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Abstract

The tire friction potential is the quantity characterizing the amount
of friction remaining before the tire begins to skid on the road. Knowing
this quantity during a travel turns out to be particularly advantageous,
especially for the development of autonomous vehicles and also to sig-
nificantly improve the driver assistance systems performances. Unfor-
tunately, under standard driving conditions, the longitudinal tire force
provided by a tire is low compared to the normal load applied on it.
Therefore, the grip potential is particularly difficult to estimate under
standard driving conditions. Thus, the goal of this PhD thesis is to carry
out a method enabling to estimate the grip potential under standard
driving conditions. This method should work using only the sensors fit-
ted on production vehicle. The introduced method is divided into two
main steps. Firstly, friction data points are combined with an adaptive
Monte-Carlo Markov Chain method in order to predict the grip potential
value. In this first main step, the friction data points are measurements
coming from simulations or tests carried out on standard tires with a tire
testing machine. However, in the practical case where the only acces-
sible measurements are the ones provided by sensors fitted on produc-
tion vehicle, these friction data points measurements are not available.
Therefore, in a second main step, an extended Kalman filter is used in
order to obtain friction data points estimates by using exclusively sig-
nals provided by the sensors fitted on production vehicle. This step is
validated on simulated data representative of a straight line maneuver.

Keywords: friction potential estimation, Kalman filters, parametric model
learning, state-space representation, noise covariance matrix, MCMC es-
timation.
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Résumé

Le potentiel d’adhérence d’un pneu est la grandeur caractérisant la
quantité d’adhérence restante à un pneu avant que celui-ci ne se mette
à patiner sur la route. La connaissance de cette grandeur lors d’un trajet
pourrait se révéler particulièrement avantageuse, notamment pour le
développement des véhicules autonomes et également pour améliorer
sensiblement les performances des systèmes d’aide à la conduite. Mal-
heureusement, lors d’une manœuvre standard, les efforts longitudinaux
générés par le pneu restent faibles par rapport à la charge subie par
celui-ci. En conséquence, le potentiel d’adhérence est particulièrement
difficile à estimer. Ainsi, l’objectif de ces travaux est de mettre en œuvre
une méthode permettant d’estimer le potentiel d’adhérence lors d’une
manœuvre standard en utilisant uniquement les capteurs équipant les
véhicules de série. La méthode mise en œuvre se scinde en deux grandes
étapes. Tout d’abord, une méthode de type Monte-Carlo adaptative util-
isant des points de friction est mise en œuvre afin de déterminer le po-
tentiel d’adhérence. Dans cette première grande partie, les points de
friction utilisés sont des mesures provenant de simulations ou d’essais
effectués avec des machines de test sur des pneus standards. Cepen-
dant, dans le cas pratique où les seules mesures accessibles sont celles
fournies par les capteurs présents sur les véhicules de série, ces mesures
de points de friction ne sont pas accessibles. Ainsi, dans une seconde
grande étape, un filtre de Kalman étendu est utilisé afin d’obtenir des
estimations des points de friction en ne se servant que des signaux four-
nis par les capteurs présents sur les véhicules de série. Cette étape est
validée sur des données de simulation représentatives d’une manœuvre
en ligne droite.

Mots clés: estimation du potentiel d’adhérence, filtres de Kalman, es-
timation paramétrique, représentation d’état, matrice de covariance de
bruit, estimation MCMC.
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CHAPTER 1
Introduction and state of the art

1.1 Introduction

Because traffic accidents are responsible for a huge number of deaths
every year all over the world, the passenger’s safety is one of the prior-
ity for vehicle manufacturers [15, 14]. In order to ensure this safety,
passenger vehicles are nowadays equipped with control chassis systems
such as the anti-lock braking system (ABS) or the electronic stability pro-
grams (ESP) [16, 61]. These tools act on vehicle inputs to correct the
vehicle trajectory or to prevent the wheels from locking up in danger-
ous situations. These dangerous situations often appear when the car is
exposed to severe external conditions such as slippery roads or sudden
avoidance manoeuvres at high speed. With the rise of autonomous ve-
hicles and all the requirements necessary to create a vehicle that should
drive itself without the intervention of a human driver, the driver as-
sistance systems, commonly called Advanced Driver Assistance Systems
(ADAS) [3], are particularly studied nowadays [72, 64]. In the case
of autonomous vehicles, the ADAS should not only have corrective ac-
tions but also preventive ones in order to ensure the traffic fluidity. One
of the path considered in the literature to develop these future ADAS
goes through the acquisition of essential information influencing the ve-
hicle behavior [51]. Among the information which could improve the
ADAS, the maximum friction coefficient [47] (also called the grip po-
tential, friction potential or maximum tire-road friction coefficient [4])
is paramount. The maximum friction coefficient represents the maxi-
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mum effort a tire can transmit to the ground [76] before it begins to
slip on the road. This grip potential mainly depends on three different
components, (i) the tire (model, dimensions, pressure, wear, to name a
few), (ii) the ground (e.g., type of covering, state of the road) and (iii)
the presence of a third element at the interface between the tire and the
road such as snow, water or dust [1]. Furthermore, knowledge of the
grip potential value turns out to be advantageous in various situations
such as during emergency manoeuvres because it allows the ADAS to
brake with the optimal brake pressure and thus, reduce the stopping
distance or anticipate the right trajectory. In addition to these cases, the
tire-road friction coefficient can also be used to detect the low grip area
and thus reveals problems such as worn roads, poor rainwater drainage
or need for snow removal [86].

As illustrated with this list of (non exhaustive) applications involv-
ing grip potential values, it is essential for car and tire manufacturers to
develop reliable and accurate grip potential estimators. While several
solutions are now available in the literature as described in Section 1.2,
there is still room for improvement as explained in Section 1.2.2 where
the main limits of these solutions are listed. Hence, the main objec-
tive of this thesis is to develop new friction potential estimators which
bypass the difficulties encountered with the methods introduced in the
literature so far.

1.2 State of the art

Several studies have already been carried out to estimate the maxi-
mum friction coefficient. Most of the developed methods are gathered
in different review articles such as [3, 4, 85, 76, 45, 60, 37]. In these ar-
ticles, different method classifications are proposed. However, the type
of classification and the names employed vary from one article to an-
other, which may confuse the reader. For this reason, a classification of
the different method is suggested hereafter.

In this chapter, the state of the art focuses specifically on the different
friction potential estimation methods. However, as can be seen in the
following sections, solving the grip potential estimation problem often
requires to solve intermediate problems such as tire forces estimation or
modeling a suitable vehicle model. For this reason, more detailed states
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of the art are presented in the different chapters solving intermediate
problems.

1.2.1 Friction potential estimation method classification

The suggested classification is highly inspired by the ones indicated
in [3] and [60]. This one is illustrated in Figure 1.1. The grip potential

Figure 1.1: Grip potential estimation method classification. The path
marked in red indicates the type of estimation method elaborated in

this manuscript.

estimation methods can be separated into two main categories. The first
class of solutions is the cause-based method, also called experiment-
based method in [45]. These techniques infer a grip potential value
by measuring quantities affecting the grip potential such as the surface
roughness or the water film [3]. Once these quantities are measured,
they are passed into a friction model in order to infer a grip potential
value. This class of solutions has many benefits. The first one concerns
the high level of accuracy reachable. For example, in [28], a method
based on an optical sensor detecting the surface roughness succeeds in
estimating the grip potential with an uncertainty of 0.1 in 92% of the
treated cases. Another significant advantage is the excitation level nec-
essary. This one varies with the type of sensor used. In the case of
optical sensor, since the quantity influencing the grip potential is the
surface roughness, the required friction excitation level is close to zero.
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Therefore this class of methods can be used under standard driving con-
ditions [60]. However, these methods have also drawbacks. Most of
them require additional sensors to detect the quantities affecting the
grip potential. These sensors can be costly and thus inconsistent in an
industrial context. Besides, as mentioned previously, once the sensor
has measured the quantity of interest, this one should be passed into
a model. Elaborating a physical model linking the measured quantity
with the grip potential may be troublesome. One solution is to resort
to a machine learning model (e.g., a neural networks [34]). However,
this solution requires a large database and can lead to a poor accuracy of
the friction potential estimate in situations not supported by the training
database. For these reasons, this class of solutions is difficult to apply in
an industrial context where the use of costly sensor is prohibitive.

The second main category gathers the effect-based methods, also
called model-based methods in [45]. This class of solutions determines
a friction potential by examining the impact of a grip potential varia-
tion on some quantities. For example, in icy conditions where the grip
potential reduces drastically, the tire can no longer transmit all the en-
gine torque to the ground and thus the longitudinal tire force Fx de-
creases. Therefore one method to estimate the grip potential is to mon-
itor the amount of the longitudinal tire force. Among the effect-based
techniques, the authors distinguish three sub-classes (see Figure 1.1).

• The tire tread approach estimates the friction potential by mea-
suring the deformation of the tire tread in the contact patch. This
type of solution has the advantage to predict the friction potential
before reaching it. However, it requires an additional sensor to
measure the tire tread deformation.

• The vibration-based methods aim at inferring a grip potential es-
timate by examining the noise frequency content at the tire-road
interface (high frequency method) or by establishing correlation
between the grip potential and the resonance frequency of a vehi-
cle subsystem (low frequency method).

• Tire slip-based methods estimate the grip potential by using the
link between the normalized tire forces and the slips. In the lon-
gitudinal case, this link is characterized by the friction curve de-
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picted in Figure 1.2. Under standard driving conditions, the avail-
able friction information is represented by the points located at the
bottom of the friction curve. Here, these points are called the fric-
tion points. Therefore, the main challenge of slip-based methods
is to infer a grip potential estimate by using the friction points.

Figure 1.2: Example of tire friction curve. The blue points are the data
points available under standard driving conditions.

Among the tire slip-based methods, we can distinguish between the
black-box methods [81] and the grey-box methods which include a phys-
ical model representing the tire behavior. For example, in [10], the
author employs Gaussian processes to learn the friction curve from pro-
duction car sensors. Thus, this black-box technique enables to determine
not only the grip potential but also the entire friction curve as a func-
tion of the slip ratio. However, this method requires, like many other
methods, high-friction data points to give reliable results.

Finally, as shown in Figure 1.1, an additional distinction between the
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methods is made depending on the vehicle dynamics. Some methods
are exclusively designed for the longitudinal dynamics, i.e., when the
vehicle drives in a straight line. On the contrary, lateral dynamics-based
methods are effective when these dynamics occur, e.g., when the vehicle
turns a corner or when it is in a roundabout. The coupled dynamics-
based methods work in both longitudinal and lateral situations.

As illustrated in Figure 1.1, the method considered in this manuscript
belongs to the grey-box tire slip-based methods. For this reason, the dif-
ferent methods presented subsequently mainly belong to the this class of
methods as well. The reasons why we select the tire-slip based category
are exposed in Section 1.3.

1.2.2 Article review

The different review articles [3, 4, 85, 76, 45, 60, 37] provide an
important basis of all the works already carried out to solve the friction
potential estimation problem. This section summarizes the main results
of these different articles.

According to the different review articles, one main constraint pre-
venting the friction potential estimation is the excitation level. Under
standard driving conditions, the engine torque does not reach high val-
ues. Consequently, the excitation level might be insufficient to apply
most of the grip potential estimation methods [3, 85, 76, 60].

One way to overcome this constraint is to resort to cause-based
methods. As indicated in [60] and reminded in Section 1.2.1, one of the
main advantages of this type of methods is the low excitation level nec-
essary. However, most of the cause-based methods include data-driven
models (usually neural networks) and thus, require training sets. Be-
sides, these methods provide less accurate results when situations not
handled by the training sets occur [45, 60]. Finally, the efficiency of
these methods needs to be proven on production vehicle where few sen-
sors are available [85]. For these reasons, a large number of elabo-
rated methods belongs to the effect-based methods. As underlined in
[3, 45, 60, 37], among this class of solutions, tire slip-based methods
are predominant.

According to the different authors, except for the slip-slope method
(see Section 1.2.3), most of the slip-based methods require a signifi-
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cant excitation level, i.e., friction points close to the grip potential, in
order to achieve friction potential inference. The slip-slope method is a
slip-based method introduced by F. Gustafsson in [38] which assumes
the existence of a link between the slope of the friction curve and the
maximum. This method is described in more details in Section 1.2.3.
However, it is important to underline that the idea of a link between the
slope and the friction potential is not unanimously accepted [3]. Be-
sides, this hypothetical link holds while other quantities such as the tire
inflation pressure and tire temperature are fixed. Therefore, in practice,
the need to keep constant some quantities that are difficult to control
causes problems of test repeatability [45].

On another note, one method called self-aligning torque (SAT) method
might provide an accurate grip potential estimation by using friction
points around µ = 0.3 [3, 85]. This method consists in predicting the
grip potential by looking at the curve of the self-aligning torque as a
function of the slip angle. An example of SAT curve is illustrated in Fig-
ure 1.3. The basic idea of the SAT method is to inspect when the SAT

Figure 1.3: Example of SAT curve and tire friction curve.

begins to decrease. Physically, a decrease of the SAT means that the tire
is close to its friction limit. Besides, as depicted in Figure 1.3, the SAT
begins to decrease before the grip potential is reached. Therefore, the
main advantage of the SAT is that it can bring information on the fric-
tion grip potential with a reduced excitation level. However, this method
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holds for lateral dynamics only. Besides, it requires to model the vehicle
suspensions and steering kinematics which can be troublesome. These
constraints lead to the necessity to introduce another class of estimation
methods, especially in the longitudinal case.

According to Acosta et al. [3], one promising alternative to the slip-
based methods is the vibration-based method and especially the high
vibration-based method. As reminded in Section 1.2.1, this class of so-
lutions examines the noise frequency content at the tire-road interface
and then, deduces a friction potential. In order to apply this type of
methods, it is necessary to find how tire-road interactions physically in-
fluence the grip potential. For example, it is accepted that the micro
and macro roughnesses impact the grip potential, however, the litera-
ture lacks of theoretical models providing an explicit link between these
quantities. Therefore, this class of methods is mostly applied with data-
driven techniques such as neural networks. Consequently, similarly to
the cause-based approach, these techniques require a high amount of
data and may deliver poorly results in situations outside of the training
set.

Finally, according to the different review articles, the slip-based tech-
niques seem to be the only techniques able to provide a friction potential
estimate without additional sensors. For this reason, as explained fur-
ther in Section 1.3, the approach suggested in this manuscript belongs
to this class of solutions. In particular, the approach designed in this
manuscript is mainly inspired of F. Gustafsson’s [38] and L. Ray’s works
[78]. For this reason, in the following, these two methods are described
in further details.

1.2.3 Slip-slope method

As mentioned in review articles, the slip-slope method is frequently
highlighted when the problem of grip potential estimation raises. The
slip-slope method has been introduced by F. Gustafsson in [38]. This
method is based on the assumption that the slip-slope Kx, defined by
the initial slope of the friction curve, depends on the grip potential.
As a consequence, under this assumption, if the slip-slope is estimated,
which is possible with measurements available under standard condi-
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tions, the grip potential can be determined. This concept is illustrated
in Figure 1.4 where the red lines are the slip-slope of the different fric-
tion curves.
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Figure 1.4: Illustration of the slip-slope concept. The red lines are the
slip-slope of the different friction curves.

In his paper, F. Gustafsson estimates a front and a rear slip-slope.
However, in order to simplify the approach idea, the following explana-
tions take into account of a global slip-slope Kx only. A scheme sum-
marizing the slip-slope method is illustrated in Figure 1.5. The assumed

Figure 1.5: Details of the slip-slope method.

linear relationship between the friction µ and the slip ratio s leads to the
equation

µ = Kx(s− δ), (1.1)
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where δ is a wear-related offset. This relation can be straightforwardly
rewritten as follows

s =
1

Kx
µ+ δ. (1.2)

In order to obtain accurate estimates of δ and Kx (or more precisely
its inverse 1

Kx
), F. Gustafsson implements a Kalman filter such as the

one indicated in Figure 1.5. In addition, in order to improve the time
response of the state observer, F. Gustafsson adds a CUSUM detection al-
gorithm [9]. This algorithm should detect strong variations and correct
the Kalman filter coefficients accordingly. Once Kx has been estimated,
its value is used with a classifier in order to determine a type of road
and thus, a grip potential estimate.

One of the main advantages of the slip-slope method is that it does
not require any additional sensors. Indeed, as represented in Figure 1.5,
the method only needs measurements provided by the vehicle CANBUS.
These ones are used to compute friction points {s, µ}. However, the slip-
slope method has been particularly discussed and the literature contains
contradictory conclusions [3]. For some authors, the method is applica-
ble with small friction measurements (lower than 0.3) [85]. For others,
it requires higher friction (around 0.4 at least) and additional investiga-
tions to conclude on the validity of the method [60, 3]. In addition, as
pointed out by F. Gustafsson in [38], the slip-slope depends on several
factors such as the tire inflation pressure, the tire temperature or the tire
wear, to name a few. Therefore, the method is effective only if all these
factors are known. Thus, this method necessitates a calibration to be
effective. This point is however not the main issue of this method. The
main problem of the slip-slope method is the fundamental assumption
of a link between the slip-slope and the grip potential [3]. As mentioned
in [38], this link has not been proven theoretically yet. Tests to establish
the existence of this link are performed in [7] but the authors conclude
that a link between the slope and the tire-road friction coefficient cannot
be confirmed. Hence the slip-slope method needs more examinations to
verify if it can provide a reliable estimate of the grip potential in all
situations.
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1.2.4 Tire forces observer and Bayesian selection

Another method allowing to infer the grip potential is introduced
by L. Ray in [78] and is summarized by Rajamani et al. in [76]. Fig-
ure 1.6 illustrates the concept of the method. As shown in Figure 1.6,

Figure 1.6: L. Ray’s approach concept adapted from [78].

the fundamental idea of L. Ray’s method is to infer a grip potential value
by statistically comparing a friction estimate provided by an Extended
Kalman filter (EKF) with friction curves obtained with a tire model. In
order to simplify the explanations, we restrict the basic idea to the lon-
gitudinal case. However, note that L. Ray’s work was applied with both
longitudinal and lateral dynamics.

First of all, L. Ray implements an EKF with a vehicle model repre-
senting both longitudinal and lateral dynamics as well as roll dynamics.
The observer used by L. Ray provides at each time k state and tire forces
estimates.

Remark 1.1. One important contributions in L. Ray’s work consists in
considering the longitudinal and lateral tire forces as random walks and
thus, simplifying their integration in the state vector.

Once the state and tire forces are estimated, these ones are used to com-
pute, at each time k, an estimated friction point {ŝEKF , µ̂EKF } repre-
sented in red in Figure 1.7. Besides, by using the tire model described in
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[92], L. Ray computes off-line different friction curves. These curves are
plotted in blue in Figure 1.7. In order to estimate a grip potential value,
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Figure 1.7: Illustration of L. Ray’s method in a longitudinal case.

L. Ray compares the friction curves and the EKF estimates in a Bayesian
way (see the bloc "Bayesian hypothesis selection" in Figure 1.6). More
precisely, the basic idea is to translate the distance between the EKF esti-
mate (the red point) and the different friction curves (the green points)
into a probability that the EKF estimate belongs to a given friction curve.
Hence, once we know at which friction curve the EKF estimate belongs
to, we can infer a grip potential value straightforwardly by examining
the maximum of this friction curve. For the sake of clarity, this idea is
explained in a mathematical form.

Let p(µmaxTj
|µ̂EKFk

) be the probability that the EKF friction point
estimated at time k {ŝEKFk

, µ̂EKFk
} belongs to the friction curve Tj

which has the maximum µmaxTj
. According to the Bayes formula [93],

this probability is given by

p(µmaxTj
|µ̂EKFk

) =
p(µ̂EKFk

|µmaxTj
)p(µmaxTj

|µ̂EKFk−1
)∑J

i=1 p(µ̂EKFk
|µmaxTi

)p(µmaxTi
|µ̂EKFk−1

)
. (1.3)

Therefore, it is necessary to compute a probability p(µ̂EKF |µmaxT ). In
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order to compute this probability, L. Ray uses the Gaussian formulation

p(µ̂EKF |µmaxT ) =
1

(2π)n/2S1/2

exp

(
−1

2
(µ̂EKF − µT )

⊤S−1(µ̂EKF − µT )

)
,

(1.4)

where µT is the ordinate of the friction point belonging to the friction
curve T , i.e., the ordinate of the green point of the friction curve T .

Once p(µmaxTj
|µ̂EKFk

) is computed for all the friction curves, the
grip potential is estimated by taking the weighted average value

µ̂maxk
=

J∑
j=1

p(µmaxTj
|µ̂EKFk

)µmaxTj
. (1.5)

L. Ray’s method has several advantages. First of all, it accurately recon-
structs the states and especially the tire forces in various situations. Be-
sides, it does not require additional sensors other than the ones already
fitted on production vehicle. Finally, it provides accurate estimates of
the grip potential as long as the excitation is high enough. However,
for a low excitation level, the algorithm encounters difficulties in esti-
mating a reliable grip potential value due to the abacus friction curves
which are too close between them for low slip ratio (see Figure 1.7). In
addition, the tests made to validate the method have been conducted on
dry asphalt only. Thus, tests on others surfaces are needed in order to
validate the method performance.

1.3 Current methodology

According to the different information provided by the state of the
art, two constraints should be faced if we want to solve the problem of
estimating the grip potential. Firstly, because the grip potential is an
information which is intended to be used in an industrial context, it is
necessary to develop a cost effective method which does not require any
additional sensor. Therefore, the estimation should work by using only
the measurements provided by the sensors fitted on production vehicles.
Secondly, the grip potential should be estimated under standard driving
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conditions. This area corresponds to situations where the friction data
points are lower than 0.3. These two main constraints and the review of
the different methods exposed in the literature should guide us all along
the elaboration of the estimation approach.

First of all, it is necessary to choose the dynamics taken into account.
According to the state of the art [3, 4, 85], in the lateral case, the SAT
method seems to provide accurate estimate of the slip potential with a
low excitation level. However, in the purely longitudinal case, a curve
such as the SAT curve illustrated in Figure 1.3 does not exist. Therefore,
the required excitation level is much higher and does not correspond
to standard driving conditions. An exception is the slip-slope method
but, as mentioned previously, this method needs further test in order
to conclude on its validity. For all these reasons, the present study will
focus only on the longitudinal dynamics since important accuracy gain
are expected.

Due to both constraints, i.e., the constraint on the available sensor
measurements and the friction points limit, solving the global problem
of the grip potential estimation can be split into the following two sub-
problems:

• how to estimate a friction potential from the knowledge of friction
data points?

• How to infer friction data points by using only sensors fitted on
production vehicle?

These two problems are represented in the master plan (see Figure 1.8)
elaborated in order to estimate the grip potential.

The first problem handled in this manuscript concerns the estima-
tion of a friction potential value from friction data points. In this part,
we make the assumption that we have access to noisy friction point
measurements. This assumption is not strong because even if the fric-
tion data points are reconstructed and not directly measured, they are
still inferred from measurements coming from real sensors. Thus, they
are still corrupted by noise. Besides, because standard driving condi-
tions must be accounted for, the friction measurements are almost al-
ways lower than 0.3. These constraints on the measurements guide our
choice on the use of grey-box methods. Indeed, although black-box
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Figure 1.8: Grip potential estimation master plan.

methods are particularly efficient for interpolation, they might be less
suitable for extrapolation, and particularly to estimate points far from
the available measurements. The method suggested in this manuscript
is a friction curve fitting method based on a combination of the Max-
imum Likelihood (ML) method and an adaptive Monte-Carlo Markov
Chain (MCMC) method [50]. The MCMC method is suggested because
it satisfies well our constraints on the measurements. More precisely,
this class of solutions has the advantage to work well with few noisy
points by giving the opportunity to the user to take into account of the
noise properties [81]. This method requires the use of a tire model
which should represent the friction curve accurately. One tire model
commonly used by tire manufacturers is the Pacejka’s magic formula tire
model [68]. This one is described in more detail in Chapter 2. Hence,
the idea suggested to solve the first sub-problem consists in estimating
the unknown parameters of the Pacejka’s model by initializing an MCMC
method with ML estimates. The part of the master plan dealing with the
first problem is the one framed in red in Figure 1.9 with the bloc "Fric-
tion potential estimation" detailed in Figure 1.10.

Remark 1.2. At this stage, it can be interesting to compare our approach
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with the slip-slope method. First of all, similarly to the slip-slope method,
our method resort to friction points located at the bottom of the friction
curve. However, unlike F. Gustafsson’s approach, in our method, the fric-
tion potential is not inferred from an estimate of the slip-slope Kx but
from the estimates of a tire model parameters describing the entire friction
curve. In other words, rather than placing our confidence in the slip-slope,
we transfer our confidence in a tire model commonly used by tire manufac-
turers [68].

Figure 1.9: Part of the master plan handled in the first problem.

Once the first sub-problem has been tackled, it remains to solve the
second one, i.e., how to infer friction data points by using only sen-
sors fitted on production vehicle. This problem corresponds to the part
framed in red in Figure 1.11. One approach providing interesting re-
sults is L. Ray’s method [78]. In her paper, L. Ray uses a double-track
model with an EKF in order to determine state and tire forces estimates.
Then, these ones are used to compute slip ratio estimates and normal
load estimates.

The approach suggested hereafter is highly inspired of L. Ray’s method.
In our case, the idea is to also use an EKF but to modify the considered
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Figure 1.10: Grip potential estimation plan.

vehicle model. In L. Ray’s work, the chosen vehicle model is a double-
track model taking into account both longitudinal and lateral dynamics
as well as roll dynamics. Although this vehicle model is accurate, it in-
volves many quantities and thus, necessitates a large state vector which
make difficult the setting of the noise covariance matrices. Besides, in
our case, we focus our study on the longitudinal behavior. For these
reasons, the considered model is a single track model. Furthermore, the
friction data points are computed from estimates of the slip ratio s, the
longitudinal tire force Fx and the normal load Fz. Hence, these quan-
tities should be estimated with accuracy. In particular, during a travel,
the load applied on the front and the rear part of the vehicle evolves and
thus, modifies the normal load Fz. This phenomena called load transfer
is not taken into account by L. Ray in her study. However, it should be
taken into account if we want to accurately estimate the normal load.
Therefore, the vehicle model used here is extended with a suspension
model.

Finally, another difference with L. Ray’s work is the setting of the
EKF noise covariance matrices. When we use a Kalman filter, it is nec-
essary to tune noise covariance matrices. The common way employed
to set these matrices is to proceed to an error-trial phase based on our
confidence on the measurements and the model accuracy. However, in
practice, if the state vector is high dimensional, finding the different
matrices coefficients can be quite troublesome. In order to simplify the
setting, different methods were established. Most of them are described
in the survey [26]. Although some of these methods simplify the tuning



18 Introduction and state of the art

Figure 1.11: Friction points estimation plan.

of the noise covariance matrices, they still require the tuning of other
parameters. Therefore, a method which do not require any setting is
introduced in this manuscript. This method is based on subspace iden-
tification.

1.3.1 Structure of the thesis and road map

The thesis manuscript in organized as follows (see Figure 1.12).
Chapter 2 is dedicated to the first sub-problem, namely, how to estimate
the grip potential by having access to friction data points. In this chapter,
an MCMC procedure is combined with a Maximum likelihood approach
in order to get a grip potential estimate. This approach is applied to
both simulated and real friction data points. Chapter 3 describes the
theoretical aspect of the method used herein in order to estimate friction
data points from classical measurements provided by sensors fitted on
production vehicle. In particular, the employed method is based on an
EKF. Consequently, it appears the question of the settings of the noise
covariance matrices. Chapter 4 presents a method designed in order
to set the noise covariance matrices. This method based on subspace
identification does not requires any tuning from the user. Chapter 5 is
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devoted to the application of the methods exposed in Chapter 3 and 4
with simulated data coming, on the one hand, from a simplified vehicle
model and, on the other hand, from a realistic vehicle simulator. Finally
Chapter 6 concludes this manuscript.

As reported in Figure 1.12, given that the problematic of grip po-
tential estimation is divided into two sub-problems, the reader can read
Chapter 3-5 without having to read Chapter 2.

Figure 1.12: Manuscript organization.
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CHAPTER 2
Grip potential estimation

2.1 Introduction

One essential part of the work done during this thesis is the de-
velopment and the application of a procedure allowing to estimate the
friction potential from friction points. As mentioned in Chapter 1, the
friction points cannot be measured directly with sensor fitted on pro-
duction vehicle. For this reason, they have to be estimated and it is the
main subject of Chapter 3. However, in Chapter 2, the friction points are
assumed to be available. Hence, the objective of this current chapter is
to determine a grip potential estimate from friction point measurements
(see Figure 2.1).

In this chapter, the grip potential estimation procedure should op-
erate in realistic situations, i.e., with friction points corresponding to
standard driving conditions. As a consequence, the used friction data
points are corrupted by noise and are almost always lower than 0.3 (see
Figure 2.2). These constraints on the measurements can make difficult
the use of black-box methods which are particularly efficient for interpo-
lation, but might be less appropriate to estimate points far from the mea-
surement area as it is the case here. Hence, a parametric model-based
approach is considered hereafter to estimate the tire friction potential.
The method suggested in this chapter is a tire curve fitting method based
on a Maximum Likelihood (ML) method and an adaptive Monte-Carlo
Markov Chain (MCMC) method [50], respectively. The MCMC method
is suggested because it has the advantage to work well with few points
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Figure 2.1: Part of the master plan handled in this chapter. The ad-
dressed part corresponds to the part inside the dashed red rectangle.
In this plan the shadow part corresponding to the estimation of friction

point is replaced by friction points measurements.

and enables the user to take into consideration the noise properties
effectively [81]. This method requires the use of a tire model which
should represent the tire behavior in various situations accurately. One
tire model fulfilling these conditions is the Pacejka’s magic formula tire
model [68]. This model is commonly used by tire manufacturers be-
cause it is a parsimonious model which represents accurately the tire
behavior. Therefore, the approach suggested in this chapter consists in
estimating the unknown parameters of the Pacejka’s model by initializ-
ing an MCMC method with ML estimates. Figure 2.3 illustrates the grip
potential estimation procedure by using friction point measurements.

The rest of the chapter is organized as follows. Section 2 is dedi-
cated to the description of the problem and the notations used in this
chapter. Section 3 describes the method used herein to estimate the tire-
road friction coefficient and underlines the different settings necessary
to maximize the method performance. Section 4 presents the results
obtained when the method is tested with simulated data and real data,
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Figure 2.2: Example of tire friction curve. The blue points are the data
points accessible under standard driving conditions.

respectively. Finally, Section 5 concludes this chapter.

2.2 Problem formulation and notations

In this chapter, we aim at determining the maximum of the tire-road
friction from noisy and short data sets acquired with standard sensor
signals. This maximum value, called in the literature the tire friction
potential or the grip potential [4], is the maximum force a tire can gen-
erate before sliding. More precisely, when only longitudinal dynamics is
considered 1, the tire friction µ is defined as follows [19]

µ =
Fx

Fz
, (2.1)

1Notice that, most of the time, a car drives straightforward [85].
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Figure 2.3: Grip potential estimation plan.

and thus, the grip potential is

µmax = max

(
Fx

Fz

)
, (2.2)

where Fx and Fz are the longitudinal tire force and the tire normal load,
respectively.

As shown, e.g., in [22], the friction µ, and by extension the grip
potential µmax, is impacted by several quantities such as the tire inflation
pressure, the tire temperature, the tire load or the tire tread depth to
name a few. Among all these quantities, the slip ratio s defined by (see
Table 2.1 for the definition of ω, Rrol and vx, respectively)

s =
ωRrol − vx

max(ωRrol, vx)
, (2.3)

plays a central role [75]. The basic idea of the solution developed in this
chapter is to determine the friction dependency in the slip ratio s with a
(parametric) model

µ = f(s), (2.4)

and to compute its maximum straightforwardly.
Figure 2.4 illustrates standard but significant characteristics of this

link between the tire friction µ and the slip ratio s. Such curves clearly
show that the mapping µ = f(s) is a nonlinear function having a sharp
initial slop, a maximum, then a gentle decrease with larger values of s.
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Table 2.1: Signals and parameters used for defining the slip ratio.

Symbol Definition Units

ω wheel speed rad/s
Rrol effective tire radius m
vx longitudinal vehicle speed m/s
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Figure 2.4: Example of curves representing the friction µ as a function
of the slip ratio s.

