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Abstract 

Numerical modelling is a widely used tool in applied geoscience for quantifying flow in 

porous media, that is necessary to predict performance and optimize prospect exploitation at 

minimal environmental risk and cost. Reaching a satisfactory approximation of the exact solution 

and a robust numerical model of multiphase flows is particularly challenging because of the 

heterogeneity of the porous medium across a wide range of length scales, the coupling and 

nonlinearity of the driving equations, and the necessity of capturing all scales in the macroscale 

numerical model in a computationally efficient way. 

We have developed a sequential approach to accelerate immiscible multiphase flow 

modelling in heterogeneous porous media using discontinuous Galerkin methods and dynamic 

mesh coarsening. This approach involves dynamic domain decomposition and different solution 

strategies in the different flow regions, using a criterion that can be fastly evaluated. We use 

high-resolution grids and low order methods in regions near the saturation discontinuity and a 

discontinuous Galerkin method along with low-resolution grids in single-phase flow regions of 

the domain. We present a fast technique to estimate the position of the saturation front and 

identify the flow zones that need high-resolution gridding and eventually, we demonstrate the 

accuracy of our approach through test cases from the second SPE10 model by comparing our 

results with fine-scale simulations. 
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 Introduction 

A porous medium is a medium containing void spaces. These void pore spaces are 

generally connected such that a fluid can flow through it. Some examples of natural porous media 

are soil and rock. Understanding flow and transport in porous media is important in many human-

controlled subsurface processes. Geothermal energy (Paksoy, 2007), as one of the renewable 

energy sources, needs a thorough understanding of the geothermal subsurface system to reach its 

total global potential (Matek, 2016). Another important application is the geological storage of 

CO2. Indeed, carbon dioxide capture and storage have been proposed as one of the options to 

reduce the accumulation of greenhouse gases in the atmosphere (IEA, 2020). Some of the main 

challenges of this geological storage are CO2 leaks, to the surface or the freshwater aquifers, 

through faults or abandoned wells (Lokhorst and Wildenborg, 2005). Impacts prediction of 

injecting CO2 into the subsurface needs a deep understanding of flow problems in porous media. 

Last but not least, hydrocarbon recovery, remaining as one important source of energy in the 

foreseeable future, also requires an understanding of the balance of forces acting at different 

scales to maximize production especially in the secondary and tertiary recovery processes for 

existing resources (Bouquet et al., 2020). 

Numerical modelling is a major tool for understanding and predicting fluid flow and 

transport in heterogeneous porous media in all these subsurface processes and also other energy-

related applications including groundwater remediation and nuclear waste storage. Because of the 

importance of numerical modelling in decision making at geoscience management and 

engineering levels, the efficiency and accuracy of the simulation results are key. However, 

computational efficiency and solution accuracy are often difficult to maintain simultaneously. 

In this work, we consider and adopt the language of the hydrocarbon recovery. 

Nevertheless, the methods and strategies presented apply to other domains of multiphase flow in 

porous media. 
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 Statement of the problem 

A reservoir model consists of a geological model describing the petrophysical properties 

of the reservoir, a flow model describing how the fluids are flowing, and the drive mechanisms 

describing the fluid communication to the surface (see Figure 1.1 for an illustration). 

 

Figure 1.1: The main components of a reservoir simulation model (Lie, 2019). 

One of the main challenges related to accurate numerical modelling in porous media is the 

heterogeneity of the rock properties which can vary over several orders of magnitude from pore 

to reservoir scale. It is well-known that fine-scale heterogeneities, implying strong localization or 

channelling of the flow, can change field-scale processes leading to early breakthrough or poor 

recovery that can hinder the global profitability of an EOR project (De-Wit and Homsy, 1997b). 

To have a more detailed representation of the medium heterogeneity, the geological models 

which describe the reservoir rock properties, are generated at high spatial resolutions. 

The porous medium properties have different scales depending on the source of data and 

the methods of measurements. Core plug data is measured at the centimetre scale, while well log 

data is at the meter scale, and seismic data is at the order of a hundred meters (see Figure 1.2). 

Moreover, the amount of available data is limited. Therefore, it is necessary to use statistical 

methods to integrate these different-scale data coming from different measurement processes and 

to populate them over the whole reservoir domain. The current reservoir characterization methods 

can provide high-resolution geological models containing a very large number of grid cells. 

These geological models, generally, include several equally probable realizations of the same 

reservoir. The propagation of sparse data over the whole domain results in high uncertainties that 
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must be quantified too (Floris et al., 2001). These uncertainties associated with the distribution of 

the porous medium properties, mainly the permeability, are another challenge faced in the 

numerical modelling of multiphase flow. Reservoir engineers must quantify the uncertainties on 

the output data of interest, such as hydrocarbons recovery, to recommend the best decisions to 

increase the production and reduce the risks. 

 

Figure 1.2: Representation of different data with different length scales used in reservoir 

modelling (EPGeology, 2014). 

Another challenge arises from the discretization of the governing equations. A desirable 

discretization method should be accurate, stable, and locally conservative to respect the physical 

processes. Another important feature is the computational efficiency. Low-order discretization 

methods such as finite volume (FV) methods are currently widely used in reservoir simulations. 

They are stable, mass conservative, and computationally efficient. To improve the accuracy of 

the approximating solution, especially in the presence of highly heterogeneous anisotropic media, 

there has been a great interest in high order discretization methods, such as discontinuous 

Galerkin (DG) methods, over the last two decades. However, these high-order methods have a 

larger number of degrees of freedom, and ultimately higher computational time compared to low-

order numerical methods in large-scale reservoir simulations. Moreover, the governing equations 

are usually nonlinearly coupled. There exist several solution methods to solve these coupled 

systems of equations, from fully implicit to sequential approaches, each having advantages and 

disadvantages in terms of computational cost, stability, and accuracy. 
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Solving multiphase flow equations directly on high-resolution geological models 

containing millions of cells is not computationally efficient. Even with high computing power, it 

is necessary to run several simulations on different independent realizations, as carrying out a 

single simulation on a highly detailed geological model is not sufficient if an estimation of the 

uncertainty is required (Gorell and Bassett, 2001). Thus, upscaling, the process of propagating the 

properties from a high-resolution model to a coarser model with less resolution, remains 

necessary whatever the available computing resources are. An example of permeability upscaling 

is shown in Figure 1.3 from the SAIGUP project (Manzocchi et al., 2008). The important aim of 

any upscaling method is to capture the effect of small-scale heterogeneities in an averaged sense, 

with well-controlled loss of information. While additive rock properties, like porosity, may be 

upscaled using the direct arithmetic averaging, upscaling the permeability and transmissibility is 

not straightforward due to the non-linear dependence on the fine-scale properties. The situation is 

far more complex when considering multiphase flows, due to the strong coupling in the 

governing equations that are the basis of the viscous fingering (Ganjeh-Ghazvini, 2019).  

Developing a robust, reliable, accurate, and efficient reservoir model is still an open 

problem. 

 

Figure 1.3: An example of upscaling the permeability from the SAIGUP project (generated using 

an example in MRST1) 

 
1 sintef.no/projectweb/mrst/ 

https://www.sintef.no/projectweb/mrst/
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 Research objective 

The main purpose of this study is to propose an efficient and accurate solution strategy 

that addresses the challenges of multiphase flow simulations and maintains a high order of 

accuracy in the whole domain. Such accurate and efficient model is needed for history matching, 

predicting the production in different scenarios, and better decision making for the optimal 

recovery plan. In this work, we focus on immiscible displacement processes, like water or gas 

injection during the secondary oil recovery. In immiscible displacements, viscous fingerings at 

the interface separating the fluids because of the injection of a less viscous fluid to displace a 

more viscous one may be amplified by the small-scale heterogeneity of the porous medium that 

controls the so-called “channelling” of the flow. The coupling of viscous fingering and 

channelling at the front can lead to some non-trivial large-scale behaviour and can dominate the 

flow and control the efficiency of hydrocarbon recovery (De-Wit and Homsy, 1997a). We present 

an approach that treats different flow regions separately. Implementing different solution 

strategies in different flow regions, with their specific features, allows increasing the solution 

accuracy while maintaining the computational cost at a reasonable level. The proposed model is 

based on adaptive gridding and higher-order discretization methods. 

This work presents an approach that autonomously and dynamically generates a mesh that 

adapts its resolution with a lower resolution in smooth regions like single-phase flow regions and 

a higher resolution in local sharp regions like the front. This adaptive coarsening works thanks to 

the proposed technique that allows fast prediction of flow patterns and the front position. The 

objective of this technique is to approximately track the position of the front, without solving the 

fully-coupled pressure and saturation equations on the whole grid. 

As a result of using a high-resolution mesh in the multiphase flow region near the front, 

the use of any multiphase upscaling technique is avoided. The finite volume method in this high-

resolution region gives satisfactory results in a computationally efficient way. Far from the front, 

in single-phase areas, the grid is coarsened, and a linear DG scheme is used to get more accurate 

total fluxes. 
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 Thesis outline 

In chapter 2, some of the key concepts associated with flow in porous media as well as the 

governing equations of single and multiphase flow models are described. A review of the 

literature is presented in chapter 3, to understand the fundamentals and challenges of reservoir 

modelling as well as to characterize the knowledge gap in more detail. Chapter 4 is devoted to the 

discretization methods, their implementation and associated numerical errors. In chapter 5 we 

present the technique developed to predict the position of the front in a computationally efficient 

way, while in chapter 6, we detail the proposed solution strategy and analyse its advantages and 

limitation through different numerical simulations. Last but not least, we present the conclusions 

and perspectives in chapter 7. 
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 Governing equations 

In this chapter, we review some of the main concepts and formulate the driving equations 

of the flow and transport in porous media, to provide an understanding of these equations in 

single-phase and multiphase flows in the reservoir. 

Porosity and permeability are the main properties of a porous medium. The ratio of the 

volume of void spaces to the total volume is defined as the porosity, 𝜙. With this definition, 𝜙 

varies between zero and one. The absolute permeability is an intrinsic property of the porous 

medium that measures its ability to allow a single fluid to flow through it. The permeability is 

generally correlated to the porosity. The general form of permeability is a tensor, meaning that 

the permeability in each direction depends on the permeabilities in other directions. In 2D, the 

permeability tensor is a matrix of the form [
𝑘𝑥𝑥 𝑘𝑥𝑦
𝑘𝑦𝑥 𝑘𝑦𝑦

], in which the off-diagonal terms represent 

this dependence. When the off-diagonal terms are all zero and diagonal terms are equal, the 

permeability becomes a scalar property that does not depend on the direction and is called 

isotropic. In other cases, the permeability is anisotropic. 

Natural porous media are generally heterogeneous at all length scales from the pore scale 

to the reservoir scale in the order of several kilometres. Full-field numerical simulation of flow 

problems at the pore-scale is not computationally feasible. Moreover, obtaining data at the 

microscale is too challenging and too precise for most practical situations. A common scale is the 

representative elementary volume (REV). REV, usually in the order of several hundred to 

thousands of pores, is the smallest volume over which a property average does not change with a 

small change in its size.  

 Single-phase flow 

One of the most fundamental laws in reservoir simulations is Darcy’s law, by the French 

engineer Henry Darcy (Darcy, 1856). In one dimensional single-phase flow, Darcy’s law can be 

represented as: 
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𝑄

𝐴
= −

𝑘

𝜇

∆𝑝

𝐿
 Eq. 2.1 

where 𝑄 is the flow rate of the fluid, 𝐴 is the cross-sectional area of the porous medium, 𝐿 

is its length, 𝜇 is the viscosity of the fluid, 𝑘 is the permeability of the porous medium, and ∆𝑝 is 

the pressure difference across the length of the medium. 𝒗 = 𝑄 𝐴⁄  is called the Darcy velocity.  

In multi-dimensions, the general form of Darcy’s law reads: 

 𝒗 = −
𝑘

𝜇
(∇𝑝 − 𝜌𝑔∇𝑧) Eq. 2.2 

where 𝜌 is the density of the fluid and 𝑧 is the vertical coordinate. To derive the single-

phase fluid flow system of equations at the macroscopic scale, the mass conservation law is 

applied to a REV computational domain Ω: 

 
𝜕

𝜕𝑡
∫𝜙𝜌𝑑𝒙
Ω

+∫ 𝜌𝒗. 𝒏𝑑𝑠
∂Ω

= ∫𝜌𝑞𝑑𝒙
Ω

 Eq. 2.3 

where 𝒏 is the unit vector normal to the boundary of the domain ∂Ω, and 𝑞 is the flow rate 

of the source or sink, i.e. the inflow and outflow of the fluid per volume. Applying Gauss’ 

theorem to Eq. 2.3, the mass conservation equation for single-phase flows becomes: 

 
𝜕𝜙𝜌

𝜕𝑡
+ ∇. (𝜌𝒗) = 𝜌𝑞. Eq. 2.4 

In this thesis we make some assumptions as follows: 

- negligible gravitational effects, 

- constant fluid viscosity, 

- isothermal reservoir condition, 

- incompressible rock and fluid. 

With these assumptions, and using Darcy’s law in Eq. 2.4, the single-phase flow equation 

or the “pressure” equation simplifies to: 
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 ∇. 𝒗 = −∇. (
𝑘

𝜇
𝛻𝑝) = 𝑞. Eq. 2.5 

To close the model, boundary conditions are imposed: 

 {
𝑝 = 𝑝𝐷         𝑜𝑛 𝜕𝛺𝐷
𝒗. 𝒏 = 0       𝑜𝑛 𝜕𝛺𝑁

 Eq. 2.6 

which correspond to Dirichlet and homogeneous Neumann boundary conditions on the 

boundaries of the domain. 

 Multiphase flow 

In most applications of reservoir simulations, two or more phases are generally present, 

e.g., water or gas displacing oil or CO2 displacing the brine. In multiphase flows, each phase 

occupies a certain fraction of the pore space and new properties are introduced in the flow model 

(Marle, 1981). The pore volume fraction occupied by each phase, 𝛼, is defined as its saturation, 

𝑠𝛼. We assume that all the fluid phases fill the void space, i.e. 

 ∑𝑠𝛼
𝛼

= 1. Eq. 2.7 

Another property in a multiphase flow model is the relative permeability which measures 

how the presence of one phase hinders the ability of the flow of another phase. In the presence of 

other phases, each phase experiences a reduced permeability called the effective permeability, 

defined as: 

 𝑘𝛼
𝑒𝑓𝑓

= 𝑘𝑟𝛼𝑘 Eq. 2.8 

where the relative permeability, 𝑘𝑟𝛼, generally is a function of phase saturation, 𝑠𝛼, but 

their dependence cannot de defined exactly. It is a popular choice to use some empirical laws to 

relate the saturation and the relative permeability. 
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At the pore scale, due to the interfacial tension between two immiscible fluids, the 

pressure in these two phases is generally different. This pressure difference across the fluids 

interface is called the capillary pressure, 𝑝𝑐: 

 𝑝𝑐 = 𝑝𝑖 − 𝑝𝑗 Eq. 2.9 

where 𝑝𝑖 and 𝑝𝑗 denote the pressure in the 𝑖 and 𝑗 phases, usually being the nonwetting 

and wetting phases, respectively. 

In this work, we consider an immiscible two-phase flow model, for example, water and 

oil in a waterflood problem in a porous medium. We neglect capillary effects, along with the 

other assumptions mentioned in single-phase flow model. We use the power law, one of the most 

common empirical relations to define the relative permeability that reads in terms of reduced 

water saturation, 𝑠𝑤
∗ =

𝑠𝑤−𝑠𝑤𝑖

1−𝑠𝑤𝑖−𝑠𝑜𝑟
 (Brooks and Corey, 1964): 

 

𝑘𝑟𝑤 = 𝑘𝑟𝑤
𝑚𝑎𝑥(𝑠𝑤

∗ )𝑛𝑤 

𝑘𝑟𝑜 = 𝑘𝑟𝑜
𝑚𝑎𝑥(1 − 𝑠𝑤

∗ )𝑛𝑜 

Eq. 2.10 

𝑠𝑤𝑖 and 𝑠𝑜𝑟 are irreducible water saturation and residual oil saturation, respectively. 𝑘𝑟𝛼
𝑚𝑎𝑥, 

or the maximum relative permeability of each phase 𝛼, and 𝑛𝛼, the exponent of each phase, 

should be generally found by fitting to the measured data. In the numerical examples throughout 

this manuscript, we set both exponents, 𝑛𝑤 and 𝑛𝑜 to 2, a popular choice in the industry, and the 

maximum relative permeabilities to 1, 𝑘𝑟𝑤
𝑚𝑎𝑥 = 𝑘𝑟𝑜

𝑚𝑎𝑥 = 1. The corresponding relative 

permeability curves are shown in Figure 2.1. 

Like in single-phase flows, when modelling the behaviour of multiple fluids flowing in 

porous media, mass conservation and Darcy’s law are used to derive the system of equations. 

Considering the fluids to be incompressible, the conservation equation for each phase is: 

 𝜙
𝜕𝑠𝛼
𝜕𝑡

+ ∇. (𝒗𝛼) = 𝑞𝛼,    𝛼 = 𝑜,𝑤 Eq. 2.11 
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where 𝒗𝛼 is the phase velocity, and 𝑞𝛼 is the flow rate of the source and sink in each 

phase. We write the two mass conservation equations into a more manageable system of 

equations, composed of a pressure or flow equation and a saturation or transport equation. 

 

Figure 2.1: Water and oil relative permeability curves as a function of water saturation, computed 

using the quadratic law with the unit endpoint values. 

 Pressure equation 

Darcy’s law for the phase velocity, in the absence of gravitational and capillary forces, 

reads: 

 𝒗𝛼 = −
𝑘𝑘𝑟𝛼(𝑠𝛼)

𝜇𝛼
∇𝑝 Eq. 2.12 

with 𝑝 the local pressure which is equal to water and oil pressure in our case, and 𝜇𝛼 the 

phase viscosity. 𝑘𝑟𝛼 𝜇𝛼⁄  is called the phase mobility and is denoted by 𝜆𝛼. Adding the 

conservation equation, Eq. 2.11, of both phases and considering that 𝑠𝑤 + 𝑠𝑜 = 1 gives: 

 ∇. 𝒗 = 𝑞 Eq. 2.13 

with 𝒗 the total velocity or the sum of water and oil velocities, and 𝑞 the total source and 

sink term. Writing Darcy’s law for the total velocity gives: 

 𝒗 = −𝑘𝜆𝑇∇𝑝 Eq. 2.14 
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where 𝜆𝑇 is the total mobility, the sum of water and oil mobilities: 

 𝜆𝑇 = 𝜆𝑜 + 𝜆𝑤 =
𝑘𝑟𝑜
𝜇𝑜

+
𝑘𝑟𝑤
𝜇𝑤
  Eq. 2.15 

A substitution of total Darcy’s law into the overall mass-conservation law gives the 

‘pressure equation’: 

 −∇. (𝑘𝜆𝑇(𝑠𝑤)∇𝑝) = 𝑞. Eq. 2.16 

The boundary conditions to complete the pressure equation are the prescribed pressure in 

Dirichlet boundaries and the homogeneous no-flow condition in Neumann boundaries, as 

described in Eq. 2.6. 

 Saturation equation 

Writing the conservation equation of water in terms of total velocity and water fractional 

flow 𝑓𝑤 leads to the ‘saturation equation’: 

 𝜙
𝜕𝑠𝑤
𝜕𝑡

+ ∇. (𝑓𝑤(𝑠𝑤)𝒗) = 𝑞𝑤 Eq. 2.17 

to be solved with the initial and boundary conditions: 

 {
𝑠𝑤 = 𝑠𝑤

0 ,                                  𝑖𝑛 𝛺
𝑠𝑤 = 𝑠𝐷 , 𝑖𝑓 𝒗. 𝒏 < 0  𝑜𝑛 𝜕𝛺

 Eq. 2.18 

with 𝑠𝑤
0  the initial saturation in the domain and 𝑠𝐷 the Dirichlet condition on the inlet 

boundary of the domain. The fractional flow function 𝑓𝑤 = 𝜆𝑤 𝜆𝑇⁄  measures the water fraction of 

the total flow.  

The system of equations described through Eq. 2.16 to Eq. 2.18 is nonlinearly coupled. 

The mobility term in the pressure equation is saturation dependent and the flux function term in 

the saturation equation is pressure dependent. There are several approaches to numerically solve 

this coupled system of equations. In a fully implicit approach, all the variables are solved 

simultaneously. This approach is unconditionally stable, but its implementation and solution are 
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computationally expensive, especially for large problems like full-field reservoir simulations. 

Another class of methods, sequential approaches, aims at solving the pressure and saturation 

equations separately and sequentially. The main advantage of these approaches lies in the 

reduction of the size of the linear systems to be solved, and therefore superior computational 

efficiency. Another important advantage is that it allows mixing different discretization methods 

in the same system, which can be very beneficial as the flow and transport equations have 

different mathematical characters, the elliptic character of the flow versus the hyperbolic 

character of the fluid transport (Bell et al., 1986). Sequential approaches have different forms, 

like the so-called IMPES (implicit pressure – explicit saturation) and the IMPIMS (implicit 

pressure – implicit saturation) schemes (Coats, 2000; Fagin and Stewart, 1966; Stone and Garder, 

1961). Some of the main disadvantages of sequential approach are the additional memory 

requirements and the splitting error related to the decoupling of flow and transport equations. One 

proposed remedy to decoupling error is to add an extra step after solving the transport equation to 

revisit the flow problem (Hajibeygi and Tchelepi, 2014; Lee et al., 2008). Adaptive implicit 

method (AIM) is another method which tries to combine advantages of sequential and fully 

implicit methods by implementing each of them adaptively in the domain (Cao and Aziz, 2002; 

Spillette et al., 1973; Thomas and Thurnau, 1982). For example, a fully implicit method is most 

suitable for local areas with large variations in the saturation, while computationally efficient 

IMPES scheme can be applied elsewhere. The main challenge in AIM is the difficulty of finding 

a suitable switching criterion (Marcondes et al., 2009). 
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 Literature review 

This chapter presents a review of literature, starting with different approaches to describe 

single-phase and multiphase flows in porous media, from stochastic to numerical methods and 

fast diagnostic tools. Next, a review and analysis of upscaling methods, in single-phase and 

multiphase flow modelling, known as one of the classical approaches to accelerate flow 

simulations, is detailed followed by a brief review of some alternative techniques. In the last 

section, we review some of the methods used to locate the saturation discontinuity, one of the 

most important local features of an immiscible multiphase flow model. 

