement of air and the
porous frame also by the fact that the bending resonance occurs at a lower frequency.

Airflow resistivity

The airflow resistivity is known to be the most important parameter governing the acoustic
dissipation in the low frequency range [4]. In the specific case of a silencer made up of a
number of parallel splitters, there exists an optimal value for the resistivity as explained in
[117] for splitters silencer. In the present work, this fact is also observed in Fig. 3.15, showing
the attenuation of silencer for different values ranging from 5 000 Nm−4s to a very high value
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Figure 3.15: Comparison of TL performance of lamella network under different resistivity
from 5 000 to 320 000 Nm−4s. (a): parallel; (b): perpendicular.

of 320 000 Nm−4s. In the parallel configuration, which somewhat bears resemblance with the
configuration considered in [117], the attenuation at the resonance shows strong variations, up
to 20 dB. Here, the maximum value, above 25 dB, has been found to be nearly optimal for the
fixed geometry of the lamellas grating. For the perpendicular configuration, the attenuation
at the first bending resonance increases with σ from 7 dB to 22 dB. In this configuration, the
optimal value at the peak can reach a higher value at the detriment of a poorer attenuation over
a larger frequency spectrum.

3.4.3 Towards an optimized configuration

The parametric study made earlier permits a physical interpretation of the different mecha-
nisms related to the acoustic attenuation. It is also instructive to address the problem from a
mathematical point of view by observing that the quadratic eigenvalue problem of Eq. (3.8) is
non-Hermitian due the dissipative nature of the media. In the context of guiding waves, it has
been observed in many instances that optimal modal attenuation occurs when two eigenvalues,
here the Bloch wavenumber, are nearly coalescing. The interested reader can refer to the sem-
inal paper of Tester [145] for locally reacting materials and [127, 157] for rigid frame porous
material and metamaterial having periodic structures. In the context of structural dynamics,
this phenomenon is also known as veering [52].

This is well illustrated for the perpendicular configuration in Fig. 3.16 where the evolu-
tion of the first four eigenvalues with respect to frequency are shown. It can be observed that
maximal attenuation arises when the two least attenuated modes have wavenumbers which are
getting closer in the complex plane. This happens around 400 Hz and also, to a least extent,
around 1500 Hz. One can also observe that 2 modes are nearly coalescing around 1100 Hz but
with no effect on the TL since it does not affect the least attenuated mode. These situations
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Figure 3.16: Bloch wavenumber on perpendicular case when σ = 320000 Nm−4s

correspond to strong modal interactions which are very sensitive to various parameters, geo-
metrical and physical, especially those driving the coupling between the elastic frame and the
fluid (see sec. 3.4.2) or influencing the frame resonances frequency (see sec.3.4.1). Finding
optimized configurations could be achieved via parametric studies, as illustrated in this work,
or by using optimization methods based on Exceptional point (EP) location as proposed in
[113, 127].

3.5 Conclusion

The sound attenuation of a silencer consisting of a lamella network made with melamine foam
inserted in rectangular duct is investigated numerically and experimentally. Two arrangements,
parallel and perpendicular to the duct axis, are considered in the study. Results indicate that
the perpendicular configuration yields strong low frequency sound attenuation peaks due to
the excitation of bending modes whereas, in the parallel configuration, attenuation peaks are
found to result from shear waves resonances across the width of the lamella. Though acoustic
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attenuation is mainly due to viscous dissipation as expected, the relative contribution from
structural dissipation plays a noticeable role near the resonance.

The periodic structure of the silencer is exploited in order to devise a simplified numer-
ical model which not only allows to diminish drastically the computational burden but also
allows a more detailed analysis of the nature of the waves which propagate in the silencer.
Because reflected waves at the entrance of the silencer can be neglected, this periodic model
has been shown to be a reliable predictive tool showing good agreement with the full model
and experimental results. A parametric study has been conducted in order to identify the ef-
fect of different geometrical parameters, i.e., dimensions of the lamella and air gap, as well as
physical parameters, i.e. resistivity, elastic modulus of the porous foam and the loss factor, on
the sound attenuation in the silencer. It is shown that resonance frequencies associated with
peaks of attenuation, given by approximate formulas (Eq. (3.1) and (3.2) ), are proportional
to the square root of the Young’s modulus, and width of the lamella for the perpendicular
configuration.

The interest for this new type of silencer concept relies mainly on the fact it can be de-
signed using relatively simple manufacturing processes without any other kind of inclusions.
It is highly tunable and permits lower frequency attenuation, thanks to sub-wavelength reso-
nances, whilst keeping its absorbing efficiency in the medium frequency range. It is thought
that the concept could be investigated further by mixing several lamellas width or length in
order to extend its efficiency in the low frequency regime.

3.6 Appendix

3.6.1 Rigid duct modes

In the rigid duct, modal expansion is used in the DtN and to compute the TL. For instance, the
transmitted pressure field reads

p =

∞∑
m=0

∞∑
n=0

Atmnφmn(x, y)eikz,mnz, (3.10)

where Atmn, represents the amplitude of the mode (m, n). The upstream pressure is a combi-
nation of the incident and the reflected waves. For a rectangular duct, the orthonormal modal
shape is given by

φmn = Λmn cos(kx,mx) cos(ky,ny), (3.11)

where kx,m = mπ/Lx, ky,n = nπ/Ly, kz,mn =
√
k2

0 − k2
x,m − k2

y,n are the wavenumbers in
the x, y and z directions respectively and Λmn is the modal norm [111]. Once, the pressure
field p is known from the FEM computation, the amplitude of each transmitted mode can be
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recovered using orthogonality relation

Atmn =

∫
Γo

p φmn dΓ. (3.12)

The transmission loss can be obtained from

TL = −10 log10

It
Ii
, (3.13)

where Ii and It are the intensity of the incident and transmitted sound in duct respectively.
The first is known and the later reads

It =

M∑
m

N∑
n=0

kz,mn|At|2mn
2ωρ0

, (3.14)

where the sum is limited to the propagating modes.

3.6.2 Weak formulation

In the air domain, applying the standard weighted residual scheme to the Helmholtz Eq. (3.3)
yields, after integrating by parts,

−
∫

Ωa

∇p∗ · ∇pdΩ + k2
0

∫
Ωa

p∗p dΩ +

∫
Γa

p∗
∂p

∂n
dΓ = 0, (3.15)

where p∗ stands for the weighting function. In the poroelastic domain governed by the Biot’s
Eqs. (3.4) expressed with (u, p), the same approach leads to [4, Chap. 13]

∫
Ωp

σ̂s(u) : εs(u∗) dΩ− ω2

∫
Ωp

ρ̃u · u∗ dΩ +

∫
Ωp

[
φ2

ω2ρ̃22
∇pp · ∇p∗p −

φ2

R̃
pp p

∗
p

]
dΩ

−
∫

Ωp

(γ̃ + φ′)(∇p∗p · u +∇pp · u∗) dΩ−
∫

Ωp

φ′
(
p∗p∇ · u + pp∇ · u∗

)
dΩ

−
∫

Γp

σt n · u∗ dΓ−
∫

Γp

φ (U− u) · n p∗p dΓ = 0 . (3.16)

with φ′ = φ
(

1 + Q
R

)
.

3.6.3 Weak formulation for Bloch waves computation

We propose here a convenient systematic way to obtained the weak form of periodic part from
the standard week formulation of each domain given in (3.15) and (3.16). The basic idea is to
transform each differential operator to account for the Bloch decomposition given in Eq. (3.6).
This approach can be managed automatically by picking all the combinations once the operator
involving the pressure p or pp and frame displacement u are expressed with the periodic fields
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p̂, p̂p and û. The advantage of this approach is to keep boundary terms unchanged which
is convenient to applied standard boundary conditions like rigid wall. For instance gradient,
divergence and vector gradient yield

∇p = [∇p̂+ ip̂kBκ] eikBκ·x, (3.17a)

∇ · u = [∇ · û + ikBκ · û] eikBκ·x, (3.17b)

∇û =
[
∇u + ikBuκ

t
]

eikBκ·x. (3.17c)

The strain tensor, using the Voight formalism

ε(u) = [εxx, εyy, εzz, 2εxy, 2εyz, 2εxz]
t , (3.18)

now reads

ε(u) = [B0 + kBB1] ûeikBκ·x, (3.19a)

where B0 and B1

B0 =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂y ∂x 0

0 ∂z ∂y

∂z 0 ∂x


and B1 = i



κx 0 0

0 κy 0

0 0 κz

κy κx 0

0 κz κy

κz 0 κx


. (3.20a)

In the air domain Ωa, this yields for volumic terms

a0(p̂∗, p̂) + kB + a1(p̂∗, p̂) + k2
Ba2(p̂∗, p̂) = 0, (3.21)

with the operators

a0(p̂∗, p̂) = −
∫

Ωa

∇p̂∗ · ∇p̂ dΩ + k2
a

∫
Ωa

p̂∗ p̂ dΩ,

a1(p̂∗, p̂) = i

∫
Ωa

(
−∇p̂∗ · (κp̂) + (κp̂∗) · ∇p̂

)
dΩ,

a2(p̂∗, p̂) = −
∫

Ωa

p̂∗ p̂ dΩ.

