Recent technological developments, in particular mixed reality media, combined with a pressing need for telepresence applications, give rise to a growing demand for 3D content that is captured directly from real data. Such content can then be edited and rendered in an interactive manner from any given viewpoint, producing an immersive experience for the user. The modeling process usually involves the separate reconstruction of the shape and the appearance (or texture), of a scene, given a set of 2D photographs. A faithful representation of the appearance is paramount for a realistic rendering. Yet, it still faces many challenges, that we wish to address in this thesis. There is a wide range of methods used for computing, storing and rendering appearance information. Considering the need for efficient storage and streaming capabilities of such models, we choose to focus on the most compact, and probably the most widely used, type of representation: a 3D mesh with a color texture. We contribute to various aspects of appearance modeling in this context, including sampling, compression, and super-resolution of appearance, and surface denoising. First, the amount of available appearance information is not uniform on the surface. Yet, standard parameterizations of the surface, i.e. texture maps, can only sample it uniformly. Using the inner parameterization of the mesh, we propose an adaptive sampling strategy that is able to more efficiently capture available information. Then, because the appearance model we use cannot be compressed efficiently, we equip it with a lossy compression method, that makes it more efficient than image textures in terms of bit-rate vs. visual quality. Geometric noise is one of several sources of noise that make the problem of appearance modeling particularly challenging. Considering the success of convolutional networks for image denoising, we contribute to the field of mesh denoising, with the first end-to-end deep-learning approach for normals denoising, with a graph convolution network. Finally, we tackle the problem of appearance superresolution, with the goal of producing a detailed appearance from a set of low-resolution images. We present a novel approach, with a data-driven method that is trained to enhance appearance in image space, rather than in a shared texture space.

Je tiens tout d'abord à remercier chaleureusement mes superviseurs Edmond et Jean-Sébastien de m'avoir donné l'opportunité de faire ce doctorat. Leur expertise et leurs encouragements m'ont aidé à rester motivé pendant toute cette période. Je voudrais aussi remercier les autres membres de mon jury de thèse, pour leurs retours perspicaces et leur bienveillance, qui ont contribué à rendre ma soutenance moins stressante et plus enrichissante.

Je remercie également tous mes collègues passés et présents de l'équipe Morpheo, pour les innombrables discussions à la pause café, tantôt enrichissantes, tantôt divertissantes, mais qui ont toujours contribué à rendre l'ambiance de travail agréable. Merci en particulier à Vincent pour toutes les interactions, professionnelles ou pas, dans notre bureau partagé, et de m'avoir aidé à me remettre rapidement dans le bain de la vision par ordinateur et de la géométrie 3D.

Mes collègues m'ont également aidé à me changer les idées tout au long de mon doctorat, grâce à des activités variées ! Dans le désordre, merci à Tomas pour les descentes en canoë (fait maison), à Vincent pour toutes les parties d'échecs et de go, et pour les trails matinaux par le Rachais, et à Jean pour les parties de shogi. Merci à Julien de m'avoir fait découvrir le bonheur du parapente, et d'avoir partagé d'innombrables sorties vol-rando avant le boulot, en toutes conditions... Et merci surtout pour les sorties trail improbables ! Merci également à Jean, Edmond, Valentin et Ulysse pour tous les bons moments passés en vol. Merci à Julien et Vincent sans qui je n'aurais probablement jamais brassé de bière au fromage. Et enfin, merci à tous les autres ingénieurs, doctorants et stagiaires passés ou présents de l'équipe pour toutes les soirées partagées après le boulot.

En dehors du labo, je remercie aussi mes amis de Bruxelles, de m'avoir soutenu avec un verre de champagne en pleine rédaction de mon premier article. Mes colocs, voisins et amis de Grenoble pour toutes les soirées jeux, les balades et les tacos gratinés ! Mes amis de l'apnée pour la zénitude partagée lors des sessions piscine, fosse ou mer... Et tous les autres avec qui j'ai eu la chance de passer de bons moments pendant ces années de doctorat.

Enfin, je tiens à remercier également toute ma famille : mes parents, frère et soeurs, neveux et nièces pour m'avoir soutenu par leur présence et tous les bons moments passés ensemble. Merci en particulier à Laurence et Florian de m'avoir accueilli pendant le premier confinement ! Et merci à Théo, Pauline et Gabin, d'avoir été autonomes dans leurs devoirs, et de ne pas avoir nécessité trop de supervision de leur tonton. Les pauses towerfall et les soirées du samedi auront aidé à combler le manque d'interactions au labo ! Enfin, merci à Charlotte d'avoir partagé ma vie à divers endroits au gré des confinements, et de m'avoir supporté par sa présence pendant la période difficile de la fin de la thèse et de la rédaction, et en plus, sans me mettre la pression ! Tous les bons moments à deux m'ont aidé à rendre cette période normalement stressante agréable. Grâce à toi, je serais (presque) prêt à la rédiger une deuxième fois !

Résumé

De récentes avancées technologiques, et en particulier le développement de la réalité mixte, associées à un besoin urgent pour des applications de téléprésence dans de nombreux domaines, créent une forte demande pour du contenu 3D acquis directement à partir d'observations réelles. Ce type de contenu peut ensuite être manipulé et utilisé pour du rendu interactif depuis n'importe quel point de vue, afin de générer une expérience immersive pour l'utilisateur. Le processus de modélisation implique généralement de reconstruire séparément la forme et l'apparence d'une scène, à partir d'un ensemble de photographies 2D. Il est crucial d'avoir une représentation fidèle de cette apparence, sous peine de briser la sensation d'immersion. Pour autant, il reste de nombreux défis à résoudre, et nous abordons certains d'entre eux dans cette thèse. Il existe de nombreuses méthodes pour calculer, stocker et rendre l'information d'apparence. Compte tenu du fait que ces modèles doivent être stockés et transmis de façon efficace, nous nous focalisons sur le type de représentation le plus compact, qui est sans doute aussi le plus utilisé: un maillage 3D avec une texture de couleur. Nous contribuons à différents aspects du problème de modélisation d'apparence dans ce contexte, notamment à l'échantillonnage, la compression, et la super-résolution d'apparence, ainsi qu'au débruitage de surface. Tout d'abord, la quantité d'information d'apparence disponible en entrée n'est pas uniforme sur la surface. Pourtant, une carte de texture, qui est la méthode ordinaire de paramétrisation de la surface, ne permet pas un échantillonnage non uniforme. En utilisant la paramétrisation propre des maillages, nous proposons une stratégie d'échantillonnage adaptative, qui est plus à même d'acquérir efficacement l'information disponible. Ensuite, comme notre modèle d'apparence ne peut pas être compressé efficacement, nous le dotons d'une méthode de compression avec pertes, ce qui le rend plus efficace que des textures image, en matière de rapport entre débit binaire et qualité visuelle. Plusieurs sources de bruit rendent le problème de modélisation d'apparence particulièrement difficile, parmi lesquelles se trouve le bruit géométrique. Etant donné le succès des réseaux de convolutions pour le débruitage d'images, nous contribuons au domaine du débruitage de maillages avec la première approche d'apprentissage profond de bout en bout, pour du débruitage de normales, basée sur un réseau de convolutions sur graphes. Enfin, nous abordons le problème de super-résolution d'apparence, dont le but est d'extraire une apparence détaillée à partir d'observations basse résolution. Nous présentons une approche innovante, avec une méthode d'apprentissage qui est entrainée pour améliorer l'apparence dans l'espace image, plutôt que dans un espace de texture partagé. We, as humans, receive a tremendous amount of information through our eyes. All this data needs to be processed in real time by the visual system, in order to extract highlevel information and build and update a compact representation of the world. The field of computer vision aims at solving the same task: process streams of dense, raw data acquired from light-based sensors, in order to build digital models of the world. These models are made ever more precise and complex thanks to numerous innovations, whether they are about computing power, better sensors, or better algorithms.

List of Figures

Such digital representations of the world can take the form of 3D models, that can be freely edited and rendered from novel viewpoints, that is, used to build virtual scenes and simulate new observations in an interactive way, in order to give a feeling of immersion to the user.

There is a growing demand for such 3D content: For one thing, two forms of 3D media, Virtual Reality (VR) and Augmented Reality (AR), are becoming more accessible to consumers, thanks to head-mounted displays, such as the Oculus Rift and HTC Vive (VR), or the Microsoft Hololens (AR), and thanks to high-level API for developers, such as OpenXR [START_REF] Openxr | [END_REF]. In parallel, because of the growing concern/awareness about the ecological crisis, there is a strong tendency to virtualize interactions whenever possible. This tendency has been made even more pressing by the recent covid-19 pandemic. Applications include telepresence, but also, for example, virtual visits of cultural archaeological sites, or virtual dressing rooms for the fashion industry. Finally, even traditional media that normally rely on fully synthetic 3D models, such as the video game and cinema industries, are taking an interest in captured 3D data: they require less manual labor than synthetic models, reconstructions techniques are becoming more precise, so that noise is less of a problem, and some captured motions are still hard to simulate realistically (e.g. complex physical interactions, involving shocks or friction, such as the motion of cloth). Intel Studios, an ambitious volumetric capture platform recently set-up by Intel, was a good illustration of this phenomenon [5].

Compared to 2D media (video and images), 3D content viewed in an interactive manner (e.g. with a HMD with head tracking) can induce a sense of presence in the user. Obviously, depth perception is an important part of this immersive feeling. The actual underlying geometry of the scene plays a big part of this perception of depth, through stereopsis, motion parallax and occlusions. But it also stems in part from other monocular cues that are derived from appearance, such as aerial perspective, shading and texture [START_REF] Gibson | The Perception of the Visual World[END_REF]. One just has to close an eye (and remain motionless) to convince themselves of this fact. Therefore, one can get a good immersive experience from a virtual scene even with a coarse geometry, provided that the appearance information is good enough.

Besides, appearance information is crucial for conveying information about the properties of materials (e.g. roughness, glossiness, type of material) that cannot be inferred from the geometry. Thus, a good appearance is paramount for a realistic model. Reconstructing the geometry is a very complex problem that has received a lot of interest already and that we will not discuss in details. For the reasons mentioned above, this work focuses on the task of modeling the appearance of captured 3D models.

Objectives

Our goal is to improve the general appearance reconstruction pipeline. Such improvements could take many forms: e.g. lower computational cost or better robustness of the algorithms used, higher resolution/quality of the output models, better ease of rendering, lower storage space, etc. In order to contribute, we first identify several bottlenecks and challenges, related to various parts of the pipeline: input geometry, appearance representation, and efficient use of multi-view data. For each one, we propose an innovative solution that can be plugged-in directly into a working pipeline. These solutions contribute to appearance quality, storage space and ease of editing, while keeping a low computational cost. These challenges and contributions are summed-up in the following subsection (1.3).

Challenges and Contributions

Appearance modeling involves the projection of registered 2D images on a surface in 3D space, in order to model a dense multi-dimensional signal on this surface (see figure 1.1). It faces several challenges.

For one thing, traditional tools for storing and manipulating 2D data, i.e. images, are ill-suited to work with signals defined on arbitrary surfaces. This is usually mitigated by the use of texture mapping: a mapping function between the surface of interest and a subset of the plane. This makes the storing, sampling, and processing of such signals tedious at best. For example, convolutional neural networks (CNNs), that have proved to be very powerful for many image processing tasks, cannot be easily and efficiently applied to such signals.

Secondly, appearance modeling involves noise from many different sources, including sensor noise, optical distortion, calibration errors, and geometric reconstruction errors. Thus, it becomes challenging to register and combine information from different sources.

Finally, 3D data naturally take up a lot of disk space, which can be a bottleneck when streaming temporal sequences of 3D models.

In this work, we set out to explore new innovative solutions to these problems. Our contributions are many-fold. First, we introduce a new appearance sampling strategy, that is adapted to the specific context of reconstruction from multiple images. We show it to be better at retaining information than the naive sampling used in practice. This strategy is only made possible by storing appearance information directly on the surface, rather than in a 2D texture map. Second, we design a compression algorithm adapted to this type of representation, thus addressing one of the major drawbacks of this model. Third, we contribute to the field of geometry processing, with a novel data-driven mesh denoising method, that is trained to denoise surface normals in an end-to-end manner. Finally, we tackle the problem of appearance super-resolution with another learning-based strategy, and contrary to previous works, we process multi-view information directly in input space, and show how this can be beneficial. We have been voluntarily vague about the digitization process for now. It involves several aspects, each with its own set of challenges: sensing, processing, representation, and rendering. First, we discuss the paradigm of shape and appearance modeling, on which this work is based (section 1.4). Then, we briefly describe the capture and reconstruction process (section 1.5).

At the scale at which we are concerned, the world we observe is continuous in all respects, and infinitely complex, but we must necessarily adopt a discrete model to describe it numerically. We discuss our choice of shape (section 1.6) and appearance (1.7) representation for the rest of this manuscript.

Finally, we introduce useful notations and definitions (1.8) and give a brief outline of our work (1.9).

Shape vs. Appearance

When trying to "capture" a scene, what we are interested in is the plenoptic function of the scene, i.e. the full light spectrum that passes through any 3D point in space, and going in a given direction. It is usually written as a function of 5 parameters (for a given time and wavelength). If we have access to the full plenoptic function, a new image can be generated from any viewpoint, simply by sampling the rays we are interested in. However, we cannot afford to densely sample the full function, and such a raw representation would be of very limited interest anyway, because it would require a lot of storage space, and offer poor editing capabilities. In practice, we have only access to very sparse samples of the plenoptic function, but there are strong assumptions that can be made to reduce the problem complexity.

The world we observe is mainly made of opaque objects, and as such, its interaction with light takes place on the borders between the transparent medium (air) and objects, i.e. on surfaces. This neglects other complex optical effects such as sub-surface scattering, diffraction and atmospheric refraction (schlieren, mirages, heat haze...), but it can account precisely for much of the light we observe in most cases.

Thus, instead of trying to capture the full plenoptic function, a common way of dealing with the problem is to compute a representation of the shape, that encodes the geometry of the scene, and a separate appearance (or texture) definition, that encodes how this shape interacts with light e.g. its color. In most cases, these two steps are performed separately: first, the geometry of the scene is computed, then, given the geometry, a texture is computed, as a function of the surface. This representation is illustrated in figure 1.2. Figure 1.2: Representation of a captured 3D object as a surface in space, with a 2D appearance function; in this case, a texture map.

Capture and Surface Reconstruction

To completely model the surface of a real world 3D object, we need measurements for all sides of the object, which means we need a collection of images taken from different viewpoints. This necessary condition is also sufficient, provided there are enough images, so that every part of the surface is observed at least twice. Indeed, using photoconsistency, and epipolar geometry, one can match pixels from different images and compute the position of the corresponding surface point in 3D space. This process is known as multiview stereopsis (MVS). Images can be taken simultaneously by several sensors, which allows the capture of dynamic scenes, or they can be taken from the same device moving around the object (called "structure from motion"). Many different modalities can be used on top (or instead) of RGB images, to help the surface reconstruction process. They usually involve the projection of controlled light patterns (natural or laser) onto the scene, and make it possible to directly measure depth from a single image. Thus, it is quite common to talk about "RGBD" input images in this case. For our purpose, we consider the geometry of the scene as input, and whether this geometry is obtained by MVS reconstruction or depth measurements is not relevant.

The process also requires the precise calibrations of cameras to be known. They can be inferred jointly with the geometry, directly from input images (auto-calibration), or they can be estimated separately using a known object, such as a calibration checkerboard.

Choice of Shape Representation

As stated, we need a discrete numerical model, that allows us to approximate real-life continuous surfaces with relatively few parameters. We wish our surface representation to have a continuous 2D support, so that • it can be sampled at arbitrary points on the surface

• the local neighbourhood of sampled points can be easily defined, so as to allow some 2D signal processing Many representations have been used in geometry processing, but we limit ourselves to the most commonly used ones here.

Point clouds represent shapes as a collection of points in 3D space. They can be derived easily from raw measurements, and are often used as an intermediate representation. Although they may seem unsuitable for rendering, since points have no dimension, this can be mitigated through the use of surface splatting [START_REF] Zwicker | Surface splatting[END_REF]. However, they do not define a surface, and are ill-suited for our purpose.

Implicit surfaces represent shapes as the zero-set of a scalar function defined in 3D space. They have several benefits: they are continuous, and agnostic to the topology of the underlying shape, in the sense that local topology changes only have a local impact on the representation. The function can be built by a wide range of means. Signed distance functions (SDFs) are a common type of implicit surfaces. They are used, for example, to aggregate information from multiple depth images [START_REF] Curless | A volumetric method for building complex models from range images[END_REF]. A recent trend consists in writing implicit surfaces as deep neural networks, with learnable parameters, which we will discuss in the conclusion.

Implicit surfaces have a continuous support, but this support is 3-dimensional. Methods have been proposed to map an implicit surface to a 2D domain [START_REF] Zonenschein | Texturing implicit surfaces with particle systems[END_REF], but these mappings are not straightforward to compute, as they are the result of an iterative process. They may work well for simple surfaces in practice, but they offer no guaranties regarding the conservation of angles or areas.

Meshes are sets of polygons (usually triangles) that define a (usually watertight) polyhedral surface in 3D space. They are traditionally used for rendering, making it an ideal choice for graphics applications. In MVS, 3D meshes are usually computed from intermediate point clouds or implicit surfaces, so information is lost in the process. Besides, they are not equipped to easily process changes of topology in a surface, which requires editing the connectivity of the mesh. As such, they are ill-suited to deal with temporal data. On the other hand, contrary to point clouds and SDFs, they explicitly define a 2D surface in space, that can be parametrized (see section 1.8).

Subdivision surfaces, and Non-uniform rational basis spline (NURBS), are closely related to meshes, in that they are controlled by a coarse mesh. Contrary to meshes, they can represent smooth surfaces, with tangential continuity, and they require comparatively less parameters than triangular meshes. Meshes are more universally used, however, and such parametric surfaces can be easily approximated by denser meshes, so there is little loss of generality in working with triangular meshes.

Therefore, for the rest of this work, we consider surfaces represented as triangular meshes.

Appearance Function

Now that we have a way to represent geometric surfaces, we can model optical properties of objects as a function of the surface. This is usually written as the bidirectional reflectance distribution function (BRDF), this is a function of position, incoming light direction, and outgoing (viewing) direction: surface materials absorb certain wavelengths, and reflect and diffuse others. A wide range of BRDFs can be encountered in real life, and the graphics community has long tried to measure precisely the BRDFs of different materials, using goniospectrophotometers [START_REF] Mccamy | Observation and measurement of the appearance of metallic materials. Part I. Macro appearance[END_REF].

However, for simplicity, we consider a simpler model: for most surfaces, we can neglect the effect of reflection, and assume the diffusion to be the same in every direction: this is known as the Lambertian assumption, and is a common simplification of the problem. Finally, we use the traditional 3-channels representation of the visible spectrum (RGB) as most sensors capture light in this format, and downstream applications (rendering pipelines, and visualization devices) use the same paradigm.

This choice of appearance function (RGB) is arbitrary, and other, more complex forms could equally be chosen, as long as they can be written as a multidimensional function of position only. For example, it is quite common to model the reflectance properties of surfaces into separate diffuse and specular components (both as RGB signals, e.g. [START_REF] Sato | Object shape and reflectance modeling from observation[END_REF]). The lumisphere model [START_REF] Wood | Surface light fields for 3D photography[END_REF] is still more complex. It represents light emitted by a surface, as a set of regularly sampled rays in predefined directions. This model is more general, and closer to the full BRDF (more precisely, the outgoing radiance, i.e. the BRDF multiplied by incoming light), but by sampling in predefined directions, it is written as a function of position on the surface only. Such a model could be used almost indifferently for most of the following work, at least in a very naive way.

Notation

Let us now quickly introduce a more formal definition of the problem, along with the notations used for the rest of this manuscript.

We consider a shape surface S, that we wish to model through a multi-view stereo reconstruction approach. S is observed from multiple viewpoints, producing a set of K input photographs {I 1 , . . .

I K } of dimension h × w .
We assume that, after a first preliminary step, the calibration parameters of all input views have been computed, along with a triangular mesh M that approximates the real surface S. M can be formally defined as M = {V, E}, where V is an ordered set of vertices V = {v 1 . . . v N } in R 3 , and E is a set of topological edges connecting them, forming a graph.

Alternatively, we can write M as {V, T }, where T is an ordered set of triangles {T 1 . . . T M }, and

T i ∈ [1, N] 3 is a triplet of vertex indices.
From calibration parameters, we can derive a linear projection operator π i of dimensions 3 × 4 (expressed in homogeneous coordinates) for every view i, such that ∀ X ∈ R 3 , the projection x of X on image I i verifies

x 1 ∝ π i • X 1 (1.1)
We parameterize point locations on M with barycentric coordinates and through the following function F :

F : {1, ..., M }×]0, 1[2 → M (j, a, b) → a v x + b v y + (1 -a -b) v z , (1.2)
where (x, y, z) = T j are the 3 vertex indices of triangle T j . The closure of the codomain of F is M. We call F -1 the inner parameterization of M. In other words, every point on M can be uniquely represented by its triangle index j and its barycentric coordinates (a, b), with the exception of vertices and edges. Thus, any function of the surface can be written as a combination of F -1 and some function defined on {1, ..., M }×]0, 1[2 .

Outline

Chapter 2 gives a general overview of existing works on the subject of multi-view appearance modeling, and signal processing on meshes in general.

Considering the drawbacks of texture maps for multi-view appearance modeling, we first propose an efficient and compact representation, based directly on the inner parameterization of meshes (as defined in 1.8). It consists of an adaptive sampling strategy, presented in chapter 3, and a dedicated compression pipeline, detailed in chapter 4.