 Stochastic approaches 

In the stochastic approach, input parameters such as permeability and porosity are 

considered as being random functions of the position. Geostatistical tools provide methods 

allowing to generate as many random maps honouring imposed statistical properties as desired 

(Guadagnini et al., 2018). In this thesis, FFTMA (Le Ravalec et al., 2000) will be used to 

generate spatially correlated Gaussian random maps. 

The idea of stochastic methods is to be able to estimate the ensemble average of the 

properties of interest, including dynamic data such as pressure, saturation, and cumulated oil 

production that are themselves random. Indeed, the randomness of the input parameters 

propagates through the solution of the partial differential equations that govern the flow. In 

practice, this ensemble average could also be obtained by averaging many independent 

simulations: the so-called Monte Carlo approach. Although easy to parallelize, it remains an 

expensive approach in the case where many simulations need to be performed, especially if each 

simulation is computationally costly and long. Moreover, the number of realizations that are 

required is itself a part of the issue. 

The core idea of stochastic methods is to look for the output parameters average, such as 

the pressure 〈𝑝(𝒙, 𝑡)〉 and the saturation 〈𝑠(𝒙, 𝑡)〉, and to find if an effective set of equations 

driving these averages may be found by some methods. The associated variance may be studied 

by analogous methods, to provide some information about the related uncertainties. 
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Although conceptually simple, some difficulties may be anticipated. First, the form of the 

equations may be changed, even in the simplest single-phase context by considering ensemble-

averaged Darcy’s law. It may be shown under a quite general hypothesis (Nœtinger and Gautier, 

1998) that the linear relation between averaged flux and pressure gradient becomes an 

integrodifferential operator that only keeps the overall linearity of the original problem, a strong 

requirement. The case of a tracer advected in a random flow-field leads to the so-called macro-

dispersion (Gelhar and Axness, 1983). In two-phase flows, few works followed this approach 

(Artus et al., 2004; Langlo and Espedal, 1994; Spesivtsev and Teodorovich, 2007; Zhang and 

Tchelepi, 1999). 

Another difficulty is that even if the form of the ensemble-averaged equation is known, 

the question on how to relate the associated coefficients to the input geostatistical parameters 

remains. In the context of single-phase problems, considering the ensemble averaging of Darcy 

and advection/dispersion equations, the main approach is the small perturbation expansion 

(Dagan, 1989). Considering that the local permeability may be decomposed as: 

 𝑘(𝒙) = 〈𝑘〉 + 𝜖𝛿𝑘(𝒙) Eq. 3.1 

With the perturbation value 𝛿𝑘(𝒙) ≥ 0, the ensemble-average 〈𝑘〉, and the tuning 

parameter 𝜖, one may expand the solution of Laplace and tracer equations in powers of 𝜖. It may 

be anticipated that the second-order term provides contributions involving averages of  

〈𝛿𝑘(𝑟)𝛿𝑘(𝑟′)〉 corresponding to permeability correlations. The quantity 〈𝛿𝑘(𝑟)𝛿𝑘(𝑟)〉 = 𝜎𝑘
2 is 

the permeability covariance function. It allows expressing the effective permeability up to the 

second order as: 

 𝑘𝑒𝑓𝑓 = 〈𝑘〉(1 − 1 𝐷⁄ 𝜎𝑘
2 〈𝑘〉2 +⋯⁄ ) Eq. 3.2 

in which D=1,2,3 is the number of dimensions available to flow. Further developments 

were performed to get higher-order terms, generalizing the approach to higher variances using 

field theoretical approaches, Feynman diagrams, and so on (Dagan, 1993; Indelman and 

Abramovich, 1994; King, 1987; Noetinger, 1994).  

In the case of the passive tracer transport equation that reads: 
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𝜕𝑐

𝜕𝑡
+ ∇. (𝒗𝑐) = ∇. (𝑫. ∇𝑐) Eq. 3.3 

in which 𝑐 is the concentration, 𝒗 is the local Darcy velocity that depends on the 

underlying disorder, and 𝑫 is the diffusivity tensor that represents the local molecular 

diffusion/dispersion tensor. The stochastic approach leads to an effective equation that reads 

asymptotically: 

 
𝜕〈𝑐〉

𝜕𝑡
+ ∇. (〈𝒗〉〈𝑐〉) = ∇. (𝑫𝑒𝑓𝑓. ∇𝑐). Eq. 3.4 

The tensor 𝑫𝑒𝑓𝑓, proportional to 𝒗𝜎𝑘
2𝑙𝑐 〈𝑘〉2⁄  with the correlation length 𝑙𝑐, may have a 

non-zero value even if the input D vanishes. This corresponds to the so-called macro-dispersion 

phenomena (Dagan, 1989; Gelhar and Axness, 1983) which represents the mixing due to the 

fluctuations of streamlines of local velocity 𝒗. Once again, methods such as renormalization 

group techniques were proposed to increase the validity range of the results (Jaekel and 

Vereecken, 1997). Good agreement was obtained using field data. 

For completeness, let us mention another class of stochastic techniques that were 

developed for modelling flow in fracture networks. The framework is mainly percolation theory 

and involves different methods. The interested reader can look at the textbooks of Berkowitz and 

Balberg (1993) and Hunt et al. (2014). 

Previously listed methods were developed for problems driven by linear equations, such 

as Darcy equation with random coefficients, and passive tracer advection/dispersion. The 

situation is far more complex when two-phase flow, such as water/oil in porous media, is 

considered. The generalization of stochastic methods to two-phase flows is difficult due to the 

coupling between the pressure equation and the saturation conservation equation which leads to a 

coupling between viscous effects and channelling effects. Partial decoupling approximations 

(Langlo and Espedal, 1994; Zhang and Tchelepi, 1999) can lead to erroneous results (Nœtinger et 

al., 2005). The technical difficulty is that the existence of the Buckley Leverett discontinuity 

leads to technicalities for setting up the perturbation theory. A change of variable proposed by 

King and Dunayevski (1989) allowed to get some results up to the second order in the 
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permeability variance for a limited range of validity (Artus et al., 2004; Noetinger et al., 2004; 

Spesivtsev and Teodorovich, 2007). The main result is that finding an effective transport equation 

sharing some similarities with non-linear advection/dispersion equation driving the ensemble-

averaged saturation remains to be done. 

 Numerical methods 

Numerical modelling of multiphase flows in porous media aims at solving the governing 

equations through their discretization. The main challenges regarding the flow equation are the 

accuracy of the flux that enters the transport equation and dealing with the heterogeneous 

permeability that can vary by several orders of magnitude over the domain. On the other hand, 

the main difficulties for numerically solving the hyperbolic problems of conservation laws lie in 

the presence of discontinuities in the exact solution and the complicated coupling of different 

origins near these discontinuities. In the following, we review the main classical and most widely 

used methods as well as some advanced discretization methods. To review their mathematical 

base idea and the strengths and weaknesses, we consider the elliptic flow equation, described in 

Eq. 2.16. For a more thorough review and comparison of discretization methods in geosciences, 

see Di Pietro and Vohralík (2014). 

 Finite difference and finite volume methods 

Perhaps the simplest and oldest approach is the finite difference (FD) method. Finite 

difference methods work based on replacing the derivatives in the partial differential equation 

(PDE) with an approximation based on Taylor series. Even though this approach is very easy to 

implement and can be very efficient, the need for an orthogonal grid structure limits their 

application in more general and complex domain geometries. 

In many engineering processes, including flows in porous media, mass conservation is an 

important property. In these contexts, finite volume (FV) methods are very popular. The reason is 

that finite volume methods, unlike finite difference methods, have physical principles behind 

them and can be derived only based on the conservation of the desired quantity over control 

volumes, independently from the continuous equation. In FV methods the unknowns are 

approximated by constant values for each cell or control volume, that represent the volume-
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averaged values. This another difference with finite difference methods, in which the physical 

quantities are calculated at specific nodes, gives FV methods more geometric flexibility. Despite 

these differences in derivations, FV and FD methods are usually used as identical in the literature. 

A common approach to derive a finite volume representation of the flow equation is to integrate 

Eq. 2.16 over a grid cell or control volume Ω𝑖 in the domain Ω, and use the divergence theorem to 

obtain: 

 ∫ 𝒗.𝒏 𝑑𝑠
𝜕Ω𝑖

= ∫ 𝑞𝑑𝒙
Ω𝑖

, Eq. 3.5 

where 𝒏 is the outward unit normal vector on the boundaries of the grid cell 𝜕Ω𝑖. 

Different finite volume schemes approximate the flux through interfaces from a set of 

neighbouring cell-averaged pressure values. The two-point flux-approximation (TPFA) scheme is 

the simplest form of a finite volume discretization. It works based on approximating the flux 

across the face, 𝜎𝑖𝑗 = 𝜕Ω𝑖 ∩ 𝜕Ω𝑗 , using the values in the two neighbouring cells, Ω𝑖 and Ω𝑗, on 

the sides of the face 𝜎𝑖𝑗: 

 𝑣𝑖𝑗 = |𝜎𝑖𝑗|𝜆𝑖𝑗
𝑝𝑖 − 𝑝𝑗

𝑑𝑖𝑗
 Eq. 3.6 

where |𝜎𝑖𝑗| denotes the area of the face, 𝜆𝑖𝑗 denotes the mobility defined at the face, and 

𝑑𝑖𝑗 is the distance between the neighbouring cell centres. This scheme is simple to implement and 

computationally efficient, and that is why it is widely used in industrial software. However, the 

main constraint in this scheme is its conditional consistency. If the grid does not satisfy some 

orthogonality condition, called K-orthogonality, which is usually the case in unstructured grids in 

porous media with complex geology, the solution of the TPFA method will have errors. The 

severity degree of the error depends on the direction of the interfaces with respect to the direction 

of the permeability tensor. These artefacts or errors, called “grid orientation effects”, can lead to 

the convergence to a completely wrong solution if the mentioned orthogonality condition failure 

is dominant (Aavatsmark, 2007; Faille, 1992; Wu and Parashkevov, 2009).  

Another class of finite volume methods, multi-point flux-approximation (MPFA) 

schemes, aims to overcome the shortcomings of the TPFA scheme. The key idea in this class of 



19 
 

methods is to overcome the conditional consistency constraints by generalizing the 

approximation of fluxes, from the two cell-averaged values of the neighbouring cells used in the 

TPFA scheme to a more general approximation with additional terms (Aavatsmark et al., 1998a, 

1998b; Aavatsmark et al., 1996; Edwards and Rogers, 1998). For example, considering an 

orthogonal grid and a permeability tensor 𝑘 with nonzero off-diagonal terms, for a given function 

𝑝 the flux across the interface 𝜎𝑖𝑗, in the 𝑥-direction, will be (Aarnes et al., 2007a):  

 ∫ 𝒗. 𝒏 𝑑𝑠
𝜎𝑖𝑗

= −∫ (𝑘𝑥𝑥𝜕𝑥𝑝 + 𝑘𝑥𝑦𝜕𝑦𝑝 + 𝑘𝑥𝑧𝜕𝑧𝑝)𝑑𝑠
𝜎𝑖𝑗

 Eq. 3.7 

For non-orthogonal grids, partial derivatives in the direction of interfaces also should be 

estimated. MPFA schemes, like other FV methods, have a physical principle and some continuity 

equations are imposed to derive the final numerical fluxes. The difference in various MPFA 

schemes lies in the imposed continuity and conservativity requirements (Droniou, 2014). One of 

the most known MPFA schemes, the O-method, involves the introduction of an ‘interaction 

region’ around each corner point in the grid. An illustration of an interaction region for a two-

dimensional grid is shown in Figure 3.1. The interaction region, in the example case of this 

figure, is composed of four sub-cells from four neighbour cells sharing a vertex. The solution is 

approximated by a linear function in each of these sub-cells. Continuity of approximating 

functions at face midpoints and conservativity of fluxes around the vertices are imposed to obtain 

the final system in the O-scheme. There exist other MPFA schemes, for example, L- and G-

methods. See Droniou (2014) for a thorough review of finite volume methods. MPFA methods 

have also some limitations and drawbacks, from which we can mention their “conditional 

coercivity and monotony”, which may result in instabilities and inaccurate approximations, and 

their higher computational cost in comparison with TPFA methods (Aavatsmark et al., 2007; 

Droniou, 2014). 

There exist other more modern classes of FV methods, for example, hybrid mimetic 

mixed (HMM) methods, more robust than MPFA methods but at the cost of a higher number of 

unknowns. The HMM methods are composed of three class of methods: The hybrid finite volume 

methods (Eymard et al., 2010), the mimetic finite difference methods (Brezzi et al., 2005b; 

Brezzi et al., 2005a), and the mixed finite volume methods (Droniou and Eymard, 2006). It has 
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been shown that all these three classes of methods are the same (Droniou et al., 2010). These 

methods have important properties, including their conservation and stability, which made them 

an attractive scheme in flow simulations, for example, in the works of Aarnes et al. (2008), 

Natvig et al. (2011), and Antonietti et al. (2016). However, they have their weaknesses and 

limitations. One of their weaknesses is the inaccuracy of the solution on coarse meshes in the 

case of an anisotropic heterogeneity, which comes from their nonlocal computation of the fluxes 

(Droniou, 2014).  

 

Figure 3.1: An example of the interaction region for a two-dimensional grid with four cells in the 

O-method (Aarnes et al., 2007a). 

 Finite element and discontinuous Galerkin methods 

One of the main constraints of classical finite volume methods is their low order of 

accuracy. One approach to reach a higher order of approximation is to increase the mesh 

resolution, which can be a limitation in many applications. Another approach is to approximate 

the solution with some arbitrary basis functions, such as polynomials, which is the core 

mathematical idea of finite element and discontinuous Galerkin methods.  

One of the main differences of this class of methods with the classical finite difference 

and finite volume methods is that they solve a weak form of equations. This weak form is 
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obtained by multiplying the exact form of the equation, for example, Eq. 2.16, called the strong 

form by an arbitrary test function, 𝜔, and then integrating by part:  

 ∫𝜔[−𝛻. (𝜆𝛻𝑝)]𝑑𝒙
𝛺

= 0. Eq. 3.8 

Finite element methods seek for an approximated solution that satisfies the weak form of 

the equation, where both the approximated solution and the smooth test functions are written as a 

sum of basis functions. The solution of Eq. 3.8 on the cell Ω𝑖 is generally defined as: 

 𝑝ℎ =∑𝑝𝑙𝜑𝑙
𝑙

 Eq. 3.9 

where 𝜑𝑙 represents the basis functions and 𝑝𝑙 represents the coefficients of the function 

that approximate 𝑝 with 𝑝ℎ. 

The advantages of finite element methods include the freedom in choosing the basis 

functions and in the shape of mesh elements used to discretize the computational domain Ω. 

However, some of the disadvantages of classical finite element methods are related to adaptivity 

and stability issues. Roughly speaking, discontinuous Galerkin (DG) methods incorporate the 

favourable features of finite volume and finite element methods, through a combination of 

element-based discretization and locally defined basis functions. DG methods are like finite 

element methods but with discontinuities in test functions. DG methods can also be viewed like 

finite volume methods, in terms of element-wise approximating functions. But, in DG methods, 

the solution is approximated by a polynomial of an arbitrary degree instead of a piece-wise 

constant function in finite volume methods. 

Reed and Hill in 1973 introduced the first discontinuous Galerkin method for solving 

linear transport equations. Around the same time and in an independent path, the interior penalty 

(IP) discontinuous Galerkin methods has been introduced. Nitsche in 1971 first presented penalty 

terms to weakly impose the boundary conditions in finite element spaces. Generalizing the 

penalty techniques in the same manner for the enforcement of continuity between elements lead 

to the development of interior penalty (IP) methods for parabolic and elliptic equations (Arnold, 
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1982; Babuska, 1973; Babuška and Zlámal, 1973; Percell and Wheeler, 1978; Wheeler, 1978). 

Another formulation of DG methods for elliptic problems was developed using a mixed 

formulation. These methods, called local discontinuous Galerkin (LDG), introduce a 

discontinuous approximation for both 𝑝 and ∇𝑝 (Bassi and Rebay, 1997; Cockburn and Shu, 

1998). The basic idea in mixed methods is to solve for the unknown and its flux simultaneously, 

instead of solving for the pressure and obtain the fluxes in a post-processing step. See the work of 

Arnold et al. (2002) for a unified analysis of DG methods for elliptic problems.  

In the last two decades, DG methods have gone under massive developments and have 

risen their position in numerical modelling methods. DG methods have some important properties 

which made them popular in many fields of applications including flow and transport in porous 

media. The order of the approximating polynomials can vary from one element to the next one 

because there is no continuity constraint in basis functions between the elements. The order of 

accuracy only depends on the exact solution, and as a result, a higher order of accuracy can be 

achieved by increasing the degree of the approximating polynomials. DG methods are highly 

parallelizable and can handle hp-adaptive strategies, either h-refinement, the increase in the 

spatial resolution or p-refinement, the increase in the order of approximation. They do not have 

any constraint regarding the continuity between elements, so they allow the use of general 

meshes with arbitrary shapes of elements in domains with complex geometries. Another 

important property is their local mass conservation as it reflects the physical nature of the 

processes that are being modelled. This property is difficult to hold in high-order finite element 

methods. 

Discontinuous Galerkin methods are flexible and can be coupled with other discretization 

schemes like more computationally efficient FV methods. This important feature allows 

engineers to use different methods in different parts of the computational domain and especially 

implement the DG scheme in the subdomains of interest. DG methods can be applied to a wide 

range of problems, from hyperbolic to parabolic and elliptic equations. Thanks to the 

discontinuity of the approximating functions, they can handle strong discontinuous coefficients, 

which makes them an attractive scheme for flow and transport in porous media. Many researchers 

have applied DG methods to flow simulations in porous media, from early works of Riviere et al. 

(2000) in single-phase flows to its extension in multiphase flow processes in the works of Riviere 
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and Wheeler (2002), Bastian and Riviere (2004), and more recent works of Lee and Wheeler 

(2018) Fabien et al. (2018), and Cappanera and Riviere (2019), just to mention a few.   

However, one of the main drawbacks in DG methods is their high number of degrees of 

freedom associated with the discontinuity between elements and the duplication of nodes at the 

interfaces. The higher number of degrees of freedom compared to the classical finite element and 

finite volume methods lead to larger memory and computational time. One approach to speed up 

the DG computations is to use hybridized DG (HDG), which reduces the number of coupled 

unknowns through an introduction of new unknown traces on the mesh skeleton (Woopen et al., 

2014). However, HDG implementations can be challenging, as their construction depends on the 

type of the equations. 

 Flow diagnostic tools 

Another approach to have a better understanding of flow patterns is simple approximation 

techniques, called “flow diagnostic tools”. These class of methods, relying on simpler flow 

settings, single-phase or steady-state flows, are less computationally expensive compared to a full 

simulation of multiphase flows using standard or advanced discretization methods. Thanks to this 

important feature they can be very useful for obtaining qualitative and quantitative information. 

Here, we briefly review streamline methods, one of the main flow diagnostic tools. 

Since the early works of Muskat and Wyckoff (1937), several authors applied streamline-

based methods in different applications. Considering a velocity vector field 𝒗 at a given time, 

streamlines are a set of curves that are locally tangential to this velocity field at each point and 

show the direction of the flow at these points. An example is shown in Figure 3.2. One of the key 

concepts in streamline simulations is the decoupling of a multi-dimensional problem to a set of 

one-dimensional problems, thanks to the time-of-flight formulation. Time-of-flight (TOF) is the 

time it takes for a neutral particle to travel along a streamline. This transformation of coordinates 

along with the use of the TOF to represent the distance, make this method a powerful tool in 

many fields of applications. Streamline-based methods can be used as a multi-dimensional single 

and multiphase flow simulator (Batycky et al., 1997), a powerful diagnostic tool in ranking 

geostatistical models and upscaling (Ates et al., 2005; Idrobo et al., 2000; Shook and Mitchell, 



24 
 

2009), and an evaluation tool in waterflooding efficiency (Datta-Gupta and King, 2007; Izgec et 

al., 2011; Thiele and Batycky, 2003), history matching (Yin et al., 2011), flood surveillance 

(Batycky et al., 2008), and front tracking (Berre et al., 2002; Bratvedt et al., 1992). See the book 

of Datta-Gupta and King (2007) and the work of Al-Najem et al. (2012) for a review on the 

development and the detailed mathematical formulation of streamlines. 

 

Figure 3.2: Velocity field on the left plot, streamlines and iso-potential lines on the right plot, in a 

homogeneous quarter five-spot pattern for single-phase incompressible flow (Datta-Gupta and 

King, 2007). 

A streamline simulation is a sequential approach, in which the pressure and saturation 

equations are decoupled and solved separately at each time step. After solving the pressure 

equation implicitly, the instantaneous velocity vectors are generated to be used to map the 

streamlines. Once the streamlines are defined, the fluid flow problem is reduced into 1D 

problems over streamlines. The solution obtained on the streamlines is then transmitted to the 

original grid to account for the saturation. This loop is repeated at each time step (Al-Najem et 

al., 2012). 

One of the main limitations of streamline-based approaches is their application in more 

general non-orthogonal and unstructured grids (Shahvali et al., 2012). Among other flow 

diagnostic tools, we can mention the works of Shahvali et al. (2012) and Møyner et al. (2015).  
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 Upscaling 

As argued before, even with high computational power, numerical solution of the 

governing equations on the high-resolution geostatistical models is not feasible, because of the 

high uncertainties due to the limited amount of available data and the growing need for 

simulations with multiple realizations of the same reservoir. Therefore, it is customary to use an 

equivalent model with a lower resolution and fewer parameters that represent the high-resolution 

model in an averaged sense. In the following, we review upscaling, the process of propagating 

the properties from a fine grid model to a coarser one, in single-phase and multiphase flows. 