In the poroelastic domain Ωp, this yields for volumic terms

b0(p̂∗p, û
∗, p̂p, û) + kBb1(p̂∗p, û

∗, p̂p, û) + k2
Bb2(p̂∗p, û

∗, p̂p, û) = 0, (3.22)
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with the operators

b0(p̂∗p, û
∗, p̂p, û) =

∫
Ωp

û∗t
(
Bt

0DB0

)
ûdΩ−

∫
Ωp

ρ̃ω2û∗ · ûdΩ

+

∫
Ωp

(
φ2

ω2ρ22

)
∇p̂∗p · ∇p̂pdΩ−

∫
Ωp

φ2

R
p̂∗pp̂pdΩ

−
∫

Ωp

(
γ + φ′

) (
∇p̂∗p · û + û∗ · ∇p̂p

)
dΩ

−
∫

Ωp

φ′
(
p̂∗p∇ · û +∇ · û∗p̂p

)
dΩ,

b1(p̂∗p, û
∗, p̂p, û) =

∫
Ωp

û∗t
(
Bt

0DB1 −Bt
1DB0

)
ûdΩ (3.23a)

+

∫
Ωp

φ2

ω2ρ22

(
∇p̂∗p · κip̂p − p̂∗piκ · ∇p̂p

)
dΩ

−
(
γ + φ′

) ∫
Ωp

−p̂∗piκ · û + û∗ · κip̂pdΩ

− φ′
∫

Ωp

p̂∗piκ · û− û∗ · κip̂pdΩ,

b2(p̂∗p, û
∗, p̂p, û) = −

∫
Ωp

û∗tBt
1DB1ûdΩ

+

∫
Ωp

(
φ2

ω2ρ22

)
p̂∗p(κ · κ)p̂pdΩ.

Once the boundary conditions are applied, the discrete operator (3.22) and (3.23a) are assem-
bled and coupled with the condition given in sec. 3.3, the quadratic eigenvalue problem of the
whole model (3.8) can be found.
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Chapter 4

Sound transmission loss of the infinite
double panel with resonators

This chapter addresses the sound transmission loss (TL) of a double panel partition with em-

bedded resonators. First, the typical TL of a finite size single panel and infinite double panel

partitions are recalled to identify some issues at low frequency. Then, the transfer matrix

method (TMM) is used to predict the sound insulation performance of an infinite double panel

with embedded resonators. The effective parameters are derived by TMM method thank to a

new approach. The effect of the main parameters on TL are then investigated.
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4.1 Flexural waves

The flexural wave propagation in a plate is briefly discussed. Bending waves, or flexural
waves, propagate as shown in Fig. 4.1(a). The bending wave motion is due to the rotation of
the cross section around the neutral axis for beams and the rotation of the line normal to the mid
plane around the axis transverse to the direction of wave propagation for plates [166]. Among
various wave types, the bending wave is of greatest importance in the interaction process
between plate and air, since it involves large displacement and surfaces that can efficiently
disturb an adjacent fluid [44].

Bending wave are dispersive. The phase velocity in a thin plate (or a beam) is not constant
with respect to the frequency and reads

cb =
√
ω · 4

√
D

ρs
, (4.1)

where D is the bending stiffness and ρs is the surface density of plate. The wave speed in air
is higher than in a plate until the critical frequency

fc =
c2

0

2π

(ρs
D

) 1
2
, (4.2)

where the speed of bending wave in the plate equals those of the acoustic wave in the sur-
rounding air. The flexural wavenumber is given by

kf =
√
ω ·
(ρs
D

) 1
4
. (4.3)

It is worth noting that with Euler-Bernoulli beam model or Kirshoff plate model, the solution
are a propagative wave, with the wavenumber kf , and an evanescent wave, with the wavenum-
ber ikf .

4.1.1 Single wall

The most usual indicator for sound insulation performance of partitions is the sound transmis-

sion loss which is the ratio between incident sound power Wi and transmitted sound power
Wt, expressed in decibels. For a finite size panel, a first dip on the sound transmission loss
curve occurs at the first bending mode of the panel as shown in Fig. 4.1(b). This frequency is
given for a simply supported rectangular plate by,

f11 = π2

(
1

a2
+

1

b2

)√
D

ρs
, (4.4)
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Figure 4.1: (a): Deformation pattern of bending wave in a flat plate; (b) Typical sound trans-
mission loss curve of an isotropic thin panel [60].

where a and b are the dimensions of the plate. For other boundary conditions [15], similar ex-
pressions can be found. As for infinite panel, a second dip occurs at the coincidence frequency,
given by

fcoin =
fc

sin2 θ
, (4.5)

where θ is the angle with respect to the normal vector of the plate of the incident wave. At
coincidence frequency, the wavelength of the incident wave projected onto the plate equals the
wavelength of the bending wave. At normal incidence fcoin tends to infinity and when θ tends
to π/2, fcoin tends to fc.

The sound transmission loss of isotropic and finite size single panel shown in Fig. 4.1(b)
can be divided into several regions:

• At frequencies below the first bending resonance frequency f11, the transmission loss
performance is determined by the stiffness of the panel. The slope of TL curve is -6 dB
per doubling of frequency.

• Above this frequency and below the critical frequency, the sound insulation performance
is linearly related to the surface density of the panel. The transmission loss increases
with 6 dB when doubling the frequency or the surface density: this corresponds to the
mass law. In this range, the transmission loss decreases when the incident angle θ in-
creases. Structural vibration resonances occur in this region, but the radiation efficiency
of these modes is lower than the first one [60].

• Above the coincidence frequency, the transmission loss is also mainly controlled by the
stiffness of the structure. The increase in transmission loss is of the order of 18 dB per
doubling of frequency [60, 44].
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Figure 4.2: (a): A infinite double panel partition filled with porous material; (b): The sound
transmission loss curve of a double panel with (blue lines) and without (black lines) porous
material under normal or oblique (θ = π/3) incidence.

• When the frequency is close to any dips, the depth of the dip is controlled by the damping
of the structure.

4.1.2 Double wall

The double or triple partition as shown in Fig. 4.2(a) is widely used in buildings and industries
since it presents more effective sound isolation performance in the mid or high frequencies
compared to the single panel of the same mass. In addition, the double panel also outperforms
thermal insulation and structure stiffness of a single panel. Fig. 4.2 (b) presents the trans-
mission loss performance of a double wall under normal and oblique incidence. Generally,
in the low frequency, it has two characteristic regions below or above the mass-spring-mass
resonance. At the mass-spring-mass frequency, the double panel acts like two masses coupled
by an air cavity acting as a spring. When there is no porous filling the air cavity, this resonance
frequency shifts as incidence angle varies as presented in Fig. 4.2(b) and can be determined
from [44, Chap. 5]

f0 =
1

2π

√
γP0

h cos θ1

ρ1 + ρ2

ρ1ρ2
, (4.6)

where P0 and γ denote as the atmospheric pressure of air and the heat capacity ratio respec-
tively, h is the distance between the two panels, and ρ1 and ρ2 are the surface density of each
panel. When frequencies are lower than f0, acoustic insulation properties of the double panel
system are identical to that of single panel having the same mass. Above f0, also called the



4.2. Modeling of thin panel with local resonators 59

decoupling frequency, the two panels vibrates out of phase and the second panel displacement
decreases with frequency. In this region, the transmission loss increases by 18 dB per octave.

Porous layer When a porous material is introduced in the cavity of the double panel par-
tition, the sound transmission loss is enhanced for several reasons as illustrated in Fig. 4.2
(b):

• At normal incidence, it is seen that the mass-spring-mass frequency is smaller compared
to the bare double panel, allowing a decoupling at a lower frequency. This is related to
the bulk modulus of the equivalent fluid K̃f ≈ P0 that is smaller than K0 = γP0 of the
air, with P0 the atmospheric pressure and γ = 1.4 .

• The mass-spring-mass frequency is less sensitive to the incidence angle, because the
speed of sound is smaller in the porous material, and is almost independent on the in-
cidence angle θ2 according to Snell-Descartes law. This allows to keep the decoupling
frequency close to f0 even in diffuse field.

• The dips corresponding to the mass-spring-mass resonance, coincidence frequency and
acoustic resonances within the cavity are attenuated because of the introduction of
damping in the cavity.

Resonators To overcome the lack of sound insulation around resonant frequencies, local
resonators can be introduced on the host panel [146]. Local resonators are porous layer with
mass inclusions [75, 64] or cantilever absorbers [62] tuned to match the structural resonant
frequency of the host panel. Acoustic and elastic resonators are also introduced into the cavity
inside the double panel to improve its insulation performance [82, 42]. Due to the periodic-
ity of the resonators implementation, band gaps where flexural waves can not propagate are
observed. Resonators can change the panel dynamics providing a way to overcome some
insulation issues around a given frequency band.

4.2 Modeling of thin panel with local resonators

In the following section, we will assume that the plate can be modelled as an Euler-Bernoulli
beam. This assumption is valid for an infinite system with continuous and homogeneous dis-
tribution of resonators or when the period of the resonator is small in comparison with the
wavelength. In particular, the lumped model [53, 149, 36], standard in the metamaterial com-
munity for such configuration, will be compared to a transfer matrix method (TMM) approach
to find effective parameters. We present here a preliminary work on this topic.
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Figure 4.3: Double panel with resonators in cavity

4.2.1 Lumped model

Firstly the lumped model is recalled here. The main assumption behind this approach is the
long wavelength limit, i.e., the phase shift on the unit cell is neglected and the resonator will
be model as a continuous distribution. This approach works for plate, or for beam„ but for
conciseness results will be presented for beams. The extension to plate is straightly forward
by changing the linear density by surface density and the bending stiffness conveniently, e.g.
D = EI or D = Eh3

12(1−ν2)
for beam and plate respectively.