Besides, the different friction curves indicate that µ and thus µmax de-
pend of the road characteristics as well. For obvious practical reasons, it
is essential that the model learning strategy introduced hereafter gives
access to µmax accurately during "standard" driving conditions, i.e., when
only low values of µ (lower than 0.3) and s are observed. Said differ-
ently, the solutions developed in this chapter to determine the grip po-
tential µmax accurately must estimate this unknown mapping µ = f(s)
from

• data sets acquired for low values of s, i.e., far from the ones corre-
sponding to the tire friction potential,

• real measurements acquired with standard sensors, i.e., from noisy



26 Grip potential estimation

data sets.

In order to reach this goal, a data driven curve fitting, also named model
learning solution, is suggested hereafter.

In addition to the aforementioned noisy data, the second ingredient
of our model learning strategy is the choice of the mapping f(•). Dif-
ferent model structures have been suggested in the literature [68, 25,
18, 98, 92]. In this contribution, a specific attention is paid to a para-
metric modelling approach because it can take into account the a priori
knowledge about the tire behavior. More specifically, among the differ-
ent tire models available in the literature [68, 25, 18, 98, 92], the very
popular Pacejka’s model [68] is selected because (i) it can represent the
tire dynamics under various practical conditions accurately (ii) it is a
parsimonious model, i.e. it has a limited number of parameters, which
facilitates its use for parametric estimation. Such a model satisfies the
following equation (see Figure 2.5 for a geometrical interpretation of
the so-called "magic formula" parameters [68])

µ = D sin (C arctan [Bx− E(Bx− arctan(Bx))]) + sv, (2.5a)

x = s+ sh, (2.5b)

or, in a compact way,

µ = f(s,θ) with θ =
[
B C D E sh sv

]⊤
, (2.6)

where the corresponding "magic formula" parameters composing the un-
known parameter vector θ ∈ R6×1 are defined in Table 2.2.

Table 2.2: Magic formula parameters.

Symbol Definition

B stiffness factor
C shape factor
D peak value
E curvature factor
sv vertical shift
sh horizontal shift

In a nutshell, by assuming that the user has access to
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Figure 2.5: Example of tire friction curve calculated with Pacejka’s for-
mula and geometrical interpretation of the model parameters.

• (short and noisy) data sets {µi, si}i∈{1,··· ,N},

• a parametric model structure such as the Pacejka’s model f(•,θ),

• lower and upper bounds for each component of θ,

our main goal is to estimate the parameter vector θ accurately. As illus-
trated in Section 2.4, such a goal can be reached by resorting to the data
driven model learning solutions introduced in the next section.

2.3 Pacejka’s model learning: combining maximum
likelihood and Monte Carlo Markov Chain

When parameter estimation of nonlinear static function from noisy
data comes into play, the dominant solution in the literature consists
in resorting to the maximum likelihood (ML) framework [83]. The ML
solutions indeed benefit from interesting statistical properties like their
asymptotic unbiasedness, efficiency and consistency under mild condi-
tions [93, Chapter 3]. Such asymptotic properties can indeed help the
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user deliver reliable parameter estimates with quantification of the esti-
mation accuracy [95]. As shown, e.g., in [31], using asymptotic results
to quantify model uncertainties from finite data sets can yield unreliable
results when small size sets of data are used. This is the main reason
why the Bayesian framework is nowadays often suggested to tackle pa-
rameter estimation problems when short data sets are handled [50].
The techniques involved in this framework, and more specifically the
Monte Carlo (MC) random sampling methods [80], have the attractive
property to give access to samples of a desired distribution (instead of
a parameter vector as the ML solutions do) from user defined density
function proposals by resorting to easy-to-implement algorithms mainly
based on accept or reject conditions [88]. Interesting when short data
sets are considered, as adviced in [6, Section 1], "it is important that we
do not treat them as black boxes in order to obtain the best results out of
this class of algorithms". This practical observation is probably the main
reason why we suggest hereafter combining ML and MC algorithms to
benefit from their respective advantages, i.e., we tackle the problem of
data driven model learning by using first a ML approach for get reliable
initial guesses to tune, in a second step, a Monte Carlo Markov Chain
(MCMC) algorithm. These two steps are more precisely introduced in
the next sections.

2.3.1 Maximum likelihood: a short review

Because the tire friction is measured with (standard) sensors, the
measured tire friction samples are assumed to be noisy. As a direct
consequence, the model we consider from now on has the following
form

µi = f(si,θ) + ei, i ∈ {1, · · · , N}, (2.7)

where ei, i ∈ {1, · · · , N}, stands for a sample of the realization eN1 =
(ei)i∈{1,··· ,N} of a stochastic sequence (et)t∈Z characterized by a specific
probability density function (pdf) pe(e) [48]. Such an additive noise
in the model description implies that the friction µ should also been
considered as a random variable. Said differently, the acquired samples
µi, i ∈ {1, · · · , N}, are now seen as components of the realization µN

1 =
(µi)i∈{1,··· ,N} of the stochastic sequence (µt)t∈Z. This observation is at
the basis of the ML estimation solutions. More specifically, given the pdf
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of the random sequence (µt)t∈Z parameterized by θ, i.e., given

pµ(µ; s,θ), (2.8)

the maximum likelihood techniques aim at determining the unknown
parameter vector θ which "moves" this pdf such that it is maximum for
our observed data or realization (µi)i∈{1,··· ,N}. This probability density
function pµ(µ; s,θ) evaluated at our observed data µN

1 = (µi)i∈{1,··· ,N}
acquired for the slip ratios sN1 = (si)i∈{1,··· ,N}, i.e., pµ(µ = µN

1 ; s =

sN1 ,θ), is called the likelihood function and is denoted herein as follows

ℓ(µN
1 ; sN1 ,θ). (2.9)

Thus, the maximum likelihood solutions estimate the parameter vector

θML = argmax
θ

ℓ(µN
1 ; sN1 ,θ). (2.10)

The solution of this maximization problem is strongly linked to the an-
alytic equation of the likelihood function [95]. Because of the model
structure given in Eq. (2.7), the likelihood function ℓ(µN

1 ; sN1 ,θ) is di-
rectly related to the noise probability density function pe(e). More
specifically, if it is assumed that the noise at each data point is inde-
pendently distributed and zero mean, we have

ℓ(µN
1 ; sN1 ,θ) =

∏
i∈{1,··· ,N}

P(f(si,θ), σ
2
i ), (2.11)

where σ2i , i ∈ {1, · · · , N}, stands for the variance of component ei,
i ∈ {1, · · · , N}, while P(•1, •2) is a generic notation for the noise prob-
ability density function of mean •1 and variance •2, respectively. Differ-
ent popular continuous density functions can be suggested for P(•1, •2)
[48]. In many practical cases, considering noise components which are

• conditionally independent,

• normally distributed with zero mean and with the same standard
deviation σ,
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is a reliable assumption. This is the main reason why we consider herein
that

ℓ(µN
1 ; sN1 ,θ) =

∏
i∈{1,··· ,N}

N (f(si,θ), σ
2), (2.12)

where N (•1, •2) stands for the normal probability density function of
mean •1 and variance •2, respectively. Because the natural logarithm is
a monotonic increasing function, the maximum of ℓ(µN

1 ; sN1 ,θ) occurs
at the same value of θ as the maximum of the log-likelihood defined as
follows

L(µN
1 ; sN1 ,θ) = log(ℓ(µN

1 ; sN1 ,θ)) = −N log(σ)− N

2
log(2π)− 1

2σ2
V (θ),

(2.13)
with

V (θ) =
N∑
i=1

(µi − f(si,θ))
2. (2.14)

Such a direct relation between the (log-)likelihood and the least squares
cost function V (θ) proves that maximizing ℓ(µN

1 ; sN1 ,θ) with respect to
θ boils down to minimizing V (θ) with respect to θ. The minimization
of the cost function V (θ) requires the use of nonlinear optimization al-
gorithms because of the nonlinear dependency of f with respect to θ.
Several algorithms are available in the literature for minimizing V (θ)
under such practical conditions [65, 77]. In this chapter, the interior-
reflective Newton method described in [21] (see also [65, Chapter 19])
is selected to reach a local optimum of V (θ) in order to take into the
aforementioned lower and upper bounds on θ explicitly during this nu-
merical optimization.

Because the ML estimator is generated from noisy data, the esti-
mated parameter vector θML can be considered as a realization of a ran-
dom vector θML. As any random vector, θML can be characterized by
standard (centered) moments [48] from which uncertainty domain or
estimation quality certificates can be generated [44]. As proved, e.g., in
[95, Chapter 5], the asymptotic covariance matrix of the ML parameter
estimator is

cov(θML) = σ2(F⊤
θML

FθML)
−1, (2.15)
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where FθML is the Jacobian matrix defined as

FθML =


∂f(s1,θ)

∂θ1
· · · ∂f(s1,θ)

∂θnθ
...

. . .
...

∂f(sN ,θ)
∂θ1

· · · ∂f(sN ,θ)
∂θnθ


θ=θML

∈ RN×nθ . (2.16)

Furthermore, an unbiased estimate of σ2 is given by [95, Chapter 5]

σ̂2 =
V (θML)

N − nθ
. (2.17)

These statistical results will be used in Section 2.4 for characterizing the
estimation quality.

2.3.2 Adaptive Metropolis algorithms

While the minimization of V (θ) is feasible whatever the friction of
data samples, the asymptotic statistical results of the ML estimator intro-
duced previously may be not reliable when only low-friction data sets
are handled (see Section 2.4.1 for an illustration of this claim). This
is the main reason why the ML class of solutions should be combined
with another class of methods when, as shown in Section 2.4, the fric-
tion data points remain under 0.3. The Bayesian framework, and more
specifically the MC random sampling techniques, are used hereafter as
a second step of our model learning solution because of their efficiency
under such practical constraints [50]. By using again the fact that the
unknown parameter vector θ can be treated as a realization of a random
vector θ, the Bayesian inference solutions aim at determining the condi-
tional or a posteriori probability density function pθ,µ(θ | µ). More pre-
cisely, these solutions determine samples which form a distribution that
asymptotically approaches pθ,µ(θ | µ) [88]. Indeed, as shown hereafter,
once these samples with common pdf are generated accurately, empiri-
cal means or covariance matrices can be computed effectively (see also
[81]). In order to reach this goal, the heart of the Bayesian approach is
the following pdf based Bayes formula [93]

pθ,µ(θ | µ) =
pθ,µ(µ | θ)pθ(θ)

pµ(µ)
, (2.18)

given two jointly distributed random vectors µ and θ, where [44]
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• pθ(θ) stands for the prior pdf of θ, i.e., the belief we have on θ

before seeing data,

• pθ,µ(µ | θ) stands for the conditional pdf of µ given θ, i.e., our
knowledge provided by µ conditioned on knowing θ,

• pθ,µ(θ | µ) stands for the posterior pdf we are interested in,

• pµ(µ) stands for the marginal distribution of µ, i.e.,

pµ(µ) =

∫
· · ·
∫
pθ,µ(µ | θ)pθ(θ)dθ. (2.19)

As far as our model learning problem is concerned, we assume the access
to lower and upper bounds for each parameter. This prior is translated
into a uniform flat prior pθ(θ) ∝ 1 within these bounds, i.e.,

θi ∼ U([θilower , θiupper ]), i ∈ {1, · · · , nθ}. (2.20)

In addition, by assuming again zero mean independent and normally
distributed measurement errors with a (known) constant variance σ2,
the conditional pdf pθ,µ(µ | θ) can be written as follows

pθ,µ(µ | θ) = 1

(2πσ2)N/2
exp

(
−V (θ)

2σ2

)
, (2.21)

or, equivalently,

pθ,µ(µ | θ) ∝ exp

(
−V (θ)

2σ2

)
. (2.22)

Remark 2.1. As pointed out, e.g., in [44], this pdf is identical in form
to the likelihood function introduced previously. In the Bayesian case, the
pdf is however a conditional pdf while, in the ML approach, the pdf is an
unconditional pdf parameterized by θ.

In a nutshell, for our model learning problem,

pθ,µ(θ | µ) ∝
exp

(
−V (θ)

2σ2

)
pµ

. (2.23)
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The challenging step in the Bayesian approach is the determination of
pµ. Indeed, in most of practical cases, the multiple integrals involved
in the definition of pµ cannot be computed analytically while standard
numerical integration methods [101] fail when nθ is larger than a few
[6]. Fortunately, the class of Metropolis-Hastings (MH) algorithms [79]
allows to sample a pdf on condition that this distribution is known up
to a multiplicative constant. Indeed, with the MH algorithm, new sam-
ples θ(i) are generated from a user defined proposal distribution, then
accepted or rejected according to a simple rule involving the acceptance
probability ratio defined as follows

α(i) =
pθ,µ(θ

(i) | µ)
pθ,µ(θ(i−1) | µ)

=
pθ,µ(µ | θ(i))pθ(θ

(i))

pθ,µ(µ | θ(i−1))pθ(θ(i−1))
. (2.24)

Because α(i) is a ratio of posterior distributions, it does not involve pµ.
As a direct consequence for our model learning problem, a MH algo-
rithm can be used hereafter to generate samples from this posterior dis-
tribution. Among the MH algorithms available in the literature (see,
e.g., [50] for a recent list of MH solutions), the starting point of our
solution is the random walk Metropolis algorithm [50, Section 3.1.1].
This specific choice is dictated by the facts that

• for the random walk Metropolis algorithm, the aforementioned
proposal distribution can be a Gaussian pdf centered on the cur-
rent candidate, i.e., the candidate parameter vector can be easily
generated with standard random number generators once an ini-
tial parameter covariance matrix is selected by the user,

• this algorithm satisfies convergence constraints to guarantee that,
asymptotically, the selected samples approach the correct expected
values, i.e., share the same pdf and, more importantly, this pdf is
pθ,µ(θ | µ) (see [6, Section 3.1] or [79, Chapter 7] for a proof of
this claim).

While the core of the random walk Metropolis algorithm is made of
5 lines or so (see, e.g. [80, Chapter 6], as well as Algorithm 1), the
efficiency of our MH algorithm is strongly linked to practical tips and
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hints2 for monitoring or adapting it (like any other MH algorithms in
fact (see, e.g., [80, Chapter 8] for an interesting list of MH algorithm
improvements)). More specifically, herein, the standard random walk
MH algorithm is refined by

• running nmc Markov chains with different initializations in paral-
lel in order to assess if they all converge towards the same dis-
tribution. The initialization guesses of each Markov chains are
either generated by using the ML estimates (parameter vector and
covariance matrix) or by randomly generating parameter vectors
within the user defined parameter lower and upper bounds with
a uniform distribution for instance. The procedure used to test
the convergence of the Markov chains is based on the "within and
between sequence variances" approach borrowed from [32, Sec-
tion 11.4];

• keeping the different Markov chains, then "burning in" [81, Sec-
tion 9.4], i.e., throwing away the samples used during this initial-
ization of the Markov chains;

• resuming the random walk MH algorithm for the different Markov
chains,

• adapting the covariance matrix used by the random walk MH al-
gorithm by

– computing first an empiric covariance matrix once enough
samples have been generated,

– updating the covariance matrix after each sample generated
following the expression introduced by Vihola [100] and re-
called by Särkkä in [82, Section 12.2.2],

• "thinning" [81, Section 9.4], i.e., removing samples in order to
keep a chain of uncorrelated samples.

Such steps are summed in Algorithm 1.

2As shown in [6], "in order to obtain best results out of this class of algorithms",
the user must "incorporate as much domain specific knowledge as possible into their
design".
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Algorithm 1 MCMC based estimation method
Inputs:

• θlower,θupper: parameter bounds

• M : chain lengths

• nmc: number of chains

• nML: number of initial guesses for ML estimation

Outputs:

• nmc estimates θMCMC

• nmc estimates of µmax

1: Generate nML initial guesses θ(0) by picking values
randomly according to a uniform distribution
between the parameter bounds

2: Estimate nML parameter vectors θML with the
ML method

3: Keep the parameter vector θML giving the smallest
residual norm V (θ) defined in Eq. (2.14) and estimate
the covariance matrix ΣML defined in Eq. (2.15)

4: Initialize nmc chains at the value θML and the initial covariance ma-
trix Σ(0) at the value ΣML

5: Initialize S(0) to be the lower-triangular Cholesky factor of the initial
covariance Σ(0)

6: for i = 1 to M do
7: Sample a new candidate, i.e.,

θ∗ = θ(i−1) + S(i−1)r(i), where r(i) ∼ N (0, I)
8: Compute the acceptance probability α(i)

9: Sample a uniform random variable u ∼ U(0, 1)
10: If u ≤ α(i), accept the sample and set θ(i) = θ∗,

otherwise, reject the sample and set θ(i) = θ(i−1)

Core of MH
algorithm

Maximum
Likelihood



36 Grip potential estimation

11: Compute a lower-triangular matrix S(i) with
positive diagonal elements satisfying the equation

S(i)S(i)⊤ =

S(i−1)

(
I + η(i)(α(i) − ᾱ∗)

r(i)r(i)
⊤

||r(i)||2

)
S(i−1)⊤ ,

where η(i) ∈ [0, 1] is an adaptation step size sequence
decaying to zero (e.g. η(i) = i−γ with γ ∈ [0.5, 1])
and ᾱ∗ = 0.234 the ideal acceptance probability

12: Thin the different chains to keep chains of uncorrelated samples
13: Compute an estimate θMCMC for each chain using Equation (2.25)
14: Estimate nmc friction curves with the nmc estimates θMCMC by using

Eq. (2.26)
15: Determine the maximum of each friction curves

Covariance
adaptation
from [82]

Remark 2.2. As indicated in Algorithm 1, the random walk MH algorithm
is performed on nmc Markov chains. By doing so, the method provides nmc
estimates that can be gathered into histograms. However, after assessing
that the different chains converge to the same distribution, it is common to
select one chain and thus to have one mean estimation. One way to select
the chain is to keep the chain which has the acceptance rate the closest to
the ideal acceptance rate for the random walk MH defined by ᾱ∗ = 0.234
[82]. In the case treated here, the estimation procedure is applied with low
friction measurements. For this reason, the estimates obtained are more
likely to vary from one simulation to another. Thus it can be difficult to
select one chain among all. Therefore, all the nmc Markov chains are kept
in this study.

Once reliable chain samples are generated, the parameters estima-
tion can be done using the expression [81]

θMCMC = Epθ,µ(θ|µ)(θ | µ) =
∫

· · ·
∫

θpθ,µ(θ | µ)dθ ≈ 1

Mnmc

Mnmc∑
j=1

θ(j).

(2.25)
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In others words, the parameters estimation is made by averaging the
available samples. Finally, the prediction on an unseen point {sM+1, µM+1}
can be carried out as follows [81]

µM+1 = Epθ,µ(θ|µ)(f(θ, sM+1) | µ) ≈
1

Mnmc

Mnmc∑
j=1

f(θ(j), sM+1).

(2.26)
Because the slip ratio corresponding to the tire-road friction µmax is
not known a priori, Equation (2.26) cannot be used directly to estimate
µmax. However, this equation can be used with many slip ratio to draw
the entire friction curve. Once the curve is obtained, µmax is determined
straightforwardly by taking the maximum of the friction curve or by
examining when the derivative of the friction curve with respect to the
slip ratio is equal to zero.

2.4 Case studies

In this section, the MCMC model learning technique performance is
assessed with both simulated data (Section 2.4.1) and real data (Sec-
tion 2.4.2). Because in Section 2.4.1, the measurements are simulated,
we have access to the real parameter vector θ. Thus the estimated val-
ues obtained with the MCMC3 method can be compared to the actual
values directly. For this reason, Section 2.4.1 focuses on the ability of
the method to estimate the parameter vector θ rather than the friction
potential. If θ is estimated accurately, the estimated grip potential deter-
mined, e.g., by computing the derivative ∂f

∂s , should indeed be reliable
as well. In Section 2.4.2, we use on the contrary real measurements
of the friction potential generated with a flat track tire testing machine
[17]. Under such practical conditions, we do not have access to the
real parameter vector θ. Hence, the method performance is assessed by
comparing the estimated grip potential with a grip potential extracted
from the real measurements only.

3In the following, the MCMC method refers to the method described in Algorithm 1,
i.e., the adaptive MCMC initialized with ML estimate.
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2.4.1 Results with simulated data

In order to evaluate the effectiveness of the estimation method intro-
duced in this chapter, the MCMC model learning method is first tested
with simulated data. The results obtained with the MCMC model learn-
ing method are compared with the ones obtained with the ML method
carried out on the same simulated data. The simulated data is gen-
erated with the Pacejka’s tire model given in Eq. (2.5) disturbed with
an output zero mean white Gaussian noise characterized by a standard
deviation σ equal to 2.53e-2 (see Figure 2.6). This standard deviation
value corresponds to a signal-to-noise ratio equal to 15 dB. The value
of the standard deviation is set regarding the real friction data used in
Section 2.4.2. Here, the simulated measurements correspond to a situ-
ation frequently encountered in practice, namely a tire rolling on a dry
road. The ML and MCMC methods are tested with 3 different training
sets. The first two training sets contain only simulated measurements
for µ ≤ 0.3 and µ ≤ 0.6, respectively. The third training set contains all
the data points for s ∈ [0, 0.4].

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.6: Friction simulated measurements generated with the Pace-
jka’s tire model.
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Results with the Maximum Likelihood method

The ML method is first tested with the aforementioned simulated
training sets. In the different cases treated here, the ML method is per-
formed 10000 times (nML = 10000 in Algorithm 1) with 10000 dif-
ferent initial guesses. As indicated in Algorithm 1, the different initial
guesses θ(0) are generated randomly according to a uniform distribu-
tion between the parameter bounds. Here, the bounds, given in Table
2.3, are taken so that the Pacejka’s model can generate realistic friction
curves corresponding to any kind of situations such as a vehicle driving
on dry asphalt, wet asphalt or even icy road [67].

Table 2.3: Intervals of Pacejka’s parameters.

Parameter Lower and upper bound

B [5, 30]
C [0.5, 2]
D [0.2, 2]
E [−2, 0]
sh [−0.05, 0.05]
sv [−0.3, 0.3]

Under these conditions, the ML method provides 10000 estimates of the
parameter vector θ. These estimates are represented in Figures 2.7, 2.8
and 2.9, respectively. In addition, these Figures also include a Gaussian
pdf fitted to the 10000 estimates. More precisely, the means and the
standard deviations of the pdf are determined by computing the means
and the standard deviations of the 10000 estimates obtained with each
training set. Among the 10000 estimates, different estimated values are
also extracted. Firstly, the mean of the 10000 estimates. Secondly, the
estimated parameter vector θML giving the smallest residual norm V (θ)
defined in Eq. (2.14). In the following, this second estimate is referred
as "Minimizer of the loss function". These two estimated values are rep-
resented in Figure 2.7, 2.8 and 2.9 and are summarized in Table 2.4.
Furthermore, the ML method provides estimates of the measurement
standard deviation (see Eq. (2.17)). These estimates are gathered and
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compared with the actual value in Table 2.5. Finally, covariance matri-
ces of the parameter vector are given in Table 2.6. In this Table, two
types of covariance matrices are reported, (i) the theoretical covariance
matrices computed with Equation (2.15), (ii) empirical covariance ma-
trices obtained by computing the covariance of the 10000 estimates.

Table 2.4: ML estimates with simulated data. The relative error lines
give the relative errors between the different estimates and the true

parameter values.

B C D E sh sv

True value 15.4 1.60 8.71e− 1 −1.09 0 0

Friction limit : µ = 0.30
Mean of the estimates 23.0 1.32 9.04e− 1 −2.84e− 1 8.61e− 3 −1.99e− 1

(Relative error) 49.3% 17.43% 3.76% 74.0% − −
Minimizer of the loss function 30.0 1.77 5.83e− 1 −1.98 9.98e− 3 −3.00e− 1

(Relative error) 94.8% 11.1% 33.1% 81.9% − −

Friction limit : µ = 0.60
Mean of the estimates 28.4 1.21 6.22e− 1 −1.84 −6.53e− 3 1.48e− 1

(Relative error) 84.5% 24.1% 28.6% 68.7% − −
Minimizer of the loss function 30.0 1.21 5.39e− 1 −2.00 −7.71e− 3 1.72e− 1

(Relative error) 94.8% 24.3% 38.1% 83.3% − −

Without friction limit
Mean of the estimates 15.9 1.63 8.00e− 1 −9.57e− 1 −2.76e− 3 6.96e− 2

(Relative error) 3.44% 2.20% 8.25% 12.2% − −
Minimizer of the loss function 17.0 1.67 7.09e− 1 −6.44e− 1 −7.11e− 3 1.60e− 1

(Relative error) 10.4% 4.61% 18.6% 41.0% − −

As illustrated in Figure 2.7, 2.8 and 2.9, the means of the 10000
estimates are different from the minimizers of the loss function. In ad-
dition, the mean estimates are closer to the actual parameter values
than the minimizers of the loss function. However, in the first two cases
(measurements limited by µ < 0.3 and µ < 0.6, respectively), the mean
estimates and the minimizer of the loss function are far from the actual
values. On the contrary, when all the data points are considered, the ML
method provides accurate estimates of the parameters. Besides, in this
case, the measurement standard deviation supplied by the ML method
is equal to the actual value used to simulate the data (see Table 2.5).
Furthermore, in the first two cases, the Jacobian matrices FθML given in
Eq. (2.16) are ill-conditioned. For this reason, the theoretical covari-
ance matrices (see Eq. (2.15)) computed by using the Jacobian matrices
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Figure 2.7: Histograms of the Pacejka’s parameters estimated with the
ML method (for µ ≤ 0.3). The red line represents the true value used to
generate the friction measurements. The green line indicates the mean
of the ML estimates. The magenta dash-dot line indicates the minimizer
of the loss function. The green dash-dot line represents a Gaussian pdf

fitted to the 10000 ML estimates.

FθML , contain huge values as reported in Table 2.6. On the opposite,
when the last training set is considered, the Jacobian matrix FθML is not
ill-conditioned. Thus, in this case, the theoretical covariance matrix has
realistic values and is almost equal to the covariance matrix computed
with the 10000 ML estimates.

All these results indicate that the ML method is suitable when data
points describing the entire friction curve are available. However, when
only training sets containing low friction measurements are at disposal,
the ML method provides poor results. For this reason, another estima-
tion method is needed under standard driving conditions.
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Figure 2.8: Histograms of the Pacejka’s parameters estimated with the
ML method (for µ ≤ 0.6). The red line represents the true value used to
generate the friction measurements. The green line indicates the mean
of the ML estimates. The magenta dash-dot line indicates the minimizer
of the loss function. The green dash-dot line represents a Gaussian pdf

fitted to the 10000 ML estimates.

Results with the MCMC method

The MCMC based estimation method is now tested with the different
training sets described in the paragraph before the Section 2.4.1. As in-
dicated in Algorithm 1, the MCMC model learning method requires the
initialization of some quantities. Namely, the chain lengths, the chain
numbers and the parameter bounds. Herein, the MCMC method devel-
oped in Section 3 is performed with 100 chains to obtain 100 estimates
of θ. Each chain has a length of 50 000 samples. Besides the parameter
bounds are the ones given in Table 2.3.

Remark 2.3. At this point, the previous settings should be sufficient for
performing the MCMC based estimation method (see Algorithm 1). How-
ever, in our case, the Jacobian matrices FθML obtained with the ML method
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Figure 2.9: Histograms of the Pacejka’s parameters estimated with the
ML method (all data points selected). The red line represents the true
value used to generate the friction measurements. The green line indi-
cates the mean of the ML estimates. The magenta dash-dot line indicates
the minimizer of the loss function. The green dash-dot line represents a

Gaussian pdf fitted to the 10000 ML estimates.

carried out on the two first training sets are ill-conditioned (see Section
2.4.1). As a consequence, the theoretical ML covariance matrices estimated
in Section 2.4.1 are not suitable for initializing the covariance matrix of
the MCMC proposal distribution in these two cases. The proposal covari-
ance matrix should indeed be set so that the generated samples browse the
parameters space properly [81]. The most important factor influencing
the sample generation is the variance of the parameters. In the proposal
covariance matrix, the parameter variances are representing by the diag-
onal elements. For this reason, the proposal covariance matrix is chosen
diagonal. Besides, the magnitude of the diagonal elements is set regarding
the ML covariance matrix estimated when all the data points are selected.
Finally, the diagonal elements are set to higher values than the ML ma-
trix. The diagonal values are higher so that the generated samples cover a
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Table 2.5: Measurement standard deviation estimated with the ML
method. The relative error lines give the relative errors between the

different estimates and the true value.

σ

True value 2.53e− 2

Friction limit : µ = 0.30
ML 3.32e− 2

(Relative error) 30.9%

Friction limit : µ = 0.60
ML 2.96e− 2

(Relative error) 16.8%

Without friction limit
ML 2.53e− 2

(Relative error) 0%

wider space. As a consequence, the initial covariance matrix of the proposal
distribution is set as follows

Σ(0) = diag (7, 0.43, 0.3, 0.3, 0.005, 0.01) . (2.27)

Under such practical conditions, the MCMC based estimation method
provides the results given in Figures 2.10, 2.11 and 2.12 and sum up in
Table 2.7. The MCMC estimated values gathered in Table 2.7 correspond
to the mean of the 100 estimates. In addition, Gaussian pdf have been
fitted to the MCMC estimates. The means and the standard deviations
used to fit the pdf correspond to the means and the standard deviations
of the 100 estimates.
As illustrated in Figures 2.10, 2.11 and 2.12 (see also Table 2.7), the
MCMC model learning method outperforms the ML method for all sce-
narii. For the three different cases, the MCMC estimates are indeed
closer to the true values than the ones obtained with the ML method.
Besides, we can note that the MCMC estimates obtained with a friction
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Table 2.6: Parameters covariance matrices obtained with the ML
method. The theoretical column corresponds to the covariance matri-
ces computed with Eq. (2.15). The empirical covariance matrices corre-
sponds to the covariance matrices computed with the 10000 estimates.

Theoretical Empirical

Friction limit : µ = 0.30

59679083 617642 −1334586 10420621 −43759 1337187
617642 6652 −13866 108781 −455 13890

−1334586 −13866 29857 −233222 979 −29914
10420621 108781 −233222 1822970 −7648 233667
−43759 −455 979 −7648 32 −981
1337187 13890 −29914 233667 −981 29972





22.2905 0.0366 −0.6287 −0.0111 −0.0048 −0.0122
0.0366 0.1500 −0.0891 0.0894 0.0011 −0.0297
−0.6287 −0.0891 0.0823 −0.0642 −0.0005 0.0166
−0.0111 0.0894 −0.0642 0.4112 0.0041 −0.0799
−0.0048 0.0011 −0.0005 0.0041 0.0001 −0.0013
−0.0122 −0.0297 0.0166 −0.0799 −0.0013 0.0278


Friction limit : µ = 0.60

215526.65 −10463.68 800.89 16267.38 −48.61 952.37
−10463.68 527.43 −47.37 −789.87 2.16 −42.26
800.89 −47.37 6.69 60.58 −0.09 1.80

16267.38 −789.87 60.58 1235.65 −3.68 72.16
−48.61 2.16 −0.09 −3.68 0.01 −0.26
952.37 −42.26 1.80 72.16 −0.26 5.04





25.4821 −0.1198 −1.2810 −2.5468 −0.0190 0.3863
−0.1198 0.0119 −0.0040 0.0066 0.0000 −0.0008
−1.2810 −0.0040 0.0754 0.1309 0.0010 −0.0212
−2.5468 0.0066 0.1309 0.2759 0.0018 −0.0359
−0.0190 0.0000 0.0010 0.0018 0.0000 −0.0003
0.3863 −0.0008 −0.0212 −0.0359 −0.0003 0.0069


Without friction limit

2.3744 0.0952 −0.1696 0.5560 −0.0084 0.1685
0.0952 0.0039 −0.0070 0.0224 −0.0003 0.0069
−0.1696 −0.0070 0.0124 −0.0396 0.0006 −0.0124
0.5560 0.0224 −0.0396 0.1335 −0.0020 0.0393
−0.0084 −0.0003 0.0006 −0.0020 0.0000 −0.0006
0.1685 0.0069 −0.0124 0.0393 −0.0006 0.0123





2.1736 0.0774 −0.1844 0.6428 −0.0088 0.1841
0.0774 0.0028 −0.0066 0.0229 −0.0003 0.0066
−0.1844 −0.0066 0.0157 −0.0546 0.0008 −0.0156
0.6428 0.0229 −0.0546 0.1905 −0.0026 0.0545
−0.0088 −0.0003 0.0008 −0.0026 0.0000 −0.0007
0.1841 0.0066 −0.0156 0.0545 −0.0007 0.0156



limit of 0.3 are closer to the actual values (except for B) than the ones
obtained with a friction limit of 0.6.

