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It is not our business to fathom the mystery of rose

Perhaps our business is to float within the magic of the rose
Camp behind wisdom

And be born again when the sun rises in the mornings
Let’s allow our excitement to fly

Let’s lift down the burden of knowledge from the shoulders of the swallow
Let’s take back our name from the cloud

From the plane tree, mosquito, summer

Let’s mount to the height of kindness of the wet feet of rain
Let’s open the door to mankind, light, plants and inspects
Our business is perhaps

To run between the lotus flower and the

Centrury after the sound of truth

Sohrab Sepehri
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ABSTRACT

n collaborative logistics, multiple carriers form an alliance to improve their transportation

operations and profitability by exchanging their transportation requests. In this thesis,

we focus on carrier collaboration in less-than-truckload (LTL) transportation. More pre-
cisely three sub-problems of collaborative transportation planning are considered. Centralized
multi-carrier collaborative transportation planning with pickup and delivery, time windows,
exchangeable requests and reserved requests, multi-period bid generation problem with pickup
and delivery, time windows, profits, reserved requests, and multi period bid generation problem
with consideration of both cost and delivery lead time.

These sub-problems play a vital role in collaborative transportation planning among carriers,
but in the literature, there is no in-depth study on them. We have presented new mathematical
programming models for these problems and developed efficient heuristics to obtain solutions
close to their optimums in a reasonable computation time. The heuristics are more efficient than
commercial solver, CPLEX, not only in terms of solution quality but also in terms of computation

time.

key words : collaborative transportation planning, combinatorial auction, vehicle routing
problem with pickup and delivery, periodic vehicle routing problem, multi-objective vehicle routing

problem






RESUME

ans la logistique collaborative, plusieurs transporteurs forment une alliance pour améliorer
leurs opérations et leur rentabilité en échangeant leurs demandes de transport. Dans
cette theése, nous nous concentrons sur la collaboration entre transporteurs dans le
transport de chargement partial (LTL). Plus précisément, trois sous-problémes de la planification
collaborative entre transporteurs sont pris en compte: un probléme de plannification centralisée
de multi-transporteurs avec ramassage et livraison, fenétres de temps, demandes échangeables et
demandes réservées, un probléme de génération d’enchéres a plusieurs périodes, avec ramassage
et de livraison, fenétres de temps, profits, demandes réservées, et un probleme de génération
d’encheres a plusieurs périodes avec prise en compte a la fois du cofit et du délais de livraison.
Ces sous-problémes jouent un role essentiel dans la planification collaborative de transport
entre transporteurs, mais dans la littérature, aucune étude profonde n’a été effectuée sur eux.
Nous avons présenté de nouveaux modeles de programmation mathématique pour ces problemes
et developpé des heuristiques efficaces pour obtenir des solutions proches de leurs optimums
dans un temps de calcul raisonnable. Ces heuristiques proposées sont plus efficaces que le solveur
commercial, CPLEX, non seulement en termes de qualité de solution mais aussi en termes de

temps de calcul.
mots clés: plantification collaborative de transport, enchére combinatoire, probleme de tournée

de véhicule avec ramassage et livraison, probléme de tournée de véhicules multi-objectif, probléme

de tournée de véhicules pérodique
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CHAPTER

GENERAL INTRODUCTION

n 21 century, companies compete with each other to satisfy customers’ increasing expec-

tations and they have to reduce costs and improve profitability to survive in business world.

On the one hand, customers want to have products with low prices and on the hand, the in-
creasing fuel costs and other costs have negative effects on the profit margin of logistics providers
and the final prices of products [11]. Forming collaborative networks and sharing resources and
tasks are primary strategies for the companies to gain competitive advantages and capture more
business opportunities. For this reason, carrier collaboration has attracted a growing interest of
these logistics companies and has become an effective strategy for small to medium-sized carriers
to reduce empty vehicles and increase vehicle fill rates [9]. Some implemented projects in USA
disclose that Collaborative Transportation Management (CTM) (including carrier collaboration)
can reduce the distance traveled by empty vehicles by 15%, the waiting time of vehicles by 15%,
the turnover of drivers by 15% and can improve the fill rate of vehicles by 33% [17].

1.1 Key issues in carrier collaboration

Forming an alliance among multi-carriers at the same level of logistics operations is called
carrier collaboration. In the carrier collaboration, multi-carriers in an alliance exchange their
transportation requests to discover better assignment of requests among them and improve the
profit of each carrier.

Such re-assignment of requests plays an important role in improving routing planning,
decreasing empty back-hauls of vehicles and consequently reducing transportation costs. The
optimal re-allocation of requests among carriers is one major problem in carrier collaboration.
The objective of this problem is to maximize the total profit of all carriers in the alliance. Another

problem in carrier collaboration is fair allocation of the profits obtained through the collaboration
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among all carriers. This allocation of profits is usually made after collaborative transportation
planning among carriers, which is called post-collaboration profit allocation. A fair allocation of

such profits is necessary to guarantee the sustainability of the alliance [17].

These two problems or issues will be introduced in the following. In this thesis, we focus on
the first problem which is also referred to as collaborative transportation planning (CTP) problem
[56], [101].

The requests re-assignment problem

Carrier collaboration is usually realized by exchanging requests among multi-carriers. Through
collaboration, small to medium-sized LTL carriers can increase asset utilization (reduce unused
vehicle capacity) and strengthen their market positions. The challenge for such a collaborative
effort is in finding a good balance between the requests assigned to each LTL carrier and its
available transportation capacity to serve the requests. To ensure that such collaboration is sus-
tainable, all participating carriers must benefit from it [46]. There are two different approaches

in carrier collaboration: Decentralized planning approach and centralized planning approach.

In centralized planning approach, the collaboration among carriers is realized by exchanging
some requests (called exchangeable requests) among carriers. In centralized planning approach,
a central coordinator allocates all transportation exchangeable requests to minimize the post-
collaboration transportation cost of each collaborative carrier. In addition to the selection of
requests for each carrier, optimal routes to serve the requests must be determined. To put it more
precisely, in a centralized planning approach, a central coordinator is responsible for optimally
re-assigning all exchangeable requests among all carriers to maximize their total profit. In a
transportation network, each vehicle tour of a carrier is defined by a circuit that starts with
and ends at the depot node of the carrier. The combinatorial nature of requests re-assignment
problem is driven the difficulty problem. In addition to the selection of requests for each carrier,

optimal routes to serve the requests must be determined.

In decentralized planning approach, some protocols like auctions are utilized to the request
allocation. Each carrier may organize the protocols by participating in various protocols to
maximize its post-collaboration profit. In this approach, a central coordinator is similar to an
auctioneer who organizes the protocols to maximize the re-assignment profit among coalition
carriers. Auction-based approaches are the most important methods for CTP. An auction is a
process of buying and selling goods or services by offering them up for bid, taking bids, and then
selling the item to the winning bidder. As important category of auctions, combinatorial auctions
allow bidders to bid on combinations of objects, tend to lead to more efficient allocations. The bid
generation problem (BGP) is a key decision problem for auction-based decentralized planning
approaches in CTP, which is considered from the perspective of each carrier. The BGP can also be
considered as the request selection problem. The combinatorial nature of requests re-assignment

problem is driven the difficulty problem.

Comparing the two approaches, the decentralized approach can preserve the decision-making
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1.2. THE PROBLEMS STUDIED IN THIS THESIS AND CONTRIBUTIONS

autonomy and the business data of each carrier confidentiality, whereas the total profit of all
carriers generated by the centralized approach is usually higher than that generated by the
decentralized approach, because of the global optimization nature of the centralized approach. The
main concern of using a centralized approach for carrier collaboration is to keep the business data
exchanged confidentiality among carriers. In recent years, with the appearance and development
of Fourth-Party Logistics (4PL) providers who act as an integrator coordinating the transportation
planning of multi-carriers without direct exchange of data among them, this concern is much
eased. Moreover, it may be worthy for a carrier to reveal some information to the 4PLs in exchange
of gaining a higher profit. Such a centralized planning approach is also used in collaborative
transportation service trading in B2B e-commerce logistics [106].

In addition to the selection of requests for each carrier, optimal routes to serve the requests

must be determined; since it is a type of the well-known NP-hard vehicle routing problems [101].

The profit allocation problem

After the requests re-assignment, the profits are allocated to all carriers in a fair way.
Thorough this allocation, the post collaboration profit of each carrier is no less than the profit
generated before collaboration and all carriers stay in the alliance. The profit allocation problem
is a well known issue in the game theory. The big problem in this topic is, allocating the accepted
profits for the all the carriers in alliance.

Inasmuch as there is not a unique definition for the fairness, the profit allocation problem
is not unique allocation procedure. Thus, the design of an allocation approach is a difficult

mechanism.

1.2 The problems studied in this thesis and contributions

In collaborative logistics, multi-carriers form an alliance to improve their transportation oper-
ations and profitability by exchanging their transportation requests. In this thesis, we focus
on carrier collaboration in less-than-truckload (LTL) transportation. More precisely, we study
some sub-problems appeared in collaborative transportation planning realized by a centralized
approach and an auction-based decentralized approach.

Firstly, we focus on centralized collaborative transportation planning (CTP) among carriers
in a less-than-truckload transportation environment, where each request is a pickup and deliv-
ery request with time window for both pickup and delivery operations. Each carrier may have
exchangeable requests and reserved requests, which must be self-served by the carrier and the
collaboration among carriers is realized by exchanging unreserved requests among them. The
problem becomes a multi-carriers pickup and delivery problem with time windows, two different
types of requests, exchangeable and reserved requests, which is a new variant of NP-hard vehicle

routing problems [97]. In spite of orienting problem which there is not compulsory to serve all re-

3
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quests [10], in our problem all exchangeable requests have to be served. After presenting a mixed
integer linear programming model to the problem, we propose an Adaptive Large Neighborhood
Search (ALNS) algorithm, hybrid algorithm of Genetic and simulated Annealing algorithms
(GASA) and Improved Tabu Search (ITS) to solve it. In [65], an ALNS algorithm is applied to
solve a pickup and delivery problem with time windows, profits, reserved requests, and involving
a single carrier with a single vehicle depot. In that problem which there is a single carrier, it is
not compulsory to serve all exchangeable requests. The collaborative transportation considered
in this thesis is a new problem involving multi- carriers with multi-depots. Furthermore, each
reserved request must be served by its own carrier and all exchangeable and reserved requests
must be served, the existing ALNS algorithms cannot be directly applied to our problem and
some adaptations are necessary in order to solve our problem. The ALNS proposed in this thesis
uses a variety of destroy/ repair operators. Its search procedure consists of multiple phases,
where different phases use different policies for the choice of requests to destroy (delete) or repair
(re-insert). The basic idea is to alter the behavior of destroy/repair operators over successive phase
of the ALNS so it can explore different regions. In addition, local search based post-optimization
is applied at the end of each phase in order to further improve the quality of the final solution
obtained by the ALNS. The GASA takes advantages of genetic algorithm and simulated anneal-
ing at the same time (on the one hand, population-based criterion adds diversification and on
the other hand, local search characteristic by applying SA prevents to be trapped in the local
optimum). The Improved TS (ITS) adopts a mutation operator and keeps multiple solutions

during the search process in order to get a better solution more quickly (Chapter 3).

Secondly, we study the multi-periods bid generation problem (BGP) for a carrier appeared in a
multi-periods combinatorial auction for carrier collaboration. In real world applications, carriers
usually plan their operations in a rolling horizon way. It means that each carrier determines
which transportation requests to bid and serve in each period. Additionally, for exchangeable
requests there is not fixed day to serve. Each request is allowed to be served within a period
window consisting of multiple consecutive days. For example, goods ordered on-line by a customer
on Monday in e-commerce is asked to deliver to the home of the customer within three days from
Tuesday to Thursday. This gives rise to a multi-periods combinatorial auction (CA) problem. As
a result, the bid generation problem of each carrier in such auction also involves multi-periods,
where a bid is a combination of transportation requests over multi-periods [62]. Hence, in the
problem, there are two different types of requests, reserved requests of the carrier and selective
requests that are offered by other carriers and open for bid by the carrier. In selective requests,
each pickup and delivery request is associated with two time windows. One is the period window
which specifies the earliest period and the latest period the request must be served, whereas the
other is a time window defining the earliest and latest service time of the request in each period.
For each reserved request, there is predetermined period. It means that, each reserved request

must be served in the fixed period. Moreover, both of the pickup and delivery request in reserved
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request have their own time window to serve. A carrier must make two important decisions in the
BGP: Which requests are chosen to bid and serve in their period window and how the routes are
constructed to maximize its total profit. This leads to a new periodic pickup and delivery problem
with time windows, profits and reserved requests with widespread use in the real application.
A hybrid Genetic and Simulated Annealing algorithm and a Biogeography-Based Optimization
algorithm are developed to solve the problem after presenting a MILP model. Hence, a hybrid
approach that combines genetic algorithm and simulated annealing (GASA) is proposed to solve
the problem. The GASA adopts a problem-specific chromosome structure, crossover and mutation
operators well adapted to the chromosome structure. For the purpose of comparison, we also
utilize a Biogeography-Based Optimization algorithm (BBO) that is a population-based algorithm
and its specifications are close to the GA and its operation is over the population of solutions
to search the best solution for the problem. By comparing GA and BBO, each chromosome in
GA, which is considered as an individual with fitness value, is habitat with suitability index
that is called HSI (Habitat Suitability Index) (Chapter 4). In reality, besides minimizing costs,
shippers also pay attention to the reduction of the delivery lead time. Shorter delivery lead time
makes orders can be delivered to customers faster. Therefore, to make bids competitive, carriers
also need to consider delivery lead time as a quality specification when they construct their bids.
For the auctioneer, it has two ways to evaluate each bid from carriers. One is evaluating a bid
according to a score function that is defined as cost and delivery lead time as in a multi-attributes
score auction. The other is evaluating a bid according to its multi-attributes (in our case, one
attribute is price, the other attribute is the delivery lead time). Accordingly, each carrier has also
two ways to submit its bid, one is submitting a score (cost and delivery lead time) and the other
is submitting both attributes of a bid (cost and delivery lead time). Thus, to solve the problem,
the multi-periods BGP becomes a bi-objective problem. There are two methods to deal with a bi-
objective problem: The first approach is a weighted objective method, that is, we assign a weight
to each objective and then transform two objectives into a single weighted objective. The other
method is a bi-objective method, which is treated with all objective functions separately without
transforming them into a single objective function. Consequently, two methods of treatment
with the two assumed objectives lead to two problems: Single objective multi-periods BGP with
delivery lead time and bi-objective multi-periods BGP with delivery lead time. After presenting
MILP models to the both problems, to solve the single objective multi-periods BGP with pickup
and delivery problem with time windows, profit, and delivery lead time, we apply GASA and ITS
and to solve a bi-objective mathematical model formulation, two algorithms NSGAII and NRG
are proposed to solve the model. The proposed algorithm to solve the bi-objective problem are

compared based on a number of well-known metrics, as in Chapter 5 we refer to them.



CHAPTER 1. GENERAL INTRODUCTION

1.3 Conclusion

Collaborative logistics has attracted many attentions both in academic community and industrial
practitioners in recent years because of its great significance in saving transportation costs. In
this thesis, a carrier collaboration problem in pickup and delivery service with time windows and
LTL transportation is studied. We develop a series of mathematical models and multiple solutions
approaches for the problem. Chapter 1 mainly introduces our research background and generally
describes the problems studied in this thesis. Chapter 2 provides an overview of current-art of
collaborative transportation planning. A general review is given firstly to the field of collaborative
logistics. Then the literature review focuses on significant contributions and important review
papers on the centralized and decentralized planning approaches, especially the bid generation
problem for carrier collaboration. Chapter 3 is devoted to solve the centralized collaborative
transportation with pickup and delivery services, time windows and reserved requests. Chapter
4 focuses on multi-periods bid generation problem. Chapter 5 solves the Single objective and
Bi-objective multi-periods BGP with delivery lead time concept. At last, Chapter 6 concludes
this thesis and present the perspectives of future works opened in the field of collaborative

transportation planning.



CHAPTER

LITERATURE REVIEW

he specialize of the fright logistics is in the cargo forwarding among places. In the last

decades, which the use of e-commerce has increased dramatically, freight forwarding plays

a vital role in daily economic activities. Hence, the freight logistics rapidly developments
leads an intense competition among freight carriers. Furthermore, diminishing the profit margins
of carriers, pivots on the increasing the fuel costs, enhances customer satisfaction and labor
prices and reduces the life cycle of products [22]. So, for carriers, it is a real challenge to how to
survive in such fierce competition environments. Collaborative Logistics (CL) or Collaborative
Transportation Management (CTM) are developed to overcome these challenges. The horizontal
cooperation that is active at the same level of SCM, can be defined among carriers/shippers
[97]. Two types of horizontal collaborative logistics are specified in the literature: Shipper
collaboration and carrier collaboration. The shipper collaboration contemplates on a single carrier
and multi-shippers. In this type of collaboration, shippers consolidate all transportation requests
to be afforded by a carrier. In the collaboration, asset repositioning costs are diminished by
the shippers. Nevertheless, in the last years, most researchers have focused on the carrier
collaboration. Actually, in carrier collaborations, there are opportunities for carriers to exploit
the alliance among their transportation requests as on the one hand, reduce lead time and
cost and on the other hand, improve the overall service levels [33]. The differences between
carrier collaboration and shipper collaboration are explained in details in [77], [45]. Consequently,
horizontal cooperation drives CL or CTM by either sharing transport capacities or transportation
orders by making use of information technology, which has been developed in recent years. Thus,
all involved actors can enhance their profitability by eliminating empty back-hauls; so the vehicles

usage rates augments [23].

In the realistic logistics services, truckload (TL) transportation and less-than truckload (LTL)
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transportation are the two types of logistics services provided to the customers. The movement
of large amounts of homogeneous cargoes between two places is called TL shipping, while LTL
refers to the small freights shipping among multiple places. For LTL shipment, customers pay
according to the amount of occupied space of truck capacity, whereas in TL transportation, cus-
tomers pay to the entire truck. Accordingly, in the case of shipping small freights, customers
make use of this privilege and share the space of a truck with other customers. For small to
medium sized enterprises without ability to provide TL shipping, LTL shipment is an ideal option.
Transportation tools such as vans or vehicles are referred as truck in this thesis and henceforth
the terms can be exchangeable. Exchanging (re-allocating) requests among carriers to minimize
costs is a main issue in the carrier collaboration. To this reason, in the last years, industerial and
academic centers take attention to the collaborative transportation planning (CTP) [101], [100],
[102], [56]. Fairly allocate the post-collaboration profit among carriers through CTP, is the other
issue to provide the sustainability. Although in this thesis we address the first issue in LTL mode,
the readers can refer to the recent review in this issue [41].

Centralized and decentralized planning approaches are the two techniques for CTP in LTL. In
centralized planning approaches, there is a central coordinator who is responsible to re-allocate
(exchange) the transportation orders optimally among carriers inasmuch as their cost is min-
imized. In contrast, in decentralized planning approaches, there is no central coordinator to
organize all plans of the carriers and each carrier performs like an independent agent. Totally,
the main differences between centralized and decentralized planning approaches return to clarify
all information of the orders of a carrier to other carriers in coalition. In the centralized planning
approaches, all order information of each carrier is shared with other carriers in alliance, whereas
in decentralized planning approaches only limited information is shared among coalition carriers.
In realistic applications, although centralized approaches are often superior to decentralized
methods regarding to minimize total cost, carriers are not only partners and competitors may
be choose to conceal the information of customers’orders; so decentralized approaches are more

practical [97].

The rest of this chapter will be organized as follows: A brief literature review on vehicle routing
problems with pickup and delivery and time windows that are related to the studied subject in
the thesis will be given in Section 2.1. A general literature review on collaborative logistics will
be considered in Section 2.2. Since the two sub-problems studied in this thesis are related to
the class of decentralized planning approaches and just one sub-problem applies the centralized
approach, in Section 2.3 brief review on centralized planning approaches is given and a general

review on decentralized planning approaches will be given in Section 2.4.



2.1. VEHICLE ROUTING PROBLEM WITH PICKUP AND DELIVERY AND TIME WINDOWS

2.1 Vehicle Routing Problem with Pickup and Delivery and

Time Windows

The latest studies in vehicle routing problems (VRP) and various specifications are considered
in the book [40]. In that review chapter, the authors are presented variety of problems like
heterogeneous vehicles and time window. They proposed mathematical models and heuristic
approaches to solve the different types of vehicle routing problems. Vehicle routing problems often
are known by some properties to take into account the specificities of real applications. Heuristics
and meta-heuristic algorithms for Multi-Attributes Vehicle Routing Problems (MAVRP) are
presented in [98] as a review study. One part of the studied problem in this thesis is close to
the multi-depots vehicle routing problem with pickup and delivery requests and time windows
(multi-depots VRPPDTW). Our problem is different from classical multi-depots VRPPDTW as
in the assumed problem in this thesis, two requests are considered and it will be included the
aspects of CTP. Therefore, it is beneficial to study some works in the multi-depots VRPPDTW.
The mathematical model for multi- depots vehicle routing problems (multi-depots VRP) with
time windows is suggested in [6]. In the paper, the mathematical models are applied in the
delivery and in the installation of electronic equipment. The authors present mixed integer linear
mathematical model (MILP) to minimize total costs. They solve the model by a genetic algorithm.
The efficiency of the proposed solution is proved by reaching near-optimal solutions. A new type of
multi-depots VRPPD with time windows is studied in [53]. In this type of VRP, the depot, where
the vehicles return to it is flexible. An integer mathematical model to minimize the total travel
cost is presented to the problem and a hybrid genetic algorithm with adaptive local search is
proposed to solve. In the VRPPDTW problem studies by [84], the starting depot and destination
depot of each request do not need to be the same. Metaheuristic algorithm to solve the problem
is ALNS and the authors show the efficiency of the algorithm. In truth, ALNS algorithm is
presented by [81] and it is used in the different fields of VRP because of its efficiency in acting on
the neighborhood.

2.2 Collaborative logistics

In [22], a large-scale review on the opportunities and obstacles of horizontal collaboration in
logistics is described. Generally, the advantages of horizontal collaboration on the quality of
logistics services are strongly acceptable by logistics service providers (LSPs). Nevertheless,
one of the expected obstacles in horizontal collaboration is a fair allocation of profit and it is
considered as a hardest challenge. In [55], existing approaches to model and solve collaborative
transportation and different challenges of the issue are provided. The problem is an expanded
problem of vehicle routing problems as freights can be supplied by 4th party logistics. The
mentioned survey paper indicates why there are gaps between theory and practice. Another

prominent survey in the field of collaborative logistics is studied by [25]. At first, the opportunities
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in the CTP are outlined and then the key issues in the coalitions like sharing resources, profits,
information are discussed. Finally, the authors depicted the approaches of information protection
and decisions technologies. Moreover, in the article, some business cases have been dedicated to
support the problem. Another literature review in horizontal collaborative logistics is presented
in [97]. In this study, the horizontal logistics collaboration is categorized into two methods: Order
sharing and capacity sharing. For two methods, solution approaches are discussed in details. By
applying order sharing approaches and property repositioning abilities, the transportation costs
are reduced and the efficiency of transportation planning is enhanced. According to the existing
studies, there are different approaches to order sharing and re-allocation of requests to optimize
the logistics system. In the paper, authors classify different techniques in the order sharing:
Joint route planning, auction-based mechanisms, bilateral lane exchanges, load swapping, and
shipment dispatching approaches. Another method in collaborative transportation planning is
sharing customer orders, which is provided by carrier collaboration and horizontal collaboration
through sharing vehicles capacity. By making use of this way, on the one hand, empty backhauls
is reduced and on the other hand, the capital expenses can be shared among all coalition carriers.
Two general approaches are provided by previous studies to establish the most efficient way to
share vehicle capacities. One of the approaches is mathematical programming and another is

based on the negotiation protocols.

2.3 Centralized planning approaches for collaborative

transportation

For centralized planning approaches in collaborative logistics with TL transportation, the authors
in [30] are proposed a Lane Covering Problem (LCP), which arises in the context of shipper
collaboration. The object function of the model aims to find a minimum cost of directed cycles set
(truck tours), not necessarily disjoint, covering a given subset of arcs (lanes) in a complete eu-
clidean digraph. Effective algorithms and efficient implementations for solving the LCP are also
developed in this paper. In later studies, the authors are considered some constrained variants of
LCP, such as the cardinality constrained LCP [32], the length constrained LCP [30], the dispatch
windows constrained LCP and driver restriction LCP [31]. The potential collaborative opportuni-
ties among carriers in TL transportation is investigated in [76]. In the proposed optimization
models, carriers’ repositioning costs may be reduced by exchanging transportation requests.
Various exchange mechanisms are designed and evaluated, differing in terms of information
sharing requirements and side payment options, which allow carriers to realize potential costs
savings opportunities.

For centralized planning approaches in collaborative logistics with LTL transportation, a
single-carrier collaboration problem (SCCP) is studied in [45], in which a carrier seeks to collabo-

rate with other carriers in order to acquire extra transport capacity to service excess demand. The
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2.4. DECENTRALIZED PLANNING APPROACHES FOR COLLABORATIVE
TRANSPORTATION

SCCP is considered from a static planning perspective to gain insights into the potential benefits
of the collaboration concept for carriers, and its ability to mitigate the consumption of fuel. The
collaborative strategies are evaluated by computing the relative benefits of the collaboration
over the non-collaboration situation. Single and multiple-products SCCPs are both formulated
as binary (0-1) multi-commodities minimum cost flow problems, and the models are solved by a

branch-and-cut algorithm.

2.4 Decentralized planning approaches for collaborative

transportation

Auction-based methods are applied for decentralized planning in collaborative logistics. A protocol
which is called auction, allows the agents to specify their interests in the resources and utilize
their interest to assign the resources and payments among the agents. The winners of the bids are
known as a NP-hard problem and combinatorial auction problem (CAP) is employed to determine
the winners of the bids. Hence, combinatorial auction is specifically probed in a decentralized
planning issue. To implement combinatorial auction in the collaborative transportation, there
is a central coordinator who is responsible to all auctions taken place during the collaboration
planning process.

In [59], a multi-rounds combinatorial auction technique is suggested in truckload transporta-
tion, where shippers permit to bids on the requests. In fact, in each round, a bid generation
problem (BGP) is solved by each carrier to find the most profitable pack of requests. In this case,
the winner determination problem (WDP) is solved by the auctioneer to allocate the requests to
the carriers [92], [93], [63]. In CTP, the bid generation problem (BGP) is an important decision
approach for auction-based decentralized planning issues and is considered from each carrier’
viewpoint. To add to this fact, the BGP can also be used as a request selection strategy. Our
study in chapter 4 and chapter 5 are related to the request selection problem, so the BGP will be

reviewed in details in section 2.4.2.

2.4.1 Auction-based Mechanisms

The key strategies for CTP are the Auction-based approaches. The process of buying and selling
products by proposing them for bid and selling the items to the winner bidder is called Auction.
According to the literature, auctions are classified to four groups: Single-object auctions, multiple-
objects auctions, combinatorial auctions (CA), and exchanges [89], [58]. Combinatorial auctions
are the most popular and important strategy that allow bidders to bid on the combination of
products and allocate them efficiently.

However, maximization revenue and determining the winners in CTP by combinatorial
auctions is NP-hard problem [85].
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2.4.2 Bid generation problems (BGP)

The BGP in carrier collaboration can be considered as deterministic BGPs and stochastic BGPs.
In this thesis we focus on deterministic information; so deterministic BGPs will be exploited.

In [103], the concept of BGP in carrier collaboration transportation service is addressed. In the
paper, the principle of bidder’s optimality in combinatorial bids is discussed. A fleet assignment
model and the nearest insertion method are the two different heuristics are developed as solution
methods. The BGP in collaborative transportation is suggested in [59]. In the problem, carriers
by using VRP, operate BGP on the sets of lanes based on the actual routes. To solve the model,
column generation and Lagrangian based methods are used. In [12], two heuristic techniques
and an exact strategy are developed to solve the bidding on the subsets of requests. The two
heuristic bidding approaches determine combination of promising request, use the capacitated
p-median problem and save values by utilizing cooperation. The suggested heuristic techniques
can assist a carrier to raise the chance of winning and can reduce the computational challenges
in participation among carriers. About the exact bidding approach, it is a technique based on
the combinations of elementary request. In the article, it is shown bidding on each elementary

request combination is sufficient.

2.5 Conclusion

In this chapter, we, at first, present the background of Collaborative Logistics (CL) or Collab-
orative Transportation Management (CTM). Then we describe two types of horizontal collab-
orative logistics: Shipper collaboration and carrier collaboration. Furthermore, two types of
transportation service are discussed. Truckload (TL) transportation and less-than-truckload
(LTL) transportation are the two types of transportation service. In this thesis, we focus on carrier
collaboration in LTL transportation, where two core sub-problems should be addressed. These
sub-problems are: Collaborative transportation planning (CTP) problem and profit allocation
problem. We mainly concentrate on CTP in this thesis. At last, a general literature review on CL
and centralized planning approaches of CTP, and a detailed literature review on decentralized

planning approaches of CTP are given to close the chapter.
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CHAPTER

MULTI-CARRIERS PICKUP AND DELIVERY REQUESTS WITH TIME
WINDOWS, RESERVED REQUESTS AND EXCHANGEABLE REQUESTS

n this chapter, we study centralized planning approach for multi-carriers collaboration in

a less-than-truckload transportation environment, where each carrier has a finite number

of vehicles and each request is a pickup and delivery request with time windows. In this
problem, each carrier may have reserved requests, which must be self-served by the carrier.
In fact, two types of actors exist in our centralized planning approaches: Central coordinator
and carriers. Multi-carriers come to an agreement for constituting a collaborative alliance with
a central coordinator in charge of making collaborative transportation plans for them. The
coordinator is a virtual actor who re-allocates the transportation requests of the alliance to all
carriers. By exchanging some requests among them, such collaboration can help them to reduce
transportation costs and increase profits. It can be realized via a Fourth-Party Logistics (4PL)

provider who acts as an integrator coordinating the transportation planning among carriers.