In chapter 5, we switch our focus from color to normals, and from meshes as continuous surfaces, to meshes as discrete graphs of connected points. We propose a learned denoising method for surface normals based on graph convolutions.

Chapter 6 addresses the specific problem of appearance super-resolution, with a focus on image space, without explicit sampling of the surface.

Finally, in the conclusion (chapter 7), we discuss a possible switch away from the central paradigm of shape and appearance separation, as well as possible future research directions.

Chapter 2

Related Works

In this chapter, we briefly review the main trends of previous works related to appearance modeling, in order to give a broad understanding of the context to the reader. More specific reviews are given at the beginning of each subsequent chapter. First, we discuss the geometry reconstruction process: geometric noise is a major challenge for appearance modeling; therefore, it is important to get a rough understanding of this procedure. Then, we present the major trends of appearance modeling itself, with a separate section dedicated to representation models for model-based appearance signals. Finally, once textured, models need to be stored and transmitted before use; hence we outline compression methods of textured meshes.

Geometry Reconstruction

We will not give a detailed account of MVS reconstruction techniques, as it is not the focus of this thesis. One can refer to [START_REF] Furukawa | Multi-View Stereo: A Tutorial[END_REF] for an in-depth review of the field. We merely present the general trends and challenges.

A first estimate of a shape observed from multiple viewpoints is given by its visual hull : from a single image, the contour of the object can be backprojected into 3D space, forming a conical volume within which the object is guarantied to lie. By intersecting such cones from different views, one can compute the minimal 3D volume that projects onto all input silhouettes, also known as the visual hull. This hull is convex by construction, and so, it cannot model concavities of the shape.

To recover a more precise estimate, it is necessary to use photoconsistency, which simply states that a surface point that is visible from multiple views should have the same color in all those images. Thus, early works in MVS propose to reduce the visual hull to the photo hull, i.e. the maximum volume whose projection in all input views is photo-consistent [START_REF] Kutulakos | A theory of shape by space carving[END_REF]. They do this with space carving, an algorithm that iteratively carves out inconsistent voxels. Then, the trend switched to estimating view-dependent depth maps, and fusing them into a single 3D representation (as in [START_REF] Narayanan | Constructing virtual worlds using dense stereo[END_REF]). In order to measure the photo-consistency of a 3D point in different images, it is common to compute descriptors for each pixel. These descriptors depend on a local 2D patch around the pixel, and they are supposed to encode local appearance information in a way that is robust to a change of viewpoint (i.e. robust to scale and rotation) or illumination. At first, hand-crafted descriptors were used, such as SIFT [START_REF] Lowe | Distinctive Image Features from Scale-Invariant Keypoints[END_REF]; but they tend to be replaced by learned ones as in [START_REF] Zagoruyko | Learning to compare image patches via convolutional neural networks[END_REF]. This is part of a general trend towards learning-based methods: deep learning has been proposed for disparity estimation [START_REF] Huang | DeepMVS: Learning Multi-view Stereopsis[END_REF]; and more recently, fully unsupervised approaches have emerged [START_REF] Dai | MVS2: Deep Unsupervised Multi-View Stereo with Multi-View Symmetry[END_REF][START_REF] Khot | Learning Unsupervised Multi-View Stereopsis via Robust Photometric Consistency[END_REF].

The recently introduced Tanks and Temples benchmark [START_REF] Knapitsch | Tanks and temples[END_REF] provides an objective comparison of reconstruction methods on various data. It also demonstrates that the CHAPTER 2. RELATED WORKS field is still very active, with close to 200 competitors listed at the time of this writing, and a fast-changing leaderboard [START_REF]Tanks and Temples Leaderboard[END_REF].

Appearance Modeling

Essentially, one can differentiate between two families of multi-view appearance modeling techniques: image-based and model-based. We present both strategies here, as well as the somewhat in-between view-dependent texture mapping. Finally, we dedicate a section to appearance super-resolution methods, that specifically aim at recovering high-frequency signals that are absent from any single input image.

Image-based Rendering

Image-based modeling consists in storing all the raw input images as a representation of the surface appearance. The actual computation takes place at rendering time, when we wish to generate a novel observation of the object from an arbitrary viewpoint. Thus, it is often referred to as image-based rendering, or IBR for short. IBR, and the related domain of light field rendering are more concerned about modeling the plenoptic function, than the optical properties of surfaces. Thus, they often consist in capturing input images with a specific setup, e.g. [START_REF] Levoy | Light field rendering[END_REF][START_REF] Anderson | [END_REF]. IBR techniques generate a novel view by sampling and interpolating pixels from input views. Most techniques rely on a loose geometric model, e.g. as a collection on depth images [START_REF] Chen | View interpolation for image synthesis[END_REF].

Some works model a subset of the plenoptic function, consisting of all outgoing rays through a plane or a closed surface around the scene. Such a model can be parameterized by 4 dimensions. Light field rendering [START_REF] Levoy | Light field rendering[END_REF] makes no assumption about the geometry of the scene but it requires sampling the plenoptic function in a regular, predefined way. The lumigraph [START_REF] Gortler | The {L}umigraph[END_REF] can handle a sparse signal with non-uniform sampling, as they interpolate it with a tailored hierarchical algorithm. The unstructured lumigraph [START_REF] Buehler | Unstructured lumigraph rendering[END_REF] follows a similar strategy, but computes camera blending weights instead of resampling the light rays.

More recently, deep learning methods learn complex models that predict blending weights from input views [START_REF] Hedman | Deep blending for free-viewpoint image-based rendering[END_REF].

The advantage of IBR techniques is that there is no loss of information in the model, and they require only coarse approximations of the geometry. On the other hand, they need a large number of input images to work properly, and depending on the number and resolution of the input images, storage space can quickly become an issue. Moreover, novel viewpoints can only be sampled from a limited set, close to the input viewpoints. It does not allow for a full navigation of the scene. Therefore, we focus on model-based methods.

Surface Texture Estimation

Model-based techniques (that we will call MBR), on the other hand, compute a single appearance model as a function of the surface, usually as an RGB texture. One can still render more complex reflections, but they have to be modeled explicitly, either using predefined material properties, or capturing them along with the diffuse color, as in [START_REF] Sato | Object shape and reflectance modeling from observation[END_REF]. Most works, however, use a Lambertian model (i.e. they consider diffuse reflectances only), and only compute an RGB signal. A naive way to approach the problem would be to project and average all views on the surface. However, this normally produces a very blurry texture, with ghosting artifacts. Indeed, the difficulty lies in dealing with the numerous sources of noise in the data: in the images (distortion, sensor noise), in the geometry (imprecision of the reconstruction, hallucinated or missing surfaces), and in the camera calibration.

Then, one might be tempted to just project a single view on any given part of the surface (usually the "best" view, i.e. the most informative for this part of the surface), in order to obtain a sharper result, but for the same reason, this produces visible seams (because of misalignments) between regions of the surface colored by different views.

Most works are based on a "best-view" approach. Some blend the contribution of different views along the seams [START_REF] Rocchini | Multiple textures stitching and blending on 3D objects[END_REF][START_REF] Baumberg | Blending Images for Texturing 3D Models[END_REF], in order to create smooth transitions, while others focus on carefully selecting neighbouring views in order to avoid artifacts [START_REF] Lempitsky | Seamless mosaicing of image-based texture maps[END_REF], and some use a mix of both strategies [START_REF] Allene | Seamless image-based texture atlases using multi-band blending[END_REF][START_REF] Waechter | Let There Be Color! Large-Scale Texturing of 3D Reconstructions BT -Computer Vision -ECCV[END_REF][START_REF] Xu | A general texture mapping framework for image-based 3D modeling[END_REF]. Gal et al. [START_REF] Gal | Seamless montage for texturing models[END_REF] build on view-selection approaches, by allowing small image translations to correct misalignments.

Other methods actually use all views, along with an iterative process to realign them. Zhou et al. [START_REF] Zhou | Color map optimization for 3D reconstruction with consumer depth cameras[END_REF] optimize the camera poses and some non-rigid deformations in the input views. Bi et al. [START_REF] Bi | Patch-based optimization for imagebased texture mapping[END_REF] synthesize a new aligned view for each input image, based on a patch-based energy function. These aligned views are improved iteratively, along with the texture. Adversarial Texture [START_REF] Huang | Adversarial Texture Optimization from RGB-D Scans[END_REF] also follows an iterative approach, where a texture is optimized to fool a discriminator network, that differentiates between input views and rendered views.

Regardless of the algorithm used, surface textures need a parameterization of the surface, which is discussed below in section 2.3.

View-dependent Texture Mapping

Some strategies lie at the border between IBR and MBR: they require an explicit 3D model, but retain information from multiple input images rather than computing a single texture. They are sometimes refered to as view-dependent texture mapping, first introduced by Debevec et al. [START_REF] Debevec | Modeling and rendering architecture from photographs[END_REF]. In their paper, they adopt a kind of best-view strategy with a blending technique, but at render time, in a view-dependent manner. In [START_REF] Nishino | Eigen-Texture method: appearance compression and synthesis based on a 3D model[END_REF], the authors retain only some of the local view-dependent variation in appearance, by applying a PCA decomposition and retaining only part of the components, making what they call eigen-textures. This is a form of compression of IBR representation, and more strategies of this type are discussed in part 2.4.

Appearance Super-Resolution

Input images sample the same underlying signal with small spatial shifts. In this context, it should be possible to perform super-resolution, i.e. to recover the signal at a higher resolution than that of the input images. This is long-standing problem that has received much attention on bursts of 2D images. It requires a precise registration of the input, which is tricky in the MVS case. Goldlücke et al. [START_REF] Goldlücke | A super-resolution framework for high-accuracy multiview reconstruction[END_REF] first addressed the problem by formulating an image formation model, and solving an inverse problem. They also optimize for a displacement field on the surface, to compensate for misalignments. Tsiminaki et al. [START_REF] Tsiminaki | High Resolution 3D Shape Texture from Multiple Videos[END_REF] take it further by super-resolving in the temporal domain as well, by tracking the surface and integrating images from multiple time frames. They correct misalignments with optical flows (in the observed images) rather than a displacement field. In [START_REF] Li | 3D appearance super-resolution with deep learning[END_REF], the authors take a different turn: inspired by the success of learning-based, single image super resolution (SISR) methods on images, they propose a similar strategy as post-processing on image textures. They fine-tune a SISR network on texture maps, and add normals and a texture mask as additional features. More recently, both approaches have been combined in a single pipeline [START_REF] Richard | Learned Multi-View Texture Super-Resolution[END_REF]. They first use the iterative optimization method of [START_REF] Tsiminaki | High Resolution 3D Shape Texture from Multiple Videos[END_REF], while also learning to estimate optimal hyper-parameters from data. As a second step, they refine the inferred HR texture with the SISR approach of [START_REF] Li | 3D appearance super-resolution with deep learning[END_REF]. We address this problem in chapter 6.

Surface Appearance Representation

Many types of functions can be defined on meshes for rendering purposes (e.g. normals, bump-maps, specularity, transparency...). We discuss here representation of surface appearance in general, and the methods described here are agnostic to the kind of signal being sampled. We are not considering light-field representations, discussed in 2.2.1, but only appearance as a function of the surface With a sufficiently detailed mesh, one can represent its appearance by giving a color to each vertex, as in [START_REF] Agrawala | 3D painting on scanned surfaces[END_REF]. However, the whole point of using meshes to represent the surface is to limit the complexity of the model by representing large flat areas as triangles. A much more common form of appearance representation used in rendering, is undubitably 2D textures. They are described and discussed in more details in section 3.2.1. They rely on computing a 2D parameterization of the surface, i.e. a global mapping function between the surface and a 2D image. But this projection is not continuous, it introduces distortion, and the sampling of the appearance cannot be adjusted locally.

Because of these limitations, attempts have been made for representations beyond 2D textures. The thorough survey of Tarini et al. [START_REF] Tarini | [END_REF] already gives an exhaustive overview on the subject.

Of most interest to us are connectivity-based representation, that use the intrinsic parameterization of the model, rather than an arbitrary mapping. For instance Ptex [START_REF] Burley | Ptex: Per-face texture mapping for production rendering[END_REF] used by Walt Disney Animations Studios, and Mesh Colors [START_REF] Yuksel | Mesh colors[END_REF] are particularly noteworthy as they are used in real production pipelines in the movie industry ([START_REF] Lambert | From 2D to 3D painting with mesh colors[END_REF]). In chapter 3, we build on this strategy to improve appearance sampling of MVS models.

Compression of MVS Models

Like any other forms of digital media, 3D models can be more efficiently stored and streamed thanks to compression techniques. Because of their 3-dimensional nature, storage needs rise even more quickly with model complexity, than it does with traditional media (images and videos). We briefly give some pointers about 3D mesh compression, and provide more context on appearance compression.

Shape Compression

We limit ourselves here to the topic of 3D mesh compression, as opposed to shape compression in general. The problem, and the early strategies and methods used to address it, are discussed in details in the 2005 survey of Peng et al. [START_REF] Peng | Technologies for 3D mesh compression: A survey[END_REF]. Single-rate methods focus on minimum file size, and compress the whole mesh into a single block. Progressive algorithms focus on streaming applications: a coarse representation of the whole mesh can be extracted from a first transmission, and refined as more and more data is received. A more recent survey [START_REF] Dupont | 3D Mesh Compression. 3D Video[END_REF] focuses on comparatively recent methods, not covered in [START_REF] Peng | Technologies for 3D mesh compression: A survey[END_REF]. In particular, this includes:

• random accessible methods that allows for the extraction of any part of the mesh on request, without having to decompress the whole file.

• dynamic compression methods, that deal with temporal sequences of 3D meshes: usually a single, deformable mesh moving through time, but some works address the harder problem of compressing sequences of incoherent meshes.

Several state-of-the-art shape compression tools and standards are readily available for the general public, including Google Draco [START_REF]Draco[END_REF] and SourceForge OpenCTM [6].

Appearance Compression

With efficient shape compression techniques, appearance information can become the bottleneck for streaming or storage requirements. For model-based rendering, 2D textures can be compressed with standard image compression techniques in a straightforward manner (see chapter 4).

Thus, some works focus instead on temporal compression. When capturing a moving scene, the default practice is to just process every time frame through the reconstruction pipeline independently. By doing this however, one ends up with a collection of independent models without time coherence. A more useful and compact representation is that of a single deformable mesh moving in time. This can be achieved through surface tracking (e.g. [START_REF] De Aguiar | Performance capture from sparse multi-view video[END_REF][START_REF] Cagniart | Probabilistic Deformable Surface Tracking from Multiple Videos[END_REF][START_REF] Budd | Global non-rigid alignment of surface sequences[END_REF]). On a temporally coherent surface, one can define a temporally coherent appearance. Collet et al. [START_REF] Collet | High-quality streamable free-viewpoint video[END_REF] encode such a video texture using standard video codecs. In the 4D Video Textures work of Casas et al. [START_REF] Casas | 4D video textures for interactive character appearance[END_REF], they manipulate sets of view-dependent textures for each time frame, rather than a single RGB texture, but they build videos of such models, using video codecs as well. In 2016, [START_REF] Boukhayma | Eigen Appearance Maps of Dynamic Shapes To cite this version : HAL Id : hal-01348837 Eigen Appearance Maps of Dynamic Shapes[END_REF] extend the original eigen-texture concept [START_REF] Nishino | Eigen-Texture method: appearance compression and synthesis based on a 3D model[END_REF] to temporal textures.

A similar method has also been used for light field compression [START_REF] Volino | Light Field Compression using Eigen Textures[END_REF], which is an active area of research, since light field data are redundant by design, but we will not cover it here.

In chapter 4, we propose an appearance compression strategy, that deals with mesh textures (presented in chapter 3) rather than 2D image textures.

Chapter 3

Efficient Mesh Texturing through dynamic sampling Image based 3D shape modeling is the process of building digital models of shapes using real images. It finds applications in many domains, in particular with the new virtual and augmented reality devices and the associated need for 3D contents. In order to represent the reconstructed 3D shapes, the dominant paradigm is to model them as polyhedral surfaces over which appearance functions are defined. With such a model, both geometric and appearance features fundamentally contribute to convey realism and fidelity to the observed shapes. In this chapter, we explore an appearance representation beyond traditional 2D texture maps (see figure 3.1), and show that the ratio of visual quality over model complexity can be significantly improved, thanks to an adaptive sampling strategy, that would not be possible with texture maps.

Since texture maps are embedded into 2D images, they benefit from many of their advantages, such as their controlled and limited sizes, but also the use of image processing tools, such as compression techniques, and filtering algorithms. On the other hand, such representations present severe limitations. First, a 3D to 2D mapping is required to associate geometric points on the 3D shape to appearance information in the 2D texture. We call such a mapping a texture atlas. To this purpose, the 3D shape model is usually cut into charts homeomorphic to discs that are parameterized with texel1 coordinates. The resulting 2D textures are discontinuous by construction, creating unnecessary seams on the model appearance and making local computations on the appearance function difficult; In addition, the texture sampling frequency is by construction uniform over the whole texture space. It cannot be adjusted locally without a global optimization of the whole texture atlas. This does not reflect the modeling needs of real-life textures. Indeed, in practice, natural textures often include large uniform areas, along with highly textured areas with high-frequency content. Besides, when capturing appearance information from MVS data, the amount of information observed for a given part of the surface is very much dependent on the global shape (because of occlusions), local surface orientation, and camera setup. Thus, it can vary quite significantly for different parts of the same shape. Instead of an appearance stored in an intermediate 2D grid, we advocate therefore for an appearance stored on the 3D shape surface with the following advantages:

• There is no need for a 3D to 2D mapping that induces discontinuities in the representation.

• Different regions on the shape can be described with adapted appearance sampling according to local needs.

To this end we build on the mesh color representation introduced in [START_REF] Yuksel | Mesh colors[END_REF] for synthetic graphical models and propose an adaptive appearance representation for 3D image based reconstruction. We show that this representation outperforms traditional texture atlases with more efficient appearance representations with respect to both precision and size.

First, we give a brief review of related works on surface parameterization in section 3.1. Then, we compare the properties of image textures and mesh textures (section 3.2) and present our adaptive sampling strategy (section 3.3). Finally, we evaluate our method on real MVS data in section 3.4, which is followed by a conclusion (section 3.5).

Related Work

Surface Parameterization

In order to define a detailed signal on a surface, we need a parameterization of this surface, so that every point can be represented by a unique set of parameters.

The standard form of appearance representation, 2D texture maps, does this with a global mapping function between the surface and a 2D image, but this projection is not continuous, it introduces distortion, and the sampling of the appearance cannot be adjusted locally. Moreover, it is not easy to compute for complex meshes. There is a lot of research on automatic texture atlas generation. The thorough survey of Floater and Hormann [START_REF] Floater | Surface Parameterization: a Tutorial and Survey[END_REF] gives a detailed account of the challenges of the field, and common strategies used. Most works focus on conformal maps (e.g. [START_REF] Haker | Conformal surface parameterization for texture mapping[END_REF][START_REF] Lévy | Least squares conformal maps for automatic texture atlas generation[END_REF]) that limit angular distortion (see figure 3.2). The field is still active today (e.g. [START_REF] Liu | Progressive parameterizations[END_REF][START_REF] Liu | Atlas refinement with bounded packing efficiency[END_REF]), and in many industrial applications, texture mapping usually requires human input. This goes to show that the problem is complex and far from solved. Figure 3.2: Exemple of a texture atlas: a mapping between a surface in space and a 2D image. This binary image shows which subset of the image domain is actually used by the atlas. The surface is cut into pieces and unfolded in 2D. This atlas is based on conformal maps, that preserve angles. However, this additional constraint forces the surface to be cut into more charts.

Instead of parameterizing a complex 2D surface in 3D space, some works propose to simply represent the signal of interest in 3D. Of course, when sampling a full 3D signal, size can quickly become an issue, so these methods focus on sparse representation, using for example octrees [START_REF] Benson | Octree textures[END_REF]. However, it becomes difficult to edit and filter the underlying 2D signal with such methods.

Another strategy consists in simply using the inner parameterization of the mesh, as in the Ptex [START_REF] Burley | Ptex: Per-face texture mapping for production rendering[END_REF] and Mesh Colors [START_REF] Yuksel | Mesh colors[END_REF] methods mentioned in section 2.3. Contrary to a texture atlas, they are not parameterized by a single unified 2D space (they use a face index, plus 2D coordinates instead), but they address the limitations of texture altases mentioned above.

While Ptex was developed for subdivision surfaces, and only works with quad faces, Mesh colors can be used for triangular meshes which is, once again, our choice of surface representation. However, works on this model focus yet on the graphics side, either trying to optimize it for rendering [START_REF] Yuksel | Mesh color textures[END_REF] or creating 3D painting tools for artists to work with [START_REF] Lambert | From 2D to 3D painting with mesh colors[END_REF]. For appearance modeling in vision applications, texture maps are still the main choice of representation.

Multi-view Appearance Estimation

Strategies for multi-view appearance modeling are reviewed in section 2.2. Many of them rely on filtering or regularization of the surface signal (e.g. TV-regularization in [START_REF] Tsiminaki | High Resolution 3D Shape Texture from Multiple Videos[END_REF]), that require the extraction of local neighbourhood in the appearance. However, the disjoint charts of a texture atlas introduce discontinuities in the texture space that make these kinds of operations difficult to perform, since neighbors must be determined across chart boundaries. In that respect, a representation attached to the shape parametrisation, e.g. mesh triangles, is much more efficient with connectivity relationships that are intrinsic.

Appearance Models

Once again, we consider here shapes that are modeled as triangle meshes. In practice, it is possible to extract such a mesh from other surface representations, up to an arbitrary precision, although this might lead to an increase in the number of parameters. As mentioned earlier their surface appearance, typically color information, can be represented with 2D image textures, the traditional model, or directly on shapes with mesh textures. In this section we present both models, their parameterizations and sampling properties before considering more specifically in the next section, the 3D image based modeling context and the mesh texture tools we introduce for that purpose.

