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0Introduction

Motivations

Monitoring of railway infrastructures relies on the control of quality
and lifespan of equipments. Many devices interact continuously to
guaranty the passenger service. The train is travelling on the track,
which rests on a specifically adapted ground. Train is also in contact
with an electrical alimentation, provided by the catenary. Control
and signalization devices are distributed on the rail network to control
trains and manage circulation. This phenomenal web of objects made
of wood, iron, copper, concrete,... requires a proper maintenance to
prevent disturbances of the traffic.

From the previous infrastructures, rails deserve a focused atten-
tion. Any damage on rail could evolve into rail break, with dramatic
consequences. External environment, train traffic or manufacturing
deficiencies are sources of degradation of the rail track. Mechanical
stress has a major influence on the development of rail defects. Struc-
tural Health Monitoring (SHM) has therefore to perform assessment of
the rail health to record, characterize and follow defects through time.
A proper knowledge of both the lifespan of material and changes of
defects allows an efficient management of the maintenance operations,
and a reduction of risk associated to traffic interruption.

Recent years have seen the development of specific train cars equipped
with numerous sensors for inspection of rails [DKT16]. Railways in-
frastructure operations require a reduction of time dedicated to main-
tenance, and optimization of processes. Measurement trains or trolleys
present an interesting perspective for fast assessment of rails, provided
that the quality of inspection is preserved. However, suitable inter-
action of an external track with costly measurement instruments is
hardly achieved. To address this major concern, a new methodology
for non-contact inspection of rail has been designed by RAILENIUM
[Nda16]. Ultrasonic sensors with piezoelectric transducers is a well
known technique for rail inspection, which has demonstrated its capa-
bility to perform reliable and efficient inspection of the rail [PRD08],
but it requires a direct contact with the rail surface. Electro-Magnetic
Acoustic Transducers (EMAT) sensors are used to generate a surface
wave, called a Rayleigh wave, on the rail. This wave can interact with
possible defects. Measurement issues are yet still observable. Rail con-
dition and external environment bring disturbances which deteriorate
the inspection quality, interfering with detection of defects. A further
step is thus necessary to interpret signals coming from sensors, extract
information of interest and estimate the level of rail damage. A delib-
erately choice have been made in the following work: to operate in the
field of statistical signal processing.
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The thesis aims at proposing a methodology for sequential process-
ing of vibratory signals. Notably, our work is based on the joint use of
sparse decomposition techniques, whose purpose is to extract features
from the signal, and sequential filtering techniques, which estimate
hidden information from evolution of measurements across time. The
full process is summarized in figure 1. An ultrasonic measurement vec-
tor zk obtained at a step k is introduced in the decomposition process,
to produce a set of characteristics Zk. This set is then managed by a
sequential filter, which performs association with data from previous
measurements (for example zk−1). The produced estimation set of hid-
den characteristics X̂k serves as a new basis for evaluation of the rail
condition. An integration of the evolution of ultrasonic signals over
time is an innovative approach in the Non-Destructive Testing (NDT)
domain.

Sparse Sequential

Decomposition

zk

Zk

Rail Health
Evaluation

X̂k

Filter

Figure 1: Proposed method-
ology for rail inspection with
EMAT sensors.

Analysis tools from the literature do not express the variability of
accessible events inside a signal. The decomposition method allows
an expression of one signal as a sum of Gabor functions, which of-
fers an efficient representation of ultrasonic measurements [DS01b].
A set of vectors is obtained from this process. Our analysis of rails
are conducted with this specific representation. An important key
for inclusion of changes of representations with time are the Random
Finite Sets (RFS). They allow to model evolution of sets of objects
from accumulation of imprecise measurements. The Finite Set Statis-
tics (FISST) theory developed by Mahler constructed the basis for
Bayesian multi-object filters, which express the uncertainty of estima-
tions with probability density functions. The Probability Hypothesis
Densitity (PHD) filter [Mah03] proposes a practical approximation of
the multi-object posterior to propagate information about sets across
time. The delta Generalized Labelled Multi-Bernoulli (δ-GLMB) fil-
ter [VV13] is the first Bayesian multi-target tracker, which allows a
direct association between estimated states. The present thesis pro-
poses to include this powerful estimation algorithms in the processing
of ultrasonic signals.

However, transition from existing research and applications of the
RFS filters and trackers is not straightforward. Our original approach
is strongly different from available examples of multi-object tracking.
Consequently, the model has to be constructed, and all its related
parameters defined. For our specific application on EMAT measure-
ments, we propose a new methodology to estimate the parameters of
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both the state space model and the δ-GLMB filter. The originality
is to combine the filtering process with a probabilistic optimization
procedure, which automates the search of parameters. Our complete
methodology, from acquisitions to estimations of features with time
associations, has been first tested on laboratory to confirm the pro-
posed framework. Field experimentations on active rail tracks have
then been conducted to assess the rail health, attesting the validity of
the presented methodology.

Organization of the thesis

This thesis is organized as follows:
Chapter 1 presents the specificities or rail damages studied in this

thesis. Surface defects which occur at the top of the rail are described,
as well as the technologies of the NDT literature employed to detect
them. The EMAT technology, with its advantages and drawbacks is
outlined. The laboratory devices and rails are next characterized to
provide reference measurements for development of our techniques.

Chapter 2 introduces the main theoretical aspects to perform anal-
yses of vibratory and ultrasonic signals. Time, frequency and time-
frequency techniques are used to extract relevant information to assess
the quality of signals, and compare them. In some cases, a physical in-
terpretation can be made. Application of EMAT signals highlights the
potential benefit of these analyses techniques, and difficulties induced
by data association, notably with introduction of filtering techniques,
based on state space representations.

Chapter 3 investigates the deeper structure of the previous tools,
and presents our main inspection methodology to process ultrasonic
signals. Advanced filtering techniques with probabilistic formulation
allow to design the dynamic evolution of acquisitions, and estimation of
physical information related to them. Specific models are introduced,
and tested to assess the performances of our processes. Simulations
are investigated, to measure the accuracy of our methods, and esti-
mate the related uncertainties. This chapter presents the results of
dynamic inspections on the rail tracks of Eurotunnel. Evaluation of
performances with moving devices is taken into account. Real defects,
coming form damaged rails due to current exploitation of the railways,
are processed.

Final chapter 4 investigates a side domain, to generalize the previous
presented methodologies. Purpose is to access a higher understanding
of vibratory processes, based on non-linear experiments conducted on a
resonant-column, a tool for dynamic characterization of soils. A modi-
fied version of the single degree of freedom is examined, with a transfer
to a state space approach. Non-linearities are caused by variations of
the soil characteristics, that we are trying to estimate with filters.
Probabilistic methods to take into account the uncertainty related to



24

parameters of the models are proposed. Results could be useful for
more fundamental works about the propagation of perturbations on
mediums.

Lastly, a general conclusion is made about the presented work, with
investigations of future researches and related topics.

Simulations and results presented in this thesis were conducted
through a collaboration partnership between Eurotunnel, RAILENIUM,
Centrale Lille and the department of Civil and Environmental Engi-
neering at the University of Waterloo (ON, Canada).
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1.1 Introduction

Purpose of this chapter is to introduce the environment of Non-Destructive
Testing (NDT) applied on railways infrastructures. It takes an impor-
tant place in the domain of Structural Health Monitoring (SHM), as an
active device to control and manage the full infrastructure. A proper
knowledge of degradation of materials with time is mandatory, to ex-
tend the lifespan of materials, and improve service quality. The thesis
concentrated on measurements related to rail, and a deep understand-
ing of damages affecting this essential component of the railway struc-
ture is the basis for efficient inspection and health evaluation. Section
1.2 presents the rail structure, its constituent parts, and related sur-
face defects analysed in this thesis. A brief overview introduces the
main existing rail inspection methods. Section 1.3 defines the kind
of measurements processed with our methodologies, their specificities,
and how they are obtained, with focus on Electro-Magnetic Acoustic
Transducers (EMAT), the core non-contact inspection technique devel-
oped by RAILENIUM. In section 1.4, the two laboratory rail samples,
which serve as baselines, are described. Last section 1.5 underlines
the main difficulties faced for analyses of signals coming from ground
acquisitions.

1.2 Rail defects

1.2.1 Descriptive perspective of rails

Rails are the iron structures which support and lead the train wheels.
With ageing, repetition of solicitations over years, loads or occasional
shocks, the medium structure can be damaged. Propagation of cracks,
if not detected and corrected, can finally cause rail break or pieces
detachment. Rail accidents are the major events to be prevented. But
even a full rail replacement is costly and time-consuming: it induces
traffic delay, displacement and installation of rails, with solicitation of
workforces. Early detection is therefore a major interest of today’s rail
inspection to expend rail lifespans, and optimize the global monitoring
of the railway infrastructure management process.

Majority of French railway infrastructures use UIC 60 rails [69].
Their morphology is represented in figure 1.1.

For purpose of clarity, an orthogonal spatial system (O−→x−→y −→z ) will
be used for all representations of rails. The longitudinal axis, noted
(O−→x ), follows the natural rail orientation. Transversal axis (O−→y ) and
height axis (O−→z ) are also represented in figure 1.1.
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Foot
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Gauge Corner

Web

(O−→y )

(O−→z )

(O−→x )
(O−→y )

(O−→z )

(O−→x )

Figure 1.1: Cross sectional view
of UIC 60 rail.The rail foot is fixed to railroad ties (or railway sleepers), which

land on the surface, generally made of ballast in external environ-
ments. Even if wood is the traditional material for railroad ties, con-
crete blocks are available for covered areas, such as tunnels. Detection
of defects inside the foot is a hard part for current technologies, and
still an open problem. For the web part of the rail, a weak area is
around the holes, which allow a linking between rails. Strains can in-
duce cracks starting at hole’s border, propagating into the web. Head
of the rail receives the train wheels. Contact area between the surfaces
of rail and wheels is situated between the head centre and the gauge
corner, and depends on many physical parameters: height differences
between rails, curvature of the tracks, shape of the wheels, distance
between rails and wear intensity.

1.2.2 Surface rail defects

A distinction is made between internal and surface defects, although
a cracks initiated at the surface can penetrate the rail and create se-
vere internal damages. A wide range of surface defects can appear
on the head of the rail [02]. Their origins are not clearly identified.
They arise in the area of the contact between the wheel of the train
and the head of the rail. Rolling contact fatigue (RCF) defects are
a general class of defects due to the development of excessive shear
stress at the contact interface. All the following defects, to be stud-
ied in this thesis, belong to this class. Shelling or wheel burn appear
during the fast increase of temperature due to a fast slipping of the
wheel. On the contrary, head-checks and squats develop gradually over
months or years: micro-cracks, which initiate at the surface of the rail,
grow down and propagate below the surface, and can cause rail breaks.
Squats visually look like dark stains at the surface of the rail. Studies
have been conducted to understand how they appear, and what are
their mechanic characteristics. They are related to the apparition of
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a white etching layer, a very hard part due to an adiabatic transfor-
mation of the steel, at low temperature and high strain levels, caused
by the repetition of micro-slips of the wheel [KWM08]. A common
solution to defect development in rail is the surface grinding [PRD08].
Small defects are not dangerous by themselves, but their propagation
inside the rail head can induce severe cracks. The objective is then
to remove a thin layer of rail to eliminate these small defects before
their development. This method could also shorten the size of medium
cracks, but this will only slow their propagation with time. However,
this operation is not neutral for the rail: it will produce some grinding
marks, not to be confused with head-checks. Visual differences can be
observed on figure 1.2, with localization of grinding mark at the gauge
corner, but close to area of head-checking.

Head-checks

Grinding marks

Figure 1.2: Rail sample with
both grinding marks (green-left)
and head-checks (red-right).

1.2.3 Inspection techniques

Before the cracks propagate in the rail, it is therefore necessary to iden-
tify micro-cracks at an early stage, to be able to perform maintenance
actions, like grinding of the surface, to remove these cracks.

To perform detection of these defects, a wide range of measurements
techniques has been proposed in research. The two main techniques
are described as:

• Ultrasonic (US) inspection with piezoelectric sensors. It is the most
common technique in NDT. The transducer, in contact with the
rail, emits a pulse, which propagates in it. A defect will reflect this
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pulse, and this reflection will be detected by receiver transducers (or
the emitter itself if it works in emitter-receiver mode). The beam
orientation in the rail is calculated with the Snell-Descartes law,
to reach the values of 0◦, 37◦, 45◦ or 70◦ and detect cracks with
various orientations. However, US inspection is unable to detect
spot surface defects, and need a perfect contact with the surface to
be analysed, most of the time using a couplant. For rail application,
it has shown good performances for rail head and web inspection,
but poor performances for RCF defects with size ≤ 4mm [PRD08].
The physical reachable limit is estimated around 60 km/h [SNV17]
for mobile inspection. The detectability is reduced when velocity
increases.

• Eddy-current (EC) sensors are a non-contact inspection technique.
An alternative current (AC) powered coil generates a primary mag-
netic field, which, by interaction with a ferromagnetic material, in-
duces an Eddy current in it. The circulation of this induced Eddy
current in the material will equally induce a secondary magnetic
field, which can be measured by a sensor [PRD08]. Any change in
the magnetic properties of the material can alter the secondary field,
and therefore modify the measurement [DKT16]. Such changes
of properties include modification of hardness, cracks or shelling.
The sensor detection relies mostly on impedance changes. Ampli-
tude and phase are extracted from the measured complex signal.
The intensity of phase changes have been correlated with the crack
depths. However, this inspection technique suffers from a serious
drawback. The AC current tends to concentrate at the material
surface, limiting the possible inspection depth. This effect is known
as the skin effect. Current density becomes closer to the surface for
higher frequencies. The physical quantity which summarizes this
phenomenon is the penetration depth δ, calculated as [Son+11]:

δ =

√
1

πfµσ
(1.2.1)

with σ and µ the material conductivity and permeability, and f the
current frequency. Inside the material, current density is maximal
at depth 0, and exponentially decays with depth. It is reduced, at
depth δ, to 1/e ≈ 0.37 its value at depth 0, (and 0.05 at depth 3δ).
See [GGV11] for details. Higher frequencies produce a concentra-
tion near the surface, and lower frequencies explore more volume of
the material. Moreover, EC testing is extremely dependent on the Environment of measurement impacts

hugely the performances of EC meth-
ods. In wire and tubes inspec-
tion, probes are static (encircling coil
probes), the inspected piece can be
moved with high precision: as a re-
sults, speed up to 150m/s are reached.
We can clearly see the difference with
rail inspection, where lift-off (distance
between coil or sensor and the in-
spected surface) cannot always be con-
stant, and mechanical disturbances
occur.

distance between the sensors and the medium surface, called the
lift-off, the material magnetic permittivity and conductivity. Dur-
ing inspection, even complex mechanisms could not prevent lift-off
changes, due to the track geometry. Skin effect brings huge limi-
tations, reducing the material inspected depth. Lower frequencies
would be necessary to inspect deeper the material, producing less
clear signal and higher sensitivity to disturbances. Lastly, as noted
in [Raj+18], even for shallow cracks, EC testing tends to overes-
timate the depth of the cracks, and the estimation of size is not
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reliable.

Limitations of US and EC inspection, especially for surface defect
inspections, has conducted to development of new sensors dedicated
to low depths inspection.

1.3 Ultrasonic signals

1.3.1 Pressure, Shear and Rayleigh waves

In the case of NDT analysis, the 3 principal types of waves which
propagate in mediums are the pressure waves (P-waves), the shear
waves (S-waves) and the Rayleigh waves. The first kind, P-wave, is also
known as the compression wave. Indeed, in this case, the direction of
displacement of particles in the medium is the same as the direction of
the propagation of the wave. This wave is the fastest of the three kinds,
and is thus the first recorded by the measurement devices. For the S-
waves, the direction of displacement of the particles is orthogonal to the
direction of propagation of the wave. The last type, the Rayleigh wave,
is also known as the surface wave. It is the slowest wave compared A second type of surface wave is the

Love wave, which produce, on the sur-
face plane, displacements orthogonal
to the direction of propagation.

with the two previous described. Its specificity is that the particles
move in a cyclic motion. The intensity of this move is reduced with
depth. This is the reason why this wave propagates at the surface of
mediums. Figure 1.3 shows a graphical representation of waves with
the related vibrations of mediums. For pressure, shear and Rayleigh
waves, their respective wavelengths are noted λP , λS and λR.

λP λS λR

Figure 1.3: Wave propagation of
Pressure (left), Shear (middle)
and Rayleigh (right) waves on a
medium.

The device used in this thesis, EMAT, has the particularity of gen-
erating Rayleigh waves. This is of great interest in the research of sur-
face defects: Rayleigh waves will indeed directly interact with cracks
and singularities. In a homogeneous medium, Rayleigh waves do not
disperse.

1.3.2 Electro-Magnetic Acoustic Transducers

EMAT are a technique to generate ultrasonic waves in a ferromagnetic
material, with magnetic devices. A coil induces current in the ma-
terial, that interacts with a permanent magnet to produce a Lorentz
force. This disturbance is transferred to the structure of the mate-
rial, producing a wave that propagates in the material [IHF16]. Since
the wave is directly generated in the material, this technique allows
contact-less control of rail: contrary to ultrasonic piezoelectric trans-
ducers, no couplant is necessary. Furthermore, this technique can This is the reason why EMAT are also

called a air-coupled inspection tech-
nique.
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be used to generate waves that will only propagate at the surface of
medium: Rayleigh waves. Nevertheless, this technology has one huge
drawback: the amplitude of the signal we get from the receiver is
highly dependent on the distance between the surface tested and the
transducer (also called the lift-off). This techniques has already been
tried with rail application, and showed good results [Nda16].

S

N

−→
j

−→
B

−→
F

(O−→x )

(O−→z )

Figure 1.4: Electro-Magnetic
Acoustic Transducer with single
wire for force generation in a fer-
romagnetic medium.

Figure 1.4 represents the simplest configuration with one magnet
creating an external magnetic field

−→
B and a wire inducing a current−→

j inside the material. The interaction creates a Lorentz force
−→
F , with

vectorial expression defined as: The notation a× b denotes the vector
cross product between vectors a and b.−→

F =
−→
j ×−→B (1.3.1)

S

N

−→
B

(O−→x )

(O−→z )

Figure 1.5: Electro-Magnetic
Acoustic Transducer with mean-
der coil for wave generation in a
ferromagnetic medium.

To generate sinusoidal perturbations, a more complex configura-
tion, using a meander coil, is described in figure 1.5. In this situation,
a sequence of opposite forces are created. Depending on the coil, ul-
trasonic waves can be generated in the two directions (according to
axis (O−→x )).

Since a Rayleigh wave is generated, defects on the propagation path
will disturb the wave. The major interest of EMAT is the focus made
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only on surface defects. Phenomena including absorption of the wave
energy by the defects, reflections or modification of the frequency con-
tent of the pulse, provide information about the location of damages
and their characteristics [Nda16].

In this thesis, the same configuration of the EMAT inspection de-
vice is kept. Sensors generate Rayleigh waves with frequency fixed at
586 kHz and wavelength of 5.08mm in steel. Ultrasonic pulses are
generated with impulse input signals sent by a generator. Sampling
frequency fe is set to 25MHz (sampling interval of 0.04µs). Ampli-
tude of signals are arbitrary units, and this variable will therefore be
expressed in u.a. in the thesis.

1.3.3 Sensor characterization

Comparisons of ultrasonic sensors highlight many practical differences
between piezoelectric and EMAT devices. Notably, the non-contact
measurement aspect change perceptions and analyses of signals. A
proper knowledge of the behaviours of sensors is critical to adapt de-
tection tools to these specific signals.

Main physical parameters of sensors are described as:

• Lift-off issues: with an important sensitivity to variations of the
distance between the sensor coil and the inspected medium surface;

• Orientation of the EMAT sensors, in particular the relative angle
formed by the direction of emitter and receiver;

• Attenuation during wave propagation in the medium.

To characterize the sensors used in this thesis, laboratory experi-
ments are conducted on a clean rail surface. Signals are averaged over
at least 50 acquisitions.

Lift-off variations have a large influence on the maximum intensity
of the measured signal. This phenomenon is well-known in the litera-
ture: linear variation of the lift-off causes exponential decrease of the
signal intensity [Hua+09]. Therefore, detachment of an EMAT sensor
from its nominal position will not cause a lack of measure, as in ultra-
sonic testing with piezoelectric sensors with wedges, but will induce
a variation of the pulse’s amplitude. Defect detection with EMAT
must not rely only on amplitude changes if the lift-off is not assumed
constant.

Figure 1.6 illustrates the variation of amplitude with lift-off, on a
clean rail portion, with steps of 0.375mm. Exponential fitting confirms
the decay rate.

Angle variations between emitter and receiver has also been demon-
strated as a relevant parameter. Figure 1.7 underlines the short ad-
missible interval of angles to keep enough high amplitude signal. The
directivity diagram indicates the need to maintain admissible varia-
tions of the angle of ±10◦ angles to keep a maximum attenuation of
20 percent of the original signal.
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Figure 1.6: Variations of ampli-
tude with change of lift-off.

Figure 1.7: Directivity diagram:
variations of the signal ampli-
tude as a function of the angle
between the receiver and the lon-
gitudinal axis: emitter and re-
ceiver are parallel at 90◦, and
orthogonal at 0◦ (attenuation in
dB).

Figure 1.8: Relative variations
of amplitude with change of dis-
tance between emitter and re-
ceiver (percent of change from
the maximum amplitude).
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The last measurement parameter, distance between the two trans-
ducers, has less importance than the previous ones. Attenuation is
found to be linear, or at least exponential with slow decrease rate.
Figure 1.8 highlights however local variations of the trend.

1.3.4 Dynamic acquisition devices for ultrasonic inspection

This section introduces a technology developed by RAILENIUM, to
perform online inspection of a rail with EMAT sensors. The sensors
are mounted on a structure which can move on the rail, allowing a
dynamic inspection. Major goal is to achieve high speed inspection
velocities.

Emitter

Coil

Magnet

Generation area

Rail head

E

R

Propagation direction

Coil direction

(O−→y )

(O−→z )

(O−→x )

Figure 1.9: Electro-Magnetic
Acoustic Transducer device for
dynamic non-contact inspection
on rails.

Direction of the coils, or equivalently direction of each wire which
compose it, directs the direction of the current induced in the rail, and
therefore the direction of propagation of the Rayleigh wave. Directions
of the two coils (for emitter and receiver), are parallel to maximize the
generation and reception efficiencies. In addition, since the meander
coil induces several currents in the rail surface, the area of genera-
tion of the wave is of the same length order. This imply first that
the generation precision is low, in comparison with classical ultrasonic
sensors. Next, perturbation inside the medium is not unidirectional:
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two ultrasonic pulses can be generated on the medium, propagating in
opposite senses. Depending on the shape of the rail, proper reception
of the signal can be disturbed.

The main inspection disposition was originally designed to propa-
gate the wave in the longitudinal direction of the rail. A laboratory
configuration is shown in figure 1.10.

Figure 1.10: RAILENIUM labo-
ratory configuration for dynamic
inspection of rails.

The rate of acquisitions performed by the sensor is measured by the
Pulse Repetition Frequency (PRF), which controls the number of pulses
generated by the emitter. One pulse will produce one measurement
signal. Range of the used PRF is between 1 and 100 (units are in
acquisitions per second, but will be omitted).

1.3.5 Ultrasonic signal representation

A A-scan is the representation of an acquisition at a specific location
of a medium. It traduces the reception of ultrasonic pulses by the
receiver sensor [MPP03]. The y-axis measures the displacement of the
medium induced by the pulse. Propagation of the pulse is represented
by the variation on this axis with displacement on the x-axis, generally
the time axis. The A-scan is mostly found with varia-

tion of the medium displacement with
time, but it can also have an x-axis
related to a different displacement in
space.

Signals obtained from EMAT sensors allow a A-scan representation
with measurement of amplitude with time. Figure 1.11 shows a typical
example of recorded signal. One specificity of EMAT signals are the
presence, at the beginning of the A-scan, of a high amplitude event,
called the electrical signal. This part is indeed related to the generation
of the ultrasonic pulse inside the medium. The external magnetic field
and the coil of the emitter interact with the receiver, producing a
record. However, there is no useful information in this part, and the
signal is usually translated, to have origin after a total attenuation of
the electrical signal. To prevent a confusion between this content and
further reception of pulses propagating in the medium, attention must
be paid during the configuration of sensors, to maintain a minimum
distance between emitters and receivers.

A sequence of acquisitions made at different positions forms a set of
A-scans called a B-scan. A heat-map, or a 2D plot of this set allows
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Figure 1.11: Complete A-scan
representation of an EMAT sig-
nal.

visual detection of changes on A-scans, and diagnostic of the medium
areas related to them.

Figure 1.12: Three A-scan for
different locations of sensors of
the rail: red colour related to low
amplitudes, and blue colour to
high amplitudes.

Figure 1.13: 3D envelope repre-
sentation of signals recorded on
a rail, with 1 acquisition per cm.

NDT analysis includes two principal steps: detection and charac-
terization of defects. The last step is generally related to a classi-
fication on the type of the defects, localization, or an estimation of
its geometry (size, depth, severity, orientation). Numerous methods of
Signal Processing have been tried, such as frequency analysis [Jia+07],
multi-scale analysis [Kub+11]. Use of Gabor wavelets analysis meth-
ods showed good results for study of guided waves in steel pipes and
plates [XGY09]. Detection and characterization widely use, now, ma-
chine learning techniques, for their ability to generate models from
data coming from experiments or simulations: Linear Discriminant
Analysis [Qiu+14] or Support Vector Machines for detection [Ben04;
STF17], and Artificial Neural Networks for estimation of crack depths
[Gar+18]. Civil Engineering fields still use empirical methodologies to
assess the presence of defects, using several characteristics of signals.
The goal is to define a damage index : a score, generally between 0 and
1, which indicates the severity of damages.

1.4 Simulation of defects

Laboratory experiments are conducted on two rail samples, with ma-
chined defects aiming at reproducing squats and head-checks, depend-
ing on their orientation, depth and inclination. Real defects are indeed
rare, and sometimes far form each other. To provide a compact length
of material to be analysed in laboratory, with known defects charac-
teristics, controlled mechanical damages are an efficient way to test
sensors and detection methods.
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Defect 1

Defect 2

Defect 4

Defect 3

Reflection on
rail border

Reflection on
defect 1

Reflection on
defect 3

Figure 1.14: B-scan representa-
tion of EMAT signals on the 1m

rail, with one measurement per
cm. Green arrows target areas of
attenuations because of defects.
Pink arrows target reflections on
defects. Yellow arrows target re-
flections on rail borders

The first sample, with total length of 1.03m, contains damages with
thickness of 1.5mm. First one represents a squat, with direction in the
transversal axis of the rail (O−→y ). The three other defects, simulating
head-checks, have inclinations with respect to the transverse and lon-
gitudinal axes. The complete characteristics are gathered in table 1.1.
For a displacement of the EMAT sensors on the longitudinal axis of
the rail, the best performances of detection are expected for the first
defect, and the worst for the last one with higher inclinations. This
sample will be related as the machined rail, or the 1m rail (for sim-
plifications).

Machined defect

Defect 1 Defect 2 Defect 3 Defect 4

Depth (mm) 4 8 7 4.1
Thickness (mm) 1.5 1.5 1.5 1.5
Angle on (O−→x−→y ) 0◦ 45◦ 45◦ 70◦

Angle on (O−→x−→z ) 0◦ 0◦ 45◦ 70◦

Table 1.1: Characteristics of ma-
chined defects on the 1m rail

Figure 1.14 represents the full B-scan gathering all acquisitions. In
areas of defects (when a defect is between the emitter and the receiver),
the signal is clearly attenuated. In addition, the B-scan reveals phe-
nomena of reflections on rail borders and defects, producing diagonal
lines. Figure 1.15 gathers the rail top and side cross views.

The second sample (figure 1.16), with length of 70 cm, has thinner
defects, produced with an electro-erosion device. Such damages are
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45◦45◦

(O−→x )

(O−→y )

70◦

(O−→x )

(O−→z )

70◦
45◦

7mm 4.1mm4mm 8mm

310mm 150mm 150mm 150mm

Figure 1.15: Top view and cross
longitudinal views of the 1m rail
with machined defects.

closer to realistic situations. Four defects have been machined, with
characteristics gathered in table 1.2. A schematic representation of
defects is available on figure 1.17. This sample will be related as the
electro-erosion rail.

Figure 1.16: The 70 cm rail with
electro-erosion defects.

Online inspection requires a cheap evaluation of the rail health based
on a current measurement. Previous automatic detection schemes,
using thresholds or machine learning algorithms, proceed independent
analyses of acquisitions. These processes are thus memoryless. On the
contrary, visual inspection of signals, notably with B-scans, allows a
human operator to detect several changes on acquisitions. Therefore,
implicit links between measurements could bring further information
for decision of the inspected rail portion.
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Electro-erosion defect

Defect 1 Defect 2 Defect 3 Defect 4

Depth (mm) 3 3 6 6
Thickness (mm) 0.4 0.4 0.4 0.4
Angle on (O−→x−→y ) 0◦ 20◦ 20◦ 0◦

Angle on (O−→x−→z ) 0◦ 0◦ 0◦ 0◦

Table 1.2: Characteristics of
electro-erosion defects on a
70 cm rail

20◦20◦

(O−→x )

(O−→y )

128mm 150mm 148mm 153mm

Figure 1.17: Top view of the
70 cm rail with electro-erosion
defects.

1.5 Practical considerations

Conducting inspection in external environments induces perturbations
of the measurements. The surface condition of the rail is easily de-
graded by, for instance, dirt, exposition to weather events, chemical
reactions or shape of the track. It is therefore necessary to include
these aspects in both the measurement and analysis processes. Some
important issues, such as variations of the lift-off or lateral displace-
ments, must be addressed by mechanical solutions. Other issues can
be partially covered by the signal processing which follows acquisition.
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Figure 1.18: Example of noise
corruption on healthy and dam-
aged signal with dynamic acqui-
sitions: a): healthy clean, b): de-
fect clean, c): healthy noisy, d):
defect noisy.
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Several problems have been raised form early experimentations with
EMAT sensors [Nda16]:

• Noise corruption, which have various sources: electromagnetic dis-
turbances caused by other electric devices, lack of robustness of
the measurement system or counter-effects due to displacement of a
magnetic device over a ferromagnetic medium (here the rail). Fig-
ure 1.18 illustrates this purpose, with a comparison of static and
dynamic signals, with measurements from a heathy rail area and
from a damaged area. Noisy perturbations make distinction be-
tween healthy and defect signal harder. This could disturb further
decision processes, which could interpret a noisy healthy measure-
ment as a defect one. Even worse, in high noise situations (low
SNR), a damage measurement could be evaluated as healthy, mak- The Signal to Noise Ratio (SNR) is

defined as the ratio of the power of
a clean signal to the power of back-
ground noise. It is generally expressed
in dB. Low SNR indicates low signal
quality

ing the related defect invisible to the operator.