To conclude this part, the MCMC model learning technique provides
interesting results to estimate the parameters of the Pacejka’s tire model
and outperforms the ML method. Thus, it is now time to test the ML
and the MCMC methods on real data with realistic friction measurement
sets.

2.4.2 Results with real data

In this section, the method described in Section 3 is tested with real
data coming from a flat track tire testing machine. A flat track tire
testing machine is a machine allowing the user to conduct experiments
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Table 2.7: MCMC estimates with simulated data. The relative error lines
give to the relative errors between the different estimates and the true

parameter values.

B C D E sh sv

True value 15.4 1.60 8.71e− 1 −1.09 0 0

Friction limit : µ = 0.30
MCMC 17.5 1.24 1.03 −1.03 2.41e− 3 −1.67e− 2

(Relative error) 13.7% 22.1% 18.2% 5.97% − −

Friction limit : µ = 0.60
MCMC 16.3 1.21 1.21 −9.80e− 1 4.20e− 4 6.25e− 3

(Relative error) 6.03% 24.0% 38.7% 10.2% − −

Friction limit : all points
MCMC 16.6 1.62 8.09e− 1 −9.31e− 1 −2.14e− 3 5.29e− 2

(Relative error) 7.70% 1.39% 7.19% 14.68% − −

on a tire by applying specific constraints like a desired normal load or
by rolling the tire at a desired speed [17]. Therefore, a flat track tire
testing machine offers the possibility to collect useful information on
the tire behavior by studying its dynamical responses. Among the signals
available thanks to the flat track tire testing machine, we can have access
to the slip ratio s as well as the tire forces Fx, Fy and Fz respectively.
Hence, by using Eq. (2.1), we obtained the friction measurements given
in Figure 2.13.

In Figure 2.13, it can be pointed out that the friction measurements
depict the entire friction curve which is not available under standard
practical driving conditions. Here, all these data points are accessible
because the flat track offers the possibility to impose high slip ratios to
the tire and thus allows the acquisition of the tire response for a large
range of slip ratio. As a consequence, these representative measure-
ments offer the opportunity to test the MCMC based estimation method
and the ML method on different part of the friction curve.

Tests with full measurements

In the first scenario, the method is applied using the full data sets
for s ∈ [0, 0.2]. Although this situation does not correspond to classical
driving conditions, this test enables to check if the method can provide
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Figure 2.10: Histograms of the Pacejka’s parameters estimated with the
MCMC method (for µ ≤ 0.3). The red line represents the true value used
to generate the friction measurements. The black dashed line indicates
the mean of the MCMC estimates. The magenta dash-dot line indicates
the minimizer of the loss function. The green line indicates the mean of
the ML estimates. The blue line represents a Gaussian pdf fitted to the
MCMC estimates. The green line represents a Gaussian pdf fitted to the

10000 ML estimates.

good results under ideal situations. In the same way as we proceeded
in the case with simulated data, the MCMC based estimation method is
applied with a high number of chains to ensure a satisfying efficiency of
the method. Here the number of chains is set to 300 which imply 300 es-
timates of the grip potential. Each chain has a length of 30000 samples.
In addition, as stated in Algorithm 1, the different chains are initialized
with the parameter vector obtained with the ML method. Herein, the
ML method is carried out 10000 times similarly to what have been done
with the simulated data. Furthermore, the parameter bounds used are
still the ones indicated in Table 2.3.

Remark 2.4. In the case treated here, the estimated theoretical covariance
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Figure 2.11: Histograms of the Pacejka’s parameters estimated with the
MCMC method (for µ ≤ 0.6). The red line represents the true value used
to generate the friction measurements. The black dashed line indicates
the mean of the MCMC estimates. The magenta dash-dot line indicates
the minimizer of the loss function. The green line indicates the mean of
the ML estimates. The blue line represents a Gaussian pdf fitted to the
MCMC estimates. The green line represents a Gaussian pdf fitted to the

10000 ML estimates.

matrix obtained with the ML method is

ˆcov(θML) =



950 15.5 −69.4 199 −1.71 69.3
15.5 0.25 −1.13 3.26 −0.03 1.13
−69.4 −1.13 5.01 −14.5 0.13 −5.06
199 3.26 −14.5 41.8 −0.36 14.5

−1.71 −0.03 0.13 −0.36 0.003 −0.13
69.3 1.13 −5.06 14.5 −0.13 5.06

 , (2.28)

which contains high diagonal elements. As a consequence, this matrix is
not suitable for initializing the covariance matrix of the proposal distribu-
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Figure 2.12: Histograms of the Pacejka’s parameters estimated with
the MCMC method (all data points selected). The red line represents
the true value used to generate the friction measurements. The black
dashed indicates the mean of the MCMC estimates. The magenta dash-
dot line indicates the minimizer of the loss function. The green line indi-
cates the mean of the ML estimates. The blue line represents a Gaussian
pdf fitted to the MCMC estimates. The green line represents a Gaussian

pdf fitted to the 10000 ML estimates.

tion. For this reason, the initial covariance matrix of the proposal distri-
bution is set as the one defined in Eq. (2.27).

Under such practical conditions, the MCMC based estimation method
provides 300 estimates of the friction curve represented in grey in Fig-
ure 2.14. The mean of these 300 estimates is plotted in red in Figure
2.14. In addition, histograms of the grip potentials and their corre-
sponding slip ratio computed with the 300 friction curves are drawn in
Figure 2.15. Finally, Gaussian pdf have been fitted to the estimates ob-
tained with the MCMC based estimation method (see Figure 2.15). The
means and the variances used to fit the pdf correspond to the means
and the variances of the 300 estimates. As in the previous section, the
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Figure 2.13: Friction measurements provided by the flat track tire test-
ing machine.

ML method have been carried out 10000 times with 10000 different
initializations. However, in this case, the resulting grip potential esti-
mates are almost always the same. For this reason, the grip potential
obtained with the minimizer of the loss function and the mean of the
estimates are approximately equals and thus, are not distinguishable.
For the same reason, no ML pdf have been plotted in Figure 2.15. The
friction curve estimated with the ML method is represented in Figure
2.14. The means and the standard deviations of the different ML and
MCMC estimates are summarized in Table 2.8.

Table 2.8: ML and MCMC estimates with real data.

Estimation method µmax µmax arg(µmax) arg(µmax)
mean standard deviation mean standard deviation

ML 1.223 2.10e− 6 3.970e− 2 3.67e− 15
MCMC 1.222 2.65e− 2 4.250e− 2 4.23e− 3

As illustrated in Figure 2.14, the MCMC estimates match well to the
friction measurements. On top of that, the mean of these estimates is
almost similar to the one obtained with the ML method. This assertion is
reinforced by Table 2.8 and the histograms in Figure 2.15 where the fric-
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Figure 2.14: Results of ML and MCMC curve fitting on all the data avail-
able. The shadowed area represents the 300 estimates and the red curve
the mean of these estimates. The dashed blue line indicates the ML es-

timate.

Figure 2.15: Histograms of grip potential estimates (upper plot) and
their corresponding slip ratios (lower plot). The red line represents the
values obtained with the ML method. The dashed black vertical line
represents the mean of the MCMC estimates. The blue line represents a

Gaussian pdf fitted to the MCMC estimates.
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tion potential are estimated between 1.15 and 1.3 with a mean equal to
1.222 while the ML value is 1.223. As shown in the second histogram in
Figure 2.15, the slip ratio corresponding to the grip potential estimated
with both ML and MCMC methods are close to each other. Indeed, the
slip ratio estimated with the MCMC method are situated between 0.03
and 0.055 for a mean value of 0.0425 while the ML value is 0.0397. These
results indicate that the MCMC based estimation method works well to
estimate the grip potential in the case treated here. More precisely, it
delivers mean results similar to the ML method.

Finally note that simulating one chain of 30000 samples has taken
around 7.5 seconds. Experiments were conducted with Matlab R2018b
on a computer with an Intel core i7 processor running at 2.0 GHz.

Because the ML and the MCMC methods provide an accurate sim-
ilar estimate of the friction curve when all data points are taken into
account, this estimate is now used as a reference. This reference will
be used in the following to compare the results obtained with different
training sets.

Tests with realistic scenarii

The ML and MCMC estimation methods are now tested with differ-
ent training sets composed of the data points represented in Figure 2.13.
Each training set is restricted by a different friction limit. The different
friction limits start with µ = 0.05 and grow until µ = 0.7 by step of
0.05 for a total of 14 different training sets. Under these practical con-
ditions, the smallest training set contains 24 points and the largest 112
points. Once the training sets are created, it remains to proceed to the
initialization of the different methods. For both methods, the parameter
bounds are still the ones given in Table 2.3. As in the previous cases, the
ML method is first performed by picking initials guesses randomly be-
tween the parameter bounds. In the different cases treated here, the ML
method is performed with 1000 different initial guesses. Furthermore,
among all the 1000 ML estimates, the one kept is the parameter vector
θML giving the smallest residual norm. For the MCMC model learning
technique, it remains to define the chain numbers and chain lengths.
Here, because the training sets are reduced compared to the one con-
sidered in the previous case, the estimates obtained with the MCMC
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method are more likely to vary. For this reason, the number of chains,
and thus the estimates, has been set to 1000 with each chain having a
length of 100000 samples. Each chain is initialized with the ML estimate
θML.

Under such conditions, the MCMC method gives 1000 estimates for
each of the 14 training sets. The method performance is assessed by
comparing, for the 14 training sets, the relative error between the grip
potential of the mean of the MCMC estimates and the grip potential ref-
erence. The grip potential reference is the one obtained in the Section
2.4.2 when the ML and the MCMC methods are used with all the avail-
able measurements. The same comparison is made with the slip ratio
corresponding to the grip potential. Figure 2.16 shows the evolution
of the estimated grip potential with the different estimation methods.
Figure 2.16 also includes the evolution of the relative error of the esti-
mates with the reference value. Figure 2.17 contains the same type of
results about the slip ratio corresponding to the grip potential, i.e. the
evolution of the estimates and the relative errors. In addition to these
curves, Figures 2.16 and 2.17 contain a third curve named "MCMC es-
timate with physical prior" where physical prior is added on MCMC es-
timates. More precisely, in the situation considered here, we know that
the corresponding slip ratio value of the grip potential cannot physically
be too high. For this reason, after making the 1000 MCMC estimates,
we keep the ones indicating a grip potential with a corresponding slip
ratio lower than 0.1 and we consider the mean of these estimates. In
this way, the physical prior can be combined with the MCMC based es-
timation method to improve the final grip potential estimation. Figure
2.18 indicates the percentage of MCMC estimates rejected after adding
physical prior. Figures 2.19 and 2.20 show the estimated friction curves
obtained in two practical cases. More precisely, when the friction mea-
surements available remain under µ < 0.2 and µ < 0.3, respectively.
Finally, Figures 2.21 and 2.22 display plots of iterations versus sampled
values for each variable in the MCMC chain when added physical prior
is considered. The plots are the ones obtained when the used friction
measurements remain under µ < 0.2 and µ < 0.3, respectively.

As indicated in Figure 2.16 and 2.17, adding physical prior to the
MCMC estimates improves the results. Besides, once the training set
friction limit is greater than 0.15, the MCMC estimates with physical
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Figure 2.16: The upper plot represents the evolution of the estimated
friction potential obtained with the ML and MCMC methods, respec-
tively. The lower plot represents the evolution of the relative error of

the estimated friction potential with the reference value.

prior bring more accurate results than the ML method. Indeed, once this
friction limit is reached, the MCMC based estimation method provides
an estimate of the grip potential with a relative error lower than 20%
while the relative error of the estimate obtained with the ML method
is almost always greater than 20%. This result is interesting because as
mentioned in Section 1, most of the methods used to estimate the grip
potential are effective once the grip consumption level is greater than 0.3
[3]. Therefore, estimating the grip potential with a lower friction con-
sumption represents an improvement. Besides, as shown in Figure 2.18,
the percentage of MCMC estimates rejected after adding physical prior
decreases with the friction limit. This result suggests that the estimates
obtained are more reliable once the friction limit increase. Furthermore,
as depicted in Figures 2.19 and 2.20, with realistic data sets (µ < 0.2
and µ < 0.3, respectively), the MCMC method estimates friction curves
really close to the reference contrary to the ML method. In addition,
as shown in Figures 2.21 and 2.22, the generated samples stay around
mean values which are close to the reference values. Figures 2.21-2.22
also indicate that the samples generated with the proposal distribution
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Figure 2.17: The upper plot represents the evolution of the estimated
slip ratio corresponding to the friction potential obtained with the ML
and MCMC methods, respectively. The lower plot represents the relative
errors with the reference of the estimated slip ratio corresponding to the

friction potential.
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Figure 2.18: Evolution of the number of MCMC estimates rejected after
adding physical prior.
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Figure 2.19: Results of ML and MCMC curve fitting (µ < 0.2). The
red line represents the reference friction curve. The dashed-dot green
line indicates the ML estimate. The dashed-dot magenta line indicates
the MCMC estimate. The dashed blue line indicates the MCMC with

physical prior estimate.

mix well [6]. More precisely, on the one hand, the samples are not stuck
in a small part of the parameter space. On the other hand, the sam-
ples are not far from each other. Thus, these traceplots indicate that the
generated samples explore the parameter space very well.

In order to evaluate the method performance more deeply, the his-
tograms of the MCMC estimates of the grip potential and its correspond-
ing slip ratio have been plotted in Figure 2.23 and 2.24, respectively.
Figure 2.23 indicates that the histograms begin to be centered on the
reference once the friction limit is equal to 0.2 which corroborates the
fact that the method provides satisfactory results from this friction limit
measurement value. However, the histogram corresponding to a fric-
tion limit of 0.2 in Figure 2.24 is not clearly centered on the reference
value and it does not contain values that emerge from all the estimates
obtained. Thus, with this friction limit, the grip potential estimate can
be accurate but not necessary the associated slip ratio. This situation is
not necessarily an issue because we try to estimate the grip potential in
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Figure 2.20: Results of ML and MCMC curve fitting (µ < 0.3). The
red line represents the reference friction curve. The dashed-dot green
line indicates the ML estimate. The dashed-dot magenta line indicates
the MCMC estimate. The dashed blue line indicates the MCMC with

physical prior estimate.

priority.
Finally simulating one chain of 100000 samples have taken around

7.5 seconds for the smallest training set and 10 seconds for the largest
one.

Characterization of real measurements

As indicated in the different cases treated in this part, with real data,
the MCMC estimates are closer to the reference values than the esti-
mates obtained with the ML method. Looking at the results, we can
wonder why the MCMC method works better than the ML method. One
reason that could explain these results is the validity of the assumptions
made for both methods.

When we described the ML method in Section 2.3.1, we stated that
the stochastic part of the measurements can be modelled with i.i.d.
Gaussian stochastic components. Now that we have access to real mea-
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Figure 2.21: Traceplot of θMCMC (µ < 0.20) in the case where physical
prior is added. The blue curve represents the value of the samples kept.

The horizontal red line indicates the reference value.
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Figure 2.22: Traceplot of θMCMC (µ < 0.30) in the case where physical
prior is added. The blue curve represents the value of the samples kept.

The horizontal red line indicates the reference value.

surements and a reliable estimate of the friction curve (given by ML and
MCMC), the residuals can be computed (see Figure 2.25), then analysed
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Figure 2.23: Evolution of the histograms representing the friction po-
tential estimated with the MCMC based estimation method with physi-
cal prior. The red line represents the reference value. The dashed black

line represents the mean of the MCMC estimates.

in order to validate the aforementioned assumptions. Two tests are con-
ducted on the residuals, a normality test [94] and an autocorrelation
test (ACF)[81]. These tests are carried out on two different training sets
in order to ensure that all the measurements have the same statistical
properties. The first training set includes the residuals corresponding to
friction measurements lower than 0.6. The second data set contains all
the residuals.

Firstly, the normality test is performed to verify if the residuals can be
model with a Gaussian distribution. The normality test used here is the
Kolmogorov-Smirnov test at a significance level of 5% [94]. This one
indicates that the null hypothesis cannot be rejected for both residual
sets. Besides, this test indicates a p−value of 0.8960 when only a part
of the residuals are considered and a p−value of 0.5339 when all the
residuals are selected. Thus, considering the noise normally distributed
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Figure 2.24: Evolution of the histograms representing the slip ratio cor-
responding to the friction potential estimated with the MCMC based
estimation method with physical prior. The red line represents the ref-
erence value. The dashed black line represents the mean of the MCMC

estimates.

is a suitable assumption.

Secondly, the ACF test is carried out to verify if the residuals can
be considered as independent. As illustrated in Figure 2.26, it appears
that no matter which residual sets is considered, the data points are not
i.i.d.. Therefore, modelling the stochastic part of the measurements with
i.i.d. Gaussian stochastic components might not be the most appropriate
choice. Furthermore, because the i.i.d. assumptions is not valid, it can
explained why the ML method provides estimates far from the actual
value. The MCMC method seems less sensitive to these assumptions
on the measurements. This difference in the sensitivity could explained
why the MCMC method provides better estimates than the ML method.
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Figure 2.25: Measurement residuals. The upper plot represents the evo-
lution of the residuals as a function of the slip ratio. The lower plot is

an histogram of the residuals.

2.5 Conclusions

In this chapter a method combining the Maximum Likelihood ap-
proach and an Adaptive Metropolis-Hastings MCMC procedure is ap-
plied to determine the tire friction potential. In this method, the ML
estimates are used to initialize an Adaptive Metropolis-Hastings MCMC
algorithm. This method is tested with different training sets coming
from both simulated data and real data. The real data is obtained from
experiments conducted with a flat track tire testing machine. When data
points describing the entire friction curve are selected (µ ∈ [0, 1.2]), the
ML and MCMC methods give accurate predictions of the Pacejka’s model
coefficients. However, under standard driving conditions, only friction
measurements lower than 0.3 are available. For this reason, the estima-
tion methods are assessed with realistic training sets containing friction
measurements under 0.3 only. Under these conditions, the results reveal
that the MCMC solution outperforms the classical Maximum Likelihood
approach. Indeed, this approach produces accurate estimates as soon



62 Grip potential estimation

0 5 10 15 20 25 30

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.26: ACF of the residuals. The left figure represents the ACF
of the residuals corresponding to the friction measurements lower than
0.6. The right figure represents the ACF of all the residuals. In both
figures, the dashed black lines represent the standard error of the ACF

with a confidence interval of 95%.

as friction measurements reach a value of approximately 0.2. Thus, this
result makes the method applicable during standard driving conditions
where this range of measurements is accessible.

These results are obtained by assuming that the friction data points
are actually measured. However, in practice, the friction data points are
not measured but estimated. For this reason, it is necessary to adapt this
solution when the friction data is estimated (see Figure 2.27).



2.5 Conclusions 63

Figure 2.27: Master plan handled in this thesis. Contrary to what have
been done in this chapter, the friction point measurements are not mea-

sured but estimated.





CHAPTER 3

Tire force estimation

As mentioned in the past sections, the objective of this thesis is to
determine the grip potential defined in Eq. (2.1) under standard driving
conditions. In order to reach this goal, it is necessary to use friction
points. Although friction points measurements were used in Chapter 3,
these ones are not available with sensors fitted on production vehicle.
Therefore, they should be estimated and this is the main objective of
this chapter (See Figure 3.1).

Figure 3.1: Part of the master plan handled in this chapter. The ad-
dressed part corresponds to the part inside the dashed red rectangle.
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The friction data points are deduced through estimates of the lon-
gitudinal tire force Fx, the normal load Fz and their corresponding slip
ratio s. These estimates are obtained by resorting to a state observer
[84]. To achieve this, it is necessary (i) to choose a vehicle model (ii)
to define an observer structure. Hence, the chapter is organized as fol-
lows. Section 3.1 describes the problem tackled in this chapter, then
introduces the main notations used in the next paragraphs. Section 3.2
is devoted to the description of the used vehicle model. Section 3.3 is
dedicated to the observer description and its settings.

3.1 Problem formulation and notations

In this chapter, we aim at extracting friction information from avail-
able measurements. Because friction data points cannot be measured
directly with the available sensors [3], the friction data information
must be reconstructed from measurements. Among the different so-
lutions available in the literature [4], a specific attention is paid to a
state observer because it requires only a model of the considered system
and measurements coming from sensors fitted on production vehicle. In
control theory, a state observer is indeed a process combining the inputs
u, the measurements z and a dynamical system representation in order
to infer estimates of the internal states x̂ of the system [84, 42]. This
concept is illustrated in Figure 3.2.

Figure 3.2: Concept of state observer.

As indicated in Figure 3.2, the state observer uses a theoretical descrip-
tion of the system to estimate the state. Therefore, in order to apply a
state observer, it is necessary to define
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• a model representation of the considered system, i.e., a mathemat-
ical description of the system dynamics we want to estimate,

• a state observer structure.

In the case treated here, the studied system is a vehicle car. There-
fore, the considered model should describe the dynamics of a car over
the time. In automotive field, such a model is called a vehicle model.
Besides, in our case, the objective is to determine friction points through
estimates of the longitudinal tire force Fx, the normal load Fz and the
slip ratio s. Thus, the selected vehicle model should include these quan-
tities or quantities related to them. The used vehicle model and the
observer structure are described in Section 3.2 and in Section 3.3, re-
spectively.

Notations: In the following, the tire forces are noted with the form Fuij

where the subscript u ∈ {x, y, z} designates the longitudinal, lateral and
normal tire force, respectively. The subscript i ∈ {f, r} stands for front
and rear respectively and the subscript j ∈ {l, r} stands for left and right
respectively. Thus, for example, with this notation, the quantity Fxfl

indicates the front left longitudinal tire force. More generally, in this
manuscript, others quantities are denoted with the subscripts i ∈ {f, r}
and j ∈ {l, r}. In any case, i and j make the distinction between front
and rear and left and right, respectively.

3.2 Description of the vehicle model

A vehicle model is a set of mathematical equations used to mimic the
behavior of a vehicle. Depending on what part of the vehicle is studied,
the model can be more or less complex. For this reason, many differ-
ent types of model exist in the literature [35], [75], [46]. Among the
different vehicle models, we distinguish the kinematic models from the
dynamic models. The kinematic models do not include the forces acting
on the vehicle while the dynamic models include them [35]. Besides,
depending on what sort of vehicle behavior is studied (longitudinal, lat-
eral or coupled), the vehicle model is viewed as a longitudinal model,
lateral model or coupled model, respectively.
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In the present study, the main objective is to estimate the longitu-
dinal tire force Fx, the normal load Fz and the slip ratio s. Thus, the
vehicle model should include these quantities or quantities related to
them in the set of equations. As a result, the model taken into account
is a dynamical longitudinal model. Moreover, in this study, we want a
model sufficiently accurate to get reliable estimates of the tire forces and
at the same time sufficiently simple to avoid a heavy computational cost.
For these reasons, the model chosen in this study is a single-track model
[35] considering only the longitudinal dynamics extended with a sus-
pension model. This choice of vehicle model should represent a good
trade-off between accuracy and complexity. Indeed, on the one hand,
the single-track model is used to describe the longitudinal tire force Fx

and on the other hand, the suspension model is used to represent the
normal load Fz and especially to capture the variations of Fz. Because
the single-track is a simplification of the double-track model [35], it
is necessary to introduce the double-track model before presenting the
single-track model. Consequently, the double-track model is presented
in Section 3.2.1, then the single-track model is presented in Section
3.2.2. The suspension model is presented in Section 3.2.3. Besides, we
are also interested in the slip ratio. As presented in Section 3.2.4, this
quantity depends of the effective tire radius model. Thus, Section 3.2.5
is dedicated to the effective tire radius model. Finally, all the equations
of the vehicle model considered are summarized in Section 3.2.6.

3.2.1 Double-track model

The double-track model is a vehicle model commonly used to de-
scribe the vehicle dynamics [35, 78, 33]. In this model, the four wheels
of the vehicle are represented separately (see Figure 3.3 and Table 3.1)
in order to get closer to a real car. As a consequence, each wheel is re-
lated to three different tire forces Fx, Fy and Fz that should be taken into
consideration. However, in the common double-track model, the pitch
and roll dynamics are neglected [75]. Therefore, the different normal
loads Fzif applied on each wheel are considered as constant values.
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Figure 3.3: Double-track model with longitudinal and lateral tire forces.

Model equations

The model equations of the double-track model are obtained by ap-
plying the Newton’s second law to the system composed of the vehicle
body and the four wheels [35, 75]. In this case, we obtained the equa-
tions

v̇x = vyψ̇ +
1

m
[Xf +Xr − Faero] ,

v̇y = −vxψ̇ +
1

m
[Yf + Yr] ,

ψ̈ =
1

Iz

[
LfYf − LrYr +

tf
2
∆Xf +

tr
2
∆Xr

]
,

(3.1a)

(3.1b)

(3.1c)
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Table 3.1: Signals and parameters used to define the double-track
model.

Symbol Units Definition

vx, vy m.s−1 Longitudinal/Lateral vehicle speed
vg m.s−1 Vehicle speed at the CoG
ψ̇ rad.s−1 Yaw rate
Fxij N Longitudinal tire forces
Fyij N Lateral tire forces
δij rad Steering angle
β rad Sideslip angle

tf , tr m Front/Rear track
Lf , Lr m Distance between the vehicle CoG

and the front/rear axle

with
Xf = (Fxfl cos(δfl) + Fxfr cos(δfr))

− (Fyfl sin(δfl) + Fyfr sin(δfr)) ,

Xr = (Fxrl cos(δrl) + Fxrr cos(δrr))

− (Fyrl sin(δrl) + Fyrr sin(δrr)) ,

Yf = (Fxfl sin(δfl) + Fxfr sin(δfr))

+ (Fyfl cos(δfl) + Fyfr cos(δfr)) ,

Yr = (Fxrl sin(δrl) + Fxrr sin(δrr))

+ (Fyrl cos(δrl) + Fyrr cos(δrr)) ,

∆Xf = (Fxfr cos(δfr)− Fxfl cos(δfl))

+ (Fyfl sin(δfl)− Fyfr sin(δfr)) ,

∆Xr = (Fxrr cos(δrr)− Fxrl cos(δrl))

+ (Fyrl sin(δrl)− Fyrr sin(δrr)) .

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.2f)

As indicated in Equations (3.1a)-(3.2f), the double-track model is a ve-
hicle model involving many different quantities. However, in order to
carry out state estimation, it is necessary to dispose of wheel measure-
ments (see Section 3.3). Therefore, using this model requires four dif-
ferent sensors only for the wheels since all the four vehicle wheels are
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represented separately. Besides, modelling the four wheels separately
results in a high dimensional state vector since it should contain at least
the four longitudinal tire forces and the four wheel speeds (see Sec-
tion 3.3). As indicated in [11] and [29], the double-track model is an
accurate model which describes the vehicle dynamics with a high accu-
racy but this amount of accuracy is not necessarily required in the case
of state estimation. For these reasons, the double-track model might not
be a suitable choice for the problematic treated here and another less
complex model should be investigated.

3.2.2 Single-track model

The single-track model (see Figure 3.4 and Table 3.2) is another
vehicle model particularly used to represent the vehicle dynamics [35],
[75]. It is a simplification of the double-track model. In addition to the
double-track model assumption (pitch and roll effect neglected), the
single-track model requires the following simplifying assumptions

• the left and right front steering angles are equal ⇒ δfl = δfr = δ,

• the rear steering angles are equal to zero ⇒ δrl = δrr = 0.

The first assumption on the equal left and right steering angles leads
to the equality between the left and right tire forces. Consequently, in
the single-track model, the left and right front, respectively rear, wheels
are gathered to form one front, respectively rear, wheel. As a result,
the tire forces are brought back to each axle which means that, instead
of estimating four longitudinal tire forces (one for each wheel), we will
only estimate two longitudinal tire forces, one for the front axle, Fxf

and one for the rear axle, Fxr. Besides, in the purely longitudinal single-
track model, the axle tire forces are the sum of the left and right tire
forces. As a consequence, we obtain the equations

Fxf = Fxfl + Fxfr,

Fxr = Fxrl + Fxrr,

Fyf = Fyfl + Fyfr,

Fyr = Fyrl + Fyrr,

Fzf = Fzfl + Fzfr,

Fzr = Fzrl + Fzrr.

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

(3.3f)
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Hence, by making the assumption that the tire forces are the same in
the left and right side, the axle tire forces are enough to estimate the
tire forces on each wheel.

Figure 3.4: Single-track model with longitudinal and lateral tire forces.

Table 3.2: Signals and parameters used to define the single-track model.

Symbol Units Definition

vx, vy m.s−1 Longitudinal/lateral vehicle speed
ψ̇ rad.s−1 Yaw rate

Fxf , Fxr N Front/Rear axle longitudinal tire forces
Fyf , Fyr N Front/Rear axle lateral tire forces
αf , αr rad Front/Rear slip angle
δ rad Steering angle

Lf , Lr m Distance between the vehicle CoG
and the front/rear axle

Model equations

The equations of the single-track model are obtained by applying
Newton’s second law to the different parts composing the single-track
model, that is, the vehicle body and the front and rear tires. In order to
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apply Newton’s second law, it is necessary to described the forces acting
on the vehicle. These forces are represented in Figures 3.4 and 3.5 and
described in Table 3.3.

Figure 3.5: Longitudinal forces acting on a vehicle during a travel.

Table 3.3: Forces acting in a vehicle during a maneuver.

Symbol Units Definition

Fzf , Fzr N Front/Rear normal load
P N Vehicle weight

Rxf , Rxr N Front/Rear rolling resistance
Fxf , Fxr N Front/Rear longitudinal tire forces
Faero N Aerodynamic drag force

Remark 3.1. Although the Figure 3.4 represents also the lateral forces
acting on a vehicle, in our case, we only focus on the longitudinal dynamics.
For this reason, the equations modelling the lateral dynamics of a vehicle
are omitted.

As indicated in [75], the equations of the single-track model consid-
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ering only the longitudinal dynamics are

v̇x =
1

m
[Fxf + Fxr − Faero − (Rxf +Rxr)] ,

ω̇f =
1

2Iwf
[Tf −RfloadFxf ] ,

ω̇r =
1

2Iwr
[Tr −RrloadFxr] ,

(3.4a)

(3.4b)

(3.4c)

where

Faero =
1

2
ρaSaCx (vwind + vx)

2 ,

Rxf +Rxr = fRR (Fzf + Fzr) ,

Rfload = R0 −
Fzf

Kzz
,

Rrload = R0 −
Fzr

Kzz
.

(3.5a)

(3.5b)

(3.5c)

(3.5d)

The signals and parameters involved in the model equations are de-
scribed in Table 3.4. Because the pitch dynamics are not considered, the

Table 3.4: Signals and parameters involved in the torque balance ap-
plied to the vehicle wheels.

Symbol Units Definition

m kg Vehicle mass
g m.s−2 Acceleration of the gravity
ρa kg.m−3 Air density
Sa m2 Frontal area
Cx − Aerodynamic drag coefficient
fRR − Rolling resistance coefficient
ωf , ωr rad.s−1 Front/Rear wheel rotational speed
Tf , Tr N.m Front/Rear driving and braking torque
Iwf , Iwr kg.m2 Front/Rear wheel moment of inertia
R0 m Free tire radius

Rfload, Rrload m Front/Rear loaded tire radius
Kzz N.m−1 Tire radial stiffness
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normal loads are equal to their static parts, i.e.,

Fzf = Fzf0 = mg
Lr

Lf + Lr
,

Fzr = Fzr0 = mg
Lf

Lf + Lr
.

(3.6a)

(3.6b)

Thus Fzf + Fzr = mg and Rxf + Rxr = fRRmg. Besides, because the
wind speed is generally unknown, it is neglected in the Equation (3.5a).
Under these practical conditions, the model equations become

v̇x =
1

m

[
Fxf + Fxr −

1

2
ρaSaCxv

2
x − fRRmg

]
,

ω̇f =
1

2Iwf
[Tf −RfloadFxf ] ,

ω̇r =
1

2Iwr
[Tr −RrloadFxr] .