In the carrier collaboration, several carriers form an alliance and exchange some transporta-
tion requests. Each carrier has a set of reserved requests (i.e. not proposed for exchange in CA/CE)
and can serve additional requests (exchangeable requests) acquired from other carriers. Each
request is a pickup and delivery request associated with an origin, a destination, a quantity,
two time windows (pickup time window and delivery time window), and a price (revenue) for
serving the request paid by its corresponding shipper (customer). In spite of orienting problem
which there is not compulsory to serve all requests [10], in our problem all exchangeable requests
have to be served. Such a problem raises a new variant pickup and delivery requests with
time windows (PDPTW), i.e. Multi-Carriers Pickup and Delivery requests with Time Windows
and Reserved requests (MCPDPTWR). To the best of our knowledge centralized collaborative

transportation planning in LTL among multi-carriers, where each request is a pickup and de-
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livery request with time Window for both pickup and delivery requests and reserved requests
has not been studied in the literature. So, in this chapter, we try to fill this gap by presenting
a mixed integer linear programming model to the problem and developing effective heuristic
algorithms. We propose an Adaptive Large Neighborhood Search (ALNS) algorithm to solve
which is successfully applied to solve various vehicle routing problems [84]. In [65], an ALNS
algorithm is applied to solve a pickup and delivery problem with time windows, profits, reserved
requests, and involving a single carrier with a single vehicle depot. In that problem, it is not
compulsory to serve all selective requests. The vehicle routing problem considered in this thesis is
a new problem involving multi-carriers with multi- depots vehicle routing problem. Furthermore,
each reserved request must be served by its own carrier and all requests must be served by all
carriers. It means that, all exchangeable requests must be served by a carrier. Therefore, the
existing ALNS algorithms cannot be directly applied to our problem and some adaptations of
them are necessary in order to solve our problem. The ALNS proposed in this work uses a variety
of destroy/ repair operators. Its search procedure consists of multiple phases, where different
phases use different policies for the choice of requests to destroy (delete) or repair (re-insert). The
basic idea is to alter the behavior of destroy/repair operators over successive phase of the ALNS;
so it can explore diverse regions. In addition, local search based post-optimization is applied at
the end of each phase in order to further improve the quality of the final solution obtained by the
ALNS. For the purpose of comparison, we also develop a Hybrid Genetic Algorithm combined
with Simulated Annealing (GASA). The GASA adopts a problem-specific chromosome structure,
crossover and mutation operators well adapted to the chromosome structure. We also develop an
Improved Tabu search (ITS) approach. This approach improves classical Tabu search by keeping
multiple solutions during the search process, collecting and using the information about them
in order to improve the current solution more quickly [75]. Moreover, we use a mutation tactic
which is another technique to improve the performance of this algorithm [52]. The performance of
the proposed algorithms are evaluated by comparing them with commercial solver CPLEX on 50
benchmark instances in [17]. Numerical results show that ALNS, GASA, and ITS algorithms can
obtain a better solution in a computation time much less than CPLEX commercial optimization
solver. CPLEX could not even find a feasible solution after a limited running time for medium
and large instances. Furthermore, the results show the cost obtained by ALNS and its running
time are better than the cost and the running time achieved by GASA and ITS. This chapter
is organized as follows. In Section 3.1, literature review on collaborative logistics and vehicle
routing problems related to our work is given. The description of the problem and a mathematical
model are provided in Section 3.2. Section 3.3 is devoted to the description of the applied ALNS,
GASA, and ITS algorithms. In section 3.4, numerical results of comparing ALNS, GASA, and
ITS algorithms with CPLEX solver on benchmark instances are reported and analyzed. Finally,

Section 3.5 closes this chapter.
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3.1. LITERATURE REVIEW

3.1 Literature review

Various types of cooperative relationships in the field of transportation and logistics have been
discussed in both professional and academic literature. Both vertical cooperation and horizontal
cooperation in supply chains are the focus of various research efforts over the last two decades. In
recent years, horizontal collaboration which takes place among multiple firms at the same level of
supply chain emerged as a promising framework to implement collaborative logistics [57], [102],
[23]. Due to the increase in fuel costs, transportation companies are forced to use their vehicles
more efficiently, which is given rise to CL or Collaborative Transportation Management (CTM).
Driven by cost reduction requirements due to fierce competition in the transportation market and
increased environmental concerns, improving operational efficiency through resource sharing
and collaborative transportation planning is becoming a new business model for transportation
industry [25]. This is why collaborative logistics has received much attention in recent years.
As mentioned earlier, carrier collaboration in LTL can be realized by using two different types
of approach, centralized and decentralized. For a centralized planning approach used in LTL
collaborative logistics, a coalition multi-commodities game is studied in [68]. Players have a
capacity and are the nodes of a given transportation network. A capacity defines the maximum
flow permitted through the node. The optimal flow is obtained by solving a centralized planning
problem and the total revenue is allocated to players in a fair way. A time-dependent centralized
multi-carriers collaboration problem is studied in [46], where a central entity seeks for minimizing
the total costs of all carriers. They formulate the problem as a binary multi-commodities minimum
cost flow model, and solve it by a branch and cut algorithm. The obtained results confirm
the attractiveness of the centralized cooperation approach in the increase of vehicle capacity
utilization and the decrease of empty-haul trips for carriers. In decentralized planning approaches,
there is a central coordinator takes charge of all auction activities taking place in an auction-
based collaborative planning process. Where an auction is a protocol and allows agents to indicate
their interests in one or more resources, uses these indications of interest to determine both an
allocation of resources and an allocation of payments among the agents [23]. For combinatorial
auction applied to a collaboration among independent freight forwarding entities, a decentralized
combinatorial auction model is proposed in [57]. The problem studied in this thesis is related
to multi-depots vehicle routing problems with pickup and delivery requests and time windows
(multi-depots VRPPDTW). There are not various papers in this field and most VRP articles
are concentrated on VRP with each specification. In [91] Capacitated vehicle routing problem
with pickup and delivery is presented. The authors focus on alternative delivery node and after
presenting mathematical model, apply hybrid heuristic approach to solve the model. Our problem
is different from them and from classical multi-depots VRPPDTW because of a new feature, i.e.,
the reserved requests of each carrier must be assigned to its own depot since these requests must
be served by the carrier itself [563]. In this type of VRP, the depot, where the vehicles return to

it is flexible. An integer mathematical model to minimize the total travel cost is presented to
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the problem under constraints of VRP. A hybrid genetic algorithm with adaptive local search

is proposed to solve. In their problem, all customers have their own time windows, all routes

start and finish at the same depot. Some articles in VRPPDTW are considered in the following. A

mathematical model is studied in [84] for the problem, whereas the starting depot and destination

depot of each request do not need to be the same. Metaheuristic algorithm for the model is ALNS

and the authors prove that the efficiency of algorithm is very high. ALNS algorithm is presented

by [84] and it is used in different fields of the VRP because of its efficiency in acting on the

neighborhood.

Table 3.1: Indices, sets, parameters for the mathematical model.

Symbols Description

G=(V,E) Complete directed graph G on which the studied problem is defined

\%4 Set of all nodes

E Set of all edges

n Number of requests

cr Maximum number of carriers

M Set of carriers

DC Set of depot nodes of carriers

p=1{1,2,..,n} Set of pickup nodes, where the index of each pickup node i is the same as the

D={n+1,..2n}

Si

K, =1{1,.,VK}

dn+i =—d;

le;, 1]

tij

T
BM,-,jzlj—ei
CV,=Q+d;

index of its corresponding request i, i =1,...,n

Set of delivery nodes of all requests, where n is the number of requests

Set of nodes excluding the depot nodes of all carriers

Set of requests that includes the subset of reserved requests R, and the
subset of exchangeable requests R

Set of reserved requests of carrier m

Set of exchangeable requests

Vehicle capacity

Traveling cost from node i to node j

Service time of node i

Set of vehicles of carrier m, where VK, is the maximum number of vehicles
of carrier m

Demand of the pickup node and the delivery node of request i, where d; is the
demand of the pickup node and d,,+; is the demand of the delivery node, d;,+;
is negative

Time window of node i, where e; is the lower bound of time window and /; is
the upper bound of the time window

Traveling time from node i to node j, it is assumed equal to traveling time
Time duration of each route

Used in time window constraints

Used in vehicle capacity constraints
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3.2. FORMAL DEFINITION AND MATHEMATICAL MODEL

Table 3.2: Decision variables for the mathematical model.

Variables Description

Xijkm Binary variable equal to 1 if and only if vehicle & of carrier m uses edge (i, j)

Yikm Binary variable equal to 1 if and only if request i is served by vehicle % of carrier m
Uitm Arriving time of vehicle % of carrier m at node i

Lipm Load of vehicle % of carrier m when leaving from node i

3.2 Formal definition and mathematical model

In our problem, there are multi-carriers with two types of requests: Reserved requests and
exchangeable requests. The reserved requests of each carrier must be served by the carrier itself,
whereas its exchangeable requests can be served by other carriers. The collaboration among
carriers is realized by exchanging requests among them. Each carrier has a limited number
of vehicles initially located at a depot. It is assumed that all vehicles are homogeneous. Each
transportation request is a pickup and delivery request characterized by a pickup location with a
time window, a delivery location with a time window too, a demand and an amount of revenue
that can be generated for serving the request. The revenue of a request is the price paid by a
customer (shipper) to a carrier serving the request. The objective of the problem is to optimally
re-allocated all exchangeable requests among carriers to minimize their total transportation cost
to serve all reserved requests and exchangeable requests. We adopt a centralized approach to
solve the problem. To do so, we first formulate this problem as a MILP. Table 3.1 and Table 3.2 list
the indices, parameters, sets, parameters and decision variables used in the model sequentially.

The problem can be formulated as the following mixed integer-programming model:

mind_ep Xiev X jeV LkeK,, CijXijkm

subject to:
Y Xjikm— Y, Xijgm=0  VieW,VkeK,,YmeM (3.1)
JjeV j#i JeVij#i
> Y Y xpgm=1  VieW (3.2)
meM jeV;j#ikeK,,
Y %xijpm<1 VkeKyNi=meM (3.3)
JEP;j#L
Y xijgm=0  VkeKn,Vi,meM,i¢{m) (3.4)
JEP;j#i
Y xijgm=<1l VEeK,Vi=meM (3.5)
JED;j#i
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Y xam=0  VkeK,,Yi,meM,i¢{m) (3.6)
JED;j#i

Y yikem=1 VieRp,VimeM (3.7)
keK,,

Y Yikm=0  VieR,i¢R"Vi,meM (3.8)
keK,,

2. 2 Yikm=1 VieR; (3.9)

mekK,, meM

Y Xijkm =Yikm  Vi€P,keK,,VYmeM (3.10)
JEV,j#i,m’

Z XjGi+n)km = Yikm VIEP,k€K,;,YmeM (3.11)
JEV.j#i,m!
Uitm +tim+i) +8i =Um+ikem VieP,keK, ,VmeM (3.12)
Ujkm 2Ujpm +tij+si —BM;j(1-x;jpy) VieV,keK,,,YmeM,VjeW (3.13)
ei<Uippm<l; VmeM,VieW (3.14)
Uikm +tij+si—BM;j(1-x;jpn)<T VieW,keK,,,VmeM,VjeM (3.15)
Lipm+d; —Q(1~x;jpm)<Ljrm VieV,keKp,VmeM,NVjeV (3.16)
max{0,d;} < Lipym <min{Q,CV;} VieV,keK,,,VmeM (3.17)
Y xjigm <Km VieM,VYmeM (3.18)
jEWE=1
%ijkm € 10,1} Vi,jeV,Vke K, ,VmeM (3.19)
Yikm €10,1} VieR,VkeK,,,VvmeM (3.20)
Uikm =0 VieV,VkeK,,,VmeM (3.21)
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Lipm=0 VieV,VkeK,,,YmeM (3.22)

The goal is to minimize the total transportation cost of all carriers. The constraint (3.1) is the
flow preservation equation and describes each vehicle arrives at a customer node must leave it.
Equation (3.2) describes each customer node is visited exactly once by a vehicle. Constraints (3.3)-
(3.6) indicate for each carrier when each vehicle leaves its depot should return to the same depot.
Constraints (3.7)-(3.9) are about the reserved and exchangeable requests. Equations (3.7)-(3.8)
ensure that all reserved requests of each carrier must be served by the carrier itself, whereas
equation (3.9) implies each exchangeable request can be served by any carrier. Constraints (3.10)
and (3.11) satisfy if a request is served, there must be a vehicle leaving its pickup node and
arriving at its paired delivery node. The next constraint (3.12) is time windows constraint for
pickup and delivery nodes. Constraint (3.13) shows time feasibility, i.e., vehicle %2 cannot start
serving node j before completing its service at node i and traveling from node i to node j. Time
window restriction at each customer node is imposed by constraint (3.14). Equations (3.15), (3.16)
and (3.17) ensure the maximum duration time of each route, the respect of vehicle capacity and

the maximum number of vehicles for each carrier. The rest of the constraints define the variables.

3.3 Solution procedure

3.3.1 Construction of initial solution

To speed up the convergence, construct a good initial solution is important with some modifications
to provide service for all exchangeable requests. The most important hypothesis is allocating all
reserved requests and exchangeable requests to all carriers. Therefore, in the implementation of
heuristic initial solution this specification should be considered. In the proposed heuristic, firstly,
each carrier self-served to reserved requests. After that, each exchangeable request is inserted
into an existing route of a carrier according to a chosen policy. Before assigning requests to the
routes of any carrier, all reserved requests and all exchangeable requests are placed respectively
in two lists, ordered according to their profits. Both reserved requests and exchangeable requests
are assigned one by one in terms of order in their list. After assigning all reserved requests to the
created routes of their own carriers, exchangeable requests are assigned to the existing routes of
all carriers via the following two policies:

Policy one: After assigning all reserved requests of each carrier to its own routes, each
exchangeable request is assigned to a carrier that both pickup and delivery nodes of the exchange-
able request have a minimum distance to the depot of a carrier.

Policy two: After assigning all reserved requests of each carrier, each exchangeable request is
allocated to a route of the best carrier with the lowest insertion cost.

Although, the first policy is a basic rule to assign exchangeable requests, there is a probability
to set in local optimum. In comparison with first policy, the second policy is better to allocate

exchangeable requests. An exchangeable request is assigned to a depot of a carrier according
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to the priority of a carrier. Total distance of pickup and delivery nodes of each exchangeable
request to each carrier is calculated. The carrier with the minimum distance has first priority
to allocation; second priority is related to a carrier with the distance larger than the minimum
distance to the exchangeable request and so on. Each exchangeable request is allocated to the
carriers according to their priorities. In fact, by allocating each exchangeable request to all
carriers, there is a chance to select the best carrier. After assigning, we calculate the value
of objective function, total cost, due to the constraints. The carrier with minimum cost is the
exchangeable request carrier.

Globally, the first policy is not better than the second policy, but it gives a chance to first
possible position to reach a better solution in a reduced time. While policy 2 is more acceptable to

reach a better solution, this policy needs more time.

3.3.2 ALNS algorithm

The quality of a local search heuristic depends on how the neighborhood of each solution is
defined. The larger neighborhood and the higher quality of the final solution may be found by the
heuristic. When a problem has tight constraints, search a small neighborhood may fail to explore
the solution space thoroughly, because in this case the local search may be trapped in a local
optimum of poor quality [1]. Large Neighborhood Search (LNS), which proposed in [88] for vehicle
routing problem with time windows, one ruin operator and one repair operator are alternatively
selected in each iteration. Each ruin operator removes some customers from the routes of current
solution. In contrast, the role of repair operators is transforming a partial solution into a complete
solution by re-inserting the removed customers into the routes of the partial solution. ALNS
has been extended LNS by adding an adaptation layer. This layer adaptively chooses in each
iteration a ruin operator and an insertion operator among a set of operators to intensify the
search. Moreover, simulated annealing is used in the high layer of ALNS and allows a worse
solution is accepted under some conditions to diversify the search. Thus, ALNS can be considered
an improved version of LNS.

At each iteration, a pair of ruin and repair operators are selected according to the historical
performances of all operators, where a score, which is updated, or keeps unchanged in each
iteration, measures the performance of each operator. In other words, the probability to select
an operator in each iteration depends on its score. Although the choice of this pair of operators
is randomized, the historical performances help to choose the most effective pair of ruin and
repair operators, because a level (layer) of adaptation is added over the local search level of ALNS
in this procedure. The ALNS algorithm proposed in this thesis can be considered an adapted
version of ALNS in [65], [84]. The procedure of the ALNS algorithm is outlined with pseudo-code
in Algorithm 1.

In the current section, we described the ALNS procedure and how it is adopted to our

problem. Firstly, multiple ruin and repair operators are designed by considering reserved requests
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Algorithm 1. Pseudo-code of the ALNS algorithm.

1 In each nruns runs (nruns is the maximum number of runs allowed)

2 Construct an initial solution

3 Set the best solution Sy, to the initial solution

4 Initialize starting temperature Ty

5 Initialize the weights and scores of all ruin/repair operators

6 In each nseg segments; nseg is the maximum number of segments allowed
7 Choose the polices for the selection of requests

8 In each niters iteration(niters is the maximum number of iterations allowed)
9 If there is not improved solution found,apply operators of ALNS

10 Use SA rule

11 Update the performance scores of the selected operators

12 Update temperature of SA (T;,, — T';,, x co)

13 End of iteration

14 Update the weights and scores

15 Call LS(Section 4.6)

16 End of segment

17 Update global best solution

18 End of runing

and exchangeable requests. Secondly, we use heuristic initial solution by multiple restarts of
ANLS to diversify the search in order to obtain a high quality solution. Finally, to enhance
the intensification, local search with four moves is applied at the end of each phase to further

improvement of current solution. All parts of the algorithm are described in the following sections.

3.3.2.1 Adaptive choice of ruin/repair operators

The ALNS chooses one ruin and one repair operator in each iteration according to the past
performances of all operators. It gives a chance to all possible ruin/repair operators to be selected
by the algorithm, even for operators of low performance, by using the roulette wheel method.
Suppose there are in total ¢ operators numbered from 1 to c¢. Each operator i = (1,2,..,¢) is
associated with a weight W;. The weight reflects the performance of this operator in the past.
Thus, the probability of choosing each operator i is %

At the beginning of algorithm, the weight W; of each operator i is set to one. It is adjusted
at the end of each phase according to its performance score. For all scores, the weights of all
operators are updated at the end of each phase in the following way. At the beginning of each
phase, the scores of all operators are set to zero. By this setting, all operators including inefficient
operators in the previous phase have a chance to be selected. Four scores denoted by s1,s9,s3
and s4, which correspond to four different situations are defined and their update in different
situations are described in Table 3.3. In the first one, a new best solution is found; this is the

most favorable case. About second and third situations, both them are also favorable because
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the obtained solution improves the current solution. Comparing second and third situation, the
second one is more attractive since it explores a new region of the solution space. In fact, in the
second situation, the algorithm finds a solution with new features. To know our algorithm has
found a new solution, storing some attributes of the solutions previously found is compulsory.
These attributes can be the number of requests served by the available vehicles, the number of
vehicles used and the total profit. Hence, there is a list to store all profits in an increasing order
and dichotomy search is used to check a solution with a given cost. Finally, fourth type of score
brings some diversification to the search as it prevents from using the same operators frequently.
This score depends on the acceptance criteria of SA used in the algorithm. Let W; . be the weight
of operator i in se phase, tc; s be the number of times that operator is selected by the algorithm,
fcise is the final score of operator i at the end of phase se. rt €(0,1) is a reaction factor and
indicates which degree of weight in each operator reacts to its performance. If r¢ = 1, the current
weight of each operator is disregarded and its new weight only depends on its achieved score in
the last phase. If r¢ = 0, the current weight of each operator is preserved while its achieved score

is overlooked.

Table 3.3: The adjustment of scores.

Score Condition for score increment

S1 Finding a new best solution.

S9 Finding a new solution which improves the current solution.

S3 The solution found is not new but improves the current solution.

S4 The solution found is accepted by SA although it is worse than the current solution.

By mentioned four scores at the end of each phase, the weights of all operators are updated

in each phase according to the following equation (3.23).

fci,se

tcgse

(3.23)

Wise+1 = 1Tt XWjge+Ttx —

3.3.2.2 The rules of selecting requests by ruin/repair operators in each phase

As mentioned above, in ALNS, different phases use different policies for the selection of requests
to remove (ruin) and the requests to re-insert (repair). In our problem, because all exchangeable
requests must be served, the rules of applying ruin/repair operators for requests are the two

following suitable policies.

Request selection policies for ruin operators

1. All requests are removable.
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2. Only exchangeable requests are removable.

Request selection policies for repair operators

1. There is no difference between exchangeable requests and reserved requests when choosing

a request to re-insert by a repair operator.

2. The priority of reserved requests is higher than that of exchangeable requests when

choosing a request to reinsert by a repair operator.

The first policy is denoted by policy 1 and the second policy is called policy 2. The two policies
are compatible with the nature of our problem. In the following, we describe two policies and
their implementation.

If policy 1 is chosen, there is no difference between two types of requests when they are
removed or re-inserted. In other words, any request can be served as long as all the constraints
of the problem are satisfied and the corresponding ruin/repair operator is feasible. With time
windows and vehicle capacity constraints in our problem, a ruin or repair operator may lead to
an infeasible solution. Such situation may happen when some reserved requests are not served.
Generally, the role of the first policy is to expand the search space by possibly selecting all requests.
In this case, some reserved requests may be not served because of violating some constraints
particularly vehicle capacity and time windows constraints. On the other hand, the role of the
second policy is to generate a feasible solution. In the first phase of ALNS, the probability of
choosing policy 1 is the highest and the probability of choosing policy 2 is the lowest. When the
algorithm progresses, the first probability becomes lower and the second probability becomes
higher. At the last phase, the probability of choosing policy 1 is the lowest and the probability
of choosing policy 2 is the highest. Let P; denotes the probability of choosing policy 1 and P2

se
nse’

denotes the probability of choosing policy 2 with P1 + P2 = 1. P1 and Ps are calculated by Po=
P1=1-Py, where se is the number of phases executed so far and nse is the total number of phases

prespecified by the algorithm.

3.3.2.3 Ruin/repair operators of ALNS

Contrary to [65], where selective (exchangeable) requests are not obligatory to be served, our
problem in this thesis has two types of requests and both must be served by all carriers while
each reserved request must be served by its own carrier. In the design of ruin/repair operators,
we have to consider the specific features of our problem. This means that the operators must
consider serving all requests. Furthermore, all reserved requests must be served before serving
exchangeable requests because it is not compulsory for each carrier to serve their exchangeable
requests. Actually, each exchangeable request must be allocated to the most appropriate carrier

according to the policies in previous section. When the ruin operators are applied, if a route has
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just one request, it will be deleted. Additionally, all of the nonempty routes are considered to

insert a request when an insertion operator is used.

Algorithm 2. Least profit removal operator.

1 while (number of remove < [fr.rn])

2 sort all requests in terms of profit decreasing and put in array L
3 choose a request randomly (if j is its index) j = [(rU(O’l))loo'f TIL|]
4 remove the selected requests

5 number of remove increases

Ruin operators
In this thesis, we utilize six ruin operators. In the using of ruin operators, a fraction of the
solutions is removed. It means that if (rn) is the total number of requests and fre[0,1] is a

removal fraction, the number of removing requests is [fr.rnl.

Random Removal. This operator randomly chooses a subset of requests. In fact, the Random

Removal operator has a strong effect in diversification.

Least profit removal. If f(so) is the cost of current solution and f(so’) is obtained cost if request
i is removed, the profit of the request i in solution so is described as f(so)-f(so’). Algorithm 2, is
the algorithm of least profit removal operator and the number of low profit requests are [fr.rnl.
They are removed according to Algorithm 2, because low profit requests can be reinserted in
positions that are more profitable. The operator is performed randomly to avoid removing the

same selected requests.

Least paid removal. This algorithm is the same as least profit removal operator with some
differences. In this operator, the list L stores the prices of requests in increasing order. When
the operator removes the requests with low prices and reinserts them in other positions, better

solution may be achieved.

most expensive removal operator. The operator is similar to least paid removal operator; but
in most expensive removal operator all requests are sorted in descending order of their cost.

Moreover, we define the difference of transportation cost with and without a request.

Shaw removal operator. This operator is introduced in [88] and is used in [84], [65]. Primarily,
it is necessary to choose a seed request. After that, requests which are similar to the seed request
based on distance, time and demand are removed. When the criterion is distance, two nodes
of each request must be closed to the seed request and in choosing criterion based on time,

the service starting time of pickup and delivery nodes of each request must be as same as the
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seed request. The significant criterion of Shaw removal operator is to have low probability of
constraints’ violation particularly, in using time windows and vehicle capacity constraints. Finally,

this operator is randomized as Algorithm 2 and applied [fr.rn] times.

Price similarity removal. This operator removes the requests with the same prices. After that,
a repair operator exchanges the location of the selected requests or abandons them to decrease
total cost. In this operator, we use price dissimilarities between two requests. This dissimilarity

measures value growing with the price differences between two requests.

Repair operators
In [65], two repair operators are applied: Basic greedy insertion heuristic and two-regret insertion.
In the current thesis, in addition to the mentioned repair operators, we also use three-regret
insertion heuristic to improve the quality of the solution repaired. How to select a request to
repair with two policies was discussed in previous section. Each repair operation must ensure
the repaired solution is feasible, i.e., each reserved request must be served by its own carrier,
all requests must be served by all carriers, vehicle capacity and time windows constraints are
satisfied.

Basic greedy insertion heuristic. This heuristic inserts one by one completely removed requests

to achieve the highest increase in total profit.

2-Regret and 3-Regret insertion heuristic
An obvious problem with the basic greedy heuristic is to postpone handling those hard requests
that lead to construct unreasonable route at the end. The regret heuristic tries to overcome the
problem by incorporating a type of look-ahead information. This means, if we do not insert the
request in the current iteration, in the next iteration we may pay a lot for not having chosen it.
Regret heuristic has a grade: Each time we choose insertion of a request that holds the largest
difference between its best position and second best position, which is named as 2-Regret insertion
heuristic. In 3-Regret insertion heuristic, each time a request is chosen to insertion that holds
the largest difference between its best position, second best, and third best positions. After each

insertion, the regrets must be recomputed because some insertion positions are unavailable.

3.3.2.4 Diversification of search by simulated annealing

The goal of using simulated annealing algorithm is to prevent to be trapped in local search. The
general schema of SA has been illustrated in the structure of ALNS. In comparison with the

general heuristic that only accepts the improved solution, SA accepts a worse solution so — so’
_ f(s0)—f(so’)

with a probability e  Zi» |, where f(so’) < f(so). The possibility is related to the problem

maximization. The probability of profit decreasing depends on two factors. The first one is profit

disparity, which is described by —(f(so) — f(s0’)) equation and second factor is temperature T},.
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At the beginning of each run, T, is allocated to T. T'j, is computed and if a solution has a profit
30% worse than initial solution, it will be acceptable with a (pr) probability. T;,, decreases after
each iteration in each phase, by multiplying cooling factor co € (0,1). The cooling factor must be

closed to one to avoid a premature convergence.

3.3.2.5 Local search approach

The conspicuous role of local search is to improve the results of heuristic and metaheuristic
algorithms. Accordingly, at the end of each phase, we use four types of local search to achieve
better results. The moves operators should assume specifications of our problem and serve all
exchangeable requests. The description of neighborhoods is as follows. All feasible moves of
neighborhoods are tested. The move is acceptable if an improvement is obtained; otherwise, the
search continues with the next neighborhood. If there is no progress in the last results, the local

search is terminated.

1. One pickup/delivery node is relocated in another place of the same route.

2. One pickup/delivery node of one exchangeable request is relocated in another place of the

same route.
3. One request is relocated in another place of the same route.

4. One exchangeable request is removed from a route of a carrier and reinserted into a route

of another carrier.

3.3.3 Hybrid genetic algorithm with simulated annealing (GASA)

Genetic algorithm (GA) is firstly proposed in [47] and it is one of the well-known metaheuristic
algorithms to solve vehicle routing problems. Simulated annealing (SA), which accepts a worse
solution with a probability that diminishes as the search progresses, allows the diversification
of search space. The combination of GA with SA can prevent GA from premature convergence.
Hence, we propose a hybrid GA combined with SA to solve our problem. GA is inspired from
nature. In GA, each solution is represented by a chromosome and the population in each iteration
is composed of multiple chromosomes correspond to a set of solutions. The objective function value
of the problem is evaluating the fitness of each chromosome. The reproduction process of GA is
similar to that in the real world, where the next generation (population) is generated by unifying
the genes of two parents from the current generation via a crossover operation. Additionally,
the genes of a chromosome may be altered like gene mutation in nature. To choose parents and
individuals to transfer to the next generation, the fitness of each chromosome (solution) plays a
decisive role. In this process, the offspring with lower fitness are removed from the population.
In the rest of this section, all elements of GASA for multi-carriers CTP will be presented and

described. The initial solutions of this algorithm, i.e., the solutions in the initial population
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are constructed in the same way as the insertion heuristic used in ALNS (section 3.3.1) but
introducing random factors in the heuristic. It means that we have initial solution to the size of
population. In each iteration of GASA, the minimum cost is updated according to the achieved
cost of the latest generation. After creating new individuals by mutation and crossover operators
and mixing with the current population, each solution is selected with a probability based on a

simulated annealing procedure.

3.3.3.1 Solution representation

The structure of chromosome plays a vital role in order to get good results for any GA-based

algorithm. The chromosome of multi-carriers CTP is defined by three vectors X,Y, and Z.

Vector X consists of all pickup and delivery nodes and its size (dimension) is [P JD|. The
size of vector Y is equal to the number of all requests and each component of vector Y that
corresponds to a request indicates the carrier assigned to the request. The dimension of vector
Z is equal to the number of all requests. In vector Z, each component indicates the index of
the vehicle serving a request. It should be noted that the index of each request is the same as
its pickup node index in the three vectors. The procedure for constructing a solution from a

chromosome represented by the three vectors is given as follows:

Firstly, pickup and delivery nodes are chosen from vector X one by one from its first gene
to its last gene. After choosing a pickup node and its corresponding request, the carrier and
the vehicle (route) to serve the request are determined from vector Y and vector Z successively.
When a pickup node is assigned to a route of a carrier, its paired delivery node is also assigned to
the same route of the same carrier and the precedence relation between the two nodes must be
satisfied. A new route will be created if the insertion of a request (a pickup node plus its paired
delivery node) into the current route leads to an infeasible solution. This means that the insertion
violates time windows constraints or vehicle capacity constraint and the request cannot be served

by the current route.

The coding of a solution by the three vectors mentioned above is depicted in Fig. 3.1 for a
simple example of multi-carriers CTP with 2 carriers and 4 requests. The dimension of X, Z
and Y are 8, 4 and 4, respectively. Note that for each request i, its pickup node is indexed by
i and its delivery node is indexed by n + i, where n = 4 is the number of all requests. Vector Z
indicates that request 1 is served by vehicle 1, request 2 is served by vehicle 2, request 3 is served
by vehicle 4, and request 4 is served by vehicle 3. According to vector Y, request 1 and 2 are
allocated to carrier 1, and request 3 and 4 are assigned to carrier 2. The detailed information of

this simple example for each carrier is given in Table 3.4.
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Table 3.4: The detailes information of simple example to implement GASA.

Carrierl

Carrier2

the index of the unique reserved

request: 1

the pickup node index of the reserved
request: 1

the delivery node index of the reserved
request: 5

the index of the unique exchangeable
request: 2

the pickup node index of the exchangeable
request: 2

the delivery node index of the exchangeable : 6

the index of the unique reserved
request: 3

the pickup node index of the reserved
request: 3

the delivery node index of the reserved
request: 7

the index of the unique exchangeable
request: 4

the pickup node index of the exchang-
eable request: 4

the delivery node index of the exchang-

request eable request: 8
1 2 3 4 6 7 8
Vector X
1 2 4 3
Vector Z
1 1 2 2
Vector Y

Figure 3.1: Illustration of chromosome’s structure.

3.3.3.2 GASA agorithm operators

According to the chromosome structure defined for the multi-carriers CTP, we propose two

crossover operators and two mutation operators for the solutions considered.

Crossover operator on vector X

Single point crossover is a suitable operator for two chromosomes of X, which has a permu-
tation structure. By using this crossover operator, no need to apply an extra operation to make

the resulted solution a feasible solution. By using this type of crossover operator in the resulted
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1 2 3 4 5 3 7 3
1 (3] 8 4 3 2 5 7
Parent 2
1 2 3 i | 5 (3] 8 7
1 1] 8 4 3 2 5 7
OffSpring 2

Figure 3.2: The single point crossover on two X vectors.

chromosome, there will be no gene repetition. To make this crossover operation, two parents
chromosomes are chosen from the current population by applying the roulette wheel approach,
while the crossover point is randomly chosen from all genes of vector X. The crossover operator

on vector X works as follows:

To generate the first offspring, all genes of the first parent before the crossover point are
transferred respectively to produce the first part of the first offspring’s chromosome. To generate
the second part of the first offspring after the crossover point, all genes of the second parent are
compared with the genes of the first offspring already created. After ignoring repetitive genes,
all non-repetitive genes are transferred to create the second part after the crossover point. The
second offspring is generated in the same way as the first offspring but the roles of the two
parents are swapped in the above mentioned procedure. In Fig. 3.2, the crossover operator is
applied on two X vectors and their generated two offspring are given. In addition, the two arrows

in Fig. 3.2 point to the crossover point.
Crossover operator on vector Y and Z

Uniform crossover is a suitable crossover operator for vector Z and Y. In this type of crossover
operator creating a mask vector with one and zero genes, as illustrated in Fig. 3.3, is necessary.
The mask vector has the same size (dimension) as that of vector Z (vector Y). A gene of an
offspring is transferred from which parent depends on whether the value of the corresponding
gene of the mask vector is one or zero. As illustrated in Fig 3.3, to generate the first offspring, a
gene of the first parent is transferred to the first offspring if the corresponding gene of the mask

vector is zero otherwise the gene of the first offspring will be transferred from the second parent.
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1 2 4 3
Parent 1

] 1 0 1
Mask

2 1 3 4
Parent 2

2 2 3 3

Offspring 1
1 1 4 4

Offspring 2

Figure 3.3: The crossover on two Z vectors.