• Saturation: the measurement sensors are limited to a specific am-
plitude windows, related to a gain. The operator has control on
this measurement parameter, and can adapt it to current measure-
ment conditions: if the signal amplitude has decreased because of
poor surface condition of the rail, for example. However, the op-
posite case is equally troublesome: the pulse amplitude can exceed
the sensor limits, and cause a phenomenon called saturation. The
recorded signal is sliced, and a part of the information is lost for
the operator. The real amplitude, which is a feature of interest, is
therefore hidden.

Processing techniques must therefore manage these identified issues,
to maintain an efficient inspection of rails.

1.6 Conclusion

This chapter introduced the framework of the thesis. Rail health mon-
itoring focus on a specific range of damages, the surface defects which
emerge on the head or edges of the rail. From the presented ultrasonic
measurement systems, EMAT sensors, a non-contact inspection tech-
niques recently adapted to rails by RAILENIUM, are the promising
technology which provided the data processed in the thesis. Analysis of
generated Rayleigh waves, which propagate on rail surfaces, is the key
aspect for improvement of detection capabilities of measurement de-
vices. Laboratory rails serve as a basis for understanding of vibratory
phenomena which happen inside the rail. They provide known and
machined defects, allowing an adjustment of inspection techniques to
maximize detection performances. On the basis of these data, the main
objective of this thesis is to construct and test statistical tools to com-
bine our physical understanding of wave propagation and statistical
models to enhance rail inspection.
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Non-destructive evaluation of damages on a material employs some-
times complex sensors to bring information about the properties of the
inspected object. Structural Health Monitoring (SHM) raised interest
among diversified topics, from building inspection to car testing. The
spectrum of technologies dedicated to these tasks is large enough to
cover nearly all existing possible emission and reception tools. To
perform the analysis of information obtained by these sensors, Signal
Processing has been from the start an important topic, particularly
for ultrasonic testing, in which the recorded outputs are often not di-
rectly interpretable for a human operator. Yet, much information is
available, after some operations. The purpose of this chapter is first to
present the methodologies of signal analysis selected during this thesis.
Probabilistic data association is next investigated to complete them.

Section 2.1 highlights the most relevant techniques to extract char-
acteristic from our ultrasonic signal. They are intended to give some
answers to the issues encountered during the acquisition.

An important basis resulting from the previous tools is the ability
of our signals to be decomposed into distinct elements. Section 2.2
presents how this operation is performed.

Last section 2.3, based on the two previous sections, answers the
question of association between acquisitions: how the different char-
acteristics are propagated to bring new items to assess the health of
rails.

2.1 Physical features extraction

2.1.1 Time of flight estimation

Damage assessment in materials is classically performed using the pulse
propagation velocity VP , defined as, for a pulse-receiver system:

VP =
L

T
(2.1.1)

with L the distance between the emitter and receiver centres, and T
the arrival time of the pulse, often referred as the Time of Flight (ToF).
Though this definition is commonly encountered in the NDT literature,
determination of the arrival time depends on the medium, and type of
emitted wave. In ultrasonic testing, techniques rely on identification
of a local maxima inside the signal.

Envelope detection allows identification of a maxima in a sinusoidal
signal. For a real measurement vector y(t), it finds a decomposition
y(t) = A(t) cos(φ(t)), with A(t) the instantaneous amplitude or en-
velope, slowly varying in comparison with the phase φ(t). Following
condition about their first derivatives A′(t) and φ′(t) is generally as-
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sumed: A′(t) � φ′(t). Feature of interest are the maximum of the
envelope, and time at which it occurs.

The analytical signal ya(t) can be constructed as the sum of its real
part y(t) and an imaginary part such that:

ya(t) = y(t) + iHy(t) (2.1.2)

The operator H : y 7→ Hy is the Hilbert transform, which acts as a
reconstructor of the imaginary part of any real signal. The definition
of the operator is: Here ∗ denote the convolution product

between two functions.

Hy =

(
y ∗ 1

πt

)
(t) (2.1.3)

This definition induces a multiplication in the frequency domain,
from the Fourier transform of y noted ŷ, and the function ω 7→ −i sign(ω).
Practically, from the signal y, calculation of the analytical signal The sign function sign is defined, ∀x ∈

R by :

sign(x) =


1 for x > 0

0 for x = 0

−1 for x < 0

ya only requires to multiply each complex coefficients by 2 for every
strictly positive frequency, by 0 for every strictly negative frequency,
and performing the inverse Fourier transform.

From the analytical representation, the estimators Â(t) and φ̂(t),
respectively of the instantaneous amplitude and phase, are computed
as: For any complex z ∈ C such that z =

a+ ib with a, b ∈ R, the modulus of z
is defined as

|z| = r =
√
a2 + b2

giving the representation z = zeiϕ

with ϕ ∈ R an argument in radian.
Restriction of this real on the interval
]−π, π] gives the argument arg (z).

Â(t) = |ya(t)| (2.1.4)

φ̂(t) = arg (ya(t)) (2.1.5)

A additional feature to be calculated is the instantaneous frequency
ν(t), with estimator ν̂(t) defined as:

ν̂(t) =
1

2π

d

dt
φ(t) (2.1.6)

Identification of the arrival time is straightforward:

û = arg max
u

A(u) (2.1.7)

In noisy situations, signals are corrupted with random perturba-
tions, which disturb the estimation of the arrival time. More advanced
techniques must be employed, first to separate the pulse signal from
the perturbations, to next apply estimation of the arrival time, and
next to model both the pulse and perturbation to apply estimation
methods.

2.1.2 Wigner-Ville distribution

Compared with the classical Short-Term-Fourier-Transform (STFT),
the Wigner-Ville distribution (or WVD) does not use any window func-
tion (or time-frequency atom). It raises the highest possible time/frequency
resolution, at the expense of a degradation of the visual analysis of the
signal, due to interferences which can mist elements.



statistical signal processing for ultrasonic measurements analysis 43

The definition of the WVD for a single function f is given as [Mal08]:

Wf (t, ω) =

∫ ∞

−∞
f(t+

τ

2
)f∗(t− τ

2
)e−jτω dτ (2.1.8)

ω is the angular frequency, defined as
ω = 2πν with ν the frequency ex-
pressed in Hz.

or using Parseval formula, with a frequency integration:

Wf (t, ω) =
1

2π

∫ ∞

−∞
f̂(ω +

ξ

2
)f̂∗(ω − ξ

2
)ejξt dξ (2.1.9)

The WVD of two functions f and g is defined as:

Wf,g(t, ω) =

∫ ∞

−∞
f(t+

τ

2
)g∗(t− τ

2
)e−jτω dτ (2.1.10)

If f = f1 + f2, then

Wf (t, ω) = Wf1(t, ω) +Wf2(t, ω) + If1,f2(t, ω) (2.1.11)

with If1,f2(t, ω) defines the cross term (or interference term) such
that

If1,f2(t, ω) = Wf1,f2(t, ω) +Wf2,f1(t, ω) (2.1.12)

Example 2.1.1. For a Gaussian Gabor signal f:

f(t) = Ae−
(t−u)2
s ejζ(t−u)ejφ (2.1.13)

the WVD can be formally calculated:

Wf (t, ω) =
√

2πsA2e−
s
2 (ζ−ω)2e−

2
s (u−t)2 (2.1.14)

Example 2.1.2. For a Gaussian Chirplet signal f:

f(t) = Ae−
(t−u)2
s ej2π[ν0+β(t−u)]ejφ (2.1.15)

the WVD can also be formally calculated:

Wf (t, ω) =
√

2πsA2e−2π2s[( ω2π−2β(t−u))−f0]2e−
2
s (u−t)2 (2.1.16)

We define the temporal and frequency
centres as µt and µω , and the tempo-
ral and frequency variances σ2

t and σ2
ω

as (x is equal to t or ω, with f(ω) the
Fourier transform of f):

µx = ‖f‖−2

∫
x |f(x)|2 dx (2.1.17)

σ2
x = ‖f‖−2

∫
(x− µx)2 |f(x)|2 dx

(2.1.18)

From a practical point of view, the previous formula directly shows
the opposite behaviours of parameters on the temporal and frequency
scales: a narrow atom in the time domain (small s) will give a wide
atom on the frequency domain, and reciprocally, a spread atom in the
time domain (large s) will give a narrow atom on the frequency domain.

Theorem 2.1.3. [Mal08] The temporal variance and the frequency
variance of f ∈ L2(R) satisfy :

σ2
t σ

2
ω ≥

1

4
(2.1.19)

The formula 2.1.19 gives an equality
if and only if there exist (u, ζ) ∈ R2

and (a, b) ∈ C2 such that

f(t) = a exp(iζt− b(t− u)2)

Such a signal is called by Mallat a Ga-
bor Chirp.

This inequality is also known as the Heisenberg uncertainty princi-
ple, in signal processing.
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The Wigner-Ville transform calculated for one Gabor pulse or one
Chirplet is positive. However, for the sum of two signals, the cross-term
integral can be negative at some points on the time frequency space.
It produces interferences in the spectrum, which makes analysis with
this tool complex with general signals.

Example 2.1.4. For two Gabor signals f1 and f2 as defined in equa-
tion 2.1.13 with different parameters, the absolute value of the inter-
ference term can be formally calculated, and integrated over time and
frequency domains, as:

Ef1,f2 =

∫ ∫
|Wf1,f2 | dω dt =

√
πA1A2

√
s1 + s2

2
(2.1.20)

2.1.3 Continuous wavelet transform

Wavelet transform of signal x at scale s and time u, using the mother
wavelet Ψ is defined as:

Wx(u, s) =

∫ +∞

−∞
x(t)

1√
s

Ψ∗
(
t− u
s

)
dt (2.1.21)

where Ψ∗ denotes the conjugate function of Ψ. is also found sometimes in the form
Wx(u, s) = 〈x,Ψu,s〉, with Ψu,s =
1√
s
Ψ
(
t−u
s

)One can also reconstruct the signal, under conditions:

x(t) =
1

KΨ

∫ +∞

0

∫ +∞

−∞
Wx(u, s)

1√
s

Ψ

(
t− u
s

)
du

ds

s2
(2.1.22)

Taking s ∈ R+,∗ gives the Continuous Wavelet Transform (CWT),
which can be used to analyse a frequency band with any precision.
Taking s = kj , j ∈ N for some k ∈ N∗ gives the Discrete Wavelet
Transform (DWT). Common choice is k = 2

It has been demonstrated that the CWT provides an unbiased es-
timation of the ToF if the Morlet wavelet is used as basis. However,
it is no longer possible for the central frequency, the estimation is in-
deed biased (see [CS05] or [CH10]), with bias which is function of the
central frequency of the pulse.

However, the CWT is still a powerful tool to provide an estimation
of the instantaneous amplitudes and phase of the signal. From a scalo-
gram, it is possible to extract wavelet coefficients related to the local The scalogram at scale s and time u

is defined as the energy of the wavelet
coefficient at scale s and time u :
SΨ(s, u) = |WΨ(s, u)|2

maxima points, which set is called a ridge, noted R(s(u), u) .

In the ridge, for all value of u, a spe-
cific scale s(u) is attributed

The process is described as below, using the complex Morlet wavelets,
from [Cur+08a]:

1. Compute the Continuous Wavelet Transform (CWT) of y:

Wy(s, u) (2.1.23)

for u = ti, i = 1..N and the scaling factor selected s;

2. Compute the ridge of the CWT, i.e. the local maxima and their
location R(s(u), u);
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3. Compute the Amplitude and the Phase, following:

A(u) = 2
| Wy(s(u), u) |√

s(u)
(2.1.24)

φ(u) = arg(Wy(s, u)) (2.1.25)

Instantaneous frequency is next easily obtained. The similarity with
estimation based on the Hilbert transform is straightforward. However,
selection of a specific frequency band allows to bypass the instabilities
due to random noise perturbations.

2.1.4 Hilbert-Huang transform

The Hilbert-Huang Transform (or HHT) is an adaptative analysis tool
based on the joint use of the Empirical Mode Decomposition (or EMD)
scheme and the Hilbert transform. EMD has raised interest for provid-
ing an efficient method to extract, from a noisy multi-modal signals,
Intrinsic Mode Functions (or IMFs), which will correspond to unimodal
signals [HW08].

Definition 2.1.5. A signal y is an IMF if:

• The absolute difference between the numbers of extreme and zeros
crossing of y does not exceed 1.

• The mean values between the upper and lower envelope must be equal
to 0 at any point.

The original signal is the sum of the IMFs extracted. The previ-
ous method for amplitude and frequency estimation can then be used
directly on each IMF. Moreover, the noise tends empirically to be
extracted in the very first levels of decomposition, allowing fast de-
noising by removing the corresponding IMFs. However, this method
lacks mathematical foundations [HW08], and the resulting IMFs can
be very sensitive to the noise present in the original signal. More com-
plex methods, like the Ensemble Empirical Mode Decomposition (or
EEMD) [WH09], have been proposed to face this problem, by averag-
ing the estimations on several runs of EMD on the signal corrupted
with artificial noise, resulting in more stable results, at the price of an
higher computational cost.

The algorithm proposed by Huang creates a sequence of IMFs, which
are subtracted from the signal to produce the residual. Each IMF is
constructed by removing the mean of the upper and lower envelopes
from the signal, until the result fulfils the conditions to be an IMF.

After decomposition, the Hilbert transform is applied on each in-
dividual IMF. The resulting set of instantaneous amplitudes and fre-
quencies is called the Hilbert spectrum.

This technique has been successfully used in NDT for extraction of
transmitted pulses and echoes [LLY09] from an ultrasonic signal.
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2.1.5 Empirical wavelet transform

The EMD is an adaptive method which does not rely on specific proper-
ties of the signal, in terms of frequencies, or abrupt changes. However,
the decomposed IMF spectra are not necessary centred around one fre-
quency. The Empirical Wavelet Transform (EWT) has been designed
to circumvent this issue. After an adaptive partitioning of the Fourier
spectrum, a wavelet filter bank is designed based on each identified
support [Gil13]. The signal is next decomposed into components, each
one with a compact support around a specific frequency. The only
parameter to chose is the number of disjoint supports. This decom-
position process has demonstrated superior performances to EMD for
anomalies detection in oscillatory systems [War16]. Since the par-
titioning is performed in the frequency domain, this decomposition
technique has poor performances if several components overlaps in the
time-frequency domain. Example is the mixture of two chirps with
closed centre frequencies and ToF[Gil13].

A Hilbert spectrum can be obtained using the Hilbert transform on
each component, similarly to the HHT with the EMD.

However, choice of the number of supports is hard to find with-
out knowledge about measurements. An external perturbation could
easily corrupt the spectrum, and change the supports during a new
measurement.

2.1.6 Parametric estimation with the maximum likelihood estimator

The common probabilistic model for ultrasonic pulses is the Gabor
function, which is the product of a cosine, with central frequency νc and
constant phase φ, and a Gaussian shape, with peak at the ToF u and
spread s. An amplitude factor A is generally added. The parameters
are gathered in the vector θ = [s, u, νc, φ,A]

T , and the Gabor function
is noted fθ:

fθ(t) = A exp

(
− (t− u)2

s

)
cos (2πνc(t− u) + φ) (2.1.26)

Measurement perturbations are assumed to corrupt the part of the
signal coming from a specific model, such as:

yi = fθ(ti) + wi (2.1.27)

with wi ∼ N (0, σ2) for some positive scalar σ, the standard devia-
tion of the noise.

With random Gaussian perturbation, the probability density func-
tions of measurements given the real signal are Gaussian. If perturba-
tions are independent, the total density function, called the likelihood
of the signal, is:

p(y | θ, σ) = L(θ, σ) =
1

(√
2πσ

)N
N∏

i=1

exp

(
− (yi − fθ(ti))

2σ2

)
(2.1.28)
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The Maximum Likelihood Estimator (or MLE) is the parameter
vector which maximizes the signal likelihood, or equivalently, the signal
log-likelihood, preferred for maximization, since the probability density
alone can reach very small values. It is defined as:

θMLE = arg max
θ

log p(y | θ, σ) (2.1.29)

= arg max
θ

N log
(√

2πσ
)2

−
N∑

i=1

(yi − fθ(ti))
2σ2

(2.1.30)

The noise variance σ2 is not known in the general case, and can
be estimated by extending the parameter vector with it before the
search for the MLE. However, knowledge of its value is not necessary
for the estimation of only θMLE. For every variance σ2, the previous
maximization problem is equivalent to the following one:

θMLE = arg min
θ

N∑

i=1

(yi − fθ(ti))2 (2.1.31)

= arg min
θ
‖y − fθ(t)‖22 (2.1.32)

Therefore, finding the MLE with Gaussian noise involves a least-
square minimization independent of the noise variance. Up to a con-
stant, the optimal parameter vector of the above problem is the one
which minimizes the Mean Square Error (or MSE) between the sig-
nal and the parametrized reconstruction using the Gabor function.
Efficient algorithms such as the Gauss-Newton, or the Levenberg-
Marquardt have largely been used in this context, taking advantage
of the availability of the Jacobian matrix. Since they do not use
the exact Hessian, but provide only an approximation of it, they are
known to be more stable, and still converging to the global optimum.
More general optimization methods exist, such as the famous Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [NW06]. However,
the Gauss-Newton and Levenberg-Marquardt have, around the global
minima, quadratic convergence rates. The BFGS, a quasi-Newton
method, has only super-linear convergence rate. For this specific prob-
lem, using the BFGS algorithm would be counterproductive.

These properties are not preserved after calculation of the envelope.
Measurements perturbations are no longer independent, and do not
follow Gaussian probability functions. Indeed, [HWZ12] employ a Rice
distribution to model the densities of the envelope of y, the points
noted {Ai}Ni=1, based on the results of [Ric45]: For a zeros signal, one can find the

Rayleigh distribution with probability
density p(x | σ2) = x

σ2 exp
(
− x2

2σ2

)
defined on R+,∗.p(Ai | λi) =

Ai
σ2

exp−
A2
i+λ

2
i

2σ2 I0

(
λiAi
σ2

)
(2.1.33)

with {λi}Ni=1 the points of the enveloppe of a Gabor function, cal-
culated from the parameter vector θ.

The Quasi-Maximum Likelihood (QML) method assumes indepen-
dence between the calculated amplitudes to solve the maximization
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problem the simplified version of the likelihood, called the quasi-likelihood:

QL(θ, σ) =

N∏

i=1

p(Ai | θ, σ) (2.1.34)

Optimization is generally made with the more convenient logarithm
of quantity QL(θ, σ), giving the formula for the log-quasi-likelihood
logQL(θ, σ), which complete expression is:

logQL(θ, σ) =

N∑

i=1

logAi − log σ2 −
N∑

i=1

A2
i + λ2

i

2σ2
+

N∑

i=1

log I0

(
λiAi
σ2

)

(2.1.35)
with I0 the modified Bessel function of order 0. Given the form of

the function to minimize, the BFGS algorithm is a good choice, since
the previous ones can no longer be used.

2.1.7 Comparison of estimators

To compare performances of the estimators presented in this section,
the following signal was simulated. A Gabor signal is generated, with
parameter vector θ = [s, u, νc, φ,A]

T
= [0.25, 3, 5, 0, 1]

T . Signal is sim-
ulated on the interval [0, 5 s] with sampling interval ∆t = 0.01 s. A
random Gaussian noise is added, to reach a SNR level starting at
−10 dB up to 20 dB, by step of 1 dB. For each SNR, for each esti-
mation of ToF u and frequency ν given by the previous methods, the
MSE is averaged over 1000 realizations. Methods used to estimate the
parameters are: the CWT, the MLE, the maximum of the envelope
computed with the Hilbert transform (called here the Hilbert method),
the QML and the EMD. For estimation with the EMD, the envelope
maximum of the IMF with higher correlation with the intial signal is
selected (except the first IMF, related to noise). Of course, the QML
method does not provide an estimation of ν. Resulting curves are
gathered in figure 2.1.

Figure 2.1: Comparison of es-
timation performances between
CWT, MLE, Hilbert, QML and
EMD method, with 1000 Monte
Carlo iteration to compute the
average MSE on a simulated Ga-
bor signal.

Surprisingly, estimations with the EMD method are not reliable for
very high SNR. Hilbert method is not expected to produce precise es-
timates, and shows only the important perturbations caused by noises.
For low SNR, best methods are the CWT and the MLE. QML per-
forms similarly, except for very low SNR. Absence of improvements
for the CWT for frequency estimations is more an issue related to
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the frequency range analysed. Comparing the similar performances
of the MLE and the QML, using a complex model with Rice distri-
bution seems not interesting. Moreover, the QML does not provide
information about phase and frequency.

Consequently, for simple estimation on noisy signals, using the MLE
or the CWT method are a practical and robust choice, under the as-
sumption of a Gabor model.

2.2 Sparse decomposition of ultrasonic signals

2.2.1 Gabor dictionaries

Instead of extracting one single vector from an acquisition, it can be
useful to decompose the measurement vector into a specific basis called
a dictionary. Purpose of dictionaries is to decompose a signal y into
as sum of distinct elements, called atoms, which belong to a set D, the
dictionary.

An overcomplete dictionary D contains a number of atoms much
superior to the dimension of y, such that:

y ≈ Dx with





y ∈ Cn

D ∈ Cn×m

x ∈ Cm
and m� n (2.2.1)

The interest of such basis is to express the vector y with very few
atoms, such that x is sparse.

Definition 2.2.1. A matrix is said to be sparse if most of its elements
are zeros.

The minimization problem to be solved has the form: With ‖x‖0 the norm 0 of x, defined as
the number of non-zero elements of x.

x? = arg min
x
‖y −Dx‖22 + ξ‖x‖0 (2.2.2)

for some positive scalar ξ. Higher values of ξ will promote sparser
vectors. However, this problem is hard to solve numerically, and dif-
ferent approaches must be employed to approximate the problem.

For ultrasonic signals, a basis composed of Gabor atoms has demon-
strated great performances [OF98; DS01b]. The Gabor dictionary is
defined as D = {gγ}γ∈Γ with Γ our set of parameters. Each ele-
ment gγ an atom, is the Gabor function parametrized by the vector
γ = [s, u, νc, φ]

T , and defined as:

gγ(t) = exp

(
− (t− u)2

s

)
cos (2πνc(t− u) + φ)C(γ) (2.2.3)

with C(γ) the normalization constant such that ‖gγ‖ = 1.
A M -decomposition of a signal y with dictionary D is a linear com-

bination of atoms such that :

y ≈
M∑

i=1

Aigγi (2.2.4)

for some positive scalars A1, ..., AM ∈ C+.
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Example 2.2.2. For a discrete signal (yi)
N
i=1 with corresponding sam-

pling times (ti)
N
i=1, we can define the set Γ by all the combinations

between ns values of spread s1, ..., sns , N arrival times as the values
t1, ..., tN and nν values of central frequencies ν1, ..., νnν , nφ values of
phase φ1, ..., φnφ . In this situation, the dictionary is therefore com-
posed of ns ×N × nν atoms of size N .

An algorithm to sequentially decomposed a vector y into K ∈ N
Gabor atoms of D has been proposed, called the Matching Pursuit (or
MP) [MZ93].

Let Rk be the residual vector obtained after k iterations of the
decomposition. This vector is calculated sequentially, by removing the
found decomposition vector, with R0 = y. It is possible to write:

y =

K∑

k=1

Akgγk +Rk,∀k ∈ N∗ (2.2.5)

for some A1, ..., AK ∈ R+.
Each iteration can be described, at iteration k, using the residual

Rk−1 as:

1. Find γk = arg maxγ〈Rk−1,gγ〉 The vector α which minimizes the
least-square error ‖y − αx‖2 is the
scalar product 〈y, x〉 with y, x ∈ C and
‖x‖2 = 1

2. Set Ak = 〈Rk−1,gγk〉

3. Set Rk = Rk−1 −Akgγk
The search in the previous dictionary raise the issue of estimation

of phase φ. Exploring nφ values on an interval
[
φinf, φsup

]
multiply

the numbers of scalar product to compute. The approach proposed
by Mallat and Zang [MZ93] is to perform the exhaustive search on
a lighter dictionary, but composed of atoms belonging to CN . The
complex Gabor function are employed, parametrized by the vector
γ̃ = [s, u, νc]

T , and defined as:

g̃γ̃(t) = exp

(
− (t− u)2

s

)
exp (2iπνc(t− u)) ∗ C̃(γ) (2.2.6)

with C̃(γ̃) the normalization constant such that ‖g̃γ̃‖ = 1.
The phase φ is dropped from the vectors γ ∈ Γ, forming the param-

eters vectors γ̃ ∈ Γ̃. The search operation performed is looking now
for the vector γ̃k such that: The residual vector Rk is still real, but

the scalar product apply now in its
complex form, since g̃γ̃ is complex.

γ̃k = arg max
γ
〈Rk−1,g̃γ̃〉 (2.2.7)

The phase is then estimated as :

φk = arg (〈Rk−1,g̃γ̃k〉) (2.2.8)

The vector which parametrized the real Gabor atom is then recon-
structed using this estimation : γk =

[
γ̃k
T , φk

]T
.

The estimation of the real coefficient involve the normalization co-
efficient of the real atom gγk :

Ak = C(γ)|〈Rk−1,g̃γ̃k〉| (2.2.9)
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Following every search in the dictionary, an optimization method
can then be used to tune the parameter vector θ =

[
γTk , Ak

]T to min-
imize locally the quadratic error between Rk−1 and fθ(t).

A formulation of the time-frequency energy of the signal decom-
posed with MP has been proposed in paper [MZ93]. If f is of the
form:

f =

∞∑

i=0

Aigγi (2.2.10)

then applying the WVD gives:

Wf (t, ω) =

∞∑

i=0

|Ai|2Wgγi
(t, ω) +

∑

i

∑

j 6=i
AiA

∗
jWgγi ,gγj

(t, ω) (2.2.11)

The term
∑
i

∑
j 6=iAiA

∗
jWgγi ,gγj

(t, ω) in equation 2.2.11 is assumed,
according to them, to be the cross interference term. Consequently,
they defined an energy formula without it as:

Ef (t, ω) =

∞∑

i=0

|Ai|2Wgγi
(t, ω) (2.2.12)

The energy representation in the time-frequency domain becomes
the sum of independent positive components. It must be emphasized
that each component should be well separated from the others, to
reduce interactions and keep the assumption of zero cross-terms.

2.2.2 Probabilistic optimization

An important issue with the MP algorithm is the impossibility to cor-
rect vectors obtained in the past. Due to this constraint, at some
iterations, atoms could be selected only to balance imprecise previous
computed vectors. A major improvement would be to correct, after
each iteration, the set of all selected atoms. Since this set grows lin-
early with time, applying an optimization method on the joint vector
of parameters will rise the issue due to its high dimensionality.

The Expectation Maximization (EM) methods aims at breaking a
hard to optimize problems into easier ones thanks to the introduction
of auxiliary variables [DLR77; MK08].

The aim of the EM algorithm is to update the parameter set Θ =

[θ1, .., θJ ] to reduce the total cost:

Cost(Θ) =

J∑

j=1

Cost(θj) (2.2.13)

The Expectation step (E-step) constructs all the J residual vectors.
The Maximization step consists in evaluating each new parameter con-
ditionally to its related residual. For important values of J , the draw-
back of this approach is the need to keep in memory many residuals.
Moreover, inside each Maximization step (M-step), benefit of one pa-
rameter update of Θ is only observed the end, when the new total cost
Cost(Θ) is calculated.
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Description of one iteration of the EM algorithm:

1. Init Θ(k) =
[
θ

(0)
1 , .., θ

(k)
J

]

2. For j = 1, .., J :

E-step : compute r(k)
j (Θ(k))

3. For j = 1, .., J :

M-step : θ(k+1)
j = arg min

θ
Cost(θ, r(k)

j (Θ(k)))

4. Check convergence criterion

The Space Alternating Generalized EM (SAGE) algorithm is an
adaptation of the previous algorithm, which has better convergence
properties [FH94]. Instead of updating the total cost at the M-step
end, a new computation is performed each time a vector of Θ is up-
dated.

Description of one iteration of the SAGE algorithm:

1. Init Θ(k) =
[
θ

(0)
1 , .., θ

(k)
J

]

2. Set Θ(k+1) = Θ(k)

3. For j = 1, .., J :

E-step (SAGE): compute r(k)
j (Θ(k+1))

M-step (SAGE): θ(k+1)
j = arg min

θ
Cost(θ, r(k)

j (Θ(k+1)))

4. Check convergence criterion

The residual estimated at each step is dependent of the application.
A hard rule will place at each iteration the full part not already

explicated by the functions on the residual:

r
(k)
j (Θ) = f(θj) +

[
z −

J∑

l=1

f(θl)

]
(2.2.14)

A soft rule will divide this part across all residuals:

r
(k)
j (Θ) = f(θj) +

1

J

[
z −

J∑

l=1

f(θl)

]
(2.2.15)

Using an iterative optimization method corrects progressively the
results of decomposition using MP algorithms. This approach per-
form well signal sparse in basis formed of Gabor atoms and even more
general pulses [DS01a].

2.2.3 Saturation model

To face the issue of saturation presented in chapter 1, we propose
the following approach. Saturation is model by the variable di, which
equals 1 if the signal is inside the measurement window, and 0 outside.

di =

{
1 if xi ∈ ]xinf, xsup[

0 elsewhere
(2.2.16)
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To recover a tractable estimation problem, a practical solution is
to remove the points where saturation occurs from the calculation of
the objective function. Times of saturation are considered as missing
values. We try to find the signal s such that:

θ̂ = arg min
θ

∑

t

(yi − fθ(ti))2
di (2.2.17)

or with matrix formulation:

θ̂ = arg min
θ

(y − fθ(t))T D (y − fθ(t)) (2.2.18)

with

D =




d1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 dT




(2.2.19)

Calculation of the cost is reduced to the measurements for which
saturation does not occur. Partitioning of the data between saturated
and regular measurements allows to solve a sub-problem, which relies
on the independence assumption between perturbations. Estimation
with only the envelope would require a more complex model for satu-
ration. Separation of data is no longer possible because of interactions
between values of the two partition to compute the envelope points.