(3.7a)

(3.7b)

(3.7c)

3.2.3 Suspension model

As mentioned in Section 3.2.2, in the single-track model, the pitch
and roll effects are neglected. This assumption leads to static expres-
sions of the normal loads Fzi. However, the goal of this chapter is to
estimate friction data points which depend of the normal load. For this
reason, a great importance should be paid to the estimation of Fzi in or-
der to obtain an accurate estimate of the friction µ. Thus, it is necessary
to consider the normal loads with dynamic expressions and not static
ones. One way to represent these dynamics is to extend the single-track
model with a suspension model which will be used to characterize the
load transfer. The load transfer represents the evolution of the normal
load which occurs during a travel. For example, during acceleration and
braking phases, a load transfer between the front and the rear parts of
the vehicle takes place. This load transfer is due to the pitch effect (see
Figure 3.6 for an illustration of the pitch effect). Thus, during these
phases, the normal load applied on the tire varies and these variations
are described by using a suspension model.
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Figure 3.6: Illustration of pitch effect during a braking phase.

Simplified suspension model

In order to include the pitch dynamics, it is necessary to introduce a
suspension model. Many models exist in the literature to represent the
vehicle suspensions [73, 24]. One simplified passive suspension model
is the one represented in Figure 3.7. The parameters used in this model
are summarized in Table 3.5.

Figure 3.7: Simplified passive suspension model.
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Table 3.5: Simplified suspension model parameters.

Symbol Units Definition

Bf , Br N.s.m−1 Front/Rear suspension damping coefficient
Kf ,Kr N.m−1 Front/Rear suspension stiffness
hG m Height of the CoG
κ rad Pitch angle of the sprung mass

By assuming no variation of the center of gravity (CoG) height, the
suspension model considered in Figure 3.7 gives us the following load
transfer

∆Fzf = KfLf sin(κ) +BfLf κ̇ cos(κ),

∆Fzr = KrLr sin(κ) +BrLrκ̇ cos(κ).

(3.8a)

(3.8b)

As a result, the normal loads become

Fzf = Fzf0 + [KfLf sin(κ) +BfLf κ̇ cos(κ)] ,

Fzr = Frf0 − [KrLr sin(κ) +BrLrκ̇ cos(κ)] ,

(3.9a)

(3.9b)

with

Fzf0 = mg
Lr

Lf + Lr
,

Fzr0 = mg
Lf

Lf + Lr
.

(3.10a)

(3.10b)

As indicated in Eq. (3.9a) and (3.9b), respectively, it is necessary to
describe the evolution of the pitch angle κ and the pitch speed κ̇ in
order to compute the normal loads. By applying Newton’s second law
at the CoG in the model represented in Figure 3.7, we can establish the
following equation governing the pitch dynamics

Iyκ̈ = (Fxf + Fxr −Rxf −Rxr)hG − FzfLf + FzrLr. (3.11)

By introducing Eq. (3.7a), (3.9a) and (3.9b) to Eq. (3.11), the equation
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governing the pitch dynamics becomes

κ̈+ κ̇
cos(κ)

Iy
[BfLf (fRRhG + Lf ) +BrLr(Lr − fRRhG)]

+
sin(κ)

Iy
[KfLf (fRRhG + Lf ) +KrLr(Lr − fRRhG)]

=
hG
Iy

(
mv̇x +

1

2
ρaSaCxv

2
x

)
.

(3.12)

Thus, with the suspension model represented in Figure 3.7, the pitch dy-
namics are governed by a second order nonlinear differential equation
with nonconstant second member. This equation can be simplified by
making assumptions on the pitch angle and the spring and damper pa-
rameters. During a regular travel, the pitch angle of a car stays relatively
small (κ < 10◦) [11]. In this case, sin(κ) ≃ κ and cos(κ) ≃ 1. Besides,
by adding the assumption of equilibrium of load transfer between front
and rear axles, we have

KfLf = KrLr = k,

BfLf = BrLr = b.

(3.13a)

(3.13b)

Hence, the normal loads become

Fzf = Fzf0 +∆Fz,

Fzr = Fzr0 −∆Fz,

(3.14a)

(3.14b)

with ∆Fz = kκ + bκ̇. Furthermore, the equation governing the pitch
dynamics becomes

κ̈+
Lb

Iy
κ̇+

Lk

Iy
κ =

hG
Iy

(
mv̇x +

1

2
.ρaSaCxv

2
x

)
. (3.15)

Thus, with the additional assumptions of small pitch angle and equilib-
rium of load transfer, Equation (3.15), which governs the pitch dynam-
ics, becomes an ordinary second order linear differential equation with
nonconstant second member. Therefore, it can be put into a canonical
form

κ̈+
ω0

Q
κ̇+ ω2

0κ =
hG
Iy

(
mv̇x +

1

2
.ρaSaCxv

2
x

)
, (3.16)
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with

ω0 =

√
Lk

Iy
,

Q =
1

b

√
Iyk

L
.

(3.17a)

(3.17b)

Remark 3.2. If the velocity vx is constant, the second member of the dif-
ferential equation (3.16) becomes constant and an analytical solution can
be computed. In this case, one solution of the Equation (3.16) is

κ(t) = κ1(t) + κ2(t), (3.18)

where

κ1 = exp

(
−ω0t

2Q

)
(A cos(Ωt) +B sin(Ωt)) ,

Ω = ω0

√
1− 1

4Q2
,

κ2 =
hG
2Lk

ρaSaCxv
2
x,

(3.19a)

(3.19b)

(3.19c)

with A and B given by the initials conditions. If the initial conditions are
κ(0) = κini and κ̇(0) = κ̇ini, the constants A and B are

A = κini − κ2,

B =
1

Ω

(
κ̇ini +

ω0

2Q
A

)
.

(3.20a)

(3.20b)

3.2.4 Slip ratio expression

In order to determine friction data points, it is necessary to estimate
the slip ratio s corresponding to the friction µ of the different points.
The definitions of the front and rear slip ratios are given by [75]

sf =
ωfRrolf − vx

max(ωfRrolf , vx)
,

sr =
ωrRrolr − vx

max(ωrRrolr , vx)
.

(3.21a)

(3.21b)
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Therefore, computing the slip ratio requires the knowledge of the effec-
tive tire radius Rroli (i ∈ {f, r}), the longitudinal vehicle speed vx and
the wheel speed ωi (i ∈ {f, r}). While the vehicle speed and the wheel
speed are common information available on production cars, this is not
the case for the effective tire radius. For this reason, it is necessary to
introduce an effective tire radius model.

3.2.5 Effective tire radius model

During a travel, the tire is distorted by the normal load applied on it.
As a result, this deformation induces a modification of the effective tire
radius. Different models exist to represent the evolution of the effec-
tive tire radius [46], [75], [68]. Among them, two effective tire radius
models are particularly employed, (i) the sinc effective tire radius model
[46], (ii) the Pacejka effective tire radius model [68]. The sinc model is
a model giving an expression of the effective tire radius as a function of
the free-tire radius R0, the normal load Fz applied on the tire and the
stiffness Kzz. This tire model is based on the relation

vx = Rroliωi, i ∈ {f, r}. (3.22)

However, this relation corresponds to situations where the slip ratio is
equal to zero. Indeed, by inserting Equation (3.22) in Eq. (3.21a) and
Eq. (3.21b), the resulting front and rear slip ratios are equal to zero.
However, the goal of this chapter is to estimate the friction points de-
fined by a friction µ and a slip ratio s. Therefore, the effective tire radius
model used to estimate the slip ratio should operate in situations where
the slip ratio is different from zero. For this reason, the sinc effective
tire radius model is not chosen here.

The second effective tire radius model well documented in the lit-
erature is the semi-empirical model developed by Pacejka in [68]. In
addition to geometrical interpretation, this effective tire radius model is
also based on practical measurement data of the tire radius deformation
during a travel. Therefore, this tire radius model describes the evolu-
tion of the effective tire radius in various situations and especially in the
cases where the slip ratio is different from zero. Different formulations
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of the Pacejka’s tire radius model are given in [68]. One of them is

Rrol = Rω

− Fnomin

Kzz

[
Freff

Fz

Fnomin
+Dreff arctan

(
Breff

Fz

Fnomin

)]
,

(3.23)

with

Rω = R0

(
qreo + qV 1

(
R0ω

V0

)2
)
. (3.24)

In Eq. (3.23) and (3.24), Freff , Breff , Dreff , qreo and qV 1 are empirical
parameters fitted to measurement data. Pacejka also provides an ex-
pression of the quantity Fz

Fnomin
as a function of physical quantities such

as the tire forces Fx, Fy and the tire inflation pressure dpi

Fz

Fnomin
=

[
1 + qV 2 |ω|

R0

V0
−
(
qFcx1

Fx

Fnomin

)2

−
(
qFcy1

Fy

Fnomin

)2
]

(
qFz1

ρ

R0
+ qFz2

ρ2

R2
0

)
(1 + pFz1dpi) ,

(3.25)
with

ρ = max (Rω −Rload, 0) , (3.26)

Rload = R0 −
Fz

Kzz
, (3.27)

Kzz0 =
Fnomin

R0

(
qFz1 + 2qFz2

ρ0
R0

)
, (3.28)

Kzz = Kzz0 (1 + pFz1dpi) . (3.29)

The signals and physical parameters involved in Eq. (3.23)-(3.29) are
summarized in Table 3.6. The different parameters qre0, qV 1, qV 2, qFcx1,
qFcy1, qFz1, qFz2 and pFz1 are parameters allowing the user to set the
sensitivity of the model with the different physical quantities such as the
tire forces or the tire inflation pressure. As for Freff , Breff and Dreff ,
these parameters are empirical and require to be fitted to measurement
data.
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At this point, the Pacejka effective tire radius model seems to be a
very accurate model because it includes many physical quantities influ-
encing the tire radius. However, this model requires to carry out exper-
iments on the tire to set all the coefficients Freff , Breff , Dreff , qre0,
qV 1, qV 2, qFcx1, qFcy1, qFz1, qFz2 and pFz1. Nevertheless, as mentioned
by Pacejka [68], this model can still be used if only the free tire radius
R0, the vertical stiffness Kzz and the four parameters Freff , Dreff et
Breff are known. In this case, the parameters qV 1, qV 2, qFcx1, qFcy1,
qFz2, pFz1 should be set to zero and qre0 should be equal to one. Conse-
quently, Equation (3.23) becomes

Rrol = R0 −
Fnomin

Kzz
[Freffρ+Dreff arctan (Breffρ)] , (3.30)

with
ρ = max (R0 −Rload, 0) . (3.31)

Table 3.6: Signals and parameters involved in the Pacejka’s tire radius
model.

Symbol Units Definition

R0 m Free tire radius ( = unload tire radius)
Fnomin N Nominal normal load
Kzz N.m−1 Normal tire stiffness
Kzz0 N.m−1 Normal tire stiffness at the nominal normal load
Fz N Normal load
V0 m.s−1 Reference velocity (=

√
gR0)

ω rad.s−1 Wheel speed
Fx N Longitudinal tire force
Fy N Lateral tire force
dpi − Normalized change in inflation pressure

3.2.6 Summary of the vehicle model equations and assump-
tions

The vehicle model considered in this study is a single-track model
extended with a simplified suspension model. The assumptions made to
establish this model are
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• the roll dynamics are neglected,

• the left and right front steering angles are equal ⇒ δfl = δfr = δ,

• the rear steering angles are equal to zero ⇒ δrl = δrr = 0,

• variations of the CoG height neglected,

• equilibrium of the load transfer between the front and rear parts
of the vehicle.

The model equations including the tire forces Fxi, Fzi and the slip ratio
are reminded in Equation (3.32a)-(3.32j).

v̇x =
1

m

[
Fxf + Fxr −

1

2
ρaSaCxv

2
x − fRRmg

]
,

ω̇f =
1

2Iwf
[Tf −RfloadFxf ] ,

ω̇r =
1

2Iwr
[Tr −RrloadFxr] ,

κ̈+
ω0

Q
κ̇+ ω2

0κ =
hG
Iy

(
mv̇x +

1

2
.ρaSaCxv

2
x

)
,

Fzf = mg
Lr

Lf + Lr
+ (kκ+ bκ̇) ,

Fzr = mg
Lf

Lf + Lr
− (kκ+ bκ̇) ,

sf =
ωfRrolf − vx

max(ωfRrolf , vx)
,

sr =
ωrRrolr − vx

max(ωrRrolr , vx)
,

Rrolf = R0 −
Fnomin

Kzz
[Freff ρf +Dreff arctan (Breff ρf )] ,

Rrolr = R0 −
Fnomin

Kzz
[Freff ρr +Dreff arctan (Breff ρr)] .

(3.32a)

(3.32b)

(3.32c)

(3.32d)

(3.32e)

(3.32f)

(3.32g)

(3.32h)

(3.32i)

(3.32j)
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3.3 Description of the observer

3.3.1 State-space representation

In order to perform state estimation, it is necessary to put the used
model in the form of a state-space representation

ẋ(t) = f (x(t),u(t), t) ,

z(t) = h (x(t), t) .
(3.33)

where x ∈ Rnx represent the state vector, u ∈ Rnu the input vector and
z ∈ Rnz the vector of measurements.

The measurement vector z contains the quantities that can be mea-
sured with the sensors fitted on production vehicles. Thus, the measure-
ment vector contains the longitudinal vehicle speed, the wheel speeds
and the pitch speed, i.e.,

z(t) = [vx(t), ωf (t), ωr(t), κ̇(t)]
T . (3.34)

The input vector u contains the inputs of the system. In the case of
a vehicle car, the inputs are mainly the torques applied on the different
parts of the vehicle. Therefore,

u(t) = [Tf (t), Tr(t)]
T . (3.35)

The quantities included in the state vector x are the quantities that
are estimated by the observer. Hence, x should at least include the sig-
nals we want to estimate or quantities related to them. In our case, we
want to estimate the tire forces Fxi, Fzi and the slip ratios si. In addi-
tion, in order to be able to put the model in a state-space representation
form (see Eq.(3.33)), it is necessary to determine relation characterizing
the derivative of the state as a function of the state x, the input u and
the time.

In our case, the dynamical parts of Fzf and Fzr are characterized by
κ and κ̇ (see Eq. (3.32e) and (3.32f)). Therefore, instead of including
the normal loads in the state, the choice is made here to include only the
pitch dynamics κ and κ̇. This choice has several advantages. Firstly, in
this case, it is not necessary to find a relation linking the derivative of the
normal loads to the state. It is only necessary to find this type of relation
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for the pitch dynamics such as the one given in Eq (3.32d). Secondly,
avoiding to insert the normal loads in the state has the advantage to
keep a reasonable dimension of the state. As indicated in [29], having
a low dimensional state reduces the computation cost, especially in the
case where the used observer is an extended Kalman filter.

Furthermore, as reminded in Eq. (3.32g) and (3.32h), the slip ratios
depend on the longitudinal speed vx, the wheel speeds ωf and ωr and
the normal loads Fzf and Fzr. Thus, the choice is made here to include
vx, ωf and ωr in the state and then, to use their estimates with the
normal load estimate in order to determine slip ratios estimates.

Therefore, it only remains to find a relation characterizing the deriva-
tive of the longitudinal tire forces. Different solutions exist in the liter-
ature [103, 78, 76]. One solution is to introduce a tire force model
expression extracted from a tire model such as the Pacejka tire model
or the brush model [68, 25, 18, 98, 92]. However, this solution has the
disadvantage to require a tire model and thus maybe others signals and
parameters. Another solution introduced by Ray in [78] is to consider
the longitudinal tire forces as a random walk, also called Gauss-Markov
process [89]. In this case, the derivative of the longitudinal tire force is
considered constant. Consequently, the longitudinal tire forces and its
derivatives can be represented by[

Ḟxi

F̈xi

]
=

[
0 1
0 0

] [
Fxi

Ḟxi

]
+wFx, i ∈ {f, r} (3.36)

where wFx is a zero mean white noise. This way to represent the lon-
gitudinal tire forces has the advantage to not require specific tire model
for describing the tire forces. This advantage is valuable because, if
the tire force expressions depend on parameters related to the tire, it
is necessary to adapt the tire force expression for each tested tire. Fur-
thermore, representing the tire forces with random walks was already
used with success [78]. For these reasons, the longitudinal tire forces
are here represented with the random walk describe in Equation (3.36).

Remark 3.3. At this point, it can be confusing to discern when a tire
model is considered or not. In order to clarify this point, let us explain
what a tire model is. As represented in Figure 3.8, a tire model is a set
of equations describing the evolution of output quantities such as the tire
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forces Fx, Fy or the effective tire radius Rrol by using input signals and
parameters. Thus, a tire model is composed of different equations which
can be used separately. In our case, when we said that the random walk

Figure 3.8: Example of tire model.

model avoids the use of a tire model for the longitudinal tire force, we mean
that if the tire force are represented with Eq.(3.36), it is not necessary to
use an equation providing the longitudinal tire force Fx from a specific tire
model.

However, as mentioned in the Section 3.2.4, in order to evaluate the slip
ratio, it is necessary to compute the effective tire radius model and thus to
use a tire model. In this chapter, we decide to use the equation related to
the effective tire radius of the Pacejka model and only this equation.

Thus, the selected state is given by

x(t) = [vx(t), ωf (t), ωr(t), Fxf (t), Fxr(t),

Ḟxf (t), Ḟxr(t), κ(t), κ̇(t)]
T .

(3.37)

Once all the necessary relations have been established, the vehicle model
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can be put into the form of a state-space representation with

x(t) = [vx(t), ωf (t), ωr(t), Fxf (t), Fxr(t),

Ḟxf (t), Ḟxr(t), κ(t), κ̇(t)
]T
,

u(t) = [Tf (t), Tr(t)]
T ,

z(t) = [vx(t), ωf (t), ωr(t), κ̇(t)]
T ,

(3.38a)

(3.38b)

(3.38c)

and

ẋ(t) =



v̇x(t)
ω̇f (t)
ω̇r(t)

Ḟxf (t)

Ḟxr(t)

F̈xf (t)

F̈xf (t)
κ̇(t)
κ̈(t)


=



1
m [Fxf (t) + Fxr(t)

−1
2ρaSaCxv

2
x(t)− fRRmg]

1
2Iwf

[Tf (t)−Rfload(t)Fxf (t)]
1

2Iwr
[Tr(t)−Rrload(t)Fxr(t)]

Ḟxf (t)

Ḟxr(t)
0
0
κ̇(t)

hG
Iy

(
mv̇x(t) +

1
2 .ρaSaCxv

2
x(t)

)
−ω0

Q κ̇(t)− ω2
0κ(t)



, (3.39)

z(t) =


vx(t)
ωf (t)
ωr(t)
κ̇(t)

 =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1





vx(t)
ωf (t)
ωr(t)
Fxf (t)
Fxr(t)

Ḟxf (t)

Ḟxr(t)
κ(t)
κ̇(t)


. (3.40)

After describing the state-space representation and the different mod-
els used hereafter, we can illustrate with blocs the different steps leading
to the friction points estimates. These step are given in Figure 3.9. As
indicated in Figure 3.9, vehicle inputs and measurements are combined
with a vehicle model and an observer to estimate the state of the model.
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Figure 3.9: Friction data points estimation plan.

Among the state estimates, the pitch dynamics are combined with a sus-
pension model to determine normal load estimates. This normal load
estimate is on one side combined with the estimated longitudinal tire
force to determine friction estimate. On the other side, the normal load
is combined with an effective tire radius model and estimated speeds in
order to determine slip ratios.

3.3.2 Kalman filters

In addition to a vehicle model, the second essential element neces-
sary to perform state estimation is to define an observer structure. The
choice of the observer structure relies on the linear or nonlinear behav-
ior of the vehicle model and the existence of noise and disturbances
in the model and measurements used. In our case, the measurements
used are noisy measurements. Besides, the used vehicle model is an ap-
proximation of the real model describing the system behavior. For this
reason, it is necessary to introduce a process noise in order to take into
account of the differences between the approximate used model and
the real model. Well-known state observers for such stochastic systems
are the Kalman filters [42, 84]. However, as described by Eq. (3.39),
the model used in this work model is nonlinear with respect to the state
variables. Since the classical Kalman filter is not designed to handle non-
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linear models [84], an alternative designed for nonlinear models will be
used : the Extended Kalman Filter (EKF) [84]. In order to simplify the
description of the EKF, let us first introduce the classic Kalman filter.

Kalman filter

As mentioned earlier, the Kalman filter is a stochastic estimator pro-
viding a state estimate of a model. This estimator can be formulated
with a continuous-time or a discrete-time formulation [84]. Given that
the real system measurements are mostly discrete, the Kalman filter de-
scribed here is a discrete one.

Let us consider a model described by a discrete-time linear time
state-space representation

xk = Fxk−1 +Guk−1 +wk−1,

zk = Hxk + vk.

(3.41a)

(3.41b)

where w and v are white, zero-mean and uncorrelated noise. wk ∈
Rnx and vk ∈ Rnz are respectively called the process noise and the
measurement noise and are characterized by their covariance matrices
Wk and Vk. In addition, the covariance matrix of the state xk at time k
is denoted Pk.

The goal of the Kalman filter is to provide an estimate of the state xk

and its covariance matrix Pk by using the model description (Eq. (3.41a)
and (3.41b)) and noisy measurements zk. In the Kalman filter descrip-
tion, this objective is reached in two steps. First, a prediction step where
the model equations are used to predict the state value at time k. This
estimate is here denoted x̂k|k−1. Then, a correction step is performed
on which the prediction x̂k|k−1 of xk is modified to take into account
of the measurement vector at time k, zk. This estimate is here denoted
x̂k|k. It is important to note that x̂k|k−1 and x̂k|k are both estimates of
xk. The only difference between the two estimates is that in x̂k|k, we
take into account of the measurement vector zk. An illustration of the
Kalman filter is depicted in Figure 3.10.

During the prediction step, the estimated state and its covariance
matrix are propagated with the model equations (Eq. (3.41a)). The
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Figure 3.10: Illustration of the discrete-time Kalman filter.

resulting x̂k|k−1 and Pk|k−1 are given by

x̂k|k−1 = F x̂k−1|k−1 +Guk−1,

Pk|k−1 = FPk−1|k−1F
⊤ +Wk−1.

(3.42a)

(3.42b)

Then, during the correction step, the measurements zk are taken into
account in the state estimation which result according to [84] in

Kk = Pk|k−1H
⊤
(
HPk|k−1H

⊤ + Vk

)−1
,

x̂k|k = x̂k|k−1 +Kk

(
zk −Hx̂k|k−1

)
,

Pk|k = FPk|k−1F
⊤ − FKkHF⊤ +Wk.

(3.43a)

(3.43b)

(3.43c)

Thus, the Kalman filter provides estimate of the state x̂k and its co-
variances matrices Pk. Here, it is applied with a linear model (See
Eq. (3.41a) and (3.41a)). However, during this thesis, the vehicle model
considered is nonlinear with respect to the state (See Eq. (3.39)). For
this reason, the Kalman filter should be adpated to be employed with
nonlinear model. Fortunately, different formulation of the Kalman filter
exist to estimate the state of nonlinear system [84, 82, 5, 102]. One of
them is the Extended Kalman filter.

Remark 3.4. In Section 3.3.2, the considered state-space representations
are time-invariant (see Eq. (3.41a) and (3.41b)). We decide to present
the Kalman filter in a time-invariant framework because the used vehicle
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model is represented with a nonlinear time-invariant state-space represen-
tation (see Eq. (3.39) and (3.40)). However, the Kalman filter equations
also applied with time-invariant state-space representation (see for exam-
ple [84]. In this case, the different matrices F,G and H are replace by
time-varying matrices Fk, Gk and Hk.

Extended Kalman filter

Since the Kalman filter equations (see Eq. (3.42a)-(3.43c)) involve
linear time state-space representations only, the idea of the EKF is to lin-
earise the basic model around the current state estimate, then to apply
the Kalman filter equations to the linearised model. In a mathematical
form, let us consider a discrete-time nonlinear model

xk = f (xk−1,uk−1) +wk−1,

zk = h (xk) + vk,

(3.44a)

(3.44b)

where vk ∈ Rnz and wk ∈ Rnx are respectively the measurement noise
and process noise. By using a Taylor expansion around the current state
estimate x̂k−1, Equation (3.44a) becomes

x̂k = Fxk−1 + ũk−1 +wk−1, (3.45)

with
ũk−1 = f (x̂k−1,uk−1)− F x̂k−1,

F =
∂f

∂x

∣∣∣∣
x̂k−1

.

(3.46a)

(3.46b)

Another Taylor expansion is performed around the state estimate x̂k|k−1

to linearise the Equation (3.44b),

ẑk = Hxk + z̃k + vk, (3.47)

with
z̃k = h

(
x̂k|k−1

)
−Hx̂k|k−1,

H =
∂h

∂x

∣∣∣∣
x̂k|k−1

.

(3.48a)

(3.48b)
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As a result, Eq. (3.45) and (3.47) form a discrete-time linear state space
representation on which the Kalman filter can be applied. In this case,
the extended Kalman filter equations become

Pk|k−1 = FPk−1|k−1F
⊤ +Wk−1

x̂k|k−1 = f
(
x̂k−1|k−1,uk−1

)
,

Kk = Pk|k−1H
⊤
(
HPk|k−1H

⊤ + Vk

)−1
,

x̂k|k = x̂k|k−1 +Kk

(
zk − h

(
x̂k|k−1

))
,

Pk|k = (In −KkH)Pk|k−1.

(3.49a)

(3.49b)

(3.49c)

(3.49d)

(3.49e)

These equation can be used to estimate the state of discrete-time non-
linear model. However, in our case, the system studied is model with
continuous-time equations (see Eq. (3.39)). Therefore, the EKF equa-
tions must be slightly modified in order to be applied to the continuous-
time model.

Discrete-time EKF applied to continuous-time model

Let us consider the nonlinear continuous-time model

ẋ(t) = fc (x(t),u(t), t) +w(t),

z(t) = hc (x(t), t) + v(t).
(3.50)

In order to apply the discrete-time EKF, ẋ(t) can be discretized using an
Euler explicit method with a sampling period dt,

xk = xk−1 + dt fc (xk−1,uk−1) ,

xk = f (xk−1,uk−1) .
(3.51)

with f (xk−1,uk−1) = xk−1+dtfc (xk−1,uk−1). In these conditions, the
Jacobian F is given by

F =
∂f

∂x

∣∣∣∣
x̂k−1

=
∂

∂x
[xk−1 + dt fc (xk−1,uk−1)]

∣∣∣∣
x̂k−1

= Inx + dt Fc(x̂k−1,uk−1)

(3.52)
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with Fc =
∂fc
∂x

∣∣∣∣
x̂k−1

.

Consequently, the Kalman filter equations became

x̂k|k−1 = x̂k−1 + dt fc (x̂k−1,uk−1) ,

Pk|k−1 = FPk−1|k−1F
⊤ +Wk−1,

Kk = Pk|k−1H
⊤
(
HPk|k−1H

⊤ + Vk

)−1
,

x̂k|k = x̂k|k−1 +Kk

[
zk − hc

(
x̂k|k−1

)]
,

Pk|k = (In −KkH)Pk|k−1,

(3.53a)

(3.53b)

(3.53c)

(3.53d)

(3.53e)

with H = ∂hc
∂x

∣∣∣∣
x̂k|k−1

.

3.4 Conclusion

In this chapter, the methodology for state observer estimation have
been described in order to estimate the friction data points. This method
requires to introduce a vehicle model and an observer structure. The
considered vehicle model is a single-track model extended with a sus-
pension model in order to take into account of the load transfer and
thus, the variation of normal load applied on a tire during a travel. Be-
cause the chosen vehicle model is an approximation of the real system,
process noise is added on the vehicle model which results in a stochastic
model. Consequently the observer structure chosen is a Kalman filter
since it is design to handle such model. Finally, because the used vehi-
cle model is nonlinear, the selected Kalman filter is an extended Kalman
filter.

Until now, the question of the Kalman filter settings has not been ad-
dressed. However, the Kalman filter requires the setting of four different
quantities. In details, an initial state vector x0, its corresponding covari-
ance matrix P0 and more importantly, values for W and V . While prior
information can be used to set the initial state value of the Kalman fil-
ter, setting the W and V matrices can be troublesome. For this reason,
the following chapter is dedicated to the setting of the noise covariance
matrices.





CHAPTER 4
Noise covariance matrices estimation

4.1 Introduction

Kalman filtering [90, 42, 84] is probably the first solution any engi-
neer would suggest when dynamical system state estimation problems
come into play. This matter of fact can be illustrated by the myriads of
Kalman filtering solutions commonly used, e.g., for guidance, naviga-
tion or control of any kind of vehicles [8, 104]. One standard practical
case is the use of Kalman filters for vehicle state estimation in Advanced
Driver Assistance Systems [23] where signals like the rear and front axle
side forces cannot be measured directly but must be reconstructed from
measured signals like the yaw rate or the body slip angle at the center
of gravity, respectively. The Kalman filter success for state estimation is
probably due to (i) its easiness of implementation [99], (ii) its capabil-
ity to give access to the minimum variance state estimate under mild
practical conditions [42, 84], (iii) its recursive update-predict structure
which makes it still efficient even if the aforementioned practical condi-
tions [84] are not perfectly satisfied.

As shown in Section 4.2, the standard Kalman filter equations in-
volve a deterministic stochastic state space model [97] of the system to
track. The stochastic part is usually characterized via additive output
and process noises. In Kalman filtering theory, this stochastic contribu-
tion not only accounts for measurement noise effects but also for dy-
namics not embedded into the deterministic model components. These
output and process noises, more specifically their mean values and their



96 Noise covariance matrices estimation

covariance matrices, thus play a central role in the Kalman filter effi-
ciency because

• they are (with the deterministic state space matrices) the main
inputs of the standard Kalman filter algorithms [90, 84],

• they quantify the confidence the user has into the deterministic
model description of the system to track,

• their mispecification may lead to divergence issues [84].

The dependence of the Kalman filter performance on the availability of
reliable output and process covariance matrices may explain the reasons
why a significant part of the literature dedicated to Kalman filter tuning
is devoted to the development of techniques and algorithms for the esti-
mation of these covariance matrices. As recently described in the survey
[26] of Dunik et al., most of the noise covariance matrix estimation
methods can be classified into two main families:

• the "feedback methods" where the noise covariance matrices and
the unknown state signals are estimated in one shot,

• the "feedback free methods" where the state variables are first es-
timated (e.g., with a non optimal estimator), then used for noise
characteristics estimation.

In this chapter, in order to avoid nonlinear optimization issues [13] usu-
ally encountered with the "feedback methods", a "feedback free method"
using linear least squares only is suggested. More specifically, instead of
resorting to a suboptimal filter as required, e.g., by the well known inno-
vation correlation methods [52, 53] developed by R. Mehra in the 70s,
the method introduced in this chapter relies on the comparison of an es-
timated model of the deterministic system dynamics (determined from
the available input-output data sets) and the discrete time state space
representation involved in the Kalman filter equations. By doing so,
contrary to most of the "feedback free methods", no specific tuning pa-
rameter is required. By assuming that the selected model identification
method is reliable enough to yield accurate and consistent discrete time
linear time invariant state space models under the assumptions required
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by the Kalman filter, the basic idea of the solution developed herein con-
sists in translating the discrepancy between the estimated model and the
dynamical state space model used by the Kalman filter into noise covari-
ance matrix estimates. As we said previously, in Kalman filtering theory,
even if the system to track is not necessarily truly stochastic, the stochas-
ticity brought by the output and process noises is used to describe the
model uncertainties as closely as possible. Accurately determining the
modeling error induced by the deterministic state space model of the
Kalman filter should be a smart way to quantify the model uncertainties
and, by extension, the noise covariance matrices.

As shortly explained in the former paragraph, the noise covariance
matrix estimation technique introduced in this chapter includes a data
based model learning step. The system identification literature [87, 41,
49] is full of algorithms and model learning techniques dedicated to dis-
crete time state space model estimation. This is all the more true when
linear time invariant models are sought. Herein, a class of subspace
model identification methods [97, 43, 99, 54] is adapted to estimate a
discrete time linear time invariant state space model used afterwards for
noise covariance matrix estimation. The main reason why this class of
methods is selected is the strong and inherent link between the N4SID
or CCA class [43] of subspace identification methods and the Kalman
filter [96, 97]. Indeed, as shown first by P. van Overschee and B. De
Moor [96], N4SID-like methods "introduce a bank of non steady state
Kalman filters generating a sequence of state estimates [97]". As far as
model error modeling is concerned, the main drawback of the standard
subspace model identification methods is their ability to give access to
state space models up to a similarity transformation only. As shown in
Section 4.3, such a weak point of subspace model identification can be
bypassed by resorting to prior available when Kalman filtering is the
final goal of the estimation procedure.

