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Résumé En Français

Introduction

Le Cloud computing a prouvé son approche révolutionnaire en fournissant
divers services informatiques au cours des dernières années. Il offre de multi-
ples avantages par rapport à un modèle “in-house computing” traditionnel, à
savoir, une mise à l’échelle à la demande, le multiplexage des ressources, un
accès haut débit au réseau et un modèle de payement “pay-as-you-go”. En ef-
fet, un consommateur ne paiera que les coûts d’utilisation de ses applications,
qui s’avèrent bien inférieurs au coût de construction et de maintenance de sa
propre infrastructure.

Avec la demande croissante sur les ressources Cloud, vient l’augmentation
du nombre de fournisseurs de services Cloud. Cette augmentation induit deux
freins majeurs à l’adoption du Cloud. Le premier étant la difficulté de choisir le
meilleur fournisseur et la meilleure offre pour ses besoins. Le deuxième réside
dans les appréhensions liées aux problèmes de sécurité [26] lors de l’utilisation
du Cloud.

Les clients recherchent des solutions qui assureraient leur sécurité. Des
propositions détaillées d’exigences relatives aux approches de responsabilité
pour les services et outils sont présentées dans [65].

Plusieurs travaux de recherche ont été menés pour remédier à ces prob-
lèmes, certains de ces travaux sont présentés dans le chapitre 3 consacré à un
état de l’art des solutions de courtage Cloud existantes. Une solution possi-
ble consiste en la combinaison de deux scénarios d’interopérabilité Cloud: le
courtage Cloud et le multi-Cloud. Avoir un certain niveau d’interopérabilité entre
les différents fournisseurs de Cloud pourrait être très bénéfique à la fois pour
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les clients et les fournisseurs de Cloud. Certaines des motivations et avantages
d’une telle interopérabilité, ainsi que des définitions détaillées des concepts
mentionnés seront présentées dans le chapitre 1.

La solution proposée dans cette thèse intègre deux aspects, l’assurance de
la sécurité du Cloud et la variété des offres Cloud. Le courtier Cloud proposé,
est une entité tierce qui fait l’intermédiaire entre les clients et les fournisseurs
Cloud. Le courtier guidera le client tout au long du processus d’intégration du
Cloud. Notre courtier est conceptualisé pour le modèle de déploiement IaaS

du Cloud computing. Il prend en considération les exigences fonctionnelles
(c’est-à-dire la quantité et la description des ressources) et non fonctionnelles
(c’est-à-dire les propriétés de sécurité) du client dès le premier contact. Après
avoir reçu la description de la demande du client, notre courtier commence par
vérifier sa cohérence. Dans le cas d’incohérence de la demande, il met en évi-
dence les éventuelles causes de celle-ci. Nous utilisons des méthodes formelles
couplées avec de la programmation linéaire pour vérifier la cohérence et trou-
ver le placement approprié dans une fédération de Clouds. L’outil fait une
proposition de déploiement de l’architecture au client. Nous présentons une
solution transparente, les utilisateurs décrivent leurs exigences sécurité person-
nalisées dès les premiers stades. De plus, le mécanisme que nous proposons
peut être facilement documenté, car ses fondements reposent sur un formal-
isme facile à comprendre qui est la logique relationnelle de premier ordre.

Dans la suite de ce résumé, je vous présente la première version de la solu-
tion du courtage proposée et publiée dans [74]. Les modifications et améliora-
tions apportées à cette solution, en particulier la modélisation de la fédération,
des fournisseurs et la recherche de placement. Puis, un résumé du travail qui
consiste en la traduction du langage Alloy vers la syntaxe Coq afin de prouver
l’exactitude des propriétés de modèles écrites en Alloy. Cela était motivé par
les limitations rencontrées lors de l’utilisation du langage Alloy. Ce travail a
été publié dans [75].
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Une première solution de courtage Cloud

Le chapitre 4 résume les travaux menés comme amélioration du courtage
Cloud solution présentée par Guesmi et al. [37]. Dans sa thèse [36], Guesmi
a posé les premières bases de l’utilisation de la vérification formelle dans une
solution de courtage Cloud. Elle a réussi à modéliser les utilisateurs et four-
nisseurs Cloud, mais aussi à définir des contraintes de sécurité personnalisées
en utilisant le langage et l’outil Alloy. Alloy est un langage de spécification per-
mettant d’exprimer des contraintes structurelles et des comportements com-
plexes des systèmes. L’outil Alloy (aussi appelé l’analyseur Alloy) est un outil
de modélisation structurelle simple basé sur une logique de premier ordre.
La solution proposée a cependant laissé un certain nombre de questions sans
réponse. Bien que ses résultats finaux aient présenté des limites évidentes, nous
ne pouvons pas nier le potentiel de cette approche, d’où la décision de repren-
dre le travail et d’essayer de le développer davantage.

Le fait que le projet soit limité aux architectures de type IaaS n’est pas con-
sidéré comme une limitation bloquante. Une décision a été prise de conserver
ce type d’architecture, car il permet les manipulations de ressources que nous
recherchions. En effet, notre approche peut facilement être étendue aux ar-
chitectures de type PaaS, en modifiant légèrement les modèles et en ajoutant
des contraintes spécifiques à ces architectures. L’une des limites de l’approche
adoptée dans [36], est que la taille des problèmes qui peuvent être traités effi-
cacement est limitée. Une seconde limitation est l’impossibilité de répondre à la
dynamicité des besoins des clients, des offres fournisseurs ou des architectures
déployées.

Le contenu détaillé dans le chapitre 4 est basé sur l’article publié dans [74].
Le but de ce travail était de trouver un moyen d’introduire des fonctionnalités
plus dynamiques dans le modèle existant. Des fonctionnalités qui ont comme
but de prendre en compte l’évolution des besoins des clients, des offres four-
nisseurs ainsi que des architectures déjà déployées. Le changement majeur qui
a été apporté est le changement de l’outil de modélisation de Alloy à KodKod.
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Kodkod est un solveur de contraintes basé sur SAT pour la logique du pre-
mier ordre. Contrairement aux autres solveurs, Kodkod autorise des modèles
partiels, en permettant à l’utilisateur de spécifier une solution partielle qu’il
pourra compléter ensuite.

Optimisation de coût dans un courtier Cloud

La solution proposée précédemment, a montré un grand potentiel pour
aider les clients dans l’intégration du Cloud tout en tenant compte de leurs
besoins fonctionnels et de sécurité personnalisés. Elle possède malgré tout
quelques limites. En effet, les modèles, plus précisément ceux des fournisseurs
de services et de la fédération, sont assez simplistes et ne reflètent pas un scé-
nario réaliste. La façon dont on a conçu notre première solution repose sur
l’existence d’un standard pour décrire les infrastructures des fournisseurs de
services Cloud, ainsi que la fédération qui les regroupe. Malheureusement,
ces attentes sont irréalistes en raison des problèmes d’interopérabilité entre les
fournisseurs et de l’inexistence de standardisation de la description des infras-
tructures des fournisseurs. Afin d’avoir une solution de courtage plus en lien
avec les problèmes actuels, nous avons décidé de modifier les descriptions des
fournisseurs et fédérations. Une autre limite rencontrée est liée à l’étape de
recherche d’une stratégie de placement approprié de l’architecture des clients.
En fait, notre solution de courtage renvoyait la première stratégie trouvée sans
prendre en considération des critères de classement spécifiques. D’après nos
recherches, le coût reste l’un des critères les plus importants pour les clients
potentiels. En conséquence, nous avons décidé de proposer dans la nouvelle
version de notre solution une stratégie de placement qui optimisera le coût
d’intégration du Cloud.

Dans le chapitre 5, je présente les modifications apportées aux modèle et ar-
chitecture de la solution précédente, ainsi que l’implémentation du courtier. Le
courtier commence par la vérification de la demande du client en utilisant l’API
KodKod, ensuite le problème linéaire est résolu afin de trouver une stratégie
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de placement qui répond aux exigences fonctionnelles et non-fonctionnelles du
client tout en optimisant son coût.

Transformation de Alloy à Coq

La méthode formelle Alloy nous a permis de modéliser les différents ac-
teurs de notre problème, nos exigences de sécurité et de les vérifier facilement.
Cependant, nous avons fait face à certaines de ses limites lors de la première
phase d’implémentation. Cela a motivé le travail résumé dans cette section.

Il existe de nombreuses méthodes formelles, allant des outils entièrement
automatisés, comme les analyseurs statiques [73], aux prouveurs de théorèmes
interactifs qui nécessitent beaucoup de travail humain. Souvent, les utilisateurs
de ces outils doivent fournir une spécification du système analysé. L’analyse
de cette spécification peut alors être automatique ou interactive. Alloy et
l’analyseur Alloy [41] entrent dans la première catégorie. Alloy était et est en-
core utilisé dans de nombreux domaines différents, par exemple en génie logi-
ciel [32] et en sécurité [67]. Des applications plus spécifiques de celui-ci, telles
que présentées par Torlak et al. dans [85], sont la modélisation et l’analyse de
systèmes logiciels, la vérification bornée de programme et la génération de cas
de test. Plusieurs systèmes ont été étudiés en utilisant Alloy, à savoir, le système
de fichiers flash [43], le porte-monnaie électronique Mondex [68], une machine
de proton-thérapie [70], une bibliothèque de système d’information [29], etc.

En ce qui concerne la vérification bornée des programmes (i.e. bounded veri-
fivation en anglais), deux travaux connexes ont été présentés en détail dans [85].
L’outil Jalloy [40] vérifie une méthode Java par rapport à une spécification de
son comportement. Il commence par traduire la méthode en langage Alloy puis
en invoquant un premier prototype de l’analyseur Alloy sur les contraintes
résultantes. Le deuxième travail a été construit sur le travail précédent et
s’appelle Forge [22]. Il a utilisé une nouvelle traduction du code procédural en
logique relationnelle impliquant une exécution symbolique, en utilisant l’API
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KodKod [83]. Comme expliqué dans le chapitre 4, nous utilisons le langage Al-
loy et l’API KodKod en arrière-plan de notre solution de courtage Cloud pour
décrire et vérifier la cohérence des modèles. Alloy a également été exploité
dans de nombreux outils de génération de cas de test, à savoir, TestEra [52] et
Whispec [72]. Alors que TestEra [52] utilise Alloy dans un cadre de boîte noire
basé sur les spécifications pour tester les programmes Java, Whispec [72] suit
une approche de test boîte blanche basée sur les spécifications avec Kodkod.
KodKod [24], qui est au cœur du moteur de l’analyseur Alloy est également
utilisé dans Niptick [13] un chercheur de contre-exemples pour l’assistant de
preuve Isabelle.

Alloy est une méthode formelle légère, car elle repose sur l’hypothèse
“small scope” : l’examen de tous les petits cas est susceptible de produire
des contre-exemples intéressants. Cependant, l’analyseur Alloy ne peut pas
montrer l’absence d’erreurs. D’autres outils formels tels que les prouveurs de
théorèmes interactifs Coq [80] et Isabelle [61] ont été utilisés pour fournir des
garanties très solides sur les logiciels vérifiés, y compris un compilateur C [46]
et le noyau d’un système d’exploitation [44].

Nous pensons qu’il est très utile d’utiliser des méthodes formelles légères.
En pratique, si l’on veut utiliser un outil tel qu’Alloy dans un premier temps,
puis que l’on veut utiliser un outil plus lourd comme Coq dans un second
temps, la formalisation effectuée en premier est perdue. Pour accompagner la
transition Alloy vers Coq, nous proposons, dans le chapitre 6 un traducteur des
modèles Alloy vers du code Coq. Le résultat de ce travail a été publié dans [75].

Conclusion

De nombreuses solutions de courtage Cloud proposées dans le milieu
académique ainsi que celles commercialisées abordent des problèmes liés à
la performance, au coût, à la qualité de service et au respect des contrats SLA
(i.e. Service Level Agreement est un contrat par lequel le fournisseur de ser-
vice s’engage à fournir un ensemble de services). Ceux qui intègrent l’aspect
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de sécurité ne considèrent que les niveaux de sécurité de base, i.e. les services
sécurité proposés par les fournisseurs Cloud. À part le travail proposé par A.
Guesmi’s dans [37], qui est la solution initiale sur laquelle est basée cette thèse,
nous n’avons pas trouvé d’autres travaux qui tiennent compte des besoins per-
sonnalisés du client du point de vue de la sécurité. Dans cette thèse, nous
proposons une conception et un outil de courtage Cloud qui vise à s’affranchir
des limitations du travail de A. Guesmi.

Notre solution donne la possibilité aux clients, souhaitant migrer leur ap-
plication vers le Cloud, de décrire leur demande sous forme d’une architecture
basée sur des composants, de préciser leurs descriptions fonctionnelles ainsi
que les relations de sécurité les reliant. Le courtier vérifie ensuite la cohérence
de cette demande et trouve une stratégie de placement qui respecte à la fois
leurs exigences fonctionnelles et non fonctionnelles tout en optimisant le coût.
Le reste du document présente en détail nos contributions.
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1.1 Introduction

With the increasing demand on Cloud computing resources and growth
of the Cloud market, comes the increase of the number of Cloud services
providers (CSP). It makes it harder for potential customers to chose between
providers and/or find a perfect offer catered for their special needs.

Security [26] was, and still is, one of the biggest reasons holding some users
from integrating the Cloud. Customers are looking for solutions that would as-
sure their security. In general, security assurance refers to the grounds for con-
fidence that the set of intended security policies and controls in an information
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system or organization are effective in their application. Many strategies can be
implemented to assure that. Pearson [65] gives detailed examples of require-
ments to accountability approaches (cf. Chapter 3).

These issues have spiked the interest of many researchers and companies,
some of these works and approaches will be presented in Chapter 3. One way
to diverge from these limitations is by combining two Cloud interoperabil-
ity scenarios, Cloud brokerage and multi-Cloud. In fact, having a certain level of
interoperability between the different Cloud providers could be equally very
beneficial for Cloud customers and providers. Some of the motivations and
benefits of such an interoperability, as well as a detailed definition of the afore-
mentioned concepts, will be presented in Section 1.2.

This thesis consists in trying to find a trustworthy solution to assist users
in integrating the Cloud. To do so, we propose to integrate two aspects: Cloud
security assurance and the variety of Cloud offers. We suggest a Cloud bro-
ker, a third party, that will intermediate the relation between Cloud customers
and providers. The broker will guide the customer through the full process of
integrating the Cloud. Our broker will take into consideration the functional
(i.e. description of the resources needed) and non-functional (i.e. security prop-
erties) requirements of the customer. We present a transparent solution as the
users describe their customized security requirements from the early stages.
This solution is easily documented due to its foundations relying on an easy
to understand formalism that is first-order relational logic.

The organization of the rest of this chapter will be as follows. The defi-
nitions of the different concepts related to our Cloud brokerage solution will
be elaborated in Section 1.2. Section 1.3 will summarize the motivation of the
work conducted throughout this thesis. The main contributions are summa-
rized in Section 1.4 and Section 1.5 will present the overall organization of the
upcoming chapters.
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1.2 Context

This section presents the global context of my thesis. It gives definitions of
the Cloud computing concept and its surrounding elements: Cloud Providers,
Cloud Brokerage, Cloud Federation and Multi-Cloud.

1.2.1 Cloud Computing

The most referenced definition of Cloud computing is that given by the Na-
tional Institute of Standards and Technology (NIST) [25]:

Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources ... that can be rapidly provisioned and released
with minimal management effort or service provider interaction.

Several essential characteristics distinguish Cloud computing. On-demand
self-service: the Cloud computing power and the storage capacity can adapt
automatically according to the needs of the customers. Without the need for
human interaction with service providers, a customer can easily provision com-
puting resources in a flexible manner thanks to Cloud computing. Broad net-
work access: Cloud services are available on the network and are accessible
through standard mechanisms. They can be accessed by heterogeneous thin or
thick client platforms (mobile phones, tablets, laptops, and workstations). Re-
source pooling: Physical and virtual resources can be combined to serve multiple
Cloud customers. They are allocated and automatically adapted according to
customer demand. Customers are not aware of the exact location of resources
but can specify it at a higher level of abstraction (e.g. the country). Some exam-
ples of the provided resources are storage, processing, memory, and network
bandwidth. Rapid elasticity: Resources can be quickly, in some cases even auto-
matically, provisioned and released according to the customer’s request. This
makes the customer feel that the resources are unlimited and can be accessed
at any time. However, providers, generally, tend to define thresholds. Measured
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service: Thanks to its metering capability Cloud systems automatically con-
trol and optimize resource use. The latter can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the
utilized service. In fact, it fuels the billing model adopted by the majority of
providers which is “pay only for what you consume”.

Cloud is known for its three major service models. Starting with the Soft-
ware as a Service (SaaS), which offers fully ready applications that are ac-
cessible via various client devices, through a lightweight user interface such
as a web browser or a dedicated software. The user does not have to worry
about software upgrades nor how they are provided. Famous examples for
SaaS providers are Google Apps [34] and Microsoft Office365 [56].

Then we find the Platform as a Service (PaaS). This service model consists
of provisioning pre-configured environments on which users/customers can
develop, test, and run their applications. The users can deploy applications
and add their own tools. They control the application and its configuration but
not the underlying infrastructure (i.e. network, server, storage). The operating
system and infrastructure tools are under the control of the provider. Among
the PaaS providers are Google App Engine [1], Microsoft Windows Azure [55]
and OpenShift [62].

Last, the Infrastructure as a Service (IaaS) that provides the user with com-
puting, networking and storage resources. It offers virtualized hardware re-
sources based on physical hardware resources. Users have the choice to provi-
sion, either virtual machines to deploy and run software including operating
systems, or pre-configured virtual machines from the provider with installed
operating systems and applications. Users benefiting from this service model
do not control the underlying Cloud infrastructure but have control over the
operating systems, storage, and applications, as well as if needed, network
components such as firewalls. IaaS is considered as the most established Cloud
service model [88]. Amazon Web Services (AWS) is among the leading IaaS
providers.

Public Cloud is the set of Cloud infrastructures accessible via the Inter-
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net, open to the public, and made available by the different Cloud service
providers. It is only one of the deployment models of Cloud computing. The
other existing deployment models consist of the private Cloud, a Cloud infras-
tructure deployed by an organization for restricted internal use only. Access to
this Cloud is limited to employees of the organization. It may be held, managed
and operated by the organization and/or a third party. Community Cloud is an
infrastructure shared among several organizations for the needs of a specific
community. This type of model can be found in academic circles for example.
It may be held, managed and operated by one or many of the organizations
in the community, a third party, or some combination of them. And then there
is the hybrid Cloud, a composition of several different Cloud infrastructures
(public, private, community) that share data and applications. This allows or-
ganizations to take advantage of the low-cost and performance of the public
Cloud and the possibility to retain critical data in the private Cloud.

1.2.2 Cloud Provider

A Cloud provider is an entity that makes a service available for the interested
parties. It is the one who collects and manages the computing infrastructure
needed for providing services, runs the Cloud software that provides the ser-
vices, and delivers the Cloud services to the customers through network access.
There are different providers according to the service model they are offering.

A Software as a Service Cloud provider will be deploying, configuring,
maintaining and updating the applications on a Cloud infrastructure, in order
to guaranty that the services are provisioned at the expected service levels to
the consumers. While the Cloud consumers have limited administrative control
of the applications, the SaaS provider assumes most of the responsibilities in
managing and controlling the applications and the infrastructure.

For PaaS, the provider is managing the computing infrastructure for the
platform. It runs the software that provides the components of the plat-
form (e.g. runtime software execution stack, databases, and other middle-ware
components). It provides tools such as integrated development environments
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(IDEs), a development version of Cloud software, software development kits
(SDKs), deployment and management tools, to support the development, de-
ployment and management process of the consumers. The consumer has con-
trol over the applications and possibly some hosting environment settings,
while the provider has full control of the infrastructure underlying the plat-
form such as network, servers, operating systems (OS), or storage.

When it comes to the IaaS model, the provider is responsible for acquiring
the physical computing resources underlying the service (servers, networks,
storage and hosting infrastructure), as well as, running the Cloud software
necessary to make computing resources available to the consumer through
a set of service interfaces and computing resource abstractions, such as vir-
tual machines and virtual network interfaces. The consumers in turn use these
computing resources for their fundamental computing needs. An IaaS Cloud
consumer has access to more fundamental forms of computing resources and
thus has more control over the software components in an application stack, in-
cluding the OS and network, unlike the SaaS and PaaS Cloud consumers. The
provider, on the other hand, will only have control over the physical hardware
and Cloud software that makes the provisioning of these infrastructure ser-
vices possible (e.g. the physical servers, network equipment, storage devices,
host OS and hypervisors for virtualization).

A Cloud provider’s activities can be grouped into five major areas: service
deployment, service orchestration, Cloud service management, security, and
privacy.

1.2.3 Cloud Brokerage

As Cloud computing evolves, the integration of Cloud services can be too
complex for Cloud consumers to manage. A Cloud consumer may request
Cloud services from a Cloud broker, instead of using a Cloud provider di-
rectly. Quoted from a definition given by the NIST [25], a Cloud broker is “an
entity that manages the use, performance and delivery of Cloud services and
negotiates relationships between Cloud providers and Cloud consumers.”
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In general, the services provided by a Cloud broker can categorized as fol-
lows:

• Service intermediation: A Cloud broker strengthens a certain service, of-
fered by a Cloud service provider, by improving specific capabilities and
providing added-value services to the customer. This improvement may
include managing access to services, managing identity or improving se-
curity.

• Service aggregation: A Cloud broker can combine multiple Cloud com-
puting offerings into one or more new services. It provides data and
service integration and ensures the security of data transfer between the
customer and the various Cloud service providers.

• Service arbitrage: The arbitration is similar to the aggregation except that
the combined services are not fixed. An arbitrage broker has the flexibil-
ity to choose the services to be provided to the customer from several
service providers. The objective is to optimize the services provided to
the customer. For example, it can use a credit-scoring service to measure
and select a provider with the best score.