 Single-phase upscaling 

The main goal of upscaling in single-phase flow problems is to find an equivalent value of 

the non-additive property, the absolute permeability. Single-phase flow is mainly described with 

the mass conservation and Darcy’s law, Eq. 2.5. The main objective of any single-phase 

upscaling is to find an equivalent 𝑘∗ such that the solution of this equation at the coarse scale is 

close to its fine solution, in an averaged sense. This problem is difficult except for very special 

cases. For most general cases, there is no exact solution and the upscaled permeability values 

depend on the flow boundary conditions and the discretization of the reservoir. Extensive reviews 

of existing permeability upscaling methods can be found in the works of Durlofsky (2005, 2003, 

1991), King et al. (1995), Renard and Marsily (1997), Wu et al. (2002), Farmer (2002), and 

Dagan et al. (2013). 

For some special cases, the upscaled properties can be calculated using mathematical 

theories without dependence on the equivalence criteria. Homogenization is a mathematical 

theory that gives a framework for suppressing high-frequency details from a partial differential 

equation (PDE) with an oscillating coefficient, producing another PDE with homogenized 

coefficients (Hornung, 1997). The homogenization theory has a rigorous mathematical 

foundation if the underlying heterogeneous porous medium presents a wide separation of scales 

and spatial periodicity. In other words, the homogeneous upscaled equation emerges, when there 

exists a periodic REV with a characteristic length scale much smaller than the length scale of the 

medium under study. This approach is applicable only for systems with these strong hypotheses, 
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but within this framework, it provides a powerful tool to determine both the parameters and the 

large-scale equations. The assumption of periodicity allows the study of the domain to be 

replaced by the study of the basic cell subjected to periodic boundary conditions. The assumption 

of the small ratio of the characteristic length scale of the REV to the length scale of the medium 

makes it possible to ensure that the large-scale equation emerges (Hornung, 1997). 

We do not detail the formulation, but the homogenized single-phase flow equation, after 

some analysis, is of the form: 

 −∇. (𝑘𝑒𝑓𝑓∇𝑝0) = 𝑞 Eq. 3.10 

with 𝑝0 the zeroth-order approximation of the pressure. 𝑘𝑒𝑓𝑓 is the effective permeability 

tensor that does not depend on the boundary conditions (Amanbek et al., 2017). 

As it is seen, the form of the equation in the single-phase flow case keeps the same form 

after homogenization. This theory makes it possible to determine both the parameters and the 

large-scale equation, free of any discretization issue. Discretizing the large-scale equation using a 

coarse grid can be treated as a separate issue. A schematic representation of the application of the 

homogenization theory in upscaling is shown in Figure 3.3. 

 

Figure 3.3: A schematic representation of the application of homogenization theory in upscaling. 
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The main conclusion of the homogeneous equation methods is that at large scales, the 

low-frequency components of the flow are driven by an effective Darcy’s law, characterized by 

an effective permeability that depends on the details of the small-scale permeability. Another 

very important advantage of this theory is to show that the flow equation at the coarse scale takes 

the same form as the flow equation in the REV scale. However, regarding the application of 

homogenization theory for deriving the upscaled equations and coefficients, the extreme 

assumptions of the periodicity of the medium should be considered. In practical cases, these 

assumptions are rarely met. Therefore, it is more common to use more physical upscaling 

methods, briefly reviewed in the following. 

 Local methods 

In local methods, the upscaled permeability in each coarse grid block is solely restricted 

to the effect of the underlying permeability within the grid block. This class of methods can be 

further divided into analytical averaging and numerical flow-based methods. 

 Averaging methods 

Averaging methods are one of the simplest ways to compute the upscaled permeability. 

Deutsch (1989) proposed the use of a power averaging method to compute the upscaled 

permeability for each coarse grid block Ω𝑖: 

 𝑘∗ = (
1

|𝛺𝑖|
∫ 𝑘(𝒙)𝑃𝑑𝑠
𝛺𝑖

)

1
𝑃

 Eq. 3.11 

with power 𝑃 in the interval between -1 and +1, corresponding to the harmonic and 

arithmetic averages, respectively. In general, 𝑃 depends on the spatial distribution of 

permeabilities and can be found by calibration with the fine-scale results. The power averaging 

method is motivated by the Wiener inequality or the so-called fundamental inequality (Wiener, 

1912), which states that the upscaled permeability in a statistically homogeneous domain is 

always bounded by its harmonic and arithmetic means. 
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The main drawback of the analytical methods is their limited range of applications. In 

some special cases, for example in the perfectly stratified isotropic media, there is an exact 

analytical upscaled permeability. These correct upscaling methods are harmonic averaging for the 

case of perpendicular layers to the direction of the flow and arithmetic averaging for the parallel 

case. However, in most general cases, using analytical approaches involves some risks.  

 Flow-based methods 

In flow-based numerical methods, fine-scale simulations are used to compute the upscaled 

values. One approach is to perform fine-scale simulations on subdomains, corresponding to the 

coarse grid blocks, separately and use the resulting fine pressure and total flux values to compute 

the equivalent permeabilities. One important question in this class of methods is the appropriate 

boundary conditions. One common approach is to use constant pressure boundary conditions on 

the two faces in the direction of the flow, for example, 𝑝 = 1 on the inlet face and 𝑝 = 1 on the 

outlet face. A no-flow condition is usually implemented on the other faces. An illustration of this 

method is shown in Figure 3.4 for one coarse grid block. By changing the direction of the flow, 

the upscaled permeability can be calculated for the three main directions, using: 

 𝑘𝑥
∗ =

𝑄𝑥𝐿𝑥
𝐴𝑥∆𝑃𝑥

, 𝑘𝑦
∗ =

𝑄𝑦𝐿𝑦

𝐴𝑦∆𝑃𝑦
, 𝑘𝑧

∗ =
𝑄𝑧𝐿𝑧
𝐴𝑧∆𝑃𝑧

 Eq. 3.12 

Here, 𝑄𝑥 is the total flux over the face of the area 𝐴𝑥 = 𝐿𝑦 × 𝐿𝑧, 𝐿𝑥 is the length of the 

block, and ∆𝑃𝑥 is the pressure drop in the flow direction. 

This method was introduced by Warren and Price (1961) and Begg et al. (1989). The 

problems of this approach, as already mentioned, is related to the choice and validity of the 

boundary conditions. The no-flow boundary conditions are truly valid only in symmetric cases 

where the coarse block is bounded by its mirror images, which is far from the real reservoir 

models in most cases. Another approach is to set a constant pressure on these faces that are 

perpendicular to the flow direction, allowing the flow to leave or enter the domain (Guerillot et 

al., 1990). Using periodic boundary conditions is another popular alternative (Durlofsky, 1991). 

Some choices of boundary condition are discussed in King and Mansfield (1997). 
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Figure 3.4: An illustration of a local flow-based upscaling method. In this 2D example, the flow 

direction is set to x-direction while a no-flow condition is set on the y-direction.  

The same method of upscaling can be used to directly compute the upscaled 

transmissibility values at the interfaces of the coarse grid (Peaceman, 1997; White and Horne, 

1987). The coarse transmissibility is computed such that it reproduces the averaged flux through 

faces: 

 𝑣𝑖𝑗 = 𝑇𝑖𝑗
∗ (

1

|Ω𝑖|
∫ 𝑝𝑑𝒙
Ω𝑖

−
1

|Ω𝑗|
∫ 𝑝𝑑𝒙
Ω𝑗

). Eq. 3.13 

Here, 𝑇𝑖𝑗
∗  represents the upscaled transmissibility for the coarse face 𝜎𝑖𝑗 and 𝑣𝑖𝑗 is the total 

flux over the same face, computed in a fine-scale simulation. The same challenges related to the 

boundary conditions exist in this approach. Another unpleasant surprise is the appearance of 

negative transmissibility values that have been discussed in the literature (Wu et al., 2002). 

Some authors like Gómez‐Hernández and Journel (1990) and Hou and Wu (1997a), 

proposed the “oversampling” technique to reduce the boundary conditions impacts and to 

improve the final result of the upscaling. This technique, as its name suggests, recommends 

solving the fine-scale flow problem in a region larger than the coarse block. Figure 3.5 shows a 

simple schematic of the oversampling technique. 
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Figure 3.5: An illustration of the oversampling technique for the local upscaling method. 

 Local-global methods 

In this class of methods, a global-scale solution is known over the whole domain and this 

information is used to solve a local upscaling problem. One approach is to solve a flow problem 

over the whole domain on a coarse grid, and use the approximated pressure as boundary 

conditions for the local flow problem over each coarse grid block, as described in the previous 

section (Chen et al., 2003; Chen and Durlofsky, 2006; Gerritsen and Lambers, 2008). This 

method usually is done in an iterative procedure to overcome the problem of poor coarse-scale 

boundary conditions to solve a fine-scale flow equation. Among other variations of this method, 

we can mention the works of Chen and Durlofsky (2006), Alpak et al. (2012), and Alpak (2015).  

 Global methods 

These methods use the fine-scale solution on the base geological model to compute the 

upscaled properties, permeabilities or transmissibilities. White and Horne (1987) were the first 

ones to propose a global upscaling method. Their approach is to solve the flow equation on the 

original geological grid a few times with a set of different global boundary conditions and to 

compute the coarse-scale pressure and total flux values using the volume-averaging and 

integration over faces, respectively. Having these coarse-scale fluxes and pressures and using a 

coarse-scale Darcy’s law for each face in the coarse grid, the upscaled transmissibility tensor can 

be computed using: 

 𝑣𝑖𝑗 = 𝑇𝑖𝑗
∗ (𝑝𝑖 − 𝑝𝑗). Eq. 3.14 



31 
 

Another approach in this class of methods tries to compute the upscaled properties such 

that it minimizes the difference between global fine and coarse pressure and flux fields (Holden 

and Nielsen, 2000). An alternative approach that does not need the fine-scale solution was 

proposed by Nielsen and Tveito (1998). These methods may be the most computationally 

expensive among all upscaling methods, but they do not need any assumption on local boundary 

conditions. However, they depend on prior knowledge of the global boundary conditions or drive 

mechanisms. Once these conditions change, the upscaled properties may not be valid or accurate. 

 Multiphase upscaling 

The challenge in upscaling becomes more critical in multiphase flows. Multiphase 

upscaling is much less developed than single-phase upscaling, that is now routinely carried out. 

Generally, the upscaling of absolute permeability alone cannot model a multiphase process in a 

heterogeneous medium and may lead to incorrect oil recovery and water breakthrough times in 

reservoir simulations and becomes more severe in presence of high-permeability channels or 

extensive flow barriers (Muggeridge, 1991). Multiphase flow models generally include a 

generalized Darcy’s law, where the relative permeability is introduced in the equation, and a 

mass conservation equation for each phase, Eq. 2.16 and Eq. 2.17. 

As mentioned previously, homogenization of single-phase flow equations leads to 

equations of the same form, with effective permeability values which are the same as flow-based 

local upscaled permeabilities with linear boundary conditions. But in the two-phase flow case, the 

situation is different if there are different saturation functions in different fine grid cells (Farmer, 

2002).  In some special cases, for example, where the capillary pressure and relative permeability 

curves do not change over the whole domain, the homogenized equations keep the same form as 

the original two-phase flow equations with an upscaled permeability tensor (Amaziane, 1993; 

Bourgeat, 1997; Saez et al., 1989). However, in most cases, the homogenized two-phase flow 

equations are not of the same form as their original ones. One conclusion of homogenization 

theory can be that upscaling approaches developed for single-phase flow models cannot be 

directly applied to multiphase flow models. 
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 Pseudo functions 

A well-known method for upscaling of multi-phase flow problems is the use of dynamic 

pseudo relative permeabilities to reproduce the results of a given fine grid simulation on a coarse 

grid. This method was initially proposed for correcting numerical dispersion effects by Kyte and 

Berry (1975), at a period in which simulations were carried out using a few grid blocks inducing 

high numerical dispersion that needed to be corrected. Since then, several approaches have been 

proposed to generate these pseudo-functions, in which a two-phase process is simulated on the 

fine grid and the results are used to calculate pseudo relative permeabilities at a coarser scale, 

using the volume-averaged fluxes for each phase and assuming that the type of flow equations 

remains the same. One approach is first, to calculate the average fine pressures for each coarse 

grid block, and the integrated fine-grid fluxes of each phase over each face in the coarse grid. 

Then, Darcy’s law at the coarse scale is used to compute the coarse grid pseudo relative 

permeability values (Kyte and Berry, 1975). However, in practice, this method may lead to a 

negative or an infinite pseudo relative permeability value (Barker and Dupouy, 1999; Stone, 

1991). 

Another approach, first suggested by Stone (1991), is to use the total mobility to obtain 

the pseudo relative permeabilities directly from the average fractional flow and the average total 

mobility, in the absence of capillary and gravity effects. However, this method is inadequate 

where there are significant variations in total mobility (Barker and Fayers, 1994). Another 

limitation is the assumption of no capillary and gravity effects. This method, as well, may lead to 

negative values  (Barker and Dupouy, 1999). Some authors like Barker and Fayers (1994), and 

Hewett and Behrens (1991) proposed to improve Stone’s method using better definitions of the 

average total mobility. But still, they may fail to reproduce the fine grid solution on a coarse 

scale. 

Several other pseudo relative permeability methods have been proposed to overcome 

these drawbacks, but it has been shown that there are practical limitations in using pseudo 

relative permeabilities, independent of the approach to compute them (Barker and Dupouy, 1999; 

Barker and Thibeau, 1997; Christie, 1996; Darman et al., 2002). The key problems related to the 

use of pseudo-functions in upscaling of multiphase flows from a fine grid geological model to a 
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coarse grid simulation model include the dependence of results on the location of coarse blocks, 

the flow direction, and boundary conditions. Another problem is the need for some grouping 

techniques to decrease the large numbers of relative permeability functions. All these challenges 

lead to practical difficulties with the use of pseudo-functions that extensively discussed by Barker 

and Thibeau (1997), and Darman et al. (2002). The difficulty with pseudos and other multiphase 

upscaling classical methods is that they mix homogenization issues with numerical discretization 

issues. The net result is a quite unclear and un-controllable mix of techniques. Starting from a 

completely homogeneous medium leads to pseudos that may not simply return the input 

properties of the medium. On the contrary, homogenizing a homogeneous medium recovers the 

input properties, as it should. This means that pseudo properties mix averaging and scale effects 

as does homogenization, and specific effects due to details of the underlying discretization. The 

net result gives a somewhat un-understandable property. One gets a set of pseudo relative 

permeabilities per coarse scale that is not manageable by reservoir simulators, and somewhat 

erratic variations of 𝑘𝑟 with local saturation that can lead to numerical instabilities while 

performing the coarse-scale simulation.  

 Alternative approaches 

Due to the mentioned practical difficulties in multiphase cases, the upscaling is only 

limited to permeability upscaling in the energy industry (Audigane and Blunt, 2004). Single-

phase upscaling, even though being “the best-understood form of upscaling” (Christie, 1996), 

does not have an unequivocal solution. This has been a motivation for research on alternative 

approaches to accelerate flow simulations. Some of these approaches are reviewed shortly in the 

following. 

 Dual grid techniques 

Rame and Killough (1991) were first to propose to use different grids to solve pressure 

and saturation equations and presented an approach for immiscible multiphase flows. Verdière et 

al. (1996) proposed a dual mesh method that uses a sequential algorithm by solving the pressure 

equation on a coarse grid and the saturation equation on a fine one. At each time step, the 

pressure equation can thus be solved using upscaled permeability values. Audigane and Blunt 



34 
 

(2004) extended this work to three-dimensions in the presence of gravity effects and wells. A 

schematic of this approach is shown in Figure 3.6. A reconstruction step is required to determine 

fine-scale velocities from the coarse-scale solution (step 4 in the figure). This method can be 

attractive, as it provides fast and accurate results because of solving only the saturation equation 

on the fine grid. But one limitation of this method is that the reconstruction of fluxes from the 

coarse grid to the fine grid is not robust.  

 

Figure 3.6: A schematic of the dual mesh method algorithm (Audigane and Blunt, 2004). The 

reconstruction of fluxes in step 4 is the main challenge in this method. 

 Multiscale methods 

These class of methods aim at systematically capturing the effects of fine-scale 

heterogeneities in the coarse-scale model. Hou and Wu (1997b) first proposed the idea of a 

multiscale finite element method, where the base functions are constructed to capture the fine-

scale information. Soon after, the multiscale solvers have been developed for finite volume 

methods, MsFV (Jenny et al., 2005; Jenny et al., 2003), as well as mixed finite element methods, 
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MsMFE (Aarnes et al., 2005; Aarnes, 2004). In these methods, basis functions are constructed 

numerically on a local flow problem in dual coarse grid blocks (see Figure 3.7). Once the flow 

equations are solved on the coarse grid, the fine-scale solution can be approximated using the 

basis functions (Lie et al., 2017c). Kippe et al. (2008) compared extensively the finite element 

and finite volume multiscale with upscaling methods. 

 

Figure 3.7: Representation of basis functions for FV multiscale methods. Basis functions are 

computed by solving local flow problems in the dual coarse grid (Lie et al., 2017c). 

 Adaptive gridding 

The basic idea of using non-uniform grids in flow simulations in porous media is not new 

in the energy industry. Adaptive gridding techniques have been followed in two different ways, 

the techniques based on refinement and the techniques based on coarsening. The local grid 

refinement (LGR) techniques add more spatial resolution by dividing the coarse grid blocks in a 

structured manner. An illustrative example of an LGR method is shown in Figure 3.8. The use of 

adaptive or non-uniform gridding in multiphase flow simulations in porous media goes back to 

1980s. Von-Rosenberg (1982) implemented a local grid refinement for finite difference methods 

with the unit mobility ratio and Quandalle (1983) extended it to variable mobility ratios. Dynamic 

versions of it were developed in the works of Heinemann et al. (1983) in two-dimensional 

cartesian grids with a limitation on the level of refinement and Han et al. (1987) with more 

improvements in terms of subdivisions and refinement levels. Since then, many improvements 

have been made in this method in the works of Sammon (2003), Christensen et al. (2004) and van 
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Batenburg et al. (2011), to mention a few. A similar approach is the adaptive mesh refinement, 

introduced in the work of Berger and Oliger (1984), where a finer resolution grid is placed over 

the coarse blocks with discontinuities or shocks. A local time step is defined to solve the 

equations on the refined blocks with the boundary conditions from the coarse grid. 

The difference in various LGR methods usually lies in the answer to question ‘where and 

when to add refinement’. van Batenburg et al. (2011) reviewed and compared some of the local 

refinement techniques in terms of implementation and criteria. What all these methods have in 

common, generally, is that they consist of a refinement step and an un-refinement or coarsening 

step. More importantly, in general, the geological model is not preserved in the process, and the 

approach to increase the solution accuracy is through decreasing numerical diffusion. Hoteit and 

Chawathé (2016) tried to overcome this limitation by storing the fine-scale rock properties in 

their proposed local refinement approach. 

 

Figure 3.8: An example of a local grid refinement with three refinement levels. 

Another class of adaptive gridding techniques is non-uniform coarsening methods. 

Durlofsky et al. (1997) clearly showed the advantages of generating a non-uniform coarse grid 

that adapts to high-velocity zones. An important key to the development of these methods is the 

agglomeration-based coarsening, first proposed by King et al. (2006). These methods do not 

generate the coarse grid explicitly, but instead, create a partition vector over the original 

resolution grid to represent the relation of the coarse grid to its original high-resolution grid. This 

partition vector (𝜋) is an integer value vector such that 𝜋(𝑐) = 𝑏 if cell 𝑐 in the fine grid belongs 

to block 𝑏 in the coarse grid. An illustration is shown in Figure 3.9. 
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Figure 3.9: A simple example of agglomeration-based coarsening. In this example, the partition 

vector is shown in terms of colours. The fine grid cells with the same colour belong to the same 

coarse grid block. 

Many authors have developed non-uniform coarsening approaches to better capture the 

underlying heterogeneity of original fine model (Aarnes et al., 2008; Alpak et al., 2012; Lie et al., 

2017b; Natvig et al., 2012), or to better adapt to flow patterns in order to increase the accuracy of 

transport solvers (Aarnes et al., 2007b; Hauge et al., 2012, 2010), or finally to generate reduced-

order models using non-uniform coarsening and flow-based single-phase upscaling (Guion et al., 

2019; Karimi-Fard and Durlofsky, 2016; Lie et al., 2017a; Lie et al., 2014). The flow-based 

coarsening methods, like the method of Aarnes et al. (2007b), are an improvement of the work of 

Durlofsky et al. (1997) to a general framework to create non-uniform coarse grids with arbitrary 

shape while minimizing the constraints. This approach needs the conditions of cell connectivity 

and mass conservation of the velocity field to be met. They use the flow magnitude to detect high 

and low flow regions and create partition vectors. In its dynamic version, the original fine grid is 

always present in the simulation. For example in the works of Hauge et al. (2012), they 

developed a flow-based coarsening approach for multiscale simulations. They improved the 

coarsening approach of Aarnes et al. (2007b) to generate a less-irregular grid and include a priori 

geological heterogeneity information and provided an adaptive coarsening approach. 

One of the main challenges in adaptive gridding approaches is the criteria to add 

resolution, either in terms of adding subdivisions or non-uniform coarsening. Classical criteria in 
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the literature are usually based on the spatial or temporal gradient of the values of phase 

saturations or concentrations (van Batenburg et al., 2011). 

 Localization of the saturation discontinuity 

As mentioned before, capturing the instabilities at the front is important in reaching an 

accurate solution in immiscible multiphase flows in porous media. In adaptive gridding 

approaches, different criteria, using different techniques, generally try to identify the multiphase 

region in the vicinity of the front and increase the mesh resolution in this region to capture the 

interactions of medium heterogeneity and viscous fingering. Here, we will review some of the 

existing methods for modelling the saturation discontinuities. 