The chapter is organized as follows. Section 4.2 describes the prob-
lem tackled in this chapter, then introduces the main notations used in
the next paragraphs. Section 4.3 is devoted to the main contribution
of this chapter, i.e., (i) the detailed description of the algorithmic steps
leading to accurate estimates of the noise covariance matrices necessary
for Kalman filtering, (ii) the proof of the asymptotic unbiasedness of
these estimates. The validation of this approach is carried out in Sec-
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tion 4.4 where three different simulation scenarii are considered. Sec-
tion 4.5 concludes this chapter.

4.2 Problem formulation and notations

In this chapter, the goal is to estimate the state vector trajectory of
a dynamical system, the behavior of which can be described by the fol-
lowing linear time invariant continuous time state space representation

ẋ(t) = Ax(t) +Bu(t), (4.1a)

y(t) = Cx(t), (4.1b)

where x(t) ∈ Rnx stands for the state vector, y(t) ∈ Rny is the out-
put vector and u(t) ∈ Rnu is the input vector, respectively. In order
to reach this goal, we assume that a Kalman filter can be designed.
More specifically, it is assumed that the state at time kTs (k ∈ N and
Ts being the sampling period) can be determined from the current and
previous measurements by using the famous update-predict equations
[84], e.g., the following set of equations (starting with x̂+

0 = E[x0] and
P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )

⊤])

x̂−
k = Adx̂

+
k−1 +Bduk−1, (4.2a)

P−
k = AdP

+
k−1A

⊤
d +W , (4.2b)

Kk =
(
P−
k C⊤

d + S
)(

CdP
−
k C⊤

d + V +CdS + S⊤C⊤
d

)−1
, (4.2c)

x̂+
k = x̂−

k +Kk(yk −Cdx̂
−
k ), (4.2d)

P+
k = P−

k −Kk

(
CdP

−
k + S⊤

)
, (4.2e)

where the notations − and + stand for "before and after new measure-
ments". These Kalman filter equations are valid and lead to an optimal
[90, 42, 84] state estimator when the tracked system is described by the
following discrete time linear time invariant state space representation

xk+1 = Adxk +Bduk +wk, (4.3a)

yk = Cdxk + vk, (4.3b)
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where the output and process noises vk ∈ Rny and wk ∈ Rnx , respec-
tively, are zero mean random variables with covariance matrices satisfy-
ing

E
[[

vi

wi

] [
v⊤
j w⊤

j

]]
=

[
V S
S⊤ W

]
δij , (4.4)

where δij is the Kronecker delta function. In addition to initial values for
x+
0 and X+

0 , the Kalman equations require the knowledge of the state
space matrices Ad, Bd and Cd as well as the covariance matrices S, V
and W . While the matrices Ad, Bd and Cd can be generated from the
matrices A, B and C given in Eq. (4.1) as follows [90]

Ad = eATs , (4.5a)

Bd = eATs

∫ Ts

0
e−AτBdτ, (4.5b)

Cd = C, (4.5c)

by assuming that the input signals are constant in the interval of inte-
gration, the matrices S, V and W cannot be directly extracted from
prior knowledge. The problem of estimating these matrices is thus now
tackled by resorting to a specific model learning technique inspired by
the famous subspace model identification methods [97, 43, 99].

Before describing our new solution for noise covariance matrix es-
timation into details, let us introduce the following notations. For any
vector rk ∈ Rnr and parameters M , i and ℓ ∈ N+

∗ , we define

ri,M =


ri
ri+1

...
ri+M−1

 ∈ RMnr , (4.6)

Ri,M =
[
ri ri+1 · · · ri+M−1

]
∈ Rnr×M , (4.7)

and the block Hankel matrix as follows

Ri,ℓ,M =


ri ri+1 · · · ri+M−1

ri+1 ri+2 · · · ri+M
...

...
. . .

...
ri+ℓ−1 ri+ℓ · · · ri+M+ℓ−2

 ∈ Rℓnr×M . (4.8)
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With matrices A, B, C and D of appropriate dimensions, for ℓ ≥ nx,
the extended controllability matrix can be defined as follows

Ωℓ(A,B) =
[
Aℓ−1B · · · AB B

]
. (4.9)

We also define the extended observability matrix

Γℓ(A,C) =


C
CA

...
CAℓ−1

 , (4.10)

and the block lower triangular Toeplitz matrix

∆ℓ(A,B,C,D) =


D 0 · · · 0
CB D · · · 0

...
. . . . . .

...
CAℓ−2B · · · CB D

 . (4.11)

4.3 Noise covariance matrix estimation with a mod-
ified subspace model identification approach

As we said previously, in the Kalman filter equations, the stochastic
part of the state space model (4.3) is introduced mainly to describe the
uncertainties in the model dynamics, i.e., the confidence we have in the
values of the matrices Ad, Bd and Cd to characterize the system dy-
namics. Said differently, the matrices S, V and W , which characterize
the randomness of the zero mean noises (vk)k∈Z and (wk)k∈Z, must be
chosen to quantify the confidence we have in the deterministic part of
the state space representation (4.3). In order to reach this goal, it is
necessary to determine if the matrices Ad, Bd and Cd chosen a priori by
the user describe the real system dynamics accurately. By assuming the
access to a sufficiently rich data set, i.e., by assuming that the samples
{uk,yk}Nk=1 used by the Kalman filter embed the system dynamics of
interest, the solution considered in this chapter consists in (i) using sys-
tem identification for extracting an accurate discrete time model from
the available data sets, (ii) comparing the estimated state space with
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the deterministic part of the state space form (4.3) we know a priori in
order to get reliable model misfit measurements, (iii) transforming this
discrepancy measurements into covariance matrix estimates.

Among all of the state space model identification techniques avail-
able in the literature, a specific attention is paid herein to the subspace
model identification method class because of its capability to give access
to state variable estimates with linear least squares only.

Remark 4.1. In model learning, when subspace model identification comes
into play, the user must choose an upper bound of the system order a priori.
Because, in the Kalman filtering framework, the state space matrices Ad,
Bd and Cd are chosen a priori, the system order is in the list of priors.
Thus, the technique developed in this chapter does not require any user
action all along the estimation procedure.

The starting point of this model learning approach is the innovation
state space model [42] (which is equivalent to the Kalman filter given
in Eq. (4.2) as proved, e.g., by [42] T. Kailath et al.)

x̂k+1 = Adx̂k +Bduk +Kek, (4.12a)

yk = Cdx̂k + ek, (4.12b)

where K is the steady state Kalman gain while ek = yk −Cdx̂k, called
the innovation term or innovations [42], stands for the part of the mea-
surements which contains new information [42]. Then, by using the
notations introduced in Section 4.2, for N , f and ℓ ∈ N+

∗ , straightfor-
ward recursions lead to the following data equation [54, 58]

Yf,ℓ,N = Γf (Ad,Cd)X̂f,N +∆u
fUf,ℓ,N +Nf,ℓ,N , (4.13)

where

∆u
f = ∆f (Ad,Bd,Cd,0), (4.14a)

Nf,ℓ,N = ∆f (Ad,K,Cd, Iny)︸ ︷︷ ︸
∆e

f

Ef,ℓ,N . (4.14b)

By explicitly using the definition of the innovation term into Eq. (4.12),
with Ãd = Ad −KCd, the predictor state space form [74]

x̂k+1 = Ãdx̂k +Bduk +Kyk, (4.15a)

yk = Cdx̂k + ek, (4.15b)
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can be generated from Eq. (4.12) straightforwardly. Then, with standard
recursions again, we have, for any user defined p ∈ N∗,

x̂k = Ãd
p
x̂k−p +Ωp(Ãd,K)yk−p,p +Ωp(Ãd,Bd)uk−p,p. (4.16)

By assuming that the discrete time linear time invariant state space
form (4.12) is strict minimum phase1, i.e.,
ρ0 = |λmax (Ad −KCd)| < 1, we have ∥Ãd∥p < ρp0 which decreases
towards 0 when p increases. Therefore, by assuming that p is taken suf-
ficiently large, the quantity Ãd

p
x̂k−p can be neglected. Hence the state

sequence approximation x̄k defined as follows

x̄k = Ωp(Ãd,K)yk−p,p +Ωp(Ãd,Bd)uk−p,p, (4.17)

can be viewed as the the optimal linear estimate of x̂k (in the mean
square error sense [39]) given yk−p,p and uk−p,p. Of course, this ap-
proximation becomes better with increasing p. By using this state ap-
proximation, the quantity X̂f,N involved in Eq. (4.13) becomes

X̂f,N =
[
x̂f x̂f+1 · · · x̂f+N−1

]
≃
[
x̄f x̄f+1 · · · x̄f+N−1

]
. (4.18)

Furthermore, by using Eq. (4.17), we have[
x̄f x̄f+1 · · · x̄f+N−1

]
=
[
Ωp(Ãd,Bd) Ωp(Ãd,K)

][
uf−p,p uf−p+1,p · · · uf+N−1−p,p

yf−p,p yf−p+1,p · · · yf+N−1−p,p

]
.

(4.19)
Thus, by taking f = p = ℓ, we get

X̂f,N ≃
[
Ωp(Ãd,Bd) Ωp(Ãd,K)

] [u0,ℓ u1,ℓ · · · uN−1,ℓ

y0,ℓ y1,ℓ · · · yN−1,ℓ

]
≃
[
Ωp(Ãd,Bd) Ωp(Ãd,K)

] [U0,ℓ,N

Y0,ℓ,N

]
.

(4.20)

Substituting Eq. (4.20) into Eq. (4.13) leads to

Yf,ℓ,N =Γf (Ad,Cd)
[
Ωp(Ãd,Bd) Ωp(Ãd,K)

] [U0,ℓ,N

Y0,ℓ,N

]
+∆u

fUf,ℓ,N +Nf,ℓ,N .

(4.21)

1This assumption is satisfied [42] when K is a Kalman filter gain.
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In this equation, the unknown quantities are Γf (Ad,Cd)Ωp(Ãd,Bd),
Γf (Ad,Cd)Ωp(Ãd,K), ∆u

f and, of course, the term representing the
noise Nf,ℓ,N . One of the main interests of this data equation is its lin-
earity with respect to the unknown matrices Γf (Ad,Cd)Ωp(Ãd,Bd),
Γf (Ad,Cd)Ωp(Ãd,K) and ∆u

f . In this chapter, a specific attention is
paid to the first two block matrices Γf (Ad,Cd)Ωp(Ãd,Bd) and Γf (Ad,Cd)Ωp(Ãd,K),
respectively. As represented in Eq. (4.21), estimate Γf (Ad,Cd)Ωp(Ãd,Bd)
and Γf (Ad,Cd)Ωp(Ãd,K) is equivalent to solve a linear least-squares
problem. This one can be solve by resorting to the following QR factor-
ization [59] 

Uf,ℓ,N[
U0,ℓ,N

Y0,ℓ,N

]
Yf,ℓ,N

 =

L11 0 0
L21 L22 0
L31 L32 L33

Q1

Q2

Q3

 . (4.22)

Indeed, it can be proved [71] that, if

• the innovation sequence (ek)k∈Z is a zero mean white noise se-
quence with covariance matrix Re,

• the pair (Ad,Cd) is observable [42] and the pair
(
Ad,

[
Bd,KR

1/2
e

])
is reachable [42],

• the input signals u are quasi stationary and exciting of sufficient
order [49],

we have

lim
N→∞

L32L
−1
22 = Γf (Ad,Cd)

[
Ωp(Ãd,Bd) Ωp(Ãd,K)

]
. (4.23)

By recalling that,

[
Ωp(Ãd,Bd) Ωp(Ãd,K)

] [U0,ℓ,N

Y0,ℓ,N

]
= X̂f,N , (4.24)

Eq. (4.23) leads to

lim
N→∞

L32L
−1
22

[
U0,ℓ,N

Y0,ℓ,N

]
= Γf (Ad,Cd)X̂f,N . (4.25)
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This last equation shows that the SVD [59]

L32L
−1
22

[
U0,ℓ,N

Y0,ℓ,N

]
= UΣV⊤ (4.26)

can be used to approximate the column space of Γf (Ad,Cd) and the
row space of the state sequence X̂f,N as follows

Γ̂f (Ad,Cd) = UΣ1/2, (4.27a)

X̂f,N = Σ1/2V⊤. (4.27b)

The main issue with this SVD is the difficulty to guarantee that the row
space of the state sequence X̂f,N is generated in the system state basis,
the decomposition of UΣV⊤ into two blocks being valid up to a simi-
larity transformation [59] T . Therefore, it is necessary to determine an
estimate T̂ of the similarity transformation in order to move the esti-
mated state sequence X̂f,N into the system state basis. This is the place
where our prior on Ad and Cd plays a central role. Knowing Ad and
Cd, the expected column space Γf (Ad,Cd) can be determined a pri-
ori. Then, as soon as f ≥ nx, the similarity transformation T between
Γf (Ad,Cd) known a priori and the estimated column space Γ̂f (Ad,Cd)
can be computed by noticing that

Γf (Ad,Cd)T = Γ̂f (Ad,Cd). (4.28)

Once T̂ is estimated with a Moore Penrose pseudo inverse [59], the state
sequence X̂f,N can be moved into the "good" state basis, i.e., the system
state basis, as follows

ˆ̂
Xf,N = T̂Σ1/2V⊤. (4.29)

Instead of using this state sequence estimate for determining Âd, B̂d

and Ĉd as usually performed with the N4SID-like algorithms [97, 43,
99], the prior on Ad and Cd is used herein to quantify the discrepancy
between this prior information and the information brought by the data

sets via the estimated state sequence ˆ̂
Xf,N . More specifically, in order to

determine accurate estimates of the covariance matrices S, V and W ,
respectively, knowing Ad and Cd and having access to an estimate of the
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state sequence X̂f,N in the system state basis, the sought discrepancy
measurement can be generated by computing the residuals [99][

Ŵf,1,N−1

V̂f,1,N−1

]
=

[
ˆ̂
Xf+1,N

Yf,1,N−1

]
−
[
Ad Bd

Cd 0

][ ˆ̂
Xf,N−1

Uf,1,N−1

]
. (4.30)

These residuals can indeed be used to estimate S, V and W as follows
[99][

V̂ Ŝ

Ŝ⊤ Ŵ

]
= lim

N→∞

1

N

[
Ŵf,1,N−1

V̂f,1,N−1

] [
Ŵ⊤

f,1,N−1 V̂⊤
f,1,N−1

]
. (4.31)

On top of that, it can be proved that these estimates are asymptotically
unbiased estimates of V , W and S, respectively.

Theorem 4.1. By assuming that

• the system to be identified is linear time invariant,

• the deterministic input (uk)k∈{1,...,N−1} is uncorrelated with the pro-
cess and measurement noises (wk)k∈Z and (vk)k∈Z, respectively,

• the input (uk)k∈{1,...,N−1} is persistently exciting [97, Definition 5]
of order 2f ,

• the number of measurements N goes to infinity,

• the process and measurement noises are not identically zero,

we have

lim
N→∞

1

N

[
Ŵf,1,N−1

V̂f,1,N−1

] [
Ŵ⊤

f,1,N−1 V̂⊤
f,1,N−1

]
=

[
V S
S⊤ W

]
, (4.32)

i.e., the estimated covariance matrices V̂ , Ŵ and Ŝ are asymptotically
unbiased.

Proof. By referring to Section 4.2.1 of the book [97] entitled "Subspace
Identification for Linear Systems–Theory, Implementation, Applications",
the estimated state sequence X̂f,N as well as the estimated observability
matrix Γ̂f (Ad,Cd) generated from the SVD given in Eq. (4.26) are both
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asymptotically unbiased under the aforementioned assumptions. Thus,
the similarity transformation relating Γ̂f (Ad,Cd) and Γf (Ad,Cd) can
be determined accurately when number of measurements goes to infin-
ity. Once T̂ is available, the generation of the state sequence in the good
state basis is direct thanks to Eq. (4.29). The generation of the residuals
Ŵf,1,N−1 and V̂f,1,N−1 follows directly and, thanks to the strong law
of large numbers [69], the time average covariance matrix generated
from the residuals (as in Eq. (4.31)) converges to the ensemble covari-
ance matrix with probability one as long as N tends to infinity (see also
Section 10.6 of the book [43] entitled "Subspace Methods for System
Identification").

As clearly shown with the former equations,

• this covariance matrix estimation procedure involves linear least
squares and robust linear algebra tools only,

• neither specific user action nor supplementary prior is required,

• the modeling error due to the initial choice of Ad, Bd and Cd is
first determined by comparing, in an indirect way, the state tra-
jectory of an estimated model (by trusting the available data sets
only) and the state sequence of the innovation form, then used for
estimating S, V and W by generating residuals quantifying the
modeling uncertainties.

It is now time to test the efficiency of this procedure by considering
different numerical simulations.

4.4 Numerical validation

4.4.1 A toy example

In order to test the capabilities of our noise covariance matrix estima-
tion solution under ideal conditions, let us first consider the following
toy example used, e.g., in the book [97] written by P. van Overschee
and B. de Moor in 1996 on subspace model identification. This discrete
time linear time invariant system written in an innovation form (see
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Eq.(4.12)) is characterized by the following matrices

Ad =

[ 0.603 0.603 0 0
−0.603 0.603,0 0

0 0 −0.603 −0.603
0 0 0.603 −0.603

]
, (4.33a)

Bd =

[
1.1650 −0.6965
0.6268 1.6961
0.0751 0.0591
0.3516 1.7971

]
, (4.33b)

Cd =
[
0.2641 −1.4462 1.2460 0.5774
0.8717 −0.7012 −0.6390 −0.3600

]
, (4.33c)

K = 4×
[ 0.1242 −0.0895
−0.0828 −0.0128
0.0390 −0.0968
−0.0225 0.1459

]
, (4.33d)

Re =
[

0.0176 −0.0267
−0.0267 0.0497

]
. (4.33e)

The data length used in this simulation is N = 1000. The input signals
are independent and zero mean Gaussian noise signals of unit variances
while the innovation sequences are zero mean Gaussian noises with co-
variance matrix Re. Thus, the theoretical noise covariance matrices are

V = Re =
[

0.0176 −0.0267
−0.0267 0.0497

]
, (4.34a)

W = KReK
⊤ =

[ 0.0202 −0.0045 0.0149 −0.0198
−0.0045 0.0012 −0.0031 0.0041
0.0149 −0.0031 0.0111 −0.0148
−0.0198 0.0041 −0.0148 0.0199

]
, (4.34b)

S = ReK
⊤ =

[
0.0183 −0.0045 0.0131 −0.0172
−0.0311 0.0063 −0.0234 0.0314

]
(4.34c)

Table 4.1, 4.2 and 4.3 gather the estimation results obtained by run-
ning 103 different realizations of the noise signals. More specifically,
each table reports the average and the standard deviation of the main
V̂ , Ŵ and Ŝ components, respectively. For comparison, the same pa-
rameters have been estimated (i) by computing the sample covariance
matrices using the 1000 samples of each noise realization, (ii) with the
ICM [52] for which the tuning parameters are chosen equal to 4 and K
(see (4.33d)), (iii) with the DCM [66] for which the tuning parameter is
chosen equal to 5, (iv) with the CMM [63] for which the initial matrices
for V , W and P are chosen to be equal to identity matrices of correct
dimensions, respectively.
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Table 4.1: Estimates of the elements of V .

v̂11 v̂12 v̂22

Theo. value 0.0176 -0.0267 0.0497
Sample cov. avg. 0.0176 -0.0267 0.0497

std. 0.0008 0.0012 0.0022
ICM avg. 0.0588 -0.0750 0.0888

std. 0.0412 0.0149 0.0057
DCM avg. 0.031 -0.041 0.028

std. 0.0041 0.0013 0.006
CMM avg. 0.023 -0.073 0.031

std. 0.0087 0.0066 0.0092
New meth. avg. 0.0198 -0.0272 0.0516

std. 0.0011 0.0013 0.0024

Table 4.2: Estimates of the elements of W .

ŵ11 ŵ12 ŵ13 ŵ14 ŵ22 ŵ23 ŵ24 ŵ33 ŵ34 ŵ44

Theo. value 0.0202 -0.0045 0.0149 -0.0198 0.0012 -0.0031 0.0041 0.0111 -0.0148 0.0199
Sample cov. avg. 0.0202 -0.0045 0.0149 -0.0198 0.0012 -0.0031 0.0041 0.0111 -0.0148 0.0199

std. 0.8886e-03 0.2054e-03 0.6563e-03 0.8750e-03 0.0509e-03 0.1487e-03 0.1967e-03 0.4877e-03 0.6520e-03 0.8725e-03
ICM avg. 0.0526 -0.0150 0.0355 -0.0454 0.0041 -0.0103 0.0133 0.0238 -0.0303 0.0386

std. 0.0146 0.0079 0.0066 0.0067 0.0042 0.0036 0.0038 0.0029 0.0030 0.0030
DCM avg. 0.0113 -0.0058 0.0186 -0.0285 0.003 -0.0103 0.0033 0.0138 -0.0188 0.0223

std. 0.004 0.0033 0.0068 0.0067 0.0039 0.0033 0.0034 0.0028 0.0031 0.0030
CMM avg. 0.0170 -0.0041 0.0124 -0.0234 0.0041 -0.0043 0.0041 0.0138 -0.0245 0.0224

std. 0.0097 0.0082 0.0064 0.0062 0.0052 0.0028 0.0036 0.0031 0.0024 0.0030
New meth. avg. 0.0196 -0.0041 0.0145 -0.0190 0.0015 -0.0026 0.0038 0.0117 -0.0147 0.0195

std. 0.0017 0.0006 0.0011 0.0011 0.0004 0.0005 0.0007 0.0011 0.0011 0.0013

Table 4.3: Estimates of the elements of S for the new method only (ICM,
DCM and CMM do not give access to estimates for S indeed).

ŝ11 ŝ12 ŝ13 ŝ14 ŝ21 ŝ22 ŝ23 ŝ24

Theo. value 0.0183 -0.0045 0.0131 -0.0172 -0.0311 0.0063 -0.0234 0.0314
Sample cov. avg. 0.0183 -0.0045 0.0131 -0.0172 -0.0311 0.0063 -0.0234 0.0314

std. 0.0008 0.0002 0.0006 0.0008 0.0014 0.0003 0.0010 0.0014
New meth. avg. 0.0181 -0.0039 0.0137 -0.0169 -0.0302 0.0061 -0.0239 0.0309

std. 0.0011 0.0007 0.0010 0.0010 0.0018 0.0011 0.0015 0.0016
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Even if the estimated values yielded by our new method are slightly
biased, the figures available in Table 4.1, 4.2 and 4.3, respectively, clearly
show that (i) this new technique significantly outperforms methods avail-
able in the literature [52, 63, 66], (ii) the variances of the estimates ob-
tained with this method are comparable to the variances computed from
noise samples directly, i.e., of the same order of magnitude as what we
could expect if we had access to the noise realizations. These values
demonstrate that, under ideal practical conditions, our noise covariance
matrix estimation technique is efficient.

4.4.2 A mass spring damper system

Let us now tackle the problem of state estimation. More specifically,
let us test the efficiency of our new technique for tracking the state sig-
nals (position and velocity) of a mass spring damper system excited by
a pseudo random binary sequence [49]. The dynamics of such a sys-
tem can be described by a second order constant coefficient differential
equation which can be compactly written with a continuous time linear
time invariant state space representation like Eq. (4.1) with

A =

[
0 1

− k
m − b

m

]
, B =

[
0
g
m

]
, C =

[
1 0

]
, (4.35)

where m is the mass of the moving box, k is the spring constant, b is the
damping constant and g is the position sensor gain. Herein, we select
m = 100 kg, g = 2, k = 35 kN/m and b = 25 kN.s/m. The input force is
a pseudo random binary sequence tuned as suggested by J. Chen and C.
Yu [20] (see Figure 4.1 for a realization of this input signal). The noise
free output signal generated by simulating this continuous time linear
time invariant system is perturbed, in a second step, by output measure-
ment disturbances built from a zero mean white Gaussian noise with a
variance selected so that the signal to noise ratio defined as follows (ynf
standing for the noise free output signal)

SNR = 20 log

(
σ2ynf

σ2v

)
, (4.36)

equals 10 dB (see Figure 4.2 for a realization of this noisy output sig-
nal). The simulations run in this Sub-Section are performed by selecting
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a sampling period Ts = 1 s. Using the data sets given in Figure 4.1
and 4.2, the first step of the procedure consists in identifying a dis-
crete time linear time invariant state space model of the system to track,
then reconstructing the state sequence in the system state basis by using
Eq. (4.22), Eq. (4.26), Eq. (4.27) and Eq. (4.28) in order to generate
ˆ̂
Xf,N (see Eq. (4.29)). The efficiency of this step is illustrated (i) in
Figure 4.3 where the system and N4SID model frequency responses are
compared, (ii) Figure 4.4 where the system and the N4SID based es-
timated state variables are shown. These curves demonstrate that the
subspace model identification method introduced in this chapter repro-
duces (i) the frequency behavior of the system to identify in a large fre-
quency range, (ii) the state variable trajectories quite efficiently. Once

a reliable estimate of the row space ˆ̂
Xf,N is available, residuals can be

generated, then used to determine V̂ , Ŵ and Ŝ, respectively. These es-
timated matrices are finally used as inputs of the Kalman filter equations
given in Eq. (4.2) for reconstructing the state sequences in an optimal
way. The resulting Kalman filter estimates are plotted in Figure 4.5.
These curves clearly show that combining the method introduced in this
chapter with the standard Kalman filter equations is a good solution for
generating accurate state sequence estimates.
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Figure 4.1: Pseudo Random Binary Sequence exciting the mass spring
damper system.

4.4.3 Passenger car lateral dynamics

The performance of the noise covariance matrix estimation proce-
dure is finally tested with simulated data sets used in the context of pas-
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Figure 4.2: Noisy realization of the mass spring damper system output.
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Figure 4.3: Frequency responses of the sytem and the estimated model.

senger vehicle guidance control. More specifically, we tackle the prob-
lem of estimating the state variables involved in the description of the
lateral dynamics of passenger vehicles. As we said in Section 4.1 and the
aforementioned references [8, 104, 23], this important task used, e.g.,
for controlling autonomous cars, can be performed, in the first place, by
resorting to a Kalman filter. This third simulation example is introduced
in this chapter to test the efficiency of our estimation solution when un-
modeled dynamics start playing a central role in the Kalman filter tuning
step.

In the literature [75, 35], several models have been suggested to
describe the lateral dynamics of passenger cars. Herein, in order to
make simulations easier without losing dynamics modeling capabilities,
a single track model is used, i.e., a model for which (i) the left and right
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Figure 4.4: Comparison of the real and estimated state variable trajec-
tories (position (top) and velocity (bottom) of the mass, respectively).

N4SID model learning.
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Figure 4.5: Comparison of the real and estimated state variable trajec-
tories (position (top) and velocity (bottom) of the mass, respectively).

Kalman filtering.
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Table 4.4: Bicycle model variables.

Symbol Definition Units

fyf front axle side force N

fyr rear axle side force N
β body slip angle at the CoG rad

ψ̇ yaw rate rad/s
ν vehicle speed km/h
δswa steering wheel angle rad
αf front side slip angle rad
αr rear side slip angle rad
ay lateral acceleration m/s2

Table 4.5: Bicycle model parameters.

Symbol Definition Units Rough nominal Values

vx vehicle speed m/s 25
m vehicle mass Kg 1500
cyf front axle cornering stiffness N/rad 200000
cyr rear axle cornering stiffness N/rad 250000
ℓf front axle distance to the CoG m 1.5
ℓr rear axle distance to the CoG m 0.9
Izz inertia about the z axis Kg/m2 3000
n steering ratio - 15
σαf

front axle relaxation length m 0.7
σαr rear axle relaxation length m 0.2
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Figure 4.6: Single-track model for lateral dynamics description.

steering angles are assumed to be equal, (ii) the rear steering angle is
assumed to be null, (iii) the pitch and roll effects are neglected. As
shown in Figure 4.6, such a vehicle model has only one front and one
rear wheel, thus is often called the bicycle model [75, 35]. Table 4.4
gathers the different signals involved in this bicycle model. Because
we focus herein on the lateral dynamics only, the longitudinal vehicle
speed can be assumed to be constant, i.e., v̇x(t) = 0, ∀ t ≥ 0. Thanks
to standard laws of mechanics and trigonometric rules, the following
set of equations can be used to describe the bicycle dynamical behavior
(see Table 4.5 for the definition of the parameters involved in these
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equations)

may(t) = fr(t) + ff (t) cos(δ(t)), (4.37a)

ay(t) = v̇y(t) + vxψ̇(t), (4.37b)

Izψ̈(t) = ℓfff (t)− ℓrfr(t), (4.37c)

tan(β(t)) =
vy(t)

vx
, (4.37d)

αf (t) = δ(t)− arctan

(
vy(t) + ℓf ψ̇(t)

vx

)
, (4.37e)

αr(t) = arctan

(
ℓrψ̇(t)− vy(t)

vx

)
. (4.37f)
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Figure 4.7: Lateral tire forces fi vs. side slip angles αi for different loads.

The next step for the construction of a model of the lateral vehicle
dynamics consists in modeling the lateral tire forces ff and fr which act
on the vehicle. Many tire models have been introduced in the literature
[45]. Most of them try to describe the link between the lateral tire forces
fi and the side slip angles αi, i ∈ {f, r}, via curve fitting techniques,
i.e., by suggesting physical models or black box equations mimicking
experimental data sets as those available in Figure 4.7. Under normal
usage conditions, i.e., for ay < 0.5 − 0.6g, the tire is used in its linear
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part as shown in Figure 4.7. Thus, a standard assumption consists in
modeling the efforts by the following linear function of the side slip
angle [23]

ff = cyfαf , fr = cyrαr, (4.38)

where cyi stands for the cornering stiffness, i ∈ {f, r}. These lateral
force models are easy to use, describe real measurements efficiently
when small angle values are considered but are, by construction, quasi-
static only. In reality, tire forces are not generated instantaneously when
the side slip angle changes due to the smoothness of the rubber. Thus,
tire models involving such transient behaviors should be introduced. As
suggested, e.g., by M. Doumiati et al. [23], a first order model can be
used, i.e.,

τf ḟf (t) + ff (t) = cyfαf (t), (4.39)

τrḟr(t) + fr(t) = cyrαr(t), (4.40)

where τi stands for a relaxation time constant, i ∈ {f, r}. This time
constant can be approximated as follows

τi =
cyi
kivx

=
σαi

vx
, i ∈ {f, r}, (4.41)

where ki, i ∈ {f, r}, stands for an equivalent tire lateral stiffness while
σαi , i ∈ {f, r}, is a relaxation length which approximates the distance
needed to build up tire forces.

By selecting

x(t) =


β(t)

ψ̇(t)
fyf (t)

fyr(t)

 , u(t) = δswa(t), y(t) =

 β(t)ψ̇(t)
ay(t)

 , (4.42)

the former set of equations can be written in a compact way, leading to
the following nonlinear state space representation

ẋ(t) = f(x(t), u(t)), (4.43a)

y(t) = g(x(t), u(t)), (4.43b)
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where f(•) and g(•) stand for the nonlinear equations linking the sig-
nals ẋ(t), x(t), y(t) and u(t), respectively. By assuming that [40] the
data sets are generated so that the experiments are carried out in the
linear range (up to 5m/s2 of lateral acceleration), the former nonlinear
state space form can be linearized, leading to the following continuous
time linear time invariant state space representation

ẋ(t) = Ax(t) +Bu(t), (4.44a)

y(t) = Cx(t), (4.44b)

with

x(t) =


β(t)

ψ̇(t)
fyf (t)

fyr(t)

 , A =


0 −1 1

mvx
1

mvx

0 0
ℓf
Izz

− ℓr
Izz

−cyf vx
σαf

−cyf
ℓ1
σαf

− vx
σαf

0

−cyr vx
σαr

cyr
ℓ2
σαr

0 − vx
σαr

 ,
(4.45a)

v(t) = δswa(t), B⊤ =
[
0 0

vxcyf
nσαf

0
]
, (4.45b)

y(t) =

 β(t)ψ̇(t)
ay(t)

 , C =

1 0 0 0
0 1 0 0
0 0 1

m
1
m

 , (4.45c)

where, again, the signals
{
δswa(t), β(t), ψ̇(t), fyf (t), fyr(t), ay(t)

}
and

the parameters
{
m, vx, ℓf , ℓr, Izz, cyf , cyr , σαf

, σαr , n
}

are explicitly de-
fined in Table 4.4 and Table 4.5, respectively.