1.2.4 Multi-Cloud and Cloud Federation

Multi-Cloud architecture provides an environment where users can use re-
sources from multiple Cloud providers to build Cloud environments outside
the traditional in-house infrastructure. Though it is complicated to toggle be-
tween Cloud providers to perform tasks, Cloud service providers are working
to make this increasingly efficient. Many works are also being made around
multi-Cloud.

A Cloud federation is an explicit collaboration between multiple providers.
Despite the many benefits that arise from the aspect of Cloud federation and
multi-Cloud, to mention: QoS improvement, reduction of Service Level Agree-
ment (SLA) violations, cost efficiency. These are discussed in detail in [50]. It
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is not a common practice in current Cloud solutions due to the many chal-
lenges Cloud interoperability is still facing. A spectrum of the obstacles and
challenges facing the Inter-Cloud realization is presented in [81].

Adopting multi-Cloud or Cloud federation architecture has many benefits,
to mention a few:

• Disaster recovery: there is a big risk when using resources from one
Cloud provider, of a cyber-attack taking down all the operations, leaving
end-users inaccessible until it resolves. Multi-Cloud architecture, on the
other hand, can make services resilient against such cyber-attacks because
the customer’s infrastructure is scattered on different Cloud providers.

• Avoiding vendor lock-in: the multi-Cloud platform allows organizations
to select the best services from different Cloud providers, tailoring them
to their organizational goals, rather than having to modify their business
processes to fit a specific provider’s setup.

• Cloud cost optimization: multiple Cloud providers are offering similar
services at different price points. By being able to choose different ser-
vices from different providers, end-users are able to optimize the cost of
their Cloud architecture.

• Low latency: latency is inherent in Cloud services delivered from servers
at distant locations. In a multi-Cloud environment, users can deploy data
centers to multiple regions according to the needed locations. This is es-
pecially useful for global organizations that need to serve data across
geographically disparate locations while maintaining a satisfactory end-
user experience.

1.3 Motivation

Despite the numerous benefits Cloud computing has to offer, its full adop-
tion is hindered by the security and privacy concerns it causes. In [5, 26] is
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presented an overview of different Cloud concepts (i.e. virtualization, Cloud
platforms, data outsourcing, data storage standardization and trust manage-
ment) and the security issues related to each of them. Due to the fact that
our solution focuses on IaaS architectures, the rest of this section will focus
primarily on the security issues related to the IaaS model [20, 88].

The brokerage solution that we propose in this thesis aims to cover the se-
curity issues that are related to virtualization properties in the Cloud. In [71]
many of these security issues have been presented in detail. The authors cat-
egorize the threats and attacks against virtualized systems according to the
different layers (i.e. hardware, virtualization, OS and application). They also
list some of the known attacks against virtualized environments at the differ-
ent layers. The work presented in this thesis could limit the damages of some of
the attacks on the virtualization layer. To mention some of the attacks targeting
the virtualization layer:

• Cross-VM Attacks: attacks between virtual machines (VMs),

• VM Escape and VM Hopping: where attackers run a malicious code on
the VM that would break the operating system giving them direct access
to the hypervisor (i.e. a program that creates and runs virtual machines),

• VM Detection: when attackers detect that the targeted system is running
inside a VM and start targeting their attacks on the virtualization layer
instead of the application or OS.

In the survey [71], a framework for threat models categorization has been
proposed. When trying to propose a new protection solution, this framework
can be useful for a more precise definition of the security and trust assump-
tions. Our work will especially help limit the damage of the Cross-VM Attacks
and the exploits taking advantage of inter-VM communications. By giving the
customers the possibility to define their security properties under the form of
communication relations, they will be able to control where they place their
most critical data as well as the type of connections between their components.
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Thus, with well defined and robust security requirements, a malicious attacker
won’t be able to access the critical data.

The initial aim of my thesis was to improve upon and carry on the work
done during Asma Guesmi’s PhD thesis [36]. Our joined motivation is to find
a solution to aid customers in integrating the Cloud while taking into con-
sideration their functional and non-functional needs as well as assuring them
a personalized level of security. The contributions of Guesmi’s work will be
presented as part of the related works in Chapter 3.

1.4 Contributions

First, improving upon the work conducted in [36] by introducing a dy-
namic aspect in the sense of we gave customers the possibility to modify their
Cloud architecture after its deployment and the broker the ability to handle a
multitude of customers. Such work and improvements prove the potential that
formal methods have to describe and assure customers’ security in the Cloud.

Second, using formal methods and linear modeling to create a Cloud bro-
kering solution that assists customers in migrating their applications to the
Cloud, while respecting both their functional and non-functional needs all
while being cost efficient. The customer’s demand is described in the format
of interconnected components. While the functional requirements consist of
the characteristics of these components, the non-functional requirements are
the communication links connecting them. We use formal methods to describe
and verify the consistency of the customer’s application architecture, in order
to detect any communication conflicts between the different components be-
fore their deployment. Then we use linear programming to find an adequate,
cost efficient, placement strategy that fulfills the customer’s needs.

Finally, having used the Alloy specification language [19] throughout our
work we have felt its limitations. Alloy is a declarative language that allows
modular descriptions and complex configurations of the systems to be verified.
Due to its conception, this verification is only done in finite scopes. Thus, we
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thought that the ability to have an additional step using heavier weight provers,
such as the Coq proof assistant, could be interesting when handling critical
systems. We developed a tool to translate models written in the Alloy language
into Coq syntax and help prove properties about them.

1.5 Manuscript Organization

The organization of this manuscript will closely mimic the different stages
I went through during my PhD thesis. Starting with Chapter 2, giving an
overview of the different languages and tools used in the different contribu-
tions, i.e. Alloy language, KodKod model finder, Coq Proof Assistant and the
GLPK (GNU Linear Programming Kit).

Chapter 3 summarizes the related works that have been conducted regard-
ing Cloud brokerage solutions, multi-Cloud and Cloud Federations. Chapter 4
presents the description and results of our first contribution published in [74],
where we present a Cloud brokerage solution that assists customers in the full
process of integrating the Cloud while taking into consideration their person-
alized security requirements from the early stages. This solution has shown
interesting results but still had its limitations. Some of these limitations were
related to the complexity of finding a placement strategy in the federation of
Clouds, as well as the description of the latter model being too simplistic and
not reflecting real life scenarios. To solve these limitations we have decided to
explore a different path using linear programming, described in detail in Chap-
ter 5. Another limitation is due to the use of the Alloy language to formally
describe our model. In fact, trying to remediate this limitation was behind the
work described in Chapter 6 and published in [75]. We have decided to use the
Coq proof assistant to prove the correctness of Alloy models. In Chapter 6 we
present a translation method and tool of models written in Alloy language to
Coq syntax in order to be able to prove the needed specifications about them.

We will be closing up the manuscript with an overall discussion and con-
clusion in Chapter 7.
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In order to ease the comprehension and make the experience of reading the
next chapters more pleasant, I will be introducing the languages and tools men-
tioned throughout the document in this chapter. The overviews presented in
the latter will be organized as follow: Section 2.1 presents first-order relational
logic, which is underlying the Alloy language and the KodKod model finder,
detailed respectively in Sections 2.1.1 and 2.1.2. These are the languages and
tools that were used in the first contribution of my thesis presented in Chap-
ter 4. Section 2.2 introduces linear programming and presents an overview of
the GNU Linear Programming Kit. The latter is the direction we have explored
as part of my final contribution presented in Chapter 5. Section 2.3 presents
the Coq proof assistant which is the tool we have decided to use for proving
the correctness of Alloy models, this work will be detailed in Chapter 6.

2.1 First-Order Relational Logic

First-order relational logic is a fusion between first-order logic and rela-
tional logic presented by Daniel Jackson [40]. First-order logic, also called pred-
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icate logic, quantificational logic, or first-order predicate calculus, uses quan-
tified variables over non-logical objects and allows the definition of sentences
that contain variables. Relational logic is based on propositional logic to which
it introduced two linguistic features, variables and quantifiers. These features
made it possible to express information about multiple objects without enu-
merating them as well as express the existence of objects that satisfy specified
conditions without explicitly specifying them. According to Daniel Jackson,
first-order relational logic is more than a definitional extension of first-order
logic, because it; not only adds the ability to combine predicates with special
operators, such as the navigation operator, it also includes the definition of
transitive closure. For a detailed description of this logic refer to [40, Section
2]. In this section will be presented a language and a tool that implement the
first-order relational logic.

2.1.1 Alloy and the Alloy Analyzer

Alloy [40, 41] is both a language and an analyzer for writing and checking
formal models, developed in MIT (Massachusetts Institute of Technology) by
the Software Design Research Group under the direction of Daniel Jackson. In
the remaining, in order to be unambiguous, Alloy will refer to the language and
Alloy Analyzer to the tool. Alloy has been widely used for modeling systems in
order to simulate them and verify their properties. It allows a simplified view
of the systems by abstracting implementation details and focusing on their
properties and constraints. The language has a simple syntax based on the Z
language. It is a structural language. It allows to model complex structures
with hierarchies and relations. It offers the possibility to define entities with
properties and constraints to describe systems but does not conduct treatments.
Alloy is an analyzable language, the properties of models written in the Alloy
language can be checked and simulated using the Alloy Analyzer. An Alloy
model is a collection of entities and constraints used to describe the structure of
a system. Writing an Alloy model consists of defining the following statements:
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Atoms & Relations: atoms are the basic elementary entities. These are ab-
stract concepts used to model aspects of the real world. Alloy data types are
universally based on relations. They represent a concept that serves to define
correlations between atoms. Relations and atoms cooperate to represent dif-
ferent aspects of the modeled system. Relations can have a n arity and can be
declared as f : A1 ! . . .! An where Ai is an atom.

Signatures: they represent sets of entities of a system. A signature is the only
element to represent the types and atoms in an Alloy model. Although it is a
non-object-oriented language, Alloy allows inheritance between signatures. A
signature can have attributes as explained below.

Facts: they are used to describe different constraints about the system be-
ing modeled that remain always true. In Alloy, all facts are defined using the
keyword fact.

Predicates: they are an abstraction of logical formulas for reuse purposes. A
predicate can be defined with parameters used in the logical formula of its
body. Predicates are often used in assertions to be verified in the model.

Functions: they are similar to Predicates with the difference of returning typed
values for reuse and model clarity.

Assertions: they are used to specify properties about the model that are either
expected to hold true or checked if they hold. Once an assertion is stated it can
be checked if it holds in a specific scope, using the keyword check and feeding
the model to the Alloy Analyzer. The analyzer looks for a counterexample to
the assertion within the specified scope, if no counterexample is found, the
assertion is said to hold true in the specified scope.

The scope is the cardinality, specified by the user, of the top-level signatures
in a model. Although working within limited scopes ensures that the model-
finding problem is decidable, it limits the generality of the results produced
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by the Alloy Analyzer. Jackson explains this design decision through the small
scope hypothesis: “most bugs can be found by testing programs for all test inputs
within a small scope”. For more details refer to [41, Section 5].

The example of Figure 2.1, that is basically the example of [41, page 16],
presents a detailed overview of the Alloy syntax for a library management
system. Name and Addr are two signatures in Alloy terminology. They are sets.
Book is also a signature containing an attribute, addr. While addr is given the
type Name!Addr, the fact that it is an attribute of Book means it is actually a
ternary relation between Book, Name and Addr. In Lines 3 and 4 of Figure 2.1, we
can see the definition of the predicates add and del both defining two different
states of book, the first by adding a new entry (i.e. addr) and the second by
deleting an existing one. In this code, + means union, � set difference, and . is
the relational join of Alloy. One specificity of the join operation in Alloy is that
in an expression r1.r2, the right-most column of relation r1 and the left-most
column of relation r2 are not in the join result. The function lookup returns the
Addr associated to the Name n in the book b, n and b given as arguments of the
function.

The assertions are defined for this example in Lines 11–21. The assertion
delUndoesAdd is stating that by adding an entry to a book then deleting this
same entry, the result is the initial state of the book (taking into consideration
that these are the only two operations done on the book). By checking this
assertion we verify that the state of the book remains coherent. In order to
check if this assertion holds, the model is checked using the Alloy Analyzer by
executing the check stated in Line 22 (the scope, in this case, is 5 atoms, if the
scope is not specified it is set to the default value of 3).

2.1.2 KodKod model finder

KodKod [24] is a general-purpose relational engine, targeting problems such as
design analysis, code analysis, test case generation, scheduling and planning.
It was developed by Emina Torlak and Daniel Jackson from MIT Computer
Science and Artificial Intelligence Laboratory. It is a model finder (i.e. an engine
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1 sig Name, Addr { }

2 sig Book { addr: Name! Addr }

3 pred add [b, b ’: Book, n: Name, a: Addr] { b ’. addr = b.addr + n!a }

4 pred del [b, b ’: Book, n: Name] { b’.addr = b.addr � n!Addr }

5 fun lookup [b: Book, n: Name] : set Addr { n.(b.addr) }

6 assert delUndoesAdd {

7 all b, b ’, b ’’: Book, n: Name, a: Addr |

8 no n.(b.addr) and add [b, b ’, n, a] and del [b ’, b ’’, n]

9 implies b.addr = b ’’. addr

10 }

11 assert addIdempotent {

12 all b, b ’, b ’’: Book, n: Name, a: Addr |

13 add [b, b ’, n, a] and add [b, b ’’, n, a]

14 implies b’.addr = b ’’. addr

15 }

16 assert addLocal {

17 all b, b ’: Book, n, n ’: Name, a: Addr |

18 add [b, b ’, n] and n != n’

19 implies

20 lookup [b, n ’] = lookup [b ’, n ’]

21 }

22 check delUndoesAdd for 5

Figure 2.1 – Alloy Example
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that searches for models of a formula in a finite universe) provided as a Java
API, for a constraint language combining first-order logic, relational algebra,
transitive closure.

As of its 4.0 version, the Alloy Analyzer started using the Kodkod model-
finder as its background engine. To model a problem in KodKod, similarly to
Alloy, we follow these steps:

• Universe declaration: the problem’s universe groups all its relational con-
stants, called atoms.

• Relations declarations: in KodKod everything is presented as relations,
we start by declaring and describing all the relations of our system us-
ing formulas. A formula in relational logic is a sentence written over an
alphabet of relational variables.

• Global formula definition: the next step is to write the global formula to
be verified. It is a sentence in which the declared relations appear as free
variables.

• Solve problem: prior to analysis, all relations should be bound. Each re-
lation variable will be bound by a set of tuples drawn from the problem’s
universe. There are two types of bounds that can be specified, a lower
bound and an upper bound. The lower bound contains the tuples that the
variable’s value must include in an instance of the formula, the union of
all relations’ lower bounds forms a partial instance of the problem. The
upper bound on the other hand contains the tuples which the variable’s
value may include in an instance of the formula. Finding a solution for
the problem consists of finding a model, which is an instance of the global
formula. In relational logic, an instance of a formula is a binding of its
free variables to relational constants which makes the formula true.

From a syntactic point of view, the formal foundation of KodKod [84] is
first-order relational logic. Syntax for such a logic as presented in Alloy [41],
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and the notations given below are very close to Alloy syntax, the only differ-
ence is that usual mathematical notations are used here.

First, all the objects used are considered as sets. In particular, an element
is identified with the singleton set that contains only this element (identifier).
The symbol 2, therefore, denotes set inclusion as well as set membership.

For sets Ai, 1 < i  n, A1⇥ . . .⇥ An denotes the set of tuples of arity n. We
write such a tuple (a1, . . . , an) where for all i with 0 < i  n, ai belongs to Ai.

Subsets of A1 ⇥ . . .⇥ An are relations of arity n. For example < is a binary
relation on natural numbers and can be seen as the subset of N ⇥N defined
as {(x, y) 2 N⇥N | x < y}.

For n = 1, a unary relation is just a subset. As it may not be a strict subset,
any set is a unary relation. Thus, from now on all the objects manipulated are
considered as relations.

Logical formulas are used to state properties about relations. Such formulas
are built using basic predicates such as 2 or =, and using usual logical connec-
tors: ^ is logical conjunction, _ is logical disjunction, =) is logical implication,
() is logical equivalence, as well as logical quantifiers: 8 is universal quan-
tification, 9 is existential quantification, 9! is existential quantification with a
unique element. For example the formula in Figure 2.2 states the existence of
a unique quotient and reminder for the division of a number a by a non-zero
natural number b.

There are several operations to manipulate relations. Relation union is de-
noted by [, relation intersection is denoted by \, relation difference is denoted
by �, relation navigation is denoted by “.”. Other operations, union, intersec-
tion and difference, have their usual meaning.

Navigation is similar to a relational join, with the difference of the relation
join operator joins the relations by column and the matching column is kept.
The navigation operation joins the last column of the first relation with the first
column of the second relation and drops the matching column.

For example if PNCPU is a relation between physical machine identifiers
and CPU description and PhysicalNode is a set of physical machine identifiers
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8(a, b) 2 N⇥N, b > 0 =)
9!(q, r) 2 N⇥N, a = b⇥ q + r ^ r < b

Figure 2.2 – First Order Relation Logic: Formula Example

PNCPU

node1 Intel-1-2.0Ghz

node2 Intel-1-2.0Ghz

node3 Intel-1-2.4Ghz

node4 Intel-1-2.4Ghz

PhysicalNode

node1

node6

Figure 2.3 – First Order Relation Logic: Relation and Set Examples

as shown in Figure 2.3, using navigation, the expression PhysicalNode.PNCPU
denotes the relation containing only the value Intel-1-2.0Ghz.

Finally, the transitive closure of R is denoted by R+ and defined by: if
(x, y) 2 R then (x, y) 2 R+; and if (x, y) 2 R and (y, z) 2 R+ then (x, z) 2 R+.

2.2 Linear Programming

Linear Programming is a mathematical technique for generating and select-
ing the optimal or the best solution for a given objective function. Technically,
linear programming may be formally defined as a method for optimizing (i.e.
maximizing or minimizing) a linear function for a number of constraints stated
in the form of linear inequalities.

Linear programs are problems that can be expressed in the following form:
Minimize aTx
subject to :
Bx  c and x � 0
where x represents the vector of unknown variables, a and c are vec-

tors of coefficients, B is a matrix of coefficients, and aT is the transpose
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of a. The expression aTx is called the objective function. The inequalities
Bx  c and x � 0 are the constraints over which the objective function
is to be optimized.

Various solvers exist that are able to solve different linear optimization
problems. In [53], Meindl et al. present an overview and comparison of ex-
isting open-source and commercial solvers. Meindl et al. present an evaluation
of the performance of different solvers in the format of a case study of solving
multiple attacker problems. Their results show that among the free and open-
source solvers they have tested, GNU Linear Programming Kit (GLPK [51])
was the best. Although the latter was significantly slower than the commercial
solvers, mainly due to the size of the problems, the time to solve for smaller
problems was still within reason and thus can still be used.

GNU Linear Programming Kit: GLPK

The GLPK (GNU Linear Programming Kit) [51] is a free and open-source soft-
ware, written following the standard ANSI C, that allows solving problems of
linear optimization of continuous or mixed variables (discrete and continuous).
This kit is composed of a GNU MathProg modeling language and a library of
C functions (GLPK) using the Glpsol solver.

The GNU MathProg modeling language is a subset of the modeling lan-
guage AMPL [28] (A Mathematical Programming Language). AMPL is a very
powerful modeling language that can be coupled with various solvers like
CPLEX (IBM ILOG CPLEX Optimization Studio [39], a commercial solver, de-
veloped by IBM, designed for larger-scale linear models), XPRESS (Xpress Op-
timization Suite [27] another powerful proprietary software developed to solve
linear models), MOSEK [8] (a proprietary software package used to solve math-
ematical optimization for linear problems among others). . . The limitation to
linear problems (LP) of GLPK comes from the solver used. Coupled with the
adequate solver, AMPL can be easily used to model more complex problems
(i.e. nonlinear optimization, conic optimization... ).

The construction of a model is carried out from elementary bricks which
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are called modeling objects. For the construction phase, there are 5 types: Pa-
rameter, Set, Variable, Constraint and Objective. The Parameter and Set objects
allow the definition of all the problem data, Variable defines all the variables
of the problem, Constraint to define the constraints of the problem and finally
Objective is the objective function of the problem. Each brick is made up of
expressions. The set of construction possibilities is quite broad as long as the
problem remains linear.

The modeling of an optimization problem is divided into two parts:

• The Model section contains all the declarations, the calculable parame-
ters and the denials of the constraints and the objective.

• The Data section contains all the fixed data (values of the parameters, the
content of the sets).

Let’s take for example the Dantzig (1963) optimization problem which aims
to minimize the transport cost while respecting the customers’ demands and
factories supply. The model section of this problem is presented in Figure 2.4,
an example corresponding to the data section is presented in Figure 2.5. The
next step will be to feed the model to the Glpsol solver.
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/*Set of Factories*/

set I;

/*Set of Customers*/

set J;

/*Factory supply in case number*/

param a{i in I};

/*Customer demand*/

param b{j in J};

/*Distance between customer and factory in thousands of kilometers*/

param d{i in I, j in J};

/*Transport Cost in dollars per case per thousands of kilometers*/

param f;

/*Calculating the transport cost in kilo�dollars per case*/

param c{i in I, j in J} := f * d[i,j] / 1000;

/*Numbers of cases transported from factory i to customer j*/

var x{i in I, j in J} >= 0;

/*Or : var x{i in I, j in J} >= 0, integer;*/

/*Goal : minimize the total transportation cost in kilo�dollars*/

minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];

/*Constraints*/

/*Constraint due to the maximum a factory i can supply*/

s.t. CteSupply{i in I}: sum{j in J} x[i,j] <= a[i];

/*Constraint due to the a customer j ‘s demand*/

s.t. CteDemand{j in J}: sum{i in I} x[i,j] >= b[j];

Figure 2.4 – GNU MathProg Model Section Example [66]
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data;

set I := Seattle San�Diego;

set J := New�York Chicago Topeka;

param a := Seattle 350

San�Diego 600;

param b := New�York 325

Chicago 300

Topeka 275;

param d : New�York Chicago Topeka :=

Seattle 2.5 1.7 1.8

San�Diego 2.5 1.8 1.4;

param f:= 90;

end;

Figure 2.5 – GNU MathProg Data Section Example [66]

2.3 Coq proof assistant

The Coq proof assistant developed at the French Institute for Research in
Computer Science and Automation (INRIA) and first released in 1989 is an in-
teractive theorem prover. The Coq environment allows the definition of math-
ematical assertions. The Coq compiler checks and help find proofs of these as-
sertions. Coq is based on the calculus of inductive constructions [63], a higher-
order typed l-calculus. Coq and the calculus of inductive constructions are
based on the Curry-Howard correspondence, meaning, a type corresponds to
the statement of a theorem, and a program to the proof of a theorem.