The beam with a mass-spring resonator is depicted in Fig. 4.3. The local equation of
motion is given by [149, 53],

D
∂4w(x, t)

∂x4
+ ρh

∂2w(x, t)

∂t2
= F, (4.7)

F = −nk1(w(x, t)− u(t)), (4.8)

m1ü(t) = −k1(u(t)− w(x, t)), (4.9)

where n = 1/d is the number of resonators per unit length and d is the spatial period. The
two displacement variables u and w are expressed in the form of harmonic time dependence
w(x, t) = Wei(µax−ωt), u = Ue−iωt with µa the projection of wavenumber on the x direction.
These equations can be written in a matrix form[

µ4
aD − ρhω2 + nk1 −k1n

−k1 k1 −m1ω
2

]{
W

U

}
= 0. (4.10)

To obtain a nontrivial solution [W, U ]T , the matrix determinant should equal zero. The corre-
sponding expansion of the determinant is,

(−ρhm1)ω4 + (µ4
aDm1 + nm1k1 + ρhk1)ω2 − (µ4

aDk1) = 0. (4.11)

To solve the dispersion equation, there are two options: i) set a real value for ω and find µa(ω);
ii) set µa real and find the associated ωi(µa). The first approach corresponds generally to
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Figure 4.4: Comparison of dispersion curves obtained by solving for µa or for ω for a one
resonator per period d = 40 mm.

forced problems with an incident wave and is generally more easy to manage with dissipation.
This two strategies are illustrated in Fig. 4.4 and yields to the same solutions in the passing
band. It is worth noting that µa(ω) yield to complex wavenumber in the band gap. Because
lumped model is based on a continuous distribution of resonators, the Bragg band gap is not
present and cannot be observed.

The effective density can be obtained by factoring out all terms proportional to w in the
equation of dispersion,

ρe = ρ− n

S

m1k1

k1 − ω2m1
. (4.12)

Using this expression, the dispersion equation can be recast into an homogeneous beam, with
ρe instead of ρ. Thus, the flexural wavenumber reads,

µa =

(
ρeSω

2

D

)1/4

, (4.13)

and is formally identical to (4.3). This approach can be generalized in a straight forward
manner for a plate.

This approach can also be applied to other kind of resonators (see for instance Fig. 4.11
or [135]), but all the analysis have to be done again. The TMM is a more versatile approach,
although more difficult to apply to plate, especially with anisotropy. Expressions can also be
generalized with different resonators.
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4.2.2 TMM model

Transfer matrix method is ideal to build composite structures from standard components. The
mass-spring resonator depicted in Fig. 4.3 can be obtained by multiplying beam matrix and
a junction matrix containing the resonator, since the state vector is continuous at each inter-
face. TMM has been successfully applied to a wide category of 1D structures [141, 140, 28],
metamaterials [163, 95] and has a long history in multilayer porous material modeling [4]. A
key property of TMM in periodic context is that their eigenvalue and eigenvector correspond
to Bloch waves. It means that an eigenvector propagates without being scattered in the lattice.

With this approach, the position of the resonators inside the unit cell is now taken into
account and dispersion relation (Bloch waves) can be solved outside the long wavelength as-
sumption. We will follow the approach given in [18].

The first step is to recall the transfer matrix of an homogeneous beam section of length l.
The motion equation of Euler-Benoulli beam reads

∂4w(x, t)

∂x4
D + ρS

∂2w(x, t)

∂t2
= 0, (4.14)

where D = EI is the bending stiffness of the beam, S is the beam cross-section, E is the
Young’s modulus, and I is the second moment of area, equal to bh3/12 for b × h rectangular
cross section.

The general solution of Eq. (4.14) can be represented as

w(x, t) = (A1 cosh(µx) +A2 sinh(µx) +A3 cos(µx) +A4 sin(µx)) e−iωt, (4.15)

with µ =

(
ρSω2

D

)1/4

and the integration constants Ai (i = 1, . . . , 4).

The next step is to recast (4.14) as a system of first order ODE. This is done by using the
angular deflection φ(x) = w′(x), bending moment M(x) = −EIw′′(x) and shearing force
F (x) at location x. The explicit expression of them can be derived from the displacement
w(x), respectively proportional to w′, w′′ and w′′′

w(x) = A1 cosh(µx) +A2 sinh(µx) +A3 cos(µx) +A4 sin(µx),

φ(x) = w′(x) = µA1 sinh(µx) + µA2 cosh(µx)− µA3 sin(µx) + µA4 cos(µx),

M(x) = −Dw′′(x) = −D(µ2A1 cosh(µx) + µ2A2 sinh(µx)− µ2A3 cos(µx)− µ2A4 sin(µx)),

F (x) = −Dw′′′(x) = −D(µ3A1 sinh(µx) + µ3A2 cosh(µx) + µ3A3 sin(µx)− µ3A4 cos(µx)).

It can be rewritten in matrix form,
q = Nc, (4.16)
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where the state vector q and wave amplitude vector c (independent of the position) are

q =
[
w(x), φ(x),M(x), F (x)

]t
, (4.17)

c =
[
A1, A2, A3, A4

]t
, (4.18)

and N is function of x coordinate and writes

N =


cosh(µx) sinh(µx) cos(µx) sin(µx)

µ sinh(µx) µ cosh(µx) −µ sin(µx) µ cos(µx)

−Dµ2 cosh(µx) −Dµ2 sinh(µx) Dµ2 cos(µx) Dµ2 sin(µx)

−Dµ3 sinh(µx) −Dµ3 cosh(µx) −Dµ3 sin(µx) Dµ3 cos(µx)

 . (4.19)

Making use of boundary conditions at p1 (x = 0) and p2 (x = l) points as depicted in Fig. 4.3,
the corresponding state vectors qx=0 and qx=l in these two points can be written as,

q0 = N(0)c, (4.20)

ql = N(l)c. (4.21)

Then, the wave amplitude vector c can be expressed as

c = N(0)−1q0, (4.22)

or as
c = N(l)−1ql, (4.23)

when these matrices are invertible. Using both expressions for c yields the in-between state
vectors at the two positions

ql = Rq0, (4.24)

where R = N(l)−1N(0) is the so-called transfer matrix. Closed form expression can be
found [18] and finally, it reads

R =



Q
T

µ
− U

µ2D
− V

µ3D

µV Q − T

µD
− U

µ2D

−µ2DU −µDV Q
T

µ
−µ3DT −µ2DU µV Q


. (4.25)
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The Krylov-Rayleigh functions Q, T, U, V are defined as

Q(µl) =
1

2
[cosh(µl) + cos(µl)] , (4.26)

T (µl) =
1

2
[sinh(µl) + sin(µl)] , (4.27)

U(µl) =
1

2
[cosh(µl)− cos(µl)] , (4.28)

V (µl) =
1

2
[sinh(µl)− sin(µl)] . (4.29)

It is worth mentioning that D is the only free parameter in this matrix, although we could ex-
pect two, since there are two modes. This comes from the Euler-Bernoulli model assumptions.

Based on the continuities of displacement, rotation, bending moment, and shearing force,
the state vectors located at points p2 and p3 are linked by

q2 = Eq3, (4.30)

where matrix E is the point-transfer matrix. When there is no mass-spring system, E is the
identity matrix. When a mass-spring system is located at point p3, the relative equilibrium
equation of shearing force is modified by [126, 149]

F (p2) = F (p3) +
m1k1ω

2w

m1ω2 − k1
, (4.31)

where k1 is the stiffness of the spring and m1 is the mass as depicted in Fig. 4.3. Then, the
transfer matrix between points p2 and p3 is obtained as

E =


1 0 0 0

0 1 0 0

0 0 1 0

m1k1ω
2

m1ω2 − k1
0 0 1

 . (4.32)

In this model because the distance between points p1, p2 and p3, p4 as depicted in Fig. 4.3
are the same, the two corresponding transfer matrices R2 and R1 are the identical. Then, the
global equation is obtained as

q1 = R1ER2q4. (4.33)

In the following, we call Rg = R1ER2 the global transfer matrix. As depicted in Fig. 4.3, the
points p1 and p4 are located on the left and right boundary of unit cell of the beam. Taking
accordance to Bloch theorem, the vector q in point p1 is equal to the one in point 4 multiplying
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Figure 4.5: Validation of R matrix for dispersion relation of beams.

Property Density Young’s modulus Loss factor Poisson ratio Thickness Periodicity
ρ1 E η ν h d

kg.m−3 MPa - - mm mm
Panel 400 180 0 0.33 10 40

Table 4.1: Homogeneous properties of the plate.

a phase shift
q1 = eikBdq4, (4.34)

with d = 2l an kB the Bloch wavenumber. Substitution of Eq. (4.34) into Eq. (4.33) yields an
eigenvalue problem with the eigenvalue is λ = eikBd,

(Rg − λI) q4 = 0. (4.35)

Thus, the corresponding dispersion behavior for the plate with or without resonator can be
obtained.

The homogeneous beam TMM has been validated in Fig. 4.5 by comparing the Bloch
wavenumbers to Eq. (4.3). The relative properties of the host beam and embedded resonators
are listed in Table 4.1 and 4.2. For the beam with added resonators, the Bloch wavenumber
based on TMM is shown in Fig. 4.6. A small bandgap is obtained between 333 Hz and 342
Hz. It is consistent with the reference results from the lumped model given in Eq. (4.13). This
agreement validates the composite TMM.
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Property m1 (g) k1 (N/m) m2 (g) k2 (N/m)
value 9.68e-2 423 9.68e-2 350

Table 4.2: Homogeneous properties of the mass-spring resonator; the imaginary part of stiff-
ness represents mass ratio.
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Figure 4.6: Comparaison between the wavenumbers obtained using µa from the Lumped
model(4.13), the TMM Bloch mode kB (4.35) and the effective bending wavenumber µe(4.40).
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Effective parameters

The knowledge of effective parameters could be useful to derive frequency dependent param-
eters to classical vibroacoustic formulas and to get a new physical insight on the problem.
Meanwhile, they can provide some effective guidance to design the metamaterial with desired
properties [152]. Nonetheless, obtaining such parameters is not straight forward and not al-
ways unique, depending on how the effective parameters are defined. In 1D (scalar) acoustic,
like in duct, a classical approach for obtaining effective parameters of porous material is to
use the transfer matrix [137]. The wavenumber is then deduced from its trace and the effective
impedance is obtained by the ratio of extra diagonal terms. For beams, using similar approach
is appealing but there are two kinds of waves in the beam that makes the situation more com-
plex. However, transfer matrix and their spectral properties have been used to identify effective
stiffness of periodic beams assembly in static regime (truss) [141, 140, 50]. In this section, we
will present a first attempt and propose some possible enhancements.