 Front tracking methods 

The term “front tracking” refers to a class of methods that treat discontinuities in the 

solution, including shocks (Holden and Risebro, 2015). In reservoir numerical simulations, 

Glimm and his co-workers developed a front tracking method for hyperbolic conservation laws 

(Glimm et al., 1983; Glimm et al., 1981, 1980). In their approach, the position of shock waves is 

simulated separately through the introduction of these discontinuities as independent 

computational entities with a degree of freedom. Away from the front, classical numerical 

methods, like finite difference methods, are implemented to solve the conservation law. Having 

the initial saturation discontinuity, this approach computes the time evolution of the front during 

the simulation. The velocity of propagation of the front is determined using the mass 

conservation law and Rankine-Hugoniot equation. The time step is the same as the one used in 

the transport solver in the main sequential scheme. The front speed is calculated from the method 

of characteristics. Solving a Riemann problem normal to the front: 

 
𝜕𝑠

𝜕𝑡
+ 𝑣𝑛

𝜕

𝜕𝑛
𝑓𝑤(𝑠) = 0 Eq. 3.15 

where 𝑣𝑛 is the normal component of the velocity and 𝜕 𝜕𝑛⁄  indicates the normal 

derivative (Glimm et al., 1981). It should be noted that the normal component of the velocity in 

the Riemann problem is continuous. The characteristic speed of the shock front is entered in this 
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equation. It should be noted that in the limit of vanishing capillary pressure, the saturation is 

discontinuous at the front. So the transport equation is to be understood in the sense of 

generalized functions, with the appearance of both standard derivatives and delta-like functions 

corresponding to the front location. The singular part involving delta functions can be rewritten 

under the more familiar following form: 

 
𝑑𝒙(𝑠𝑓)

𝑑𝑡
]
𝑓𝑟𝑜𝑛𝑡

= 𝑣𝑛 Eq. 3.16 

where 𝒙(𝑠𝑓) denotes any position vector along the front. Daripa et al. (1987) present an 

overview of the front tracking model developed by the authors and a series of tests in reservoir 

simulations. 

As mentioned, this front tracking method uses a separate scheme to treat the sharp front 

and a classical discretization method to solve the saturation equation elsewhere. There exist 

another class of front tracking methods that do not involve a standard discretization method. This 

class of methods consider all saturation waves as discontinuities. The saturation profile is not 

considered as a continuous function with one sharp front, but instead a piecewise constant 

function with discrete fronts (Bratvedt et al., 1992; Bressan, 1992; Holden and Risebro, 2015; Lie 

and Juanes, 2005; Risebro, 1993). This class of methods are based on the exact and approximate 

solutions of hyperbolic conservation laws of the form: 

 
𝜕𝑠

𝜕𝑡
+
𝜕𝑭𝑤(𝑠)

𝜕𝒙
= 0 Eq. 3.17 

where 𝑭𝑤 = 𝑓𝑤𝒗. The Riemann problem is a type of initial value problem where the 

initial state is given in the form of a piecewise function: 

 𝑠0(𝒙) = {
𝑠𝐿 , 𝒙 < 0
𝑠𝑅 , 𝒙 ≥ 0

 Eq. 3.18 

Solutions of Riemann problem, exact or approximations, are important in front tracking 

methods. For a constant piecewise initial data, there exist exact analytical solutions. Starting from 

a piecewise approximation of the initial data, a series of Riemann problems are defined and 
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solved independently until they interact with the other discontinuities. Refer to the book of 

Holden and Risebro (2015) for a thorough overview of this class of front tracking methods. 

One of the challenges in front tracking methods is their extension to three-dimensional 

numerical modelling. Glimm et al. (1998) performed a feasibility analysis for front tracking in 

3D and offered some solutions. Another solution, proposed in the work of Lie and Juanes (2005) 

is to combine front tracking methods with streamline simulations. Streamline simulations, as 

mentioned, work based on decoupling three-dimensional problems into a set of one-dimensional 

problems, which can be solved using the front tracking method. They presented their approach in 

three-dimensional three-phase simulations. Some other implementation issues in front tracking 

methods were discussed by Langseth (1996).  

 Level set method 

The level set method was originally introduced by Osher and Sethian (1988), by defining 

a signed distance function φ(𝐱, t) for tracking the evolution of the front Γ with a given speed of 

𝐹. This level set function, φ(𝐱, t), has an important property; the zero level-set gives the front, 

i.e., Γ(t) =  {𝐱| φ(𝐱, t) = 0}. The motivation behind this method is that moving the level set 

functions are easier to model, even at a cost of increasing the dimension of the problem by one. 

Figure 3.10 shows a level set function of a 2D front. The function φ at each point is set to be the 

shortest distance from the point to the front at time 𝑡 (Sussman et al., 1994): 

 {

𝜑(𝒙, 𝑡) = +𝑑 , 𝒙 ∈  Ω   

𝜑(𝒙, 𝑡) = −𝑑 , 𝒙 ∈  Ω   

𝜑(𝒙, 𝑡) =  0   , 𝒙 ∈  𝜕Ω

 Eq. 3.19 

The evolution equation of the level set will be (Osher and Sethian, 1988): 

 
𝜕𝜑

𝜕𝑡
+ 𝐹|∇𝜑| = 0 Eq. 3.20 

The level set function 𝜑, is initialized as the signed distance function. However, under the 

evolution of the equation above, it will not necessarily remain so. Therefore, it is necessary for 
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later times, to re-initialize, or replace the level set function with a signed distance function while 

preserving the location of the zero level-set. 

 

Figure 3.10: Original front in the XY plane (left) and the level-set function in XYZ (right) 

(Sethian, 1996b). 

 Fast marching method 

Sethian (1996a) developed the fast marching method as a special case of the level set 

method when the front speed is only a function of position and does not change its direction. A 

new variable 𝑇(𝐱) or the arrival time is introduced. The 𝑇(𝐱) measures the time at which the 

front reaches the position 𝐱, i.e., φ(𝐱, T ) = 0. The arrival time satisfies the “stationary Eikonal 

equation”: 

 𝐹. ∇𝑇 = 1. Eq. 3.21 

In other words, the gradient of the arrival time function is inversely proportional to the 

speed of the front. Knowing the position 𝐱 and speed function 𝐹 at this position, 𝑇 will provide 

the time at which the front reaches 𝐱. Sethian (1996a, 1996b) provided an algorithm, called the 

fast marching method, to solve the Eq. 3.21. This conversion from a general level set to a 

stationary formulation is an important characteristic which made the solution approaches very 

fast. For a detailed formulation and solution algorithm, see Sethian (1999). 

Karlsen et al. (2000) first applied this fast marching level set method for solving the 

transport equation in multiphase flow simulations in porous media as a solver faster than standard 

numerical methods. They continued this work later (Berre et al., 2005) by presenting some 
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deficiencies of their previous approach, the inaccuracy of the marching algorithm and the 

calculated arrival times for some cases. They showed why the previously presented level set fast 

marching method cannot be used to solve the saturation equations in porous media. They also 

presented an alternative derivation of fast marching methods in close relation with time-of-flight 

and streamline methods, and a new advancing-front method with more limitations in its 

application but more accuracy.  
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 Discretization methods 

Starting from a geostatistical model with the defined rock properties in all grid cells, 

usually as a result of the statistical propagation of a few measured data, and a fluid model with a 

system of governing equations, we can simulate fluid flow processes in porous media using 

different numerical discretization methods and different solution algorithms. In this chapter, we 

consider discretization of the governing equations of single and immiscible multiphase flows in 

porous media, described in chapter 2. We detail the finite volume and the discontinuous Galerkin 

methods and present two-dimensional test cases. For each method, we discuss the numerical 

errors. 

 Finite volume method 

 Single-phase flow: 

As described in chapter 2, the flow equation for a single-phase incompressible flow is: 

 ∇. 𝒗 = ∇. (−
𝑘

𝜇
∇𝑝) = 𝑞. Eq. 4.1 

We assume the reservoir domain Ω, with boundary ∂Ω, is partitioned into cells {Ω𝑖}. As 

mentioned in chapter 3, a common approach to derive a finite-volume discretization is to 

integrate the flow equation over each grid cell or control volume, Ω𝑖. Using the divergence 

theorem, we obtain the mass balance equation for each control volume, which reads (Eymard et 

al., 2000): 

 ∫ 𝒗.𝒏 𝑑𝑠
𝜕𝛺𝑖

= ∫ 𝑞𝑑𝒙
𝛺𝑖

 Eq. 4.2 

To formulate the standard two-point flux approximation finite-volume scheme, it is 

necessary to approximate the flux, 𝒗. 𝒏, across faces, 𝜎𝑖𝑗, from values of the two neighbouring 

cells, Ω𝑖 and Ω𝑗, on two sides of the face 𝜎𝑖𝑗. Assuming the pressure is linear inside each cell, we 

write consistent approximations of flux using Darcy’s law (Lie, 2019): 
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𝑣𝑖,𝜎 = |𝜎𝑖𝑗|
𝑘𝑖
𝜇

𝑝𝑖 − 𝑝𝜎
𝑑𝑖,𝜎

 

𝑣𝑗,𝜎 = |𝜎𝑖𝑗|
𝑘𝑗

𝜇

𝑝𝑗 − 𝑝𝜎

𝑑𝑗,𝜎
 

Eq. 4.3 

where 𝑑𝑖,𝜎 is the distance from the centre of the cell Ω𝑖 to the centre of the face 𝜎𝑖𝑗 and 𝑝𝜎 

is the face pressure. A representation of two neighbouring control volumes in a simple two-

dimensional Cartesian grid is shown in Figure 4.1. To derive the formulation of the flux across 

the face in the two-point flux approximation scheme, we impose the conservativity of the fluxes, 

𝑣𝑖𝑗 = 𝑣𝑖,𝜎 = −𝑣𝑗,𝜎, for the interface 𝜎𝑖𝑗, which gives: 

 𝑣𝑖𝑗 = |𝜎𝑖𝑗| (
𝑑𝑖,𝜎
𝑘𝑖

+
𝑑𝑗,𝜎

𝑘𝑗
)

−1
(𝑝𝑖 − 𝑝𝑗)

𝜇
= 𝑇𝑖𝑗(𝑝𝑖 − 𝑝𝑗) Eq. 4.4 

where 𝑇𝑖𝑗 is called face or edge transmissibility and includes the distance-weighted 

harmonic average of 𝑘 in the two neighbouring cells Ω𝑖 and Ω𝑗. The final TPFA scheme to 

discretize Eq. 4.1 is obtained by writing Eq. 4.2 for all faces in all grid cells with the two-point 

approximated fluxes of Eq. 4.4, which reads: 

 ∑𝑣𝑖𝑗
𝑗

=∑𝑇𝑖𝑗(𝑝𝑖 − 𝑝𝑗)

𝑗

= 𝑞𝑖, ∀Ω𝑖 ∈ Ω. Eq. 4.5 

Solving this system gives the approximated cell-averaged pressures, 𝑝 = {𝑝𝑖}. 

 

Figure 4.1: Two cells used to derive the TPFA discretization scheme for a 2D Cartesian grid. 
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 Multiphase flow 

In this section, we consider an immiscible two-phase flow problem with water (𝑤) and oil 

(𝑜) phases. Already described in chapter 2, the conservation of the volume of each phase, 

assuming the rock and the fluids are incompressible and in the absence of capillary and gravity 

forces, is given by: 

 𝜙
𝜕𝑠𝛼
𝜕𝑡

+ ∇. (𝒗𝛼) = 𝑞𝛼,    𝛼 = 𝑜,𝑤 Eq. 4.6 

In chapter 2, we detailed how this equation is converted into a flow and a transport 

equation and we briefly reviewed different approaches of solving this system of equations. The 

benefits of sequential splitting methods, namely reduced computational time and the possibility to 

combine different numerical methods, are very attractive in many fields of applications including 

reservoir simulations. Therefore, we choose this approach in this work. Assume we are at the 

time 𝑛 and we want to approximate the solution at time 𝑛 + 1. A simple algorithm for one time-

step in a sequential approach is shown in Figure 4.2. At each time step, the values of saturation, 

pressure, and flux from the current time step, 𝑠𝑛, 𝑝𝑛, 𝒗𝑛, are known. Assuming that the impact of 

mobility, 𝜆𝑇, on the flow is moderate in time, the flow (pressure) equation is solved to compute 

pressure and fluxes, 𝑝𝑛+1, 𝒗𝑛+1. Using new fluxes, the transport equation is solved to compute 

𝑠𝑛+1. In the following, we detail the finite volume discretization of flow and transport equations 

for immiscible two-phase flows. 
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Figure 4.2: A simple flowchart of a sequential approach for each time step. 

 Discretizing the flow equation 

Recalling from chapter 2, the flow equation for the immiscible two-phase flow is given 

by: 

 ∇. 𝒗 = −∇. (𝑘𝜆𝑇(𝑠𝑤)∇𝑝) = 𝑞. Eq. 4.7 

In the sequential approach, we solve the above pressure (flow) equation assuming 𝑠 is 

held fixed in time. Therefore, the time-dependent 𝜆𝑇(𝑠𝑤) becomes position dependant only, and 

the pressure equation can be solved like a single-phase flow equation, as described in section 

4.1.1. The only difference is the introduction of a new variable, the relative permeability. The 

standard finite-volume two-point flux approximation to discretize the pressure equation gives: 

 ∑𝑣𝑖𝑗
𝑛+1

𝑗

=∑𝑇𝑖𝑗
𝑛(𝑝𝑖

𝑛+1 − 𝑝𝑗
𝑛+1)

𝑗

= 𝑞𝑖
𝑛+1, ∀Ω𝑖 ∈ Ω Eq. 4.8 
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where the superscripts 𝑛 and 𝑛 + 1 represent the time step, 𝑝𝑛+1 = {𝑝𝑖
𝑛+1} is the new 

cell-wise constant approximated pressure, 𝑞𝑖
𝑛+1 is the volume average of the total source term 𝑞 

over the cell 𝑖 at timestep 𝑛 + 1, and 𝑇𝑖𝑗
𝑛 is the face transmissibility given by the distance-

weighted harmonic average of 𝑘𝜆𝑇
𝑛  values in the two neighbouring cells Ω𝑖 and Ω𝑗:  

 𝑇𝑖𝑗
𝑛 = |𝜎𝑖𝑗| (

𝑑𝑖,𝜎
𝑘𝑖𝜆𝑇

𝑛
𝑖

+
𝑑𝑗,𝜎

𝑘𝑗𝜆𝑇
𝑛
𝑗

)

−1

. Eq. 4.9 

The transmissibility depends on time through its implicit dependence on the local 

saturation at time 𝑡𝑛. 

 Discretizing the transport equation 

To explain the finite volume discretization of transport equation we first consider a one-

dimensional hyperbolic differential equation of the form: 

 
𝜕𝑠

𝜕𝑡
+
𝜕𝐹(𝑠)

𝜕𝑥
= 0, 𝑠(𝑥, 0) = 𝑠0(𝑥), Eq. 4.10 

where 𝐹 represent the flux function. Partitioning the domain Ω into control volumes Ω𝑖, 

where Ω𝑖 = [𝑥𝑖−1/2, 𝑥𝑖+1/2], let ∆𝑥𝑖 = 𝑥𝑖+1/2 − 𝑥𝑖−1/2. To derive the finite volume discretization, 

Eq. 4.10 is integrated over the grid cell Ω𝑖: 

 ∫
𝜕𝑠

𝜕𝑡
𝑑𝑥

𝑥𝑖+1/2

𝑥𝑖−1/2

+ (𝐹𝑖+1/2 − 𝐹𝑖−1/2) = 0. Eq. 4.11 

𝐹𝑖±1/2 represent the flux function evaluated at the cell interfaces, which can be 

approximated as below in the absence of gravity and capillary forces: 

 𝐹𝑖±1 2⁄ ≈ 𝑓𝑤(𝑠)𝑖±1 2⁄ 𝑣𝑖±1 2⁄ . Eq. 4.12 

𝑓𝑤(𝑠)𝑖±1 2⁄  is the fractional flow function, approximated at the cell interface. Denoting by 

𝑠𝑖 the FV approximation of the average value of the saturation over each control volume Eq. 4.11 

gives: 
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𝑑𝑠𝑖(𝑡)

𝑑𝑡
+

1

∆𝑥𝑖
(𝐹𝑖+1/2 − 𝐹𝑖−1/2) = 0, Eq. 4.13 

Considering the time domain [0, 𝑇] be partitioned into time steps ∆𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛, an 

explicit time discretization of Eq. 4.10 is of the form: 

 𝑠𝑖
𝑛+1 = 𝑠𝑖

𝑛 −
∆𝑡𝑛

∆𝑥𝑖
(𝐹𝑖+1/2

𝑛 − 𝐹𝑖−1/2
𝑛 ) Eq. 4.14 

And an implicit temporal discretization is of the form: 

 𝑠𝑖
𝑛+1 +

∆𝑡𝑛

∆𝑥𝑖
(𝐹𝑖+1/2

𝑛+1 − 𝐹𝑖−1/2
𝑛+1 ) = 𝑠𝑖

𝑛 Eq. 4.15 

To approximate the flux functions, 𝑓𝑤(𝑠)𝑖±1 2⁄ , a standard approach is the upwind scheme. 

It is common to write the upwind scheme on the fractional flow using the direction of the fluxes: 

 𝑓𝑤(𝑠)𝑖+1 2⁄ = {
𝑓𝑤(𝑠𝑖),             𝑖𝑓 𝑣𝑖+1 2⁄ ≥ 0,

𝑓𝑤(𝑠𝑖+1), 𝑖𝑓 𝑣𝑖+1 2⁄ < 0.
 Eq. 4.16 

Extending the finite volume discretization to a more general multi-dimensional transport 

equation of the form: 

 𝜙
𝜕𝑠𝑤
𝜕𝑡

+ ∇. (𝑓𝑤(𝑠𝑤)𝒗) = 𝑞𝑤 Eq. 4.17 

and implementing the so-called 휃 scheme for temporal discretization, a common form in 

reservoir simulations, gives: 

 𝜙𝑖
𝑠𝑖
𝑛+1 − 𝑠𝑖

𝑛

∆𝑡
+

1

|Ω𝑖|
∑[휃𝐹𝑖𝑗(𝑠𝑤

𝑛+1) + (1 − 휃)𝐹𝑖𝑗(𝑠𝑤
𝑛)]

𝑗≠𝑖

= 𝑞𝑖(𝑠𝑤
𝑛). Eq. 4.18 

where ∆𝑡 is the time step in the case the time domain is partitioned into equal intervals, 𝑠𝑖 

is the volume-average of water saturation, 𝜙𝑖 is the porosity of cell 𝑖, and |𝛺𝑖| is the volume of 

cell 𝑖. 휃 = 0 gives the explicit scheme and 휃 = 1 gives the implicit scheme.  
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𝐹𝑖𝑗, the approximation of the flux function over the face 𝜎𝑖𝑗, like in 1-D case, is given by: 

 𝐹𝑖𝑗 ≈ 𝑓𝑤(𝑠)𝑖𝑗𝑣𝑖𝑗 . Eq. 4.19 

where 𝑣𝑖𝑗 is the total flux at the face 𝜎𝑖𝑗, coming from the solution of the pressure 

equation. 𝑓𝑤(𝑠)𝑖𝑗 denotes the fractional-flow function associated with the face 𝜎𝑖𝑗 and is chosen 

using the upwind scheme: 

 𝑓𝑤(𝑠)𝑖𝑗 = {
𝑓𝑤(𝑠𝑖), 𝑖𝑓 𝜈𝑖𝑗 ≥ 0,

𝑓𝑤(𝑠𝑗), 𝑖𝑓 𝜈𝑖𝑗 < 0.
 Eq. 4.20 

The difference between implicit and explicit discretization schemes is the time at which 

the saturation dependent fractional flow functions are evaluated.  

Explicit schemes are less diffusive than implicit ones, but a Courant-Friedrichs-Lewy 

(CFL) condition on the time step size is required to guarantee the stability of the saturation 

solutions (Courant et al., 1928). The CFL condition for Eq. 4.18 with 휃 = 0 holds whenever the 

time-step size satisfies the following inequality (Aarnes et al., 2007a): 

 ∆𝑡 ≤ min
𝑖

𝜙𝑖|Ω𝑖|

𝑣𝑖
𝑛max{𝑓𝑤′ (𝑠)}0≤𝑠≤1

 Eq. 4.21 

where 𝑣𝑖
𝑛 represents the influxes: 

 𝑣𝑖
𝑛 = max(𝑞𝑖, 0) −∑min(𝑣𝑖𝑗 , 0)

𝑗

. Eq. 4.22 

This condition depends on saturation through total fluxes 𝑣𝑖𝑗 and needs to be updated each 

time the pressure equation is solved. This constraint on the time-step size can be very limiting in 

reservoir simulations, especially in regions with large values of the velocity. 

Implicit schemes are free of this restriction and are the more common approach in 

reservoir simulations. However, this scheme solves a nonlinear system of equations using the 
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Newton or the Newton-Raphson iterative methods. Let us briefly introduce the Newton-Raphson 

method. Consider the following residual equation for cell Ω𝑖 (see Eq. 4.18): 

 

𝐺(𝑠𝑖
𝑛+1) = 𝑠𝑖

𝑛+1 − 𝑠𝑖
𝑛

−
∆𝑡

𝜙𝑖|Ω𝑖|
(∑𝐹𝑖𝑗(𝑠𝑤

𝑛+1)

𝑗≠𝑖

+max(𝑞𝑖, 0)

+ 𝑓𝑤(𝑠𝑖
𝑛+1)min(𝑞𝑖, 0)) 

Eq. 4.23 

To solve Eq. 4.18 for the new saturation using this method, we start with an initial guess, 

which is an approximation to the unknown, and move towards the correct solution in each 

iteration. Denoting by �̃�𝑖 an approximation of the new saturation in cell Ω𝑖 and using a Taylor 

expansion, we have: 

 0 = 𝐺(�̃�𝑖 + 𝑑�̃�) ≈ 𝐺(�̃�𝑖) + 𝐺
′(�̃�𝑖)(𝑑�̃�), Eq. 4.24 

which gives a new approximation, �̃�𝑖 + 𝑑�̃�, with 𝐺′(�̃�𝑖)𝑑�̃� = −𝐺(�̃�𝑖). This brief 

introduction to the solution of the implicit discretization and considering that at each iteration a 

linear system of equations is to be solved shows that this scheme is more computationally 

demanding than explicit schemes. This method also introduces more numerical diffusion into the 

solution for large time steps.  

 Numerical errors 

Any approximation method involves numerical errors. Numerical errors usually have 

different sources and components. In steady-state single-phase flows and for a specific 

discretization scheme, the main source of error is the spatial discretization related to the 

resolution of the computational grid. In multiphase flows, another component is the temporal 

discretization error. Other sources of errors are splitting errors due to the decoupling between the 

pressure and saturation equations. The splitting errors can become severe in some cases, 

especially if the time steps are too large. In this section, we demonstrate the numerical errors and 

convergence properties of the finite volume scheme in single and multiphase flow problems. To 
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quantify the errors, we choose layer 70 of the second model of SPE10 benchmark test (Christie 

and Blunt, 2001). This model contains 60 × 220 × 85 cells, in which the top 35 layers (70 ft) 

represent Tarbert formation and the bottom 50 layers (100 ft) represent Upper Ness formation. 