The core of Coq is very small. For example, there is no pre-defined data
type. All definitions are typed in Coq. Therefore a user-defined type has a
type, named a sort. There are three sorts in Coq: Set is the sort of types that
correspond to types found in usual programming languages. It is the sort of
the “computational” types. Prop is the sort of “logical” types. Both Set and Prop



2.3. Coq proof assistant 25

1 Definition id: 8 (A:Type), A! A :=
2 fun A x) x.
3
4 Inductive nat : Set :=
5 | O : nat
6 | S : nat! nat.
7
8 Fixpoint add (n1 n2:nat) : nat :=
9 match n1 with

10 | O) n2

11 | S n1) S(add n1 n2)
12 end.
13
14 Lemma add_n_O: 8 n,
15 add n O = n.
16 Proof.
17 induction n as [ | n IH ].
18 � trivial.
19 � simpl. rewrite IH. trivial.
20 Qed.

Figure 2.6 – Coq Example

are typed and their type is Type. Most of the time when using Coq, the type
of Type will be displayed as Type. Actually, there is a countable infinity of sorts
Type.

In Gallina, the language of Coq, a definition contains three components: a
name, a type, and a term. For example, the polymorphic identity function can
be defined as shown in Lines 1–2 of Figure 2.6.

As the core does not contain predefined types (but the sorts Set, Prop and
Type), Coq provides a mechanism to define new inductive types. This is done
by giving a list of constructors for values of the defined type. For example,
Peano natural numbers are defined in Lines 4–6 of Figure 2.6. There are two
constructors for values of type nat: O and S the latter taking a nat as an argu-
ment.

Functions are most often written using pattern matching as in Lines 8–12
of Figure 2.6. For each possible way of constructing a value of the type of the
matched expression (in this case n1 of type nat), the pattern matching construct
returns (after)) a specific result. The patterns (on the left-hand side of)) may
contain variables: in case the matching succeeds, the free variables are bound
to the matched values in the right-hand side of ). Note that add is a recursive
function (Fixpoint keyword). Only terminating functions are allowed in Coq, in
this case, the system checks the termination by checking that the recursive call
is done on a strict syntactic subterm of n1.

Coq is a proof assistant that makes it possible to define theorems and prove
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them. As mentioned at the beginning of this section, a Coq definition contains
three elements: a name, a type and a term. In the case of a theorem (or lemma,
proposition, etc.), the term (i.e. the proof) is usually not written as a program
(even though the Curry-Howard correspondence states a program and a proof
are the same thing) it is written in the proof script language of Coq instead.
In the code of Figure 2.6, add_n_O is the name of the lemma, 8 n, add n O = n is
its type, and the proof script between Proof and Qed builds a term that is the
proof of the lemma.

One important feature of Coq is that computational terms can be embedded
into types. For example the module Vector of Coq standard library contains the
following inductive type definition:

1 Inductive t (A : Type) : nat! Type :=

2 | nil : t A 0

3 | cons : 8 (h:A) (n:nat), t A n! t A (S n).

The size of a value of this type contains the length of the vector. For example, a
value of type Vector.t nat 10 is a vector containing ten nat values. Vector.t is called
a dependent type.

This feature can also be used to define predicates as inductive types. For
example, the =< predicate on Peano natural numbers is defined in the Coq
standard library as:

1 Inductive le (n : nat) : nat! Prop :=

2 | le_n : le n n

3 | le_S : 8 m : nat, le n m! le n (S m).

More generally, Coq functions can take both computational values and
types as arguments, and also return them as results. As values of some types
(like add_n_O) are proofs, Coq functions can also take proofs as arguments and
return proofs as results. We use these features in the Coq code generated from
Alloy models.

It is also possible to declare values in Coq, in this case we have only a name
and a type. In the case of a value that needs a proof, it means an axiom is intro-
duced in Coq’s logic. Note that when such declarations can be written inside
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a section, in such a way that at the closing of the section, all the elements that
depend on these hypotheses are added as additional arguments corresponding
to these hypotheses.

Some of the well-known applications of the Coq proof assistant include the
study of properties of programming languages, the CompCert [47,48] compiler
certification project. Proof of correctness and verification of C programs with
Frama-C [16] (a FRamework for Modular Analysis of C programs).
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3.1 Introduction

Works have been conducted in the context of Cloud brokerage, Cloud fed-
erations and multi-Cloud, all with the aim to offer better value and assistance
to Cloud customers in the process of integrating the Cloud. This chapter repre-
sents a summary of some of the contributions regarding the different concepts
related to Cloud brokering, customers’ needs as well as position our proposed
solution among the previously proposed ones. The works surveyed range from
works presenting effective deployed brokering tools to conceptual models and
algorithms that could be implemented into brokering tools. Section 3.2 presents
an overview of the different approaches and results. Another project I worked
on during this thesis is the translation of models written in Alloy into Coq
syntax in order to prove properties about them. Section 3.3 summarizes works
conducted to verify and prove Alloy specifications.

29



30 Chapter 3. Literature Review

3.2 Cloud Brokering Related works

The works presented in this section are categorized into brokering tools in
Section 3.2.1 and models and algorithms in Section 3.2.2. We suggest a taxon-
omy of the different works presented here in Section 3.2.3 .

3.2.1 Cloud brokering tools

In the following section, we present research works that were portrayed and
identified as tools from the research papers here cited. In other words, here are
grouped the works that present a fully functioning tool, as well as, academic
works where researchers describe implementations of tools for Cloud services
brokering.

SMICloud [31] is a framework to systematically measure all the Quality
of Service (QoS) attributes proposed by CSMIC (Cloud Service Measurement
Consortium), which are: Accountability, Agility, Cost, Performance, Assurance, Se-
curity and Privacy, Usability, and then rank the Cloud services based on these
attributes. The major goal of the framework is to help Cloud customers to find
the most suitable Cloud provider and therefore can initiate SLAs (Service Level
Agreements). It is a decision-making tool, designed to provide an assessment
of Cloud services in terms of KPIs (Key Performance Indicators) and user re-
quirements. Customers provide their application requirements (essential and
non-essential) to this framework which gives a list of Cloud services where
customers can deploy their applications. Also, by using the techniques given
in their work, Cloud providers can identify how they perform compared to the
other competitors and therefore assess the market and improve their services.

CloudCmp [49] is a framework to estimate and compare the performance
and costs of deploying an application on a Cloud. It characterizes the common
set of services a Cloud provides, including computation, storage, and network-
ing services, benchmarks each service’s performance and cost, and combines
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the benchmarking results with an application’s workload to estimate the ap-
plication’s processing time and costs. In other words, this framework helps
potential Cloud customers to estimate the performance and costs of running
their application with a certain Cloud provider without actually deploying the
application.

Cloud Offerings Advisory Tool (COAT) [3] is a tool proposed to filter the
variety of Cloud service offers presented to Cloud customers based on some se-
curity and privacy attributes (Data preservation, deletion and portability after
termination, Data location and transfer, Data disclosure and integrity, Subcon-
tracting, Direct and indirect liability, Ownership of data, Change of terms of
service by Cloud providers and Encryption). This tool aims to educate the user
on the meaning of these attributes and offer a level of guidance to understand
the contractual terms in the providers’ offers. To summarize its functioning,
COAT is an independent web-based broker that matches user requirements
to offers provided by Cloud service providers, compares these offers, explains
the terms of these offerings, suggests best offerings that match the user re-
quirements and gives general guidance to users on service offerings. Overall
the tool [3] aims to find offers and present users with the necessary information
to understand the terms, and it is up to the customer to directly communicate
with the provider to get the recommended offer.

CloudSurfer [30] is a Cloud broker that browses through Cloud service of-
ferings that fulfill a set of security requirements. The latter were selected from
a repository tailored for Cloud computing based on standards and guidelines
from organizations such as NIST, Cloud Security Alliance and Enisa. Cloud-
Surfer was developed as part of a school project. The requirements that could
be entered by the customer are grouped in the following categories: Data stor-
age, Data transfer, Access control, Security procedures, Incident management,
Privacy, Hybrid Clouds. The broker would then return the possible services,
or service providers depending on what the customer asked for. Due to the
lack of a standardized machine-readable contract language that can be used
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for automatic reasoning and discovery, they have made an assumption that
providers would provide an XML file containing their offers under the form of
the requirements and so they recover the customer’s demand under the same
form and do the matching in order to get the offers fulfilling the customer’s
demand. The limitations of such a model are the fact that it’s limited to only
finding a solution from one provider, that it only does intermediation and that
it does not consider the customer’s functional requirements.

Schlouder [54] is a broker for IaaS Cloud resources able to provision and
schedule online (i.e. dynamically as jobs arrive, without knowledge of future
submissions) independent jobs or static workflows according to strategies cho-
sen by the customer. Besides its function of job execution management, it
allows the user to predict the result of one scheduling strategy or another
through simulation. The strategies for scheduling and provisioning resources
offered by this broker are heuristics for computing a bi-objective optimization
problem based on monetary cost and make the span of the whole workload.

mOSAIC [57] is a project that aims at improving the state of the art in Cloud
computing by creating, promoting and exploiting an open-source Cloud appli-
cation programming interface and a platform targeted for developing multi-
Cloud oriented applications. One of the main goals is obtaining transparent
and simple access to heterogeneous Cloud computing resources and to avoid
locked-in proprietary solutions. Also, a detailed ontology for Cloud systems
that can be used to improve interoperability among existing Cloud solutions,
platforms and services, was presented in their work.

STRATOS [64] is a broker service to facilitate cross-Cloud, application topol-
ogy platform construction and runtime modification. It allows the customer, or
namely the application deployer, to specify what is important to them in terms
of KPIs so that when a request for resource acquisition is made it is able to
consider the request against all providers’ offerings and select the acquisition
that is best aligned with the objectives. It was a step toward developing a bro-
ker service to facilitate the use of cross-provider Cloud offerings. Experiments
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presented in this paper demonstrate how cross-Cloud distribution of an appli-
cation could decrease the cost of the topology and create one that is better fits
the deployer’s objectives.

QBrokerage [6] is a Cloud brokering approach that exploits the information
that commercial providers make available to their customers, such as, virtual
machines (VM) cost and characteristics, in order to help the broker’s customers
in finding a deployment solution that meets Quality of Service (QoS) require-
ments. The latter should be formally expressed by Service Level Agreements
(SLAs). The aim of QBrokerage is to find a deployment solution while avoid-
ing scalability and vendor lock-in issues. In [6], Anastasi et al. present a design
and implementation of their solution following some software requirements
such as meeting the heterogeneous QoS requirements of applications; find-
ing near-optimal solution according to customers preferences while avoiding
provider lock-in; supporting providers with various cost models and scaling
up with hundreds of providers. A customer submits an application to QBro-
kerage, containing both functional and non-functional aspects, such as specific
security requirements that a provider should respect, following a specification
format, to mention the Open Virtualization Format (OVF). Qbrokerage lever-
ages a Genetic Algorithm (GA) approach, for finding near-optimal solutions in
large search spaces, to find a suitable deployment solution for the customers’
requests. GA approach is considered suitable in the context of Cloud Comput-
ing, due to the continuous enrichment of QoS models, as well as its flexibility
and ability to support multiple constraints and the injection of additional con-
straints with minimal interventions on the algorithm.

FCSB (Federated Cloud Service Broker) [38] is a broker designed for Public
Administrations (PA). A solution that aims at overcoming existing challenges
in the public sector such as Governance, Interoperability and Portability, SLAs
compliance and assessment, Intelligent discovery of Cloud services, cross bor-
der interoperability and legislation awareness. Ibarra et al. present in [38] an
overview vision of the design, implementation, functionalities and features of
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the FCSB. The high-level architecture of the latter is envisioned to have seven
main components that try to overcome the specific challenges faced by the PAs
mentioned earlier. These components are as follow:

• Service Management: executes and manages all the operations related to
the services offered by the FCSB, starting from customers requests to
providers offers;

• User Management: controls the different FCSB users’ activities

• Service Contract Management: executes and manages all operations related
to Service Contracts in the FCSB

• Console: implements the interface between the different users and the
FCSB

• Interoperability: performs the portability between the different services
and the communication between the FCSB and the CSPs and the other
FCSBs

• Financial Management: performs the financial operations with the different
users of the FCSB

• Regulatory Framework Assessment: judges the compliance of the services
with the different legislations

For more details about each module and technologies that Ibarra et al. judge
fitted for this solution, refer to [38].

In [60], Nair et al. present the concept of Cloud brokerage in relation to the
concept of Cloud bursting. The latter is a hybrid Cloud deployment model,
where an application deployed and running in a private Cloud, or data cen-
ter, bursts into a public Cloud once the computing capacity demand spikes.
They also propose a possible architectural framework capable of powering the
brokerage based Cloud services. Their framework was developed in the scope
of OPTIMIS, an EU FP7 project that aims to offer functionality substantially
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beyond that of current Cloud infrastructure. In their paper, they describe dif-
ferent ways to model customers needs that a brokerage solution is supposed to
serve. The three described models are enterprise use of multiple Cloud providers,
brokering multiple providers to provide a SLA-based tiered pricing model and Cloud
aggregation ecosystem. They then propose an architecture that implements a
broker model involving the Brokering multiple providers to provide a SLA-based
tiered pricing model. According to their architecture the functional components
needed in a Cloud broker are: Cloud API, Deployment Service, Staging/ Pooling
Service, Identity and access management, SLA monitoring, Capability Management
and Matching, Audit, Risk Management, Network/ Platform Security, Usage Moni-
toring , SLA Management. These components work together in order to provide
multiple capabilities to the broker’s customers. Ensure the confidentiality and
integrity of data, match the customer’s requirements with the provided service,
negotiating SLA, maintain SLA performance check, manage the API, securely
transfer data, provide effective staging and pooling services, manage access
control, manage risk and handle Cloud burst/spill-over situations. Nair et al.
sum up their paper by identifying the necessary steps to provide a brokering
service in storage and compute use cases.

Summary SMICloud [31], CloudCmp [49] and Cloud Offerings Advisory
Tool (COAT) [3] are similar brokering tools, while they are useful when trying
to rank the performance of the different providers and their compatibility to
the customer’s demand, they don’t offer additional security measures nor do
they fully intermediate the Cloud integration process. Depending on the rank-
ing and simulation results the customer will have to get in direct contact with
the chosen service provider. In a similar manner, CloudSurfer [30] is a tool that
does not intermediate the relation between the Cloud customers and providers,
it ranks different Cloud services or Cloud services providers that respects a set
of security requirements described by the customer. Schlouder [54] is an online
job scheduling IaaS broker that enables customers to simulate and chose their
scheduling strategies.
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The common theme about these works is that we have a one to one rela-
tionship between a customer and a Cloud service provider. Trying to avoid
provider lock-in and benefit from using multiple providers has attracted many
works. mOSAIC [57] and STRATOS [64] present tools for assisting and creating
applications to be deployed on multi-provider platforms. Brokers presented in
QBrokerage [6], [60] and FCSB (Federated Cloud Service Broker) [38] aims at
finding deployment strategies in a multi-Cloud environment while respecting
QoS / SLA agreements.

3.2.2 Cloud brokering models and algorithms

This section will group works presenting algorithms, architectures, models and
techniques that can be used in a Cloud brokerage solution. These are works
where researches focused more on presenting and introducing innovative al-
gorithms and techniques that were not implemented into a functioning tool.

In [69], Rogers and Cliff show that financial brokering in Cloud Computing
has potential as a viable commercial proposition and that all parties partici-
pating in the brokering operation, can potentially benefit from it, to mention:
Cloud providers by having a consistent forecast of the market, Cloud brokers
by making a financial profit and customers by benefiting from lower-cost, can
potentially benefit from it. In fact, they have built a brokerage model based on
trust and composed of two periods. In the first period, the customers would
submit a probability of the amount of units they will need for the next period
(i.e. Period 2), and the broker shall then in the same period (i.e. Period 1) do
the necessary calculations to see if he has enough resources to cover all his cus-
tomers’, potentially, needed units or reserve the needed units from providers,
at a discounted price. In the second period, on one hand, the customer could
claim or not the resources he asked for and pays a certain amount in either case,
on the other hand, the broker has to deliver the claimed resources. In [69] is pre-
sented in more detail how the calculations of the amount paid by the customer
to the broker and the broker to the providers, are done in both the cases of
claimed and unclaimed resources. They have simulated different types of mar-
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kets and found that a broker will always have his share of benefits. A theory
that was shut down by Cartlidge and Clamp in [15], where they weren’t able to
replicate the simulation in [69]. They discovered two errors made in [69]’s code
that has caused overestimated results. First, the reservations bug, when there
is a bug in the software code that causes the broker to purchase fewer reserva-
tions than the model suggests (each new reserved unit purchase is effectively
allocated to two units of demand). Second, the payment bug, during months
that demand is greater than capacity, the broker does not pay the monthly uti-
lization charge for reserved units. After running the same simulations with the
corrected program they have found that the broker’s benefits are drastically
less than what was presented in [69]. They also present in [15] other innova-
tions in Cloud computing that, for them, closes the window of opportunity to
commercially exploit a basic brokerage model.

The work in [89] proposes a Cloud brokerage service that considers both,
pricing scheme when it comes to Cloud users and reservation methods when
it comes to Cloud providers. They introduce the utilization of two types of
priorities in the design of the priority aware pricing and priority-based reser-
vation algorithms. By analyzing the widely used Google cluster trace, Wang et
al. found that jobs of Cloud users tend to always have different levels of priori-
ties. Low priority jobs can be preempted by high priority ones. Thus, make the
decision to apply priority characteristic into the resource reservation of Cloud
broker to reduce the cost. Wang et al. propose a priority aware pricing scheme,
PriorityPricing. The latter requires that Cloud users trade with Cloud broker by
fairly charging job requests based on priorities. They have designed resource
reservation algorithms that consider the priority of users’ requests to solve the
idle resource waste problem for the broker. And then, evaluate the effectiveness
of the proposed algorithms by conducting simulations with a 1-month Google
trace. Results presented show that the broker’s profit can be increased up to
2.5x than that without considering priority for the offline algorithm, and 3.7x
for the online algorithm.
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Cloud customers’ needs vary, some look for cost efficiency some for per-
formance. In [59], Naha and Othman propose three brokering algorithms. The
first algorithm is a Cost-Aware (CA) brokering algorithm. Second, a Load-
Aware (LA) brokering algorithm. And a brokering algorithm that takes into
consideration both cost and load called, Load-Aware over Cost (LAOC). In
their simulation, Naha and Othman considered six different Cloud scenarios
where they compared the three algorithms they have suggested with an al-
ready existing brokering algorithm called, Service Proximity Based Routing
(SPBR). They also used two load balancing algorithms: Round Robin (RR) and
an algorithm they have proposed, State-Based Load Balancing (SBLB). The lat-
ter is an algorithm, they proposed, that dynamically assigns tasks to idle hosts.
It also assigns tasks to available hosts from a task queue. Such a technique pre-
vents the host from becoming heavily loaded. It has been shown through the
simulations that an effective load balancing algorithm saves operational costs,
improves user satisfaction and leads to accelerate overall performance.

In [77], Sundareswaran et al. present a Brokerage-Based decision-making
approach for Cloud service selection. This Cloud broker analyzes and indexes
the service providers according to the similarity of their properties. Upon re-
ceiving the service selection request from an end-user, the Cloud broker will
search the index to identify a ranked list of candidate providers based on how
well they match the user requirements. This list forms the basis of the end
user’s final decision. The novelty presented in [77] is the indexing method used
for Cloud providers, which plays a big role in the service selection method. A
Cloud Service Provider (CSP) index is created in three steps. Starting with
Property Encoding, Relationship Encoding and then Index Key Generation. The in-
ternal nodes of the CSP-index have a similar format as the B+ -tree and serve
as the search directory. Each entry in the leaf node of the CSP-index has the
following format:

< Keysp, SID, P1, P2, ..., P10 >

with Pi the CSP’s properties (P1: Service Type, P2: Security, P3: QoS, P4: Mea-
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surement units, P5: Pricing Units, P6: Instance Sizes, P7: OS, P8: Pricing, P9:
Pricing sensitivity, P10: Subcontracting). A customer would approach the bro-
ker with a certain query defined as follows:

Q =< (QP1 : D1), (QP2 : D2), ..., (QPk : Dk) >

with Di the value of the property QPi demanded by the customer, QPi are
equivalent to the CSP’s Pi. In order to answer the customer’s demand, the
broker follows four steps.

• Step1: Query Encoding,

• Step2: K-nearest neighbor search,

• Step3: Refinement,

• Step4: Consideration of Special Criteria.