Figure 2.2: Simulation
with θ = [1, 5, 4, 0, 150],
σ = 10, and truncation
at ±100. Estimation gives
θ̂ = [0.96, 5.0, 4.0, 0.56, 140].
Invalid partition represents 6%

of data.

Figure 2.2 illustrates the estimation procedure from a truncated
signal. Although the estimated parameter vector is close to the real
one, it gives a practical solution to this problem.

2.2.4 Enforce sparsity with regularization

Decomposition of atoms is difficult when pulses are interacting. Con-
ditions of separability have been studied in [Lu+16], depending on
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the distance between their central frequencies and arrival times. In
the case of ultrasonic signals, interactions are widely due to temporal
close receptions of the pulses.

To solve this issue, a regularization of the decomposition problem is
proposed. It corresponds to adding a term in the loss function which
penalize very spread pulses.

The previous problem involving only the Gabor function with ran-
dom Gaussian noise was using the following cost function:

lossMSE(θ) = ‖y − fθ(t)‖22 (2.2.20)

Regularization L2 centred:

lossreg(θ, λ) = lossMSE(θ) + λ‖s‖2 (2.2.21)

Regularization L2 non-centred:

lossreg(θ, λ, s0) = lossMSE(θ) + λ‖s− s0‖2 (2.2.22)

For the L2 centred and non-centred regularization, the quantity to
minimize can still take the form of a least-square problem. Conse-
quently, the optimization algorithms already employed for the non-
regularized loss are still available.

The regularization parameter λ depends on the measurement noise
variance, and is therefore case-dependent. However, the centre spread
parameter s0 can easily be learned from clean signals with separable
non-interacting pulses.

The previous regularization didn’t enforce strictly positive values
of s. A Gamma prior form regularization can be employed for this
purpose:

Lossreg(θ, λ1, λ2) = LossMSE(θ) + λ1 log s− λ2s (2.2.23)

This formulation does not fulfil the conditions for use of the Gauss-
Newton or Levenberg-Marquardt algorithms. The BFGS algorithm is
a standard choice.

Figure 2.3 highlights the utility of regularization with an signal com-
posed of two Gabor pulses. A simple optimization procedure could
result in a local optimum with two degenerated atoms of high ampli-
tudes, while the mixture gives low amplitude signal. Regularization
allows discrimination of such degenerated situation. It does not nec-
essary improved the estimation procedure (the algorithm is still stuck
into a local optimum, but the global one has now significant lower cost
due to the penalization of high values of s).

2.3 Filtering

Acquisitions from ultrasonic sensors can individually be used for dam-
age detection. Features extracted with time-frequency representation,
inserted in basic classification algorithms allow independent analysis of
a medium area. However, links between multiple acquisitions are never
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Figure 2.3: Simulation with θ1 =

[1, 3, 2, 0, 1], θ2 = [1, 5, 2, 0, 1].
Optimization is performed with
and without regularization

exploited. The objective of this section is to include the evolution of
features across acquisitions into a defect detection process.

2.3.1 State space approach

Operator is interesting into information gathered in a vector x, called
a state vector, which belongs to a state space Rnx , for some nx ∈ N∗.
This vector is generally not directly observable. Access of informa-
tion about x is possible through a vector z called a measurement or
observation vector, which belongs to a measurement or observation
space Rnz , for some nz ∈ N∗. Knowledge about x is gathered in the
probability density function (pdf) p(x | z).

Sequential state space models assume that measurements are grad-
ually obtained by the operator, for instance coming from a sensor. Let
(zk)k=1..N be the sequence of N observations.
The problem is transfered from the estimation of vector x to the pdf
related to the variables xk.

Figure 2.4: General state-space
model

The following state-space model is assumed here:

• A deterministic function f , called the transition function, which
take as arguments the state xk−1 and a random variable vk to pro-
duce xk;

• A deterministic function h, called the observation function, which
take as arguments the state xk and a random variable wk to produce
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the measurement zk.

The filtering process is iterative and can be separated into two mains
steps:

• Prediction: from the prior distribution p(xk−1 | z1:k−1) (or p(x0)),
we compute the predicted distribution p(xk | z1:k−1) using the
Chapman–Kolmogorov equation

p(xk | z1:k−1) =

∫
p(xk | xk−1)p(xk−1 | z1:k−1) dxk−1 (2.3.1)

• Update: from the previous predicted distribution, use of measure-
ment zk to compute the posterior distribution p(xk | zk) with the
Bayes’ theorem

p(xk | z1:k) =
p(zk | xk)p(xk | z1:k−1)

p(zk | z1:k−1)
(2.3.2)

The denominator term p(zk | z1:k−1) =
∫
p(zk | xk)p(xk | z1:k−1) dxk

acts as a normalization term. It is sometimes referred as the Bayes
factor or the likelihood of measurement zk.

Example 2.3.1. An important model is the Linear transition and
measurement with additive zero-mean Gaussian noises, defined as:

xk = Fxk−1 + vk (2.3.3)

zk = Hxk + wk (2.3.4)

with:

vk ∼ N (0, Qk) (2.3.5)

wk ∼ N (0, Rk) (2.3.6)

Figure 2.5: Kalman recursion

for some positive definite matrix Qk and Rk, transition square ma-
trix F and measurement matrix H. If a Gaussian prior is assumed on
the state x0, i.e. x0 ∼ N (µ0,Σ0), the Kalman equations allow to com-
pute analytically the posterior distributions p(xk | zk), which take the
form of Gaussian distributions [Kal60; Sär13] (entirely characterized
by their means µk and covariance matrices Pk, calculated recursively
at each step k, see figure 2.5).

Sequential Monte Carlo techniques (or SMC) are a general class of
methods designed to estimate sequentially the posterior distributions,
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using stochastic approximations. For general models, an analytical
form is not necessary available. This is the case with non-linear tran-
sition and measurement functions, non-additive or non-Gaussian ran-
dom perturbations. For each step k, the posterior distribution given
the measurements from step 1 to step k is approximated by a discrete
sum of Np Dirac functions of vectors paths x(i)

1:k,∀i = 1, .., Np called
particles, with respective weights W (i)

k ,∀i = 1, .., Np, each of which
depends on the corresponding particle:

p(x1:k | z1:k) ≈
Np∑

i=1

W
(i)
k δ

x
(i)
1:k

(x1:k) (2.3.7)

Example 2.3.2. The Sequential Importance Resampling (SIR) scheme,
usually called the Particle Filter (PF), is an efficient method in SMC.

Particle filters approximate the filtering distribution by a Dirac mix-
ture with specific weights, as illustrated in figure 2.6:

p(xk | z1:k) ≈
Np∑

i=1

w
(i)
k δ

x
(i)
k

(xk) (2.3.8)

For the next step, Np sampled are simulated from the importance
distribution q:

x
(i)
k+1 ∼ q(xk | x

(i)
1:k−1, z1:k), ∀i = 1..Np (2.3.9)

Their corresponding weights are then updating according to:

w
(i)
k+1 =

w̃
(i)
k+1∑Np

i=1 w̃
(i)
k+1

, ∀i = 1..Np (2.3.10)

with w̃(i)
k+1 the unnormalized weights, defined as:

w̃
(i)
k+1 = α

(i)
k+1w

(i)
k , ∀i = 1..Np (2.3.11)

using the following importance ratio:

α
(i)
k+1 =

p(zk+1 | x(i)
k+1)p(x

(i)
k+1 | x

(i)
k )

q(xk | x(i)
1:k−1, z1:k)

, ∀i = 1..Np (2.3.12)

Figure 2.6: SIR recursion.

A resampling step is next applied at some iteration, to cope with the
phenomenon called weight degeneracy, where all particle get weights
close to 0, except some of them. However, the resampling method can
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also induce one other phenomenon called the sample impoverishment,
when only a small set of particles are resampled. The exploration of
the state space is then concentrated on limited regions, reducing the
performance of the filter. To avoid this, advanced resampling methods
have been studied, for instance with deterministic selection of the par-
ticle, or clustering steps. This allows to bring more diversity in the
particle population.

The likelihood of the data observed at step k + 1 can therefore be
estimated by:

p(zk+1 | z1:k) ≈
Np∑

i=0

w
(i)
k+1α

(i)
k+1 (2.3.13)

2.3.2 Smoothing

Give a finite measurement vector z1:N , the filtering recursions allow to
compute sequentially the filtering densities p(xk | z1:k) for any given
k ∈ J1, NK. This operation can, in specific case, be done online (see ex-
amples 2.3.1 and 2.3.2). However, after reception of all measurement,
we could also evaluate the full posterior distribution p(x0:N | z1:N ),
called the smoothing distribution.

Example 2.3.3. A analytical form of the marginal smoothing solu-
tion is available in the Linear model with Gaussian perturbations. It
has been found by the maximization of the marginal log-likelihoods of
log p(xk | y1:N ) and log p(xk, xk+1 | y1:N ) [RTS65]. The paper finds the marginal MLE

(marginalization over all xj , ∀j 6= k),
but not the joint MLE p(x0:k | y1:N ).

x̄k|N = xk|k + Ck
[
x̄k+1|N − F · xk|k

]
(2.3.14)

with

Ck = Pk|k · F t · P−1
k+1|k (2.3.15)

and

P̄k|N = Pk|k + Ck ·
(
P̄k+1|N − Pk+1|k

)
· Ctk (2.3.16)

The marginal distribution obtained is therefore :

p(xk | y1:N ) = N (xk | x̄k|N , P̄k|N ) (2.3.17)

Example 2.3.4. A simple solution of the smoothing problem is to
keep the final posterior density calculated from the particle approxi-
mation [Kit96]. Following the classical SIR algorithm, an important What [GDW04] calls this filter the

"standard trajectory-based smooth-
ing".

difference is that instead of manipulating particles which are vectors
with their weights, we propagate them with their lineage (theirs ances-
tors, or histories) . When conditions are met, the full particles are Instead of using at step k, x(i)

k , ∀i =

1, .., Np, we manipulate x
(i)
0:k, ∀i =

1, .., Np
resampled with their own ancestors. Their dimensions increase with
iterations. At final stage, the final approximation is:

p(x0:N | z1:N ) =

Np∑

i=1

w
(i)
N δ

x
(i)
1:k

(x1:k) (2.3.18)
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The main drawback of this approach is due to sample impoverishment:
as particles are resampled, ones with low weights disappear from the
population with their lineages, and particles tend to share the same
ancestors. For long signals, the first steps have poor diversity. The
characterization of the posterior at these stages will be extremely lim-
ited.

Example 2.3.5. The marginal Forward Filter Backward Smoother
(FFBSm) [DGA00] express the marginal smoothing distribution p(xk |
z1:N ),∀k = 1, .., N , using Kitagawa’s recursive formula [Kit87]. Here,
from the previously calculated filtering distributions, the weights of par-
ticles are corrected to get a particle approximation with same supports
for the filtering and marginal smoothing distributions:

p(xk | z1:N ) =

Np∑

i=1

w
(i)
k|Nδx(i)

k

(xk) (2.3.19)

with ∀i = 1, .., Np:
w

(i)
k|N (2.3.20)

and ∀i = 1, .., Np,∀k = 0, .., N − 1:

w
(i)
k|N =

Np∑

j=1

w
(j)
k+1|N

w
(i)
k p(x

(j)
k+1) | x(i)

k∑Np
l=1 w

(l)
k p(x

(j)
k+1) | x(l)

k

(2.3.21)

This algorithm is deterministic given a run of a SIR algorithm. How-
ever, it has high complexity O(N2

p ), which can only be reduced with the
number of particles.

Example 2.3.6. The Forward Filter Backward Sampling (FFBSi) is
a stochastic algorithm, providing a SIR run [GDW04]. It creates par-
ticle paths, starting from the final density p(xN | z1:N ), and sample
its ancestors using the intermediate filtering distributions, producing
a vector x̃0:N . This operation is repeated S times, to produce the fol-
lowing particle estimation, with similar form as the simple posterior
smoother:

p(x0:N | z1:N ) =
1

S

S∑

s=1

δ
x̃
(s)
0:N

(x0:N ) (2.3.22)

The backward procedure to sample one path is described as:

• choose x̃N = x
(i)
N with probability w(i)

N

• for k = N − 1, .., 0:

– w
(i)
k|k+1 ∝ w

(i)
k p(x̃k+1 | x(i)

k )

– choose x̃k = x
(i)
k with probability wk|k+1

A backward run has complexity O(Np), and is repeated S times.
For increase of precision of the particle smoothing distribution, higher
values of S must be used [Lin13]. The total complexity is consequently
O(SNp), which offers higher flexibility compared with the deterministic
FFBSm.
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2.3.3 Random Finite Set (RFS) filtering

State space models based on vector measurements are useful when
dealing with a single sensor, and single measurement information. The
purpose of this part is to present formulation of the filtering equations
using the Finite Set Statistics (or FISST) theory developed by Mahler
[Mah07b], which allows manipulation of sets instead of vectors.

Filtering with state space models assumes one measurement vector
at each step, used to gather information about the state. However,
many applications do not provide a single vector during the measure-
ment process. Examples are numerous in the tracking literature, in
which a simple thresholding procedure on the data coming from the
sensor creates multiple detections. The measurement vector produced
by the state is embedded with random vectors in a set, without a pri-
ori knowledge about which one is derived from the state. In addition,
there is still the possibility of non-detection of this measurement vec-
tor of interest. The probability of detection is generally described by
the parameter pD. The measurement set obtained at step k can be
described as:

Zk = TDk ({xk}) ∪ Ck (2.3.23)

with TDk a set which contains the single measurement coming from
the state xk with probability pD(x), possibly depending on x, therefore
in the case of detection, and which is empty with probability 1−pD, in
the opposite case. The state xk is referred as the target in the tracking
literature. The set Ck is assumed to contain the random measurement
detected with no link to the state, called the clutter.

Solving this estimation problem with an enumeration of all the as-
signment possibilities brings a number of cases which increases expo-
nentially with steps. This situation, called an hard-assignment method,
can be partially solved with a selection of several best assignments, or
even only the best one, according to a specific metric. A probabilis-
tic approach, such as the Probability Data Association Filter (PDAF)
will perform soft-assignment [BL95]. Information about all measure-
ment will impact the distribution leading the state space. The miss-
detections are included in the update of the filtering distributions,
escaping from the exponential complexity of the last method.

When multiple targets are present, several states evolve through
steps, with possibility for each target to produce a measurement vec-
tor. If we assume n existing targets, with states xik,∀i ∈ J1, nK, the
measurement set can be expressed as:

Zk = ∪ni=1T
D
k

({
xik
})
∪ Ck (2.3.24)

The Multiple Hypothesis Tracker (MHT) propagates different as-
signments with time, but needs a truncation to retain only the most
relevant, due to the exponential growth of possibilities with steps
[Cha+11]. The Joint Probabilistic Association Filter (JPADF) pro-
vide an estimation procedure similar to the single target PADF, if the
exact number of target is provided [BL95]. However, it does not take
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into account other phenomena which could affect the targets, like their
death, or the appearance of new ones, called target birth.

The FISST theory aims at extending the notions of probabilities
to sets [Mah07b]. It provides a mathematical basis to manage sets of
vectors, which cardinalities can vary with time.

One notes X a compact subset of Rd, and F(X ) the collection of To make a link with previous subsec-
tion, X will act as the state space for
individual targets (x ∈ X ).

all the finite subsets of X . A Random Finite Set (RFS) X on X is
defined as a measurable mapping from a probabilistic space (Ω, A, P )

to the collection F(X ) [Mah07b]:

X : Ω→ F(X ) (2.3.25)

In other world, a RFS has stochastic cardinality, and its elements
are random. We observe realizations of a RFS X.

Extending the concept of posterior distribution, it is possible to
define state space models using RFS. With marginal distributions, one
obtains multi-target filtering densities. Some important examples of
RFS are:

Notation i.i.d for independent identi-
cally distributedExample 2.3.7. I.I.D Clusters Processes with

• p a probability density on N

• f a probability density function on X

A set X of cardinality n, noted X = {x1, .., xn}, follows an i.i.d. pro-
cess if its has f(X) as its distribution, with:

f(X) = n! p(n)

n∏

i=1

f(xi) (2.3.26)

Example 2.3.8. A Poisson process is a specific case of an i.i.d. clutter
process, if p is a Poisson distribution with parameter λ:

p(n) = e−λ
λn

n!
(2.3.27)

The density of the RFS is therefore

f(X) = e−λλn
n∏

i=1

f(xi) (2.3.28)

Example 2.3.9. A RFS X following a Bernoulli process with param-
eter r ∈ [0, 1] and probability density f defined on X has probability
density

f(X) =





1− r , X = ∅
rf(x) , X = {x}

0 , |X| ≥ 2

(2.3.29)

Example 2.3.10. A Multi-Bernoulli RFS X =
⋃M
i=1 is the union of

M independent Bernoulli RFS Xi, each one defined by a parameter ri
and a probability density fi. The probability density of X = {x1, .., xn}
is defined as :

f(X) = n!

M∏

j=1

∑

1≤i1<..<in≤M

ri1pi1(x1)

1− ri1
..
rinpin(xn)

1− rin
(2.3.30)
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The FISST theory allows to generalize the Bayesian recursion equa-
tion of filtering on multi-target densities. Noting fk (X | Z1:k) the
multi-target filtering density at step k, the predicted multi-target den-
sity is obtained as:

fk+1|k(X | Z1:k) =

∫
f(X | Xk)fk(Xk | Z1:k) dXk (2.3.31)

The filtering multi-target at step k + 1 is then obtained using the
update integration:

fk+1(X | Z1:k+1) =
p(Zk+1 | X)fk+1|k(X | Z1:k)

p(Zk+1 | Z1:k)
(2.3.32)

The denominator quantity

p(Zk+1 | Z1:k) =

∫
p(Zk+1 | Xk+1)fk+1|k(Xk+1 | Z1:k)δXk+1

(2.3.33)
is called the Bayes factor. It is also interpreted as the likelihood of the
measurement set Zk+1 given all previous measurement sets.

Figure 2.7: Multi-target density
recursions

The operation scheme, shown in figure 2.7, is similar to the previous
one, which use the classical recursion equations.

The previous operations 2.3.31 and 2.3.32 are not tractable in the
general case, even with low number of targets. Less complex models
or approximations have therefore been proposed.

The function D, defined on the single target space X , called the
Intensity or Probability Hypothesis Density (or PHD), is defined, for a
multi-target density distribution f(X), as [GMN97]:

D({x}) =

∫

Y⊇{x}
f(Y )δY

=

∫

Y⊇{x}
f({x} ∪W )δW

=

∞∑

n=0

1

n!
f({x} ∪ {x1, .., xn})dx1...dxn

(2.3.34)

By extension, for any vector x ∈ X , to lighten the notation, shortcut
D(x) is used instead of D({x}).

An interesting property of this function is that, given a region S of
X , the integral

∫
S
Dk|k(x)dx is the expected number of targets in S

at step k. Moreover, we can define Nk|k =
∫
X Dk|k(x)dx as the total

expected number of targets at step k. It is indeed the first moment Note that this function is not a prob-
ability density function, since it does
not necessarily integrate to 1.

of the multi-target posterior of Xk, fk|k(X | Zk) [Mah03].
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The PHD filter aims to provide the calculation of the intensity
Dk|k(x) associated to the intractable multi-target posterior for each
time k. Its complexity is of order O(nm), with m as the number of
measurement vectors, and n the number of targets. Indeed, the expected number of tar-

gets is providing by the mean of the
intensity function, but local informa-
tion in a smaller region can also be
calculated.

Appearance of targets at step k are modelled by a birth intensity
γk. The recursions equations are given by [Mah13a]:

Dk|k−1(x) =

∫
pS(y)fk|k−1(x | y)Dk−1(y) dy + γk(x) (2.3.35)

Dk|k(x) = [1− pD(x)]Dk|k−1(x) +
∑

z∈Zk

pD(x)f(z | x)Dk|k−1(x)

κ(z) +
∫
pD(x)f(z | y)Dk|k−1(y) dy

(2.3.36)

The intensity of the Poisson clutter is defined, for some clutter rate
λ and distribution c(z) as κ(x) = λ c(z). A classical distribution used
is the uniform law on an observation space volume V . It required
consequently the definition of the limits of the observation space.

Equation 2.3.35 (the prediction equation) uses the probability of
survival of each target, combined to their transition equation, with
addition of births contribution. For equation 2.3.36 (the update equa-
tion), the left side is related to the target that are not detected by the
sensors (missed detection). The right side mixes the contribution of
detected targets and clutter.

The recursion equations are however hard to solve, without ana-
lytical expression for general equations. A tractable approximation
using SMC methods has been proposed, which gives access to estima-
tion of the intensity function [VSD05]. However, the state estimation
requires more advanced techniques, to cluster of the particles. Gaus-
sian Mixture Models fitting have been tested for this, but appeared
less performant than the K-Means algorithms [CB07]. Because of the
stochastic approximation with particles, the SMC-PHD filter shares
the troubles of the Particle Filter: sample impoverishment and weight
degeneracy, with need of resampling schemes. But contrary to the Particle Filter, the

weights of the SMC-PHD filter does
not sum to 1, but to the expected
number of targets Nk|k.

The PHD filter has been well studied both theoretically and prac-
tically. One important drawback is its instability over time. Since
only the intensity is propagating through time, it is prone to have high
variance over the number of targets with time. The Cardinalized PHD
filter (CPHD filter) has been proposed to bring more stability to the
estimation of the target number [Mah07a], for a slight increase of the
algorithm complexity (O(nm3) instead of O(nm) for the PHD filter).
Beside the intensity, it also propagates the probability density of the
cardinality of targets trough time. Analytical resolutions for recursions
equations 2.3.35 and 2.3.36, using Gaussian mixtures models, has al-
lowed development of deterministic versions of the PHD and CPHD
filters, respectively the Gaussian Mixture PHD (GM-PHD) [VM06]
and Gaussian Mixture CPHD (GM-CPHD) [VVC07] filters. The PHD
takes the form of a sum of Gaussian components, which weights sum
to the expected number of targets.
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2.3.4 Random Finite Set Bayesian tracker

Multi-target filters provide for each time step information about the
state set Xk. However, they do not provide any link between a specific
target at step k and one other at step k+ 1: we do not have any asso-
ciation of targets through steps. The purpose of trackers is to provide
such information. A multi-target tracker should give an estimate of
the individual tracks for each single target through steps.

Many heuristics have been developed to extend the power of multi-
target filters, to produce tracks. Although they can be fast and simple
to implement, they do not provide any theoretical caution.

A simple heuristic to provide track estimates is to assign to each
Gaussian component of the GM-PHD Filter a tag, which will be prop-
agated through steps [PCV09]. While this seems simple to implement,
attention must be paid to the tag management and track continuities
(example: when target paths are crossing each other). From a more
general point of view, a multi-target filter can be employed jointly with
an association procedure, applied on the filtered states to create the
tracks.

As noted from [Che18], the definition of track depends on the ob-
server point of view:

• From the filtering point of view: it consist in constructing an asso-
ciation of filtered sets at each step k, without ability to modify the
previous associations.

• From the posterior point of view, the associations can be performed
globally, after reception of all the measurement sets from the sen-
sors. Here, the online aspect is lost. Moreover, the exploration of
the set of possible associations appears to be intractable for high
numbers of measurement vectors in each set, or long inspection. Even with no clutter, no death, birth

or miss-detections, if Zk and Zk+1

have cardinality n, the number of pos-
sible assignment is n!.

The online problem has also been treated with a particle filter, using
as particles long vectors containing label associations for each track
and their states [SVL07]. An offline approach with a fully Bayesian
algorithm has been proposed, which appeared to outperform the GM-
PHD filter, at the price of a costly calculation time [VVE11]. The association history of tracks can

indeed be viewed as a long parameter
vector, which posterior distribution is
searched.

The tracking problem has been treated with RFS with some mod-
ifications. It is necessary to define the vectors on an extended space
X × L. The denoted state is noted x = (x, l) with x ∈ X and l ∈ L.
The label space L allows us to move from a filtering to a tracking pro-
cedure. A wanted property is that, for a specific identified target, one
unique label will be related to it.

An extension of the PHD filter for labelled RFS has been proposed
[Gom18], with performances superior to the GM-PHD filter with tags.

The delta Generalized Labelled Multi-Bernoulli (δ-GLMB) filter is
the first Bayes multi-object tracker. It employs the Bayes equations
to propagate uncertainty about the states and their labels.

The distinct label indicator is defined, for a subset X of X × L, as
the quantity ∆(X) which equals 1 if and only if the cardinality of the
set of extracted labels from X, noted L(X), equals the cardinality of And L(x) = l.
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X. It ensures that all the labels of the states vectors of X are different:

∆(X) = δ|X|(|L(X)|) (2.3.37)

The core principle is the formulation of a δ-GLMB RFS X, with
related density: Using notation pX =

∏
x∈X p(x) with

p∅ = 1.

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI(L(X))
[
p(ξ)
]X

(2.3.38)

This density is formed of multiples hypotheses, each characterized
by an tuple (I, ξ), with I a subset of labels from L, supposed to exist
for this hypothesis, an association history ξ, a positive weight ω(I,ξ),
and the probability densities related to the existing targets p(ξ), which
depend on the association history, and are functions of both a vector
from the state space and a label. Conditions on the set is that :

∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ) = 1 (2.3.39)

The cardinality distribution is calculated as:

p(n) =
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δn(|I|) (2.3.40)

The most important property is that this distribution has a closed
form under the Bayes recursion. The set of new targets born at current
step is distributed according to a labelled Multi-Bernoulli (LMB) RFS
with label space B. A LMB RFS has density of the form

(see [Reu+14]):

π(X) = ∆(X)w (L(X))
[
p(ξ)

]X
(2.3.41)

but can simply be described as a set of
probability densities associated with a
probability of existence r ∈ [0, 1], or
more explicitly

{
(r(l), p(l))

}
l∈B.

With L+ = L ∪ B, the filtering density has then the form:

π+(X) = ∆(X)
∑

(I+,ξ)∈F(L+)×Ξ

ω(I+,ξ)δI+(L(X))
[
p

(ξ)
+

]X
(2.3.42)

The updated density has the form:

π(X | Z) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

∑

π∈Π(I)

ω(I,ξ,π)δI(L(X))
[
p(ξ,π)(· | Z)

]X

(2.3.43)
with Π(I) the set of all association possible between measurements

and targets existing in I.
To obtain the set estimate, the MAP of the cardinality (equation

2.3.40) is estimated [VVP14]. Next the hypothesis related to this car-
dinality with higher weight can be used as a MAP estimate for the set
[Pun17].

In practice, to implement these recursions, it is nevertheless nec-
essary to perform truncations during the prediction step, and during
the update step, by retaining only the predicted and updated hypothe-
ses with higher weights. However, a faster implementation is possible,
reducing also the loss of information induced by two successive trun-
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cations. Indeed, the exact update filtering density can be directly
written:

πZ+(X) = ∆(X)
∑

(I,ξ,I+,π+)

ω(I,ξ)ω(I,ξ,I+,π+)δI(L(X))
[
p

(ξ,π+)

Z+

]X

(2.3.44)
Therefore, after enumeration of all possibilities, one single trunca-

tion step is made. This operation saves the number of operations to
perform at each step. Benefit is double: in terms of efficiency and
speed. This technique was first dedicated to the LMB filter [Reu+14],
an approximation of the δ-GLMB filter, but was next applied to it
[HVV15].

Although the previous formulas look complex, in practice, it is suf-
ficient to understand that this filter is only composed of sets of prob- In reality a tracker, or filter and la-

belled RFSability densities attributed to labels, which interacted in the previous
steps with different associations of measurements. The history of asso-
ciations is indeed not really important for sequential filtering purposes.
Of course, this filter outperformed the classical PHD or CPHD filters,
but is more demanding, with cubic complexity during prediction and
update phases [Reu+13b].

Using an assignment algorithm to select truncation, and using Gaus-
sian distributions, the full filter stays completely deterministic. This
is the version of the tracker used in this thesis to perform associations
between states through time.

2.3.5 Metric for comparison of sets

For state space approaches with vectors, comparisons between esti-
mated vectors and their true values are calculated with indicators
based on some distances, depending on the problem. A common choice
is for instance the MSE. Quantification of performances of filtering
method is obtained with resulting scores. However, comparison be-
tween two RFS is far more complex. First, their cardinalities do not
necessarily coincide. Secondly, the FISST theory does note allow addi-
tion operations between sets. Distance definition for RFS using vector
distances is not trivial.

To compare estimated sets resulting from RFS filters, a specific met-
ric has been designed, the Optimal SubPattern Assignment (OSPA)
metric [SVV08]. It introduced two additional variables: the cut-off
parameter c ∈ R+, and the order p ≥ 1. For two vectors x and y, an
intermediate metric is calculated, and defined as:

d(c) (x, y) = min (c, d (x, y)) (2.3.45)

with d any valid metric (for instance the Euclidean ones). Euclidian distance between vectors x
and y is defined as:

d (x, y) = ‖x− y‖22 (2.3.46)
For two sets X = {x1, .., xn} and Y = {y1, .., ym} with respective

cardinalities n and m, such that n ≤ m and n,m > 0, the OSPA
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distance between X and Y is defined as:

d(c)
p (X,Y ) =

[
1

m

(
min
π∈Πm

n∑

i=1

d(c)
(
xi, yπ(i)

)p
+ cp (m− n)

)] 1
p

(2.3.47)
with Πm the set of permutations on {1, ..,m}. If n = 0 or m = 0,

the OSPA distance between X and Y is defined as d(c)
p (X,Y ) = 0.

For the last, where n,m > 0 but n > m, the distance is defined as
d

(c)
p (X,Y ) = d

(c)
p (Y,X).

As indicated by its name, the OSPA metric is a metric (it fulfils
the conditions of identity, symmetry and the triangle inequality). It
induces the calculation of a minimal cost over possible permutations
between vectors, and requires therefore use of a minimal assignment
algorithm. Parameter p acts as a level of penalization for outliers vec-
tors: for high values of p, the distance will give more weight to extreme
values far from the others in the sets. Parameter c is more difficult to
interpret, but could be viewed as a cap value. OSPA distance nears
0 means that X and Y are close, and an OSPA distance near c is the
worst situation, with X and Y highly dissimilar.