More formally, we want to represent the appearance of a mesh M as a dense function C : M → C that associates a color from a space C to every point on the mesh. Typically, C = [0 . . . 255] 3 for a discrete RGB-space color representation.

Image Texture

We recall in this section the widely used image texture solution and discuss its properties.

Parameterization

Image textures make use of an external mapping between an image and the 3D mesh M under consideration. M is divided into k patches P 1 , ..., P k ⊂ M, such that ∪ k j=1 P j = M. For each patch, a separate function ϕ i : 2 and3.3). The chart building process is thus typically a non trivial and global task, introducing discontinuities such that the whole mapping M → T is piecewise continuous. The mapping ϕ = ∪ k j=1 ϕ j is typically defined per face, using 3 pairs of texture coordinates in T representing the images of its 3 vertices by ϕ. ϕ is then linearly interpolated inside the face. Vertices and edges are duplicated along chart discontinuities. In other words, a discrete function ϕ 0 : {v 1 . . . v N } → T is defined on the vertices, and is then extended to the whole surface using the inner parameterization F -1 (equation 1.2). We call such a mapping function ϕ a texture atlas for mesh M.

P i → C i ⊂ R 2 is computed independently that maps 3D points in P i to 2D points in a chart C i . Charts are chosen so that ∪ k j=1 C j = T ⊂ [0, 1] 2 and C i ∩ C j = ∅, ∀i ̸ = j (see figures 3.
Our function C can be written as

C = τ • ϕ • F -1 , with τ : T → C is the color signal defined over T ⊂ [0, 1] 2 .

Sampling

T is discretized with a rectangular image grid, inheriting all the associated image tools. The sampling depends on vertical and horizontal resolutions and the intially chosen mapping of triangles to texture space ϕ. Some texels inevitably fall partly within and outside the chart union T . This means charts tend to "bleed out", up to the border of the next pixel. Figure 3.3 is a good illustration of this phenomenon, that becomes noticeable at low resolutions. Thus, the texture resolution must be carefully chosen: Let d = d 2

x + d 2 y be the minimum distance, in texture space [0, 1] 2 , between any two points from two disjoint charts, and H T and W T be the dimensions (height and width) of the discretized texture T . If d x × W T < 1 or d y × H T < 1, the two points might fall within the same texel: charts are no longer disjoint. This can produce some nasty effects, with charts bleeding into each other, even though they are not necessarily mapped to neighbouring patches on the surface. Thus, the parameterization ϕ, which is not straightforward to compute in the first place, must be chosen according to the target resolution. There is a trade-off between the compactness of representation, by covering up as much of the [0, 1] 2 domain as possible, and safety margins for sampling at low resolutions.

Moreover, because of bilinear interpolation used when rendering, even neighbouring pixels have an effect on the color of surface points, so the function τ must be extrapolated to avoid artifacts, and even more so if filtering operations involving convolutions are to be performer on τ . So, distance safety margins must be made even wider in practice.

Incidentally, this makes the use of mipmapping tricky at best.

Storage and Indexing

Image textures can be stored as regular image files and buffers, with numerous possible compression schemes, such as JPEG. The mapping function ϕ is usually stored into the geometry file, in the form of texture coordinates. Assume E, N, M are respectivley the number of edges, vertices and faces of M. As shown in [START_REF] Peng | Technologies for 3D mesh compression: A survey[END_REF], for large triangular meshes, the approximation M ≈ 2N is considered valid.

In general, the geometry information is represented by N 3D points, i.e. 3N floating point numbers, and the connectivity is stored as M triplets of vertex indices, i.e. ≈ 6N integers.

For appearance, 2D texture coordinates are stored. Because some vertices belong to several charts, it is not possible to simply attribute a single texture coordinate per vertex. Several possibilities exist:

• Texture coordinates are defined at the face level, this makes up 3M coordinate pairs, i.e. about 12N floating points, which is four times as much as geometry information.

• Faces get an additional triplet of indices into a list of texture coordinates of size N ′ , with N ′ slightly larger than N to account for duplicated vertices along chart boundaries. That way, only 2N ′ floating points are needed, but also an additional 3M ≈ 6N integers. This is probably the most common representation. • Vertices are physically duplicated: Geometry requires 3N ′ floating points instead of 3N , but texture mapping can be reduced down to 2N ′ floating points and no extra indexing. However, this changes the structure of the mesh.

Mesh Texture

In contrast to traditional image textures, mesh textures bypass the need for a 2D mapping function, and store and sample appearance information directly on the mesh, as illustrated in Figure 3.4. These ideas were introduced in [START_REF] Yuksel | Mesh colors[END_REF] and we experiment and extend them to appearances from real images.

Parameterization

Mesh textures do not require any form of external parameterization. Color information is defined directly on the mesh structure and not in any other domain. As such, it only makes use of the inner parameterization F -1 of M (1.2).

Sampling

Sampling is a strong feature of the model governed by a single resolution parameter. Let us note C(R i) the number of color samples stored by a triangular face T i with resolution R i . We have:

C(R i) = (R i + 1)(R i + 2) 2 (3.1)
The location of these samples is given by:

F (T i , m R i , n R i) | 0 ≤ m ≤ R i , 0 ≤ n ≤ R i -m . (3.2)
In other words, the positions of appearance samples within a triangle are parametrized by the barycentric coordinates

(m R i , n R i , 1 - m + n R i) , (3.3)
associated to the triangle vertices. In practice, vertices and edge samples are shared between adjacent faces, and they must be treated separately from face samples. The resolution of an edge is defined as the lowest resolution of its two adjacent faces. As in [START_REF] Yuksel | Mesh colors[END_REF], face resolutions can only take values that are powers of two. This makes interpolation easier along edges with a lower resolution than the face. This choice of representation has several important advantages over image texture sampling. First, the sampling is by construction hexagonal, and hence more tightly packed and less directionally biased than the square sampling of image texture. This is formalized in information theory where hexagonal structures are shown to be optimal quantizers over 2D regular lattices [START_REF] Newman | The hexagon theorem[END_REF]. This is easily seen by rendering with closest-point interpolation, instead of the standard linear interpolation (figure 3.5). Second, there is no discontinuity in the appearance model, nor any distortion. This makes filtering more accurate and much easier to perform in practice, as illustrated in Figure 3.6. Third, sampling frequency can be chosen locally, at the face level, whereas it is fixed globally with image textures (local sampling frequency depends on the vertical and horizontal texture resolution and the mapping function). This is particularly suitable for multi-view 3D modeling, as detailed in the next section. Fourth, local editing or resolution changes do not require a complete resampling or recharting of the mapping.

Storage and Indexing

Similar to [START_REF] Yuksel | Mesh colors[END_REF], we decouple geometry and color information and store them in separate files, so that they can be passed to the standard graphics pipeline for rendering. Each vertex, edge and face stores an index to a single global color array for the whole mesh. This marks the position of the first color sample for the given vertex or edge or face. All subsequent samples are stored side by side in a predefined order. The diagram in figure 3.7 illustrates this process. This makes up a total of E +M +N indices. Using approximations Figure 3.7: Illustration of the storage and indexing of mesh colors: each vertex, edge and face keeps an index into a single, shared array. This array is then written row by row into a 2D image that can be passed to the rendering pipeline.

E ≈ 3
2 M and M ≈ 2N , this adds up to about 6N integers. No compression scheme is yet available for mesh textures, however. We address this problem in chapter 4.

Appearance modeling with Mesh Textures

Mesh textures are especially useful for appearance modeling, thanks to their control over local sampling frequency. Given the pixel information in the observed images we define a two-steps adaptive sampling strategy that optimally exploits the appearance data. We show this strategy to be particularly efficient in the next section (3.4). We first choose a resolution level per triangle before computing the mesh texture. Then, in a postprocessing step, we downsample triangles when they can still be accurately interpolated by the next lower resolution level, up to a given error threshold. The first step depends directly on the pixel density in the input images whereas the second step depends on the amount of information present in the pixels. The whole strategy is illustrated in figure 3.8. With this technique, few points are sampled in the hidden parts of the mesh, and we can comparatively afford a denser sampling in highly textured areas.

By contrast, the uniform sampling of texels with an image texture implies that unseen or uniform areas are oversampled, while others could benefit from a denser sampling. Figure 3.9 shows a qualitative comparaison on a highly textured area.

Adaptive Sampling

Our sampling strategy adapts the resolution R i of triangle T i to the number of pixels that observe this triangle. To this aim, we assume that, for any subpart S ⊂ M of the mesh, a function D gives a measure of the available input pixels relevant to S, dependent on the coloring strategy chosen. For example, a super-resolution strategy can define D as the total number of pixels, in all selected views, that project onto S. A naive blending approach will define D as the maximum number of pixels, among all views, that project onto S. In this paper, we implement a strategy that selects a single best camera per triangle (see 3.4.1). Thus, D measures the number of pixels in this selected view. Now given the number D(T i) of pixels in triangle T i we need to find the appropriate appearance resolution R i for that triangle. For such a resolution, the number of appearance Step 1 ensures that rarely seen surfaces receive less attention (downward-facing surfaces, or self-occluded parts such as the crotch and armpits here). Step 2 removes unnecessary samples from uniform areas, such as the metal plates here samples in the triangle is approximately:

(R i -2)(R i -1) 2 + 3 2 (R i -1) + 3 6 = 1 2 R 2 i , (3.4)
counting samples within the triangle as full, samples over edges as shared with 2 triangles and samples on vertices as shared, on average, among 6 triangles. Given this number, for each triangle T i , we choose the smallest possible resolution R i that is a power of two and such that:

1 2 λR 2 i > D(T i) , (3.5)
where the parameter λ can be chosen depending on the expected rendering quality. Typically, λ = 2 in our experiments.

Downsampling

Real world objects often present large regions with more or less uniform appearances. In such a region, irrespective of the resolution R i , the appearance could be rendered equally well from fewer color samples. In order to account for that, we downsample triangles with low high-frequency content. More precisely, for each triangle T i , we consider all sample points associated to the current resolution level and compare their color values with the ones they would get by just interpolating the next lower-resolution level. We have seen in section 3.2.2.2 that the number of color samples in a triangle with resolution R i is

(R i +1)(R i +2) 2
.

Therefore, if we call S r the number of samples removed when lowering the resolution from

R i = r to R i = s = r
2 , we have::

S r = (r + 1)(r + 2) 2 - (s + 1)(s + 2) 2 = (2s + 1)(2s + 2) 2 - (s + 1)(s + 2) 2 =2s 2 + 3s + 1 -(1 2 s 2 + 3 2 R + 1) = 3 2 s 2 + 3 2 s = 3 2 s(s + 1) = 3 4 r(r 2 + 1) = 3 8 r(r + 2) (3.6)
Looking back at equations (3.2) and (3.3), these are samples with barycentric coordinates m odd, or n odd, or both. Denoting o = R i -m -n, we compute the average difference as:

E = 1 S r × (Σ m + Σ n + Σ o) = 2 3R i (R i + 2) × (Σ m + Σ n + Σ o) , (3.7)
with:

Σ m = m even, n,o odd d(s (m,n,o) , s (m,n-1,o+1) + s (m,n+1,o-1) 2) Σ n = n even, m,o odd d(s (m,n,o) , s (m-1,n,o+1) + s (m+1,n,o-1) 2) Σ o = o even, m,n odd d(s (m,n,o) , s (m-1,n+1,o) + s (m-1,n+1,o) 2) (3.8)
where s (m,n,o) is the color of the sample with barycentric coordinates (m, n, o) and d is the L 2 distance in corresponding color space. If E is less than a threshold T ds , we downsample the triangle appearance and repeat the process iteratively, until E > T ds or we reach R = 1. In our experiments, T ds ∈ 0, 80 for varying visual quality (with color values in 0, 255). Figure 3.10 illustrates the effect of T ds . With a large value (T ds = 80), the color of the plate armor becomes smoother. With a very large value of T ds (T ds = 180), blocky triangular artifacts start to appear, although highly textured areas (e.g. the chain mail in the bottom left) are not affected.

Evaluation

We evaluate here the ability of image and mesh textures at efficiently sampling an appearance signal. The evaluation is performed on a single randomly-chosen timeframe of 3 MVS sequences, captured with the Kinovis platform [START_REF]Kinovis inria platform[END_REF] and reconstructed with the method of [START_REF] Leroy | Shape reconstruction using volume sweeping and learned photoconsistency[END_REF]. example views from all three datasets are shown in figure 3.11.

For evaluation, we first define a continuous appearance function on the surface

C : {1, ..., M }×]0, 1[2 → 0, 255 3 (3.9)
This is detailed in section 3.4.1.

Then this function is sampled in order to generate either mesh textures or image textures with different parameters. For image textures, we vary the image resolution H T = W T . For mesh textures, we vary parameters λ (equation 3.5) and T ds (equation 3.7).

We also devise a method to evaluate the visual quality of a texture, that we present in section 3.4.2.

Finally, results are given in section 3.4.3.

Appearance Function

Given a mesh and its associated observed images from different viewpoints, we compute a continuous function that gives a color value for each point on the surface mesh. Various strategies can be considered for that purpose, from simple blending to super-resolution approaches. Our objective is primarily to compare appearance representations and not to evaluate an appearance function. Therefore, we opt for an effective best view strategy that selects for each facet the most informative view available. The key aspects are as follows:

Computing visibility: Each input image I i is upsampled, and visibility for every (face, view) pair is computed at the sub-pixel level, which gives more precision on the available appearance information.

Assigning Views: In real acquisition setups, the camera properties are inaccurate and the input views are consequently misaligned and inconsistent. Averaging pixel information over different images is therefore likely to severely blur the appearance. Following many works in that respect, e.g. [START_REF] Lempitsky | Seamless mosaicing of image-based texture maps[END_REF][START_REF] Gal | Seamless montage for texturing models[END_REF][START_REF] Xu | A general texture mapping framework for image-based 3D modeling[END_REF], we assign a single view to each face of the shape model. In practice, we select the most informative view with the largest number of visible subpixels.

Blending views: The view assignment can be seen as weighing the input views by a function ω 0 that depends on the position on the surface and the view index. Choosing a view j for face T means ∀i ∈ {1, ..., I}, ∀p ∈]0,

1[2 , ω 0 (T , p, i) = 1 if i = j 0 otherwise . (3.10)
To avoid visible seams between triangles, we compute an estimate of ω 0 for each vertex by averaging its value on adjacent faces. Weights are then interpolated smoothly between vertices, i.e. for the image i, a face t = {v 1 , v 2 , v 3 }, a location p = (a, b, c) within t, we use the function ω defined by:

ω(x(t, p), i) = a ω 0 (v 1 , i) + b ω 0 (v 2 , i) + c ω 0 (v 3 , i) . (3.11)
Finally, the color C of each surface point is defined by

∀x ∈ M, C(x) = I i=1 I i π i (x) × ω(x, i) , (3.12)
where {I 1 . . . I I } are the input images with their respective 3D-2D projection operators {π i }.

Texture Evaluation Method

To evaluate the visual quality of a texture, we compare renderings of textured models to real input images, using two metrics: the Multi-scale Structural Similarity (MS-SSIM) from [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF], and the more recent Learned Perceptual Image Patch Similarity (LPIPS) from [START_REF] Zhang | The Unreasonable Effectiveness of Deep Features as a Perceptual Metric J UST N OTICEABLE D IFFERENCES (JND)[END_REF]. Metrics are computed within the mesh silhouette only. These comparisons are performed using a leave-one-out strategy, by removing a given view from the input. Textures are computed using the remaining views. Then, textured models are rendered against the missing input view, and compared to the original image. This process is repeated over several randomly-selected views, and results are averaged over said views. Figure 3.12 shows an example of such rendered views.

These score are plotted against the total number of color samples present in the texture.

Results

We evaluate our method on real data, captured with multi-camera platforms. The input data and the reconstructed mesh are provided by the authors of [START_REF] Leroy | Shape reconstruction using volume sweeping and learned photoconsistency[END_REF]. It provides 64 different input views of the same scene, and includes a texture atlas, computed with a method based on conformal maps.

Charts in image textures are dilated to prevent artifacts along seams and for a fair comparison with mesh textures. Figure 3.13 shows some numerical results. MS-SSIM measures a similarity, thus higher scores are better, contrary to LPIPS which measures the perceptual difference. In this case, MS-SSIM seems ill-suited for a meaningful analysis, given the very small range of variation. At high resolution, sampling is not a limiting factor, and the error is mostly due to the imperfect geometry and color function C. As we progressively decrease the number of samples, LPIPS shows our representation tends to retain more visual information.

Conclusion

We have studied the benefits of representing color information directly on 3D meshes in the context of multi-view appearance modeling. More specifically, we have compared the use of our proposed mesh texture pipeline, with the more widespread use of texture maps. Taking advantage of its sampling flexibility over the surface triangles, we were able to formulate a smart locally-adaptive sampling strategy, which we show to be more efficient than uniform sampling in the MVS appearance modeling context. However, even though image textures require more color samples to achieve the same visual quality, they can be compressed very easily and effectively, making them very cheap to use in practice, in terms of memory footprint. If we wish our method to be competitive, it needs to come equipped with a specially designed compression algorithm. This is what we set off to address in chapter 4.

Our method is unconventional and would have no practical value without the dedicated tools necessary to generate and visualize such models. Therefore, we release our code so that others can easily reproduce our results. Based on our own implementation of mesh textures, it includes shaders compatible with different platforms for easy rendering.

Chapter 4 Mesh Textures Compression

In the previous chapter, we showed that our proposed mesh textures strategy, with a well chosen adaptive sampling, is more efficient than standard image texturing, in terms of relevant information vs. raw number of samples. While this result is a nice theoretical property, what we are really interested in practice is the final file size. This is the critical factor that will limit storage and streaming possibilities.

Reducing the memory footprint is an important issue when streaming or storing 3D contents. This is even more critical with dynamic scenes for which shape and appearance information evolve over time.

Compressing information has been critical since the start of the information era, but the field was introduced even before by Claude Shannon in the 1940s, as part of his founding work on Information Theory [START_REF] Shannon | A Mathematical Theory of Communication[END_REF]. One can differentiate two approaches to data compression: lossless and lossy.

Lossless compression is a fully reversible process. Generally speaking, it consists in (1) optionally rearrange the input data to reduce entropy; (2) generate a statistical model for the data; (3) map data to bit sequences, so that more probable (i.e. frequent) patterns are mapped to shorter output sequences. Lossy compression, on the other hand, is irreversible. It consists in removing irrelevant or less important information, in order to attain much lower bitrates.

There is no universal lossless compression algorithm that can make any file smaller. Indeed, let us consider an encoder f that maps input sequences of N bits to shorter sequences. Since the transformation must be reversible, f must be injective. We see right away that f cannot map all 2 N possible input sequences to a unique shorter bit sequence (among the N -1 i=1 2 i = (2 N -2) possibilities). In practice, compression algorithms are tailored to specific input types, and rely on assumptions about the data structure.

Image compression in particular has received much attention. Many compression schemes and encoding formats have been proposed, but the JPEG algorithm, introduced in 1992 [START_REF] Wallace | The JPEG still picture compression standard[END_REF], is still probably the most widely used image format in the world [START_REF] Hudson | JPEG-1 standard 25 years: past, present, and future reasons for a success[END_REF]. While image compression techniques can easily be applied to texture images (and they are applied in practice), it is not so straightforward with mesh textures.

To remedy this, we propose here a lossy compression algorithm, following the general design of JPEG, that is tailored to work with our mesh textures format. Its core component is to perform a PCA decomposition on the vector space defined by all triangles sharing the same resolution level. Edges and vertices samples are also reorganized to get rid of the indexing overhead altogether. We show that mesh textures compressed with this algorithm outperform JPEG on image textures, in terms of image quality vs. bitrate, both qualitatively and quantitatively.

We first give a brief overview of the fields of image and texture compression (section 4.1). Then, we describe our proposed strategy, and the choices made w.r.t. JPEG (section 4.2), followed by a low-level description of the implementation. Finally, we eval-uate our proposed method, and compare it to compressed image textures in section 4.4.

Related Work

Reducing the memory footprint is an important issue when streaming or storing 3D contents. This is even more critical with dynamic scenes for which shape and appearance information evolve over time. In the case of 2D textures, appearance information can be optimally compressed using image techniques. Most image compression techniques follow a block-based approach, first introduced by Delp and Mitchell with Block Truncating Coding in 1979 [START_REF] Delp | Image Compression Using Block Truncation Coding[END_REF], in which they decompose the image into rectangular blocks and encode each block independently. This is the strategy used by the global standard JPEG [START_REF] Wallace | The JPEG still picture compression standard[END_REF], that is detailed below (section 4.2.1). Whereas most image compression techniques are optimized for storage and transmission, and thus, focus on visual quality vs. bitrate, texture compression puts more emphasis on random access (i.e. the ability to access any part of the texture without decoding it entirely) and decoding speed [START_REF] Beers | Rendering from Compressed Textures[END_REF], so as to be able to render directly from the compressed texture.

State of the art methods include ETC (Ericsson Texture Compression), published as iPACKMAN [123], BPTC [START_REF]BPTC Format Specs[END_REF], and ASTC (adaptive scalable texture compression) [107], all based on a block-based approach, even though the chosen block size can vary. For each block, they set up a color space, from which individual texels can derive their value. The ETC color space consists of a single color value, that can be modified with luminance offsets. In BPTC, texels are assigned to different partitions, each with its own color space. ASTC puts more emphasis on flexibility by supporting a large range of block sizes and bit rates.