The trace Tg of the global transfer matrix Rg is related to its eigenvalues

4∑
i=1

λi = eikB1d + eikB2d + eikB3d + eikB4d = 2 (cos(kB1d) + cos(kB2d)) = Tg. (4.36)

Indeed, due to the reciprocity, each Bloch wavenumber comes by pair ±kBi (i = 1, 2). The
trace has a similar form as the homogeneous beam transfer matrix Re given in (4.25)

Te = 2 (cosh(µed) + cos(µed)) , (4.37)

excepted that only one wavenumber µe is involved. This is due to a degeneracy of the Bernoulli
beam model. Using a more general beam model may lead to a better approach when looking
for effective parameters; this will be let for further works.

Keeping this in the mind, we can expect that obtaining effective parameters from the
Euler-Bernoulli transfer matrix entries will work as long as all Bloch wavenumbers satisfy the
condition

k4
B1 ≈ k4

B2 ≈ k4
B3 ≈ k4

B4, (4.38)

as for an Euler-Bernoulli beam. The Bloch wavenumber are plotted in Fig. 4.7 and (kB)4
i

are given in Fig. 4.8. It can be observed that this assumption is well satisfied in the vicinity
of the hybridization gap. It can be justified mathematically, because the resonators affect
locally the beam effective parameters (the lumped model works) without changing the nature
of the dispersion equation. However, in the Bragg gap, as the destructive interferences affect
only the propagative waves, this assumption breaks down and two wavenumbers are required
[105]. Under this form, the homogenization scheme based on Euler-Bernoulli beam cannot be
extended at higher frequency when kB d

π ≈ 1. This should be possible with the Rayleigh beam
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Figure 4.7: Symmetry of the four Bloch wavenumbers in the vicinity of the hybridization gap.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wavenumber4 (m 4) 1e6

100

150

200

250

300

350

400

450

500

Fr
eq

ue
nc

y 
(H

z)

(k4
B)1

(k4
B)2

(k4
B)3

(k4
B)4

4
e

Figure 4.8: Modulus of (kB)4
i .

model, where propagative and evanescent wave can be uncoupled by taking into account the
inertia.

In order to analyze wave attenuation and estimate the sound insulation properties through
the panel, the effective surface mass density ρe, wavenumber µe and bending stiffness De of
the host plate with embedded resonators can be figured out by

De =EeIe = −Rg[1, 2]

Rg[2, 3]
, (4.39a)

ρe =
µ4
eDe

Sω2
. (4.39b)
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Figure 4.9: Real (black) and imaginary (blue) part effective parameters deduced from TMM
homogenization and compared to results from the lumped model.

To get the effective wavenumber µe, since there is not obvious inverse function, we solve
numerically

2 (cosh(µed) + cos(µed)) = TrRg, (4.40)

using Newton-Raphson scheme by starting at an averaged value based on Bloch wavenumber
4

√
1
4

∑4
i=1 k

4
Bi. Because the initial guess is close to the solution, no convergence problem have

been found.

A comparison between the wavenumbers obtained using µa from the Lumped model
(4.13), the TMM Bloch mode kB (4.35) and the effective bending wavenumber (4.40) is pre-
sented in Fig. 4.6. A good agreement is obtained by the three approaches in the vicinity of the
hybridization gap.

The gap corresponds to the bandwith where the effective density real part (see Fig. 4.9a)
becomes negative in a narrow frequency band after 320 Hz. In the present form of the homog-
enization scheme, only the Bloch wave allow to predict the Bragg band gap. Note that with
the selected light resonator, this band gap is narrow.

In Fig. 4.9, the effective density and the effective bending stiffness are compared with
those given by the lumped model. A good agreement is obtained, showing the interest of the
TMM homogenization scheme. The effective density present strong fluctuation Re ρe/ρ > 2,
whereas the effective bending stiffness remains almost constant, ie 0.9 < ReDe/D < 1.1,
even if some artifacts are present. These artifacts are due to the discrete periodicity since
lumped model assume continuous distribution of resonators and tend to zero when d→ 0.

Because these effects are related to resonances, they are very sensitive to damping. Re-
sults are presented in Fig. 4.10 for several loss factor values. It can observe that this aspect
will remain a key parameter for practical achievements proposed in the next chapter. Effective
parameters for three different resonator damping are compared. When the damping is near
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Figure 4.10: Effect of resonant damping on the dynamic properties of the beam: (a) Density;
(b) Effective bending stiffness.

Change effective density Change effective inertia Change effective bending stiffness

Figure 4.11: Different kind of resonator arrangements to build meta-beam.

zero, the density of the plate increases to unbounded positive values at resonance frequencies.
Then, it suddenly drops to negative infinity and remains negative within the band gap. When
the damping increases from 0.001 to 0.01 and 0.05, the denominator in Eq. (4.13) does not
vanish and the effective density is less affected by the resonator. The effective bending stiff-
ness remains almost constant, especially when damping increases. For very small damping,
µe spreads from kB close to singularity, explaining the stronger fluctuation of De.

Other kind of resonators

For other kind of resonators, as described in Fig. 4.11, similar approaches can be used. As
long as the long wavelength assumption is valid, lumped parameter and TMM can be used to
find the dispersion relation. It is noteworthy that the second configuration [135], affecting the
inertia cannot be homogenized in the framework of Euler-Bernoulli beam since the wavenum-
bers satisfy a bi-quadratic equation and do not degenerate anymore. Again, Rayleigh beam
will be required. However, the Bloch wave can be easily computed from the TMM, using the
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following matrix to take the resonator into account:

[Eθ] =


1 0 0 0

0 1 0 0

0
−I1kθω

2

I1ω2 − kθ
1 0

0 0 0 1

 , (4.41)

with the inertia I1 = m1`
2. The last configuration should produce a negative dynamic bending

stiffness, and work is on going on this topic. As for the negative density, this configuration can
be recast into Euler-Bernoulli model.

4.3 Sound insulation performance

The aim of this section is to couple the meta-beam (or plate) to ambient fluid and to evaluate
the sound insulation of the double panel. The proposed approach is to use TMM to create
a complete vibroacoustic model as depicted in Fig. 4.12. In particular, the number and the
tuning of resonators will be investigated.

plate cavity plate

z

x
p0 p1 p2 p3 p4 p5 p6 p7

d1 d2 d3

k0

θ

Figure 4.12: Layered structure.

4.3.1 Transmission loss by TMM

Assuming that layers are laterally infinite and each media is isotropic and homogeneous, we
can use the transfer matrix method to model the fluid and the panel. For an acoustic fluid
layer, the vector has two parameters: pressure and normal velocity, perpendicular to the layer
surface. When the system is composed of multiple layers, a global matrix can be obtained
by multiplying the matrix of each layer and an interface matrix between two neighboring
layers based on the continuity of sound pressure and velocity. In addition, the projection of
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the wavenumber for each wave in each layer should be equal to the x component k0 sin θ of
the incident wave in free field. When the global matrix of the system is known, the acoustic
properties of the system like absorption coefficient and transmission loss can be obtained.

The acoustic fluid layer of thickness d2, as depicted in Fig. 4.12, is described by the state
vectors {p, vz}p3 and {p, vz}p4 and the transfer matrix T such as

{
p

vz

}
p3

=

 cos k3d2 i
Zc

cos θ
sin k3d2

i cos θ
Zc

sin k3d2 cos k3d2

{ p

v3

}
p4

, (4.42)

where Zc refers to the characteristic impedance of the acoustic fluid layer between two plates
and k3 = (k2 − k2

0 sin θ2)1/2 is the z component of wavenumber in it.

For a thin elastic layers as shown in Fig. 4.12, its transfer matrix can be greatly simplified.
The normal stresses and the normal velocity of the thin plate is chosen to express the mechanic
field in a point p1, p2, p5 and p6 of the plate. The vector in point p1 can be expressed as{

σzz

vz

}
p1

=

[
1 −Zs(ω)

0 1

]{
σzz

vz

}
p2

, (4.43)

where Zs is the mechanical impedance of the panel, and can be obtained from

Zs(ω) = −iωm

(
1− Dk4

t

ω2m

)
, (4.44)

where De and ρeh are the bending stiffness and the surface density of plates. kt = k0 sin θ is
the trace wavenumber in plate. In the following, the two plates are treated as thin Kirchhoff
plate to simplify the model and computation.



4.3. Sound insulation performance 73

0 100 200 300 400 500 600 700 800
Frequency (Hz)

10

20

30

40

TL
 (d

B
)

TL with parameters from TMM model
TL with parameters from lumped model

Figure 4.13: TL comparison of TMM and lumped model, for double panel structure with
embedded resonator when loss factor η = 0.05.

On the coupling surfaces between the thin plate and air layers located at points p2 and
p3, the continuity of normal velocity and stress can be written by

vz(p2) = vz(p3), (4.45)

σzz(p2) = −p(p3).

It can be rewritten in matrix form[
1 0

0 1

]{
σzz

vz

}
p2

=

[
−1 0

0 1

]{
p

vz

}
p3

. (4.46)

Now, the global matrix is obtained by assembling all of the interfaces and layers matrices.
Combining the global matrix and boundary conditions allows to derive the acoustic perfor-
mance of the multilayer system [4, Section 11.5].The TL performance of the double panel
structure is estimated with equivalent parameters derived from TMM and lumped model.
Fig. 4.13 shows a good agreement of the two approaches.

4.3.2 Single kind of resonator

We now present some TL results when all resonators are tuned on the same frequency. The
corresponding parameters of the panel and resonators are presented in Table 4.1 and 4.2.

Fig. 4.14 clearly shows that the transmission loss of the double panel with resonators
gives an improvement of more than 30 dB at decoupling frequency. This corresponds to the
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Figure 4.14: Transmission loss of infinite double panel with or without resonators (η = 0.05)

hybridization band gap observed on the dispersion curve in Fig. 4.10. However, two dips
are now present apart this peak, leading to locally worse sound insulation than bare panel.
Nervertheless, the overall minimum TL jumps from 0 to 5 dB. At higher and lower frequencies,
the transmission loss is identical.