In [18] is presented a different take on Cloud actors, where they consider
two types of providers that complement each other in the process of provid-
ing a complete Cloud service. These are known as Network Service Providers
(NSP) and Cloud Service Providers (CSP). Multiple assumptions are consid-
ered about the type of services and offerings handled by this solution. Cu-
cinotta et al. present in [18] a brokering logic for distributed Cloud appli-
cation deployment with guaranteed end-to-end QoS, achieved as an end-to-
end composition of SLAs established between the different actors (i.e. cus-
tomers, broker, NSP and CSP). Cucinotta et al. have mathematically mod-
eled and formalized this brokering approach as a mixed-integer gemetric pro-
gramming optimization program. There exist different solvers that special-
ize in solving such programs, to mention those found in the GAMS suite
(http://www.gams.com/solvers).

anyBroker [42] is a concept design and architecture of a Cloud brokerage
system that supports integrated service concept in service provisioning and
management; SLA based service life cycle management; Flexible connection

http://www.gams.com/solvers
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and interaction with heterogeneous Clouds and customer’s service require-
ment based on best-fit Clouds in respect of price, location, security, availability.
The anyBroker system is composed of three main parts: anyBroker portal, anyBro-
ker core engine and anyBroker Cloud connection proxy. anyBroker portal represents
the front-end of the Broker for the communications with the Cloud service con-
sumers and providers and it also includes multiple business support function-
alities. On one hand, anyBroker core engine is in charge of the main brokerage
functionalities, such as to request verification, service provisioning, arbitrage,
monitoring, service life cycle management. On the other hand, anyBroker Cloud
connection proxy is in charge of the interactions between the broker and Cloud
service providers or network service providers.

In [37], Guesmi et al. present a methodology and prototype of a Brokering
solution that takes into consideration customers’ functional and non-functional
requirements and finds if exists, a placement in a multi-provider Cloud envi-
ronment. Customers approach the broker with a description of the model they
would want to deploy on the Cloud. The model is composed of functional re-
quirements (i.e. number of virtual machines needed and their properties, CPU
speed, OS and Location) and non-functional or security requirements under
the form of relations relating the virtual machines, which gives customers the
possibility to personalize the interaction and access to their virtual machines.
Once the broker receives the customer’s request, the first step is to verify its
consistency and return a counterexample in case an incoherence is found. If
not the broker pursues to find a placement in a multi-Cloud environment, if a
placement is found, it is returned to the customer who can validate so that the
broker can deploy the placement solution, or chose to browse for another solu-
tion. Guesmi et al. use a formal analysis tool named Alloy, to do the verification
and placement search.

Tordsson et al. propose in [82] a Cloud brokering approach that aims to
optimize virtual machine placements in a multi-Cloud environment. They de-
scribe a broker architecture that would abstract the deployment and manage-
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ment of the infrastructure components. They present, and evaluate, an algo-
rithm for application placement across multiple Clouds while taking into con-
sideration price and performance with the possibility of additional constraints
in terms of hardware configuration and load balancing. In their architecture,
a broker has two main actions: First, finding the optimal placement of the vir-
tual resources across a given set of Cloud providers (this is where the Cloud
scheduling algorithm comes in handy), second, the management and moni-
toring of these virtual resources (this is the job of a component named vir-
tual infrastructure manager, where they relied on the OpenNebula virtual in-
frastructure manager). The scheduling algorithms described, in the paper, are
aimed at scheduling applications in a static Cloud brokering scenario. The goal
is to deploy a number of virtual machines across a static number of available
providers to improve a criterion, chosen by the customer, such as performance,
cost or load balance. AMPL and CPLEX were the chosen modeling language
and solver they used for their scheduler. They evaluate the described archi-
tecture and scheduling algorithms through a case study where they deploy a
set of high throughput computing clusters across commercial Cloud providers
(details in [82] Sections 4, 5 and 6). Their most important finding was that
deployment in a multi-provider environment improves performance.

Subramanian and Savarimuthu present a brokering architecture and algo-
rithm for optimal resource provisioning in a heterogeneous multi-Cloud en-
vironment in [76]. The proposed broker provides an optimal cost deployment
plan, that takes into consideration attributes defined in the service measure-
ment index (SMI) with additional physical and legal constraints. Customers
describe their service requests in the format of number and type of virtual
resources, optimization criteria and other constraints. In [76] Cloud providers
are ranked according to a service measurement index (SMI) score. SMI, in a
nutshell, is a framework of attributes that enables the comparison of the differ-
ent Cloud services provided by a set of Cloud providers. These attributes are
Accountability, agility, assurance, financial, performance, security and privacy,
usability. The optimization criteria, described by the customer, are either, in
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the format of weights attributed to each of the aforementioned characteristics
or a pairwise comparison method. Once the broker receives the request, the
first step is to find and rank according to the SMI score the Cloud providers
that meet the customer’s service request. Then, he implements an algorithm to
produce a deployment plan that reduces the total cost of the virtual infrastruc-
ture. The latter is obtained by using the mixed integer programming formula-
tion and relying on the benders decomposition algorithm to solve. While the
solution proposed in [76] takes into consideration some interesting criteria and
allows the customer to define a personalized service request, it does not offer
an additional layer of security. It only considers the security measures already
given by the Cloud providers when calculating the SMI score.

Cloud Service Broker Demand Response (DR-CSB) is a mechanism that
was introduced in [21]. It aims to maximize the profit of CSB under dynamic
customer demands with respect to the capacity and availability constraints, to
mitigate the insufficient provisioning problem. In this work, Deng et al. for-
mulate an optimization problem of profit maximization for the CSB, as well
as, employ economic demand response mechanism to allow Cloud customers
to adjust their consumption with the dynamic aspect of Cloud service prices.
The provisioning process is divided into two periods. During the reserved pe-
riod, Cloud service providers (CSPs) provide reserved instances to the CSB
according to the customer demands; If the number of instances required by
customers exceeds the existing number of reserved instances, the broker goes
into the on-demand period where on-demand instances are provisioned from
CSPs. In order to maximize the broker’s profit, the DR-CSB adjusts the in-
stance price accordingly to incentivize customers to independently regulate
their own demands. Simulations to evaluate the DRCSB can be found in [21].
Results presented show that CSB’s profit can be increased varying from 8% to
20%. Customers also achieve savings up to 37%.

The work in [2] proposes an architecture for a brokerage model specifi-
cally for multi-Cloud resources. This model targets spot markets specifically
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and it tries to integrate the resource brokerage function across several Cloud
providers. A spot market trades unused computing resources with a ’bid or
ask’ mechanism. Customers publicly announce the maximum price they are
willing to pay for the product or service, and providers the minimum price
they are willing to sell for. The architecture presented supports the match-
ing process by finding the best match between customer requirements and
providers, offers are matched taking into consideration the lowest possible cost
available at the time of the request for the customer in the market. The archi-
tectures aim to provide the coordination techniques using tuple space 1 and
adapted to the Cloud spot market.

Ding et al. present in [23] a QoS-aware resource recommendation method
to support Cloud resource selection considering both functional and QoS at-
tributes. They present a method to help with the recommendation of adequate
Cloud resources by integrating a multi-attribute matching metric, group cus-
tomer evaluation and price utility. The matching mechanism they introduce is
a multi-attribute matching mechanism to support QoS-aware resource filtering.
For a detailed presentation of this method refer to Section 3 of [23].

In [4], Alsina et al. are interested in Virtual Machine Planning for a Cloud
Broker. In their definition, the latter owns a number of Cloud reserved in-
stances that he offers to his customers. The broker presented in [4] has as ob-
jective to maximize its revenue by efficiently managing its reserved resources
while taking into consideration parameters such as geographical localization
of resources and users, different types of applications and data transfer costs.
In order to solve this problem while offering appropriate QoS to users, they
propose and evaluate six different heuristics.

Although in [9], Aral and Ovatman might not be presenting a “Cloud Bro-
ker” I found their work interesting to present. They are interested in opti-
mizing the resource allocation in a Cloud federation. Thus, they propose a

1tuple space is a coordination model for parallel processing and data sharing proposed in
the Linda model. It has an architecture that is suitable for Cloud service communication
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heuristic, implementing subgraph matching, to output an allocation for a set
of requested VMs in the Cloud data centers while taking into consideration
resource capacities, VM topologies, performance and resource costs. Topology
Based Matching (TBM) heuristic, is the title of the heuristic suggested in [9].
TBM considers both the topology of the Cloud federation, VM request and
employs an algorithm based on LAD subgraph isomorphism solver to find a
match between the request and a subgraph of the federation topologies. As
an evaluation of their heuristic, Aral and Ovatman used CloudSim framework
to compare it against three different heuristics: Arbitrary First Fit(AFF), where
the first available data center is chosen; Latency First Fit(LFF), where data cen-
ters are probed in an increasing order of latency to the user and Load Balanc-
ing(LBG), where a VM is assigned to the data center with the lowest resource
utilization. This evaluation showed that TBM outperforms both AFF and LBG
but struggles to get the same results as LFF.

Summary Here we have presented a variety of Cloud brokering solutions,
some presenting general architectures: anyBroker [42] a concept design and
architecture of a Cloud brokerage system, in [82] a Cloud broker architecture
for optimizing virtual machine placement in a multi-Cloud environment and
in [76] brokering architecture and algorithm for resource provisioning in a
multi-Cloud environment. Those presenting algorithms and mechanisms to
maximize broker’s profit: in [69] is presented a financial Cloud brokering,
in [89] different pricing algorithms, multiple algorithms: Cost Aware, Load
Aware, Load Aware Over Cost are described in [59] and [21] Cloud Service
Broker Demand Response a mechanism to maximize the profit of the broker
under dynamic demands. Different methods to help customers in the process
of decision making: an indexing method to rank different Cloud providers
is presented in [77] and in [23] a QoS aware method to recommend Cloud
resources. Then we find works that treat the problem of Cloud brokering in
a multi-Cloud environment: in [2] a multi-Cloud brokerage model for spot
markets, in [4] are presented different heuristics for efficient virtual machine
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planning for a Cloud broker, a QoS brokering logic for distributed Cloud ap-
plication deployment in [18] and in [9] a heuristic for resource allocation opti-
mization in a Cloud federation.

Security Concerns Many of the proposed Cloud brokering solutions in
academia, mentioned here above, as well as those commercialized tackle is-
sues related to performance, cost, QoS and respect of SLA contracts. Those that
make an effort to integrate security only consider the basic security levels and
services proposed by the Cloud providers. As far as my researches went, other
than the work proposed by A. Guesmi’s in [37], which is the initial solution we
carried on in this thesis, I haven’t been able to find a work that fully considers
the customer’s personalized needs from a security standpoint. In this thesis, we
propose a Cloud broker that aims to do that. Our solution gives the possibility
to customers, wanting to migrate their application to the Cloud, to describe
their request in the format of components, precise their functional description
as well as the security relations between them. The broker then verifies the con-
sistency of this demand and finds an adequate cost-aware placement strategy
that respects both their functional and non-functional requirements.

3.2.3 Taxonomy

Here we present a summary of the aforementioned works in regard to differ-
ent criteria, that we judge important for a well-rounded Cloud broker. In fact,
we consider that a broker should be able to intermediate the full process of
integrating the Cloud. Starting by assisting the customer through defining, not
only his functional needs but also non-functional ones, until deploying his ar-
chitecture and delivering it. We also believe that taking full advantage of the
multi-Cloud architecture is very important in finding the best-suited placement
strategy for the customers’ demands as well as shielding them from provider
lock-in related issues. Finally, assuring customers’ security is of high impor-
tance and thus a broker should implement the necessary requirements to stay
accountable.
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This set of criteria is presented in the different columns of Table 3.1. With
each of the entries we are trying to answer the following questions:

• Intermediation: does the work present an intermediate between the customer
and provider? In order to ease the process of integrating the Cloud for
potential customers, we judge that intermediating the whole process and
making it as seamless as possible, meaning no direct contact between the
customer and the service providers to be a very important criterion.

• Functional Requirements: does it take into consideration the customers’ func-
tional requirements into consideration? This goes hand in hand with the
previous criteria. In fact, to intermediate the process of migrating the
customer’s architecture into the Cloud, the broker has to take into consid-
eration at least the functional requirements in order to find an adequate
placement strategy.

• non-Functional Requirements: what are the non-Functional Requirements
that this work considers? Different works have different takes on non-
functional requirements, in this column, we’re trying to summarize the
list of the non-functional requirements taken into account.

• Multi-Cloud: does the work implement concepts similar to multi-Cloud to avoid
issues like provider lock-in? There are many benefits of using multi-Cloud,
starting with avoiding the provider lock-in issue and finding a more
catered Cloud solution to customers’ demands. Thus, we include it as
a criterion for judging the quality of the brokers.

• Security Assurance: Pearson [65] gives several requirements for account-
ability approaches. First organizations should establish policies that fol-
low some recognized external criteria and that allow for external enforce-
ment, monitoring and auditing. Such a requirement calls for Cloud ser-
vices certification [78] that would enhance the trust of customers in Cloud
solutions. We translate this, to the need to having a well-documented
or easily documented solution. Secondly, organizations should provide
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transparency and mechanisms for customer participation from the very
early stages. Finally, organizations should offer mechanisms for remedia-
tion. Techniques to support accountability range from verifiable evidence
collection [7] to formal proved mechanism with proof certificates that a
security property holds [87]. We refine the security assurance criteria into
the three following columns:

– Documented: is the approach well, or could be easily, documented?

– Transparent: are the techniques used transparent and include the cus-
tomers’ in the decision process?

– Formal Methods: does it have any properties guaranteed using formal
methods?

• Implementated Tool: does it have a testable implementation or a fully func-
tional tool? Last thing to round up the evaluation of the different works,
we get interested in seeing if the brokerage solution has been imple-
mented.

From Table 3.1 we show that none of the proposed solutions, presented
in this section, fulfill all of the requirements. In this work, we propose to fill
the gap and provide a tool that implements our proposal. Chapters 4 and 5
describe formally our approach.
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3.3 Alloy to Coq Related Works

Although theorem provers have proved their effectiveness in proving de-
tailed properties of multiple complex system specifications, they are still con-
sidered to be too expensive to use frequently during software development.
Lightweight formal methods, on the other hand, are frequently used for check-
ing software during the design and implementation stages. Alloy is a popular
language and tool used for checking software systems against their require-
ments. On one hand, one of Alloy’s strong suits is the counterexample returned
in case of unfulfilled requirements. On the other hand, lack of counterexample,
generally, does not give correctness proof. Thus, for critical systems, a second
round of analysis might be crucial. Several previous works have addressed the
verification of Alloy specifications.

In [10], Arkoudas et al. present a tool, Prioni, that integrates model checking
and theorem proving for relational reasoning. Prioni takes as input formulas
written in Alloy. It first uses the Alloy Analyzer to check their validity for a
given scope. Once no counterexample is found, Prioni translates these Alloy
formulas into Athena (i.e. a denotational proof language) proof obligations
and uses the Athena tool for proof discovery and checking.

Another solution that works on infinite domains is presented in [86]. Kel-
loy [86] is a tool for verifying Alloy specifications with respect to potentially
infinite domains. Kelloy is an engine for verifying Alloy specifications aiming
to bridge the gap between lightweight formal methods and theorem provers.
It provides a fully automatic translation of Alloy language to KFOL (the first-
order logic of KeY, the deductive theorem prover used in Kelloy), an Alloy-
specific extension to KeY’s calculus and a reasoning strategy that improves
KeY’s capability in finding proofs and generates intermediate proof obliga-
tions that are easy to understand.

Unlike Prioni and the transformation tool we are presenting, Kelloy was
developed in a way that only takes into consideration translation of Alloy rela-

2The answers provided in this table were inferred exclusively from the cited papers
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tions up to ternary relations (i.e. arity 3). Such an approach requires to define
the Alloy operations for all the different combinations of the arities in KFOL.

Mariano et al. [58] followed an approach closer to ours. They present an
extension of PVS (Prototype Verification System), called Dynamite, that em-
beds Alloy calculus. It automatically adds and analyzes new hypotheses with
the aid of the Alloy Analyzer. The generated PVS sequents get cluttered with
some unnecessary formulas, thus, Alloy unsat-core extraction feature is used
in order to refine proof sequents.

Unlike research previously mentioned, that aim to prove properties about
Alloy models as a second step using theorem provers, we find a more recent
one presented by in [45] with the aim of translating models from the Alloy
specification language to the B specification language. Krings et al. present a
tool for automatic translation of Alloy models to the B language that can be
used in ProB. Language and Method B provide a means of producing math-
ematically proven software or systems, which helps ensure that the produced
system meets the need, and ProB is a model checker for Method B. In [45], is
presented an alternative semantics definition of Alloy, which enables proof and
constraint solving tools of B to be applied to Alloy specifications. The aim of
the translation is to make ProB’s back-ends available to Alloy users. Which will
enable them to experiment with technologies other than the ones employed by
the Alloy Analyzer.

We present our approach for proving Alloy specifications as well as imple-
ment a tool for translating Alloy models to Coq syntax in Chapter 6. Unlike
Prioni [10], which only analyzes finite domains due to the fact that Athena can-
not handle infinite sets, our proposed solution handles infinite domains. Sim-
ilarly to the work presented in [58], our work also relies on users conducting
proof manually, with the difference that we provide a library with predefined
lemmas to provide assistance in the proof process.
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4.1 Introduction

Although Cloud computing has many benefits to offer, to mention a few:
cost reduction, scalability and mobility, many potential users are still skeptical
around the idea of integrating the Cloud, either because of the overwhelm-
ing number of Cloud service providers and offers proposed nowadays, or the
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security issues related to the Cloud. We propose a Cloud brokerage solution
to assist customers in the process of integrating the Cloud by finding an offer
catered to their personalized needs in terms of functional requirements and
security.

This chapter summarizes the work conducted as improvement of the Cloud
brokerage solution presented in [37]. The thesis [36], defended by Guesmi
Asma, has ended leaving a number of questions unanswered. Although her
final results presented some obvious limits, we couldn’t deny the potentials
that this approach has, hence, the decision to take on the work and try to
develop it further.

One of the limitations of the approach taken in [36], is that the size of the
problems that can be dealt with effectively is limited. A second limitation is
the impossibility of addressing the dynamicity of customers’ needs, suppliers’
offers or deployed architectures. The fact that the project is limited to IaaS-type
architectures is not considered as a negative limitation. A decision was taken,
to keep the focus on this type of architecture since it allows the resource manip-
ulations we were looking for. Once proven effective for this type of architecture,
our approach can easily be extended to PaaS-type architectures.

The aim of the work presented in this chapter was to find a way to introduce
more dynamic features to the existing model. These features aim to consider
the evolution of customers’ needs, suppliers’ offers as well as deployed archi-
tectures. The following content is based on the paper published in [74] and
will be structured as follows: Section 4.2 will describe the models of the main
actors of our solution, Section 4.3 contains the description of the general archi-
tecture, Section 4.4 presents the implementation of the solution and Section 4.5
will conclude this chapter.

4.2 The Initial Model

The main distinctive aspect of our initial proposed solution consists of con-
sidering the personalization of the security of the customers’ models from its
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first description. The security approach consists of formalizing security prop-
erties under the form of communication relations, from both the customer and
provider sides. In this solution, the actors were modeled as follows:

4.2.1 IaaS Provider Model

IaaS is a cloud computing model where the cloud provider manages server
hardware, virtualization layers, storage, networks. We simplify the presenta-
tion of an IaaS provider’s architecture by presenting it as a set of clusters, each
cluster containing a set of physical nodes. A Physical node hosts the customers’
virtual machines and is defined by the set of VM templates, i.e. technical spec-
ifications that it can host, and its geographic location.

In this initial system, providers describe their offers in two steps. The first
step will consist of describing the architecture, which consists in specifying the
number of clusters, the number and characteristics of physical nodes contained
in each cluster. The second step will be defining the relations between the
clusters, intra-provider (i.e. relations between their own clusters) and inter-
provider (i.e. relations between their clusters and other providers’ clusters). It
is important to note that the relations should be imperatively defined between
different clusters and this fact is verified when verifying the consistency of the
model. The aforementioned relations are defined as follow:

• Link: an information flow, permitting data interchange between two clus-
ters;

• Guardian: two clusters having an intrusion protection system or filtering
systems, such as network firewalls, relating them;

• Conflict: conflicted clusters, are clusters that cannot have any communi-
cation flow relating them.

An example of the provider model is presented in Figure 4.1a, it will be studied
in Section 4.3.3.
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4.2.2 Federation Model

A federation is modeled as a set of providers. As mentioned in the previ-
ous section these providers describe the relations between their own clusters
and the other clusters owned by providers belonging to the same federation.
Figure 4.1b presents an example of a federation, this example will be further
detailed in Section 4.3.3.

4.2.3 Customer Model

Customers describe the architecture to be deployed to the cloud. This archi-
tecture includes functional requirements, in the format of a number of virtual
machines and their characteristics (e.g. processor, operating system, memory),
as well as, non-functional requirements, which are the security requirements
defined as relations between these virtual machines. Similar to relations be-
tween the provider’s clusters, the relations here should be defined between
different virtual machines of the same customer, and that also is verified when
checking the consistency of the model.

The inter-VM relations that have been implemented in this solution are:

• Isolation: an isolated VM cannot communicate with the others;

• Collaboration: collaborating VMs are allowed to share data between them;

• Concurrence: two concurrent VMs are unauthorized to have a communi-
cation flow direct or indirect relating them;

• Unidirectional Flow: one-way flow between two VMs, meaning one has the
right to send data to the other one but not read any.

An example of the customer’s model is presented in Figure 4.1c, which will be
explained and used in Section 4.3.4.
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Figure 4.1 – Model Example

4.3 A First Brokerage Solution

4.3.1 Broker General Architecture

The general architecture presented in Figure 4.2 of our brokerage solution can
be seen as three phases.

First, from a customer’s standpoint, he / she describes the desired model
through the user interface. In a prior time, the broker receives the descriptions
of providers offers, as mentioned in Section 4.2.

Second, we use formal methods to verify the consistency of the customer’s
demand, the providers’ offers and the coherence of the federation. In case of
an inconsistency, the broker returns a counterexample, highlighting the reason
behind the inconsistency.