2.4 Conclusion

Purpose of this chapter was to introduce the techniques typically ded-
icated to ultrasonic measurement analysis. NDT processing focus on
identification of physical features, which allow a diagnostic about the
condition of the inspected medium. However, their sensitivity to per-
turbations prevents their direct use for field measurements. Specifically
dedicated to complex measurement, a sparse decomposition scheme has
been presented for extraction of sets of features from EMAT signals.
However, this new representation does not allow an understanding of
evolution of signals with time. To include this element, essential for
mobile inspection, state space models offer an efficient and elegant an-
swer. Filters are statistical objects which associate information with
time. For vector states, they estimate hidden information, not directly
accessible from measurements, and provide quantification of the uncer-
tainty relative to this estimation. Their complexity depends on made
assumptions about the evolution of state, notably their linearity. For
multi-object representations, the FISST theory led to the design of
advanced filters based on RFS, notably the PHD and δ-GLMB filters,
which allow estimation on sets with uncertainty related to appearance
or disappearance of objects. Creation of tracks, association of states
across time, is thus made possible. They offer a promising perspective
for joint use with the latter sparse representation methodology.
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3.1 Introduction

Purpose of this chapter is to combine statistical methods to improve
characterization of ultrasonic signals.

For acquisition k of the dataset (a total of N acquisitions are as-
sumed obtained), the MP algorithm finds a Gabor vector set Θk with
unknown cardinality. This set, in this chapter, is assumed to act as a
measurement set:

Zk = Θk (3.1.1)

Objective is thus to build a state space representation, which in-
cludes information about the evolution of the ultrasonic pulses, and
estimate at each step k the hidden state vectors, or in other terms,
provide an estimate about the state set Xk which conducts measure-
ment set Zk, from previous data.

In section 3.2, a new methodology to solve the complete parame-
ter estimation problem of a general multi-target filtering and tracking
process is presented, based on Bayesian processes. No specific a pri-
ori knowledge is assumed from the operator, and our process could
therefore be applied on any practical situation, with attention put on
the reasonable tractability of the problem, in terms of accuracy and
computational resources limitations.

Section 3.3 demonstrates first the statistical validity of approxima-
tions made in the methodology. Simulations are next conducted to as-
sess the performances in terms of accuracy and convergence behaviour.

Section 3.4 describes the main model formulation proposed to solve
the ultrasonic pulse tracking problem. Laboratory experiments were
performed to create situations of interest, in which the filters had to
extract physical information from signals. With respect to the Gabor
representation of ultrasonic signals, new models are elaborated.

Section 3.5 applied the methodology on laboratory experiments con-
ducted with mobile sensors. Control and design of test confirms the
utility of the RFS formulation before application in field rail inspec-
tion.

Section 3.6 described the mobile structure employed for field exper-
iments.

Last section 3.7 applied the methodologies on measurements ob-
tained on rails with head-checking at Eurotunnel.
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3.2 Parameter tuning

3.2.1 Parameters for sparse decomposition

The general methodologies for decomposition of a signal with a Ga-
bor dictionary has been used. However, the number of iterations to
perform has to be chosen, depending on the signals to analyse. With
a different formulation this issue refers to the selection of the stop-
ping criterion of the decomposition recursion. In this section, the MP
algorithm is applied to data coming from our measurements on the
experimental rails. For improved performances, the SAGE algorithm
is applied on all the atoms found at a specific iteration of the MP al-
gorithm. The soft rule is applied for calculation of residuals (equation
2.2.15). To measure performances of decompositions, a specific metric
is introduced for this section. Let y be the signal, decomposed into k
atoms θ1, .., θk at step k of the MP algorithm. We defined the Nor-
malized Mean Square Error (NMSE) at step k (NMSEk) by the ratio
between the energy of the residual signal using the k atoms (energy
of the difference between y and its reconstruction using the available
atoms) and the energy of the original signal y:

NMSEk =
‖y −∑k

i=1 f (θi)‖22
‖y‖22

(3.2.1)

Figure 3.1: Evolution of the
Normalized Mean Square Error
of the decomposition with itera-
tion of the Matching Pursuit al-
gorithm for the 1m rail, with er-
rors bars computed with all ac-
quisitions.

Expected behaviour is to obtain a fast decrease of the curve with
iterations of the MP algorithm. When the NMSE trend reaches a slow
slope, every new atom brings little information, and efforts are lost in
computational resources to improve the decomposition. For one set of
acquisitions (for the 1m and 70 cm rails), the score is averaged over
all measured signals. A total of 15 iterations are performed to see the
evolution of the score.

Figure 3.2: Evolution of the
Normalized Mean Square Error
of the decomposition with itera-
tion of the Matching Pursuit al-
gorithm for the 70 cm rail, with
errors bars computed with all ac-
quisitions.

Figure 3.1 highlights the fast decay of the NMSE on the 1m rail,
which does not content perturbation. The averaging over many ac-
quisitions has removed random noises. After 5 iterations of the MP
algorithm, the score has already reached a quasi-constant trend.

Observations of the 70 cm rail, with electro-erosion defects show
similar results. Even if the decrease during the first steps is weaker,
after iterations 5 and 6, no clear improvement is found.

These results allowed us to select a proper stopping rule for the
decomposition recursion. A threshold on the NMSE is set to 5 %, to
allow extraction of multiple ultrasonic pulses. In the case of noisy
signals, after estimations of the atoms of interest, the MP algorithm
could try to focus on the signal noise, producing many iterations to
reach this threshold, with little improvement of the decomposition. To
prevent this behaviour, and with the empirical knowledge that only few
pulses are present in the signal, a maximum number of iterations is set
to 10.

Our main objective is to extract a huge number of points from the
measurements. Noise and perturbations will sometimes be kept by
the decomposition method. However, application of filtering methods
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allows separation of atoms coming from ultrasonic pulses from these
disturbances, which will be considered as clutter.

3.2.2 Processing of unknown parameters in RFS filtering

As many estimation procedures, filtering processes are conducted by
parameters, which are assumed to be known a priori. Outputs of filters
(let them be state spaces, tracks or cardinality estimations) depend on
the initial values set by the operator, relying on its knowledge about
the phenomenon inspected. Using parameters which do not reflect the
reality could yield degenerated results or lack of estimations (for ex-
ample, no tracks in the case of RFS filtering). Some algorithms have
proven robustness against wrong parametrization, but even approxi-
mate guess can be hard to find in high dimension, when the number
of parameter increases [YJH17].

Parameter inference is the topic dedicated to the estimation of pa-
rameters, or parameter vector ϑ, from data D. Goal is either to pro-
vide a point estimate, or to quantify the uncertainty about parameters.
This information is next included into the previous procedure to get
the vector (or RFS) of interest x.

Point estimation (figure 3.3) involves the quantification of a cost
related to a parameter vector to be optimized. The obtained vector ϑ̂ is
next interpreted as the a priori known vector guiding the phenomenon.

D
Point inference

ϑ̂(D) xϑ̂(D)

Estimation
Figure 3.3: Estimation proce-
dure with point parameter esti-
mator.

In Bayesian inference, this quantification takes the form of a proba-
bility density p(ϑ | D), known as the posterior distribution of ϑ, which
is next used (figure 3.4) for calculation of the expectation of x.

D
Bayesian inference

p(ϑ | D) Ep(ϑ|D) [x]

Estimation
Figure 3.4: Estimation proce-
dure with Bayesian inference.

In the case of RFS filtering, every procedure aiming at solving the
parameter inference problem faces the issue of the high number of pa-
rameters to estimate. In addition to the ones coming from the state
space model, the ones managing the evolution of targets appear: sur-
vival, death, occlusion and clutter.

Some partial solutions have already been studied, for the following
parameter variables:

• Clutter (no dependence across steps): the Poisson model with uni-
form distribution on the observation space can be dealt with MLE
when number of clutter points is assumed to largely exceed the
cardinality of targets, from the Point Process theory. For a con- Estimation gives λ̂ = 1

N

∑N
k=1|Zk|.

stant value of the Poisson clutter distribution λ across measure-
ments, non-uniform distributions can perform better in situation
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where clutter non-homogeneously spreads across the observation
space. MLE procedure using EM formulations has been successfully
tested with the specific case of mixtures of parametric distributions,
for estimation of the clutter intensity parameters (both its λ and
its related distribution). The PHD filter allows calculation of the Mixture of Gaussian distributions

with and uniform distribution which
acts as background noise is a classical
example [LHL10].

derivative of the likelihood, which eases the minimization procedure
[LHL10]. No specific hypothesis is made about the clutter intensity,
but all other parameters are assumed known.

• Clutter (step dependent): in this situation, the clutter intensity will
evolve across steps. Generally, in the literature, only the case of the
variation of the intensity parameter λ is addressed. This allowed the
development of robust algorithms which are able to adapt to differ-
ent practical situations without further tuning. The model by itself
integrates the uncertainty about this parameter, and provides, in
specific case, a step dependent estimation. The idea is to extend the
state space X with an additional state space G [MVV11; Che+12;
Mah12], which contain clutter generators, each of which can pro- Augmented space X̄ = X × G.

duce a clutter measurement. These generators are then modelled
with birth, survival and detection equation, like regular targets.
Statistics made with these specific states provide information about
the evolution of clutter across steps. Implementations have been
proposed for the PHD, CPHD and CBMemBeR filters [Vo+13].
However, efforts are moved on the selection of the clutter generator
models, adding new parameters to be estimated.

• Probability of detection : similarly to the step-dependent clutter,
this parameter can also be a hidden information. An new extension
of the state space to include the probability of detection tracks or
clutter generators allows the modelling of its uncertainty. Assuming
a beta prior for the detection probability, and Gaussian models for A beta distribution with parameters

a, b ∈ R+∗ has density defined by

f(x | a, b) = C(a, b)xa−1(1− x)b−1

on [0, 1], with C(a, b) the normaliza-
tion constant.

the tracks and clutter generator, an analytical form of the CPHD
filter is available [MVV11].

• Target birth : the model used for the RFS filters assumes a prior
model of birth intensity. However, current information about avail-
able measurement are not used to create new tracks, but to confirm
or not the ones already born and created by the birth model. To
save computational resources, it seems more interesting to initiate
new tracks in the neighbourhood of existing measurements. Nev- For a Gaussian Mixture birth inten-

sity, the number of required compo-
nents increased drastically with both
the support of the targets and the di-
mension of the state space.

ertheless, the basic transition equation of RFS filtering must not be
applied directly, since a double use of information (for both creation
of tracks and update of the density of PHD) would be performed.
An efficient solution has been proposed for the PHD and CPHD
filters [RCV10; Ris+12]. Using a mark β ∈ J0, 1K which augments
the state space, with β = 1 denoting a newborn target, and β = 0

an existing one, it is possible to build an adaptive filter which uses
measurements in its birth intensity model. Prediction and update
equations are modified to include this change. A target born at step
k − 1 evolves into an existing one at step k. Moreover, a newborn



statistical characterization of ultrasonic signals for ndt evaluation of rails 73

target at step k is necessarily detected (pD(x | β) = 1 if β = 1).
Measurements allow to reconstruct one part of the state vector, the Augmenting the state space with such

variable is indeed equivalent to con-
sidering two models for targets, and
applying the multiple model recursion
equations.

other part remains uncertain and modelled by probability distribu-
tions. An approximate analytical form is still available for the PHD
and CPHD filters, assuming an uniform probability distribution for
the birth intensity model [HL10; Bea+12]. A different version was
proposed for the LMB and δ-GLMB filters. Since birth are mod-
elled by a LMB distribution, current measurements (set Zk at step
k) are involved in the target birth at step k + 1 [LVN16]. Mea-
surements which have been associated with a low number of targets
inside hypothesis are more prone to create new tracks.

The generic case (ϑ contains combinations of the above cases, or
other variables), has been only studied for the PHD filter. Following
the theory developed for particle filtering, especially the Liu and West
filter [LW01], an adaptive multi-target filter has been designed for ac-
commodating abrupt changes of parameters, thanks to propagation of
sufficient statistics related to the uncertainty on their values [Yan+16].
A different approach is to propagate multiple PHD filters, to compute
at each step the likelihood of a set of parameter vectors {ϑ1, .., ϑK}.
One PHD filter is assigned to one of theses parameters. An additional
step estimate the instantaneous parameter (for instance by selection of
the highest obtained likelihood) [Sch+16]. A drawback of this method
it the cost of running a massive number of filters. Moreover, no specific
model is attributed to the parameter vector variations. A link with
uncertainty quantification on parameters is not straightforward.

3.2.3 Bayesian inference

For Multi-target tracking, the obtained data takes the form of a mea-
surement set collection, noted Z1:N . Calculation of the posterior den-
sity p(ϑ | Z1:N ) is based on the Bayes’ rule:

p(ϑ | ZZ1:N ) =
p(Z1:N | ϑ)p(ϑ)

p(Z1:N )
(3.2.2)

with calculation of the Bayes normalization factor (or evidence of
data Z1:N ):

p(Z1:N ) =

∫
p(Z1:N | ϑ)p(ϑ) dθ (3.2.3)

The prior choice p(ϑ) is operator dependent, relying on previous
experimentations, or knowledge of the admissible bounds for values of
ϑ. A common non-informative prior is the uniform law over a bounded
domain (ex: p(ϑ) = U[ϑinf,ϑsup](ϑ) = 1

ϑsup−ϑinf
in the 1D case). For sampling from the distribution,

following notation is preferred: ϑ ∼
U([ϑinf, ϑsup]).

Unfortunately, in the case of multi-target filtering and tracking, no
close form is directly available for the posterior distribution. Even
worse, no expression for the Bayes normalization factor can be found
in the general situation of a time-varying number of targets.

A solution of this common problem in Bayesian inference, when the
likelihood can still be evaluated, is to use a Monte Carlo Markov Chain
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(MCMC) algorithm. Purpose is to generate a sequence of samples,
called a chain, whose stationary distribution converges to the posterior
of interest [RC04].

The Metropolis Hastings (MH) algorithm only requires an access to
the likelihood of the data, conditioned to a parameter sample ϑ, and to
the prior. It generates a sequence {ϑk} approximately distributed from
p(ϑ | Z1:N ) by exploring the space with a proposal distribution q. It
requires the marginal likelihood Lϑ(Z1:N ), noted Lϑ to be evaluated,
and the design of a proposal distribution q, which will master the
sequence. The principle is indeed very simple: starting from a value ϑk,
a proposal value ϑ∗ is sampled from q(ϑ | ϑk). After evaluation of the
marginal likelihood for this specific value, we keep it with probability
α(ϑ∗, ϑk), with the later defined as the acceptance ratio (or acceptance
probability):

α(ϑ∗, ϑk) =
Lϑ∗

Lϑk
p(ϑ∗)
p(ϑk)

q(ϑk | θ∗)
q(ϑ∗ | ϑk)

(3.2.4)

If the proposed value is not accepted, the value ϑk is kept for this
iteration. Therefore, a proposed value with low likelihood can still be
selected (although with low probability). The amount of accepted val-
ues over the total proposed in the chain (latest equals thus the length
of the chain) is defined as the acceptance rate. For a good exploration
of the space, this rate should neither be near 0 (all samples are re-
jected), nor near 1 (nearly all samples are accepted, and exploration
is thus very low). Heuristically, the proposal is designed to get a rate
between 0.23 and 0.44. It has indeed been shown that the optimal rate
for an unidimensional Gaussian is around 0.44, and for higher dimen-
sions, this rate reach the value of 0.23 [Bro+11]. However, as soon as
the limit values of 0 and 1 are avoided, the chain will still converge,
but with perhaps slower mixing (exploration of the space) [LLC10].

Although simple, this algorithm allows powerful inferences, and re-
sults ensured by strong properties.

3.2.4 Practical considerations for MCMC sampling

An interesting choice for the proposal distribution is a Gaussian cen-
tred at the current values ϑ : ϑ∗ ∼ N (ϑ,Σ) for some covariance matrix
Σ. This proposal is said to be symmetric, since q(ϑ∗ | ϑ) = q(ϑ | ϑ∗) if
Σ is independent of ϑ. Main benefit is to re-write the acceptance ratio
as :

α(ϑ∗, ϑk) =
Lϑ∗

Lϑk
p(ϑ∗)
p(ϑk)

(3.2.5)

This specific case of the MH algorithm is also known as the random
walk MH.

However, a critical point is the starting of the chain, coupled with
choice of the proposal covariance matrix. A possible solution is to let
the MCMC explore the state space to draw samples near the areas of
higher density, and discard those preliminary steps. This is called the
burn-in or warm-up period. An other strategy, not to lose numerous
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points, is to start from the posterior mode, and use a modification of
its variance V̂ar(ϑ). The proposal covariance matrix is then defined as
[She+15]:

Σprop = γ2 2.562

d
V̂ar(ϑ) (3.2.6)

Not to confound this parameter with
the birth intensity of RFS theory. Use
of γ is only specific to this formula.

with γ a tuning parameter which equals 1 for a Gaussian posterior,
and d the dimension of the vector ϑ. To estimate V̂ar(ϑ), if calculation
time is not an issue, a long preliminary MCMC chain can be run
(possibly not mixing well). Numerical differentiation using the log-
likelihood at the mode is also possible, is an estimation of this mode
is provided.

A different approach is to design a step adaptive proposal covari-
ance matrix, which will evolve during the sampling procedure, to reach
a suitable acceptance rate. Taking information from the previous sam-
ples, the covariance matrix is updated. Numerous strategies have been
designed, depending on the nature of the proposal and practical con-
siderations [AT08]. In particular, a robust algorithm has been created
to handle posterior distributions with heavy-tails, without more re-
strictions than the previous adaptive algorithms [Vih12].

An important challenge in sampling with MCMC is the assessment
of simulation performances. An operator could expect his chains to
mix, combined with exploration of the whole space in case of multi-
modality of the posterior distribution. First aspect, mixing, can be
analysed via inspection of the relationship of consecutive samples. If
exploration is very slow (proposal covariance too small), or if the chain
gets stuck at one point (low acceptance rate), correlation between sam- The acceptance rate can locally be

slow because of oversized proposal co-
variance matrix. Nearly all samples
are then rejected

ples will be high on intervals. Looking at the autocorrelation function
is therefore a good indicator to measure mixing. Notably, if ϑ is a uni-
dimensional variable, with {ϑi}Ki=1 the vectors chain and rt

(
{ϑi}Ki=1

)

the autocorrelation function of the chain at lag t, the Integrated Au-
tocorrelation Time (IACT) is defined as 1 plus the area of the auto-
correlation function: An alternative indicator is the Effec-

tive Samples Size (ESS), defined as:

ESS =
K

IACT
(3.2.7)IACT

(
{ϑi}Ki=1

)
= 1 + 2

+∞∑

t=1

rt

(
{ϑi}Ki=1

)
(3.2.8)

Mixing properties between two MCMC chains is made possible with
this indicator, and the one minimizing the IACT preferred.

One other important test is to run multiple chains, and compare
them with a score. The Potential Scale Reduction Factor (PSRF)
has been designed to compare variances between and within chains
[GR92]. It provides an unique scalar R̂ ≥ 1. Good mixing chains
should give a score near the optimal value of 1. It can also be used
during the sampling, as a stopping rule to continue the chain until
a delimited value of R̂ is obtained. This score was original shaped
for univariate variables [GR92], but a multivariate version has been
proposed thereafter [BG98]. A simpler solution is to compute the
score for each dimension, and stop only when all scores are close to 1

[Bro+11].
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3.2.5 Optimal parameter search with Bayesian Optimization

Running a MCMC chain, despite the amount of information it brings
about the parameter posterior, is a long task to perform. Its sequen-
tial nature makes it hard to speed up. Moreover, manipulation of RFS
does not allow to compute an equivalent of the a posteriori expectation
of the filtered states, since RFS can not be added together. A simpler
strategy would be to find only one parameter vector to be used for
the filtering or tracking processes, and get the resulting estimation of
the states or the tracks, conditioned to this specific parameter vec-
tor. Point inference for PHD filters has been tested only for the SMC
method. Optimization is performed by maximization of the likelihood
or log-likelihood of the measurement sets, computed recursively in par-
allel of the filtering process. Therefore, estimation time of Lϑ(Z1:N ) for
a specific ϑ is sensitive to the complexity of the employed algorithm,
number of targets and density of clutter. Search for the optimal, or
approximately optimal point, is prone to take a huge amount of time.
In this part, we present a methodology to provide an estimate of the
parameter vector which maximizes the measurement likelihood with
few evaluations of the objective function (and thus few filtering runs).

A powerful methodology for maximization or minimization with a
costly or noisy objective function is the Bayesian Optimization (BO)
scheme. Since the objective function is costly to evaluate (in terms
of computational resources or times), a surrogate model is build to fit
the available evaluation of the objective function [Sha+16; Ber+11]. A
probabilistic model is generally employed, to include a measurement of
the uncertainty about fitting, and possible prediction in the parameter
space. Optimization is however not performed directly on this approxi-
mation function. It is included in an acquisition function, which makes
a balance between exploitation of the known regions of the parameter
space, and exploration of the space which could also result in better
parameters. Various acquisition functions have been designed: the
Probability of Improvement, methods based on the Upper Confident
Bound for instance. A well-studied function is the Expected Improve-
ment, which has been shown to outperform other methodologies, but
keep an intuitive form [SLA12].

Problem formulation is: the deterministic function to maximize is
written ỹ, which depends on the variable x ∈ Rd, with d the dimension
of x. Some data has already been acquired, taking the form of a set
of n evaluations {yi}ni=1, with yi = y(xi),∀i = 1, .., n for a set of
observations {xi}ni=1. Data is summarized as the set D = {yi}ni=1.
The function y is the stochastic version of ỹ, to include non-perfect
measurements. Based on the maximum of available evaluations ymax = for example, each evaluation can be

perturbed by a random noise εi, such
that y(xi) = ỹ(xi) + εi.

arg max {yi}ni=1, a realization of the Improvement for new observation
x is defined as [JSW98]:

I(x) = max (y(x)− ymax) (3.2.9)

The Expected Improvement (EI) is defined as the expectation of the
Improvement over y. If the distribution of y depends on hyperparam-
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eter vector ρ and data D, it is defined as:

EI(x) =

∫
max (y(x)− ymax) p(y | x,D, ρ) dy (3.2.10)

Inside the BO loop, from a set of previous parameter points, the next
one to evaluate is selected by maximizing the EI over the parameter
space. Indeed, the EI maximization procedure is assumed to be largely
lighter than optimizing the objective function.

Choice of surrogate function is critical, since it conditioned the
tractability of the EI calculation. Either parametric and non-parametric
approximation have been used for this task. A common choice which
coupled well with this acquisition function are Gaussian Processes
(GP). This non-parametric methodology allows modelling of distribu-
tions of functions, from a Gaussian prior [RW06]. The posterior distri-
bution, conditioned to a dataset {(xi, yi)}ni=1 for observations xi ∈ E
and targets yi ∈ R, allows inference on a new observation x∗, giving
its related expected target value ȳ(x), with expression of the linked
variance σ(x∗). Formally, a symmetric positive function K is used to
model the covariance of the GP. If the vector y gathers all acquired
targets, and the matrix X the related observations, a new observation
x∗ will have predicted target y∗. The joint vector [y, y∗]T is assumed
to follow the prior: A 0 mean is generally assumed to ease

calculation but any m ∈ Rn is admis-
sible.[

y

y∗

]
∼ N

(
0,

[
K(X,X) K(X,x∗)

K(x∗, X) K(x∗, x∗)

])
(3.2.11)

Consequently, conditioning to this joint prior, following properties
results [RW06]: To lighten the notation, reference to ρ

and D is dropped for these two vari-
ables, but should not be forgotten.

p (y∗ | X, y, x∗) = N
(
y∗ | ȳ(x∗), σ2(x∗)

)
(3.2.12)

with

ȳ(x∗) = K(x∗, X)K(X,X)−1y (3.2.13)

σ2(x∗) = K(x∗, x∗)−K(x∗, X)K(X,X)−1K(X,x∗) (3.2.14)

The analytical form of the EI, which also depends on hyperparam-
eter vector ρ, is described in this specific situation by:

EIρ(x) = (ȳ(x)− ymax)φ

(
ȳ(x)− ymax

σ(x)

)
+ σ(x)ϕ

(
ȳ(x)− ymax

σ(x)

)

(3.2.15)
An interesting property of the GP modelling is the possibility to

automatically select its hyperparameters, by selection of the vector ρ
which maximizes the marginal likelihood. The acquisition function is Notes: we are here in the context of

the inference from the sets of the fil-
ter’s parameters, and data are the cor-
responding value of the objective func-
tion (log-likelihood of the measure-
ments). Marginalization is performed
over the latent functions f according
the the GP modelling.

thus x 7→ EIρMLE(x).
A Bayesian solution of the equation is also possible through marginal-

ization over values of ρ [SLA12]. Under a prior p(ρ) over hyperparam-
eters, the posterior density p(ρ | D) is generally not known in a close
form. Running a MH algorithm to produce P values targetting this dis-
tribution is more tractable. To bypass the fastidious tuning aspects,
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a Slice sampling algorithm have been proposed to perform efficient
sampling of GP hyperparameters [MA10], with better performances
than the classical MH. The chain’s parameter have little impact of
the convergence properties, and can be randomly fixed. From these
procedures, a set {ρi}Pi=1 is obtained, giving the following EI formula:

ẼI(x) =
1

P

P∑

i=1

EIρi(x) (3.2.16)

The optimization of the acquisition function is next performed with
any procedure, stochastic or deterministic. Numerical differentiation is
possible to estimate the Jacobian, taking advantage of the fast evalua-
tion of the acquisition function. Since the EI (either MLE of Bayesian
form) can have multiples local maxima, the search should be repeated.

3.2.6 Proposed methodology for parameter estimation of RFS filters

Using the PHD or δ-GLMB filters, maximization of the data likeli-
hood Lϑ(Z1:N ) =

∏N
k=1 fϑ(Zk) is not straightforward. Unfortunately,

a close form for calculation of this quantity is not accessible under as-
sumptions made by these two filters. However, formula of calculation
can be used to perform estimations of their values.

For the PHD filter, if the predicted multi-target density fk+1|k (X | Z1:K)

is approximately Poisson, using notation Zk = {zi}mi=1, then [Mah03;
Mah13b]:

f(Zk) = exp

[
−λ−

∫
Dk|k−1(x)pD(x) dx

] m∏

i=1

(
κ(zi) +

∫
Dk|k−1(x)pD(x)f(zi | x) dx

)

(3.2.17)
Under the Poisson assumption, calculation of the likelihood of mea-

surement set Zk has still complexity O(nm) with n the number of
targets.

However, for the δ-GLMB filter, evaluation formula of likelihood of
the set Zk gives [Reu+13a; Mah13b]:

f(Zk) = fc(Zk)
∑

(I,ξ)∈F(L)×Ξ

∑

π∈Π(I)

ω(I,ξ)
[
p(ξ,π)(· | Zk)

]I
(3.2.18)

with the term related to clutter (with Poisson assumption) fc(Zk)

defined as:

fc(Zk) = e−λ
m∏

i=1

κ(zi) (3.2.19)

The form of the likelihood for the δ-GLMB filter is the same as with
resolution of the Bayesian recursion equations. The overall complex-
ity of evaluation grows exponentially with targets, measurements and
steps. In this specific case, use of only terms obtain after truncation
will result in a biased estimate of the likelihood. The bias will highly
depend on the number of truncations allowed.
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Our proposed methodology to find the best parameter vector ϑ
which maximizes the data likelihood is to use the Poisson approxima-
tion. Final objective is to use the δ-GLMB filter for track estimations,
but the PHD filter is used as a simplification, whose only objective is
to provide an efficient evaluation of the data likelihood. This strategy
is sub-optimal, but is a practical solution to the tuning of the tracker.

However, for long measurements (high number of measurement sets,
N), evaluation of the data likelihood remains a long task. We propose
to use a second level of approximation to find the parameter vector
ϑ? which maximizes the data likelihood estimated with the Poisson
approximation. Summary of the full process in presented in figure 3.5.

PHD filter

Lϑ(Z1:N )ϑ

Z1:N

δ-GLMB filter

Bayesian
Optimization

ϑ⋆

Zk X̂k, N̂k|k

Figure 3.5: Proposed procedure
for estimation of the optimal
model and filter vector ϑ?, using
the Poisson approximation, and
Bayesian Optimization methods.

Dataset for the BO recursion will be composed of proposed parame-
ter vectors with their associated likelihood values, estimated from PHD
filter runs on the total measurement sets Z1:N . The final parameter
vector ϑ? is the only vector applied to the δ-GLMB filter. Estimates of
states, cardinalities and tracks are next performed, producing the al-
gorithm output. Consequently, from only the measurement sets Z1:N ,
this methodology estimates the model and filter parameter, and pro-
vides estimations of targeted tracks.

All the steps are presented in algorithm 1. The procedure needs
preliminary evaluations of the likelihood for parameters vectors spread
on the parameter space, to create an initial dataset D. Using n0 ∈ N∗

points uniformly sampled in this space is possible. These points allow
an efficient training of the GP in the first BO loop. An operator
only have to select a number of initial parameter vectors, and the
maximum number of BO recursions niter, depending on the time or
resources available. Optimal parameter vector is next selected from
the final dataset, and used by the δ-GLMB filter to provide tracks and
cardinalities.