Both linear and nonlinear state space representations are going to
be used in the sequels. While the linear model given in Eq. (4.44) is
used, after discretization, to form the matrices Ad, Bd and Cd used by
the Kalman filter, the nonlinear model given in Eq. (4.43) is used to
generate the simulation data sets.

By considering the car parameters available in Table 4.5 and by se-
lecting Ts = 0.01 s, let us first generate a noise free data set by exciting
the nonlinear model given in Eq. (4.43) with the input signal given in
Figure 4.8 assuming zero initial conditions.

Remark 4.2. In order to reproduce practical conditions encountered when
real cars are driven, the input signal is chosen to be a real signal, i.e, a chirp
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Figure 4.8: Steering wheel angle generated by a pilot. This signal is a
chirp generated by a pilot driving a real passenger vehicle.
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Figure 4.9: Continuous time linear time invariant model Bode plots.
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signal generated by a pilot driving a car on a track for vehicle dynamics
analysis. As shown in the left hand side of Figure 4.8, this signal is quite
short, and, as shown in the right hand side of Figure 4.8, the excitation
range is limited to [0, 5] Hz. When compared with the frequency responses
of the continuous time linear time invariant model given previously, it is
clear that this maximum value of 5Hz is slightly larger than the frequency
bandwidths of each SISO dynamical system (see the Bode plots given in
Figure 4.9). This practical limit will play a crucial role as far as model
learning accuracy is concerned.

Second, in order (again) to mimic real practical conditions encoun-
tered on sensors used for acquiring the output signals y(t) on real pas-
senger vehicles, the noise free data is disturbed by adding, on each out-
put signal, a zero mean white Gaussian noise with a variance selected so
that the signal to noise ratio equals 15 dB for each output. One sample
of each noisy output signal is given in Figure 4.10.

Given a noisy data set {uk,yk}Nk=0 like the one in Figure 4.8 and 4.10,
respectively, the noise covariance matrix estimation method described in

Section 4.3 is tested again. Because the state sequence estimate ˆ̂
Xf,N

is not optimal [97] especially when short, little informative and noisy
data sets are handled, we observe in Figure 4.11 that the reconstructed
state variables yielded by our N4SID-like algorithm mimic the main vari-
ations of the real state signals only. Such a discrepancy can be attributed
to both the noise acting on the system and the modeling error induced
by the linear time invariant model given in Eq. (4.44). In order to ac-
count for this modeling error in the Kalman filter equations, the effect of
these unmodeled dynamics is translated into noise covariance matrix es-
timates as suggested by Eq. (4.31), leading to the Kalman filter state tra-
jectories given in Figure 4.12. The good performance of the Kalman fil-
ter estimates illustrate the efficiency of our approach to transform model
uncertainties into reliable noise covariance matrix estimates.

4.5 Conclusions

In this chapter, a new method is introduced to solve a common prob-
lem hindering the use of a Kalman filter, namely the accurate estimation
of the noise covariance matrices appearing in the Kalman filter equa-
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tions. Traditionally, the noise covariance matrices are considered as tun-
able parameters to be adjusted by the user in order to make the Kalman
filter work. However, accurately determining the noise covariance ma-
trices can be complicated in practice, especially when multivariable sys-
tems are considered. Thus, this chapter introduces a new solution to
estimate the covariance matrices of linear time invariant systems with
stationary random disturbances. Obtaining such a solution is possible
by using the well known subspace model identification theory. More
specifically, our new solution consists in (i) using subspace model iden-
tification for extracting an accurate discrete time model from the avail-
able data sets, (ii) comparing the estimated state space model with the
Kalman filter deterministic state space form known a priori in order to
get reliable model misfit measurements, (iii) transforming this discrep-
ancy measurements into covariance matrix estimates. By estimating the
noise covariances matrices this way, no tuning of any parameters is re-
quired by the user. After describing the theory, the method has been
tested with several simulation examples. These simulation results have
shown that (i) this new solution can significantly outperforms standard
solutions like the innovation correlation method, (ii) can yield reliable
covariance matrix estimates when realistic Kalman filtering problems
come into play. These results confirm that our new method can be ef-
ficiently combined with the Kalman filter equations to give access to
accurate estimated state trajectories.





CHAPTER 5
Tire force estimation: practical application

5.1 Introduction

The objective of this chapter is to apply the estimation method intro-
duced in Chapter 3 in order to infer friction points. Since the estimation
method is based on an extended Kalman filter (EKF), it is necessary to
find a way to set the noise covariance matrices. In this chapter, this set-
ting is made by using the subspace identification method introduced in
Chapter 4. Therefore, this chapter is the application of the methods in-
troduced in Chapter 3 and 4 to solve the problem of estimating friction
points (see Figure 5.1). Furthermore, the results obtained in this chap-
ter are used to establish if the estimated friction points can be combined
with the MCMC method introduced in Chapter 2 in order to estimate a
grip potential value.

In this chapter, the EKF performance is assessed with simulated data.
Because the data is simulated, we have access to the real states. Conse-
quently, we can evaluate the performance of the observer by comparing
the estimated values to the true values. Two types of simulated data are
used, namely:

• data coming from simulations made with an extended single-track
model,

• data coming from simulations made with a realistic real-time ve-
hicle simulator called VI-CarRealTime (VI-CRT) [2].
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Figure 5.1: Part of the master plan handled in this chapter. The ad-
dressed part corresponds to the part inside the dashed red rectangle.

On the one hand, the results on the data coming from an extended
single-track model allows to check if modeling the longitudinal tire forces
with random walks is a suitable choice. On the other hand, the purpose
to the test on VI-CRT data is to verify if the EKF can estimate signals
coming from a complex vehicle model accurately.

The rest of the chapter is organized as follows. Section 5.2 de-
scribes a way to generate data with the extended single-track model.
Section 5.3 is dedicated to the EKF estimation of the states generated
with the extended single-track model. Section 5.4 describes how data is
generated with VI-CRT, then shows the reconstructed signals obtained
with the EKF. Section 5.5 concludes this chapter.

5.2 Generation of data with an extended single-
track model

This part is dedicated to the generation of simulated data allowing
to test the EKF performance. Here, the data is generated by using a
single-track model extended with a suspension model such as the one
used by the observer (see Chapter 3). The main difference between the
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model used to generate simulated data and the one used by the EKF
lies in the longitudinal tire force expressions. In the EKF, Fxf and Fxr

are modeled with random walks. However, these representations have
no physical meaning, thus, are not suitable to generate consistent data.
For this reason, Fxf and Fxr are simulated by using the extended single-
track model only. The equations introduced in Chapter 3 are reminded
in Eq. (5.1a)-(5.1l), respectively.

v̇x =
1

m

[
Fxf + Fxr −

1

2
ρaSaCxv

2
x − fRRmg

]
, (5.1a)

ω̇f =
1

2Iwf
[Tf −RfloadFxf ] , (5.1b)

ω̇r =
1

2Iwr
[Tr −RrloadFxr] , (5.1c)

κ̈+
ω0

Q
κ̇+ ω2

0κ =
hG
Iy

(
mv̇x +

1

2
.ρaSaCxv

2
x

)
, (5.1d)

Fzf = mg
Lr

Lf + Lr
+ (kκ+ bκ̇) , (5.1e)

Fzr = mg
Lf

Lf + Lr
− (kκ+ bκ̇) , (5.1f)

sf =
ωfRrolf − vx

max(ωfRrolf , vx)
, (5.1g)

sr =
ωrRrolr − vx

max(ωrRrolr , vx)
, (5.1h)

Rrolf = R0 −
Fnomin

Kzz
[Freff ρf +Dreff arctan (Breff ρf )] , (5.1i)

Rrolr = R0 −
Fnomin

Kzz
[Freff ρr +Dreff arctan (Breff ρr)] , (5.1j)

Rfload = R0 −
Fzf

Kzz
, (5.1k)

Rrload = R0 −
Fzr

Kzz
. (5.1l)

In order to generate simulated data with the extended single-track
model (Eq. (5.1a)-(5.1l)), the following assumptions are introduced.

• The longitudinal vehicle speed and acceleration are inputs of the
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vehicle data simulator.

• The front slip ratio is constant.

• All the engine power is transmitted to the front wheels, thus, Tr =
0.

The first assumption is used to generate the data by setting a vehicle
speed instead of a front axle torque. This choice is motivated by our
knowledge of the order of magnitude of the vehicle speed. The second
assumption of constant front slip ratio is used to simplify the data gen-
eration. This situation is not representative of the reality because, in
real life situation, the longitudinal tire force is generated in the contact
patch by the slip ratio [36]. However, even if this situation is not real-
istic, the generated data can still be used to test the EKF performance
as well as the random walk representation. Finally, the last assumption
on the engine torque power repartition is a standard assumption used
to depict what happens with a traction vehicle [36]. Besides, this as-
sumption leads to the simplifying equation vx = Rrolrωr connecting the
vehicle speed vx and the rear wheel speed ωr. Indeed, if Tr = 0, the rear
longitudinal tire force Fxr should be close to zero. However, because
the rear tire force is driven by the rear slip ratio sr, Fxr ≈ 0 leads to
sr ≈ 0. Therefore, setting sr = 0 in Eq. (5.1h) results in the expression
vx = Rrolrωr.

After making these simplifying assumptions, the inputs and outputs
of the vehicle data simulator are the ones reported in Table 5.1. These
signals are also represented in Figure 5.2 In Table 5.1, the derivatives

Table 5.1: Inputs and outputs of the vehicle data simulator.

Inputs Tr, vx
v̇x

, sf , sr

Outputs Tf , Fxf , Fxr, Fzf , Fzr, ωf

ω̇f

, ωr

ω̇r

, κ
κ̇
κ̈

, Rrolf , Rrolr , Rfload, Rrload

of some quantities such as vx and ωr are represented in column, e.g.,
ω̇r is indicated below ωr. This representation is used to highlight that
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Figure 5.2: Macroscopic plan of the vehicle data simulator.

all the quantities and their derivatives are considered here as one single
input or output quantity. More precisely, once one quantity of a column
is known, its derivative or its integral is determined by using numerical
derivation or integration. Since the data signals are generated without
noise, resorting to numerical derivation does not raise any numerical
issue. For example, in our case, vx is an input of the simulator. There-
fore, we first define a signal vx, then, deduce a signal v̇x by proceeding
to numerical derivation of the the signal vx. Another example can be
given with ωr. First, the output signal ωr is inferred from the relation
ωr = vx

Rrolr
, then, ω̇r is deduced from ωr thanks to numerical deriva-

tion. Consequently, we are in a situation where we have 12 equations
(Eq. (5.1a)-(5.1l)) and 12 outputs (see Table 5.1). In this case, because
the number of equations is equal to the number of output signals, data
can be generated. The output signals are simulated by using Eq. (5.1a)-
(5.1l) according to the plan indicated in Figure 5.3. Besides, the used
parameters are the ones indicated in Table 5.2.

In this section, vx is set to correspond to a realistic situation. More
precisely, the represented situation consists of different acceleration and
deceleration phases between 30 km/h and 130 km/h. Once vx is de-
fined, v̇x is deduced by numerical derivation of vx. As mentioned previ-
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Figure 5.3: Descriptive plan used to generate simulated data with the
extended single-track model. The quantities framed in red are the user

defined quantities.

ously, because the vehicle data simulator represents a traction vehicle,
Tr = 0 and sr = 0, respectively. Finally, the front slip ratio is set such as,
when the acceleration v̇x is positive, sf = 0.01 and when v̇x is negative,
sf = −0.01. Therefore when the tires generate a positive traction force
Fxf , sf is positive and when Fxf < 0, sf < 0. As previously explained,
the signal representing the front slip ratio sf is not representative of a
true slip ratio signal. In the case exposed here, because the signal vx
varies, sf should vary accordingly. However, even if this signal is not
correct from a physical point of view, it does not prevent to test the
EKF performance. The used vx, v̇x and sf are represented in Figure 5.4.
Then, the resulting data signals generated are the ones depicted in Fig-
ures 5.5-5.12.

Finally, in order to have simulated measurements close to the ones
obtained with real sensors fitted on production vehicle, a noise is added
on the quantities included in the measurement vector of the EKF. In our
case, the measurement quantities are the vehicle speed vx, the wheel
speeds ωf and ωr and the pitch speed κ̇. In agreement with real vehicle
sensor accuracy [30], the noise used to corrupt the simulated data is
an additive zero-mean white Gaussian noise with a signal-to-noise ratio
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Figure 5.4: Simulation of the known quantities.
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Figure 5.5: Front and rear axle torques simulated data.
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Figure 5.6: Front and rear wheel speeds simulated data.
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Figure 5.7: Pitch angle and pitch velocity simulated data.
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134 Tire force estimation: practical application

0 10 20 30 40 50 60 70 80 90 100

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

-0.03

-0.02

-0.01

0

0.01

Figure 5.10: Front and rear friction simulated data.

0 10 20 30 40 50 60 70 80 90 100

0.288

0.289

0.29

0.291

0.292

0.293

0 10 20 30 40 50 60 70 80 90 100

0.293

0.294

0.295

0.296

0.297

0.298

Figure 5.11: Front and rear loaded tire radii simulated data.
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Table 5.2: Parameters values used to generate simulated data.

Symbol Value Units Definition

Bf 2.50e4 N.s.m−1 Front suspension damping coefficient
Cx 0.4238 − Aerodynamic drag coefficient
fRR 0.0104 − Rolling resistance coefficient
g 9.806 m.s−2 Acceleration of the gravity
hG 0.563 m Height of the CoG
Iwf 2.6498 kg.m2 Front wheel moment of inertia
Iwr 2.6498 kg.m2 Rear wheel moment of inertia
Iy 1542.46 kg.m2 Vehicle moment of inertia toward y-axis
Kf 1597.7 N.m−1 Front suspension stiffness
Kzz 2e5 N.m−1 Tire radial stiffness
L 2.58 m Wheelbase
Lf 1.02 m Distance front axle to CoG
Lr 1.56 m Distance rear axle to CoG
m 1548.38 kg Vehicle mass
R0 0.312 m Free tire radius
Sa 2 m2 Frontal area
ρa 1.22 kg.m−3 Air density

Fnomin 4000 N Nominal normal load
Breff 6.1 − Pacejka’s effective tire radius model coefficient
Dreff 0.45 − Pacejka’s effective tire radius model coefficient
Freff 0.01 − Pacejka’s effective tire radius model coefficient

(SNR) equal to 25 dB. The resulting noisy signals are represented in
Figure 5.13.

5.3 Extended Kalman filter with extended single-
track model simulated data

As indicated in Section 5.2, the purpose of this step is to test the EKF
performance and especially to settle if representing the longitudinal tire
forces with a random walk is a suitable choice. After generating the data
with the vehicle model, the noisy measurements (see Figure 5.13) are
used with the EKF to reconstruct the model state. In order to perform the
EKF estimation, it is necessary to set the values of the noise covariance
matrices W and V , respectively. Here, these matrices are set with the
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Figure 5.13: Noisy and noise-free signals of the measured quantities.
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subspace approach designed in Chapter 4. In this case, the subspace
approach provides the following Wsub and Vsub

Vsub =

[ 2.91e−01 8.49e−03 1.98e−02 −7.84e−06
8.49e−03 3.33e+00 4.54e−02 −8.99e−05
1.98e−02 4.54e−02 3.24e+00 −4.85e−05
−7.84e−06 −8.99e−05 −4.85e−05 1.17e−06

]
, (5.2)

Wsub =


5.42e−4 1.13e−3 1.78e−3 −7.70e−3 ...
1.13e−3 1.02e−2 3.52e−3 2.22 ...
1.78e−3 3.52e−3 5.97e−3 −1.23e−1 ...
−7.70e−3 2.22 −1.23e−1 6.84e3 ...
−1.17e−2 −3.29e−1 3.44e−1 7.08e2 ...

1.85 −1.59e1 −2.51e1 −5.26e5 ...
−5.46e−1 −1.90e1 −3.36e1 −1.37e5 ...
−2.10e−7 −1.36e−6 −1.06e−6 −2.49e−3 ...
1.11e−8 2.70e−6 −1.02e−6 −1.24e−3 ...
... −1.17e−2 1.85 −5.46e−1 −2.10e−7 1.11e−8
... −3.29e−1 −1.59e1 −1.90e1 −1.36e−6 2.70e−6
... 3.44e−1 −2.51e1 −3.36e1 −1.06e−6 −1.02e−6
... 7.08e2 −5.26e5 −1.37e5 −2.49e−3 −1.24e−3
... 1.48e3 −1.47e5 −1.50e5 −2.63e−3 −3.25e−3
... −1.47e5 6.19e7 1.64e7 4.15e−1 5.48e−1
... −1.50e5 1.64e7 1.67e7 3.27e−1 2.66e−1
... −2.63e−3 4.15e−1 3.27e−1 1.43e−7 −4.91e−8
... −3.25e−3 5.48e−1 2.66e−1 −4.91e−8 3.91e−8


. (5.3)

By setting the noise covariance matrices W and V equal to Wsub and
Vsub respectively, the EKF provides the estimated state signals indicated
in Figures 5.14-5.20. In addition, in order to provide estimates of W
and V , the subspace approach proceed to a state estimation with the
N4SID method. These estimated states are also indicated in Figures 5.14-
5.20. Then, these two types of estimates (the ones given by the EKF and
the others given by N4SID) are used to compute approximations of the
normal loads, the frictions, the slip ratios, the loaded tire radii and the
effective tire radii. These estimates are represented in Figures 5.21-5.30.
In order to evaluate the EKF performance, the errors between the esti-
mated and the true values are plotted for each quantity inferred. Two-
type of error representations are illustrated: (i) the temporal evolution
of the residuals, (ii) error histograms. Besides, a criterion quantifying
the quality of the estimates is computed. This goodness of fit criterion
(GFC) quantifies the error between the estimated signals and the true
signals according to the equation

GFC = 1− ∥xtrue − x̂∥22
∥xtrue −mean (xtrue)∥22

. (5.4)

Hence, according to Eq. (5.4), the GFC defined here varies between
−∞ and 1. The closer to 1 the GFC is, the best the estimates are. The
evaluated GFC are available in the figure titles.
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Figure 5.14: Vehicle speed estimates. The upper plot shows the true
signal (in black), its estimates with EKF (in green) and N4SID (in blue)
and the measurements (in yellow). The bottom left figures illustrate
the evolution of the residuals. The bottom right plots display the error

histograms.

Figure 5.15: Front wheel speed estimates. The upper plot shows the true
signal (in black), its estimates with EKF (in green) and N4SID (in blue)
and the measurements (in yellow). The bottom left figures illustrate
the evolution of the residuals. The bottom right plots display the error

histograms.
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Figure 5.16: Rear wheel speed estimates. The upper plot shows the true
signal (in black), its estimates with EKF (in green) and N4SID (in blue)
and the measurements (in yellow). The bottom left figures illustrate
the evolution of the residuals. The bottom right plots display the error

histograms.

Figure 5.17: Front longitudinal tire force estimates. The upper plot
shows the true signal (in black) and its estimates with EKF (in green)
and N4SID (in blue). The bottom left figures illustrate the evolution of

the residuals. The bottom right plots display the error histograms.
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Figure 5.18: Rear longitudinal tire force estimates. The upper plot
shows the true signal (in black) and its estimates with EKF (in green)
and N4SID (in blue). The bottom left figures illustrate the evolution of

the residuals. The bottom right plots display the error histograms.

Figure 5.19: Pitch angle estimates. The upper plot shows the true signal
(in black) and its estimates with EKF (in green) and N4SID (in blue).
The bottom left figures illustrate the evolution of the residuals. The

bottom right plots display the error histograms.
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Figure 5.20: Pitch speed estimates. The upper plot shows the true sig-
nal (in black), its estimates with EKF (in green) and N4SID (in blue)
and the measurements (in yellow). The bottom left figures illustrate the
evolution of the residuals. The bottom right plots display the error his-

tograms.

Figure 5.21: Front normal load estimates. The upper plot shows the
true signal (in black) and its estimates with EKF (in green) and N4SID
(in blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.22: Rear normal load estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.23: Front friction estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.24: Rear friction estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.25: Front slip ratio estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.26: Rear slip ratio estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.27: Front loaded radius estimates. The upper plot shows the
true signal (in black) and its estimates with EKF (in green) and N4SID
(in blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.28: Rear loaded radius estimates. The upper plot shows the
true signal (in black) and its estimates with EKF (in green) and N4SID
(in blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.29: Front effective tire radius estimates. The upper plot shows
the true signal (in black) and its estimates with EKF (in green) and
N4SID (in blue). The bottom left figures illustrate the evolution of the

residuals. The bottom right plots display the error histograms.
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Figure 5.30: Rear effective tire radius estimates. The upper plot shows
the true signal (in black) and its estimates with EKF (in green) and
N4SID (in blue). The bottom left figures illustrate the evolution of the

residuals. The bottom right plots display the error histograms.

According to Figures 5.14-5.20, except for Fxr, the EKF is able to
reconstruct the dynamics of the state signals. This result is confirmed
through the GFC values with a GFC greater than 66% for Fxf and
greater than 88% for the other state variables. In our case, Fxr is badly
reconstructed. However, the data generated in Section 5.2 mimics the
behavior of a traction vehicle. Consequently, the dynamics of Fxr are
very low which can explain the reasons why the EKF poorly estimates
Fxr. Furthermore, as depicted in Figures 5.14, 5.15, 5.16 and 5.20, the
EKF provides accurate estimates of the noisy measured quantities vx, ωf ,
ωr and , κ̇. Therefore, because the state values are accurately estimated,
the normal loads and the different radii are well estimated as well with
a GFC > 88% (see Figures 5.21, 5.22 and 5.27-5.30). Because Fxf is
not so well estimated, the front friction µf is accordingly not as well
estimated as the other variables with a GFC ≈ 64% (see Figure 5.23).
Naturally, µr is poorly estimated because Fxr is badly estimated. Finally,
the slip ratios sf and sr are also wrongly estimated. These results can
be explained by the consistency of the used data. Indeed, as mentioned
in Section 5.2, sf is a constant piecewise signal and sr = 0. However,
because the longitudinal tire forces are physically generated by the slip
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ratios, once the tire forces vary, the slip ratios should vary accordingly.
This inconsistency can be one reason of the poorly slip ratio estimates.

Regarding the estimates provided by the N4SID algorithm, their ac-
curacies vary from one estimate to another. First of all, the different
speeds vx, ωf and ωr are as well estimated as the EKF estimates with a
GFC > 98% (see Figures 5.14-5.16). Although the pitch speed κ̇ is also
quite well estimated with a GFC > 86%, we can observe a reduction of
the accuracy compared to the EKF estimate (see Figure 5.20). Finally,
as shown in Figure 5.17, the longitudinal tire force Fxf estimated with
N4SID is less accurate than the one provided by the EKF. More precisely,
the N4SID estimate is less noisy than the EKF estimates, however, it is
not centered on the true value contrary to the EKF estimate.

Furthermore, some comments might be made on the histograms
(Figures 5.14-5.30). Firstly, the sampling period Ts is equal to 1 ms
and the simulation lasts 100 s. Consequently, the different signals are
formed of 100000 samples and thus, the histograms contain 100000 sam-
ples. Therefore, although the histograms take into account of only one
realization, they still include a large number of samples and thus the
strong law of large number can be assumed to hold. Besides, as re-
minded in Chapter 4, as long as the sample number tends to infinity,
the time average covariance matrices generated from the residuals con-
verges to the ensemble covariance matrices V and W with probability
one. Hence, a high number of samples increases the confidence on the
estimated noise covariance matrices Vsub and Wsub. Secondly, in the
case treated here, the noise added on the measurements is zero mean
and Gaussian. Therefore, the residuals should be Gaussian too. How-
ever, the histograms of the N4SID residuals are not always Gaussian.
This result suggests that the N4SID method is not enough to completely
reconstruct the states and thus it is necessary to introduce an EKF in
order to improve the estimates.

Although the longitudinal tire forces are quite well estimated with a
GFC ≈ 66%, we can wonder if the EKF might provide more accurate es-
timates with a different setting of the noise covariance matrices W and
V . Indeed, because the longitudinal tire forces are modelled with ran-
dom walks, the subspace identification procedure can encounter some
difficulties to evaluate the coefficients related to Fxf , Fxr, Ḟxf and Ḟxr.
More precisely, the subspace identification procedure needs to know a
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linearised state-space representation of the vehicle model used in order
to move the transformation matrix T̂ into the right basis (see Chap-
ter 4). However, because the longitudinal tire force model has no phys-
ical meaning, the corresponding part of the linearised model has no
physical meaning as well. Consequently, the approach may fail to move
T̂ into the right basis. This assumption is confirmed by the N4SID esti-
mates of the longitudinal tire forces given in Figures 5.17-5.18.

In order to suggest another setting Wmix and Vmix for W and V , the
idea is to start from the estimates Wsub and Vsub, then to modify the co-
efficients of Wsub corresponding to the state poorly estimated with our
N4SID-like algorithm. Since the EKF successes to reduce the measure-
ment noise as mentioned previously, Vmix = Vsub. In the same vein for
the process noise covariance matrix W , the plan is to keep the diagonal
elements of Wsub except the ones corresponding to Fxf , Fxr, Ḟxf and
Ḟxr and to set the missing coefficients with an error-trial phase. Under
these practical conditions, the number of coefficients to set is only equal
to four. This plan leads to the following process noise covariance matrix

Wmix = diag




5.42e−04
1.02e−02
5.97e−03
1.00e+02
1.00e−02
1.00e+04
1.00e+00
1.43e−7
3.91e−8


 . (5.5)

By using the EKF with Wmix and Vmix, the observer provides the
longitudinal tire forces and frictions indicated in Figures 5.31-5.32 and
Figures 5.33-5.34, respectively.

In order to compare the results obtained with both settings of the
EKF, Table 5.3 gathering theGFC obtained with both methods is shown.
In addition, Table 5.4 and Table 5.5 comparing respectively the means
and medians of the absolute errors estimated are also provided.

As shown in Figure 5.31 and Tables 5.3- 5.5, setting the EKF with
Wmix and Vmix increases the accuracy of the estimated Fxf significantly
with a reduction of 83% of the absolute error median and aGFC of 88%.
Consequently, the precision of the estimated front friction increases ac-
cordingly with the same values for the GFC and the decreasing of the
absolute error median (see Figure 5.33 and Table 5.5). Furthermore,
although the rear longitudinal tire force signal has low dynamics, the
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Figure 5.31: Fxf estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.32: Fxr estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.33: µf estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.34: µr estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Table 5.3: GFC of the estimates obtained by setting the EKF with Wsub,
Vsub and Wmix and Vmix, respectively.

Symbol Fit of the subspace EKF Fit of the mixed EKF

vx (m.s−1) 0.9919 0.9919
ωf (rad.s−1) 0.9854 0.9888
ωr (rad.s−1) 0.9855 0.9912
Fxf (N) 0.6606 0.8778
Fxr (N) −8.0549 0.6051
κ (rad) 0.8841 0.8959

κ̇ (rad.s−1) 0.9721 0.9778
Fzf (N) 0.8846 0.8966
Fzr (N) 0.8846 0.8966
µf (−) 0.6437 0.8779
µr (−) −7.4177 0.6132
sf (−) −0.0971 0.0538
sr (−) −Inf −Inf

Rfload (m) 0.8846 0.8966
Rrload (m) 0.8846 0.8966
Rrolf (m) 0.8799 0.8961

Rrolr (m) 0.8927 0.8940

EKF set with Wmix and Vmix is able to track them quite well as depicted
in Figure 5.32. More precisely, the GFC increases to 61% and the me-
dian absolute error decreases by 97.8% when compared to the estimates
obtained with the past EKF settings (see Tables 5.3 and 5.5).

Finally, the results obtained in this part indicate that it is possible to
estimate tire forces and thus friction by using the random walk model.
By using the subspace approach described in Chapter 4, we can set most
of the coefficients of the EKF noise covariance matrices. Consequently,
it only remains to adjust the coefficients of the states which are not well
estimated by the N4SID-like algorithm, i.e., only the four coefficients
corresponding to the longitudinal tire forces and their derivatives, re-
spectively.
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Table 5.4: Means of the absolute errors obtained by setting the EKF with
Wsub, Vsub and Wmix and Vmix, respectively.

Symbol Absolute error Absolute error Decreasing between
means with means with absolute

Wsub and Vsub Wmix and Vmix errors means

vx (m.s−1) 6.14e− 02 6.14e− 02 0.1%
ωf (rad.s−1) 3.71e− 01 2.82e− 01 24.1%
ωr (rad.s−1) 3.65e− 01 2.23e− 01 38.8%
Fxf (N) 3.08e + 02 6.26e + 01 79.7%
Fxr (N) 2.95e + 02 9.13e + 00 96.9%
κ (rad) 8.89e− 04 5.60e− 04 37.1%

κ̇ (rad.s−1) 2.94e− 04 2.31e− 04 21.7%
Fzf (N) 2.27e + 01 1.41e + 01 37.7%
Fzr (N) 2.27e + 01 1.41e + 01 37.7%
µf (−) 3.35e− 02 6.73e− 03 79.9%
µr (−) 4.93e− 02 1.56e− 03 96.8%
sf (−) 7.43e− 03 6.42e− 03 13.7%
sr (−) 7.36e− 03 5.57e− 03 24.4%

Rfload (m) 5.68e− 05 3.53e− 05 37.7%
Rrload (m) 5.68e− 05 3.53e− 05 37.7%
Rrolf (m) 3.68e− 06 2.28e− 06 38.2%

Rrolr (m) 7.72e− 06 4.90e− 06 36.6%

5.4 Extended Kalman filter with VI-CRT simulated
data

5.4.1 Data generation with VI-CRT

The next step for the validation of the vehicle state observer is to
evaluate its performance using more realistic simulation data sets. These
simulations are carried out with the software VI-CarRealTime (VI-CRT)
developed by VI-Grade company [2]. VI-CRT is a virtual vehicle mod-
eling and a real-time vehicle simulation software. With this software, it
is possible to make simulations of vehicles in various real life situations.
For example, this software allows the user to select a type of car and tire,
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Table 5.5: Medians of the absolute errors obtained by setting the EKF
with Wsub, Vsub and Wmix and Vmix, respectively.

Symbol Absolute error Absolute error Decreasing between
medians with medians with absolute
Wsub and Vsub Wmix and Vmix errors medians

vx (m.s−1) 5.19e− 02 5.20e− 02 −0.2%
ωf (rad.s−1) 3.15e− 01 2.37e− 01 24.8%
ωr (rad.s−1) 3.08e− 01 1.89e− 01 38.8%
Fxf (N) 2.61e + 02 4.33e + 01 83.4%
Fxr (N) 2.50e + 02 5.54e + 00 97.8%
κ (rad) 7.51e− 04 4.07e− 04 45.8%

κ̇ (rad.s−1) 2.48e− 04 1.94e− 04 21.9%
Fzf (N) 1.92e + 01 1.02e + 01 46.5%
Fzr (N) 1.92e + 01 1.02e + 01 46.5%
µf (−) 2.83e− 02 4.70e− 03 83.4%
µr (−) 4.17e− 02 9.17e− 04 97.8%
sf (−) 5.20e− 03 4.49e− 03 13.7%
sr (−) 5.17e− 03 3.93e− 03 24.0%

Rfload (m) 4.79e− 05 2.56e− 05 46.5%
Rrload (m) 4.79e− 05 2.56e− 05 46.5%
Rrolf (m) 3.11e− 06 1.66e− 06 46.4%

Rrolr (m) 6.49e− 06 3.46e− 06 46.7%

or to create different types of roads. The different vehicle models used
by VI-CRT are much more complete than the single-track and double-
track models introduced beforehand. Besides, the vehicle and tire pa-
rameters are obtained using vehicle and tire test benches and elabo-
rated fitting methods. Hence, VI-CRT gives access to very realistic data
describing the vehicle dynamics. In addition, it should be noted that VI-
CRT provides data signals for the four vehicle wheels. Figure 5.35 shows
the VI-CRT main interface on which is selected the choice of the vehicle
subsystem such as the tires and the suspensions. Figure 5.36 illustrates
an example of simulation made with the CompactCar vehicle model of
VI-CRT. However, although VI-CRT gives access to a large amount of
data, it does not give access to the vehicle model equations. Therefore
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Figure 5.35: VI-CRT main interface.