Because of the random access constraint, these methods are forced to encode blocks with a fixed bit rate, and thus, they cannot be competitive in terms of bit rate alone. Putting aside this constraint, and focusing on bit rate instead, state of the art methods are then mostly standard image compression techniques such as JPEG. This is extended to dynamic scenes in [START_REF] Collet | High-quality streamable free-viewpoint video[END_REF] where the standard H.264 compression format is used to compress texture frames over time, assuming for that purpose the texture atlas to be fixed over frames. This enables temporal redundancy to be exploited, which is an interesting feature, but that we do not address in this work.

Interestingly, the strategy discussed in this chapter can be related to the original eigen-texture method [START_REF] Nishino | Eigen-Texture method: appearance compression and synthesis based on a 3D model[END_REF], that also relies on a PCA decomposition of color signals on triangles. However, in their case, this decomposition is computed on a single triangle and encodes view-dependent variations of reflectance. In our case, the decomposition is performed over all triangles of a textured mesh, and it encodes scene-wide variations in local texture. Besides, it is combined with a low-level encoding algorithm in order to test the very limits of the method in terms of bit rate.

Method Overview

Given the success of block-based approaches in general, and JPEG in particular, we wish to adapt the JPEG pipeline to our data structure as efficiently as possible. Let us first analyse the JPEG general framework. It it a very complex format that defines a lot of different modes and options. What we discuss below is mostly the baseline algorithm.

JPEG Algorithm

The JPEG algorithm relies on two assumptions. (1) Human vision is more sensitive to fine variations of brightness than fine variations of color. (2) Human vision is more sensitive to low-frequency information, and low frequencies are usually stronger than high frequencies in natural images. In fact, it has been shown that the amplitude spectrum of natural images is inversely proportional to frequency (e.g. [START_REF] Field | What Is the Goal of Sensory Coding?[END_REF][START_REF] Torralba | Statistics of natural image categories[END_REF]).

The encoding process works the following way [START_REF] Wallace | The JPEG still picture compression standard[END_REF]:

• Colors are converted from RGB space to Y C B C R , that consists of one luminance channel and two chromatic channels. (lossless)

• Chroma components are downsampled. (lossy)

• The image is split into blocks (usually 8 × 8 pixels), and each channel of each block is transformed into a frequency representation using discrete cosine transform (DCT) [START_REF] Ahmed | Discrete cosine transform[END_REF]. (lossless)

• The resulting DCT coefficients are quantized, with a stronger quantization for highfrenquency coefficients (which are usually smaller to begin with). (lossy)

• Entropy coding: the resulting data is encoded using Huffman coding [START_REF] Huffman | A Method for the Construction of Minimum-Redundancy Codes[END_REF], delta encoding, and run-length encoding. (lossless)

In other words, each block can be seen as a high dimensional vector (8 × 8 × 3). The algorithm consists in:

• transforming this vector space in a different space that isolates as best as possible the visually relevant information (Y C B C R and DCT transforms) and reduces entropy (DCT transform)

• discarding or strongly compressing the most irrelevant components (chroma downsampling, and higher quantization of high frequency components) while preserving the others (milder quantization of low frequencies)

• encoding the resulting data as efficiently as possible (entropy coding).

Our Strategy

Like JPEG, we wish to:

• Organise data into points in a high-dimensional space, in a meaningful way

• Find a space transform that reduces entropy and discriminates between important and less relevant information Once we secure these two crucial points, we can follow the general JPEG workflow of data splitting, space transform, quantization, and entropy coding.

Vector space -The triangles of a mesh texture are not 2D regular grids but they constitute natural 'block' candidates anyway. However, (1) block sizes are predetermined by the resolution level and cannot be chosen arbitrarily, and (2) we need to be able to process blocks of different size, even within a single mesh texture.

Since we only allow resolution levels that are powers of two, the number of potential block sizes is limited (typically 4 or 5 in practice). We process each block size (i.e. each vector space) independently.

Space transform -In our case, blocks are triangular rather than rectangular and we cannot apply DCT directly. Solutions have been proposed to adapt DCT to triangular shapes (e.g. [START_REF] Ding | Twodimensional orthogonal DCT expansion in trapezoid and triangular blocks and modified JPEG image compression[END_REF]), that we implemented and tested. However, we opted for a different approach based on PCA decompositions, that gave better results in our experiments. While this transformation has little physical meaning compared to DCT, it is an effective tool for identifying the few components that encompass most of the variations in the data, and thus, a perfect candidate for an entropy reduction tool. Besides, we observe in our experiments that the main components also tend to cover low-frequency variations that are most relevant to the human visual system (see figure 4.2). This is consistent with the observed trend that the spectrum of natural images falls with 1/f (i.e. inversely proportional to frequency) [START_REF] Field | What Is the Goal of Sensory Coding?[END_REF].

We could compute a PCA decomposition over a wide range of representative data, and use this as a fixed standard transformation that would be part of the compression algorithm. Instead, we choose to run PCA for each mesh, which means that the decomposition needs to be stored as well. This is addressed in the next section (4.3). We believe that small patches taken from the appearance of an object tend to be even more correlated than blocks from a natural image, as natural images usually include several various objects and background. Thus, we believe this overhead of storing the PCA coefficients is more than compensated by the fact that the decomposition is optimal for a given mesh texture.

Discarding irrelevant components -Similar to JPEG, we downsample chroma components. Coefficients in the PCA basis are quantized based on a specific quantization vector.

Entropy coding -Like JPEG, we use a mixture of Huffman coding and run-length encoding. Like with the PCA decomposition, we choose to compute Huffman tables for each file (i.e. mesh), rather than use predefined ones, as in standard JPEG.

Figure 4.3 shows a schematic view of the encoding and decoding process.

Detailed Pipeline

While a sound strategy is paramount for an efficient compression algorithm, the lowlevel encoding design is just as critical. Indeed, every bit counts, and the actual data is only part of what is written into the compressed file. Our design choices presented in section 4.2.2 introduce some overhead that needs to be addressed. Thus, our full encoding process is given here in details. First, we discuss indexing needs between geometry and color information. Then, we explain precisely how the data is processed and quantized. Finally, we describe what is actually written into the compressed appearance file.

Indexing

We presented the indexing requirements of our model in section 3.2.2.3. Indexing can be a huge overhead, and obviously, it cannot be compressed in a lossy manner. Instead, we eliminate it altogether: vertex colors are directly attached to vertices, in the geometry file. Edge colors are duplicated and integrated into the 2D signal of the triangles. Finally, triangles are reordered per resolution level, from highest to lowest, with the same ordering for geometry and appearance file. Please, note that there exists mesh compression tools that can efficiently process vertex properties, such as color (e.g. OpenCTM [6] or Draco [START_REF]Draco[END_REF]), so we do not process them in our pipeline.

Preprocessing

For a given input mesh, the following steps are performed per resolution level R separately:

• We constitute a vector space: RGB data is transformed into Y C b C r , with values in [-1, 1] 3 . Chroma components are downsampled to the next lower resolution. This means eliminating between 1/2 (if R = 2) and 3/4 (asymptotic behaviour when R increases) of chroma samples

• A PCA decomposition is computed: we have a set of N vectors v i of dimension K, with v i ∈ [-1, 1] K , i = 1, . . . N . The decomposition gives us an affine transform with mean vector p 0 and eigenvectors p k , and new vector coordinates w i , such that:

∀i ∈ 1, N , v i = p 0 + K k=1 w i(k) p k (4.1)
• The PCA mean vector and eigenvectors are quantized. Because PCA eigenvectors have unit norms, we have p k ∈ [-1, 1] K , ∀k = 1, . . . , K. Besides, by construction, we also have p 0 ∈ [-1, 1] K . Thus, to write the PCA values on q bits, we just map [-1, 1] to [-2 q-1 , 2 q-1 -1] and take the closest integer value. In our experiments, we find that values of q between 12 and 16 work best, though we keep 16 as a safe default value, as the memory gain of reducing q is limited, and it can lead to noticeable artifacts in some cases.

• We need to map coefficients w i to an integer range as well, but we have no bounds on the range they might take. To remedy this problem, we normalize them by the maximum absolute coefficient value M = max i,k |w i(k) |, and multiply by a quantization factor, 2 r-1 that sets the maximum bit range (r bits) prior to quantization:

M ′ = 2 r-1 M (4.2)
w ′ i = w i × M ′ ∈ [-2 r-1 , 2 r-1] (4.3)
M ′ is passed to the encoding pipeline as well.

• JPEG uses predefined quantization matrices that were manually tuned after meticulous experimentation. In our case, we experiment with quantization vectors of the form

Q(k) = F loor(1+a(k-1)+b(k-1) 2)
where k is the PCA component index. k ranges from 1 for the main component, to K, and a and b are chosen empirically (in our experiments, a = 1, and b ∈ [0.01, 0.1] for varying bitrates). Vector coefficients are quantized:

∀i ∈ 1, N , w ′′ i(k) = Int w ′ i(k) Q(k) (4.4)
• Finally, it is very likely that after quantization, all variation along the last few eigenvectors will be nullified, i.e. In that case, we can just trim our PCA decomposition, from a bijection in R K to a transformation R K → R J , i.e. we discard eigenvectors p k for all k > J. Coefficients w ′′ i are truncated in the same manner. Following these preprocessing steps, the following are passed down to the encoding algorithm: p k , k = 0, 1, . . . , J; w ′′ i ; M ′ ; Q.

∃J, | ∀k > J, ∀i, w ′′ i(k) = 0 (4.5)

Encoding

.4 gives an overview of the encoding of a typical JPEG file. It is made up of a succession of segments, encoding a specific type of data. Each segment is identified by a marker, written on two bytes. JPEG defines many segment types, each with its own specifications, but less than a dozen are used in most use cases. Fortunately, a few application-specific markers are included in the specifications, to be re-purposed for specific needs. For our needs, we set two such markers: one to signal a change in face resolution, and one to mark a "PCA" segment, that encodes the PCA mean and eigenvectors.

Our files are encoded as a succession of super-segments, signaled by a change in resolution. For each resolution level, all w ′′ i are read a first time, and two Huffman tables are computed, a "DC" table for the first components w ′′ i(1) and an "AC" table for the rest. While this has less theoretical justification in our case than for DCT, (since the mean value of the decomposition has been removed), it provides better compression rates in our experiments. Then, Huffman tables are written, followed by the quantization vector (slightly modified to include the normalization factor M ′), PCA decomposition, and finally the scan data.

The geometry data is written in another file. It includes a list of vertices (3D points) with one color per vertex, and a list of faces, i.e. three vertex indices. Faces are written following the order used in the compressed color file. Those with a resolution R = 1 come last, and simply do not have corresponding data in the encoded color file.

The color data of each face takes up a varying number of bytes in the encoded signal, which cannot be predicted. Thus, for rendering, data must be decoded before being loaded on memory (which is also the case with JPEG textures, but not with ETC or ASTC, for example ([123, 107]).

Evaluation

To evaluate our compression method, we pick a high-resolution texture image and texture mesh of the same mesh, with a similar number of samples and a similar score on both metrics. That is to say, because they have a sufficiently high resolution, the sampling properties of both method do not influence texture quality. We compress them with varying quantization matrices (or compression ratio for JPEG), and compare the results, using the same process as in section 3.4. Figure 4.5 demonstrates that our representation outperforms the image texture, especially at low bitrates. Figure 4.1 displays the artifacts inherent to both methods. If we zoom in, we can already notice small discontinuities with the image textures, because of seams in the texture in that case. As we compress the texture with increasingly high compression ratios, blocky artifacts start to appear along the seams, and finally, on the whole mesh. By comparison our mesh texture method yields triangular blocky artifacts that seem less perceptible, probably because they follow an irregular pattern. Besides, our PCA decomposition basis is computed specifically for the mesh, contrary to the more general DCT decomposition. Another qualitative comparison is shown in figure 4.6.

Conclusion

When storing or streaming digital data, size is a critical factor, as disk space and bandwidth are limited. This is especially true with dense 2D signals, such as images or appearance information.

While mesh textures have many desirable properties for geometry and/or appearance editing, they are not easy to store efficiently, as there is no standard format adapted for this type of data. By contrast, traditional image textures can directly make use of standard image formats and compression algorithms, such as JPEG, which dramatically lowers their memory footprint. Thus even if image textures allow for more efficient sampling in the context of MVS reconstruction, they cannot be competitive in terms of memory footprint without a good compression algorithm.

We have introduced here a novel compression algorithm dedicated to our mesh texture format. The general pipeline is based on standard JPEG, but it is tailored to deal with the specific challenges we face, namely: [START_REF] Albertini | [END_REF] No global frame of reference, (2) varying resolution and (3) non-standard sampling (hexagonal sampling on triangular frames). For a fair comparison, we define an assorted file format, and implement a full encoder-decoder. We showed that our compression scheme is effective enough to outperform classic texture storage in terms of the perceptual fidelity vs. storage capacity tradeoff, especially at low bit rates. The results obtained validate our mesh texture scheme presented in chapter 3 as a practical solution, even when dealing with large amounts of data.

While our encoding and decoding process is fast, it would be interesting to implement compression strategies with a fixed bit rate, so that meshes could be rendered directly from their compressed mesh texture. Additionally, if we build temporally consistent mesh textures in the future, we could leverage time redundancy to compress the 3D signal (2D + time) in one go, similar to the textures of [START_REF] Collet | High-quality streamable free-viewpoint video[END_REF], or the view-dependent video textures of [START_REF] Casas | 4D video textures for interactive character appearance[END_REF].

Chapter 5

Mesh Denoising with Facet Graph Convolutions

Mesh models reconstructed with MVS suffer from noise originating from various sources, including capture sensor imprecisions, numerical issues and intrinsic ambiguity in the data.

In turn, this geometric noise makes the task of appearance modeling more challenging.

Mesh denoising aims at correcting or reducing such noise perturbations on 3D mesh models. Given a noisy mesh M, a common approach to the problem is to correct facet normals rather than vertex positions. This is sensible, considering that the general shape of M, is valid. Only local perturbations of the shape need to be corrected, and these can be more directly represented by the first derivative of position, i.e. normals. Interestingly, in the process, normals are decorrelated from their strict definition that directly depends on vertex positions. Instead, they are treated as an arbitrary signal defined on the mesh, and that we are trying to denoise. In a sense, in this chapter, we tackle the problem of signal denoising on a mesh.

Mesh denoising is, in essence, an ill-posed problem since differentiating noise from the original geometric features requires prior knowledge on the noise, the shape, or both. A common strategy in that respect is to assume known distributions, typically Gaussian noise or smooth shapes, with nevertheless severe limitations. Chosen distributions are only a coarse approximation of the true distributions, that can vary a lot depending on application. It proves difficult to provide parametric hand-crafted prior models for noise or shape that can cover a reasonable part of the spectrum of possible distributions. As a result, most methods are designed for a specific application in mind (e.g. CAD models only), and they cannot be easily adapted to other contexts.

Consequently, data-driven strategies for mesh denoising have gained interest over the last decade, boosted by the success of deep learning in various domains, in particular image denoising e.g. FFDNet [START_REF] Zhang | FFDNet: Toward a fast and flexible solution for CNN-Based image denoising[END_REF]. Related approaches learn distributions from training examples and have already shown promising results with meshes, as in [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF][START_REF] Diebel | A Bayesian method for probable surface reconstruction and decimation[END_REF]. For instance, in [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF], a neural network is trained to denoise mesh normals. For that purpose, hand-crafted features are pre-computed for each face and fed into the network individually. While not end to end, the results obtained demonstrate the ability to learn local denoising patterns.

In this chapter, we follow the same line of research, with the objective to further exploit learning methods, and propose a fully end-to-end solution. We want to build a network that can learn relevant features over a large receptive field, and retain connectivity information throughout the network, so as to ensure spatial consistency.

Convolutional neural networks excel at learning spatially-varying features at different scales, with a limited number of parameters, notably through the use of pooling and unpooling layers. For these reasons, CNNs have proven very successful in most image processing tasks, and image denoising is no exception. For the recent super-resolution challenge NTIRE2017 [START_REF] Timofte | NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results[END_REF], the top three methods all include convolutional layers. The ability of CNNs to model complex features at different scales is obviously useful for denoising. Our goal is to check if this holds for geometric data as well.

A significant challenge is that traditional CNNs are restricted to regular grid structures, such as images. Several works have tried to circumvent this limitation, and extend convolutional layers to graph-like structures, such that graph convolutional networks (GCNs) has become a whole new field of research. We build on FeaStNet [START_REF] Verma | FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[END_REF] which exhibits two key characteristics for our problem. First it generalizes convolution layers of standard CNNs to graphs in a natural way. Second, it allows to express pooling and unpooling layers over graphs, a key feature which we use to increase the receptive field of our network.

We contribute therefore an end-to-end learning framework for mesh signal processing, and we apply it to mesh denoising. Since the raw normals are defined at the face level, our network considers the graph of faces of a mesh and uses the layer defined in [START_REF] Verma | FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[END_REF] as a building block, with an architecture, pooling strategy and graph connectivity that are adapted to the regression problem of signal denoising. Such a learning framework can exploit spatial organization as an additional feature with respect to recent works that consider spatial distance or patch similarity. This strategy proves to be successful and outperforms the current state of the art on the benchmark of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF].

The remainder of the chapter is as follows. Section 5.2 gives an overview of our approach, which is then detailed in sections 5.3 and 5.4. Section 5.5 describes our implementation choices as well as an extension to our baseline method that makes it possible to train on unregistered data. Finally, section 5.6 is dedicated to various experiments, both on synthetic and real data.

Related Work

We give here a general review of previous works on mesh denoising. This section does not aim to be exhaustive, given the prolific nature of the field, but merely tries to present the general trends, through seminal works and influencial papers. The following categories are not mutually exclusive.

Early works were isotropic, based on laplacian smoothing [START_REF] Taubin | A signal processing approach to fair surface design[END_REF][START_REF] Vollmer | Improved Laplacian Smoothing of Noisy Surface Meshes[END_REF][START_REF] Desbrun | Implicit fairing of irregular meshes using diffusion and curvature flow[END_REF]. They smooth sharp features as well as noise. As such, they are fairing rather than denoising methods. In an attempt to discriminate between high-frequency noise and sharp features, subsequent methods introduce anisotropic filtering usually inspired by image denoising techniques, such as bilateral filtering [START_REF] Fleishman | Bilateral mesh denoising[END_REF], or scale space and anisotropic diffusion [START_REF] Clarenz | Anisotropic geometric diffusion in surface processing[END_REF][START_REF] Tasdizen | Geometric surface smoothing via anisotropic diffusion of normals[END_REF].

Normal filtering methods were first introduced by Taubin in 2001 [START_REF] Taubin | IBM Research Report LINEAR ANISOTROPIC MESH FIL-TERING Linear Anisotropic Mesh Filtering[END_REF]. They work in two steps: first, some local, non-linear denoising filter is applied to the facet normals rather than the vertex positions. Then, as a second stage, vertex positions are updated according to the filtered face normals. ([START_REF] Xianfang | Fast and effective featurepreserving mesh denoising[END_REF] give a good review of the subject). This is usually repeated in an iterative manner.

For normal filtering, which is the core of such methods, Yagou et al. use mean and median filtering [START_REF] Yagou | Mesh smoothing via mean and median filtering applied to face normals[END_REF] or alpha-trimming filtering [START_REF] Yagou | Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding[END_REF]. Most methods are based on bilateral filtering [START_REF] Zheng | Bilateral normal filtering for mesh denoising[END_REF] or some of its derivatives, such as joint bilateral filtering [START_REF] Zhang | Guided Mesh Normal Filtering[END_REF]. Different approaches include that of Yadav et al. [START_REF] Yadav | Mesh Denoising Based on Normal Voting Tensor and Binary Optimization[END_REF], that filters the eigenvalues of a local covariance matrix on each facet. In [START_REF] Yadav | Robust and High Fidelity Mesh Denoising[END_REF], the same team proposes a similarity function that is more robust to outliers. This two-steps framework yields better results than applying similar filters directly to the vertex positions, and these methods work reasonably well for most surfaces and random noise distributions. However, the number of iterations (and other parameters in some cases) must be carefully tuned through trial and error, in order to strike the good balance between noise removal and features preservation.

We follow the same general framework, but our model returns denoised normals in a single regression step. Thus, we avoid the usual parameter-tweaking trade-off: optimal parameters are learned directly from training data.

Global optimization approaches are sometimes used, rather than some local criteria. For example, L 0 -minimization has been applied on vertex positions only [START_REF] He | Mesh Denoising via L0 Minimization[END_REF], or with added face normals information [START_REF] Zhao | Robust and effective mesh denoising using L0 sparse regularization[END_REF]. Instead of processing faces (or vertices) independently, these methods compute a global solution that minimizes an energy term on the whole mesh. They usually rely on the assumption that real surfaces are made of smooth regions punctuated by sparse sharp features. Therefore, they work well for CAD-like models, but less so on meshes with dense features. Besides, they are quite slow to compute.

Spectral methods have been used for a wide range of mesh processing applications. Zhang et al. provide a thorough survey on the subject [START_REF] Zhang | Spectral Mesh Processing[END_REF]. Most work execute a spectral decomposition on a per-patch basis, as TSGSP [START_REF] Arvanitis | Feature preserving mesh denoising based on graph spectral processing[END_REF], a recent two-stage approach combining low-pass spectral filtering and guided normal filtering. Generally speaking, spectral methods have trouble recovering sharp edges, which yield harmonics of many different frequencies (see [START_REF] Vallet | Spectral Geometry Processing with Manifold Harmonics[END_REF]).