Tarbert formation is a shallow marine environment while the Upper Ness is fluvial. This model, 

used originally as a benchmark for upscaling methods in the 10th SPE comparative solution 

project, is highly heterogeneous. In Figure 4.3, porosity and permeability models are shown. Both 

Tarbert and Upper Ness formations have large permeability variations of several orders of 

magnitudes. 

Porosity model Horizontal permeability Model Vertical permeability model 

   

Figure 4.3: Porosity and permeability models for the SPE10 second model. The permeabilities are 

shown on the logarithmic scale (generated using the MRST2). 

Errors are represented in terms of 𝐿2 or 𝐿1 norm of the difference between the discretized 

solution, denoted by 𝑢ℎ(𝑡) in a general form, and the continuous analytical solution, 𝑢(𝑡): 

 

‖𝑢ℎ − 𝑢‖𝐿2(Ω)
2 = (∫(𝑢ℎ − 𝑢)

2𝑑𝒙
Ω

)

1 2⁄

= (∑ ∫ (𝑢ℎ(𝒙) − 𝑢(𝒙))
2
𝑑𝒙

ΩiΩ𝑖∈Ω

)

1 2⁄

 

‖𝑢ℎ − 𝑢‖𝐿1(Ω) = |∫ (𝑢ℎ − 𝑢)𝑑𝒙
Ω

| = |∑ ∫ (𝑢ℎ(𝒙) − 𝑢(𝒙))𝑑𝒙
ΩiΩ𝑖∈Ω

| 

Eq. 4.25 

 
2 https://www.sintef.no/projectweb/mrst/ 

https://www.sintef.no/projectweb/mrst/
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where 𝑢 can be the pressure 𝑝 or the saturation 𝑠. In most porous media flow problems, 

the exact analytical solution is not known. Therefore, we compute a highly refined numerical 

solution to set it as the reference and close representative of the analytical solution in Eq. 4.25. 

The order of convergence is estimated using the equation below: 

 
𝛼 =

ln(
‖𝑢ℎ𝑗−1 − 𝑢‖𝐿2(Ω)

2

‖𝑢ℎ𝑗 − 𝑢‖L2(Ω)

2 )

ln (
ℎ𝑗−1
ℎ𝑗
)

 
Eq. 4.26 

where ℎ𝑗  and ℎ𝑗−1 denote the new and old step sizes. To quantify the spatial discretization 

errors for the flow equation, we choose the finite volume solution on the original fine resolution 

geological grid as the reference solution. We then compute the TPFA finite volume solution, 𝑝ℎ𝑗 

for a sequence of increasingly coarser computational grids with mesh sizes ℎ𝑗 . Each coarse grid is 

obtained by uniform agglomeration of the base fine grid with a coarsening ratio. In other words, 

if the domain is discretized with a Cartesian grid of 60 × 220 cells in the original form, a coarse 

grid with the coarsening ratio or the agglomeration ratio of 2 is a Cartesian grid of 30 × 110 

cells. Boundary conditions include a no-flow condition imposed on the 𝑌𝑀𝐴𝑋 and 𝑌𝑀𝐼𝑁 

exterior boundaries, and constant pressures at the 𝑋𝑀𝐼𝑁 and 𝑋𝑀𝐴𝑋 boundaries. The 

discretization error for different levels of coarse grid resolution is computed using Eq. 4.25. The 

results are represented in Table 4.1. The pressure solutions for different discretization levels are 

shown in Figure 4.4. As expected, the finer the resolution of the computational grid is, the 

smaller the discretization error is. But on the other hand, the main constraint in real-field three-

dimensional reservoir simulations is the computational cost of solving flow problems in high-

resolution grids. 
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Table 4.1: Spatial discretization numerical error and convergence order for the numerical 

approximation of flow equation using finite volume method in layer 70 of the SPE10 test case. 

Grid resolution L2 norm 

‖𝒖𝒉 − 𝒖‖𝑳𝟐(𝛀)
𝟐  

L2 relative error 

(‖𝒖𝒉 − 𝒖‖𝑳𝟐(𝛀)
𝟐 )

‖𝒖‖𝐋𝟐(𝛀)
𝟐

 

Order of convergence 

3*11 7.79E+07 3.45E-02 -- 

6*22 4.53E+07 2.00E-02 0.781269 

12*44 2.63E+07 1.16E-02 0.783122 

24*44 1.53E+07 6.78E-03 0.780786 
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Figure 4.4: Pressure approximations using finite volume discretization of the single-phase flow 

equation for different levels of computational grid resolution in layer 70 of the SPE10 benchmark 

test. 

To demonstrate the temporal discretization error of the implicit finite volume solution of 

the transport equation in the same layer of the SPE10 test case, we consider a waterflood 

problem. The flow and pressure boundary conditions are kept the same as in the previous 

example. The reservoir is initially fully saturated with oil with a viscosity of 0.5 𝑐𝑝. The water of 

viscosity 0.05 𝑐𝑝 is injected from the left (𝑋𝑀𝐼𝑁) boundary of the domain. The temporal 

discretization error is computed after 1000 days discretized with one timestep i.e., ∆𝑡 = 1000 

days. First, the pressure is approximated using a TPFA finite volume scheme and the fluxes are 

used to approximate the saturation in different cases. The transport equation is numerically 

solved with an implicit formulation with different cases of saturation substeps 𝛿𝑡 = ∆𝑡 2𝑛⁄ , with 

 𝑛 = 0,… ,6. The reference solution is set to be the transport solution with 27 = 128 saturation 

substeps. 

Table 4.2 shows the L1 errors and convergence rates. Some of the saturation profiles 

along with the reference solution are presented in Figure 4.5. The decrease in numerical diffusion 

with decreasing the size of the saturation time step can be seen qualitatively from this figure. 
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Table 4.2: Temporal discretization numerical error and convergence order for the FV 

approximation of the transport equation using the implicit scheme in layer 70 of SPE10 model. 

Saturation steps L1 norm L1 relative error Order of convergence 

1 3.63E+03 4.90E-01 -- 

2 2.23E+03 3.01E-01 0.70 

4 1.29E+03 1.75E-01 0.79 

8 7.08E+02 9.55E-02 0.87 

16 3.61E+02 4.86E-02 0.97 

32 1.64E+02 2.21E-02 1.14 

64 5.67E+01 7.64E-03 1.53 
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Figure 4.5: Saturation approximation using the implicit scheme for different numbers of 

saturation time steps in layer 70 of the SPE10 benchmark test. 

The last type of numerical errors we study is the splitting error. As mentioned before, the 

pressure and saturation equations are coupled through the mobility terms in the pressure equation 

and velocity terms in the saturation equation. To demonstrate the splitting error related to the 

decoupling of flow and transport solvers, we consider the same model as in the previous example, 

with same oil viscosity of 0.5 𝑐𝑝 and two cases of water viscosity, 0.05 and 0.5 𝑐𝑝. The 

motivation behind this is to show the impact of viscosity ratio 𝑀 = 𝜇𝑜 𝜇𝑤⁄  on the splitting error. 

The total time of simulation, 𝑇, is 4000 days, which is discretized with different timestep sizes, 

∆𝑡, in different cases: ∆𝑡 = 𝑇 2𝑛⁄ , with 𝑛 = 0,… ,6. The saturation is solved using the explicit 

finite volume scheme in all cases. 

Table 4.3 and Table 4.4 present the L2 and L1 errors related to the pressure and saturation 

approximations for the two cases of 𝑀. Figure 4.6 shows the saturation profiles in comparison 

with the reference solution, which is the IMPES solution with the time step of size ∆𝑡 = 𝑇 27⁄ . 

These saturation profiles qualitatively show the impact of mobility variations on the coupling 

between pressure and saturation equations. When the viscosity ratio, 𝑀, deviates from one, the 

coupling between pressure and saturation is stronger and large time steps can lead to large errors. 
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Table 4.3: Splitting error and convergence order for the FV IMPES scheme in a waterflood 

problem with the viscosity ratio 𝑀 = 𝜇𝑜 𝜇𝑤⁄ = 10 in layer 70 of the SPE10 test case. 

Splitting 

steps 

Saturation Pressure  

L1 norm relative Order of 

convergence 

L2 norm relative Order of 

convergence 

1 3.28E-01 -- 1.61E-02 -- 

2 2.00E-01 0.71 3.26E-03 2.31 

8 3.68E-02 1.21 1.17E-03 1.88 

16 1.62E-02 1.18 3.68E-04 1.66 

32 7.24E-03 1.16 1.28E-04 1.52 

64 2.37E-03 1.61 3.86E-05 1.74 

 

Table 4.4: Splitting error and convergence order for the FV IMPES scheme in a waterflood 

problem with the viscosity ratio 𝑀 = 𝜇𝑜 𝜇𝑤⁄ = 1 in layer 70 of the SPE10 test case. 

Splitting 

steps 

Saturation Pressure  

L-2 norm relative Order of 

convergence 

L-2 norm relative Order of 

convergence 

1 1.32E-01 -- 7.92E-03 -- 

2 6.74E-02 0.97 2.98E-03 1.41 

4 3.43E-02 0.98 1.61E-03 0.89 

8 1.68E-02 1.03 1.20E-03 0.42 

16 7.52E-03 1.16 6.88E-04 0.80 

32 3.17E-03 1.24 2.90E-04 1.25 

64 1.03E-03 1.63 8.96E-05 1.69 
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Figure 4.6: Saturation profiles using the FV IMPES scheme with splitting steps of 1, 16, and 64 

and two cases of viscosity ratio in layer 70 of the SPE10 benchmark test. 

 Discontinuous Galerkin method 

 Discretizing the flow equation 

In this section, we detail the discontinuous Galerkin (DG) discretization method for 

solving the multiphase flow equation. To obtain the DG discretization of the pressure equation 
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Eq. 2.16, we first re-write the elliptic pressure equation in a mixed form through the introduction 

of an auxiliary variable 𝒛 ≔ ∇𝑝 (Cockburn and Shu, 1998) 

 {

𝒛 =  −∇𝑝,              𝑖𝑛 𝛺,

𝛻. (𝑘𝜆𝑇𝒛) = 𝑞,      𝑖𝑛 𝛺,
𝑝 = 𝑝𝐷 ,            𝑜𝑛 𝜕𝛺𝐷 ,
𝒛. 𝒏 = 0,          𝑜𝑛 𝜕𝛺𝑁 .

 Eq. 4.27 

By multiplying the first and second equations by smooth test functions 𝒚 and 𝜔, 

respectively, and integrating by part on a cell Ω𝑖 we get, 

 ∫ 𝒚. 𝒛
𝛺𝑖

−∫ ∇. 𝒚𝑝
𝛺𝑖

+∫ 𝒚. 𝒏𝑝
𝜕𝛺𝑖

= 0, Eq. 4.28 

 −∫ ∇𝜔. (𝑘𝜆𝑇𝒛)
𝛺𝑖

+∫ 𝜔𝑘𝜆𝑇𝒛. 𝑛
𝜕𝛺𝑖

= ∫ 𝜔𝑞
𝛺𝑖

. Eq. 4.29 

Let us denote by ℙ𝑃(Ω𝑖) the space of polynomials of degree at most 𝑃 on Ω𝑖 ∈ Ω and by 

𝑃𝑃(𝛺) = {𝜔𝑖: �̅� → 𝑅; ∀𝛺𝑖 ∈ 𝛺,𝜔𝑖|𝛺𝑖 ∈ 𝑃𝑃(𝛺𝑖)} the space of discontinuous polynomials on the 

partitioned domain Ω. The general form of the local discontinuous Galerkin method is obtained 

as follows to find 𝑝𝑖 ∈ 𝑃𝑃(𝛺) and  𝒛𝑖 ∈ [𝑃𝑃(Ω)]
2 (Arnold et al., 2002) 

 ∫ 𝒚. 𝒛𝑖
Ω𝑖

−∫ ∇. 𝒚𝑝𝑖
Ω𝑖

+∫ 𝒚. 𝒏𝑖�̂�𝑖
𝜕Ω𝑖

= 0 Eq. 4.30 

 −∫ ∇ω. (𝑘𝜆𝑇𝒛𝑖)
Ω𝑖

+∫ 𝜔𝑘𝜆𝑇�̂�𝑖. 𝒏𝑖
𝜕Ω𝑖

= ∫ 𝜔𝑞
Ω𝑖

. Eq. 4.31 

Here, �̂�𝑖 and �̂�𝑖 are approximations to 𝑝 and 𝒛 = −∇𝑝, respectively, on the boundary of 

Ω𝑖, that need to be defined. We choose the form introduced by Cockburn and Shu (1998). Let us 

assume we are at the current time step 𝑛 and 𝑝𝑛, 𝒛𝑛, and 𝑠𝑛 are known. The DG discretization 

method to solve Eq. 4.27 solves the following system to obtain 𝑝𝑖
𝑛+1 ∈ 𝑃𝑃(𝛺) and 𝒛𝑖

𝑛+1 ∈

[𝑃𝑃(𝛺)]
2, for ∀Ω𝑖 ∈ Ω, ∀𝒚𝑖 ∈ [𝑃𝑃(𝛺)]

2, and ∀𝜔𝑖 ∈ 𝑃𝑃(𝛺), (Frank et al. , 2015): 

 ∫ 𝒚𝑖. 𝒛𝑖
𝑛+1

𝛺𝑖

−∫ 𝛻. 𝒚𝑖𝑝𝑖
𝑛+1

𝛺𝑖

+∑∫ 𝒚𝑖 . 𝒏𝑖𝑗 {

{𝑝𝑖
𝑛+1},   𝑜𝑛 휀𝛺

𝑝𝐷 ,           𝑜𝑛 휀𝐷
𝑝𝑖
𝑛+1,      𝑜𝑛 휀𝑁

𝜎𝑖𝑗𝑗

= 0, Eq. 4.32 
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−∫ 𝛻𝜔𝑖. (𝑘𝑖𝜆𝑇
𝑛
𝑖
𝒛𝑖
𝑛+1)

𝛺𝑖

+∑∫ 𝜔𝑖  

{
 
 

 
 {(𝑘𝑖𝜆𝑇

𝑛
𝑖
)𝒛𝑖
𝑛+1}. 𝒏𝑖𝑗 +

휂

ℎ𝑖𝑗
⟦𝑝𝑖

𝑛+1⟧. 𝒏𝑖𝑗,               𝑜𝑛 휀𝛺

(𝑘𝑖𝜆𝑇
𝑛
𝑖
)𝒛𝑖
𝑛+1. 𝒏𝑖𝑗 +

휂

ℎ𝑖𝑗
(𝑝𝑖

𝑛+1 − 𝑝𝐷),                𝑜𝑛 휀𝐷

0,                                                                                  𝑜𝑛 휀𝑁

𝜎𝑖𝑗𝑗

= ∫ 𝜔𝑖𝑞𝑖
𝑛+1

𝛺𝑖

 

Eq. 4.33 

 휂 is a user-defined penalty coefficient ℎ𝑖𝑗 is the diameter of the face 𝜎𝑖𝑗. 휀 = {𝜕Ω𝑖} is the 

set of all faces composed of interior faces 휀Ω and boundary faces 휀∂Ω. Boundary faces include the 

Dirichlet set 휀𝐷 and Neumann set 휀𝑁. For any interior face 𝜎𝑖𝑗 and any function 𝜔 = 𝜔(𝑥), the 

jump of 𝜔 is defined as, 

 ⟦𝜔⟧𝑖𝑗 ∶= 𝜔𝑖𝒏𝑖𝑗 +𝜔𝑗𝒏𝑗𝑖 = (𝜔𝑖 − 𝜔𝑗)𝒏𝑖𝑗 Eq. 4.34 

and the weighted average of 𝜔 as: 

 {𝜔}𝑖𝑗 = 𝜔𝑖𝑤𝑖𝑗 + 𝜔𝑗(1 − 𝑤𝑖𝑗). Eq. 4.35 

Taking 𝑤𝑖𝑗 = 0.5 leads to the simple arithmetic averaging. 

For the DG numerical resolution of Eq. 4.32 and Eq. 4.33, we use FESTUNG3, the Finite 

Element Simulation Toolbox for Unstructured Grids, an open-source MATLAB/GNU Octave 

toolbox, developed as a package for discontinuous Galerkin methods. For more details of this DG 

method and its implementation, we refer to the series of papers that the authors of this toolbox 

have published: Frank et al. (2015), Reuter et al. (2016), Jaust et al. (2018), Reuter et al. (2018), 

and Reuter et al. (2020). 

 Adaptation of FESTUNG for reservoir simulations 

To adapt the FESTUNG toolbox for flow simulations in porous media and better take the 

permeability heterogeneities into account, we have implemented some changes. Following Di 

Pietro and Ern (2011), we have changed the standard arithmetic average in the averaging operator 

 
3 https://github.com/festung/FESTUNG 

https://github.com/festung/FESTUNG
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of Eq. 4.35 into a harmonic average depending on the values of (𝑘𝜆𝑇) calculated based on the 

saturation at the previous time step in a sequential multiphase flow model: 

 𝑤𝑖𝑗
𝑛 =

𝛼𝑗
𝑛

𝛼𝑖
𝑛 + 𝛼𝑗

𝑛 Eq. 4.36 

where α𝑛 = 𝑘𝜆𝑇
𝑛 . Another necessary improvement to generalize the DG discretization to 

porous medium related flow problems is in the penalization of internal and boundary jumps. The 

introduction of the harmonic average of diffusion coefficient (𝑘𝜆𝑇) to penalize jumps across 

faces in heterogeneous anisotropic media was proposed in the work of Ern et al. (2008). 

Therefore, 
𝜂

ℎ𝑖𝑗
 in Eq. 4.33 is replaced with 

𝜂𝛾𝑖𝑗
𝑛

ℎ𝑖𝑗
  (Jamei and Ghafouri, 2016). 𝛾𝑖𝑗

𝑛  is a penalty factor, 

that unlike the user-defined 휂, considers the permeability and mobility on both sides of the 

interface 𝜎𝑖𝑗. 𝛾𝑖𝑗
𝑛  on the interfaces is set to be the harmonic average of α𝑛 values in the two 

neighbouring cells for the interior faces 𝜎𝑖𝑗 ∈ 휀Ω: 

 𝛾𝑖𝑗
𝑛 =

2 × 𝛼𝑖
𝑛𝛼𝑗

𝑛

𝛼𝑖
𝑛 + 𝛼𝑗

𝑛  Eq. 4.37 

This value reduces to α𝑖
𝑛 in Dirichlet boundaries. The use of the harmonic average of 

diffusivity coefficient (𝑘𝜆) to penalize jumps and diffusivity dependant weights in averaging 

operators has been proved to be necessary for heterogeneous porous media, similar to the 

importance of harmonic averaged terms in the calculation of face transmissibility in finite volume 

methods (Di Pietro and Ern, 2011). 

When the diffusion coefficient heterogeneity has several orders of magnitude, it is critical 

to adapt the DG scheme. Figure 4.7 and Figure 4.8 show the pressure and velocity 

approximations computed using the DG method, with FESTUNG default and adapted schemes, 

in layer 70 of SPE10 benchmark model. We set Dirichlet conditions on the west and east 

boundaries, and a no-flow condition on the north and south boundaries. The computations are 

done on the original fine grid. The order of approximation in the DG scheme is set to one in all 

grid cells. From this figure, it can be observed that the impact of the adapted penalty strategy and 

diffusion dependent weights in heterogeneous domains becomes more important especially in 
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flux approximations. By comparing the flux magnitudes in default and adapted implementations 

and considering the permeability field shown in Figure 4.9, it can be observed that the difference 

is larger in high-permeability zones. This high permeability subdomains, shown in red in Figure 

4.9, have important impacts on the solution of the transport equation. 

  

Figure 4.7: Pressure approximations using the DG scheme with the default formulation in the left 

plot and the adapted formulation in the right plot. 
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Figure 4.8: Magnitude of DG approximations of (∇𝑝) using the default formulation in the left plot 

and the adapted formulation in the right plot, on a logarithmic scale. 

 

Figure 4.9: Permeability field in layer 70 of SPE10 second model, shown on a logarithmic scale 

to better represent the variations. 
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 Reconstruction of conservative fluxes 

To reconstruct conservative fluxes from the DG solution we compute: 

 𝜈𝑖𝑗
𝑛+1 = 

{
 
 

 
 ∫ {(𝑘𝑖𝜆𝑇

𝑛
𝑖
)𝒛𝑖
𝑛+1}. 𝒏𝑖𝑗 +

휂𝛾𝑖𝑗
𝑛

ℎ𝑖𝑗
⟦𝑝𝑖

𝑛+1⟧. 𝒏𝑖𝑗
𝜎𝑖𝑗

,            𝑜𝑛 휀𝛺,

∫ (𝑘𝑖𝜆𝑇
𝑛
𝑖
)𝒛𝑖
𝑛+1. 𝒏𝑖𝑗 +

휂𝛾𝑖𝑗
𝑛

ℎ𝑖𝑗
(𝑝𝑖

𝑛+1 − 𝑝𝐷)
𝜎𝑖𝑗

,             𝑜𝑛 휀𝐷 ,

 Eq. 4.38 

which corresponds to Eq. 4.33 with the test function 𝜔 = 1. This equation also shows the 

local conservation property of DG scheme. 

 Using the underlying permeability values 

Another objective of using DG in this work is to test the idea of using the underlying fine 

permeability values instead of one upscaled permeability value per grid block when evaluating 

the integral terms. 