To generate the second offspring the same operation is performed but the roles of the two parents
are swapped. Since the structure of vector Y is the same as that of vector Z, the same crossover
operator procedure is used.

Mutation on vector X

For vector X with a permutation structure, the mutation on vector X is made in the following
way: Firstly, two distinct genes of vector X are chosen randomly. After that, one of the relocation,
swap and reversion operators is chosen and applied to the two genes. This mutation operator can

be applied to produce a diversified feasible solution.

1. Swap: this operator selects two components of vector X and swap their positions in the

vector.

2. reverse: this operator selects two components of vector X and reverses the order of the

components between the selected components.

3. relocate: this operator selects two components in vector X and relocates one of them to the

front of another component.

Mutation on vectors Z and Y
The mutation applied to vector Z and Y is similar to that applied to X with some differences
mentioned hereafter. The steps of the mutation over vector Z as illustrated in Fig. 3.4 are given

in the following:
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Parent

2 1 4 3

Offspring

Figure 3.4: The mutation operator over vector Z.

1. Determine randomly the number of genes to mutation. This number, which is denoted by /

is obtained by the following procedure.

a) Generate randomly an integer number, A, between 1 and dim[Z], where dim[Z] is the

dimension of vector Z.
b) Calculate Ar by multiplying 2 with a mutation rate r.

¢) Round hr to the least integer number larger than or equal to it.

2. Choose randomly [/ genes of vector Z.

3. Generate randomly / integer numbers between 1 and the number of all vehicles, VK.

4. Replace the [ genes of vector Z obtained in Step 2 by the [ integer numbers obtained in
Step 3.

For the mutation on vector Y, the same procedure is applied except that in step 4, each gene
selected in step 2 is changed with a number randomly generated between 1 and the number of
all carriers, M. In Fig. 3.4, the number of mutated genes in vector Z is one and the second gene
with yellow color is selected to mutate. The chromosome of the offspring is transferred from its
parent’s chromosome with a new value in the mutated gene.

In each iteration of GA, after sorting the new chromosomes (solutions) generated by the above
mentioned GA operations, they are merged with the current population to generate the next
generation. In GASA, the rule of SA is applied when transferring each offspring to an individual
in the next generation. This means that, the current solutions and the solutions obtained by
crossover and mutation operations are compared based on SA rule. In this way, each solution has
a chance to be transferred to the next generation. To use simulated annealing in the framework
of our genetic algorithm, we use the same approach of SA used previously in the ALNS algorithm
we developed. At the end of each iteration of the genetic algorithm, the temperature of SA is

reduced like what is done in any simulated annealing algorithm.
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Algorithm 3 Pseudo-code of the ITS algorithm.

1: Set the maximum number of iterations as mni, the number of search points as nsp, the size
of each tabu list stl and the number of initial solutions to be generated as nis, where
mni,nsp,stl, and nis are three positive integers with nis > nsp.

2: Calculate the number of possible operations no_ X, no_Y and no_Z for vector X, Y and Z
respectively and set the sizes of the three tabu lists for the three vectors respectively as

stl Xxno X, stl Y xno Y and stl_Z xno_Z, where stl_X, stl_Y and stl_Z are three
fractions between 0 and 1.

3: Initialize the three tabu lists mentioned above, which are introduced to forbidden
revisiting previously explored solutions in the tabu search

4: Calculate the number of possible operations for vector X,Y and Z

5: Construct nis initial solutions

6: Sort the initial solutions in a non-increasing order of their cost value

7: Choose the nsp best solutions from the sorted list of initial solutions

8: BestSol = the cost of the best solution obtained so far

9: While the number of iterations < mni

10: While the number of solutions (points) < nsp

11: (the cost of the best solution in the neighborhood of the current solution) = Inf

12: While the number of operations examined < the number of possible operations

for vector X
13: Choose an unexamined operation that moves the current solution to
a new solution

14: NewSol = the cost of the new solution

15: IfiNewSol)< BestNewSol and the operation is not in the tabu list
of vector X

16: BestNewsol=NewSol and put the operation in the tabu list
of vector X

17: End if

18: End While

19: While the number of operations examined < the number of possible

operations for vector Y (Z)
20: Choose an unexamined operation that moves the current solution
to a new solution
21: NewSol = the cost of the new solution
22: IfiNewSol)< BestNewSol and the operation is not in the tabu list
of vector Y(Z)

23: BestNewSol = NewSol and put the operation in the tabu list
of vector Y(Z)

24: End if

25: End While

26: If the number randomly generated from [0,1] < the mutation probability

27: Execute the mutation operation

28: End While

29: If BestNewSol < BestSol, BestSol = BestNewSol

30: End While
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3.3.4 Improved tabu search (ITS)

Tabu search is a local search metaheuristic propose in [39]. Briefly, the method explores the
solution space by moving at each iteration from a solution to the best solution in a subset of its
neighborhood N(s). Contrary to the classical descent method, the solution may deteriorate from
one iteration to the next. Thus, to avoid any loop, some attributes of recently explored solutions
are temporarily declared tabu or forbidden, even though there are better solutions in the neighbor
of the current solution. The tabu list is updated in each iteration, adding a diversification in the
search of the solution space. Actually, by using the tabu list the parts of solution space that were
previously explored will be not considered with various techniques often employed to diversify
or to intensify the search process [104]. In this section, we propose an improved tabu search
(ITS) algorithm that keeps multiple solutions during the search process and uses a mutation
operation in order to get a better solution quickly. On the one hand, multi-points tabu search
algorithms are usually more efficient than single point ones [75], and on the other hand, some
mutation operators can improve the performance of tabu search algorithm [52]. The procedure of
our Improved TS (ITS) algorithm is given in the following Algorithm 3, where three tabu lists
containing three subsets of attributes of the solutions to be forbidden from being revisited in the
tabu search are introduced and updated in each iteration. The three subsets of attributes are
denoted by three vectors X,Y, and Z respectively used to represent a solution (see Section 3.3.3.1

for a description of the three vectors).

3.3.4.1 The local search operations (moves) on three vectors X,Y and Z

In tabu search based algorithms, the local search operations (moves) made in the neighborhood
of a solution have a great impact on the quality of the obtained solution. In the following, we
describe the local search operations made on each of the three vectors X,Y and Z representing a

solution.

Operations (Moves) on vector X
The vector X has a permutation structure. The operations applied to X include swap, insertion

or reversion and relocation.
Operations (Moves) on vector Y and vector Z

The vector Y and vector Z have the same structure. For this reason, the operation applied to
vector Y is the same as the operation applied to vector Z. In the two vectors, a suitable change
(move) is to replace the value of a component. In other words, the value of the component is
changed by a number randomly generated between 1 and the number of carriers for vector Y and

between 1 and the maximum number of vehicles for vector Z.
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3.3.4.2 Tabu lists in the ITS

A tabu list represents a short-term memory in a tabu search algorithm. It consists of a list of
previous solutions that must be avoided to revisit or a list of local search operations (moves)
that must be forbidden in moving to the next solution. According to the proposed solution
representation for the ITS algorithm, three tabu lists corresponding to vector X,Y, and Z
respectively are introduced and updated in each iteration. Each tabu list contains a set of
local search operations (moves) previously made on the corresponding vector (X,Y or Z). These
operations will be forbidden when moving to the next solution in the neighborhood of the current
solution. The size of each tabu list is set by considering the number of possible operations that
could make on the corresponding vector. In Algorithm 3, an operation made on X,Y or Z that
moves the current solution to a neighborhood solution is acceptable if it is not in the corresponding
tabu list. Otherwise, the operation is not valid. If the operation is not in the tabu list and leads
to a better neighborhood solution, the best solution is updated, the operation will be put in the
corresponding tabu list, and the size of the tabu list is increased. In Algorithm 3, the sizes of

three tabu lists are set as predefined parameters.

3.4 Numerical experiments

To evaluate the performances of our ALNS, ITS, and GASA algorithm, we applied them to solve
5 sets of instances of small to large sizes taken from the literature and compared them with
the MILP solver of CPLEX 12.6 in terms of cost and computation time. The three algorithms
are also compared to each other on the instances in terms of RPD. We do not compare the three
algorithms with CPLEX on medium and large instances, because the latter could not even find a
feasible solution after a long running time for these instances.

In the following sections, we present these instances and the comparison results. The results
demonstrate the ALNS, ITS, and GASA algorithm outperform CPLEX, while the ALNS algorithm
outperforms the GASA and ITS algorithms.

3.4.1 Instances

The instances are taken from [17], with the reserved requests and the exchangeable requests for
each carrier determined in the same way. These instances are grouped into 5 sets according to
their problem sizes. The number of carriers are fixed to 3 for all instances, whereas the number
of requests per carrier vary from 5 to 50 and the number of vehicles for each carrier vary from 2
to 8 for the five sets of instances. Each instance in the first set has five requests and two vehicles
for each carrier. Each instance in the second set also has 2 vehicles for each carrier but has eight
requests for each carrier. In the third set, there are 15 requests and 4 vehicles for each carrier.
The fourth set is composed of the instances with 30 requests and 6 vehicles for each carrier. Each

instance in the fifth set comprises 50 requests and 8 vehicles for each carrier. We solved the MILP
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model of our problem by CPLEX 12.6 called in C++ with Visual studio 12 on a laptop with an
Intel core i5 CPU and 4.00 GB RAM. Note that for the medium size instances with 30 requests for
each carrier and 4 vehicles and large size instances with 50 requests per carrier and 8 vehicles,
it is impossible to solve the model optimally by CPLEX after 2 hours and 3 hours of running,

respectively.

3.4.2 Parameter settings

The performance of the ALNS algorithm, ITS and the GASA algorithm depends on the quality
of their parameters. Some of the parameters are determined empirically and are given in Table
3.5 and Table 3.6. Other parameters are tuned by using Taguchi method, which is a popular and
efficient parameter tuning technique based on fractional factorial experiments (FFE) [96]. Variety
of approaches, such as response surface method [79], [73] and Taguchi approach [71], [42] are
already been applied for calibration of algorithm’s parameters. In this thesis, Taguchi methodology
is addressed to tune the parameters of algorithms. This approach employs orthogonal arrays to
handle and adapt experiences in the presence of a group of decision variables or factors [80]. The
methodology tries to minimize the impact of noise and to achieve the optimal level of a signal
factors. Since the nature of response is minimization, the smaller response is better. The following

formulation expresses the signal-to-noise ratio (%):

S(YIQ)

=—-10xlog( ) (3.24)

2w

Y’ indicates response value, n represents the number of the orthogonal arrays, and S(Y”) is
the indicative objective function value.

The selected parameters of GASA and ITS to calibration are given in Table 3.7 and the
parameters calibrated values are in Table 3.10 and Table 3.11 for GASA and ITS sequentially.
The selected parameters of ALNS to tune is in Table 3.8 for different size of instances and their
value after calibration by Taguchi is in Table 3.9. Actually, the optimal level of each parameter
in each algorithm is the highest signal-to-noise ratio. Fig. 3.5 to Fig. 3.10 show clearly the

appropriate level of each parameter of the considered algorithms.

3.4.3 Experimental results

After the parameter calibration, we executed the ALNS, ITS, GASA, and CPLEX on all instances.
Since ALNS, ITS, and GASA algorithms contain random factors, to reduce the impacts of these
random factors on their performance evaluation, each algorithm is executed three times for each
instance. Then, the average cost and average computation time (in seconds) obtained by the
three executions are reported. For CPLEX, since the considered carrier collaboration problem is
NP-hard [66], it is very time consuming to solve optimally medium and large size instances. For

this reason, we set a maximum running time for CPLEX to solve medium and large instances.
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Table 3.5: Parameter values of ALNS determined empirically

Parameter Description

Value

nruns
Q1

Q2

Qs

Q4

rf
nseg

fr

Number of runs

Operator score increment case 1
Operator score increment case 2
Operator score increment case 3
Operator score increment case 4
Score reaction factor

Number of phases

Removal fraction

12
10

5

3

1

0.8
3000
0.2

Table 3.6: Parameter values of GASA and ITS determined empirically

Parameter Description

Value

Sublt

Hm
nsp

Number of iteration of SA 120
Mutation rate 0.26

Number of solution points 25

Table 3.7: The domain of candidated parameters of GASA and ITS for calibration.

Methodology Parameter Range Low Medium High
Npop (Size of population) 100-200 100 150 200

GASA nlt (Maximum number of iterations) 200-600 200 400 600
Pc (Crossover probability) 0.4-0.8 0.4 0.6 0.8
Pm (Mutation probability) 0.05-0.3 0.05 0.175 0.3
Tabu lists
stl_X 0.2-0.5 0.2 0.35 0.5

ITS stl_ Y 0.1-04 0.1 0.25 0.4
stl_Z 0.1-05 0.2 0.35 0.5
mni (Num of iteration) 50-100 50 75 100

The time limitation is 3 hours for medium instances with 30 requests and 4 vehicles, and large
instances with 50 requests and 8 vehicles. The three proposed algorithms are compared with each
other and with CPLEX based on all criteria defined in Table 3.10, where Costarns, Costgasa,
and Costjrg are the costs of the studied problem obtained by the three algorithms, respectively;
UBpyrrp and LByrp are the upper bound and the lower bound of the objective value of the

problem obtained by CPLEX in a preset computation time.

The computation results are given in Table 3.12, Table 3.13, and Table 3.14. From Table
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Table 3.8: The domain of candidated parameters of ALNS for calibration.

Methodology Parameter Range Low(1) Medium(2) High(3)
w (Start temperature control) 0.5-0.7 0.5 0.6 0.7

ALNS ¢ (SA cooling factor) 0.9996-0.9998 0.9996  0.9997 0.9998
nit 500-700 500 600 700

Table 3.9: Parameter values of GASA determined by Taguchi.

parameters

npop P_c

P_m Nit

Value 150

0.6 0.05

800

Table 3.10: Parameter values of ITS determined by Taguchi

parameters stl_ X stlLY stl.Z mni
Value 0.5 0.25 0.2 100
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Figure 3.5: Outputs of Taguchi ratio for ITS.

3.11, we can see, for small 3x5x2 instances, CPLEX, ALNS, ITS and GASA all could find an

optimal solution. However, for some of small 3x8x2 instances and most medium to large size

instances, CPLEX could not even find a feasible solution in a preset computation time, whereas

our algorithms could find a feasible solution for all instances. Actually, for most instances with the

number of requests more than 8, no feasible solution was obtained by CPLEX, so we compare the

solutions obtained by our algorithms based on their relative gaps with the lower bound obtained

by CPLEX, i.e., using the above-mentioned criteria. Our algorithms can find an optimal solution
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Figure 3.6: Outputs of Taguchi ratio for GASA.
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Figure 3.7: Outputs of Taguchi ratio for ALNS (3 x 5,3 x 8).

for all small 3x5x2 instances and can find a solution with the relative cost gap smaller than 3.6%
for 3x8x2 instances. For medium 3x15x4 instances, our ALNS algorithm can find a solution with
the gap smaller than 6%, whereas our ITS algorithm can find a solution with the gap smaller than
9.9% and GASA can find a solution with the gap smaller than 7.58%. For 3x30x6 instances, our
ALNS algorithm can find a solution with the gap smaller than 12%, whereas our ITS algorithm
can find a solution with the gap smaller than 14% and our GASA algorithm can find a solution
with the gap smaller than 12.6%. For large 3x50x8 instances, our ALNS algorithm can find a
solution with the gap smaller than 17%, whereas our ITS algorithm can find a solution with the
gap smaller than 18% and our GASA algorithm can find a solution with the gap smaller than
17.4%. Moreover, our proposed algorithms are much better than CPLEX in terms of running
time for medium and large instances, although the running times of the two proposed algorithms

increase naturally with the size of instance and the computation time of CPLEX is smaller than
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Figure 3.8: Outputs of Taguchi ratio for ALNS (3 x 15).
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Figure 3.9: Outputs of Taguchi ratio for ALNS (3 x 30).

those of the algorithms for small 3x5x2 instances. According to Table 3.12, Table 3.14, and Fig.
3.11 ALNS has cost and computation time smaller than those of ITS and GASA respectively
for all instances, therefore ALNS outperforms ITS and GASA. This may be because various
ruin/repair operators, adaptive mechanism, and SA are used in ALNS, which makes it able to

search diversified regions in the solution space.

3.4.3.1 Relative percentage deviation (RPD) to compare algorithms

There are two ways to compare the algorithms. One is to classify the samples in small, medium,
and large sizes and then compare the algorithms in each category. The second way is to remove
the effect of problem size by utilizing an index. RPD is an indicator calculated by the difference

between the best solution of an algorithm in terms of cost or profit and the best solution achieved
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Figure 3.10: Outputs of Taguchi ratio for ALNS (3 x 50).

Table 3.11: Criteria used for comparison of ALNS, ITS, GASA, and CPLEX.

Criterion Description

GapuyiLp The relative gap between LBysrr.p and UBsrr.p defined as

WUBumirp=LByiLp)
LByiLp

Gaparns The relative gap between LBysrr.p and Costarns defined as

(Costarns—LBuyirp)
LByiLp

Gapgasa The relative gap between LBysrr.p and Costgasa defined as

(Costgasa—LByirLp)
LBuiLp

Gapirs The relative gap between LBysrr.p and Costps defined as
(Costyrs—LByiLp)
LByiLp

by all algorithms, which are compared. An algorithm with minimum RPD value is supposed
to be the most effective to solve the problem. RPD is formulated in the equation (3.25), where
Criterionpes; and Criterionyg indicate the best value of a criterion obtained by all algorithms
and the best value of the same criterion achieved by a considered algorithm correspondingly.
In this thesis, we calculate the RPD of each algorithm after three executions. According to the
formulation of RPD, an algorithm is efficient if it has small amount of RPD. Table 3.15 and Fig.
3.11 illustrate the results of RPD over ALNS, GASA, and ITS. According to the results, ALNS
has better RPD and it outperforms the other two algorithms. Additionally, GASA has better RPD
in comparison with ITS. Their statistical analysis is illustrated in Table 3.16. According to Table
3.16 there is not significant difference between GASA and ITS. Finally, the algorithms are also

statistically analyzed according to obtained solutions via analysis of variance (ANOVA) tests [42].
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The procedure of ANOVA including F-test value and also P-value on RPD is summarized in Table
3.16. The results are analyzed at 95% confidence level. According to the table, null hypothesis is
rejected. The rejection of null hypothesis declares there are significant differences among ALNS
and ITS, ALNS, and GASA algorithms.

Criterionpess — Criteriongg

RPDg4(Criterion)=| | x 100 (3.25)

Criterionpes;

Table 3.12: Computational results of ALNS, ITS, GASA and CPLEX — part one

Instance Number LBjp UByrrp Costarns Costrrs Costgasa

3x5x2 instances

1 707.343 707.343  707.343 707.343  707.343
2 556.776  556.776  556.776 556.776  556.776
3 649.908 649.908  649.908 649.908  649.908
4 545.779 545779  545.779 545.779  545.779
5 592.725  592.725  592.725 592.725  592.725
6 690.334 690.334 690.334 690.334  690.334
7 645.825  645.825  645.825 645.825  645.825
8 632.609 632.609 632.609 632.609  632.609
9 597.1561  597.151  597.151 597.1561  597.151
10 573.451  573.451 573.451 573.451  573.451

3x8x2 instances

11 1006.084 1022.831 1009.361  1009.361 1009.361
12 949.505  1030.405 962.535 963.279  963.038
13 868.5633  1018.795 875.608 875.676  875.670
14 1085.425 1156.400 1094.486  1095.472 1095.255
15 885.501 - 894.517 905.971  900.100
16 824.222 - 852.645 8564.515  853.211
17 939.638 - 955.521 968.100  959.131
18 892.157  1024.313 902.816 910.393  909.308
19 968.684 - 990.001 1001.646 997.164
20 898.9721 1013.951 915.531 917.503  916.845

3x15x4 instances

21 1721.373 2055.101 1755.073  1772.496 1770.922
22 1620.219 - 1693.407 1748.906 1723.664
23 1723.603 - 1791.902  1813.741 1808.142
24 1812.100 - 1885.538  1911.649 1891.535
25 1685.278 - 1758.043  1787.043 1779.101
26 1628.011 - 1702.668  1749.865 1726.273
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27 1691.520 - 1761.116 1806.729 1793.915
28 1504.787 - 1580.933 1637.845 1614.407
29 1587.245 - 1656,240 1741.291 1711.633
30 1572.561 - 1643.800 1690.465 1680.281
3x30x6 instances

31 2716.809 - 2909.774 3048.238 2965.753
32 2805.576 - 3030.573 3178.502 3133.935
33 2770.914 - 3068.606 3081.330 3068.697
34 2336.500 - 2574.208 2630.200 2594.390
35 2382.518 - 2622.581 2690.049 2660.315
36 2495.036 - 2741.556 2771.446 2751.543
37 2578.563 - 2719.427 2798.751 2735.300
38 2237.001 - 2485.519 2536.715 2503.416
39 2506.774 - 2753.443 2808.556 2773.703
40 2462.576 - 2684.044 2744.142 2742.871

3x50x8 instances

41 4014.250 - 4515,789 4646.570 4574.916
42 3822.045 - 4321.190 4419.248 4357.647
43 3930.257 - 4408.724 4498.569 4441.602
44 3911.100 - 4381.453 4461.489 4424.935
45 3833.296 - 4385.240 4449.991 4415.816
46 3915422 - 4521.686 4560.812 4568.101
47 3866.586 - 4282.326 4534.288 4490.595
48 3874.032 - 4511.115 4542.242 4496.716
49 3821.148 - 4429470 4490.538 4462.221
50 3893.907 - 4353.763 4435.156 4404.549

Table 3.13: Computational results of ALNS, ITS, GASA and CPLEX — computation time.

Instance Number CPUCPLE)((S) CPUALNS CPUITS CPUGASA

3x5x2 instances

1 75.478 83.369 94.346 88.456
2 68.521 84.109 96.893 89.825
3 76.107 83.674 98.833 92.380
4 68.733 84.223 96.021 87.958
5 76.112 84.973 96.861 86.727
6 75.207 84.123 97.362 89.033
7 74.800 84.490 96.735 90.359
8 75.564 85.274 96.587 90.874
9 68.806 83.432 95.922 86.922
10 68.225 83.549 91.278 87.224
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3x8x2 instances

11 480.114 144590 213.215 166.923
12 588.731 154.627  207.690 184.461
13 595.695 151.556  219.803 183.274
14 7200 144.651  218.110 172.096
15 7200 155.264  214.196 169.102
16 7200 157.348  214.997 192.658
17 7200 155.255  213.730 188.100
18 7200 168.278  221.090 195.644
19 7200 150.410 219.766 176.025
20 7200 158.806  220.983 197.401

3x15x4 instances

21 7200 386.118  513.426 433.114
22 7200 3564.353  514.151 429.856
23 7200 373.197  553.588 450.709
24 7200 398.521  560.057 461.727
25 7200 374.573  513.180 435.622
26 7200 351.466  511.718 426.101
27 7200 346.740  501.621 439.258
28 7200 399.014  546.218 455.313
29 7200 359.055  519.400 418.634
30 7200 395.097  530.143 470.952

3x30x6 instances

31 10800 647.292  918.072 747.309
32 10800 636.893  980.594 818.343
33 10800 665.402  977.191 822.658
34 10800 747.845  994.642 861.731
35 10800 727.486  997.247 854.911
36 10800 737.883  1005.626  832.947
37 10800 713.761  1011.710  875.204
38 10800 720.068  1038.242  893.365
39 10800 758.641  1039.987  896.501
40 10800 745.292 1041907  882.113

3x50x8 instances
41 10800 1855.576 3337.3249 2450.717
42 10800 1879.069 3361.1928 2518.162
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3x50x8 instances

43 10800 1863.512 3422.015 2676.481
44 10800 1861.487 3353.724 2713.277
45 10800 1941.217 3385.177 2679.195
46 10800 1908.095 3378.935 2785.726
47 10800 1952.140 3366.213 2753.205
48 10800 1975.549 3397.837 2749.458
49 10800 1960.266 3376.773 2770.116
50 10800 1953.358 3394.546 2788.315

Table 3.14: Gap of ALNS, ITS, GASA and CPLEX.

Instance Number GapALNS Gap]TS GapM[Lp GapGASA

3x5x2 instances

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0
3x8x2 instances

11 0.3256 0.325 1.664 0.325
12 1.372 1.450 8.520 1.425
13 0.814 0.822 17.300 0.821
14 0.834 0.925 6.538 0.905
15 1.018 2.311 - 1.648
16 3.448 3.553 - 3.517
17 1.690 3.029 - 2.074
18 1.194 2.043 14.814 1.922
19 2.200 3.402 - 2.940
20 1.841 2.061 12.790 1.988
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3x15x4 instances

21 1.957 2969  19.387 2.878
22 4517 7942 27.410 6.384
23 3.904 5229 - 4.904
24 3.868 5493 - 4.714
25 4319 6.038 - 5.567
26 4585 7484 - 6.035
27 3.917 6.814 - 4.279
28 5.060 8.842 - 7.284
29 4.346  9.705 - 7.836
30 4530 7497 - 6.849

3x30x6 instances

31 7.102 12199 - 9.1631
32 8.019 13.292 - 11.703
33 10.743 11.202 - 10.746
34 10.173 12.570 - 11.165
35 10.076 12.907 - 11.659
36 9.880 11.078 - 10.280
37 9.717 12918 - 10.335
38 10.876 13.160 - 11.674
39 9.840 12.038 - 10.648
40 8.949 11.388 - 10.119

3x50x8 instances

41 12.497 15.755 - 13.967
42 13.059 15.625 - 14.013
43 12.173 14.459 - 13.010
44 12.026 14.072 - 13.137
45 14.398 16.087 - 15.196
46 7.821 16483 - 16.669
47 15.894 17.238 - 16.108
48 16.444 17.248 - 16.073
49 15919 17.518 - 16.776
50 12.590 14.695 - 13.903

Table 3.15: Computational results (RPD) of ALNS, ITS and GASA.

Instance Number RPD;ns RPDgasa RPDirg

1 0 0 0
2 0 0 0
3 0 0 0
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© 00 3 O U
[N elNoNoNoNoNe]
S O O O O oo
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11 0.034 0.064 0.150
12 0974 1.010 1.116
13 0.266 0.671 0.925
14 0.125 0.440 0.866
15 0.169 0.553 0.903
16 0.667 0.810 1.020
17 0544 0.786 0.861
18 0.363 0.472 0.859
19 0.366 0.874 0.665
20 0.860 0.967 1.152

21 1.018 1.232 1.777
22 0.908 1.047 1.812
23 0.904 2.139 3.785
24 1.080 1.249 1.853
25 1.028 1.311 2.069
26 1.142 2.720 3.263
27 1.249 1.867 2.034
28 1.271 1.827 2.103
29 1362 2411 3.252
30 0.636 1.538 3.493

31 2.864 3.035 5.350
32 2.043 3.935 5.921
33 3.374 4.231 7.663
34 2.524 3.594 5.777
35 1.410 2.634 4.511
36 2.396 3.343 5.378
37 1706 2.523 5.466
38 3.031 2.888 5.153
39 2.026 3.129 4.234
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40
41
42
43
44
45
46
47
48
49
50

3.295 4.597 6.754
4.228 6.416 8.846
4.648 6.369 8.027
4.447 7183 9.746
3.983 6.351 9.828
3.883 5.646 7.662
3.990 5.422 7.657
4.925 6.795 8.345
5.302 8.174 9.001
3.959 6.909 8.587
4.155 6.035 9.502

Table 3.16: The results of ANOVA test over the RPD of objective functions of algorithms.

Source DF SS MS F-test P-value Results

ALNSITS 1 32.52 3252 11.96 0.001 Null hypothesis is rejected.
Error 98 266.38 2.72

Total 99  298.90

ALNS,GASA 1 2544 2544 9.43 0.003 Null hypothesis is rejected.
Error 98 264.26 2.70

Total 99 289.70

GASA,ITS 1 0.43 0.43 0.38 0.540 Null hypothesis is not rejected.
Error 98 112.20 1.14

Total 99 112.63

B M oW b oM el

5 11 13 15 17

RPD

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 48

ALNS TS GASA

Figure 3.11: Graphical comparisons of RPD for both algorithms on all test problems.
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3.5 Conclusion

In this chapter, the collaborative transportation planning of multi-carriers with pickup and
delivery requests with time windows has been studied. This problem has a new feature that
each carrier has reserved requests, which must be self-served. We have proposed a mixed integer
linear programming model for the problem. Because the model is NP-hard, it is impossible to get
a feasible solution in a reasonable computation time for large instances. For this reason, we have
proposed three metaheuristic algorithms, ALNS, ITS and, GASA, to solve the model. Numerical
experiments on benchmark instances with RPD index show that the algorithms can obtain
optimal solutions for small instances and ALNS can obtain better solutions for medium to large
instances compared with GASA and ITS, whereas CPLEX cannot find even a feasible solution
for medium and large instances in the allocated computation time. Moreover, we compared ITS
and GASA with RPD index. Statistical analysis indicated GASA can obtain a better solution by

comparing ITS in a smaller running time.
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CHAPTER

MULTI-PERIODS BID GENERATION PROBLEM WITH PICKUP AND
DELIVERY, TIME WINDOWS, PROFITS, AND RESERVED REQUESTS

n the real world applications, carriers usually plan their pickup and delivery operations

and use of vehicle resources in advance (several days ago) in a rolling horizon [99], [44].

This requires that each carrier considers multi-periods (days) when it determines which
transportation requests to bid and serve in each period (day). Moreover, requests open for bid
(requests to be exchanged among carriers) may span across multi-periods (days). That is, instead
of fixing a day to serve each selective request, each request is allowed to be served within a
service day window consisting multi consecutive days. For example, goods ordered on-line by a
customer on Monday in e-commerce is asked to deliver to the customer’s home within three days
from Tuesday to Thursday. This gives rise a multi-periods combinatorial auction (CA) problem.
As a result, the bid generation problem of each carrier in such auction also involves multi-periods,

where a bid is a combination of transportation requests over multi-periods [62].

In this chapter, a multi-periods Bid Generation Problem (BGP) for a carrier is considered.
In the problem, there are two different types of requests, reserved requests of the carrier and
selective requests. The carrier is committed by contracts with its shippers to serve all reserved
requests by itself. The selective requests are offered by other carriers and are open for bid by
the carrier. Each request has a pickup and delivery request with a pickup node, a delivery node,
a pickup/delivery quantity, and two time windows. Period window specifies the earliest period
and the latest period that each request must be served while time window shows the earliest
and latest service time and is allocated to both pickup and delivery nodes. In addition, each
selective request is associated with a profit that is the price for serving the request provided by a
shipper. By including periodic concept in CA, the carrier can plan its transportation operations

in advance and in a rolling-horizon. A carrier must make two important decisions in the BGP:
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Which requests are chosen to bid and serve in their service period windows and how the routes
are constructed to maximize its total profit. This leads to a new periodic pickup and delivery
problem with time windows, profits, and reserved requests. So, this problem is a different problem
from the problem presented in [65] that considers single period BGP. According to [101], the
present problem is NP-hard and it is impossible to get feasible solutions for large instances
by using a commercial solver like CPLEX. Hence, a hybrid approach that combines a genetic
algorithm and simulated annealing (GASA) is proposed to solve the problem. The GASA adopts a
problem-specific chromosome structure, crossover, and mutation operations well adapted to the
chromosome structure. This algorithm utilizes the specifications of population-based algorithm
and single point algorithm to diversification and intensification of the solution sequentially. For
the purpose of comparison, we utilize Biogeography-Based Optimization algorithm (BBO) that
is a population-based algorithm and its specifications are close to the GA and its operation is
over the population of solutions to reach the best solution. By comparing GA and BBO, each
chromosome in GA, which is considered as an individual with fitness value is habitat with
suitability index that is called HSI (Habitat Suitability Index). Usually, a habitat with high
HSI is acceptable and yields better solutions. The numerical results demonstrate the proposed

algorithms can find a feasible solution in a reasonable computation time for large instances.