Nonlocal similarity methods rely on the assumptions that similar patches can be found at different locations on a real surface, and they attempt to leverage this redundancy of information. Like most mesh denoising approaches, these are inspired by successful image processing concepts. For example, Yoshizawa et al. [START_REF] Yoshizawa | Smoothing by example: Mesh denoising by averaging with similarity-based weights[END_REF] extend the Non-Local means concept of Buades et al. [START_REF] Buades | A Non-Local Algorithm for Image Denoising[END_REF] to geometry processing. More recently, Wei et al. [START_REF] Wei | Mesh Denoising Guided by Patch Normal Co-filtering via Kernel Low-rank Recovery[END_REF] or Li et al. [START_REF] Li | Non-Local Low-Rank Normal Filtering for Mesh Denoising[END_REF] co-filter similar patches using low-rank matrix recovery.

While we do not explicitly consider non-local similarity in our method, because of the large receptive field of our network, it could theoretically leverage such redundancy. This is fed into our GCN (section 5.3) that is trained to regress the denoised normal for each face. During inference, the estimated normals are used to update the vertex positions through an iterative process (section 5.5.3).

Data-driven methods that try to learn from examples, are gaining popularity for mesh denoising. An early work in this category [START_REF] Diebel | A Bayesian method for probable surface reconstruction and decimation[END_REF] formulates the whole mesh denoising problem in a Bayesian way, with a generative model of the noisy surface. The prior on surface shapes is expressed as a potential between normals of adjacent faces, and its parameters are determined through supervised learning. This is a first step towards application-specific denoising techniques, without the cumbersome hand-tweaking of parameters. However, their prior is constrained with a limited number of parameters and while the shape prior is learned, the noise model parameters are still hand-picked. More recently, Wang et al. train neural networks to denoise facet normals [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF]. Hand-crafted local geometry descriptors called FNDs for filtered facet normal descriptor are taken as inputs. The method is fast and effective, yet still far from end-to-end learning. Furthermore, we believe that features learned specifically for the task at hand might be more effective than FNDs at conveying relevant information. [START_REF] Wang | Data-driven Geometry-recovering Mesh Denoising[END_REF] use a similar design with iterative per-face learning using FNDs, but with a two-steps framework, where the second normal estimation is supposed to recover features lost during the first step.

[91] propose a learning framework based on a non-local similarity approach: Patch vectors based on a similarity criterion are grouped and fed into a convolution network. In contrast, our convolutions have a spatial support, and can extract meaningful local features at different scales.

Finally, [START_REF] Zhao | NormalNet: Learning-based Normal Filtering for Mesh Denoising[END_REF] propose a CNN-based denoising technique, NormalNet. For each face, the normals of neighbouring facets are projected into a locally-defined voxel grid and 3D convolutions are performed in this new regular structure, in order to regress refined normals. Contrary to [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF], relevant features are actually learned by the network. However, each normal regression is performed in a separate locally-defined space, which makes the whole process computationally heavy. Besides, there is no built-in spatial consistency, as features are not shared between neigbhouring facets. By comparison, our network operates directly on the whole mesh, and does not resort to some local space transform and resampling.

Method Overview

We consider our general problem as stated in section 1.8. Given some raw measurements, our observed surface S can be approximated by a mesh M = {V, E}. But what we obtain from measurements and reconstruction is actually a noisy representation M = { V , Ê}. We assume that V is obtained through a generative process V = V + N where N is the acquisition noise. In this work we do not address topological noise and, hence, we assume that the observed topology and connectivity is correct, i.e. Ê = E.

In order to denoise a mesh, a common practice among the most efficient methods is to first denoise the mesh normals before updating the vertex positions accordingly, hence benefiting from the scale invariance of the normals. We adopt the same framework here. Wang et al. [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] proved that local noise patterns can be learned from examples in training datasets. Contrary to [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF], however, we investigate the ability to learn directly from the raw normals, without relying on intermediate handcrafted descriptors. To this purpose, we draw inspiration from image denoising techniques with CNNs and extend them to meshes and their associated irregular graphs using a graph convolutional network (GCN) approach, based on the graph convolution layer defined in [START_REF] Verma | FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[END_REF].

We train a network to regress face normals, given a graph of faces with noisy positions and normals. We implement a multi-scale architecture, with pooling and unpooling layers [START_REF] Verma | FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[END_REF], so that it can process noise patterns at different scales.

In a final step, we update the vertex positions in accordance with the corrected normals. Without loss of generality, we make use of the differentiable solution presented in [START_REF] Xianfang | Fast and effective featurepreserving mesh denoising[END_REF] that iteratively optimizes vertex locations so that the faces they define are orthogonal to the predicted normals (see [START_REF] Xianfang | Fast and effective featurepreserving mesh denoising[END_REF] for details).

To sum up, as depicted in Figure 5.1, our method takes as input a noisy mesh { V , E, N }, where N are the noisy face normals, and it outputs a denoised mesh { Ṽ , E, Ñ } with a vertex updating scheme based on normal predictions Ñ . These normal predictions are obtained through learned multi-scale graph convolutions applied on face normals over the mesh. Our network architecture is described in more details in the next section.

Neural Network

This section describes the neural network architecture of our approach. First, we give a general view of the architecture design and then describe the convolution layers in more details. The method used for pooling operations is detailed in section 5.4.2.

Architecture

The general design of our graph convolution network stems from the popular U-Net architecture [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], originally introduced for image segmentation. U-Net takes as input a signal defined over a 2D domain and essentially consists of two consecutive subnetworks: (i) First a contracting path, which is a succession of convolution and pooling layers, that can extract global context from the signal, but loses small scale features on the way; (ii) Then an expanding path, roughly symmetrical, consisting of up-convolutions1 and convolutions, where the final output has the same spatial size as the input.

A key property of the architecture lies in the so-called skip-connections: features from the contracting path are concatenated to corresponding features in the expanding path. This way, small-scale features are not lost through the successive pooling operations, and the final output depends on both large-scale context and small-scale features. This design has already proven successfull in denoising tasks, such as the image denoising method of [START_REF] Liu | When image denoising meets high-level vision tasks: A deep learning approach[END_REF]. Thus, we consider a similar multi-scale architecture for our approach (see Figure 5.2). U-Net is primarily designed for regular image grids, so we need to adapt it to the irregular grid structure of meshes. This implies redefining local convolutions as well as the pooling and unpooling operations.

Geometric deep learning has been actively researched recently. Several works have proposed solutions to extend regular convolutional layers to irregular graphs by applying filters directly to the manifold surface (e.g. [START_REF] Masci | Geodesic Convolutional Neural Networks on Riemannian Manifolds[END_REF][START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF]). We choose to exploit the FeaStNet graph convolutional layer of [START_REF] Verma | FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[END_REF], originally introduced for mesh registration. Contrary to the approaches cited above, it does not require a resampling of the original data. Besides, it can be naturally integrated in a multi-scale architecture. Even though it was used in a classification context only, and with a different input, it can be adapted to our regression task given the proper loss. Thus, we perform multi-scale convolutions on decimated coarser graphs. A convolutional layer within a neural network takes as input a signal x of dimension D and outputs a feature signal y of dimension E that is the result of local convolutions of x by some filter with weights to be learned. With a regular 2D grid, the local support of the filter is a neighborhood on the grid, typically 8 pixels around a central pixel in an image, and the convolution boils down to local weighted sums of the input signal multiplied by some feature transformation matrices. Such a local support being constant, filter weights can be shared over nodes within the grid, hence drastically reducing the number of parameters to be learned. Over an arbitrary mesh, this property does not hold since neighborhoods differ from one vertex to another. In order to enable shared convolution operators over graphs, Verma et al. [START_REF] Verma | FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[END_REF] suggest assigning a weighted sum of a fixed number M of feature transformations to each node inside the support region, where the assignment is a function of x which parameters are learned by the network, along with the transformation weights. They formulate the GCN convolutional layer as (see figure 5.3):

Convolutional Layers

y i = b + M m=1 1 |S i | j∈S i q m (x i , x j)W m x j , (5.1)
where b is a bias term, S i the support region of x i on M, W m the E × D weight matrix of the m th feature transformation and q m (x i , x j) is the assignment function of that transformation:

q m (x i , x j) ∝ exp(u ⊤ m x i + v ⊤ m x j + c m), (5.2)
with u m , v m and c m the parameters to be learned in addition to the transformation weights (W, b). See [START_REF] Verma | FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[END_REF] for more details. Finally, the number of learned parameters for each convolution is M DE for weights W, E for the bias b, M D for the assignment variables u and v, and M for c. In total, this yields M (D + 1) assignment weights. Such convolution is applied at each node in the input graph and the outputs y i obtained over the mesh are used to feed the next convolutional layer in the network.

In this work, we use a similar GCN formulation, but with noticeable differences: (1) the architectural design presented in section (5.3.1) is more similar to the original design of U-Net, with the up-convolution pattern. (2) Our network operates on a different input graph with a higher connectivity (section 5.4.1) and a different input signal (normals + position). (3) In contrast to the classification problem of FeaStNet with a cross-entropy loss, we tackle a regression problem. (Losses used are detailed in section 5.5). (4) Graph coarsening is based on spatial and normal proximity, contrary to the random coarsening used in FeaStNet (see section 5.4.2), and we perform two iterations of the coarsening algorithm per pooling layer (section 5.5), in order to increase the receptive field of the network.

Data Representation

The previous section presents the neural network architecture we use to process information defined over a graph. We discuss in this section how to apply it in our specific mesh denoising context. In particular we precise the input graph we consider as well as the multi-scale strategy with meshes.

Input Graph

Meshes come with a natural graph structure that is their vertex connectivities. Convolutions could be performed directly on this graph, but the signal we want to process is defined at the face level, and not on vertices. One could propagate normals to vertices by interpolation, but by resampling the signal, we would lose local information. Thus, we cannot operate directly on the graph of vertices like FeaStNet. Other graph structures with mesh faces as nodes can be considered, for instance (see figure 5.4):

• The dual representation of the mesh: each face is connected to exactly 3 neighboring faces, with which it shares an edge with, i.e. each node has degree 3.

• An extended dual representation where each face is connected to all faces in its 1-ring vertex neighborhood, i.e. all the faces it shares a vertex with.

We adopt the mentioned extended dual representation that increases the receptive field of our neural network. Indeed, a higher degree at each node favors quicker propagation of learned features through successive convolutions. For large meshes, the average valence of vertices is about 6 [START_REF] Peng | Technologies for 3D mesh compression: A survey[END_REF]. That means the average number of face neighbours is about 12 (3 × 5 minus the 3 direct neighbours that are counted twice).

Multi-scale Representation

The motivation behind multi-scale neural networks is to be able to learn local patterns at different scales. That way, no precise assumption needs to be made about the scale of features that are relevant to the task at hand. Besides, there is the added benefit that these multi-scale features are processed in a single pipeline. For example, large scale features can provide contextual information that can help the processing of lower-level features. By reducing the sampling frequency of the signal, pooling is a good way of enlarging the receptive field of a network, without increasing its complexity (in terms of depth and number of parameters). Besides, pooling adds implicit spatial regularization by sharing features between neighbouring points. However, while downsampling a regular grid is a straightforward operation, the case of meshes with arbitrary graph structures appears more challenging.

To address this issue and build a multi-scale mesh representation, we choose the graph coarsening solution of Defferrard et al. [START_REF] Defferrard | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[END_REF]. It is a multi-level coarsening technique that makes use of a binary tree representation for easy indexing. The coarsening itself is performed by Graclus [START_REF] Dhillon | Weighted graph cuts without eigenvectors a multilevel approach[END_REF], which is a greedy clustering algorithm, following a max-cut strategy.

At each coarsening level, graph nodes are grouped into pairs, except for a few remaining singletons. To this aim, Graclus iteratively picks a random unmarked node x, and pairs it with one of its unmarked neighbors y that maximizes:

e(x, y) d x + e(x, y) d y , (5.3)
where e(x, y) is the edge weight between nodes x and y, and d x is the degree of node x, i.e. the sum of the edge weights between x and its neighbors. The process is iterated until all nodes have been visited. Then, at each level, Defferrard et al. introduce fake nodes to be paired with the singletons, in order to form a binary tree where each node has exactly two children in the next finer level. Finally, nodes are reordered so that the tree structure is implicitly encoded in the indexing of the nodes. This makes pooling and unpooling operations as simple and efficient as for a regular 1D signal.

For neighboring faces x and y with normals n x , n y and barycenter positions c x , c y , we set the edge weight as:

e(x, y) = max(n x .n y , ϵ) × exp - ||c x -c y || 2 2 × l 2 e (5.4)
where l e is the average edge length in the graph. The first term favors pairs of faces with similar orientations, and the second term favors pairs of faces that are spatially close. ϵ is set close to zero, and ensures that neighboring faces stay connected even around an extreme bend. For subsequent coarsening operations, we sum the edge weights of all edges grouped together by pairing operations. Figure 5.5 illustrates the mesh coarsening approach. This weighting differs from FeaStNet, that uses constant edge weights, which makes the coarsening operations purely random. For illustration purposes, normals and positions are here propagated to coarser levels with average pooling. In reality, these quantities are not retained beyond the first layer of the network, and thus, they are not defined for coarser levels of the graph.

Implementation

This section provides a more in-depth description of network parameters and training procedure, and also details our vertex-updating scheme, which acts as a post-processing step. It takes as input the corrected face normals predicted by our network, updates the vertex positions accordingly, and returns the final denoised mesh. We also present a natural extension to our method, that allows training on unregistered data, by back-propagating through the vertex updating step.

Network Setting

The network takes as input 6D vectors composed of face barycenter positions and face normals and outputs 3D face normals. Adding the face position gives better results in our experiments. The following implementation choices were made for all the experiments reported in this document:

• We choose leaky ReLU [START_REF] Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF] as the activation function throughout the network since it demonstrated better convergence properties than ReLU.

• In contrast to the original U-Net architecture [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], we use only 3 different levels or scales, i.e. 2 pooling layers, and we perform only 1, instead of 2, convolutions at a time in-between other layers. The motivation for these changes is to reduce the network complexity while keeping the same general design.

• Contrary to FeaStNet, we perform two coarsening steps between two consecutive levels, i.e. the number of nodes is approximately divided by 4 in-between levels.

(See section 5.4.2 and figure 5.5).

• For all convolution layers, we set the number of filters (see equation 5.1) to M = 9. We perform max pooling on the features for all pooling layers, which provides similar results to average pooling but accelerates back-propagation in practice.

Training

As a training objective for our network, we use a simple L1 loss on the angular difference between the ground-truth facet normals, and the estimated normals, without regularization. The network is trained using Adam optimization [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF].

All meshes are centered on the origin for data normalization, and scaled so that the diagonal of the bounding box is set to unit length. Each noisy face makes up a single training example for our network (along with its noisy neighbourhood and ground-truth normal). For this reason, meshes in the training set form natural batches for training. Thus, for each iteration, we feed a single mesh of up to 100k faces to the network. Because of memory constraints, bigger meshes are first cut into geometric patches (of 100k faces each), that are used as training batches.

At any rate, we only perform back-propagation on 10k randomly sampled facets, which is hence our real batch size. The whole patch is still needed however, since other faces appear in the convolutions.

Our network is not intrinsically invariant w.r.t. rigid transformations of the input data. We choose to let the network learn this invariance from the data, and encourage this through data augmentation by applying at each training step a random rotation to the input mesh or patch. In our experiments, it proved better than to have this invariance built into the model, with equal performance and faster training.

Vertex Updating

In order to update the vertex positions x on M given the corrected normals ñ, we follow the iterative approach of Xianfang et al. [START_REF] Xianfang | Fast and effective featurepreserving mesh denoising[END_REF]. At each step, it moves vertices so as to make the mesh edges as orthogonal as possible to the estimated normals of the two neighbouring faces. More formally, let us first define ∂F k as the set of edges that constitute the boundary of face k, and F v (i) as the set of faces that share vertex i. We optimize for the following objective with a gradient descent strategy:

min x E(x, ñ) = k∈F (i,j)∈∂F k (ñ k • (x j -x i)) 2 ,
(5.5)

where F stands here for the set of faces. At each iteration, the position x i of vertex i is set to the new position xi given by:

xi = x i + 1 |F v (i)| k∈Fv(i) ñk (ñ k • (c k -x i)), (5.6)
where c k is the barycenter of face k, and ñk is the estimated normal for face k. We perform 60 such iterations in our experiments. This number was chosen empirically as increasing it further has no visible effect in most cases. The effect of both steps, normal inference and vertex updating, is illustrated in figure 5.6.

Learning from Unregistered Data

In order to train with datasets that do not provide exact associations between groundtruth and noisy normals, we propose a specific training scheme. The interest arises with real datasets, e.g. the Kinect dataset in [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF], for which the correspondences between noisy and ground-truth meshes can only be estimated. This new scheme integrates the vertex updating step into the back-propagation and defines a mesh to mesh distance loss that is applied directly to the vertex positions. This loss combines an accuracy term L acc and a completeness term L comp . They are respectively the average distance from points of Ṽ to V , and the average distance from points of V to Ṽ :

L acc = 1 | Ṽ | xi ∈ Ṽ min x j ∈V (∥x i -x j ∥), (5.7)
L comp = 1 |V | x i ∈V min xj ∈ Ṽ (∥x i -xj ∥).
(5.8)

Note that this formulation of a global loss over meshes is made possible because our network considers complete meshes as input, and not individual facets with precomputed descriptors. It allows the network to converge to possibly better associations on the training data than the provided estimated ones. Moreover, our results on the Kinect datasets have shown that the vertex updating step is imperfect. On some occasions it actually increases the angular error on normals (see figure 5.11). By integrating this loss in the training, we allow the network to optimize its predictions w.r.t. the final output mesh rather than the predicted normals. We validate this strategy on the synthetic dataset of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] in section 5.6.4.

Experiments

Evaluation Strategy

In order to evaluate the benefit of our end-to-end learning architecture, we first compare to current state-of-the-art learning-based approaches for mesh denoising which are the Cascaded Normal Regression (CNR) method of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] and NormalF-Net [START_REF] Li | NormalF-Net: Normal filtering neural network for feature-preserving mesh denoising[END_REF]. We follow the experimental setup of CNR [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] as the authors provided all the necessary data for that purpose. They perform experiments, on four separate datasets (one synthetic dataset, and three obtained from Kinect scans). The authors of NormalF-Net provided us with all their results on these datasets. Comparisons on synthetic and real data are presented in sections 5.6.2 and 5.6.3 respectively. As a baseline evalutation, we also report results from other parametric methods when available. In particular, results for Non-Local Low-Rank Normal Filtering (NLLR) [START_REF] Li | Non-Local Low-Rank Normal Filtering for Mesh Denoising[END_REF] were computed using the executable file released by the authors. We try four sets of parameters everytime ((σ M , v iter , N k) ∈ {(0.25, 7, 7), (0.39, 7, 7), (0.39, 10, 10), (0.6, 10, 10)}) and keep the best results only.

In addition, we evaluate our relaxed loss formulation (see section 5.5.4) by comparing it with our baseline approach (5.6.4). Finally, we also test the generalization ability of our network in a practical real scenario with MultiView Stereo data (5.6.5).

As a metric for numerical evaluation, we consider the average angular difference between denoised normals and ground truth normals. This metric is the most universally used for mesh denoising evaluation (For example, see [START_REF] Li | Non-Local Low-Rank Normal Filtering for Mesh Denoising[END_REF] and [START_REF] Arvanitis | Feature preserving mesh denoising based on graph spectral processing[END_REF]): this is because normals are a better measure of local shape recovery (vertex positions might be offset by a global error that does not change the actual shape properties). Besides, our proposed method actually attempts to recover face normals in a single step, so this is a more direct measure of its performance. For this reason, average angular error is first computed on the raw output normals predicted by the network Then, it is also measured on the final meshes obtained after updating the vertex positions. This is necessary for a fair comparison with other methods, that only provide final results.

Comparison on Synthetic Data

Dataset

We first validate our method on the publicly available synthetic dataset of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF]. It is composed of 50 meshes divided into 3 categories: CAD-like models with flat areas and angular features, smooth models with low frequency features and complex models with multi-scale features. 21 are used for training, and 29 for testing. For each mesh, three noisy versions are provided, obtained by adding Gaussian noise with different standard deviations to the vertex positions.

Results

In addition to the learning methods mentioned above, we add results obtained with Bilateral Mesh Denoising [START_REF] Fleishman | Bilateral mesh denoising[END_REF], Bilateral Normal Filtering (BNF) [START_REF] Zheng | Bilateral normal filtering for mesh denoising[END_REF], Guided Mesh Normal Filtering (GMNF) [START_REF] Zhang | Guided Mesh Normal Filtering[END_REF] , L 0 Minimization [START_REF] He | Mesh Denoising via L0 Minimization[END_REF] and the Bayesian method [START_REF] Diebel | A Bayesian method for probable surface reconstruction and decimation[END_REF], all provided by the authors of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF]. In each case, we only show results for the best set of parameters tested by [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF]. We found that the vertex updating step plays a significant role in smoothing out some of the remaining noise in this evaluation. Figure 5.7 shows quantitative results. Even before the regularization provided by the vertex updating step, our approach performs better on average than all the others and clearly outperforms them in all data categories after that step. Figures 5.15 and figure 5. [START_REF] Allene | Seamless image-based texture atlases using multi-band blending[END_REF] show qualitative results, respectively on the test set, and on another synthetic model from [START_REF] Yadav | Mesh Denoising Based on Normal Voting Tensor and Binary Optimization[END_REF].

Finally, we also compare our approach to the spectral method TSGSP [START_REF] Arvanitis | Feature preserving mesh denoising based on graph spectral processing[END_REF], since it demonstrates competitive results w.r.t. CNR on this test set. Numerical results are shown in table 5.1: Our method outperforms all the others by a fair margin on average, which validates the learning framework we propose.