Figure 5.36: Example of VI-CRT simulation.
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VI-CRT is used here as a black-box simulator.
In order to generate data with VI-CRT, it is necessary to select a ve-

hicle model, a tire model and to define a maneuver. The chosen vehicle
model is the CompactCar model provided by VI-CRT. This model is se-
lected because it represents the behavior of compact class vehicles which
are vehicles commonly used by drivers. Besides, it must be pointed
out that this vehicle model is a traction model. Therefore, the driving
torque is applied exclusively to the front axle of the vehicle. As a con-
sequence, the rear tires generate only small residual tire forces. The
selected tire model is a Pacejka’s tire model designed for the Compact-
Car model which is provided by VI-CRT.

Once the vehicle and the tire model have been selected, it remains
to define the maneuver settings such as

• the vehicle direction (exclusively straight line or presence of turns),

• the vehicle speed or acceleration,

• the experience duration.

In this manuscript, we focus on the longitudinal vehicle behavior. For
this reason, the simulated maneuver consists of a succession of accelera-
tion and deceleration phases in a straight line. The vehicle acceleration
is set such as the vehicle speed increases from 80 km/h to 120 km/h
during 6 s and then, decreases to 80 km/h during around 16 s. This suc-
cession of acceleration and deceleration phases is repeated seven times
for a total duration time of 200 s. The acceleration and deceleration
phases are repeated in order to verify if the estimates provided by the
observer gain in precision as the different phases are executed. The dif-
ferent signals genetared by VI-CRT are given in Figures 5.37-5.45. Es-
pecially, Figure 5.38 shows the evolution of the vehicle speed during the
different phases. Besides, in Figure 5.42, it can be pointed out that the
front friction signal µf reaches values around 0.5 while common values
are around 0.3. This amount of friction is due to the maneuver in which
the speed increases significantly (from 80 km/h to 120 km/h) during a
short amount of time (6 s).

Finally, such as in Section 5.2, in order to be closer to real measure-
ments provided by sensors fitted on production vehicles, a noise is added
on the quantities included in the measurement vector of the EKF. Once
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Figure 5.37: Front and rear axle torques VI-CRT simulated data.
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Figure 5.38: Front and rear wheel speeds VI-CRT simulated data.
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Figure 5.39: Pitch angle and pitch velocity VI-CRT simulated data.
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Figure 5.40: Front and rear axle longitudinal tire forces VI-CRT simu-
lated data.
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Figure 5.41: Front and rear axle normal loads VI-CRT simulated data.
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Figure 5.42: Front and rear friction VI-CRT simulated data.
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Figure 5.43: Front and rear loaded tire radii VI-CRT simulated data.
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Figure 5.44: Front and rear effective tire radii VI-CRT simulated data.
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Figure 5.45: Front and rear slip ratios VI-CRT simulated data.

again, the used noise is an additive zero-mean white Gaussian noise
with a SNR equal to 25 dB. The resulting noisy signals are represented
in Figure 5.46.

5.4.2 Results of EKF estimates

After generating data with VI-CRT, the signals corresponding to the
observer inputs (the front and rear torques Tf and Tr) and the measure-
ments (see Figures 5.46) are combined with the EKF in order to proceed
to state estimation. Once again, the EKF is tuned by applying the sub-
space identification procedure described in Chapter 4. This one provides
the following results Wsub and Vsub

Vsub =

[ 7.80e−02 −5.50e−02 2.09e−02 −4.34e−04
−5.50e−02 6.89e+00 −1.40e+00 4.42e−02
2.09e−02 −1.40e+00 1.19e+00 −1.04e−02
−4.34e−04 4.42e−02 −1.04e−02 3.26e−04

]
, (5.6)
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Figure 5.46: VI-CRT simulated data corresponding to the measurements
used by the observer.

Wsub =


2.70e−4 −1.90e−3 2.57e−3 −3.56e−1 ...
−1.90e−3 4.12e−2 −3.47e−2 6.21e0 ...
2.57e−3 −3.47e−2 3.47e−2 −5.56e0 ...
−3.56e−1 6.21e0 −5.56e0 1.02e3 ...
3.61e−1 −6.07e0 5.65e0 −9.23e2 ...
−2.66e−2 −1.60e0 −8.75e−2 −9.31e2 ...
−3.07e−2 −3.99e−1 −5.32e−1 −2.35e2 ...
2.30e−6 −3.94e−5 3.62e−5 −6.04e−3 ...
4.19e−5 −7.17e−4 6.57e−4 −1.11e−1 ...
.... 3.61e−1 −2.66e−2 −3.07e−2 2.30e−6 4.19e−5
... −6.07e0 −1.60e0 −3.99e−1 −3.94e−5 −7.17e−4
... 5.65e0 −8.75e−2 −5.32e−1 3.62e−5 6.57e−4
... −9.23e2 −9.31e2 −2.35e2 −6.04e−3 −1.11e−1
... 9.85e2 −2.17e2 −4.43e2 6.10e−3 1.10e−1
... −2.17e2 9.65e3 3.10e3 −2.08e−4 3.30e−3
... −4.43e2 3.10e+3 5.49e3 5.24e−4 1.29e−2
... 6.10e−3 −2.08e−4 5.24e−4 3.99e−8 7.24e−7
... 1.10e−1 3.30e−3 1.29e−2 7.24e−7 1.32e−5


. (5.7)

Under such practical conditions, the EKF provides estimated state sig-
nals. These ones are represented in Figures 5.47-5.53 as well as the es-
timates provided by the N4SID-like algorithm. As in Section 5.2, these
estimates are used to determine approximated signals of the normal
loads, the frictions, the slip ratios, the loaded tire radii and the effective
tire radii (see Figures 5.54-5.63). In addition, GFC, residual curves and
error histograms are computed for each reconstructed signals as repre-
sented in Figures 5.47-5.63.

According to Figures 5.47-5.49, the different speeds vx, ωf and ωr

are well estimated by both the EKF and N4SID as represented by the
estimated signals which are more accurate than the measurement sig-
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Figure 5.47: Vehicle speed estimates. The upper plot shows the true
signal (in black), its estimates with EKF (in green) and N4SID (in blue)
and the measurements (in yellow). The bottom left figures illustrate
the evolution of the residuals. The bottom right plots display the error

histograms.

Figure 5.48: Front wheel speed estimates. The upper plot shows the true
signal (in black), its estimates with EKF (in green) and N4SID (in blue)
and the measurements (in yellow). The bottom left figures illustrate
the evolution of the residuals. The bottom right plots display the error

histograms.
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Figure 5.49: Rear wheel speed estimates. The upper plot shows the true
signal (in black), its estimates with EKF (in green) and N4SID (in blue)
and the measurements (in yellow). The bottom left figures illustrate
the evolution of the residuals. The bottom right plots display the error

histograms.

Figure 5.50: Front longitudinal tire force estimates. The upper plot
shows the true signal (in black) and its estimates with EKF (in green)
and N4SID (in blue). The bottom left figures illustrate the evolution of

the residuals. The bottom right plots display the error histograms.
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Figure 5.51: Rear longitudinal tire force estimates. The upper plot
shows the true signal (in black) and its estimates with EKF (in green)
and N4SID (in blue). The bottom left figures illustrate the evolution of

the residuals. The bottom right plots display the error histograms.

Figure 5.52: Pitch angle estimates. The upper plot shows the true signal
(in black) and its estimates with EKF (in green) and N4SID (in blue).
The bottom left figures illustrate the evolution of the residuals. The

bottom right plots display the error histograms.
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Figure 5.53: Pitch speed estimates. The upper plot shows the true sig-
nal (in black), its estimates with EKF (in green) and N4SID (in blue)
and the measurements (in yellow). The bottom left figures illustrate the
evolution of the residuals. The bottom right plots display the error his-

tograms.

Figure 5.54: Front normal load estimates. The upper plot shows the
true signal (in black) and its estimates with EKF (in green) and N4SID
(in blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.55: Rear normal load estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.56: Front friction estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.57: Rear friction estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.58: Front slip ratio estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.59: Rear slip ratio estimates. The upper plot shows the true
signal (in black) and its estimates with EKF (in green) and N4SID (in
blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.60: Front loaded radius estimates. The upper plot shows the
true signal (in black) and its estimates with EKF (in green) and N4SID
(in blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.61: Rear loaded radius estimates. The upper plot shows the
true signal (in black) and its estimates with EKF (in green) and N4SID
(in blue). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.62: Front effective tire radius estimates. The upper plot shows
the true signal (in black) and its estimates with EKF (in green) and
N4SID (in blue). The bottom left figures illustrate the evolution of the

residuals. The bottom right plots display the error histograms.
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Figure 5.63: Rear effective tire radius estimates. The upper plot shows
the true signal (in black) and its estimates with EKF (in green) and
N4SID (in blue). The bottom left figures illustrate the evolution of the

residuals. The bottom right plots display the error histograms.

nals and the GFC > 88%. Furthermore, the pitch angle κ is also well
estimated by the EKF with a GFC > 89% (see Figure 5.52). However,
as indicated in Figure 5.53, the pitch speed κ̇ is surprisingly poorly esti-
mated by the EKF. Especially, the estimated signal is less accurate than
the measurement signal. This result indicates an incorrect setting of the
coefficients corresponding to κ̇ in Wsub and Vsub. This statement is con-
firmed by the wrongly pitch speed κ̇ estimated with N4SID. Nonetheless,
this lack of precision on ˆ̇κ does not have a significant impact on the EKF
estimated normal loads. Indeed, as shown in Figures 5.54 and 5.55, Fzf

and Fzr are accurately estimated with a GFC > 84% and errors around
50 N for an order of magnitude around 9000 N and 6500 N , respec-
tively. Moreover, with the noise covariance matrices set with Wsub and
Vsub, the front longitudinal tire force Fxf is estimated by the EKF with
accuracy (see Figure 5.50) with a GFC > 92%. This result constitutes
a valuable progress compared to the previous results obtained by using
data generated with the extended single-track model. This result may
seems surprising because the longitudinal tire forces estimated with the
N4SID-like algorithm are quite far from the actuals signals. However,
we can found an explanation by looking to the process noise covari-
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ance matrix coefficients. According to Table 5.6, while the coefficients
of Wsub corresponding to Fxf and Fxr are closed in the cases where the
EKF is tested on the extended single-track model generated data and
the VI-CRT data, the coefficients corresponding to Ḟxf and Ḟxr differ
considerably. In the first treated case, the order of magnitudes of these
coefficients is in 107 while in the second case it is in 103. Therefore,
this gap in the coefficient values could explain why setting W to the
estimate Wsub provides accurate results of the longitudinal tire forces.
Furthermore, in the VI-CRT data case, the coefficients of Wsub related
to Ḟxf and Ḟxr are close to the ones proposed to improve the EKF esti-
mates in Section 5.3 (see Eq. (5.5)). This observation reinforces the idea
that the difference in the estimates accuracy comes from the coefficients
related to Ḟxf and Ḟxr.

Table 5.6: Coefficients of Wsub related to the longitudinal tire forces.

Symbol Extended single-track generated data VI-CRT data

Fxf 6.84e3 1.02e3
Fxr 1.48e3 9.85e2

Ḟxf 6.19e7 9.65e3

Ḟxr 1.67e7 5.49e3

As a consequence, the front friction µf is accordingly well estimated
with a GFC > 92% (see Figure 5.56). However, as shown in Fig-
ures 5.50 and 5.56, we can observe peak values on the absolute er-
rors curves. These ones appear each time the vehicle dynamic abruptly
changes. These results indicate a small delay of the EKF response.
Nonetheless, the combination of the subspace approach and the EKF
provides accurate friction estimates.

Another important quantity necessary to estimate here is the slip
ratio sf . Unfortunately, as represented in Figure 5.58, this one is not
well estimated with a GFC ≈ 49%. More precisely, the reconstructed
signal is able to reproduce the main variations of the true signal but it
is corrupted by an important noise. This lack of precision is due to the
way sf is inferred. Here, sf is computed by using Eq. (5.1g). Therefore,
it is necessary to divide ωfRrolf − vx (a small quantity) by ωfRrolf or vx
which are noisy estimates. Even if these ones are really well estimated
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(GFC > 96%), the fact that it is necessary to divide a small quantity by
a noisy signal result in a poor estimate of sf . For this reason, if we want
to improve the precision of the estimated sf , we should either change
the way we estimate it or use slip ratio measurements. As reported
in Figure 5.58, the slip ratio estimated with the N4SID-like algorithm
is quite accurate. Therefore, using a black-box method such as N4SID
could be a solution to increase the estimated slip ratio.

On another side, because the simulated vehicle is a traction vehicle,
the rear dynamics are really weak (see Figures 5.51, 5.57 and 5.59). For
this reason, the EKF is unable to reconstruct the signals corresponding
to the rear dynamics with precision.

Finally, the sampling period of the VI-CRT data is Ts = 0.01 s and
the simulation last 216 s. Therefore, the different signals are constituted
of 21600 samples. Once again, the residuals computed with the N4SID
estimates do not describe Gaussian curves (see Figures 5.47-5.63).

Proposition of another setting of the noise covariance matrices

As in the Section 5.3, another setting of the covariances matrices
Vmix and Wmix is proposed in order to see if we can improve the results
on quantities of interest, i.e., s and µ. This new setting consists in keep-
ing the matrix V given by the subspace approach (Vmix = Vsub) and
modifying some coefficients of the matrix W . More precisely, although
the front longitudinal tire force is estimated with a high level of accuracy
(GFC > 92%), the four coefficients corresponding to the longitudinal
tire forces are slightly modified in order to check if a different setting
could improve even more the estimates of the longitudinal tire forces.
In addition, because the pitch speed is not really well estimated, the cor-
responding coefficient of W is also modified. Under these conditions,
Wmix is given by

Wmix = diag




2.70e−04
2.70e−04
4.12e−02
3.47e−02
1.00e+02
1.00e−02
1.00e+04
1.00e+00
3.99e−08
1.00e−06



 (5.8)
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Hence, only 5 coefficients of the process noise matrix are modified. The
remaining diagonal coefficients of Wmix and the measurement noise
matrix Vmix are tuned with the results of the subspace identification
approach.

By using the new setting Wmix and Vmix, the EKF provides the esti-
mated pitch speed indicated in Figure 5.64, the longitudinal tire forces
represented in Figures 5.65-5.66, frictions and slip ratios indicated in
Figures 5.67-5.68 and Figures 5.69-5.70, respectively.

Figure 5.64: κ̇ estimates. The upper plot shows the true signal (in
black), the measurements (in yellow) and its estimates with Wsub, Vsub

(in green) and Wmix, Vmix (in red). The bottom left figures illustrate
the evolution of the residuals. The bottom right plots display the error

histograms.

Besides, as in Section 5.3, Tables reporting the GFC obtained with
both methods (see Table 5.7) and comparing the means (see Table 5.8)
and medians (see Table 5.9) of the estimated absolute errors are also
provided.

As shown in Figure 5.64 and Tables 5.7-5.9, setting the EKF with
the proposed Wmix and Vmix increases significantly the accuracy of κ̇
with a GFC rising from 12% to 67% and a reduction of more than 85%
of the median absolute error. Besides, this new setting has also a posi-
tive influence on the estimated Fxr. As represented in Figure 5.66, the
EKF estimate of Fxr is less noisy and follows slightly better the signal
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Figure 5.65: Fxf estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.66: Fxr estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.67: µf estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.68: µr estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Figure 5.69: sf estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.

Figure 5.70: sr estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix, Vmix (in
red). The bottom left figures illustrate the evolution of the residuals.

The bottom right plots display the error histograms.
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Table 5.7: GFC of the estimates obtained by setting the EKF with Wsub,
Vsub and Wmix and Vmix, respectively.

Symbol Fit of the subspace EKF Fit of the mixed EKF

vx (m.s−1) 0.9897 0.9898
ωf (rad.s−1) 0.9670 0.9762
ωr (rad.s−1) 0.9780 0.9811
Fxf (N) 0.9213 0.9290
Fxr (N) −2.5881 −1.4744
κ (rad) 0.8907 0.9074

κ̇ (rad.s−1) 0.1236 0.6698
Fzf (N) 0.8410 0.8489
Fzr (N) 0.8674 0.8763
µf (−) 0.9240 0.9296
µr (−) −2.7969 −1.5400
sf (−) 0.4901 0.6103
sr (−) −27.4398 −23.4418

Rfload (m) 0.8410 0.8489
Rrload (m) 0.8674 0.8763
Rrolf (m) 0.8475 0.8549

Rrolr (m) 0.8567 0.8673

dynamics. However, these benefits on the pitch speed and the rear dy-
namics estimates do not improve the results on the front longitudinal
tire force Fxf and more importantly on the front friction µf and slip ra-
tio sf (see Figure 5.65, 5.67, 5.69 and Tables 5.7-5.9). Hence, although
the new setting of the noise covariance matrices W and V increases
slightly some EKF estimates, it is not sufficient to enhance the accuracy
of the estimated friction and slip ratio which compose the friction data
points.

Setting of the noise covariance matrices including the noise statis-
tics

Finally, because we are in a simulation case, we have not only ac-
cess to noisy measurements but also to the true signals and thus, to
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Table 5.8: Absolute error means obtained by setting the EKF with Wsub,
Vsub and Wmix and Vmix, respectively.

Symbol Absolute error Absolute error Decreasing between
means with means with absolute

Wsub and Vsub Wmix and Vmix errors means

vx (m.s−1) 1.80e− 03 1.94e− 03 −8.3%
ωf (rad.s−1) 7.46e− 03 4.62e− 04 93.8%
ωr (rad.s−1) 7.97e− 05 1.15e− 03 −1346.9%
Fxf (N) 1.66e + 01 1.54e + 01 7.3%
Fxr (N) 6.39e− 01 1.74e + 00 −171.9%
κ (rad) 5.41e− 05 7.09e− 05 −31.1%

κ̇ (rad.s−1) 5.88e− 05 2.40e− 07 99.6%
Fzf (N) 4.31e + 01 4.24e + 01 1.7%
Fzr (N) −2.27e + 01 −2.19e + 01 3.3%
µf (−) 1.42e− 03 1.35e− 03 5.2%
µr (−) 4.37e− 04 6.51e− 04 −49.0%
sf (−) −1.75e− 04 −2.90e− 04 −65.2%
sr (−) −6.27e− 05 −9.43e− 05 −50.3%

Rfload (m) −1.08e− 04 −1.06e− 04 1.7%
Rrload (m) 5.67e− 05 5.48e− 05 3.3%
Rrolf (m) −7.20e− 06 −7.06e− 06 1.8%

Rrolr (m) 7.47e− 06 7.22e− 06 3.3%

the measurement noise statistics. Therefore, in this case, we can pro-
pose another setting Wmix2 and Vmix2 of the noise covariance matrices
based on these statistics. This new setting consists in modifying both
matrices W and V . More precisely, V is set by using the standard de-
viations of the noise added on the measurements.1 Note that in real life
situations, this information is not available. Therefore, the new setting

1This setting of the matrix V have been tried in the previous case where the data
signals are generated with the extended single-track model. However, in this case, this
setting does not improve the accuracy of the results.
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Table 5.9: Absolute error medians obtained by setting the EKF with
Wsub, Vsub and Wmix and Vmix, respectively.

Symbol Absolute error Absolute error Decreasing between
medians with medians with absolute
Wsub and Vsub Wmix and Vmix errors medians

vx (m.s−1) 1.52e− 03 2.02e− 03 −32.5%
ωf (rad.s−1) 1.00e− 02 4.75e− 03 52.6%
ωr (rad.s−1) 1.46e− 03 3.23e− 04 77.9%
Fxf (N) 1.96e + 01 1.70e + 01 13.4%
Fxr (N) 6.26e + 00 2.44e + 01 −289.0%
κ (rad) 7.93e− 05 1.00e− 04 −26.4%

κ̇ (rad.s−1) 5.93e− 05 8.67e− 06 85.4%
Fzf (N) 4.24e + 01 4.22e + 01 0.5%
Fzr (N) −2.16e + 01 −2.11e + 01 2.7%
µf (−) 2.05e− 03 1.86e− 03 8.9%
µr (−) 1.05e− 03 4.13e− 03 −293.1%
sf (−) −1.60e− 04 −2.46e− 04 −53.6%
sr (−) −8.92e− 05 −1.01e− 04 −13.7%

Rfload (m) −1.06e− 04 −1.06e− 04 0.5%
Rrload (m) 5.41e− 05 5.27e− 05 2.7%
Rrolf (m) −7.00e− 06 −6.99e− 06 0.1%

Rrolr (m) 7.06e− 06 6.70e− 06 5.1%

called Vmix2 is given by

Vmix2 =

[ 2.76e−01 0.00e+00 0.00e+00 0.00e+00
0.00e+00 9.34e−01 0.00e+00 0.00e+00
0.00e+00 0.00e+00 9.20e−01 0.00e+00
0.00e+00 0.00e+00 0.00e+00 2.22e−04

]
(5.9)

Because the measurement noises are not involved in the process noise
covariance matrix, Wmix2 is tuned to the previous proposed setting.
Thus, Wmix2 = Wmix. This new setting Wmix2 and Vmix2 leads to
the estimated pitch speed indicated in Figure 5.71, the longitudinal tire
forces represented in Figures 5.72-5.73, frictions and slip ratios indi-
cated in Figures 5.74-5.75 and Figures 5.76-5.77, respectively.

Tables reporting the GFC obtained with the EKF estimates set with
Wsub, Vsub and Wmix2, Vmix2, respectively (see Table 5.10) and com-
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Figure 5.71: κ̇ estimates. The upper plot shows the true signal (in
black), the measurements (in yellow) and its estimates with Wsub, Vsub

(in green) and Wmix2, Vmix2 (in red). The bottom left figures illustrate
the evolution of the residuals. The bottom right plots display the error

histograms.

Figure 5.72: Fxf estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix2, Vmix2

(in red). The bottom left figures illustrate the evolution of the residuals.
The bottom right plots display the error histograms.
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Figure 5.73: Fxr estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix2, Vmix2

(in red). The bottom left figures illustrate the evolution of the residuals.
The bottom right plots display the error histograms.

Figure 5.74: µf estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix2, Vmix2

(in red). The bottom left figures illustrate the evolution of the residuals.
The bottom right plots display the error histograms.
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Figure 5.75: µr estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix2, Vmix2

(in red). The bottom left figures illustrate the evolution of the residuals.
The bottom right plots display the error histograms.

Figure 5.76: sf estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix2, Vmix2

(in red). The bottom left figures illustrate the evolution of the residuals.
The bottom right plots display the error histograms.
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Figure 5.77: sr estimates. The upper plot shows the true signal (in
black) and its estimates with Wsub, Vsub (in green) and Wmix2, Vmix2

(in red). The bottom left figures illustrate the evolution of the residuals.
The bottom right plots display the error histograms.

paring the means (see Table 5.10) and medians (see Table 5.12) of the
estimated absolute errors are also provided.

As shown in Figure 5.71 and Tables 5.10-5.12, setting the EKF with
Wmix2 and Vmix2 increases even more the accuracy of κ̇ than Wmix and
Vmix. In this case, the GFC increasing from 12% to 90% and we observe
a reduction of more than 94% of the median absolute error.

However, compare to the results obtained with the EKF set with
Wmix and Vmix, this new setting does not improve the results on the
quantities of interest, i.e., the friction µf and slip ratio sf (see 5.74,
5.76 and Tables 5.10-5.12). Thus, setting the noise covariance matri-
ces W and V to Wmix and Vmix seems to represent the best compro-
mise. On the one hand, this setting is mainly based on the subspace
identification procedure. Therefore, the user needs only to change 5
coefficients. On the other hand, except for the pitch speed, this setting
provides equivalent estimates than the EKF set with the knowledge of
the noise statistics.
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Table 5.10: GFC of the estimates obtained by setting the EKF with Wsub,
Vsub and Wmix2 and Vmix2, respectively.

Symbol Fit of the subspace EKF Fit of the mixed EKF

vx (m.s−1) 0.9897 0.9920
ωf (rad.s−1) 0.9670 0.9751
ωr (rad.s−1) 0.9780 0.9813
Fxf (N) 0.9213 0.9267
Fxr (N) −2.5881 −1.4808
κ (rad) 0.8907 0.9063

κ̇ (rad.s−1) 0.1236 0.9061
Fzf (N) 0.8410 0.8491
Fzr (N) 0.8674 0.8766
µf (−) 0.9240 0.9273
µr (−) −2.7969 −1.5464
sf (−) 0.4901 0.6044
sr (−) −27.4398 −22.1690

Rfload (m) 0.8410 0.8491
Rrload (m) 0.8674 0.8766
Rrolf (m) 0.8475 0.8551

Rrolr (m) 0.8567 0.8675

5.5 Conclusion

In this Chapter, the EKF introduced in Chapter 3 have been applied
to simulated data generated with an extended single-track model and
the real-time software VI-CRT. By setting the noise covariance matri-
ces thanks to the subspace approach introduced in Chapter 4, the EKF
is able to reconstruct accurately tire force signals and thus to estimate
the friction with a high level of accuracy. Therefore, although the sub-
space approach has been design for a linear Kalman filter, performing
this approach with an EKF provides attractive results. Besides, this re-
sult pointed out that modeling the longitudinal tire forces with random
walks constitutes a suitable choice. Hence, combining the subspace ap-
proach and the EKF forms an accurate estimation method which have
the main advantage to require almost no adjustments from the user.
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Table 5.11: Absolute error means obtained by setting the EKF with
Wsub, Vsub and Wmix2 and Vmix2, respectively.

Symbol Absolute error Absolute error Decreasing between
means with means with absolute

Wsub and Vsub Wmix2 and Vmix2 errors means

vx (m.s−1) 4.02e− 02 3.09e− 02 23.0%
ωf (rad.s−1) 3.66e− 01 3.24e− 01 11.6%
ωr (rad.s−1) 2.87e− 01 2.43e− 01 15.3%
Fxf (N) 7.58e + 01 6.85e + 01 9.6%
Fxr (N) 6.02e + 01 4.24e + 01 29.6%
κ (rad) 5.56e− 04 4.78e− 04 14.0%

κ̇ (rad.s−1) 2.46e− 03 1.65e− 04 93.3%
Fzf (N) 4.68e + 01 4.50e + 01 3.8%
Fzr (N) 3.68e + 01 3.25e + 01 11.8%
µf (−) 8.67e− 03 8.06e− 03 7.1%
µr (−) 9.76e− 03 6.79e− 03 30.5%
sf (−) 4.54e− 03 3.95e− 03 13.0%
sr (−) 3.75e− 03 3.07e− 03 17.9%

Rfload (m) 1.17e− 04 1.12e− 04 3.8%
Rrload (m) 9.21e− 05 8.13e− 05 11.8%
Rrolf (m) 7.81e− 06 7.52e− 06 3.7%

Rrolr (m) 1.21e− 05 1.06e− 05 12.1%

However, the levels of accuracy on the estimated slip ratios reveal to be
insufficient. As a consequence, the estimated friction points do not coin-
cide with the true friction curve (see Figure 5.78). If the slip ratio were
perfectly estimated, the friction points obtained would be the ones indi-
cated in Figure 5.79. Therefore, before proceeding to MCMC estimation
with the estimated friction points, it is necessary to either use slip ratio
measurements or to find a way to improve the estimated slip ratio.
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Table 5.12: Absolute error medians obtained by setting the EKF with
Wsub, Vsub and Wmix2 and Vmix2, respectively.

Symbol Absolute error Absolute error Decreasing between
medians with medians with absolute
Wsub and Vsub Wmix2 and Vmix2 errors medians

vx (m.s−1) 3.38e− 02 2.56e− 02 24.3%
ωf (rad.s−1) 2.51e− 01 2.66e− 01 −5.9%
ωr (rad.s−1) 2.44e− 01 2.04e− 01 16.6%
Fxf (N) 4.76e + 01 4.23e + 01 11.1%
Fxr (N) 5.05e + 01 3.12e + 01 38.3%
κ (rad) 4.84e− 04 4.31e− 04 11.0%

κ̇ (rad.s−1) 1.82e− 03 9.52e− 05 94.8%
Fzf (N) 4.31e + 01 4.26e + 01 1.2%
Fzr (N) 3.08e + 01 2.54e + 01 17.4%
µf (−) 5.49e− 03 4.98e− 03 9.2%
µr (−) 8.35e− 03 5.23e− 03 37.4%
sf (−) 3.13e− 03 3.13e− 03 −0.1%
sr (−) 3.09e− 03 2.54e− 03 17.7%

Rfload (m) 1.08e− 04 1.07e− 04 1.2%
Rrload (m) 7.69e− 05 6.36e− 05 17.4%
Rrolf (m) 7.12e− 06 7.07e− 06 0.8%

Rrolr (m) 1.01e− 05 8.18e− 06 19.3%
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Figure 5.78: Friction curves. The black curve represents the true fric-
tion curve computed with VI-CRT signals. The red points represent the

friction points computed with the estimated friction and slip ratio.
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Figure 5.79: Friction curves. The black curve represents the true fric-
tion curve computed with VI-CRT signals. The blue points represent the
friction points computed with the estimated friction and true slip ratio.





CHAPTER 6
Conclusion and perspectives

6.1 Conclusion

The objective of this thesis has been to estimate the tire friction po-
tential under standard driving conditions by using the measurements
provided by the sensors fitted on production vehicles. After establish-
ing, in Chapter 1, a state of the art about the different methods existing
in the literature to solve this problem, it has been decided to design an
effect-based method belonging to the tire slip-based class of solutions.
In addition, because it exists an important margin of progress to im-
prove the results in the purely longitudinal case, the study conducted
has been focused on these dynamics. In order to simplify the resolution
of the global issue, this one has been divided into two sub-problems.
Firstly, the estimation of a grip potential value from friction point mea-
surements restricted to standard driving conditions. Secondly, the esti-
mation of friction data points with measurements fitted on production
vehicle.

The first sub-problem has been treated in Chapter 2. In this part,
a solution based on a combination of a classical Maximum Likelihood
(ML) approach and an adaptive MCMC approach has been suggested.
The results have been validated with both simulations and real data.
In particular, real measurements coming from a flat track tire testing
machine have been used. These results have shown that, when only
measurements corresponding to standard conditions are considered, the
suggested MCMC technique delivers more accurate results than the tra-
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ditional ML method. More precisely, the MCMC method has been able to
infer an accurate value of the grip potential once friction measurements
of approximately 0.2 were available.

The second sub-problem has been tackled is Chapters 3-5. Chapter 3
has been mainly focused on the theoretical aspects of the method de-
veloped to estimate friction data points. In particular, this method has
been based on the use of an Extended Kalman Filter (EKF). Therefore,
in this part, it has been necessary to introduce a vehicle model and to
put this one under a state-space representation form. The vehicle model
considered was a single-track model extended with a suspension model.
This one has been chosen because it represents a good trade-off between
complexity and accuracy. Besides, based on L. Rays’s work presented in
Chapter 1, the longitudinal tire forces have been modeled with random
walks. Furthermore, because the estimation method involves the use of
an EKF, it has naturally raised the question of the setting of the noise
covariance matrices V and W . This question has been important in
our case because the state vector used here contains nine quantities.
Therefore, it could be complicated to set the nine coefficients of the pro-
cess noise matrix by hand during a trial-error phase. For this reason, a
method which has the advantage to require no tuning from the user has
been introduced in Chapter 4. This method has been based on subspace
identification. More precisely, with this method, a discrete time model
estimated with a subspace identification approach has been compared
with the deterministic part of a Kalman filter model. Then, the com-
parison between these two models has led to residuals which have been
used to estimate the noise covariance matrices. Although this method
has been designed for Kalman filter, i.e., for linear Kalman filter, this
approach was found to work well with an EKF. Finally, Chapter 5 has
been dedicated to the application of the methods developed in Chap-
ters 3 and 4 in order to estimate friction data points. These methods
have been assessed with simulated data coming, on the one hand, from
an extended single-track model and, on the other hand, from the real-
istic vehicle simulator VI-CRT. The results have shown that combining
the subspace identification procedure with the EKF leads to accurate
estimate of the friction signals. In particular, the use of the subspace
identification method developed in Chapter 4 has simplified drastically
the setting of the noise covariance matrices. Sometimes, it has been



6.2 Perspectives 191

necessary to adapt some coefficients of the noise covariance matrices
corresponding to the tire forces. However, in any cases, the subspace
approach has allowed to reduce significantly the number of coefficients
needed to be set. Nevertheless, although the EKF has provided accurate
friction signal, the estimated slip ratio was found to be corrupted by
noise and thus, unusable. Hence, others methods such as the ones sug-
gested in Section 6.2 should be investigated in order to improve these
results.