3.3 Bayesian inference in multi-target scenario

3.3.1 Simulation scenario for performances assessment

The aim of this section is to demonstrate the performances of the above
methods on a well documented scenario.
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Algorithm 1: Automatic procedure for track estimation with
the δ-GLMB filter.
Input : Measurement sets Z1:N , Initial dataset

D =
{

(ϑ0,i,Lϑ0,i
)
}n0

i=1

Output: Optimal model an filter parameter vector ϑ?, track
estimates X1:N , cardinality estimates

{
Nk|k

}N
k=1

Bayesian Optimization:
for i = 1, .., niter do

Fit a Gaussian Process f with dataset D
Use f to construct EIρMLE (or ẼI)
Select ϑi = arg maxϑEIρMLE(ϑ) (or arg maxϑ ẼI(ϑ))
Run a PHD filter to estimate Lϑi = p(Z1:N | ϑi)
Update dataset D = D ∪ {(ϑi,Lϑi)}

Set ϑ? = arg maxϑ∈D Lϑ
δ-GLMB filter recursion:
for k = 1, .., N do

Joint predict and update to estimate π (X | Zk, ϑi)
Estimate X̂k and Nk|k from π (X | Zk, ϑi)

This simulation has been intensely exploited in the RFS filtering
literature to analyse the performances of new filters, and compare them
with existing state-of-the-art results [Vo+13; VVP14; VVH17]. Here,
known targets are assumed to move in a 2D environment, described
by two axes (x-axis and y-axis). Each target is described by a four
dimensional vector x ∈ R4, containing the positions (px and py) and
velocities (vx and vy) according to the two axis x = [px, vx, py, vy]

T .
Targets tracks are simulated during N = 100 steps. Time interval
between each step is set to ∆t = 1 s. Transition function is assumed
to be linear with Gaussian perturbation, with transition matrix F and
covariance matrix Q:

F =




1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1


 and Q = σ2

Q




∆t4/4 ∆x3/2 0 0

∆t3/2 ∆t2 0 0

0 0 ∆t4/4 ∆x3/2

0 0 ∆t3/2 ∆t




(3.3.1)
with σ2

Q = 0.1m/s−2. Measurements available are the noisy po-
sition, with measurement matrix H and perturbation matrix R such
that:

H =

[
1 0 0 0

0 0 1 0

]
and R = σ2

R

[
1 0

0 1

]
(3.3.2)

with σR = 10m/s. In addition, clutter points are generated accord-
ing to a Poisson RFS with clutter rate λ = 10 and uniform distribution
over the volume [−1000, 1000] × [−1000, 1000]. A total of 12 targets
will appear, but at maximum 10 at the same time (2 will die).

All tracks are displayed in figures 3.6, where the real paths are shown
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Figure 3.6: 2D-representation of
the tracks with clutter.

Figure 3.7: Step dependent rep-
resentation of the tracks with
clutter on x-axis and y-axis.
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on the 2D-plan in colours, with the cluttered measurements shown as
the points. Figure 3.7 shows the evolution of displacement of tracks on
each dimension with time (or steps) with the same rules of colours. For
a human operator, distinction of individual tracks (without colours) is
made difficult by both the presence of clutter and the noisy paths of
tracks, justifying the use of a RFS filter.

3.3.2 Kernel choice for Bayesian Optimization

To face numerous cases in the parameter optimization procedure of
algorithm 1, the GP covariance function has to be chosen. A com-
mon and flexible choice is the Matérn covariance function [RW06],
which generalizes the square-exponential function. Adding a white
noise term to this kernel allows also to solve instabilities and is useful
when evaluations are not deterministic. If the parameter vector ϑ has
dimension d ∈ N∗, our anisotropic covariance function between vector
ϑ1 = [ϑ1,1, .., ϑ1,d]

T and vector ϑ2 = [ϑ2,1, .., ϑ2,d]
T is defined as:

K (ϑ1, ϑ2) = C
21−ν

Γ(ν)

(
√

2ν

d∑

i=1

(ϑ1,i − ϑ2,i)
2

li

)
Kν

(
√

2ν

d∑

i=1

(ϑ1,i − ϑ2,i)
2

li

)
+W

(3.3.3)
with C a positive constant, Γ the Gamma function, Kν the modified

Bessel function of second kind of order ν, ν a positive hyperparameter,
l a stricly positive vector andW a positive scaler which models a white
noise. A common choice for hyperparameter ν is 2.5 or 1.5 (selected
for the following applications). Other values make the evaluations of
the function hard. The vector l models a scale hyperparameter for
every dimension of ϑ, causing the anisotropic property of the kernel. Selecting a vector l with identical

components gives the isotropic kernel,
which lower the complexity of hyper-
parameter tuning, but can be damag-
ing in high dimension.

For our application the complete EI formula 3.2.16, with 1000 sampled
hyperparameters vectors (and 100 kept).

3.3.3 Posterior distribution of parameter

The birth intensity is described as:

γ(x) =
4∑

i=1

wbN
(
x | µ(i)

b , Pb

)
(3.3.4)

with wb, µ
(1)
b = [0, 0, 0, 0]

T , µ(2)
b = [−800, 0,−200, 0]

T , µ(3)
b =

[−200, 0, 8000, 0]
T , µ(4)

b = [400, 0,−600, 0]
T and Pb = diag ([100, 100, 100, 100]).

Estimation of likelihood with PHD filter is based on the Poisson
approximation of the multi-target densities. For the GLMB filter,
the likelihood is approximated by its truncation, depending on the
number of retained hypotheses. Parameter vector (unknown) gathers
the clutter Poisson parameter λ and the measurement noise parameter
σ2
R. Goal is to provide estimation of the posterior density p (ϑ | D)

with ϑ =
[
λ, σ2

R

]
. To reach this objective, a MCMC algorithm is run,

with adaptive exploration strategy during the burn-in phase. The real
vector has thus value ϑTrue = [10, 100].
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To run the MH chain, Uniform prior and half-Gaussian wide priors
are used respectively for λ and σ2

R: The density Half-Gaussian distribu-
tion with variance σ2 is defined on the
positive real axis R+ as twice the den-
sity of the Gaussian distribution with
mean 0 and variance σ2.p(λ) = U ([0, 25]) (3.3.5)

p(σ2
R) = Half-N (100) (3.3.6)

The random-walk proposal is applied on the log-transform of the
variable σ2

R, to prevent negative values. Consequently, the acceptance
ratio takes the following form:

α(ϑ∗, ϑk) =
Lϑ∗

Lϑk
p(ϑ∗)
p(ϑk)

σ2,∗
R

σ2
R,k

(3.3.7)

The δ-GLMB filter uses truncations of 25 and 100 components. Pos-
terior distributions resulting from the PHD MCMC chain has supports
centred on the true values of parameters. The GLMB filter, however,
shows posterior distributions with high biases, even in this low dimen-
sion case (d = 2), as shown in comparison between figures 3.8 and 3.9.
In this situation, it seems to be more interesting to use the PHD filter
for the simulation of numerous filtering processes. In addition, con-
trary to the δ-GLMB filter, it has only linear complexity in the mea-
surement set cardinality. Reducing the bias on the likelihood could
require the computation of a higher number of hypotheses, increas-
ing the computational cost. The Poisson approximation is therefore
enough for this specific application.

Figure 3.8: MCMC chain with
25 terms truncation for the
GLMB filter.

Observation of cardinalities highlights the lost induced by a low
number of truncation terms with the GLMB filter. Even if the pos-
terior cardinalities have less variance than the ones obtained from the
PHD filter, the GLMB filter is not able to track all targets with a low
number of retained hypotheses, see figures 3.10 and 3.11. The PHD
filter posterior cardinalities have higher variances but approach the
real cardinalities with less resources.
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Figure 3.9: MCMC chain with
100 terms truncation for the
GLMB filter.

Figure 3.10: Cardinalities with
25 terms truncation for the
GLMB filter.

Figure 3.11: Cardinalities with
100 terms truncation for the
GLMB filter.
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3.3.4 Fast optimal parameter search on simulation

Contrary to the previous case, the measurement noise parameter is
split into 2 different parameters: one for x-axis (σ2

x) and one for y-axis
(σ2
y). Search is performed in a space of dimension 3 ϑ =

[
λ, σ2

x, σ
2
y

]T .
The covariance function for the GP is the Anisotropic Exponential
Square kernel (one scale variable per dimension, therefore 3 in our
case). Hyperparameters are tuned using the MLE method. A maxi-
mum of 50 iterations, during the BO process, is performed. Optimiza-
tion of the acquisition function is made with random search combined
with use of the BFGS algorithm.

Here, it is sufficient to use the PHD filter to evaluate the log-
likelihood. After twenty evaluations, a value is obtained λ = 9.8,
σ2
x = 101.05 and σ2

y = 101.04. Use of δ-GLMB filter is therefore not
necessary, if one is looking only for a rough estimation of the vector
parameter.

3.4 Ultrasonic pulses tracking

3.4.1 General model for pulses propagation

In this section, a state space model is proposed to represent ultra-
sonic pulses across acquisitions. A major point is the ability of sur-
face waves (and particularly Rayleigh waves) to interact with cracks.
A phenomenon of diffraction of the Rayleigh wave has already been
studied [Jia+07], and dependences between reflected pulse amplitudes
and the crack depth highlighted. Relationships between angle of an in-
clined crack and amplitudes of refracted and reflected pulses has been
analysed in the context of laser generated Rayleigh waves [Ni+10].
However, methodologies to analyse these particular phenomena are
not suited to mobile inspection. Nevertheless, possibility to extract
information from reflections allows the construction of a state space
which includes the possibility of identifying these events from regular
pulses.

In ultrasonic signals, events take the form of pulses distributed
across a time interval (duration of measurement). Decomposition with
Gabor wavelets allowed the transformation of raw measurement, or
acquisition, into a set of Gabor functions parameters. Each event, or
pulse, has a specific characterization inside one acquisition. However,
ultrasonic sensors do not guarantee perfect measurements. Depending
on the sensor quality, measurement system or properties and shape
of the inspected medium, the raw signal can carry disturbances, de-
teriorating the decomposition. A common solution to bypass short In ultrasonic testing with wedges, a lit-

tle variation of the sensor’s orientation
can induce a miss detection of several
pulses, depending on the directivity of
the propagating waves.

disturbances, such as measurement noise, is to average numerous ac-
quired signals. If noise is Gaussian and centred, independent of the
measurement sampling, the mean signal is the best estimator, which
precision increases with the number of signals included.

However, a major drawback of dynamic inspection is the impossibil-
ity to perform multiple acquisitions on a fixed position of the material.
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On linear shape inspected mediums, such as rails, each acquisition will
deliver unique information about a local area. Averaging is no longer a
valid solution, since pulses could have changing characteristics across
acquisitions. Hence, it is necessary to model these specific behaviours,
to recognize the pulses and follow them as the sensors move.

E R

| | | |
(Ox)l1 l2xk

d

u
(2)
k

u
(0)
k

u
(1)
k

Figure 3.12: Pulses propagation
on a bounded medium (limited
on the x-axis between l1 and l2);
E: emitter; R: receiver; d: dis-
tance between E and R; u(i)

k :
ToF for pulses for modes i =

0, 1, 2.

In a bounded medium, ultrasonic pulses propagating are reflecting
by the borders. Figure 3.12 illustrates this phenomenon with a solid
delimited by two planes, put on the x-axis, at positions l1 and l2, such
that l1 < l2. After generation by the emitter (E) at position xk, the
pulse travels a path of length d to the receiver (R). It next continues its
travel across the medium, and undergoes a reflection because of a plane
orthogonal to its propagation direction. For an acquisition indexed by for non-orthogonal planes, angle of re-

flection follows the Snell-Descartes lawthe integer k ∈ N, the ToF of the pulse coming from the emitter and
directly passing under the receiver is noted u(0)

k . This pulse is called
the direct pulse. After reflection on border l2, the pulse produces a
new excitation of the receiver, called the front echo, with ToF noted
u

(1)
k . In addition, the emitter could not be perfectly uni-directional.

During the generation of the pulse at xk, a small amount of energy
could generate an ultrasonic pulse which propagates in the opposite
direction of the direct pulse. A possible reflection on border l1 could
result in one other pulse, called the back echo, if the pulse reaches the
receiver.

Some relationships between the different ToF are easily obtained,
like u(0)

k ≤ u
(1)
k and u

(0)
k ≤ u

(2)
k . Especially, for both positions of

emitter and receiver between the two boundaries (l1 ≤ xk ≤ l2 − d),
for a constant pulse velocity v, and an emission at time t0, the following
relationships are raised:

d = v(u
(0)
k − t0) (3.4.1)

d+ 2(l2 − xk) = v(u
(1)
k − t0) (3.4.2)

d+ 2(xk − l1) = v(u
(2)
k − t0) (3.4.3)

Between two successive acquisitions, one at step k − 1 and a next
at step k, ToF for front and back echoes are modified. With notation
∆x = xk−xk−1, if ∆x > 0 (displacement of the emitter-receiver device
in the direct direction of the x-axis, the front echo will be detected
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earlier u(1)
k < u

(1)
k−1, and the back echo later u(2)

k−1 < u
(2)
k . The direct

one should not have moved u(0)
k ≈ u

(0)
k−1.

u
(0)
k−1

k

k − 1

u
(0)
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Figure 3.13: Change of arrival
times for direct pulse (index 0),
front (index 1) and back (index
2) echoes with between two con-
secutive ultrasonic acquisitions.

To analyse the change of ToF, we define the pace pu as:

pu =
∆u

∆x
(3.4.4)

For the front echo, it is written:

p(1)
u =

u
(0)
k − u

(0)
k−1

∆x

=
d+ 2(l2 − xk)− d− 2(l2 − xk−1)

v

1

∆x

= −2

v

(3.4.5)

Similarly, for the back echo:

p(1)
u = +

2

v
(3.4.6)

This indicator, which is indeed a derivative of a time quantity ac-
cording to a variation of a space position, is directly proportional to the
inverse of the pulse velocity v. A knowledge of ∆x allows to retrieve
this important information.

Of course, for complex geometries, multiples reflections could arise.
If different kinds of waves are generated, recorded signal would be a
mixture of direct pulses with their reflections. In the following, we
make the distinction between these identified types of pulses:

• Direct pulses, identified as the mode 0, which have constant ToF
across acquisitions, and therefore null paces;

• Front echoes, resulting from reflections, with the latest on the front
border (relatively to the sensors), identified as the mode 1. Their
paces are negative;
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• Back echoes, resulting from reflections, with the latest on the back
border, identified as the mode 2. Their paces are positive.

Unfortunately, the decomposition of ultrasonic signals does not in-
clude instantaneous information about the pulses natures (direct or
echo), and their paces (and consequently their propagation velocities).
This motivates the use of the filtering and tracking methods, to recover
these hidden variables and to decompose the joint set of acquisitions
into specific groups of pulses (thus by modes).

A noticeable result can easily be obtained with consideration of echo
paths. If the distance between the emitter and the receiver, noted ER
and the current position of the emitter are known, it is possible to
estimate the position of the defect.

With front echoes, replacing l2 by the position of the defect xD
gives:

xD = xk +
v (u

(1)
k − t0)− ER

2
(3.4.7)

Similarly, for back echoes, replacing l1 by xD gives:

xD = xk −
v (u

(2)
k − t0)− ER

2
(3.4.8)

These relationships can therefore be used when a track for a back
or front echo has been identified in the process, giving a precision on
the defect location.

3.4.2 Ultrasonic pulse model

A further specification of the model used in this thesis is now presented.
A measurement set Z produced by a decomposition algorithm is as-
sumed to contain the noisy versions of the real states. A measurement
vector z ∈ Z can be written:

z =
[
ũ, Ã, ν̃, ς̃

]
(3.4.9)

where ỹ refers to the noisy measurement of a state y.
Inclusion of dynamic information between steps is performed by the

first order approximation 3.4.4. Using the pace pu as an information
available in the state space, the following approximation results from
previous equation:

uk = uk−1 + ∆x pu,k (3.4.10)

The take into account evolution of amplitude with time, a pace pA
related to state value A is introduced, which follows the same hypothe-
ses:

Ak = Ak−1 + ∆x pA,k (3.4.11)

Possibility of variations of the amplitude allows to track the de-
cay induced by a pulse reflected by a distant defect. Moreover, slow
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variations of the lift-off could also induce a variation of the signal am-
plitude. Allowing a small change with time for all pulses (direct pulses
included) gives more flexibility to the tracking scheme.

To prevent overflow errors, the variable ϑ =
√
s is preferred over s.

A space vector x belonging to the state set X has therefore the form:

x = [u, pu, A, pA, ν, ς, ]
T (3.4.12)

The chosen model is the linear one with Gaussian perturbations
(from example 2.3.1).

The transition matrix between states, for equation 2.3.3 is written:

F =




1 ∆x 0 0 0 0

0 1 0 0 0 0

0 0 1 ∆x 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(3.4.13)

Measurement matrix for equation 2.3.4 is defined as:

H =




1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


 (3.4.14)

The state perturbation covariance matrix selected (2.3.5) is the dis-
crete piecewise model [Sär13]:

Q =




qu∆x3/3 qu∆x2/2 0 0 0 0

qu∆x2/2 qu∆x2 0 0 0 0

0 0 qA∆x3/3 qA∆x2/2 0 0

0 0 qA∆x2/2 qA∆x 0 0

0 0 0 0 qν 0

0 0 0 0 0 qς




(3.4.15)

with four parameters qu, qA, qν , qς , respectively related to variables
u, A, ν and ς.

Finally, noise measurement matrix (equation 2.3.6) is defined, with
four more positive parameters ru, rA, rν , rς , as:

R =




ru 0 0 0

0 rA 0 0

0 0 rν 0

0 0 0 rς


 (3.4.16)
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All state values are assumed to belong to R. Although this contra-
dicts the physical need to obtain positive estimations of amplitude A,
frequency ν and spread ς, since measurements are ensured to follow
this condition with the MP algorithm, this issue is mitigated. The dis-
tinction between modes (0, 1 or 2) is entirely dependent on the value of
the pace pu. To prevent switching of modes between steps, little uncer-
tainty should be related to estimation of this variable. This is traduced
in practice by use of low amplitude initial covariance coefficients for
the related variable.

Variables dedicated to the model to be estimated are therefore: qu,
qA, qν , qς , ru, rA, rν and rς . To save some resources, and use available
information from visual inspections of B-scans, survival probability is
fixed to pS = 0.90, and detection probability pD = 0.95, therefore
constant for our experiments.

For our experimentations, u and ς are expressed in µs, and ν in
MHz. With issue related to gain, A is not expected to exceed 100u.a..
Moreover, ∆x is expressed in m.

3.4.3 Birth design

We benefit from the developments of adaptive birth strategies for the
GM-PHD [Bea+12] and δ-GLMB [LVN16] filters. They allow the birth
of new tracks around current existing measurements. Here, the distri-
butions of new tracks are initiated by a single Gaussian component.
For the GM-PHD filter, newborn targets will evolve into persistent
targets at the next step, but are already included at current step.
For the δ-GLMB filter, new targets will only be initiated during the
next step, depending on the likelihood of each measurements (mea-
surements with low likelihood have more chance to initiate new tracks
than measurements already explained by existing tracks).

Adaptive births strategies create new parameters specific to each
filter, to be tuned. However, since there are only few parameters
changing, we suggest repeating for some iterations our optimization
procedure, to find the best birth parameter for the δ-GLMB filter, but
keeping the common parameters shared with the GM-PHD filter.

In addition, since no information about the mode of the new track is
available, each measurement initiates three new targets: one for each
pulse mode. At step k, for each vector z(i)

k ∈ Zk, such that zk =[
ũk, Ãk, ν̃k, ς̃k

]T
, three Gaussian distributions are initiated, defined by

their mean vector:

µ
(i)
b =

[
ũk, p

(i)
u , Ãk, p

(i)
A , ν̃k, ς̃k

]T
, i ∈ {0, 1, 2} (3.4.17)

and the common covariance matrix Pb, which is diagonal, with di-
agonal equals to:

diag(Pb) = [ru, 1, rA, 1000, rν , rς ]
T (3.4.18)

Depending on the pulse mode i, values of pu and pA are adapted
from the knowledge we have about attenuation with distances and
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Mode i Arrival time pace p(i)
u Amplitude pace p(i)

A

0 (Direct) 0 0
1 (Front) -678 100
2 (Back) 678 -100

Table 3.1: Variables of the adap-
tive birth mean which are spe-
cific to each pulse mode.

velocity of the Rayleigh wave: front echoes (mode 1) arrive earlier with
step, and their amplitudes increase (attenuation is reduced as paths are
shortened), and opposite results are expected for back echoes (mode
2). Values are gathered in table 3.1.

3.4.4 Mode identification

Figure 3.14: Configuration for
test on a steel pipe with wedge
ultrasonic transducers in the
same direction.

A steel pipe is inspected, with two wedges transducers (with 35◦

angles) in the same direction, see figure 3.14. Since the inspection This configuration favour the echoes

is performed near the borders of the pipe, echoes are present is the
measured signals, as shown in figure 3.15. To estimate the pulses ve-
locities (direct pulses and echoes), it is necessary to include the mode
of the pulse inside the estimation process. Since no information is a
priori available about the pulse mode, the filter will have to decide the
mode by applying recursive decisions. Detector is the Matching Pur-
suit algorithm, which produced the sets of Gabor parameter vectors.
Information selecting for tracking are the amplitude of the pulses and
their ToF. A RFS filter with multiple models is constructed, with a
large Gaussian prior put for velocity direct pulses, and a different for
the echo pulses. Model parameters are selected using the Bayesian
Optimization procedure.

A total of 8 acquisitions are obtained. All the tracks are shown
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Figure 3.15: Signals from the
steel pipe experiment.

Figure 3.16: Tracks obtained
from arrival times (in µs) and
amplitudes of pulses (in arbi-
trary units u.a.) of the experi-
ment on steel pipe.
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in figure 3.16. From the tracks, the mean velocities are extracted.
Results are summarized in the following table, with ranking based
on the length of tracks (or lifespan), and showing their estimation.
For short tracks, estimations are not reliable. Longer tracks show
propagation velocities in the range of 3000m/s, consistent with the
velocity of ultrasonic waves in metal.

Lifespan (steps) Type Velocity (m/s)

8 Direct 3125
6 Direct 2915
5 Echo 3547
4 Echo 2607
3 Echo 2760
2 Direct 2785

Table 3.2: Characteristics of
pulses on steel pipe experiment.

3.4.5 Velocity estimation on rail

The previous methodologies are now demonstrated on a laboratory
experiment conducted on the 1m rail. Purpose is to identify the echoes
coming from reflections on defects. Previous methodology is applied
to estimate optimal parameter vector. The δ-GLMB filter provides the
final estimations of states and cardinalities.

For assessment of performances, the indicators used are: the cardi-
nalities related to each mode, and OSPA (with parameters p = 1 and
c = 100).

Figure 3.17: OSPA metric be-
tween set states from manual la-
belling and estimation from the
δ-GLMB filter.

First observation is related to the OSPA: the metric exhibits some
peaks at starts and ends of tracks. For some short tracks, relative to
the signals between central defects of the rail, the tracker does not
succeed in initiating tracks. This is certainly due to high variations of
amplitudes in the areas.

Cardinalities obtained from the tracker and manual labelling exhibit
the same trends (figure 3.20). However, cardinalities resulting from the
tracker has slightly higher cardinalities.

Figure 3.18: Arrival times and
amplitudes estimated from the
δ-GLMB filter.

Qualitatively, the tracker succeeded in reproducing the association
performed by the manual labelling of points. Indicators highlighted
the difficulties of the tracker to manage the short paths between de-
fects. However, estimations are efficient on stable areas, and reflection
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Figure 3.19: Arrival times and
amplitudes resulting from man-
ual labelling of points.

Figure 3.20: Estimated cardinal-
ities for each mode - from man-
ual labelling and tracker estima-
tions.
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echoes has also been clearly identified. For the next applications of
rail inspection, the same model parameters will be used. Only made
adaptations will be related to the clutter rate λ, which will depend on
the experimental environment.

3.5 Sensitivity of sensors toward movement

3.5.1 Laboratory experiments of mobile inspections

RAILENIUM test bench allows automatic displacement of the mea-
surement device over a limited distance, up to 2m, at speed limited
to 5m/s. Previous experiments made with this equipment only per-
formed qualitative analyses of inspections [Nda16]. The main benefit
of measuring EMAT signals on laboratory is the control of the ex-
periment parameters. The configuration of sensors and tested rails is
known, allowing a comparison of results from immobile experiments
with dynamic ones. Objective is to obtain with mobile measurements
detection and characterization performances close to the previous ob-
tained from clean signals in the ideal situation of immobile sensors
with non-zero lift-off. Because of the non-negligible lift-off, ultrasonic To prevent electrical issues, a plastic

or paper protection is always inserted
between the rail and sensors, there-
fore the lift-off does not strictly equal
0mm

pulses are expected to have lower amplitudes. Possible solution could
be either to strengthen the power signal used by the generator for
pulse emission, or to increase the gain. However, the later will also
amplify external perturbations, which have the effect of generating
noisy signals. For white Gaussian noise, frequency filtering allows a
fast denoising of the signal. However, transformations of the received
signal by hardware filters could create some artefacts in the signal
with frequencies near the central frequency of EMAT pulses (around
500 kHz). Sparse decomposition with MP algorithm is expected to ex-
tract the main pulses of interest, and possibly minor events not related
to pulse propagations.

This section will compare some features extracted from both immo-
bile and mobile inspection of the two laboratory rails. A comparison of
estimated ToF will be first perform, which allows a preliminary com-
parison of signals. Next, filtering methods with Gabor decompositions
of signals will be applied to measurements. Since the mobile inspection
does not allow a comparison of acquisitions at the same rail locations,
use of OSPA distance is not performed. However, estimations of car-
dinalities for each pulse mode is still possible, with little adaptations
of results.

3.5.2 Time of flight degradation with speed

Three examples of measurements performed on the 70 cm rail are per-
formed: one with immobile inspection, one with mobile inspection
devices at low speed (0.5m/s) and medium precision (PRF = 25) and
a last with same speed inspection but higher precision (PFR = 100).
Distance between emitter and receiver is set to 10 cm, to measure a
nominal ToF of 39.4µs.
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The CWT serves as a basis for identification of the ToF, with anal-
ysis made on the frequency bandwidth [400 kHz, 700 kHz]. Expected
theoretical changes of ToF for 6mm depths defects are around 4.2µs, Total path to add for the Rayleigh

wave ≈ 2 ∗ depth + ticknessand for 3mm depths around 2.2µs.
A display of the three related B-scans (figure 3.21) highlights the

visual similarities between experiences. Even with moving sensors,
echoes and reflections from defects are observed in signals.
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Figure 3.21: B-scan of the 70 cm

rail for static acquisitions, dy-
namic acquisitions with PRF =

25 and dynamic acquisitions
with PRF = 100.

To study the estimations made of ToF, damaged areas are identified
manually: when a defect is located between emitter and receiver, the
estimations of ToF are gathered and referred to this specific defect. To
prevent side effects, defects have to be located between magnets (not
below them).

Static PRF = 25 PRF = 100

CWT MP CWT MP CWT MP

Defect 6mm, α = 0◦ 5.0 5.2 10 38 7.0 25
Defect 6mm, α = 45◦ 4.2 4.3 3.2 3.2 4.1 8.1
Defect 3mm, α = 45◦ 0.53 0.60 0.87 0.76 0.83 0.95
Defect 3mm, α = 0◦ 0.44 0.51 1.0 0.59 1.2 0.92

Table 3.3: Mean difference of
time of flights with reference
value, in µs, for the 70 cm rail
for static acquisitions, dynamic
acquisitions with PRF = 25

and dynamic acquisitions with
PRF = 100, with wavelet and
matching pursuit base estima-
tors, for different defect depths
and orientations.

Mean values estimated with the two methods for each areas are
listed in table 3.3. A first observation is the discrepancy of estima-
tions for 3mm depth defects with the theoretical values, even in the
low noise situation (immobile measurements). This could be a conse-
quence of the low depth of cracks: the wave does not necessarily have
to increase its total path, since propagation at high depth in the ma-
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terial is still possible. Next, for mobile acquisitions, both estimations
are very poor for larger depth. Attenuation of pulses is nearly total,
and little information is available in measurements. The MP based
algorithm does not find the best atom which minimizes the error with
theoretical ToF (2∗depth+tickness). This issue is however reduced for
inclined cracks. Attenuation could be less important in this situation,
allowing a higher portion of the pulse energy to pass the crack.

These experiment has shown the inconsistency of ToF estimators
with noisy measurements and low amplitudes signals.

3.5.3 Estimation of time of flight with data association

Since estimations of ToF performed poorly with noised signals, chal-
lenge is to reconstruct a stable estimation using several acquisitions.
Filters allow identification of pulses tracks and separation between
modes. If at step k the estimates RFS obtained with cardinality Nk
is noted X̂k =

{
x

(i)
k

}Nk
i=1

, with x(i)
k =

[
u

(i)
k , p

(i)
u,k, A

(i)
k , p

(i)
A,k, ν

(i)
k , ς

(i)
k

]T
,

then the best vector x∗k for ToF estimation is selected as the one with
higher amplitude:

x∗k = arg max
xk∈X̂k

Ak (3.5.1)

The ToF estimate u∗k for the measurement is directly provided by
the related ToF of x∗k.

Compared to previous estimations of ToF, the later takes advantage
of the RFS filter. If a empty set ∅ is provided as estimation at step k,
no information is given by the process. If an existing track for direct
pulses has already been initiated, and still exists at current step, a
possible estimate can be obtained. On the contrary, if no tracks for
direct pulses are coming from the filter, this could traduce the lack
of information to provide association between vectors of the sparse
decomposition. Instead of offering an unrepresentative value, absence
of estimate prevents wrong interpretation of results.

Figure 3.22 demonstrates the interest of the filtering techniques
combined with the state space representation. In the left B-scan, a di-
rect picture of measurement, without any processing part, gathers the
searched information. Direct transmissions with related attenuations
due to defects are mixed with reflections. After sparse decomposition,
and estimation of the pulses characteristics, identification of modes is
performed using the pace of each estimated vector pu. Reconstruction
of envelopes for all pulses is possible, since the state space represen-
tation includes the shape of the Gaussian function related to Gabor
functions. Because the phase is not included in the state space, recov-
ering the complete signal with its oscillations is therefore not possible.
Middle and right B-scans of figure 3.22 are the reconstruction of each
individual modes. Paths of pulses are clearly identified in this static
measurement configuration.

Figure 3.23 exhibits similar decomposition performances in compar-
ison with the static configuration. Number of acquisitions is fixed to
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Figure 3.22: B-scan of the
70 cm rail for static acquisitions
and decompositions into modes:
direct, front echoes and back
echoes.
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Figure 3.23: B-scan of the
70 cm rail for mobile acquisitions
and decompositions into modes:
direct, front echoes and back
echoes with PRF = 25.
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25 to obtain a repartition of measurement across the rail similar to the
static case. Here, identification of modes and separation is still possi-
ble, despite the degradation of measurements with mobile sensors. In
particular, reflection pulses are separated from direct transmissions.
Use of their characteristics for improvement of defect location estima-
tion is therefore a valid technique for mobile inspection of rails.
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Figure 3.24: B-scan of the
70 cm rail for static acquisitions
and decompositions into modes:
direct, front echoes and back
echoes with PRF = 100.