Runtime experiments

We performed runtime experiments on a desktop computer with a 2.40GHz Intel(R) Xeon(R) CPU E5-2630 v3, 32GB of memory, and a NVIDIA Titan XP GPU. This config-Figure 5.7: Average angular error in degrees, on the synthetic benchmark dataset of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF], per category. From left to right: BMD [START_REF] Fleishman | Bilateral mesh denoising[END_REF], BNF [START_REF] Zheng | Bilateral normal filtering for mesh denoising[END_REF], GMNF [START_REF] Zhang | Guided Mesh Normal Filtering[END_REF], [START_REF] He | Mesh Denoising via L0 Minimization[END_REF] L 0 Minimization, Bayesian method [START_REF] Diebel | A Bayesian method for probable surface reconstruction and decimation[END_REF], CNR [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF], NormalF-Net [START_REF] Li | NormalF-Net: Normal filtering neural network for feature-preserving mesh denoising[END_REF], NLLR [START_REF] Li | Non-Local Low-Rank Normal Filtering for Mesh Denoising[END_REF],

Ours (raw normals estimated by our network), Ours (final result).

uration is chosen to be as close as possible to the experimental setup of NormalF-Net [START_REF] Li | NormalF-Net: Normal filtering neural network for feature-preserving mesh denoising[END_REF], for a meaningful comparison. Their experiments are run on a PC with a CPU of the same generation (2.2GHz Intel Xeon E5-2650), 64GB RAM and a NVIDIA GTX-1080Ti. The computation time for different test meshes with various sizes are given in table 5.2, and results from [START_REF] Li | NormalF-Net: Normal filtering neural network for feature-preserving mesh denoising[END_REF] for other learning methods are also reported. In our case, the preprocessing step is performed on the CPU only, and could certainly be accelerated with a proper parallel implementation. The most time consuming parts are the coarsening of the graph and, for large meshes only, the input subdivision into separate mesh patches that are processed separately. The inference step by our network, including the vertex updating step, is run on the GPU. Our approach is slower than CNR [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] on small meshes, though this might be partly due to some overhead cost, given that our inference time scales really well with mesh size on the test data. Nevertheless, an efficient GPU implementation for the preprocessing step will be required to be competitive with CNR in terms of running time.

On the other hand, our method is significantly faster than NormalF-Net [START_REF] Li | NormalF-Net: Normal filtering neural network for feature-preserving mesh denoising[END_REF], and several orders of magnitude faster than NormalNet [START_REF] Zhao | NormalNet: Learning-based Normal Filtering for Mesh Denoising[END_REF], where a local support is computed for each facet independently. This validates our motivation for using graph convolutions on the mesh.

Comparison on Real Data

Datasets

CNR [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] also provides three Kinect datasets, obtained respectively from Microsoft Kinect v1 scans, Microsoft Kinect v2 scans, and reconstructions of Microsoft Kinect v1 scans, using KinectFusion [START_REF] Izadi | KinectFusion: Realtime 3D reconstruction and interaction using a moving depth camera[END_REF]. We use a similar experimental setup on these datasets, with two major differences regarding the Kinect v1 and v2 experiments. First, we note that meshes in these datasets suffer from topological noise, which violates our central premise. They present numerous holes and disjoint parts, as shown in Table 5.1: Average angular error (in degrees) over some test meshes of the synthetic dataset of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] with intermediate noise level. Values for TSGSP and CNR are taken from [START_REF] Arvanitis | Feature preserving mesh denoising based on graph spectral processing[END_REF].

Name of Model

TSGSP [START_REF] Arvanitis | Feature preserving mesh denoising based on graph spectral processing[END_REF] datasets [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] showing holes and disjoint parts, as common in both datasets. figure 5.8. Since our convolutional layers are based on local connectivity, this means each disjoint part of a given mesh will be processed independently by our network. This is one limit of our approach. To deal with such data, filters based on spatial distance (as in CNR) or patch similarity (as in NormalF-Net) can be better equipped than filters based on local connectivity. Nevertheless, in order to improve the performance of our network, we add a new -binary -channel to our input, that differentiates between faces that lie on a border of the mesh, and faces that do not. This results in faster convergence during training, and slightly improves our results. Second, since meshes in the Kinect v1 and v2 datasets are obtained from depthmaps, we constrain vertices to move only along the depth direction in this case. These two changes are not applied to the KinectFusion dataset.

Results

Numerical results are shown in figures 5.10 and 5.11, and qualitative results in figure 5.12. We perform on par with or better than competitors on all the Kinect datasets. Interestingly, we notice that the angular error is actually increased by the vertex updating step for the Kinect-Fusion dataset. This is presumably due to the very specific sampling of those meshes, with many thin triangles. This leads to a few cases of flipped faces (see figure 5.9) that artificially increase the error.

Mesh Distance Loss

In this section, we present results obtained using the alternative loss exposed in section 5.5.4 and compare them to our standard approach. Figure 5.13 displays numerical results on the synthetic dataset of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF]. It shows that this new formulation yields better results in terms of vertex locations which validates our approach. However, it is less precise on normal estimation.

Figure 5.14 shows qualitative results. The normal loss yields smoother results that are visually pleasing, however it tends to lose more small scale features from the original mesh.

Generalisation to Other Data

The ability of our learned model to generalize to unseen data is a primary concern, in particular with real data as produced by digitalization apparatus. This appears challenging for a model trained on synthetic data only, that are intrinsically less diverse than real data. To evaluate the generalization capability of our method, we first test it on scanned data from [START_REF] Zhang | Guided Mesh Normal Filtering[END_REF]. Qualitative results in figure 5.17 show that our our network recovers more features than competitors while still removing apparent noise.

Additionally, we tested our method on surfaces obtained by multi-view stereo reconstructions from RGB images, using the reconstruction method of [START_REF] Leroy | Shape reconstruction using volume sweeping and learned photoconsistency[END_REF]. Such surfaces exhibit various noise types, such as missing concavities, holes, topological noise, flipped faces, among other acquisition imperfections. While correcting all of them is beyond the scope of this work, the question that arises is whether our framework can improve the reconstruction results by exploiting the learned local noise and shape patterns. Figure 5.18 shows qualitative results of the model trained on the synthetic dataset (from 5.6.2). We compare our method to CNR [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] and HC laplacian smoothing [START_REF] Vollmer | Improved Laplacian Smoothing of Noisy Surface Meshes[END_REF], as a general purpose baseline. Compared to this baseline, our model appears to better preserve the recovered features, e.g. the shirt folds in the back, and to better filter out random noise. On the other hand, CNR produce a smoother results, removing some large noise patterns, however losing some features along the way, e.g. the jawline, fingers, or shirt folds.

Conclusion

In this chapter, we have presented a novel end-to-end learning approach for normal denoising on a mesh surface. It demonstrates that a graph convolutional network architecture can learn meaningful features with respect to local shape and noise patterns and, thanks to its convolutional nature, it can also learn spatial consistency without the need for explicit constraints. As a result, the approach presents better results when compared to the state of the art methods for mesh denoising. Moreover, building on the observation that the vertex updating step is fully differentiable, we have proposed a new learning framework that can train on unregistered noisy data. With this alternate loss on vertices, the trained network tends to recover more small-scale features, but it loses the consistent orientation of neighbouring facets that is observed with our standard loss on normals. It would be interesting to combine both modalities, orientation and location, through the training loss.

By design, our framework cannot handle topological noise, and it relies on the assumption that the connectivity of the input mesh is correct. This assumption is reasonable in NLLR.

most situations, but there are some where it does not hold. This is true with, for instance, the Kinect datasets, where a single continuous surface is split into disjoint components. In this case, it could be more helpful to model spatial relationships between nodes (as in [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF]). As many recent learning-based methods have been proposed for point cloud denoising, it would be interesting to investigate how they could contribute in our framework by handling purely spatial information. Of course, our main motivation is on MVS data. Many sources of noise contribute to the final result of an MVS reconstruction pipeline, from capture to reconstruction. If our method is trained on a specific reconstruction pipeline, it might be able to improve results as a post-processing step. However, the framework of inferring normals and updating vertices accordingly dramatically limits the set of deformations that can be applied to the mesh. It works very well with simple noise models, but it is not clear whether it can correct noise from MVS reconstruction. Thus, a first step would be to explore the set of possible deformations that can be modeled by such a framework. Alternatively, it would be interesting to investigate other, less constrained deformation strategies. For instance, one could output vertex displacements directly, although it produced poorer results in our experiments. Qualitative results on a mesh captured from a real scene, using the multiview Kinovis platform [START_REF]Kinovis inria platform[END_REF] and a MVS approach [START_REF] Leroy | Shape reconstruction using volume sweeping and learned photoconsistency[END_REF]. Our network trained on synthetic data tends to better preserve sharp or large scale features than a traditional HC laplacian smoothing (HCL) or than CNR [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] trained on the same data. This can be seen for instance on the person's facial features or fingers or on the folds in the shirt. Best viewed digitally.

Chapter 6

Learned Appearance Super-Resolution in Image Space

In this chapter, we take an interest in the computation of appearance information, as a color signal on the surface, and we aim to improve on existing works with a learned super-resolution approach based on a neural network model. The most straightforward way of computing such an appearance map is to project all input images onto the surface and combine them, e.g. by taking an average value. However, it is not so simple in practice because of inaccuracies in the camera calibrations, or in the geometry, which result in misaligned projections.

Thus, most work fall back to a "best-view" approach, where a single projected view is used to color a given region of the surface. The difficulty lies in blending or aligning the views along the seams.

However, using only a single view means discarding available information. By combining information from multiple images of the same object with different samplings, one can compute an image with a higher resolution than any input view. This is called superresolution (more specifically multi-frame super resolution, or MFSR), and it has been extensively studied in the planar case.

Leveraging the redundancy of information in multiple inputs is a common challenge for both MVS reconstruction and traditional image super resolution. In our texturing scenario, it should also be possible to recover a super-resolved appearance.

Existing works that do combine multiple views [START_REF] Tsiminaki | High Resolution 3D Shape Texture from Multiple Videos[END_REF][START_REF] Richard | Learned Multi-View Texture Super-Resolution[END_REF][START_REF] Goldlücke | A super-resolution framework for high-accuracy multiview reconstruction[END_REF] rely on handcrafted generative image formation models and tedious and computation-heavy optimization methods, in order to correct aforementioned misalignments. They use simple image priors (based on L1 norm and total variation minimization).

This generative framework works well, but we wish to approach the problem from a different perspective, and consider it as a discriminative problem. We surmise that a model trained to recognize local patterns might be better suited for this task, without any explicit knowledge of the image formation process.

A new branch of super resolution, dubbed Single-Image Super Resolution (SISR) has appeared in recent years with the rise of deep convolutional networks on images. Its aims is to recover a plausible high-resolution image from a low-resolution input, by learning complex image priors on natural images. It fakes super-resolution in the sense that it hallucinates plausible details from experience, rather than recovering them from input data.

However, these network advertise impressive performance, and this raises an interesting question: given some low-resolution images, rather than improving the texturing algorithm, how much can be gained by pre-processing the input? We perform a simple experiment: we run various state-of-the-art texturing methods (G2LTex [START_REF] Fu | Texture Mapping for 3D Reconstruction with RGB-D Sensor[END_REF] and Adversarial Texture [START_REF] Huang | Adversarial Texture Optimization from RGB-D Scans[END_REF]) on a test scene (more details on data and evaluation in section 6.4), and compare it to our naive texturing algorithm described in section 3.4.1, that follows a simple best-view strategy. Recent methods score better, as expected. Then, we run the same naive method on enhanced input, processed by a state-of-the-art SISR network ESRGAN [START_REF] Wang | ESRGAN: Enhanced super-resolution generative adversarial networks[END_REF]. The resulting texture outperforms all methods computed with low-res input. This seems to show that: (1) it is more effective to enhance a signal directly in the signal space, rather than after transformation and resampling, and (2) a strong, learned, prior on natural images is a powerful tool when it comes to super-resolution, and CNNs are good at learning such a prior. Figure 6.1 and table 6.1 show qualitative and quantitative results for this simple experiment, respectively. We wish to exploit the best of both worlds (leverage information from multiple images, and learn a strong prior on high-resolution images) into a single pipeline. We propose an image super-resolution network, similar in design to a SISR network (albeit simple), but that is able to aggregate information from additional views.

We surmise that a CNN should be able to correct for small misalignments, and leverage information from multiple images, by discriminating patterns, while also learning a good prior on detailed appearance maps.

With this in mind, we propose a novel architecture made up of 3 convolutional neural subnetworks, that can take an arbitrary number of views as input and can enhance input views or generate a super-resolved texture. Our network is trained on synthetic data, and is shown to generalise well to real data from various origins. Our network is trained to enhance an input view while aggregating information from other viewpoints. Then, during inference, for a given part of the surface, we automatically select the most informative views to be passed to the network, and the output is directly projected in texture space, yielding a high-resolution texture.

We make the following contributions:

• We show that super-resolving appearance information in image space can be more effective that the traditional approach (processing in texture space).

• We propose, to the best of our knowledge, the first multi-view super-resolution network, that is trained to directly process an arbitrary number of input views, rather than a pre-processed texture.

• We show that our network is able to effectively leverage information aggregated from extra views, without explicit re-alignment.

First, we give a brief review of previous work on image and appearance super-resolution (section 6.1). Then, section 6.2 presents the general design of our method, while implementation choices are detailed in section 6.3. Finally, we validate our approach with various experiments in section 6.4.

Related Work

According to Shannon sampling theory [START_REF] Shannon | Communication in the Presence of Noise[END_REF], there is a limit to the maximum frequency that can be be recovered from a signal sampled uniformly, and this limit is directly related to the sampling rate. However, by interleaving several images sampled with a phase shift, one can artificially increase the sampling rate, which makes it possible to recover the original signal at a higher resolution. This is the basic idea behind Multi-Frame Super-Resolution (MFSR), that consists in producing a single high-resolution image from a short sequence of photographs. Early works on this problem started in the 80s and 90s [109, [START_REF] Keren | Image sequence enhancement using subpixel displacements[END_REF][START_REF] Irani | Improving resolution by image registration[END_REF]. However, these works assume all images can be registered through translation and rotation only. This assumption holds for small bursts of images taken from a single camera, and observing a distant object, but it does not apply to the MVS case, where one needs to process images taken from varying distances, with a very wide baseline.

Single-Image Super Resolution (SISR) (formerly known as image interpolation) on the other hand, relies on modeling prior knowledge on natural images, in order to discriminate between all possible HR images that can explain a single LR observation. Early methods rely on spline-based interpolation, as in [START_REF] Keys | Cubic convolution interpolation for digital image processing[END_REF]. Classical priors such as total-variation minimization have been used extensively (e.g. [START_REF] Marquina | Image super-resolution by TV-regularization and bregman iteration[END_REF]).

Machine learning was used fairly early, in order to model more complex image priors that perform better than simple handcrafted optimization methods, from a training set of low-res/high-res pairs. The first work to fall into this category is probably that of Freeman et al. [START_REF] Freeman | Example-based super-resolution[END_REF]. They follow an example-based approach on patches: for each input patch, a close low-res example from the training set is selected (given some neighbourhood consistency constraint), and high-res information from the corresponding HR patch is applied to the input.

More recently, with the rise of CNNs, SISR and learning-based methods received a renewed attention, starting with [START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF] in 2014. [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF] and [START_REF] Bruna | Super-resolution with deep convolutional sufficient statistics[END_REF] first use a perceptual loss for training a SISR network, instead of a per-pixel loss. SRGAN [START_REF] Ledig | Photo-realistic single image superresolution using a generative adversarial network[END_REF] achieves state of the art results by training a deep residual network with a combination of MSE, perceptual, and adversarial losses. Their results are further improved by ESRGAN [START_REF] Wang | ESRGAN: Enhanced super-resolution generative adversarial networks[END_REF]. Using perceptual and adversarial losses forces the network to produce plausible results that lie on the natural image manifold.

Very recently, deep learning methods have been proposed for the MFSR problem [START_REF] Molini | DeepSUM: Deep Neural Network for Super-Resolution of Unregistered Multitemporal Images[END_REF][START_REF] Kawulok | Deep Learning for Multiple-Image Super-Resolution[END_REF][START_REF] Deudon | HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of Satellite Imagery[END_REF][START_REF] Salvetti | Multi-image super resolution of remotely sensed images using residual attention deep neural networks[END_REF]. However, they work within a very specific setting, by processing satellite images, that can be perfectly registered through translation and rotation alone. In our case, we have to deal with wide baseline, self-occlusion, grazing angles, and imperfect reprojection due to geometric or calibration errors, which leads to complex misalignments. The specific problem of appearance super-resolution was reviewed in section 2.2.4. Existing works address the problem in texture space, either with a SISR network trained on texture maps [START_REF] Li | 3D appearance super-resolution with deep learning[END_REF], or with a complex iterative optimization on a high-res texture [START_REF] Tsiminaki | High Resolution 3D Shape Texture from Multiple Videos[END_REF], or a combination of both [START_REF] Richard | Learned Multi-View Texture Super-Resolution[END_REF]. Like [START_REF] Li | 3D appearance super-resolution with deep learning[END_REF], we exploit the ability of SISR networks at learning local high-res patterns, but with a real multiview setup. Contrary to [START_REF] Tsiminaki | High Resolution 3D Shape Texture from Multiple Videos[END_REF] and [START_REF] Richard | Learned Multi-View Texture Super-Resolution[END_REF], our proposed method outputs a high-resolution signal in a single step. Finally, unlike the above-cited works, our model is trained to enhance a signal in view-space rather than texture space.

Method

First, let us describe here the problem settings in more details. Then, we discuss two different architectural designs that we experiment with. The first one is designed to process multi-view information with a reference input signal, such as one input view. The second one is designed to work in a broader context where no observed signal is directly available, such as in texture space or for novel-view generation.

Problem

Looking back at the problem definition in section 1.8, we take as input a surface S ⊂ R 3 represented as a 3D mesh M, and N input views {I 1 , . . . I N }. Additionally, we assume that for each view I i , we have an operator π i that projects 3D points into image space (see section 1.8). By extension, we also call π i the function:

π i : S → [0, 1] 2 X → π i • X (6.1)
so that for a given 3D point X ∈ S, π i (X) = (u, v) are the pixel coordinates of the image of X on I i . We also define the inverse mapping Q i from image space to 3D space

Q i : [0, 1] 2 → S (6.2)
that maps a pixel in I i to the corresponding visible (observed) 3D point on S. While π i is a simple function, derived from a linear operator in homogeneous coordinates, Q i is highly non-linear, and relies on a digital representation of S, typically a depth map. In our case, it can be extracted from mesh M. Please, note that these two functions can also be easily defined for a texture map.

Given these two functions, we can project a source image I j to another view i to obtain the projected image T j→i :

T j→i : [0, 1] 2 → [0, 1] 3 (u, v) → I j (π j (Q i (u, v))) (6.3)

Method Overview

Using functions T j→i , we can project all input images into the same 2D-space, and perform "regular" MFSR in that space. However, the challenges we face are many-fold:

• Varying camera distance and viewing angle, which means the sampling rate of input views, once projected onto the surface, will greatly vary. The network needs to be able to combine features sampled at different scales.

• Self-occlusion and/or bad projection due to missing (or hallucinated) geometry, meaning that parts of the projected views will contain "fake" information.

Our network needs to be able to discriminate between real and fake information and discard the latter. • Imprecise geometry and calibration, meaning that projected views will suffer from small non-uniform misalignments that cannot be modelled by a single global translation.

To address these challenges, we propose a network architecture made-up of three distinct blocks:

• a feature extractor block, that takes RGB images as input, and extracts higherlevel features that are relevant for the rest of the pipeline. Thanks to its hourglass design, it can extract multi-scale features. This brick could typically be replaced by a pre-trained SISR network.

• an aggregator block, that takes as input features from the target view and one extra view, and is supposed to align and integrate the potential relevant information from the additional view. This block is supposed to overcome the second and third challenge. Rather than explicitly modeling a registration step, we choose to let this block learn misalignment patterns by itself.

• a coloring block, that runs on pooled features from the aggregator, and returns a final decision as a High-Res RGB image.

Finally, this design is agnostic to the number of input views that are processed. In summary, given a target view (or texture atlas) I T , and some additional views {I 1 , . . . I n } our model extracts features from each input image, to get features images F T and {F 1 , . . . F n },which are then projected onto I T following equation 6.3, where I j is replaced by F j .

Each extra (projected) feature image T j→T is concatenated to F T (upsampled), and passed through a second network, supposed to extract the potential extra information included in T j→T w.r.t. F T . The n resulting feature maps are pooled together through average + standard deviation pooling, and the result is fed to a final network, that returns a super-resolved image of the target view I T .

Alternative Design

Our network uses a LR view of the image to super-resolve as a reference image, in order to "ground" the decision process. This makes perfect sense when processing one of the LR input view. But if the reference image is imperfect, it might over-constrain the network, making it harder to extract information from additional views. This might be the case, for example, when processing a texture map. In this case, there is no initialized texture ready at hand, and computing one means facing all the problems already mentioned in the introduction.

Thus, we test a second network architecture, which is a variation of our model presented in figure 6.2, but without any reference image . In this setting, the aggregator network loses its purpose. A simple average pooling layer would weigh all contributions equally, which is not desirable in our case, since some views provide very little information. Instead, in order to aggregate information from many views in an efficient way, we propose to use an attention mechanism for the pooling step.