A parametric study in term of resonators loss factor, mass ratio of resonators to host
panel, and resonator distribution density is now proposed. Fig. 4.15 compares TL for several
loss factors. It can be seen that the TL increases at the mass-spring-mass resonance frequency
when the loss factor decreases. However, with more losses, the TL dips are less stringent.

Fig. 4.16(a) shows the influence of the mass ratio between resonator over host plate. For
the comparison convenience, the resonance frequency of the resonator is kept constant by
modifying the stiffness k1 accordingly. As expected, the TL increases with the mass ratio. In
addition, the improvement bandwidth also increases as mass ratio increases.

4.3.3 Multiple resonators

Now, two resonators with different natural frequencies f1 = 302 Hz and f2 = 332 Hz (see
Table. 4.2) are embedded on the double panel, with the same added mass m1 = m2 = m0/2.
The global matrix for the beam can be obtained from

Rg = R1E1E2R2 (4.47)

where E1 and E2 are the matrix of each resonator. Effective parameters can then be deduced,
using the TMM homogenization scheme. The effective wavenumber is shown in Fig. 4.17
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Figure 4.15: Influence of the resonator loss factor on the transmission loss of the double panel.
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Figure 4.16: Influence of the mass ratio of resonators over the host panel on the transmission
loss of the double panel.
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Figure 4.17: Dipersion relation of host panel with two types of resonators.

where a larger bandgap is observed compared to the one from the former configuration.

Fig. 4.18 shows the TL when two different resonators are embedded. Two peaks are
observed at frequencies f1 and f2. The loss factor has again a major effect as seen in Fig. 4.19:
the minimal TL value in the vicinity of the resonant region increases from 3 dB to 10 dB when
η increases from 0.01 to 0.1.

Fig. 4.20 presents the TL of the double panel with resonators for the different mass ratio.
It is seen that the mass ratio rather drives the peak value than the minimal TL value.

4.4 Conclusion

The effect of resonators on the sound transmission loss of the infinite double panel is studied
analytically. A predictive model based on TMM method is proposed to estimate Bloch waves
and the effective parameters of a host panel with embedded resonators. This model is appli-
cable when only one direction of propagation is considered. For other situations, plane wave
extension or finite element method can be used to obtained the dispersion equation [155].

It is shown that this approach works well as long as the evanescent and propagative waves
wavenumber have the same modulus. TMM model is validated since the dispersion relation of
bare panel or panel with resonators obtained from TMM model are precisely consistent with
that from the lumped model. The negative density is located in a narrow band after the resonant
frequency and the corresponding effective bulk modulus is almost constant although fluctua-
tion arise close to the singularity of the effective density. An interesting way of improvement
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Figure 4.18: Transmission loss of the double panel with two different resonators. Loss factor
of the resonators is 0.05.
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Figure 4.19: Effect of the resonator loss factor on the transmission loss of the double panel.
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Figure 4.20: Effect of the resonator mass ratio on the transmission loss of the double panel.

is to work with Rayleigh beam model to allow two distinct wavenumbers. The sound trans-
mission loss of the double panel structure with periodically arranged resonators is predicted by
making use of effective parameters from TMM model. The results indicate that the resonators
can significantly enhance the sound insulation of a double panel around its mass-spring-mass
resonance frequencies. However, around this frequency, two side dips appear. The enhance-
ment performance is very sensitive to the mass ratio and resonators damping. A broadband
enhancement can be achieved by making use of resonators tuned at different frequencies.

In the next chapter practical realization of such concept will be proposed based on poroe-
lastic beams.
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Chapter 5

Sound insulation enhancement of
partitions through poroelastic
resonators

This chapter corresponds to the paper entitled Poroelastic resonant metamaterial to face
sound insulation issues of the single and double panel partitions and submitted to Journal
of Sound and Vibration. Single or double panel partitions suffer from poor sound insulation

in the vicinity of their first bending or mass-spring-mass resonances respectively. Based on the

concept presented in chapter 4, the use of embedded poroelastic resonators made out of ther-

mocompressed foam is now studied. First, experimental results obtained for a finite size panel

in a duct are presented. Dissipation mechanisms are analyzed using a numerical model. Then,

the performance of the infinite double panel partitions with embedded poroelastic resonators

is studied on the basis of a periodic numerical model. Finally, a parametric study focusing on

mass ratio and incident angle is carried out to show optimization rules.
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5.1 Introduction

To save energy and resources during manufacturing and life cycle, compact and lightweight
structures are increasingly sought after, especially in the construction and transport fields.

However, acoustic insulation of infinite single panel is mainly driven by the mass law,
which states the heavier the better. When dealing with finite size panels [44], the first reso-
nance of the structure induces a severe dip in the sound insulation. Similar behavior is also
observed on curved panels, close to the ring frequency [43, 42]. Below this frequency, the
transmission loss (TL) is controlled by the panel stiffness and decreases by 6 dB per octave.
Close to the resonances, the TL is minimal and controled by the damping. Above the first res-
onances, infinite panel behavior is recovered: the TL is mass controlled up to the coincidence
frequency [44]. The coincidence phenomenon appears when the trace of the incident acoustic
wavenumber is equal to the free bending wavenumber leading to poor sound insulation.

Double wall partitions are set up in practical applications to overcome the mass law:
two panels are separated by an air gap, usually fed with a sound absorbing material. This
structure exhibits a mass-spring-mass resonance, beyond which the two panels are decoupled
and outperform single partition with the same mass. However, close to this resonant frequency,
the partition is nearly transparent. Note that the inner porous layer reduces the concequences
of air-gap acoustics resonances and allows to keep the mass-spring-mass resonance quasi-
independant of the incident angle, allowing an efficient decoupling even in diffuse field.

Another way to enhance the TL is to add resonators to change the effective mass [142, 43]
of the panel or the effective stiffness of the core [104]. Such approach has been recently re-
visited and extended through the metamaterial paradigm allowing better integrated solutions.
Metamaterial and metasurfaces are designed with subwavelength resonators often arranged in
periodic structures to control wave propagation and stop bands. Early works for sound insu-
lation were based on bulk materials [134, 84] or Lamb waves, and rapidly spread to flexural
wave manipulation in beams and plates [136, 163, 124, 154]. In the meantime, metamaterials
have been widely used in acoustics and especially to improve sound absorption [58, 161] (see
the references therein).

Since sound attenuation by panels can present dips at localized frequencies, metamateri-
als are good candidates to face these limitations. Many works have proposed locally resonant
metamaterials to enhance sound insulation index of infinite panel close to coincidence [99], to
create stop bands [138], or tackle finite panel resonances [96] or curved panels ring frequency
[42]. For double panels, the mass-spring-mass resonance have been tackle by i) changing the
core effective dynamical stiffness with Helmholtz resonators [104, 143, 82] ii) changing the
effective dynamical mass, without [36] and with foam core [75, 143, 37, 96, 99]. The metama-
terial efficiency is mainly driven by the mass ratio between the resonators and the bare plate,
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and by the tuning staggering [155]. Generally, an added mass less than 10% can greatly en-
hanced the TL. When subwavelength resonators are used, the effective parameters can be used
in standard formulas [99, 36, 37] to simplify the design procedure.

Combining such approach with porous or poroleastic materials [75, 96, 37] is of great
interest since viscothermal losses improve the sound absorption and the impedance mismatch
[96, 86] limiting the TL dips especially in diffuse field. Practical realization of passive res-
onators are made with an array of cylindrical dots [124, 99], stepped resonators composed of
a soft material with a heavy cap [138], a cantilever beam [155, 153], eventually 3D-printed
systems [42, 36, 37], dual-beam resonators [101] or using the added mass and the elasticity of
the foam core [75]. It is noteworthy that for double panel, the resonator can be added inside
the cavity [75, 99] for compactness and robustness.

The aim of this paper is to propose a new kind of poroelastic resonator to enhance the
TL close to finite size panel resonances or mass-spring-mass resonance of the infinite double
panel. The resonators are made with poroelastic beams lying on spacers, providing a simple
and easy to manufacture solution. Especially for double panel, where a porous layer is gener-
ally present, the solution just consists as reshaping this porous layer: the proposed approach
do not require any additional system. The native diphasic nature of the poroelastic lamella pro-
vides a natural way to combine the properties of the sound absorbing material and vibration
control. Similar arrangements of poroelastic lamellas have proven their potential for sound
absorption [31, 34] and attenuation in silencers [91].

The paper is organized as follows. First, the sound transmission loss of a finite size single
panel covered by a poroelastic lamellar metamaterial is studied experimentally in a rectangular
duct under normal incidence. Dissipation mechanisms are further analyzed by finite element
method (FEM). Then, an infinite double partition is investigated by the mean of a periodic
finite element model. Finally, a parametric study dealing with incident angle and mass ratio is
addressed to conclude on the poroelastic lamellar metamaterial performance.

5.2 Experimental investigation

The finite size single panel is firstly investigated experimentally to illustrate how poroelastic
resonators can control the sound transmission dip. The TL is estimated in a duct allowing
accurate measurements at low frequency.

5.2.1 Test bench for transmission loss measurement

The test bench is a rectangular duct of section 100 mm × 200 mm as shown in Fig. 5.1. It
has been designed for acoustic multimodal characterization under a low Mach number flow
within the frequency band [200 Hz- 3.5 kHz] accounting for 10 propagative modes[147]. The
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Figure 5.1: Experimental set-up. (a) Description of the multimodal test bench; (b) Plate
without poroelastic beams; (3) Plate located on the measurement section before closing the
duct.

first cut-off frequency of the duct is 857 Hz. The multimodal scattering matrix, which contains
the modal reflection and transmission coefficients, is measured using a multi-source method
described in reference [147] without flow. Only the plane wave contribution is considered in
our experiment.