In DG, the face and cell integrals are evaluated using quadrature integration rules. The 

quadrature rule for the reference element Ω̂ is defined by: 

 ∫ �̂�(�̂�)𝑑�̂�
Ω̂

=∑𝜔𝑟�̂�(�̂�𝑟)

𝑅

𝑟=1

 Eq. 4.39 

with 𝑅 quadrature points �̂�𝑟 ∈ Ω̂ and quadrature weights 𝜔𝑟 ∈ ℝ. The quadrature rule and 

all the integrals are defined in the reference element and a one-to-one mapping 𝐹𝑖 relates the 

reference element to every physical cell. The idea is to use a lower resolution grid along with the 

underlying fine permeability values at the quadrature points instead of one upscaled value for all 

the quadrature points in one cell or face. One of the points to notice is the decision to use the 

finest permeability value at the closest point to the quadrature point or to use an intermediate 

resolution value depending on the total number of quadrature points per element.  
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As already mentioned in the DG formulation, we assume that all the coefficient functions 

are in piecewise polynomial spaces. Considering the diffusivity coefficient in the multiphase flow 

equation 𝛼(𝑡) = 𝑘𝜆𝑇, in FESTUNG, we seek for a matrix Α(𝑡) ∈ ℝ𝐾×𝑁such that: 

 𝛼𝑖(𝑡, 𝒙)|Ω𝑖 =∑Α𝑖𝑙(𝑡)𝜑𝑖𝑙(𝒙)

𝑁

𝑙=1

 Eq. 4.40 

where 𝛼𝑖(𝑡) approximates 𝛼(𝑡) = 𝑘𝜆𝑇. In FESTUNG, L2-projection is used to produce 

this approximation, being locally defined for each element Ω𝑖: 

 ∀𝜔𝑖 ∈ 𝕡𝑑(Ω),∫ 𝜔𝑖𝛼𝑖(𝑡)
𝛺𝑖

= ∫ 𝜔𝑖𝛼(𝑡)
Ω𝑖

 Eq. 4.41 

Choosing 𝜔𝑙 = 𝜑𝑖𝑙 for 𝑗 ∈ {1, … ,𝑁} and using the numerical quadrature, we get (see 

Frank et al. (2015) for more details): 

 

∫ [
�̂�1(𝒙)𝛼(𝑡, 𝑭𝑖(�̂�))

⋮
�̂�𝑁(�̂�)𝛼(𝑡, 𝑭𝑖(𝒙))

] 𝑑𝒙
Ω̂

=∑𝜔𝑟 [
𝛼(𝑡, 𝑭1(�̂�𝑟))

⋮
𝛼(𝑡, 𝑭𝐾(�̂�𝑟))

] [�̂�1(�̂�𝑟), ⋯ , �̂�𝑁(�̂�𝑟)]

𝑅

𝑟=1

= [
𝛼(𝑡, 𝑭1(�̂�1)) ⋯ 𝛼(𝑡, 𝑭1(�̂�𝑅))

⋮ ⋱ ⋮
𝛼(𝑡, 𝑭𝐾(�̂�1)) ⋯ 𝛼(𝑡, 𝑭𝐾(�̂�𝑅))

] [
𝜔1�̂�1(�̂�1) ⋯ 𝜔1�̂�𝑁(�̂�1)

⋮ ⋱ ⋮
𝜔𝑅�̂�1(�̂�𝑅) ⋯ 𝜔𝑅�̂�𝑁(�̂�𝑅)

] 

Eq. 4.42 

Here, the idea is to use the finer resolution values at the positions of 𝛼(𝑡, 𝐹𝑖(�̂�𝑟)) in the 

matrix [
𝛼(𝑡, 𝑭1(�̂�1)) ⋯ 𝛼(𝑡, 𝑭1(�̂�𝑅))

⋮ ⋱ ⋮
𝛼(𝑡, 𝑭𝐾(�̂�1)) ⋯ 𝛼(𝑡, 𝑭𝐾(�̂�𝑅))

] instead of the coarse-scale values. There is a limit in 

the number of quadrature points per element for a specific order of polynomials. We have tried to 

test this idea and Figure 4.10 shows an example of the preliminary results. As can be seen, the 

details in the right plot with the underlying permeability have increased in some parts of the 

domain. However, we did not proceed this approach further and it is planned to be continued in 

the future work (see the perspectives in chapter 7). 



66 
 

Fine resolution, linear DG, default 

FESTUNG 

 

Coarse resolution, linear DG, 

default FESTUNG 

 

Coarse resolution, linear DG, 

underlying permeability 

 

Figure 4.10: Magnitude of flux computed using the DG discretization scheme with linear 

approximations, on fine and coarse grids for the default implementation, and the coarse grid with 

underlying fine permeability values. 

 Numerical errors 

In this section, we demonstrate the error estimations for DG discretization scheme of the 

flow equation. Throughout this work, we implement the DG scheme only for the pressure 

equation in the immiscible incompressible flow problems. We choose layer 70 of SPE 10 

benchmark test, like previous examples. This layer, from Upper Ness formation, has 

heterogeneity over several orders of magnitude and has high-permeable sandstone channelled 

into low-permeable flow barriers. Due to limitations in available computational resources, we 

have chosen a subdomain that covers 60 × 60 cells of the whole computational grid with 

60 × 220 cells. The errors are demonstrated in terms of the L2-norm for approximated solutions 

computed at different resolutions: the 𝑃-resolution and the ℎ-resolution, associated with the order 

of polynomials and the mesh resolution, respectively. 

 p-convergence 

To evaluate the 𝑃-convergence of the DG scheme, we fix the spatial resolution at the 

original resolution and change the order of approximations from 0 to 3. The reference solution is 
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set as the DG approximated solution on this Cartesian grid with an order of approximation 4. 

Table 4.5 represents the L2-norms relative to the reference solution.  

Table 4.5: L2 norm for 𝑝 and 𝒛 = ∇𝑝 on the original grid with different orders of approximation. 

Polynomial Degree Pressure L2 norm 𝒛𝒙 L2 norm  𝒛𝒚  L-2 norm  

0 4.17E+06 6.05E+05 4.26E+05 

1 4.00E+05 1.98E+05 1.68E+05 

2 1.38E+05 1.11E+05 1.07E+05 

3 6.42E+04 8.09E+04 8.56E+04 

   h-convergence 

To evaluate the ℎ-convergence of the DG scheme, we fix the order of approximation and 

change the mesh resolution. Computational grids of different resolutions are created through a 

uniform agglomeration of the original fine grid, with agglomeration ratios of 1 (original grid), 2, 

4, 5, 10, and 20 (the coarsest resolution). The order of approximating polynomials is set to 4, in 

all cases. The reference solution is the DG approximation with the order of polynomials 4, on the 

highest resolution grid. Table 4.6 represents L2-norms for the pressure 𝑝 and the numerical flux 

∇𝑝. It is worth noting the higher order of convergence in the DG pressure approximation, which 

is close to 1, compared to the FV pressure approximation, which is about 0.8. 

Table 4.6: L2 norm for pressure and numerical flux approximations, for different cases of grid 

resolution. 

Agglomeration 

ratio 

Pressure L-2 

norm 

Pressure order 

of convergence 

𝒛𝒙 L2 norm  𝒛𝒚  L-2 norm  

2 7.87E+06 1.17E+00 8.59E+05 6.28E+05 

4 1.78E+07 9.99E-01 1.12E+06 7.74E+05 

5 2.22E+07 9.33E-01 1.16E+06 7.72E+05 

10 4.24E+07 9.77E-01 1.36E+06 7.94E+05 

20 8.35E+07 -- 1.39E+06 7.89E+05 

To compare the 𝑃 and ℎ convergence rates, relative L2 errors in the x-component of 𝒛 =

∇𝑝, from both of the previous convergence tests, are plotted in Figure 4.11. To have a unified 

comparison, these relative errors are plotted versus the number of global degrees of freedom. 

This figure confirms that the 𝑃-convergence is faster than the ℎ-convergence. 
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Figure 4.11: 𝑧𝑥 relative L2 errors versus the number of global degrees of freedom, for both 𝑃 and 

ℎ convergence tests. Both axes are in logarithmic scale. 

Figure 4.12 presents the magnitude of 𝒛 = ∇𝑝 for the reference solution and some 

variations of the mesh resolution and the order of polynomials. The total number of unknowns in 

the case with 𝑃 = 1 in the original fine grid is the same as in the case with 𝑃 = 3 in the 

coarsened grid with an agglomeration ratio of 2. The comparison of their corresponding plots 

shows that the finer resolution approximation is closer to the reference solution. It is also worth 

noticing that the DG method with the higher order of approximation on a lower resolution grid 

successfully captures the flow details in areas with large variations. 

1.00E-02

1.00E-01

1.00E+00

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06

Number of global degrees of freedom

Relative L2 error 

p convergence h convergence
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Original resolution, 

Order of approximation=4 

 

Original resolution, 

Order of approximation=1 

 

Agglomeration ratio=2, 

Order of approximation=3 

 

Figure 4.12: Magnitude of 𝒛 in a subgrid of layer 70 of the SPE10 test case. 
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 Fast front tracking method 

We have developed a fast front tracking technique (FFrT) to estimate the position of the 

saturation discontinuity without solving the transport equation in each cell of the domain. The 

idea of this method is that the velocity of the front is mainly controlled by the interplay between 

the heterogeneity of absolute permeability and the mobility jump at the front, and not by the 

rarefaction wave behind the front that is continuously spreading along time, damping the 

instability. This method is an extreme simplification of the initial problem that is expected to 

yield a fast estimation of the location of the water-oil interface, based on some concepts from 

pore network modelling and Buckley Leverett equation. This method is an initial value problem, 

meaning that it computes the position of the interface from the given initial position of the front 

or the saturation discontinuity. 

In this chapter, we detail the formulation of the proposed technique. We start with a 

review of the Buckley Leverett problem, as we use it in the proposed fast front tracking 

technique. We then present the formulation and the solution algorithm of the FFrT method, 

followed by several test cases to validate this technique in comparison with the analytical and 

standard numerical methods. 

  Buckley Leverett problem 

One of the simplest and most widely used methods for estimating the advance of a fluid 

displacement front, in a one-dimensional immiscible displacement process, is the Buckley-

Leverett (BL) theory. Buckley and Leverett (1942) provided an analytical solution for the case of 

a linear, incompressible, immiscible, two-phase flow system when gravity and capillary pressure 

effects are negligible. Water is injected at one edge and oil is produced at the other one. This 

method uses fractional flow theory to estimate the rate at which the injected water moves in the 

porous medium: 

 −𝒗
𝜕𝑓𝑤
𝜕𝒙

= 𝜙
𝜕𝑠

𝜕𝑡
 Eq. 5.1 
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This equation is referred to as the Buckley Leverett equation. It belongs to a type called 

“quasi-linear homogeneous equation of the first order with two independent variables” (Marle, 

1981). According to the method of characteristics applied to the Buckley-Leverett equation, the 

velocity of the slice of the fluids with a saturation 𝑠, 𝒗|𝑠, is given by: 

 𝒗|𝑠 =
𝒗

𝜙

𝜕𝑓𝑤
𝜕𝑠
|
𝑠
 Eq. 5.2 

In other words, if at the point 𝒙𝑓 and at time 𝑡1 the saturation is equal to 𝑠𝑓, it is still equal 

to this value at the position 𝒙𝑓 + Δ𝑡
𝒗

𝜙

𝜕𝑓𝑤

𝜕𝑠
|
𝑠=𝑠𝑓

 and at time 𝑡1 + Δ𝑡. 

This solution may lead to meaningless multivalued saturations at the same location 

because these saturations do not travel at the same velocities. Buckley and Leverett assumed the 

existence of a saturation discontinuity and changed the solution obtained from the method of 

characteristics to a profile with a saturation discontinuity, given by a Rankine-Hugoniot condition 

(Marle, 1981). The Welge tangent method allows us to determine the value of the saturation 

shock and thus the position of discontinuity (Welge, 1952): 

 
𝜕𝑓𝑤
𝜕𝑠
|
𝑠=𝑠𝑓

= 
𝑓𝑤(𝑠𝑓) − 𝑓𝑤(𝑠𝑤𝑖)

𝑠𝑓 − 𝑠𝑤𝑖
  Eq. 5.3 

 

 FFrT formulation 

Considering a two-phase flow problem like a waterflood, we suppose that the saturation 

takes only two values corresponding to the saturation ahead the front (typically 𝑠𝑤𝑖) and behind 

the front (typically 𝑠𝑓) the saturation corresponding to the Buckley-Leverett shock front. The 

mobility ratio between both fluids corresponds to the mobility ratio at the front. Explicit 

expressions may be obtained analytically if the input relative permeabilities are quadratic, that 

reads: 
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{
 

 𝜆𝑇
+ =

1

𝜇𝑜
, 𝑠 = 𝑠𝑤𝑖

𝜆𝑇
− =

2

𝜇𝑜
(1 −

1

√1 +𝑀
) , 𝑠 = 𝑠𝑓

 Eq. 5.4 

Here, 𝑀 = 𝜇𝑜/𝜇𝑤, is the viscosity ratio of displaced to the displacing fluid. It can be 

observed that for M=3 the mobility ratio at the front is equal to 1 and the viscous instability is 

less severe than that indicated by the value of M corresponding to pure fluids in a Hele-Shaw cell 

(Saffman and Taylor, 1958). 

We define 휁𝐹
𝑛 as the set of all faces 𝜎𝑖𝑗 where the front crosses the segment (𝒙𝑖, 𝒙𝑗). 𝒙𝑖 

and 𝒙𝑗 represent the cell centres of the cells 𝑖 and 𝑗. 𝒙𝑗 represents the downstream cell depending 

on the direction of the flow (see Figure 5.1).  

 

Figure 5.1: The two cells and the front position used to define the FFrT algorithm. 

휁𝐹
0 is initialized depending on the initial conditions of the transport problem. In the 

waterflood problem that we consider, the left Dirichlet boundary is considered as 휁𝐹
0. Now, 

consider that we are at time step 𝑛 of the simulation, below is the flowchart of the method for 

each time step: 

(1) Computation of the transmissibility values at all faces: 

In the FFrT technique, the saturation can only take two values which represent the 

absence and presence of the front in the cell. Consequently, mobility takes the values of 𝜆𝑇
+ or 𝜆𝑇

− 

and 𝑘𝑟𝛼 takes the value of 𝑘𝑟𝛼
𝑚𝑎𝑥

 depending on the position of the front. To compute the 

transmissibility values, we use a distance-weighted harmonic averaging of the cell mobilities, like 

Eq. 4.9 in the TPFA FV scheme: 
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 𝑇𝑖𝑗
𝑛 = 2|𝜎𝑖𝑗|𝑑𝑖𝑗 (

𝑑𝑖,𝜎
𝑘𝑖𝜆𝑇

𝑛
𝑖

+
𝑑𝑗,𝜎

𝑘𝑗𝜆𝑇
𝑛
𝑗

)

−1

 Eq. 5.5 

The differences with the TPFA method include the calculation of total mobility values 

that only changes between two values, 𝜆𝑇
+ and 𝜆𝑇

−, and the computation of the transmissibility at 

the 휁𝑓 faces (like in Figure 5.1). At these front faces, the transmissibility is computed as: 

 𝑇𝑖𝑗
𝑛 = 2|𝜎𝑖𝑗| 𝑑𝑖𝑗 (

𝑑𝑖,𝑓

𝑘𝑖𝜆𝑇
− +

𝑑𝑓,𝜎

𝑘𝑖𝜆𝑇
+ +

𝑑𝑗,𝜎

𝑘𝑗𝜆𝑇
+)

−1

    Eq. 5.6 

which is equivalent to the distance-weighted harmonic average of the three divisions with 

different properties, depending on the position of the front. It should be noted that thanks to the 

simplification of this technique, the transmissibility values need to be modified only at the 

position of the front. Initially 𝜆𝑇 =
𝑘𝑟𝑜
𝑚𝑎𝑥

𝜇𝑜
. This value is updated each time at 𝜎𝑖𝑗 ∈ 휁𝑓

𝑛.  

(2) Solving the flow equation: 

The pressures are calculated using the TPFA formulation of the finite volume method, by 

solving Eq. 4.8 for all Ω𝑖 ∈ Ω, with the transmissibility values 𝑇𝑖𝑗
𝑛 calculated using Eq. 5.5 and 

Eq. 5.6. It can be noted that the only difference between this method and a standard FV method in 

solving the flow equation is the calculation of transmissibility values. 

(3) Computing the saturation at the front: 

The Welge tangent method, Eq. 5.3, is used to construct the saturation at the front, 𝑠𝑓, 

analytically. For the case of quadratic relative permeabilities, this equation gives the saturation at 

the front as a function of the viscosity ratio, 𝑀 = 𝜇𝑜 𝜇𝑤⁄ , as follows: 

 𝑠𝑓 = 1 √1 +𝑀⁄  Eq. 5.7 

(4) Computing the velocity at the front: 
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We compute the velocity at the front, 𝜈𝑓,𝑖,𝑗
𝑛+1, using the discretized form of Eq. 5.2 and the 

total fluxes 𝜈𝑖𝑗
𝑛+1: 

 𝜈𝑓,𝑖,𝑗
𝑛+1 = 

𝜈𝑖𝑗
𝑛+1

|𝜎𝑖𝑗|𝜙
 
𝜕𝑓𝑤
𝜕𝑠

|
𝑠𝑓

 Eq. 5.8 

(5) Moving the front: 

Considering that only the normal component of velocity accounts for the local velocity at 

the front, the discretized front is advanced according to the ordinary interface evolution equation: 

 
𝒙𝑓,𝑖,𝑗
𝑛+1 − 𝒙𝑓,𝑖,𝑗

𝑛

𝛿𝑡𝑛+1
= 𝜈𝑓,𝑖,𝑗

𝑛+1𝒏𝑖𝑗 Eq. 5.9 

𝛿𝑡𝑛+1 denotes the sub-timestep for the update of the front position. 

(6) Defining the sub-timestep: 

We define the sub-timestep by posing a condition that measures the smallest time to reach 

the cell centre: 

 𝛿𝑡𝑛+1 = 𝑚𝑖𝑛
𝜎𝑖𝑗∈𝜁𝐹

𝑛
(
‖𝒙𝑗 − 𝒙𝑓,𝑖,𝑗

𝑛 ‖

𝜈𝑓,𝑖,𝑗
𝑛+1 ). Eq. 5.10 

𝒙𝑓,𝑖,𝑗
𝑛  represents the current position of the front between two adjacent cells 𝑖 and 𝑗 (see 

Figure 5.1). 

We repeat the steps (5) and (6) until the sum of all δ𝑡𝑛+1 is equal to the time step in the 

main scheme, ∆𝑡𝑛+1.  

  Test case validation 

To test the proposed FFrT method, we consider two-dimensional water-flood problems, 

where oil is displaced by water with identical or different viscosities. Both fluids are 

incompressible. Two regimes of flow can be distinguished, “stable” and “unstable”. Here, the 



75 
 

viscosity ratio, 𝑀, is used to differentiate these two types of flow. 𝑀 is the ratio of the displaced 

fluid viscosity to the displacing fluid viscosity, 𝜇𝑜/𝜇𝑤. In unstable flows, small perturbations 

grow with time and complex geometric structures called fingers are developed, first described by 

Saffman and Taylor (1958). 

 Buckley Leverett problem 

We set up a simple example to compare the FFrT method with the BL solution and two 

finite volume implicit solvers on fine and coarse resolution grids. 

We choose a 10 × 2 𝑚2 domain, discretised by a fine-resolution Cartesian grid with 

200 × 50 cells and a coarse-resolution one with 20 × 5 cells. The permeability and porosity are 

spatially homogeneous and equal to 0.01 Darcy and 1.0, respectively. The field is initially fully 

saturated with oil. Water is injected from the left edge with a constant rate of 10−6 𝑚3/𝑠 ( 

4.3 × 10−3 pore volume/day). The oil viscosity is set to 10 𝑐𝑝. Three different cases are tested 

for water viscosity: 1, 3.33, and 10 𝑐𝑝, in different cases. 

Figure 5.2 shows the comparison of the FFrT method with the analytical BL solution for a 

viscosity ratio of 3, at three different time steps corresponding to 0.13, 0.26, and 0.39 pore 

volume injected (PVI). Figure 5.3 compares the FFrT method with the analytical BL solution for 

viscosity ratios of 1 and 10 corresponding to water viscosities of 10 and 1, respectively. At last, 

the comparison of the analytical BL solution, the FFrT method, and two resolution of the finite 

volume method are shown in Figure 5.4. As it can be observed from all these figures, the FFrT 

method gives the exact location of the saturation discontinuity in the BL one dimensional 

displacement process. It should be noted that this method is developed to model only the position 

of the front. The saturation behind the front is homogeneously equal to the saturation at the front.  
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Figure 5.2: Comparison of the FFrT method with the analytical solution of the BL equation for a 

viscosity ratio of 𝑀 = 3, at three different times. 

 

Figure 5.3: Comparison of the FFrT method with the analytical solution of the BL equation for 

two different viscosity ratio M=1 and 10, after 0.39 pore volume injected. 
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Figure 5.4: Saturation profiles obtained with the FFrT method, the analytical solution of the BL 

equation, and FV simulations on fine and coarse grids for a water-flood problem with the 

viscosity ratio 𝑀 = 10, after 0.22 pore volume injected. 

 Layered medium 

Let us consider a two-layers domain, with a different constant homogeneous permeability 

in each layer. We set Dirichlet boundary conditions on the left and right boundaries, and 

Neumann no-flow conditions on the top and bottom domain boundaries. The permeability ratio 

between the two layers and the viscosity ratio, M, are both set to 3. Figure 5.5 shows the 

comparisons between the FFrT method and the standard sequential implicit FV schemes on the 

coarse and fine grids. The coarse-resolution grid is used in the FFrT method. This method 

predicts the position of saturation discontinuity with very good precision.  
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Figure 5.5: Layered medium test case. The left plot shows the saturation profile on a coarse mesh 

using the FV method. The dotted violet line shows the position of the saturation discontinuity 

using the FFrT method on the same mesh. The right plot presents the saturation contour map on 

the fine grid using the FV method, as a reference solution. 

 Random generated isotropic medium 

To increase the complexity of test cases, we generate two heterogeneous random 

permeability models with two variance cases, as shown in Figure 5.6. Variances are presented as 

non-dimensional Dykstra-Parsons coefficients: 

 𝜎𝐷𝑃
2 = 1 − 𝑒−𝜎 Eq. 5.11 

where 𝜎2 is the variance and 𝜎 is the standard deviation. Gaussian covariance is used for 

both permeability models: 

 𝑐(ℎ) = 𝜎2𝑒𝑥𝑝 (−(
ℎ

𝑙𝑐
)
2

) Eq. 5.12 

where ℎ is the spatial lag and 𝑙𝑐 is the correlation length. 𝑙𝑐 is the same in 𝑥 and 𝑦 

directions and equal to 0.1 in both cases. The detailed properties for these two cases are shown in 

Table 5.1. 
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Permeability field: Case One Permeability field: Case Two 

  

Figure 5.6: Isotropic randomly generated permeability models with a dimensionless correlation 

length of 0.1 and Dikstra-Parson coefficients of 0.2 (left) and 0.75 (right) on a logarithmic scale. 