The last case has paradoxically the worst performances. The num-
ber of acquisitions per second has been increased, from 25 to 100,
and improvements of the decomposition was expected. Even if direct
transmission is still identified, reflections are hardly extracted. Their
tracks are short, and poorly distributed across the B-scan. A possible
explanation is the simplicity of adaptation of the optimal model and
filter parameters to this situation. A modification of transition ma-
trices could induce deeper changes of parameters. Fitting new data
with a static measurement configuration before a new training phase
should theoretically fix this issue, but the practical feasibility of such
measurements is discutable. A different explanation could be the vi-
brations of the sensors during the displacement. This variability is
integrated over time for large intervals between each acquisition, but
could be observable for smaller ones.

Static PRF = 25 PRF = 100

Defect 6mm, α = 0◦ 4.4 5.7 5.6
Defect 6mm, α = 45◦ 5.7 4.2 4.7
Defect 3mm, α = 45◦ 0.94 1.3 1.4
Defect 3mm, α = 0◦ -0.049 1.1 1.5

Table 3.4: Mean difference of
time of flights with reference
value, in µs, for the 70 cm rail
for static acquisitions, dynamic
acquisitions with PRF = 25

and dynamic acquisitions with
PRF = 100, with wavelet and
matching pursuit base estima-
tors, for different defect depths
and orientations.

Comparison with previous results (table 3.3) is straightforward, us-
ing the same methodology. For each set of vectors identified at step k,
the subset of direct pulses, noted X̂0

k , the pace pu is identified, which
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Figure 3.25: Comparison of time
of flights estimates after filter-
ing process for the 70 cm rail
for static acquisitions, dynamic
acquisitions with PRF = 25

and dynamic acquisitions with
PRF = 100.

should be close to 0:

X̂0
k =

{
[u, pu, A, pA, ν, ς]

T ∈ X̂k | pu ≈ 0
}

(3.5.2)

The best vector x∗k for ToF estimation is selected as the one belong-
ing to this set with higher amplitude:

x∗k = arg max
x∈X̂0

k

A (3.5.3)

Here, the ToF estimates are more consistent. Figure 3.25 gives all
points obtained from the δ-GLMB filter. Again, since the estimations
come form the δ-GLMB filter, values are not always accessible for each
step. However, this absence of estimations is traduced by better mean
estimate, as shown in table 3.4. Here, mean values are not corrupted
with exceptional values, given by the previous methods when signal
amplitude is very low or too noisy. For 6mm defects, ToF are even
closer to theoretical values than the wavelet method. For 3mm defects,
estimated values are near the expected value, and higher than the ones
from previous experiments.

Association between measurements allows thus to increase estimates
of features extracted, providing more reliable use of EMAT signals,
even when measurement process worsen.

3.5.4 Defect location estimation with echoes

For the previous associations made, extraction of echo tracks allowed
estimations of defects locations. For each individual extracted track,
estimations of the defect are averaged, creating one single point. Bor-
ders have positions 0 cm and 70 cm, and electro-erosion defects posi-
tions 12.8 cm, 27.8 cm, 42.6 cm an 57.9 cm. Tables 3.5, 3.6 and 3.7
gather estimations for the static experiment, dynamic with PRF = 25

and dynamic with PRF = 100. For purposes of clarity, only the 7

tracks with higher lengths are reported (targets which survived more
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than 7 steps), if the total number of echo tracks is too high. In addi-
tion, to ease comparisons between estimated and true defect locations,
for track, the closest defect location is displayed.

Length Mode Estimate (cm) Closest (cm)

Path 1 12 2 (front) 56.5 57.9
Path 2 12 2 (front) 69.0 70
Path 3 9 1 (back) 12.3 12.8
Path 4 5 2 (front) 45.9 42.6
Path 5 4 1 (back) -1.33 0
Path 6 4 1 (back) 8.44 12.8
Path 7 4 2 (front) 31.8 27.8

Table 3.5: Characteristics of ex-
tracted echoe tracks, with their
length, mode, estimation of po-
sition of defects and actual posi-
tion of the closest defect, for the
70 cm rail for static acquisitions.

Length Mode Estimate (cm) Closest (cm)

Path 1 14 2 (front) 57.7 57.9
Path 2 6 1 (back) 11.1 12.8
Path 3 5 1 (back) 6.5 12.8
Path 4 4 1 (back) -2.02 0
Path 5 3 2 (front) 25.6 27.8
Path 6 3 2 (front) 26.5 27.8
Path 7 3 2 (front) 71.9 70

Table 3.6: Characteristics of ex-
tracted echoe tracks, with their
length, mode, estimation of po-
sition of defects and actual posi-
tion of the closest defect, for the
70 cm rail for dynamic acquisi-
tions with PRF = 25.

Length Mode Estimate (cm) Closest (cm)

Path 1 15 2 (front) 57.2 57.9
Path 2 8 2 (front) 29.9 27.8
Path 3 6 1 (back) 11.7 12.8
Path 4 5 1 (back) 12.4 12.8
Path 5 5 2 (front) 38.3 42.6
Path 6 5 1 (back) 48.3 42.6
Path 7 5 2 (front) 58.8 57.9

Table 3.7: Characteristics of ex-
tracted echo tracks, with their
length, mode, estimation of po-
sition of defects and actual posi-
tion of the closest defect, for the
70 cm rail for dynamic acquisi-
tions with PRF = 100.

Remarkably, estimations provided by the echo tracks are nearly all
close to a true defect, with precision around 1 cm. These experiments
have therefore proven the possibility to identify and characterize de-
fects with use of reflection pulses. Such tracks in the B-scan indicate
the presence of cracks on the inspected surface, and estimated infor-
mation allows estimation of their location on the rail.

3.6 Mobile device inspection

3.6.1 Measurement trolley configuration

To perform dynamic real-time acquisition on rail, development of a
moving measurement trolley involved multiple fields: mechanical and
electrical engineering. From a signal processing point of view, each
previous level is a possible source of interference, perturbation or cor-
ruption of the data coming from sensor. In comparison with a static
measurement experiment in a safe environment, such as laboratories,
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dynamic acquisition of ultrasonic signals contain observations with
such abnormal events, and potentially weak knowledge about their
origin or underlying generation processes.

A mechanical structure maintain three transducers, one emitter and
two receivers on a relative position above the rail. Reference is not the
rail surface by itself, but the trolley moving on the rail, guided by the
rail head.

Two different positions of the sensors have been used:

1. Inspection of the top rail head (left figure 3.26). This scenario is
the case similar to laboratory experiments, and dedicated to squat
or large cracks detection.

2. Head-check inspection (right figure 3.26). The inspected areas are
the internal edges of the head rail, where head-checks are more prone
to emerge, under the rolling area.
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(O−→x )

Figure 3.26: EMAT sensors con-
figuration. Left: top rail. Right:
internal edge of the rail.

Figure 3.27: Measurement trol-
ley used for Eurotunnel experi-
ments - RAILENIUM.

The measurement trolley is shown in figure 3.27. The only contact
between the full structure and rails are the wheels. Height of sensors
(lift-off) must be manually adjusted. An odometer is in direct contact
with a rail, but does not provide any constraint. Its purpose is only to
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send the system the distance travelled by the trolley. Using this infor-
mation, the measurement system performs one acquisition every 1 cm,
to reproduce the precision level obtained in laboratory. Displacement
of the trolley has to be made manually. Ensuring low speed is neces-
sary to prevent sliding of the odometer wheel. Speed up to 1m/s have
been obtained.

During field inspection, it is possible to use one additional sensor,
which will act as a second receiver. Figure 3.28 specifies the configura-
tion of sensors: receiver 1 is close to the emitter, and receiver 2 located
in front of the device.

Odometer wheel

Emitter

Receiver 1

Receiver 2

Figure 3.28: Configuration of
the sensors before their position-
ing on the rail - RAILENIUM.

3.6.2 Field measurements with the trolley

The measurement trolley presented in previous subsection (figure 3.27)
has been used for field measurements on tunnel rails of Eurotunnel
(figure 3.29). The following sections present analyses of measurements
from EMAT sensors during these experiments, with application of our
methodologies.

3.7 Head-check detection with multiple sensors

3.7.1 Acquisition comparisons

Analysis made with two receivers, positioned sequentially after the
emitter bypasses a common issue with pulses analysis: the lack of ref-
erence for amplitude and ToF. If the distance between the two emitter
is fixed, the difference of ToF is kept constant over acquisitions. Sim-
ilarly, ratio of signal amplitudes remains equally constant, even with
low variations of lift-off. Issues can nevertheless be faced, when one or
several sensors register very low amplitude signals, no measurement,
or low SNR situations. Denoising is therefore a critical step, but it
has to be coupled with indicators to assess the validity of calculated
quantities.

Considering two simultaneous acquisitions made at step k, the ToF
of the main pulses are noted, for two receivers, u1

k and u2
k, and their

respective amplitudes A1
k and A2

k. The second receiver is assumed to



104

Figure 3.29: Measurement trol-
ley built by RAILENIUM during
tunnel experiments at Eurotun-
nel - RAILENIUM.

be the furthest from the emitter, with u1
k ≤ u2

k. Depending on the
individual gain of each sensor, the same relationship is not applicable
to amplitudes. The difference of ToF is noted:

∆uk = u2
k − u1

k (3.7.1)

The ratio of amplitudes, which can be inferior to 1 (amplitude of the
second sensor superior to the amplitude of the first sensor), is noted:

rk =
A1
k

A2
k

(3.7.2)

3.7.2 Head-check detection on a small rail portion

This experiment was conducted on a area of 2.39m. First half portion,
until approximately 1.20m, is healthy. The remaining rail is subject
to head-check, until the end of the inspected area. Distance between
emitter and first receiver is set to 10 cm, and distance between the two
receivers to 10 cm. B-scans (figure 3.30) illustrate the slow decay of
the signal, with no visual change of ToF. The gain of receiver 2 has
been increased to reach amplitudes similar to the ones of receiver 1.
However, a negative consequence is that the noise content is therefore
higher.

Figure 3.31 illustrates the naive use of the direct output of the de-
composition algorithm. Comparison indicators are calculated directly
by taking the atoms with higher amplitudes. Modifications of indica-
tors are observable from the middle to the end of area, but abnormal
values could also be links to wrong estimations of the atom’s param-
eters. Vertical red line indicates the approximate change of rail con-
dition: left side is considered as healthy, and right side as subject to
head-checking.
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Figure 3.30: B-scan of acqui-
sitions of the two receiver on
the small area subject to head-
checking.

Figure 3.31: Estimation of com-
parison indicators on the small
area subject to head-checking:
left side: healthy, right side:
damage.
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These short examples clearly identify the major issue with use of
classical feature extraction methods. The absence of information in the
signal, here the presence of ultrasonic pulse, is not detected. Conse-
quently, estimations could be made on noises or external perturbations
of sensors.
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Figure 3.32: Estimation of com-
parison indicators on the small
area subject to head-checking af-
ter filtering processes: left side:
healthy, right side: damage.

After analysis with filters, nearly no more tracks are identified after
position 1.7m on the rail (position of the emitter). The RFS filter
does not succeed in finding any pulse track. This indicator suggests
that the signal has completely been lost after this point. Analysis of
figure 3.32 indicates a slow change of amplitude during the first half
of the rail, but with a constant amplitude ratio. Time of flights do not
evolve on this part. However, amplitude ratio is doubled at the centre
of the rail, where head-check appears on the rail surface. Time of flight
difference undergoes a slight increase in the head-check region,

3.7.3 Head-check detection on large rail portion

A larger area of rail has been inspected to analyse performances of the
sensors and processing algorithm with a harder task. Measurements
are performed with two receivers, on the internal rail edge on an inter-
val of 2.8m (for a total of 280 acquisitions per receiver). The related
B-scan is shown in figure 3.33.

The inspected rail can be separated into three main parts:

• Healthy section, from 0.0m to 0.6m. This portion suffers a light
head-check, but is assumed to be the reference area. In figure 3.34 a
top view of the rail is shown. Head-check is observable at the image
bottom. Inspection is realized on this part of the rail.

• Medium head-check, from 0.6m to 1.7m. Here, head-check devel-
oped on a 1 cm band near the rolling surface. Cracks are separated
by short distances, from 2mm to 5mm. They appear to be parallel,
with maximum orientation of 45◦ (0◦ refers to a crack which goes
directly from the edge of the rail to the centre, and 90◦ to a crack in
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Figure 3.33: B-scan of acqui-
sitions of the two receiver on
the small area subject to head-
checking.

Figure 3.34: Top view of healthy
rail section for a large inspec-
tion. Some grinding marks are
observable on the internal rail
edge (bottom edge of the image).
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the longitudinal direction of the rail). This phenomenon is shown
in figure 3.35.

Figure 3.35: Medium head-check
rail section for a large inspec-
tion, with thin cracks close to
each other.

• Severe head-check, from 1.7m to 2.8m. Cracks developed after the
rolling surface (near edges), and are separated by medium distances,
from 5mm to 10mm. The defects spread on both the edge and the
top of the rail: the cracks present a curvature, and get orientation in
the longitudinal direction of the rail when they approach the centre
of the rail. Figure 3.36 illustrates this behaviour.

Figure 3.36: Severe head-check
rail section for a large inspec-
tion, with wide and curved
cracks.

Again, 3.37 illustrates the instability of indicators constructed di-
rectly with results of the decomposition. Measurement noise corrupts
the signal, producing abnormal estimations of ToF. Amplitude is less
impacted by this phenomenon, but shows instabilities for the two re-
ceivers. Since the second sensor receives a signal with higher atten-
uation (in comparison with the first sensor), higher disturbances are
expected for it.

Results of the filtering process show important dependences between
the computed features and the rail condition, as demonstrated in fig-
ure 3.38. Amplitude is subject to a strong attenuation, to reach a
constant level on the middle part of the rail, subject to medium head-
checking. The final part causes the strongest attenuation of the signal,
but a pulse track is still identified. Access to measurements allows a
clear separation between the three parts based on analyse of the signal
attenuation. Difference of ToF only indicates abnormal points at the
beginning of the second part, with medium head-checking. This could
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Figure 3.37: Estimation of com-
parison indicators on the large
area subject to head-checking.
Left part: healthy, middle part:
moderate damage, right part:
severe damage.

indicate a detection of the change of material properties. The slight
increase in the third part, with severe head-checking, could be related
to the increase of path for the Rayleigh wave, to circumvent deeper
cracks. Ratio of amplitudes shows a strong increase during the second
part of the rail. The absorption of energy made by cracks could high-
light a non-linear effect of attenuation, specific to cracks close to each
other.
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Figure 3.38: Estimation of com-
parison indicators on the large
area subject to head-checking af-
ter filtering processes. Left part:
healthy, middle part: moderate
damage, right part: severe dam-
age.

3.8 Conclusion

This chapter has introduced our methodology for inspection of rails
with statistical and probabilistic techniques. First, a measurement
signal is decomposed into a sum of Gabor atoms, creating as mea-
surement set with related parameters. This set is next injected in
an association scheme, performed by a RFS tracker. We show the
relevance of inspection of ultrasonic signal and separation of pulses ac-
cording to their behaviours across acquisitions. Echoes resulting from
reflections on cracks can then be identified. The tracker allows separa-
tion between pulses, and use of their information for characterization
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of defects. In this chapter, we proposed a full methodology to solve
the parameter choice problem in filtering estimations, in a complete
automatic aspect. The main objective, maximizing the measurement
likelihood, requires few operator decisions. Going through the Poisson
approximation of the intractable multi-target posterior densities allows
fast and accurate estimations. Simulations based on a well-known and
documented example demonstrated the validity of both approximation
and methodology.

Our methodology and formulation have been tested and approved
on simulated laboratory situations. Our applications on the machined
and electro-erosion rail samples with EMAT sensors demonstrated the
ability of trackers to improve detection of defects, and estimations of
key features for their characterization. Field experiments conducted on
the tunnel rails allowed the application of our methodology to more
challenging data. Damaged areas have been inspected, with differ-
ent severity levels of head-checking. Measurement perturbations is
managed by both the sparse decomposition method and the filtering
process. Use of multiple sensors exhibits important changes between
signals when head-check is interacting with ultrasonic pulses.

The filtering analysis of signal could however be applied on many
other infrastructures. Our application targeted inspection of rails, but
different parts of the railway infrastructure are subject to vibrations.
Filtering methods, using state space modelling, are applicable to, for
instance, inspection of railways sleepers, which have recently raised
interest [Hoa17]. Mediums like concrete, irons or woods are indeed
subject to vibratory perturbations, which could be perturbed by de-
fects, cracks or changes of the material property.
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4.1 Introduction

Previous chapter has analysed ultrasonic signals with estimation meth-
ods which concentrate information into a small set of features, or even
into a single indicator, such as the ToF. However, general signals re-
sulting from physical process do not necessarily fulfil the conditions
to be summarized with such low dimensional representation. Notably,
with EMAT signals, the instantaneous frequency ν(t) computed from
the analytic signal exhibits specific variations around the envelope lo-
cal maxima (it follows a trend similar to the one of the envelope). For
signals which could be not sparse in a Gabor dictionary, it would be
more useful to extract local information which characterizes locally the
signal, to be next used by a future process. This chapter aims at study-
ing a generalization of the previous methods, which could be employed
in vibratory applications. Rail analysis would be one specific applica-
tion, but no complex behaviour of the signals has been registered with
our sensors. It is thus necessary, to experience such phenomena, to
study other vibratory systems. We had the opportunity to work with
the University of Waterloo (ON, Canada) on resonant-column experi-
ments, which exhibit highly non-linear behaviours of soil samples. Our
objective is still to offer convenient estimation methods, with little
decision to be made about the tuning aspect. We took the method-
ologies resulting from the previous chapter, and adapt our processes.
Section 4.2 introduces the fundamental equations governing vibratory
signals and simulation processes related to it. Section 4.3 presents the
estimation tools developed to answer the feature extraction problem
from the previous equation. Last section 4.4 summarizes the results
on resonant-column experiments, interpretation and comparison with
existing methodologies.

4.2 From set to vectors

4.2.1 The resonant-column for soil characterization

Resonant-column testing is a powerful tool for dynamic characteri-
zation of soil specimen under different confinements. Application in
geotechnical sciences allow the understanding of soil behaviours during
extreme events, such as earthquakes [FM20].

To measure non-linear behaviours of the material, a soil specimen
is placed on a confined environment, with air pressure controlled by
an external pump. The specimen is constrained by two plates. The
bottom one is fixed, and the top one free. An accelerometer and two



112

coils are connected to the top plate. A generator is used to control
the two coils with an external field, allowing an operator to control
the vibration of the plate. A moment can therefore be transmitted
to the specimen. The full system is represented in figure 4.1. Af-
ter reaching a stationary situation, coil excitation is interrupted, and
the specimen becomes subject to a single degree of freedom (SDOF)
model. Depending on the maximum level of excitation selected for the
stationary situation, its characteristics change.

Coil

Accelerometer

Specimen

Rotation axis

Confined
environment

Fixed base

Excitation input

Output signal

Driving plate

Figure 4.1: Resonant Column
experiment with soil specimen
and external excitation by coils,
with measurement coming from
the accelerometer sensor

4.2.2 The Single degree of freedom model

The soil sample can be represented as a mass subject to rotational
movements. A basic rotating system is characterized by its angular
position α which is function of time t, an inertia J , a stiffness K, an
external momentM and a viscous coefficient V , as shown in figure 4.2.
The latter coefficient, if positive, is responsible for energy dissipation.
The system is defined by the following equation: The system is mostly found in the lit-

erature with its translation form in fig-
ure 4.3, with measure of position x(t)
instead of angle α(t).

Jα̈(t) + V α̇(t) +Kα(t) = M(t) (4.2.1)
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α0

α(t)

V

K

Mass of inertia J

M(t)

Figure 4.2: Rotational system
with inertia J , viscous coeffi-
cient V , stiffness K, initial angle
α0 and external moment M(t).
This system is equivalent to the
translation one described in fig-
ure 4.3.

v

k

Mass m

x0 x(t)

F (t)

Figure 4.3: Translation system
with mass m, viscous coefficient
v, stiffness k, initial position x0

and external force F (t).

With no external force applied on the system, this equation becomes
the SDOF equation:

Jα̈(t) + V α̇(t) +Kα(t) = 0 (4.2.2)

which is written in the reduced form:

α̈(t) + 2Dωα̇(t) + ω2α(t) (4.2.3)

with D = V/2
√
JK the damping ratio and ω =

√
K/J = 2πf the

system frequency. The set {D, f} is referred to as the dynamic param-
eters of the system. An analytical solution is available, depending on
the sign of the discriminant:

∆ = 4ω2
(
D2 − 1

)
(4.2.4)

Value of the damping ratio D influences the sign of this discrimi- Not to be confounded with the PHD
functionnant. Case obtained with the condition D > 1 is called the aperiodic

behaviour, and the specific case D = 1 the critical aperiodic behaviour.
The case of interest is the one with D < 1, which causes the discrim-
inant to be negative, and thus the roots to be complex, noted by λ+

and λ−, defined as:

λ± = −Dω ± i
√
ω2 (1−D2) (4.2.5)

Analytical solution for α takes the form, with two variables C+, C− ∈
C:

α(t) = C+e
λ+t + C−e

λ−t (4.2.6)

To obtain a particular solution (find values of C+ and C−), it is
necessary to include solutions of this equation. Generally, origin values
of α and its first derivative are used (α(0) = α0 and α̇(0) = α̇0),
providing:
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C+ =
α̇0 − α0λ+

λ+ − λ−
(4.2.7)

C− =
α̇0 − α0λ−
λ− − λ+

(4.2.8)

The following expression for α can be derived:

α(t) =
e−Dωt

ω
√

1−D2

[
α0ω

√
1−D2 cos

(
ω
√

1−D2
)

+ (α̇0 + α0Dω) sin
(
ω
√

1−D2
)]

(4.2.9)
The equation with only one cosine is preferred:

α(t) = Ae−Dωt cos
(
ω
√

1−D2 + φ
)

(4.2.10)

with the following variable calculated from the trigonometric iden-
tities: As a reminder, the sign function sign

is defined, ∀x ∈ R by :

sign(x) =


1 for x > 0
0 for x = 0

−1 for x < 0

A = sign(α0)

√
α̇0

2 + 2α0α̇0Dω + α2
0ω

2 (4.2.11)

φ = arctan

(
− α̇0 + α0Dω

α0ω
√

1−D2

)
(4.2.12)

4.2.3 Estimation of constant dynamic parameters {D, f}

The measurement of attenuation is contained inside the damping ratio.
Estimation of this dynamic parameter is simply achieved by calculating
the attenuation of two consecutive peaks. If we note t1, t2 the times
of occurrence of these peaks, and α1, α2 their amplitudes, a rough
estimation of the damping is given by:

D̂ =
log (α1)− log (α2)

ω (t2 − t1)
(4.2.13)

Unfortunately, since the estimation is reduced to comparison of only
two points of a signal, it is therefore easily disturbed by measurement
noises. For low amplitude perturbations, with known frequency, an
extraction of the signal envelope combined with a decreasing exponen-
tial curve provides a slightly more robust estimation of D. However,
since the Hilbert transform does not preserve Gaussian distribution, it
should not be used in low SNR scenarii. A least-square fitting, with es-
timation of the full vector [A,D, f, φ]

T is more robust, although more
demanding in terms of computational resources.

Bayesian inference of the dynamic parameters is also possible with
sequential filtering methods. For a linear transition model, a Kalman
filter provides estimation of the angle positions αk, k = 1, .., N and pos-
sibly its derivatives (depending on the model complexity), and an esti-
mation of the likelihood of the measurement vector z1:N for a given pa-
rameter vector [D, f ]

T . Since the recursion equations for the Kalman
filter allow a direct calculation (analytically and exact), a MH algo-
rithm provides an estimation of the posterior density p (D, f | z1:N ).
Only choices remaining to the operator is the determination of the co-
variance matrices Q and R, and the initial state uncertainty (modelled
by the distribution N (x0, P0)). The full procedure with a random- These filter’s parameter can also be

included in the estimation process, in
this case the MH sample vectors ϑ =
[D, f,Q,R,X0, P0]T

walk proposal in this specific case is described in algorithm 2.
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Algorithm 2: Metropolis-Hastings sampling with likelihood
estimation from Kalman filters
Input : Number of iterations K, Prior distribution p (ϑ),

Initial value ϑ0, Proposal covariance matrix Qprop

Output: Posterior samples {ϑk}Kk=1

Data: Measurements z1, ... , zN
Initialization : L0 = Kalman (ϑ0, z1:N )

k = 1

while k ≤ K do
ϑprop ∼ N (ϑk−1, Q

prop)

Lprop = Kalman (ϑprop, z1:N )

α =
Lpropp(ϑprop)
Lk−1p(ϑk−1)

u ∼ U ([0, 1])

if u < α then
ϑk = ϑprop

Lk = Lprop
else

ϑk = ϑk−1

Lk = Lk−1

k = k + 1

4.2.4 Variables of interest in resonant-column experiments

Instead of using directly the angular position α, geotechnical sciences
have preferred the dimensionless variable γ called the shear strain. It
can be calculated as:

γ =
d

h
(4.2.14)

with h the height of the specimen, and d the maximum displacement
at the radius r of the specimen, with therefore d = α r. Resonant-
column testing are dedicated to study of low level strain (γ ≤ 1e−2).

Figure 4.4: Evolution of damp-
ing ratio with strain, for rock
with plastic index of 0, data from
[VD91].

Figure 4.5: Evolution of shear
modulus ratio with strain, for
rock with plastic index of 0, data
from [VD91].

One other important variable is the shear modulus G, defined as the
product of the density of the medium ρ and the square shear wave ve-
locity VS . The latter is in the context of resonant-column experiments
proportional to frequency f (or ω). The maximum shear modulus
Gmax is therefore associated to the maximum frequency fmax found
during experiments. A variable of interest is the ratio of shear modu-
lus and maximal shear modulus, defined as the shear modulus ratio:

G

Gmax
=

ω2

ω2
max

=
f2

f2
max

(4.2.15)

Traditional results from resonant-column experiments have shown
hyperbolic relationships between damping ratio, shear modulus ratio
and strain. Damping is expected to approach 0 for small γ, and in-
creases with this variable. On the contrary, shear modulus ratio is
close to 1 for small strains and decreases for higher values. These
relationships, degradation curves, are shown in figures 4.4 and 4.5.
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4.2.5 Single degree of freedom step model

Starting from the SDOF equation, it is possible to directly deduce state
space transition equations. Including information from the angular po-
sition and its first derivative is sufficient for a first order approximation.
Let x = [α, α̇]

T be the continuous state vector. A transition function
will find the best way to transit from the state vector xk at step k to
the following one xk+1 at step k + 1. Time interval between the two
steps corresponds to the value ∆t.

The starting point for discretization is the general form of the con-
tinuous differential equation:

ẋ(t) = f(t, x(t)) (4.2.16)

with f any function which expresses the derivative of the state vector
for a specific time t ∈ R. An additional condition is generally added,
in the form of the equality x(t0) = y0 for some t0 ∈ R.

The Euler method is a first order approximation to solve the differ-
ential equation 4.2.16, widely used in sequential estimation frameworks
applied to analysis of mechanical structures or cinematic phenomena.
The solution vector at step k is approximated by:

xk = xk−1 + ∆t f(tk−1 + ∆t, xk−1) (4.2.17)

In the SDOF equation, the function f is independent of time tk−1,
linear, and entirely defined by the matrix F0 such that:

F0 =

[
0 1

− (2πf)
2

4Dπf

]
(4.2.18)

Using previous matrix F0, the transition equation 4.2.17 becomes:

xk = FEuler xk−1 (4.2.19)

with the transition matrix defined as: Where In referred to the identity ma-
trix of dimension n × n, for n ∈ N∗,
with 1 on the diagonal, and 0 else-
where.

FEuler = I2 + ∆t F0 (4.2.20)

This first order approximation is sufficient for a very short time in-
terval ∆t. However, quality of estimation decreases with higher values,
possibly causing biases in simulation aiming at solving the equation
4.2.16 for specific time steps, and even divergences.

The Runge-Kutta methods allows higher order of approximation
[But00]. Despite the induced higher computational cost, the achieved
estimations are much more accurate than with the Euler method. Here,
the fourth order method (RK4) will be presented:

k1 = f(tk−1 + ∆t, xk−1) (4.2.21)

k2 = f(tk−1 +
∆t

2
, xk−1 +

∆t

2
k2) (4.2.22)

k3 = f(tk−1 +
∆t

2
, xk−1 +

∆t

2
k3) (4.2.23)

k4 = f(tk−1 + ∆t, xk−1 + ∆t k3) (4.2.24)

xk = xk−1 +
∆t

6
(k1 + 2k2 + 2k3 + k4) (4.2.25)
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Assuming D and f to be constant during the interval ∆t, the tran-
sition equation 4.2.17 becomes:

xk = FRK4 xk−1 (4.2.26)

with the transition matrix defined as:

FRK4 = I2 + ∆t F0 + ∆t2
F 2

0

2
+ ∆t3

F 3
0

6
+ ∆t4

F 4
0

24
(4.2.27)

Of course, when an analytical form is available for equation 4.2.16,
it should always be preferred to these sequential resolution methods,
which are dependent on the machine precision, and propagate any error
across steps, with risk of amplifying it.

4.3 Estimation of time-varying dynamic parameters

4.3.1 Non-linear filtering

Unfortunately, the previous hypothesis stating that the dynamic pa-
rameter are constant over all the experience is no longer admissible in
several cases. Notably, in resonant column experiments, complex phe-
nomena induce a variation of damping and frequency during the first
oscillations, just after the system is released (first moment of validity
of the SDOF model). Even worst, no abrupt change happens, meaning
it is impossible to identify independent blocks of measurement, each
one related to one specific and constant dynamic parameter. Estima-
tion of the trend of these parameters should therefore be made jointly
with the estimation of the system state, at each step k.

Including filter’s parameters inside the vector state to be estimated
is a common technique, which aims at slowly converging to the param-
eter vector posterior distribution. Since the relationship between the
state space and the parameter state is complex, a particle filtering is
the preferred technique used in this situation. However, in practice,
the design of such filter is difficult, and a pure random-walk model Perturbing the parameter space with a

Gaussian noise is also called jittering.for the parameter evolutions doesn’t necessarily imply a convergence
to the real posterior. A Gaussian proposal with decaying covariance
is the simplest solution to this issue. The Liu and West filter aims
at reducing the variance in the sequential parameter posteriors with
calculation of sufficient statistics, and showed improved performances
in comparison with the previous technique [LW01].