The tested panel is clamped at the interface between a rigid wooden duct and the mi-
crophone section as shown in Fig. 5.1(c). Broadband noise is chosen as excitation signal and
two measurements are repeated using three source positions (1, 3, 7) for each configuration to
increase the measurement quality.

5.2.2 Description of the single panel

The dimensions of the panel are chosen to fit in the test bench cross-section. Since the first
cut-off frequency of the bench is 857 Hz, we designed the single panel so that its first mode
is far below. A rather light structure has been chosen to keep a mass ratio poroelastic material
over panel around 10%. Hence, the host structure is made out of 2 juxtaposed plates of foam
core cardboard having a thickness of 3 mm each and 90 mm × 190 mm size. This structure is
bonded on a soft and thin cardboard sheet of size 126 mm × 226 mm to be clamped between
two duct sections. In this manner, the distance between all edges of foam core cardboard
plate and duct wall is 5 mm: this allows having a reproducible boundary condition around the
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Porosity Airflow resistivity Viscous length Thermal length Tortuosity Density Young’s modulus Loss factor Poisson ratio
φ σ Λ Λ′ α∞ ρ1 E η ν

(Nm−4s) (µm) (µm) (kg.m−3) (kPa)
0.967 41 222 58 65 1.05 24.2 121.4 0.102 0.21

Table 5.1: Properties of the thermocompressed poroelastic material measured in Roberval
laboratory at UTC as described in [87].

sample. The mass of the foam core cardboard per unit area is 0.858 kg.m−2. The bare panel
first resonance is around 300 Hz as shown in Fig. 5.4.

5.2.3 Poroelastic metamaterial

The metamaterial is made of an array of poroelastic beams lying on spacers. This configuration
will ensure a good coupling with the transverse motion of the panel. In order to control the
first mode of the panel, the resonators have to be tuned at the same frequency.

Assuming an elastic behavior, an estimation of the first resonance frequencies of the
clamped beam, are given by

fi =
λ2
i

2π`2

√
EI

ρ1S
, (5.1)

where λ1 ≈ 4.73, λ2 ≈ 7.85 and λi ≈ (2i + 1)π2 for i > 3 [15]. E is the Young’s modulus,
ρ1 is the mass density, I = bh3/12 is the second moment of area, ` is the beam length and
S = bh is the cross section area. It has been observed, that for sparse array of resonators, rather
resistive and dense foam were more suitable. Hence, thermocompressed melamine foam, with
a compression rate of 2.9 [88, 87] has been chosen. The mechanical and acoustical properties
of this poroelastic material are listed in Tab. 5.1.

Once the material is set, the tuning can be done by changing ` and the added mass can
be independently set by changing the width b. Each poroelastic beam has the same length as
host structure, i.e., 190 mm, and is bonded on several rigid spacers made out of 3 mm thick
foam core cardboard as shown in Fig. 5.3(left side). The clamped-clamped beams resonator
network is depicted in Fig. 5.3(right side). The thickness of the beam section is h = 10.4 mm
while its width b, can be 10 mm or 15 mm.

Firstly, we estimate the Young’s modulus of the poroelastic material from the frequency
response of a single beam impacted at its center, using a Scanning Polytec PSV-500 Laser
Doppler Vibrometer (Fig. 5.2)[34]. The estimated Young’s modulus for the 100 mm beam is
121.4 kPa according to Eq.(5.1).

The two configurations depicted in Fig. 5.3(a,c), named P1 and P2, are designed to in-
vestigate the effect of beam length on TL. Five or six spacers are placed on the plate with the
same periodicity, so that we have 20 beams B1 and 25 beams B2 for P1 and P2 configurations
respectively. Note that, for P1 configuration, the width of central spacer is 10 mm and not 5
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Figure 5.2: (a) Poroelastic resonators used for Young’s modulus estimation; (b) Frequency
response of the 100 mm length beam.

mm for symmetrical arrangement. All the beams are bonded on the spacers using double-face
tape.

P3 and P4 configurations shown in Fig. 5.3(e,g) are designed to achieve a broadband ef-
fect by mixing resonators of various lengths. In P3 case, combination of eight beams B1 and
ten beams B2 are used to produce multi-modal locally resonator as provided in Fig. 5.3(f,h).
Shorter spacers are used to realize this configuration and the width of porous beam is 15 mm.
For P4 configuration, five kinds of the poroelastic resonators B1-5 are distributed symmetri-
cally on the plate surface. Two long spacers are located obliquely on the host plate to linearly
change the resonator length. The distance between two poroelastic beams is 10 mm in all
tested configurations.

The poroelastic network covers approximately 55% of the panel for P1, P2, P4 configu-
rations and 67% for P3 arrangement.

B1 B2 B3 B4 B5
Length of beam ` (mm) 41.5 32 36.5 45.5 50 mass ratio

P1 [Fig. 5.3(b)] 5×4 7.8 %

P2 [Fig. 5.3(d)] 5×5 7.8 %

P3 [Fig. 5.3(f)] 2×4 2×5 9.4%

P4 [Fig. 5.3(h)] 1×4 1×4 1×4 1×4 1×4 7.8 %

Table 5.2: Resonators dimensions and number per configuration. The mass ratio represents
the resonator mass over the mass sum of the host structure and cardboard sheet.
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Figure 5.3: Spacers (left) and resonators (right) arrangement on the panel for several config-
urations: P1(a-b), P2 (c-d), P3 (e-f), P4 (g-h).
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Figure 5.4: Measured TL of finite size panel with and without poroelastic metamaterial at
normal incidence for the different configurations. The black solid line on (b) shows the theo-
retical slope for mass law (+6 dB per octave).
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5.2.4 Experimental results

The TL measurements are presented in Fig. 5.4. The configurations with resonators (red solid
line) are compared to the bare plate with only the spacers (blue dashed line). It is noteworthy
that the artifact at 857 Hz is due to the cut-off frequency of the duct.

In all curves, the TL first decreases (stiffness controlled zone) until the first resonance of
the plate and then increases roughly by 6 dB/octave, which is in line with the mass law (see
the slope drawn in Fig. 5.4(b)). The level at 100 Hz is related to the stiffness of the plate, the
spacers, and the mounting conditions: it varies from 15 dB to 17 dB among the configurations.
The lower value is obtained for the P1 configuration, and as a consequence, the frequency of
the dip is also the lowest, i.e., 250 Hz. In addition, the dip for the configuration P2, having the
highest level at 100 Hz, is reached at 295 Hz. For each configuration Pi, adding the resonators
does not affect the mounting conditions, since the level at 100 Hz varies less than 1 dB.

However, the addition of the poroelastic resonators involves a clear increase of the TL in
the region of the dip between 250 Hz and 350 Hz. As for a tuned mass damper [106, 103],
when tuned on the panel first mode, the resonators almost cancel the motion of host structure at
this frequency. However, two new coupled modes appear around the tuning frequency leading
to new less stringent dips because of damping.

Reducing the length the beam from 41.5 mm (P1) to 32 mm (P2) shifts the peak from
270 Hz to 300 Hz. The value of the improvement is between 9 dB (P1) and 12 dB (P2). By
covering the second face of the bare plate, an extra 3 dB is obtained. The effect of the mass
ratio between the host structure and the resonator is well known [90] and covering both sides
allow to double it. The higher amplitude of the peak for the configuration P2 when compared
to P1, may be explained by a lower dispersion on the resonators manufacturing.

Fig. 5.4(c,d) shows that the use of different resonators (P3 and P4) increase the bandwidth
of the metamaterial. Again doubling the treatment increases the effect by 2 to 3 dB.

Finally, we note that the metamaterial also affects, in a lesser extent, the region of the
second mode of the bare plate being around 500 Hz.

Strong effect have been obtained. This validate the efficiency of such poroelastic res-
onators, although the device is not fully optimized. To do so, a numerical model is needed.

5.3 Numerical analysis of the finite size single panel

To improve the physical understanding of the tested configurations, we model the TL of the
finite size panel lined by the poroelastic resonators. The geometry is that of the P1 configura-
tion, which is tested experimentally.
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ture with poroelastic resonators on spacers. (c) Back side of the host structure. (d) Acoustic
boundary conditions in the rectangular duct.

As shown in Fig.5.5 (a) and (c), the host panel is composed of two components. The host
structure has dimensions of 190 mm × 90 mm × 6 mm. We consider homogeneous proper-
ties equivalent to the two layers foam core cardboard used for the experiment (see Tab. 5.3).
The host structure is clamped through a surrounding 3 mm thick layer whose properties are
adjusted according to the first experimental resonance frequency.

5.3.1 Finite element model

The global vibroacoustic problem is solved in the frequency domain (convention e−iωt) using
the finite element method.

In the inviscid air domain, the acoustic pressure p is governed by Helmholtz equation.
On the duct walls, the acoustic normal velocity vanishes. The radiation conditions at both
ends of the duct and the incident pressure field have been implemented using the Dirichlet-to-
Neumann (DtN) map [61] using the expansion of the pressure in terms of duct acoustic modes
[91]. The transmitted and reflected sound power can be derived from modal amplitude and the
TL can be obtained.

In the poroleastic domain Ωp, the classical mixed (u, pp) formulation [4, Chap. 13] is
used with the Johnson-Champoux-Allard model. All foam parameters are given in Tab. 5.1.
At the interface between the fluid and the porous material, the coupling conditions impose the
continuity of normal displacement, the pressure, and normal stress (see for instance [4, Chap.
13]).
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Name Density Young’s modulus Loss factor Poisson ratio
ρ1 E η ν

kg.m−3 MPa - -
Foam core cardboard 143 180 0.075 0.33

Surrounding layer 800 2.0 0.075 0.20

Table 5.3: Homogeneous properties of the foam core cardboard and surrounding layer.