 

Table 5.1: Mean, standard deviation, and correlation length of the generated heterogeneous 

permeability models  

 Permeability mean 

(𝒎𝟐) 

Permeability standard 

deviation (𝒎𝟐) 

Dimensionless 

correlation length 

(-) 

Case One 4 × 10−13 1 × 10−13 0.1 

Case Two 4 × 10−13 1 × 10−12 0.1 

We consider the same two-phase flow problem of the previous example, with the same 

boundary conditions. We set oil viscosity to 10 cp and water viscosity to 10 and 1 𝑐𝑝, to test the 

method in both favourable and unfavourable displacement processes. The original grid contains 

100 × 100 cells. In these examples, we test the FFrT method on the original resolution grid. In 

Figure 5.7, the water saturation maps for the permeability field of case one and a unit viscosity 

ratio are shown at two timesteps. The FFrT method prediction of the front position is in good 

accordance with the standard FV solution. 

In Figure 5.8, water saturation maps and water saturation contour maps are shown for the 

same permeability field with a viscosity ratio of 10. In this more spreading front case, it seems 
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that the predicted position of the front is behind the modelled one with the FV method. To be able 

to analyse this difference in more detail, the water saturation contour maps computed with the 

FFrT and the FV methods for four viscosity ratios have been superimposed in Figure 5.9. For 

each case of the viscosity ratio 𝑀, the analytical saturation of the front, computed using Eq. 5.7, 

is also represented. In the case of a unit viscosity ratio with a relatively sharp front, the prediction 

of the FFrT method is in good accordance with the saturation profile computed using the standard 

FV scheme. When the viscosity ratio M increases and the front becomes more distorted, a small 

difference between the predicted front position and the FV solution can be observed. Due to the 

numerical errors inherent to both methods and the lack of an exact solution it may be difficult to 

interpret the difference. 

  

  
 

Figure 5.7: Water saturation maps for the first randomly generated permeability domain with a 

unit viscosity ratio at two different time steps, computed by the FFrT method and the FV method. 
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Figure 5.8: Water saturation maps for the first randomly generated permeability domain with a 

viscosity ratio of 10 at two different time steps, computed using the FFrT and the FV methods. 

Saturation contour map, 𝑴 = 𝟏, 𝒔𝒇 = 𝟎. 𝟕 

 

Saturation contour map, 𝑴 = 𝟑, 𝒔𝒇 = 𝟎. 𝟓 
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Saturation contour map, 𝑴 = 𝟏𝟎, 𝒔𝒇 = 𝟎.𝟑 

 

Saturation contour map, 𝑴 = 𝟐𝟎, 𝒔𝒇 = 𝟎.𝟐 

 

Figure 5.9: Water saturation contour maps for the first randomly generated permeability domain 

with different cases of viscosity ratio, computed with the proposed FFrT method and a standard 

FV scheme. 

The water saturation maps and contour maps for the viscosity ratios of 1 and 10, on the 

more heterogeneous permeability domain of case two, are shown in Figure 5.10. In this case, the 

FFrT method is also successful. For 𝑀 = 10, the results of the FFrT method are closer to the 

saturation contours of 0.3. To better represent the smearing of the front in numerical simulations, 

Figure 5.4 shows the saturation profiles for a homogeneous domain, using the FV numerical 

method in two high and low-resolution grids. It is also worth noting that the proposed fast front 

tracking method cannot predict the rarefaction wave behind the front and the numerical diffusion 

at the front. The essential fact is that the frontal zone is captured correctly. This allows to set-up 

correctly the adaptive coarsening strategy with the FFrT method used as a criterion, which is our 

main goal in the proposed workflow. 
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Figure 5.10: Water saturation contour maps for the second randomly generated permeability 

domain with two viscosity ratio cases of 1 and 10 at two different time steps, computed by the 

FFrT method and a standard FV scheme. 

 SPE10 benchmark test 

Now, we test the method on two-dimensional Cartesian models with permeability values 

taken from different layers of the second SPE10 benchmark test (Christie and Blunt, 2001). We 

consider the same immiscible two-phase flow problem with different viscosity ratios. We select 

layers 22 and 70, from Tarbert and Upper Ness formations. We generate the coarse grid via a 

uniform agglomeration of the base fine grid, with an agglomeration ratio of 10. We use a flow-

based upscaling method to compute the upscaled permeabilities (Chen et al., 2003), where a set 

of representative boundary conditions are imposed at the coarse grid blocks to solve the flow 
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equation and use the fine-scale pressure and fluxes to compute the upscaled permeabilities. The 

fine-scale and upscaled permeability maps for the layers 22 and 70 of the SPE10 dataset are 

shown in Figure 5.11. 

In Figure 5.12 we compare the FFrT method with a standard finite volume scheme at two 

resolutions, for a waterflood problem with a viscosity ratio 𝑀 = 10 in layer 22 of the SPE 10 

model. At the coarse scale, the results of FFrT method are very close to the FV solution of the 

same resolution. In fine-scale simulations, the FFrT method predicts the flow patterns very well, 

and the main difference with the fine-scale simulation is close to the right boundary, where the 

front becomes diffusive. For a more detailed comparison, the superimposed contour maps of the 

original resolution case are shown in Figure 5.13. This figure shows that the predicted front 

position is very close to the saturation contour line of 0.3, computed using the FV scheme on the 

original grid. 

Figure 5.14 shows the water saturation maps and contour maps for the same waterflood 

problem in layer 70, at the original resolution. This layer, with a channelized pattern of sandstone 

in a low permeable shale background, is a challenging example to test the method in the presence 

of fingerings and channellings. The FFrT method gives similar results in most parts of the 

domain, to the FV method. 
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Figure 5.11: Permeability maps of the layers 22 and 70 of the SPE10 model in the logarithmic 

scale, before and after upscaling 

 

    

Figure 5.12: Water saturation maps for layer 22 of SPE 10 model for a waterflood problem with a 

viscosity ratio of 10 for the original and the coarsened resolution, computed by the FFrT and FV 

methods. 
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Figure 5.13: Water saturation contour maps for layer 22 of SPE 10 model, at the same time step, 

on the original fine grid. 

 

Figure 5.14: Water saturation maps and the superimposed contour maps for layer 70 of the 

SPE10 model with a viscosity ratio of 10 at the original resolution, computed by the FFrT method 

and the FV scheme. 

We have not compared the computational times between the FFrT method and other 

standard FV methods. The reason is that we have developed this method with MATLAB, which 

is a scripting language. The focus of our work at this stage is not to develop an optimized code, 

but rather the prototype that validates the proposed method. Another solution for performance 
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evaluation would be to compare the number of unknowns to be solved for each method. These 

comparisons are included in the next chapter. It is worth mentioning that the equation of advance 

of the front is an explicit equation to be solved only at the location of the front. 

In all the examples of this chapter, we use the FFrT method as an independent simulator. 

At each time step, after the resolution of the pressure equation, the front advance equation is 

solved in some parts of the domain where the front is present. Another approach is to use the total 

flux values derived from a standard pressure solver. For this approach, steps (1) and (2) of the 

FFrT algorithm are not performed and the method is used after the solution of the pressure 

equation to predict the position of the front. This approach is tested in the next chapter.  
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 Combining FFrT with adaptive coarsening: A proposed 

approach for immiscible multiphase flows 

In this chapter, we detail the formulation and implementation of the proposed solution 

procedure, using the finite volume and discontinuous Galerkin discretization schemes, the FFrT 

method, and an adaptive coarsening approach. Next, we discuss the complexity and 

computational effort of all steps of the proposed algorithm. Finally, we analyse different aspects 

of this solution strategy and discuss its advantages and limitations through numerical examples. 

 Formulation 

Starting from a field-scale geostatistical model with petrophysical properties and a fluid 

model with the associated governing equations as described in chapter 2, the fluid flow problem 

can be transformed to a numerical simulation by using the discretization methods reviewed and 

described in chapters 3 and 4. The next step is to generate a coarse grid from the high-resolution 

grid of the geostatistical model. In this work, the agglomeration-based coarsening approach is 

used, both for the generation of a base low-resolution grid over the whole domain and for an 

adaptive coarsening during the simulation. In the agglomeration-based coarsening approaches, a 

coarse grid is generated from the agglomeration of the fine grid by using a partition vector to 

relate coarse blocks to their underlying fine cells. Throughout this thesis, two-dimensional 

Cartesian models are used, and the base coarse grid is generated through a uniform agglomeration 

of the original fine grid. An illustrative example of uniform partitioning of the Cartesian topology 

is shown in Figure 6.1 for the coarsening of a 6 × 6 fine grid to a 2 × 2 coarse grid. A partition 

vector (𝜋), as already defined in chapter 3, is an integer-valued vector such that 𝜋(𝑐) = 𝑏, if cell 

𝑐 in the fine grid belongs to block 𝑏 in the coarse grid. For this example, the partitioning gives a 

36 × 1 vector that takes one of the 1,2,3,4 values for each cell in the fine grid: 

𝜋 = [1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,3,3,3,4,4,4,3,3,3,4,4,4,3,3,3,4,4,4] 
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Representation of coarse grids with the partition vector has many advantages compared to 

an independent generation of low-resolution grids. First, this approach allows the generation of 

non-uniform coarse grids that better preserve the complex geometry of the fine grid and better 

adapt to the geological features. Next, another important advantage lies in the dynamic 

coarsening for increasing or decreasing mesh resolution during the numerical simulation. Thanks 

to the preserved one-to-one mapping between fine and coarse grids, adding or removing local 

resolution is simple to carry out. We explore this advantage, which is related to this work, using 

the example of Figure 6.1 in more detail. To increase the local resolution of the fourth coarse 

block to its original fine resolution, the corresponding partition vector elements need to be 

replaced with a partition vector associated with the coarsening ratio 1 (see Figure 6.2). First, we 

mark the fourth coarse grid block: 

𝑚𝑎𝑟𝑘𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠 = [𝑓𝑎𝑙𝑠𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒] 

Next, we determine the underlying fine grid cells of the marked coarse block:  

𝑐𝑒𝑙𝑙𝑠 = 𝑚𝑎𝑟𝑘𝑒𝑑𝐵𝑙𝑜𝑐𝑘𝑠(𝜋) 

Figure 6.1: Coarsening of a 6×6 fine grid to a 2×2 coarse grid through a uniform 

partitioning. 
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Last, the partition vector is modified by simply assigning new integer values to the 

partition values of the corresponding fine grid cells: 

𝜋(𝑐𝑒𝑙𝑙𝑠) = 4 + [1: 𝑠𝑢𝑚(𝑐𝑒𝑙𝑙𝑠)]. 

After the coarsening of the original fine grid, petrophysical properties and parameters are 

propagated from the base fine grid to the coarse grid. Upscaling of additive properties like the 

porosity and the pore volume are straightforward, as already mentioned. For permeability 

upscaling, we use the flow-based upscaling approach, in which the flow equation is solved at the 

fine scale in subdomains specified by the coarse grid blocks. The prescribed pressure boundary 

conditions are set in the direction of the flow and no-flow boundary conditions are applied 

elsewhere. The fine-scale approximated pressure and fluxes are used to compute the upscaled 

permeabilities. 

As an illustrative example, we detail the algorithm with case one from random 

permeability fields illustrated in Figure 5.6. We consider a two-dimensional waterflood problem, 

where water is injected from the left boundary of the domain. The reservoir is initially fully 

saturated with oil. Water and oil viscosities are equal to 1.0 and 0.2 cp, respectively. Both fluids 

are incompressible. A coarse grid is generated by uniform agglomeration of the original grid with 

Figure 6.2: Illustration of adding high resolution to block 4 of the coarse grid. 
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a coarsening ratio of 10. This simple example, with a sharp and smooth front, shows how the 

proposed approach works. Figure 6.3 illustrates the base coarse grid and the upscaled 

permeability computed by a pressure drop flow-based upscaling approach.  

Fine permeability 

 

Upscaled permeability 

 

Figure 6.3: Isotropic randomly generated permeability model with a dimensionless correlation 

length of 0.1 and a Dikstra-Parson coefficient of 0.2, before (left) and after (right) upscaling. 

Now, suppose we are at time step 𝑛 of the simulation. Below is the flowchart of the 

proposed solution strategy for each time step: 

(1) Pressure solution on the base coarse grid over the whole domain: 

The pressure equation is solved using the DG scheme with a linear approximation on the base 

coarse grid over the whole domain. DG conservative fluxes are reconstructed using Eq. 4.38. The 

outputs of this step are updated approximated pressure and conservative total fluxes in the base 

coarse grid. 

(2) Fast front tracking method:  

Using the conservative total fluxes of the previous step, the FFrT method is implemented 

to move the front in the base coarse grid. This step includes solving Eq. 5.9 in some parts of the 

domain. This method gives the predicted position of the front and the coarse blocks where a part 
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of the front is present. Figure 6.4 shows the position of the front in the base coarse grid after 600 

days. The front position in the original fine grid and the water saturation map computed by the 

FV sequential implicit scheme in the fine grid are also shown as references.  

   

Figure 6.4: Position of the front after 600 days computed using the FFrT method on coarse and 

fine grids are presented in the left and middle plots, respectively. The water saturation map 

computed with the FV sequential implicit scheme is shown in the right plot, as reference. 

(3) Domain decomposition and adaptive coarsening: 

The position of the front is then used to (1) decompose the domain into single and 

multiphase flow regions and (2) use a higher resolution grid, equal to the resolution of the 

original fine grid or an intermediate resolution, where the front moves. One immediate advantage 

of domain decomposition is to solve the saturation equation only in the multi-phase flow region. 

As a result, no multiphase upscaling method is needed. 

To decompose the domain into single-phase and multiphase flow regions in a two-

dimensional simulation, we determine the left and right boundaries of the multiphase flow region. 

The right boundary is determined by the farthest block on the right containing the front in the 

direction of the flow. The left boundary is determined by the maximum position in the flow 

direction before which the front is not actively moving. The top and bottom boundaries coincide 
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with the outer boundaries of the domain. Figure 6.5 shows these boundaries for this illustrative 

example where green lines represent the boundaries of the two-phase flow region. 

 

Figure 6.5: Two-phase flow region (green lines) determined using the predicted front position. 

After decomposing the domain, we use the adaptive coarsening approach to use a higher-

resolution grid where the criterion is met. The coarsening approach of Hauge et al. (2012) is used 

and the coarse blocks with the active front are taken as the criterion. These coarse blocks are 

marked to stay at a higher resolution, while the single-phase coarse blocks are coarsened to the 

resolution of the base coarse grid. Figure 6.6 shows the generated non-uniform grid using this 

approach with the FFrT method as the criterion. 
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Figure 6.6: Generated non-uniform grid in the multiphase flow region using the adaptive 

agglomeration based coarsening method with the FFrT method used as the coarsening criterion. 

(4) Flow and transport solution in the multiphase flow region:  

Flow and transport problems are solved in the multiphase flow region of the domain, in 

the subgrid generated at the previous step, using the finite volume sequential implicit (IMPIMS) 

scheme. The boundary conditions to solve the flow and transport equations in the multiphase 

flow region depend on the type of faces. If one of the left or right boundaries coincides with the 

main boundaries of the domain, the prescribed pressure boundary conditions are set for both left 

and right boundaries of the multiphase region. If both left and right boundaries are internal, the 

conservative fluxes are set as boundary conditions. For the top and bottom boundaries, the 

homogeneous no-flow condition is used in all cases in this work. Figure 6.7 shows the water 

saturation maps obtained with both domain decomposition and dynamic non-uniform coarsening.  
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Figure 6.7: Water saturation maps computed using the proposed solution strategy and the FV 

sequential implicit solution in the base fine grid (reference) are represented in left and right plots, 

respectively. 

Except for the DG and the FFrT methods, our methodology uses tools for the upscaling, 

the dynamic mesh coarsening, and the FV resolutions that are available in the MATLAB 

Reservoir Simulation Toolbox, MRST4 (Lie, 2019; Lie et al., 2012). A flowchart of the proposed 

approach at each time step is illustrated in Figure 6.8. 

 
4 https://www.sintef.no/projectweb/mrst/ 

https://www.sintef.no/projectweb/mrst/
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Figure 6.8: Flow chart of the proposed sequential approach for each time step 

 Complexity analysis 

We use the number of unknowns solved at each step as the main indicator of the 

complexity of the solution approach so that this analysis does not depend on the actual 

implementation of the method. In the following, we detail the computational cost of each step 

separately. 

(1) Pressure solution on the base coarse grid over the whole domain: 

In the proposed approach we use the DG scheme to solve the pressure equation. In this 

case, the number of unknowns is equal to the number of grid blocks in the coarse grid times the 

number of local degrees of freedom. The number of local degrees of freedom, denoted by 𝑁, is 

equal to: 

 𝑁 = (𝑃 + 1)2 Eq. 6.1 

Next time step 

DG pressure solver on the base 

coarse grid, 𝑝𝑛+1, 𝒗𝑛+1 

 

Fast front tracking technique 

Domain partitioning and adaptive 

coarsening 

Initial Condition, 𝑝𝑛, 𝑠𝑛  

FV flow and transport solver in 

the multiphase flow region, 

𝑝𝑛+1, 𝑠𝑛+1 
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where P is the polynomial degree. In the case of using the FV scheme, the number of local 

degrees of freedom is equal to one and the total number of unknowns is equal to the number of 

coarse grid blocks. 

(2) Fast front tracking method: 

In this step, Eq. 5.9 is solved in parts of the domain where the front is present, and the 

number of unknowns depends on the shape of the front. The explicitness of the equation to be 

solved and being local to cells with the front are two important features that make this step 

computationally very fast. 

(3) Domain decomposition and adaptive coarsening: 

It is difficult to quantify the complexity of adaptive coarsening algorithm. However, in 

test cases we performed this step was less than about five per cent of the overall computational 

time. It is worth noting that this dynamic coarsening reduces the number of unknowns in the 

computationally demanding transport solver. 

(4) Flow and transport solution in the multiphase flow region:  

The number of unknowns in this step is twice the number of cells in the two-phase flow 

region. 

Figure 6.9 shows the ratio of the total number of global degrees of freedom in the 

proposed approach compared to the reference solution for the same example. The total number of 

global degrees of freedom in the reference solution is equal to twice the number of grid cells in 

the original fine grid.  
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Figure 6.9: Ratio of the total number of unknowns to be solved at each time step in the proposed 

solution approach compared to the fine reference solution. 

 Numerical examples 

To test and analyse the different aspects of the proposed solution strategy different two-

dimensional water-flood problems are considered, where water is injected from the left boundary 

of the domain. Both fluids are incompressible. The reservoir is initially fully saturated with oil. 

Dirichlet conditions on the left (𝑋𝑀𝐼𝑁) and right (𝑋𝑀𝐴𝑋) boundaries are imposed, while and a 

no-flow condition is applied on the top (𝑌𝑀𝐴𝑋) and bottom (𝑌𝑀𝐼𝑁) boundaries. In all the 

following examples, the base coarse grid is generated via a uniform agglomeration of the original 

fine grid, with an agglomeration ratio of 10. A flow-based upscaling method is implemented to 

compute the upscaled permeabilities. In these examples, we aim to test different aspects of the 

proposed solution strategy, from step (1) to step 0, and compare them with other existing 

methods. In the last two examples, the proposed approach is tested in different layers of the 

SPE10 test case for favourable and unfavourable displacement processes. In all the following 

examples, the reference solution is set as the finite volume sequential implicit scheme on the 

original fine grid. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

time steps

Ratio of the total number of unknowns in the proposed 

approach to the fine reference one



99 
 

 Numerical example one: Pressure solution on the base coarse grid 

The main objective of this example is to test different pressure solvers in the first step of 

the proposed algorithm. At each time step, the pressure equation is solved on the base coarse grid 

and the approximated new fluxes are used (1) to advance the front using the FFrT method and (2) 

as boundary conditions for solving the pressure and saturation equations in the multiphase flow 

region in a higher resolution subgrid. We compare the TPFA FV and the DG scheme with the 

order of approximation 1. In this example, we take case two of randomly generated permeability 

fields in the example 5.3.3. Oil and water viscosities are set to 5 𝑐𝑝. 

Figure 6.10 shows the water saturation maps at three different time steps, computed using 

the proposed adaptive solution strategy, where the marked coarse blocks containing the front are 

replaced with their underlying original fine grid cells. In the first column, the DG scheme with 

the approximating polynomials of order one is used to solve the pressure equation in the base 

coarse grid. In the second column, the TPFA FV scheme is used as the coarse-scale pressure 

solver. The last column shows the fine-scale FV solution as reference. This figure shows that the 

FFrT method using DG conservative fluxes gives better results in terms of domain decomposition 

and determination of the right boundary of the two-phase flow region. In terms of adaptive 

coarsening criterion, the FFrT method performs the same either using the FV or the DG 

computed fluxes. 

The water cuts and the relative L1 saturation errors for these solution strategies are 

represented in Figure 6.11 and Figure 6.12, respectively. Comparison of the adaptive solution 

method using FV and DG total fluxes shows a greater difference between two approaches in the 

water cut than in the L1 saturation relative error. The reason might be that the prediction of the 

right boundary of the two-phase flow region is more accurate in the adaptive scheme with the DG 

pressure solver. These plots also include the water cut and the relative error for two coarse-scale 

solution schemes. In these solution schemes, the saturation equation is solved using the FV 

implicit formulation, while the pressure equation is solved using the FV method in one and the 

DG method in the other. Comparing these two coarse-scale solutions shows that the error is 

relatively similar in both schemes compared to the reference solution. The difference between 
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these approaches is larger in terms of water cut. The water cut is overestimated in the DG scheme 

while it is underestimated in the FV scheme. 

In the rest of this work, we use the DG discretization method with the order of 

approximation one to solve the pressure equation on the base coarse grid. 
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Figure 6.10: Water saturation maps at three different time steps, computed using the adaptive 

solution strategy with different coarse-scale pressure solvers. In each row, the first plot shows the 

results of using the DG method, the middle plot shows the results of using the FV method. The 

plots on the right are fine FV reference solutions. 