The rest of the chapter is organized as follows. Section 4.1 is devoted to literature review.
A detailed description of a mathematical model for the studied problem is given in Section 4.2.
In section 4.3, the GASA and BBO algorithms are described. In Section 4.4, detailed numerical
results of solving the model by GASA, BBO and CPLEX solver on randomly generated instances

are presented and compared. The final section, Section 4.5, concludes this chapter.

4.1 Literature review

The considered problem in this chapter is a bid generation problem with multi-periods in collabora-
tive transportation. The bid generation problem (BGP) is a key decision problem for auction-based
decentralized planning approaches in CTP, which is considered from the perspective of each
carrier. The BGP can also be considered as the request selection problem. In [103] authors study
a carrier’s BGP in the context of TL transportation service procurement. In this paper, the focus
is on the bundling method when an OR bidding language is used. They firstly define the bidder’s
optimality criterion of combinatorial bids. Then two heuristics are developed and compared, one
is based on a fleet assignment model and the second is based on nearest insertion method. In [63]
the carrier’s optimal BGP is considered in combinatorial auctions for transportation procurement
in TL transportation. Carriers employ vehicle routing models to identify the sets of lanes to bid
for based on actual routes. Both column generation and Lagrangian based techniques are used
for solving the carrier optimization model and promising results are reported. An exact strategy

and two heuristic strategies have been proposed in [12] for bidding on subsets of requests. The
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exact bidding strategy is based on the concept of elementary request combinations. The author
shows that it is sufficient for a carrier to bid on each elementary request combination in order
to guarantee the same result as bidding on each element of the power set of tendered requests.
In [63] column generation and Lagrangian relaxation approaches are used in transportation

problem to solve the BGP in combinatorial auction.

Our work in this chapter is related to the work in [65]. Both assume the BGP of a carrier, but
the BGP considered in this thesis involves multi-periods. There are two interesting studies in
multi-periods BGP [99], [44]. In these papers, each carrier considers multi-periods (days) when
it determines which transportation requests to bid and serve in each period (day). Moreover,

requests open for bid may span across multi-periods (days).

Other works related to ours include studies on the Oriented Problem (OP) and Team Orienting
Problem (TOP). Selective TSP or TSP with profits is known as OP [61], [37]. A survey article
in OP is presented in [34]. Multi-vehicle routing problem with profits is called Team Orienting
Problem (TOP). In [13], [16] authors focus on TOP by considering multi-tours maximum collection
problem and multi-tours VRP with profits. Full truckload VRP with profits is studied in [64].
In the article, all demands are assigned to outsource companies if they cannot be allocated to
resources. To solve large instances, hybrid genetic algorithm is applied. An interesting study in
VRP with profit is in [74]. In the paper, asymmetric prize collecting traveling salesman problem
has been demonstrated. The objective of the problem is to minimize the cost of the routes and the

penalty value of unserved customers.

The pickup and delivery problem with multi-vehicles and profit is suggested in [35]. In the
article, there are multi-carriers and the customers with high profits are served. To solve the
problem, general variable neighborhood search (GVNS) is compared with guided local search
(GLS).

In [60] TOP with time windows is considered. The solution method in the paper is a granular
variable neighborhood search. Multi-periods orienting problem is presented in [95]. In the problem
different time windows are considered in terms of different serving days. Periodic VRP with
unpaired pickup and delivery is proposed in [51]. In each period of the problem, the demand
from a pickup node can be delivered to single or multiple delivery nodes. Therefore, the authors
called the problem unpaired VRP with pickup and delivery. Different problems in periodic VRP
is proposed in [19]. Different solutions are suggested in the paper to solve the problem. Multi-
periods vehicle routing problem with due dates is investigated in [5]. In the paper, customers
have to be served between delivery time and due date, otherwise they have to be paid a delay
cost. Another type of periodic VRP is flexible periodic VRP is examined in [4]. In this type of
VRP, each customer is served in different periods with the same demand. This type of periodic
VRP is considered as a special case of inventory routing problem (IRP). In [14] periodic VRP
with time windows is reported. In the paper, a mathematical model is presented and greedy

randomized adaptive search is used to solve the model. There are little works in the multi-periods
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VRP with time windows and the periodic VRP with pickup and delivery with time windows is not
considered in the literature. An article in the multi-periods VRP with time windows is in [21]
that the authors present general mathematical model to different VRP problems. The solution

approach to solve the model is tabu search.

4.2 Formal definition and mathematical model

In this problem, we consider a carrier who wants to determine which requests to bid (select)
among all requests open for bid (offered by all carriers) in a combinatorial auction to maximize
its own profit by solving a bid generation problem. Since the carrier plans its transportation
operations in advance and in a rolling horizon way as mentioned in the introduction, this bid
generation problem involves multi-periods. We consider the problem in the less-than-truck load
transportation, where each transportation request is a pickup and delivery request with time
windows, reserved requests, and selective requests are involved as each request is associated
with a profit which is the revenue to serve the request. Formally, the multi-periods bid generation
problem with pickup and delivery requests, time windows, selective requests, reserved requests,
and profits can be defined on a directed graph G = (V,E), where V is the set of all nodes comprising
all pickup nodes, delivery nodes, and the depot node of the carrier. In the graph, E is the set
of all edges. The node set is defined as V ={0,...,2n + 1}, where n represents the number of
requests, 0 and 2n+1 denote the depot of the carrier, i and n +i represent the pickup and delivery
nodes of request i, i =1,2,...,n. Let W denotes the set of nodes excluding the depot node. As
mentioned before the problem is multi-periods BGP with the number of periods denoted by H. In
the problem, the carrier has a finite fleet of homogeneous vehicles whose index set is given by
K =1{1,2,...,VK}, where VK is the maximum number of vehicles. The capacity of each vehicle is
denoted by Q and the load of each vehicle cannot exceed its capacity. The set P ={1,2,...,n} is the
set of pickup nodes of all requests and the set of all delivery nodes is given by D ={n +1,..,2n}.
In our model, each request i has its pickup node i and delivery node i + n. The demand of the
pickup node of request i is denoted by d;, while the demand of the delivery node of the same
request is denoted by d;,, as d;+, = —d;. The delivery node of each request must be visited after
its pickup node on the same route. The set of all requests is denoted by R, where R = (U;ey Rﬁ)U
R;.R ﬁ is the set of reserved requests that must be served in period [ and R; is the set of selective
requests. Each selective request has a service period window and two time windows. The service
period window determines in which periods the selective request can be served. The two time
windows determine at which times in each period the pickup and delivery nodes of a request
can be visited by a vehicle that serves the request. Both selective and reserved requests are
associated with two types time windows, whereas only selective requests are associated with a
service period window (the period in which each reserved request must be served is prespecified).

The time window of pickup node i and delivery node i + n of request i are denoted by [e;,/;] and
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[ei+n,li+nl], respectively. The service period window for each selective request i is represented
by [E;,L;]. Each reserved request i € R£ must be served in its prespecified period [, [ € H. The
traveling time and transportation cost between two nodes i and j are assumed to be same and
they are denoted by #;; and c;; respectively. The maximum duration of each route i is limited
by T. The multi-periods bid generation problem can be formulated as a mixed-integer linear
programming model. In the model, parameters BM;; =1 —e; is used to formulate linearly time
windows constraints while C; = @ + d; is used in capacity constraints. The decision variables of

the model include binary variables, x; x5 and y;zs. Two real variables U;;, and CV;yj, are defined

as follows:
1 if and only if in period A vehicle % visits directly node j after node i
Xijkh =
0 Otherwise
1 if and only if request i is served by vehicle % in period A
Yikh =
Otherwise

U;rpn = arrival time of vehcile & at node i in period &

CV;p =load of vehcile 2 when it leaves node i in period &

max(Y;cR 2 heH 2keK PiYikh—2heH 2ieV 2jeV 2keK CijXijkh)

subject to:
Y xjin— Y. xijp=0 VieW,VkeK,YheH 4.1)
JEV;j#i JEVj#i
Y > xojppz1 (4.2)
keK jeP;jZ0heH

> > Y. Xi@n+vkh =1 (4.3)
keKieD;i#@2n+1)heH

Y yin=1 VieH,VieR! (4.4)
keK
Y. Y. yvikn<1l Vi€eR, (4.5)
helE;,L;1keK
Z Xj(n+idkh = Yikh VieP,keK,YheH (4.6)
JEV j#i,0
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Z Xijkh = Yikh Vi€P,ke€eK,VheH 4.7
JEV ,j#i,2n+1

Uirh +tin+i) +8i <U@siyen Vi€eP,keK,YheH (4.8)
Ujrh zUjpp +tij+si—BM;j(1-x;jr;) VieV,keK,VheH,VjeV (4.9)
eiVirkh <Uipp <li+(1—yixn) > BM;;  YheHNieV,VkeK (4.10)
jev
Uirp +tij+si—BM;j(1-x;jpp)<T VieV,keK,VheH,Vje{0} (4.11)
CVipn+d; —Ci(1-x;pp)<CVjpp, VieV,keK,VheHNVjeV (4.12)
max{0,d;} < CVipm <=min{@,Q@ +d;} VieV,keK,VheH (4.13)
xijrh €10,1} Vi,jeV,VekeK,Yhe H (4.14)
Ui =20 VieV,VkeK,YVheH (4.15)
CVirn =0 VieV,VkeK,Yhe H (4.16)

yirh =0 foranyie€Rs,VkeK, forany h¢ (E;,L;) and y;z,=0 foranyi€R,;;z; (4.17)

The objective function represents the total profit of the carrier, which is equal to the difference
between the total payments of serving requests in all periods and the total transportation cost.
Constraint (4.1) ensures when a vehicle arrives at a node in a period, it must leave from the node
in the same period. Constraints (4.2) and (4.3) signify each vehicle leaves its depot in a period
must return to the depot in the same period. Equation (4.4) implies each reserved request must
be served in its pre-specified period. Equation (4.5) indicates each selective request can be served
in a period within its service period window or not served. Constraints (4.6) and (4.7) guarantee
if a request is served in a period, its delivery node must be visited after its pickup node with
the same vehicle in the same period. Equations (4.8)-(4.11) specify time windows constraints on
the pickup and delivery nodes of each request and the constraint on the maximum duration of
each route. Constraints (4.12)-(4.13) ensure vehicle capacity constraints. Equations (4.14)-(4.17)

describe the variables.
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4.3 Metaheuristic approaches to solve multi-periods bid

generation problem

In section 4.2, we have presented the MILP model to multi-periods BGP. Since existing commercial
solvers are not powerful enough to solve the large size of PDPTW in a reasonable time, we apply
GASA and BBO to solve this problem.

4.3.1 Initial solution construction procedure

The presented initial solution for the problem in this chapter is close to the initial solution
structure in Chapter 3 (section 3.3.1) with a small difference in step 3. In the proposed hybrid
genetic algorithm with simulated annealing (GASA), the size of population determines the
number of initial solutions to construct. As described in the previous sections, all reserved
requests must be served in their predetermined periods while some selective requests may be not
served when they are not profitable. Profitable selective requests may be served in the periods
within their service period windows.

The three ways are given in the following:
1. Only the reserved requests are served.
2. All reserved requests are served firstly and then selective requests are served.

3. All reserved requests must be served first and selective requests are served only if its
assigned period is not zero (it is explained in section 4.3.2.1). That is, if the period assigned

to the request is zero, it will be not served.

If the probability of choosing each three ways to construct an initial solution is denoted by a1,

ag and as, respectively, then a;+ag+ ag = 1.

4.3.2 Hybrid genetic algorithm with simulated annealing (GASA)

The applied GASA in this section is the same as GASA in Chapter 3. It means that in this algo-
rithm, a chromosome represents each solution and the population in each iteration is composed
of multiple chromosomes. All components of GASA for multi-periods BGP with pickup, delivery
and time windows will be explained in the rest of this section. In each iteration of GASA, the
maximum profit is updated thanks to the obtained profits in the latest generation. SA is applied
to each solution of the present population. Each solution is selected with a probability based on a

simulated annealing procedure.

4.3.2.1 Solution representation in GASA

The chromosome of multi-periods BGP is defined by three vectors X,Y, and Z. Vector X includes

all pickup nodes and delivery nodes and its dimension is |P UD]| as the index of each request
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is the same as its pickup node index in the three vectors. What’s more, each selective request
must be served in a period within its service period window. Thus, an extra period is introduced
to indicate a not served selective request. This extra period is referred to period 0. The size of
vector Y is equal to the number of all requests and each component of vector Y indicates the
period assigned to a request. Since a selective request is not necessarily to be served, it will not be
served if it is not profitable. The dimension of vector Z is equal to the number of all requests. In
vector Z, each component indicates the index of the vehicle serving a request. A simple instance
(example) is given in the following to help the understanding of chromosome structure, where the
data of this instance are given in Table 4.1 and a solution of the instance is given in Table 4.2
and Table 4.3, where four requests are served in day 1 and day 2 and no request is served in day

3. The chromosome represented by three vectors X,Y, and Z for this solution is given in Fig 4.1:

Table 4.1: Data of a simple instance.

Small instance Data Value
Number of periods 3 days
Number of requests 4 requests
Number of pickup nodes 4 nodes
Number of delivery nodes 4 nodes
Total number of customer nodes 8 nodes
Reserved requests {3,4}
Selective requests {1,2}

Prespecified period for serving each reserved request
Service period window for each selective request
Index of pickup node of request i

Index of delivery node of request i

Number of vehicles available in each period

3, day 1 and 4, day 2

1, day [2,3] and 2, day [1,3]
As the same as its request
i + number of requests

2 vehicles

Table 4.2: The data for selective and reserved requests served in the first day.

reserved requests and selective requests served in day 1 Value

Index of reserved request served
Pickup node index of reserved request
Delivery node index of reserved request

Index of vehicle used to serve the reserved request

Index of selective request served

Pickup node index of selective request

Delivery node index of selective request

Index of vehicle use to serve the selective request

3
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Table 4.3: The data for selective and reserved requests served in the second day.

reserved requests and selective requests served in day 2 Value

Index of reserved request served

Pickup node index of reserved request

Delivery node index of reserved request

Index of vehicle used to serve the reserved request
Index of selective request served

Pickup node index of selective request

Delivery node index of selective request

Index of vehicle used to serve the selective request

4

N Ot = = DN 00 &

1 6 4 3 7 8
X
2 1 1
Y
2 1 1
7

Figure 4.1: Illustration of chromosome’s structurer

To transform a given chromosome into a feasible solution, we apply a schedule repair function

to construct a sequence of visited pickup and delivery nodes in each feasible route. Actually,

the most important thing in constructing a route in each period is to know which pickup and

delivery nodes are assigned to the route. According to the chromosome defining a solution, we can

determine all pickup and delivery nodes are visited by each route in each period. We put all these

pickup and delivery nodes in a list we call if list L. To constrcut a route, a node is selected from

the beginning of the list. If the node is a pickup node, it will be added to the route. Otherwise, if

the node is a delivery node, it is added to a route only if its corresponding pickup node has been

added to the route previously. Once a node from list L is added to the route, it will be deleted from

the list. The following procedure explains the schedule repair function applied for generating

routes in day 1.

1. In day 1 and route 1, there are 4 pickup/delivery nodes, which constitute the list L.
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2. A selected node from the beginning of list L is inserted into a route R if it is a pickup
node or its pickup node has been inserted in route R previously. For example, L(1)=6is a
delivery node because its index is larger than the number of requests. When it is chosen, all
nodes of route R are checked. If its corresponding pickup node has been inserted previously
into list R, the node 6 is inserted into the route as well. Otherwise, it will be ignored. The

next node is L(2) = 3, which is a pickup node, so it is inserted into route R.

In the next step after removing node 3 from list L, it is checked from the beginning to choose
the next node to insert into route R. The node 6 is a delivery node and its pickup node, node
2, 1s not in the route R. Consequently, the component which is chosen from the list L as a next
node id node 7. The node 7 is a delivery node and its corresponding pickup node, node 3, has
been inserted previously in route R. Therefore, node 7 is inserted to list R and deleted from list
L. Generally, after deleting a node from the list L and inserting in the list R, the list L will be

explored from the beginning to choose a node to insert into the route R.

After deleting node 7, the list L is checked from the beginning again. Since the pickup node of
6 has not been inserted previously into route R, exploring the list L continues. By exploring the
list L from the beginnin, there is a single node, node 6, which is the corresponding delivery node
of node 2. Because its pickup node, node 2, has been added to the list R previously, so the node 6

is inserted in the route list R.

The same procedure is applied to construct the routes in other days. The list L and route R

for first day are given below:
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4.3.2.2 GASA algorithm operators

The GASA chromosome in this chapter and Chapter 3 has the same structure. In the previous
chapter, there are multi-carriers, which have been illustrated by vector Y. In this chapter, there
are multi-periods instead of multi-carriers and they can be illustrated by the same vector. The
other two vectors with the same structure, vector X and Z, can be applied to the GASA in
this chapter. In Chapter 3, each component of vector Y is the suitable carrier to serve each
request. In this chapter, each component of vector Y is the suitable period to serve a request.
According to the structure of each solution for the studied problem, two crossover operators and
two mutation operators are proposed. In the rest of this section, these operators are summarized.

The comprehensive and complete descriptions of operators are in Chapter 3.

Crossover operator of vector X
In the suggested chromosome structure to the GASA, vector X has a permutation structure
and a single point crossover is applied. In fact, this crossover operator avoids node duplications

in the offsprings.

Crossover operator of vector Y and Z

The uniform crossover is a suitable crossover operator to the vectors Z/Y. In the uniform
crossover, a mask vector with zero and one entries (genes) and the same size as K/Y is generated.
The value of each offspring’s gene is produced according to the value of the corresponding gene in

the mask vector and the component of gene in the parent.

Mutation operator of vector X
To have a diversified feasible solution, a mutation operator with the following two steps is

applied to vector X with the permutation structure.

1. Choose randomly two genes of vector X.

2. Choose randomly one of the insertion, swap, and reversion operations. Execute the selective

operation on the selective genes.

Mutation over vectors Z and Y
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The mutation over vector Z is realized in three steps. In the first step, the number of mutated
genes of vector Z is determined randomly and denoted by /. The number of mutated genes are
obtained in the following way: An integer number 4 is randomly generated between 1 and dim[Z],
where dim[Z] is the number of genes in vector Z and VK is the total number of vehicles. This
number is then multiplied by a mutation rate r, leading to Ar. By rounding Ar to the smallest
integer number larger than or equal to Ar, the number [ is finally obtained. In the second step, /
genes are randomly selected from Z. In the third step, for each selective gene of Z, an integer
number is randomly generated between 1 and VK, and the gene in Z is changed to this value.

The mutation over vector Y is the same procedure as the mutation over vector Z.

4.3.2.3 Simulated annealing algorithm in GASA

Most heuristic algorithms only accept an improved solution, whereas simulated annealing gives

a chance to worse solutions, which accepts a worse new solution with a probability. The new
_ f&-f6)
solution acceptance probability is given by e© 70, where f(s’) is the objective value of the new

solution and f(s) is the objective value of the current solution and f(s’) < f(s). The acceptance
probability depends on both the temperature parameter T and the profit decrease f(s)— f(s)
while the temperature is decreased at the end of each iteration. The temperature reduction is
performed by multiplying Ty with a cooling factor co € (0,1). To attain a slow cooling, the cooling
factor must be set close to one. At the beginning of the execution of the GASA algorithm the
temperature parameter, T, is set to T;, and a solution with profit 30% lower than the initial
solution is accepted with a given possibility pr. In GASA, to produce the next generation solutions,
at the end of each GA iteration, the solutions generated by crossover and mutation are sorted
and merged with the current population. GASA utilizes the SA rule to determine whether each
solution in the sorted list becomes a solution (chromosome) in the next generation. In other words,
to give an opportunity being selective to each solution, SA rule is used to compare the solutions
in the current population and the solutions obtained by crossover and mutation. In the same
way as in simulated annealing algorithm, the temperature of SA is decreased at the end of each

iteration in our GASA algorithm.

4.3.3 Biogeography-based optimization algorithm (BBO)

BBO is a meta-heuristic algorithm inspired by Biogeography Science to explore the solution
space. In [90], the theory of Biogeography is used to solve the optimization problems according
to this fact that Biogeography studies the manner of organisms during time and space. Simon’s
proposed algorithm like GA is a population-based algorithm as its operation is over the population
of solutions to search the best solution. By comparing GA and BBO, each chromosome in GA,
which is considered as an individual with fitness value is habitat with suitability index that is
called HSI (Habitat Suitability Index). Usually, a habitat with high HSI is acceptable and yields
better solutions. In the algorithm, species migrate from the regions with high HSI to places with
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low HSI to upgrade these regions. Emigration and immigration are two operators to improve
solutions and maximize the HSI, where the first operator is applied on the regions with high
HSI and the second one is used in opposite side. Solution structure of BBO is called habitat and
its representation is same as individual in GASA. In [82], two algorithms are compared and

presented in Table 4.4.

Table 4.4: The comparison of GA and BBO.

BBO GA

Population-based Population-based

Habitat (individual) Chromosome (individual)

SIV Gene

Habitats consisted of SIV Chromosomes consisted of genes
Mutation operator Mutation operator

Migration operators Crossover operator

(immigration and emigration)

Good solution is characterized by high HSI Good solution is characterized by high fitness
A good habitat is one which has A good chromosome is the one which has more
more diversity and species value of fitness function

No individual of initial population Initial individuals discarded by GA operators

is discarded during iterations but it is modified during iterations

4.3.3.1 Selection strategy

The main difference between GASA and BBO is the modification of solutions in diverse iterations
instead of their omission. Actually, the main goal of BBO in this step is determining the regions,
which needs corrections along with highlighting solutions to use their attributions. Selection
methods in BBO are divided to two parts; first migration operators, second mutation. The
migration operator of BBO is like GASA crossover operator, but BBO migration operator is
performed between immigrant habitat and emigrant one. In the current sections, operators
are described. Like GASA, the most important part of BBO is solution representation. H; is
the solution structure of BBO, called habitat, is the same as an individual structure of GASA

(explained as in section 4.3.2).
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Figure 4.2: Model of immigration A and emigration u probabilities [90].

1. Selection approach of migration operators

Overall, there are two decisions. Does the special place (H;) alter or not? Produced random
number should be compared with immigration rate (1;). Setting region (H) as an origin
of conducting attributes to Hi will be the next step. Roulette wheel is an appropriate
technique that is implemented at the emigration rate (1;). In the current paper, fulfilling
BBO mutation operator is the same as GASA mutation operator. In reality, the output of

this phase determines whether the considered region has to be mutated or not.

2. Migration operator is used to the modification of solutions and its idea related to the
theory of migration in species. In this process, each H; solution is selected according to
its immigration and emigration rate to achieve or share attributes, respectively. There is
necessary to mention, SIV in BBO algorithm is the equivalent with a gene in chromosome
structure of GASA. If SIV is a solution attribute, the following inequality shows the
mentioned possible relation H;(SIV) — H;(SIV). Figure 4.2 illustrates the mechanism
in translation between both rates in relation to species plenty [90]. Indeed, interaction
between high and low HSI as mentioned previously causes emigration rate to reduce due
to species increasing in habitat; as a result of this increment, immigration rate decreases
and the emigration rate rises. In Fig. 4.2, E and I demonstrate maximum immigration
and emigration rates respectively in which most of the time their values are 1. S,,,, is the
maximum number of species that a habitat can accept and Sy is the balance point, where
two rates are equal. Although in Fig. 4.2 rates show it can be used for the linear model, the

non-linear model also can be discussed [90].

Accordingly, after calculating HSI, immigration and emigration rates are calculated by

62



4.4. EXPERIMENTAL RESULTS

inequalities (4.18) and (4.19). K is the rank of each solution after sorting them based on HSI

insofar as the better solution has high rank and consequently larger %;.
ki
Ai=I(1-—) (4.18)
n

k;

In equations (4.18) and (4.19), I and E are two coefficients and their values are determined
by parameter tuning. The other variables related to the concept of migration is “probability of
existing S species” in a habitat. When species departure from time t to A¢, there are species in a
habitat at ¢ + A¢. In fact, it shows from each iteration to next iteration, one of the following states

can be happened to each solution. Equation (4.20) defines these states.

1. At t there are S species; therefore, it is not needed to change in ¢ + At.
2. At t there are S-1 species and immigration to ¢ + At is required.

3. At t there are S+1 species and an emigration to ¢ + At is required.
Equation (4.20) defines these states.
P, (t+ At) = Ps(t)(1 — A At — us At) + Ps_1Ag_1At + Pgy1us + 1At (4.20)

After solving equation (4.20) in a stable state, the underlying mathematical inequality yields
P; [90]. Subsequently, after calculating A;, u; and implementing selection operator, migration

operator is applied.

4.4 Experimental results

To evaluate the performance of the proposed two metaheuristic algorithms, we applied them to
solve 8 sets of instances of small to large sizes taken from the literature and compared them
with the MILP solver of CPLEX 12.6 in terms of profit and computation time. In the following
sections, we present these instances and the comparison results. The results display both GASA
and BBO algorithm remarkably outperform CPLEX, while the GASA algorithm outperforms the
BBO algorithm.

4.4.1 Instances

The instances are taken from [65] with the same reserved requests, selective requests, the
coordinates of each node, the demand and time windows of each request. 56 instances are

generated in small size (n € {6,8,10,20}), medium size (n € {30,40,50}) and large size (n € 100).
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The name of each instance has a format n — |R,| — |Rs| — source. As an example, we explain
instance 10-5-5-50a. There are 10 requests in total, including 5 reserved requests (1-5) and 5
selective requests (6-10). The code 50a means this instance is derived from the original one,
prob50a : Only the 10 first requests appearing in prob50a are copied in instance 10-5-5-50a. To
include the period specification, we consider there are 5 periods and each period has its own
reserved requests according to the random function.

In [65], for each instance size (10, 20, 30, 40, 50 or 100 requests), authors build nine instances
using nine PDPTW files. These nine instances can be decomposed in three types: Three with
roughly one-third of reserved requests, three with 50% of reserved requests, and three with
two-thirds of reserved requests. The fleet size in [65] is adjusted in accordance with the proportion
of the number of requests extracted from the original instance.

The service price of each request is set according to the coordinates of its nodes. Take request
i as an example, let d; ,+; denotes the distance from its pickup node i to delivery node n + i,
then this request is given a service price p; =d; +;.4,A € [3,5]. This formula generates a large
proportion of profitable requests and a small proportion of non-profitable requests [65].

The instances are executed in CPLEX12.6 on a laptop with an Intel core i5 CPU and 4.00 GB
RAM. Note that for the medium instances and large instances, it is impossible to solve the MILP

model optimally by CPLEX after 2 hours and 4 hours of running time, respectively.

4.4.2 Parameter setting

The performance of GASA algorithm and BBO algorithm depends on the quality of their parame-
ters setting. The values of some parameters of the two algorithms are determined empirically and
are given in Table 4.5. The values of their other parameters are tuned by using Taguchi method,
which is a popular and efficient parameter tuning technique based on fractional experiments
(FFE) [87]. The parameters of the two algorithms selected to tune are in Table 4.6, and their
values are given in Table 4.7 and Table 4.8 according to Fig. 4.3 and Fig. 4.4 by utilizing Taguchi

approach previously discussed in Chapter 3.

Table 4.5: Parameter values of GASA determined empirically.

Parameter Description Value
Sublt Number of iteration of SA 110
Um Mutation rate 0.26

4.4.3 Test results and optimality gaps

After the parameter calibration, we execute GASA algorithm, BBO algorithm and CPLEX on all

instances. Since both GASA and BBO algorithms contain random factors to reduce the impacts
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Table 4.6: The domain of calibrated parameters of GASA and BBO.

Methodology Parameter Range Low(1l) Medium(2) High(3)
Npop 400-600 400 500 600
GASA nlt 450-800 450 625 800
Pc 0.4-0.8 04 0.6 0.8
Pm 0.05-0.3 0.05 0.175 0.3
BBO E 1-2 1 1.5 2
I 1-2 1 1.5 2
Mmax 0.05-0.15 0.05 0.1 0.15
Npop 200-300 200 250 300
nlt 450-800 450 625 800
Keep 0.15-0.25 0.15 0.2 0.25
Main Effects Plot for SN ratios
Data Means
E_BBO 1_BBO M_maoc
-50.0 \
=925
n =0 e T o-—-"‘”"//.
L ars
E -100.0 \
§ R R S S U U R
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-97.5
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1 2 3 1 : 3 1 2 3

Signal-to-noise: Smaller is better

Figure 4.3: Output of Taguchi ration for BBO.

Table 4.7: Parameter values of GASA determined by Taguchi.

Methodology Parameter Description Value
Npop Population size 150
nlt Number of iterations 800

GA P, Crossover probability 0.6
P,, Mutation probability  0.05
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Figure 4.4: Output of Taguchi ration for GASA.

Table 4.8: Parameter values of BBO determined by Taguchi.

Methodology Parameter Description Value
E Emigration rate 1
| Immigration rate 2
BBO M0x Mutation probability 0.05
npop Population size 200
nlt Number of iterations 800
Keep Elitism parameter 0.25

of these factors on their performance evaluation, each algorithm is executed three times for
each instance. The average profit and the average running time (in seconds) obtained by the
three executions are reported. For CPLEX, since the considered carrier collaboration problem is
NP-hard [66], it is very time consuming to solve optimally medium size and large size instances.
For this reason, we set a maximum running time for CPLEX to solve each medium or large size
instance. The time limitation is 2 hours for each medium size instance with 20 requests and 30
requests 4 hours for each large size instance with 40, 50 and 100 requests. Our two proposed
algorithms are compared with each other and with CPLEX based on criteria defined in Table
4.9, where Objgasa and Objppo are the profits of the studied problem obtained by the two
algorithms, respectively; UByrr.p and LBjsr.p are the upper bound and the lower bound of the
objective value of the problem obtained by CPLEX in the preset running time.

The computation results are given in Table 4.10, Table 4.11, and Table 4.12. From Table 4.10
and Table 4.11, we can see, for small 6 requests instances, CPLEX, GASA, and BBO all can find
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Table 4.9: Criteria used for comparison of GASA, BBO and CPLEX.