In the plate, linear 3D elasto-dynamic model is employed and viscoelastic losses are taken
into account though a complex Young’s modulus. Since the plate is clamped on the internal
surface of the duct, all displacement components vanish on that boundary. The continuity of
the displacement and normal stress is imposed on the interfaces between the elastic and air
domains and the poroelastic domain.

Note that the pressure and solid displacements are discretized using quadratic tetrahedral
Lagrange finite elements. In all cases, the mesh size was chosen to ensure a good trade-off
between accuracy and computational time.

5.3.2 Numerical results

Fig. 5.6(a) presents the TL under normal incidence of the structure with and without res-
onators. The bare plate has its first resonance frequency around 254 Hz and the second one
around 400 Hz. Adding resonators shows a strong improvement of 8 dB around the first dip,
due to the excitation of the first bending resonance of poroelastic beams. As observed in Fig.
5.6(c, d), the displacement of the beams is higher at the center of the plate, following the
first mode shape of the bare plate (see mode shape in Fig. 5.6(b). The displacement of the
resonators is around 10 times higher than that of the plate.

5.3.3 Power balance

The balance between transmitted, reflected, and dissipated powers versus frequency are shown
for the bare structure in Fig. 5.7(a) and with resonators in Fig. 5.7(b). The reflected and
transmitted powers are calculated through modal decomposition at the duct ends [11], while
the total dissipated power is deduced from energy conservation. At low frequency, the incident
sound is mainly reflected. The reflection decreases until the region of the first mode (1,1) of the
bare plate. At this frequency, the dynamic stiffness of the plate tends to 0 and the amplitude
of the plate displacement strongly increases. Most of the incident power is transmitted but
limited by viscoelastic losses. At higher frequency, similar trends can be observed, but the
second TL dip is less pronounced because of weaker coupling with the incident field. At
higher frequency, the reflected power increases again due to the inertia effect.

When the metamaterial is added, the resonators mitigate the plate displacement at 254
Hz, which reflects back most of the incident power. The global losses are also increased, and
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Figure 5.6: (a) Predicted TL of the plate with and without poroelastic resonators. (b) Dis-
placement amplitude at 254 Hz of the bare plate (c) and of the plate with resonators. (d)
Deformed mesh of resonators and plate at 254 Hz.

their distribution is given in Fig. 5.8(a). It is seen that the dissipation within the resonators is
dominating only at the beams resonances.

The distribution of the dissipated power within the poroelastic resonators, in terms of vis-
cous, thermal, and structural, i.e., viscoelastic, dissipations [35, 41] is now analyzed. Fig. 5.8(b)
presents the dissipated power in the logarithmic scale of each components over the [20− 1000]

Hz frequency band. Here, structural dissipations dominates close to the beams resonances.
Elsewhere, thermal dissipation dominates. Viscous dissipation follows, in a lesser extend, the
structural dissipation.

5.4 Numerical analysis of the infinite double panel

This section addresses, by mean of a numerical model, the infinite double panel known for
exhibiting a sound transmission loss dip at the mass-spring-mass resonance, also called de-
coupling frequency. This frequency can be estimated by [44]

fr =
1

2π

√
K

h cos2 θ

m1 +m2

m1m2
, (5.2)

where K is the bulk modulus of the fluid layer of thickness h, θ is the incidence angle (θ =

0 correspond to normal incidence), m1 and m2 are surface densities of each panel. In the
adiabatic regime, K = γP0 where P0 denotes the atmospheric pressure and γ is the ratio
of specific heats. Insulation benefit will arise above this frequency, that should be as low as
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Figure 5.7: Fraction distribution of three different sound powers: reflected (red dotted line),
transmitted (green solid line) and dissipated (black dotted line); (a): bare structure; (b): struc-
ture with resonators.
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possible. However, fr increases with the incident angle, except if the air gap is filled with
a porous material (see Fig. 5.9(b)). Indeed, the sound velocity in the porous material ce,
represented by an equivalent fluid [4], is smaller than the sound velocity c0 in the air. So, the
incident angle θe in the porous layer can be estimated according to the Snell-Descartes law,
sin θe = ce/c0 sin θ. For instance, for f = 470 Hz the ratio of sound speed in the porous
material over that in the air is around 0.25, which indicates the θe is 12.5◦ for θ = 60◦. Filling
the double panel with a porous material will have several advantages:

• in diffuse filed, the incident angle within the porous layer will stay close to the normal
incidence, allowing an efficient decoupling,

• the porous layer will impose an isothermal regime instead of an adiabatic regime in the
low frequency, reducing the bulk modulus from γP0 to P0: the decoupling frequency
will be lowered by 20% (see Fig. 5.9(b)). This will occur if no solid transmission occurs
between the two panels through a the skeleton: keeping a small air gap between the
porous layer and one panel is thus recommended.

• this will also mitigate acoustic resonances between the two panels.

The poroelastic resonators aims at combining these features while reducing the TL dip at
the decoupling frequency. A numerical approach, taking advantage of the periodicity of the
system, is now developed.

5.4.1 Periodic finite element model

Wave propagation in an infinite periodic media excited by a plane wave can be handled making
use of Floquet-Bloch theorem to diminish the computation cost. We use the same approach
as Chapter 3. Only a unit cell with pseudo-periodic boundary conditions on all lateral sides is
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considered as shown in Fig. 5.11(a). Geometrical periodicity vector l is (lx, ly, 0). In the unit
cell, the fluid, poroelastic, and the elastic domains are discretized using quadratic Lagrange
tetrahedral finite element.

Incident plane wave PI is impinging on the top surface of the air domain with wavenum-
ber

k = −ka (sin θ · cosϕ, sin θ · sinϕ, cos θ) , (5.3)

where θ is the inclination and ϕ is the azimuth. The homogeneous plates are independent of
ϕ, but because of the resonators orientation, the lined panel present slight anisotropy at low
frequency.

The radiation condition of the scattered field in the top and bottom air domains is imple-
mented with a ’Dirichlet to Neumann’ map based on Floquet modes decomposition[34]. The
amplitude and power of the transmitted wave PT can be recovered by projection on the Floquet
modes. The transmission coefficient at a specific angle is τ(θ) = PT (θ)/PI(θ). Under diffuse
field excitation, the transmission coefficient τd is obtained by integrating τ over the incident
angles as following

τd =
1

π

∫ π
0

∫ θlim
0 τ(θ, ϕ) sin θ cos θ dθ dϕ∫ θlim

0 sin θ cos θ dθ
. (5.4)

In the present study, θlim = 78◦ for diffuse field transmission [4].

5.4.2 Comparison with TMM code

Firstly, the periodic FEM model is validated with the transfer matrix method (TMM) using
Maine3A code [4, Chap. 11]. A double panel fully or partially filled up by a homogeneous
poroelastic layer is considered as shown in Fig. 5.9. The elastic plates have a thickness of 10
mm each and are 16 mm apart. The porous layer is 10 mm or 16 mm thick in the two cases
respectively. The properties of both media are given in Tab. 5.1 and 5.3.

Fig. 5.9(a) shows the TL curves under normal incidence. It is seen that the results from
FEM model perfectly match TMM results for both conditions. Fig. 5.9(b) illustrate the effect
of the incidence angle and cavity filling. Without porous layer, it is seen that the decoupling
frequency increase with the incident angle. With the porous layer, the frequency at normal
incidence is lowered, and the incidence angle shifts the decoupling frequency in a smaller
extent.

5.4.3 Infinite double panels with poroelastic resonators

The first configuration, depicted in Fig. 5.10, is composed of the two plates of 6 mm foam core
cardboard and 70 mm apart. The mass-spring-mass resonance is set around 260 Hz and the
panel surface density is 1.43 kg.m−2. The poroelastic resonator B1 (see Table. 5.2) is applied



94 Chapter 5. Sound insulation enhancement of partitions through poroelastic resonators

Frequency (Hz)

Panel

Porous

Panel

(a)

Panel

Air

Porous

Panel

10 mm

16 mm

10 mm

10 mm

6 mm

10 mm

10 mm

(b)

Panel

Air

Porous

Panel

Frequency (Hz)

10 mm

6 mm

10 mm

10 mm

500 600

Figure 5.9: (a) Comparison of FEM computation with TMM model for two configurations;
(b) Impact of the incidence angle on the transmission loss dip frequency with and without
porous material filling.



5.4. Numerical analysis of the infinite double panel 95

Panel

Spacer

Porous

Diagram of double panel

B1 resonator Spacer

Panel

Panel

Periodic cell 

Frequency  (Hz)

(d
B

)

Figure 5.10: The effect of poro-elastic resonator B1 on sound transmission of double panel
system predicted by its primitive FEM model.

on both plates inside the cavity as shown in Fig. 5.10. It is seen that the TL at normal incidence
increases up to 15 dB in the region of the dip.

In the second configuration, the distance between the two panels is reduced from 70
mm to 16 mm to increase the ratio of the porous material volume to the air volume up to
42%. Only one panel is covered by the poroelastic resonator as shown in Fig. 5.11(a)) and the
porous beams are separated from each others by a 5 mm air gap. To keep the mass-spring-mass
frequency be small, the plate surface density is increased to 4 kg.m−2.

Fig. 5.11(b) shows the TL at normal incidence for different mass ratio between the porous
and whole structure. Ratio from 2% to 8% are considered. To keep the same beam resonance
frequency, the density and Young’s modulus of the poroelastic material are increased together.
It is shown that the amplitude of TL enhancement increases from 12 dB to 25 dB in the region
of the mass-spring-mass dip around f = 300 Hz, which is in line with previous works [99].
In comparison with the homogeneous layer having the same volume as that of poroelastic
resonators (equivalent thickness of 6.6 mm) and seperated by the same distance from the plate
(3mm), the 2% configuration increases the minimal TL from 3 dB to 8 dB. Note that increasing
the mass ratio will change the frequency of the two dips: the resonators should be tuned
accordingly for optimization.