6.2 Perspectives

In view of the results obtained during this thesis, several perspectives
might be considered. Since this work have been realized in an industrial
context, these perspectives are classified between short, medium and
long term targets from an industrial point of view.

6.2.1 Short term perspectives

The first short term perspective concerns the validation steps re-
quired in order to enhance the efficiency of the proposed approach.
The MCMC based approach introduced in Chapter 2 needs to be tested
on different type of roads such as wet road or icy road. In particular,
it would be interesting to assess this method with friction data points
similar to the ones provided by the flat track (see Chapter 2), but corre-
sponding to a wet road where µmax ≈ 0.6. This test is important because
it would allow to know if the MCMC-based method is able to capture a
reduction of the grip potential under standard driving conditions.

Another important validation step concerns the estimation of fric-
tion data points. In Chapter 5, the tests were carried out with simu-
lation data only. Therefore, the next stage is to test the observer with
real measurements coming from the CANbus of a vehicle. This test is
essential because, in real life situations, these measurements are the
only ones available. Furthermore, this step raises questions about result
validation because in the CANbus, the true friction point values are not
known. Thus, in this case, one important challenge is to find a way to
conclude on the reliability of the results provided by the EKF.
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One of the main concern of manufacturers is the real-time estimation
of the friction potential. Therefore, an important perspective it to find a
way to reduce the computational time of the MCMC based method. As
a reminder, depending on the size of the training set, simulating 1000
chains of 100000 samples have taken between 2h and 2h45 (see Chap-
ter 2). With the MCMC procedure, most of the time is spent during the
repetition of the sample generation for each chain. Consequently, an
idea to reduce the computational time would be to generate samples
depicting faster the target distribution. One solution provided in the lit-
erature is to resort to Hamiltonian Monte-Carlo (HMC) [12, 32, 82, 81].
In theory, this method should generate samples closer to the target dis-
tribution and thus, decrease the number of samples necessary and thus,
the time computation. If the HMC technique does not provide interest-
ing results, another idea is to resort to a recursive approach where the
result given by the MCMC method is adapted at each new measurement.

Finally, the slip ratio estimation may be the subject of another major
short term perspective. As pointed out in Chapter 5, the estimated slip
ratio provided by the EKF is noisy and quite far from the true value.
However, since the friction data points are composed of the slip ratio
and the friction, a wrong estimation of the slip ratio signal is a major
problem. One solution to this issue might be to resort to slip ratio mea-
surements. However, in some cases, even slip ratio measurements are
strongly corrupted by noise. An example of this type is illustrated in
Figure 6.1 where a curve representing the longitudinal tire force Fx as a
function of the slip ratio s is drawn. The curve represented in Figure 6.1
is plotted with longitudinal tire force measurements and slip ratio mea-
surements coming from sensors fitted on a tractor. As can be seen, for
a given Fx, numerous different slip ratio values are given. In these con-
ditions, it is difficult to extract an accurate curve representing the real
evolution of the the longitudinal tire force as a function of the slip ratio.
As a consequence, using slip ratio measurements would not necessary
help to infer accurate slip ratio values and another way should be exam-
ined. Based on the results obtained in Chapter 5, one solution could be
to resort to black-box methods. As a reminder, in Chapter 5, contrary to
the EKF, the N4SID algorithm provides a slip ratio estimated signal with
little noise (see Figure 5.56).
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Figure 6.1: Longitudinal tire force and slip ratio measurements coming
from sensors fitted on a tractor.

6.2.2 Mid term perspectives

Once short term perspectives have been investigated, mid term per-
spectives which require further developments can be mentioned. One of
them concerns the setting of the noise covariance matrices V and W .
In Chapter 4, the proposed method to set the noise covariance matrices
provides constant estimates V̂ and Ŵ . However, during a travel, the
considered vehicle model is more or less appropriate depending on the
situations. Therefore, it should be interesting to consider time varying
noise covariance matrices V and W . One solution would be to estimate
V̂ and Ŵ in a recursive way. More precisely, the idea of the method
would be similar to the one presented in Chapter 4. However, instead of
using the N4SID algorithm, we would use a recursive subspace method
such as the ones presented in [56, 55, 57]. Hence, estimates of V and
W could be inferred at each time step.

A second mid term perspective involving some new developments
consists in identifying some vehicle and tire parameters instead of fixing
them. More precisely, in Chapter 5, the used vehicle and tire parameters
correspond to the ones used by the vehicle simulator VI-CRT. Therefore,
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these parameters are the ones of a complex vehicle model designed by
VI-CRT. However, the extended single-track model used to model the
vehicle behavior is a simplified model compared to the VI-CRT model.
Consequently, although some parameters are common and should not
vary between both models, e.g., the vehicle mass m, other parameters
might change. For example, since the suspension description is quite dif-
ferent between the extended single-track model and the VI-CRT model,
the corresponding stiffness and damping coefficients should be different
too. Hence, one idea to improve the results is first to identify some pa-
rameters with an identification procedure and then, use these estimates
with the EKF in order to determine friction data points.

6.2.3 Long term perspectives

Finally, long term perspectives may be cited. These ones would re-
quire further investigations and important modifications of the approach
introduced in this manuscript. A first long term perspective would be
to resort to another tire model taking into account other effects affect-
ing the friction curve such as the tire internal temperature Ti or the
tire inflation pressure, to name a few. As pointed out by F. Gustafs-
son in [38], the tire internal temperature influences the bottom of the
friction curve and thus, the friction data points situated in this region.
This temperature effect is illustrated in Figure 6.2 where friction curves
corresponding to two different type of roads and two different internal
temperatures have been plotted. As depicted in Figure 6.2, for one type
of road, the tire internal temperature has a significant impact on the
bottom of the friction curve and a low impact on the friction potential
value. Thus, including the tire internal temperature could improve the
reliability of the grip potential estimated value. However, many chal-
lenges need to be faced in order to achieve this perspective. First of
all, considering the temperature effect requires the use of a tire model
describing the friction curve and taking into account the tire internal
temperature. However, this type of tire model is not common and most
of the tire models designed in the literature are purely mechanical mod-
els [91]. Nevertheless, some thermomechanical tire models exist such as
the model TameTire [27, 70] developed by Michelin company. However,
using the TameTire model is not as easy as using the Pacejka’s model.
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Figure 6.2: Visualization of the temperature effect and road effect on
the friction curve.

For instance, one of the main advantages of the Pacejka’s tire model is
its parsimony, i.e., it can accurately describe the friction curve by us-
ing a few number of parameters. On the contrary, the TameTire model
involved more than 170 parameters. Among them, approximately 20
parameters have a more or less strong influence on the friction curve.
Therefore, one essential point would be to classify the influence of the
different parameters on the friction curve depending on the situations.

Another long term perspective would be to adapt the MCMC-based
estimation method for different dynamics. In particular, in the purely
lateral dynamics case, a curve similar to the used friction curve exist.
Instead of representing the ratio Fx

Fz
as a function of the slip ratio s, this

similar curve represents the ratio Fy

Fz
as a function of the slip angle sa.

Consequently, the MCMC-based method can be adapted to the purely
lateral case. One interesting point of this perspective is the possibility
to combine the MCMC-based approach with the SAT method (see Chap-
ter 1) which is one of the most promising method to estimate the grip
potential in a purely lateral case. Nevertheless, adapting the method to
this case requires some modifications such as the vehicle model consid-
ered in order to represent the steering kinematics.

In the same spirit, another perspective would be to extend the MCMC-
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based approach to coupled dynamics. This step would make the method
more general and thus more applicable. However, as for the adaptation
to the lateral dynamics, extending the MCMC method to the coupled
dynamics requires to model the steering dynamics. In addition, in this
case, the definition of the grip potential changes and begins

µmax = max


√
F 2
x + F 2

y

Fz

 . (6.1)

Furthermore, in the longitudinal case, we work with a friction curve
representing the normalized longitudinal tire forces as a function of the
slip ratio. As mentioned previously, in the lateral case, we have a similar
curve representing the normalized lateral tire force as a function of the
slip angle. Therefore, in the coupled dynamics case, two dimensions
should be considered and thus, we should not work with friction curve
but with friction surface.
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Résumé étendu

Introduction et état de l’art

Introduction

De nos jours, les accidents de la circulation causent toujours de
nombreuses victimes chaque année. Pour cette raison, l’amélioration
de la sécurité des passagers est une des priorités pour les construc-
teurs automobiles et les manufacturiers. C’est dans cette optique que de
nombreux systèmes d’aide à la conduite tel que le système antiblocage
des roues (ABS) et le correcteur électronique de trajectoire (ESP) ont
été développés. Ces systèmes permettent de corriger la trajectoire du
véhicule en cas de situations dangereuses où encore permettent d’éviter
le blocage des roues. Actuellement, avec le développement des véhicules
autonomes, les systèmes d’aide à la conduite qualifiés d’avancés (ADAS)
sont de plus en plus étudiés. Une des méthodes permettant d’améliorer
les ADAS est de leur fournir des informations détaillées sur certaines
grandeurs influençant le comportement du pneu. Une de ces grandeurs
est le potentiel d’adhérence du pneu. Cette quantité représente l’effort
maximum qu’un pneu peut transmettre au sol avant de se mettre à
patiner sur la route. Le potentiel d’adhérence peut se révéler partic-
ulièrement intéressant pour développer les ADAS car il permettrait à
ceux-ci de freiner avec la quantité optimale de pression de freinage. De
plus, il pourrait permettre également de détecter les portions de routes
ayant une faible adhérence et mettrait donc en évidence les routes usées
ou encore celles ayant une mauvaise évacuation de l’eau.

Cette liste non exhaustive des applications possibles grâce à la con-
naissance du potentiel d’adhérence justifie la nécessité pour les manu-
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facturiers de développer des méthodes d’estimation permettant de cal-
culer le potentiel d’adhérence avec précision. Bien qu’il existe de nom-
breuses méthodes élaborées dans la littérature pour estimer le poten-
tiel d’adhérence, celles-ci ne résolvent pas toutes les difficultés liées à
l’estimation du potentiel d’adhrence. C’est pourquoi l’objectif principale
de cette thèse est de développer une méthode d’estimation du potentiel
d’adhérence qui permet de s’affranchir des difficultés rencontrées par les
méthodes décrites dans la littérature.

Etat de l’art

La littérature contient de nombreuses méthodes permettant d’estimer
le potentiel d’adhérence comme le montre les nombreux articles de syn-
thèses [3, 4, 85, 76, 45, 60, 37]. Ces articles proposent différentes clas-
sifications des méthodes qui varient en fonction de l’article de synthèse
sélectionné. Ainsi, la classification illustrée par la Figure 6.3 est pro-
posée dans ce manuscrit.

Figure 6.3: Classification des méthodes d’estimation du potentiel
d’adhérence. Le chemin représenté en rouge indique la type de méthode

développée dans ce manuscrit.

Les méthodes d’estimations du potentiel d’adhérence sont princi-
palement divisées en deux grandes catégories. Tout d’abord, la pre-
mière catégorie concerne les méthodes basées sur les causes. Comme
leur nom l’indique, ce type de méthodes détermine la valeur du po-
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tentiel d’adhérence en examinant les phénomènes influençant celui-ci
comme la rugosité de la route ou la présence d’un film d’eau sur la route.
Une fois ces quantités mesurées, elles sont utilisées avec un modèle de
friction reliant la caractéristique mesurée et le potentiel d’adhérence.
Cette catégorie de méthode à de nombreux avantages. Tout d’abord,
elle permet d’estimer le potentiel d’adhérence avec un haut niveau de
précision. De plus, ce type de solution permet de calculer une valeur du
potentiel d’adhérence avec une excitation très faible. Ce point est no-
tamment important quand on veut estimer le potentiel d’adhérence dans
des conditions normales de conduites. Cependant, ce type de méthode
a également des inconvénients. Premièrement, ces méthodes nécessi-
tent souvent l’ajout d’un capteur spécifique pour mesurer la grandeur
influençant le potentiel d’adhérence. Ces capteurs sont souvent couteux
et donc inenvisageables dans un contexte industriel de production en
série. De plus, afin de déterminer le potentiel d’adhérence à partir de la
grandeur mesurée, il est primordial d’utiliser un modèle reliant ces deux
grandeurs. Or, établir un tel modèle peut se révéler très compliqué. Une
solution largement utilisé pour palier à ce problème est d’utiliser des
réseaux des neurones. Cependant, ce type de solution nécessite une
base de données conséquente pour entrainer le réseau de neurones. De
plus, quand le réseau fait face à des situations non incluses dans le jeu
d’entrainement, la précision du résultat peut diminuer de façon impor-
tante.

La seconde grande catégorie de solution pour estimer le potentiel
d’adhérence est la catégorie des méthodes basées sur les effets. Ce type
de méthode détermine une valeur du potentiel d’adhérence en exam-
inant les conséquences d’une variation du potentiel d’adhérence. Par
exemple, en cas de route gelée, le potentiel d’adhérence est très faible.
Or, dans cette situation, le pneu ne peut plus transmettre tout le régime
moteur au sol et la voiture se met à patiner. Ainsi, une des possibil-
ités pour estimer le potentiel d’adhérence est de surveiller la quantité
d’effort longitudinal transmise au sol par le pneu.

Parmi les méthodes basées sur les causes, les méthodes les plus
étudiées dans la littérature sont les méthodes basées sur le glissement.
Ce type de méthode a pour but d’estimer le potentiel d’adhérence en
examinant le lien existant entre les efforts pneus normalisés et le glisse-
ment. Dans le cas longitudinal, ce lien est caractérisé par une courbe de
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friction similaire à celle tracée sur la Figure 6.4.

Figure 6.4: Exemple de courbe de friction. Les points bleus représen-
tent le niveau d’ahérence consommé dans des conditions standards de

conduite.

Cette classe de méthode peut ensuite être séparée entre les méthodes
boîtes noires et les méthodes boîtes grises qui incluent un modèle physique
représentant le comportement du pneu. Enfin, en fonction des dy-
namiques véhicules étudiées, une distinction supplémentaire est faite
entre les méthodes.

Approche mise en œuvre

En examinant la littérature, deux contraintes font principalement ob-
stacles aux différentes méthodes d’estimation du potentiel d’adhérence.
Tout d’abord, étant donné que cette grandeur est destinée à être util-
isée dans un contexte industriel, c’est-à-dire sur des véhicules de série, il
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est primordial de développer une méthode économique qui ne requiert
pas d’autre capteurs autres que ceux déjà présent sur les véhicules de
série. De plus, le potentiel d’adhérence doit être déterminé dans des
conditions standards de conduite. Comme illustré sur le Figure 6.4, ces
conditions de conduite correspondent à des points de friction ne dépas-
sant pas 0.3. En examinant la littérature certaines méthodes comme
celles se basant sut le couple d’auto-alignement (méthode SAT) sem-
blent fournir des résultats prometteurs en dépits des deux principales
contraintes précédemment citées. Cependant, un équivalent de la méth-
ode SAT n’est pas possible dans le cas longitudinal. Par ailleurs, il semble
qu’il existe une importante marge d’amélioration des résultats pour ce
type de dynamique. Ainsi, la méthode considérée ici se concentre sur
les dynamiques longitudinales. En outre, afin de résoudre le problème
d’estimation du potentiel d’adhérence en respectant les deux contraintes
majeures, la solution employée ici propose de diviser le problème en
deux parties :

• comment estimer le potentiel d’adhérence à partir de points de
friction ?

• Comment déterminer des points de friction en utilisant unique-
ment les mesures fournies par les capteurs équipant les véhicules
de série ?

Cette simplification du problème principale est représentée sur la Fig-
ure 6.5.

Estimation du potentiel d’adhérence

Cette section concerne la première étape du plan générale mis en
place pour estimer une valeur du potentiel d’adhérence µmax dans des
conditions standards de conduite, c’est-à-dire avec des points de friction
situés en-dessous de la limite µ = 0.3. Ainsi, dans un premier temps,
notre étude va se focaliser sur les méthodes d’estimation du potentiel
d’adhérence en supposant que l’on a accès à des mesures des points de
friction (voir Figure 6.6).

La méthode mise en œuvre pour estimer le potentiel d’adhérence
est illustrée sur la Figure 6.7. L’idée de la méthode est de combiner
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Figure 6.5: Plan principal pour estimer le potentiel d’adhérence.

les mesures des points de friction avec un modèle pneu paramétrique
décrivant la courbe de friction et une méthode d’estimation afin de dé-
duire la valeur du vecteur paramètre θ. Une fois θ estimé, cette esti-
mation est utilisée avec le modèle pneu afin d’en déduire une courbe de
friction. Celle-ci obtenue, le maximum est déduit de façon immédiate
en prenant le maximum de la courbe estimée. Par conséquent, le bon
déroulement de cette méthode de friction requiert trois éléments :

• des mesures des points de friction,

• un modèle pneu décrivant la courbe de friction ,

• une méthode d’estimation paramétrique.

Le modèle pneu choisi est le modèle semi-empirique Pacejka. Ce mod-
èle parcimonieux à l’avantage de représenter fidèlement la courbe de
friction en utilisant simplement six paramètres.

La méthode d’estimation mise en œuvre est une méthode de Monte-
Carlo par chaines de Markov (MCMC). Cette méthode est basée sur
l’algorithme de Metropolis-Hasting en marche aléatoire. De plus, les
différentes chaines de l’algorithme sont initialisées avec une estimation
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Figure 6.6: Partie du plan principal étudiée dans le Chapitre 2. La partie
considérée est celle encadrée dans le rectangle en pointillé rouge. Dans
ce plan, la partie grisée est remplacée par des mesures des points de

friction.

fournie par la méthode du maximum de vraisemblance (ML). Enfin, afin
d’améliorer encore plus la méthode, on y ajoute un a priori physique.
Cet a priori consiste à ne garder que les courbes qui ont un glissement
correspondant au maximum de la courbe réaliste.

Finalement, la méthode mise en œuvre est appliquée avec des mesures
venant d’une machine de test de pneu. Cette machine à l’avantage
de nous fournir des mesures de la courbe de friction complète. Ainsi,
ces mesures permettent de valider que la courbe estimée colle bien à
toutes les mesures de la courbe. En utilisant les trois ingrédients cités
précédemment avec des mesures des points de friction correspondant à
une conduite standard (µ < 0.3), la combinaison de la méthode MCMC
et du modèle Pacejka fournit les courbes représentées sur la Figure 6.8.
Sur la Figure 6.8, on peut observer que la méthode MCMC avec ajout
de l’a priori physique est très proche de la courbe de référence. En
particulier, cette courbe est bien plus proche que celle obtenue avec la
méthode ML.
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Figure 6.7: Plan pour estimer le potentiel d’adhérence à partir de
mesures des points de friction.
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Figure 6.8: Estimations de la courbe de friction obtenues en utilisant les
méthodes ML et MCMC (µ < 0.3). La courbe rouge indique le courbe
de friction de référence. La courbe en pointillé vert indique la courbe
obtenue en utilisant uniquement la méthode ML. La courbe en pointillé
magenta indique la courbe obtenue en utilisant la méthode MCMC. La
courbe en tiré bleu indique la courbe obtenue en utilisant la méthode

MCMC en y ajoutant un a priori physique.

Maintenant que la méthode a prouvé qu’elle pouvait fournir des
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estimations précises du potentiel d’adhérence, il reste à résoudre le
problème de l’estimation des points de friction à partir des signaux
mesurables avec les capteurs équipant les véhicules de série.

Estimation des efforts pneus

Comme indiqué sur la Figure 6.9, cette section s’intéresse plus par-
ticulièrement à l’estimation des points de friction à partir des signaux
directement disponibles sur les véhciules de série.

Figure 6.9: Partie du plan principal étudiée dans le Chapitre 3. La partie
considérée est celle encadrée dans le rectangle en pointillé rouge.

La méthode considérée ici pour estimer les points de friction repose
sur l’utilisation d’un observateur d’état. Par conséquent, il est néces-
saire (i) de choisir un modèle véhicule (ii) de définir une structure pour
l’observateur. Le modèle véhicule considéré ici est un modèle bicycle (il-
lustré Figure 6.10) étendu avec un modèle de suspensions simple (voir
Figure 6.11). Ce modèle représente un bon compromis entre descrip-
tion précise des dynamiques rencontrées et nombre de paramètres ré-
duit. De plus, inclure un modèle décrivant les suspensions permet de
prendre en compte le transfert de charge et donc de modéliser avec pré-
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Figure 6.10: Modèle bicycle.

Figure 6.11: Modèle de suspensions passif simplifié.

cision la charge évoluant au cours d’un trajet. Prendre en compte cet
effet est important pour estimer avec précision l’adhérence (l’ordonnée)
des points de friction.

Une fois l’estimateur choisi, il reste à définir une structure pour
l’observateur d’état. Dans le cas traité ici, l’observateur doit fonction-
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ner avec des mesures réelles, donc bruitées, fournis par les capteurs
véhicules. De plus, le modèle bicycle considéré est un modèle simpli-
fié servant à décrire un vrai véhicule. Par conséquent, il est nécessaire
d’introduire un bruit d’état pour modéliser l’écart entre le modèle bi-
cycle et le vrai comportement du véhicule. Un type d’observateur bien
connu pour traiter ce type de problème est le filtre de Kalman. Par
ailleurs, étant donné que le modèle véhicule considéré est non linéaire,
l’observateur d’état utilisé est non pas le filtre de Kalman classique mais
le filtre de Kalman étendu (EKF).

Afin de ne pas inclure trop de grandeurs dans l’état du système, les
différentes grandeurs permettant d’estimer les points de friction sont es-
timées suivant le schéma illustré sur la Figure 6.12. Tout d’abord, on es-

Figure 6.12: Schéma détaillant l’estimation des points de fricton.

time les états avec l’EKF. Ici, l’état est composé de la vitesse du véhicule,
de la vitesse des roues, des dynamiques de tangage et des efforts longi-
tudinaux. Une fois les états estimés, on utilise différents modèles (voir
Figure 6.12) pour remonter jusqu’à l’adhérence et au glissement afin de
calculer les points de friction. Etant donnée que cette méthode s’appuie
sur l’utilisation d’un EKF, il vient le problème du réglage des matrices de
covariances des bruits. Afin de simplifier cette étape, une méthode ne
nécessitant aucun réglage de la part de l’utilisateur a été mise au point.
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Réglage des matrices de covariances des bruits du
filtre de Kalman

Le problème du réglage des matrices de covariances V et W est
fréquemment rencontré lors de l’utilisation d’un filtre de Kalman. En
effet, régler ces matrices avec des valeurs incorrectes peut réduire con-
sidérablement les performances du filtre de Kalman. Malheureusement,
en pratique, les statistiques des bruits d’état et de sortie permettant de
calculer les matrices de covariances ne sont pas accessibles. Ainsi, dans
la majeure partie des cas, le filtre de Kalman est réglé lors d’une phase
d’essai erreur. Durant cette phase, chacun des cœfficients des matrices
V et W est ajusté un par un. Ainsi pour des systèmes ayant un nom-
bre élevé d’état, cette phase peut rapidement devenir fastidieuse pour
l’utilisateur. Afin de palier à ce problème, certaines méthodes ont été
développées dans la littérature afin d’obtenir des estimations des ma-
trices de covariances V et W (voir l’article de synthèse [26]). Toute-
fois, la plupart de ces méthodes nécessitent le réglage par l’utilisateur
de certains paramètres afin de pouvoir fonctionner correctement. Or, il
n’est pas toujours évident de régler ces paramètres. Ainsi, une méth-
ode permettant d’estimer des valeurs des matrices de covariances sans
réglage est mise au point dans ce manuscrit. Cette méthode se base
sur la théorie de l’identification à partir des méthodes des sous-espaces.
Plus précisément, avec cette méthode, des estimations des matrices de
covariances sont déduites en comparant une représentation d’état es-
timée et la représentation d’état discrète utilisée par le filtre de Kalman.
L’estimation de la représentation d’état est obtenue en utilisant une
méthode des sous-espaces basée sur l’algorithme N4SID. D’un point de
vue plus formel, considérons la représentation d’état

xk+1 = Adxk +Bduk +wk, (6.2a)

yk = Cdxk + vk. (6.2b)

Cette représentation d’état peut être réécrite de façon équivalente

wk = xk+1 −Adxk −Bduk, (6.3a)

vk = yk −Cdxk. (6.3b)

Or, les matrices Ad, Bd et Cd ainsi que uk et yk sont connues. Ainsi,
l’idée de la méthode est d’utiliser la méthode N4SID pour reconstruire
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un état x̂k et d’utiliser cette estimation pour déduire des estimations v̂k

et ŵk. Ces estimations sont par la suite utilisées afin de déduire des
estimations V̂ et Ŵ des matrices de covariances.

Après avoir décrit le fonctionnement de la méthode, celle-ci est testée
sur différents exemples de simulations. Les résultats obtenus avec ceux-
ci montrent que la méthode développée permet d’obtenir des estima-
tions précises des matrices de covariances V et W . De plus, les estima-
tions obtenues sont bien plus précises que celles fournies par d’autres
méthodes plus standards rencontrées dans la littérature. Finalement,
bien que cette méthode soit faite pour fonctionner avec des systèmes
linéaires à temps invariant ayant des matrices de covariances V et W
constantes, la méthode est aussi appliquée dans un cas ou le système
considéré est non linéaire. Les expériences réalisées sur ce cas-ci ont
montré que la méthode fournissait des résultats prometteurs. Plus pré-
cisément, les estimations obtenues permettent à l’EKF de reconstruire
correctement les états.

Application des méthodes d’estimation des efforts
pneus

Afin de tester les performances de l’EKF, celui est testé sur des don-
nées de simulation venant d’un modèle bicycle étendu et sur des don-
nées générées avec le logiciel de simulation dynamique VI-CarRealTime
(VI-CRT). Dans le cas des données VI-CRT, les résultats fournis par N4SID
et l’EKF réglé avec la méthode des sous-espaces sont illustrés sur les Fig-
ures 6.13-6.14. Comme on peut le voir sur la Figure 6.13, l’EKF permet
de reconstruire avec précision le signal de l’adhérence contrairement
à l’algorithme N4SID qui ne parvient pas à reproduire avec précision µ.
Cependant, comme illustré sur la Figure 6.14, l’estimation du glissement
fournit par EKF parvient à reproduire les dynamiques du vrai signal de
glissement mais l’estimation est très bruitée. A l’inverse, l’algorithme
N4SID fourni une estimation qui est très peu bruité.

Afin de vérifier si on ne peut pas avoir de meilleurs résultats avec
l’EKF, un second réglage des matrices de covariances est proposé. Ce
réglage consiste à modifier les cœfficients de la matrice de covariances
de bruit d’état qui correspondent aux efforts pneus et aux dynamiques
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Figure 6.13: Estimation de la friction avant. Le tracé effectué en haut
montre le vrai signal (en noir), ses estimations avec EKF (en verte) et
N4SID (en bleue). Les figures situées en bas à gauche illustrent les
évolutions temporelles des résidus. Les figures situées en bas à droite

montrent les histogrammes des résidus.

Figure 6.14: Estimation du glissement avant. Le tracé effectué en haut
montre le vrai signal (en noir), ses estimations avec EKF (en verte) et
N4SID (en bleue). Les figures situées en bas à gauche illustrent les
évolutions temporelles des résidus. Les figures situées en bas à droite

montrent les histogrammes des résidus.
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de tangage. Avec ce nouveau réglage, l’EKF fournit les résultats il-
lustrés par les Figures 6.15-6.16. Ces figures mettent en évidence

Figure 6.15: Estimation de la friction avant. Le tracé effectué en haut
montre le vrai signal (en noir), ses estimations avec EKF réglé avec
Wsub, Vsub (en verte) et avec Wmix, Vmix (en rouge). Les figures situées
en bas à gauche illustrent les évolutions temporelles des résidus. Les fig-

ures situées en bas à droite montrent les histogrammes des résidus.

que le réglage suggéré pour les matrices de covariances n’améliore pas
l’estimation de l’adhérence. En revanche, ce nouveau réglage semble
améliorer légèrement l’estimation du glissement. Cependant celle-ci est
toujours bruitée.

Conclusion et perspectives

Conclusion

Dans ce manuscrit, une méthode est proposée pour estimer le poten-
tiel d’adhérence d’un pneu dans des conditions normales de conduite et
en utilisant uniquement les capteurs présents sur les véhicules de série.
La méthode mise au point se scinde en deux parties. Tout d’abord le
problème d’estimation du potentiel d’adhérence à partir de mesures des
points de friction est étudié. En particulier, la méthode utilisée est une
méthode de type MCMC. Cette méthode délivre des résultats promet-
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Figure 6.16: Estimation du glissement avant. Le tracé effectué en haut
montre le vrai signal (en noir), ses estimations avec EKF réglé avec
Wsub, Vsub (en verte) et avec Wmix, Vmix (en rouge). Les figures situées
en bas à gauche illustrent les évolutions temporelles des résidus. Les fig-

ures situées en bas à droite montrent les histogrammes des résidus.

teurs en respectant la contrainte des conditions normales de conduite.
Dans un second temps, un EKF appliqué à un modèle bicycle étendu
avec un modèle de suspensions est utilisé afin d’obtenir des estimations
des points de friction. Afin de régler l’EKF, une méthode se basant sur les
méthodes des sous-espaces a été développée. Contrairement à la plupart
des méthodes rencontrées dans la littérature, la méthode développée ne
requiert aucun réglage de la part de l’utilisateur. Dans ce manuscrit,
l’EKF est testé sur différente données de simulations. Tout d’abord sur
des données générées avec un modèle bicycle étendu avec un modèle
de suspensions. Puis, avec des données générées avec le logiciel de sim-
ulation dynamique VI-CRT. Les résultats obtenus avec l’EKF montre que
celui-ci est capable de reconstruire avec précision le signal d’adhérence
mais qu’il rencontre des difficultés pour estimer le signal de glissement.

Perspectives

Les travaux réalisés dans ce manuscrit peuvent faire l’objet de nom-
breuses perspectives. A court terme, il serait intéressant de valider
l’estimation des points de friction avec des mesures venant du bus CAN
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d’un véhicule. Ce test est important car les mesures provenant du bus
CAN sont les seules mesures accessibles sur les véhicules de série. De
plus il serait aussi intéressant d’appliquer la méthode MCMC avec des
mesures de points de friction correspondant à une route mouillée où
le potentiel d’adhérence est plus faible. Ce test est important car il
permettrait de déterminer si la méthode MCMC est capable d’observer
une réduction du potentiel d’adhérence dans des conditions normales
de conduite.

Par ailleurs, il apparait essentiel d’améliorer l’estimation du glisse-
ment. Une des solutions pourrait être d’utiliser des mesures du glisse-
ment. Cependant comme le montre la Figure 6.17, les mesures de glisse-
ment relevées sont parfois fortement bruitées. Sur la Figure 6.17, les

Figure 6.17: Mesures des efforts longitudinaux et du glissement
provenant d’un capteur équippant un tracteur.

mesures obtenues montrent que pour une valeur d’effort longitudinal, il
existe de nombreuses valeurs de glissement possible. Ainsi, ces mesures
sont difficilement exploitables pour extraire une courbe de friction fi-
able. D’autre part, comme montré précédemment, la méthode N4SID
donne des estimations peu bruitées du glissement, il pourrait donc être
intéressant de poursuivre cette piste en examinant d’autres méthodes
boîtes noires.

A moyen et long terme, il serait intéressant d’améliorer la méth-
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ode d’estimation du potentiel d’adhérence en prenant en compte d’autre
paramètres influençant celui-ci. Par exemple, une des idées est de pren-
dre en compte la température de surface du pneu qui a une influence
sur le potentiel d’adhérence. Cependant, cette idée implique l’utilisation
d’un modèle pneu non pas mécanique mais thermomécanique. Or, la
plupart des modèles rencontrés dans la littérature sont des modèles
purement mécaniques. Il existe toutefois des modèles thermomécaniques
comme le modèle TameTire développé par l’entreprise Michelin. Cepen-
dant, contrairement au modèle Pacejka, le modèle TameTire contient
plus de 170 paramètres et est donc plus difficilement utilisable.

Finalement, une autre perspective intéressante est d’étendre la méth-
ode développée ici aux dynamiques couplées. Cette extension perme-
ttrait à la méthode d’être plus générale et donc applicable à plus de
situations.