Criterion Description

GapmiLp The relative gap between LBysrr.p and UByrrp, defined as

WUBymiLp—LByirp)
UByiLp

Gapggo The relative gap between UBjsr.p and Objgpo, defined as

(UByiLp—0bjBgo)
UBuyiLp

Gapgasa The relative gap between LBjyrr.p and Objgasa, defined as

(UBym1Lp—0bjgasa)
UByiLp

an optimal solution. However, for some of small instances with 8 requests and most medium
to large size instances, CPLEX could not even find a feasible solution in a preset computation
time, whereas both algorithms could find a feasible solution for all instances. Actually, for most
instances with the number of requests more than 8, no feasible solution is obtained by CPLEX,
so we compare the solutions obtained by our two algorithms based on their relative gaps with the
upper bound obtained by CPLEX, i.e., using the above-mentioned criteria. The applied algorithms
can find an optimal solution for all small instances with 6 requests. They can find a solution with
the relative profit gap smaller than 0.34% for 8 requests instances and can find a solution with
the relative profit gap smaller than 4.50% for 10 requests instances. For medium instances, our
GASA algorithm can find a solution with the gap smaller than 5.6%, whereas our BBO algorithm
can find a solution with the gap smaller than 6.117%. For instances with 30 requests, GASA
algorithm can find a solution with the gap smaller than 6.98%, while our BBO algorithm can
find a solution with the gap smaller than 7.74%. For instances with 30 requests, our GASA
algorithm can find a solution with the gap smaller than 10.31%, whereas our BBO algorithm
can find a solution with the gap smaller than 11.60%. For instances with 50 requests, our GASA
algorithm can find a solution with the gap smaller than 13.2%, whereas our BBO algorithm can
find a solution with the gap smaller than 13.6%. In the instances with 100 requests, our GASA
algorithm can find a solution with the gap smaller than 16.4% and BBO algorithm can find a
solution with the gap smaller than 18.2%. Moreover, our proposed algorithms are much better
than CPLEX, Table 4.12, in terms of running time for medium and large instances, although
the running time of the two proposed algorithms increases naturally with the size of instance
and the computation time of CPLEX is smaller than those of the algorithms for small instances
with 6 requests. To compare the two algorithms we utilize RPD that has been mentioned in the
previous chapter. After calculating RPD, statistical analysis is done as we mentioned in Chapter
3. According to Table 4.13, Table 4.14, and Fig. 4.5, Hj is rejected. GASA has better profit, small
RPD, and running time smaller than those of BBO respectively for all instances; therefore GASA
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outperforms BBO. This may be because using diversification and intensification operators by

using SA in GASA, which makes it able to search diversified regions in the solution space.

Table 4.10: Computational results of GASA, BBO, and CPLEX —part one.

Instance Number LBM[LP UBMILP ObjGASA ObjBBO

6 request instances (small instance)
6-3-3 256.525 265.525 265.525 256.525

8 request instances (small instances)
8-4-4 512.015 514.731 514.682 513.373

10 request instances (small instances)

10-5-5a 909.810  984.660 979.614 972.828
10-5-5b 968.6747 1011.463  1008.415  991.473
10-5-5¢ 974.001 1028.626  1019.693  1009.930
10-3-7d 1125.153 1157.164  1148.267  1138.231
10-3-7e 828.254  903.828 897.786 893.741
10-3-7f - 1210.611  1183.689  1179.442
10-7-3g 917419  936.1774  929.350 926.464
10-7-3h 1266.383 1298.205  1286.358  1281.631
10-7-3i - 1375.914  1328.921  1314.160

20 request instances (medium instances)

20-10-10a - 2619.785  2473.626  2461.335
20-10-10b - 2286.16 2194.358  2173.123
20-10-10c - 3815445 3651975  3609.450
20-5-15d 1832.804 2015.517 1991.431  1988.117
20-5-15e - 2568.903  2462.240  2406.062
20-5-15f - 2819.162  2698.150  2673.227
20-15-5g - 3765.529  3577.579  3573.118
20-15-5h - 3324.128  3153.251  3131.662
20-15-51 - 4514.717  4278.305  4238.713

30 request (medium instances)

30-15-15¢ - 7432.469  7003.483  6991.804
30-10-20d - 6629.284  6263.020 6150.135
30-10-20e - 8803.686  8249.580  8183.466
30-10-20f - 8217.720  7783.125  7694.472
30-20-10g - 11214.849 10452.390 10425.340
30-20-10h - 12717.674 11991.118 11940.267
30-20-101 - 11591.228 10783.710 10694.481
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40 request (large instances)

40-20-20a - 12065.100 11103.219 10983.392
40-20-20b - 12891558  11864.083 11612.618
40-20-20c - 13494.750  12394.446 12293.720
40-15-25d - 12205.416  10948.519 10860.099
40-15-25e - 10611.560 9712.119  9559.921

40-15-25f - 13563.683  12297.303 12073.077
40-25-15¢g - 11115.574  9979.391  9828.174

40-25-15h - 14780.456  13421.144 13183.012
40-25-151 - 12737218  11462.503 11274.236

50 request (large instances)

50-25-25a - 23781930 21105.171 20549.460
50-25-25b - 20231195  18171.659 17810.230
50-25-25¢ - 17400.241  15318.582 15159.107
50-20-30d - 22083.155  19809.005 19206.231
50-20-30e - 24757404  22108.796 21593.364
50-20-30f - 20495.213  18004.147 17954.968
50-30-20g - 18370.485  16482.312 16472.686
50-30-20h - 22756.810 20018.565 19784.818
50-30-201 - 17531.044 15435438 15289.753

100 request (large instance)

100-50-50a - 88406.782  75606.060 73984.573
100-50-50b - 90722467  78110.724 77302.100
100-50-50c - 103462.656 87843.157 85268.202
100-25-75d - 112103.589 93850.223 92412.151
100-25-75e - 81434.327 69715.008 67737.466
100-25-75f - 90686.991  75815.239 74337.463
100-75-25¢g - 93663.471  78945.834 76826.505
100-75-25h - 82124.016  70237.949 68772.828
100-75-251 - 100133.674 86774.130 85564.521
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Table 4.11: Gap of GASA, BBO, and CPLEX.

Instance Number Gapgasa Gapppo GapyiLp
6 request instances (small instance)

6-3-3 0 0 0

8 request instances (small instance)

8-4-4 0.009 0.263 0.333
10 request instances (small instances)

10-5-5a 0.512 1.201 7.601
10-5-5b 0.301 1.976 4.230
10-5-5¢ 0.869 1.818 5.311
10-3-7d 0.769 1.636 2.766
10-3-7e 0.668 1.116 8.361
10-3-7f 2.223 2.574 -
10-7-3g 0.729 1.037 2.003
10-7-3h 0.912 1.276 2.451
10-7-3i 3.415 4.488 -

20 request instances (medium instances)

20-10-10a 5.579 6.048 -
20-10-10b 4.015 4.944 -
20-10-10c 4.284 5.398 -
20-5-15d 1.195 1.359 9.065
20-5-15e 4.1520 6.338 -
20-5-15f 4.152 6.295 -
20-15-5g 4.991 5.109 -
20-15-5h 5.140 5.789 -
20-15-51 5.236 6.113 -
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30 request (medium instances)

30-15-15¢ 5771 5928 -
30-10-20d 5524  7.227 -
30-10-20e 6.294 7.045 -
30-10-20f 5288 6.367 -
30-20-10g 6.797 7.039 -
30-20-10h 5712 6.113 -
30-20-101 6.967 7.774 -

40 request (large instances)

40-20-20a 7973 8965 -
40-20-20b 8.048 9.920 -
40-20-20c 8.153  8.899 -
40-15-25d 10.297 11.022 -
40-15-25e 8.476  9.910 -
40-15-25f 9.336 10.989 -
40-25-15¢g 10.221 11.581 -
40-25-15h 9.196 10.807 -
40-25-151 10.007 11.485 -

50 request (large instances)

50-25-25a 11.255 13.592 -
50-25-25b 10.180 11.966 -
50-25-25¢ 11.963 12.879 -
50-20-30d 13.027 13.540 -
50-20-30e 10.698 12.780 -
50-20-30f 12.1564 12.394 -
50-30-20g 10.278 10.330 -
50-30-20h 12.032 13.0569 -
50-30-201 11.953 12.784 -

100 request (large instance)

100-50-50a 14479 16.313 -
100-50-50b 13.901 14.792 -
100-50-50c 15.096 17.585 -
100-25-75d 16.282 17.565 -
100-25-75e 14.391 16.819 -
100-25-75f 16.398 18.028 -
100-75-25¢g 15.713 17.976 -
100-75-25h 14473 16.257 -
100-75-251 13.341 14.549 -
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Table 4.12: Computational time of GASA, BBO and CPLEX.

Instance Number CPUyip CPUgasa CPUgppo
6 request instances (small instances)

6-3-3 67.649 85.117 89.216
8 request instances (small instances)

8-4-4 98.365 100.794 123.675
10 request instances (small instances)

10-5-5a 500 184.342 215.429
10-5-5b 500 160.105 204.767
10-5-5¢ 500 173.110 217.353
10-3-7d 500 186.185 253.419
10-3-7e 500 190.856 229.022
10-3-7f 500 185.647 232.109
10-7-3g 500 177.961 211.360
10-7-3h 500 201.128 249.029
10-7-3i 500 198.403 253.715
20 request instances (medium instances)

20-10-10a 3600 331.511 395.389
20-10-10b 3600 343.992 416.356
20-10-10c¢ 3600 351.836 407.354
20-5-15d 3600 326.537 402.911
20-5-15e 3600 322.419 373.902
20-5-15f 3600 335.395 411.363
20-15-5g 3600 339.014 402.742
20-15-5h 3600 346.191 413.808
20-15-51 3600 333.587 421.066
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30 request instances (medium instances)

30-15-15c¢ 3600 547.992  618.982
30-10-20d 3600 513.14 626.153
30-10-20e 3600 525.082  644.195
30-10-20f 3600 546.232  634.247
30-20-10g 3600 536.779  639.816
30-20-10h 3600 538.278  630.252
30-20-101 3600 521.305  646.795

40 request instances (large instances)

40-20-20a 7200 825.753  917.153
40-20-20b 7200 819.124  884.221
40-20-20c 7200 814.638  892.439
40-15-25d 7200  844.225  903.678
40-15-25e 7200  826.439  920.164
40-15-25f 7200  856.030  929.082
40-25-15¢g 7200 819471  982.464
40-25-15h 7200 837.366  907.201
40-25-151 7200 840.476 916.676

50 request instances (large instances)

50-25-25a 7200 1719.124 1984.866
50-25-25b 7200  1725.753 1871.513
50-25-25¢ 7200 1630.225 1846.887
50-20-30d 7200 1696.439 1881.504
50-20-30e 7200 1756.309 1972.163
50-20-30f 7200 1690.491 2082.744
50-30-20g 7200 1655.366 1869.513
50-30-20h 7200 1740.672 1944.025
50-30-201 7200  1842.201 2030.828

100 request instances (large instances)

100-50-50a 10800 2725.955 3171.128
100-50-50b 10800 2728.801 3205.662
100-50-50c 10800 2814.200 3173.351
100-25-75d 10800 2868.371 3121.081
100-25-75e 10800 2872.335 3090.196
100-25-75f 10800 2759.854 3234.307
100-75-25g 10800 2916.492 3255.168
100-75-25h 10800 2891.837 3170.435
100-75-251 10800 2939.072 3245.277
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Table 4.13: Computational result (RPD) of GASA and BBO.

Instance Number RPDgasa RPDpgpo

6-3-3 0 0

8-4-4 0.002 0.047
10-5-5a 0.115 0.631
10-5-5b 0.481 1.079
10-5-5¢ 0.111 1.054
10-3-7d 0.854 1.069
10-3-7e 0.679 1.238
10-3-7f 0.582 1.032
10-7-3g 0.704 1.081
10-7-3h 0.617 1.151
10-7-3i 0.329 1.141
20-10-10a 1.089 1.827
20-10-10b 1.015 1.619
20-10-10c 1.049 1.665
20-5-15d 1.128 1.866
20-5-15e 0.114 1.030
20-5-15f 0.938 1.169
20-15-5g 1.477 1.981
20-15-5h 1.283 1.961
20-15-51 1.359 1.809
30-15-15¢ 1.284 1.802
30-10-20d 1.216 1.732
30-10-20e 1.346 1.910
30-10-20f 1.103 1.937
30-20-10g 1.117 1.885
30-20-10h 1.246 1.862
30-20-101 1.599 2.033
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40-20-20a
40-20-20b
40-20-20c
40-15-25d
40-15-25e
40-15-25f
40-25-15g
40-25-15h
40-25-15i

50-25-25a
50-25-25b
50-25-25¢
50-20-30d
50-20-30e
50-20-30f
50-30-20g
50-30-20h
50-30-20i

100-50-50a
100-50-50b
100-50-50c
100-25-75d
100-25-75e
100-25-75f
100-75-25¢g
100-75-25h
100-75-251

1.804
1.822
1.837
2.351
2.678
3.701
3.495
2.660
2.910

4.998
5.173
5.371
6.441
4.016
7.013
6.849
6.337
7.217

6.441
7.591
7.492
6.539
7.682
7.810
8.176
8.309
8.239

2.420
2.553
2.483
3.583
3.666
5.561
5.333
4.316
4.874

7.648
7.823
8.442
9.759
8.833
11.975
9.495
9.287
9.864

9.568
9.933
8.499
9.653
10.558
10.889
10.420
10.781
10.827

Table 4.14: The results of ANOVA test over the presented RPD for GASA and BBO.

Source DF SS MS F—test P-value Results

Algorithm 1 51.75 59.71 10.14 0.001 Null hypothesis is rejected
Error 40 235.63 5.89

Total 77 311.15
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RPD
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Figure 4.5: Output of comparing GASA and BBO with RPD indicator.

4.5 Conclusion

In this chapter, a new vehicle routing problem appeared in carrier collaboration via a combi-
natorial auction (CA) is studied. A carrier with reserved requests wants to determine within
a time horizon of multi-periods (days) which pickup and delivery requests to serve among the
requests open for bid of the auction to maximize its own profit subject to vehicle capacity, time
windows constraints, and the maximum duration of each route. It is a multi-Periods Pickup and
Delivery Problem with Time Windows, Profits, and both Reserved and Selective Requests. In
the problem, each selective request is associated with a profit, which is the price for serving the
request provided by a shipper and associated with a period window that specifies the earliest
period and the latest period the request must be served. In each period, the carrier has a set of
reserved requests and must be served by the carrier itself. Each request has a pickup node and a
delivery node, and each node has a time window which specifies the earliest time and the latest
time at which the node must visited by a vehicle in each period. By including periodic concept in
CA, the carrier can plan its transportation operations in advance and in a rolling-horizon way.
The objective of the decision problem for the carrier is to determine which selective requests to
serve in each period in addition of reserved requests and feasible routes to serve the reserved and
selected requests to maximize its total profit. For this NP-hard problem, a mixed-Integer Linear
Programming (MILP) model is formulated and two metaheuristic algorithms are proposed to
solve the model: One is Genetic algorithm combined with Simulated Annealing (GASA) and the
other is Biogeography-Based Optimization algorithm (BBO). The GASA and BBO are evaluated
on 30 instances with 6-100 requests. The computational results show the two algorithms signifi-
cantly outperform CPLEX solver, not only in solution quality but also in computation time, and

the performance of GASA is better than BBO in terms of the two criterions.
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anagement in the transport sector occurs along traditional lines rather than following

a contemporary integrated approach [69]. Many manufacturers are seeking optimized

logistics solutions to reduce transportation costs. Optimized logistics solutions that
improve the transportation planning by one percent would save millions of euros. Taking the
multi-billion transportation market into account, innovative ideas, and effective logistics solutions
are demanded and valued [48]. There is however, evidence supporting a move towards more
partnerships and horizontal cooperation [86]. In fact, during the last two decades collaboration
within the supply chain management receives a great deal of attention [8].

For companies, besides minimizing all costs, shippers are interested in reducing the delivery
lead time. Reducing delivery lead time has two benefits. At first, shorter delivery lead time makes
supply chain management more agile, since orders are processed faster. Thus, it improves the
ability of shippers to compete in the industry. Another benefit of shorter delivery lead time is
choosing the carriers according to geographic factors [48]. In many procurements of transportation
services, although cost is an important consideration in evaluating bids, shippers care about
delivery lead time when evaluating bids submitted by carriers [26].

Although the delivery lead time is an important criterion in the procurement of a transporta-
tion service, its consideration in BGP has not been well addressed in the literature. Therefor,
we focus on this topic in this chapter. Actually, in this chapter we consider a bid generation
problem in a combinatorial auction for carrier collaboration, where each carrier determines the
requests to bid for solving a BGP. After receiving the bids from all carriers, the auctioneer (an

auction platform) determines the winning carriers and their winning bids. The auctioneer has
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two ways to evaluate each bid from carriers. The first approach is a weighted score method,
that is, we assign a weight to each attribute (cost and delivery lead time) of a bid and then
transform two attributes into a single score. It means that evaluating a bid is according to a score
function combining cost and delivery lead time, as in the multi-attributes score auction [26]. The
other method is a bi-objective method which is treated with all attributes (objectives) separately
without transforming them into a single score function. In this approach, a bid is evaluated based
on its both attributes (cost and delivery lead time) as two different objective functions.

To solve the problem, we present mathematical programming models to both cases. For the
single objective multi-period BGP with pickup and delivery requests, time windows, profits, and
delivery lead time, we apply GASA and ITS. After that, we compare two algorithms with CPLEX.
To solve bi-objective multi-period BGP, two well-known multi-objective algorithms, NSGA-II and
NRG are presented. NSGA-IT and NRGA algorithms are compared based on standard metrics.

5.1 Literature review

This section is devoted to review articles related to bi-objective multi-period bid generation
problem with pickup and delivery requests, time windows, profits, and reserved requests. In
Chapter 3 and Chapter 4, the previous works related to collaborative transportation planning
with pickup and delivery requests and multi-period bid generation problem have been analyzed.
In this section, the works related to the transportation service with the consideration of delivery
lead time are studied.

In [38] authors express the impact of collaborative transportation on transportation lead-time
through empirically investigating on. In [48] a bi-objective integer programming model is proposed
to formulate the problem. The authors find that many shippers take attention to have short
transit time besides costs minimization. A bi-objective branch-and-bound algorithm that finds all
non-dominated solutions is developed to solve the problem. Mathematical expressions for the
transit time of cargo is presented in [29]. The authors propose two new trans-shipment policies:
Backward trans-shipment and one-to-many trans-shipment, and mathematically calculate the
corresponding connection times. Similar problems also are found in passengers transportation.
In [15], a genetic algorithm is used to the optimization of transfer times in a bus transit system.
The algorithm for this transfer time optimization problem tries to find the best feasible solution
by shifting existing timetables.

As the problem presented in this chapter is close to multi-objective vehicle routing problems,
a few works on multi-objective vehicle routing problems are cited. In [7] the authors consider
two objective functions for a vehicle routing problem with time windows: The minimization of
costs and the minimization of workload imbalance in terms of distances traveled by the vehicles.
The suggested algorithm to solve the problem is a Pareto-based hybrid algorithm that integrates

evolutionary computation and simulated annealing. In addition to the minimization of total
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distance, time is also an important factor in the transportation system [36]. Consequently, total

travel time minimization is considered as well. An improved evolutionary algorithm is suggested

to solve a vehicle routing problem with time windows and two objectives. For these two objectives

an improved evolutionary algorithm is proposed to solve the multi-objective vehicle routing

problem with time windows.

Table 5.1: The parameters of the presented mathematical model.

Symbols

Explanation

V={0,..,2n+1}

P={1,2,...,n}
D={n+1,..,2n}
w

H
K={1,2,...,VK}

Q

Rj
Rs=WUen R))
R =WUen R))
R;

le;,1;]
leivn,lisn]
[E;,L;]

tij

Cij

T
BM;j=1;-e;

CVi=Q+di

Set of all nodes which comprises all pickup, delivery nodes and depot node
of the carrier. n is the number of requests, 0 and 2n + 1 denote

the depot of the carrier.

Set of pickup nodes of all requests.

Set of delivery nodes of all requests.

Set of nodes excluding the depot node of the carrier.

Set of period planning horizon.

Finite set of homogeneous vehicles where VK is

the maximum number of vehicles.

Capacity of each vehicle that can be used.

Reserved requests that must be served in period , [ € H.

Set of selective requests

Set of all requests.

Set of selective requests s in period /.

Time windows of pickup node i.

Time windows of delivery node i + n.

Period window of selective request i.

Traveling time between two nodes i and ;.

Traveling cost between two nodes i and j.

Maximum duration of each route.

Parameter used to formulate linearly the time window constraints, where /; is
the upper bound of time window for node j and e; is the lower bound of time
window for node i.

Parameter used to formulate linearly the vehicle capacity constraints.
Demand of the pickup node of request i.

Demand of delivery node i + n if the corresponding pickup point’s demand is d;.
Weight of delivery lead time for request .

5.2 Problem description and mathematical model

Our considered problem in this chapter is a transportation-planning problem with pickup and

delivery requests, hard time windows defined on a directed graph G = (V,E), where V is the set

of all nodes and E is the set of edges with the following specifications. Each request i is associated

79



CHAPTER 5. MULTI-PERIOD BID GENERATION PROBLEM WITH PICKUP AND DELIVERY,
TIME WINDOWS, PROFITS, RESERVED REQUESTS, AND DELIVERY LEAD TIME

Table 5.2: The decision variables of the considered model.

Symbols Explanation

xijrr =1  If and only if vehicle % visits directly node j after node i in period A.
yirh =1 If and only if request i is served by vehicle % in period A.

Uirn Arriving time of vehicle % at node i in period A.
CVirn Load of vehicle £ when it leaves node i in period A.
Yirh An auxiliary variable used in the linearizion of model.

with two nodes, a pickup node i and a delivery node n + i, where n represents the number of
requests and the demand of a pickup node is equal to the demand of its corresponding delivery
node. The delivery node of each request must be visited after its pickup node on the same route.
The number of customers, their locations, the capacity of each vehicle, and the fleet of vehicles are
predefined. There are other assumptions to this problem like the quantity of pickup/ delivery is
smaller than vehicle capacity and all vehicles are homogeneous. The cost of satisfying customers’
demands depends on the vehicles’ total travel distances. Each selective request has a service
period window and two time windows for pickup and delivery respectively. The service period
window defines the periods when each selective request can be served and the two time windows
determine at which times in each period the pickup node and the delivery node of the request
can be visited by a vehicle that serves the request, for instance morning and afternoon windows
separated by a lunch break. Both selective and reserved requests are associated with two time
windows, whereas only selective requests are associated with a service period window (the period
in which each reserved request must be served is prespecified). If a selective request is served, the
most appropriate period to serve it should be determined. In addition, each request i is associated
with a weight a;, which can be interpreted as the penalty cost for one time unit longer of delivery

lead time.

The multi-period bid generation problem can be formulated as a mixed-integer linear pro-
gramming model. The aim of the problem is to serve all reserved requests in their predefined
period and to determine which selective requests should be served to improve the total profit.
The parameters of the problem are listed in Table 5.1, while the decision variables employed are
in Table 5.2. Hence, the single objective mathematical model of the multi-period BGP is given as

follows:

max(Yjer YheH LkeK PiYikh~LheH LicV L jeV LkeK Cij%ijkh~LjeR, &j(ChelE, L1XkeK Y 1))
subject to:

Y xjikn— Y, xjp=0 VieW,VkeK,VheH (5.1)
JEVj#i JEV;j#i
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Y > xojrpz1 (5.2)

keK jeP;j#Z0heH

> > Y Xi@nsnrh =1 (5.3)

keKieD;i#A(2n+1)heH

Y yirn=1 VheH\VieR] (5.4)
keK
Y Y yin<1 VieR; (5.5)
helE;,L;1keK
Y Xjmeikh = Yikh VieP,keK,YheH (5.6)
JEV Jj#i,0
Y xijrh=yirn Vi€P,keK,YheH (5.7
JEV,j#i,2n+1
Uirh +tin+i) +Si <U+iyen Vi€eP,keK,VYheH (5.8)
Ujrh 2Ujpp +tij+s;—BM;j(1-x;j,,) VieV,keK,YVheH,VjeV (5.9)
eiyirh <Uipp < Ui+ (1= yirs) Y BMj; Vhe HVieV ,VkeK (5.10)
jev
Ui +tij+si—BM;j(1-x;pp)<T VieV,keK,VheH,6V e {0} (5.11)
CVikh+d; —Q(1—x;j4,,b)<CVjp, VieV,keK,YVheHNVjeV (5.12)
max{0,d;} < CVipm <min{@,d;} VieV,keK VheH (5.13)
xijrn €{0,1} Vi, jeV,Vke K,Yhe H (5.14)
Uipn =0 VieV,Vke K,.Yhe H (5.15)
CVipp =0 VieV,Vke K,.Yhe H (5.16)
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Yirh =0 for any i € R;,Vk € K, for any h ¢ (E;,L;) and y;;, =0 foranyi€R,; ;4 (5.17)

Yien Zhx yjen —E; VjeV,YkeK,VheH (5.18)

Yien 20 VjeV,VkeK,VheH (5.19)

The objective function corresponds to the score of a bid of the carrier, which is equal to the
difference between the total payments of serving requests in all periods, the total transportation
cost and the penalty costs of delivery lead-time. The considered score, is formulated as the single
objective function, in this model. Constraint (5.1) ensures that when a vehicle arrives at a node
in a period, it must leave in the same period. Constraints (5.2) and (5.3) signify that each vehicle
leaves its depot of carrier in a period must return to it in the same period. Equation (5.4) implies
that each reserved request must be served in its predetermined period. Equation (5.5) indicates
that each selective request can be either served in a period within its service period window or
not served. Constraints (5.6) and (5.7) guarantee if a request is served in a period, its delivery
node must be visited after its pickup node with the same vehicle in the same period. Equations
(5.8)-(5.11) specify time windows constraints on the pickup and delivery nodes of each request
and the constraint on the maximum duration of each route. Constraints (5.12) and (5.13) check
vehicle capacity. Equations (5.14)-(5.17) define all variables. To linearize the last term of the

objective function, two constraints (5.18) and (5.19) are added.

Except for costs, shippers are also concerned with transit time (delivery lead time); shorter
transit time represents better transportation service. It is possible to formulate the multi-period
BGP as a bi-objective problem, on the one hand, the profit is maximized and on the other hand the
delivery lead time is minimized. It means that one of the objective functions is the maximization
of the total profit and the other one is the minimization of weighted delivery lead time for all
requests. Consequently, in the previous single objective model, the weighted delivery lead time of

all requests will be considered as a second objective function.

First objective function:

max(Y;cr X heH LkeK PiYikh— L heH 2icV 2 jeV LkeK CijXijkm)

Second objective function:
min}. jeg, @;(Chelk, LAY kK Y 1)
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5.3 Metaheuristic approaches to solve a single objective
multi-period bid generation problem with consideration of

delivery lead time

In the literature, two approaches are usually used to solve complicated multi-objective op-
timization problems. In the first approach, a multi-objective problem is transformed into a
single-objective optimization using some multi-criteria decision making (MCDM) techniques
presented in [49]. In the second approach, multi-objective algorithms such as non-dominated
sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are
directly employed to find a set of optimal solutions called Pareto optimal solutions in a single run
[3].

The multi-period bid generation problem with pickup and delivery requests, time windows,
profits, reserved requests, and delivery lead time is a NP-hard vehicle routing problem [65].
Consequently, it cannot be solved optimally for large instances, and metaheuristic algorithms are
required to solve these types of problems. In this chapter, we solve the problem in both single
objective perspective and bi-objective perspective. Firstly, the single-objective problem is solved
by using GASA and ITS which are described in Chapter 3. Secondly, the multi-objective problem
is solved using NSGA-IT and NRGA.

For the single objective multi-period bid problem with the consideration of delivery lead
time, GASA and ITS used to solve it are similar to those presented in Chapter 4, except that
the delivery lead time of each request is considered in the objective function of the problem. For
this reason, we will not present the two algorithms again in this chapter. Besides, NSGA-II and
NRGA that are used to solve the bi-objective problem are derived from Multi-Objective Genetic
Algorithms, so their chromosome is the same as chromosome of GASA which is described in
Chapter 4.

5.4 Metaheuristic approaches to solve a bi-objective
multi-period bid generation problem with consideration of

delivery lead time

Multi-objective evolutionary algorithms (MOEASs) are usually fast to find Pareto fronts in a single
run. So, in this section we utilize them to solve our bi-objective bid generation problem. Among
MOEAs, NSGA-II due to its efficiency, its ability to solve similar problems, and its ease of use
is chosen. Moreover, as there is no benchmark existing in the literature to verify the results
obtained by NSGA-II, another GA-based MOEA called NRGA is used as well [78]. In this section
we first describe bi-objective decision problems.

A single objective optimization algorithms aim at obtaining an optimal or near optimal

solution. For bi-objective optimization problems, decision makers are not satisfied with only one
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solution returned, because they want to make different compromises among multiple objectives by
finding a set of non-dominated solutions. In the following, we first provide some basic definitions
about a multi-objective minimization problem with n decision variables and m objectives (m > 1)
[94]:

Minimize y = f(x) = (f1(x), fa(x), ..., fm(x))
where x e R™ and xe R™.

Definition 1. A solution b is dominated by another solution a if and only if:

(1) fi(a) = fi(b) Viel{l,2,....,m}

(2) fi(a) < fi(b) Fefl,2,...,m}

Non-dominated solutions dominate the others but do not dominate themselves. The local
optimality explained as follows [94]:

Definition 2. A solution ¢ is a local optimum solution in the Pareto sense if there exists a
real € > 0 such that there is no solution b dominating a with 6 € R" nB(a,e), where B(a,e) is a

n—dimensional sphere with center a and radius e.

Different techniques are developed to solve multi-objective optimization problems. These
algorithms can be classified into meta-heuristic, decision-aided, interactive, fuzzy and scalar ones
[18]. For a detailed description of the multi-objective optimization, readers may refer to [20]. In
the following, two popular metaheuristic algorithms, NSGA-II (Non-dominated Sorting Genetic
Algorithm-II based on sorting the population by non-dominance) and NRGA (Non-dominated
Ranked Genetic Algorithm) to solve multi-objective optimization problems are utilized. Before
presenting the two algorithms, some important concepts of multi-objective optimization are

introduced.

5.4.1 Non-dominated sorting and crowding distance

To sort a population with size N according to non-domination, each solution must be compared
with every other solution in the population to check if it is dominated. At this step, all individuals
in the first non-dominated level are obtained. In order to determine the individuals of the next
level, the solutions of the first level are deduced and the procedure to sort and compose the

non-dominated level is executed again. This method is repeated to find a successive front [70].

Diversity mechanism

In addition to the convergence to the Pareto-optimal set, a good multi-objective optimization
algorithm should be able to obtain solutions that maintain a good diversity. In [67], the concept
of cuboid is used to measure diversity in the population. A cuboid is a rectangular centered on an

individual (a solution) in the front. Figure 5.1 illustrates such a cuboid for a bi-objective problem,
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Figure 5.1: Cuboid along locally non-dominated frontier [70].

where two cuboids are depicted for two randomly chosen individuals X; and X2. Inasmuch as
each cuboid has the same size as others, the density of solutions in each cuboid can be easily
measured by the number of individuals included in the cuboid. According to the cuboid technique,
the cuboid of X1 and X9 has the same size. Since it is desired to have a spread of solutions in the
front, the individual X should be selected to survive in the next generation [70].

To get an estimation of the density of solutions surrounding a particular solution, i, in the
population, we calculate the average distance of two points on either side of this point, i, along
each of the objectives. This quantity ig;s;ance S€rves as an estimate of the perimeter of the
cuboid formed by using the nearest neighbors as the vertices (call this ‘crowding distance’) [28].
Furthermore, the total crowding distance value is calculated as the sum of individual distances
value corresponding to each objective. In Fig. 5.2, the computation procedure of crowding distance
of all solutions in a non-dominated set L is depicted [28]. In that figure, L[i],, addresses the
value of m*"objective function of the i** individual in the set L [70].

According to Fig. 5.3, the crowding distance for individual X; is larger than Xs, hence,

individual X7 has more probability to be chosen as a parent.