The first attention model was introduced by Bahdanau et al. [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] for neural machine translation. Since then, it has attracted a growing interest in NLP tasks, but also in computer vision. Many variations have been proposed. Chaudhari et al. give an overview of the concept with a coherent taxonomy. According to them, a generalized attention model can be written as:

A(q, K, V) = i p(a(k i , q)) * v i (6.4)
Given a query q, and a set of key-value pairs (K, V), the model returns a weighted sum of the values V , where the weight for value v i is a function of q and k i . a is the alignment or compatibility function, that outputs energy scores. This function can be fixed (a commonly used function is the dot product) or learned by the network. p is the distribution function that converts energy scores into weights. In our case, we want a pooling layer that can locally adapt the weight of each input image, given the global context. For this reason, we first perform a regular pooling step, and set our query q to be the output of the pooling layer F pool . We do not differentiate between the keys and values. Thus, k i = v i = F i . Rewriting equation (6.4) for our case, we have:

A(F 1 , . . . , F n) = i p(a(F i , F pool)) * F i (6.5)
Our compatibility function a is a lightweight convolutional block, its architecture is shown in figure 6.4. As for the choice of pooling layer F pool , it is described in the next section (6.3.2).

Implementation & Training

In this section, we discuss the implementation choices, as well as the supervision process used to train our model. First, we present the architecture of our different network blocks, and our pick of pooling layer. Then, we give a detailed view of the different losses used for supervision. Finally, our training dataset is described.

Architecture

As stated, our network is made up of three distinct blocks, with a similar architecture. We want a network design that is both multi-scale, and residual (residual networks have proven to be very effective for image super-resolution tasks). We draw inspiration from the hourglass module of the "Stacked Hourglass" architecture of [START_REF] Newell | Stacked hourglass networks for human pose estimation[END_REF], where a single hourglass module is made up of a contracting path of residual blocks and max pooling layers, followed by an expanding path of residual blocks and upsampling operations.

While keeping the same design, we use a more lightweight network with fewer layers and feature channels. A single hourglass consists of 4 levels (3 pooling and unpooling layers) in our subnetworks. Moreover, we do not stack them, though they are used 3 times through the pipeline. For all 3 subnetworks, features have a fixed length of 32.

Pooling Layer

The most traditional types of pooling layers are average pooling and max pooling, but other layers have been proposed in the literature. In particular, for temporal pooling in speech processing, [START_REF] Snyder | Deep neural network embeddings for text-independent speaker verification[END_REF] use what they call statistics pooling for which they concatenate the mean and standard deviation of each feature channel. Very recently, Wang et al. [START_REF] Wang | Revisiting the statistics pooling layer in deep speaker embedding learning[END_REF] experiment with different forms of statistics pooling, using standard deviation, covariance and ℓ p -norm, and they compare their performance for temporal pooling on a speech processing task (speaker embedding learning), in different setups. They consistently obtain better results with second-order statistics, in particular with standard deviation. Our task is quite different, but we surmise that second order statistics can be beneficial, both to the coloring block for our standard design, and to the attention pooling block for our alternative design. In short, F pool = (F avg , F std), with:

F avg = 1 n n i=1 F i (6.6) F std = 1 n n i=1
(F i -F avg) 2 (6.7)

Losses

[48] first use a combination of image space, perceptual and adversarial losses. It also proved to be a successful strategy for ESRGAN [START_REF] Wang | ESRGAN: Enhanced super-resolution generative adversarial networks[END_REF]. Our network is also trained with such a combination of 3 different loss functions, detailed below.

Data Term

As a data term, SISR methods traditionally use a MSE ([84, 47, 119]) or MAE ([START_REF] Wang | ESRGAN: Enhanced super-resolution generative adversarial networks[END_REF][START_REF] Salvetti | Multi-image super resolution of remotely sensed images using residual attention deep neural networks[END_REF]) loss. [START_REF] Hui | Fast and Accurate Single Image Super-Resolution via Information Distillation Network[END_REF] train with a combination of both. Other methods choose the Huber loss [START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF] or Charbonnier loss, used for example by one the winners of the NTIRE 2017 challenge [START_REF] Timofte | NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results[END_REF]. These are very similar to the MAE for large error values (and thus, they are robust to outliers), while being similar to the MSE around 0, making use of its sensitivity to small errors. We choose the Charbonnier loss in our work.

L char = 1 N N i=1 ϵ 2 + (I i -Îi) 2 (6.8)

Natural Image Manifold

The problem of image super-resolution is ill-posed, and for every LR observation, there are several possible HR solutions that can explain it. A network trained with a data-term only tends to produce overly smooth results, because it will learn to return the average of all possible solution for every pixel. Unfortunately, it may be that this average solution is not in itself a plausible solution, because it is not a plausible image: it does not lie on the manifold of natural images. Indeed, natural images are often sharp; thus blurry results will appear fake to a human eye. For most use cases, it would be preferable for the network to produce a result that is plausible (sharp), even though it is more distant from the ground truth on average. This bias is achieved with the use of two additional loss terms, detailed below.

Perceptual Loss

Measuring the perceptual similarity of images is a long standing problem. Hand-crafted metrics, such as the structural similarity index (SSIM) [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] or its multi-scale version (MS-SSIM) [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF] have been used in the past, and sometimes as a training loss for deep networks [121]. More recently, it has been proposed that CNNs are well suited to model discriminative information in images while being robust to small geometric deformations [START_REF] Bruna | Super-resolution with deep convolutional sufficient statistics[END_REF].

The effectiveness of deep features as a perceptual metric is discussed in details by [START_REF] Zhang | The Unreasonable Effectiveness of Deep Features as a Perceptual Metric J UST N OTICEABLE D IFFERENCES (JND)[END_REF]. Thus, some works have started training networks with a loss on Euclidean distance in the feature space of pretrained CNNs. Such perceptual losses based on feature activation have been used before for SISR, as in [START_REF] Bruna | Super-resolution with deep convolutional sufficient statistics[END_REF][START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Ledig | Photo-realistic single image superresolution using a generative adversarial network[END_REF][START_REF] Wang | ESRGAN: Enhanced super-resolution generative adversarial networks[END_REF]. We choose to use the Learned Perceptual Image Patch Similarity metric (LPIPS) [START_REF] Zhang | The Unreasonable Effectiveness of Deep Features as a Perceptual Metric J UST N OTICEABLE D IFFERENCES (JND)[END_REF] for training.

Adversarial Loss

The idea of using a GAN framework as an adversarial loss to solve the problem discussed in 6.3.3.2 has been tested before on various tasks, as in [START_REF] Mathieu | Deep multi-scale video prediction beyond mean square error[END_REF] for video frame prediction, or [START_REF] Yu | Ultra-resolving face images by discriminative generative networks[END_REF] for face super-resolution. Like SRGAN [START_REF] Ledig | Photo-realistic single image superresolution using a generative adversarial network[END_REF], we add a simple discriminator subnetwork during training, following the original GAN framework of Goodfellow et al. Following the design of SRGAN [START_REF] Ledig | Photo-realistic single image superresolution using a generative adversarial network[END_REF], we choose an architecture made-up of a succession of 3 identical convolution blocks (2D convolution, batch norm, and activation function), although ours is shallower. The discriminator is trained alternatively with the main superresolution network (generator). It takes as input a batch of small 20 × 20 patches taken from the output of the generator or from the corresponding ground-truth patch. In order for the discriminator to learn a broader image manifold, and to avoid overfitting to the training dataset, half of the ground-truth patches are replaced by random patches from the DIV2K dataset [START_REF] Agustsson | NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study[END_REF].

Data

Despite previous research on learning-based MFSR, we lack a dedicated dataset with sufficient data. [START_REF] Kawulok | Deep Learning for Multiple-Image Super-Resolution[END_REF][START_REF] Salvetti | Multi-image super resolution of remotely sensed images using residual attention deep neural networks[END_REF][START_REF] Deudon | HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of Satellite Imagery[END_REF] tackle the traditional problem of MFSR with bursts of images of virtually flat surfaces taken from the same viewpoint. They train on satellite images, and lack the very wide baselines, occlusions, and geometric noise of MVS data. On the other hand, [START_REF] Li | 3D appearance super-resolution with deep learning[END_REF] tackle the MVS appearance SR problem, but they train a neural network on texture super resolution, discarding the multi-view setting. Finally, [START_REF] Richard | Learned Multi-View Texture Super-Resolution[END_REF] propose a multi-view learning-based method, but their multi-view network only learns to infer two hyperparameters. Thus, they do not need a large amount of training data, and they only train on 8 scenes, which would probably not be enough in our case.

Thus, for training, we generate our own synthetic dataset of high-res and low-res views of synthetic models of clothed humans. Using synthetic data has several advantages:

• We have access to the exact shape used for rendering. Thus, it frees us from any calibration or reconstruction inaccuracies, making the task easier for the network.

• We have perfect control over all rendering parameters (lighting, camera positions and intrisic parameters, etc.), and noise.

• We can easily generate large amount of data.

Models, along with high resolution textures and normal maps, are taken from the Microsoft Rocketbox dataset [START_REF] Gonzalez-Franco | The Rocketbox library and the utility of freely available rigged avatars for procedural animation of virtual humans and embodiment 1[END_REF]. This makes for a limited variety in terms of scenes used (only a single clothed human doing a T-pose for every scene). However, this is not a problem in our case.

• We are interested in local image features, as we expect our network to learn from local patterns rather than global context.

• Models in Rocketbox come with a high-resolution texture, and high-resolution normal map, useful for rendering

• Clothing in the database is quite diverse in terms of texture and shape, with examples of various gear, making for small occlusions, and strong edges.

We use a set of 80 Rocketbox models for training. For each one, we select a random environment map from a set of 18 spherical photographs taken from HDRIHaven [START_REF] Hdrihaven | [END_REF], of both interior and exterior scenes. Then, 50 views are rendered from randomly sampled viewpoints around the model, with varying distance, at a high-resolution of 4096 × 3072 (figure 6.5). These HR views are downsampled by a factor 4 in both directions in order to generate our observed LR data.

For training, we select a random patch among the input views, along with 5 additional views that can see the whole input patch. Uniform patches are discarded. The HR reference patch, and the projection matrices are stored, along with the image information, making up a complete training example. We generate over 12000 such training patches from our data. During training, we use random data augmentation, consisting of small intensity changes, and subpixel displacements in projection operators.

Experiments

First, we test the effectiveness of our method in image space, in order to validate our claims, both on synthetic and real data. As a basis for comparison, we rely on the stateof-the-art, SISR network, ESRGAN [START_REF] Wang | ESRGAN: Enhanced super-resolution generative adversarial networks[END_REF], thanks to the code and models provided by Cardinale et al. [START_REF]ISR[END_REF].

Then, we compare different approaches to super-resolving a multi-view appearance, in order to gain some insight into this specific problem.

For numerical evaluation, we use the following image comparison metrics: LPIPS [START_REF] Zhang | The Unreasonable Effectiveness of Deep Features as a Perceptual Metric J UST N OTICEABLE D IFFERENCES (JND)[END_REF], peak signal-to-noise ratio (PSNR), and SSIM [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF]. PSNR and SSIM are the traditional metrics used when evaluating the similarity between images. LPIPS has been shown to agree more with human judgements of similarity, and it is usually more discriminative in our experiments, which is why we use it as well. For LPIPS, lower is better, for PSNR and MS-SSIM, higher is better. First, we evaluate the ability of our network to super-resolve input views using multiview information. We compare several approaches. Results are given as the average score on all 50 input views of the 3 test scenes from our synthetic dataset. Methods shown are: bicubic interpolation (standard baseline), ESRGAN, our standard network architecture, and the same network trained and run on a SISR task only, without extra views. Results are shown in table 6.2. Our baseline SISR network (without multiview information), performs rather poorly, when compared to ESRGAN, which is to be expected, looking at the depth and complexity of both networks, and at the size of training data in both cases. However, when we aggregate information from multiple views into the same design, our network outperforms ESRGAN nearly systematically. ESRGAN produces very pleasing results (confirmed by the low LPIPS score) by hallucinating details, but it performs more poorly than a baseline bicubic interpolation on standard metrics (PSNR and SSIM). By contrast, our method recovers "real" details by using multi-view information. These results show that our network effectively learns to leverage information from extra images.

However, we need to make sure it does not learn to simply select the "best" view and enhance it. The random sampling of camera distance means there are large variations of "effective" resolution between input images. When processing zoomed-out images, there is more information in a single extra view, than in the reference LR image, which explains how our method can outperform the baselines by a large margin. We must also look at results on views from the test scene with the best effective resolution. Figure 6.6 shows close-up views of two extreme examples. In the "far" case, our network recovers high-frenquency details that are not present in the reference view, as expected. But even when super-resolving the best available view (which means additional views passed to the network are less informative), adding multi-view information improves the final result,

Evaluation on Real Data

We wish to test the capacity of our network to generalize to other datasets, in particular, to real and more challenging data. We test our method on some objects of the DTU Robot Image dataset [START_REF] Aanaes | Large-Scale Data for Multiple-View Stereopsis[END_REF]. It is a collection of scenes featuring varied sets of objects. Each scene is observed from 49 different viewpoints, with precise camera calibration, and the underlying geometry is registered thanks to a structured light scanner. Compared to our training data, images have a different resolution, camera distance and position w.r.t. the scenes, and the observed textures and shapes are very different. But more importantly, the geometry fed to the network is imprecise. Indeed, the registered point clouds provided with the data are often incomplete, and are not oriented. We mesh them using Poisson reconstruction and some cleaning algorithm, but it suffers from many artifacts, including missing or hallucinated geometry. 6.4 shows numerical results on three random test scenes from the DTU dataset. Despite the geometry errors, that make the registration of multi-view information particulary challenging for our network, it performs generally better than ESRGAN on all 3 test scenes. In figure 6.8, we show some qualitative results on the same test scenes, compared to ESRGAN. Close-up views show that our results recover more informative details. Table 6.4: Super-resolution of LR input images from 3 test models of the DTU Robot Image dataset [START_REF] Aanaes | Large-Scale Data for Multiple-View Stereopsis[END_REF]. ESRGAN and bicubic interpolation are performed on a single image at a time. Our method takes additional view as extra information. For LPIPS, lower is better, for PSNR and MS-SSIM, higher is better. We consider once again the general problem of generating a single texture representation of the appearance, given multiple input views of a scene. Regardless of the texturing algorithm used, more precise/detailed input images should yield a more precise/detailed texture. Thus, one can think of several ways to improve the final texture: (1) improve the input images, (2) improve the texturing algorithm, (3) improve the final texture as post-processing. We wish to compare all approches here, given a simple baseline texturing method.

Scene name

Our network is agnostic to the kind of projection used (blue hexagon in figure 6.2) as long as it can be written as a linear operator. Therefore, we can perfectly project all input images into texture space, and run the network in texture space. Figure 6.9 shows close-up views of the texture computed for the Military Male 02 model from Rocketbox. Adversarial texture [START_REF] Huang | Adversarial Texture Optimization from RGB-D Scans[END_REF] produces sharp results, but it seems to suffer from some kind of salt-and-pepper noise. Our method without reference image is the alternative network design presented in section 6.2.3. We also run our standard network as a post-processing step, with the baseline texture acting as reference view. Finally, we also generate textures from enhanced views, using our standard network. Numerical results are displayed in table 6.5. Our attention pooling network outperforms the baseline, and adversarial texture, by a large margin in terms of perceptual loss, and it can be run in a single step.

However, it is especially interesting to note that preprocessing the input images with our method yields the best results overall.

Evaluation on real data

We also evaluate our method on textures generated from real data. We run tests on some chair models from [START_REF] Huang | Adversarial Texture Optimization from RGB-D Scans[END_REF]. In this case, we run our method directly on captured images, and not on artificially downsampled ones. As a consequence, we cannot measure the superresolution performance of our network numerically. However, we show some qualitative comparisons with Adversarial Texture [START_REF] Huang | Adversarial Texture Optimization from RGB-D Scans[END_REF] in figure 6.10. These results demonstrate that our method is able to recover high-frequency details that are missing from the input images.

Conclusion

The work presented in this chapter was motivated by a simple assessment: preprocessing input images with a SISR algorithm recovers more high frequency content than some state-of-the-art texturing methods. Thus, we are forced to acknowledge the capacity of deep image CNNs at learning efficient image priors for the task of super-resolution. We contribute in the following ways: first, we propose an image super-resolution network that is able to leverage information from multiple images, even with wide baseline and noisy geometry, as our experiments on real data demonstrate. To the best of our knowledge, this is the first method to perform multi-view super-resolution in a single, learnable step. We propose two variations for our network design, one that is trained to enhance input images, and one that is trained to generate novel viewpoints or textures from input views, thanks to an attention pooling mechanism. Numerical results show that both approaches perform well, and generalize well to real data with noisy geometry. We also contribute by showing that performing learned super-resolution in input image space is actually a more efficient way of leveraging multi-view redundancy of information. In a sense, this can be compared to the general framework of MVS reconstruction: as stated in section 2.1, several approaches have been explored, especially in early years, but ultimately, there is a general consensus towards computing per image disparity maps, and combining them in a second stage. Thus, surface detection is performed in image space rather than in a shared 3D space. Our approach to super-resolution is similar; although we did not address the necessary second stage in this work.

The process of MVS reconstruction is limited in part by the resolution of input images. In the future, it would be interesting to explore whether pre-processing input images with our method could help to improve the quality of the reconstructed geometry for some MVS algorithms.

Chapter 7

Summary and Extensions

This thesis presented several contributions related to the field of appearance modeling, by addressing various challenges of signal processing on surfaces.

Chapter 3 is concerned about the representation and sampling of a 2D signal on meshes. In chapter 4, we undertake a signal compression task. Chapter 5 is about denoising a signal on meshes. Lastly, chapter 6 focuses on enhancing a signal on surfaces.

In doing so, we chose to focus on probably the most used model for 3D shapes: triangular meshes. Our contributions explore different ways of manipulating signals on meshes.

In chapter 3, we consider a mesh M as a continuous surface. In chapter 4, we handle it as a disjoint collection of face vectors, or triangular blocks. In chapter 5, we adopt yet another approach, and regard it as a discrete graph of connected facets. Finally, in chapter 6, we take a step back and process our 2D input signal directly in input space (namely images), instead of on the surface. Here M is used as part of a projection operator, that is non dependent of the underlying representation.

Summary

In a digital world, adopting compact data representations is crucial. Traditional image textures, used to map a color signal to a 3D mesh, have some shortcomings, but one severe limitation when computing a texture from real data, is their fixed, predefined sampling. In chapter 3, we adopt an alternative representation, that we call a mesh texture, and store color information directly on the mesh. We contribute with a two-steps adaptive sampling strategy, that first adapts local sampling at the face level, based on available input information, and then dynamically reduces the density of samples in faces that have no high-frequency content. We show this strategy to be more efficient than the standard sampling of image textures.

However, compact data representations require good compression tools, and mesh textures were ill-suited in that respect. We address this limitation in chapter 4, and we equip them with a dedicated compression algorithm, inspired by the JPEG pipeline. This makes mesh textures all the more appealing for appearance modeling of large and complex scenes.

Appearance modeling is directly dependent on the quality of the surface reconstruction. Chapter 5 focuses on the general problem of mesh denoising, with a data-driven approach. Our proposed network builds on the convolutional layer of [START_REF] Verma | FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[END_REF], with an architecture, pooling strategy and graph connectivity that are tailored to the regression task at hand. This is, to the best of our knowledge, the first end-to-end learning-based method for mesh denoising, and we demonstrate good results on the benchmark dataset of [START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF].

Finally, in an MVS setup, we observe the same information multiple times with different sampling. This makes it possible to perform appearance super-resolution, although the problem is tricky, and it has received little interest. In chapter 6, we take a new approach to the field with a fully data-driven model. Instead of registering all images to a single high-resolution texture, we train our network to enhance input images using contextual information from other views, and we show this approach to be highly effective.

Our code for chapters 3, 4 and 5 has been made publicly available on the following repositories: https://gitlab.inria.fr/marmando/adaptive-mesh-texture, and https://gitlab. inria.fr/marmando/deep-mesh-denoizing. They have been made as user-friendly as possible, and we hope they will contribute to the community.

Limitations and Future Work

In chapter 3, we use a sampling method that is locally hexagonal. Hexagonal sampling is known to be the most compact, and it is not surprising to learn that in the human eye for example, photoreceptor cells in the fovea (i.e. the central part of the retina, that is responsible for sharp central vision) are arranged in an hexagonal lattice [START_REF] Hall | Guyton and Hall Textbook of Medical Physiology[END_REF].

However, despite the nice properties of hexagonal lattices, rectangular lattices are still used everywhere, from sensors to viewing devices, and processing hardware is optimized to work with rectangular grids. Thus, the rendering pipeline is not adapted to hexagonal grids in practice. To render our models, mesh textures have to be passed as images, and various tricks are used to define a dedicated shader, including encoding indexes in pixel values. Thus, changing a single brick in the chain is of limited interest. Progress in CCD technology made it possible to build sensors in an hexagonal lattice [START_REF] Vitulli | Aliasing effects mitigation by optimised sampling grids and impact on image acquisition chains[END_REF], but almost 20 years later, a change of paradigm does not seem any closer.

The mesh colors model [START_REF] Yuksel | Mesh colors[END_REF] can also be implemented on quad meshes, however, and our sampling strategy could be adapted to this setup.

In chapter 4 we only tackle single static meshes. Size is not really an issue with static models, but it can quickly become one when streaming sequences of dynamic scenes, or 4D models. As discussed in 2.4.2, several works have tried to compress time-varying appearance signals by leveraging the temporal redundancy. It would be interesting to extend the mesh texture model to dynamic textures, and see how they can be compressed efficiently with the extra time dimension.

In chapter 5, we tackle the graphics problem of mesh denoising in its traditional form. An obvious follow-up work would be to address the same problem in a multi-view stereo context, e.g. by projecting color information from input views onto the surface, and aggregate this to the normals signal. Preliminary experiments in this direction were not conclusive, and we decided to focus on other tasks. Additionally, it seems geometric noise on meshes can take many forms, and it is highly dependent on the context. In particular, for MVS reconstruction, it depends on the surface detection algorithm, but also on the surface sampling. Therefore, it would be interesting to train our method on a specific MVS reconstruction technique, and see whether it can enhance the method as a post-processing brick.