Paradoxically, techniques which transform the problem into estima-
tion of time-varying parameters were developed to manage the static
parameter cases. Results were then concentrating into obtaining sin-
gle values related to them, with no consideration of the step influence.
Our objective is thus to provide estimation processes to perform esti-
mation of slow varying dynamic parameters with quantification of the
uncertainty and identification of their evolution.

A SDOF model combined with random-walk transition model for
dynamic parameters gives:
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Dk = Dk−1 + εDk (4.3.1)

fk = fk−1 + εfk (4.3.2)

xk = F (Dk, fk) xk−1 + ηk (4.3.3)

with εDk ∼ N (0, σ2
D), εDk ∼ N (0, σ2

f ) and ηk ∼ N (0, Qx).
To ensure positiveness of the dynamic parameters, a model with

variations on the logarithm scale is chosen. It includes a trend variable,
to allow more flexibility: The variables rD and rf should more

be seen as increase or decrease rates.

log (Dk) = log (Dk−1) + ∆t rDk−1 + εDk (4.3.4)

log (fk) = log (fk−1) + ∆t rfk−1 + εfk (4.3.5)

rDk = rDk−1 + εr
D

k (4.3.6)

rfk = rfk−1 + εr
f

k (4.3.7)

xk = F (Dk, fk) xk−1 + ηk (4.3.8)

with εr
D

k ∼ N (0, σ2
rD ) and εr

f

k ∼ N (0, σ2
rf ).

The transition equation of the dynamic parameter vector

p (uk | uk−1) = p (Dk | Dk−1) p (fk | fk−1) (4.3.9)

is then replaced by:

p (uk | uk−1) = p
(
Dk | Dk−1, r

D
k−1

)
p
(
fk | fk−1, r

f
k−1

)
(4.3.10)

For a positive linear variation of D or f , the trends rD or rf will
undergo an abrupt variation from 0, and slowly return to this specific
value. The main interest of such construction is to get first order
information from the local evolution of the dynamic parameter, similar
to the estimation of velocity with a Kalman filter.

4.3.2 Rao-Blackwellization

An important remark related to particle methods is the stochastic as-
pect involved in the sequential calculation of distributions and statis-
tics. Contrary to analytical methods, such as Kalman filters, every
quantity resulting from the particle approximation is a random vari-
able. Notably, data likelihood is only approached at each run of the
particle filter, meaning that several parallel calculations would result
in different values. The stochastic approximation for parameter ϑ is
noted L̃ϑ instead of Lϑ. First, this specific aspect induces a compu-
tational issue for optimization algorithms aiming at maximizing the
likelihood. The evaluations of the objective function to optimize could
thus be interpreted as being perturbed by a random noise. Under sev-
eral assumptions established on this corruption, regular methods are
still available. In some conditions, stochastic approximations of the
gradient can speed-up their convergence. Particle smoothing methods
are important classes to improve estimations of their values, with the
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draw-back of an increase of computational ressources. Secondly, the
Bayesian inference scheme with MH algorithm requires an exact cal-
culation of the data likelihood. Fortunately, it has been proven that
the chain recursion can be preserved even with an acceptance ratio
obtained from noisy likelihoods, under mild hypotheses [AR09]. The
major one needs the estimator of the likelihood to be unbiased. How-
ever, the chain can be struck during several iterations if a realization of
the likelihood reaches abnormal high values (higher than the expected
value which could be computed from repetitions), causing convergence
issues. Better performances are expected with reduction of the vari-
ance of the likelihood estimator, just as in the case of optimization
processes.

A theoretical solution to reduce variance is to increase the number of
particles. This approach is supported by asymptotic theorems (limits
as Np → ∞) [Dou+15]. However, this solution is understandably not
manageable in practice. Furthermore, it has also been experienced that
the number of particle should increase jointly with the data length
(or number of measurement N), at least linearly. On a computer Since one iteration of the particle is

O (Np), scaling Np with N would
result in an overall complexity of
O
(
N2
)
for a complete filter run.

with specific memory and processing speed, only a limited number of
particles could therefore be handled.

An interesting property of mechanical system is the linear transi-
tion between subsets of the state space vectors. Under well-defined
perturbations, such as Gaussian noises, analytical expression for suf-
ficient statistics are available. Consequently, variances of estimators
dedicated to these specific variables are reduced, in comparison with
the ones obtained from the particle approximation. Such approach
is called Rao-Blackwellization: introduction of analytical calculations
inside the filtering recursions, to bypass the drawbacks of Monte Carlo
approximations [DGA00].

Our previous models, also called conditionally linear model, can
therefore be summarized as:

uk ∼ p (uk | uk−1) (4.3.11)

xk ∼ N (F (uk−1)xk−1, Q(uk−1)) (4.3.12)

zk ∼ N (H(uk)xk, R(uk)) (4.3.13)

The linear part of the model is handled by Kalman filtering recur-
sions. The non-linear sub-space, related to variable uk, is the only
part of the algorithm which requires particle approximation. This fil-
ter is denoted as the Rao-Blackwellized particle filter (RBPF). Using
Np particles, the posterior distribution of the state vector is rewritten
as :

p (xk, uk) ≈
Np∑

i=0

w
(i)
k N

(
xk | µ(i)

k , P
(i)
k

)
δ
u
(i)
k

(uk) (4.3.14)

with µ(i)
k and P (i)

k the posterior mean and covariance matrix calcu-
lated from the Kalman recursion for particle i, with non-linear space
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vector u(i)
k and weight w(i)

k . Each particle consists now on the tu-
ple
(
w

(i)
k , µ

(i)
k , P

(i)
k , u

(i)
k

)
, which gather the sufficient statistics directly.

The full recursion is described in algorithm 3. It should be noted that
the resampling step is still necessary, related to the variable criterion,
which processes the particle weights to decide the need of resampling.

Algorithm 3: Rao-Blackwellized Bootstrap Particle Filter
Input : Prior distribution p(x0), Number of particles Np
Output: Posterior distributions p(x1|z1), ... , p(xN |z1:N )

Data: Measurements z1, ... , zN
while k ≤ N do

Prediction:
for i← 1 to Np do

u
(i)
k ∼ p(uk|u

(i)
k−1)

Compute F (u
(i)
k−1) and Q(u

(i)
k−1)

Compute µ(i)
k|k−1 and P (i)

k|k−1

Update:
for i← 1 to Np do

Compute H(u
(i)
k ) and R(u

(i)
k )

Compute µ(i)
k and P (i)

k

α
(i)
k = p(zk|u(i)

k , zk−1)

for i← 1 to Np do
w̃

(i)
k = w̃

(i)
k−1α

(i)
k

for i← 1 to Np do

w
(i)
k =

w̃
(i)
k∑Np

j=1 w̃
(j)
k

k = k + 1

if criterion then

Resample
{(
µ

(i)
k , P

(i)
k , u

(i)
k

)}Np
i=1

and
{
w

(i)
k

}Np
i=1

4.3.3 Bayesian inference with Rao-Blackwellized particle filters

As previously discussed, posterior distributions of the filter’s param-
eters (given measurements) are accessible from MH methods. How-
ever, an important result has been demonstrated for particles filters,
giving the possibility to compute the joint posterior distribution of
both parameters and state space vectors p (ϑ, x1:N | z1:N ) [ADH10].
Marginalization over the parameter space gives the smoothing distri-
bution p (x1:N | z1:N ). The form of the MCMC algorithm is similar to
the MH one, but hypotheses made on the filtering recursion are more
restrictive. The posterior and smoothing distributions are particle ap-
proximations obtained from the successive iterations.

The algorithm is denoted as the Particle Marginal Metropolis Hast-
ings (PMMH) algorithm [ADH10]. It consists in sampling from a
proposal a parameter vector, running the particle filter with storage of
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all particle paths with their ancestors, and next sampling one particle
from the final ones obtained. The version of the PMMH employed for
our application is a modified version to handle the RBPF, noted as
the Rao-Blackwell PMMH (RBPMMH), and described in algorithm 4.
After each estimation of the likelihood with the filter recursions, only
the non-linear subset of the state space is however sampled, producing
a particle path with ancestors [Pet+11; NPY11]. Conditionally to this
vector, it is however possible to perform a smoothing estimation of the
linear variables using a RTS smoother.

Algorithm 4: Particle Marginal Metropolis-Hastings recur-
sion with Rao-Blackwellized Particle Filter
Input : Prior distribution p (ϑ), Initial parameter value ϑk−1,

likelihood estimate L̃k−1 and particle ũ(k−1)
1:N ,

Proposal covariance matrix Qprop

Output: New parameter value ϑk, likelihood estimate L̃k and
particle ũk1:N

ϑprop ∼ N (ϑk−1, Q
prop);

L̃prop,
{
µ

(i)
k , P

(i)
k , u

(i)
1:N

}Np
i=1

,
{
w

(i)
N

}Np
i=1

= RBPF (ϑprop, z1:N );

Sample ũprop ∼
{
u

(i)
1:N

}Np
i=1

with probabilities
{
w

(i)
N

}Np
i=1

;

α̃ =
Lpropp(ϑprop)
Lk−1p(ϑk−1) ;

u ∼ U ([0, 1]);
if u < α then

ϑk = ϑprop;
L̃k = L̃prop;
ũ

(k)
1:N = ũprop;

else
ϑk = ϑk−1;
L̃k = L̃k−1;
ũ

(k)
1:N = ũ

(k−1)
1:N ;

4.3.4 Noisy Metropolis-Hastings sampling

The issue of convergence of the PMMH sampler, which highly relies on
the accuracy of the estimator of the data likelihood, is still present with
the RBPF, even if it allows variance reduction. The MCMC chain can
still be stuck for several iterations, and only a complete analysis of the
chain could assess this sampling issue [FS11]. To overcome such prob-
lems, modified versions of the MH sampler has been developed, called
noisy MH. The Monte Carlo Within Metropolis (MCWM) sampler
aims at escaping from blocking situations by forgetting the previous
calculated value of the likelihood [Bea03; AR09]. To derive the ac-
ceptance ratio, it is therefore necessary to compute likelihood for both
proposed parameter vector and previous one. Of course, this forgetting
property removes some interesting theoretical advantages of the MH
sampler, and does even not guaranty the convergence of the MCWM
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sampler. However, for practical simulation examples, it appeared to
perform well, producing only a higher variance into the obtained pos-
terior distributions [McK+14].

Our approach of the non-linear sequential estimation problem is
to use the methodologies presented in chapter 3 to find an optimal
parameter vector, and use it to initiate a MCWM sampler, which
aims at sampling from the posterior distribution p (ϑ, u1:N ), similarly
to the PMMH sampler. The full method is presented in algorithm
5. We called it the Noisy PMMH sampler (NPMMH), used with a
Rao-Blackwellized particle filter. Main benefit is thus to preserve the
exploration of the parameter space, and escape from possible chain
blockages. However, performing new runs of the filter at each iteration
will also improve the diversity of sampled particles, since no repetition
of the same one (in case of no acceptance of the proposed parameter
vector) is expected.

Algorithm 5: Noisy Particle Marginal Metropolis-Hastings
recursion with Rao-Blackwellized Particle Filter
Input : Prior distribution p (ϑ), Initial parameter value ϑk−1,

Proposal covariance matrix Qprop

Output: New parameter value ϑk, likelihood estimate L̃k and
particle ũk1:N

ϑprop ∼ N (ϑk−1, Q
prop);

L̃old,
{
µ

(i)
k , P

(i)
k , u

(i)
1:N

}Np
i=1

,
{
w

(i)
N

}Np
i=1

= RBPF (ϑk−1, z1:N );

Sample ũold ∼
{
u

(i)
1:N

}Np
i=1

with probabilities
{
w

(i)
N

}Np
i=1

;

L̃prop,
{
µ

(i)
k , P

(i)
k , u

(i)
1:N

}Np
i=1

,
{
w

(i)
N

}Np
i=1

= RBPF (ϑprop, z1:N );

Sample ũprop ∼
{
u

(i)
1:N

}Np
i=1

with probabilities
{
w

(i)
N

}Np
i=1

;

α̃ =
Lprop p(ϑprop)
Lold p(ϑold) ;

u ∼ U ([0, 1]);
if u < α then

ϑk = ϑprop;
L̃k = L̃prop;
ũ

(k)
1:N = ũprop;

else
ϑk = ϑold;
L̃k = L̃old;
ũ

(k)
1:N = ũold;

4.3.5 Smoother with Rao-Blackwellized filter

Paradoxically, if the Rao-Blackwellization eases computation of the
filtering distribution, it does not allow a direct implementation of the
smoothing part. The Forward Backward Rao-Blackwellized Particle
Smoother (or RBPF) is a stochastic algorithm, based on a run of a
PF [SBG12]. Conditionally to the full particle states at each state
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with their weights, it provides one full particle path. This filter is an
adaptation of the FFBSi for RBPF. Since it provides also a smoothing
distribution, it will be a reference method for comparison with our
NPMMH algorithm.

4.3.6 Demonstration of the recursion efficiency

To assess performances of the previous presented methodology, an aca-
demic example is simulated, with the SDOF equation and constant
dynamic parameters over the simulation. State vector is composed of
angular position and its first derivative (xk = [αk, α̇k]

T ). Damping
ratio D is assumed equal to 0, and Bayesian inference is performed
for the frequency parameter f . A signal is simulated with the RK4

process on a time interval of 0.1 s, with a time sampling interval of
∆t = 0.1ms. A frequency of 50Hz is used for the simulation, and the
state vector is simulated with a noise covariance matrix Qx defined as:

Qx = q

[
∆t2/3 ∆t/2

∆t/2 1

]
(4.3.15)

with q = 10−3. Measurement is the acceleration, defined as:

zk = −C (2πf)2 αk (4.3.16)

with C = 0.1 and Gaussian noise corruption of variance σ2 = 1.
Angle α and the measurements are shown on figure .

Figure 4.6: State and measure-
ment simulated with the RK4

process.

A Kalman filter computes the exact likelihood for each new fre-
quency value. A particle filter is then run to get an approximation of
this likelihood. Of course, using a particle method in this linear situa-
tion is not necessary, but this particle example allows comparison with
an exact basis. The MH algorithm uses the Kalman filter likelihood,
and the PMMH the particle filter likelihood. The NPMMH is then
compared with the results of this recursion.

This situation allows quantification of both accuracy of results and
chain mixing. Preliminary MH and PMMH chains are first simulated
to initiate the proposal covariance matrices and initial dynamic pa-
rameter. Five chains are then created to compute the PSRF score. A
final chain for inference is then simulated to calculate posterior mean,
compute IACT scores. For the NH simulation, no preliminary chain is
necessary: initial frequency uses the global optimum resulting from the
Bayesian optimization procedure. The latest is also used to compute
the initial proposal covariance matrix. Five chains are also simulated
for the estimation of the PSRF score.

Preliminary chains for the PSRF score calculation bring notable
information. The five chains simulated with the PMMH sampling in
figure 4.8 exhibit very poor convergence, compared with the two other
samplers as shown in figures 4.7 and 4.9. Even in this low dimen-
sional estimation problem, the particle filter gives high variance in the
estimation of the likelihood. Figure 4.10 gathers the final simulated
chain, and their related distribution over the parameter space. The
distribution obtained from the PMMH is narrow, and the true value
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Figure 4.7: 5 chains used for
the PSRF calculation of the MH
sampler using Kalman filter.

Figure 4.8: 5 chains used for the
PSRF calculation of the Noisy
PMMH sampler using particle
filter.

Figure 4.9: 5 chains used for the
PSRF calculation of the PMMH
sampler using particle filter.
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of the frequency is even not included in the empirical distribution. The
Noisy PMMH sampler produces distribution closed to the one obtained
from the MH sampler. In addition, the mixing appears better. This
visual analysis is comforted by the trend of the autocorrelation func-
tion 4.11. The Noisy PMMH exhibit the better forgetting properties,
with the faster decrease of the autocorrelation.

Figure 4.10: Final chains and
distributions of frequency pa-
rameter f for the MH, PMMH
and Noisy PMMH sampler.

Figure 4.11: Final autocorrela-
tions of frequency parameter f
for the MH, PMMH and Noisy
PMMH sampler.

Sampling method PSRF (5 chains) IACT Posterior Mean Posterior Variance

MH 1.007 76.4 49.3 1.64
PMMH 3.319 196 49.0 0.00890

Noisy PMMH 1.002 7.74 50.5 4.69

Table 4.1: Performance compar-
isons between MH, PMMH and
NPMMH for sampling of fre-
quency parameter f

Quantitative indicators, gathered in table 4.1 confirms these obser-
vations. However, the better mixing of the Noisy PMMH came at the
cost of an increased variance. The Posterior variance calculated is in-
deed of the same order of magnitude, although slightly superior to the
one from the MH sampler.
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Of course, since each NPMMH iteration requires two evaluations
of the likelihood, one for the previous parameter vector, and one for
the proposed at current iteration, a prior remark would question the
choice between using such algorithm, or running a traditional PMMH
sampler with twice number of iteration. This is relevant in a context
in which the total number of possible evaluation of the likelihood,
and hence the number of particle filter runs, is limited. However, the
previous results give no hesitation: even reduced by half, the NPMMH
sampler is far more efficient in terms of mixing properties. Escaping
a stationary phase, with locally 0 acceptance rate, is an issue hardly
solved with use of a longer chain. Only lower variances could result in
an improvement of the PMMH chain mixing.

Therefore, even if this short example may be solved with perhaps
more performant methods, such as optimization based estimation schemes,
it provides at least a limitation for the classical PMMH sampler. More
complex problems, for instances higher dimensional state vectors, or
non-linear systems, could results in even worse convergence issues.
The proposed NPMMH methodology allows an operator to obtain a
pragmatical estimation algorithm, which only requires little knowledge
about the physical system, in the form of a differential equation locally
valid, and which do not need special tuning. Only the number of par-
ticle should be defined, with wide estimates of the possible interval
values of the model’s parameters. The only cost of this convenient
algorithm is a higher variance in the final posterior parameter distri-
bution.

4.3.7 Experiment and simulation results

For non-constant dynamic parameter, even for a simple model, like the
SDOF one, the unavailability of a close form solution makes necessary
the approximation with sequential methods. For our problem, the RK4
algorithm provides an efficient resolution scheme. We model important
changes of dynamic parameters: 40 % for D (from 0.05 to 0.03), and
80 % for f (from 50Hz to 90Hz). The attenuation is performed during
0.25 s, with a sampling interval equal to ∆t = 0.25ms (for a total of
1000 points). Dynamic parameters are set constant during the first
40ms at the beginning and end of the signal, with linear variations
between them, as shown is figure 4.12. Signal is corrupted with a white
Gaussian noise of variance σ2 = 0.01, producing a SNR of 28 dB.

State vector is set to xk = [γk, γ̇k]
T , and measurement equation is :

zk = L
[
−(2πfk)2γk − 2Dk(2πfk)γ̇k

]
(4.3.17)

Simulation is performed with inference made on the parameter vec-
tor
[
σ2, σD, σf , σrD , σrf

]T , for a complete characterization of the mea-
surement noise and dynamic parameter evolution behaviour. Parame-
ter q is set to 10−9. The Bayesian optimization procedure selects the
optimal parameter vector, which is used then to estimate the filtering
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Figure 4.12: Variations of dy-
namic parameters for simulation
purpose.

vector xPF1:N and the posterior mean vector xpost1:N , defined as:

xpost1:N =

Np∑

i=1

w
(i)
N x

(i)
1:N (4.3.18)

Particle filter used 1000 particles, and its runs was kept to generate
100 backward samplings with the Particle smoother. The filters used
in the NPMMH recursions employed only 100 particles, but 2000 iter-
ations of the chain were simulated, with start from the optimal vector
obtained by the BO loop.

To compare our methodology with a non-stochastic method, we
propose to use an approximation derived from the clean SDOF model
(without noise). With notation α(t) = A(t) cos(φ(t)), the analytic rep-
resentation is αa(t) = A(t)eiφ(t), under the constraint A′(t) � φ′(t).
An evaluation procedure of damping and frequency from the signal
(displacement only) has been proposed [Fel97] with introduction of a
global damping variable h(t). The SDOF equation becomes with this
representation:

α̈a(t) + 2h(t)α̇a(t) + ω2(t)αa(t) = 0 (4.3.19)

Solving this equation with identification of real and imaginary parts
gives (we omitted the time notation for A, φ and their derivatives):

h(t) = − Ȧ
A
− φ̈

2φ̇
(4.3.20)

ω2
0(t) = φ̇2 − Ä

Ȧ
+

2Ȧ2

A2
+
Ȧφ̈

Aφ̇
(4.3.21)

The instantaneous damping ratio is easily deduced as:

D(t) =
h(t)

ω(t)
(4.3.22)

The estimation of instantaneous amplitude and phase is required for
calculations of damping and frequency. To provide clean vectors (with
minimal level of noise), the CWT is first applied. Using wavelets based
methods has been demonstrated to be performant for estimations of
amplitude and phase in this context [Cur+08b]. Extraction of the
ridge is made on the frequency bandwidth of interest (between 10Hz
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and 110Hz). Since only the acceleration is accessible in the resonant-
column experiments, a major hypothesis is made: we assumed the
acceleration to be proportional to the displacement. Since non-linear
behaviours are supposed inside the measurement signal, this method-
ology is expected to produce biased estimations. However, error will
be computed in the simulation.

From the synthesized data, we compare them quantitatively with
their estimated values. The mean relative absolute error (MRAE) is
used here (in percent), defined here for each state x as:

1

N

N∑

k=1

100

∣∣∣∣
x̂k − xk
xk

∣∣∣∣ (4.3.23)

However, to equitably compare the performances of methods, the
error must not be computed on the full-time interval. Indeed, the
CWT method does not provide reliable estimation of amplitude and
phase at the beginning and end of the signal, due to zero-padding.
At the edges of the signal, wavelet coefficients calculated suffer from
the discontinuity. The cone of influence (COI) is the region of the
spectrum where this phenomenon can be neglected. The limit used
in this article is the concept of Torrence [TC98]: for each scale s, the
temporal limit of the COI is defined as the e-folding time τ∗ such that
the autocorrelation of the power spectrum decreases by a factor e−1 ,
for a temporal discontinuity at the signal edge. For a Morlet mother
wavelet, τ∗ can be analytically calculated, and is equal, for the same
mother wavelet configuration as Torrence, to

√
2s.

To bypass this issue, we decided to estimate the MRAE inside the
COI, only after the first two periods of the minimal frequency of the
signal, and before the two last ones. The filtering estimations do not
suffer from such limitations. The only information to be provided is
the initial value of the states.

Figure 4.13: Estimations of dy-
namic parameters with simu-
lated signals, for the particle fil-
ter estimate, the posterior es-
timate and the wavelet based
method.

All estimated vectors are displayed in figure 4.13. The wavelet based
method exhibits a higher bias, with highly degenerated estimations
outside the COI. Filtering methods do not share this drawback.

Performances of the NPMMH are far superior to the ones obtained



local characterization of signal for non-contact defects detection 129

Estimation scheme MRAE for Damping D MRAE for frequency f

Filtering mean 11.2 0.969
Posterior mean 6.50 0.328
CWT method 37.7 0.564
Particle Smoother 8.65 0.687
Noisy PMMH 0.691 0.198

Table 4.2: Mean relative abso-
lute error comparisons (in per-
cent) for estimations on sim-
ulated attenuation with time
varying dynamic parameters

from all other methods. It achieved the best estimations for both
damping and frequency. Qualitatively, estimated curves of dynamic
parameter appear also smooth. Even if this criterion has little im-
portance to achieve the best estimation performances, it ensures a
clean extraction of points from the curves, if such operation is neces-
sary. The simple filtering estimations (with PF) achieve largely better
performances for damping, in comparison with the CWT methods,
but slightly worst for frequency. Estimation with the posterior mean
overtakes the two previous methods for both damping and frequency.
The only burden of this methods is the necessity to store ancestors
of particles, which is not a strong drawback for the benefit its brings.
Surprisingly, PS performances are inferior to the ones of the posterior
mean, although a clear improvement is observed in comparison with
the RBPF. An advantage of the smoother is however the availability
of the variances of the smoothed distribution, which adds a qualitative
indicator of the estimation.

4.4 Resonant column experiment

4.4.1 Experiment results

Acceleration measurements from the resonant-column testing device
exhibit a strong change in dynamic parameters at the very beginning
of the SDOF part, just following the end of forced excitation by coils.
The vibratory behaviour with attenuation of the signal next continues
until the end of measurement. Therefore, a filtering starting right after
the end of excitation would directly have to face strong non-linearities,
resulting in poor estimations at these specific measurement points.
Our selected strategy is then to start the estimation process at the
very end of the measurement signal, where the attenuated signal has
already reached a stationary regime. Changes of dynamic parameters
will slowly happen, until the complex or brutal variations occurred.
To get such time-inversion phenomena, a variable change t′ = −t is
performed, transforming the SDOF equation 4.2.3 into: Such variable change only impacts the

odd derivatives, adding a multiplica-
tion by −1.

α̈(t′)− 2Dωα̇(t′) + ωα(t′) = 0 (4.4.1)

The transition matrices is then modified to include this change.
Notably, it will only impact the terms in which the damping appears.
As in the previous example, the Bayesian optimization provides an
estimation of the optimal parameter. However, the main difference
with this practical signal is the need to define the interval of estimation.
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The end of forced excitation can be approximated with the decay of
the input signal. Fitting a sinusoid with amplification with time at the
end of the measurement signal is a viable option (amplification with
reversed time). Increase of the mean square error between the signal
and the fitted curve indicates pragmatically the change of regime of the
dynamic parameters, from constant regime to time-varying evolution.

Figure 4.14: High pressure
(60 kPa) confinement with high
voltage excitation of a soil spec-
imen.

An experimental program was conducted on a soil sand specimen
made of Ottawa sand. The non-linear dynamic behaviour was studied
using different excitation levels. The experiments were performed at
the non-destructive testing laboratory at the department of Civil and
Environmental Engineering at the University of Waterloo. A series of
measurements is therefore obtained. The transmitter used in this test
protrudes 6mm into the soil specimen and has a 14mm by 1.0mm

cross-section. The soil specimen has diameter of 7 cm and height of
14 cm. Dry sand has density of 1.85 kg/m3. The specimen is com-
pacted and covered with a latex membrane to contain the sand. A
60 kPa vacuum pressure is then applied at the bottom of the spec-
imen. Response is measured by two accelerometers, positioned at a
distance from the resonant-column centre equals to 6.8 cm. This series
allows us to perform for each signal a least square fitting with curve
model 4.2.10, to obtain one dynamic parameter vector, which is latter
associated to the maximum input excitation level (and therefore the
maximum strain of the signal).

From the obtained series, the one with the largest excitation level is
kept to perform estimations. This ensure that a wide range of strain
will be found in the signal. For our inspected signal, measurements
with related excitation voltage are represented in figure 4.14, with
borders of estimation. Measurements are thus in volts (V ), and factor
L equals 0.128V s2. Parameter q is set to 1e − 9. Transition matrix
used is the one of equation 4.2.26.

Estimated states for the RBPF with their ±σ uncertainty limits are
displayed in figure 4.15. A strong narrowing of this uncertainty band
is observable at the beginning of the record, which corresponds to the
final estimation. At these points, variations of dynamic parameters
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Figure 4.15: Particle filter
estimations for high pressure
(60 kPa) confinement signal
with high voltage excitation
of a soil specimen. Interval of
estimation is located between
the orange vertical lines.

are important, reducing the possible admissible values. The advanced
results coming from smoothing distribution are shown in figure 4.16.
All methods exhibit similar trends and behaviours, but the NPMMH
estimations still provide the smoothest curves.

Figure 4.16: Estimations with
all methods for high pres-
sure (60 kPa) confinement signal
with high voltage excitation of a
soil specimen.

A focus on the NPMMH results (figure 4.17) highlights the inverse
variations of damping and frequency in real measurements. This phe-
nomenon, generalization of the degradation curves, is therefore em-
pirically demonstrated with high strain levels. The sequential filters
and smoothers do not assume a prior trend or monotony. However,
the estimations obtained during the previous experiments recover the
variations of hyperbolic models, suggesting the validity of the hypoth-
esis.

Final representation of the signal with its dynamic parameter vari-
ables highlight the phenomenon demonstrated with several signals: de-
crease of the damping with brutal increasing frequency, until a slow
stabilization of their values.
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Figure 4.17: Dynamic parame-
ter evolution for high pressure
(60 kPa) confinement with high
voltage excitation of a soil spec-
imen.

4.4.2 Discussion on degradation curves

We suggest here to use the information about damping and frequency
at every local maximum or minimum of the strain, estimated dur-
ing the filtering process. To compute the time of local extrema, we
directly use the estimated velocity. When it crosses zeros, it should
correspond to an extremum of the displacement. The related damping
and frequency values are next reported.

Hyperbolic curves have been fitted to datasets obtained from the se-
ries of experiments (every measurement gives a strain and a dynamic
parameter vector), from the PS estimations and from the NPMMH
estimations. Parametric models used for curve fitting are hyperbolic
ones. Curves and points are gathered in figure 4.18. However, after
curve fitting, we observed an additional damping, due to some phys-
ical elements of the measurement chain. A rescaling of the curves is
performed to have a minimum value of damping at 0.02.

Figure 4.18: Dynamic parame-
ter evolution for high pressure
(60 kPa) confinement with high
voltage excitation of a soil spec-
imen.

Trends between the experimental curves and the estimations from
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smoothers are similar. However, for the shear strain modulus, a small
gap is noticeable for high strains. Error with damping can be explained
by the need for the least-square method to find a compromise between
error at the beginning and error at the end of the signal, after attenu-
ation. One single value has to be selected, without possible variations
of damping. Therefore, underestimation of the damping is expected.
One further explanation could be a high non-linear behaviour of the
soil sample during high excitations. Consequently, estimations with
high strains could not be compared with low strain measurements.
This hypothesis requires further investigations.

Existing methods for resonant column results analysis gather the
maximum strains of multiple experiments. Relationships between damp-
ing or frequency and strain are assumed to keep their validity inside one
measured signal. Indeed, for high excitation signals, many resources
could be saved if degradations curves are obtained directly from a few
measurements.