Fig. 5.11(c) shows the effect of the incidence angle for the 8% mass ratio configuration.
The frequency of the peak related to the poroelastic resonators is independent of the incidence
angle, unlike the dip location that is shifted from 270 Hz at normal incidence to 400 Hz at
θ = 80◦. Note that the maximal TL in the dip region is obtained for an angle θ = 30◦.
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Finally, Fig. 5.11(d) compares the TL in diffuse field for several configurations. Without
any porous material, the TL slope raising after the normal incidence decoupling frequency
is not observed because of the shift toward higher frequencies of this frequency with the in-
cidence angle according to Eq. (5.2). Partially filling the gap with porous material reduces
drastically this effect, because of the lower sound celerity in the porous layer, that is around
80 m.s−1 at 300 Hz. This effect still holds with the poroelastic metamaterial that combine
the local increase due the interaction of its structural resonance with the host panel and the
decoupling of the two panels, occuring close to the normal incidence decoupling frequency,
whatever the angle incidence is.

5.4.4 Power balance

The dissipation analysis is carried out for the double panel. The fraction distribution of the
dissipated, transmistted, and reflected sound powers are presented for the bare double panel in
Fig. 5.12(a) and with resonators in Fig. 5.12(b) for an added mass ratio of 8%. The reflected
and transmitted powers are obtained by the Bloch modal decomposition at the input and output
ends respectively. For the bare double panel, the sound power is almost perfectly reflected by
the double panel excepted around f = 300 Hz that corresponds to the TL dip occurring
at the decoupling frequency fr. Due to the resonance, the sound power is almost perfectly
transmitted and only the dissipation in the cavity can limit it. When the resonators are added
to the double panel, two dips are observed on the reflected fraction which corresponds to the
two dips below and above the TL enhancement peak as shown in Fig. 5.11(b). At the first dip
frequency, most of the sound power is dissipated through the porous resonators while most of
the sound is still reflected at the second dip frequency. The TL peak does not correspond to
the dissipation peak but to the strong reflection of the incident wave.

The dissipated power in both domains, i.e., panels and poroelastic resonators, are shown
in Fig. 5.13(a) around the decoupling frequency. The highest mitigated power in both domains
corresponds to the first TL dip. Most of the dissipation occurs within the poroelastic resonators
since the panels have a nearly rigid body motion in this regime.

Fig. 5.13(b) presents the distribution of the dissipated power within the poroelastic res-
onators. The three dissipation components are maximal around the decoupling frequency and
the structural dissipation dominates in this region. Unlike the finite size single panel (see Fig.
5.7), the thermal dissipation is also maximal in this region, since the pressure amplitude in the
cavity between the two panels is maximal at the mass-spring-mass resonance.
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Figure 5.12: Fraction distribution of sound powers: reflected (red dotted line), transmitted
(green solid line) and dissipated (black dotted line). (a) bare structure; (b) structure with
resonators.
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Figure 5.13: (a) Distribution of dissipated power in poroelastic and viscoelastic domains; (b)
Distribution of viscous (black dotted line), thermal (blue dash-dotted line) and structural (red
dotted line) dissipation in poroelastic domain.
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5.5 Conclusion

In this study, a poroelastic metamaterial is proposed to improve the acoustic insulation per-
formance of either a finite size single panel or an infinite double panel in the region of their
first dip. The metamaterial is composed of poroelastic beam resonators whose first structural
resonance is tuned according to the first mode of the structure. This frequency can be simply
adjusted by the geometry of the poroelastic beam. The concept has been illustrated exper-
imentally using compressed melamine foam giving a suitable balance between the quality
factor of the beam resonance and dissipation. A local increase of more than 10 dB has been
achieved experimentally and can be spread with multi resonators. A numerical analysis us-
ing a finite element model, together with periodic assumption for the infinite double wall, has
been performed. It is shown that structural dissipation dominates in the region of metamaterial
resonances, followed by viscous dissipation and thermal dissipation only in the double panel
partition. Moreover, the porous nature of the resonant metamaterial allows to keep the decou-
pling effect of the double wall configuration, independently of the incident angle. Finally, it
can be considered for transport applications where weight is a major issue.

5.6 Appendix: (u, pp) formulation

In the poroelastic domain, the acoustic fields are described by the (u, pp) formulation of the
Biot model [4, Chap. 13],

∇ · σ̂s(u) + ω2ρ u + γ ∇pp = 0, (5.5a)

∆pp + ω2 ρ22

R
pp − ω2 ρ22

φ2
γ ∇ · u = 0. (5.5b)

Here, pp is the pore pressure, φ is porosity of the porous material, γ = φ
(
ρ12
ρ22
− Q

R

)
and

ρ = ρ11 −
ρ212
ρ22

. Coefficient R is the effective bulk modulus of the fluid phase and takes into
account the thermal dissipation, Q couples the two phases by volumic dilatation. The effective
densities ρ11 and ρ22, respectively for the solid phase and the fluid phase, and the coupling
density ρ12 are complex-valued, and their imaginary part takes into account viscous losses.
The first two terms in Eq.(5.5a) and in (5.5b) describe respectively the dynamics of the elastic
skeleton and that of the equivalent fluid. The last term in both equations couples the two
phases. The in vacuo stress tensor σ̂s is given by

σ(u) = I

(
Kb −

2

3
N

)
∇ · u + 2Nεs(u). (5.6)

Here, Kb is the complex dynamic bulk modulus of the frame, N is the shear modulus and
includes the structural damping.
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In the plate, the acoustic perturbation of the displacement u fulfill the three dimensional
elasto-dynamic equations,

∇ · σ̂s(u) + ω2ρ u = 0, (5.7)

with the standard Hooke stress-strain relations,

σ(u) = λI∇ · u + 2µεs(u), (5.8)

where the quantities λ and µ are the Lamé coefficients.
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Conclusions and Perspectives

The main goal of this thesis is to investigate and optimize the sound attenuation in the low
frequency range, by means of a metamaterial built by shaping an homogeneous poroelastic
material. Two designs have been proposed to tackle sound attenuation in duct and in single
and double panel partitions. It has been shown numerically and experimentally that theses
metamaterials outperform an homogeneous poroelastic layer at low frequency without com-
promising the high sound absorption properties in medium- and high- frequency ranges. This
metamaterial family is characterized by an easy manufacturing, an easy tuning, a light weight
as well as a low cost.

After a general introduction in chapter 1 and a presentation of the theoretical background
in chapter 2, chapter 3 investigates the sound attenuation in duct lined by a poroelastic lamella
network. First, an experimental approach is proposed using a rectangular duct under plane
wave regime. Two configurations are proposed and labeled as parallel and perpendicular re-
garding the lamellas orientation with respect to the duct axis. A strong attenuation increment
is obtained due to the bending resonance of the lamella network in the perpendicular con-
figuration. The attenuation enhancement is mainly due to viscous and structural dissipations
boosted by the lamella resonance that can be primarily tuned by approximated formulae. A
numerical model taking advantage of the periodicity of the lamella network allows a deep in-
spection of wave propagation in the system. A parametric study indicates that the bending
resonance frequency can be easily tuned by modifying the geometrical properties, as well as
by adjusting the physical parameters, like the airflow resistivity, the Young’s modulus or the
density of poroelastic material. In the wavenumber space, we show that the attenuation en-
hancement is linked to the avoided or unavoided crossing of the two least attenuated Bloch
modes. The optimal attenuation can be related to the presence of exceptional points in the
parametric plane.

In chapter 4, the effect of resonators on the sound transmission loss (TL) of the infinite
double panel partition is studied analytically. A predictive model based on the transfer matrix
method (TMM) is proposed to estimate the effective parameters of the thin panel with embed-
ded resonators and compared to analytical models assuming continuous resonator distribution.
This approach allows to easily account for metamaterial in standard vibroacoustic softwares or
formulae. It has been shown that when the resonators motion is along the transverse direction
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of the plate, it yields to a negative effective density. Other configurations have been proposed
to alter other beam parameters. The transmission loss of such double panel indicates that
the resonators can significantly enhance the sound insulation performance around the mass-
spring-mass resonance frequency. Increasing the loss factor and integrating different types of
resonator will broaden the effect and reduce the dips around each resonance frequency.

In chapter 5, the concept presented in chapter 4 is implemented using poroelastic beams
made out of thermocompressed foam. A significant TL increment is observed experimentally
around the bending resonance dip of a clamped plate. The enhancement bandwidth can be
widden when multi-type of resonators are used. A numerical model allows to analyze the dis-
sipation mechanisms: the structural damping dominates while viscous dissipation dominated
in Chap. 3. Then, the sound insulation performance of the infinite double panel with embedded
poroelatic beams is studied on the basis of a periodic finite element model. It is shown that the
porous nature of the metamaterial allows to keep the decoupling effect of the double panel in-
dependently of the incident angle, in addition to the sound insulation enhancement around the
decoupling frequency. The dissipation in the poroelastic domain is also significantly improved
around the bending resonance of the resonators.

Perspectives

Future works about lamella network could focus on the optimization of the proposed design.
It could be done in a straight forward manner by coupling black box optimization algorithms
to the developed model. Another interesting approach could be to push a step further the
connexion between the bending resonance and the location of exceptional points in parameter
space. It has be shown in chapter 3 for duct attenuation but it could also be applied to the
double panel systems.

Concerning sound insulation of partitions, in our experiment, the host panel is a light
weight foam cardboard which is not commonly used in public transport or building industries.
More realistic host panels could be used to design and test the efficiency of poroelastic res-
onators. Taking into account this weight, but also the manufacturing constraints may lead to
new designs, grounded on the same physical principle.

Finally, at long term, working on homogenization or other model reduction techniques
will be of great interest. Indeed, during this work, testing many configurations through 3D
computation tool-chain, was cumbersome. The transfer matrix approach provides an interest-
ing framework common to acoustic and vibration analysis. The approach sketched in chapter
4 could be extended. The large spread of such architectured materials could be done only if
clear design and tuning methods are available.
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