54.2 NSGA-II (Non-dominated Sorting Genetic Algorithm-II)

implementation

The Non-dominated Sorting Genetic Algorithm is a Multi Objective Optimization (MOQO) algo-
rithm and is an instance of an Evolutionary Algorithm from the field of Evolutionary Computation.
NSGA-II is an extension of the Genetic Algorithm for multi objective function optimization. Actu-
ally, one of the well-known multi-objective optimization algorithms is NSGA-II, which has three

special features. The significant features of NSGA-II are fast non-dominated sorting, fast crowded
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Crowding-distance-assignment (L)

=1L number of solutions in L
for each i, set L[]gistance = 0

for each objective m

L =sort (L, m) sort using each objective value
LI isance = E  istunce = o0 boundary points are always selected for all other points
fori=2to(l=1)

L['i]dlstalllca = L[i]dismllce =+ (L[H’] ]»m = L[’ e va)

Figure 5.2: The crowding distance computation procedure of all solutions in a non-dominated
set [70].

f

Locally non-dominated
frontiers:

Figure 5.3: Crowding distance for individuals X1 and X2 [70].

distance evaluation and simple crowding comparison [105]. Different test problems from previous
studies applying NSGA-II are compared in [28], which claims that this approach outperforms
some algorithms like PAES and SPEA in obtaining a more diverse set of solutions [54]. Overall,
NSGA-II can be summarized by the following steps [105]:

Step 1: Initialize the population
Initialize the population using a solution generation procedure. For the bi-objective problem
studied, we apply the initial solution procedure in Chapter 4 to initialize the population. The
considered problem in this chapter is multi-period bid generation problem with delivery lead
time. The chromosome structure is the same as chromosome structure in Chapter 4, which is
composed of three vectors, X, Y, and Z indicating pickup and delivery nodes, period allocation

for each request and assigning a vehicle to each request.
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Step 2: Non dominated sort
Sort the population based on non-domination.

Step 3: Calculation of crowding distances
After sorting the population, the crowding distance value is calculated as the sum of individual
distance values corresponding to each objective.

Step 4: Selection
The individuals are chosen based on the rank of their front in the sorting and on the crowding
distance. The selection of individuals is performed by tournament selection approach with
crowding comparison operator.

Step 5: Genetic Operations
Offspring generated by the operators previously described for the GASA algorithm. The crossover
operator over vector X is single point crossover and the crossover operator over vector Y and Z
are uniform crossover which both of them are described in Chapter 4. The mutation operators
over the three vectors are also introduced in Chapter 4.

Step 6: Combination and selection
The population of offspring and current generation are combined and the individuals of the
next generation are determined by selection. The new generation is composed by each front
subsequently until the population size exceeds the current population size [105].

Step 7: Stop criterion

The algorithm stops when a prespecified maximum number of iterations is reached.

5.4.3 NRGA (Non-dominated Ranked Genetic Algorithm) implementation

NRGA is also a multi-objective genetic algorithm to find Pareto optimal solutions. NRGA is
similar to NSGA-II with a difference wherein the selection operation a roulette wheel strategy
is employed [72]. In NRGA, a fitness value representing rank is assigned to each individual of
the population. In this regard, two ranked based roulette wheel selection strategies including: (I)
select the fronts and (IT) choose solutions from the fronts, are used [72], [50], [83], [2].

p, = 2xranky f=1,..NF (5.20)
= (NF)x (NF)+1) T '
2% rank sy
Tranty f=1,..NF,s=1,..NS (5.21)

Pr.=
s T(NS)F x (NS); +1)
In the equations (5.20) and (5.21), NF and (NS); are the number of fronts and the number

of solutions in front f, respectively. Based on equation (5.20), a front with highest rank has the
highest probability to be selected. According to equation (5.21), solutions with more crowding
distance have higher selection probability. The roulette wheel selection is applied until a desired

number of solutions is reached. The algorithm stops when a predetermined number of iterations
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is obtained. Hence, our preference is the solution located in the higher front rank. If both solutions
are embedded in the same front, the solution with a higher crowding rank distance is preferred
[70].

5.5 Computational study

To assess the performance of GASA, ITS, NSGA-II, and NRGA algorithms, we use the instances
in [65], which their explanations are in Chapter 4. We executed all algorithms on the instances.
The characteristics of the instances include the number of requests, the demand of each request,
time windows of pickup and delivery nodes, the number of vehicles, and the capacity of each
vehicle have been explained in Chapter 4. To include the period concept in the instances, we
assume the number of periods is 5 and each day has predetermined reserved requests. The results
unveil that both GASA and ITS algorithm for the single-objective bid generation problem studied
remarkably outperform CPLEX, while the GASA algorithm outperforms the ITS algorithm. To
compare two bi-objective algorithms, NSGA-II and NRGA, we use different metrics as defined in

the next subsection.

5.5.1 Comparison Metrics for Multi-Objective Optimization Algorithms

In order to analyze the performance of each algorithm, two criteria must be evaluated: Efficiency
and effectiveness. In the evaluation of a single objective algorithm, the value of the objective
function corresponds to the effectiveness and the computation time represents the efficiency of
the algorithm. We solved the mathematical programming model of our problem by CPLEX 12.6
called in C++ with Visual studio 12 on a laptop with an Intel core i5 CPU and 4.00 GB RAM.
Note that for the instances with 30 requests and the instances more than 30 requests, it is impos-
sible to solve the model optimally by CPLEX after 2 hours and 3 hours of running, respectively.
However, to evaluate the efficiency and effectiveness of a multi-objective algorithm, there are
different metrics explained below. These metrics can be used to get a comprehensive picture of
the algorithm’s ability [43]. Overall, for a multi-objective optimization algorithm, the diversity of
Pareto solutions found and also its convergence are two important factors [27]. Computational

time can still be applied as a suitable metric to evaluate the efficiency of an algorithm.

Diversification metric (D or diversity).
The diversification metric measures the spread of the solutions found and is defined in [107].

In Fig. 5.4, diversity metric is illustrated.

Spacing metric (S)
The standard deviation of the solutions distances in the Pareto front is defined as the spacing

metric. In Fig. 5.4, the spacing metric is illustrated where d; = minkEn,k#{Z%:l | f,‘;l - f,’fl 1}, f,(,i)
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Figure 5.4: The spacing and diversity metrics in bi-objective problems [70].

is i objective function value of the m!” solution in the Pareto front, and d is the mean value of

the above distance measure d = Z'i’i‘l IdTiI [42].

The number of Pareto solutions (NOS)

This metric enumerates the number of Pareto solutions in the optimal front.

Mean Ideal distance (MID).
This metric measures the proximity of solutions from the ideal point that is (0, 0) on the
Pareto front appraisal [83]. In the following equation (5.22), f;; is the value of objective function

in the i*" solution of optimal front.

1 NOS
ID = —— i ;= 22
M NOS z:zi C; where C (5.22)

Time.

Time is an important criterion in comparing two algorithms.

Whereas in terms of diversity and NOS metrics, larger values are desirable, for the spacing

metric, MID, and CPU time, smaller values are desired [42].

5.5.2 Algorithm parameter tuning

To apply the taguchi approach to parameter calibration of a bi-objective optimization algorithm,
criteria for comparing two solutions must be chosen [79]. Two important criteria are 1) conver-

gence and 2) diversity of Pareto solutions. As we mentioned previously, there are different metrics
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for comparing multi-objective optimization algorithms. Among them, computational time and
mean ideal distance (MID) are two metrics for evaluating the convergence of the algorithms while
other metrics are applied for evaluating the diversity of the Pareto solutions. In the suggested
metrics, diversity and MID are integrated through the following equation (5.23). The two criteria
are considered at the same time. Accordingly, by applying this integrated metric as the response
of the Taguchi approach, a combination of main signals can be proposed. So, we can gain precise
outputs. This metric is called the multi-objective coefficient of variation (MOCV) [42], [79]:

MID
MOCV = —— (5.23)
Diversity

When applying Taguchi method, the level of each factor taken is reported in Table 5.3. For GASA
and ITS algorithms, we use the same parameters which have been determined in Chapter 3.
By numerical experiments using Taguchi method, we find that the predetermined values of all
parameters in Chapter 3 are appropriate. For each algorithm, three levels (i.e. low, medium and
high) are defined for each factor. By using Minitab Software, L9 design is exploited for NSGA-II
and NRGA. The orthogonal arrays of these designs and the gained responses are illustrated in
Table 5.4 and Table 5.5 for NSGA-II and NRGA respectively. For each algorithm, the effect plots
for S/N ratio are presented in Fig. 5.5 and Fig. 5.6. By using these results for each algorithm, the

appropriate values of all parameters are set and reported in Table 5.6.

Table 5.3: NSGA-II and NRGA parameter ranges and the levels of factors.

Algorithm Parameter Description Range Low(l) Medium(2) High(3)
Npop Population size 50-200 50 125 200
NRGA and nlt Number of iterations  200-500 200 350 500
NSGA-II P, Crossover probability 0.3-0.7 0.3 0.5 0.7
P, Mutation probability 0.1-0.5 0.1 0.3 0.5
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Table 5.4: Taguchi procedure for NSGA-II.

Run Order

Npop P,

Pr,

nlt Response

© 00 30 Ut W N -

[y

W W WN NN H -

WNH WNHFHWDNH
DN = W= W WwNH-

=W N DN = WWN -

9.5048
7.909
10.206
3.607
3.586
4.486
8.280
5.399
13.877

Table 5.5: Taguchi procedure for NRGA.

Run Order Npop P. P,, nlIt Response
1 1 1 1 1 4.820

2 1 2 2 2 1.470

3 1 3 3 3 5.559

4 2 1 2 3 8.603

5 2 2 3 1 7.367

6 2 3 1 2 5.767

7 3 1 3 2 2.193

8 3 2 1 3 13.993
9 3 3 2 1 4.565

Main Effects Plot for SN ratios
Data Means
-131.0 / .//\ //__,_-

Mean of SN ratios

-13L.54

-131.04

-131.51

-132.01

Signal-to-noise: Smaller is better

Figure 5.5: Outputs of Taguchi ratio for NSGA-II.
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Main Effects Plot for SN ratios
Data Means
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Figure 5.6: Outputs of Taguchi ratio for NRGA.

Table 5.6: Taguchi responce for NSGA-IT and NRGA.

Algorithm Npop P, P, nlt
NSGA-II 3(200) 2(0.5) 2(0.3) 3(500)

NRGA 3(200) 2(0.5) 2(0.3) 3(500)

5.5.3 Results and Analysis

RPD is one of the well-developed approaches for measuring the efficiency of an algorithm with
respect to another algorithm. In Chapter 3, we described completely RPD indicator in equation
(3.25). In this subsection, we apply it to compare algorithms. Table 5.7 illustrates the results
of GASA and ITS over the instances of Chapter 4 while Table 5.8 shows their results in terms
of RPD. Their statistical analysis is given in Table 5.9. The results of NRGA and NSGA-II in
each metric are indicated in Table 5.10 and Table 5.11. We calculate the RPD of each metric after
three execution of each algorithm. Two gaps, Gapjrs and Gapgasa, are defined in Table 4.9. All
gaps defined in Table 5.7 are in percentage (%).
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Table 5.7: Computational results of GASA and ITS.

Instance Number Objgasa Objirs LByirp UBmizp  Gapmirp Gapgasa Gapirs
20-10-10a 1356.511 1344.763 - 1429.288 - 5.091 5.913
20-10-10b 1087.414 1070.291 967.511 1140.983 15.203 4.694 6.195
20-10-10c¢ 2592.257 2564.118 1964.131 2705.007 27.389 4.168 5.208
20-5-15d 968.265 971.701 - 1017.989 - 4.884 4.547
20-5-15e 996.798 985.357 - 1038.841 - 4.047 5.148
20-5-15f 2572.020 2537.411 2214.212 2666.525 16.962 3.544 4.842
20-15-5g 2271.493 2249.102 - 2349.265 - 3.310 4.263
20-15-5h 1423.878 1420.825 - 1511.192 - 5.777 5.979
20-15-51 3778.519 3732.614 - 3967.039 - 4.752 5.909
30-15-15¢ 5312.654 5197.674 - 5610.102 - 5.302 7.351
30-15-15d 4985.130 4889.179 - 5311.148 - 6.138 7.944
30-15-15e 6217.237 6055.472 - 6569.163 20.431 5.357 7.819
30-15-15f 6373.191 6262.774 - 6728.334 - 5.278 6.919
30-20-10g 8628.015 8644.162 - 9164.702 - 5.856 5.679
30-20-10h 10415.620 10180.660 - 11040.900 - 5.663 7.791
30-20-101 9529.182 9337.791 - 10038.770 - 5.076 6.982
40-20-20a 9632.193 9477.823 - 10520.107 - 8.440 9.908
40-20-20b 10774.450 10851.256 - 11868.040 - 9.214 8.567
40-20-20c 10616.947 10617.322 - 11697.518 - 9.237 9.234
40-15-25d 8541.138 8386.904 - 9301.346 - 8.173 9.831
40-15-25e 8046.854 7900.667 - 8821.121 - 8.777 10.434
40-15-25f 10176.106 10091.119 - 11266.065 - 9.675 10.429
40-25-15g 8590.802 8429.175 - 9386.584 - 8.477 10.198
40-25-15h 11471.169 11209.378 - 12497.361 - 8.211 10.306
40-25-151 9781.714 9496.332 - 10755.698 - 9.055 11.708
50-25-25a 18047.940 17663.351 - 20192.817 - 10.626 12.526
50-25-25b 15050.833 14672.267 - 16743.635 - 10.110 12.371
50-25-25¢ 12601.148 12512.386 - 14175.432 - 11.105 11.732
50-20-30d 15131.713 14887.265 - 16932.874 - 10.637 12.081
50-20-30e 16886.925 16838.288 - 19169.190 - 11.906 12.160
50-20-30f 14833.207 14600.436 - 16867.276 - 12.059 13.440
50-30-20g 11594.018 11517.593 - 13008.477 - 10.873 11.461
50-30-20h 16011.674 15594.412 - 17814.653 - 10.121 12.463
50-30-201 11920.136 11876.153 - 13497.751 - 11.687 12.013
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100-50-50a 48721.136 47276.470 - 56925.861 - 14.413 16.950
100-50-50b 56073.317 53670.838 - 65258.020 - 14.074 17.755
100-50-50c  65932.449 65221.674 - 78329.939 - 15.827 16.734
100-25-75d 72511.185 70001.090 - 85135.573 - 14.828 17.776
100-25-75e  42075.695 40863.368 - 50296.812 - 16.345 18.754
100-25-75f 54426.855 54003.893 - 64712.100 15.893 16.547
100-25-75f 51488.401 50353.712 - 60876.267 - 15.421 17.285
100-25-75g 51623.397 50577439 - 61025.346 - 15406 17.120
100-25-75h 71438.922 69927.386 - 85642.313 - 16.585 18.349

Table 5.8: Computational results (RPD) and computation time of GASA and ITS

Instance Number RPDgasa RPDirs CPUgasa CPUjrs

20-10-10a 1.603 1.977 431.555 504.792
20-10-10b 0.528 1.256 429.222 503.326
20-10-10c 1.800 2.572 430.770 504.344
20-5-15d 1.523 2.837 428.317 504.120
20-5-15e 1.837 1.243 452.568 546.661
20-5-15f 0.185 1.569 459.527 544.775
20-15-5g 0.402 1.843 468.733 588.079
20-15-5h 1.594 3.265 464.176 585.230
20-15-51 1.275 2.016 473.551 589.345
30-15-15¢ 1.082 2.896 503.737 611.280
30-10-15d 1.123 2.124 505.5621  596.051
30-10-15e 2.882 2.853 521.853 614.605
30-10-20f 1.786 2.980 536.869 628.074
30-20-10g 1.929 2.909 534.912 627.562
30-20-10g 1.720 3.020 538.414 641.857
30-20-10g 1.647 2.615 548.990 655.382
40-20-20a 2.833 4.190 840.096 969.553
40-20-20b 1.772 3.604 851.147 975.242
40-20-20c 2.088 4.657 837.539 973.140
40-15-25d 2.521 4.242 842.808 974.931
40-15-25e 2.438 3.895 856.658 982.990
40-15-25f 2.565 3.367 869.731 980.407
40-25-15g 2.652 4.615 872.548 983.625
40-25-15h 1.000 3.481 874.772 985.922
40-25-151 2.442 4.927 882.646 986.164
50-25-25a 2.375 3.173 1718.932 1983.595
50-25-25b 2.563 5.710 1723.169 1984.144
50-25-25¢ 2.104 4.906 1808.709  2007.163
50-20-30d 3.861 5.986 1775.111 1940.328
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50-25-26a  2.375 3.173 1791.665 1960.613
50-25-25b  2.563 5.710 1837.876 1995.127
50-25-25¢ 2.104 4.906 1845.172 2038.825
50-20-30d  3.861 5.986 1868.917 2033.805
50-20-30e  3.827 5.769 1885.421 2280.310
50-20-30f 2.636 6.526 1885.754 2253.416
50-30-20g  3.070 5.962 1876.965 2213.809
50-30-20h 2920 5.811 1829.517 2259.317
50-30-201 2.873 4.586 1883.001 2235.991

100-50-50a 5.826 7.740 2819.110 3340.961
100-50-50b 4.042 6.125 2859.675 3361.365
100-50-50c  6.965 8.295 2788.557 3293.458
100-25-75d  5.207 9.355 2852.249 3347.070
100-25-75e 7.888 8.020 2847.522 3349.463
100-25-75f 5.773 7.378 2855.983 3350.209
100-75-25g 7.358 8.882 2888.263 3215.119
100-75-25h  7.791 9.247 2859.822 3341.180
100-75-251 6.544 9.270 2782.046 3294.168

Table 5.9: The results of ANOVA test over the presented single objective mathematical model.

Source DF SS MS F—test P-value Results

Algorithm 1 51.75 51.75 15.16 0.000 Null hypothesis is rejected
Error 76 25940 3.41
Total 77  311.15

Table 5.10: Multi-objective metrics computed for NRGA

Instance Number Diversity NOS  MID Spacing Time

6-3-3 14.787 2765 0.039 4.022 14.677
8-4-4 24.915 30.377 0.030 13.414 1.312
10-5-5a 49.138 13.5629 2.650 6.321 6.182
10-5-5b 47.287 13.905 0.001 10.975 3.664
10-5-5¢ 50.960 42 12.5617 40.538 1.589
10-3-7d 19.603 6.529  15.652 28.847 6.821
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10-3-7e 64.341 17978 31.037 48.308 15.965
10-3-7f 69.703 4410 8986  35.001 12.477
10-7-3g 38.808 3.726 7.204 19.219 5.548
10-7-3h 126.638 12.982 4.006 1281.631 5.461
10-7-3i 43.553 12 17.598 59.675 16.737

20-10-10a 28.657  7.128  13.705 57.593 12.689
20-10-10b 24.230  3.823  17.232 47.522 16.339
20-10-10c  6.910 3.122  14.581 58.826 5.049

20-5-156d  35.218 26 4.149  47.820 31.132
20-5-15e  25.589 61 2.198  38.400 17.139
20-5-15f 26.405 11956 3.272  19.488 4.466
20-15-5g  28.103 25 13.027 37.632 6.161
20-15-5h  31.286 25 19.216 45.092 0.027

20-15-5i 0.662 8.137 19918 50.446 12.307

30-15-15¢  26.407 14 2.631  28.895 0.322
30-10-20d 14.076 20 2.298  11.062 1.237
30-10-20e 12.496  18.888 26.888 85.147 0.587
30-10-20f 3.639 24 16.895 96.673 8.525

30-20-10g 25.422 62.5 17.672 94.593 4.711
30-20-10h 49.891  73.809 49.542 71.521 9.199
30-20-101  26.192 22 556.671 34.511 2.748

40-20-20a 51.220 13.349 0.905 95.764 1.644

40-20-20b 45278 13 4.833  90.275 0.365
40-20-20c  0.442 23.333 11.771 17.470 0.774
40-15-25d 15492 21 11.793 11.645 0.709
40-15-25e 37.838 60 15.988 2.698 1.531
40-15-25f 97.434  42.857 11.142 6.306 1.682
40-25-15g 93.970 19.791 0.556  8.053 4.493
40-25-15h  59.595  4.255  15.003 0.112 0.559
40-25-151 43.101 57.777 1.361  0.066 0.186

50-25-25a 2.542 3.106 6.586  13.095 0.579
50-25-25b  3.449 12.815 12.173 2.480 0.261

50-25-25¢c 76.508 11.195 4.839  2.422 5.174
50-20-30d 72.300 55.590 9.763  10.628 2.713
50-20-30e 77.514 21 14.834 3.800 0.323
50-20-30f 21.194 7.457 2.426  49.871 1.322
50-30-20g 6.768 7.777  2.8725 1.359 1.782
50-30-20h 94.558 5.425 4960 3.341 1.463
50-30-201 72.028 46 13.892 4.594 26.053
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100-50-50a 3.911 27 11.364 2.025  42.655
100-50-50b 9.704 12.824 8.815 1.211  40.189
100-50-50c 38.900 4.462 7.251 1.679  34.338
100-25-75d 46.054 64.905 4.968 7.315  53.381
100-25-75e 50.174 5.294 4.891 2.365 41.264
100-25-75f  79.289 37 6.234 11.326 43.881
100-75-25g 15.451 23 12.844 7.475  0.460
100-75-25h 33.430 8.301 4.689 0.852  0.181
100-75-251 65.983 6.808 19.928 0.512 1.211

Table 5.11: Multi-objective metrics computed for NSGA-II

Instance Number Diversity NOS  MID Spacing Time

6-3-3 16.628 7439 1.260 2.298 22.114
8-4-4 0.508 0.003 0.003 10.365 0.207
10-5-5a 98.211 4.059 0.086  3.723 0.431
10-5-5b 94.525 4882 0.523  3.658 0.338
10-5-5¢ 36.161 38 8.986  48.406 0.088
10-3-7d 64.842 45.652 17.384 31.538 0.288
10-3-7e 49.013 3.609 30.024 52.563 1.891
10-3-7f 38.134 2.167 46.29  40.808 0.643
10-7-3g 39.718 43 24.235 83.379 0.970
10-7-3h 35.543 26 98.635 23.976 0.827
10-7-3i 5.292 6 4.769  60.365 0.930
20-10-10a 39.163 3.301  29.787 49.504 0.968
20-10-10b 28.387 2.038  18.778 48.524 0.506
20-10-10c 27.198 27 0.280 26.573 0.347
20-5-15d 14.095 38 0.252  63.679 0.888
20-5-15e 25.717 22 1.299  18.680 0.412
20-5-15f 43.305 6 0.721  29.429 0.722
20-15-5g 44.338 6.310 9.687  88.088 23.104
20-15-5h 20.965 5.859 1.618 1.944 30.746
20-15-51 6.966 256.336 0.751  11.283 0.395
30-15-15¢ 2.941 5.730 0.190 18.768 30.565
30-10-20d 35.602 9 1.656  17.545 29.959
30-10-20e 48.791 26.666 4.040 0.817 23.887
30-10-20f 29.322 34.444 0.906  0.462 30.480
30-20-10g 7.276 14.255 0.039 1.135 28.911
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30-20-10h  47.891 25 0.536  0.820 31.702
30-20-101 47.895 16.041 9.458 19.398 31.206

40-20-20a  35.066 16 0.017 0.017 26.333
40-20-20b  49.537 14 11.805 4.833 24.901
40-20-20c 41.496 21 4367 11.771 25.614
40-15-25d  88.351 15 0.362  11.793 23.377
40-15-25e  5.422 6 0.059  15.988 24.512
40-15-25f  81.832 18 1.098 11.142 33.135
40-25-15g  39.212 5.356  32.840 0.556  36.765
40-25-15h  51.826 25 42.525 15.002 31.892
40-25-151 14.234 18 31.844 1.361 28974

50-25-25a  5.688  30.377 86.455 6.586  0.912
50-25-25b  8.790  13.529 38.306 12.173 1.562
50-25-25¢ 52.000 6.905 26.473 4.839 1.486
50-20-30d  14.618 17.978 11.573 9.763 0.519
50-20-30e  25.370 17.423 34.435 14.834 22.245
50-20-30f 16.740 8.137 16.045 2.426  25.246
50-30-20g  20.165 5.425 53.212 2.872  22.595
50-30-20h  34.277 2.824 26.259 4.960 31.545
50-30-201 10.924 20.043 2.509 13.892 22.396

100-50-50a 4.864  4.808 49.212 11.364 27.815
100-50-50b 5.382  7.439 44234 8.815 13.578
100-50-50c 1.068 2.167 7.376  7.2561  39.281
100-25-756d 4.399 3.301 4.250 4.968 19.096
100-25-75e 2.408 5.119 1.704 4.891 4.722

100-25-75f 1.572  10.866 9.212 6.234 18.461
100-75-256g 6.825  8.921  39.171 12.844 20.314
100-75-25h 3.343  11.882 70.730 4.689  16.423
100-75-2561 10.574 8.124  39.968 19.928 17.435
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Figure 5.7: Graphical comparisons of Diversity metric for NSGA-II and NRGA algorithms on all
test problems. 98
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Table 5.12: The results of ANOVA test over the studied bi-objective mathematical model.

Metrics Source DF SS MS F —test P-value Results
Algorithm 1 1430 1430 4.40 0.038

MID Error 106 34444 325 Null hypothesis is rejected
Total 107 35874
Algorithm 1 962 962 5.32 0.023

Time Error 106 19162 181 Null hypothesis is rejected
Total 107 20124
Algorithm 1 28276 28276 1.86 0.175

Spacing  Error 106 1611068 15199 Null hypothesis is not rejected
Total 107 20124
Algorithm 1 1200 1200 5.48 0.021

NOS Error 106 23198 219 Null hypothesis is rejected
Total 107 24398
Algorithm 1 26426 26426 1.81 0.182

Diversity Error 106 1550063 14623 Null hypothesis is not rejected
Total 107 1576488

g 11 13 15 17 1%

MID

21 23 35 27 9
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31 33 35 37

NRGA

38 41 43

47 4% 51 53

Figure 5.8: Graphical comparisons of MID metric for NSGA-II and NRGA algorithms on all test

problems.
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Figure 5.9: Graphical comparisons of Time metric for NSGA-II and NRGA algorithms on all test
problems.
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Figure 5.10: Graphical comparisons of Spacing metric for NSGA-IT and NRGA algorithms on all

test problems.
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Figure 5.11: Graphical comparisons of NOS metric for NSGA-II and NRGA algorithms on all
test problems.

In order to show the significant difference in terms of RPD (metrics for bi-objective problems
algorithms), the algorithms are statistically analyzed according to obtained solutions via analysis
of variance (ANOVA) tests [42]. The procedure of ANOVA including F-test value and also P-value
on RPD (each metric for bi-objective algorithms) are summarized in Table 5.9 and Table 5.12. The
results are analyzed at 95% confidence level. Therefore, for the single objective problem, there are
significant differences and the average results of RPD for GASA is better than ITS. Additionally,
the computation time of GASA is shorter than ITS according to Table 5.7. According to Table 5.7,
for some instances when the number of requests are 20, CPLEX could not obtain a solution in a
preset running time while ITS and GASA have obtained a solution. Indeed, for all instances with
the number of requests 20, no feasible solution is obtained by CPLEX in the time limitation 1
hour, so we compare the solutions obtained by our algorithms based on their relative gaps with
the upper bound obtained by CPLEX, i.e., using the above-mentioned criteria. Our algorithms
can find an optimal solution for all 20 requests instances and can find a solution with the relative
profit gap smaller than 5.92%. For medium 30 requests instances, our GASA algorithm can find a
solution with the gap smaller than 6.2%, whereas our ITS algorithm can find a solution with the
gap smaller than 7.96%. For 40 requests instances, our GASA algorithm can find a solution with
the gap smaller than 9.69%, whereas our ITS algorithm can find a solution with the gap smaller
than 11.72%. For large 50 requests instances, our GASA algorithm can find a solution with the
gap smaller than 11.69%, whereas our ITS algorithm can find a solution with the gap smaller
than 12.54%. For 100 requests instances, our GASA algorithm can find a solution with the gap
smaller than 16.84%, whereas our ITS algorithm can find a solution with the gap smaller than
18.77%.

For the bi-objective problem, in terms of MID, Time, and NOS, there are significant dif-
ferences between the two algorithms, whereas in MID metric, NSGA-II is better than NRGA,
NRGA outperforms NSGA-II in NOS and time. It means that NSGA-II has a better convergence

performance in MID, whereas in diversity metric, NRGA performs better. In the other metrics,
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there are not significant differences between the two algorithms and the average results of the
metrics indicates which algorithm outperforms another one. The average in the spacing and
diversity metrics show NRGA operates better than NSGA-II. Finally, the results of NSGA-II and
NRGA for each metric given in Fig. 5.6, Fig. 5.7, Fig. 5.8 and Fig. 5.9, which can confirm the

statistical results.

5.6 Conclusion

In this chapter, we have presented two methods to evaluate each bid submitted by carriers to the
auctioneer. One is evaluating a bid according to a score function which is defined as cost plus
weighted delivery lead time as in a multi-attribute score auction. The other is evaluating a bid
according to its multi-attributes. Accordingly, each carrier has two ways to determine its bid, one
is minimizing a score (cost and delivery lead time) and the other is minimizing both attributes of
a bid (cost plus weighted delivery lead time). At first, we focused on the first way by assuming a
score function composed of cost and weighted delivery lead time and formulate the multi-period
bid generation problem as a single objective mathematical model. After presenting the MILP
model for the problem, we solved it by two metaheuristic algorithms GASA and ITS. Then, we
have taken the second way by evaluating a bid according to two attributes. We have presented a
bi-objective mathematical model for multi-period BGP. To solve the bi-objective problem, NSGA-II
and NRGA have been applied. They are compared according to well-known metrics and the
superiority of each algorithm in each metric has been determined. About the single objective
problem, GASA outperforms the other algorithm in terms of profit and computation time. For
the bi-objective problem, in MID, Time, and NOS there are significant differences between
two algorithms, NSGA-II and NRGA, whereas in MID metric, NSGA-II is better than NRGA,
NRGA algorithm overcomes NSGA-II in NOS and time. It means that NSGA-II has a better
convergence performance in MID, whereas in diversity features, NRGA performs better. In the
other metrics, there are not significant differences and the average results in the metrics indicate
which outperforms another one. The average in the spacing and diversity metrics show NRGA
performs better than NSGA-II.
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CHAPTER

CONCLUSIONS AND PERSPECTIVES

6.1 Conclusion

n last years, collaborative logistics and especially carrier collaborative transportation
have been appeared as a beneficial technique for small to medium-sized freight carriers
to ameliorate profitability by diminishing empty back-hauls by vehicle reposition and
improving vehicle fill rates. In this thesis, we discussed collaborative transportation planning
(CTP) raised in carrier collaboration, particularly the carrier collaboration in less than- truckload

(LTL) transportation.

Two key-subjects are often discussed for carrier collaboration in LTL transportation: The
request re-assignment problem and the post-collaboration profit allocation problem. In this thesis,
we concentrated on the requests re-assignment problem in centralized multi-carrier collaboration
and suggested an auction-based carrier collaboration approach for CTP with profits. In this field,
three main sub-problems have been considered: Multi-carrier centralized CTP with pickup and
delivery requests with time windows and reserved requests, periodic bid generation problem

(BGP) and periodic bid generation problem (BGP) with delivery lead time.

After studying the research background in Chapter 1 and reviewing the collaborative trans-
portation planning state-of-the-art in Chapter 2, we suggested in Chapter 3, a multi-carrier
centralized CTP with pickup and delivery requests and time windows with reserved requests

(PDPTWR), a new vehicle routing problem developed in LTL carrier collaboration.

The multi-carrier centralized PDPTWR involves exchangeable requests, which can be ex-
changed among carriers in a coalition, while each carrier keeps reserved requests to serve by the
carrier itself. After presenting mathematical programming model, three metaheuristic algorithms

have been developed as solution methods: An adaptive large neighborhood search (ALNS), a
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hybrid Genetic Algorithm and Simulated Annealing (GASA) and an improved tabu search (ITS).
Numerical experimental results show that our algorithms give promising results compared with
commercial solver CPLEX. Besides, the ALNS algorithm outperforms the two other algorithms

not only in finding better solutions but also its running time is better than others.