4.5 Conclusion

This chapter introduced a probabilistic methodology for feature extrac-
tion of hidden information form accelerometer measurements. First, a
state space representation is needed to allow modelling of time varying
characteristics. A local available knowledge about the physical process,
here the SDOF model equation, is the only requirement. A transition
model for dynamic parameters of interest is created from weak as-
sumptions about their trends. The Rao-Blackwellized particle filter is
the core method to provide an estimate about the hidden information.
The proposed Bayesian methodology, based on a noisy MCMC chain,
allows an integration of model parameter, to marginalize results over
possible choices available. Efficiency is achieved by first looking for
an optimal choice of model parameters, and secondly running a noisy
sampling chain. No specific tuning of the model is therefore needed,
at the cost of higher time of processing. Estimation of hidden vari-
able form acceleration is provided, with improved performances with
comparisons with time-frequency analysis. Experiments conducted on
a resonant-column and analysed with this methodology identify new
behaviours of a soil sample subject to external perturbations.

Previous methods presented are transferable to inspection of other
mediums. With the same physical equations, analysis of railways sleep-
ers could be performed, adding new perspectives and information to
frequency [Hoa17] or finite element [Cla+19] analyses, with probabilis-
tic quantification on estimations.





Conclusion

Main contributions

This thesis addressed the issue of characterization of defects from ultra-
sonic sensors, based on the statistical signal processing framework. A
focus has been made on applications to rail crack detection. Majority
of our data came from a non-contact technique, newly applied to rail
inspection by RAILENIUM, the Electro-Magnetic Acoustic Transduc-
ers (EMAT). The sensors take advantage of the properties of a specific
kind of wave they generate, Rayleigh waves. They have the ability to
propagate on surface, and interact with damages. Objective was to
investigate the possibility to perform assessment of a rail health with
mobile sensors.

My first contribution was to gather two major schemes: statisti-
cal estimation, with inclusion of powerful decompositions methods of
measurement signals, and the data association field. The Matching
Pursuit (MP) algorithm offers an abstract representation of ultrasonic
data, which value has been recognized, either for denoising purposes
or parametric description of phenomena. However, current aspiration
of the railway industry for mobile inspection at high speed induces a
new dimension in the representation of data: the sequential one. My
work has build a framework to include evolution of ultrasonic events
across measurements, thanks to the help of Random Finite Sets (RFS).
Models were developed in the thesis to understand, characterize and
follow ultrasonic pulses. RFS filtering and tracking tools integrate the
uncertainty related to measurements, and succeeded in assimilating
noised and capricious data, which is inherent to field inspection. The
algorithms developed for this purpose share a fundamental property:
their ability to estimate complex relationships between measurements
sequentially, offering promises of online inspection technologies. All
the algorithms used in this thesis have been programmed during the
thesis in Python.

My second contribution incorporates a practical consideration about
the latter filtering and tracking methodologies. The thesis proposes a
handy solution to tune automatically them, preventing a human oper-
ator from spending huge amount of time in the comprehension of the
filters, and manual selection of the parameters governing them. The
proposed methodology relies on simplification assumptions of the ini-
tial δ-GLMB tracker, a complex and robust algorithm for creation of
tracks and pattern from measurements. To achieve en efficient tuning,
maximization of the data likelihood is achieved with a Poisson approx-
imation of the multi-target likelihood, allowing use of a simpler algo-
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rithm, the Probability Hypothesis Density (PHD) filter. A Bayesian
procedure next assimilates information coming form this simplification
to produce an automatic and efficient search of optimal parameters.
This approach has been successfully tested on laboratory, with experi-
mental rails portions, before a field application on the rails of Eurotun-
nel. These field experiments have been challenging tests, to discover
limitations, but also opportunities brought by the methodology devel-
oped in this thesis.

My last contribution investigated a theoretical field. A problem
coming from geotechnical sciences, the characterization of soil be-
haviours, opened the door of Bayesian filtering of measurements. Ad-
vanced methodologies for estimation of complex distributions, such as
smoothing and Monte Carlo Markov Chain (MCMC) algorithms of-
fered new perspectives to this specific field. This thesis created new
processes to analyse soils and statistically capture the uncertainty of
related information. Experiments on a specific device, the resonant-
column, allowed an original application of our procedures, and led to
new insights of the soil inspection problem.

Work summary

Important results ensuing from this thesis work are here gathered. The
major one is the demonstration of the possibility to process a flow of
ultrasonic measurements with sequential filtering techniques. Sparse
decompositions of signals, joint to filters, allow extraction of statistical
characteristics to assess a medium health. In our rail application, iden-
tification with EMAT sensors of the nature of ultrasonic pulses inside
a signal conducted to separation of waves reflected by defects. This
not only confirms the detection of cracks on the rail surface, but also
brings new possibilities to characterize location of defects. Laboratory
experiments with machined rails demonstrated the interest of RFS fil-
ters or trackers, to improve the detection of defects (head-checking and
squat), in static and mobile inspection scenarios.

Field experiments conducted at Eurotunnel, with different intensi-
ties of head-checking, confirms the ability of the proposed methodology
to identify changes in the estimated features. An information about
the availability of estimations thanks to the RFS model allowed identi-
fication of troublesome measurements, offering an indicator for further
analysis of the related rail area by a human operator. However, our
estimations procedures highlighted the compulsory need for a proper
design of the measurement device. Uncertainty about estimated fea-
tures could be reduced, for instance, with inclusion of external infor-
mation, like the distance between sensors and rail.

Our practical solution to solve the hard problem of model parame-
ter estimation using RFS filters and tracker was successfully applied to
our ultrasonic data. Several simulations concluded to the validity and
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efficiency of the approach, and application of EMAT signals on our
laboratory rails brought enough performances for interpretation of re-
sults. The similar optimization procedure was repeated with classical
sequential filters for vector estimations, and prevent us from manual
tuning of parameters.

The last relevant results is related to general analyse of vibratory
signals. Estimation of time-varying parameters with filtering meth-
ods conducted to development of practical Bayesian estimation proce-
dures. Experimentations will highly non-linear signals resulting from
soil testing allowed the calculation of new characteristics in the domain
of geotechnical sciences. Again, the methodology implied an automatic
integration of parameter uncertainty in the model. The presented algo-
rithm, contrary to previous applications with rail inspection, sacrificed
the time efficiency for precision performances.

Perspectives

The first wish arising from my work is to perform high speed inspection
of rails. Issues coming from the increase of speed have been identified,
and the statistical methodologies previously presented offers solutions
and quantification of loss of measurement quality.

Figure 5.19: Phased array sen-
sors, which produce a wavefront
which inclination θ is controlled
by a generator G, which sup-
plies all transducers T , allowing
a change of the inspected direc-
tion during measurements

The previous techniques focused on Rayleigh wave propagation. In-
spection of internal defects could be possible, with use of new ultrasonic
sensors, such as Phased Array transducers, which provide a complete
scan of medium (see figure 5.19).

Ferromagnetic materials have been inspected, but ultrasonic devices
can perform analysis and inspection of a wide range of mediums. Par-
ticularly, concrete structures could benefit from the joint use of sparse
decompositions and tracking algorithms. Indeed, these environments
are dispersive and prone to generate very noisy signals.





Résumé en français

La pression croissante portée sur l’exploitation des infrastructures ferroviaires a rendu nécessaire le développe-
ment de nouvelles techniques d’inspection, plus rapide et plus sûre. Réduire le temps passer à déterminer
l’état et la santé des rails permettra l’élaboration de plans de maintenance plus efficaces. Dans ce cadre,
l’inspections dynamique des rails est nécessaire: les outils de mesure sont embarqués sur des trains spécifiques,
ou des dispositifs roulant expérimentaux, effectuant des enregistrement à vitesse élevée. Des séquences de
mesures sont ainsi obtenues. Plutôt que d’analyser chacun des enregistrements séparément, cette thèse se pro-
poser d’étudier la séquence en elle même, permettant ainsi l’extraction d’informations relative à l’évolution
des signaux. Plusieurs caractéristiques sont extraites grâce à des outils temps-fréquence. Leur association au
travers des différentes acquisitions peut être représentée avec des modèles d’états, permettant de synthétiser
l’information disponible en utilisant des densités de probabilité. Cette thèse propose une modélisation des
phénomènes physiques, ainsi qu’une application sur des données de laboratoires et expérimentales.

Inspection sans contact des surfaces de rails

La présente thèse s’intéresse tout particulièrement aux défaut de surface apparaissant sur le champignon du
rail, prêt de la zone de contact entre le rail et la roue. Ces défauts apparaissent graduellement avec le temps,
suite aux contraintes élevées répétées imposées au matériau. Des modifications de la structure du rail sont
mis en jeu, provoquant l’apparition et le développement de fissures. Les Squats sont reconnaissables par des
taches sombres sur la zone de contact rail-roue. Les Head-check se développent à côté de cette zone. Ces
fissures qui se propagent vers l’intérieur du champignon du rail. Les techniques de contrôle non-destructif
usuelles, par capteur ultrasons piézoélectriques ou capteur par courants de Foucault ne permettent pas une
bonne détection de ces défauts. Afin de les étudier, cette thèse a employé des capteurs EMAT (Electro
Magnetic Accoustic Transducers). Ceux-ci possèdent la particularité de générer une onde ultra-sonore dans
un matériau ferromagnétique en utilisant des dispositifs magnétiques. Aucun contact direct n’est donc
nécessaire entre les capteurs et le milieu à inspecter, ni aucun couplant. De plus, les EMAT permettent
de générer des ondes dites de Rayleigh, qui possèdent la propriété de se propager uniquement à la surface
du milieu inspecté. Ce type d’ondes est donc intéressant pour l’études des défauts de surface, puisque leur
interactions avec les ondes de Rayleigh va pouvoir être enregistrées.

Une représentation d’un signal ultra-sonore est appelé A-scan. Il traduit le déplacement du matériau au
cours du temps, selon un axe spatial déterminé. L’agrégation de différents A-scan (si les capteurs bougent
par exemple) forme une image de la zone inspectée appelée B-scan. Celui-ci permet une inspection visuelle de
la zone mesurée. Pour un milieu comportant des bordure, on peut constater l’apparition de raies diagonales
traduisant les réflexions de l’onde générée à ces endroits: réflexions à l’avant du capteur, et à l’arrière du
capteur. L’onde transmise directement (traversant le milieu de l’émetteur au récepteur) donne des raies ou
parcours droits sur le B-scan. Une séparation de ce B-scan permettrait donc d’identifier individuellement
les parcours des ondes et leur nature (onde directe ou réflexions ou échos).

Dans le cadre des campagnes de mesures réalisées pour la thèse, deux échantillons de rails avec défauts
usinées ont été inspectés. Ces mesures en laboratoires permettent de fournir des références pour les algo-
rithmes de traitement à appliquer sur les mesures provenant des mesures EMAT. Des tournées d’inspection
sur les rails en exploitations d’Eurotunnel ont ensuite été permises grâce à un chariot de mesure réalisé par
RAILENIUM.
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Traitement du signal statistique des signaux ultra-sonores

L’analyse temps-fréquence grâce à la transformée en ondelettes continue permet l’estimation de certaines
caractéristiques, notamment de la fréquence de l’impulsion et du temps de vol. Néanmoins, dans le cas
d’un signal composé de plusieurs impulsion, cette décomposition ne permet pas d’obtenir des informations
multiples. La décomposition parcimonieuse d’un signal vise à trouver une représentation de ce signal dans
une certaine base, appelée dictionnaire, composé d’atomes. Pour garder une propriété de parcimonie, le
signal doit pouvoir être représenté comme une somme d’un petit nombre de ces atomes. Le dictionnaire
est dit «surcomplet» si sa dimension est largement supérieure à celle du signal. Ceci permet d’obtenir la
propriété de parcimonie. Les signaux ultra-sonores peuvent être vu comme une somme finie d’ondelettes de
Gabor, composées d’une sinusoïde multiplié par une enveloppe gaussienne, et paramétrées par un vecteur
θ composé de 5 scalaires: amplitude A, fréquence centrale νc, étalement ς2, phase φ et temps de vol u
(ondelette associée notée fθ):

fθ(t) = A exp

(
− (t− u)2

s

)
cos (2πνc(t− u) + φ)

Les signaux ultra-sonores sont donc parcimonieux dans le dictionnaires des ondelettes de Gabor. L’étape
de décomposition d’un signal est un problème NP difficile. Néanmoins, une méthode de décomposition
séquentielle, appelée Matching Pursuit (MP), permet d’obtenir une séquence d’ensembles d’ondelettes, cha-
cun ce ces ensembles s’approchant du signal d’origine. Une modélisation probabiliste offre une amélioration
des performances, grâce à l’emploi de l’algorithme Expectation-Maximization (EM). Cette méthodologie est
employé sur nos signaux EMAT, et permet d’obtenir pour chaque acquisition un nombre restreint de vecteur
de paramètres.

L’étude des variations de cette représentation permettra d’extraire des informations additionnelles des
signaux EMAT, et de caractériser les défauts mesurés. L’étude séquentielles des observations et l’association
des mesures est possible grâce à une représentation probabiliste par vecteurs d’états. L’information est
résumé par une densité de probabilité, qui va évoluer au cours du temps. Les filtres séquentiels permettent
de transmettre et propager ces densité de probabilité en les mettant à jours avec de nouvelles mesures. Les
caractéristiques intéressantes sont ensuite extraites de ces densités. Dans le cas d’une observation vectorielle,
les filtres de la littératures, tels que le filtre de Kalman, ou le filtre particulaire, permettent d’estimer les
densités de probabilité à chaque nouvelle mesure.

Dans notre cas, chaque mesure est en réalité un ensemble Z, de cardinalité variable et inconnue. La
théorie des «Finite Set Statistics» développée par Mahler a permis le développement d’une procédure de
filtrage, par le filtre «Probability Hypothesis Density» (PHD), en travaillant sur des ensembles aléatoires
finis (EAF). Ce filtre fournit une estimation séquentielle de la cardinalité et une estimation de l’ensemble
d’état caché X, composé d’estimations des vecteurs d’états le composant. L’état des cibles est ainsi estimé
au cours du temps. Néanmoins, l’association entre les états estimés des cibles n’est pas réalisé entre les
instants. Un traqueur permet d’effectuer cette association. Le filtre «Delta Generalized Labeled Multi-
Bernoulli» (δ-GLMB) permet de réaliser cette action, dans un cadre Bayésien. Il propage une densité de
probabilité notée π (X) sur des ensembles finis aléatoires labellisés (X ∈ X ×L, avec X l’ensemble des états,
L l’ensembles des labels), qui permet ainsi d’identifier les cibles au cours du temps. Ces outils statistiques
vont permettre de suivre l’évolution des ondelettes à travers les acquisitions, en évaluant leur nombre et
leurs caractéristiques.

Caractérisation des signaux ultra-sonores sur rails

On modélise l’évolution des paramètre des ondelettes de Gabor par des modèles dynamiques du premier
ordre, et par des marches aléatoires gaussiennes. Ainsi, chaque paramètre d’une ondelettes peut varier
sensiblement avec les temps, soit à cause des perturbations du dispositif de mesure, ou soit à cause d’une
modification des propriétés du matériaux. On introduit des variables supplémentaires, nommés «tempos»,
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pour modéliser des variations linéaires de certains paramètres, respectivement de l’amplitude et du temps de
vol des impulsions (tempos associées notés pA et pu). Un problème conséquent lors de l’utilisation de filtres
est le choix des paramètres du model et ceux régissant les filtres. Dans le cas des filtres sur ensembles finis
aléatoires, le vecteur de paramètres peut contenir les paramètres de naissance et survie des cibles, ainsi que
les niveaux de bruit de la mesure. L’utilisateur doit effectuer un choix de ces paramètres avant d’effecteur la
procédure d’estimation, en se basant sur sa propre expérience de la mesure. Or, lorsque de nouvelles mesures
apparaissent, ou lorsque les observations sont produites par des systèmes de mesure innovants (comme dans
le cas des EMAT), aucun choix a priori n’est disponible. Une détermination du vecteur de paramètres à
partir des mesures est néanmoins possible. Il s’agit dans ce cas de trouver le vecteur ϑ qui maximise la
vraisemblance des donnée Lϑ(Z) = p(Z | ϑ).

Lorque la méthode l’estimation est complexe, fournir une valeur de la vraisemblance peut être couteux, de
même pour une estimation de son gradient. La maximisation est ainsi difficile. Pour résoudre ce problème,
l’Optimisation Bayésienne permet de trouver un optimum global en utilisant des outils statistiques. La
fonction à maximiser est approchée par une fonction probabiliste, ici par une Régression par Processus
Gaussien. On cherche de manière séquentielle à maximiser un équilibre entre la valeur possible donnée par la
fonction probabiliste et l’incertitude présente. La fonction probabiliste est ensuite mise à jour avec la nouvelle
valeur de la vraisemblance. L’intérêt ce cette méthode est de pouvoir ainsi maximiser la vraisemblance avec
un nombre limité d’évaluation, sans calcul de gradient, et en incluant la possibilité que le calcul de la
vraisemblance puisse être stochastique.

Pour l’utilisation des filtres sur EAF, un calcul de la vraisemblance est possible pour le filtre PHD.
Néanmoins, pour le filtre δ-GLMB, lorsque le nombre de cible ou de mesure est conséquent, des problèmes
combinatoires rendent le calcul difficile. La thèse propose donc d’approximer la vraisemblance grâce au
modèle de Poisson, en la calculant avec les équations de récursion du filtre PHD. L’Optimisation Bayésienne
permet d’obtenir un vecteur de paramètre optimal, ensuite utilisé par le filtre δ-GLMB. Les algorithmes de
filtrages ont d’abord été testés sur des mesures de laboratoires. Un essai sur un cylindre d’acier a permis
de montrer les possibilités d’extraction d’ondes de réflexions de la technique présentée précédemment, ainsi
que sa capacité à estimer la vitesse de propagation des ondes. Sur les rails de laboratoires avec défauts
usinés, la technique permet la décomposition du B-scan. Différents parcours d’ondes sont ainsi extraits: un
B-scan pour les ondes directement transmises, un pour les échos arrières, et un pour les échos avants. Les
paramètres des filtres sont estimés pour chaque nouvel ensemble d’acquisitions.

Pour éprouver les performances des algorithmes développés sur des données terrain, un chariot de mesure
dynamique avec capteurs EMAT a été construit par RAILENIUM. Il a été employé pour réaliser des mesures
sur les voies d’Eurotunnel, de manière dynamique: les mesures sont réalisées lorsque le chariot se déplace à
vitesse constante. Deux récepteurs EMAT sont montés sur le chariot. Ceci permet de réaliser des compara-
isons entre les signaux enregistrés, pour une même onde générée. Un retard pour le capteur le plus éloigné,
ainsi qu’une atténuation, par rapport au capteur plus proche de l’émetteur. On calcule ainsi une différence
des temps de vol ∆u, ainsi qu’un ratio des amplitudes rA. Des variations de ces indicateurs indique une
modification de la structure du matériau, et ainsi la présence de défauts. Un calcul direct de ces indicateurs
peut être sensible aux bruit de mesure. De plus, lorsqu’un capteur est mis en défaut, ces ratios perdent
leur signification. L’utilisation des EAF permet d’obtenir une quantification de l’incertitude relative à la
mesure. Lorsqu’un parcours d’une ondelette n’est pas disponible, le calcul des indicateurs n’est pas réalisé.
Ceci permet de montrer directement la mise en défaut du processus, plutôt que le calcul d’indicateurs aux
valeurs anormales.

Dans le cas des essais à Eurotunnel, plusieurs zones sont inspectées: une avec Head-Check léger, une avec
Head-Check modéré, ainsi qu’une avec Head-Check important. Les indicateurs calculés avec les filtres EAF
permettent d’identifier clairement ces zones, et ainsi attester la présence de défauts.
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Caractérisation local de signaux pour la détection de défauts

L’étude des phénomènes vibratoires peut être généralisée à d’autres signaux obtenu à partir de mesures
sur des infrastructures ferroviaires. Les techniques précédemment décrites se sont focalisées sur les données
ultrasonores. Mais le formalisme employé, notamment l’utilisation des modèles d’états et des filtres prob-
abilistes, peut être transposé aux signaux de fréquence plus basse. En particulier, des mesures provenant
d’accéléromètres correspondent à ce critère. Par exemple, des mesures de vibrations des blochets pour-
raient également être analysées par ces moyens. Une comparaison ultérieure de nos méthodes avec celles
aujourd’hui utilisées pour l’inspection des blochets des voies d’Eurotunnel serait un axe de développement
intéressant.

Dans le cadre de la thèse, n’ayant pas de mesures provenant directement d’infrastructures ferroviaires, une
étude d’un dispositif fournissant des données similaires a été réalisé. Les mesures provienne de l’expérience
de la Colonne Résonante, utilisée en ingénierie civile pour déterminer les propriétés dynamiques d’échantillon
de terrains. Une quantité de terre, sable ou argile est confinée, et soumise à des sollicitations de torsions.
Lorsque ces sollicitations cessent, on enregistre la réponse du milieu testé grâce à des accéléromètres. A
partir des signaux, on estime des paramètres dynamiques synthétisant les propriétés du matériaux. Dans le
cas de l’expérience de la Colonne Résonante, les phénomènes physiques mis en jeu peuvent être modélisés
par un système à un degré de liberté. Les paramètres dynamiques estimés sont le Taux d’Amortissement D
et la Fréquence de Résonance f (notée ω pour la fréquence en radians, avec ω = 2πf).

Une hypothèse forte faite en ingénierie civile pour obtenir les estimations des paramètres dynamiques
est leur constance au cours du temps. Néanmoins, il a été montré empiriquement que des phénomènes de
non-linéarité apparaissent lors des expérimentations. L’hypothèse précédente ne permet pas de modéliser
les phénomènes de réponse des échantillons des terrains. La thèse propose d’étudier ces non-linéarités grâce
à une estimation du changement des paramètres dynamiques au cours du temps. A chaque instant t, une
estimation du vecteur de paramètres dynamiques ut = (Dt, ft)

T est réalisée. On fait l’hypothèse que le
vecteur ut varie lentement au cours du temps. Localement, le système à un degré de liberté est donc valable.
Contrairement aux chapitres précédents, où l’estimation d’une densité de probabilité filtrée p(ut | z1:t)

pouvait être réalisée, la présente estimation vise à estimer directement la densité de probabilité jointe
p(u1:T | z1:T ). Cette procédure, appelée lissage, permet d’inclure également les observations futures dans
l’estimation. L’ensemble des mesures sont prises en compte pour réaliser l’estimation des vecteurs d’états
à l’instant t, contrairement à l’estimation par filtre, qui n’utilise que les mesures obtenues jusqu’à l’instant
t. Un filtre particulaire Rao-Blackwellisé (filtre particulaire incluant un calcul analytique d’une partie des
densités de probabilité) peut être utilisé lorsqu’un sous-ensemble du vecteur d’état est soumis à des évolutions
linéaires sous bruit Gaussien. Lorsque les paramètres de ce filtre sont déterminés, dans notre application
grâce l’approche par optimisation bayésienne, on peut ensuite appliqué un lisseur particulaire adapté au
filtre particulaire Rao-Blackwellisé. La thèse propose également une approche entièrement Bayésienne, qui
intègre l’incertitude relative aux paramètres du filtre. Le calcul de la vraisemblance étant stochastique, un
algorithme par «Monte Carlo Markov Chain» (MCMC) bruitée est proposé, pour obtenir des échantillons
du posterior de manière efficace, à partir de données fournies par des accéléromètres. Des simulations
permettent de monter la supériorité de ces deux méthodes par rapport à la procédure de filtrage, pour des
variations lentes des paramètres dynamiques.

En faisant varier le niveau des sollicitations, et en répétant l’expérience, on obtient, des courbes de dégra-
dations, représentant l’évolution des paramètres dynamiques en fonction du niveau des sollicitations. La
répétition des expérimentations est une opération couteuse en temps. La méthode d’analyse proposée dans
cette thèse permet d’extraire, à partir d’un seul signal obtenu avec une sollicitation forte, les paramètres dy-
namiques pour différents sollicitations changeant au cours du temps. Des courbes de dégradations sont ainsi
extraites à partir d’un unique signal. La méthodologie a été testé sur un échantillon de sable d’Ottawa. Une
comparaison avec la procédure complète (par de multiples sollicitations), à permis de montrer la consistance
des résultats obtenus grâce aux procédures de lissage, que ce soit le lisseur particulaire Rao-Blackwellisé, ou
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la procédure par MCMC bruitée. L’approche proposée permet ainsi un gain en temps significatif, tout en
permettant d’estimer les paramètres dynamiques en intégrant l’incertitude résidant dans les paramètres du
problème. Pour les signaux ultra sonores issues de capteurs EMAT, ceci permet notamment d’identifier les
chemins des impulsions, et de les extraire des représentations en B-scan.

Ouverture

La présente thèse a montré l’intérêt de la modélisation probabiliste par modèles d’états sur l’utilisation
des signaux vibratoires et ultra-sonores dans un contexte de contrôle non destructif. La propagation de
densité des probabilité, effectuée de manière séquentielle au cours du temps, permet d’identifier certaines
caractéristiques des ondes mesurée, liées à leurs propriétés physiques. Ceci afin d’améliorer la détection
de défauts de surface sur le rail. Des procédure automatisées ont été développées pour palier à l’épineux
problème du réglages des algorithmes séquentiels, ne nécessitant pas de connaissance avancée de l’opérateur.
Les méthodes ont été éprouvées sur des simulations, données de laboratoires et expérimentales. Les gains
obtenus en utilisant ces techniques couvrent un large spectre: possibilité d’estimer des quantités inaccessibles
sans associations entre les acquisitions, quantifications des incertitudes des prédictions, et automatisation
de l’analyse des signaux.

Cette thèse s’est intéressé à des types des signaux ultra-sonores bien particuliers, obtenus par des dis-
positifs se déplaçant à faible vitesse. Pour valider l’approche de manière plus industrielle, et éprouver
les performances des méthodes développées, des campagnes d’inspections sur de plus grandes longueurs
de rail en embarquant le dispositif de mesure sur des trains d’inspection seront nécessaires. Ceci sera
permis par l’installation des capteurs dans des structures mobiles appropriées. D’autres types de défauts
pourraient également être étudiées, notamment ceux internes aux rails. Ceci nécessitera l’utilisation de cap-
teurs différents. Néanmoins, les outils développés ne sont pas restreint aux seules données EMAT, et leur
généralisation à d’autres capteurs pourra être étudiée. Enfin, l’analyse de milieux aux propriétés physiques
et mécaniques différentes pourrait être envisagé, comme par exemple les bétons. Les représentations des
signaux seront à adapter, mais les processus des filtrages séquentiels pourrait apporter des informations
supplémentaires, de façon similaire à ce qui a été réalisé dans cette thèse, sur les signaux ultra-sonores sur
rails.
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Development of new methods for Non Destructive Testing for Railway Infrastructure. Use of statistical signal
processing.

Maintenance of railway infrastructures has nowadays to anticipate the degradation of equipment to avoid
any damaging incidents. Detecting a defect on the rail at its earliest stage is necessary to ensure efficient and
optimal maintenance. Electro-Magnetic Acoustic Transducers (EMAT) are a contactless ultrasonic inspec-
tion technique for non-destructive assessment of the condition of ferromagnetic materials. Their application
to rails allows identification of surface defects when measurements are obtained from immobile sensors.
However, railway infrastructure operations are urging to reduce the inspection time of rails. Measurement
tools must thus be carried into motorized structures. Mobile inspections cause degradations of ultrasonic
signals. This thesis proposes tools and methodologies from statistical signal processing to improve the detec-
tion and characterization of surface defects on the rail, from ultrasonic signals obtained by mobile sensors.
First, statistical indicators on EMAT signals to identify rail defects and representations of measurements in
state spaces are introduced. They provide information on the evolution of ultrasound signals during mobile
measurements, using filtering algorithms, which enable quantification of uncertainty about the made esti-
mates. A methodology for automatically adjusting the parameters of these filtering algorithms to adapt to
received data is then presented. The methodology is based on Bayesian modelling, requiring little knowledge
of algorithms from a human operator. Finally, the more general case of vibrational acceleration signals is
investigated. Identifying the evolution of characteristics within these signals allows a better understanding
of the physical phenomena governing these signals. Bayesian estimation procedures incorporate uncertainty
about the prior knowledge of the problem, and the results provided by estimation methods.

Keywords: Multi-Object Tracking, Ultrasonic Testing, Rail Surface Defect Detection, Vibratory Signal
Analysis, Bayesian Statistical Estimation

Développement de Nouvelles Méthodes pour l’Évaluation Non-Destructive des Infrastructures Ferroviaires.
Utilisation de traitements statistiques des signaux.

La maintenance des infrastructures ferroviaires doit désormais anticiper la dégradation du matériel pour
éviter tout incident dommageable. Détecter un défaut sur le rail à son stade le plus précoce est nécessaire
pour garantir une maintenance efficace et optimale. Les Electro-Magnetic Acoustic Transducers (EMAT)
sont une technique d’inspection ultrasonore sans-contact pour l’évaluation non destructive de l’état des
matériaux ferromagnétiques. Leur application aux rails permet l’identification des défauts de surface lors
d’une prise de mesure immobile sur le rail. Néanmoins, l’exploitation du réseau poussant à la diminution du
temps d’inspection, les outils de mesures doivent être embarqués dans des structures motorisées. L’inspection
mobile cause une dégradation des signaux ultrasonores. Cette thèse propose des outils et méthodologies du
traitement statistique du signal pour améliorer la détection et la caractérisation des défauts de surface du
rail, à partir de signaux ultrasonores obtenues par des capteurs mobiles. Nous proposons des indicateurs
statistiques sur les signaux EMAT permettant une identification des défauts du rail. Des représentations des
mesures dans des espaces d’états apportent des informations sur l’évolution des signaux durant la mesure
mobile, grâce à des algorithmes de filtrage, qui fournissent des mesures d’incertitudes sur les estimations
réalisées. Nous apportons une méthodologie permettant de régler automatiquement les paramètres de ces
algorithmes de filtrage pour s’adapter aux données reçues. Elle repose sur des modélisations bayésiennes,
nécessitant peu de connaissances sur les algorithmes de la part d’un opérateur humain. Enfin, nous nous
sommes intéressés au cas plus général des signaux vibratoires d’accélération. L’identification de l’évolution
des caractéristiques au sein de ces signaux permet une meilleure compréhension des phénomènes physiques
régissant la mesure. Des procédures bayésiennes intègrent l’incertitude sur les connaissances a priori du
problème, et les résultats fournis par les méthodes d’estimations.

Mots clés : Tracking Multi-Objects, Inspection Ultrasonore, Détection de Défauts de Surface du Rail,
Analyse de Signaux Vibratoires, Estimation Statistique Bayésienne
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