Third, once the customer’s model is consistent, the broker will try to find a
possible placement, satisfying both the functional and non-functional require-
ments. If a placement is found the broker would forward the suggestion to the
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Figure 4.2 – General Architecture

customer, and waits for an approval in order to go through with the deploy-
ment.

4.3.2 Basic Sets

Here we group some of the basic sets and relations that will be used further in
this section:

• CPU: contains all the values of CPU characteristics (in the current setting
only speed) which means it is a unary relation that has the name “CPU”
and that will be seen as a set of values,

• OS: contains all the possible operating systems,

• Location: contains all the possible locations,
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CPU = { CPU2, CPU24, CPU3 } OS = { Linux, Windows }

Location = { EU, USA } VM = { Vm1, Vm2, Vm3, Vm4, Vm5 }

Customer = { Customer1 }

PhysicalNode = {Pn1
1, Pn2

1, Pn1
2 }

Cluster = { Cluster1, Cluster2, C1
1, C2

1, C3
1, C1

2, C2
1, C1

3, C2
3, C3

3 }

Provider = { Providerx, Provider1, Provider2, Provider3 }

Figure 4.3 – Example Sets

• VM: contains all the virtual machines identifiers present in the system,

• Customer: contains a set of all customer identifiers,

• PhysicalNode: contains the identifiers of all the providers’ physical nodes,

• Cluster: contains the identifiers of all clusters,

• Provider: contains a set of identifiers all the providers,

If we combine the examples given in Figures 4.1a, 4.1b and 4.1c, we would
get an instance, of the previous unary relations, defined in Figure 4.3.

4.3.3 Provider Offer and Federation Verification

Provider Offer Description

A provider offers a set of clusters, each cluster is composed of physical nodes.
For the sake of conciseness, we do not formally define the relations between
Provider and Cluster, and Cluster and PhysicalNode.

A physical node is characterized by its location and the different virtual
machine characteristics (i.e. virtual machine templates, here we consider the
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type operating systems and virtual processor characteristics) that it is able to
host:

• PNOS: a binary relation between the sets PhysicalNode and OS,

• PNCPU: a binary relation between the sets PhysicalNode and CPU,

• PNLocation: a binary relation between the sets PhysicalNode and OS.

The placement of virtual machines on physical nodes is modeled as PNVM, a
binary relation between PhysicalNode and VM.

The provider describes the relations, Link, Guardian and Conflict, between
his own clusters as well as between his clusters and the other providers’ clus-
ters within the same federation. Link, Guardian and Conflict are binary relations,
subsets of Cluster⇥Cluster. Our system makes sure that when a provider adds
a new pair (c, c0) to one of the relations, at least one of c and c0 is owned by
this provider.

An example of a provider model is presented in Figure 4.1a. In this case
only one relation was defined:

Guardian = { (Cluster1, Cluster2) }.

Federation description

The accumulated provider descriptions form a model of a federation. The
aim of the latter is to have more interoperability between cloud providers,
and prevent provider lock-in issue (i.e. a customer depending on only one
provider). Figure 4.1b presents an example of a small federation containing
three providers: { Provider1, Provider2, Provider3 }. In this example the rela-
tions grouping the different clusters are as follow:

• Conflict = { (C2
1, C1

2) },

• Link = { (C1
1, C3

1), (C2
1, C3

1), (C1
2, C2

2) },

• Guardian = { (C2
2, C2

3) }.
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CustomerVM = {(Customer1, Vm1), (Customer1, Vm2), (Customer1, Vm3)}

VMOS = {(Vm1, Linux), (Vm2, Windows), (Vm3, Linux)}

VMCPU = {(Vm1, CPU3), (Vm2, CPU2), (Vm3, CPU3)}

PNCPU = {(Pn1
1, CPU2), (Pn1

1, CPU24)}

PNOS = {(Pn1
1, Linux), (Pn1

1, Windows)}

PNLocation = {(Pn1
1, USA)}

VMLocation = {(Vm1, EU), (Vm2, USA), (Vm3, EU)}

PNVM = {(Pn1
1, Vm2)}

Figure 4.4 – Example: Relations Values

Offer and Federation Consistency Verification

In order for an offer or a federation to be consistent, one major rule should be
respected.

Rule 1 Two conflicted clusters can not have a link of any sort relating them
(i.e. if two clusters are identified as conflicted the virtual machines hosted on
them cannot communicate, no communication tunnel, direct or transitive, can
connect these two clusters):

8ci, cj 2 Cluster, (ci, cj) 2 Conflict =)
((ci, cj) 62 (Link [Guardian)+ ^ (cj, ci) 62 (Link [Guardian)+)

A counterexample is sent to the provider in case of an inconsistency. Once the
offer is consistent, the system adds it to the federation.
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4.3.4 Customer Model Description and Verification

Customer Model Description

In our system, a customer’s model represents the description of the applica-
tion’s architecture to be deployed in the Cloud. This model is identified by a
unique instance of Customer and a relation CustomerVM between Customer and
VM representing the set of virtual machines she owns.

The customer’s functional requirements for virtual machines are expressed
as their processor speed, operating system and location. This is formalized
by three relations: VMCPU a binary relation between VM and CPU, VMOS a
binary relation between VM and OS, and VMLocation a binary relation between
VM and Location.

To define her/ his applications, a customer then specifies the non-functional
requirements: the relations between the different virtual machine, Isolation,
Collaboration, Concurrence, and Flow. These relations have been informally de-
scribed in Section 4.2. Isolation is a subset (unary relation) of VM, while
Collaboration, Concurrence, and Flow are binary relations between VM and VM.
The system ensures that a customer only defines or modifies relations regard-
ing her own virtual machines.

An example of a customer model is presented in Figure 4.1c. The customer’s
non-functional requirements are:

Isolation = { Vm4 }

Flow = { (Vm1, Vm3) }

Collaboration = { (Vm1, Vm2) }

Concurrence = { (Vm2, Vm5) }.

Requirements Consistency Verification

Verifying the consistency of the customer’s requirements is verifying that it
respects a set of rules related to the security relations.
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Rule 2 An isolated VM cannot have any information flows going into or out
of it:

8vi 2 Customer.CustomerVM, vi 2 Isolation =)
6 9vj 2 Customer.CustomerVM
(vi, vj) 2 Flow _ (vj, vi) 2 Flow

Rule 3 Two collaborating VMs have a bidirectional information flow, they can
read and write data from one to another:

8vi, vj 2 Customer.CustomerVM, (vi, vj) 2 Collaboration =)
((vi, vj) 2 Flow^ (vj, vi) 2 Flow)

Rule 4 Two concurrent VMs cannot have any direct or transitive information
flow between them:

8vi, vj 2 Customer.CustomerVM, (vi, vj) 2 Concurrence)
(vi, vj) 62 Flow+ ^ (vj, vi) 62 Flow+

Once the brokerage system receives the customer’s model, it verifies that
the requirements satisfy the rules defined. In case of an inconsistency of the
demand, a counter-example is returned to the customer to rectify the model.
Otherwise, the broker proceeds to the next step which consists of finding a
placement. The placement phase is detailed in Section 4.3.5.

4.3.5 Placement Strategy

The brokerage system searches for a placement that satisfies the customer’s
functional and non-functional requirements, taking into consideration the re-
lations defined between the clusters. It tries to find a placement respecting the
following rules, we define two families of rules:

Rules related to the functional requirements

Here we present the rules responsible for checking the compatibility from a
functional standpoint (i.e. the virtual machines’ functional requirements as
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specified by the customer: the operating system, the processor speed and the
location).

Rule 5 A VM should be placed in a physical node offering the adequate VM
characteristics and that is located in the requested location:

8v 2 VM, 9p 2 PhysicalNode, v 2 Customer.CustomerVM^ v 2 p.PNVM
()

v.VMOS 2 p.PNOS^ v.VMCPU 2 p.PNCPU ^ v.VMLocation = p.PNLocation

For a better understanding of the formula, let us take a concrete example. Tak-
ing the values given in Figure 4.4, for the relations mentioned in the formula
above, along with those given in Figure 4.3.

Considering we have only one customer Customer1 and one physical node
Pn1

1, the navigations will contain the following values:

Customer1.CustomerVM = { Vm1, Vm2, Vm3 }
Pn1

1.PNVM = { Vm2 }.

Vm2 is both in Customer.CustomerVM and PhysicalNode.PNVM, which
means that the virtual machine Vm2 can be placed in the physical node Pn1

1, if
and only if additionally Vm2’s characteristics are offered by this physical node.
As we have:

Vm2.VMOS = {Windows}

Pn1
1.VMOS = {Linux, Windows}

Vm2.VMCPU = {CPU2}

Pn1
1.VMCPU = {CPU2, CPU24}

Vm2.VMLocation = {USA}

Pn1
1.PNLocation = {USA}

all Vm2 characteristics are handled by Pn1
1.
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Rule 6 A VM should be placed in one and only one PhysicalNode, all the
customer’s VMs should be placed:

8v 2 VM, 9!p 2 PhysicalNode, v 2 Customer.CustomerVM^ v 2 p.PNVM

Rules related to the non-functional requirements

Here we group the rules responsible for checking the compatibility from a
non-functional standpoint. We describe rules related to the fore-defined rela-
tions between the virtual machines (i.e. collaboration, concurrence, flow and
isolation).

Rule 7 A customer’s VMs cannot be placed on conflicting clusters:

8vi, vj 2 VM, 9c 2 Customer, 9ci, cj 2 Cluster, 9pi, pj 2 PhysicalNode,
vi 2 c.CustomerVM^ vj 2 c.CustomerVM^ vi 2 ci.pi.PNVM^ vj 2 cj.pj.PNVM =)

(ci, cj) 62 Conflict

Rule 8 An isolated VM should be placed in a separate physical node:

8vi, vj 2 VM, 9c 2 Customer, 9p 2 PhysicalNode,
vi 2 c.CustomerVM^ vj 2 c.CustomerVM^ vi 2 p.PNVM^ vi 2 Isolation

()
vj 62 p.PNVM

Currently, a customer’s isolated VM will only be separated from his own VMs,
but could be placed with other customers’ VMs in the same physical node. A
possible improvement of the current program could be to give the customers
the possibility to specify, for each of their VMs, whether they want to place a
VM in the same physical node as other customers or not.
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Rule 9 Two collaborating VMs should be on the same cluster:

8vi, vj 2 VM, 9ci, cj 2 Cluster, 9pi, pj 2 PhysicalNode,
vi 2 ci.pi.PNVM^ vj 2 cj.pj.PNVM^ (vi, vj) 2 Collaboration =)

ci = cj

Rule 10 Two concurrent VMs should be placed on non-communicating clus-
ters, or clusters linked by a guardian:

8vi, vj 2 VM, 9ci, cj 2 Cluster, 9pi, pj 2 PhysicalNode,
vi 2 ci.pi.PNVM^ vj 2 cj.pj.PNVM^ (vi, vj) 2 Concurrence =)

((ci, cj) 62 Conflict^ (ci, cj) 62 Link ^ (ci, cj) 62 Guardian) _ (ci, cj) 2 Guardian

Rule 11 Two VMs related by a unidirectional flow should be placed on clusters
linked by a guardian:

8vi, vj 2 VM, 9ci, cj 2 Cluster, 9pi, pj 2 PhysicalNode,
vi 2 ci.pi.PNVM^ vj 2 cj.pj.PNVM^ (vi, vj) 2 Flow =)

(ci, cj) 2 Guardian

4.4 Implementation & Evaluation

As part of this contribution, we have managed to develop a Cloud broker
performing all the described functionalities in one JAVA application, using the
KodKod API for formal analysis. The workflow of the application follows the
general architecture of the broker described in Section 4.3.1.

KodKod [24] is a finite model finder, that we used for both the consistency
verification and the search for placement strategies. These functionalities were
transformed into KodKod problems, where the relations consists of the system’s
actors and relations previously mentioned and the universe groups all the sub-
mitted values. The verification and placement rules previously described were
all translated into KodKod formulas.
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Relational variables As previously mentioned everything is a relation in
KodKod, and so all the actors of our system are defined as relations. In this
section is presented an example of the steps followed in order to verify the con-
sistency of the customer’s model using the KodKod API. We start by defining
the relational variables, using the different methods of the class Relation in
order to precise the arity of the relation and its name:

1 Relation Customer = Relation.unary("Customer");

2 Relation c_vms = Relation.binary("c_vms");

Universe In this case the atoms would be the different identifiers of the cus-
tomer, the set of his virtual machines and a VM relation, relating the customer
to the relations he have described. We use the constructor of the class Universe
giving it as argument a list of the values in a string format (i.e. Set<String>):

1 Universe U = new Universe(atoms);

Formula The consistency rules previously described are written in KodKod
syntax using the class Formula. An example of the contraposite of the isolation
rule (i.e. Rule 2 that indicate if a VM defined as isolated it should be placed in
a separate physical node):

8vi, vj 2 VM, 9c 2 Customer, 9p 2 PhysicalNode,
vi 2 c.CustomerVM^ vj 2 c.CustomerVM^ vi 2 p.PNVM^ vi 2 Isolation

()
vj 62 p.PNVM

in KodKod syntax is given in Figure 4.6.
Once relational variables are defined, the next step is to bound them with

tuples created from the universe, using a tuple factory. An example of bound-
ing the VM relation is shown in Figure 4.5. In this case we use the method
boundExactly of the class bound which means we are specifying its lower bounds
(i.e. the relation should contain all of the values passed as argument). We could
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1 TupleFactory f = U.factory(); Bounds b = new Bounds(U);

2 TupleSet vms = f.noneOf(1);

3 for(String id: VMIds)

4 vms.add(f.tuple("Vm"+C+"-"+id));

5 b.boundExactly(vm, vms);

Figure 4.5 – KokKod Example: Relation Bounding

assign both the upper and lower bounds using the signature with three argu-
ments of the method “bound” as follows: bound(Rel, low, up) or just the upper
bounds using the signature with two arguments: bound(Rel, up).

In the case of the model verification we tightly bound the relational variables
(i.e. we specify both the lower and upper bounds) to create a model that will
then be fed to the KodKod engine to ensure that the created model satisfies
the consistency formulas wanted. In case of an inconsistency, unlike the Alloy
Analyzer that returns a counterexample, KodKod only returns the unsatis-
fied formula. In order to return a clearer counter example to our customer (resp.
provider), we try to find a solution model for the contraposite of the returned
formula, this way we know the source of the inconsistency and forward it to
the customer (resp. provider).

Once the verifications are done and the customer’s demand is consistent the
broker proceeds to find a placement strategy. The idea is to loosely bound the
relational variables by only precising the upper bounds and then ask KodKod
to find a model that satisfies formulas representing the placement rules.

KodKod’s partial solution is an interesting feature that has permitted us
to add a dynamic aspect to the project. The collection of all the variable lower
bounds is a partial solution of the problem. Our broker allows customers to mod-
ify their architecture after deployment. They can either add virtual machines
or remove them, modify the virtual machines relations as they desire, and the
broker will modify the placement strategy of the concerned virtual machines
respecting the old placement of the other ones. The same thing goes for the
provider’s offer. In order to do so, we use the existing placement strategy as
lower bounds of modified problem. Finally, we refeed the problem to KodKod to
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1 public Formula Isolation_rules(){

2 final Variable vmi = Variable.unary("vmi");

3 final Variable vmj = Variable.unary("vmj");

4 final Formula F1 = Customer.c_relation

5 .product(vmi).in(isolation).not()

6 .and(Customer.c_relation.product(vmj)

7 .in(isolation).not());

8 final Formula iso = Customer.c_relation

9 .product(vmi).product(vmj)

10 .in(vm_flow).implies(F1).forAll(vmi
11 .oneOf(VM.vm).and(vmj.oneOf(VM.vm)));

12 return iso;

13 }

Figure 4.6 – KokKod Example: Formula

solve the conjunction of all the formulas and find the adequate changes to be
executed on the deployed architecture.

Evaluation

In order to have a concrete idea of the time spent verifying the consistency of a
customer’s architecture and find an appropriate placement in a federation, we
have used the following test as a proof of concept. We started by using a fed-
eration grouping four providers, respectively, composed of {11, 12, 32, 308}
physical node. We first tried to find placements for three different customers in
this federation. The customers are C1 with 12 virtual machines and 10 security
properties, C2 with 30 virtual machines and 15 security properties and C3 with
100 virtual machines and 40 security properties. The consistency of C1’s archi-
tecture was verified in 128 ms and the placement problem was solved in 20 ms.
The consistency of C2’s architecture was verified in 188 ms and the placement
problem was solved in 175 ms. The consistency of C3’s architecture was veri-
fied in 682 ms and the placement problem was solved in 22.5 s. Then we added
two providers composed respectively of 535 and 957 physical nodes. We found
the placement for a customer with 100 VMs in 2.5 min and another with 200
VMs in 5.6 min. This shows the limitation of using the KodKod engine for the
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placement finding step. The translation of KodKod problem, relational logic,
to CNF (Conjunctive Normal Form), boolean logic, in the background takes
the most amount of time.

Summary

First test scenario:

• A federation of four providers:

– P1: 11 physical nodes

– P2: 12 physical nodes

– P3: 32 physical nodes

– P4: 308 physical nodes

• Customers:

– C1: 12 VMs + 10 security properties

– C2: 30 VMs + 15 security properties

– C3: 100 VMs + 40 security properties

• Timings:

Customer Consistency Placement
C1 128 ms 20 ms
C2 188 ms 175 ms
C3 682 ms 22.5 s

Second test scenario:

• A federation of six providers:

– P1: 11 physical nodes

– P2: 12 physical nodes

– P3: 32 physical nodes
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– P4: 308 physical nodes

– P5: 535 physical nodes

– P6: 957 physical nodes

• Customers:

– C1: 100 VMs

– C2: 200 VMs

Customer Total time
C1 2.5 mins
C2 5.6 ms

4.5 Conclusion

Our system takes into account the functional and non-functional require-
ments of a Cloud customer. It verifies the consistency of both the customers’
demand and providers’ offers, and finds, if exists, an adequate placement of
the customer’s model in a Cloud federation. We have managed to introduce a
dynamic aspect to the solution by using a finite model finder called KodKod.

However, even though the solution we proposed in [74], is more dynamic
than its predecessor presented in [37], in the way that we can create multiple
customers and providers with the possibility of modifying their architectures
when wanted, we had more paths to explore in order to improve the solution.
A recurring feedback that our solution received was related to the simplicity
of the federation and providers’ models descriptions. We have worked on an
architecture closer to real-world scenarios with a more realistic hypothesis. The
next chapter will cover the updated solution and model description. Another
limitation related to our solution was tightly linked with the use of the Kod-
Kod model finder and Alloy language. In fact, the limitation of the latter is that
when no counterexample found in the given scope the global formula is con-
sidered true, but never proven true. In Chapter 6, will be presented a potential
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solution to this limitation, not just for our project but for any project using the
Alloy modeling language.
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5.1 Introduction

Although the proposed solution, presented in the previous chapter, had
shown great potential in assisting customers in integrating the Cloud while
taking into consideration their personalized functional and security require-
ments, it has limitations. The main limiting factors were the simplistic models,
more precisely those of the providers and the federation. The way we have
presented our solution relies on the existence of an already standardized way
to describe Cloud providers’ infrastructures as well as the federation group-
ing them. Unfortunately, these expectations are unrealistic due to the inter-
operability issues between providers and the inexistent standardization of the
providers’ infrastructure descriptions. Our model heavily relied on the fact that
the providers’ offers will be given in a very specific manner, in the format of
different clusters and specifications of each of the provided physical nodes as
well as predefined network relation between their clusters. This is a counter-
intuitive vision of the Cloud concept. For our solution, to be more relative to
nowadays issues, we decided to modify the providers and federation descrip-
tions. Another limitation we had when finding an appropriate placement of
the customers’ architecture, is that we returned the first placement strategy
found without taking into consideration any specific sorting criteria. Cost be-
ing one of the most important criteria for potential customers, we propose in
our updated solution a placement strategy that optimizes the cost.

So far in our work, we have focused on the theoretical aspect of the bro-
kerage solution. Taking into consideration reviewers’ feedback and our own
willingness to explore other paths, we have decided to upgrade our current
broker model. Section 5.2 presents the modifications introduced to the overall
architecture of our brokering solution. Section 5.3 describes the new broker
model and defines its different components. The implementation of this model
into the overall solution is presented in Section 5.4. A case study example is
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Figure 5.1 – Broker Solution Updated General Architecture

detailed in Section 5.5. Tests and evaluation of our solution are summarized in
Section 5.6.

5.2 Updated Architecture

The general architecture of our solution can be divided into three major
parts depending on the interactions between the different actors. The first is the
relation between the customer and the broker. The second is the one between
the broker and the different providers. Then there is the full procedure of
finding a placement strategy. A simplified overview is presented in Figure 5.1
and detailed in the following.
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Customer-Broker relation The customer’s demand is now presented as an
application, instead of an infrastructure architecture. The request is in the for-
mat of a black box component-based architecture. First, the customer should
specify the functional requirements consisting of the size of the set of com-
ponents and the configuration for each component (number of virtual proces-
sors, memory size, operating system and location). Second, he gives the non-
functional requirements under the format of inter-component relations (alone,
flow and concurrence). Once this request is communicated, the broker uses
formal methods to verify the consistency of the customer’s model as described
in Section 5.3.1.

Broker-Provider relation The broker pre-reserves a certain amount of re-
sources, with different characteristics, from different providers. We can base
this decision on prior studies about the minimum needed resources to assure
a satisfactory service delivery by the broker. After that, the provisioning over
time could be done taking into consideration the number of customers and
resources used, or not, over a period of time. An adequate period could be
chosen and an assessment of resources would be done prior to the beginning
of every period.

Placement strategy The broker looks for a placement that matches the cus-
tomer’s functional requirements while minimizing the set-up cost. Once the
customer approves of the returned placement strategy, the broker then takes
care of the deployment and adequate network configurations to satisfy the
customer’s security requirements.