 

 

Figure 6.11: Water cut obtained with different solution schemes for case two of randomly 

generated permeability fields with a viscosity ratio of 1. 



102 
 

 

Figure 6.12: Relative L1 saturation error for different solution schemes in the randomly generated 

permeability field case two. 

 

 Numerical example two: Adaptive coarsening criterion 

In this example, we compare the FFrT method with a classic coarsening criterion, the 

saturation difference with the previous step. For this criterion, after solving the pressure equation 

in the base coarse grid using the DG scheme, the saturation equation is solved at the coarse scale 

over the whole domain using the implicit FV scheme. The saturation difference between the new 

and the previous time step is used as the coarsening criterion. The mesh resolution in the blocks 

where this saturation difference exceeds a defined tolerance is increased to a higher resolution. In 

this example, the adaptive solution approach using this saturation criterion is tested in the same 

flow problem as in the previous numerical example of page 99. We set the saturation tolerance to 

0.001 

Water saturation maps are illustrated in Figure 6.13, at the same time steps. As it can be 

observed, all the grid blocks containing the displacing fluid have been replaced with their 

underlying original fine grid cells. However, some of the single-phase blocks in the unswept 

regions are also marked to remain in high resolution with this coarsening criterion. This 

phenomenon can be linked to the greater numerical diffusion associated with solving the 

transport equation in low-resolution grids. Figure 6.14 shows the water cuts for this scheme, the 
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adaptive schemes described in the previous example, and the base fine solution. Figure 6.15 

presents the relative L1 saturation errors for these different solution methods. These two figures 

confirm that the FFrT method using the DG fluxes provides a satisfying accuracy in terms of the 

water breakthrough time, the water cut, and the relative error, with the small cost of solving an 

explicit equation in some parts of the domain. The saturation criterion gives the most accurate 

results, but as already stated, do not perform optimized in adaptive coarsening. The 

computational cost of the saturation criterion is also larger compared to the FFrT method. We do 

not include the CPU times of each approach due to its probable dependence on the 

implementation, but it should be noted that the cost of solving the transport equation even in a 

low-resolution grid is not negligible and can impact the overall efficiency of the solution method. 

Figure 6.16 shows the ratio of the total number of unknowns in the three mentioned adaptive 

solution algorithms to the total number of unknowns in the fine reference solution. The proposed 

solution method with the FFrT method using the DG total fluxes gives a satisfactory accuracy 

while maintaining a suitable computational efficiency represented by the number of global 

degrees of freedom. 

   

Figure 6.13: Water saturation maps computed with the adaptive solution strategy using the 

saturation gradient as the coarsening criterion. 
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Figure 6.14: Water cut in the fine-scale FV reference solution (blue), and different adaptive 

solution strategies: the coarse-scale FV pressure solver and the FFrT method (violet), the coarse-

scale DG pressure solver and the FFrT method (green), and the coarse-scale DG pressure solver 

with the saturation criterion (orange). 

 

Figure 6.15: L1 saturation error relative to the base fine FV solution for different adaptive 

solution strategies; the coarse-scale FV pressure solver and the FFrT method (violet), the coarse-

scale DG pressure solver and the FFrT method (green), and the coarse-scale DG pressure solver 

with the saturation criterion (orange). 
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Figure 6.16: Total number of unknowns in each time step for different solution approaches 

relative to the total number of unknowns in the base fine solution. 

 Numerical example three: Domain decomposition 

After advancing the front with the FFrT method, the new position of the front is used to 

identify the multiphase flow region and generate a non-uniform grid with the adaptive coarsening 

approach. To decompose the domain into single-phase and multiphase flow regions, the left and 

right boundaries are determined, as explained in section 6.1 (page 92). The left boundary of this 

rectangular-shaped multiphase region is determined by the most advanced position, in the flow 

direction, before which the front is not actively moving. Another approach is to use the saturation 

difference between the two previous time steps 𝑠𝑛 and 𝑠𝑛−1, to coarsen the high-resolution 

single-phase regions behind the front and to determine the left boundary of the multiphase region. 

We test here this approach on the same test case as in the illustrative example described in section 

6.1 (page 95). 

The water saturation map is presented in Figure 6.17, at the same time step. The number 

of global degrees of freedom for the proposed solution method, using two approaches of domain 

decomposition, is plotted in Figure 6.18. The first approach uses the FFrT method while the 

second one operates with the saturation gradient described previously. The FFrT method seems 

more efficient, because of its lower total number of unknowns and its independency from the 

user-defined saturation tolerance. 
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Figure 6.17: Generated non-uniform grid in the multiphase flow region using the saturation-based 

domain decomposition. 

 

Figure 6.18: Ratio of the total number of unknowns, for two different domain decomposition 

approaches, to the total number of unknowns in the reference solution. 

 Numerical example four: Non-uniform coarsening 

Another approach to increase the solution accuracy in the multiphase flow region could be 

to use a higher resolution grid uniformly in this region of the domain. In this approach, a high-
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resolution grid, either the original fine grid or any chosen intermediate resolution grid, is used in 

the multiphase flow region. The intermediate resolution grid needs to be constructed only once in 

the pre-simulation step. In this case, the adaptivity step, which is the step (3) in the algorithm, 

only includes the domain decomposition and may become more computationally efficient. 

However, solving flow and transport equations in this uniformly high-resolution subgrid can be 

more computationally demanding. 

In this example, we use a high-resolution grid in the multiphase flow region for the same 

test case described in section 6.1 (page 95). In this case, adaptive coarsening is not implemented, 

and the resolution of the multiphase flow region is increased to the original fine resolution.  

Figure 6.19 shows the generated grid and the water saturation map, at the same time step 

as in the illustrative example. Figure 6.20 indicates the total number of unknowns, for the 

solution method, with and without non-uniform coarsening. This example, with a very sharp 

front, may be far from the real field complex multiphase problems but still can illustrate that a 

non-uniform coarsening approach helps to decrease the total number of unknowns through the 

coarsening of single-phase blocks without losing too much accuracy. The non-uniform 

coarsening step becomes more important in multiphase flows through heterogeneous channelled 

reservoirs where the front flows fast through the high-permeability layers while the low-

permeability layers remain un-swept. Solving the transport equation in an adaptively coarsened 

grid is generally more computationally efficient, at an acceptable cost of adaptive non-uniform 

coarsening. 
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Figure 6.19: Grid generated using domain decomposition. The uniform fine grid used over the 

multiphase flow region is shown in the left plot. Water saturation map computed using this 

approach is presented in the right plot. 

 

Figure 6.20: Ratio of the total number of unknowns, with and without non-uniform coarsening, to 

the total number of unknowns in the reference solution. 

 Numerical example five: Intermediate resolution level 
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spatial resolution of the indicated coarse grid blocks can be increased to any intermediate 

resolution. As a result, the number of global degrees of freedom could be decreased and thus the 

computational efficiency could be improved. In this example, we revisit the test case illustrated in 

numerical example 6.3.1 (page 99) and increase the resolution of coarse blocks in the frontal zone 

to an intermediate level, with a coarsening ratio of 2 relative to the original fine grid resolution. 

Water saturation maps are shown in Figure 6.21, at the same time steps as in the test case. 

The water cut, the relative saturation error, and the number of global degrees of freedom for the 

two resolution levels of adaptive coarsening are presented in Figure 6.22, Figure 6.23, and Figure 

6.24, respectively. In this example, increasing the resolution of the coarse blocks containing the 

front to an intermediate resolution with an agglomeration ratio of 2 gives similar results, while 

decreasing the total number of unknowns. 

In general, the resolution level depends on the complexity of the multiphase flow 

problem. The intermediate resolution level will also be tested in the more heterogeneous reservoir 

of SPE10 benchmark model. 

   

Figure 6.21: Water saturation maps computed using the adaptive solution strategy with the 

intermediate resolution level of coarsening ratio 2. 
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Figure 6.22: Water cut for the fine FV reference solution and the adaptive solution strategy with 

two resolution levels. 

 

 

Figure 6.23: Relative saturation L1 error for the adaptive solution strategy with two resolution 

levels compared to the fine FV reference solution. 
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Figure 6.24: Ratio of the total number of unknowns, at each time step, for the adaptive solution 

strategy with two resolution levels, to the total number of unknowns in the reference solution. 

 Numerical example six: Favourable displacement 

In this example, the proposed solution strategy is tested in a favourable displacement 

process, in a two-dimensional Cartesian model with permeability values taken from layer 70 of 

the second SPE10 benchmark test. Water and oil viscosities are set to 3.0 𝑐𝑝. Initial and boundary 

conditions remain as in the previous examples. 

Figure 6.25 presents water saturation maps at three different time steps in this channelized 

reservoir, using the proposed solution strategy. The first two plots of each row show the results 

with two different resolution levels, the finest mesh resolution and an intermediate one equivalent 

to a grid with an agglomeration ratio of 2. The third plot displays the reference solution where 

flow and transport problems are solved using the FV scheme in the base fine grid. Water 

saturation maps computed using the DG method to solve the pressure equation and the implicit 

FV scheme to solve the saturation equation in the base coarse grid are presented in Figure 6.26. It 

can be observed from this figure that a low-resolution grid cannot capture the channelized flow 

details. The FFrT prediction of the flow pattern is close to the coarse-scale simulation results, by 

solving an explicit equation with a small computational cost. To compare the FFrT method as a 

non-uniform coarsening criterion, the results of the adaptive solution approach with a saturation 

criterion and a tolerance of  10−3 is shown in Figure 6.27, at the same timesteps. Using the 
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saturation criterion marks all grid blocks behind the front to remain in high-resolution during the 

coarsening step, that might affect the computational efficiency of the simulation. 

Figure 6.28 compares water cut results for different solution schemes in this example. At 

the coarse scale, the DG flow – FV transport solution gives better results than the fully finite 

volume solution, both in terms of water breakthrough time and water cut. The adaptive approach 

with a saturation criterion and the DG pressure solver is closer to the fine reference solution 

compared to the proposed approach with the FFrT method. However, the use of high spatial 

resolutions is not optimized in this approach. At the intermediate fine resolution, the results of 

both approaches are similar, even though the saturation gradient criterion gives more accurate 

water production in the last time steps. Figure 6.29 presents the relative saturation L1 error 

computed for these solution approaches. The saturation criterion scheme gives the least error in 

this example. However, by comparing the total number of unknowns, presented in Figure 6.30, it 

is confirmed that the approach with the FFrT method is more computationally efficient as the 

number of global degrees of freedom is inferior. This figure does not take into account the real 

CPU time of solving the transport equation or the front advance equation, but as already stated, 

the FFrT method is faster than the saturation criterion approach. These last three plots also prove 

that an intermediate fine resolution provides a very good balance between solution accuracy and 

computational effort.  
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Figure 6.25: Water saturation maps, for layer 70 of the SPE10 model, computed using the 

proposed approach with the highest resolution and an intermediate one, and the FV on the 

original fine grid, before, at, and after breakthrough time. 
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Figure 6.26: Water saturation maps, for layer 70 of the SPE10 model, computed using the DG 

pressure solver and the FV saturation solver in the base coarse grid, at the same time steps. 

 

   

Figure 6.27: Water saturation maps, for layer 70 of the SPE10 model, computed with the adaptive 

approach using the saturation gradient as a coarsening criterion, at the same time steps. 
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Figure 6.28: Water cut for different solution schemes for the case of a favourable displacement in 

layer 70 of the SPE10 model. 

 

Figure 6.29: Relative saturation error for different solution schemes for the case of a favourable 

displacement in layer 70 of the SPE10 model. 
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Figure 6.30: Ratio of the total number of unknowns in different solution strategies to the total 

number of unknowns in the base fine solution, for the case of a favourable displacement in layer 

70 of the SPE10 benchmark test. 

In another example with the same favourable viscosity ratio, the proposed solution 

scheme, along with other approaches, is tested in layer 22 of the SPE10 model. 

Figure 6.31 shows water saturation maps for the proposed adaptive scheme with two 

coarsening criterion and the fine reference solution. In this example, the FFrT method 

successfully marks the frontal grid blocks to remain at a high resolution. Single-phase blocks, 

both in the un-swept areas ahead of the front and the swept areas behind the front, are coarsened 

to improve computational efficiency. The saturation criterion scheme, while producing results 

very similar to the base reference solution, uses a high-resolution mesh in many of the single-

phase areas both ahead and behind the front.  

Water cuts, relative saturation errors, and the number of global degrees of freedom, for the 

coarse-scale simulation and the proposed scheme with different intermediate resolution levels, 

are presented in Figure 6.32, Figure 6.33, and Figure 6.34, respectively. To obtain an accurate 

solution while minimizing the computational cost, the proposed approach with an intermediate 

resolution with an agglomeration ratio of 2 provides better results. 
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Figure 6.31: Water saturation maps for the adaptive scheme with two coarsening criteria and the 

fine reference solution, for a favourable displacement in layer 22 of the SPE10 test case. 
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Figure 6.32: Water cut obtained for the fine-scale FV reference solution, the DG and FV coarse-

scale solutions, and the adaptive proposed solution with different fine resolution levels, for the 

case of a favourable displacement in layer 22 of the SPE10 model. 

 

Figure 6.33: Relative error in coarse-scale solutions as well as the adaptive proposed solution 

with different fine resolution levels, for a favourable displacement in layer 22 of the SPE10 

model. 
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Figure 6.34: Ratio of the total number of unknowns in the proposed approach with different fine 

resolution levels to the total number of unknowns in the base fine solution, for the favourable 

displacement in layer 22 of the SPE10 benchmark test. 

 Numerical example seven: Unfavourable displacement 

In this example, we consider the same waterflood problem in layer 70, but we decrease 

the viscosity of water to 0.3 𝑐𝑝 to test the approach with an unfavourable viscosity ratio. 

Water saturation maps for the proposed approach with the FFrT method and a classic 

saturation criterion and the fine reference solution are shown in Figure 6.35, at three different 

time steps. The scheme with the DG pressure solver and the coarsening criterion of the saturation 

gradient marks all the multiphase grid blocks to remain in a high resolution, however, some 

single-phase blocks are also marked using this criterion. This can be related to the numerical 

diffusion of solving the transport equation in a coarse grid. Even though this scheme gives very 

similar results to the ones of the fine reference solution, the non-uniform coarsening is not ideal. 

The proposed approach with the DG pressure solver and the FFrT method works well in terms of 

flow pattern and optimized non-uniform coarsening. All the marked grid blocks using the FFrT 

method are in the multiphase flow region. The only drawback is the prediction of the smearing 

front in the very low saturation areas before the breakthrough time.  
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Figure 6.35: Water saturation maps for the layer 70 of the SPE10 model, at three different time 

steps before (first row), at (second row), and after (third row) the water breakthrough, for an 

unfavourable displacement case. 
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Figure 6.36 shows the water cut for different solution methods. The fully FV coarse-scale 

simulation gives errors both in the breakthrough time and the water cut, which confirms the 

importance of using more accurate solution methods. Figure 6.37 presents the relative L1 error in 

saturation for different schemes, including the intermediate resolution levels. The total number of 

unknowns in adaptive approaches relative to the base fine solution, presented in Figure 6.38, 

shows that using the saturation gradient as the criterion to use the highest resolution in multiphase 

regions is not computationally efficient. It is worth noting that this plot shows the number of 

global degrees of freedom as an indicator of computational effort. However, the computational 

time of solving the transport equation even in a low-resolution grid is much higher than solving 

an explicit equation in some parts of the same low-resolution grid. This cost has not been 

represented in this figure. The proposed approach with an intermediate resolution level of 

agglomeration ratio 2 provides an accurate solution and succeeds to decrease the number of 

global degrees of freedom. 

 

Figure 6.36: Water cut computed using the fine-scale FV simulation, the DG and FV coarse-scale 

solutions, and the adaptive solution approach with different coarsening criteria, for the case of an 

unfavourable waterflood problem in layer 70 of the SPE10 model. 
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Figure 6.37: Relative error for the case of an unfavourable displacement in layer 70 of SPE10 

model using different solution strategies. 

 

 

Figure 6.38: Ratio of the total number of unknowns in the adaptive approach with different 

coarsening criteria and different resolution levels to the total number of unknowns in the base 

fine solution, for an unfavourable displacement in layer 70 of the SPE10 benchmark test. 
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To summarize previous numerical examples with different cases of immiscible 

displacements, a standard coarse-scale FV solution yields erroneous results in terms of water 

breakthrough times, cumulative water production, and flow details. The DG discretization 

method with linear approximations provides better results in solving the pressure equation 

compared to the FV method. More accurate computation of total fluxes is proved to be important 

for getting a better prediction of the front position and the boundary conditions for the transport 

solution over the multiphase flow region. Concerning the adaptive coarsening criterion, the 

saturation gradient is slightly more precise than the FFrT method. However, the FFrT method is 

more advantageous in terms of computational costs, while still providing very effective results. 

We have also shown that the resolution of the multiphase flow region can be adjusted based on 

the complexity of the flow problem and the required order of accuracy. In the above numerical 

examples, an intermediate resolution level proved to be a suitable choice to achieve accurate 

results while decreasing the number of global degrees of freedom to a great extent.  
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 Conclusion 

 Concluding remarks 

This thesis presents the work towards the development of an efficient and accurate 

numerical model for solving multiphase flow problems in porous media. A sequential approach 

has been developed for immiscible multiphase flow simulations in heterogeneous porous media. 

Several numerical discretization methods and solution strategies have been investigated and 

incorporated into the proposed model. Numerical experiments are conducted to analyse the 

performance of the proposed solution strategy. To summarize the thesis work: 

- An original method combining different solution strategies in different flow regions of 

the domain has been developed. The proposed method unifies the use of dynamic non-uniform 

coarsening, a discontinuous Galerkin method, and a fastly-evaluated coarsening criterion to 

accelerate multiphase flows simulations in heterogeneous porous media without losing accuracy. 

- We have developed a fast front tracking (FFrT) method to predict the position of the 

front without solving nonlinearly coupled flow and transport equations over the whole domain. 

The FFrT method appears as being a promising approach to mix different resolution strategies 

according to different flow areas. This method can be used on a coarse scale to identify the 

multiphase flow region with satisfying accuracy and a small computational cost of solving an 

explicit equation in some parts of the domain. This information can be used as input to the 

dynamic mesh coarsening and adaptive use of DG and FV solvers for the pressure equation. The 

FFrT method has proved to be a powerful tool to predict the position of the front.  

- Near the saturation front, in the multiphase region, where the coupling of viscous 

fingering and channelling is expected, we have shown that a high-resolution grid used along with 

a finite volume discretization leads to stable solutions with improved accuracy. 

- Far from the front, in the single-phase flow regions i.e., the swept areas behind the front 

and the unswept areas ahead of the front, the DG method used on a lower resolution grid 

increases the accuracy of the total fluxes. In these parts of the domain, increasing the mesh 
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resolution does not yield significant improvements in the solution. The use of a DG method on a 

low-resolution grid, even with the linear approximation, proved to be superior to the FV scheme. 

The use of the DG method leads to an improved prediction in the FFrT method and more accurate 

total fluxes used as boundary conditions of the local multiphase flow problem. 

- The computational efficiency of the solution method depends on the overall spreading of 

the multiphase region, and the level of resolution in the adaptive coarsening process. We have 

shown that the resolution level can be adjusted depending on the required order of accuracy, the 

available computational power, and the complexity of the problem. In the studied test cases, an 

intermediate resolution with an agglomeration ratio of 2 provided an acceptable balanced overall 

accuracy while decreasing significantly the computational effort compared to the original fine 

resolution. 

 Future work 

In this section, some of the possible directions of future works are discussed.  

- A more general framework: 

The proposed solution strategy could be extended to a more general framework. The fast 

front tracking method can be adapted to handle more complex flows like radial ones around wells 

in 3D domains. 

- A higher order of approximations in the DG scheme: 

In this work, we have used linear approximations uniformly over the domain. An 

important advantage of DG methods is their ability to approximate the solution by discontinuous 

polynomials of various degrees in various elements, a feature supported in FESTUNG. Knowing 

the position of the front and thus the single and multiphase flow regions, one option could be to 

increase the order of approximating polynomials in the multiphase flow region. If the improved 

accuracy of the total fluxes is satisfactory, one could solve only the transport equation in the 

multiphase flow region in a non-uniform grid, instead of the current approach that solves both 

flow and transport equations in this region. The piece-wise constant fluxes can be computed on 
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faces of a finer resolution grid from polynomial approximated DG fluxes. This straightforward 

downscaling of total fluxes from a lower spatial resolution to a higher one is an important 

advantage over finite volume methods. 

- DG pressure solver in a non-uniformly coarse grid 

Throughout this work, we have solved the pressure equation in the base uniform coarse 

grid, using the DG method. Another option could be to solve the pressure equation using the DG 

scheme in a non-uniformly coarsened grid with an adaptive order of approximation. A lower 

polynomial order could be used in high-resolution areas, while higher orders of approximating 

polynomial could be implemented in coarse areas. A rigorous error analysis based on a-posteriori 

error estimation (Gratien et al., 2016) could be useful to guide this hp-adaptive scheme and to 

find the best trade-off between accuracy and efficiency. 

- Using the underlying permeabilities in the DG pressure solver: 

In this work, we have used the DG discretization method to improve the accuracy of total 

fluxes on a low-resolution grid. Another objective of using DG in our work was to test the idea of 

using the underlying fine permeability values instead of one upscaled permeability value per grid 

block when evaluating the integral terms. We have detailed the formulation and algorithm on 

page 64 of chapter 4, along with some preliminary results. We will continue to test this idea to 

increase the accuracy of DG conservative fluxes using the underlying permeability values at the 

coarse scale. 

- Testing other approaches:  

Other solution approaches could be tested. For example, working at a coarse-scale using 

classical single-phase upscaling, coupled with upscaled two-phase flow equations with an 

effective fractional flow function (Artus et al., 2004; Fayers et al., 1992; Sorbie et al., 1995) and a 

macrodispersion term modelling the subgrid disorder. The effective fractional flow accounts for 

the average local pressure saturation coupling. This could help to get fast estimation of the front 

location and its typical thickness at the coarse scale directly. If necessary, a mesh refinement will 
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then be set up in this area depending on a posteriori criterion quantifying the overall accuracy of 

the calculation. 
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