In Chapter 4, a multi-period Bid Generation Problem (BGP) for a carrier has been considered.
In the problem, there are two different types of requests, reserved requests of the carrier and
selective requests. Each request has a pickup and delivery request with two time windows. For
each selective request there is a period window while each reserved request has a predetermined
period to be served. A period window specifies the earliest period and the latest period the request
must be served while a time window shows the earliest and latest service time and is allocated
to both pickup point and the delivery point. In addition, each selective request is associated
with a profit that is the price for serving the request provided by a shipper. A hybrid approach
that combines a genetic algorithm and simulated annealing (GASA) has been proposed to solve
the problem. For the purpose of comparison, we utilized Biogeography-Based Optimization
algorithm (BBO) that is a population-based algorithm whose specifications are close to the GA.
The numerical results demonstrated that in spite of CPLEX, the proposed algorithms can find a

good feasible solution in a reasonable computation time for large instances.

In the companies, besides minimizing all costs, a shipper interested in reducing the delivery
lead time. Reducing delivery lead time has two benefits. At first, shorter delivery lead time
makes agile supply chain management and responding to the orders is executed faster. Thus, it
improves the ability of shippers to compete in the industry. Second benefit of shorter delivery
lead time is choosing the carriers according to the geographic factors. It means that shippers
distribute freight volumes to a carrier geographically. Totally, by considering the short delivery
lead time, the auctioneer gets involve also in other attributes not only costs. In many acquisition
situations although cost is an important attribute to evaluate the orders, carriers care about
the quality specifications when estimate the submitted orders by suppliers. To these points, in
Chapter 5, we addressed delivery lead time in transportation service procurement, which is
conducted by shippers and using auctions to purchase transportation service from carriers in the
planning stage. Many shippers get involve with delivery lead time in practice; the transportation
service is better when delivery lead time decreases. consequently, we considered two ways to
comprise delivery lead time in the problem. Firstly, a bi-objective problem has been considered,
where the first objective is the maximization of all profits while the other is the minimization of
delivery lead time. After presenting the mathematical model, we solved it by NSGAII and NRGA
and compared them by well-known metrics. Secondly, we assumed in a single objective problem
delivery lead time included as an attribute in the objective function by using some multi-criteria
decision making (MCDM) methods. GASA and ITS have been employed to solve the model. The
results indicated both of them can get a feasible solution in large instances, on the contrary,
CPLEX could not.
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In summary, the principal contributions of this thesis is comprised three new concepts appeared in
carrier collaboration, presenting mathematical models for them, and the development of efficient
solution methods: 1) the centralized multi-carrier PDPTWR, a new vehicle routing problem with
multi-carriers to allocate exchangeable requests to the suitable carriers. 2) the multi-period BGP:
A new multi-period vehicle routing problem to identify profitable requests in a period. 3) the
multi-period BGP with minimizing delivery lead time, a new bid generation problem appeared in

LTL carrier collaboration in order to reduce the delivery lead time and increasing the profits.

6.2 Perspectives

Although we have suggested a complete scheme to address the requests re-allocation problem
in LTL carrier collaboration, there are still other studies to be done to develop the models, the
solution issues, and make them more suitable in the realistic carrier collaboration environments.

Firstly, for the multi-carrier centralized PDPTWR, we have assumed all requests are deter-
ministic while in the realistic environment, requests can be stochastic. Thus, in the future study
we can focus on the stochastic requests particularly exchangeable requests can be stochastic.

Secondly, for the multi-period PDPTWPR via BGP, it will be an interesting issue to deal with
classified selective requests wherein each period if a selective request in each category cannot be
served, serving all selective requests in the same category will not be possible. In the realistic
collaboration environment, sometimes, ignoring a group of requests is reasonable to save costs.

Thirdly, we can add the effect of decreasing CO2 emission to our model in the third problem.
Although reducing the delivery lead time is important to meet the customer’s satisfaction, CO2
emission and increasing greenhouse gases in the environment is a critical issue in the last years
as it has become the huge problem in the world and most of the well-developed countries make
plans to reduce the effects of CO2 emissions in the atmosphere. Consequently, in our model
minimization of CO2 emission could be included to take into account the environmental aspect
besides cost and profit.

Finally, profit allocation approaches have not addressed in this thesis while this subject is
necessary for collaborative logistics implementing. In the literature, the requests re-allocation
problem and the profit allocation problem are often manipulated independently. It would be
better if the two problems could be examined together, so better results can be achieved compared

to observed them separately.
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a collaboration entre les petites et moyennes entreprises (PME) est cruciale pour améliorer

leur situation économique. En effet, cette collaboration au sein d’un réseau est une ap-

proche importante pour réaliser des bénéfices dans un environnement trés concurrentiel.
Le partage des demandes entre les transporteurs géneére des profits pour toutes les entreprises,
et assure la satisfaction des demandes des clients. Les raisons qui motivent les industriels et
les chercheurs a mettre en ceuvre la planification de la collaboration entre transporteurs sont la
concurrence féroce sur les marchés mondiaux, la courte durée de vie des produits, 'augmentation
du cofit du carburant, le prix de la main-d’ceuvre et ’effet de toutes ces raisons sur les profits
des entreprises [22]. Par conséquent, la collaboration entre les transporteurs est une stratégie
pertinente pour les chercheurs et les praticiens de I'industrie afin de réduire les retours a vide
des véhicules et d’augmenter leurs taux de remplissage [9].

Une coalition entre plusieurs acteurs du méme niveau d’opérations logistiques est définie
comme une collaboration de transporteur. Grace a cette collaboration, de nombreux transporteurs
peuvent échanger leurs demandes de transport entre eux pour arriver a une meilleure com-
plémentarité entre les demandes. Cet échange de demandes peut améliorer la planification de
tournées des véhicules tout en réduisant les retours a vide et, par conséquent, en augmentant
leurs profits de transport. Deux problémes importants sont discutés dans le probleme lié a la
collaboration. Le premier est de savoir comment ré-attribuer de facon optimale les demandes de
transport entre transporteurs pour maximiser le profit total. Le second est de définir comment
répartir les bénéfices obtenus apres une collaboration équitable entre les transporteurs au sein
d’une coalition, afin d’assurer la pérennité de cette alliance [65].

Dans cette thése, nous nous concentrons sur le premier probléme qui est également considéré
comme un probleme de planification collaborative des transports (CTP) [101], [102], [99]. Dans

cette these, nous étudions le probleme de la collaboration entre les transporteurs dans le service de
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ramassage et de livraison avec différentes spécifications (fenétres de temps, bénéfices, demandes
réservées, concept périodique et en supposant deux fonctions objectifs dans le Chapitre (5) ou le
transport de chargement partial est pris en compte dans le cadre de l'initiative centralisée de
transport de lots brisés et des approches décentralisées. En effet, le probleme de collaboration
entre transporteurs dans le service de ramassage et de livraison avec des fenétres de temps a
attiré beaucoup d’attention au cours des derniéres années avec un attrait particulier a I'objectif
de la planification opérationnelle dans les réseaux logistiques. Dans le logistique collaborative
avec ramassage et livraison, chaque demande est définie par deux emplacements, la ramassage
et la livraison, De plus, chaque point a une fenétre de temps. Dans un premier temps, chaque
transporteur est rémunéré par les expéditeurs (clients). Chaque transporteur établit un plan pour

répondre aux demandes qu’il regoit au moyen de ses propres véhicules et de la pré-collaboration.

Au final, le rapport cotit/bénéfice peut étre calculé. Certaines demandes (appelé aussi de-
mandes spéciales) sont aussi livrées en collaboration avec d’autres transporteurs. En plus, les
transporteurs puvent aussi émettre des demandes d’échanges de livraison des biens (appelé
demande d’échange). De ce fait, dans la collaboration, toutes les demandes partagées de tous
les transporteurs sont cumulées. Par conséquent, deux approches notables sont utilisées pour

résoudre le probleme du logistique collaborative avec ramassage et livraison dans cette these:

La premiére approche consiste a réaffecter un ensemble de demandes échangeables au
moyen d’'une approche centralisée pour faire une planification collaborative des transports et
les desservir ensuite par des tours a chaque transporteur en prenant en compte ses contraintes
de disponibilité de ressources. Dans ce cas, le probléme est d’abord formulé par le biais d'une
approche centralisée en échangeant des demandes entre les transporteurs. Ensuite, en présentant
le modele mathématique, le probleme est résolu par des algorithmes métaheuristiques.

La seconde est une approche de planification décentralisée qui nécessite 'utilisation de (BGP)
pour sa résolution. Dans ce probleme, il y a deux demandes différentes: les demandes réservées
a chaque transporteur et les demandes sélectives. Chaque demande sélective est associée a
un bénéfice qui est le prix de la demande fournie par un expéditeur. En incluant un concept
périodique, le transporteur peut planifier ses opérations de transport a I’avance et dans ’horizon

temporel.

En comparant les deux approches, 'approche décentralisée permet de préserver I’autonomie
décisionnelle et les données métier ainsi que la confidentialité de chaque transporteur. Aussi,
le bénéfice total de tous les transporteurs généré par le systéme centralisé est généralement
plus élevé que celui généré par 'approche décentralisée, ceci est dii en raison de I'importance de
Papproche décentralisée. La principale préoccupation de I'utilisation d’'un systéme centralisé con-
siste a préserver la confidentialité des données commerciales échangées entre les transporteurs.
Avec I'apparition et le développement ces derniéres années de Fourth-Party Logistics (4PL), les
fournisseurs agissent a titre d’intégrateur et coordonnent la planification du transport sans un

échange direct de données. De ce fait, cette préoccupation de partage de données est évitée. De
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plus, il est possible, digne pour un transporteur de révéler certaines informations aux (4PL) en
échange d’'une augmentation de profit. Une telle approche de planification centralisée a également
été utilisée dans le transport collaboratif, notamment dans le commerce tel que le commerce
de services dans le domaine de la logistiques du commerce électronique inter-entreprises [79].
Enfin, l'objectif de 1a deuxiéme approche est de réduire le délai de livraison (temps de transit
du transport) en plus de maximiser les profits. Cela signifie que le probléeme bi-objectif doit étre
résolu. Par conséquent, on a définit un modele mathématique bi-objectif que ’on va résoudre avec

des algorithmes bi-objectifs appropriés.

A.1 Les contributions de la these

Dans cette theése, deux types d’approches de planification concertée des transports sont proposés
pour résoudre les problémes cités précédemment. L'une est une approche décentralisée et utilisant

le probleme de la génération de soumissions, I’autre est ’approche de planification centralisée.

1. Dansl’ensemble, ’'approche de planification centralisée peut permettre d’obtenir un meilleur
rendement en matiére de collaboration entre plusieurs transporteurs avec des lots brisés.
Dans la planification collaborative centralisée des transports, ou chaque transporteur dis-
pose d’'un nombre limité de véhicules et chaque demande est une demande de ramassage
et de livraison dans les fenétres de temps spécifiées. Dans ce cas, chaque transporteur
peut réserver des demandes qui doivent étre en libre-service. En échangeant certaines
demandes entre eux, une telle collaboration peut les aider a réduire les cotits de transport
et augmenter leurs profits. Cette approche peut étre réalisée par 'intermédiaire d’'une
Quatrieme Partie Prestataire logistiques (4PL) qui agit en tant qu'intégrateur coordonnant
la planification du transport entre les transporteurs. Un modele de programmation linéaire
a nombres entiers mixtes (MILP) est formulé pour ce probleme. Etant donné que le modeéle
est NP-difficile, une recherche adaptative de grand quartier (Adaptive Large Neighborhood
Search- ALNS) l’algorithme génétique hybride avec recuit simulé (GASA) et un algorithme
amélioré de La recherche Tabu (ITS) pour résoudre le modeéle. Le ALNS utilise une variété
de méthodes de destruction et d’élimination. Les opérateurs de réparation, les multiples
phases de recherche et la post-optimisation est basée sur la recherche locale, le GASA
profite des avantages de I'algorithme génétique et du recuit simulé (d’une part, le critere
démographique ajoute la diversification et d’autre part, la caractéristique de recherche
locale par I'application de I’AS permet d’éviter d’étre piégé dans 'optimum local). Le TS
amélioré (ITS) adopte un opérateur de mutation et conserve de multiples solutions pendant
la durée de vie de ’équipement. Le processus de recherche afin d’obtenir une meilleure

solution plus rapidement est présenté dans le (Chapitre 3).

2. Un probleme de génération d’enchéres sur plusieurs périodes (BGP) pour un transporteur

peut étre pris en compte dans la logistiques collaborative avec ramassage et livraison.
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Dans le probleme, il existe deux types de demandes différentes, les demandes réservées
du transporteur et des demandes sélectives. Le transporteur s’engage par contrat avec ses
expéditeurs a servir tous les clients par lui-méme. Les demandes sélectives sont proposées
par d’autres transporteurs et elles sont ouvertes aux soumissions des transporteurs. Chaque
demande comporte une demande de ramassage et de livraison avec un point de ramassage,
un point de livraison, une quantité de ramassage et de livraison et deux fenétres de temps.
Le temps de livraison spécifie la période la plus rapprochée et la derniére période de
traitement de la demande, tandis que l'intervalle de temps affiche ’heure de service la
plus ancienne et la plus récente et elle est affectée aux deux points de ramassage et de
livraison. En outre, un bénéfice est associé a chaque demande sélective qui est le prix de la
demande fournie par un expéditeur. En incluant le concept périodique dans la CA (encheres
combinatoires), le transporteur peut planifier ses opérations de transport a 'avance et dans
un horizon mobile. De ce fait, un transporteur doit prendre deux décisions importantes
dans le BGP: Quelles demandes sélectives sont choisies? La seconde est de déterminer
I'intervalle de temps de chaque requéte sélective sélectionnée pour construire les routes
afin de maximiser le profit total. Il en résulte un nouveau probléeme de ramassage et de
livraison périodiques avec les fenétres de temps, les profits et les demandes réservées. Donc,
ce probléme est un probléme différent de celui présenté dans [65] qui considére les BGP a
période unique. Selon [24], le présent probléme est NP-difficile et il est impossible d’obtenir
des solutions réalisables ainsi qu'une solution optimale pour les grandes instances en
utilisant un solveur commercial comme CPLEX. Ainsi, une approche hybride qui combine
un algorithme génétique et un recuit simulé (dénommé « GASA») est proposée pour résoudre
la problématique. Le GASA adopte une structure chromosomique spécifique a un probléme.
Un croisement et un des opérateurs de mutation bien adaptés a la structure chromosomique
sont utilisés. Cette méthode utilise I'algorithme basé sur la population et I’algorithme du
point unique a la diversification et I'intensification de la solution séquentiellement. A des
fins de comparaison, nous utilisons également un algorithme d’optimisation basé sur la
biogéographie (BBO) qui est un algorithme basé sur la population et dont ses spécifications
sont proches de I’GA et son fonctionnement est sur la population de solutions pour trouver
la meilleure solution au probléme. En comparant GA et BBO, chaque chromosome dans
I’'GA, qui est considérée comme une personne ayant une valeur de condition physique, est
un habitat convenable qui est appelé HSI (Indice de qualité de I'habitat, cet indice est
présenté dans le Chapitre 4).

3. Dans les entreprises, en plus de minimiser tous les cotts, I’expéditeur est intéressé par
la réduction des délais de livraison. La réduction des délais de livraison présente deux
avantages: D’abord, des délais de livraison plus courts permettent une gestion agile de la
chaine d’approvisionnement et 'exécution des commandes est accélérée. Ainsi, elle améliore

la capacité des expéditeurs a étre concurrentiels dans 'industrie. Le deuxiéme avantage
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de la réduction de délai de livraison est le choix des transporteurs en fonction de facteurs
géographiques. Dans de nombreuses acquisitions, bien que le coiit soit un facteur important
dans I'évaluation des commandes, les transporteurs se soucient de ce qui suit sur les
spécifications de qualité lors de ’estimation des commandes passées par les fournisseurs
[48]. En effet, en considérant le délai de livraison court, le commissaire-priseur s'implique
aussi dans d’autres facteurs que les cotits. Dans de nombreuses situations d’acquisition, bien
que le cotit soit un attribut important dans I’évaluation des commandes, les transporteurs
se soucient des spécifications de qualité lors de I'estimation des commandes passées par les
fournisseurs [26]. Dans le travail actuel, 'objet du service de transport est de maximiser
les avantages totaux et de réduire au minimum le délai de livraison total présenté dans le

(Chapitre 5). Cet objectif peut se répartir de la maniére suivante:

¢ Un objectif unique: On peut noter dans la théorie traditionnelle de la passation de
marchés standard des encheres que, le commissaire-priseur ne se soucie que du
prix de l'objet, mais pas d’autres attributs. Toutefois, dans de nombreuses situations
d’approvisionnement, acheteur se soucie de certains attributs autres que le prix
lors de I’évaluation des offres soumises par les fournisseurs. On peut trouver parmi
les contraintes non monétaires qui préocuppent les acheteurs la qualité ou le temps
nécessaire a la livraison. En d’autres termes, les expéditeurs s’'inquietent aussi des
délais de livraison. Ce délai indique un meilleur service de transport. Dans ce probléeme,
les transporteurs recherchent des demandes de transport par le biais d’encheéres
combinatoires au cours de chaque période qui représente la fenétre de demandes
sélectives. En plus des demandes réservées pour maximiser le profit total et d’autre
part, le délai de livraison doit étre réduit. Chaque demande sélective a des fenétre
de temps qui décrivent les heures de ramassage et de livraison valides et la fenétre
de période indiquant la période la plus rapprochée et la période la plus éloignée
pour répondre a la demande sélective, tandis que chaque demande réservée doit
étre délivrée dans un une période préétabli. L'objectif du probléme est de décider
quelles demandes sélectives dans quelles périodes sont servies en plus des demandes
réservées afin de maximiser le profit total. Un modele de programmation linéaire mixte
(MILP) est proposé au probleme. Le probleme est NP-difficile et pour résoudre les
grandes instances, deux algorithmes métaheuristiques sont suggérés, une combinaison
d’Algorithme Génétique et de Recuit simulé (GASA) et recherche Tabu améliorée (ITS).

¢ Bi-objectif: En fait, probleme de génération d’enchéres a périodes multiples et a
objectifs multiples maximiser les profits et réduire les délais de livraison (temps de
transit) [48]. Les deux fonctions objectives visant & minimiser le temps de transit
et & maximiser les profits sont contradictoires et sont donc considérées séparément.
Résoudre un probléeme multi-objectifs signifie qu’on doit trouver un ensemble de

solutions appelées frontiere de Pareto. Depuis que les algorithmes évolutionnaires
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travaillent sur la population de solutions, ils sont bien adaptés aux problemes multi-
objectifs. Lors de leur conception, deux objectifs sont pris en compte: ils doivent
atteindre la frontiere de Pareto, ils doivent aussi trouver toutes les solutions le long de
la frontiere. C’est un probléme d’intensification et de diversification, et il existe certains
mécanismes pour traiter les problemes suivants ces objectifs. Par conséquent, deux
algorithmes basés sur la population, NSGAII et NRGA, sont les solveurs appliqués
pour résoudre le modele mathématique bi-objectif suggéré pour les soumissions a

périodes multiples.

A.2 Probleme de ramassage et de livraison avec plusieurs
transporteurs, fenétres de temps, demandes réservées et

demandes échangeables

Dans le présent document, nous mettons I’accent sur la planification concertée du transport
(CTP) entre les transporteurs dans un environnement de transport de lots brisés, ou chaque
demande est une demande de ramassage et de livraison avec fenétre de temps pour les points de
ramassage et de livraison. Chaque transporteur peut avoir des demandes réservées, qui doivent
étre en libre-service, et la collaboration entre les transporteurs est réalisée par ’échange de
demandes sans réserve (appelées ci-aprés demandes échangeables) entre eux. Nous adoptons
une approche de planification centralisée pour le probléme et ce dernier devient un probléme de
ramassage et de livraison par plusieurs transporteurs avec des fenétres de temps, deux types
différents de demandes, des demandes échangeables et réservées, ce qui est une nouvelle variante
du probleme NP-difficile de tournées des véhicules [97]. Malgré le probleme d’orientation ou il
n’y a pas d’obligation de répondre a toutes les demandes [10], dans notre probléme toutes les
demandes échangeables doivent étre traitées. Apres avoir présenté un modele de programmation
linéaire d’entiers mixtes au probleme, nous proposons un algorithme ALNS (Adaptive Large
Neighborhood Search) pour le résoudre. Le ALNS a été utilisé avec succes pour résoudre divers
problemes de routage de véhicules [81]. Dans [65], un algorithme ALNS est appliqué pour
résoudre un probleme de ramassage et de livraison avec des fenétre de temps, des profits, des
demandes réservées et impliquant un seul transporteur avec un seul dépot de véhicules. Dans ce
probléme, il n’est pas obligatoire de répondre a toutes les demandes sélectives. Le probléme de
tournées de véhicules examiné dans le présent document est un nouveau probléme qui concerne
plusieurs transporteurs et plusieurs dépots de véhicules. De plus, chaque demande réservée doit
étre servie par son propre transporteur et toutes les demandes doivent étre servies par tous
les transporteurs, les algorithmes ALNS existants ne peuvent pas étre appliqués directement a
notre probleme, certaines adaptations sont nécessaires afin de résoudre notre probleme. Le ALNS
proposé dans le présent document fait appel a divers opérateurs de destruction/réparation. Sa

procédure de recherche se compose de plusieurs phases, ou différentes phases utilisent différentes
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politiques pour le choix des demandes de destruction (suppression) ou de réparation (réinsertion).
L'idée de base est de modifier le comportement des opérateurs de destruction/réparation au cours
d’une phase successive de ’ALNS afin qu’il puisse explorer diverses régions. De plus, une post-
optimisation basée sur la recherche locale est appliquée a la fin de chaque phase afin d’améliorer
encore la qualité de la solution finale obtenue par TALNS. A des fins de comparaison, nous
développons également une approche de recherche Tabu améliorée. Cette approche améliore la
recherche tabu classique en conservant de multiples solutions pendant le processus de recherche,
en collectant et en utilisant leurs informations afin d’améliorer plus rapidement la solution
actuelle [75]. De plus, nous utilisons une tactique de mutation qui est une autre technique pour

améliorer la performance de cet algorithme [52].

A.2.1 Description et Formulation du Probleme

Il y a plusieurs transporteurs avec deux types de demandes: les demandes réservées et les deman-
des échangeables. Les demandes réservées de chaque transporteur doivent étre servies par le
transporteur lui-méme, tandis que ses demandes échangeables peuvent étre servies par d’autres
transporteurs. La collaboration entre les transporteurs est réalisée par ’échange de demandes
entre eux. Chaque transporteur dispose d'un nombre limité de véhicules situés initialement dans
un dépo6t. On suppose que tous les véhicules sont homogenes. Chaque ordre de transport est un
ordre de ramassage et de livraison caractérisé par un lieu de ramassage avec une fenétre de
temps, un lieu de livraison avec une fenétre de temps également, une demande et un montant de
recettes qui peut étre généré pour répondre a 'ordre. Aussi, le revenu d’'une demande est le prix
payé par un client (expéditeur) a un transporteur qui répond a sa demande. L'objectif du probléme
est de réaffecter de facon optimale toutes les demandes échangeables entre les transporteurs afin
de maximiser leur profit total ou, de fagon équivalente, de minimiser leur cotit total de transport
pour répondre a toutes les demandes réservées et échangeables. Nous adoptons une approche
centralisée pour résoudre ce probleme. De ce fait, nous formulons d’abord ce probleme comme
un MILP. Le Tableau A.1 et Tableau A.2 énumere les indices, les parametres, les ensembles, les

variables de décision utilisés dans le modéle.

min Y. ,em Xiev X jeV LkeK,, CijXijkm
tel que:
Y Xjikm— Y. Xigm=0 VieW,VkeK,,VmeM (A1)

JEV i JEVj#i

> Y Y xijgpm=1  VieW (A.2)

meM jeV;j#ikeK,,

Y xipgm<=1l VkeKnVi=meM (A.3)
JEP;j#i
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Table A.1: Indices, ensembles, paramétres du modele mathématique.

Symbols Description

G=(,E) Graphique G dirigé est complet et a fait I'objet de ’étude.

\%4 Ensemble de tous les noeuds.

E Ensemble de toutes les arcs.

n Nombre de demandes.

cr Nombre maximal de transporteurs.

M Ensemble de transporteur.

DC Ensemble de noeuds de dépot de transporteurs.

p=11,2,..,n} Ensemble de noeuds de ramassage, o1 I'index de chaque noeud de ramassage

D={n+1,..,2n}
w

i est le méme que I'index de sa demandes correspondante i,i=1,...,n,
n est le nombre de demandes.

Ensemble de noeuds de livraisons, ou n est le nombre de demandes.
Ensemble de nceuds, a ’exception des noeuds de dépot de tous les
transporteurs.

R ={1,..,n} Ensemble de demandes qui inclut le sous-ensemble de demandes réservées
R, et le sous-ensemble de demandes échangeables R.
R Ensemble des demandes réservées du transporteur m.
R, Ensemble de demandes échangeables.
Q Capacité du véhicule.
cij Coiit de déplacement du nceud i au neeud j.
S; Temps de service du noeud i.
K, =1{1,.,VK} Ensemble de véhicules du transporteur m, ou VK est le nombre maximum de
véhicules.
dpyi =—d; Demande du noeud de ramassage est égale a la demande du nceeud de
livraison d; est la demande du nceud de ramassage et d,,+; est la demande du
neeud de livraison, d,,+; est négatif
[e;,1;] Fenétre de temps du nceud i, ou e; est 1a limite inférieure de la fenétre de
temps et /; est la limite supérieure de la fenétre de temps.
tij Temps de déplacement du nceud i au noeud J, il est supposé égal au cout de
déplacement du noeud i au nceud .
T Durée de chaque route.
BM;;=1lj—e; Utilisé dans les contraintes de fenétres de temps.
CV,=Q +d; Utilisé dans les contraintes de capacité des véhicules.
Y xijgm=0  VEeKy,Yi,meM,i¢{m} (A4)
JEP;j#i
Y xijgms1l VEeK,Vi=meM (A.5)
JeD;j#i
Y xijkm=0  VEeKy,VimeM,i¢{m} (A.6)

JeD;j#i
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Table A.2: Variables de décision pour le modele mathématique.

Variables Description

Xijkm Variable binaire égale a 1 si et seulement si le véhicule £ du transporteur m utilise
le arc (i, ).
YVibm Variable binaire égale a 1 si et seulement si la demandes i est servie par le véhicule
k du transporteur m.
Uitm Heure a laquelle le véhicule £ du transporteur m commence le service au noeud i.
Lipm Charge du véhicule & du transporteur m au départ du noeud i.
Y Yikm=1 VieRpVimeM (A7)
keK,,
Y Yikm=0 VieR,i¢RI'YimeM (A.8)
keK,,
> 2 Yikem=1 VieR; (A.9)

meK,, meM

Y Xijkm = Yikm VieP,keKy,,VYmeM (A.10)
JEV j#im!

Y Xjisnkm =Yikm Vi€PkeKy,VYmeM (A.11)
JeV. j#i,m!
Uikm + tin+iy +8i <Um+iykm Vi€EP,k€Ky,VmeM (A.12)
Ujkm2Uikm+tij+3i_BMij(1_xijkm) VieV,keK,,,VmeM,VjeW (A.13)
eiSUikmSli VmeM,VieW (A.149)
Uipm +tij+si—BM;;(1-x;jpm)<T VieW,keK,,VmeM,NVjeM (A.15)
Lipm+d; —Q(~x;jrm)<Ljrym VieV,keK, VmeM,VjeV (A.16)
max{0,d;} <L;pm <min{@,CV;} VieV,keK,,VmeM (A.17)
Y ) xjikm <Km VieM,YmeM (A.18)
JEWEk=1
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Xijkm €1{0,1} Vi, jeV,VkeK,,VmeM (A.19)
Yikm €10,1} VieR,VkeK,,,VYmeM (A.20)
Uirm =0 VieV,VkeK,,,YmeM (A.21)
Lipm=0 VieV,VkeK,,,YmeM (A.22)

Lobjectif est de minimiser le cofit total de transport de tous les transporteurs. La contrainte
(A.1) est ’équation de préservation du flux et décrit chaque véhicule qui arrive a un nceud client
et doit le quitter. Léquation (A.2) décrit que chaque noeud client est visité exactement une fois
par les véhicules. Les contraintes (A.3)-(A.6) indiquent pour chaque transporteur le moment o
chaque véhicule quitte son dépét et doit retourner au méme dépét. Les contraintes (A.7)-(A.9)
concernent les demandes réservées et échangeables. Les équations (A.7) a (A.8) garantissent que
toutes les demandes réservées de chaque transporteur doivent étre servies par le transporteur
lui-méme, tandis que I'équation (A.9) implique que chaque demande échangeable peut étre servie
par tout transporteur. Les contraintes (A.10) et (A.11) satisfont si une demande est servie, il
doit y avoir un véhicule quittant son point de ramassage et arrivant a son point de livraison
jumelé. La contrainte suivante (A.12) est la contrainte de fenétre de temps pour les nceuds de
ramassage et de livraison. La contrainte (A.13) montre la faisabilité dans le temps, c’est-a-dire
que le véhicule £ ne peut pas commencer a desservir le nceud j avant d’avoir terminé son service
au nceud i et de se déplacer du nceud i au nceud j. La contrainte (A.14) impose une restriction
sur la fenétre de temps a chaque nceud client. Les équations (A.15), (A.16) et (A.17) garantissent
la durée maximale de chaque trajet, le respect de la capacité des véhicules et le nombre maximal

de véhicules pour chaque transporteur. Les autres contraintes définissent les variables.

A.3 Probleme de génération d’encheres sur plusieurs périodes
avec demandes de ramassage et de livraison, profits et

demandes réservées

Dans ce section, un probléme de génération d’enchéres sur plusieurs périodes (BGP) pour un
transporteur est pris en compte. Dans le probléeme, il y a deux types de demandes différentes,
les demandes réservées du transporteur et les demandes sélectives. Le transporteur s’engage
par contrat avec ses expéditeurs a répondre seul a toutes les demandes réservées. Les demandes
sélectives sont proposées par d’autres transporteurs et peuvent faire I'objet d'une offre par le
transporteur. Chaque demande comporte une demande de ramassage et de livraison avec un
point de ramassage, un point de livraison, une quantité de ramassage et de livraison et deux

fenétres de temps. La fenétre de période spécifie 'intervalle dans lequel la demande doit étre
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exécutée, tandis que la fenétre de temps affiche I'intervalle horaire affecté a la fois au point
de ramassage et au point de livraison. De plus, chaque demande sélective est associée a un
profit qui est le prix de service de la demande fournie par un expéditeur. En incluant le concept
périodique dans ’AC, le transporteur peut planifier ses opérations de transport a 'avance et
de facon horizontale. Un transporteur doit prendre deux décisions importantes dans le BGP:
quelles demandes sont choisies pour enchére et servir dans leurs fenétres de période de service et
comment les routes sont construites pour maximiser son profit total. Cela entraine un nouveau
probleme de ramassage et de livraison périodiques avec les fenétres de temps, les profits et les
demandes réservées. Ce probleme est donc différent de celui présenté dans [65] qui considere les
BGP a période unique. Selon [101], le probleme actuel est NP-difficile et il est impossible d’obtenir
une solution optimale pour les grandes instances en utilisant un solveur commercial comme
CPLEX. Une approche hybride combinant un algorithme génétique et un recuit simulé (GASA)
est donc proposée pour résoudre ce probleme. Le GASA adopte une structure chromosomique
spécifique au probléeme, des opérateurs de croisement et de mutation bien adaptés a la structure
chromosomique. A des fins de comparaison, nous utilisons un algorithme d’optimisation basé
sur la biogéographie (BBO) qui est un algorithme basé sur la population, ses spécifications sont
proches de le GA et son fonctionnement pour rechercher la meilleure solution dans une population
est similaire. En comparant le GA et le BBO, chaque chromosome du GA, qui est considéré comme
un individu ayant une valeur de forme physique, est un habitat dont I'indice de convenance est
appelé Indice de qualité de 'Habitat (Habitat Suitability Index). Habituellement, un habitat a
HSI élevé est acceptable et offre de meilleures solutions. Les résultats numériques démontrent
que l'algorithme proposé peut trouver une bonne solution réalisable dans un temps de calcul

raisonnable pour des cas importants.