5.3 The new broker model

In this section will be presented the modifications brought to the overall
brokerage solution model presented in the previous chapter. Leaning towards
a more realistic scenario, the major changes brought to the model are related to
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the federation definition and the representation of the providers. The two major
tasks to be executed by our broker consist of the verification of the customer’s
demand and the search for an adequate cost-efficient placement strategy that
respects the customer’s functional and non-functional requirements. Prior to
that, the broker has to provision the necessary resources, that consist of differ-
ent types of instances reserved from different providers in order to form his
own federation. In our solution, we consider that the reserved resources, at any
time, are enough to answer customers’ demands.

5.3.1 Customer Model Description and Verification

The major changes that were brought to the customer’s model description are
that we consider the customer’s demand describes a component-based appli-
cation in the format of a set of components with a set of functional require-
ments and non-functional requirements. The functional requirements we con-
sider are:

• vCPU: The number of virtual processors needed by this component

• Memory: The memory size in GiB

• OS: The operating system

• Location: where the component should be located

The non-functional requirements are still considered as relations between the
different components that the customer defines. We have modified the defini-
tions of some of the previous relations. We decided to loosen the definition of
the “Isolation” unary relation because we can not guarantee that a component
is fully isolated in a Cloud set up. Cloud providers can not guarantee that an
instance is fully isolated, nor that we can prove the absence of hidden network
tunnels. We now have an “Alone” unary relation which indicates that the con-
cerned component is not to be hosted with the other components of the same
application. We suggest that this component is to be hosted by a provider dif-
ferent from all the other components of the same application, due to the lack of
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guarantees that this level of isolation is possible at the provider level. We have
also merged the definitions of the “Collaboration” and “Unidirectional Flow”
relations to have one relation called “Flow” that indicates a flow of information
between two components that is by default unidirectional and in the case of
needing to express a bidirectional flow the customer can simply specify two
flows between the chosen components. We kept the “concurrence” relation,
which limits the communication between components, as is. To verify the con-
sistency of the customer’s demand, we continue using the KodKod API. The
customer’s demand model is identified by a unique instance of Customer and
now a relation CustomerComp between Customer and Comp representing the set
of the application’s components. The relations between these components are
Alone a unary relation subset of Comp, Concurrence and Flow are binary rela-
tions between Comp and Comp. The demand consistency verification rules we
now have are as follows:

• Concurrence rule : No flow of information, neither direct nor transitive,
between two concurrent components.

8cmpi, cmpj 2 Customer.CustomerComp,
(cmpi, cmpj) 2 Concurrence^

(cmpi, cmpj) 62 Flow^
(cmpj, cmpi) 62 Flow

) (cmpi, cmpj) 62 Flow+^
(cmpj, cmpi) 62 Flow+

• Flow rule : If two components have a unidirectional flow in one direc-
tion and are in concurrence, then there should be no transitive flow of
information in the direction where there is no direct flow.

8cmpi, cmpj 2 Customer.CustomerComp,
(cmpi, cmpj) 2 Concurrence^

(cmpi, cmpj) 2 Flow
) (cmpj, cmpi) 62 Flow+
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5.3.2 Placement Strategy

The main feature in our new brokerage model and the biggest change in com-
parison with the first model consists of the interaction between the broker and
the different Cloud services providers and finding the placement strategy step.
Using KodKod and the Alloy language have limitations, mainly from a size
point of view, in finding a placement strategy. It was the most appropriate so-
lution in respect to how we decided to describe the federation and providers
models. However, with the modifications we brought to their description, us-
ing KodKod is no longer justified, it will be more of a hurdle than a tool.
From another hand, one of the main advantages of coupling Cloud brokering
with multi-Cloud is to maximize performance and minimize the overall cost
of migrating to the Cloud. Thus, we wanted our brokerage solution to be able
to offer a cost-efficient placement strategy all while respecting the functional
and non-functional requirements of the customer. In order to do so, we have
decided to use linear modeling. In retrospect, although we have chosen the
cost as our optimization decision factor to sort through the different possible
placement strategies, the way we have written the linear model allows the pos-
sibility to change the decision factor to cater to different customers’ priorities.
We present the different steps of the cost optimization model in Section 5.4.1.
By solving this problem, we get a placement strategy for the customer’s com-
ponents that respects both the functional and non-functional needs while min-
imizing the set-up cost. This offer will have to be approved by the customer
before going to the next step. The hypothesis of our solution is that at the time
of searching for a placement strategy, the broker has enough resources reserved
and ready. We assume that all the pre-reserved instances are pre-configured to
have no communications with other instances. Thus, once the placement strat-
egy is approved, adequate network configurations need to be conducted on the
affected instances in order to allow communication flows between the hosted
components.
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Virtual Infrastructure configuration In the updated solution, instead of as-
suming that we have an all ready Cloud federation with certain standards put
in place for inter-Cloud providers communications, we propose that the Cloud
broker pre-provisions resources from different Cloud providers. This set of re-
sources will be considered as the broker’s federation. With such a solution, the
communication issue between the different resources from different providers
still remains. Here we introduce the notion of virtual network configurations.
These are the network configurations needed to be put in place to respect the
communication constraints described by the customer in the security require-
ments. When it comes to inter-provider communication one of the ways to
handle this problematic is through using some of the services proposed by
the different providers. The virtual private network (VPN) services offered by
the different Cloud providers can be used to create encrypted channels be-
tween virtual private Clouds (VPCs) hosted by different providers to transfer
data using private IP addresses. Many Cloud service providers have their own
managed VPN products, which allow IPsec VPN tunnels to be created between
the different environments. For example, Google offers Cloud VPN [35], AWS
offers AWS Site-to-Site VPN [11] and Azure the Azure VPN gateway [12]. The
setup cost of these services differs from a provider to another. Thus, we have
included these intermediary costs in our optimization problem as will be pre-
sented in Section 5.4.1.

5.4 Implementation

5.4.1 Linear Model

We decided to describe the cost optimization problem as a linear model. Here
we present how the model for only one customer is written using the GNU
MathProg modeling language from the GNU Linear Programming Kit [51].

We start describing our model by first listing the different elements of the
customer’s request and the providers’ offers. These are given as parameters.
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In fact, the consistency of the customer’s demand is verified using KodKod as
presented in Section 4.3.4. As for the data concerning the Cloud providers, it
is the Broker’s federation created from the pre-reserved resources. The decla-
ration of the parameters:

/* Components for the custumer */

param nbcomp, integer, >=1;

set Comp, default {1 .. nbcomp};

/* Relations between customers */
/* We assume the consistency has been verified */
set Alone, within Comp;

set Flow, within Comp cross Comp;

set Concur, within Comp cross Comp;

/* Providers */
param nbp, integer, >= 2;

set P, default {1 .. nbp};

/* Instances */
# number of type of instances per provider
param nbti{i in P};

# Identifiers of types of instances
set idti{i in P, j in 1..nbti[i]};

#number of instances per type of instances assumed here constant
param nbinstances, integer;

In order to know which instance types are compatible with the customer’s
components, we introduce a parameter Alpha. The characteristics of a compo-
nent being: the number of virtual processors, the memory size, the operating
system and location. An instance is eligible to host a component if it has the
same operating system and location, at least and at most two times the same
number of virtual processors and size. This decision is based on the fact that
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if the broker doesn’t have the exact instance to answer the customer’s request
when it comes to virtual processors number and memory size, it will still be
beneficial for both the broker and customer to use an already reserved instance
with up to two times the request. In fact, once we go over this threshold, get-
ting an on-demand instance will be more beneficial. Thus, the compatibility
parameter is defined as follows:

Alpha[i, j, k] =

8
>><

>>:

1, if Component i can be mapped on the kth instance type

of Provider j

0, otherwise

We add it into our linear model as follows:

/* Adequation of type of instance to a given component */
param Alpha{i in Comp, j in P, k in 1..nbti[j]};

The goal of this model is to optimize the overall set up cost of the cus-
tomer’s architecture. In our solution we only consider the initial set up cost
and not the usage cost, since the latter is relative to the customer’s activity. The
different costs that we consider are the following:

• Set Up costs of the different instances

/* Instances Set Up Cost */
param InstancesPrices {i in P, j in 1..nbti[i]};

• Costs of using a virtual private Cloud

/* Virtual Private Cloud */
# Cost of using a Virtual Private Cloud from Provider i
param VPC {i in P};

• Costs of using a virtual private network tunnel

/* VPN tunnel service */
param VPT {i in P};
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• Costs of the network configurations. The cost for internal link config-
uration, when two instances are hosted by the same provider, and for
external links, when they are hosted by different providers. This cost be-
ing relative to the network configuration needed to be done to allow the
communication, we consider it to be a constant value to be precised by
the broker.

/* Internal Link Configuration Cost */
param CIL;

/* External Link Configuration Cost */
param CEL;

Then we define the different system variables. Their value is going to be
affected according to the model constraints that will be presented later on in
this section.

• First we define the variable X that indicates which component is assigned
to which instance.

X[i, j, k, l] =

8
>><

>>:

1, if Component i is mapped on the lth instance

on the kth instance type of Provider j

0, otherwise

var X{i in Comp, j in P, k in 1..nbti[j], l in 1 .. nbinstances}, binary;

• Variable Y indicates if the customer is using a virtual private Cloud from
a certain provide. This is similar to saying that one of the customer’s
components is mapped on an instance hosted by this provider.

Y[i] =

8
<

:
1, if the customer is using a VPC hosted by provider i

0, otherwise

var Y{i in P}, binary;
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• Variable Z indicates if the customer needs to use a virtual private net-
work between two different providers. This is needed when a customer’s
components, that are hosted on these different providers, need to com-
municate.

Z[i, j] =

8
<

:
1, if there is a need of a VPN Tunnel between providers i and j

0, otherwise

var Z{i in P, j in P: i!=j}, binary;

• In order to be able to compute the cost of internal and external link con-
figurations between instances hosted by different providers we need to
know how many links exist, intra-provider represented by NIL and inter
provider represented by NEL. To simplify the computation, we use the
ZIL and ZEL binary variables, where NIL is the sum of ZIL and NEL
that of ZEL.

ZIL[i1, i2, j] =

8
>><

>>:

1, if components i1 and i2, related by a flow,

are hosted by the same provider j

0, otherwise

ZEL[i1, i2, j1, j2] =

8
>><

>>:

1, if components i1 and i2, related by a flow,

are hosted by providers j1 and j2, respectively

0, otherwise

They are added to the model as follows:

# Internal
var ZIL{(i1, i2) in Flow, j in P}, binary;

var NIL;

# External
var ZEL {(i1, i2) in Flow, j1 in P, j2 in P:j1!=j2}, binary;
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var NEL ;

• Then we find the cost variables, that we define as follows in order to
make it easier to check the prices of each phase independently.

# Use of instances
var CostInstances ;

# use of VPC
var CostVPC;

# use of VPN Tunnel
var CostVPT;

# use of Internal Links
var CostIL;

# use of External Links
var CostEL;

# Global Cost
var GlobalCost;

Once all parameters and variables are defined, we need to write the con-
straints of our model. Most of these constraints are equivalent to the place-
ment rules already described in the previous chapter. We first start with the
constraints related to the functional requirements.

• The chosen instance provides enough resources for mapping the compo-
nent:

s.t. Suitable{i in Comp, j in P, k in 1..nbti[j], l in 1 .. nbinstances}:

X[i, j, k, l] <= Alpha[i,j,k];

• Each component has to be placed only once:

s.t. Placed{i in Comp}:

sum{j in P, k in 1..nbti[j], l in 1 .. nbinstances} X [i,j,k,l] = 1;

• Each instance can accept at most one component:
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s.t. OneCompPerInstance{j in P, k in 1..nbti[j], l in 1 .. nbinstances}:

sum {i in Comp} X [i,j,k,l] <= 1;

Then the constraints related to the non-functional requirements.

• Each Component Alone must be isolated from the others and no other
component should be mapped in the same Provider:

s.t. AloneComponent{i1 in Alone, i2 in Comp, j in P: i1 !=i2}:

sum{k in 1..nbti[j],l in 1 .. nbinstances}(X[i1,j,k,l] + X[i2,j,k,l]) <= 1;

• If two components are in concurrence, they shouldn’t be hosted by the
same provider:

s.t. ConcurComponent{(i1,i2) in Concur, j in P}:

sum{k in 1..nbti[j],l in 1 .. nbinstances}(X[i1,j,k,l] + X[i2,j,k,l]) <= 1;

Then additional constraints on the variables that will be used in calculating the
costs.

• We consider that once one of the customer’s components is placed on an
instance hosted by a provider x we are automatically using a virtual pri-
vate Cloud service from this provider. Thus, the constraint on the variable
Y is defined as follows:

s.t. UseVPC{i in Comp, j in P, k in 1..nbti[j], l in 1 .. nbinstances}:

Y[j] >= X[i,j,k,l];

• We also consider that a tunnel is needed between two providers j1 and
j2 (i.e. Z[j1, j2] = 1) if two of the customer’s components i1, hosted by
the provider j1, and i2, hosted by the provider j2 (i.e. Âk,l X[i1, j1, k, l] +

Âk,l X[i2, j2, k, l] = 2) have a flow relation between them. We translate that
into the following constraint:

s.t. UseVPNT{(i1,i2) in Flow, j1 in P, j2 in P: j1!=j2}:

sum{k in 1..nbti[j1], l in 1 .. nbinstances} X[i1, j1, k, l]

+ sum{k in 1..nbti[j2], l in 1 .. nbinstances} X[i2, j2, k, l]

<= Z[j1, j2] + 1;
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• In a similar fashion to the previous constraint, we define the constraints
to calculate the numbers of internal and external links between the dif-
ferent components. There exists an internal link between two of the cus-
tomer’s components i1 and i2 (i.e. ZIL[i1, i2, j] = 1) if they are hosted by
the same provider j and if these two components have a flow relation be-
tween them. There exists an external link between two of the customer’s
components i1 and i2 (i.e. ZEL[i1, i2, j1, j2] = 1) if they are hosted by two
different providers j1 and j2 and if these two components have a flow
relation between them. The constraints are written as follow:

s.t. Zint{(i1,i2) in Flow, j in P }: ZIL[i1, i2, j] + 1 >=

sum{k in 1..nbti[j], l in 1 .. nbinstances}(X[i1, j,k,l] + X[i2, j, k, l]);

s.t. NIn: NIL = sum{(i1,i2) in Flow, j in P } ZIL[i1, i2, j];

s.t. Zext{(i1, i2) in Flow, j1 in P, j2 in P: j1!=j2}: ZEL[i1, i2, j1, j2] + 1 >=

sum{k in 1..nbti[j1], l in 1 .. nbinstances}X[i1, j1,k,l] +

sum{k in 1..nbti[j2], l in 1 .. nbinstances}X[i2, j2, k, l];

s.t. Next: NEL = sum{(i1,i2) in Flow, j1 in P, j2 in P:j1!=j2 }

ZEL[i1, i2, j1, j2];

Calculating the different intermediary costs and the global cost to be mini-
mized:

• The total cost of instances used by the customer:

CostInstances_C: CostInstances =

sum{i in Comp, j in P, k in 1..nbti[j], l in 1.. nbinstances}

X[i,j,k,l] * InstancesPrices [j,k];

• The total cost of the customer’s virtual private Cloud is the summation
of the virtual private Cloud set up cost from the different used providers:

CostVPC_C: CostVPC = sum{i in P} Y[i] * VPC[i];

• The cost of the virtual private tunnels used is equivalent to the total of
the VPT service cost used from each of the providers:
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CostVPNT_C: CostVPT =

sum{i1 in P, i2 in P: i1!=i2} Z[i1, i2]* (VPT[i1] + VPT[i2]);

• Total cost of the configuration of both internal and external links:

# internal Links
CostIL_C: CostIL = NIL * CIL;

# external links
CostEL_C: CostEL = NEL * CEL;

• The global cost of the customer’s architecture:

# Global Cost
GlobalCost_C: GlobalCost = CostInstances + CostVPC + CostIL + CostVPT +

,! CostEL;

Finally, the cost optimization goal is simply written as follows:

/* Goal */
minimize z: GlobalCost;

Example As working example to test our linear model we take a customer ap-
plication of five components as presented in Figure 5.2. The relations between
the five components are:

Alone = { Comp4 }

Flow = { (Comp1, Comp2) , (Comp2, Comp1) , (Comp1, Comp3) }

Concurrence = { (Comp2, Comp5) }.

The consistency of this customer’s model was first verified by KodKod. We run
our model with the broker’s federation data consisting of:

# Number of Providers
param nbp := 4;

# The providers
set P :=
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Comp2
vCPU: 8 
Memory: 16 
OS: Linux 
Location : EU

Comp3
vCPU: 4 
Memory: 8 
OS: Linux 
Location : EU

Comp5
vCPU: 4 
Memory: 8 
OS: Linux 
Location : EU

Comp1
vCPU: 4 
Memory: 8 
OS: Linux 
Location : EU

Comp4
vCPU: 8 
Memory: 16 
OS: Linux 
Location : EU

Alone

Flow

Concurrence

Figure 5.2 – Customer Model Example

Alibaba

Azure

Google

Amz

;

# The number of instances per provider
param nbti :=

Azure 16

Alibaba 84

Amz 11

Google 46

;

# The number of instances per instance type
param nbinstances := 5 ;

The problem is solved in 0.4 secs and the components are affected to the ap-
propriate instances hosted by the different providers as presented in Figure 5.3.
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Comp2
vCPU: 8 
Memory: 16 
OS: Linux 
Location : EU

Comp3
vCPU: 4 
Memory: 8 
OS: Linux 
Location : EU

Comp5
vCPU: 4 
Memory: 8 
OS: Linux 
Location : EU

Comp1
vCPU: 4 
Memory: 8 
OS: Linux 
Location : EU

Comp4
vCPU: 8 
Memory: 16 
OS: Linux 
Location : EU

Alone

Flow

Concurrence

Google

Alibaba

Azure

Figure 5.3 – Customer Model Placement Example

5.4.2 Brokerage Tool

The brokerage tool is written in Java and has three main parts.

Consistency verification The verification of the consistency of the customer’s
demand is done using the KodKod API. This step has stayed the same as the
previous version of the tool, with only minor changes brought to the definition
of verified formulas (i.e. in the sense of changing some of the characteristics of
the components, modifying the isolation related formulas and removing those
concerning the collaboration relation). Only once the demand is consistent we
move to the next step. We generate part of the data file consisting of the values
of the parameters, related to the different elements of the customer’s request,
of the linear model.

Compatible Resources In order to find the compatible resources we match
the customer’s functional requirements with the resources available in the bro-
ker’s federation. The federation data is stored in a SQL database. We retrieve
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the information about the different providers as well as the matching instances
in order to create the data file for our linear model. In order to retrieve the
matching instance types, and calculate the Alpha parameter presented in Sec-
tion 5.4.1, for a component with nv virtual CPUs, ms memory size, os operation
system and location l, we use the following SQL query:

1 s e l e c t * from InstanceType where vCPU < 2*nv and vCPU >=
nv and Memory < 2*ms and Memory >= ms and OS l ike os
and Location l ike ‘ ‘ l\% ’ ’

As a reminder we fix the maximum of the matched type instance to twice the
number of virtual CPUs and Memory size, due to the fact that once we exceed
that value the cost of the reserved instance becomes higher than the on the
demand one. Thus, it would be more beneficial for the broker to provision an
on-demand instance to answer than customer’s demand than use an already
reserved one.

Cost Optimization The data retrieved from the second step are formated in
a GNU MathProg data file format. Solving the optimization problem with as
input this data file returns a placement strategy that minimizes the overall
step-up cost of the customer’s application model.

5.5 Case Study

5.5.1 Customer Model

As a case study for our brokerage solution, we choose a health care application.
Let us imagine an international collaborative project working on a pandemic
study. A project where different research teams from different laboratories,
situated in different countries are working on the same project and need to
collaborate in order to study, analyze and compare critical patient data col-
lected by the different laboratories. All while respecting the federal regulations
regarding data storage set by the different countries.
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Let the following component types be the building bricks of the interna-
tional pandemic study application:

• Data Input (DI): the component responsible for the data treatment and
inputting it

• Data Storage (DS): the component responsible for the local data storage
respecting the local regulations. We can imagine that in this component
the anonymization work needed to protect the patients privacy is con-
ducted before transmitting the data

• Centralized Data (CD): the component centralizing the data sets to ana-
lyze

• Data Analysis (DA): the component containing the program responsible
for analyzing the data and inferring results

In our initial scenario, we can imagine the collaboration happening between
two laboratories in two different European countries and a laboratory in the
United States of America (USA). Due to the European standard regulations
regarding data storage and treatment, we can imagine that the two European
laboratories will be able to use the same data storage component localized
anywhere in Europe. These regulations being different from those existing in
the USA, the latter based laboratory cannot store their data nor analyze it in the
same components as the European laboratories and will need to have different,
data storage and data analysis components of his own located preferably in
the USA. Let us imagine as an example the application presented in Figure 5.4.
The functional characteristics of the different components of this application
are summarized in table 5.1. The relations are the following:

Flow = { (DI1, DS1) , (DI2, DS2) , (DI3, DS2) , (DS2, DA2) ,

(DS1, DA1) , (DA1, CD) , (DA2, CD)}

Concurrence = { (DI1, DI2) , (DI2, DI3) , (DI1, DI3)}.
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DI1

DA1DS1

DI2

DI3

DA2 DS2CD
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USA USA

EU N

EU W

EU EU EU 

Figure 5.4 – Case Study: A collaborative health-care application

Characteristics vCPU Memory OS LocationComponents
DI1 4 8 windows USA
DI2 4 8 windows EU North
DI3 4 8 windows EU West
DA1 8 16 linux USA
DA2 8 16 linux EU
DS1 16 32 linux USA
DS2 16 32 linux EU
CD 16 32 linux EU

Table 5.1 – Case Study: A collaborative health-care application - Components characteristics

5.5.2 Federation Model

The federation model used, to find an adequate placement for the described
health-care application, is the Federation1 scenario presented in Table 5.2. In
order to have a realistic set of metrics and results, we gathered data published
on the different Cloud providers’ official websites. We tried to get a set of
heterogeneous types of instances from different locations.
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Figure 5.5 – Case Study: A collaborative health-care application placement strategy

5.5.3 Result

The consistency of the demand verified using the KodKod is done in 45 ms.
Using the same federation data as the one used in the example presented in
Section 5.4.1, the optimization problem for this case study was solved in 10
minutes, the components were placed in adequate instances hosted by the dif-
ferent providers as presented in Figure 5.5.