Finally, our method is highly dependent on a good initial estimate of topology, and it can only deform the mesh in subtle ways. Implicit surfaces might be more suited to the task if we wish to handle a more general class of transformations.

After having introduced tools to sample and process signals directly on the mesh, we turn to a case-study of enhancing a surface signal in chapter 6. And yet, we use a datadriven model in image space. This probably comes as a surprise to the reader. In fact, we originally tackled the problem with a GCN, but after multiple experiments, we realized that running a SISR network on an input view produced better results, which motivated our approach presented here. This failure probably stems from several factors:

• lack of -or poor -large-scale context. The pooling and unpooling operations we use in chapter 5 are greedy and non-deterministic. For the super-resolution problem we face, each sample point must be precisely located in space with respect to its neighbour. Thus, this greedy approach seems ill-suited. One could go without pooling operations, but at the cost of large-scale context that is necessary for proper registration.

• By transforming and resampling the input signal (when we project it on the surface), we lose some information. In that respect, it is better to directly manipulate the raw measurements, i.e. the input images. Incidentally, some image super-resolution methods process raw Bayer photographs, before any filtering is applied [START_REF] Wronski | Handheld multi-frame super-resolution[END_REF] for a similar reason.

• Despite all the recent efforts put on GCNs, convolutional networks are better at processing signals on regularly sampled grids.

• 2D annotated data are more readily available, probably by several orders of magnitude, than 3D data. This makes the use of pretraining, and deeper networks, easier, altough this was not a factor in our case.

Finally, we contributed to various aspects of the image modeling process, so it would be nice to combine all these contributions in a single unified pipeline.

Objets as Colored Surfaces

In this work, we chose to model light received from 3D objects, using a surface representation, on which an appearance function is defined (in our case, a RGB signal). This choice is open for debate. We have seen in chapters 1 and 2 that a wide spectrum of models have been explored between colored surfaces at one end, and light field representations at the other, with no notion of geometry.

With an intermediate representation, i.e. a coarse geometry and an appearance that depends on viewing direction (e.g. [START_REF] Gortler | The {L}umigraph[END_REF][START_REF] Wood | Surface light fields for 3D photography[END_REF]), variations due to small-scale surface changes are encoded directly in the appearance. This makes the computation of a finely detailed surface unnecessary. In fact, even the physical validity of the model is debatable: what we consider as planar surfaces are only planar at a macroscopic scale. There are many cases of structural coloration in the natural world, i.e. color produced by microscopic structures in the surface, that interfere with visible light, yet no one has ever proposed to represent them geometrically. This illustrates that there is no clear cut between what constitutes appearance, and what constitues geometry. The border is blurry by nature.

This debate is now more relevant than ever, with the recent NeRF [101] revolution, where a network is trained to learn the plenoptic function directly.

Neural Scene Representations

In a way, NeRF can probably be traced back to the recent trend of modeling implicit surfaces as level sets of neural networks (e.g. [108,[START_REF] Gropp | Implicit Geometric Regularization for Learning Shapes[END_REF]). Such continuous, volumetric representations seem better suited to reason about high-level properties of shapes. With PIFu [START_REF] Saito | PIFu: Pixel-aligned implicit function for high-resolution clothed human digitization[END_REF], the authors propose a neural implicit function that also takes color information from input images as input. With their scene representation networks [START_REF] Sitzmann | Scene representation networks: Continuous 3D-structure-aware neural scene representations[END_REF], Sitzmann et al. first propose a model that simultaneously addresses reconstruction, representation, and rendering of a scene in a single model. This, of course, is reminiscent of the whole IBR approach.

In NeRF [101], the authors follow a similar approach, but instead of learning a function of 3D space as in [START_REF] Sitzmann | Scene representation networks: Continuous 3D-structure-aware neural scene representations[END_REF], they train their network to learn a representation of the 5dimensional plenotic function. Because of their impressive results, this has a triggered a large surge of research in this new direction.

NeRF relies on a simple trick: instead of modeling only color as a 5D function, they simultaneously learn a density function in 3D space. This density is used at rendering time (which in turns, conditions the reprojection loss), through a volume rendering technique. This allows the network to reason out about shape, although it is not explicitly enforced. This density function has no physical basis, yet it is quite good at predicting the geometry, which can be shown by extracting surfaces from a level set.

Conclusion

Ultimately, we are interested in modeling the plenoptic function of a scene from a set of sparse samples. The geometry + appearance framework that we use has some physical motivations, but it is just a mathematical model among others. In that sense, a model like NeRF that learns a useful representation of the shape (according to the final objective, which is to render the scene from any viewpoint), rather than a physical one, has probably got an advantage.

There might a better model in all respects, yet to be found, but generally speaking, the choice of model is situational. They all have their respective strengths. For textured meshes, these include their compact representation, ease of edition and manipulation (low-level control), as well as their compatibility with a wide range of tools and rendering hardware and software, thanks to their long history. For these reasons, we believe they will still be in use for years to come.

1. 1

 1 Surface point viewed from multiple images . 1.2 3D object modeled as shape + appearance (texture map) 3.1 3D object modeled as shape + appearance (mesh texture) 3.2 Exemple of a texture atlas . 3.3 texture atlas at different resolutions . 3.4 Mesh texture sampling . 3.5 Mesh textures: toy example . 3.6 Filtering textures with a sharpening filter . 3.7 Illustration of the storage and indexing of mesh colors: each vertex, edge and face keeps an index into a single, shared array. This array is then written row by row into a 2D image that can be passed to the rendering pipeline. 3.8 Our two-steps sampling strategy . 3.9 Benefits of our sampling strategy: close-up illustration 3.10 Effects of the downsampling parameter T ds . 3.11 Input photographs showing the three test datasets used for evalution. From left to right: ANJA, KICK, and SALTO models 3.12 Example of views used to compute our metrics 3.13 Numerical results on several test models . 4.1 Visualization of our appearance compression scheme 4.2 Example of a PCA decomposition . 4.3 Overview of the compression pipeline . 4.4 Encoding of a JPEG file . 4.5 Numerical results on high-res textures . 4.6 Qualitative results . 5.1 Full pipeline of our FGC approach . 5.2 FGC network architecture . 5.3 The graph convolutional layer from Verma et al. 5.4 Facets connectivity on a mesh . 5.5 Example of a graph coarsening . 5.6 Two-steps framework shown with colored normals 5.7 Bar chart of numerical results on synthetic data 5.8 Connectivity issues found in real data . 5.9 Qualitative results on Kinect Fusion . 5.10 Numerical results on Kinect v1 and Kinect v2 5.11 Numerical results on Kinect Fusion . 5.12 Qualitative result on Kinect v2 . 5.13 Evaluating the loss on vertex positions: numerical results 5.14 Evaluating the loss on vertex positions: qualitative results 5.15 Qualitative results on synthetic data . 5.16 Test on other synthetic data .

Figure 1 . 1 :

 11 Figure 1.1: A surface point can be projected back into observed images, in order to get information about its appearance

Figure 3 . 1 :

 31 Figure 3.1: 3D object modeled with a mesh texture: given a set of input photographs (left), a geometric mesh is computed (top), along with an appearance function stored directly within the surface mesh structure (bottom).

Figure 3 . 3 :

 33 Figure 3.3: Close-up of the image texture of a mesh, generated with the same texture atlas but different resolutions. (Left: 80 × 50, Right: 320 × 200).

Figure 3 . 4 :

 34 Figure 3.4: Position of appearance samples on a mesh texture model with triangles exhibiting varying appearance resolutions: from left to right, R = 8, 4, 2, 1.

Figure 3 . 5 :Figure 3 . 6 :

 3536 Figure 3.5: Renderings of a simple toy mesh, with closest-point interpolation (left), or linear interpolation (right)

Figure 3 . 8 :

 38 Figure 3.8: Our two-steps sampling strategy, where heatmaps show local sampling frequency (resolution parameter R).Step 1 ensures that rarely seen surfaces receive less attention (downward-facing surfaces, or self-occluded parts such as the crotch and armpits here). Step 2 removes unnecessary samples from uniform areas, such as the metal plates here

Figure 3 . 9 :

 39 Figure 3.9: Left: Rendering of one of our test model. Right: Two close-up renderings of the same colored mesh, with an image texture (top) and a mesh texture (bottom), using approximately the same number of samples, rendered with closest point interpolation.

Figure 3 . 10 :

 310 Figure 3.10: Top: Effects of the downsampling parameter T ds : Left: full KNIGHT model. Middle: close-up of the mesh rendered with different values of T ds (from top to bottom: 0,80,180). Right: Same views rendered with closest-point interpolation. The total number of color samples for the whole model are respectively 3590k, 767k, 477k. Bottom: For comparison, renderings with image textures (from top to bottom, 4309k and 614k color samples, respectively)

Figure 3 . 12 :

 312 Figure 3.12: Example of views used to compute our metrics. Top: Full view. Bottom: Close-up of the images above. (Differences are too small to be noticed on a large scale). Left: Input photograph masked with the mesh silhouette. Middle: rendered view of a model with a mesh texture. Right: with an image texture.

Figure 3 . 13 :

 313 Figure 3.13: Numerical results on several test models, with varying samples count. Red: image textures. Blue: mesh textures.

Figure 4 . 1 :

 41 Figure 4.1: Visualization and surface close-up of our appearance compression scheme: Top: mesh texture. Bottom: image texture. Left to right: high-resolution texture, texture compressed to decreasing file size.

Figure 4 . 2 :

 42 Figure 4.2: Example of the PCA decomposition for triangles of resolution 8 for one of our test meshes. Each triangle represents one component, from most to least relevant (i.e. biggest to smallest eigenvalue) in reading order. The first few components (which are most preserved by the quantization step) encode low frequency information.

Figure 4 . 3 :

 43 Figure 4.3: Overview of the compression pipeline

Figure 4 . 4 :

 44 Figure 4.4: Encoding of a JPEG file. Original file by[START_REF] Albertini | [END_REF]

 (a) ANJA model. Red: image texture (3072 × 3072, 2.94M samples, 5.6 MB). Blue: mesh texture (3M samples, 5.5 MB). (b) KICK model. Red: image texture (8192 × 8192, 33.8M samples, 38.4 MB). Blue: mesh texture (33.2M samples, 37.3MB).(c) SALTO model. Red: image texture (6144×6144, 10M samples, 14.3 MB). Blue: mesh texture (9.7M samples, 13.0 MB).

Figure 4 . 5 :

 45 Figure 4.5: Visual score on high resolution textures, after compression at varying bit rates. Image textures are shown in red, mesh textures in blue.

 (a) Input photograph (b) mesh texture (1.1MB) (c) image texture (1.6MB)

Figure 4 . 6 :

 46 Figure 4.6: Top: Input photograph for the KICK model (left), and rendered views of the mesh, with a compressed mesh texture (middle), and with a compressed image texture (right). Bottom: Close-up of the images above. Best-viewed digitally

Figure 5 . 1 :

 51 Figure 5.1: Full pipeline. Given a noisy mesh, we build a graph of faces with normal information (section 5.4.1) and precompute coarser representations for pooling (section 5.4.2). This is fed into our GCN (section 5.3) that is trained to regress the denoised normal for each face. During inference, the estimated normals are used to update the vertex positions through an iterative process (section 5.5.3).

Figure 5 . 2 :

 52 Figure 5.2: The network architecture: Inputs are 6D vectors composed of normal and position information and outputs are 3D corrected normals; 3 different scales are taken into account.

Figure 5 . 3 :

 53 Figure 5.3: The graph convolutional layer from [132], which we adapt to faces instead of vertices.

Figure 5 . 4 :

 54 Figure 5.4: Input face graphs in red (the vertex mesh appears in black): (left) The dual representation of the vertex mesh with valence 3; (right) The extended graph where each face is connected to its 1-ring neighborhood resulting in a much denser representation.

Figure 5 . 5 :

 55 Figure 5.5: Example of a graph coarsening. The input graph (left) is shown with every node (facet) colored according to the input normal orientation. Subsequent images show the graph at coarser levels. For illustration purposes, normals and positions are here propagated to coarser levels with average pooling. In reality, these quantities are not retained beyond the first layer of the network, and thus, they are not defined for coarser levels of the graph.

Figure 5 . 6 :

 56 Figure 5.6: Illustration of the two-steps framework. Left: noisy mesh colored according to normal orientations. Middle: noisy meshes colored with estimated normals. Right: final mesh after vertex updating. The effect of vertex updating is apparent along sharp edges.

Figure 5 . 8 :

 58 Figure 5.8: Close-ups of meshes from the Kinect v1 (left) and Kinect v2 (right) datasets[START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] showing holes and disjoint parts, as common in both datasets.

Figure 5 . 9 :

 59 Figure 5.9: Examples from the Kinect Fusion dataset. Top: From left to right: noisy mesh with: (a) noisy input normals, (b) ground truth normals, (c) estimated normals. Far right (d): denoised mesh after the vertex updating step. Bottom: close-up view.

Figure 5 . 10 :

 510 Figure 5.10: Average angular errors in degrees, on the Kinect v1 and Kinect v2 datasets of [139], per scanned model. CNR. NormalF-Net. Ours (raw estimated normals). Ours (refined normals).NLLR.

Figure 5 . 11 :

 511 Figure 5.11: Average angular errors in degrees, on the Kinect Fusion dataset of [139], per scanned model. CNR. NormalF-Net. Ours (raw estimated normals). Ours (refined normals).NLLR.

Figure 5 . 12 :

 512 Figure 5.12: An example from the Kinect v2 dataset of [139]. NF-Net stands for NormalF-Net

Figure 5 . 13 :

 513 Figure 5.13: Extension (Sec. 5.5.4 evaluation: Comparison of the average error on the synthetic dataset of [139]. Blue: Network trained with our standard approach. Red: Network trained with a loss on vertex positions. (a): Average distance of each vertex of the denoised mesh to the closest vertex of the ground-truth, normalized by the diagonal length of the mesh. (b): Average angular error on facet normals.

 (a) Ground Truth (b) loss on normals (c) loss on vertices

Figure 5 . 14 :

 514 Figure 5.14: Extension evaluation: Close-ups of the "chinese lion" mesh from the synthetic dataset of [139]. (b): Network trained with our standard approach. (c): Network trained with a loss on vertex positions.

Figure 5 . 15 :

 515 Figure 5.15: Qualitative results from Wang et al. synthetic database, with the highest noise level. The last row shows close-up views of the chinese lion model. Note how sharp and complex features are handled by the different methods.

Figure 5 . 16 :

 516 Figure 5.16: Results on synthetic data from Yadav et al. [149]. Top: whole mesh. Bottom: close-up view of the forehead with grazing light.

Figure 5 . 17 :

 517 Figure 5.17: Results on real scanned data from Zhang et al. [162]. Second row: close-up view

Figure 5 .

 5 Figure5.18: Qualitative results on a mesh captured from a real scene, using the multiview Kinovis platform[START_REF]Kinovis inria platform[END_REF] and a MVS approach[START_REF] Leroy | Shape reconstruction using volume sweeping and learned photoconsistency[END_REF]. Our network trained on synthetic data tends to better preserve sharp or large scale features than a traditional HC laplacian smoothing (HCL) or than CNR[START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF] trained on the same data. This can be seen for instance on the person's facial features or fingers or on the folds in the shirt. Best viewed digitally.

Figure 6 . 1 :

 61 Figure 6.1: Preliminary experiment: close-up renderings of a mesh textured from lowresolution input views. Preprocessing input views with a SISR method clearly improves the final result.

Figure 6 . 2 :

 62 Figure 6.2: Overview of our model. A reference view (top branch) and several additional views (bottom) go through a feature extractor network. Features from additional views are projected onto the reference (HR) viewpoint, and concatenated to the reference features. Each pair of features goes through a second block. Then, they are pooled together before going through the coloring block that outputs the enhanced reference image.

Figure 6 . 3 :

 63 Figure 6.3: Detailed architecture of our network blocks. Each subnetwork follows the same design, inspired by [104].

Figure 6 . 4 :

 64 Figure 6.4: Detailed architecture of our alternate network design, trained with no reference image and with an attention pooling mechanism.

Figure 6 . 5 :

 65 Figure 6.5: Overview of our synthetic database. One random view taken from each model in the training set.

 [START_REF] Goodfellow | Generative adversarial nets[END_REF]: both networks are optimized to solve the min-max problem: min G max D E I HR ∼p(I HR) logD(I HR) + (6.9) E I LR ∼p(I LR) log 1 -D(G(I LR)) (6.10) where p(I LR) and p(I HR) are the distributions over low-res and high-res images in the training dataset.

6. 4 . 1

 41 Experiments in Image Space 6.4.1.1 Evaluation on Synthetic Data (Rocketbox)

Figure 6 . 6 :

 66 Figure 6.6: Visual comparison of input views super-resolution. Close-ups of near view (top) and far view (bottom). From left to right: bicubic interpolation, ESRGAN, Ours, Ground Truth. Best viewed digitally

Figure 6 .

 6 [START_REF] Openxr | [END_REF] shows examples of reconstructed geometry for scenes of the DTU dataset.

Figure 6 . 7 :

 67 Figure 6.7: Examples of geometry used for the DTU dataset. Best-viewed digitally

Figure 6 . 8 :

 68 Figure 6.8: Visual comparison of input views super-resolution for the DTU Robot Image dataset. Best viewed digitally

Figure 6 . 9 :

 69 Figure 6.9: Comparison of texture computation on the synthetic rocketbox dataset: closeup on the texture map. (The ground truth has a different tint, since it is not lit).

 (a) Our standard network + baseline (b) Adversarial Texture (c) G2LTex

Figure 6 . 10 :

 610 Figure 6.10: Result on the chair00 model of[START_REF] Huang | Adversarial Texture Optimization from RGB-D Scans[END_REF]

Table 5 .

 5 2: Running time of our method (in seconds) on some test meshes of the synthetic dataset of[START_REF] Wang | Mesh denoising via cascaded normal regression[END_REF]. Results for competitors are taken from[START_REF] Li | NormalF-Net: Normal filtering neural network for feature-preserving mesh denoising[END_REF] and obtained with a PC that presents slightly different specifications, though minor enough to legitimate orders of magnitude comparisons.

	CNR [139]	Ours

Table 6 .

 6 1: Numerical evaluation for the test mesh shown in figure6.1. For LPIPS, lower is better. For PSNR and SSIM, higher is better. More detail on metrics and data in section 6.4. No score is available for G2LTex, because their reconstructed texture is incomplete on this test mesh.

	Method	LPIPS ↓	PSNR ↑	MS-SSIM ↑
	Baseline	0.374044	21.907549	0.708133
	Adversarial Texture	0.291429	20.845589	0.601636
	Baseline with enhanced input (ESRGAN)	0.207251 21.958614 0.739491

Table 6 .

 6 2: Super-resolution of LR input images from 3 test models of our synthetic Rocketbox[START_REF] Gonzalez-Franco | The Rocketbox library and the utility of freely available rigged avatars for procedural animation of virtual humans and embodiment 1[END_REF] dataset. ESRGAN and bicubic interpolation are performed on a single image at a time. Our method takes additional views as extra information.

	Scene name			
	Method	LPIPS ↓	PSNR ↑	MS-SSIM ↑
	Military Male 02			
	ESRGAN	0.183220	23.255578	0.604699
	Bicubic	0.531695	24.222730	0.648829
	Ours	0.128578 25.251882 0.742702
	Ours (w/o multiview)	0.225329	22.561980	0.563544
	Construction Male 06			
	ESRGAN	0.096481	30.527972	0.814589
	Bicubic	0.276388 30.632868 0.859407
	Ours	0.092093 29.744887	0.831880
	Ours (w/o multiview)	0.116693	30.419075	0.813538
	Male Adult 11			
	ESRGAN	0.176212	28.244629	0.735621
	Bicubic	0.420708	28.249910	0.779908
	Ours	0.144668 28.377255 0.784507
	Ours (w/o multiview)	0.187860	27.341230	0.712547

Table 6 .

 6 3: Numerical results for both views shown in figure6.6 (for the whole images). The top view is the most informative frontal view in the set. The bottom view is one of the most zoomed-out ones.

	Method	LPIPS ↓	PSNR ↑	MS-SSIM ↑
	Good frontal view			
	ESRGAN	0.218817	26.274676	0.682546
	Bicubic	0.452337 27.577754 0.748819
	Ours	0.203793 26.466886	0.709524
	Ours (w/o multiview) 0.276785	25.336547	0.630074
	far-away view			
	ESRGAN	0.185088	21.613356	0.574094
	Bicubic	0.545161	22.344267	0.598293
	Ours	0.121298 23.932714 0.764476
	Ours (w/o multiview) 0.218553	21.505627	0.566696
	which shows our network is able to leverage sub-pixel information. Numerical results are
	shown in table 6.3.			

Table 6 .

 6 5: Results for texture generation, for the Military Male 02 test mesh. The textured meshes are rendered against all input viewpoints, and metrics are averaged on all viewpoints.

	Method	LPIPS	PSNR	MS-SSIM
	stand-alone method			
	Baseline	0.324513	22.530563	0.764117
	Adversarial Texture	0.260320	21.248175	0.641666
	Ours (w/o ref image)	0.186079 21.430084	0.725066
	Post-processing			
	Ours	0.318124	22.389270	0.762271
	Pre-processing			
	Ours + baseline	0.210453 22.711843 0.812472

A texel is a pixel in texture space

By up-convolutions, we mean upsampling operation, followed by a convolution that halves the number of channels ([START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF]).

(a) Kinect v1 (b) Kinect v2

Remerciements

List of Tables