A.3.1 Description et modele mathématique

Dans ce probléme, nous considérons un transporteur qui veut soumissionner a des demandes
parmi celles ouvertes a enchere (offertes par tous les transporteurs) dans une encheére combina-
toire afin de maximiser son propre profit en résolvant un probléme de génération de soumission.
Etant donné que le transporteur planifie ses opérations de transport a ’'avance et selon un horizon
mobile, comme il est mentionné dans I'introduction, ce probleme de génération d’offres implique
plusieurs périodes. Nous considérons le probléeme dans le cas du le transport de chargement
partial, ou chaque demande de transport est une demande de ramassage et de livraison avec
fenétres de temps, deux types de demandes, les demandes réservées et les demandes sélectives,
sont impliquées, et chaque demande est associée a un profit qui est le revenu pour servir la
demande. Formellement, le probleme de génération d’offres multi-périodes avec les demandes
de ramassage et de livraison, les fenétre de temps, les demandes sélectives et les demandes
réservées, et les profits peuvent étre définis sur un graphique dirigé G = (V,E) ou V est I'ensemble

des neeuds comprenant tous les nceuds de ramassage et de livraison et de dép6t du transporteur
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et E 'ensemble des arcs. Lensemble de nceuds est défini par V ={0,...,2n + 1}, ou n représente le
nombre de demandes, 0 et 2n+1 représentent le dépot du transporteur, i et n + i représentent
le point de collecte et le point de livraison de la demandes i, i = 1,2,...,n. Soit W ’ensemble des
noeuds a exception du noeud dépét. Comme mentionné précédemment, le probleme est le BGP
multi-période avec I’ensemble de périodes indiqué par H. Dans le probleme, le transporteur a
une flotte finie de véhicules homogenes dont I'indice est donné par K ={1,2,...,VK} ou VK est le
nombre maximum de véhicules. La capacité de chaque véhicule est indiquée par @ et la charge
de chaque véhicule ne peut dépasser sa capacité. L'ensemble P = {1,2,...,n} est '’ensemble des
nceuds de reprise de toutes les demandes et 'ensemble des noeuds de livraison est donné par
D ={n+1,...,2n}. Dans notre modele, chaque demandes i a son noeud de ramassage i et son
noeud de livraison i +n. La demande du nceud de ramassage de la demandes i est indiquée par d;,
tandis que la demande du nceud de livraison de la méme demandes est indiquée par d;.,, avec
di+n =-d;. Le noeeud de livraison de chaque demande doit étre visité apres son noeud de ramassage
sur le méme itinéraire. Lensemble de toutes les demandes est indiqué par R, ou R = (Ujeg R i)
URs. R £ est 'ensemble des demandes réservées qui doivent étre traitées dans la période [/ et
R, I'ensemble des demandes sélectionnées. Chaque demandes sélective a une fenétre de période
de service et deux fenétres de temps: La fenétre de période de service détermine les périodes
auxquelles la demande sélective peut étre exécutée et les deux fenétres de temps déterminent a
quels moments de chaque période le nceud de ramassage et le nceud de livraison de la demande
peuvent étre visités par un véhicule qui sert la demande. Les demandes sélectives et réservées
sont associées a deux fenétres de temps alors que seules les demandes sélectives sont associées a
une fenétre de période de service (la période pendant laquelle chaque demandes réservée doit étre
servie est prédéfinie). La fenétre temporelle du nceud de ramassage i et du neeud de livraison i +n
de la demandes i sont indiqués respectivement par [e;,l;] et [e;+n,l;+,]. La fenétre de période de
service pour chaque demandes sélective i est représentée par [E;,L;]. Chaque demande réservée
i€ R£ doit étre servie dans sa période prédéfinie /, [ € H. Le temps de déplacement et le cotit
de transport entre deux noeuds i et j sont supposés étre les mémes et sont indiqués par ¢;; et
¢;j, respectivement. La durée maximale de chaque itinéraire i est limitée par T'. Le probléeme
de la génération d’offres sur plusieurs périodes peut étre formulé sous la forme d'un modele de
programmation linéaire a entiers mixtes. Dans le modele, les parametres BM;; =[; —e; sont
utilisés pour formuler linéairement les contraintes de fenétre de temps tandis que C; =@ + d; est
utilisé en contraintes de capacité. Les variables de décision du modele comprennent les variables

binaires, x;;zn et y;rn et les variables réelles U,y et CV;pj, définies comme suit:

1 Si et seulement si dans la période A, le véhicule % visite directement le noeud j
Xijkh = apres le noeud i.
0 Dans le cas contraire.
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1 Si et seulement si la demande i est servie par le véhicule £ dans
Yikh = la période A.
0 Dans le cas contraire.

U;rn = Temps d’arrivée du véhicule K au nceud i dans la période A

CV;zn = Charge de véhcile £ quand il quitte le nceud i dans la période A

max(Y;cR 2 heH 2keK PiYikh—2heH 2ieV 2jeV 2keK CijXijkm)
sujet a:

Y xjikn— Y, x%jp=0 VieW,VkeK,VheH
JEVj#i JEV;j#L

> 2 xojkazl

keK jeP;j#Z0heH

YooY ) xignsen =1

keKieD;i#(2n+1)heH

Y yien=1  VieH,VieR!
keK

Z Z yirn <1 VieR;
helE;,L;1keK

Y Xjm+ikh = Yikh VieP,keK,YheH
JEV j#i,0

Y. Xji+nkn=Yikn Vi€P,keK,YheH
JeV . j#i,2n+1

Uikh +tin+i) +8i <Um+ien Vi€eP,keK,YheH

UjkhEUikh+tij+3i_BMij(1_xijkh) VieV,ke K,Yhe HNjeV

ei¥ikh <Uirn <li+(1—yipp) Y BM;;  VYheHNieV,VkeK
JeEV
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Uinh +ti;+5i—BM;j(1-x;zp)<T VieV,keK,Vhe H,Vje{0} (A.33)
CVirnh+di—Ci(1—x;jpp)<CVyy, VieV,keK,VYheH,NjeV (A.34)
max{0,d;} < CVigm <min{Q,Q +d;} VieV,keK,YheH (A.35)
xijrn €1{0,1} Vi, jeV,Vke K,Yhe H (A.36)
Uirp 20 VieV,Vke K,.Yhe H (A.37)
CVipp =0 VieV,Vke K,.Yhe H (A.38)

Yirn =0 pour tout i € Rs,Vk € K,pour tout 2 ¢ (E;,L;) and y;,, =0 pourtoutie€ R, ;x5
(A.39)

La fonction objective représente le bénéfice total du transporteur, qui est égal a la différence
entre le total des paiements des demandes de service dans toutes les périodes et le cofit total
du transport. La contrainte (A.23) garantit que lorsqu’un véhicule arrive a un nceud au cours
d’une période, il doit quitter ce nceud au cours de la méme période. Les contraintes (A.24) et
(A.25) signifient que chaque véhicule quitte son dépot au cours d'une période doit y retourner
au cours de la méme période. L'équation (A.26) implique que chaque demande réservée doit étre
servie dans sa période prédéterminée. L'équation (A.27) indique que chaque demande sélective
peut étre servie pendant une période comprise dans sa fenétre de période de service ou ne pas
étre servie. Les contraintes (A.28) et (A.29) garantissent que si une demande est servie dans
une période, son noeud de livraison doit étre visité apres son nceud de ramassage avec le méme
véhicule dans la méme période. Les équations (A.30)-(A.33) précisent les contraintes de fenétre
de temps sur les nceuds de ramassage et de livraison de chaque demande et la contrainte sur la
durée maximale de chaque route. Les contraintes (A.34) et (A.35) assurent des contraintes de

capacité des véhicules. Les équations (A.36)-(A.39) décrivent les variables.

A4 Probleme de génération d’encheéres sur plusieurs périodes
avec prise en compte des délais de livraison

Dans les entreprises, en plus de minimiser tous les cofits, 'expéditeur est interessé par la

réduction du délai de livraison. La réduction les délais de livraison présente deux avantages.

Dans un premier temps, des délais de livraison plus courts rendent agile la gestion de la chaine

d’approvisionnement et la réponse aux commandes est exécutée plus rapidement. Ainsi, elle
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améliore la capacité des expéditeurs a étre concurrentiels dans I'industrie. Deuxiémement,
Iavantage d’'un délai de livraison plus court réside dans le choix des transporteurs en fonction
des facteurs géographiques. Cela signifie que les expéditeurs distribuent les volumes de fret
a un transporteur géographiquement [48]. En fait, en considérant le délai de livraison court,
le commissaire-priseur s'implique aussi dans d’autres attributs non seulement économiques.
Dans de nombreuses situations d’acquisition, bien que le cotit soit un attribut important dans
Pévaluation des commandes, les transporteurs se soucient des spécifications de qualité lorsqu’ils
estiment les commandes soumises par les fournisseurs [26].

Compte tenu de I'importance du délai de livraison dans BGP, de son application dans les
problemes réels de transport et du fait que cette question n’a pas encore été abordée dans la
littérature, nous nous concentrons sur ce sujet dans la présent section. En effet, dans ce dernier,
nous avons envisagé ’encheére combinatoire pour la collaboration entre transporteur, chaque
transporteur détermine les demandes (échangeables) de soumission (les demandes échangeables
a sélectionner) en résolvant un BGP. Apres avoir recu les offres de tous les transporteurs, le
commissaire-priseur (une plate-forme d’enchéres) détermine les transporteurs gagnants et leurs
offres gagnantes. Concernant le commissaire-priseur, il a deux facons d’évaluer chaque offre des
transporteurs. L'une consiste a évaluer une offre en fonction de la notation qui est définie comme
le cotit et le délai de livraison, comme dans I’enchére de notation multi-attributs. Lautre fagon
d’évaluer une offre est en fonction de ses multiples attributs (dans notre cas, un attribut est le
colit, 'autre attribut est le délai de livraison). Par conséquent, chaque transporteur a également
deux facons de présenter son offre, 'une consiste a présenter une note (coit et délai de livraison)
et autre a présenter les deux attributs d’une offre (cotit et délai de livraison).

Par conséquent, dans la présent section, nous examinons les deux points de vue sur le
probléme du transport collaboratif. La premiére approche est une méthode des objectifs pondérés,
c’est-a-dire que nous attribuons un poids a chaque objectif et transformons ensuite deux objectifs
en un seul objectif pondéré. L'autre méthode est une méthode bi-objective qui est traitée avec des
fonctions objectives séparées sans les transformer en une seule fonction objective. Par conséquent,
deux méthodes de traitement avec les deux objectifs supposés conduisent a deux probléemes: le
BGP multi-période a objectif unique avec délai de livraison et le BGP multi-période bi-objectif

avec délai de livraison.

A.4.1 Description et modele mathématique

Le probleme considéré dans ce section est un probléme de planification du transport avec
les demandes de ramassage et de livraison, les fenétres de de temps et de période sur un
graphique dirigé G = (V,E), ou V est 'ensemble des nceuds et E est ’ensemble des arcs, avec
les spécifications suivantes: Chaque demande i a deux points, un point de ramassage i et un
point de livraison n + i, ou n représente le nombre de demandes. Aussi, la demande du point de

ramassage est égale a la demande du point de livraison. Le nceud de livraison de chaque demande
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Table A.3: Les parametres du modele mathématique présenté.

Symbols

Explication

vV ={0,...,2n+1}

P={1,2,...,n}
D={n+1,..,2n}
w

H
K={1,2,..., VK}

Q

E;

Rs=(Uicn R))
R =WUen R))
Ry

lei, ;]

leivn,lisn]

Ensemble de tous les nceuds et comprend tous les nceuds de ramassage,
de livraison et de dépot de transporteur. Le n signifie le nombre de demandes,
0 et 2n + 1 indiquent le dép6t du transporteur.

Ensemble des noeuds de ramassage de toutes les demandes.

Ensemble des noeuds de livraison.

Ensemble de tous les nceuds de livraison et ramassage.

Ensemble des périodes de I’horizon de planification.

Ensemble fini de véhicules homogeénes ou VK est

le nombre maximum de véhicules.

Capacité de chaque véhicule.

Demandes réservées et qui doivent étre servies dans la période [ € H.
Ensemble de demandes sélectives.

Ensemble de toutes les demandes.

Demande sélective s dans la période /.

Fenétres de temps du point de ramassage i.

Fenétres de temps du point de livraison du point de ramassage i.

[E;,L;] Fenétre de période de la demande sélective i.
tij Temps de déplacement entre deux noeuds i et j.
Cij cout de déplacement entre le noeud i et j i and j.
T Durée maximale de chaque route.
BM;j=1j-e; Formuler linéairement les contraintes de fenétre temporelle si /; est
la limite supérieure de la fenétre de temps pour le nceud j et e; est
la limite inférieure de la fenétre de temps pour le nceud i.
CV,=Q+d; Symbole utilisé pour formuler linéairement les contraintes de capacité du véhicule.
d; Demande du nceud ramassage de la demande i.
diyn=-d; Demande du point de livraison si la demande du point de ramassage est d;.
a; Pénalité du délai de livraison pour le client i.
Table A.4: Les variables de décision du modéle considéré.
Symbols Explication
xijrn =1  Siet seulement si le véhicule £ visite directement le nceud j apres
le nceud i dans la période A.
Yirh =1 Si et seulement si la demande i est servie par le véhicule £ dans la période A.
Uirn Heure d’arrivée du véhicule & au noeud i dans la période h.
CVipp Capacité du véhicule £ quand il quitte le nceud i dans la période A.
yg B Variable auxiliaire utilisant dans la linéarisation d’'un modele.

doit étre visité apres son nceud de ramassage sur le méme itinéraire. Le nombre de clients,

leur localisation, le type de véhicule et leur taille sont prédéfinis. Il y a d’autres hypotheéses
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a ce probleme comme le cas ou la quantité de ramassage/livraison est inférieure a la capacité
du véhicule et tous les véhicules sont homogenes. Le cofit de la satisfaction de la demande des
clients dépend de la distance totale parcourue par les véhicules. Chaque demande sélective a
une fenétre de période de service et deux fenétres de temps. La fenétre de période de service
définit les périodes pendant lesquelles chaque demande sélective peut étre traitée et les deux
fenétres de temps déterminent a quels moments de chaque période le noceud de ramassage et le
nceud de livraison de la demande peuvent étre visités par un véhicule qui dessert cette demande,
par exemple les fenétres matin et aprés-midi séparées par une pause déjeuner. Les demandes
sélectives et réservées sont associées a deux fenétres de temps, alors que seules les demandes
sélectives sont associées a une fenétre de période de service (la période pendant laquelle chaque
demandes réservée doit étre servie est prédéfinie). Si une demande sélective est servie, la période
la plus appropriée pour la servir devrait étre déterminée.

Le probleme de la génération d’offres sur plusieurs périodes peut étre formulé sous la forme
d’un modeéle de programmation linéaire a entiers mixtes. Le but du probléme est de répondre a
toutes les demandes réservées dans leur période prédéfinie et de déterminer quelles demandes
sélectives doivent étre traitées pour augmenter le bénéfice total. Les parameétres du probléme
sont énumérés dans le Tableau A.3, tandis que les variables de décision utilisées sont présentées
dans le Tableau A.4.

max (Yier LheH LkeK PiYikh—2heH 2ieV 2 jeV 2keK CijXijkm—2 jeR, Xj( L helE; L12-keKYjkh))
sujet a:
Z Xjikh — Z xijk:O VieW,Vke K,Yhe H (A.40)

JEVj#i JEV;j#L

Y ) 2 xorn=1 (A.41)

keK jeP;jZ0 heH

> > Y. Xi@n+vkh =1 (A.42)
keK ieD;i#2n+1) heH

Y yien=1 VheH\VieR] (A.43)
keK

Yo Y yirn=1 VieR; (A.44)
helE,,L;1keK

Y Xjmeikh = Yikh VieP,keK,Yhe H (A.45)
JEV . j#i,0
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Z Xj(i+n)kh = Yikh ViEP,k EK,Vh eH (A.46)
JEV,j#i,2n+1

Uirh +ti n+i) +8i <Um+i)rn Vi€eP,keK,VheH (A.47)
Ujrh zUipp +tij+si—BM;j(1-x;jry) VieV,keK,YVheH,VjeV (A.48)
eiyikhSUikhSZi"‘(l_yikh)ZBMij VheHVieV VkeK (A.49)
JjeV

Uikh +tij+3i _BMij(l_xijkh)s T Vie V,k EK,Vh EH,VjE {0} (A.50)
CVikh+d; —Q(1—x;j4,b)<CVjp, VieV,keK,YheHNVjeV (A.51)
max{0,d;} < CVipm <min{Q,d;} VieV,keK,VheH (A.52)
Xijkh €{0,1} Vi,jEV,Vk eK,VheH (A.53)
Uirn 20 VieV,VkeK,VheH (A.54)
CVipp, 20 VieV,VkeK,VheH (A.55)

yikh =0 pour tout i € Rs,Vk € K,pour tout 2 ¢ (E;,L;) and y;z, =0 pourtouti€ R, 4

(A.56)
Yien Zhx yjen —E; VjeV,VkeK,Vhe H (A57)
Y =0 VjeV,VkeK,Yhe H (A.58)

La fonction objectif correspond au bénéfice total du transporteur, c’est-a-dire a la différence
entre les paiement totaux des demandes de service dans toutes les périodes, le cofit total du
transport et le délai de livraison. Le score considéré, dans la fonction d’objectif unique, est la
pénalité du délai de livraison. La contrainte (A.40) garantit que lorsqu’un véhicule arrive a un
noeud dans une période, il doit partir dans la méme période. Les contraintes (A.41) et (A.42)
signifient que chaque véhicule quitte son dépdt dans une période doit y retourner dans la méme

période. L'équation (A.43) implique que chaque demande réservée doit étre servie dans sa période
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prédéterminée. L'équation (A.44) indique que chaque demande sélective peut étre traitée au cours
d’une période de sa fenétre de service ou ne pas I'étre. Les contraintes (A.45) et (A.46) garantissent
que si une demande est servie dans une période, son nceud de livraison doit étre visité apres son
neeud de ramassage avec le méme véhicule dans la méme période. Les équations (A.47)-(A.50)
précisent les contraintes de fenétre de temps sur les noeuds de ramassage et de livraison de
chaque demande et la contrainte sur la durée maximale de chaque route. Les contraintes (A.51)
et (A.52) controlent la capacité du véhicule. Les équations (A.53)-(5.56) définissent toutes les
variables. Pour linéariser la derniére composante de la fonction objectif, deux contraintes (5.57)
et (5.58) sont utilisées.

Lorsque les expéditeurs se préoccupent surtout du temps de transit (délai de livraison), un
temps de transit plus court permet d’offrir un meilleur service de transport. Il est possible de
considérer un probléme bi-objectif pour maximiser, d'une part, les profits et minimiser d’autre
part le temps de transit et pour évaluer I'effet de la minimisation du délai de livraison sur le
profit maximal. Cela signifie que I'une des fonctions objectives est la maximisation du profit et
Pautre est la minimisation du délai de livraison. Par conséquent, dans le modele précédent, le

délai de livraison sera considéré comme une deuxiéme fonction objectif.

Premiere fonction objectif:

max (Y ;e 2 heH 2keK PiYikh—2heH 2ieV 2jeV 2keK CijXijkm)

Deuxiéme fonction objectif:

min Y jcp, (X relE, 1,12 keKYjkh)

A.5 Conclusion

Au cours des derniéres années, la logistiques collaborative et surtout le transport collaboratif
entre transporteurs sont apparus comme une technique bénéfique pour les petites entreprises
et aux transporteurs de fret de taille moyenne afin d’améliorer leur rentabilité en diminuant
les trajets de retour a vide par le repositionnement des véhicules et en améliorant leur taux de
remplissage. Dans cette thése, nous nous avons discuté de la planification concertée du transport
(CTP) découlant de la collaboration des transporteurs, en particulier de la collaboration des
transporteurs dans le transport de chargement partial (LTL).

Deux sujets clés sont souvent discutés pour la collaboration des transporteurs dans le trans-
port de chargement partial: le probleme de la réaffectation des demandes et le probleme de la
post-collaboration Ces problémes influencent grandement les bénéfices du transporteur. Dans
cette these, nous nous sommes concentrés sur le probleme de la réaffectation des demandes dans
le cadre d’'une collaboration centralisée entre plusieurs transporteurs et nous avons proposé

une approche de collaboration entre transporteurs fondée sur les enchéres pour le PTP avec
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profits. Dans ce domaine, trois principaux sous-problémes sont pris en compte: CTP centralisé
multi-opérateurs avec demandes de ramassage et de livraison avec fenétres de temps et demandes
réservées, le probleme de génération périodique d’encheres et (BGP) avec délai de livraison dans

la collaboration entre opérateurs via un échange combinatoire.

Au début, nous avons étudié le contexte de la recherche dans le Chapitre 1 et examiné 'état
d’avancement de la recherche sur la planification concertée des transports dans le Chapitre 2.
Puis, dans le Chapitre 3, nous nous sommes concentrés sur le CTP centralisé multi-transporteur
avec ramassage et livraison avec fenétres de temps et les demandes réservées (PDPTWR) qui est

nouveau défi dans la thématique des tournées de véhicules.

Le PDPTWR centralisé multi-transporteur implique des demandes échangeables, qui peuvent
étre échangées entre les transporteurs au sein d'une coalition, tandis que chaque transporteur
conserve les demandes réservées pour lui-méme. Apres la présentation d'un modele de program-
mation mathématique, trois algorithmes métaheuristiques ont été développés comme méthodes
de solution: une recherche adaptative de grand voisinage (ALNS), un algorithme génétique hy-
bride et recuit simulé (GASA) et une recherche tabu améliorée (ITS). Les résultats expérimentaux
numériques montrent que nos algorithmes donnent des résultats prometteurs par rapport aux
solveurs commerciaux CPLEX. De plus, l'algorithme ALNS surpasse les deux autres algorithmes
non seulement pour trouver les meilleures solutions mais aussi parce que son temps de calcul est

meilleur que les autres.

Dans le Chapitre 4, un probléme de génération d’offres sur plusieurs périodes (BGP) pour
un transporteur a été envisagé. Dans ce probleme, il y a deux types de demandes différentes,
les demandes réservées du transporteur et les demandes sélectives. Chaque demande a un
point de ramassage et de livraison avec deux fenétres de temps. Une fenétre de période spécifie
I'intervalle dans lequel la demande doit étre exécutée, alors qu'une fenétre temporelle indique
I'intervalle horaire affectée au point de ramassage et au point de livraison. De plus, chaque
demande sélective est associée a un profit qui est le cofit de service de la demande fournie par
un expéditeur. Une approche hybride combinant un algorithme génétique et un recuit simulé
(GASA) a été proposée pour résoudre ce probléme. A des fins de comparaison, nous avons utilisé
I’'algorithme d’optimisation fondé sur la biogéographie (BBO) qui est un algorithme basé sur la
population dont les spécifications sont proches a 'GA. Les résultats numériques ont démontré
qu’en utilisant CPLEX, les algorithmes proposés peuvent trouver une bonne solution réalisable

dans un temps de calcul raisonnable pour des cas importants.

Dans les entreprises, en plus de minimiser tous les cofits, un expéditeur est intéressé par la
réduction des délais de livraison. La réduction des délais de livraison présente deux avantages.
Dans un premier temps, des délais de livraison plus courts permettent la gestion agile de la
chaine d’approvisionnement et la réponse aux commandes est exécutée plus rapidement. Ainsi,
il améliore la capacité des expéditeurs a soutenir la concurrence dans I'industrie. Le deuxiéme

avantage d’un délai de livraison plus court est le choix des transporteurs en fonction des facteurs
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géographiques. Cela signifie que les expéditeurs distribuent la marchandise a un transporteur
suivant le plan géographique. Finalement, en tenant compte du délai de livraison court, le
commissaire-priseur s'implique aussi dans d’autres attributs qui ne sont pas seulement des
cotits. Dans de nombreuses situations d’acquisition, bien que le cofit soit un facteur important
pour évaluer les commandes, les transporteurs se soucient des spécifications de qualité lors de
Iestimation de l'offre des commandes passées par les fournisseurs. De ce fait, dans le Chapitre
5, nous avons abordé dans le Chapitre 5 la question du délai de livraison dans le cadre de
Iapprovisionnement en services de transport, qui est effectué par les expéditeurs au moyen
d’encheres pour sélectionner le service de transport aupres des transporteurs a ’étape de la
planification. De nombreux expéditeurs utilisent ceci dans leurs taches de transport quotidiennes
dans le monde réel; le service de transport est meilleur lorsque le délai de livraison est plus
court. Par conséquent, nous avons envisagé deux facons d’inclure le délai de livraison dans le
probléme. Premierement, un probléme bi-objectif a été envisagé, ou le premier objectif est la
maximisation de tous les profits tandis que l'autre est la minimisation du délai de livraison.
Apres avoir présenté le modele mathématique, nous I'avons résolu par NSGAII et NRGA et les
avons comparés par des métriques bien connues. Deuxiémement, nous avons supposé que le
délai d’exécution du probléme était inclus comme attribut dans la fonction objectif en utilisant
certaines méthodes de prise de décision multicriteres (MCDM). De ce fait, GASA et ITS ont
été utilisés pour résoudre le modele. Les résultats indiquent que les deux peuvent obtenir une
solution réalisable dans des cas de large taille, au contraire, CPLEX n’a pas pu le faire.

En résumé, les principales contributions de cette thése comprennent trois nouveaux concepts
apparus dans la planification de la collaboration entre transporteurs, la présentation de modeles
mathématiques pour eux et le développement de méthodes de solution efficaces: 1) le PDPTWR
centralisé a transporteurs multiples, un nouveau probleme de tournées des véhicules a plusieurs
dépots pour attribuer les demandes d’échange a4 un transporteur approprié. 2) le PDPTWPR multi-
période via BGP: un nouveau probléme de routage multi-période des véhicules pour identifier les
demandes rentables sur une période. 3) le PDPTWPR multi-période via BGP avec minimisation
de délais de livraison. Ce dernier point est un nouveau probléme de génération d’offres est apparu
dans la collaboration des transporteurs LTL afin de réduire les délais de livraison et d’augmenter

les profits.

A.6 Perspectives

Bien que nous ayons suggéré un plan complet pour résoudre le probleme de réattribution des
demandes dans le cadre de la collaboration entre transporteurs de lots brisés, il reste encore
d’autres études a réaliser pour élaborer les modeéles et les solutions aux problémes et les rendre

plus appropriés dans les environnements réalistes de collaboration entre transporteurs.

Premierement, concernant le (Probléme de ramassage et de livraison avec plusieurs trans-
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porteurs, fenétres de temps, demandes réservées et demandes échangeables) centralisé a trans-
porteurs multiples, nous avons supposé que toutes les demandes sont déterministes alors que
dans un environnement réaliste, les demandes peuvent étre stochastiques. Ainsi, dans I’étude fu-
ture, nous pouvons nous concentrer sur les demandes stochastiques, en particulier les demandes
échangeables peuvent étre stochastiques.

Deuxiémement, pour le cas de plusieurs périodes sur probléme de génération d’enchéres avec
ramassage et de livraison probléme de fenétres de temps, de profits et de demandes réservées
et les délais de livraison, il sera intéressant de traiter les demandes sélectives classifiées pour
lesquelles chaque période: si une demande sélective dans chaque catégorie ne peut étre servie, il
ne sera pas possible de servir toutes les demandes sélectives dans cette méme catégorie. Dans
un environnement de collaboration réaliste, il est parfois raisonnable d’ignorer un groupe de
demandes pour réduire les cofits.

Troisiemement, nous pouvons considérer I'effet de la réduction des émissions de CO2 a notre
modele dans le troisieme probléme. Bien qu’il soit important de réduire le délai de livraison
pour satisfaire le client, ’émission de CO2 et 'augmentation des gaz a effet de serre dans
I’environnement est une contrainte critique ces derniéres années, car elle est devenue un probleme
majeur dans le monde et la plupart des pays développés prennent en compte des plans pour
réduire les effets des émissions de CO2 dans 'atmosphére. Par conséquent, notre modéle pourrait
inclure comme objectifs la réduction des émissions de CO2 en plus du cotiit et du profit.

Enfin, les approches d’allocation des bénéfices n’ont pas été abordées dans cette these alors
que ce sujet est nécessaire a la mise en ceuvre de la logistiques collaborative. Dans la littérature,
le probleme de la réattribution des demandes et celui de l'affectation des bénéfices sont souvent
manipulés indépendamment. Il serait préférable que les deux problémes puissent étre examinés

ensemble afin d’obtenir de meilleurs résultats qu'auparavant.
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Etudes sur le transport collaboratif :
modeles et métaheuristiques

Dans le domaine de la logistique collaborative,
plusieurs transporteurs forment une alliance pour
améliorer leurs opérations de transport et leur
rentabilité en échangeant leurs demandes de
transport. Dans cette thése, nous concentrons sur la
collaboration des transporteurs dans le transport de
chargement partial (LTL). Plus précisément, trois
sous-problemes de la planification collaborative
entre transporteurs sont pris en compte : un
probleme de planification centralisée de multi-
transporteurs avec ramassage et livraison, fenétres
de temps, demandes échangeables et demandes
réservées, un probleme de génération d’enchéres a
plusieurs périodes, un probléeme de ramassage et de
livraison, fenétres de temps, profits, demandes
réservées et probleme de génération d’encheéres a
plusieurs périodes avec prise en compte a la fois du
coiit et du délais de livraison.

Ces sous-problémes jouent un rdle essentiel dans la
planification collaborative de transport entre
transporteurs, mais dans la littérature, aucune étude
profonde n'a été effectuée sur eux. Nous avons
présenté de nouveaux modéles de programmation
mathématique pour ces problémes et développé des
heuristiques efficaces pour obtenir des solutions
proches de leurs optimums dans un temps de calcul
raisonnable. Ces heuristiques proposées sont plus
efficaces que le solveur commercial, CPLEX, non
seulement en termes de qualité de solution mais
aussi en termes de temps de calcul.

Mots clés : transports routiers — recherche opéra-
tionnelle — métaheuristiques — transports urbains —
transport durable - livraison de marchandises.

Studies on Collaborative Transportation:
Models and Metaheuristics

In collaborative logistics, multiple carriers form an
alliance to improve their transportation operations
and profitability by exchanging their transportation
requests. In this thesis, we focus on the carrier
collaboration in  Less-than-truckload  (LTL)
transportation. More precisely three sub-problems
of collaborative planning are considered. Centralized
multi-carrier problem with pickup and delivery, time
windows, exchangeable requests and reserved
requests, multi-period Bid Generation Problem with
pickup and delivery problem, time windows, profits,
reserved requests and multi period Bid Generation
Problem with consideration of both cost and delivery
lead time.

These sub-problems play a vital role in collaborative
transportation planning among carriers, but in the
literature, there is no in-depth study on them. We
have presented new mathematical programming
models for these problems and developed efficient
heuristics to obtain solutions close to their
optimums in a reasonable computation time. The
suggested heuristics are more efficient than
commercial solver, CPLEX, not only in terms of
solution quality but also in terms of computation
time.
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transporation with time limitation - delivery of
goods.
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