5.6 Evaluation

5.6.1 Introduction

Here we present some of the tests we have conducted to evaluate the perfor-
mance of our tool and general model. The tests conducted here were with the
aim of answering the following questions:

• Q1: How does the time to solve the optimization problem change with
the incrementation of the number of occurrences of types of instances?
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• Q2: How does this solve time change with different customers’ demand
scenarios, in regard to just adding more components with / without
adding more relations?

• Q3: How does this solve time change with the incrementation of the num-
ber of providers?

We tried to find an appropriate cost-efficient placement strategy for differ-
ent customer scenarios, these will be presented in Section 5.6.2, in different
federation scenarios that will be presented in Section 5.6.3. A summary of our
results and answers to the previous question is presented in Section 5.6.4.

5.6.2 Customer Scenarios

In order to answer the previous questions, we decided to test different incre-
mentations of a simple customer application model. We increment the number
of components and the relations in waves in order to see how the solving
time reacts to these modifications. We start with a simple customer applica-
tion model presented in Figure 5.6a, then we add different combinations of
components and relations. The customer scenarios tested, with the highlighted
differences between each scenario and the one prior to it, are presented in
Figure 5.6.

5.6.3 Federation Scenarios

In order to have a better idea of how our model acts under different circum-
stances, we wanted to test out the different customer scenarios with different
sets of resources (i.e. federations). To create different federation scenarios we
copied the data we already have of one provider, in this case, Google, into two
new providers (a.k.a ProvX and ProvY) then added each one at a time to make
our federations. The federations scenarios are summarized in Table 5.2.
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(a) Scenario of a customer 1
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Figure 5.6 – The different Customers Scenarios
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Federation
Scenario Providers Number of Instance Types

Federation 1

Alibaba 85
Amazon 12

Azure 17
Google 47

Federation 2

Alibaba 85
Amazon 12

Azure 17
Google 47
ProvX 47

Federation 3

Alibaba 85
Amazon 12

Azure 17
Google 47
ProvX 47
ProvY 47

Table 5.2 – The different Federations Scenarios

5.6.4 Results

The results of these tests are summarized in Table 5.3.
The answers to the previous questions, relying on the results found from

the different test scenarios are as follow:

• A1: This was the answer that was very consistent throughout all of our
tests. Increasing the number of occurrences of each type of instance in-
creases the time needed to solve the problem. This could be considered
as waisted time, especially in our solution, due to the size of the demand
models and the fact that we’re trying to find the placement for only one
customer at a time. Thus, there is no need to have a large number of in-
stance types occurrences. This number can be fixed to the maximum of
the number of components with the same specifications that coexist in
the customer’s demand, which in the case of no similarities, it would be
set to one, thus, that would decrease the time to solve significantly.

• A2: Although as expected with more components, the more variables
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Customer
Scenario

N of
Components

N of
Relations

Federation
Scenario

N of
Providers

N of
Type Instances

N of Instances
of each

Type Instance

Time to
Solve

Customer1 4 4 Federation1 4 161
20 30.2 s
10 1.9 s
5 0.5 s

Customer2 5 5 Federation1 4 161
20 378.4 s
10 62.3 s
5 2 s

Customer3 5 6 Federation1 4 161 10 5.6 s
5 0.7 s

Customer4 6 8 Federation1 4 161 10 39.2 s
5 5.5 s

Customer5 7 9 Federation1 4 161 10 253 s
5 5.6 s

Customer6 7 10 Federation1 4 161 10 40.6 s
5 3.8 s

Customer7 8 11 Federation1 4 161 10 764.2 s
5 6.8 s

Customer8 8 12 Federation1 4 161 10 222.1 s
5 6.3 s

Customer1 4 4 Federation2 5 208 10 3.1 s
5 0.5 s

Customer2 5 5 Federation2 5 208 10 70.3 s
5 3.5 s

Customer3 5 6 Federation2 5 208 10 5.7 s
5 0.7 s

Customer8 8 12 Federation2 5 208 10 76.9 s
5 5.3 s

Customer1 4 4 Federation3 6 255 10 1.7 s
5 0.6 s

Customer2 5 5 Federation3 6 255 10 67.5 s
5 6.7 s

Customer3 5 6 Federation3 6 255 10 5.6 s
5 0.6 s

Customer8 8 12 Federation3 6 255 10 256.7 s
5 9.5 s

Table 5.3 – Evaluation Summary

generated and thus the longer it takes to find and prove the optimal solu-
tion of the linear problem. But, it is not fully true in this case. As we can
see from the difference between the values of solving time of Customer2

and Customer3 scenarios (similarly between Customer5 and Customer6,
as well as, Customer7 and Customer8), having the same number of com-
ponents but more relations decreases the time needed to find the best
solution. In fact, having a well-defined application model with explicit
and well-specified relations, decreases the pull of possibilities and the
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solver spends less time finding and proving the optimal solution. Hav-
ing a more constrained demand with more relations explicitly defined
between the components does decrease the time to solve.

• A3: Here would be expected that with the increased number of possibil-
ities the time to solve will accordingly be longer. As we can see in Ta-
ble 5.2, the difference between the Federation1 and Federation2 scenarios
was adding 1 provider ProvX and the difference between the Federation2

and Federation3 scenarios was adding provider ProvY which is an exact
copy of the ProvX. To our surprise, although for all the customer sce-
narios the time to solve has indeed gotten longer due to the increased
number of providers and instance types, for the Customer8 scenario, the
time to solve decreased when looking for a solution in the Federation2

scenario then increased back up in the Federation3 scenario. The opti-
mization problem seems to be NP-hard which causes its behavior to be
unexpected. Unfortunately, this issue is out of the scope of this thesis but
the idea could be to try and find an adequate number of components and
instances that would optimize the solving time.

5.7 Conclusion

In this chapter, we present an improvement of our initial Cloud brokerage
solution. The high efficiency of the KodKod engine in proving the consistency
of customers’ demand in regard to the security rules we have defined, has
motivated us to keep using it for that purpose. We then relied on linear pro-
gramming to optimize the cost and find the placement strategy that best fits
the customer’s functional and non-functional requirements.

The consistency verification at early stages, before deploying the architec-
ture into the Cloud, is very important, it spears the customer information leak-
age and attacks that could be revealed in the future. If we take as an example
the application modeled in Figure 5.7, KodKod returns this model as inconsis-
tent due to the fact that we have a concurrence between the components Comp1
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OS: Windows 
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Figure 5.7 – Inconsistant Customer demand example

and Comp6, all while having a transitive communication flow going through
the component Comp5. If we try to find a placement strategy without verifying
its consistency, a possible placement strategy would be the one presented in
Figure 5.8. In fact, the linear problem we try to solve does not include con-
straints about the consistency of the application model, if we were to include
this, the problem would have become more complicated and thus even harder
to solve. This example demonstrates the importance and efficiency of using
both KodKod and linear programming in our solution. Each part of the latter
uses the best and appropriate skill for its aim. More work can be conducted on
both these parts of the broker in order to reach their full potential. We present
some possible perspectives in the conclusion chapter.
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Figure 5.8 – Inconsistant Customer demand placement
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6.1 Introduction

While using the Alloy language and exploring its potentials in describ-
ing and verifying the consistency of personalized security requirements in our
customers’ demands, we have come across some limitations related to the con-
ception of the language as a whole.

In fact, Alloy [41] is a lightweight formal method as it relies on the small
scope hypothesis: “examining all small cases is likely to produce interesting
counterexamples”. However, the Alloy analyzer cannot prove the absence of
errors. Other formal tools such as the interactive theorem provers Coq [80] and

101
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Isabelle [61] have been used to provide very strong guarantees on verified soft-
ware, including a C compiler [46] and the kernel of an operating system [44].
Although in this work we focus on the use of an interactive theorem prover,
it is worth noting the efforts that have been conducted in the automation of
theorem proving, to mention Sledgehammer [14], a powerful interface from
Isabelle to automated provers.

We think it is very valuable to use lightweight formal methods when mod-
eling critical systems. In practice, if one is to use a tool such as Alloy as a first
step, then wants to use more heavyweight tools such as Coq as a second step,
the formalization done first is lost. To support the transition from Alloy to Coq,
we propose a translator from Alloy models to Coq code. However, in addition
to a “raw” translation from Alloy to Coq, we wanted our tool to provide some
support to ease the proof in Coq of the assertions of an Alloy model. Such a
support includes general lemmas about the properties of the set and relational
operations of Alloy. The overviews of both Alloy and Coq have been previously
presented in Chapter2.

The content of this chapter is based on the published article [75] and will
be organized as follows. The basic principles of the transformation of Alloy
models to Coq syntax we propose are described in Section 6.2. A step by step
translation of the different elements of an Alloy model is presented in Sec-
tion 6.3. Section 6.4 contains full example of the translation. Then, we discuss
the current limitations of our tool in Section 6.6, and conclude in Section 6.7.

6.2 Basic Principles of the Transformation

Logical Quantifiers and Connectives Logical elements present in the Alloy
language, are also present in Gallina (i.e. Coq language), either as primitives
(universal quantification) or defined in the standard library (existential quan-
tification, negation, conjunction, disjunction). For example, in the Alloy lan-
guage we use the operators {and, &&} (resp. {or, ||}) to express conjunction
(resp. disjunction) between two expressions. In Coq syntax conjunction (resp.
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disjunction) between two propositions A and B is written: A /\B (resp. A \/
B ).

Sets, Relations and Elements In the Coq standard library, sets and binary
relations are formalized using predicates. Given a type A, a subset of A is for-
malized as a predicate on A, i.e. a value of type A!Prop, and a binary relation
on types A and B as a value of type A!B!Prop. We could use directly such
a formalization, and consider higher arities: the simple example of Figure 2.1
indeed contains a relation of arity 3. Some other translation tools from Alloy
to provers (discussed in Section 3.3) have explicit different translations for sets,
binary relations, ternary translations, etc, which limits some of them to a given
arity. While of course possible in Coq, we chose to avoid using the already
existing formalism as it means we would have to generate as many versions of
the operations as there is a combination of the arities, and as many supporting
lemmas as there are combinations of these operations. Also in Alloy, relational
operations can be applied to elements that are seen as singleton sets. Just for
example sake, even if we choose to only consider up to binary relations and
use the existing definition of relation from the library Relations. The join op-
erator will need to be translated to three different versions: one to join a set
and a relation, one to join a relation and a set and one to join two relations.
In fact, we won’t have only multiple versions of the different operators’ defini-
tions but the lemmas describing properties over these operators as well. If we
define a different version of the inclusion operator for each of the considered
arities, that means we will need to re-write and prove the lemmas concerning
the properties of transitivity and reflection, just to mention a few, for each of
these versions.

Therefore we chose to generalize the approach present in the Coq standard
library: considering a type U (the universe of Alloy), a relation of arity n (with
0 < n) is formalized as a value of type U!...!U!Prop that contains n U.

To be able to define operations on arbitrary relations, we first need to ex-
press the arity of a relation. This is done by the following definition:
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1 Fixpoint arity (n : nat): Type :=

2 match n with

3 | 0) Prop

4 | S n’) U! arity n’

5 end.

Therefore arity 1 simplifies to U!Prop, arity 2 to U!U!Prop, etc. With this defi-
nition we are able to translate any Alloy signature into a set of declarations of
Coq values whose types are declared using arity.

To model an element as a singleton set, we define a Singleton predicate:

1 Fixpoint Singleton n (R: arity (S n)) : Prop :=

2 match n with

3 | 0) 9! (x:U), R x

4 | S n’) 9! (x:U), Singleton n’ (R x)

5 end.

Basically what this predicate does is that for a relation R of arity n greater
than 1, it indicates there exists a unique element x of U such that the partial
application R x is also a singleton relation. For a relation of arity 1, it just states
that there exists a unique x such that R x.

Unfortunately, the code above is not accepted by Coq. The problem is that
Coq cannot determine without additional information that R x can be consid-
ered as a value of type arity n. To help the system we need “cast” functions
(Figure 6.1). Note that both these functions are defined using the proof script
language of Coq. In Coq, we need to be very explicit about the returned type.
In Figure 6.1, we can see the two different cast functions: cast for the cast of
arity 1 relations and cast’ for relations of arity n greater than 1. However, these
cast functions are not enough: we need to provide them a proof as their last
argument. This is needed to prove that the relation provided as an argument is
indeed an arity 1 relation for the cast function and arity n greater than 1 relation
for the cast’ function. This proof is simple, that is actually a proof by reflexiv-
ity, and we can use what Chlipala calls the “convoy pattern” [17, page 172] to
get these proofs in the right-hand sides of the pattern matching construction.
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1 Definition cast n1 (R1 : arity n1) (H: n1 = 0) : Prop.
2 subst. simpl in *. trivial.
3 Defined.
4 Definition cast’ n1 n1’ (R1 : arity n1) (H: n1 = S n1’) : arity (S n1’).
5 subst. simpl in *. trivial.
6 Defined.
7 Fixpoint Singleton n (R: arity (S n)) : Prop:=
8 match n as m return n = m! Prop with

9 | 0) fun H) 9! x, cast _ (R x) H
10 | S n’) fun H) 9! y, Singleton n’ (cast’ _ _ (R y) H)
11 end eq_refl.

Figure 6.1 – Actual Definition of Singleton

And so, by using this pattern and applying the cast functions the new func-
tional definition of the “Singleton” function is the one defined in lines 7-11 of
Figure 6.1.

This small example shows that while having generic arity relations is indeed
very generic, it makes the formalization more technically challenging. How-
ever, by providing general theorems on the Coq formalization of Alloy opera-
tions, we think the user of our tool will not have to deal with such technicalities
most of the time.

Operations All the basic relational operations have the same shape as
Singleton. For example, the inclusion operator in of Alloy is translated as (the
cast and convoy pattern are omitted for a clearer definition):

1 Fixpoint IN n (R1: arity n)(R2: arity n): Prop :=

2 match n with

3 | 0) R1! R2

4 | S n’) 8 (x:U), IN n’ (R1 x) (R2 x)

5 end.

Basically it means that for all n-tuple t, if R1 t then R2 t.
The Alloy equality is not translated as the default syntactic equality (up to
reduction) of Coq, but as:

1 Definition EQUAL n (R1: arity n)(R2: arity n): Prop :=
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2 (IN R1 R2) ^ (IN R2 R1).

Note that all the first nat arguments of these definitions are made implicit. It
is therefore not necessary to give them explicitly when using these definitions:
Coq infers them. Also instead of writing EQUAL a b, we use Coq’s notations
a == b.

Slightly more challenging operations are the join and the product. Again
omitting the casts and the convoy pattern, the Alloy join operation is defined
as shown in Figure 6.2. The actual detailed definition of the join operation with
the definitions of different cast functions needed is shown in Figure 6.3.

1 Fixpoint JOIN_R n2 (R1: arity 1)(R2: arity (S n2)) : arity n2 :=

2 match n2 with

3 | 0) 9 x:U, (R1 x) ^ (R2 x)

4 | S n2’) fun (y:U)) JOIN_R n2’ R1 (fun (x:U)) R2 x y)

5 end.

6 Fixpoint JOIN n1 n2 (R1: arity (S n1)) (R2: arity(S n2)) : arity(n1+n2) :=

7 match n1 with

8 | 0) JOIN_R n2 R1 R2

9 | S n1’) fun (y:U)) JOIN n1’ n2 (R1 y) R2

10 end.

Figure 6.2 – Definition of Join (Details Omitted)

Operation Properties As mentioned before, in addition to translating the def-
initions, operations, formulas of Alloy, we also provide properties of Alloy op-
erations. The first set of properties concerns the Alloy equality ==: we proved
it is an equivalence relation and also that it is compatible with the Alloy oper-
ations, i.e. for an operation f, if for all a, b such that a == b, then f a == f b. This
allows us to use the rewriting tactics of Coq while writing proofs. These are
very important as most of the other properties are stated as equalities using
==.
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1 Definition cast_0 n1 (R1 : arity n1) (H:n1 = 0) : Prop.

2 subst. simpl in *. trivial.

3 Defined.

4 Definition cast_1 n1 (R1 : arity (S n1)) (H:n1 = 0) : arity 1.

5 subst. simpl in *. trivial.

6 Defined.

7 Definition cast_0n n (R1 : Prop) (H:n = 0) : arity n.

8 rewrite H. simpl. trivial.

9 Defined.

10 Definition cast_0n2 n1 n2 (R: arity n2)(H:n1 = 0) : arity(n1+n2).

11 subst. simpl in *. exact R.

12 Defined.

13 Definition cast_n1S n1 n1’ (R1 : arity n1) (H:n1 = S n1’) : arity (S n1’).

14 subst. simpl in *. trivial.

15 Defined.

16 Definition cast_Sn1 n1 n1’ (R1 : arity (S n1’)) (H:n1 = S n1’) : arity n1.

17 subst. simpl in *. trivial.

18 Defined.

19 Definition cast_Sn1n2 n1 n2 n1’ (R1 : arity(S(n1’+n2))) (H1:n1=S n1’) : arity (n1+n2).

20 subst. simpl. apply R1.

21 Defined.

22

23 Fixpoint JOIN_R n2 (R1: arity 1)(R2: arity (S n2)) : arity n2 :=

24 match n2 as m return n2 = m! arity n2 with

25 | 0) fun H2) cast_0n _

26 (9 x:U, (R1 x) ^ (cast_0 _ (R2 x) H2))

27 H2

28 | S n2’) fun H2) cast_Sn1 _ _ (fun y) JOIN_R n2’ R1 (fun x) (cast_n1S _ _ (R2 x) H2) y)) H2

29 end eq_refl.

30

31 Fixpoint JOIN n1 n2 (R1: arity (S n1)) (R2: arity(S n2)) : arity(n1+n2) :=

32 match n1 as n return n1 = n! arity (n1+n2) with

33 | 0) fun H’) cast_0n2 _ _ (JOIN_R n2 (cast_1 _ R1 H’) R2) H’

34 | S n1’) fun H1) cast_Sn1n2 _ _ _ (fun y) JOIN n1’ n2 (cast_n1S n1 n1’ (R1 y) H1) R2) H1

35 end eq_refl.

36

Figure 6.3 – Detailed Definition of Join
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The second set of properties are mostly algebraic properties. For example
we have:

1 Lemma UNION_idem:

2 8 n (R: arity n), UNION R R == R.

3

4 Lemma UNION_assoc:

5 8 n (R1 R2 R3: arity n),

6 UNION R1 (UNION R2 R3) ==

7 UNION (UNION R1 R2) R3.

8

9 Lemma UNION_comm:

10 8 n (R1 R2: arity n),

11 UNION R1 R2 == UNION R2 R1.

12

13 Lemma INTERSECT_idem:

14 8 n (R: arity n),

15 INTERSECT R R == R.

16

17 Lemma INTERSECT_assoc:

18 8 n (R1 R2 R3: arity n),

19 INTERSECT R1 (INTERSECT R2 R3) ==

20 INTERSECT (INTERSECT R1 R2) R3.

21

22 Lemma INTERSECT_comm:

23 8 n (R1 R2: arity n),

24 INTERSECT R1 R2 == INTERSECT R2 R1.

We developed a tactic that is able to prove all of these properties (and most
of the other properties defined in the library), the proof script in this case for
each of the above mentioned lemmas is Proof. solve_alloy. Qed. The code of the
solve_alloy tactic can be found in the Appendix A.

Other properties are more specific to Alloy operations. Here are some of
the lemmas we provide:
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• A lemma that states that if the join of a binary relation with itself contains
the relation, then this relation is transitive:

1 Lemma JOIN_IN_transitive : 8 R: arity 2,

2 IN (JOIN R R) R$ (8 x y z, R x y! R y z! R x z).

• A lemma to state that the join operator is right distributive over the union
operator:

1 Lemma JOIN_UNION_distr_r:

2 8 n1 n2 (R: arity(S n1))(R1 R2: arity (S n2)),

3 JOIN R (UNION R1 R2) ==

4 UNION (JOIN R R1) (JOIN R R2).

• A lemma to state that the union operator is left distributive over the
difference operator:

1 Lemma UNION_DIFFERENCE_distr_l:

2 8 n (R1 R2 R3: arity (S n)),

3 EQUAL

4 (DIFFERENCE (UNION R1 R2) R3)

5 (UNION

6 (DIFFERENCE R1 R3)

7 (DIFFERENCE R2 R3)).

The proofs for these lemmas among others are all detailed in the Coq library
present with the tool.

6.3 Alloy Models Translation

Now that we have translated the basic elements of the Alloy language, let us
use them to translate Alloy models. Here we present how each of the compo-
nents of Alloy models is translated into Coq syntax and the reasoning behind
it. We continue using the Alloy model given in Figure 2.1, presented in Chap-
ter 2, as example for the translation.
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Signatures As we presented so far, everything that is going to be in our Coq
translation of the Alloy models should be of type arity n. In order to follow
this reasoning and to be able to manipulate Alloy signatures, we have decided
to represent them in the format of Coq Variables (declarations) by specifying
first their arity. Top-level signatures like Name, Addr and Book are sets and thus
unary (i.e. arity 1) relations. Signature attributes are declared as relations (arity
greater than 1) then a Hypothesis is added to the Coq code for their types, lines
2 and 3 in the following Coq translation shows the example of attribute addr:

1 Variable Name Addr Book: arity 1.

2 Variable addr: arity 3.

3 Hypothesis addr_sig: IN addr (PRODUCT Book (PRODUCT Name Addr)).

Facts A way of declaring facts about a system in Coq is by stating Hypothesis.
Thus, Alloy model facts are translated in our tool to Hypothesis and the syntax
is as follows:

1 Hypothesis Model_fact: translated_fact_formula.

Functions and Predicates both are transformed in the same way to Coq syn-
tax. For reasons of re-usability and ease of application, we have decided to
transform them into Coq inductive type definitions. This type is closed with
respect to its introduction rules which explain the canonical ways of construct-
ing an element of the type. In this sense, the inductive type characterizes the
recursive type. The following examples are the transformation of the del predi-
cate and lookup function presented in Figure 2.1. When writing the constructor
for the inductive type, we start by modeling the “types” of the arguments as
inclusions, possibly with additional expressions for modeling the cardinality.
In the example of del, the argument b has type Book thus In b Book, but also b

is an element, thus ONE b. We formalize functions as predicates, but with an
additional argument that models the result returned by the function. In the
case of lookup, the result is the value r_lookup:

1 Inductive del: arity 1! arity 1! arity 1! Prop:=
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2 | del_def: 8 (b: arity 1) (b’: arity 1) (n: arity 1),

3 IN b Book ^ (ONE b)!
4 IN b’ Book ^ (ONE b’)!
5 IN n Name ^ (ONE n)!
6 JOIN b’ addr == DIFFERENCE (JOIN b addr) (PRODUCT n Addr)!
7 del b b’ n.

8

9 Inductive lookup: arity 1! arity 1! arity 1! Prop:=

10 | lookup_def: 8 (r_lookup: arity 1) (b: arity 1) (n: arity 1),

11 IN r_lookup Addr!
12 IN b Book ^ (ONE b)!
13 IN n Name ^ (ONE n)!
14 r_lookup == JOIN n (JOIN b addr)!
15 lookup b n r_lookup .

Assertions are defined using the key word Definition in Coq syntax and then
stated as Lemmas when called in an Alloy check block. Thus, the assertion
delUndoesAdd is transformed as follows:

1 Definition delUndoesAdd:=

2 8 (b: arity 1) (b’: arity 1) (b’’: arity 1) (n: arity 1)(a: arity 1),

3 ( NO (JOIN n (JOIN b addr)) ^ add b b’ n a ^ del b’ b’’ n )!
4 JOIN b addr == JOIN b’’ addr.

5

6 Lemma delUndoesAdd_Lemma: delUndoesAdd.

6.4 Example: The Address Book

In the previous subsections, we presented most of the translation of the
Alloy example of Figure 2.1. Figures 6.4–6.6 present the automatic translation
using our tool of the two other assertions addIdempotent and addLocal, as well as
the proof scripts we wrote to prove two of the corresponding lemmas.
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1 Definition addIdempotent:=
2 8 (b b’ b’’ a n: arity 1),
3 (add_ b b’ n a ^ add_ b’ b’’ n a )!
4 JOIN b’ addr == JOIN b’’ addr.
5
6

7 Definition addLocal:=
8 8 (b b b’ a n n’: arity 1) r_1 r_2,
9 lookup b n’ r_1!

10 lookup b’ n’ r_2!
11 (add_ b b’ n a ^ not(n == n’))!
12 r_1 == r_2 .

Figure 6.4 – Translation of the Assertions addIdempotent and addLocal

1 Lemma delUndoesAdd_Lemma : delUndoesAdd.
2 Proof.
3 unfold delUndoesAdd.
4 intros b b’ b’’ n a H. destruct_and.
5 assert(Hadd: add_ b b’ n a) by trivial.
6 assert(Hdel: del b’ b’’ n) by trivial.
7 inversion Hadd; inversion Hdel; subst.
8 destruct_and.
9 (* We are ready to prove: JOIN b addr == JOIN b’’ addr *)

10 assert(Hr1: JOIN b’’ addr == DIFFERENCE (JOIN b’ addr) (PRODUCT n Addr)) by trivial.
11 assert(Hr2: JOIN b’ addr == UNION (JOIN b addr) (PRODUCT n a)) by trivial.
12 rewrite Hr1, Hr2.
13 rewrite UNION_DIFFERENCE_distr_l with (R1:=JOIN b addr).
14 rewrite UNION_NO_l by
15 (apply DIFFERENCE_IN_NO;
16 apply PRODUCT_IN_compat with (R1:=n);
17 auto using IN_refl).
18 rewrite DIFFERENCE_NO_INTERSECT by
19 (assert(HH: NO (JOIN n (JOIN b addr))) by trivial;
20 castsimpl; intros;
21 specialize(HH x);
22 contradict HH;
23 intuition eauto).
24 reflexivity.
25 Qed.

Figure 6.5 – Proof of Lemma delUndoesAdd
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1 Lemma addIdempotent_Lemma: addIdempotent.
2 Proof.
3 unfold addIdempotent.
4 intros b b’ b’’ n a H. destruct_and.
5 assert(Hadd1: add_ b b’ n a) by trivial.
6 assert(Hadd2: add_ b’ b’’ n a) by trivial.
7 inversion Hadd1; inversion Hadd2; subst.
8 assert(Hr1: JOIN b’’ addr == UNION (JOIN b’ addr)(PRODUCT n a)) by trivial.
9 assert(Hr2: JOIN b’ addr == UNION (JOIN b addr)(PRODUCT n a)) by trivial.

10 rewrite Hr1, Hr2.
11 rewrite UNION_assoc, UNION_idem.
12 reflexivity.
13 Qed.

Figure 6.6 – Proof of Lemma addIdempotent

A recommended style in Coq, is to avoid using explicitly automatically
generated names by tactics. Our destruct_and tactics, that basically systemati-
cally replaces hypotheses of the form A^ B by two hypotheses A and B, and
automatically generates names for these new hypotheses. The inversion tactic
also automatically generates names. To explicitly give names to the hypotheses
we want to manipulate, we use the assert tactic of Coq that is used to prove
an intermediate result. In our case, we just state and give an explicit name for
already existing hypotheses, hence the use of the trivial tactic used to prove the
assertion (for e.g. lines 10–11 of Figure 6.5). In order to get the correspond-
ing formulas to the definition of an Alloy predicate, or an Alloy function, the
inversion tactic of Coq is needed (e.g. line 7 of Figure 6.5 and line 7 of Figure 6.6).
Using the assert tactic, we give explicit names to the hypotheses generated by
inversion (for e.g., lines 8–9 of Figure 6.6).

The two other main characteristics of these proof scripts are:

• The use of the rewrite tactic, that relies on the proofs of == is an equivalence
relation, and the Alloy operations are compatible with this equivalence
relation (e.g. line 13 of Figure 6.5 and line 10 of Figure 6.6).

• The systematic use of properties proved on Alloy operations: for example
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the distributivity of the union over the difference (line 15 of Figure 6.5)
and the associativity and idempotence of the union (line 11 of Figure 6.6).

Most of the proof scripts are based on the elements described above. The
exception are lines 20–23 of Figure 6.5. The proof of the condition of the lemma
DIFFERENCE_NO_INTERSECT is in a way more “low-level” than the other parts
of the proof scripts as it directly makes use of the definitions of some Alloy
operations. One non standard Coq tactic is castsimpl: it is a tactic we provide,
and that simplifies the application of the Alloy operations and also removes all
the casts in the hypotheses and the goal. In the example the goal before calling
castsimpl is:

1 NO (INTERSECT (JOIN b addr) (PRODUCT n Addr))

meaning we have to prove that the intersection of JOIN b addr and
PRODUCT n Addr is empty, while after it is:

1 8 y x : U, ⇠ ((9 x0 : U, b x0 ^ addr x0 y x) ^ n y ^ Addr x)

As castsimpl simplifies the hypothesis HH in a similar way, it is quite easy to
finish the proof.

These two proof scripts show that while most of the time the user can
rely on proofs by rewrite and application of operation properties, when it is
not possible, the proof writing remains accessible. With these two proofs, we
guarantee that the Alloy assertions hold for arbitrary sets and relations Book,
Name, Addr and addr.

6.5 The Tool

We developed a tool to automatically translate Alloy models to Coq syntax
and that comes with a supporting library to assist users in the proof process.
The tool is written in Java and relies on ANTLR [79] for parsing. ANTLR (AN-
other Tool for Language Recognition) is a parser generator widely used for
building languages, tools and frameworks. It reads a grammar and generates a
parser that recognizes the language defined by this grammar, which allows to
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build and walk parse trees. We used ANTLR in the background of our tool to
parse Alloy models and generate an abstract syntax tree. Then we generate as
output a file containing the translated Alloy model into Coq syntax according
to the translation rules described in Section 6.3. The version of Coq used in this
implementation is the 8.7.2 version. There are about 2 KLoC of non-generated
Java code, and the Coq supporting library Alloy is about 600 LoC.

6.6 Discussion

The tool presented in this chapter shows the potential of translating and
proving the correctness of critical Alloy models, but it still has some limitations
in its current state.

The first limitation is the subset of the Alloy language that is supported.
There is one aspect that the current translation does not handle which is the
cardinality of sets and relations. The design choice we made is not incompatible
with dealing with cardinalities. It however requires additional hypotheses. A
way to remediate from this limitation would be to, first, make the universe
U countable, this is actually in line with what is considered in Alloy, but it
is not set as a hypothesis in our current Coq modeling. Then to compute the
cardinality (the # operator in Alloy), the argument should be a finite relation,
this can be added as a hypothesis each time the operator is used. Other Alloy
features that could be integrated into our tool are integer support, Coq can
handle integer definition and thus, adding this to our solution will only require
some formalization efforts. The other feature to improve further is the arrow
operation. For now, our arrow operation is by default a many to many arrow
operation, while Alloy’s arrow operation handles different multiplicities.

The second limitation is not related to the translation itself, but rather to
the support provided to the user in the translated Coq code. Although we do
provide a few Coq tactics to ease the work to prove what are assertions in Alloy,
currently the proofs are written mostly manually by the users. More powerful
tactics are needed to enrich the Coq Alloy library.
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In translating one formal language to another one, the question of the cor-
rectness of the translation arises. One possibility would be to have a Coq repre-
sentation of Alloy’s abstract syntax and then give a Coq semantics to this syn-
tax, this would be a formalization of Alloy in Coq. Then we could implement in
Coq what is currently the back-end of our translation in Java, the generation of
Coq code from Alloy’s syntax. Proving the correctness of the translation would
then mean check that the semantics and the translation are equivalent. How-
ever, it is very likely that the semantics could be given using the same basic
constructs we use for our translation, they would be essentially no difference
between the Coq semantics of Alloy, and the Coq translation of Alloy. Another
possibility would be to have a deep embedding of both Alloy and Coq in Coq
and check that the translation (from syntax to syntax) preserves the semantics.
However, our formalization of Alloy in Coq uses features that formalizations
of Coq in Coq (for e.g. [33]) do not currently handle.

6.7 Conclusion

This chapter presented a tool for translating Alloy models into Coq code.
Alloy’s main objects are relations. In fact, sets are unary relations, elements
are considered as singleton sets. We chose to keep this view in Coq and to
consider, as in the module Relation_Definitions of Coq’s standard library, that
a relation is a function to Prop. This module, however, only considers binary
relations, meaning they have a type U!U!Prop where U is the type of the
universe.

We decided to generalize this approach. This choice required us to use
dependent types everywhere in the Coq library that provides the primitive
relational operations of Alloy and supports the translation. One of the major
challenges of the translation and proofs afterwards was due to this choise. In
fact working with dependent types is quite complex because the types can
contain arbitrary terms. For example, consider the types arity (2 + 1) and arity
(1 + 2). The two types represent, intuitively, the same proposition: namely, that
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a relation of arity 3. The two types can be transformed, by calculation, into the
same type arity (3). Then, any proof M of arity (2 + 1) should also be a proof
of arity (1 + 2) or of arity (3). Therefore it is very important to find ways to
guide through the calculation (i.e. reduction) process. We were able to use our
tool on examples and prove with Coq the lemmas generated by the translation.
Thus, this choice of Coq formalization seems appropriate.
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7.1 Conclusion

In this thesis, we present a fully functional brokerage tool to assist poten-
tial Cloud customers in the process of integrating the Cloud. Users specify a
component-based application they want to be deployed in the Cloud by giv-
ing first the functional requirements by specifying the number of components
and their functional description, then the non-functional requirements, which
represent their personalized security requirements in the format of relations
between the different components. The Kodkod model finder verify the consis-
tency of this demand, then the broker matches the available types of instances
to each of the components. Finally, another version of the broker uses linear
programming to find the placement strategy that optimizes the overall cost.
Thus, we present a placement strategy that does not only respects the func-
tional and non-functional requirements of the customer, but also minimizes
the overall cost of integrating the Cloud.
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Figure 7.1 – Broker Components

7.2 Perspectives

In this section, we present some of the ideas that we couldn’t pursue fully
due to either lack of time or resources, that could improve the work presented
in this thesis even further.

Broker Components The implementation of the new broker model can be
parallelized and executed in different steps. The broker may be divided into
different components as presented in Figure 7.1, each having different func-
tionalities. These components can be developed as part of a collaborative work
between multiple experts in the needed domains or even as part of a bigger
school project. The functionalities of the different components can be summa-
rized as follows:

• Customer relations: this component will be responsible of all actions re-
lated to the customer, starting from describing the demand, verifying the
consistency, returning a counterexample in case of anomaly, to presenting
a possible placement solution.

• Provisioning and management: this component will be the interface be-
tween the broker and the Cloud resource providers. It will be responsible
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for the initial resource provisioning and subsequent provisioning. An al-
gorithm, or an already implemented solution, can be integrated here to
do the calculations of the amounts of resources needed as a start point,
resources needing to be provisioned or released at a given time taking
into consideration the number of customers, their needs, and the overall
tendency of the market.

• Placement and configuration: this component will be finding the match-
ing Cloud resources that satisfy the customer’s functional requirements
and that will do the adequate network configuration to satisfy the non-
functional requirements. In case of insufficient resources, it alerts the Pro-
visioning and management component.

• Federation monitoring: this component will allow the broker to monitor
its federated resource both from a functional and security standpoints.

Linear Model First, the current linear model aims to find a placement strat-
egy that minimizes the overall cost. We can imagine refining the linear model
in order to have it take into consideration one or multiple other optimization
criteria chosen by the customer.

Second, the evaluation tests we have conducted have shown the complexity
of the optimization problem. Other tests varying the number of occurrences of
the instances, sizes of customers’ architectures as well as varying the types of
resources provisioned could give us more insight on how to further improve
on our linear problem in order to reach it’s full potential.

In a theoretical point of view, it would be worth showing that the optimiza-
tion problem is NP-hard and try to refine the complexity. Further, it may be
worthwhile to define some heuristics to find adequate placements, especially
when the linear model takes a long time to solve.

Alloy2Coq As mentioned before, one of the main motivations for this tool is
our project around a broker for the Cloud that takes into account user security
requirements that can be expressed as first-order relational logic formulas and
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that we checked using Alloy/Kodkod [74]. In order to increase the trust in this
broker, we aim at formalizing all the hypothesis made on the system and make
sure that if the formal requirements given by the user contain no error and are
added to the system, then conclusions about the security of the new state of the
system can be drawn. This case study requires a significantly larger translation
and Coq proofs than the examples we considered so far.
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ATactic solve_alloy

1 Definition cast_0 n1 (R1 : arity n1) (H:n1 = 0) : Prop.

2 subst. simpl in *. trivial.

3 Defined.

4

5 Definition cast_1 n1 (R1 : arity (S n1)) (H:n1 = 0) : arity 1.

6 subst. simpl in *. trivial.

7 Defined.

8

9 Definition cast_0n2 n1 n2 (R: arity n2)(H:n1 = 0) : arity(n1+n2).

10 subst. simpl in *. exact R.

11 Defined.

12

13 Definition cast_n1S n1 n1’ (R1 : arity n1) (H:n1 = S n1’) : arity (S n1’).

14 subst. simpl in *. trivial.

15 Defined.

16

17 Definition cast_Sn1 n1 n1’ (R1 : arity (S n1’)) (H:n1 = S n1’) : arity n1.

18 subst. simpl in *. trivial.

19 Defined.

20

21 Definition cast_nS n n’ (R1: U! arity n)(H:n’=S n): arity n’.

22 rewrite H. simpl. trivial.

23 Defined.

24

125
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25 Definition cast_0n n (R1 : Prop) (H:n = 0) : arity n.

26 rewrite H. simpl. trivial.

27 Defined.

28

29 Definition cast_Sn1n2 n1 n2 n1’ (R1 : arity(S(n1’+n2))) (H1:n1=S n1’) : arity (n1+n2).

30 subst. simpl. apply R1.

31 Defined.

32

33 Definition cast_plus0S n1 n2 n2’ (R1: arity(S(n1+n2’))) (H1: n1=0)(H:n2=S n2’) : arity (n1+n2).

34 subst. simpl. apply R1.

35 Defined.

36

37 Ltac castsimpl :=

38 repeat (

39 repeat(unfold cast_0, cast_1, cast_0n2, cast_n1S, cast_Sn1, cast_Sn1n2,

40 cast_0n, cast_plus0S, cast_nS, eq_rect_r in * );

41 repeat rewrite UIP.Nat.eq_rect_eq in *;

42 simpl in * ).

43

44 Ltac destruct_and :=

45 repeat

46 match goal with

47 | [ HH: _ ^ _ ` _ ]) destruct HH

48 end.

49

50 Ltac solve_alloy :=

51 match goal with

52 | [ ` 8 (n1:nat)(n2:nat), _ ])
53 unfold EQUAL;

54 destruct_and;

55 induction n1 as [ | n1 IH1]; [ induction n2 as [ | n2 IH2] | idtac] ;

56 castsimpl; try split; intros; castsimpl; firstorder

57 | [ ` 8 (n:nat), _ ])
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58 unfold EQUAL;

59 destruct_and;

60 induction n as [ | n IH];

61 castsimpl; try split; intros; castsimpl; try eapply IH; firstorder

62 end.
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RpVXmp 
AYec la demande croissante sXr les ressoXrces CloXd, Yient l'aXgmentation dX nombre de foXrnisseXrs de               
serYices CloXd. Ce qXi rend le processXs de choi[ entre les diffprents foXrnisseXrs et offres difficile poXr                 
les clients potentiels. Le coXrtier CloXd proposp, est Xne entitp tierce qXi intermpdiaire la relation entre                
les clients et les foXrnisseXrs CloXd. Le coXrtier gXidera le client toXt aX long dX processXs d'intpgration                 
dX CloXd. Notre coXrtier prend en considpration les e[igences fonctionnelles (c'est-j-dire la qXantitp et la               
description des ressoXrces) et non fonctionnelles (c'est-j-dire les propriptps de spcXritp) dX client dps le               
premier contact. Aprqs aYoir reoX la description de la demande dX client, notre coXrtier commence par                
Yprifier sa cohprence et renYoie Xn contre-e[emple en cas d'incohprences. NoXs Xtilisons des mpthodes              
formelles coXplps aYec de la programmation linpaire poXr Yprifier la consistance et troXYer le placement               
approprip dans Xne fpdpration de CloXds. Aprqs aYoir commXniqXp l'emplacement troXYp, si il e[iste Xn,               
aX client, ce dernier dpcidera soit d'accepter cette offre oX pas. Une fois qXe le coXrtier reooit la                  
confirmation dX client le modqle sera prrt poXr le dpploiement. 

 

Mots clps: informatiqXe en nXages, spcXritp, mpthodes formelles, coXrtage infonXagiqXe, programmation           
linpaire. 

 

 

RpVXmp en anglaiV 
WiWh Whe gUoZWh of CloXd ComSXWing, comeV Whe gUoZWh of Whe nXmbeU of comSanieV offeUing               
diffeUenW cloXd VeUYiceV, Zhich da\ afWeU anoWheU caXVeV Whe oYeUZhelming of Whe conVXmeUV. Man\              
UeVeaUcheV haYe been condXcWed in oUdeU Wo aVViVW conVXmeUV in Whe SUoceVV of chooVing Whe UighW                
SUoYideU baVed on VeYeUal SUoSeUWieV, bXW noW man\ of Whem haYe VXcceeded in inWegUaWing Whe               
VecXUiW\ aVSecW. We VXggeVW a WhiUd SaUW\, namel\ CloXd bUokeU, WhaW Zill inWeUmediaWe Whe UelaWion               
beWZeen cloXd cXVWomeUV and SUoYideUV. The bUokeU Zill gXide Whe cXVWomeU WhUoXgh Whe Zhole              
SUoceVV of inWegUaWing Whe CloXd. OXU bUokeU find a coVW efficienW SlacemenW VWUaWeg\ Zhile Waking inWo                
conVideUaWion Whe fXncWional and non-fXncWional UeTXiUemenWV of Whe cXVWomeU. We XVe foUmal            
meWhodV Wo YeUif\ Whe conViVWenc\ of Whe cXVWomeU'V demand, maWching WechniTXeV and lineaU             
modeling Wo find Whe aSSUoSUiaWe SlacemenW in a fedeUaWion of CloXdV. In WhiV WheViV Zill be SUeVenWed                 
Whe fXll cUeaWion and WhoXghW SUoceVV behind WhiV bUokeUage VolXWion, limiWaWionV encoXnWeUed and             
VolXWionV SUoSoVed. 

 

Ke\ ZoUdV: CloXd comSXWing, SecXUiW\, FoUmal MeWhodV, CloXd bUokeUing, LineaU PUogUamming. 

 

 

 SaOZa SOUAF 

FRUPaO MeWhRdV MeeW SecXUiW\ iQ a 
CRVW AZaUe CORXd BURNeUage 

SROXWiRQ 
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